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Abstract

Computational Geometry and Online Algorithms

Ali Mohammad Lavasani, Ph.D.

Concordia University, 2025

This thesis explores several problems in computational geometry and online algorithms, focus-

ing on efficient algorithms for geometric optimization and real-time decision-making. We begin by

addressing the offline computational geometry problem of the Maximum Weighted Convex Polytope

(MWCP), followed by two online algorithmic problems: Online Non-Crossing Matching and Online

Interval Scheduling.

In the MWCP problem, the goal is to find a convex polytope within a set of n weighted (positive

and negative) points in Rd that maximizes the total weight of points inside or on the boundary. We

present a new simple algorithm for the two-dimensional case, achieving the same time complexity

of O(n3) as previous methods. We also prove that MWCP isNP-hard in dimensions three or higher,

even when weights are restricted to +1 and −1, and that in dimensions four or higher, the problem

is NP-hard to approximate within a factor of n
1
2
−ϵ.

We next focus on the Online Non-Crossing Matching problem, where points arrive sequentially

in the plane and must be irrevocably matched to previously arrived points such that the resulting

matched pairs form non-crossing line segments. We introduce the weighted version of this prob-

lem, aiming to maximize the total weight of matched pairs. We show that deterministic algorithms

can have arbitrarily bad competitive ratios due to adversarial weight assignments. To address this,

we consider weights within the range [1, U ] and provide an algorithm with a competitive ratio of

Ω
(
2−2

√
logU

)
, along with an upper bound of O

(
2−

√
logU

)
for any deterministic algorithm. In

the setting that allows revoking, we develop an algorithm that achieves a competitive ratio of ap-

proximately 0.28, and prove that no deterministic algorithm can exceed a competitive ratio of 2/3,
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even in the unweighted case. Additionally, we propose a randomized algorithm with a competitive

ratio of 1/3, and show that no randomized algorithm can surpass a competitive ratio of 8/9 in the

unweighted case.

We also study the advice complexity of this problem. We establish a lower bound of (n/3)−1 on

the advice complexity and provide an algorithm that uses approximately 2n bits of advice, matching

logCn = 2n−O(log n), where Cn is the nth Catalan number. Furthermore, we derive a lower bound

on the advice complexity required to achieve a competitive ratio α ∈ (16/17, 1). In the bichromatic

version of this problem, where a set of n blue points are given offline and red points arrive online

to be matched only to blue points, we correct previous errors in the literature and establish a lower

bound of logCn on the advice complexity. We also present an algorithm that uses logCn bits of

advice when points arrive in convex position.

In the final part, we consider the Online Interval Selection problem when the interval graph of

the input is a simple path, allowing revoking of previous decisions. We show that under the random-

order model, a deterministic memoryless algorithm achieves a competitive ratio of 2
(
1− 1√

e

)
≈

0.78. We also established an upper bound of 3/4 for any deterministic revoking algorithm on a

simple chain in the adversarial model, and a lower bound of n/4 for the advice complexity of

Online Interval Selection, marking the first lower bound for this problem.

Throughout this work, we develop novel algorithmic techniques, establish tight complexity

bounds, and provide new insights into advice complexity for key problems in computational ge-

ometry and online algorithms. These contributions aim to advance the theoretical foundations of

these fields and have potential applications in real-time systems and geometric data analysis.

iv



Acknowledgments

I am deeply grateful to my supervisor, Denis Pankratov, for his invaluable guidance and support

throughout my PhD journey. His deep understanding of the field and insightful feedback shaped my

research and had a lasting impact on how I approach learning and problem-solving.

I would also like to thank Yaqiao Li. Many of the results in this thesis are the product of our

collaboration. Working alongside him has been one of the most rewarding aspects of my PhD

experience, and I have learned so much from his expertise and friendship.

I am thankful to my friends, especially Masih Aminbeidokhti, Armita Mohammadi, Mehran

Shakerinava, and Motahareh Sohrabi, for being there through thick and thin. Their support meant

the world to me and kept me going.

Lastly, I am forever grateful to my parents. My mother, Effat Mollanazar, for her unwavering

dedication to my education, and my father, Mahdi Lavasani, for introducing me to the beauty of

mathematics. Their belief in me has been my foundation.

v



Contents

List of Figures ix

List of Tables xii

1 Introduction 1

1.1 Chapter 3: Maximum Weighted Convex Polytope . . . . . . . . . . . . . . . . . . 2

1.2 Chapters 4 and 5: Online Non-Crossing Matching . . . . . . . . . . . . . . . . . . 3

1.3 Chapter 6: Online Interval Selection . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Preliminaries 8

2.1 Basic Mathematical Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Offline Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Online Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4.1 Online Problems and Algorithms . . . . . . . . . . . . . . . . . . . . . . 12

2.4.2 Online Algorithmic Models . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4.3 Measuring Performance of Online Algorithms . . . . . . . . . . . . . . . . 13

2.4.4 Online Algorithms with Advice . . . . . . . . . . . . . . . . . . . . . . . 14

3 Maximum Weight Convex Polytope 16

3.1 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

vi



3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3.1 Upper Bounds for 1 and 2 Dimensions . . . . . . . . . . . . . . . . . . . . 20

3.3.2 Lower Bounds for 3 and 4 Dimensions . . . . . . . . . . . . . . . . . . . 24

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 Weighted Online Non-Crossing Matching 30

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.3 Deterministic Algorithms for Restricted OWNM . . . . . . . . . . . . . . . . . . . 33

4.3.1 Warm Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3.2 Point Classification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.3.3 Negative Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.3.4 Positive Result: The Wait-and-Match Algorithm . . . . . . . . . . . . . . 39

4.4 Randomized Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.4.1 Negative Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.4.2 Positive Result: Tree-Guided-Matching Algorithm . . . . . . . . . . . . . 46

4.5 Revocable Acceptances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.5.1 Negative Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.5.2 Positive Result: Big-Improvement-Match . . . . . . . . . . . . . . . . . . 50

4.6 Collinear Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5 Online Non-Crossing Matching with Advice 60

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.2.1 Online Non-Crossing Matching . . . . . . . . . . . . . . . . . . . . . . . 65

5.2.2 Catalan Numbers and Related Topics . . . . . . . . . . . . . . . . . . . . 66

5.3 Advice Complexity of Convex BNM . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.4 Advice Complexity of MNM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.4.1 3n Upper Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.4.2 ⌈logCn⌉ Upper Bound for Convex Position . . . . . . . . . . . . . . . . . 76

vii



5.4.3 ⌈logCn⌉ Upper Bound for General Position . . . . . . . . . . . . . . . . . 79

5.4.4 ⌊n/3⌋ − 1 Lower Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.4.5 Ωα(n) Lower Bound for α-Approximation . . . . . . . . . . . . . . . . . 84

6 Online Interval Selection 88

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.2 Random Order Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.3 Adversarial Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.4 Advice Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7 Conclusion 103

7.1 Maximum Weight Convex Polytope . . . . . . . . . . . . . . . . . . . . . . . . . 103

7.2 Weighted Online Non-Crossing Matching . . . . . . . . . . . . . . . . . . . . . . 104

7.3 Online Non-Crossing Matching with Advice . . . . . . . . . . . . . . . . . . . . . 105

7.4 Online Interval Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

Bibliography 107

viii



List of Figures

Figure 3.1 An example illustrating the calculation of the weight of a polytope, where

w(P ) = 4 + 3 + 6 + 3 + 5− 4 = 17. . . . . . . . . . . . . . . . . . . . . . . . . 16

Figure 3.2 MWCP in 2D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Figure 3.3 The path p→ q → r is concave if and only if vector r−p is turned clockwise

relative to vector q − p. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Figure 3.4 An example illustrating the placement of negative-weight points along edges

to ensure that a polytope’s convex hull encodes independent set constraints. . . . . 26

Figure 3.5 Illustration of the proof of Theorem 15. Here, n = 6, k = 3, we chose

C to result only in a single C ′, which is shown as a shaded area. We have l = 1

with ui1 = u2 and vertex u2 is associated with the topmost edge of C ′. We have

w(C ′) = w(v1) + w(v2) + w(v3) + w(u1) = 3− 1 = 2 = l + 1. . . . . . . . . . 29

ix



Figure 4.1 An illustration of the adversary’s strategy for k = 3. The two arcs form the

active region. Black points have weight 1. Suppose in the first phase ALG matched

xR1 and yR1 , which became responsible for R1 region. Note that the number of

unmatched points (of weight 1) in R1 is 6, which is less than 2k − 1 = 7. Thus, in

the second phase, the adversary plans to send points p1, p2, p3 of weights a1, a2, a3

in R1. Suppose ALG matches the point of weight a1; then the adversary sends p2, p3

below the line segment between the matched pair (there are fewer unmatched points

there). Similarly, after the point p2 of weight a2 is matched, the adversary sends

p3 to the side of the resulting segment with no unmatched points. This ensures that

some point of weight ai (here a3) stays unmatched and is mapped to the matched

pairs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Figure 4.2 An illustration of the mapping used to analyze WAM. In this example, we

have k = 2 and 8 points with weights in {1,
√
U,U}. Here, [t, w] indicates the tth

point in the input sequence having weight w. Note that points 1 and 3 are mapped to

the segment corresponding to the imaginary points (−∞, 0) and (−∞, 1) of weight

U . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Figure 4.3 On the left is the input and how TGM divides and partitions the plane, and

on the right is the tree it creates from the input. Based on this tree, it matches nodes

with their parents randomly, such that every node upon its arrival gets matched with

a probability of 1/3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Figure 4.4 (1) The first two points arrive, partitioning the line into (−∞, p1), [ p1, p2] ,

and (p2,∞). (2) Point p3 arrives in [ p1, p2] . RRM revokes p1p2, randomly matches

p3 to p1, and partitions [ p1, p2] into [ p1, p3] and (p3, p2] . (3) Point p4 arrives in

(p2,∞) and remains unmatched as the interval it arrived in is empty. (4) Point p5

arrives in (p3, p2] and is matched to p2, splitting the interval into (p3, p5) and [ p5, p2] . 56

Figure 5.1 An instance of MNM in convex position with 6 points with their convex hull

and parities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Figure 5.2 Left: positions of blue points. Right: the input sequence for n = 4, corre-

sponding the permutation σ = (2, 1, 4, 3). . . . . . . . . . . . . . . . . . . . . . . 73

x



Figure 5.3 Two input sequences, associated with σ = (2, 1, 3) on the left and σ =

(3, 1, 2) on the right, can be solved optimally using a single deterministic algorithm.

This serves as a counterexample to the proof presented by Bose et al. [15]. . . . . . 74

Figure 6.1 A simple chain of intervals with size n. . . . . . . . . . . . . . . . . . . . . 90

Figure 6.2 In all cases, Ij is already selected when Ii arrives. In (1), Ii is rejected. In

(2) and (3), Ij is revoked, and Ii is accepted. However, in a simple chain setting,

scenario (3) would not occur. The RevtoL algorithm handles general inputs, but in

this work, we analyze it specifically for simple chain graphs under the random-order

input model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Figure 6.3 The first 2k intervals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Figure 6.4 Connecting ith and i+ 1th pairs by putting (1) one interval (2) two intervals,

in the gap between Ji and Ii . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

xi



List of Tables

Table 1.1 Comparison of the Maximum Weighted Convex Polytope (MWCP), the On-

line Non-Crossing Matching (ONM), the Online Interval Selection (OIS) Problems. 7

Table 5.1 Summary of previously known results and our new results for the advice

complexity of BNM and MNM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Table 6.1 Data for dn, Dn. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

xii



Chapter 1

Introduction

Computational geometry is a branch of computer science that focuses on the study of algorithms

for solving problems involving geometric objects. These objects can include points, lines, polygons,

and polytopes. The central goal of computational geometry is to design efficient algorithms to han-

dle geometric data, addressing problems such as computing convex hulls, finding intersections,

and optimizing geometric configurations. The field draws heavily on mathematical foundations,

including combinatorics, topology, and linear algebra, but its primary focus is on the algorithmic

complexity and computational feasibility of these problems. As geometric data becomes increas-

ingly prevalent in various domains, the development of robust and efficient algorithms has become

essential.

Online algorithms are a class of algorithms designed to make decisions incrementally, process-

ing input piece by piece as it arrives without knowledge of future inputs. Unlike offline algorithms,

which have access to the complete input in advance, online algorithms must navigate uncertainty and

optimize their performance in real time, adapting to new information as it becomes available. They

are essential in situations requiring immediate decision-making, such as data structures, scheduling,

caching, and networking.

A key metric for evaluating the performance of online algorithms is the competitive ratio. This

measure compares the efficiency of an online algorithm to that of an optimal offline algorithm,

which operates with full knowledge of future inputs. The competitive ratio captures the worst-case

scenario by evaluating how closely the online algorithm approximates the cost or performance of
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the optimal offline solution.

To assess the robustness of online algorithms, researchers often model future inputs as being

generated by an adversary, who seeks to maximize the difficulty of the problem for the algorithm.

This approach ensures that the algorithm is equipped to handle even the worst-case scenarios that

may arise in the future.

Online algorithms were first formally introduced in the 1980s, particularly in the study of paging

and caching problems, with Sleator and Tarjan [58] pioneering the use of the competitive ratio to

compare online and offline algorithms. Since then, the field has expanded to cover a broad range

of problems, including those in computational geometry, such as the k-server problem and online

matching, contributing to more generalized theoretical frameworks.

It is worth noting that online problems can be viewed as information-theoretic problems. We

often do not consider the computational complexity or even feasibility of such algorithms. This

gives us robust knowledge about “what cannot be done”. Although this assumption is not realistic

in the algorithm design, except in very few examples, all known algorithms in this field have efficient

polynomial computational complexity.

Advice complexity is a measure used in online algorithms to quantify the amount of additional

information (or ”advice”) required to achieve optimal or near-optimal performance. In this model,

an all-knowing oracle provides bits of advice to the algorithm, which can read these bits to make

decisions as input elements are revealed. The goal is to minimize the number of advice bits needed

while improving the algorithm’s competitive ratio. Advice complexity bridges the gap between

purely online and offline algorithms by offering insights into how much foresight improves decision-

making.

In the following, we outline the structure of the thesis, provide brief definitions of the problems

studied, offer concise literature reviews, and summarize the results obtained.

1.1 Chapter 3: Maximum Weighted Convex Polytope

The Maximum Weight Convex Polytope (MWCP) problem is defined as follows. Given a set of

n points S in Rd with associated weights w : S → R, the weight of a polytope P is the sum of
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the weights of the points located inside or on the boundary of P , i.e., w(P ) =
∑

x∈S∩P w(x). The

objective is to find a convex polytope that maximizes this weight. It is important to note that the

point weights can be negative; otherwise, the problem becomes trivial.

Despite its simple and natural formulation, surprisingly, this problem has not been widely stud-

ied in the computational geometry literature. The closest related work we discovered is by Bautista

et al. [9], where the problem involves finding a monochromatic convex polytope, containing only

red or only blue points, with maximum cardinality among a set of red and blue points. They also

noted that with slight modifications, their algorithm could solve MWCP in O(n3) time.

Our Contributions

• We present a new, arguably simpler algorithm that solves MWCP in two dimensions, main-

taining the same time complexity of O(n3).

• We prove that MWCP in three or more dimensions is NP-hard, even when the weights are

limited to +1 and −1.

• We also demonstrate that solving MWCP in four or more dimensions is NP-hard to approxi-

mate within a factor of n
1
2
−ϵ, even under the same weight restrictions of +1 and −1.

1.2 Chapters 4 and 5: Online Non-Crossing Matching

A set of 2n points arrives sequentially in the Euclidean plane. When a point arrives, the algo-

rithm may match it with one of the previously arrived and unmatched points using a straight line

segment. Each point must be paired with exactly one other point, and the resulting set of matched

pairs (i.e., segments) must be non-crossing. The points are in general position, and decisions are

irrevocable unless explicitly stated otherwise. The objective is to maximize the number of matched

points.

In the offline setting, this problem is considered classical and can be solved in polynomial time.

The study of online matching problems (without geometric constraints) was initiated by Karp et

al. [42], where they examined the bipartite version of the problem. In this version, the final graph
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forms a bipartite graph G(U, V,E), with the point set U available from the start. Points in set V

arrive online one at a time along with the edges connecting it to points in U . As with previous setups,

the algorithm must decide whether to match the arriving vertex to one of its available (unmatched)

neighbors or leave it unmatched.

Karp et al. introduced a randomized algorithm called ranking, which achieved a competi-

tive ratio of 1 − 1
e , and proved that no algorithm can perform better. This problem has been

extensively studied due to its important real-world applications, particularly in online advertis-

ing. Several extensions and variations have been explored with different objectives and constraints

[10, 22, 7, 18, 29, 34, 39, 50].

The Online Non-Crossing Matching (ONM) problem was introduced by Bose et al. [15], who

showed that any greedy algorithm that matches points whenever possible achieves a competitive

ratio of 2/3, and no deterministic algorithm can improve on this result. Later, Kamali et al. [40]

proposed a randomized algorithm that increased the competitive ratio to approximately 0.6695.

Sajadpour [57] further proved that no randomized algorithm can achieve a competitive ratio better

than 0.9262.

Inspired by the online bipartite matching problem, Bose et al. [15] also introduced the bichro-

matic version of the Online Non-Crossing Matching problem. In this version, n red points are

available offline, and n blue points arrive online. Each matching must pair one red and one blue

point. They presented an algorithm with a competitive ratio of log n− o(log n) and proved that no

deterministic algorithm can achieve a better ratio.

Additionally, they explored the advice complexity of this problem. For the monochromatic

version, they provided an algorithm with an advice complexity of 2n log 3+ o(n) and established a

lower bound of Ω(log n). For the bichromatic version, they proposed an algorithm with an advice

complexity of n log n but incorrectly claimed an upper bound of n log n.

Our Contributions - Advice Complexity

• We establish a lower bound of n/3 − 1 on the advice complexity for the monochromatic

version.
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• We propose an algorithm that solves the monochromatic version using approximately 2n bits

of advice, corresponding to logCn = 2n−O(log n) where Cn is the nth Catalan number.

• We correct a previous error in the proof of the n log n lower bound, providing a lower bound

of logCn on the advice complexity for the bichromatic version.

• We present an algorithm that uses logCn bits of advice for the bichromatic version, assuming

that points arrive in a convex position.

• We derive a lower bound of α
2D(2(1−α)

α ||1/4)n on the advice complexity required to achieve a

competitive ratio of α ∈ (16/17, 1) for the monochromatic version, where D(p||q) represents

the relative entropy between two Bernoulli random variables with parameters p and q.

In addition to advancing the previous results on advice complexity, we introduce the weighted

version of the problem, where each point is assigned a positive weight, and the objective is to max-

imize the total weight of the matched points. We show that any deterministic algorithm can have

an arbitrarily bad competitive ratio in this context. We then explore several approaches, includ-

ing parametrizing the maximum weight (restricting weights to the range [1, U ]), allowing revoking

(where the algorithm can revoke previously matched pairs), and incorporating randomization. In-

terestingly, each of these approaches result in a constant competitive ratio, assuming U is treated as

a constant rather than a variable.

Our Contributions - Weighted

• For weights restricted to the range [1, U ], we provide an algorithm with a competitive ra-

tio of Ω
(
2−2

√
logU

)
and establish an upper bound of O

(
2−

√
logU

)
for any deterministic

algorithm.

• We develop an algorithm with revoking that achieves a competitive ratio of approximately

0.2862, and we prove that no deterministic algorithm can exceed a competitive ratio of 2/3,

even in the unweighted version.

• We propose a randomized algorithm with a competitive ratio of 1/3 and demonstrate that
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no randomized algorithm can surpass a competitive ratio of 8/9, even for the unweighted

version.

• Additionally, we show that when points arrive on a line, neither randomization nor revok-

ing alone improves the competitive ratio meaningfully. However, we present a randomized

algorithm with revoking that achieves a competitive ratio of 0.5.

It is worth noting that the randomized algorithm for the weighted version inspired the algorithm

with the tight bound for the advice complexity on the monochromatic version.

1.3 Chapter 6: Online Interval Selection

In the Online Interval Selection (OIS) problem, a set of intervals I = {I1, I2, . . . , In} arrives

one by one, and the algorithm must decide whether to accept or reject each interval as it arrives,

ensuring that the selected intervals do not overlap. In the unweighted version of this problem, dis-

cussed in this thesis, the objective is to maximize the number of selected intervals. In the revocable

acceptance setting, the algorithm is allowed to revoke previously selected intervals to accept new

ones, while maintaining a set of non-overlapping intervals at all times. These intervals form a simple

chain if each interval Ii overlaps only with its neighbors, Ii−1 and Ii+1 (when they exist).

The Online Interval Selection problem poses a significant challenge in the field of online algo-

rithms and has important applications in areas like job scheduling and network resource allocation.

It has been widely studied within the online algorithm community. For an overview of the results

and applications in the field of interval selection, we direct the reader to the surveys by Kolen et al.

[43] and Kovalyov et al. [44].

In the real-time model, where intervals arrive in increasing order of their start times, the algo-

rithm benefits from partial foresight. Faigle and Nawijn [28] proposed a 1-competitive deterministic

algorithm, which is optimal when revocable decisions are allowed, enabling previously accepted

intervals to be replaced by better ones that arrive later. Without revoking, the competitive ratio de-

teriorates significantly, as shown by Lipton and Tomkins [46], who established a upper bound of

O(n−1) for deterministic algorithms.
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In the random-order model, where intervals arrive in a uniformly random sequence, Borodin

and Karavasilis [12] demonstrated that a greedy algorithm can achieve a competitive ratio of 0.4.

Revocable decisions play a key role in this model, allowing deterministic algorithms to leverage

randomness in the arrival sequence and enhance performance. Studies on revocable decisions, such

as those by Borodin and Karavasilis [12].

Our Contributions

• We show that a deterministic memoryless algorithm with revoking achieves a competitive

ratio of 2(1− 1/
√
e) ≈ 0.786 on a simple chain under the random-order input model.

• We prove an upper bound of 3/4 for any deterministic revoking algorithm on a simple chain

in the adversarial model.

• We prove a lower bound of n/4 for the advice complexity of Online Interval Selection.

1.4 Summary

The following table summarizes the definitions of the problems and highlights the similarities

and differences.

Problem MWCP ONM OIS

Input Items
points ∈ Rn points ∈ R2 Intervals ⊆ R

Decision
Connect points to
form a polytope

Connect points to
form a matching

Select a set of
intervals

Constraint
Convexity Non-crossing Non-crossing

Table 1.1: Comparison of the Maximum Weighted Convex Polytope (MWCP), the Online Non-
Crossing Matching (ONM), the Online Interval Selection (OIS) Problems.
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Chapter 2

Preliminaries

In this chapter, we provide a brief overview of complexity theory and online algorithms, along

with formal definitions that are used throughout the thesis or aid in understanding the chapter intro-

ductions. More specific preliminaries and notations relevant to individual chapters are introduced

within each chapter as needed.

2.1 Basic Mathematical Notations

We show the set of positive real numbers by R>0 = {x ∈ R|x > 0} and the set of integers

{1, 2, . . . , n} by [n]. Asymptotic notations formally describe the behavior of functions as the input

size n approaches infinity. Big-O notation, denoted O(g(n)), provides an upper bound on the growth

rate of a function. A function f(n) is O(g(n)) if there exist positive constants c and n0 such that

0 ≤ f(n) ≤ c · g(n) for all n ≥ n0. Formally,

f(n) = O(g(n)) ⇐⇒ ∃c > 0, n0 > 0 : ∀n ≥ n0, f(n) ≤ c · g(n).

Little-o notation, denoted o(g(n)), gives a strict upper bound, indicating that f(n) grows slower

than g(n). Formally, f(n) = o(g(n)) if for every constant c > 0, there exists an n0 such that

0 ≤ f(n) < c · g(n) for all n ≥ n0. The definition is:

f(n) = o(g(n)) ⇐⇒ ∀c > 0,∃n0 > 0 : ∀n ≥ n0, f(n) < c · g(n).
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Big-Omega notation, denoted Ω(g(n)), provides a lower bound. A function f(n) is Ω(g(n)) if

there exist positive constants c and n0 such that f(n) ≥ c · g(n) for all n ≥ n0. Formally,

f(n) = Ω(g(n)) ⇐⇒ ∃c > 0, n0 > 0 : ∀n ≥ n0, f(n) ≥ c · g(n).

Little-omega notation, denoted ω(g(n)), gives a strict lower bound. It indicates that f(n) grows

faster than g(n). Formally, f(n) = ω(g(n)) if for every constant c > 0, there exists an n0 such that

f(n) > c · g(n) for all n ≥ n0. The definition is:

f(n) = ω(g(n)) ⇐⇒ ∀c > 0,∃n0 > 0 : ∀n ≥ n0, f(n) > c · g(n).

Theta notation, denoted Θ(g(n)), describes a tight bound on the growth of f(n), meaning f(n)

grows at the same rate as g(n). Formally, f(n) = Θ(g(n)) if there exist positive constants c1, c2,

and n0 such that c1 · g(n) ≤ f(n) ≤ c2 · g(n) for all n ≥ n0. The definition is:

f(n) = Θ(g(n)) ⇐⇒ ∃c1 > 0, c2 > 0, n0 > 0 : ∀n ≥ n0, c1 · g(n) ≤ f(n) ≤ c2 · g(n).

2.2 Geometry

For two points p and q in the plane, we use the notation pq to refer to both the line segment

between p and q and the line passing through them, depending on the context. The right (left) side

of pq refers to the right (left) side of the vector −→pq.

In the discussions of adversarial inputs and algorithms in Chapter 4 and Chapter 5, we employ a

technique called “convex partitioning” of the plane. Starting with the entire plane as a single region,

if points p and q lie within a region R, we can divide R into two regions using the line pq. The

specific choices of points used to partition the plane into convex regions will be detailed in each

scenario. The following fact is being used in multiple proofs of Chapter 4 and Chapter 5.

Fact 1. A set of 2n points in the plane always admits a perfect non-crossing matching (a matching

of size n).

Proof. Consider a perfect matching of minimum total length on these 2n points. We claim that this
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matching is non-crossing. For contradiction, suppose two segments in this matching are crossing.

These crossing segments form diagonals of a quadrilateral, which can be replaced by the two sides

of the quadrilateral, resulting in a perfect matching of smaller total length. This contradicts the as-

sumption that the original perfect matching has the minimum total length, proving that the matching

is non-crossing.

2.3 Offline Algorithms

Complexity theory, a branch of computer science, classifies computational problems based on

their inherent difficulty. It provides a framework for understanding how resources, such as time and

space, required to solve a problem scale with the size of the input. This thesis focuses specifically

on time complexity (Chapter 3).

A Turing machine is a theoretical model of computation that describes an abstract device capable

of manipulating symbols on a tape based on a finite set of predefined rules. Although it is a simple

concept, a Turing machine can simulate the logic of any (classical) computer algorithm, thus serving

as the foundational model for understanding computability and complexity in theoretical computer

science.

In complexity analysis, we often abstract away the details of the computational steps of a Turing

machine and instead focus on the number of high-level operations or executed lines of code in an

algorithm. This approach allows us to analyze and compare algorithms more easily, as we are

primarily interested in the order of magnitude of the running time, not the exact number of steps.

We use time complexity notation for problems as well. The lower bound on the time complexity

of a problem indicates that no algorithm exists with a better time complexity than the bound for

that problem. If an algorithm solves the problem, it provides an upper bound for the problem’s time

complexity.

A computational problem with binary output (yes or no) is called a decision problem. P (poly-

nomial time) is the class of decision problems that can be solved by a deterministic Turing machine

in polynomial time, meaning there exists an algorithm that can solve the problem in time O(nk)

for some constant k. NP (nondeterministic polynomial time) is the class of decision problems for
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which solutions can be verified by a deterministic Turing machine in polynomial time.

Despite being one of the most fundamental questions in computer science, it remains unknown

whether there exists an NP problem without a polynomial algorithm. However, there is a set of

problems known to be as hard as any problem in NP . To define hardness formally, we first define

the notion of reduction. A problem A is said to be reduced to problem B, denoted as A ≤p B, if

there exists a polynomial-time computable function f from the set of instances of A to the set of

instances of B such that for every instance x of A, x is a yes-instance of A if and only if f(x) is a

yes-instance of B.

A problem A is NP-hard if any problem in NP can be reduced to A. A problem A is NP-

complete if it is in NP and it is NP-hard. The implication is that if we want to prove a problem A

is hard, we pick a problem known to be NP-hard, such as the maximum independent set problem,

and reduce it to A. While this does not mean A lacks a polynomial-time algorithm, it suggests that

finding one would resolve a question (whether NP = P) that has eluded computer scientists for

decades.

Definition 1. Given a graph G = (V,E), where V is the set of vertices and E is the set of edges, the

maximum independent set problem seeks to find the largest subset I ⊆ V such that no two vertices

in I are adjacent.

Fact 2. The maximum independent set problem is NP-hard.

In addition to exact algorithms that solve problems optimally, complexity theory also studies

approximation algorithms, which aim to find solutions that are ”good enough” within a certain

factor of the optimal solution. This is particularly useful for problems that are NP-hard, where

finding an exact solution efficiently (in polynomial time) is unlikely.

An approximation algorithm is an algorithm that finds approximate solutions to optimization

problems. Instead of guaranteeing the optimal solution, an approximation algorithm guarantees that

the solution will be within some factor of the optimal one.

For a maximization problem, let I be an instance of the problem. Let OPT(I) be the value of

the optimal solution for input I , and ALG(I) be the value of the solution found by an approximation

algorithm ALG. We say ALG is an f(n)-approximation if for every input I of size n, ALG(I) ≥
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f(n) · OPT(I). Note that f(n) can be a constant number. For some problems, like the maximum

independent set problem, even finding a constant approximation algorithm is NP-hard.

2.4 Online Algorithms

2.4.1 Online Problems and Algorithms

In online problems, the inputs are presented as a sequence of objects I = (i1, i2, . . . , in), re-

vealed to the algorithm one by one. Upon the arrival of each item, the algorithm must make a

decision from the available actions based on the sequence received so far, without knowledge of

future inputs. These decisions are typically irrevocable, although some variations allow for the

revocation of previous decisions, which will be discussed later.

The challenge in designing efficient online algorithms can be framed as an information-theoretic

problem. The primary limitation is that the algorithm must function without foreknowledge of

future inputs. Importantly, we do not impose any restrictions on the computational power of the

online algorithm. This means an online algorithm can have exponential time complexity and even

access functions beyond the capability of a Turing machine. Although this might seem impractical,

most online algorithms are executed in polynomial time with few exceptions. Furthermore, the

upper bound on the performance of these algorithms (for maximization problems) is robust and

demonstrates a limit even if NP = P .

2.4.2 Online Algorithmic Models

Deterministic Online Algorithms. Let I = (i1, . . . , in) be an input instance of an online problem.

An online deterministic algorithm ALG on this input makes a series of decisions D = (d1, . . . , dn)

such that di is made only by observing i≤j (i1, . . . , ij). The value of ALG is a function of the input

sequence and decisions.

Randomized Online Algorithms. An online randomized algorithm ALGR has access to a set of

random variables R and hence each of its decisions is randomly selected from the set of all available

actions. We consider the oblivious adversary that knows the the algorithm, but not outcomes of R.

Online Algorithms with Advice. In this framework, a powerful oracle has complete foresight of
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the entire input and writes bits onto an infinite advice tape in advance. The online algorithm, ALG,

processes the input one item at a time and can access any number of advice bits from the tape

during its execution. The oracle is reliable and operates to maximize the performance of the online

algorithm, following a predefined protocol. Therefore, the oracle and the algorithm work together to

achieve optimal results against an adversarial input. The worst-case number of advice bits accessed

by the online algorithm on inputs of length n defines the advice complexity of the algorithm as a

function of n. The advice complexity of ALG is represented as a(ALG, n).

2.4.3 Measuring Performance of Online Algorithms

With a slight abuse of notation, we use ALG(I) for both the output and the objective value of

ALG after receiving input I entirely. Similar to offline setting and complexity analysis, we can

measure the performance of an online algorithm as a game between the algorithm and an adver-

sary that knows the algorithm and chooses the worst input sequence accordingly. This shows the

performance of the algorithm in the worst-case scenario. The competitive ratio of a deterministic

algorithm in the adversarial input model is defined by:

ρ(ALG) = lim inf
|I|→∞

ALG(I)

OPT(I)

OPT denotes the best possible algorithm that knows the input sequence in advance i.e. the

optimal offline algorithm. This competitive ratio is rather asymptotic. If ALG(I) ≥ ρOPT(I) we

say ALG has a strict competitive ratio of ρ.

In the case of a randomized algorithm ALGR which uses a set of random variables R, the

adversary knows the algorithm but it is oblivious to the outcome of random variables in R. The

competitive ratio for ALGR is defined by:

ρ(ALGR) = lim inf
|I|→∞

ER{ALGR(I)}
OPT(I)

In the random order input model, the set of input I is generated by the adversary but the order

of arrival . In this case, we can think of input I as a set S and a permutation π indicating the arrival

order. Thus in this model, the competitive ratio is defined by:
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ρ(ALGR) = lim inf
|S|→∞

ER,π{ALGR(S, π)}
OPT(S)

.

2.4.4 Online Algorithms with Advice

In this subsection, we briefly discuss two different models of algorithms with advice: the advice

tape model and the parallel algorithms model. For completeness, we present a known argument

demonstrating the equivalence (up to lower order terms) of two models. Thus, in the rest of the

chapter, we shall use two models interchangeably.

Advice tape model. In this model, there is an all-powerful oracle that sees the entire input in

advance and populates an infinite advice tape with bits. Then the online algorithm ALG receives the

input one item at a time and ALG has the ability to read any number of bits of advice from the tape

at any point during the runtime. The oracle is trustworthy and always behaves in the best interests

of the online algorithm according to a pre-agreed protocol. Thus, the oracle and the algorithm co-

operate to achieve the best possible performance against an adversary. The worst-case number of

advice bits read by the online algorithm with advice on inputs of length n is the advice complexity

of the algorithm (as a function of n). The advice complexity of ALG is denoted by a(ALG, n).

Parallel online algorithms model. In this model, a set of deterministic online algorithms (with-

out advice)A is said to solve a set of inputs I if for every input sequence I ∈ I there is at least one

algorithm ALG ∈ A such that ALG solves I optimally (or within the given level of approximation).

We define the width of A as ⌈log |A|⌉), denoted by w(A).

Fact 3 (Equivalence of the two models). The advice tape model and the parallel online algorithms

model are equivalent (up to additive O(log n) terms) in the following sense:

(1) If ALG is an algorithm in the advice tape model that solves inputs of length n correctly then

there is a set A of algorithms in the parallel online algorithms model that solves the same

inputs correctly and such that w(A) ≤ a(ALG, n).

(2) If A is a set of algorithms that solves a set of inputs of length n correctly in the parallel

online algorithms model then there exists an algorithm ALG in the tape model with advice

that solves the same inputs correctly and such that a(ALG, n) ≤ w(A) +O(logw(A)).
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Proof.

(1) For x ∈ {0, 1}a(ALG,n) we define ALGx to be the algorithm ALG with the first a(ALG, n)

bits on the advice tape fixed to be x and restricted to inputs of length n. Then setting A =

{ALGx}x∈{0,1}a(ALG,n) establishes the claim.

(2) The oracle and the online algorithm ALG agree on the ordering of A. The oracle uses Elias

delta coding scheme to encode the index of the first algorithm from A that solves the given

input sequence correctly. This requires w(A)+O(logw(A)) bits of advice, the rest of the bits

are arbitrary. ALG starts by reading and decoding the index of an algorithm from A written

on the advice tape, and then runs that algorithm.

Since O(logw(A)) additive terms are small in our setting, we shall use the two models inter-

changeably and we shall sometimes refer to w(A) as the advice complexity. Analogous statements

and considerations hold for approximation.
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Chapter 3

Maximum Weight Convex Polytope

In this chapter1, we introduce an offline problem, the Maximum Weight Convex Polytope, or

MWCP for short. Suppose you are given a set of n points S in Rd with weights w : S → R,

where weights can be positive or negative. The weight of a polytope P is defined as w(P ) =∑
v∈S∩P w(v) (see Figure 3.1). The objective is to find a convex polytope with maximum weight.

This is a rather natural and fundamental computational geometry question.

6

3
5 -4

-5

3
6

4

-3-9
4

3
P

Figure 3.1: An example illustrating the calculation of the weight of a polytope, where w(P ) =

4 + 3 + 6 + 3 + 5− 4 = 17.

3.1 Literature Review

MWCP with a binary weight function, such as w : S → {+1,−1}, belongs to a large class of

computational geometry problems on bichromatic point sets with weights {+1,−1} corresponding

to two colors, typically labelled “red” and “blue”. For example, in the maximum box problem, one
1The results presented in this chapter are based on joint work by the author in collaboration with Mohammad Ali

Abam and Denis Pankratov [2].
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is given a set of r red points and a set of b blue points in the plane and the goal is to find an axis-

aligned rectangle which maximizes the number of blue points and does not contain any red points.

Liu and Nediak [47] gave an exact O(r log r + r + b2 log b) algorithm, and Eckstein et al. [27]

construct an efficient branch-and-bound algorithm motivated by a problem in data analysis. Liu and

Nediak [47] also show how to solve efficiently a related bichromatic separability with two boxes

problem, introduced by Cortés et al. [20].

MWCP is also related to bichromatic discrepancy problems, where one is given two finite sets

of points S+ and S− in Rd, and the goal is to find an axis-aligned box B maximizing the difference

between the number of the points of S+ and S− inside the box, i.e. ||B ∩ S+| − |B ∩ S−||. Let

n = |S+ ∪ S−| denote the total number of points. Dobkin et al. [23] solved this problem in R2 in

O(n2 log n) time. Liu and Nediak [47] presented a 2-factor approximation for this problem in R2

with O(n log2 n) running time.

In another related problem, namely, the numerical discrepancy problem, one is given a set of

n points S ⊂ [0, 1]2. The goal is to find a box B that maximizes the numerical discrepancy of B

defined as ||B ∩ S|/|S| − µ(B)|, where µ(B) denotes the area of B. Observe that the numerical

discrepancy of B can be thought of as measuring the deviation of the empirical distribution from

the uniform distribution. Dobkin et al. [23] solved this problem in R2 in O(n2 log2 n) time. Liu and

Nediak [47] presented a 2-factor approximation for this problem in R2 with O(n log3 n) running

time.

In the mentioned problems, the solution shape is constrained to be an axis-aligned box, unlike

the general convex polytope considered in MWCP. In another variation studied by González-Aguilar

et al. [33], the geometric shape of the solution is restricted to be a rectilinear convex hull of points

(note that the rectilinear convex hull is not necessarily a convex subset of R2). González-Aguilar et

al. [33] gave an O(n3) algorithm for this problem.

We note that the above problems are very similar to our problem at first glance. A deeper

investigation shows that the nature of restriction on the solution set is crucial for the above problems

and algorithms for them, and so new ideas and techniques are needed for MWCP problem. There is

one other problem that is directly relevant to MWCP, and that is the optimal islands problem studied

by Bautista et al. [9]. In this problem, one is given a set S of n points colored with 2 colors in
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the plane. A subset I ⊆ S is called an island of S, if I is an intersection of S and a convex set

C. Bautista et al. [9] gave an O(n3)-time algorithm to find a monochromatic island of maximum

cardinality. Their algorithm can also be used to solve the MWCP problem in 2 dimensions.

The class of problems to which MWCP belongs have important practical applications in data

analysis and machine learning. In particular, Bautista et al. [9] were motivated by clustering ap-

plications. Given a training dataset of points S ⊂ Rd that are labelled with two colors “red” and

“blue”, in a classification problem one is interested in a simple description of a region of space cor-

responding to the class of “red” points, for example. One possibility is to use convex hulls for such

a description (see, for example, Kudo et al. [45]). If dataset is 2-dimensional one arrives naturally

at the optimal islands problem. However, datasets are often noisy, so one should not expect to see

large monochromatic islands, so perhaps weighted version of the problem, such as MWCP, might

be more suitable. A bigger issue is that in classification problems datasets are often high dimen-

sional and one cannot always hope to obtain clusters by projecting to 2 dimensions first. Thus, for

clustering applications it is important to be able to solve MWCP efficiently in high dimensions. This

is the question we tackle in this chapter. Alas, we show that MWCP is NP-hard in 3 dimensions

(Theorem 11), and that it is NP-hard to approximate within n1/2−ϵ for any ϵ > 0 in 4 dimensions

even with binary weights (Theorem 14). We also give a completely new algorithm for 2 dimensions

with running time O(n3) matching Bautista et al.

3.2 Preliminaries

Whenever we write “polytope” in this chapter we mean a convex polytope. S denotes the input

set of n points in Rd for d ≥ 1 and a weight function is denoted by w : S → R. The weight of a

polytope P , denoted by w(P ), is defined as follows:

w(P ) =
∑

v∈S∩P
w(v)

In MWCP problem, the goal is to find a polytope with maximum weight. Note that points v ∈ S

with w(v) = 0 do not affect weight of any polytope, and so they can be removed from the input in
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a preprocessing step. Henceforth, we assume that for all v ∈ S we have w(v) ̸= 0. We use S− and

S+ for the subsets of points of S with negative and positive weights respectively. For a set of points

C ⊂ Rd we let conv(C) denote the convex hull of C. With a slight abuse of notation, we define

w(C) = w(conv(C)). A subset C ⊆ S+ is maximal if for every v ∈ C, w(C) > w(C \ {v}).

A polytope has two standard equivalent descriptions: V-polytope is described as a convex hull

of vertices, and H-polytope is described as an intersection of half-spaces. We shall primarily work

with V-polytopes due to the nature of MWCP problem. We let vert(P ) denote the set of vertices

of a polytope P . Vertices of a polytope are also its 0-faces and edges of a polytope are its 1-faces.

We state a few facts about polytopes here that will be used later in the chapter; for a more thorough

introduction to polytope theory, the reader is referred to the excellent lecture notes of Ziegler [59].

Fact 4 (V-polytope definition). Let P ⊆ Rd be a polytope and v ∈ Rd be a point. v ∈ P if and

only if there is a convex combination of vert(P ) equal to v.

Fact 5. Let P ⊆ Rd be a polytope and F be a face of P . The face F is a polytope, with vert(F ) =

F ∩ vert(P ).

Let P ⊆ Rd be a polytope and F be a face of P . For a hyperplane h such that F ⊆ h we define

h− and h+ to be the open half spaces bounded by h such that h− ∩ P = ∅.

A polytope P ∈ Rd is a polytope embedding of a graph G(V,E) if there exist a one-to-one

function f : V → vert(P ) such that if (u, v) ∈ E then (f(v), f(u)) is an edge of P . Note that P

may have some extra edges compared to G. If P has exactly |E| edges, then we call this embedding

a polytope realization of G.

3.3 Results

In this section we present our results for the MWCP problem beginning with an overview of

upper bounds in Section 3.3.1 (where we present a new algorithm for 2 dimensions), followed by

lower bounds for 3 and 4 dimensions in Section 3.3.2.
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3.3.1 Upper Bounds for 1 and 2 Dimensions

We begin with a simple observation: we can assume without loss of generality that vertices of a

maximum weight polytope are elements of S+.

Lemma 6. For every set S of points in Rd, there exists a maximum weight polytope P with

vert(P ) ⊆ S+.

Proof. Let P be a maximum weight polytope and define C = S+ ∩ P . The convex hull conv(C)

is a subset of P that has all the positive points of P . The convex hull conv(C) contains all positive-

weight points of P , and its vertices are a subset of S+, ensuring that its weight satisfies w(C) ≥

w(P ).

The above lemma implies that to solve MWCP it is sufficient to find a set C ⊆ S+ with max-

imum weight of its convex hull. In particular, when d = 1 the MWCP problem reduces to the

maximum subarray problem (consider the array of weights of points in S, in increasing order of

their x-coordinates). The following result is immediate from well known algorithms for the maxi-

mum subarray problems.

Theorem 7 (Folklore). The MWCP problem in 1 dimension can be solved in O(n) time if the input

points are sorted, and in O(n log n) otherwise.

Proof. First, we sort the points from left to right and place their weights in an array A, which takes

O(n log n) time. The sum of the points between any two points in the input corresponds to the

sum of elements in A between their respective positions. This reduces the problem to finding the

maximum subarray sum, which can be solved using Kadane’s algorithm in O(n).

We iterate through the elements of A from left to right, maintaining a variable, curr sum,

which holds the maximum sum ending at the current element. If curr sum becomes negative at

any point, we reset it to the value of the current element. Otherwise, we add the value of the current

element to curr sum. By tracking the maximum value of curr sum throughout the iteration, we

find the maximum subarray in A, and thus, MWCP for the input.
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Bautista et al. [9] gave a dynamic programming algorithm that solves the MWCP problem in 2

dimensions in O(n3) time. Their algorithm is based on a triangulation of a convex polytope from a

topmost anchor vertex.

Theorem 8 (Bautista et al. [9]). The MWCP problem is solvable in O(n3) time in 2 dimensions

(d = 2).

In the rest of this section we present a new algorithm which solves MWCP problem in 2 dimen-

sions, albeit with the same O(n3) running time. Our algorithm is based on a different decomposition

(see Figure 3.2), and is arguably simpler than the algorithm of Bautista et al.

Figure 3.2: Two decompositions of a polytope which form a basis of two dynamic programming

approaches. In the approach of Bautista et al. [9] (shown on the left) a polytope is decomposed via

a triangulation from an anchor (topmost) vertex. In our approach (shown on the right) a polytope is

decomposed into two paths from a leftmost to a rightmost vertex: top concave path (shown solid)

and bottom convex path (shown dashed).

Without loss of generality, we can assume that no two points of S have the same x-coordinates.

Otherwise, in O(n2) time we can find a line ℓ such that ℓ is not parallel to any line passing through

two point in S. Then we can rotate the axes so that the y-axis becomes parallel to ℓ.

Let p1, . . . , pn be the points in S sorted from left to right by their x-coordinates. Consider a

directed edge from pi to pj for every i < j. Weight of the edge pi → pj , denoted by w(pi, pj),

is the sum of all the weights of points pk such that i < k < j and pk is below the line segment

joining pi and pj . We can use brute-force algorithm to compute w(pi, pj) for all i < j in O(n3)

time. Thus, we assume that all these weights have been precomputed and are available to us when

we need them. A path is a sequence of connected edges. For a path P we define its weight, denoted

by w(P), to be the sum of the weights of its edges and its vertices. For a path P we define its
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sub-weight, denoted by w−(P), to be the sum of the weights of its edges only.

A polygon P can be represented as a pair of paths consisting of a concave path C and a convex

path V between its leftmost and its rightmost vertices (see Figure 3.2). Thus the weight of P is equal

to w(C) − w−(V). We shall present a dynamic programming algorithm to solve the optimization

version of the problem, where we are interested in computing the weight of a maximum-weight

polygon only. The algorithm can be easily modified to find a maximum-weight polygon itself by

the standard technique of remembering which choices resulted in individual entries of the dynamic

programming tables.

For every i < j ≤ k, let C[i, j, k] (respectively V [i, j, k]) be the maximum (respectively,

minimum) weight (respectively, sub-weight) of a concave (respectively, convex) path from pi to pk

such that the first edge is pi → pj . We denote the maximum weight of a polygon with leftmost

vertex pi and rightmost vertex pk by M [i, k]. If i = k then M [i, k] = w(pk), and if i < k then

M [i, k] can be computed as:

M [i, k] = max
j:i<j≤k

C[i, j, k]− min
j:i<j≤k

V [i, j, k].

The solution to the overall problem is then given by the maxi≤k M [i, k].

In the remainder, we explain how the table C[i, j, k] can be computed. The table V [i, j, k] is

computed analogously with some trivial modifications (such as excluding contribution of vertices

of the path, replacing concavity with convexity, and replacing maximization objective with mini-

mization objective).

In the algorithm, we have to check whether a line segment joining vertices p and q can be

extended to a vertex r with p.x < q.x < r.x while maintaining concavity. This can be tested by

checking whether the vector r − p is turned clockwise relative to the vector q − p (see Figure 3.3).

In turn, this can be achieved by checking the sign of 2-dimensional cross-product, denoted by ×2,

and defined as v1×2 v2 = v1.x · v2.y− v1.y · v2.x. To summarize we have that the path p→ q → r

is concave if and only if2(r − p)×2 (q − p) > 0.

2A bit of care is needed to handle inputs that are not in general position. If three points p, q, r with p.x < q.x < r.x
are collinear then (r−p)×2 (q−p) = 0, and the path p, q, r should be considered concave. However, this makes q not a
vertex of the resulting polytope, as it appears in the middle of an edge. In our description, we tacitly assumed that points
are in general position to simplify the presentation. It is easy to extend our algorithm to handle points not in general
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p

q r
q − p

r − p

Figure 3.3: The path p → q → r is concave if and only if vector r − p is turned clockwise relative

to vector q − p.

Base cases for the table C[i, j, k] are the following:

C[i, k, k] = w(pi, pk) + w(pi) + w(pk) if i < k

C[i, j, k] = −∞ if i < j < k

and (pk − pi)×2 (pj − pi) < 0

It is clear that the other entries C[i, j, k] with i < j < k can be computed according to the

following formula:

C[i, j, k] = max
j′
{w(pi, pj) + w(pi) + C[j, j′, k] : (1)

j < j′ ≤ k and (pj′ − pi)×2 (pj − pi) > 0}.

A naive computation of the above table takes O(n4) time, since the table has O(n3) entries and

each entry can be computed in O(n) time. Next, we show a trick of how the time complexity can

be reduced to O(n3). The idea is for a fixed j and k to fill in entries C[i, j, k] for all i in O(n) time.

We precompute in O(n2 log n) total time for all j two lists: Lj = (l1, . . . , lj−1) and Rj =

(r1, . . . , rn−j). Lj (Rj) consists of points {p1, . . . , pj−1} (respectively, {pj+1, . . . , pn}) to the left

(respectively, to the right) of pj and sorted in clockwise order with respect to pj as the origin.

Now, fix a pair of indices j < k. In O(n) time it is easy to compute D[j′, k] = maxj′′{C[j, j′′, k] :

j′′ ≤ k and pj′′ is either pj′ or appears after pj′ in Rj}. Define the first compatible j′ for the given

i, j, denoted by fc(i, j), as the first pj′ appearing in Rj such that pi → pj → pj′ is concave. Then

position.
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it is clear that C[i, j, k] can be equivalently restated as follows:

C[i, j, k] = w(pi, pj) + w(pi) +D[fc(i, j), k].

This is because, every pj′′ that appears after fc(i, j) in Rj also forms a concave path pi → pj →

pj′′ . Thus, the third term D[fc(i, j), k] in the above equation is exactly the same as the third term

in Equation (1).

Lastly, it is left to observe that as one considers points pi in the order in which they appear

in Lj , the corresponding sequence of fc(i, j) also forms an increasing sequence in Rj . Thus, by

maintaining a running pointer into Rj one can compute fc(i, j) in O(n) time for all pi ∈ Lj . This

finishes the description of the algorithm. One readily checks that all precomputing steps take O(n3),

base cases of C[i, j, k] can also be computed in O(n3) time, and all other entries can be computed

in O(n3) as well, by iterating over all pairs j < k and filling in C[i, j, k] for all i in O(n) time.

3.3.2 Lower Bounds for 3 and 4 Dimensions

Recall that a strict reduction from an optimization problemA to an optimization problem B is a

pair of functions (f, g), where f maps instances x ofA to instances f(x) of B and g maps solutions

y of B to solutions g(y) of A, such that the approximation ratio achieved by solution y on instance

f(x) of B is at least as good as the approximation ratio achieved by solution g(y) on instance x of

A. All our lower bound results in this section are based on the following technical lemma.

Lemma 9. Let G be a graph family. If for every G ∈ G a polytope embedding of G into Rd can be

found in polynomial time and bit complexity polynomial in n, then there is a strict reduction from

the maximum independent set on G to MWCP in d dimensions with weights {+1,−1}.

Proof. Given input instance G = (V,E) to the maximum independent set on G, we let P be the

result of applying the polytope embedding to G. Let S+ := vert(P ) and assign +1 weight to every

vertex in S+. Create set S− by adding two points with weights of −1 at two arbitrary positions

of every graph edge. Let S = S+ ∪ S−. For a negative point v ∈ S−, let p1(v), p2(v) ∈ S+ be

positive-weighted vertices such that v was placed on the edge joining p1(v) with p2(v) and n(v) be

the other negative point on that edge. See Figure 3.4 for an example.
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We claim that for a subset C ⊆ S+, there exists a negative point v ∈ S− in conv(C) if and

only if p1(v), p2(v) ∈ C. One direction is clear: if p1(v), p2(v) ∈ C then by Fact 4 n(v) and v are

in conv(C). For the other direction, assume that v ∈ conv(C). Let e be the edge between p1(v)

and p2(v). By the definition of P , there exist a hyperplane he such that S+ ∩ h−e = ∅. Therefore

C∩h−e = ∅ and F := conv(C)∩he is a face of conv(C). F ̸= ∅ since v is in he and conv(C). Only

vertices of S+ in he are {p1(v), p2(v)}. By Fact 5 vert(F ) = F ∩ vert(conv(C)) ⊆ he ∩ S+ =

{p1(v), p2(v)}. Without loss of generality suppose vert(F ) = {p1(v)}, this implies v /∈ F which

is a contradiction. Thus vert(F ) = {p1(v), p2(v)} and p1(v), p2(v) ∈ C.

Let C ⊆ S+ be a maximal subset. We claim that conv(C) contains no negative points and

all positive points in conv(C) are precisely the vertices of conv(C). First, suppose there exists

a negative point v ∈ conv(C) thus p1(v), p2(v) ∈ C and n(v) ∈ conv(C). w(C\{p1(v)}) ≥

w(C)+ 2− 1 > w(C) since v, n(v), p1(v) /∈ conv(C\{vi}). This is a contradiction to maximality

of C. Second, suppose there exist a positive point v ∈ S in conv(C) \ vert(conv(C)). Because v

is a vertex of P there exist a hyperplane hv such that S+ ∩ h−v = ∅. Therefore C ∩ h−e = ∅ and v is

a vertex of conv(C) which is a contradiction.

Therefore, we can conclude that w(C) = |C| if C ⊆ S+ is maximal. Next, we prove there

exists a maximal subset C ⊆ S+ if and only if there exist an independent set I ⊆ V such that

w(C) = |I|.

If: Let I ⊆ V be an independent set and C ⊆ S+ be the set of corresponding vertices of I in

S+. Because there is no edge between vertices in I, there is no graph edge between vertices in C.

Thus there are no negative points in conv(C). Since all vertices inside conv(C) are positive, C is a

maximal subset and w(C) = |C| = |I|.

Only if: Let C ⊆ S+ be a maximal subset and let I ⊆ V be the set of corresponding vertices of

C in G. Because C is a maximal subset, there is no negative point in conv(C), and there is no graph

edge between vertices of C. Thus the set of corresponding vertices of C in G is an independent set.

|I| = w(C) since w(C) = |C|.

Without loss of generality we can suppose every approximation algorithm for MWCP outputs

a maximal subset of S+. Thus there exist a strict reduction from the maximum independent set

problem of graph G(V,E) to MWCP in Rd.
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Figure 3.4: An example illustrating the placement of negative-weight points along edges to ensure

that a polytope’s convex hull encodes independent set constraints.

We obtain the lower bound for 3 dimensions by applying Lemma 9 to the class G of planar

graphs. We note that the maximum independent set problem is NP-hard even for planar graphs

[32]. Our lower bound relies on the polynomial embedding in 3 dimensions due to Das et al. [21].

A maximal planar graph is a planar graph such that an addition of any new edge results in a non-

planar graph.

Lemma 10 (Das et al. [21]). Given a maximal planar graph G(V,E) with n vertices, a polytope

realization of G in R3 can be found in O(n) time and with bit complexity polynomial in n.

Thus the following theorem can be easily deduced from Lemmas 9 and 10.

Theorem 11. Let S be a set of n points in R3 with weight function w, finding MWCP of S is

NP-hard even if w : S → {−1,+1}.

Proof. Let G be the family of all planar graphs. By adding edges to a planar graph G we can make

it maximal. The polytope realization of the new maximal planar graph is also a polytope embedding

of G. Thus with Lemma 10 we can conclude for every G ∈ G a polytope embedding of G in

R3 can be found in polynomial time and with polynomial bit complexity. By Lemma 9, there is a

strict reduction from maximum independent set on planar graphs to MWCP with weights {+1,−1},

hence it is an NP-hard problem.

Let S be the set of points (i, i2, i3, i4) in R4 for i ∈ [n]. The convex hull of S is known as

the cyclic polytope on n vertices in R4 and it is a polytope realization of a complete graph with n
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vertices (for more details, see, for example, [59]). This gives the following lemma.

Lemma 12. Given a complete graph Kn with n vertices, a polytope realization of it in R4 can be

found in O(n) time with a bit complexity polynomial in n.

We can use Lemma 12 to show that MWCP in 4 dimensions is as hard as finding a maximal

independent set on arbitrary graphs. Zuckerman [60], strengthening an earlier result of Håstad [38],

showed that it isNP-hard to approximate independent set on arbitrary graphs within an n1−ϵ factor

for any ϵ > 0.

Theorem 13 (Zuckerman [60]). For any ϵ > 0 it isNP-hard to approximate maximum independent

set to within n1−ϵ.

Combining the above ideas we establish the inapproximability of MWCP in 4 dimensions and

higher.

Theorem 14. For any ϵ > 0 it isNP-hard to approximate MWCP in 4 dimensions (or higher) with

weights {+1,−1} to within n1/2−ϵ.

Proof. Let G be the family of all finite graphs. By Lemma 12 for every G ∈ G a polytope embedding

of G in polynomial time and with polynomial bit complexity can be found (recall that the embedding

is allowed to have extra edges compared to G). By Lemma 9, there is a strict reduction from

maximum independent set on general graphs to MWCP with weights {+1,−1}. Since Theorem 13

is expressed in terms of input size, it is left to observe that the reduction of Lemma 9 produces

instances of MWCP with the number of points that is at most quadratic in the number of vertices of

the input graph.

3.4 Discussion

We showed that MWCP in 3 dimensions is NP-hard, and in 4 dimensions and higher, it be-

comes NP-hard to approximate. A natural question that arises is whether it is possible to achieve

a constant-factor approximation. One reasonable direction is to explore whether polytopes with a

constant number of vertices can provide a guaranteed constant approximation. However, as the fol-

lowing result demonstrates, even in 2D, such solutions cannot guarantee a constant approximation.
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Theorem 15. By restricting solutions to polytopes with constant number of vertices one can not

achieve a constant factor approximation for MWCP even in R2 and even for {+1,−1} weights.

Proof. Let P be a regular n-gon and let the weight of each vertex be +1. Put a vertex with weight

−1 outside of P on the perpendicular bisector of each edge of P at ϵ-distance away from the edge.

Choose ϵ to be a sufficiently small distance such that the line segments joining consecutive negative

points cross P . This defines the instance of MWCP with P being an optimal solution of weight n.

Let v1, v2, . . . , vn and u1, u2, . . . un be vertices of the clockwise order of S+ and S−, respec-

tively, such that ui has ϵ-distance with the edge between vi and vi+1 (vn+1 := v1).

Let C be a convex k-gon, we claim w(C) ≤ k. Observe that what makes this claim non-trivial

is that we cannot assume that vert(C) ⊆ S+ as in Lemma 6, since we have an additional restriction

of exactly k vertices.

C\P (the closure of C\P ) is a set of vertices, edges and non-convex polygons. Let C ′ be one

of these non-convex polygons. It suffices to show w(C ′) ≤ |vert(C) ∩ vert(C ′)|. Without loss of

generality suppose vert(C ′) ∩ S+ = {v1, v2, ..., vr}.

Let outer negative points be the set {ui1 , ui2 , . . . , uiℓ} ⊆ {u1, u2, . . . ur−1} such that for every

1 ≤ j ≤ ℓ, uij /∈ C ′. For each 1 ≤ j ≤ ℓ associate uij to the edge e of C ′ that crosses the

shortest line between uij and P . By the choice of ϵ two vertices of e are in vert(C ′)∩ vert(C) and

no edge is associated to more than one outer negative point. Thus |vert(C ′) ∩ vert(C)| ≥ ℓ + 1.

On the other hand there is at most r positive and at least r − 1 − l negative points in C ′ thus

w(C ′) ≤ l + 1 ≤ |vert(C ′) ∩ vert(C)|.
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Figure 3.5: Illustration of the proof of Theorem 15. Here, n = 6, k = 3, we chose C to result only

in a single C ′, which is shown as a shaded area. We have l = 1 with ui1 = u2 and vertex u2 is

associated with the topmost edge of C ′. We have w(C ′) = w(v1) + w(v2) + w(v3) + w(u1) =

3− 1 = 2 = l + 1.
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Chapter 4

Weighted Online Non-Crossing

Matching

In this chapter1, we introduce and study the following problem, which we call Online Weighted

Non-Crossing Matching (OWNM). Suppose 2n points p1, . . . , p2n in Euclidean plane arrive online

one-by-one. When pi arrives, its positive weight w(pi) ∈ R>0 is revealed and an algorithm has an

option of matching pi to one of the unmatched previously revealed points, or leaving pi unmatched.

In the vanilla online model, the decisions of the algorithm are irrevocable. There is a non-crossing

constraint, which requires that the straight-line segments corresponding to the edges of the matching

do not intersect. Assuming that the points are in general position, the goal is to design an algorithm

that maximizes the weight of matched points.

4.1 Introduction

The interest in geometric settings, particularly the Euclidean plane setting, for the matching

problem stems from applications in image processing [19] and circuit board design [36]. In such ap-

plications, one is often required to construct a matching between various geometric shapes, such as

rectangles or circles, representing vertices, using straight-line segments or, more generally, curves.

Geometry enters the picture due to constraints on the edges, such as avoiding intersections among
1The results presented in this chapter are based on joint work by the author in collaboration with Joan Boyar, Shahin

Kamali, Kim S. Larsen, Yaqiao Li, and Denis Pankratov [17].
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the edges, as well as avoiding edge-vertex intersections. These constraints can have a significant

impact on the offline complexity of the problem, often resulting in variants of the problem that are

NP-hard (see the survey by Kano and Urrutia [41]).

The unweighted version of the Non-Crossing Matching problem (i.e., when w(pi) = 1 for

all i ∈ {1, . . . , 2n}) has been studied both in the offline setting ([6, 35]) and the online setting

([15, 57, 40, 53]). See Chapter 5 for more details on the unweighted version. For now, it suffices

to observe that an offline algorithm that knows the locations of all the points in advance can match

all the points while satisfying the non-crossing constraint (Fact 1). Thus, the value of offline OPT

is always W :=
∑2n

i=1w(pi). As discussed in Chapter 2, the performance of an online algorithm

is measured by its competitive ratio, which, for our problem, represents the fraction of W that the

algorithm can guarantee to achieve in the worst case.

It is relatively easy to see that when there are no restrictions on the weights of points, no de-

terministic online algorithm can guarantee a non-trivial competitive ratio bounded away from 0

(in particular, this is an immediate corollary of Theorem 18). We study different regimes under

which the problem admits algorithms achieving non-trivial competitive ratios. Our results can be

summarized as follows:

• In the Restricted OWNM, we assume that the weights of points are restricted to lie in the

interval [L,U ] for some L ≤ U ∈ R>0 that are known to the algorithm at the beginning

of the execution. Note that by scaling, we can assume that L = 1; thus, without loss of

generality, we assume that all the weights are in the interval [1, U ] in Restricted OWNM.

We show that the competitive ratio of any deterministic online algorithm is O
(
2−

√
logU

)
(Theorem 18). We also present a deterministic online algorithm, Wait-and-Match (WAM),

which has competitive ratio Ω
(
2−2

√
logU

)
(Theorem 22).

• We show, perhaps surprisingly, that randomization alone is enough to guarantee a constant

competitive ratio for arbitrary weights. We present a simple randomized online algorithm,

called Tree-Guided-Matching (TGM), and prove that it has a competitive ratio of 1/3 (The-

orem 27). We supplement this result by showing that no randomized online algorithm can

achieve a competitive ratio better than 8/9, even for the unweighted version of the problem
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(Theorem 26).

• We show that allowing revocable acceptances (see the beginning of Section 4.5 for the def-

inition of the model) permits one to obtain competitive ratio ≈ 0.2862 by a deterministic

algorithm even when the weights of points are unrestricted (Theorem 30). We supplement

this result by showing that no deterministic algorithm with revoking can achieve a competi-

tive ratio better than 2/3 (Theorem 28).

• We also study this problem when the points are not in general position but are all located on

a line (see Section 4.6). We show that, even in the unweighted case and with all points on a

line, neither revoking nor randomization alone helps achieve a non-trivial competitive ratio.

However, we present a randomized algorithm with revoking that achieves a competitive ratio

of 0.5 in the unweighted version.

4.2 Preliminaries

The input to the matching problems considered in this chapter is an online sequence I =

(p1, . . . , p2n) of points in general position, except in Section 4.6. Each point pi has a positive

real-valued weight w(pi) ∈ R>0. We use W to denote the total weight of all the points, i.e.,

W =
∑2n

i=1w(pi). For the Restricted OWNM, the weights are assumed to lie in the interval [1, U ]

for some known value of U , which is considered to be a hyper-parameter and not part of the in-

put. Upon the arrival of pi, an online algorithm must either leave it unmatched or match it with

an unmatched point pj (j < i), in which case the line segment pipj , must not cross the line seg-

ments between previously matched pairs of points. The objective is to maximize the total weight

of matched points. For an online algorithm ALG (respectively, offline optimal algorithm OPT), we

use ALG(I) (respectively, OPT(I)) to denote the total weight of points matched by the algorithm

on input I .

32



4.3 Deterministic Algorithms for Restricted OWNM

We begin this section with a simplified version of the problem that involves only two different

weights, illustrating the intuition behind the main algorithm and the upper bound proof. Next, we

introduce a classification of points by their weights, which is used in both the positive and negative

results presented later.

4.3.1 Warm Up

As a warm-up, we firstly consider the case where points can have only weight 1 or weight

U > 1. Our later algorithm and analysis are inspired by the two-weight case. Also, as we shall see

in this case our algorithm achieves a tight competitive ratio 1/3 as U →∞.

We consider the following algorithm that we call “Two-Weight-Matching” (TWM). Assume

the points appear in a bounding box, B. Throughout its execution, TWM maintains a “convex

partitioning” of B. Initially, there is only one region formed by the entire B. The algorithm matches

two points only if they appear in the same convex region. Whenever two points in a convex region

R are matched, the line segment between them is extended until it hits the boundary of R, which

results in partitioning R into two smaller convex regions.

When a point p arrives in a region R in which there are already some unmatched points, the

algorithm TWM matches p with another point in the following cases: (1) if p has weight U , then p

matches with a point q of the largest weight; (2) if p has weight 1, and if there is a point of weight

U in R, p matches with that point; (3) otherwise, i.e., p has weight 1 and all unmatched points in R

have weight 1, then p matches with a point q in R if there is at least one point in each side of pq.

Observation: it is an invariant during the execution of TWM that if a region contains more

than one point, all the points have weight 1, and that no region contains more than three unmatched

points.

Theorem 16. For the two-weight OWNM, assume U ≥ 3 and at least one point of weight U is

matched, then, the competitive ratio of TWM is at least 1/3.

Proof. At the completion of TWM, let m1 be the number of points of weight 1 that are matched, and

mU be the number of points of weight U that are matched. Thus, TWM = m1+UmU . Furthermore,
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let r1 be the number of regions with at least one unmatched point of weight 1, and rU be the number

of regions with a single unmatched point of weight U . By the observation we made before, these

are all the possible regions containing unmatched points, and these two types of regions are disjoint.

Since it takes two matched points to divide a region into two, r1 + rU ≤ m1+mU
2 + 1, so

r1 ≤ m1+mU
2 + 1− rU .

Assume that there is a unmatched point of weight U in region R1 and let R2 be the other region

that was created at the same time as R1 by matching two points p and q. If both p and q have

weight 1, then both R1 and R2 contain at least one point of weight 1 and, therefore, R1 cannot have

an unmatched point of weight U , which is a contradiction. So, either p or q has weight U , hence,

rU ≤ 2mU .

In the worst case, OPT matches all points, so

OPT ≤ m1 + UmU + 3r1 + UrU

≤ m1 + UmU + 3(
m1 +mU

2
+ 1− rU ) + UrU , by the above

= m1 + UmU + 3(
m1 +mU

2
+ 1) + (U − 3)rU

≤ m1 + UmU + 3(
m1 +mU

2
+ 1) + (U − 3)2mU , since U ≥ 3

≤ 5

2
m1 + 3Umu + 3

mU

2
+ 3− 6mU

≤ 3m1 + 3Umu = 3TWM. since mU ≥ 1

We now show that no algorithm is better than 1/3-competitive, for arbitrarily large U .

Theorem 17. For the two-weight OWNM, the competitive ratio of any deterministic online algo-

rithm is at most 1/3 + 2/(3U + 3).

Proof. All points given by the adversary in this proof are given on a circle and all chords are non-

crossing.

Note that since all points are given on the circle, no points given in one region can be matched

with any points from other regions. For a given algorithm, ALG, the adversary gives 2k points of

weight 1. ALG matches s pairs, creating s chords. If s < k
3 , the sequence ends, and we have a ratio
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of 2s
2k < 1

3 . Otherwise, we consider s of the s+1 regions ALG has divided the circle into separately.

We ignore one region, so that we can associate exactly one chord with each of the remaining s

regions. This is safe since the ignored region does not have any chord associated with it, so ALG

has not matched anything in that region.

Let S4 denote the regions with at least four unmatched points, and let S0, S1, S2, and S3 denote

the regions with 0, 1, 2, or 3 points, respectively. We treat a number of cases below. When we

have treated a case, we list the profit of both ALG and OPT in parenthesis. For a given region, we

count the two points that are matched by the chord associated with the region. Thus, both ALG

and OPT always get a profit of at least two in any region (except the one we ignore). OPT can of

course process the points offline, matching all points, except possibly one, if the number of points

is odd (such a missing point can only give rise to an additive constant, so it is not relevant for the

asymptotic competitive ratio). However, for the proof, we count and compare the weighted points

for both ALG and OPT in each region separately.

No further points are given to the S4-regions (ALG: 2, OPT: at least 6).

For the S0-regions, the adversary gives one point of weight U that ALG cannot match (ALG: 2,

OPT: U + 2).

For the S1-regions, the adversary gives one point of weight U . If ALG does not match the now

two points, no further points are given to that region (ALG: 2, OPT: U + 3). Otherwise, two points

of weight U are given on either side of the line representing the latest match, and ALG cannot match

these (ALG: U + 3, OPT: 3U + 3).

For the S2-regions, the adversary gives one more point of weight 1. If ALG does not match this

point to any of the two others, we move to the S3 case. Otherwise, ALG has created an empty region

and the adversary gives a point of weight U in that region that ALG cannot match (ALG: 4, OPT:

U + 5).

Finally, for S3-regions, the adversary gives one more point of weight 1. If ALG does not match

that point, no further points are given, and we are in the S4 case. Otherwise, if ALG creates a region

with no points, the adversary gives a point of weight U in that region that ALG cannot match (ALG:

4, OPT: U + 6). Otherwise, it has created two regions with one unmatched point each. We treat

those two independently as the S1 case.
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Having treated the cases, we observe that for large U , the largest ratio between ALG and OPT is

U+3
3U+3 = 1

3 + 2
3U+3 .

4.3.2 Point Classification.

In both lower and upper-bound arguments, we use a point classification, based on parameters,

k ∈ N and U ∈ R, which we explain here. Let k = ⌈
√
logU⌉, and define values of a0, a1, . . . , ak

so that

a0 = 1, ak = U, r = a1/a0 = a2/a1 = . . . = ak/ak−1,

which implies that r = U1/k = 2
logU

k ≤ 2
√
logU and ai = ri. For a given value w ∈ [1, U ], define

TwU as the largest ai such that ai ≤ w. In what follows, a point with weight w is said to have type

i if TwU = ai. Thus, there are k + 1 distinct types, with type k containing only the value U . The

type of a line segment between two matched points p and q is defined by the type of the end-point

with larger weight, that is, pq has type i if one of its endpoints has type i and the other endpoint has

type at most i.

4.3.3 Negative Result

Theorem 18. For a sufficiently large value of U , the asymptotic competitive ratio of any determin-

istic online algorithm for the Restricted OWNM problem is O
(
2−

√
logU

)
.

Proof. Let ALG be any online deterministic algorithm. We use an adversarial argument. The adver-

sary sends all points on a circle C, so any match the algorithm makes creates a chord in the circle.

We keep a convex partitioning of the plane by the segments created by ALG. Note that since points

are all in a convex position, ALG cannot match two points in different regions, otherwise it would

create an intersection with existing chords. The adversary’s strategy is to maintain a mapping from

unmatched points to matched points to ensure the ratio between the total weight of matched points

and unmatched points is O
(
2−

√
logU

)
. Note that this implies the ratio between the total weight of

matched points and all points is also O
(
2−

√
logU

)
.

The adversary starts the input with an arbitrarily large number, m (this is required to guarantee

that our bound is asymptotic). It puts points of weight 1 in arbitrary positions on C until either the
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algorithm matches m pairs of points or it reaches m2k points on the circle. In the latter case, the

competitive ratio is at most O(2−k) = O(2−
√
logU ).

Therefore, we may assume that ALG eventually matches m pairs of points, creating non-

intersecting chords, and m + 1 regions. Now, make each matched pair responsible for a distinct

region created, though with the first matched pair being responsible for two regions, initially the

first two regions. Suppose a new chord pq divides region R into two. Let {pR, qR} be the responsi-

ble pair for R, R1 be the side of R that has pRqR on its boundary and R2 be the other side. Leave

{pR, qR} responsible for R1 and make {p, q} responsible for R2. This ensures that each matched

pair is responsible for at least one region.

For each region R, the adversary makes R the active region, runs the following procedure and

continues with the next region until it covers all the regions. Let {pR, qR} be the responsible pair of

points for R. Consider the following two cases, depending on the number of unmatched points in

R:

Case 1. If the number of unmatched points in R is greater or equal to 2k − 1, the adversary does

not send any point in R and continues to the next region. In this case, we map the unmatched points

in R to the matched pair {pR, qR}. Note that 2k − 1 points of weight 1 are mapped to a segment

of total weight 2. The ratio between the weight of matched points to the unmatched points will be

≤ 2/(2k − 1) ∈ O
(
2−

√
logU

)
.

Case 2. If the number of unmatched points in R is less than 2k − 1, the adversary plans to send

a sequence of points, P = (p1, p2, . . . , pk), with weights a1, a2, . . . , ak (respectively), one point

from each weight, in the ascending order of their weights, in the following manner, (see Fig. 4.1).

The point p1 of weight a1 appears in an arbitrary position in R (on the circle). Upon the arrival of a

point pi with weight ai (i ∈ {1, . . . , k}), either ALG matches it with a point of weight 1 or leaves it

unmatched. In the latter case, the adversary does not send more points in R and continues with the

next region.

In the former case, when ALG matches a point pi of weight ai with a point q of weight 1, make

the side of piq that contains at most half of the unmatched points, the active region. The adversary

continues putting the remaining points of P in the active region. Thus the unmatched points on

the opposite side of piq stay unmatched, since piq is between the new point and those unmatched
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xR1

yR1

p1

p2

p3 R1

R2

Figure 4.1: An illustration of the adversary’s strategy for k = 3. The two arcs form the active
region. Black points have weight 1. Suppose in the first phase ALG matched xR1 and yR1 , which
became responsible for R1 region. Note that the number of unmatched points (of weight 1) in
R1 is 6, which is less than 2k − 1 = 7. Thus, in the second phase, the adversary plans to send
points p1, p2, p3 of weights a1, a2, a3 in R1. Suppose ALG matches the point of weight a1; then the
adversary sends p2, p3 below the line segment between the matched pair (there are fewer unmatched
points there). Similarly, after the point p2 of weight a2 is matched, the adversary sends p3 to the
side of the resulting segment with no unmatched points. This ensures that some point of weight ai
(here a3) stays unmatched and is mapped to the matched pairs.

points.

Therefore, after matching pi and q, the number of unmatched points of weight 1 that can match

with future points in P decreases by a factor of at least 2. Let pj be the first point in P that

the algorithm leaves unmatched. Given that the adversary can send up to k points, and there are

initially less than 2k − 1 unmatched points in R, there exists such pj of weight aj . At this point, the

adversary ends the procedure for R and continues with the next region.

The total weight of points in matched pairs in R before the arrival of pj is:

M = 2︸︷︷︸
for(pR,qR)

+ j − 1︸ ︷︷ ︸
endpoints of weight 1

+ a1 + a2 + . . .+ aj−1︸ ︷︷ ︸
endpoints with weight ai

≤ 2
aj − 1

r − 1
.

Given that the unmatched point pj is of weight aj , the ratio between the weight of matched points

and unmatched points is at most M/aj ∈ O(1/r) = O
(
2−

√
logU

)
.

Given that each matched pair is responsible for at least one region, the above procedure creates

a mapping of matched points to unmatched points with a weight ratio of O(2−
√
logU ) in all cases,

as desired. This finishes the proof.
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4.3.4 Positive Result: The Wait-and-Match Algorithm

Now we propose the main algorithm called “Wait-and-Match” (WAM) (see Algorithm 1) for

the general case where weights range between 1 and U . We keep a convex partitioning of the

plane by matched pairs and only match points that are in the same region. We use the same point

classification as defined in Section 4.3.2.

Suppose a new point p appears, and let R denote the convex region of p. In deciding which point

to match p to (if any), the algorithm considers all unmatched points in R in the non-increasing order

of their weights. Let q be the next point being considered, and let i be the maximum of the type of

p and the type of q. The algorithm matches p with q if there are at least 2k−i − 1 unmatched points

on each side of pq. If all points in R are examined, and no suitable q exists, p is left unmatched.

Algorithm 1 WaitAndMatch

procedure WaitAndMatch
while receive a new point pj do

Find R ∋ pj .
P = R ∩ {p1, . . . , pn}
Sort points in P in descending order by their weights.
for p in P do

Let i be the type of p and pj .
if If there are at least 2k−i − 1 point in each side of ppj then

Match p and pj .
Divide R by ppj .
Break

end if
end for

end while
end procedure

Example: Suppose k = 2. Then a0 = 1, a1 =
√
U, and a2 = U . Let p be a point with weight

1. Upon the arrival of a point p, the algorithm matches p with any point q of weight U when there

are at least 22−2 − 1 = 0 points on each side of pq. That is, if there is an unmatched point of

weight U in the region, the algorithm would match p to it unconditionally. Similarly, if there are

no unmatched points of weight U in the region, the algorithm tries to match p with any point q

of weight [a1 =
√
U, a2 = U) provided there is at least 22−1 − 1 = 1 point on each side of pq.

39



(
−∞, 1

)

(
−∞, 0

)

[
1,
√
U
]

[
3,
√
U
]

[
8, 1
]

[
4,
√
U
]

[
2,
√
U
]

[
6, 1
]

[
7,
√
U
]

[
5,
√
U
]

Figure 4.2: An illustration of the mapping used to analyze WAM. In this example, we have k = 2
and 8 points with weights in {1,

√
U,U}. Here, [t, w] indicates the tth point in the input sequence

having weight w. Note that points 1 and 3 are mapped to the segment corresponding to the imaginary
points (−∞, 0) and (−∞, 1) of weight U .

Finally, if previous scenarios do not occur, the algorithm tries to match p with any point q of weight

[a0 = 1, a1 =
√
U) provided there are at least 22−0 − 1 = 3 unmatched points on each side of pq.

This will happen if there were at least 7 unmatched points in the region.

To analyze the algorithm, we match each unmatched point into a matched pair. For the sake of

analysis, we introduce two “imaginary” points (−∞, 0) and (−∞, 1) of weight U and treat them

as if they were matched before the input sequence is revealed. Suppose a new point, p, arrives in

a region R that is not matched. In this case, we map p to the most recent segment that forms a

boundary of the region R. See Figure 4.2 for an illustration of this mapping.

Lemma 19. Every point of type i is mapped to a segment of type j ≥ i.

Proof. For the sake of contradiction, suppose a point p with type i arrives in the region R and gets

mapped to pRqR of type ≤ i− 1.

Without loss of generality, assume pR arrived after qR. By the definition of the algorithm, at

the time pR appeared, there were at least 2k−i+1 − 1 unmatched points in R (otherwise, pR would

not have been matched with qR). These unmatched points are still unmatched when p appeared

(otherwise, R should have been partitioned, and p should have been mapped to some other segment).

Thus, when p appeared, the algorithm could match it with the point that bisects these unmatched

points, and there would be at least (2k−i+1 − 2)/2 = 2k−i − 1 points on each side of the resulting
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line segment. This contradicts the fact that the algorithm left p unmatched.

Lemma 20. Let s be any line segment between two matched points. For any i, at most 2k−i+2 − 2

unmatched points of type i are mapped to s.

Proof. For the sake of contradiction, assume at least 2k−i+2 − 1 points of type i are mapped to

s. Then, there must be at least ⌈(2k−i+2 − 1)/2⌉ = 2k−i+1 points of type i in a convex region R

formed by extending s. At the time the last of these points, say p, arrives, it could be matched to

the point q that bisects the other points; there will be at least (2k−i+1 − 2)/2 = 2k−i − 1 points on

each side of pq. Since pq is of type i, the algorithm must have matched p with q, which contradicts

the fact that p and q are unmatched and mapped to s.

Lemma 21. Assuming U is sufficiently large, the total weight of unmatched points mapped to a

segment of type j is at most aj+12
k−j+3.

Proof. Note that a point of type i has weight at most ai+1 = ri+1. Hence, by Lemma 19 and

Lemma 20, the total weight of unmatched points mapped to a segment of type j is at most

j∑
i=0

ri+12k−i+2 = 2k+2r

j∑
i=0

(r
2

)i
= 2k+2r

(r/2)j+1 − 1

r/2− 1
≤ aj+12

k−j+3.

Here, we assumed that r ≥ 4, which holds for a sufficiently large U .

Theorem 22. The competitive ratio of the deterministic online algorithm WAM for the Restricted

OWNM problem is Ω
(
2−2

√
logU

)
.

Proof. For every matched pair pq by WAM consider the set of points formed by p, q, and the

unmatched points mapped to them. By Lemma 21, if pq has type j, the ratio of the weight of the

matched pair over all the points in this set is at least aj
2aj+aj+12k−j+3 ≥ 1

r2k+4 .

Since the algorithm WAM guarantees that every unmatched point is mapped to some matched

pair, the competitive ratio of WAM is at least 2−(2k+4), where we used k = ⌈
√
logU⌉ and r =

U1/k = 2(logU)/k ≤ 2k.
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4.4 Randomized Algorithms

4.4.1 Negative Result

To bound the competitive ratio of randomized algorithms, we will use Yao’s minimax principle

for online algorithms defined as follows.

Theorem 23 (Yao’s Minimax Principle). Let A be the set of all deterministic algorithms and I

be a random input sequence for an online maximization problem. For a deterministic algorithm

ALG ∈ A, let ρ(ALG, I) represent the expected competitive ratio of ALG on I. The competitive

ratio of any randomized algorithm ALGR in the adversarial model, denoted by ρ(ALGR), is at most

the expected competitive ratio of the best deterministic algorithm on I:

ρ(ALGR) ≤ max
ALG∈A

ρ(ALG, I).

We now aim to provide a random input sequence and establish an upper bound for all determin-

istic algorithms. By Yao’s minimax principle, this will yield an upper bound on the competitive ratio

for all randomized algorithms. We generate a randomized unweighted input similar to the one used

for the advice model in Chapter 5. We consider a circle and generate points on the circumference

of this circle. The segments of the circle bounded by two consecutive points are called arcs. For

a point p, let the left and the right arcs of p be the clockwise and counter-clockwise arcs that are

bounded by p respectively.

Put p1 and p2 on two arbitrary antipodals of the circle, creating two arcs. Make p2 the current

active point. At each step, we choose one of the arcs of the current active point randomly and then

we put the next active point on that arc. To deceive the algorithm, sometimes we generate a fake

point on one of the arcs of the active and then put the next active point on the other arc.

Consider two sequences L1, . . . , L2n and F1, . . . , F2n of Bernoulli i.i.d. random variables with

parameter 1/2. Iterate the following procedure to make 2n points. Let pi be the current active point,

Li determines the position of pi+1. If Li is 1, put pi+1 in the middle of the left arc of pi, and if Li

is 0, put it in the middle of the right arc of pi.

Given pi is an active point, if Fi+1 is 1, the point pi+1 becomes fake point. Make pi+2 the next
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active point and put it in the middle of the other arc of pi (e.g. if pi+1 is on the left arc of pi, put

pi+1 on the right arc of pi). If Fi+1 is 0, make pi+1 the new active point. Continue the procedure

with the new active point. First, we present the analysis from [17], followed by the improved bound

using the same input, applying Wald’s inequality.

Theorem 24. No randomized online algorithm can achieve a competitive ratio better than 16/17

in expectation.

Proof. We aim to bound the competitive ratio of any deterministic algorithm on the described input

sequence. Fix a deterministic algorithm ALG. Segments of matched points by ALG divide the circle

into convex regions. If an unmatched point is in a region that no new points arrive in, it cannot be

matched anymore and we call it an isolated point. Given that ALG matches pi upon its arrival, let

Xi be the indicator random variable that pi is an active point, and matching it causes at least one

point to become isolated. Let Ai be the indicator random variable that pi becomes an active point.

For i ≥ 3, pi is a fake point if and only if pi−1 was an active point and Fi is 1. Thus we can write

Ai as 1−Ai−1Fi.

Suppose pi is an active point that arrives in a convex region R, that ALG matches upon its arrival,

splitting R into RL and RR, which contain the left and right arcs of pi, respectively. If RL and RR

are both empty, meaning they do not contain any unmatched point, pi+1 becomes isolated if it is a

fake point. If RL and RR are both non-empty and the point pi+1 becomes an active point, then the

unmatched points of the opposite side of pi+1 become isolated. Now suppose RL is empty and RR

is not empty and pi+1 arrives on the left arc of pi. If pi+1 is a fake point, it becomes isolated, and if

it is the new active point, unmatched points in RR become isolated. Similarly, if RR is empty and

RL is not empty and pi+1 arrives in the right arc of pi, the segment pipj creates isolated points. If

i = 2n, there is no pi+1, and matching pi makes points isolated if RL or RR are not empty. Since

we are interested in the asymptotic competitive ratio we can ignore this case. Therefore, given ALG
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matches pi we can write Xi as follows.

Xi =



AiFi+1 if RL and RR are empty

AiLi if RL is empty and RR is not

Ai(1− Li) if RR is empty and RL is not

Ai(1− Fi+1) if RL and RR are not empty

Let the random variable M be the size of the matching made by ALG, and for each 1 ≤ i ≤ M ,

let Ti be the step number in which ALG makes the ith match. Thus, the algorithm is guaranteed

to have at least
∑M

i=1XTi unmatched points at the end of the execution. In order to bound the

expectation of M , it may be beneficial to view it in the context of the following game. Suppose

that ALG has a budget of 2n points. The game proceeds in rounds. In round j the algorithm pays

2 points from the budget to make a guess (this corresponds to a pair of points getting matched)

of a Bernoulli random variable outcome (which corresponds to ALG’s match either resulting in an

isolated point or not). If the guess is correct (this corresponds to XTj = 0, no isolated points are

guaranteed to be created), then the algorithm does not pay any more points for this round. If the

guess is incorrect (this corresponds to XTj = 1), then the algorithm pays one more point from the

budget. ALG tries to maximize the total number of rounds before the budget is exhausted. Thus, in

round j, the algorithm uses XTj + 2 points from the budget. Overall, M is the largest integer such

that
∑M

j=1(XTj + 2) ≤ 2n. If XTj were i.i.d., we could use the renewal theorem to bound E(M).

The issue is that XTj are not i.i.d., because Xi depends on Ai and Fi+1; thus there are correlations

between Xi and Xi+1. The idea is to lower bound the expression
∑M

j=1(XTj + 2) by the sum of

some i.i.d. random variables Zi, compute the corresponding value of M ′ for the Zi, and then relate

it back to the value of M .

Now we define an auxiliary random variable sequence Y1, . . . , YM as follows:

Yi =



(1− FTi)FTi+1 if RL and RR are empty

(1− FTi)LTi if RL is empty and RR is not

(1− FTi)(1− LTi) if RR is empty and RL is not

(1− FTi)(1− FTi+1) if RL and RR are not empty
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By replacing Ai with 1 − Ai−1Fi, we can see Yi ≤ XTi . Note that Y2, Y4, . . . , Y2⌊M
2
⌋ are i.i.d.

Bernoulli random variables with parameter 1/4. Thus for every m ≤M , we can bound
∑m

j=1(XTj+

2) as follows:

m∑
j=1

(XTj + 2) ≥
⌊m/2⌋∑
j=1

(XT2j−1 +XT2j + 4) ≥
⌊m/2⌋∑
j=1

(Y2j−1 + Y2j + 4) ≥
⌊m/2⌋∑
j=1

(Y2j + 4)

Let us define yet another auxiliary random variable sequence Z1, Z2, . . . as follows. For 1 ≤ i ≤

⌊M2 ⌋, let Zi = 4 + Y2i and for i > ⌊M2 ⌋ let Zi = 4 + Y ′
i such that Y ′

i s are i.i.d. Bernoulli random

variables with parameter 1/4. This makes the Zi i.i.d. random variables that take on values of either

4 or 5 with probability 1/4 and 3/4, respectively.

Let the random variable M ′ be the maximum m such that
∑m

i=1 Zi < 2n. Note that
∑⌊M/2⌋

i=1 Zi =∑⌊M/2⌋
i=1 (YTj + 4) ≤

∑M
i=1(XTj + 2) ≤ 2n. Therefore M ′ ≥ ⌊M/2⌋. Since the Zi’s are i.i.d. and

E(Zi) = 17/4, by the renewal theorem E(M ′) = 8n/17 and therefore E(M) is at most 16n/17.

By Yao’s minimax principle, this shows an upper bound of 16/17 on the competitive ratio of ran-

domized algorithms in the adversarial model.

Next, we demonstrate how the analysis can be refined to improve the result from 16/17 to 8/9

using Wald’s equation. First, we need to define the notion of stopping time.

Definition 2. Let X = {Xn : n ≥ 1} be a stochastic process. A stopping time with respect to

X is a random time such that for each n ≥ 0, the event {T = n} is completely determined by

{X1, X2, . . . , Xn}.

Lemma 25 (Wald’s Equation). Let T be a stopping time for {X1, X2, . . .} with finite expectation.

Assume that for i ≤ T the values Xi are bounded from above, or are bounded from below. If

E(Xi | i ≤ T} = µ then , E(
∑T

i=1) = µE(T ).

Theorem 26. No randomized online algorithm can achieve a competitive ratio better than 8/9 in

expectation.
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Proof. We use the same notation as in the previous proof. Note that:

M∑
i=1

(Yi + 2) ≤
M∑
i=1

(Xi + 2) ≤ 2n.

It is easy to see that M is a stopping time for (Xi + 2)’s, M ≤ 2n <∞, and Xi + 2 ≤ 3. Thus

conditions of Wald’s equation 25 are satisfied and we can use it:

E(
M∑
i=1

(Xi + 2)) = E(M)E(Xi + 2) =
9

4
E(M) ≤ 2n =⇒ E(M) ≤ 8

9
n.

As in the previous proof, by Yao’s minimax principle, this shows an upper bound of 8/9 on the

competitive ratio of randomized algorithms in the adversarial model.

4.4.2 Positive Result: Tree-Guided-Matching Algorithm

We propose a randomized algorithm called “Tree-Guided-Matching” (TGM) (see Algorithm 2)

that has the following uniform guarantee, regardless of the weights of the points: each point appears

in a matching with probability at least 1/3.

The algorithm TGM uses a binary tree to guide its matching decisions. The binary tree is created

online, with each node of the tree corresponding to an online point. Intuitively, the binary tree, as it

grows, gives an online refining of the partition of the plane into convex regions, such that for each

region there is some online point responsible for it. Initially, set p1 as the root of the tree and p2

the child of p1. Let R1 and R2 denote the two regions corresponding to the half-spaces created by

p1p2. See Figure 4.3 for an example of this process. Let p2 be responsible for both R1 and R2. In

general, when pi arrives into a region R for which pj is responsible (of course, j < i), make pi a

child of pj in the binary tree. The line pipj divides the region R into two sub-regions R′ and R′′, let

pi be responsible for both of them, and at this point the responsibility of pj on R is lost as region

R has been refined to R′ and R′′. Note that this implies every node of the tree has at most two

children. Next, we describe how TGM chooses to match points. At the beginning, TGM matches p2

with p1 with probability 1/3. After that, upon the arrival of pi, let pj be its parent in the tree. If pj

is unmatched and pi is its first child, match pi to pj with probability 1/2. If pj is unmatched and
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Figure 4.3: On the left is the input and how TGM divides and partitions the plane, and on the right is
the tree it creates from the input. Based on this tree, it matches nodes with their parents randomly,
such that every node upon its arrival gets matched with a probability of 1/3.

pi is its second child, match pi to pj deterministically. Note that TGM only tries to match an online

point with its parent in the tree.

Algorithm 2 TreeGuidedMatching

procedure TreeGuidedMatching
Receive p1 and p2.
Match p1 and p2 with probability 1/3.
Divide the plane by p1p2 into R1 and R2.
Make p2 the responsible point for R1 and R2.
while receive a new point pi do

Find R ∋ pi.
Let pj be responsible of R.
if pj is unmatched then

if pj has no child then
Match pi with pj with probability 1/2.

else
Match pi with pj .

end if
end if
Make pi the new child of pj .
Divide R by pipj into R1 and R2.
Make pi the responsible point for R1 and R2.

end while
end procedure

Theorem 27. Every point, regardless of its weight, is chosen into a matching by the randomized

algorithm TGM with probability at least 1/3. Hence, TGM achieves a strict competitive ratio at

least 1/3.
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Proof. Note that since TGM only matches a child to its parent in the binary tree, the matching is

non-crossing. Indeed, by our construction of the tree, every child is a point inside2 a convex region

for which its parent is responsible, and its parent lies on the boundary of that region. Hence, the line

segment formed by them does not cross any existing line segment.

Next, we show the claimed performance of TGM. By the definition of TGM, p1 is matched (by

p2) with probability 1/3. We will show that every pi, i ≥ 2, upon its arrival gets matched to its

parent with probability exactly 1/3, which implies the claim. To see this, proceed inductively. The

base case is true for p2. Let p be the currently arrived point and q be its parent. We consider two

cases.

• If p is the first child of q, then by the induction hypothesis q at this moment is unmatched with

probability 2/3, hence according to TGM, p is matched (to q) with probability (2/3) ·(1/2) =

1/3.

• If p is the second child of q, then q at this moment is unmatched with probability 1 − 1/3 −

1/3 = 1/3. By TGM, p is matched (to q) with probability (1/3) · 1 = 1/3.

4.5 Revocable Acceptances

In this section, we consider the revocable setting. When a new point p arrives, an algorithm

has an option of removing one of the existing edges from the matching prior to deciding on how

to match p. The decision to remove an existing edge is irrevocable. The benefit of making this

decision is that the end-points of the removed edge, along with possible points on the other side of

the edge (though our positive result does not use this possibility), become available candidates to be

matched with p, provided the non-crossing constraint is respected.

4.5.1 Negative Result

[15] showed that a deterministic greedy algorithm without revoking can achieve 2/3 competi-

tive ratio in the unweighted version. In this section, we prove that in the unweighted version, no

deterministic algorithm with revoking can beat the ratio 2/3.
2Recall that online points are in general position.
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Theorem 28. No deterministic algorithm with revoking can achieve a competitive ratio better than

2/3 even in the unweighted version.

Proof. Fix a deterministic algorithm ALG, an arbitrary large n, and a circle in the plane. The

adversary adds at least 2n points, all of weight 1, on the circle, one by one, and let ALG match them

into pairs. We maintain the invariants that there is always one active region of the circle, and that

for each matched pair, there is always at least one unmatched point.

Initially, the entire circle is the active region. A phase consists of the adversary presenting points

on the circle, in the active region, until ALG either matches a pair or revokes a matching, or until 2n

points have been given. The adversary stops if there are 2n points and the last point is unmatched.

Otherwise, if a match has just occurred, there are two cases.

In Case 1, the current point, p, is simply matched to a point, q, on the circle. The chord pq

divides the active region into two sub-regions, R1 and R2. If neither region has any points, add a

point, p′, to R1. Without loss of generality, assume that R1 contains at least as many unmatched

points as R2. If p′ is matched, ALG has revoked a matching; and we get the extra point from Case

2. Otherwise, R2 becomes the active region, some unmatched point in R1 is associated with the

matched pair, and the phase ends.

In Case 2, ALG revokes a matching and either matches the current point, p, or leaves p un-

matched. Removing the one match, removes a chord of the circle, joining two regions into a new

convex region. This region is the active region if p is not matched. In either case, the number

of matched points is not increased. However, the number of unmatched points is increased by at

least 1, since at least one of the points, q, from the revoked match is now unmatched and p is only

matched to one point. If there is a new match for p, the sub-region created by the match that does not

contain q becomes the active region, and q is the unmatched point associated with the new matched

pair. The current phase ends.

Inductively, the invariants hold after each phase, and the unmatched point associated with each

matched pair ensures that no more than 2/3 of the points are matched. Although the number of

points may be odd, this gives an asymptotic lower bound of 2/3 on the competitive ratio.

Note that ignoring the revoking option, the above proof is a simpler alternative to bound the
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competitive ratio of the deterministic algorithm which was given by Bose et al. [15].

4.5.2 Positive Result: Big-Improvement-Match

We present a deterministic algorithm with revoking, called “Big-Improvement-Match” (BIM)

(see Algorithm 3). This algorithm has a strict competitive ratio of ≈ 0.2862 even when weights of

points are unrestricted. This shows that while revoking does not improve the competitive ratio in

the unweighted version, it provides us with an algorithm with a constant competitive ratio, which is

unattainable for a deterministic algorithm without revoking.

BIM maintains a convex partitioning of the Euclidean space. Each region in the partition is

assigned an edge from the current matching to be responsible for that region. Each edge can be

responsible for up to two regions. BIM starts out by matching the first two points, p1 and p2 regard-

less of their weights, dividing the plane into two half-planes by p1p2. BIM then assigns p1p2 to be

responsible for the two half-plane regions. Next, consider a new point pi (for i ≥ 3) that arrives

in an existing region R. Suppose that pjpj′ is the responsible edge for R. If there is at least one

unmatched point in R, BIM matches pi with an unmatched point pk in R with the highest weight.

Then pjpj′ is no longer responsible for R, and the region R is divided into two new regions by

pipk. The responsibility for both new regions is assigned to pipk. If pi is the only point in R, then

BIM decides to revoke the matching (pj , pj′) or not as follows. Without loss of generality, assume

w(pj) ≤ w(pj′). If w(pi) < rw(pj′), then BIM leaves pi unmatched. Otherwise, BIM removes the

matching (pj , pj′) and matches pi with pj′ . We note that r is a parameter that is going to be chosen

later so as to optimize the competitive ratio. If R is the only region that pjpj′ was responsible for

when pi arrived, then R is divided into two regions by pipj′ , and pipj′ becomes responsible for the

two new regions. (The regions on the other side of pjpj′ from pi keep their boundaries, even though

(pj , pj′) is no longer in the matching.) Otherwise pjpj′ was responsible for R′ in addition to R

when pi arrived. In this case, after removal of the match (pj , pj′), regions R and R′ are merged

to give region R′′ = R ∪ R′, and R′′ is divided by pipj′ into two regions, and BIM makes pipj′

responsible for both new regions.

Proposition 29. The following observations concerning BIM hold:
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Algorithm 3 BigImprovementMatch

procedure BigImprovementMatch(r)
Receive p1 and p2.
Match p1 and p2.
Divide the plane by p1p2 into R1 and R2.
Make p1p2 the responsible point for R1 and R2.
while receive a new point pi do

Find R ∋ pi.
if P := R ∩ {p1, . . . pi−1} ≠ ∅ then

Match pi with pj in P with the maximum weight.
Divide R by pipj into R1 and R2.
Make pipj responsible for R1 and R2.

else
Let pjpj′ be responsible for R such that w(pj) ≥ w(pj′).
if w(pi) ≥ r.w(pj) then

Let R′ be union of regions that pjpj′ is responsible for.
Revoke pjpj′ .
Match pi with pj .
Divide R′ by pjpj′ and make it responsible for the new subregions.

end if
end if

end while
end procedure

(1) All responsible edges are defined by two currently matched points.

(2) Each edge is responsible for at most two regions.

(3) All regions are convex.

(4) When a matched edge (pj , pj′) is replaced due to the arrival of a point pi in region R, then

edge (pi, pj′) is contained in R.

Proof. (1) follows since an edge only becomes responsible when its endpoints become matched.

When another edge becomes responsible for a region, the original edge is no longer responsible. (2)

follows since the only two regions an edge is made responsible for are the two regions created when

the endpoints of the edge were matched. When two points in one of the regions an edge is respon-

sible for are matched, the edge is no longer responsible for that region, but will still be responsible

for one region if it had been responsible for two up until that point. (3) follows inductively, since

separating two convex regions by a line segment creates two convex regions. In addition, when
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BIM removes an edge, that edge was the last matching created in either of the two regions it was

responsible for. (4) follows by (3).

Theorem 30. BIM with r ∈ (1,
√
2] has strict competitive ratio at least min

(
r2−1
r3

, 1
1+2r

)
for the

OWNM with arbitrary weights.

Proof. We consider for each region an edge is responsible for, the total weight of unmatched points

in that region. These points come in two flavours: those that were matched at some point during the

execution, but due to revoking became unmatched, and those that were never matched during the

entire execution of the algorithm.

Consider any subsequence of all created edges, ⟨e1, . . . , ek⟩, where e1 was created when a

second unmatched point arrived in some region, and the possible remaining edges were created via

revokings, i.e., ei caused ei−1 to be revoked for 2 ≤ i ≤ k, and ek is in BIM’s final matching. Let

ej = (pij , pij+1) and w(pij ) ≤ w(pij+1), so ej+1 = (pij+1 , pij+2). Thus, for 3 ≤ j ≤ k + 1, pij

arrived after pij−1 . Every pair ever matched by BIM is included in some such sequence of edges.

The points, pi1 , . . . , pik−1
could be unmatched points in a region for which ek is responsible.

Let α = w(pik), so for every 2 ≤ j ≤ k, w(pij ) is at most αr−(k−j) and w(pi1) ≤ w(pi2) ≤

αr−(k−2). Let β = w(pik+1
). The total weight of points in this sequence is

k+1∑
j=1

w(pij ) = w(pi1) +
k∑

j=2

w(pij ) + w(pik+1
) ≤ αr−(k−2) + α

(
r

r − 1

)
(1− r−(k−1)) + β

= α

(
r−(k−1) r(r − 2)

r − 1
+

r

r − 1

)
+ β.

Now, we consider other points that were never matched, but were at some time in a region for which

one of the ej was responsible. After e1 is created and before e2, a first point q1 could arrive in one of

the regions for which e1 is responsible. Note that q1 is not matched if w(q1) < rw(pi2). (Note that

a second point arriving in that region will then be matched to q1, dividing the region, and the sub-

regions will not be considered part of the region for which ek eventually becomes responsible.) Now,

suppose that another point, q2, arrives between when ej and ej+1 are created for some 2 ≤ j < k,

remaining unmatched in one of the regions for which ek is responsible. Then, neither q2 nor pij+2 is

in the same region as pij−1 or one of them would have been matched to pij−1 (or pij−1 was already
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matched and the region divided). By Proposition 29.2, ei is responsible for at most two regions, so

pij+2 arrives in the same region as q2, while unmatched. This is a contradiction, since BIM would

match them. Thus, other than q1, the only never-matched point, q2, in a region for which ek is

responsible, arrives after ek and w(q2) < rw(pik+1
).

Then, for k ≥ 2, the total weight of unmatched points for which ek is responsible is at most(
r−(k−3) + r−(k−1) r(r−2)

r−1 + r
r−1

)
α + (1 + r)β. If r ≤

√
2, then r−(k−3) + r−(k−1) r(r−2)

r−1 is at

most zero and we can bound the total weight when k ≥ 2 by: ( r
r−1)α + (1 + r)β. Thus, the ratio

between the weight of matched points in sequence pi1 , pi2 , . . . , pik+1
and the total weight of all

points associated with this sequence for k ≥ 2 is at least α+β
( r
r−1

)α+(1+r)β . Since r
r−1 > 1 + r, for

1 < r ≤
√
2, this ratio is minimized when β is minimized, which happens at β = rα. Thus, the

competitive ratio for k ≥ 2 is at least (1 + r)/( r
r−1 + r(1 + r)) = r2−1

r3
.

Now, consider the case of k = 1, and let α and β have the same meaning as above. Then the

sequence ei1 , ei2 , . . . , eik consists of a single edge. Thus, the weight of the matched points is α+β,

and there could be two unmatched points q1 and q2 at the end of the execution of the algorithm

charged to this edge. We have w(qi) < rβ, so the ratio between the weight of matched points and

the total weight of all points associated with the sequence in case of k = 1 is at least α+β
α+(1+2r)β .

Observe that this ratio is minimized when β goes to infinity and becomes 1/(1 + 2r).

Taking the worse ratio between the above two scenarios proves the statement of the theorem.

Corollary 31. With the choice of parameter for BIM, r∗, defined as the positive solution to the

equation 1
1+2r = r2−1

r3
, approximately 1.2470, we get a competitive ratio of 1

1+2r∗ , at least 0.2862.

Proof. The value r∗ is obtained by setting the two terms in the minimum in Theorem 30 equal to

each other and solving for r, giving the lower bound on the competitive ratio.

To show that this result is tight, consider the following input: p1 of weight α arrives at the

north pole of the unit sphere, followed by p2 of weight β ≥ α at the south pole of the unit sphere,

followed by p3 of weight r∗β − ϵ at the west pole of the unit sphere, and followed by p4 of weight

r∗β − ϵ at the east pole of the unit sphere. The algorithm would end up matching p1 with p2,

leaving p3 and p4 unmatched. Thus, in such an instance, the competitive ratio of the algorithm is

(α+β)/(α+β+2r∗β−2ϵ). Taking β to∞ and ϵ to 0 shows that the algorithm does not guarantee
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a competitive ratio better than 1/(1 + 2r∗) in the strict sense.

4.6 Collinear Points

In this section, we investigate the non-crossing matching problem when all points lie on a line.

Contrary to the general case, we will demonstrate that revoking and randomization alone do not

yield any non-trivial competitive ratio, even when the points are unweighted. However, we will

show that combining randomization with revoking can result in a constant competitive ratio in the

unweighted case. First, we prove that the competitive ratio of any randomized algorithm (without

revoking) can be arbitrarily bad.

Theorem 32. No randomized algorithm can achieve a competitive ratio better than 2/n when points

arrive in arbitrary positions, even if the points are unweighted and all lie on a line.

Proof. We construct a random input, bound the competitive ratio of any deterministic algorithm

on that input, and prove the theorem using Yao’s minimax principle. To begin, place p1 and p2 in

arbitrary positions on the line, then place p3 between them. For each subsequent point pi, randomly

choose either the left or right segment relative to the last point pi−1, and place pi in the middle of

that segment. This process continues until a total of 2n points are positioned on the line.

If a deterministic algorithm matches p1 and p2, it cannot match any other points, resulting in a

competitive ratio of 1
n . Furthermore, whenever the algorithm matches a new arriving point, there

is a 1
2 probability that all future points will arrive on the same side, preventing further matches.

Thus, the probability that the algorithm can match at least k pairs is at most 1
2k

. Consequently, the

expected size of the matching created by the algorithm is bounded by
∑∞

i=0
1
2i
≤ 2.

However, by Fact 1, a perfect matching is always possible, leading to a competitive ratio of

2
n .

Next, we show that allowing revoking alone does not result in a non-trivial competitive ratio.

Theorem 33. No deterministic algorithm with revoking can achieve a competitive ratio better than

1/n when points arrive in arbitrary positions, even if the points are unweighted and all lie on a line.
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Proof. The adversary’s strategy is designed to ensure that the algorithm can maintain at most one

matched pair at any time. Initially, the adversary places points in arbitrary positions until the algo-

rithm forms a match between two points. Once this match is created, the adversary starts placing

new points between the matched pair, forcing the algorithm to revoke the match in order to form

any new pairs.

Once the algorithm revokes the match, the adversary goes back to placing points in arbitrary po-

sitions. However, as soon as the algorithm creates another match, the adversary again places points

between the matched pair, preventing any further progress. This cycle continues: the adversary

alternates between placing points freely when no match exists and placing points between matched

pairs once a match is formed.

This ensures that the algorithm can only ever maintain one matched pair at any given time. After

2n points have arrived, the algorithm will have made only one matched pair, leading to a competitive

ratio of 1/n.

Next, we present a randomized algorithm with revoking, called “Random-Revoking-Matching”

(RRM), which achieves a competitive ratio of 0.5 (see Algorithm 4). RRM maintains a partition of

the line into intervals and matches points only within those intervals. The intervals may be open,

half-open, or closed. Initially, the entire line is an open interval. Throughout the execution of the

algorithm, the following conditions hold for partitioning the line:

• Open and half-open intervals contain no matched pairs.

• Each half-open interval contains exactly one unmatched point, located on its closed boundary.

• Closed intervals contain exactly two points, both located on the boundaries and matched

together.

These conditions hold at the beginning, with the line being one open interval, and they remain

valid after each step of the algorithm. The decisions of the algorithm ensure that these conditions

are preserved throughout its execution.

The first point that arrives in an open interval remains unmatched, and the partitioning does not

change. When a second point arrives in an open interval, it is matched to the previously available
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point. This action splits the open interval into a closed interval containing the matched points and

two new open intervals on either side of the matched segment.

When a point arrives in a closed interval, RRM revokes the matched segment, randomly matches

the new point to one of the now available points, and divides the interval into a closed interval

containing the newly matched points and a half-open interval with the previously matched point on

its closed boundary.

Finally, when a point arrives in a half-open interval, it is matched to the unmatched point on

its closed boundary, splitting the interval into a closed interval between the matched points and an

open empty interval (see Figure 4.6).

p1 p2

(1)

p1 p3 p2

(2)

p1 p3 p2 p4

(3)

p1 p3 p5 p2 p4

(3)

Figure 4.4: (1) The first two points arrive, partitioning the line into (−∞, p1), [ p1, p2] , and (p2,∞).
(2) Point p3 arrives in [ p1, p2] . RRM revokes p1p2, randomly matches p3 to p1, and partitions
[ p1, p2] into [ p1, p3] and (p3, p2] . (3) Point p4 arrives in (p2,∞) and remains unmatched as the
interval it arrived in is empty. (4) Point p5 arrives in (p3, p2] and is matched to p2, splitting the
interval into (p3, p5) and [ p5, p2] .

Theorem 34. The competitive ratio of the randomized algorithm RRM, with access to revoking,

when points are unweighted and arrive on a line, is 0.5.

Proof. Let f(n), g(n), and h(n) represent the expected number of matched pairs when n points

arrive in a closed, half-open, and open interval, respectively. For n = 0, there are no matched

pairs. By the definition of RRM, when a point arrives in an open interval, it remains unmatched, and

when a point arrives in a closed interval, a matched pair is revoked and a new one is created, so the

number of matched pairs does not change. However, when a point arrives in a half-open interval,

RRM creates a new matching. Therefore, we have the initial conditions: f(0) = f(1) = g(0) =

h(0) = h(1) = 0 and g(1) = 1.
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Algorithm 4 RandomRevokingMatching

procedure RandomRevokingMatching
while receive a new point pi do

Let I be the interval that pi arrives in.
if I is an open interval (x, y) then

if I contains another point pj then
Match pi with pj .
if pi is on the left side of pj then

Divide I into (x, pi), [ pi, pj ] , and (pj , y).
else

Divide I into (x, pj), [ pj , pi] , and (pi, y).
end if

end if
else if I is a closed interval [ pj , pk] then

Revoke pjpk.
Set r randomly into 0 or 1.
if r = 0 then

Match pi with pj
Divide I into [ pj , pi] and (pi, pk]

else
Match pi with pk
Divide I into [ pj , pi), and [ pi, pk]

end if
else if I is half-open [ pj , x) then

Match pi with pj .
Divide I into [ pj , pi] and [ pi, x)

else if I is half-open (x, pj ] then
Match pi with pj .
Divide I into (x, pi] and [ pi, pj ]

end if
end while

end procedure

If two or more points arrive in an open interval, the first two points will be matched, dividing

the interval into two open intervals and one closed interval. When n points are expected to arrive in

the original open interval, the new intervals will receive k1, k2, and n− k1 − k2 − 2 points, where

k1, k2 ≥ 0 and k1 + k2 ≤ n− 2. Therefore, for n ≥ 2, we have:

h(n) ≥ 1 + min
k1,k2

k1,k2≥0
k1+k2≤n−2

{h(k1) + f(k2) + h(n− k1 − k2 − 2)}.

The first point that arrives in a closed interval revokes the existing matched segment and is
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randomly matched to one of the points, dividing the interval into one half-open and one closed

interval. When n ≥ 2 points are expected to arrive, the new intervals will receive k and n − k − 1

points, where 0 ≤ k ≤ n− 1. Therefore, for n ≥ 2, we have:

f(n) ≥ min
0≤k≤n−1

{
1

2
[f(k) + g(n− k − 1)] +

1

2
[f(n− k − 1) + g(k)]

}
.

Finally, when the first point arrives in a half-open interval, it gets matched to the only available

point, dividing the interval into a closed and an open interval. When n ≥ 2 points are expected to

arrive, the new intervals will receive k and n− k − 1 points, where 0 ≤ k ≤ n− 1. Therefore, for

n ≥ 2, we have:

g(n) ≥ 1 + min
0≤k≤n−1

{h(k) + f(n− k − 1)} .

Next, we will show the following inequalities using induction for n ≥ 0:

f(n) ≥ n− 1

4
, g(n) ≥ n+ 1

4
, h(n) ≥ n− 1

4
.

It is straightforward to verify these inequalities for n = 0 and n = 1. For the induction step, for

any k, k1, k2 such that 0 ≤ k ≤ n− 1, k1, k2 ≥ 0, and k1 + k2 ≤ n− 2, we have:

h(n) ≥ 1 + h(k1) + f(k2) + h(n− k1 − k2 − 2)

≥ 1 +
k1 − 1

4
+

k2 − 1

4
+

n− k1 − k2 − 3

4
=

n− 1

4
.

For f(n), we get:

f(n) ≥ 1

2
(f(k) + g(n− k − 1)) +

1

2
(f(n− k − 1) + g(k))

≥ 1

2

(
k − 1

4
+

n− k

4
+

n− k − 2

4
+

k + 1

4

)
=

n− 1

4
.

For g(n), we have:

g(n) ≥ 1 + h(k) + f(n− k − 1) ≥ 1 +
k − 1

4
+

n− k − 2

4
=

n+ 1

4
.
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Thus, the expected number of matched pairs by RRM when 2n points arrive on a line is at least:

h(2n) =
2n− 1

4
,

where the optimum is always n, which implies that RRM achieves a competitive ratio of 0.5.
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Chapter 5

Online Non-Crossing Matching with

Advice

In this chapter1, we study the advice complexity of the Online Non-Crossing Matching problem.

We consider bichromatic and monochromatic versions.

5.1 Introduction

Suppose that 2n points in general position are revealed one by one in the Euclidean plane. When

and only when a point is revealed you have a choice of matching it with a previously revealed but

yet unmatched point by a straight-line segment. Each point can be matched at most one other point

and the connecting segments should not intersect each other: the connecting segments should form

a non-crossing matching. Each decision on how to match a point is irrevocable and the goal is to

maximize the number of connected points.

It is easy to see that a perfect matching always exists (see Fact 1). However, this optimal solution

requires the knowledge of the entire input sequence, and in our version of the problem the points

arrive online and decisions are irrevocable. The question we are concerned with in this chapter

is how much additional information an online algorithm needs so that it can achieve optimal or

near-optimal performance. We study two variants of the above problem: Online Monochromatic
1The results presented in this chapter are based on joint work by the author in collaboration with Denis Pankratov

[53].
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Non-Crossing Matching (or MNM, for short) where each point can be potentially matched with any

other point, and Online Bichromatic Non-Crossing Matching (or BNM, for short) where n of the

points are colored blue and n of the points are colored red, all the blue points arrive first, and points

can be matched only if they have different colors. BNM can be thought of as a bipartite variant of

the MNM in the geometric setting.

Matching problems in general abstract graphs have a long history dating back to König’s theo-

rem from 1931 and Hall’s marriage theorem from 1935. The offline setting of matching algorithms,

where the entire input is known in advance, is fairly well understood: efficient polynomial time

algorithms are known for the general and bipartite versions of the problem [24, 37, 54, 48, 49]. The

online versions of the problem, where input is revealed one item at a time with the restriction of

irrevocable decisions, have received a lot of attention in recent years due to applications in online

advertising and algorithmic game theory (see the excellent survey by Mehta [51] and references

therein). As discussed in Chapter 2, the performance of an online algorithm ALG is measured by its

competitive ratio. The online maximum matching problem has been studied in a variety of settings,

including adversarial [42, 10, 22], stochastic [7, 18, 29, 34, 39, 50], and advice [26]. The advice

setting is also the focus of the present chapter, so we shall review it next.

In the online advice model, the algorithm that receives input items one by one is cooperating

with an all-powerful oracle, which has access to the entire input in advance. The oracle can commu-

nicate information to the algorithm by writing on an infinite tape, which it populates with an infinite

binary string before the algorithm starts its execution. At any point during its runtime, the online

algorithm can decide to read one or more bits from the tape. The worst-case number of bits read by

the algorithm on an input of length n is its advice complexity, as a function of input length n. The

advice can be viewed as a generalization of randomness. A randomized algorithm is given random

bits (independent of the input instance), whereas an advice algorithm is given advice bits prior to

processing the online input. Note that unlike the standard Turing machine model with advice, in the

online setting advice string contents are allowed to depend on the entire input and not just its length.

Thus, advice length can be thought of as a measure of how much extra information about the input

the online algorithm needs in order to achieve a certain competitive ratio. For more information

about the online advice complexity see the excellent survey by Boyar et al. [16]. This setting is
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important not only from the theoretical point of view but also from a practical one, as advice-based

algorithms can often lead to efficient offline algorithms when advice is efficiently computable [14].

In addition, recently a new research direction has gained a lot of momentum, where the feasibility

of using advice obtained by machine learning techniques in conjunction with online algorithms is

being assessed (see [1, 3] for such results related to bipartite matching and [5] references therein for

a general theoretical framework).

In a variety of stochastic settings, algorithms for the general abstract online bipartite matching

face the competitive ratio barrier of 1 − 1/e. This is a consequence of a simple observation that

when one throws n balls into n bins at random there will be roughly n/e collisions, and this situation

is often embedded in the online bipartite matching. In fact, the tight worst-case competitive ratio

in the adversarial randomized setting is exactly 1 − 1/e [42]. This competitive ratio is achieved

by an algorithm that uses Θ(n log n) random bits. Miyazaki [52] showed that in order to achieve

optimality with advice, one needs Ω(n log n) bits of advice. However, if one is satisfied with getting

near optimality, Dürr et al. [26] showed that one can get the competitive ratio (1 − ϵ)n using only

Θϵ(n) bits of advice, where Θϵ hides constants depending on ϵ.

Considerations in image processing [19] and circuit board design [36], among other applica-

tions, motivate the study of matching problems in geometric graphs. In the geometric setting re-

stricted to 2 dimensions, one is led to consider various shapes in the Euclidean plane, such as circles,

regular polygons, convex polygons, points, etc. Such shapes serve as vertices of the graph, on which

the matching problem is defined. The adjacency can be defined by geometric considerations as well,

such as two shapes intersecting each other, or shapes being reachable from one another via a curve

in the plane that avoids all other shapes. The geometric setting motivates introducing new con-

straints to the problem such as non-crossing edges, which are important for the applications, such as

circuit board design. The geometric settings are numerous and not as well understood as the general

abstract setting (see the survey by Kano and Urrutia [41]), since introducing new constraints can

change the complexity of the problem significantly resulting in some variants of the problem being

NP-hard [4]. As mentioned earlier, in this chapter we study the geometric version of matching in 2

dimensions, where geometric objects of interest are points and they can be matched with each other

via non-crossing straight line segments. Observe that for our matching problems of interest we have

62



OPT(I) = |I| as discussed earlier, so the competitive ratio coincides with the fraction of matched

points that the algorithm can guarantee in the worst case. The bichromatic version of the problem

was first defined by Atallah who gave the O(n log2 n) time deterministic offline algorithm for it [6].

Dumitrescu and Steiger [25] generalized the problem and gave efficient approximation algorithms.

The online versions of both monochromatic and bichromatic matching in the plane were introduced

and studied by Bose et al.[15] and have been further examined by Kamali et al.[40] and in Sajad-

pour’s master’s thesis [57]. The main results from the work done on the advice complexity of online

MNM and BNM prior to our work can be summarized as follows (recall that the input length is 2n

rather than n in BNM and MNM):

• an upper bound of 2 log 3n ≈ 3.17n and a lower bound of Ω(log n) on the advice length to

achieve optimality for MNM [15];

• tight bound of Θ(n log n) on the advice length to achieve optimality for BNM [15] (note that

the proof of the lower bound has a mistake);

Overall, the above set of results paints a picture that the bichromatic version is significantly more

difficult than the monochromatic version of the problem, which is contrary to the offline setting, in

which the bipartite setting is typically easier than the general setting. The above results indicate that

the situation stays the same even in the presence of advice. A significant special case of the BNM

and MNM problems is when input points are located at the same distance from the origin, i.e., they

are all located on a common circle. First of all, the known lower bounds are based on such inputs,

and second of all, designing algorithms for this special case may be easier and often serves as the

first step towards the algorithm for the general case. We refer to this special case as “BNM/MNM on

a circle”, and we say “BNM/MNM on a plane” to emphasize the general case without the common

circle restriction.

Our contributions are as follows. We observe that the lower bound of Bose et al. of Ω(n log n)

on the advice length to achieve optimality for BNM contains a bug. We give a new argument to

establish the lower bound of logCn ∼ 2n− 3
2 log n, where Cn is the nth Catalan number. The lower

bound of Bose et al., as well as our new lower bound use input points that are located on a circle.

We present an algorithm that uses logCn bits of advice to solve BNM optimally on a circle. Thus,
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we completely resolve the advice complexity of BNM on a circle. We also show a lower bound of

n/3 − 1 and an upper bound of logCn on the advice complexity for MNM on a plane. This gives

an exponential improvement over the previously known lower bound and an improvement in the

constant of the leading term in the upper bound. In addition, we establish α
2D(2(1−α)

α ||1/4)n lower

bound on the advice complexity to achieve competitive ratio α ∈ (16/17, 1) for MNM on a circle

where D(p||q) is the relative entropy between two Bernoulli random variables with parameters p

and q. The results are summarized in Table 5.1.

Problem Version Previous LB New LB Previous UB New UB
(this work) (this work)

MNM Ω(log n) n/3− 1 2n log 3 + o(n) logCn

MNM, ρ = α - α
2D(2(1−α)

α ||1/4)n - -
BNM, Circle n log n (Mistake) logCn n log n logCn

BNM, Plane n log n (Mistake) logCn n log n -

Table 5.1: Summary of previously known results and our new results for the advice complexity of
BNM and MNM.

In terms of conceptual contributions, our work shows that the previously held belief that BNM is

more difficult than MNM even in the presence of advice is no longer justified. Indeed, it might still

turn out that BNM requires asymptotically more bits of advice than MNM to achieve optimality, but

this would require new lower bound constructions and arguments where input points are not located

on the same circle. Whether the advice complexity of BNM in the plane is ω(n) or O(n) is left as

an important open problem. Our lower bound arguments also provide a conceptual contribution to

the advice complexity area, since MNM and BNM have an interesting phenomenon of complicated

evolution of constraints during the runtime of the algorithm (because of the non-crossing condition).

This makes it difficult (or perhaps even impossible) to use the standard tools from advice complexity,

such as a reduction from the string guessing problem [11] or partition trees [8]. Thus, our lower

bound arguments are based on the first principles. In the BNM case, we establish connections

between BNM on the circle and a particular structured subset of the permutation group that is in one-

to-one correspondence with full binary trees. Our further investigations of the BNM problem hint

at deep connections between the theory of permutations and the BNM problem, which will perhaps

be encountered when one would try to get tight bounds for the plane version of the problem. Our
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lower bound for the advice complexity of approximating MNM is based on probabilistic arguments

and the nemesis input sequence is defined by a Markov chain that can successfully fool any online

algorithm.

The rest of the chapter is organized as follows. Preliminaries are presented in Section 5.2.

We discuss the bug in the paper of Bose et al. in Section 5.3. We present our new lower bound

argument and the upper bound for BNM on a circle in that section as well. In Section 5.4 we present

our results for the monochromatic version including the exponential improvement of the previously

known lower bound, a slight improvement on the upper bound for achieving optimality, as well as a

new lower bound to approximate MNM.

5.2 Preliminaries

5.2.1 Online Non-Crossing Matching

The input to MNM is a sequence of 2n points p1, p2, . . . , p2n ∈ R2 in general position arriving

one-by-one. At step i, pi arrives and the algorithm can decide to match it with one of the unmatched

points pj for some j < i with a straight line segment or leave it unmatched. The goal of the

algorithm is to match all input points without creating any crossings of line segments.

In BNM, the first n points, denoted by B = (b1, . . . , bn), are blue and can be thought of as

given in advance. The next n points, denoted by R = (r1, . . . , rn), are red and arrive one-by-one.

The algorithm has to match red points (online) upon their arrival to the blue points (offline) without

creating any crossings. Note that any algorithm for BNM can also be used for MNM by treating the

first n points p1, . . . , pn as blue and the next n points pn+1, . . . , p2n as red. Consequently, an upper

bound (on competitive ratio and/or advice complexity) for BNM implies the same upper bound for

MNM, and a lower bound for MNM implies a lower bound for BNM. Many of our algorithms that

achieve good performance on a circle also work on slightly more general inputs, namely, when

input points are vertices of their convex hull. When this happens we say that points are in a “convex

position”.

Suppose that the input to MNM I = (p1, . . . , p2n) is in a convex position. Order the points in I

clockwise starting with p1 in the convex hull of I . Let ji denote the index of point pi in this order
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with j1 = 0. The parity of pi is denoted by χ(pi) := ji mod 2. Therefore χ(p1) = 0, the parity of

clockwise neighbor of p1 in the convex hull is 1 and so forth. See Figure 5.1 for an illustration.

p1 p4

p2 p6

p3
p5

0

0

0

1

1

1

Figure 5.1: An instance of MNM in convex position with 6 points with their convex hull and parities.

5.2.2 Catalan Numbers and Related Topics

Catalan numbers [55], denoted by Cn, are defined recursively as

Cn =

 1 n = 0∑n−1
i=0 CiCn−i−1 n ≥ 1

.

The closed-form expression in terms of binomial coefficients for Catalan numbers is Cn = 1
n+1

(
2n
n

)
.

By Stirling’s approximation, we get logCn ∼ 2n− 3
2 log n. All logs are to the base 2 unless stated

otherwise.

The following three combinatorial objects are used in this chapter extensively:

(1) A binary sequence B = {b1, ..., b2n} is a Dyck word if it has the equal number of 0’s and 1’s

and in every prefix of it there are no more 1’s than 0’s.

(2) A rooted ordered binary tree is a tree with a dedicated root vertex. Each vertex of such a tree

has a left subtree and a right subtree (either of which can be empty).

(3) A permutation of integers {1, 2, . . . , n} is a reordering of these integers. We represent a

permutation σ as a sequence σ = (σ1, σ2, . . . , σn) where σi is the integer in the ith position

according to σ. We say that σ has a 213 pattern if there exist indices i < j < k such that

σj < σi < σk. If σ does not have any 213 pattern, we say σ is 213-avoiding. For instance,

52431 is 213-avoiding but 35124 is not since the subsequence 314 is a 213 pattern.
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Catalan numbers have been discovered in a variety of different contexts, so they have many

alternative definitions. In particular, the above three definitions of combinatorial objects can be

used to define Catalan numbers. An interested reader is referred to [55] and references therein.

Fact 35. The number of Dyck words of length 2n, the number of ordered rooted binary trees with n

vertices, and the number of 213-avoiding permutations of [n] are all equal to Cn.

5.3 Advice Complexity of Convex BNM

Bose et al. [15] gave an argument that at least ⌈log n!⌉ ∼ n log n bits of advice are needed

to solve BNM with 2n points optimally. Their argument is based on a family of input sequences

in a convex position. Unfortunately, the proof contains a mistake and it is not possible to fix that

mistake to restore the original bound, since there is an algorithm achieving asymptotically much

better advice complexity of ⌈logCn⌉ ∼ 2n− 3
2 log n for inputs in convex position. In this section,

we begin by presenting this algorithm. The pseudocode is shown in the Algorithm 5 and Algorithm

6 below. Then we show that ⌈logCn⌉ bits of advice are necessary to achieve optimality for inputs

on a circle, thus, establishing the tightness of ⌈logCn⌉ bound. After presenting these arguments,

we explain the mistake in the proof of Bose et al.

“Binary Tree Matching” (BTM) algorithm works on an input sequence of BNM as follows.

Knowing the input sequence in which all blue points B arrive before all red points R, the oracle

finds a perfect non-crossing matching M ⊆ R×B between red and blue points. It is easy to see that

such a matching always exists witnessed by a perfect matching of minimum total length, similar to

Fact 1. The oracle then creates a tree representation T of M that takes into account the order in

which red points arrive so that the online algorithm can later recover M from T on the fly.

The tree is constructed recursively by the convex partitioning of the plane based on pairs in M .

Take the first red point r1 and let bi denote the blue point to which r1 is matched in M . The segment

r1bi splits the plane into two half-planes. Since the points are in a convex position and M is a non-

crossing matching it follows that each line segment corresponds to matched points in M \{(r1, bi)}

lies entirely either in the left or the side of r1bi.

Thus, we partition M = {(r1, bi)} into ML and MR, where ML (MR) consists of edges from M
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that lie entirely in the left (respectively, right) side of r1bi. A tree TL (TR) is constructed recursively

for ML (respectively, MR). Then T is constructed by creating a root t with TL as its left subtree

and TR as its right subtree. Let ⟨T ⟩ denote the encoding of a tree in binary. Then the oracle writes

⟨T ⟩ on the tape.

When the online algorithm is executed, it starts by reading T from the tape. When a red point

arrives the algorithm uses T to deduce which blue point it should be matched to according to M .

Let’s first observe how it works for the first red point. When r1 arrives the algorithm knows that this

point corresponds to the root of T and therefore it knows that the matching M is such that there are

|ML| = |TL| edges to the left of the line segment by which r1 is matched to a blue point.

Thus, the algorithm can order blue points in clockwise order starting with r1 and deduce that

bi is the |TL| + 1 blue point in this order and match r1 with bi. After these points are matched,

the problem splits into two independent problems corresponding to TL and TR, which are located

inside the two regions induced by r1bi segment, as described above. Thus, when the next red point

r2 arrives, the algorithm can determine whether r2 lies in the left or the right side of r1bi and apply

the same procedure as before with TL or TR, respectively. And so on.

We use the following notation some of which depends on the current step in the execution of

the algorithm:

• size(t) denotes the number of vertices in the subtree rooted at node t; root(T ) denotes the

root of the (sub)tree T ; label(t) denotes the label of a node t; left(t) (right(t)) denotes the

left (respectively, right) child of the node t;

• Br is the set of currently available blue points such that matching the red point r does not

create any crossings with previously matched points;

• Cr be the convex hull of the points in Br ∪ {r};

• bir be the ith blue point in clockwise order in Cr.

In the pseudocode, the procedure BTMOracle describes how the oracle operates. It uses

MatchingToBT subroutine to convert M into a binary tree T . The procedure BTMAlgorithm

describes how the online algorithm operates. As the online algorithm constructs the matching it

labels the nodes by the edges of the matching constructed so far.
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Algorithm 5 BTMOracle

procedure BTMOracle(B = (b1, . . . , bn), R = (r1, . . . , rn))
M ← non-crossing perfect matching ⊆ R×B
T ←MatchingToBT (B,R,M)
write ⟨T ⟩ on the tape

end procedure
procedure MatchingToBT (B = (b1, . . . , bn), R = (r1, . . . , rn),M = {e1, . . . , en})

if n = 1 then
return T consisting of a single node

end if
let i be such that (r1, bi) ∈M
BL, RL,ML, BR, RR,MR ← ∅
for j = 1 to n do:

if j ̸= i then
if bj is in the left half-plane induced by r1bi then

BL.append(bj)
else

BR.append(bj)
end if

end if
if j ̸= 1 then

if rj is in the left half-plane induced by r1bi then
RL.append(rj)

else
RR.append(rj)

end if
end if
if ej ̸= r1bi then

if ej is in the left half-plane induced by r1bi then
ML ←ML ∪ {ej}

else
MR ←MR ∪ {ej}

end if
end if

end for
let TL = MatchingToBT (BL, RL,ML)
let TR = MatchingToBT (BR, RR,MR)
let T be a tree with root t
left(t)← root(TL)
right(t)← root(TR)
return T

end procedure

Theorem 36. BTM (see Algorithms 5 and 6) solves BNM with n red and n blue points in convex

position optimally with ⌈logCn⌉ bits of advice.
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Algorithm 6 BTMAlgorithm

procedure BTMAlgorithm
receive all blue points B = (b1, . . . , bn)
read T from the tape
for every node t ∈ T do

label(t)← ∅
end for
for i = 1 to n do

receive ri
t← root(T )
while label(t) ̸= ∅ do

if ri is on the left side of label(t) then
t← left(t)

else
t← right(t)

end if
end while
k ← size(left(t)) + 1
match r to bkr
label(t)← (r, bkr )

end for
end procedure

Proof. First, we justify the advice complexity of our algorithm. Let Tn be the set of all ordered

unlabeled rooted binary trees with n nodes. By Fact 35 we know |Tn| = Cn. The oracle and the

algorithm agree on an ordering of Tn and the bits ⟨T ⟩ written by the oracle on the tape encode the

index of T according to this pre-agreed ordering. Thus the oracle can specify T ∈ Tn with ⌈logCn⌉

bits of advice. Observe that the oracle does not need to use prefix-free code or specify n separately,

since the algorithm knows n after receiving the blue points. Thus, the algorithm can deduce Cn and

read the first ⌈logCn⌉ bits of advice from the tape after receiving the blue points.

From the description of the algorithm preceding the theorem, the correctness of the algorithm

should be clear. We provide a brief argument by induction for completeness. Let M ′ be the matching

that is created by BTM in the online phase. By induction on n, we prove that M ′ is the same as the

offline matching M . The base case n = 1 is trivial. Consider next some n ≥ 2. Let t be the root

of T . Suppose r1 is matched with bi in M . Let BL and BR be the blue points that are one left and

right side of r1bi respectively and similarly define RL and RR for red points.

Let ML be the matching between BL and RL and define MR accordingly. Since all the points
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are in convex position and edges of M are non-crossing straight lines, there is no edge between the

left and the right side of r1bi, thus ML = BL and the size of the left subtree of t is BL. In the online

matching, r1 will be matched to bBL+1 which is the same blue point as in M since there are BL

blue points on the left side of r1bBL+1.

Let TL and TR be left and right subtrees of t respectively. Subtrees TL and TR are created

by edges in ML and MR respectively. Let M ′
L be the result of the algorithm with BL, RL and

TL as input. By induction, M ′
L = ML and if we define M ′

R similarly, with the same argument

M ′
R = MR. Note that M ′

L and M ′
R are obtained by splitting the input sequences into two and

running the algorithm twice. In addition, whenever the online algorithm receives a red point on the

left (right) side of r1bi it looks at TL (TR). Thus red points on the left (right) side of r1bi will be

matched with the same blue points as in M ′
L (M ′

R) and we can conclude M ′ = M which means the

matching by the online algorithm is perfect and non-crossing.

Next, we present a lower bound on the advice complexity of BNM. Our lower bound uses input

points located on a common circle, so it implies the same lower bound for BNM on inputs in a

convex position and in general position.

Theorem 37. Any online algorithm that solves BNM on a circle with n red and n blue points

optimally uses at least ⌈logCn⌉ bits of advice.

Proof. We prove this by creating a family of input sequences In with n red and n blue points on

a circle. In all input sequences in In, blue points B = (b1, . . . , bn) have the exact same positions:

they are located on the upper half of the circle and for each 1 ≤ i ≤ n, bi is the ith blue point from

the left. Formally, bi has coordinates (cosαi, sinαi) (Figure 5.2 left), where αi = π(1− i/(n+1)).

For each permutation σ = (σ1, . . . , σn) on [n], we generate the online input sequence R(σ) =

(r1, . . . , rn) of red points in the lower half of the circle such that ri is the σth
i red point from the left.

Formally, let σ−1 = 0 and σ0 = n+1 for the ease of the notation and auxiliary points r−1 and r0 on

(0,−1) and (0, 1) respectively. These two points are not in the input sequence and we define them

for the ease of describing the input sequence. Next, we generate (r1, r2, . . . , rn) in order. After

generating k points we have k + 1 arcs between r−1 and r0 in counterclockwise order with points

r−1, r0, . . . , rk as boundary points between arcs. When we refer to jth arc, we mean jth arc in this
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order. To generate ri let j = min(i, σi) and place ri in the middle of jth arc. An example of such a

construction for R(2143) is illustrated in Figure 5.2: prior to r1 being generated there is just one arc

between r−1 and r0, so j = min(i, σi) = min(1, 2) = 1 and r1 is placed in the middle of this one

arc. This results in two arcs: one between r−1 and r1 and another between r1 and r0. For i = 2 we

have j = min(2, σ2) = (2, 1) = 1 so we place r2 in the middle of the first arc. For i = 3 we have

j = min(3, σ3) = min(3, 4) = 3, so we place r3 in the middle of the third arc, that is in the middle

of the arc between r1 and r0. For i = 4 we have min(4, σ4) = min(4, 3) = 3, so we place r4 in the

middle of the third arc, that is in the middle of the arc between r1 and r3. Since input sequences in

In only differ in red points we refer to an input sequence by its set of red points.

Let σ and σ′ be two 213-avoiding permutations over [n] and R(σ) = (r1, . . . , rn) and R(σ′) =

(r′1, . . . , r
′
n) be their corresponding input sequences. Let i be the first index that σ and σ′ are

different, i.e. i = argmin{j ∈ {1, . . . , n} | σj ̸= σ′
j}. It is clear from the above construction

that the first i− 1 points of R(σ) and R(σ′) will be identical. We now claim that the 213-avoiding

property implies that ri and r′i will be placed in the same locations as well. For i = 1, the claim is

trivial because the first red point in all I ∈ In is placed at (0,−1). For i > 1, we establish the claim

by contradiction.

Suppose ri and r′i are placed in different locations. Prior to the placement of the ith points, the

two inputs partition the lower half of the circle into identical sequences of arcs. Since points are

always placed in the middle of one of the arcs, ri and r′i must have been placed in different arcs.

Without loss of generality, suppose ri is placed in the middle of an arc to the left of r′i, and there

exists some 1 ≤ j < i such that rj lies between r′i and ri.

Since σj = σ′
j , the number of red points in R(σ) to the right of rj is equal to the number of red

points in R(σ′) to the left of rj . However, since r′i is on the right side of rj in R(σ′) and ri is on

the left side of rj in R(σ), there must exist some i < k ≤ n such that rk is placed to the right of rj .

This implies that σi ≤ σj ≤ σk. Since i < j < k, the subsequence σj , σi, σk forms a 213 pattern,

which contradicts the assumption that σ is 213-avoiding. Thus, ri and r′i must be placed in the same

locations, as claimed.

Note that in an input sequence I ∈ In, for 1 ≤ i ≤ n, if ri is the jth red point from left,

it should be connected to bj in the unique perfect matching corresponding to I . The decision of
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a deterministic online algorithm is based on the prefix of the input sequence that it has received

so far. With the same prefix of input sequences, ri and r′i should be matched to bσi and bσ′
i
̸= bσi

respectively, therefore one deterministic algorithm cannot solve both R(σ) and R(σ′) optimally and

by pigeonhole principle together with Fact 35 we need at least Cn deterministic algorithms and at

least ⌈logCn⌉ bits of advice for solving this problem optimally.

Figure 5.2: Left: positions of blue points. Right: the input sequence for n = 4, corresponding the
permutation σ = (2, 1, 4, 3).

Bose et al. [15] had almost the same procedure of creating instances from permutations, but

mistakenly, claimed no deterministic algorithm can solve two different permutations rather than

two 213-avoiding permutations. They did not consider that a single deterministic algorithm can

solve inputs R(σ) for multiple different σ because of non-crossing constraints. For example, input

sequences associated with permutations σ = (2, 1, 3) and σ′ = (3, 1, 2) can be solved with one

deterministic algorithm: the algorithm matches r1 = r′1 with b2, then if r2 arrives it will be in the

left half-plane associated with (r1, b2) edge, so it can be matched only with b1 given the non-crossing

constraint. If r′2 arrives then it will be in the right half-plane associated with (r′1, b2) edge, so it can

be matched only with b3 given the non-crossing constraint. Thus, once the algorithm determines to

match r1 with b2 it can complete it to a perfect matching in both R(σ) and R(σ′). It implies that not

every permutation out of n! possibilities requires a different deterministic algorithm. Another way

of looking at it is that ri might be different from r′i where i is the first coordinate at which σ and σ′

differ unless σ and σ′ are 213-avoiding. If ri ̸= r′i then a single deterministic algorithm can use this

information to match ri and r′i differently.
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b1

b2
b3 b1

b2
b3

r1

r2 r3
r1

r3 r2

Figure 5.3: Two input sequences, associated with σ = (2, 1, 3) on the left and σ = (3, 1, 2) on the
right, can be solved optimally using a single deterministic algorithm. This serves as a counterexam-
ple to the proof presented by Bose et al. [15].

5.4 Advice Complexity of MNM

In this section, we present our results for the advice complexity of MNM. Before presenting the

best-known result published in [17] for points in general position, We begin by presenting a bound

of 3n on the advice complexity of solving MNM in Subsection 5.4.1 which solves MNM even when

the points are not in general position.

The algorithm using ⌈logCn⌉ bits of advice for inputs in convex position for BNM from Sec-

tion 5.3 can be viewed as an algorithm for MNM that postpones matching points as long as possible

leaving the first n points unmatched (treating them as “blue” points). In Subsection 5.4.2, we present

a family of algorithms that have an opposite behavior – each algorithm in the family tries to match

points as soon as possible, so we call it ASAP algorithm. We show that just like BTM algorithm,

ASAP algorithm achieves optimality with ⌈logCn⌉ bits of advice for MNM on inputs in convex

position.

Then we present an algorithm in Subsection 5.4.3 that solves MNM in general position with

⌈logCn⌉ bits of advice. In Subsection 5.4.4 we present an ⌊n/3⌋ lower bound for optimally solving

MNM on a circle, and in Subsection 5.4.5 we show an Ωα(n) lower bound for achieving competitive

ratio α ∈ (16/17, 1).
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5.4.1 3n Upper Bound

Bose et. al. [15] showed how to solve MNM with (2 log 3)n ≈ 3.17n bits of advice. In this

section, we show that their result can be improved to 3n bits of advice by just using a slightly more

efficient way of generating advice bits.

On input P = (p1, p2, . . . , p2n) the oracle sorts the points by their x-coordinates and matches

consecutive pairs of points. Let M be the resulting matching. Suppose pi is matched with pj in M ,

thus pj has the closest x-coordinate to pi either on its right or left. The advice string A consists of

n parts, i.e. A = a1a2 · · · a2n such that for each 1 ≤ i ≤ 2n, ai is defined as follows:

• ai = 0 if j > i, i.e. pj comes after pi;

• ai = 10 if i < j and pj is on the left side of pi;

• ai = 11 if i < j and pj is on the right side of pi.

The online algorithm reads A and reveals the sequence a1, . . . , a2n and for 1 ≤ i ≤ 2n decides

as follows:

• if ai = 0, leaves pi unmatched;

• if ai = 10, matches pi with its closest x-coordinate on the its left;

• if ai = 11, matches pi with its closest x-coordinate on the its right.

Observe that this is just a prefix-free encoding/decoding of the three choices of an algorithm

described above. The pseudocode is given in Algorithm 7.

Theorem 38. SortedMatching (Algorithm 7) solves MNM with 2n points in general position

optimally with 3n bits of advice.

Proof. Let (pi, pj) be an edge in the offline matching M such that i < j. Since pi comes before

pj , ai is 0 and aj is either 10 or 11 therefore for each edge in M there are 3 bits of advice and

the size of the advice string is 3n. Since the points are in general position, no three points may lie

on the same vertical line. It follows that the matching M produced by SortedMatchingOracle

is non-crossing and from the description of the algorithm it is easy to see that the online matching

produced by SortedMatchingAlgorithm is the same as M .
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Algorithm 7 SortedMatching algorithm.
procedure SortedMatchingOracle(P = (p1, . . . , p2n))

let L be the sorted list of P by their x-coordinates
M ← ∅
for i = 1 to n do

let p = L[2i+ 1] and q = L[2i+ 2]
M.append((p, q))

end for
A← [ ]
for i = 1 to 2n do

find j such that (pi, pj) ∈M
if j > i then

A.append(0)
else if pj is on the left of pi then

A.append(10)
else

A.append(11)
end if

end for
Write A on the tape

end procedure

procedure SortedMatchingAlgorithm
while receive a new point pi do

read a bit b1 from the tape
if b1 = 0 then

leave pi unmatched
else

read another bit b2 from the tape
if b2 = 0 then

match pi with its closest x-coordinate point on its left
else

match pi with its closest x-coordinate point on its right
end if

end if
end while

end procedure

5.4.2 ⌈logCn⌉ Upper Bound for Convex Position

In this section, the set of available points plays a crucial role. It is defined for an online algorithm

as follows: when pi arrives, a point pj for 1 ≤ j < i is called available if matching pi with pj does

not create any crossing with the existing edges in the matching constructed by the algorithm by time
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i. Let Ai denote the set of all available points for pi. Observe that since the decisions of the online

algorithm are deterministic, the oracle knows existing matching edges at time i, and hence it knows

Ai.

Recall that χ(p) denotes the parity of p as described in Subsection 5.2.1. First, observe that

in a perfect non-crossing matching M if pi is matched with pj then the two points have opposite

parities, for otherwise there would be an odd number of points in half-planes associated with the

edge (pi, pj), guaranteeing that at least one point on each side must remain unmatched. Our advice

algorithm is based on the observation that this claim can be “reversed”: as long as an online algo-

rithm matches points of opposite parities without creating any crossings, this partial non-crossing

matching remains valid, that is it can be extended to a perfect non-crossing matching of the whole

instance. Of course, the parities are not known to the online algorithm and they cannot be inferred

from the input seen so far, since they are based on a complete instance. One possibility is for an

oracle to specify all parities with 2n bits of advice, but we can do it slightly more efficiently with

⌈logCn⌉ bits of advice if n is known to the algorithm in advance. If n is not known then the savings

from our more efficient encoding are diminished because of the need to encode numbers up to Cn

with a prefix-free code.

Observe that we can insist that as soon as pi arrives such that Ai contains a point of opposite

parity to pi then pi is matched. We refer to this property as “as soon as possible” or ASAP, for short.

In an ASAP algorithm, if one point in Ai has parity opposite to pi then all points in Ai have parity

opposite to pi. This means that as long as ASAP algorithm can infer that it is possible to match

pi it can choose any point in Ai for such matching. Therefore ASAP algorithm forms a family of

algorithms, where the specific algorithm is determined by how ties are broken. The tie-breaking

rule is not important for our analysis, so we do not specify it explicitly.

Next, we describe the details of how our algorithm (see Algorithm 8) works. The oracle creates

a binary string D = (a1, . . . , a2n). For i ∈ {1, . . . , 2n}, if there exists an available point pj ∈ Ai

such that χ(pj) ̸= χ(pi) the oracle sets ai to 1, otherwise it sets it to 0. Thus, ai indicates whether pi

could be matched at step i. The number of edges in a perfect matching is n and for every 1 ≤ i ≤ 2n,

at step i, the number of points matched at the time of their arrival is not more than the number of

points that were left unmatched at the time of their arrival hence D is a Dyck word. Let ⟨D⟩ denote
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the encoding of a Dyck word in binary. If n is known to the algorithm then ⟨D⟩ can consist of

just ⌈logCn⌉ bits. If n is not known to the algorithm the oracle can encode n using Elias delta

coding followed by the encoding of D as before, resulting in ⌈logCn⌉ + log n + O(log log n) ∼

2n− 1
2 log n+O(log log n) bits. When the online algorithm is executed, it starts by reading D from

the tape. When an online point pi arrives, if ai = 1 the algorithm matches pi with one arbitrary

point of Ai and if ai = 0 it leaves pi unmatched.

Algorithm 8 ASAP algorithm.
procedure ASAPMatchingOracle

D ← [0]
for i = 2 to 2n do

if there exist an available point pj for pi and χ(pi) ̸= χ(pj) then
D.append(1)

else
D.append(0)

end if
end for
write ⟨D⟩ on the tape

end procedure

procedure ASAPAlgorithm
read D from the tape
while receive a new point pi do

if di = 1 then
connect pi to one of the available points

else
leave pi unmatched

end if
end while

end procedure

Theorem 39. ASAP (see Algorithm 8) solves MNM with 2n points in convex position optimally

with ⌈logCn⌉+ log n+ O(log log n) bits of advice. Moreover, if n is known to the algorithm only

⌈logCn⌉ bits are required.

Proof. By Fact, 35we know that the number of Dyck words with length 2n is Cn. Hence, the

encoding described prior to this theorem achieves the desired advice complexity.

ASAP matches pi with its available vertices thus it does not create crossing edges. It is left to

see that the constructed matching is perfect. We can demonstrate it by strong induction on n. For
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n = 1 we have χ(p1) ̸= χ(p2) and we are done. For n ≥ 2 define i to be the smallest index such

that χ(pi) ̸= χ(p1). ASAP then matches pi with pj for some j ∈ {1, . . . , i − 1}. The line passing

through pi and pj splits the plane into two half-planes. Let P1 consist of the points from the input

that lie in one half-plane. Note that P1 is a sequence and the order of points is the same as their

order in P . We define P2 similarly but for the other half-plane. Thus P1 = (pi1 , pi2 , . . . , pik) and

P2 = (pj1 , pj2 , . . . , pjm). Since every point other than pi and pj appears either in P1 or P2 we

have k + m + 2 = 2n. Also, since χ(pi) ̸= χ(pj) we have that P1 and P2 contain even number

of points each. Define D1 = (ai1 , ai2 , . . . , aik) and D2 = (aj1 , aj2 , . . . , ajm) be the portions of

the advice D corresponding to items in P1 and P2, respectively. It is easy to see that P1 forms an

input to an MNM problem of size k/2 < n and D1 is a correct advice string corresponding to this

input. Similarly for P2. Thus, by induction assumption ASAP creates a perfect matching M1 when

it runs on P1 with advice D1, and it also creates a perfect matching M2 when it runs on P2 with D2.

Lastly, we observe that the decision of the algorithm for an input point p depends on the advice bit

and the set of available points. Since the advice bit and the set of available points for each p ∈ P1

coincides with the advice bit and the set of available points for p ∈ P after pi is matched with pj ,

the algorithm will construct matching M1 in P . Similarly, it will construct matching M2 in P , and

together with pi being matched with pj it gives a perfect matching for the entire instance P .

5.4.3 ⌈logCn⌉ Upper Bound for General Position

Now we propose an online algorithm with advice, which we call “Split-And-Match” (SAM),

and show that it achieves optimality. For input sequences of size 2n, SAM uses a family of Cn

advice strings. SAM oracle and algorithm jointly maintain a partitioning of the plane into convex

regions, and a responsibility relation, where a point can be assigned to be responsible for at most

one region, and each region can have at most one point responsible for it. When a new point p

arrives in a region R, if R does not have a responsible point, then p is assigned to be the responsible

point for R, and p is left unmatched at this time. Otherwise, suppose that q is the responsible point

for R at the time p arrived. In this case, the responsibility of q is removed, and the plane partition is

refined by subdividing R into R1 and R2 – the sub-regions of R formed by pq. If the total number

of points (including future points, but excluding p and q) in Ri is even for each i ∈ {1, 2}, then
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p and q are matched (we refer to this event as a “safe match”), and R1 and R2 do not have any

responsible points assigned to them. Otherwise, p and q are not matched, and q is made responsible

for R1, and p is made responsible for R2. Note that when a region has a responsible point, that point

is assumed to lie in the region by convention (if it lies on the boundary, this condition implies how

the algorithm breaks ties).

To implement the above procedure in the advice model, the SAM oracle (see Algorithm 9 )

creates a binary string D of length 2n, where the ith bit indicates whether pi arrives in a region

which has some responsible point pj assigned to it, and pi and pj form a safe match. The string D is

encoded succinctly on the tape and is passed to SAM. The SAM algorithm (see Algorithm 10) begins

by reading the encoding of D from the tape (prior to the arrival of any online points), recovers D

from the encoding, and then uses the information in D to run the above procedure creating safe

matches.

Observe that we aim to show the bound logCn+log n ∼ 2n− 1
2 log n on the advice complexity.

The reason for the additive savings of 3
2 log n in the logCn, as compared to 2n, is that not all binary

strings of length 2n can be generated as D. Thus, the oracle and the algorithm can agree beforehand

on the ordering of the universe of possible strings D, which we call the advice family. Then the

oracle writes on the tape the index of a string in this ordering that corresponds to D for the given

input. The following theorem establishes the correctness of this algorithm, as well as the claimed

bound on the advice complexity.

Theorem 40. SAM achieves a perfect matching with the advice family of the size of Cn.

Proof. It is easy to see that there are only two kinds of regions that can be encountered during the

execution of SAM:

• type I: this region does not have a responsible point, it is empty at the time of creation, and

there is an even number of points arriving in this region in the future, and

• type II: this region has a responsible point, which is the only point in the region at the time of

its creation, and there is an odd number of points arriving in this region in the future.

We argue inductively (on the number of future points arriving in a region) that the algorithm ends

up matching all points inside a region, regardless of their type.
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Algorithm 9 Split-And-Match Oracle.
procedure Split-And-Match-Oracle

D ← [0]
make p1 responsible for the plane
for i = 2 to 2n do

let R be the region that pi arrives in
if R has a responsible point pj then

revoke the responsibility of pj
divide R into R1 and R2 by pipj
if RL (and RR) is going to contain an even number of points in total then

D.append(1)
else

make pj and pi responsible for R1 and R2 respectively
D.append(0)

end if
else

make pi responsible for R
D.append(0)

end if
end for
pass D to the algorithm

end procedure

Algorithm 10 Split-And-Match Algorithm.
procedure Split-And-Match(D)

while receive a new point pi do
let R be the region that pi arrives in
if R has a responsible point pj then

revoke the responsibility of pj
divide R into R1 and R2 by pipj
if D[i] == 1 then

match pi with pj
else

make pj and pi responsible for R1 and R2 respectively
leave pi unmatched

end if
else

make pi responsible for R
leave pi unmatched

end if
end while

end procedure
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The base case for type I region is trivial: the number of future points is 0, and there is nothing

to prove. The base case for type II region is easy: one point arrives in the region, then according to

the algorithm it will be matched to the responsible point (since R1 and R2 are empty).

For the inductive step, consider type I region R, and suppose that 2k points arrive inside the

region. The first point that arrives in the region, becomes responsible for this region, changing its

type to II. There are 2k − 1 future points arriving in this region, and the claim follows by inductive

assumption applied to the type II region.

Now, consider type II region R, and suppose that 2k − 1 points arrive inside the region. Let q

be the responsible point for R, and let p be the first point arriving inside R. Note that pq partitions

R into R1 and R2. There are two possible cases. Case 1: R1 and R2 are both of type I, then p

is matched with q and the inductive step is established for R by invoking induction on R1 and R2.

Case 2: R1 and R2 are both of type II, then inductive step is established for R by invoking induction

on R1 and R2.

Observe that the entire plane is a region of type I at the beginning of the execution of the

algorithm (prior to arrival of any points). Thus, correctness of the algorithm follows by applying

the above claim to this region.

To establish the bound on advice complexity, observe that by the definition of the algorithm,

SAM matches the most recent point whenever D[i] is 1 and does not match otherwise. Thus, D has

an equal number of zeros and ones and no prefix of D has more ones than zeros. This makes D a

Dyck word and it is known that there are Cn Dyck words of size 2n.

5.4.4 ⌊n/3⌋ − 1 Lower Bound

Theorem 41. Any online algorithm that solves MNM on a circle with 2n points optimally uses at

least ⌊n/3⌋ − 1 bits of advice.

Proof. Let n = 3k. We create a family of adversarial input instances In such that each instance

I ∈ In contains 6k = 2n points on the perimeter of a circle. The first 4k points p1, . . . , p4k are

exactly the same in all instances I ∈ In and are positioned on the perimeter of a circle at regular

angular intervals. These points arrive clockwise with p1 located at the North pole. The interval

between pi and pi+1 is called the ith interval (the 4kth interval is between p4k and p1).
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Choose j ∈ {0, 1, 2, . . . , 2k} and choose a subset S of j intervals from the first 4k−1 intervals.

The next j points are placed in the middle of each interval in S and arrive in clockwise order. The

remaining 2k−j points are placed in the 4kth interval in clockwise order at regular angular intervals

within the 4kth interval. The family In arises out of all possible choices of j and S.

|In| =
2k∑
j=0

(
4k − 1

j

)
≥ 24k−2 + 1. (2)

For each I = (p1, . . . p6k) ∈ In, let X(I) be the binary sequence (χ(p1), . . . , χ(p4k)) of

parities of the first 4k points of I (recall that χ(p) is the parity of p as described in Subsection 5.2.1).

Consider I ̸= I ′ ∈ In and take the smallest index j > 4k such that pj belongs to different intervals

in I and I ′. Without loss of generality suppose that the location of pj in I is before the location

of pj in I ′ in clockwise order from the North pole. Let pℓ be the clockwise neighbor of pj in I .

Then the parity of pℓ in I is different from the parity of pℓ in I ′. This implies that X(I) ̸= X(I ′)

demonstrating that X : In → {0, 1}4k is one-to-one.

If M is a non-crossing matching on p1, . . . , p4k we call it a prior matching. We say a prior

matching M is consistent with an input sequence I ∈ In if it can be completed to a perfect non-

crossing matching on points in I . The size of a consistent M should be at least k otherwise with

more than 2k unmatched points and 2k arriving points it can not become a perfect matching. More-

over, for every (pi, pj) ∈M , parities of pi and pj should be different, i.e. χ(pi) ̸= χ(pj). Otherwise

(pi, pj) splits the points of I into two odd sets and it cannot become a perfect non-crossing matching.

Since X is one-to-one, a single prior matching M can be consistent with at most 23k input

sequences: 2k different parities for points with opposite parities in k matched edges and at most 22k

different parities for other points.

The first 4k point of every in input sequence in In is the same, therefore for a deterministic

algorithm, there is a one-to-one relation between the set of the prior matchings that it makes and

the set of advice strings from the oracle for solving In. Thus we say the advice string A is consis-

tent with input sequence I ∈ In if the prior matching that the algorithm makes with advice A is

consistent with I .

The size of the input family is greater than 24k−2 and each advice string can be consistent with
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at most 23k input sequences therefore there should be more than 2k−2 different advice strings to

cover all input sequences in In hence the algorithm needs at least k − 1 bits of advice.

For n = 3k + 1 and n = 3k + 2, we create a family inputs the same way as n = 3k case but

with 4k + 1 and 4k + 2 points in the fixed prefix respectively. With the same argument, we also

need at least k − 1 bits of advice in both cases.

5.4.5 Ωα(n) Lower Bound for α-Approximation

In this subsection, we prove a lower bound on the amount of advice needed for an online algo-

rithm to match at least 2αn points for α ∈ (16/17, 1), without creating any crossing line segments.

That is we study the advice complexity of achieving a strict competitive ratio α. It is not clear

whether it is possible to reduce from the binary string guessing problem [11] to our problem of

interest. As such, instead of using the binary string guessing problem as a black box, we argue

from first principles similar to the proof of the lower bound on string guessing. The argument is

probabilistic: an algorithm that uses k bits of advice and guarantees that at least 2αn points are

matched gives rise to a randomized algorithm that matches at least 2αn points with a probability of

at least 2−k on every input (and consequently with respect to random inputs). This can be achieved

by setting k advice bits uniformly at random as opposed to having an oracle generate them.

We present a distribution on inputs of length 2n, similar to the one used in Chapter 4 for proving

negative results on randomized algorithms (Subsection 4.4.1) and demonstrate that a randomized

algorithm cannot match many points with high probability. The input is generated by a Markov

chain process and all the points are on a circle. We maintain an active arc such that all future input

points will be generated within this arc. The next point pi to arrive is placed in the middle of this

arc. This splits the current arc into two and the process continues on one of these two arcs chosen

at random.

However, it is not enough to simply continue the process on a randomly chosen arc, since an

algorithm might decide to keep matching points as soon as they arrive and can be matched. Thus,

we need to set up a probabilistic trap for this choice. We do this by deciding at random to insert a

“fake” point in one arc and continue the process on another arc. We leave a possibility of not having

a “fake” point and immediately continuing into one of the arcs chosen at random.
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This Markov chain process is designed so that with a constant probability we can guarantee

a future unmatched point no matter whether pi is matched at time i or is left unmatched by the

algorithm. There are several possibilities to consider and the fact that the above trap works in all

cases are a bit subtle. Nonetheless, the analysis only requires elementary probability theory and the

following well-known tail bound:

Fact 42. If X is a binomial random variable with variables n and p, then by the Chernoff bound

for α ∈ (0, p) we have:

P{X ≤ αn} ≤ 2−nD(α||p)

Where D(α||p) = α log2
α
p + (1 − α) log2

1− α
1− p is the relative entropy between an α-coin and a

p-coin.

Now, we are ready to present the main result of this subsection.

Theorem 43. Any online algorithm with advice for MNM that guarantees at most 2(1 − α)n un-

matched points, where α ∈ (16/17, 1), reads at least α
2D(2(1−α)

α ||1/4)n bits of advice.

Proof. We begin by describing a distribution of inputs consisting of 2n points on a circle, as dis-

cussed at the beginning of this section. Each point is either “fake” or “parent” – terms that will

become clear after we describe the distribution.

Create two sequences F1, . . . , F2n and R1, . . . , R2n of i.i.d. Bernoulli random variables with

parameter 1/2. Put points p1 and p2 on the North and the South poles of S1 ((0, 1) and (0,−1))

respectively and make p2 a parent. Starting from i = 2, follow the process: if pi is a parent, let s0i

and s1i be its left and right adjacent arcs (maximal portions of the perimeter of a circle starting with pi

and continuing until a previously generated point is encountered in clockwise and counterclockwise

directions, respectively). Place pi+1 in the middle of sRi
i . If Fi = 0 make pi+1 a parent and continue

the process with pi+1. If Fi = 1, make pi+1 a fake point, place pi+2 in the middle of s1−Ri
i , make

pi+2 a parent and continue with pi+2.

From the above process we see that Fi controls whether a point pi generated after a parent is

fake, and Ri controls whether pi is placed in the right arc or the left arc. We introduce Pi as the

indicator that pi is a parent. We have Pi = 1 − Pi−1Fi. Next, we analyze the probability with
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which a randomized algorithm can achieve a large matching. Let ALG be an arbitrary randomized

algorithm. Note that at time i, Pi, Fi, and Ri are not known to the algorithm. Let M be the size of

the matching (random variable) constructed by ALG and T1 < ... < TM be the times at which the

algorithm matched points. Let Ai be the set of all available points to which pTi can be connected.

Suppose pTi is parent and the algorithm matches it to pj ∈ Ai, this matching splits Ai \ {pj} into

A0
i and A1

i , points on the left side and the right side of the matching respectively.

A point becomes isolated if it is unmatched and cannot be matched afterward. If |Ax
i | is zero

and pTi+1 is fake and goes to sxTi
it will be isolated. If |Ax

i | is greater than zero and pTi+1 is a parent

and it goes in s1−x
Ti

, points in Ax
i become isolated.

For 1 ≤ i ≤ M let ai ∈ {00, 0+,+0,++} indicate the number of points in A0
i and A1

i at time

Ti (e.g. ai = +0 indicates that |A0
i | > 0 and |A1

i | = 0). Let Xi be the indicator that pTi is a parent

and the matching at time Ti creates at least one isolated point. Then we have:

Xi =



(1− PTi−1FTi)FTi+1 if ai = 00

(1− PTi−1FTi)FTi+1(1−RTi) + (1− PTi−1FTi)(1− FTi+1)RTi if ai = 0+

(1− PTi−1FTi)(1− FTi+1)(1−RTi) + (1− PTi−1FTi)FTi+1RTi if ai = 0+

(1− PTi−1FTi)(1− FTi+1) if ai = ++

Values of X1 and XM do not follow this equation if T1 = 2 or TM = 2n but it does not affect the

asymptotic result and we can ignore these scenarios. Now we define an auxiliary random sequence

Y1, . . . , YM as follows:

Yi =



(1− FTi)FTi+1 if ai = 00

(1− FTi)FTi+1(1−RTi) + (1− FTi)(1− FTi+1)RTi if ai = 0+

(1− FTi)(1− FTi+1)(1−RTi) + (1− FTi)FTi+1RTi if ai = 0+

(1− FTi)(1− FTi+1) if ai = ++

It is easy to check that Yi ≤ Xi for 1 ≤ i ≤M , for every sequence of decisions of an algorithm,

and every outcome of F1, . . . , FM and R1, . . . , RM . Note that Y2, Y4, . . . , Y⌊M
2
⌋ are i.i.d. Bernoulli

random variables with parameter 1/4. Let U be the number of unmatched points by ALG then

86



U + 2M = 2n and
∑M

i=1Xi ≤ U thus
∑⌊M

2
⌋

i=1 Y2i ≤
∑M

i=1Xi ≤ 2n− 2M . We have:

P{M ≥ αn} = P{
M∑
i=1

Xi ≤ 2n− 2M,M ≥ αn} ≤ P{
αn/2∑
i=1

Y2i ≤ 2(1− α)n}

For α ∈ (16/17, 1) by Fact 42:

P{M ≥ αn} ≤ 2−
αn
2
D(

4(1−α)
α

||1/4)

To conclude the statement of the theorem, suppose we have an algorithm that guarantees at most

2(1− α)n unmatched points with f(α)n bits of advice. If we replace advice bits with random bits

and run this algorithm then with probability at least 2−f(α)n the algorithm creates at most 2(1−α)n

unmatched points. This implies that f(α) ≥ α
2D(4(1−α)

α ||1/4).
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Chapter 6

Online Interval Selection

In this chapter,1 we study the Online Interval Selection Problem in both the random order and

any order (adversarial) input models. Additionally, we provide a lower bound on the advice com-

plexity of this problem. In both input models, we restrict the interval sets to simple chains, defined

as follows.

Definition 3. The interval graph of a set of intervals is a graph where each interval is represented

by a node, and there is an edge between two nodes if their corresponding intervals overlap. A set

of intervals I = {I1, I2, . . . , In} is called a simple chain if its interval graph forms a path, with the

intervals ordered from left to right (see Figure 6.1).

6.1 Introduction

In the Online Interval Selection problem, a set of intervals I = {I1, I2, . . . , In} arrives one by

one, and the algorithm must decide whether to accept or reject each interval as it arrives, ensuring

that the selected intervals do not overlap. In the unweighted version of this problem, discussed

in this chapter, the objective is to maximize the number of selected intervals. In the revocable

acceptance setting, the algorithm is allowed to revoke previously selected intervals to accept new

ones, while maintaining a set of non-overlapping intervals at all times.
1The results presented in this chapter are based on joint work by the author in collaboration with Yaqiao Li and Denis

Pankratov submitted to the journal of the Discrete Applied Mathematics.
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In most of the Interval Selection literature, the real-time model is commonly studied, where

intervals arrive in increasing order of their start times. In this model, Faigle and Nawijn [28] pre-

sented a deterministic greedy algorithm with revoking that achieves the optimal competitive ratio of

1. However, Lipton and Tomkins [46] showed that, without revoking, even randomized algorithms

can have an unbounded competitive ratio.

In the any-order (adversarial) model, the sequence of intervals arrives in the adversarial order.

Garay et al. [31] demonstrated that, even with revoking, any deterministic algorithm can still have

an unbounded competitive ratio in this adversarial model. Borodin and Karavasilis [12] proposed a

deterministic algorithm with revoking for intervals of k different lengths, achieving a competitive

ratio of 1/2k, which they proved to be optimal. In a subsequent paper [13], they showed that the

same algorithm achieves a competitive ratio of 0.4 in the random-order model, where intervals are

adversarially chosen but arrive in a random sequence.

Borodin and Karavasilis [12] also explored memoryless algorithms, which only retain the set

of selected intervals without tracking previous rejections. They showed that the 1/2k upper bound

applies to randomized memoryless algorithms as well. Furthermore, they demonstrated that for

unit-length intervals in the random-order model, only algorithms that revoke in one direction can

benefit from the random order and achieve a competitive ratio better than 1/2.

In Section 6.2, we consider a simple deterministic greedy algorithm that only revokes to the left.

We prove that this algorithm achieves a competitive ratio of 2(1−1/
√
e) ≈ 0.786 on a simple chain

in the random order model. However, in this specific setting, this algorithm performs worse than

the basic greedy algorithm without revoking, which has a competitive ratio of (1− 1/e2) ≈ 0.864.

In Section 6.3 we show an upper-bound of 3/4 for any deterministic algorithm with revoking on a

simple chain in the adversarial model. Finally in Section 6.4 we prove a lower bound of n/4 for the

advice complexity of Online Interval Selection using only a simple chain, which, to the best of our

knowledge, is the first lower bound on the advice complexity of this problem.
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I1

I2

I3
. . .

In−1

In

Figure 6.1: A simple chain of intervals with size n.

6.2 Random Order Model

Before introducing the main algorithm and in order to have some context, let us consider the

basic greedy algorithm without revoking that selects an interval whenever it does not overlap other

selected intervals. We will show that the performance of this algorithm on a simple chain in random

order model is the same as the Unfriendly Seating Arrangement problem by Freedman and Shepp

[30, problem 62-3] defined as follows.

Definition 4 (Unfriendly Seating Arrangement). There are n seats in a row at a luncheonette and

people sit down one at a time at random. They are unfriendly and so never sit next to one another

(no moving over). What is the expected number of persons to sit down?

Fact 44 (Freedman and Shepp [30]). The expected number of seats taken in the Unfriendly Seating

Arrangement goes to n(1− 1
e2
)/2 +O(1).

Next we compute the competitive ratio of the basic greedy algorithm by a showing a one-to-one

mapping between the decisions of this algorithm and set of seated people in the Unfriendly Seating

Arrangement problem.

Theorem 45. The basic greedy algorithm achieves a competitive ratio (1− 1
e2
) ≈ 0.864 when the

input sequence is simple chain in the random order model.

Proof. Suppose the intervals arrive according to an arbitrary permutation σ = ⟨σ1σ2 . . . σn⟩ on

[n], meaning the ith arriving interval is the σth
i interval from the left in the chain. We aim to prove

that if people arrive according to σ in the Unfriendly Seating Arrangement problem (where the ith

arriving person wants to sit in the σth
i chair), then the ith interval will be selected by the basic greedy

algorithm if and only if the ith person is seated.
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Initially, no one is seated, and no interval is selected. Inductively, assume the claim holds before

step i. When the ith interval arrives, it will be selected if and only if the σi − 1 and σi + 1 intervals

(if they exist) are not selected. This happens if and only if, by the induction hypothesis, the seats

numbered σi− 1 and σi+1 are not occupied. On the other hand, the ith person will be seated if and

only if the σi − 1 and σi + 1 seats are not occupied. Hence, the ith person will be seated if and only

if the basic greedy algorithm selects the ith interval, which proves the claim.

Since for every permutation σ, the number of selected intervals equals the number of seated peo-

ple, their expectations are also equal when they arrive in random order. By Fact 44 the asymptotic

competitive ratio of basic greedy is (1− 1
e2
).

Now we consider the “Revoke-to-the-Left” (RevtoL) algorithm. It can be defined for general

input sequences not only chains. When an interval Ii = [si, fi] arrives, if it overlaps with a selected

interval Ij = [si, fj ] such that si < fj < fi (i.e., Ij is on the left side of Ii), Ii is rejected. Otherwise,

Ii is accepted, revoking any previously selected interval that overlaps with Ii (see Figure 6.2).

Ij

Ii

(2)

Ij

Ii

(2)

Ij

Ii

(3)

Figure 6.2: In all cases, Ij is already selected when Ii arrives. In (1), Ii is rejected. In (2) and (3),
Ij is revoked, and Ii is accepted. However, in a simple chain setting, scenario (3) would not occur.
The RevtoL algorithm handles general inputs, but in this work, we analyze it specifically for simple
chain graphs under the random-order input model.

Here, we analyze the algorithm. Let n denote the number of intervals. An online instance is

simply a permutation of these n intervals, and the intervals are presented to the algorithm in the

order given by the permutation.

Theorem 46. The RevtoL algorithm achieves an asymptotic competitive ratio of 2(1− 1√
e
) ≈ 0.786

on a simple chain in the random-order model.
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To prove this theorem, we define some notations. Let I be a simple chain with size n, Sn

the set of all permutations on [n], and σ a permutation in Sn. Let RevtoL (I, σ) be the set of

intervals chosen by RevtoL on the set I when they arrive in the order of σ. Let dn,i = #{σ ∈

Sn : interval i is chosen by RevtoL}, dn := dn,n, and Dn :=
∑n

i=1 dn,i. By definition, Dn =∑
σ∈Sn

RevtoL(I, σ), which means the competitive ratio of RevtoL is Dn/n!.

The following is some data for the first few n.

Table 6.1: Data for dn, Dn.
n 1 2 3 4 5 6
dn 1 0 4 6 56 260
Dn 1 2 10 46 286 1976

dn,n − dn,n−1 1 −2 4 −10 26 −76

Theorem 47. For n ≥ 3, dn = (n− 1)(Dn−2 + dn−2).

Theorem 48. For n ≥ 4,

dn,n − dn,n−1 = 2dn−1,n−2 − dn−1,n−1 − dn−1,n−3. (3)

The following is a very useful fact.

Lemma 49. For 1 ≤ i ≤ n− 1,

dn,i = ndn−1,i = n(n− 1) · · · (i+ 1)di.

Proof. It suffices to show dn,i = ndn−1,i. This is because for every 1 ≤ i ≤ n− 1, the presence of

interval n does not influence whether interval i is chosen or not chosen. This is because interval n

has the least priority and RevtoL does not revoke or reject any other interval because of interval n.

Since interval n can be in n different positions, the equality follows.

Claim. Theorem 47 and Theorem 48 are equivalent.

Proof. Theorem 47 =⇒ Theorem 48: Theorem 47 says

Dn−2 =
dn

n− 1
− dn−2. (4)
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Apply Theorem 47 for n− 1, we get dn−1 = (n− 2)(Dn−3 + dn−3), hence

(n− 2)Dn−3 = dn−1 − (n− 2)dn−3. (5)

By the definition of Dn−2, one has

Dn−2 = (n− 2)Dn−3 + dn−2. (6)

Combine these three equations, we get

dn
n− 1

− dn−2 = Dn−2 = (n− 2)Dn−3 + dn−2 = dn−1 − (n− 2)dn−3 + dn−2. (7)

Apply Lemma 49, this is

dn − dn−1,n−2 = dn,n−1 − dn−1 − dn−1,n−3 + dn−1,n−2. (8)

Rearrange (8) gives the claimed equality (3).

Theorem 47⇐= Theorem 48: we prove Theorem 47 by induction. The base case is true from

Table 6.1. Now assume the claim of Theorem 47 is true for n − 1, i.e., assume (5), then we can

deduce (4) by equation (5), (6), and (8).

Now we prove Theorem 48.

Proof of Theorem 48. We give a formula for dn. For 1 ≤ i ≤ n, define

pi = #{σ ∈ Sn : interval n is chosen by RevtoL, while interval i is the last interval of the input}.

(9)

Then, dn = p1 + . . .+ pn. Below we give formulas for computing pi.

• pn = (n− 1)!− dn−1.

This is because in this case interval n is chosen iff interval n−1 is not chosen among intervals

1, . . . , (n− 1).
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• pn−1 = (n− 1)dn−2 = dn−1,n−2.

This is because in this case interval n is chosen if and only if interval n− 2 is chosen among

intervals 1, . . . , (n − 2), and we have the multiplicative factor n − 1 because interval n can

be arbitrarily placed in any of the n− 1 positions.

• for 2 ≤ i ≤ n− 2, pi = (n− 1) · · · (n− i+ 1)dn−i = dn−1,n−i.

Consider the two blocks of intervals: intervals 1, . . . , (i − 1), and intervals (i + 1), . . . , n.

Since interval i is not present when these n−1 intervals appear, we know that these two blocks

of intervals do not interfere with each other. Hence, interval n is chosen if and only if it is

chosen among intervals (i+1), . . . , n. But this is equivalent to interval n− i is chosen among

intervals 1, . . . , (n − i). Since the other block of intervals 1, . . . , (i − 1) can be arbitrarily

placed in n− 1 positions, we have the multiplicative factor (n− 1) · · · (n− i+ 1).

• p1 = dn−1.

This is because in this case interval n is chosen if and only if interval n is chosen among

intervals 2, . . . , n, which is equivalent to interval n−1 is chosen among intervals 1, . . . , (n−

1).

Note that we have applied Lemma 49 whenever applicable in the above formulas for pi. Hence,

we have

dn = (n− 1)! + 2dn−1,n−2 +

n−3∑
j=2

dn−1,j . (10)

With this, we have (apply Lemma 49 whenever necessary)

dn,n − dn,n−1 = dn,n − ndn−1,n−1 = dn,n − (n− 1)dn−1,n−1 − dn−1,n−1

=

(n− 1)! + 2dn−1,n−2 +
n−3∑
j=2

dn−1,j

−(n−1)
(n− 2)! + 2dn−2,n−3 +

n−4∑
j=2

dn−2,j

−dn−1,n−1

=

(n− 1)! + 2dn−1,n−2 +

n−3∑
j=2

dn−1,j

−
(n− 1)! + 2dn−1,n−3 +

n−4∑
j=2

dn−1,j

− dn−1,n−1

= 2dn−1,n−2 − dn−1,n−1 − dn−1,n−3
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as claimed.

Let us define an auxiliary integer sequence an as follows. The recurrence relation is given by

an = an−1 + (n − 1)an−2, with initial conditions a0 = a1 = 1. The first few elements of this

sequence are 1, 1, 2, 4, 10, 26, 76, 232, . . .. This sequence is known to represent the number of self-

inverse permutations as well as other important combinatorial objects [56]. Here, we focus only on

the recursive definition of an.

Corollary 50.

dn,n − dn,n−1 = (−1)n−1an

Proof. The base case can be verified from Table 6.1. Then, it suffices to prove an = (−1)n−1(dn,n−

dn,n−1) satisfy the recurrence formula of an, i.e., an = an−1 + (n− 1)an−2. Indeed, by Theorem

48 and Lemma 49,

dn,n − dn,n−1 = 2dn−1,n−2 − dn−1,n−1 − dn−1,n−3

= −(dn−1,n−1 − dn−1,n−2) + dn−1,n−2 − dn−1,n−3

= −(dn−1,n−1 − dn−1,n−2) + (n− 1)(dn−2,n−2 − dn−2,n−3).

Corollary 51. Dn = (n+ 1)Dn−1 + (−1)n−1an−1.

Proof. By Theorem 47, Lemma 49, and Corollary 50, we have

Dn =

n∑
i=1

dn,i = n

(
n−1∑
i=1

dn−1,i

)
+ dn,n

= nDn−1 + (n− 1)(Dn−2 + dn−2)

= nDn−1 +Dn−1 − dn−1,n−1 + dn−1,n−2

= (n+ 1)Dn−1 + (−1)n−1an−1.

Corollary 52.
Dn

(n+ 1)!
=

n−1∑
i=0

(−1)iai
(i+ 2)!
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Proof. Let us prove this by induction. For the base case n = 1 this is trivial. Assuming it is true for

n = k let us write down the the induction step for n = k + 1 expanding Dk+1 by Corollary 51.

Dk+1

(k + 2)!
=

(k + 2)Dk + (−1)kak
(k + 2)!

=
Dk

(k + 1)!
+

(−1)kak
(k + 2)!

=

=

k−1∑
i=0

(−1)iai
(i+ 2)!

+
(−1)kak
(k + 2)!

=

k∑
i=0

(−1)iai
(i+ 2)!

Which proves the claim.

Lemma 53.

lim
n→∞

Dn

(n+ 1)!
=

∞∑
i=0

(−1)iai
(i+ 2)!

= 1− 1√
e
. (11)

Proof. We aim to evaluate the infinite series

S =

∞∑
n=0

(−1)nan
(n+ 2)!

.

To accomplish this, we will employ generating functions and integral representations. First, we

consider the exponential generating function for the sequence {an}:

G(x) =
∞∑
n=0

anx
n

n!
.

We claim

G′′(x) = (1 + x)G′(x) +G(x). (12)

Indeed, a direct calculation gives

G′(x) =

∞∑
n=0

an+1

n!
xn,

G′′(x) =

∞∑
n=0

an+2

n!
xn.
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Hence, by the formula an = an−1 + (n− 1)an−2, we have

G′′(x)−G′(x) =
∞∑
n=0

an+2 − an+1

n!
xn =

∞∑
n=0

(n+ 1)an
n!

xn

=

( ∞∑
n=0

an
n!

xn+1

)′

= (xG(x))′ = G(x) + xG′(x),

as claimed. Now, solving the differential equation (12) with the boundary condition G(0) = 1 and

G′(0) = 1, we get

G(x) = e
x(x+2)

2 .

Next, we express S in terms of the generating function G(x). Observe that

S =
∞∑
n=0

(−1)nan
n!

· 1

(n+ 1)(n+ 2)
.

To relate this to the generating function G(x), we use the integral representation

1

(n+ 1)(n+ 2)
=

∫ 1

0
xn(1− x) dx.

Substituting this into the expression for S, we obtain

S =
∞∑
n=0

(−1)nan
n!

∫ 1

0
xn(1− x) dx =

∫ 1

0
(1− x)

∞∑
n=0

an(−x)n

n!
dx.

Recognizing the sum inside the integral as the generating function evaluated at −x, we have

∞∑
n=0

an(−x)n

n!
= G(−x) = e−x+x2

2 .

Therefore, the sum S can be expressed as

S =

∫ 1

0
(1− x)e−x+x2

2 dx.
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To evaluate the integral

S =

∫ 1

0
(1− x)e−x+x2

2 dx,

we perform a substitution to simplify the exponent. Notice that

−x+
x2

2
= −1

2
+

(x− 1)2

2
.

Substituting this into the integral, we obtain

S = e−
1
2

∫ 1

0
(1− x)e

(x−1)2

2 dx.

Next, we perform a change of variable to further simplify the integral. Let

u = x− 1 ⇒ du = dx.

When x = 0, u = −1, and when x = 1, u = 0. Substituting these into the integral, we have

S = e−
1
2

∫ 0

−1
(−u)e

u2

2 du = −e−
1
2

∫ 0

−1
ue

u2

2 du.

To evaluate the integral, we use substitution again. Let

v =
u2

2
⇒ dv = u du.

Thus, ∫
ue

u2

2 du =

∫
ev dv = ev + C = e

u2

2 + C.

Evaluating from u = −1 to u = 0, we obtain

∫ 0

−1
ue

u2

2 du =

[
e

u2

2

]0
−1

= e0 − e
1
2 = 1− e

1
2 .

Substituting back, we find

S = −e−
1
2 (1− e

1
2 ) = 1− e−

1
2 .
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Now we have everything to prove Theorem 46.

Proof of Theorem 46. Recall that by definition Dn/n! is the expected number of segments chosen

by RevtoL on a simple chain of size n in the random order model. It is easy to see that OPT in this

setting is always ⌈n/2⌉. Thus by applying Lemma 53 the asymptotic competitive ratio of RevtoL is

ρ(RevtoL) = lim
n→∞

Dn

n!⌈n/2⌉
= lim

n→∞

2Dn

(n+ 1)!
= 2(1− 1√

e
)

6.3 Adversarial Model

Next we show an upper bound on deterministic algorithms with revoking in adversarial model

when it is guaranteed that the input is a simple chain. We say that interval I overlaps interval I ′ on

the left if I starts before I ′ and ends before I ′ finishes.

Theorem 54. No deterministic algorithm with revoking can achieve an asymptotic competitive ratio

better than 3/4 in the adversarial model, even when the input is guaranteed to form a simple chain

and the intervals have unique lengths.

Proof. Fix a deterministic algorithm ALG. The adversarial input begins with k pairs of intervals

(I1, J1), (I2, J2), . . . , (Ik, Jk) such that Ii overlaps Ji on the left and intervals from different pairs

do not overlap (see Figure 6.3). Because of revoking, without loss of generality we can assume that

ALG chooses exactly one interval in each pair. Note that up to this point the number of selected

intervals is k.

Now, to connect these disconnected pairs and form a simple chain, we look at the decisions

made by ALG. For connecting the ith and (i + 1)th pairs, we consider the ALG decision on Ji and

Ii+1 and we call it ith gap decision. If we denote accept as A and reject as R, a gap decision for

Ji and Ii+1 can be RR, RA, AR, or AA. If only one of Ji and Ii+1 is selected (RA or AR), we

introduce a new interval Xi that intersects only these two intervals (see Figure 6.3 (1)). In this
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case, selecting Xi and revoking the previously selected interval will not increase the total number

of selected intervals.

If neither or both of Ji and Ii+1 are selected (RR or AA), we introduce two new intervals Yi

and Zi, where Yi intersects only Ji and Zi, and Zi intersects only Yi and Ii+1 (see Figure 6.3 (2)).

In the case of AA, to select Yi and Zi ALG should revoke Ji and Ii+1 respectively, and therefore it

cannot increase the number of selected intervals. In the case of RR, ALG can accept one of Yi or Zi

which increases the total number of selected intervals by one.

Let kRR be the number of RR gap decisions. By the above discussion, the number of selected

intervals can be at most k + kRR. Two consecutive gap decisions cannot both be RR (otherwise,

there would exist a pair (Ii, Ji) such that both are rejected), implying kRR ≤ k
2 . Since in each

pair (Ii, Ji) exactly one interval is selected, there must be an AA gap between every two RR gaps.

Therefore, there are at least 2kRR − 1 gap decisions that are either RR or AA, and we placed two

new intervals between them. We placed at least one interval between the remaining pairs, and thus,

the total number of intervals is at least

2k︸︷︷︸
pairs

+(k − 1)︸ ︷︷ ︸
all gaps

+(2kRR − 1)︸ ︷︷ ︸
RRs and AAs

= 3k + 2kRR − 2.

Let n be the number of intervals. Since we are interested in asymptotic analysis, we can say 3k +

2kRR ≤ n. Putting all the above together, we have the following linear programming problem:

Maximize: k + kRR

Subject to: kRR ≤
k

2

3k + 2kRR ≤ n

Which achieves a maximum value of 3n/8. On the other hand, OPT achieves ⌈n/2⌉, proving a

competitive ratio of 3/4. The only remaining task is to show that we can construct the described

input using intervals of unique lengths. We place the intervals as follows: Ii = [12i, 12i + 5],

Ji = [12i+4, 12i+9], Xi = [12i+8, 12i+13], Yi = [12i+6, 12i+11], and Zi = [12i+10, 12i+15].

It is straightforward to verify that by placing the intervals in this pattern, we achieve the desired
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topology and ensure the required intersections between intervals.

I1

J1

I2

J2

I3

J3

. . .
Ik

Jk

Figure 6.3: The first 2k intervals.

(1)

Ji Ii+1

Xi

(2)

Ji Ii+1

Yi
Zi

Figure 6.4: Connecting ith and i+ 1th pairs by putting (1) one interval (2) two intervals, in the gap
between Ji and Ii

.

6.4 Advice Complexity

In this chapter, we consider the advice complexity of the interval Selection problem without

revoking, under the condition that the input forms a simple chain. It is trivial that n bits of advice

are sufficient to achieve an optimal solution, even without restrictions on the input sequence (one bit

per interval indicating whether the algorithm should select it or not). Here, we establish a constant-

factor lower bound on the advice complexity for this problem.

Theorem 55. The advice complexity of solving interval Selection of a simple chain is at least n/4.

Proof. We construct a family of 2k−1 input sequences similar to those used in the proof of Theorem

54. All input sequences begin with a prefix of k pairs of intervals (I1, J1), (I2, J2), . . . , (Ik, Jk).

For each i ∈ [k] intervals Ii overlaps Ji on the left and intervals from different pairs do not overlap.

These intervals are arranged sequentially from left to right and arrive in the same order (see Figure

6.3).
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After this prefix, we can connect pairs to make a chain by placing either one or two intervals in

the gap between them (see Figure 6.3), which results in 2k−1 different input sequences. For each

input sequence, we extend the chain by adding intervals at the end, ensuring that all input sequences

have exactly 4k+1 intervals. In each sequence, if we number the intervals 1, . . . , 4k+1, the optimal

solution is to select the odd-numbered intervals.

The parity assigned to the intervals in the prefix differs for each input sequence, which means

that 2k−1 distinct algorithms would be required to make the correct decisions for the first 2k inter-

vals. Consequently, at least k − 1 bits of advice are needed.
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Chapter 7

Conclusion

In this concluding chapter, we summarize the key findings and contributions of the thesis, high-

lighting the progress made in tackling the central problems introduced throughout the work. We

reflect on the theoretical advancements achieved across the different problem settings, and we dis-

cuss the implications of these results for future research in the field. Additionally, we identify open

questions that arise from our results, paving the way for further investigation into the challenges and

opportunities presented by the studied problems.

7.1 Maximum Weight Convex Polytope

We extended our understanding of the complexity of MWCP as a function of the ambient dimen-

sion d. Based on our findings and the previous work of Bautista et al. [9], the complexity landscape

is as follows: For d = 1, MWCP is solvable in O(n log n) time exactly (Theorem 7). In the case of

d = 2, MWCP is solvable in O(n3) time, as shown by Bautista et al. [9], along with an alternative

algorithm presented in this thesis. For d = 3, we demonstrated that MWCP is not solvable in poly-

nomial time unless P = NP . For d ≥ 4, MWCP becomesNP-hard to approximate within a factor

of n1/2−ϵ for any ϵ > 0.

The above list immediately suggests several open problems, the following two of which are of

particular interest:
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Open Problem 1. Find an algorithm with better time complexity than O(n3) for MWCP in 2 di-

mensions or prove a lower bound probably with some fine-grained hypothesis.

Open Problem 2. Determine if MWCP can be approximated within a constant factor in 3 dimen-

sions.

We conjecture that the answer to the first open problem is that there is no algorithm significantly

faster than O(n3).

7.2 Weighted Online Non-Crossing Matching

We introduced the weighted version of the Online Non-Crossing Matching Problem, where the

objective is to maximize the total weight of the matched pairs. We first showed that deterministic

algorithms can have arbitrarily bad competitive ratios under the adversarial input model. To address

this challenge, we explore three distinct approaches: (1) Parameterizing the weights by bounding

them within the range [1, U ], (2) Randomization, and (3) Allowing revoking of previously made

matches.

In the bounded weight version, we presented a deterministic algorithm with a competitive ratio

of Ω
(
2−2

√
logU

)
. Furthermore, we established an upper bound of O

(
2−

√
logU

)
for the competi-

tive ratio of any deterministic algorithm in this setting.

For the case where revoking is permitted, we developed an algorithm that achieves a competitive

ratio of approximately 0.28. We also proved that in the unweighted case, no deterministic algorithm

can exceed a competitive ratio of 2/3. This indicates that while revoking does not enhance the

performance of deterministic algorithms in the unweighted version, it does provide significant ad-

vantages in the weighted setting.

Next, we introduced a randomized algorithm with a competitive ratio of 1/3, and showed that

in the unweighted case, no randomized algorithm can exceed a competitive ratio of 8/9. It is

worth noting that the constant competitive ratios achieved by both the deterministic algorithm with

revoking and the randomized algorithm hold for arbitrary weight functions.

Finally, we considered the version of the problem where all points arrive on a line. We showed

that a deterministic algorithm with revoking and a randomized algorithm without revoking can
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have arbitrary bad competitive ratio even in the unweighted version. However, we introduced a

randomized algorithm with revoking that achieves a competitive ratio of 0.5 in the unweighted

version.

Open Problem 3. Can a randomized algorithm with revoking achieve a constant competitive ratio

in the weighted version when points are collinear?

7.3 Online Non-Crossing Matching with Advice

We showed that the advice complexity of solving BNM on a circle (or, more generally, on inputs

in a convex position) is tightly bounded by the logarithm of the nth Catalan number from above

and below. This result corrects the previous claim of Bose et al. [15] that the advice complexity

is log(n!). At the heart of the result was a connection between non-crossing constraints in online

inputs and the 231-avoiding property of permutations of n elements. The advice complexity of

BNM on a plane is left as an open problem:

Open Problem 4. What is the advice complexity of BNM on a plane?

We gave the SAM algorithm to achieve logCn advice complexity of MNM on a plane which can

be seen as the extension of ASAP. We aslo exponentially improved the lower bound on the advice

complexity of solving MNM optimally from O(log n) (due to Bose et al. [15]) to n/3− 1.

Open Problem 5. What is the advice complexity of MNM on a plane and a circle?

We also established Ωα(n) lower bound for achieving competitive ratio α ∈ (16/17, 1). All our

lower bounds are obtained on input points that are located on a common circle. The non-crossing

constraint presented an obstacle to using standard proof techniques, such as a reduction from the

string guessing problem. This motivates the following open problem.

Open Problem 6. Does there exist a reduction from the string guessing problem to MNM/ BNM on

a circle/plane?
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7.4 Online Interval Scheduling

We demonstrated that this algorithm achieves a competitive ratio of 2(1 − 1/
√
e) ≈ 0.786 on

a simple chain in the random order model, which, in this case, is outperformed by the basic greedy

algorithm without revoking, which has a competitive ratio of (1− 1/e2) ≈ 0.864. Additionally, we

established an upper bound of 3/4 for any deterministic algorithm with revoking on a simple chain

in the adversarial model. Finally, we provided a lower bound of n/4 for the advice complexity of

Online Interval Selection using only a simple chain.

A natural generalization of the simple chain is the k-chain, where each interval intersects with

k neighboring intervals on either side. The following open problem offers a potential direction

for gaining deeper insights into the performance of deterministic algorithms with revoking in the

random order model.

Open Problem 7. What is competitive ratio of RevtoL in the random order model when the input is

a k-chain?
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