
Models and Algorithms for Concept Drift Detection,
Adaptation, and Resolution in Streaming Data

Ali Alizadeh Mansouri

A Thesis
In the Department

of
Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements
for the Degree of

Doctor of Philosophy (Computer Science) at
Concordia Unⅳersity

Montréal, Québec, Canada

December 2024

© Ali Alizadeh Mansouri, 2025

CONCORDIA UNIVERSITY

SCHOOL OF GRADUATE STUDIES

This is to certify that the thesis prepared

By:

Entitled:

and submitted in partial fulfillment of the requirements for the degree of

Doctor Of Philosophy

complies with the regulations of the University and meets the accepted standards with

respect to originality and quality.

Signed by the final examining committee:

Chair

External Examiner

Arm's Length Examiner

Examiner

Examiner

Thesis Supervisor (s)

Approved by

Chair of Department or Graduate Program Director

Date of Defence

Dean,

Mr. Ali Alizadeh Mansouri

Models and Algorithms for Concept Drift Detection, Adaptation, and Resolution

in Streaming Data

Dr. Geoffrey C. Dover

Dr. Benjamin C. M. Fung

Dr. Abdelwahab Hamou-Lhadj

Dr. Tristan Glatard

Dr. Adam Krzyzak

Dr. Nematollaah Shiri

2024-12-16

Mourad Debbabi Faculty of Engineering and Computer Science

Abstract

Models and Algorithms for Concept Drift Detection, Adaptation, and Resolution in
Streaming Data

Ali Alizadeh Mansouri, Ph.D.
Concordia University, 2025

The evolution of streaming data during long periods of time presents significant challenges
for maintaining the accuracy and efficiency of predictⅳe models due to concept drift—where
changes in data distribution can lead to performance degradation. In this research, we study the
problems of concept drift detection (cdd) and adaptation (cda). Unlike traditional approaches
that treat cdd and cda independently and in isolation, often under non-streaming, static
conditions, we propose a novel methodology based on multⅳariate vector error-correction
analysis of feature importance measures (fims). The fims proⅵded a solid foundation that
allowed us to reformulate concept drift detection and adaptation in streaming data.

We additionally introduce, formalize, and develop the notion of concept drift resolution (cdr)
as an innovatⅳe model preference technique. This solution further enhances the overall per-
formance by effectⅳely using multiple models undergoing concept drift, including the main
learner and the proposed cda model. The results of our numerous experiments and analyses
indicate that the proposed cdd method significantly reduces computation time, particularly in
applications experiencing abrupt drifts, while our cda model delⅳers notable improvements in
prediction accuracy and F1 score on both gradual drift and abrupt drift datasets, outperforming
eⅺsting methods on varying drift rates and characteristics of concept drift.

By utilizing fims as a common basis, we develop a unified framework that integrates cdd, cda,
and cdr tasks, thus bridging the gap between detection and adaptation. Extensⅳe experiments
validate the effectⅳeness of our proposed methods, demonstrating their applicability in various
real-world and synthetic benchmark datasets. This work not only advances the understanding
of concept drift in streaming data but also proⅵdes a general solution framework that balances
performance with interpretability, thus paⅵng the way for development of more reliable and
explainable data-drⅳen applications and systems.

ⅱi

Acknowledgments

I would like to express my deepest gratitude to my adⅵsor, Dr. Nematollaah Shiri, for his
invaluable guidance, patience, and support throughout my research. Your insightful feedback
and encouragement have been a key factor in shaping this work, and I am profoundly thankful
for your mentorship.

I extend my sincere appreciation to the members of my thesis committee for their valuable
insights, comments, and feedback at different stages of my program. Your expertise and
thoughtful suggestions have meaningfully contributed to the quality and direction of my
research.

I am also deeply thankful to my coworkers at Intact—the Explorers—especially Laurent,
Stéphane, HamidReza, and Derek for creating a positⅳe, supportⅳe and collaboratⅳe enⅵron-
ment during the final stages of my studies. The hands-on experience I gained with real-world
problems, techniques, and applications while working with you proved invaluable in shaping
both my research and professional growth.

A special heart-felt thanks to my family—my mom, Roya, my dad, Farzad, and my sister,
Maryam—for their unwavering love, patience, belief, and confidence in me. Your constant
support and encouragement have been the light in the darkest moments, and I am forever
grateful for your presence in my life. Mom, this would not have been possible without your
sacrifices, love, and prayers. I dedicate this work to you.

Lastly, I also dedicate this work to the memory of my late grandmother RuhAngiz, who was a
source of strength, inspiration, and warmth throughout my life. Her love and wisdom continue
to guide me. This accomplishment is as much hers as it is mine.

ⅳ

Contents

List of Figures viii

List of Tables xi

List of Abbreviations 2

1 Introduction 1

2 Background and Related Work 6

2.1 Definitions . 6

2.1.1 Data mining life cycle and pipeline 6

2.1.2 Concept Drift . 11

2.2 Methods . 17

2.2.1 Concept drift setting and requirements 18

2.2.2 Approaches to cdd&a solutions . 22

2.2.3 Evaluation . 33

2.3 Conclusion . 34

3 An Ensemble Learning Augmentation Method for Concept Drift Detection 36

3.1 Concept Drift Detection Method . 38

v

3.1.1 Concept Drift Detection . 40

3.1.2 Compleⅺty Analysis . 41

3.2 Experiments and Results . 42

3.2.1 Datasets . 42

3.2.2 Comparison of bagging vs. boosting and effects of verification with
the main classifier . 43

3.2.3 Comparison with other classifiers 46

3.3 Conclusion . 50

4 Multivariate Vector Error-Correction Analysis of Feature Importance Measures 52

4.1 Introduction . 52

4.2 Methodology . 54

4.2.1 Variables . 55

4.2.2 Hypotheses . 56

4.2.3 Statistical methods . 57

4.3 Experiments, Results, and Analyses . 59

4.3.1 Experimental Setup . 59

4.3.2 Datasets . 60

4.3.3 Experiments and Results . 60

4.4 Conclusion . 72

4.4.1 Limitations and Future Work . 73

5 Amytis: A Unified Framework for Concept Drift Detection, Adaptation, and
Resolution 75

5.1 Proposed Framework . 76

5.1.1 The Main Learner . 78

5.1.2 Feature Importance Analysis . 78

ⅵ

5.2 Concept Drift Adaptation . 80

5.3 Concept Drift Detection . 81

5.4 Concept Drift Resolution . 87

5.4.1 General Concept Drift Resolution Technique 90

5.4.2 Trend of Performance Measurements 93

5.4.3 Magnitude of Change in Performance Measurements 94

5.4.4 Concept Drift Resolution in amytis 95

5.4.5 Compleⅺty Analysis . 96

5.5 Experiments and Results . 98

5.5.1 Datasets . 99

5.5.2 Experimental Setup . 100

5.5.3 Comparison of cdd, cda, and cdr Techniques 101

5.5.4 Comparison of Amytis with Other Techniques 118

5.6 Conclusion . 119

6 Conclusion 121

6.1 Summary of Contributions . 121

6.2 Future Directions . 122

References 124

ⅵi

List of Figures

Figure 1.1 Unified ⅵew of the cdd&a problems. 3

Figure 2.1 A high-level ⅵew of a data mining process. 9

Figure 2.2 Depictions of a simple binary classification problem for classifying apples
from oranges. The left 1-d plot is of one feature (𝑥2 as volume), and the 2-d
plot on the right is of two features (𝑥1 as weight and 𝑥2 as volume). The Bayes
decision boundary, shown as an orange point in 1-d and a dashed orange line
in 2-d, is the region where measurements are equally likely to belong to each
class; adopted from [31]. 13

Figure 2.3 Depictions of a simple binary classification problem for classifying
apples from oranges with unequal priors. This has led to a shift of the decision
boundary, hence a concept drift. 15

Figure 2.4 The top level ⅵew of a taxonomy of the concept drift detection and
adaptation over data streams problem. 18

Figure 2.5 A taxonomy of the concept drift problem from a theoretical perspectⅳe. 19

Figure 2.6 A taxonomy of the concept drift problem from an application stream
processing perspectⅳe. 21

Figure 2.7 A taxonomy of the general criteria in designing concept drift detection
and adaptation techniques. 23

Figure 2.8 A taxonomy of the concept drift detection methods. 26

Figure 2.9 Concept drift detection using different sources of detection information. 27

Figure 2.10 A taxonomy of the concept drift adaptation methods. 31

ⅵⅱ

Figure 3.1 Comparison of enlaudd bagging and boosting approaches on rcb,
noaa, elec, and sea datasets according to the main classifier accuracy (vertical
aⅺs). 45

Figure 3.2 Comparison of naïve, persistent forecast, enlaudd (boosting approach
with 𝜌 = 0.5), and os-elm on rcb, noaa, elec, and sea datasets according to
the main classifier accuracy (vertical aⅺs). 49

Figure 4.1 Architecture of the proposed data stream processing system to study
the relationship of the main classifier’s performance metrics with feature im-
portance measures computed from a gradient-boosting decision tree used as
an auⅺliary model. 55

Figure 4.2 Steps of the proposed multⅳariate cointegration analysis. 59

Figure 4.3 Evolution of the accuracy (𝒜𝑡) and impurity-based feature importance
measures (𝒢𝑡) undergoing concept drift over time for the datasets. 67

Figure 4.4 Evolution of the accuracy (𝒜𝑡) and permutation feature importance
measures (ℋ𝑡) undergoing concept drift over time for the datasets. 68

Figure 4.5 Evolution of the F1 score (ℬ𝑡) and impurity-based feature importance
measures (𝒢𝑡) undergoing concept drift over time for the datasets. 69

Figure 4.6 Evolution of the f1 score (ℬ𝑡) and permutation feature importance
measures (𝒢𝑡) undergoing concept drift over time for the datasets. 70

Figure 5.1 The architecture of the proposed unified framework. 76

Figure 5.2 Demonstration of the concept drift resolution technique on simulated
data. Two concept drift resolutions occur at times 𝑡 = 9 and 𝑡 = 14 when the
performance of the two models changes significantly. 92

Figure 5.3 Accuracies of a decision tree as the main learner (clf ⋅ dt–cdd) as ℒ𝑡,
Ξ–cda as 𝒫𝑡, and the application (𝒜–cdr) as 𝒜𝑡 over the stream for one run
on the datasets. 102

Figure 5.4 F1 scores of a decision tree as the main learner (clf ⋅ dt–cdd) as ℒ𝑡,
Ξ–cda as 𝒫𝑡, and the application (𝒜–cdr) as 𝒜𝑡 over the stream for one run
on the datasets. 103

Figure 5.5 roc auc scores of a decision tree as the main learner (clf ⋅ dt–cdd) as
ℒ𝑡, Ξ–cda as 𝒫𝑡, and the application (𝒜–cdr) as 𝒜𝑡 over the stream for one
run on the datasets. 104

ⅸ

Figure 5.6 Accuracies of amultilayer perceptron as themain learner (clf ⋅mlp–cdd)
as ℒ𝑡, Ξ–cda as 𝒫𝑡, and the application (𝒜–cdr) as 𝒜𝑡 over the stream for
one run on the datasets. 105

Figure 5.7 F1 scores of a multilayer perceptron as the main learner (clf ⋅ mlp–cdd)
as ℒ𝑡, Ξ–cda as 𝒫𝑡, and the application (𝒜–cdr) as 𝒜𝑡 over the stream for
one run on the datasets. 106

Figure 5.8 roc auc scores of a multilayer perceptron as the main learner (clf ⋅
mlp–cdd) as ℒ𝑡, Ξ–cda as 𝒫𝑡, and the application (𝒜–cdr) as 𝒜𝑡 over the
stream for one run on the datasets. 107

Figure 5.9 Accuracies of os-elm [97], learn++.nse [32] and Amytis (cdr–acc) on
the datasets. All three techniques used a decision tree as the main learner (clf
⋅ dt). Amytis’s cdr component used accuracy as the performance metric. . . 108

Figure 5.10 F1 scores of os-elm [97], learn++.nse [32] and Amytis (cdr–acc) on
the datasets. All three techniques used a decision tree as the main learner (clf
⋅ dt). Amytis’s cdr component used f1uracy as the performance metric. . . . 109

Figure 5.11 roc auc scores of os-elm [97], learn++.nse [32] and Amytis (cdr–acc)
on the datasets. All three techniques used a decision tree as the main learner
(clf ⋅ dt). Amytis’s cdr component used roc aucuracy as the performance
metric. 110

Figure 5.12 Accuracies of os-elm [97], learn++.nse [32] and Amytis (cdr–acc) on
the datasets. All three techniques used a decision tree as the main learner (clf
⋅ mlp). Amytis’s cdr component used accuracy as the performance metric. . 111

Figure 5.13 Accuracies of os-elm [97], learn++.nse [32] and Amytis (cdr–acc) on
the datasets. All three techniques used a decision tree as the main learner (clf
⋅ mlp). Amytis’s cdr component used accuracy as the performance metric. . 112

Figure 5.14 Accuracies of os-elm [97], learn++.nse [32] and Amytis (cdr–acc) on
the datasets. All three techniques used a decision tree as the main learner (clf
⋅ mlp). Amytis’s cdr component used accuracy as the performance metric. . 113

x

List of Tables

Table 2.1 cd characteristics for two real-world cd examples. 20

Table 3.1 Experimental results of enlaudd boosting (a) and bagging (b) ap-
proaches with different probabilities of verification with the main classifier (𝜌)
on rcb, real-world, and sea datasets. The results are reported as the mean
(standard deⅵation) of 30 runs. The best accuracy and detection F1 score are
shown in bold. 44

Table 3.2 Experimental results on rcb, real-world, and sea datasets. The results
are reported as the mean (standard deⅵation) of 30 runs. The best accuracy
and detection F1 score between enlaudd and os-elm are highlighted in bold. 48

Table 4.1 Augmented Dickey-Fuller (adf) test stationarity test results. 61

Table 4.2 The Johansen method test results for cointegration of feature importance
measures (fims) with accuracy. eig and trc refer to the eigenvalue statistic
and trace statistic in the test, respectⅳely. 62

Table 4.3 The Johansen method test results for cointegration of feature importance
measures (fims) with F1 score. eig and trc refer to the eigenvalue statistic and
trace statistic in the test, respectⅳely. 63

Table 5.1 Regression parameter 𝜌 values with corresponding interpretations, model
specification of the augmented Dickey-Fuller (adf) regression equation, and
recommended use cases. 84

Table 5.2 Hyper-parameters for models Ψ and Ξ 100

ⅺ

Table 5.3 Mean and standard deⅵation (in parentheses) of the accuracy (acc), F1
score (f1), and area under the roc curve (roc auc) of a decision tree as the main
learner (clf ⋅ dt–cdd), Ξ–cda, and the application (𝒜–cdr) on the datasets.
For all metrics, the mean and standard deⅵation over 30 runs are shown with
the standard deⅵation in parentheses. The mean values lie in the interval [0, 1],
the higher values are better, and the best values are highlighted in bold. For
the application’s performance (𝒜–cdr), the best values are highlighted in bold
and underlined when the value is greater than or equal to either clf ⋅ dt–cdd
or Ξ–cda. 114

Table 5.4 Mean and standard deⅵation (in parentheses) of the accuracy (acc), F1
score (f1), and area under the roc curve (roc auc) of a multilayer perceptron
as the main learner (clf/mlp–cdd), Ξ–cda, and the application (𝒜–cdr)
on the datasets. For all metrics, the mean and standard deⅵation over 30
runs are shown with the standard deⅵation in parentheses. The mean values
lie in the interval [0, 1], the higher values are better, and the best values are
highlighted in bold. For the application’s performance (𝒜–cdr), the best values
are highlighted in bold and underlined when the value is greater than or equal
to either clf ⋅ dt–cdd or Ξ–cda. 115

Table 5.5 Mean and standard deⅵation (in parentheses) of the accuracy (acc), F1
score (f1), area under the roc curve (roc auc), and run time (in 𝑠) of os-elm
[97], learn++.nse [32] and amytis(cdr–acc) on the datasets. All techniques
use a decision tree as the main learner. For all metrics, the mean and standard
deⅵation over 30 runs are shown with the standard deⅵation in parentheses.
The mean metric values lie in the interval [0, 1], the higher values are better,
and the best values are highlighted in bold. For the run time, the smaller is
better. 116

Table 5.6 Mean and standard deⅵation (in parentheses) of the accuracy (acc), F1
score (f1), area under the roc curve (roc auc), and run time (in 𝑠) of os-elm
[97], learn++.nse [32] and Amytis (cdr–acc) on the datasets. All techniques
use a multilayer perceptron as the main learner. For all metrics, the mean
and standard deⅵation over 30 runs are shown with the standard deⅵation
in parentheses. The mean metric values lie in the interval [0, 1], the higher
values are better, and the best values are highlighted in bold. For the run time,
the smaller is better. 117

ⅺi

List of Algorithms

1 enlaudd concept drift detection algorithm 38

2 MaintainEnsemble . 39

3 Amytis concept drift detection, adaptation, and resolution algorithm—inference
phase . 77

4 Amytis concept drift detection, adaptation, and resolution algorithm—train phase 77

5 Concept Drift Adaptation inference . 81

6 Concept Drift Detection . 83

7 Concept Drift Resolution . 91

1

List of Abbreviations

aai average accuracy improvement 48, 49
adf augmented Dickey-Fuller ⅺ, 61--63, 75, 83--87
afi average F-score improvement 48, 49, 51
ai artificial intelligence 7
atc air traffic controller 89, 90
cd concept drift ⅵⅱ, ⅺ, 2, 3, 5, 10, 11, 15, 18--36, 38, 42, 48,

53--58, 60, 61, 66, 67, 73--76, 86--90, 92, 97, 119
cda concept drift adaptation ⅱi, ⅵi--x, ⅺi, 2--5, 10, 11, 18, 23,

26, 31--36, 52, 53, 55, 76, 79, 81, 82, 87--90, 96, 97, 99--108,
117, 118, 120

cdd concept drift detection ⅱi, ⅵi--x, ⅺi, 2--5, 10, 11, 15, 18,
21--32, 34--39, 42, 44, 47, 48, 51--53, 55, 73, 76, 79, 84, 85,
87--90, 92, 96, 97, 99--108, 117, 118, 120

cdd&a concept drift detection and adaptation v, ⅵⅱ, 1--6, 11, 17,
18, 20, 23--26, 29, 32, 35, 36, 53--56, 60, 74, 75, 79, 88--90,
96--98, 117--120

cdr concept drift resolution ⅱi, ⅵi, ⅸ, x, ⅺi, 4, 5, 10, 11, 36,
76, 88--90, 92, 96--118, 120

cpd change-point detector 42
dcs dynamic classifier selection 22
devops development and operations 7
dms drⅳer monitoring system 89, 90
dsms data stream management system ⅸ, 7, 8, 17, 18, 21, 25,

26, 34, 35, 56, 57
ecsminer ecsminer 24, 25, 31
elec electricity dataset ⅸ, 44--46, 49, 50, 62--65, 67, 69--72,

98, 100--107, 109--116

2

elm extreme learning machine 2, 29, 30, 36, 37, 39, 41, 53, 54
enlaudd Ensemble Learning Augmented Drift Detection ⅸ, ⅺ, 4,

5, 38, 40, 41, 43--53
fim feature importance measure ⅱi, ⅸ, ⅺ, 3--5, 36, 54--61,

64--76, 79--82, 88, 97, 117, 119, 120
fnr false negatⅳe rate 35
fpr false positⅳe rate 35
gbdt gradient-boosting decision tree ⅸ, 54--59, 66, 73, 79,

81, 99
gmm gaussian mⅸture model 24, 28
iot Internet-of-Things 8
kdd knowledge discovery in databases 6, 7, 11
learn++.nse learn++.nse x, ⅺi, 22, 33, 97, 108--117
ml machine learning 7, 33--35
moa massⅳe online analysis 44
mse mean squared error 41, 79, 80
noaa weather dataset ⅸ, 44--46, 49, 50, 62--65, 67--72, 98,

100--116
os-elm online sequential extreme learning machine ⅸ--ⅺi, 29,

30, 37--39, 41, 43, 48--51, 97, 108--117
pdf probability density function 12
rbm restricted boltzmann machine 22, 30
rbm-im RBM for IMbalanced data streams 22, 30
rcb rotating checkerboard ⅱi, ⅸ, ⅺ, 43--46, 48--50, 61, 62, 68,

97, 108
rcb-c rcb-constant 43, 45, 49, 61--66, 69--72, 97, 100--107,

109--116
rcb-e rcb-exponential 43, 45, 47, 49, 61--66, 69--72, 97,

100--107, 109--116
rcb-p rcb-pulse 43, 45, 47, 49, 61--65, 67, 69--72, 97, 99--107,

109--116
rcb-s rcb-sinusoidal 43, 45, 47, 49, 61--65, 67, 69--72, 97,

100--107, 109--116
roc auc area under the receⅳer operating characteristic curve ⅸ,

x, 98, 102, 105, 108, 111, 117

3

sea Streaming Ensemble Algorithm ⅸ, ⅺ, 43, 45--51, 61, 62,
66, 68, 73, 97, 100--105, 108--114

sea-1 Streaming Ensemble Algorithm 43, 45, 49, 61, 63--65,
69--72, 97, 98, 106, 107, 115, 116

sea-2 Streaming Ensemble Algorithm 43, 45, 49, 61, 63--65,
69--72, 97, 98, 106, 107, 115, 116

sea-3 Streaming Ensemble Algorithm 43, 45, 49, 61, 63--65,
69--72, 98, 106, 107, 115, 116

smote synthetic minority over-sampling technique 22
spe stream processing engine 8, 26, 34
stl seasonal-trend decomposition using locally estimated scat-

terplot smoothing (loess) 85
svm support vector machine 117
tcn temporal convolutional network 32
tnr true negatⅳe rate 35
tpr true positⅳe rate 17, 35
var vector autoregression 59--65, 67, 121
vec vector error-correction 59--61, 64, 65, 67, 75, 121

4

If we lived on a planet where nothing
ever changed […] there’d be no impetus
for science. And if we lived in an
unpredictable world where things
changed in random or complex ways […]

again, there’d be no such thing as science.
But we live in an in-between universe
where things change, all right but
according to patterns, rules or as we call
them, laws of nature.

—Carl Sagan, Cosmos: A Personal Voyage (1980)

Chapter 1

Introduction

With continuous advances in computing technologies, mining techniques are gaining increased
popularity for discovering hidden patterns in streaming data, where unbounded data arrⅳes at
fast speeds for extended periods of time. Emerging streaming data analytics must detect pattern
changes in the distribution of one or more variables that may affect applications’ performance
and adapt accordingly when such changes occur. This is referred to as concept drift [35, 61, 9].
If not detected and dealt with, concept drift may result in deterioration of the learner’s inference
or prediction performance. Examples of real-life applications showing this behaⅵor include
healthcare [82, 9], industrial sensor grids [89, 9], enⅵronmental sensing [21, 70], smart cities
and homes, [69], network infrastructure monitoring [84], business, e-commerce and insurance
[1, 2, 15, 63, 9], and finance [42, 74, 9], to name a few.

As a simple example, consider a classifier whose task is to discriminate apples from oranges on
a conveyor belt. The classifier is trained on samples of apples and oranges of certain cultⅳars.
If the training data consists solely of red and yellow Honey Crisp apples, but during testing,
green Granny Smith apples are introduced, it is likely that the classifier’s accuracy will decrease.
An expert noticing the changes will need to stop the classification task, re-train the classifier
by including new green apples in the train set, and resume the classification task once a new
model is ready. Assuming that the test data is an unbounded stream of apples on a conveyor
belt, the concept drift detection and adaptation (cdd&a) tasks performed by the expert may
result in classification errors on some data, cause delay in re-training and re-classification of
data, or result in loss of test data (i.e., apples) due to shortage of temporary storage.

A major challenge in tackling the cdd&a problems is selection and analysis of the available
information. There have chronologically been three major categories of techniques based on
the kind of information used for cdd&a tasks. Data feature analysis methods, such as [28,

1

51], focus on independent features in raw data. This, however, has the risk of overlooking the
association between the predictor and response. Next generation of cdd&a solutions, such
as [81], have relied on the learner’s predictability performance evaluation and feedback. They
are more accurate than the raw data analyzers, but still do not consider possible correlations
between the features and target variables. Both of these categories of techniques suffer from
using the same learner for the main classification and the cdd&a tasks. This potentially limits
their effectⅳeness because the learner designated for cdd&a might perform poorly on its main
classification task, and ⅵce versa.

More recent cdd&a techniques use auⅺliary models that run in parallel to the learner. These
models have the advantages of being light-weight, decoupled, designed for the cdd&a task while
respecting the stream processing requirements. Furthermore, they can analyze the evolⅵng
correlation of features and target variables more effectⅳely than preⅵous techniques. For
example, Yang et al. [97] used an online sequential extreme learning machine (elm) model [60]
for concept drift detection (cdd).

Conventionally, cdd&a problems have often been studied independently and separately, in
particular, for streaming data where data is often non-stationary. As a result, eⅺsting solutions
tend to prioritize performance over explainability/interpretability or ⅵce versa.

Therefore, in this research we look for answers to the following questions:

1. What would be a suitable model of concept drift (cd) that proⅵdes information beneficial
to both cdd and cda problems in a single unified setting?

2. Can this model balance the trade-off between effectⅳeness and efficiency in detecting
and adapting to concept drifts in streaming data?

3. Would the information proⅵded by this model be a faithful representation of the evolⅵng
correlation between the features and target?

4. How can streaming data applications undergoing concept drifts make use of this in-
formation to improve their performance without compromising interpretability and
explainability?

5. Gⅳen multiple solutions addressing the cdd&a problems which may perform differently
over the data stream, how is it possible to resolve cd by leveraging information from each
solution thus maintain optimal performance of the application overall?

The first question is concerned with possibility and potential benefits of studying both cdd
and concept drift adaptation (cda) problems from a common perspectⅳe, and if we could find a

2

Concept Drift
Adaptation

(CDA)

Concept Drift
Detection

(CDD)

Feature
Importance
Measures

Concept Drift
Adaptation

(CDA)

Concept Drift
Detection

(CDD)

Feature
Importance
Measures

Concept Drift
Adaptation

(CDA)

Concept Drift
Detection

(CDD)

Feature
Importance
Measures

Figure 1.1: Unified view of the cdd&a problems.

basis on which to build solutions for each problem. The second research question addresses
data stream processing application’s requirements. The third question is concerned about
effectⅳeness of a ⅵable solution to the cdd&a problems. The fourth question pertains to
explainability of the evolⅵng nature of data and the model’s response to it, which is a key
requirement in many applications, such as healthcare, finance, and insurance. Lastly, the fifth
research question is about the synergy between the cdd and cda problems, and how they can
be used to resolve the cd problem for the most effectⅳe and efficient solution.

In this research, we focused on feature analysis and study both cdd and cda problems as
different facets of the same problem in a unified and generic framework. This is done by
proⅵding a basis to address several sub problems involved in concept drift for streaming data.
Therefore, with the aim of looking for such a common basis as the source of information for
cdd and cda, we study models that capture the dynamic relationship between raw data features
and target. This unified ⅵew of the cdd&a problems is shown in Figure 1.1.

Furthermore, we propose novel methods for cdd and cda problems based on the multⅳariate
vector error-correction analysis of feature importance measures (fims). We show that the
proposed methods are effectⅳe in detecting and adapting to concept drifts in streaming data.
Moreover, we propose and demonstrate the synergy between the cdd and cda problems by
using the same basis for both problems in a unified setting. Additionally, we propose a novel
method for concept drift resolution (cdr) based on the recent performance of the main learner
improved by the proposed cdd technique, and performance of the proposed cda technique.
We also present the results of our extensⅳe experiments carried out to validate the proposed

3

methods.

The contributions of this research are as follows:

1. We propose a novel methodology for studying the cdd&a problems based on the multi-
variate vector error-correction analysis of feature importance measures (fims) of raw data
features as the foundation for the proposed methods.

2. We propose a unified framework, called amytis 1 , for concept drift analysis, detection,
adaptation, and resolution in streaming data based on our novel methodology for analysis
of fims, which is the first of its kind to the best of our knowledge.

3. We propose a robust and novel model for concept drift adaptation (cda) that is effectⅳe,
efficient, and explainable in adapting to concept drifts in streaming data.

4. We propose two novel techniques for concept drift detection (cdd), one based on bagging
and boosting, and the other by leveraging the fims-based model. We show effectⅳeness
of both techniques in detecting concept drifts in streaming data while maintaining
interpretability.

5. We propose a novel concept drift resolution (cdr) technique based on the recent perfor-
mance of the main learner improved by the proposed cdd technique, and performance of
the proposed cda technique, which is the first of its kind to the best of our knowledge
as of the time of writing.

6. As a by-product of our research, we proⅵde an up-to-date reⅵew and taxonomy of the
literature on cdd&a problems.

7. As a proof of concept, we develop a fleⅺble and extensible software framework for concept
drift analysis and data stream processing, used in this study to perform the experiments
carried out.

The rest of the thesis is organized as follows. In chapter 2, we proⅵde the background, formal
problem statement, reⅵew and taxonomy of the literature on cd, cdd, and cda problems. In

1Amytis was a Median princess, traditionally identified as the daughter of the Median king, Astyages, and the
maternal aunt of Cyrus the Great, founder of the Achaemenid Empire. She is most well-known for her marriage
to Nebuchadnezzar II, the king of Babylon, in the 6th century BCE. Amytis is often associated with the legendary
Hanging Gardens of Babylon, one of the Seven Wonders of the Ancient World. According to some accounts,
Nebuchadnezzar II built the gardens to remind Amytis of the green hills and valleys of her homeland in Media,
as she missed them in the flat, arid landscape of Babylon. Her story is a blend of history and legend, but she
remains an iconic figure linked to one of history’s most famous architectural marvels. The name Amytis is derived
from the Old Persian word Umati, meaning ‘‘having good thought’’.

4

chapter 3, we present the proposed Ensemble Learning Augmented Drift Detection (enlaudd)
technique for cdd. In chapter 4, we present our novel methodology for fims analysis and
evaluation to study their correlation with the performance of the application and assess their
ⅵability as the basis for the proposed methods.

In chapter 5, we present amytis, a unified framework for cdd&a problems, and develop the
cda and cdd techniques based on the fims analysis foundation. Additionally, we present the
proposed cdr technique based on the recent performance of the main learner improved by
the proposed cdd technique, and performance of the proposed cda technique. We will also
present the experimental setup, the datasets used, the evaluation metrics, and the results of the
experiments. In chapter 6, we proⅵde a summary of the research followed by a discussion and
conclusions, and the future work.

5

… one glance at [a book] and you’re
inside the mind of another person,
maybe somebody dead for thousands of
years. […] Writing is perhaps the greatest
of human inventions, binding together
people who never knew each other,
citizens of distant epochs. Books break
the shackles of time.

—Carl Sagan, Cosmos: A Personal Voyage (1980)

Chapter 2

Background and Related Work

In this chapter, we proⅵde a background on the streaming data analytics and the concept drift
problem. We first briefly reⅵew the data mining life cycle and pipeline in section 2.1.1, followed
by a formal overⅵew of the concept drift problem in section 2.1.2. We will then reⅵew the
literature on the concept drift problem, a taxonomy of the methods and challenges in concept
drift detection and adaptation in section 2.2.

2.1. Definitions

In this section, we reⅵew concepts and techniques related to the cdd&a problems over data
streams, starting with basics of the data mining life cycle and pipeline.

2.1.1. Data mining life cycle and pipeline

A data mining and knowledge discovery in databases (kdd) task consists of two main phases:
the data mining life cycle, and the data pipeline. For this, we use the terminology of Chapman
et al. [22] for different phases of the kdd life cycle, and refer to the data mining step of Reinartz
[76] as modeling.

6

2.1.1.1 Data mining life cycle

A data mining and kdd project starts with the kdd life cycle, which consists of seven phases
[76, 22]. Figure 2.1 summarizes a generic representation of a data mining project. The seven
phases of the life cycle are depicted in the top part of the figure. The first phase, shown on the
top and adopted from [76, 22, 106], is the data mining life cycle. The artifacts (models, etc.)
of this phase are then deployed inside a data pipeline, shown at the bottom and adopted from
[86], which includes a data stream management system architecture.

As the first phase, business understanding focuses on the project’s objectⅳes, requirements,
questions to be answered, the project’s life cycle, and deployment feasibility. The goal of data
understanding is familiarity with data by gaining initial insights into the data such as available
quality, quantity, and attributes of data based on the objectⅳes identified in the first phase.
Data preparation aims at preparing and building the final dataset for the subsequent steps,
and includes tasks such as data selection, cleaning, transformation, integration, etc. Data
explorations’s objectⅳe is to gain better insights into data by using descriptⅳe statistics and
ⅵsualization tools. While initial statistics and insights are obtained in data understanding phase,
the output dataset from the data preparation phase can help business analysts and engineers
to better understand the data as well as to form hypotheses on data patterns and knowledge
to be extracted. In the modeling phase, statistical and algorithmic tools and techniques are
used to build abstract models of data. Moreover, the parameters of these models are fine-tuned,
and different models and techniques are experimented with if more than one has been deemed
appropriate for the current data mining task in one of the preⅵous steps. In the evaluation
phase, the models built as well as the entire data mining process are evaluated from a business
perspectⅳe to ensure that the results answer the business questions and assess if they can be
deployed in a data mining pipeline. The results of a data mining life cycle are finally deployed
either in the form of reports and presentations, or incorporated into a repetitⅳe data mining
pipeline 1. In case of the latter, automated or manual continuous monitoring and evaluation of
the results and extracted knowledge becomes a crucial part of the deployment phase in data
mining pipelines involⅵng stream processing, because changes to data patterns may occur over
time.

Each phase in the life cycle may require moⅵng back to the preⅵous phases and re-evaluating
the decisions made, steps taken, and tasks performed. For example, the results of the evaluation
phase may require reⅵsions on questions asked in business understanding, tasks performed in

1Deploying data mining models in a production or prod environment, also referred to as operationalization,
is a crucial step in the data mining life cycle. However, it is not always considered as a separate phase in the life
cycle, and involves work from the ml, devops, and ai engineering teams rather than the data scientists. Therefore,
it is outside the scope of this thesis.

7

data preparation, or the techniques used in modeling. This is shown in Figure 2.1 by backward
arrows between phases.

In case of a streaming big data analytics project, the models resulting from the data mining
life cycle process are often deployed in the stream processing engine (spe) of the data stream
management system (dsms), or the parallel and high performance computing components of
the cloud in a data mining pipeline. The bottom part of Figure 2.1 presents a generic ⅵew of
such a data mining pipeline.

The pipeline consists of three tiers. In data acquisition, raw data of various often heterogeneous
sources are generated at large volumes, fast rates, and ⅵrtually unbounded. Examples of such
sources of data are Internet-of-Things (iot) deⅵces; arrays of sensors deployed in a building, city,
enⅵronment, or manufacturing; smart vehicles; healthcare deⅵces; user interactions; social
media; and financial transactions. Location-wise, data producers are usually located far from
the cloud where the data mining results and models are often developed and deployed.

These vast unbounded heterogeneous streams of data are then integrated using message brokers
such as Apache Kafka [7] which feed the streams to a dsms on the next step.

The heart of the streaming tier is a data stream management system (dsms), which receⅳes
streams of data from the message broker, and processes the streams of a certain window size of
data on the working memory.

The stream processing engine (spe) of the dsms contains a stream processor and a data mining
processor. The stream processor performs tasks such as cleaning and filtering, which can
be considered as continuous standing queries from a database perspectⅳe. Such tasks are
usually computationally inexpensⅳe and are the focus of the stream processing data analytics
research community as well as the industries. The specific processes can be a partial result of
the data mining life cycle phase. For example, the cleanup task can be an automated version
of the cleanup performed by the data experts in the data preparation phase. The data mining
component of spe performs data analytics such as prediction (classification, regression, etc.) or
inference (clustering, frequent item-set mining, anomaly detection, etc.). As mentioned above,
the models are usually the main outcomes of the life cycle. Examples of spes are Azure IoT
Edge [11] for the edge, or Apache Flink [6] for the cloud.

spe can also interact with a real-time limited storage [105], such as Redis [75]. The entire stream
processing phase can be executed either at the edge/core of the network, on the cloud, or both.

Data streams are then sent to the cloud for offline processing. Parallel computing frameworks
and paradigms, such as Apache Spark [8] and map-reduce respectⅳely, and high-performance
computing frameworks and techniques, such as AWS HPC [10] and deep learning respectⅳely,
are used to extract higher-level patterns from the collected data over large periods of time.

8

Pr
oc

es
s

Pr
oc

es
s

N
et

w
or

k
Ti

er
N

et
w

or
k

Ti
er

St
or

ag
e

St
or

ag
e

Data AcquisitionData Acquisition Streaming Data FlowStreaming Data Flow Data SinkData Sink

Archival Storage

Edge/Core CloudEdge/Core CloudEdge/Core Cloud

Stream Processing Data MiningData Production
Big Data Analytics

High Performance &
Machine Learning

Analytics

Parallel Computing HPC

Big Data Analytics
High Performance &
Machine Learning

Analytics

Parallel Computing HPC

Real-time StorageReal-time Storage

Business
Understanding

Deployment

Data UnderstandingData Preparation

Data Exploration

Modeling Evaluation

Business
Understanding

Deployment

Data UnderstandingData Preparation

Data Exploration

Modeling Evaluation

Figure 2.1: A high-level view of a data mining process.

9

Such streaming data pipeline may repeat for extended periods of time. However, data is likely
to change over time, and so do the patterns and the knowledge inherent in data that the models
try to capture. In other words, the patterns in data running through the pipeline which the
deployed analytical methods try to extract may become different than those used to train the
model earlier. As a result, the performance of the models deteriorate over time when such
changes occur. As mentioned preⅵously, this is referred to as concept drift.

To mitigate the adverse effects of concept drift, conventional data mining applications require
continuous monitoring and evaluation of the deployed models. This usually has to be done by a
domain expert or a data scientist, especially in case of more complicated modeling techniques.
This could lead to detection and/or adaptation of the models to the new patterns in data.
In mainstream industry, this means that the data mining life cycle has to be repeated fully
or partially. The results of the streaming or offline analytical components are used to either
perform another complete cycle of data mining in the cloud, or only start at certain phases.
Eⅺsting models may be re-evaluated, fine-tuned if necessary, or new ones may be developed to
be re-deployed to the pipeline. This is shown using the back-and-forward arrows between the
life cycle and pipeline phases. Notice how the deployment phase of the life cycle directly leads
to the pipeline, but the pipeline (on the cloud side) leads back to the entire life cycle, and not
just to the deployment phase, because the life cycle may be re-started at any phase.

This issue becomes more intricate if the application employs an ensemble learning technique
such as bagging, boosting, or stacking, where multiple models are trained and combined to
make a decision. This can be due to base learners being complex and computationally expensⅳe
to re-train. Furthermore, the base learners may perform differently over time in the face of
changes in data as each base learner is trained on different subsets of data and may capture
different patterns in data. Therefore, aggregating the base learners for prediction may not be
as straightforward as when the base learners are trained on stationary data. This problem of
deciding between various differently-performing learners can also arise with entirely different
learners, such as a main learner addressing the main learning task, and a cdd or cda learner
addressing the cd problem. We refer to this problem as concept drift resolution (cdr) in this
thesis, which has not been addressed in the literature. We will proⅵde a detailed explanation of
the cdr problem in chapter 5.

In summary, there are three major drawbacks with eⅺsting data mining processes that run
over extended periods of time due to changes in data patterns. First, a domain expert has to
continuously monitor and evaluate performance of the analytical models trained in the data
mining life cycle for changes in data patterns. Second, part or all of the data mining life cycle
phases have to be repeated either after detecting of concept drift or every once in a while.
This is especially crucial for the modeling phase, where training of the analytical models is
often expensⅳe in terms of computing resources. Third, the decision-making process of the

10

ensemble learning or cdd&a techniques may become more complicated when different learners
are affected by concept drift.

The cd problem encompasses these three downsides. The main objectⅳe of cdd is the detection
of pattern changes in data automatically over time to reduce the time and effort investment of
domain experts for continuous monitoring of model performance as much as possible. Similarly,
cda aims at automating one or more phases of the data mining life cycle when deployed in the
stream processing pipeline. Lastly, cdr aims at automating the decision-making process when
multiple learners are used in the ensemble learning or cdd&a techniques while maintaining an
optimal overall performance of the application.

Žliobaitė et al. [106] make a similar suggestion for incorporating cdd&a as ‘‘Adaptⅳe Data
Mining’’. However, their illustration does not clearly differentiate between the eⅺsting process
of updating and re-deploying the analytical models versus incorporating cdd techniques.

2.1.2. Concept Drift

Data evolves over time. While the goal of kdd methods is extraction of patterns from data,
these patterns do not stay the same over long periods of time. Therefore, the abstract models of
data built on the extracted knowledge become obsolete, and will have to be either re-created or
adjusted. This phenomenon is referred to as concept drift or concept shift due to data being
non-stationary [35, 61, 9]. In accordance with the literature on concept drift, we investigate
concept drift only in the domain of classification type of applications, where the dependent
random variable 𝑦 is discrete, and we do this from a probabilistic perspectⅳe. However, many
of the concepts and processes discussed can be applied in a regression task as is or with some
adjustments. In such cases, we will refer to the task generically as learning, and the model as the
learner. We first describe the problem of pattern classification and the Bayesian decision theory
briefly in section 2.1.2.1. Then in section 2.1.2.2, we will formalize the concept drift problem
based on the classification problem. We will further define concept drift, and explaining using
Bayesian decision theory, how and why it leads to the deterioration of the performance of the
classifier. In section 2.1.2.3, we will study different types of concept drift, and proⅵde a working
example of concept drift in a classifier setting.

2.1.2.1 The classification problem and Bayesian decision theory

In a pattern classification task, we decide among multiple possible values of a categorical
dependent random variable 𝑦 —also called state of nature [31] or response [48]—based on
observations or measurements of a 𝑑-dimensional feature vector x of independent continuous

11

random variables in Euclidean space ℝ𝑑, called the feature space.

Before making any measurements of the feature vector x for a new test instance, it is essential
to know the frequency of each class to aid in determining the class of the new test instance.
We call this the class prior for category 𝑦𝑗, denoted as P(𝑦𝑗), which represents user’s prior

knowledge of how likely category 𝑦𝑗 is to occur2. Our classification decision would then be
choosing a category 𝑦𝑗 which has the largest P(𝑦𝑗). However, we manage to gather a vector 𝑥0
of measurements for our new test instance, using which we like to better decide the category to
which the test instance belongs. This will be the posterior probability density P(𝑦𝑗|x) of class 𝑦𝑗
being the true class after haⅵng observed the feature vector 𝑥0.

The classification problem is to decide which one of the values—also called categories, classes,
labels, targets, or target values—of 𝑦 is more likely to be the actual state of nature gⅳen an
instance vector of measurements, also called features or attributes, as a test instance 𝑥0. The
decision is made based on the posterior probability of the class 𝑦𝑗 being the actual class. The
joint probability density of obserⅵng measurements of feature vector x for category 𝑦𝑗, denoted
as 𝑝(𝑦𝑗, x), can be used to derⅳe the posterior in Bayes’ formula, shown in eq. (1), which asserts
how likely the new observation may belong to a class after making its measurements:

P(𝑦𝑗|x) =
𝑝(x|𝑦𝑗)P(𝑦𝑗)

𝑝(x)
(1)

Assume that {𝑦1, … , 𝑦𝑐} is the set of 𝑐 classes that the dependent variable 𝑦 can take. The
variability of different measurements for some category 𝑦𝑗 is denoted as 𝑝(x|𝑦𝑗), and is called the
class-conditional (or state-conditional) probability density function (pdf). It is the likelihood
of 𝑦𝑗 being the true category the greater 𝑝(x|𝑦𝑗) is over a range of measurements. In other
words, the class-conditional pdf tells us how likely (or unlikely) it is to see a certain variation of
measurements for each class.

𝑝(x) is called the evidence and is used as a scaling factor such that the posterior probability
always sums to 1. However, it does not affect the posterior in any way.

In summary, the posterior probability P(𝑦𝑗|x) that class 𝑦𝑗 is the true state of nature after
obserⅵng a vector x of measurements depends on how likely it is to make those measurements
in category 𝑦𝑗 (likelihood) and how likely class 𝑦𝑗 can occur based on our prior knowledge (class
prior). The posterior is further scaled by the loss function of the application. The classification
decision will ultimately be made based on the this scaled value to minimize the Bayes risk,
assigning the observation to the most likely category. This will be the best decision that any

2Following the notations of Duda et al. [31], we use a lower-case 𝑝(⋅) to denote a probability density function,
and an upper-case P(⋅) to denote a probability mass function.

12

x1

x 2

p(x|yi)

y1

y2

y1

y2

x2

p(x2|yi) Bayes decision boundary

p(x2|y1)

p(x2|y2)

y1 sample

y2 sample

P (y1) = 0.5 P (y2) = 0.5

Figure 2.2: Depictions of a simple binary classification problem for classifying apples from oranges. The left
1-d plot is of one feature (𝑥2 as volume), and the 2-d plot on the right is of two features (𝑥1 as weight and 𝑥2 as
volume). The Bayes decision boundary, shown as an orange point in 1-d and a dashed orange line in 2-d, is the
region where measurements are equally likely to belong to each class; adopted from [31].

classifier can take to achieve the best performance [31, 48]. All values in the feature space where
feature values are equally likely to be in two or more categories are called the Bayes decision
boundary. For a binary classification problem, the Bayes decision boundary constitutes values
of 50% probability. This threshold is used in the Bayes classifier for making predictions.

Figure 2.2 depicts a simple binary classification problem, which could apply to our running
example from chapter 1. The class conditionals 𝑝(x|𝑦𝑗) are multⅳariate normal, and the class
priors are P(𝑦1) = P(𝑦2) = 0.5, with 𝑦1 representing apples and 𝑦2 representing oranges. This
means that samples belonging to each class of fruits are equally likely to be observed. Features
𝑥1 and 𝑥2 could be weight and volume of the fruits. True distribution hyperparameters are
known here, which is the reason we can see the exact Bayes decision boundary and decision
regions. However, in real-world applications, the decision boundaries and regions will have to
be estimated based on the samples, observations, or measurements alone.

2.1.2.2 The concept drift problem

An assumption often made in pattern classification in data is that the distribution of the class
priors P(𝑦), the likelihood 𝑝(x|𝑦𝑗), and even the eⅵdence P(x) do not change between train

13

and test times. That means the assumed distributions stay the same between the time the set
of feature vectors 𝑋𝑡𝑟𝑎𝑖𝑛 and the set of their associated labels 𝑌𝑡𝑟𝑎𝑖𝑛 are analyzed, and the time
created models are used to take an action in decision making {𝑋𝑡𝑒𝑠𝑡, 𝑦𝑡𝑒𝑠𝑡}. Intuitⅳely this is
because the training and test observations have usually been gathered relatⅳely around the same
time in which the true underlying patterns of data remain stationary: the rules of game were
not expected to change. However, especially with the advent of stream processing pipelines
and increase in processing and storage capabilities of computing systems, the classifiers are
now deployed to make decisions over longer periods after the initial training was performed.
In this case, the assumption that data distribution does not change may not always hold true.
Therefore, conventional classifiers would perform sub-optimal in decision-making when data
patterns do change. In such cases, we refer to this problem as the concept drift problem.

Formally, concept drift is defined as a change in the joint probability distribution of the dependent
variable 𝑦 and feature vector x between two points 𝑡0 and 𝑡1 in time, as shown in eq. (2) [35, 50,
61]. That means the joint probability density of making an observation that bears a class 𝑦𝑗 and
has measurements of feature vector x has changed over time.

𝑝𝑡0(𝑦𝑗, x) ≠ 𝑝𝑡1(𝑦𝑗, x) (2)

Since the joint probability density 𝑝(𝑦𝑗, x) can be expressed based on both marginals 𝑝(x) and
P(𝑦𝑗), we can derⅳe the posterior P(𝑦𝑗|x) as Bayes’ formula, leading to eq. (3).

𝑝(𝑦𝑗, x) = P(𝑦𝑗|x)𝑝(x) = 𝑝(x|𝑦𝑗)P(𝑦𝑗) (3)

Recall from the preⅵous section that the Bayes decision rule to minimize the probability of
error selects class 𝑦𝑗 for the most likely posterior P(𝑦𝑗|x). That means the classification decision
is based on the posterior. Therefore, we are only interested in changes of the distributions that
affect the posterior.

Since the Bayes classifier proⅵdes the best theoretical performance any classifier can achieve
[48], any change in the probabilities affecting the posterior in general results in sub-optimal
performance of the classifier.

Based on Bayes’ formula in eq. (1), any change in the posterior can be attributed to either a
change in the true distribution of the likelihood 𝑝(x|𝑦𝑗), the class priors P(𝑦), or both. However,
as mentioned preⅵously, the eⅵdence 𝑝(x) does not affect the posterior. Even though the
distribution of the measurements among all classes may change over time, they do not affect
the classifier’s decision-making ability as long as the changes are not class-specific. In summary,
changes in the distributions of the class-conditionals, the priors, or a combination of the two

14

x1

x 2

p(x|yi)

y1

y2

y1

y2

x2

p(x2|yi) Bayes decision boundary

p(x2|y1)

p(x2|y2)

y1 sample

y2 sample

P (y1) = 0.8 P (y2) = 0.2

Figure 2.3: Depictions of a simple binary classification problem for classifying apples from oranges with unequal
priors. This has led to a shift of the decision boundary, hence a concept drift.

lead to changes in the posterior, which result in a sub-optimal performance of the classifier.

The proⅵded definition from a Bayesian probabilistic perspectⅳe has been the focus of research
that adopt statistical analysis methods for cdd, as we will reⅵew in the upcoming sections.
Alternatⅳely, we can define concept drift to be any changes that lead to changes in the Bayesian
decision boundary, because such changes directly affect the quality of the decisions which
results in an obsolete model of data.

Lastly, we can also define concept drift from an application perspectⅳe as any changes in the
data distributions that lead to deterioration of the performance of the classifier. This is intuitⅳe
because changes in the posterior affect the decision making quality of the classifier. However,
here the focus is on the evaluation of the model and how the classifier performs on test instances.
Many research works adopt this definition and proⅵde solutions based on it, as we will reⅵew
later.

Referring back to our running example of Figure 2.2, at some point in time there could be
changes to class priors. For instance, oranges become less likely to be seen during summer. In
this example, the priors are now P(𝑦1) = 0.8 and P(𝑦2) = 0.2. This has resulted in the change
of the posterior, leading to the shift of the decision boundary and the occurrence of cd, as
shown in Figure 2.3.

15

2.1.2.3 Types of concept drifts

Concept drift may occur due to changes in one or more probability distributions of Bayes’
formula of eq. (1). This has led to a variety of terminologies regarding each type of drift. One or
a combination of these types has also been the focus of different research in the literature.

1. Real drift. Gama et al. [35] and Lu et al. [61] consider the problem of concept drift for
changes that directly affect the decision boundary, hence the decision capability of the
classifier. Such changes are referred to as real drift. They further distinguish between
changes in different probability densities, and consider changes in class-conditionals
𝑝(x|𝑦𝑗) as real drift. Khamassi et al. [50] follow the same definition; however, they
incorrectly refer to changes in the probability densities as actual values.

2. Virtual drift. This term has undergone the greatest variability in definitions across the
literature. For example, Gama et al. [35] and Lu et al. [61] refer to ⅵrtual drift as changes
in the distribution of the eⅵdence 𝑝(x). As mentioned in the preⅵous section, the
eⅵdence is only used to scale the posterior to sum to 1 as a probability density. However,
its changesmay affect the posterior if there are changes in some class-conditional 𝑝(x|𝑦𝑗)
as well. Still, ⅵrtual drift has been addressed in the literature because (i) statistical
analysis methods are computationally efficient and easy to infer, and (ⅱ) there could be
some delay between the time test instances 𝑋𝑡𝑒𝑠𝑡 are proⅵded for prediction, and the
time the true class labels 𝑦𝑡𝑒𝑠𝑡 are available for evaluation of the model. This results in
an unsuperⅵsed or semi-superⅵsed setting at least for one time step until class labels
become available [66]. Khamassi et al. [50], on the other hand, note that ⅵrtual drift
is any change in the class-conditionals 𝑝(x|𝑦𝑗) which does not cause changes in the
posterior. This can only apply if the class-conditionals for all classes 𝑦𝑗 change similarly;
otherwise, the posterior would be affected. By definition, a single ubiquitous change of
all class-conditionals is equⅳalent to a change in the eⅵdence, as shown in eq. (4):

𝑝(x) =
𝑐
∑
𝑗=1

𝑝(x|𝑦𝑗)P(𝑦𝑗) (4)

3. Drift in class priors. This type of drift occurs if the probability densities of the priors
P(𝑦𝑗) change. As we saw preⅵously, such changes could affect the distribution of the
posterior, hence the decision boundary of the classifier. However, Gama et al. [35] do not
consider it as one possible type of drift. Khamassi et al. [50] do mention it as a drift type,
but incorrectly specify cases where certain class prior changes, such as class imbalance,
may not lead to a change in posterior. They categorize this type of change in priors as

16

ⅵrtual drift. They do not discuss how or when a change of priors may affect the posterior
and the decision making. The class priors directly determine the posterior alongside
class-conditionals, and therefore are needed to be analyzed as the prior knowledge of the
population. Overlooking them may even lead to wrong conclusions such as (informally)
the base rate bias or false positⅳe paradox. This is the reason precision plays an important
role alongside true positⅳe rate in evaluation metrics (see section 2.2.3 for more details).
In short, only proper evaluation metrics such as precision signify the consideration of
class priors as a type of drift.

4. Population drift. This type of drift is pointed out by Gama et al. [35], but is left out
in the survey of Khamassi et al. [50]. It covers all changes in the hidden context [96],
such as unmeasured and unmeasurable variables, as well as noise. While such changes
may adversely affect the decision quality of the classifier over time, they are not normally
covered in conventional data analysis methods due to being the irreducible error [48].
Therefore, consideration of population drift comes down to the definition of the concept
drift one adopts. From the probabilistic perspectⅳe, hidden or unmeasured variables
are left out of the set of variables affecting the posterior. However, from an application-
oriented perspectⅳe, any deterioration of the performance of the classifier is the result of
concept drift, be it systematic or not. Despite this, all research works in the literature
that adopt an application-oriented approach to cdd&a by using performance evaluation
feedback, only consider real and/or ⅵrtual drifts as the causes of increased overall loss or
error in the classifier when concept drift occurs.

In summary, long-running data stream management systems have to watch for and detect
changes in data over time and adapt their analytical models accordingly, to which we broadly
refer as ‘‘Concept Drift Detection and Adaptation over Data Streams’’. Sections 2.1.1 and 2.1.2
covered the cd problem from practical and theoretical perspectⅳes, respectⅳely. Figure 2.4
depicts the high-level ⅵew of a taxonomy of the concept drift problem. We consider the problem
setting and requirements in section 2.2.1 first. When facing cd in a dsms, there are two sub-
problems to tackle: concept drift detection (cdd) and concept drift adaptation (cda), which
are often studied independently in the related literature. We will reⅵew these sub-problems in
sections 2.2.2.2 and 2.2.2.3, respectⅳely.

2.2. Methods

In what follows we will discuss different aspects of the concept drift problem and proⅵde a
survey of related work. We examine the characteristics of possibly evolⅵng data and the stream

17

CDD&A on DSMSs

Setting &
Requirements

Stream Processing

Concept change

Approaches

Detection

Adaptation

Evaluation

CDD metrics

Classification metrics

Figure 2.4: The top level view of a taxonomy of the concept drift detection and adaptation over data streams
problem.

processing domain in section 2.2.1. We reⅵew two overlapping problems of cdd and cda in
sections 2.2.2.2 and 2.2.2.3, respectⅳely. Lastly, we will reⅵew the evaluation criteria and
indicators of these techniques in section 2.2.3.

2.2.1. Concept drift setting and requirements

We will reⅵew the settings and requirements from two points of ⅵew: a theoretical perspectⅳe
in section 2.2.1.1 that focuses on possibly evolⅵng data characteristics, and a practical perspectⅳe
in section 2.2.1.2 that focuses on the constraints and challenges faced in stream processing as
the problem domain.

2.2.1.1 A concept drift perspective

A taxonomy of the concept change perspectⅳe is presented in Figure 2.5.

A change in concept to be learned can be attributed to its rate of changes, periodicity, mono-
tonicity, predictability, feature properties, and the drift nature. These are characteristics of
possibly evolⅵng data to be modeled.

The rate of changes can be either abrupt or gradual. Gradual changes happen when the
distribution of the features shifts relatively slowly from the original distribution on which the
model was built and trained. For example, the set of features for weather prediction shifts

18

Concept change

Nature of drift

Rate of changes

Class Priors

Population

Real

Virtual

Gradual

Abrupt

Novelty detection

Predictability

Predictable

Unpredictable

Drift among eⅺsting

classes

Old classes going

obsolete

Features

Number

Type

Qualitatⅳe

(Categorical)

Quantitatⅳe

(Continuous)

Periodicity

Monotonicity

Monotonic

Non-monotonic

Periodic

Non-periodic

Figure 2.5: A taxonomy of the concept drift problem from a theoretical perspective.

slowly between seasons. Such changes can result in a gradual deterioration in the learner’s
performance. Since these effects are not too severe in a short time frame, the learner has a
higher chance of adapting itself rather than throwing most or all of its learned knowledge away
to start training from scratch.

Periodic cds repeats during different time intervals, and may be periodic in differing temporal
resolutions. Periodicity can be either a seasonal component of a time-series model if it repeats
at the same frequency, or a cyclic structure otherwise [68]. A cdd&a model may be trained to
detect or predict cd at one or more temporal resolutions. In this case, availability of enough
training data can be of great advantage to the cdd&a solution’s initial training.

Concept changes can be predictable regardless of their periodicity. The predictability infor-
mation can be incorporated in the design of the cdd&a solution to make it more proactⅳe.

Monotonicity is a desirable feature of data in many applications due to differentiability and
integrability of the monotonic domain. Monotonic cd, whether occurring across the entire time
domain or within specific sub-intervals, is generally easier to model or manage. Additionally, an
ever-increasing or decreasing cd exhibits predictable characteristics.

The curse of dimensionality is one of the challenges in cdd&a. Upon deterioration of perfor-
mance, it is difficult for the cdd&a methods to tell if this is due to emergence of cd, lack of

19

leaner’s ability to generalize because of large number of dimensions, or both. Therefore, most
research works consider a limited set of features. Moreover, as each feature in the feature vector
x can be quantitative (continuous) or qualitative (discrete), most research works on cdd&a
methods consider only a subset of continuous features because the latter is easier to model and
analyze, better supported by statistical methods, and does not require additional preprocessing
steps which are specific to qualitatⅳe features, such as encoding.

The nature of drift can be any of the cd types discussed in section 2.1.2.3. Furthermore, real
concept drift can be attributed to drift among eⅺsting classes, old classes becoming obsolete,
or emergence of new classes; the latter is also known as novelty detection. More specifically,
novelty detection refers to estimating the probability of a new observation belonging to the
same distribution as that of the training data [78].

Let us consider the above characteristics of cd for two real-world cd examples, shown in
table 2.1. Deterioration of chemical sensors over time is gradual, non-periodic, monotonically
decreasing, hence predictable to some degree, and involves 128 real-valued features [89, 73]. It
can be categorized as real-drift, because deterioration of the sensors affects the performance of
the classifier negatⅳely over time. Weather features [32], on the other hand, are periodic on
different time resolutions (days, weeks, months, etc.), predictable, and non-monotonic. The
rate of drift may be considered gradual or abrupt depending on the level of time resolution,
although it is often treated as gradual. It is also an example of real-drift because the decision
boundary needs continuous adjustment to account for change of days, etc.

Table 2.1: cd characteristics for two real-world cd examples.

cd example Rate of drift Periodic Predictable Monotonic Nature of drift

Deterioration of
chemical sensors [89, 73] gradual ✘ ✔ ✔ real drift
Weather features [32] gradual ✔ ✔ ✘ real drift

2.2.1.2 A stream processing perspective

A taxonomy of the stream processing perspectⅳe is presented in Figure 2.6.

If the focus of the cd problem is on stream processing, the emphasis is on common big data
characteristics such as volume, velocity, variety (heterogeneity) as well as data stream-specific
properties such as unboundedness. On the other hand, the dsms and its attributes such as
limited available resources and limited access to archⅳal storage might be of interest in dealing
with the cd problem [105].

20

Stream Processing

dsms characteristics

Limited resources

Limited access to

archival storage

Data characteristics

Online learning

Unboundedness

Volume

Velocity

Variety

(heterogeneity)

Veracity (noise)

Class imbalance

Dimension reduction

Figure 2.6: A taxonomy of the concept drift problem from an application stream processing perspective.

Lastly, the concept drift detection or adaptation method may focus on the challenges faced
in online learning. These may include online dimensionality reduction to avoid the curse
of dimensionality in dealing with cd, or dealing with class imbalance, especially in novelty
and outlier detection. More specifically, an imbalanced domain contains a large number of
instances of one class, and very few of the other (usually the positⅳe instances). Examples
of data stream classification applications with imbalanced domains include financial fraud
detection [25], network intrusion detection, and email spam filtering. Techniques used to deal
with the minority class imbalance usually adopt a sampling approach such as over-sampling,
bootstrapping, or other parametric or non-parametric sampling approaches [92].

Ditzler and Polikar [30] extend their learn++.nse [32] technique to imbalanced domains using
two approaches: one that incorporates synthetic minority over-sampling technique (smote)
[23] to over-sample minority class data before applying learn++.nse, and the other that uses
bootstrapped bagging on majority class data to create sub-ensembles and then balances the
classification accuracy in favor of minority class data. This technique leverages different types
of information available (raw data and prediction performance) without assuming a stationary
minority class. However, it tackles the problem on a window-based basis and does not consider
changes to class imbalance in the long run. The performance of the proposed data-based with
performance-based solutions, nor the performance of these techniques over different rates of cd
were not compared.

Wang et al. [93] monitor the data stream’s distribution of class labels and prediction performance

21

to detect class imbalance, and apply over-sampling to minority class data or under-sampling
to majority class data accordingly. Lu et al. [62] adopt a similar approach to learn++.nse, but
perform under-bagging (under-sampling and bagging) at every batch to adjust the bias from
the majority class to the minority class. Dal Pozzolo et al. [25] tackle class imbalance under cd
by aggregating two classifiers trained on eⅺsting and delayed labeled data. Li et al. [59] propose
an ensemble-based method using bagging on the most recent batch of data to handle class
imbalance under cd. Zyblewski et al. [107] present another ensemble-based technique based on
[85] and dynamic classifier selection (dcs), where bootstrapping takes into account the minority
and majority classes separately to properly handle class imbalance. All these techniques suffer
from similar shortcomings of [30].

More recently, Korycki and Krawczyk [53] employed a restricted boltzmann machine (rbm) that
accounts for class imbalance in the loss function and generatⅳely samples minority class data.
This technique, called rbm-im, monitors changes to the rbm’s per-class error trends for cdd.
Changes to both minority class data and the network’s error trends (as a measure of cd) in
long term can be modeled using this technique. However, it does not address different rates of
drift. Moreover, the rbm network suffers from the compleⅺty of the inherent recurrent neural
networks: it under-performs on smaller-sized datasets due to underfitting, and may also require
tuning the network’s parameters, which are costly in general because of the training needed at
every window.

2.2.2. Approaches to cdd&a solutions

There are general criteria that influence the design of cdd&a techniques. However, specific
considerations impact the design of cdd and cda methods indⅳidually. We will explore these
aspects in the following subsections.

2.2.2.1 General Criteria

The general criteria in designing cdd&a techniques are depicted in Figure 2.7.

Problem type

Most cdd&a solutions typically employ a superⅵsed learning approach. This is because, as
preⅵously mentioned, they treat the cd problem as a change in the posterior distribution within
Bayes’ formula. In the context of an online data stream, a learner deployed in the pipeline to
predict test data only has access to a window of test data 𝑋𝑡𝑒𝑠𝑡(𝑡𝑖) at time 𝑡𝑖, whether it processes

22

General Criteria

Suitableness for
streaming

Data flow

Instance-based

Batch-based

Online (streaming)

Offline (access to
archival storage)

Problem type

Unsupervised

Semi-supervised

Supervised

Adaptive

Fixed

Learner multiplicity

Ensemble

Single

Figure 2.7: A taxonomy of the general criteria in designing concept drift detection and adaptation techniques.

that window as indⅳidual instances or as a batch. Clearly, ground truth 𝑦(𝑡𝑖) is to be proⅵded
with some delay 𝛿. Otherwise, we would not need a learner in the first place if 𝛿 = 0. More
specifically, 𝛿 represents the delay between when the learner and cdd&a method receⅳe the
test data 𝑋𝑡𝑒𝑠𝑡(𝑡𝑖) and the time they receⅳe the ground truth 𝑦(𝑡𝑖) corresponding to that test
data. The cd problem itself can be addressed as superⅵsed, unsuperⅵsed, or semi-superⅵsed,
based on the duration of 𝛿, explained below.

• If 𝑦(𝑡𝑖) is receⅳed at the same time step (𝑡𝑖) that the learner performed its classification
task, we would be dealing with a supervised cd problem. The cdd&a method at hand
could evaluate the predictability performance of the learner, and use this information for
the cdd&a task [43, 97, 94]. In this case, 𝛿 <

𝑖≠𝑗
|𝑡𝑖 − 𝑡𝑗|.

• If true target labels are receⅳed with at least one time step delay (𝛿 ≥
𝑖≠𝑗

|𝑡𝑖 − 𝑡𝑗|), the

cdd&a method has to either wait until 𝑦(𝑡𝑖) are receⅳed with delay, making it a delayed
superⅵsed cd problem [66], or use only test instances 𝑋𝑡𝑒𝑠𝑡(𝑡𝑖) for cdd&a. The latter
case would be an unsupervised cd problem. As noted in section 2.1.2.1, the independent
variable x alone is insufficient to detect real cd and may result in the detection of or
adaptation to only ⅵrtual drift. It is possible that the cdd&a method can use only 𝑋𝑡𝑒𝑠𝑡(𝑡𝑖)
form an initial hypothesis of a cd and then confirm its prediction once it receⅳes the
ground truth.

• Lastly, the cdd&a method may only receⅳe a subset of 𝑦(𝑡𝑖) corresponding to the gⅳen

23

𝑋𝑡𝑒𝑠𝑡(𝑡𝑖), leading to a semi-supervised cd problem [66]. In this scenario, the cdd&a
method can leverage the available ground truth to generalize the relationship between the
independent and dependent variables to the remaining independent variable instances,
allowing it to infer whether cdmight have occurred. Subsequently, the delayed availability
of the full ground truth may convert the problem into a delayed superⅵsed cdd&a
problem.

Ditzler and Polikar [29] proposed a semi-superⅵsed ensemble method to model labeled
training data using a set of gaussian mⅸture models (gmms) plus an extra gmm for
an unlabeled test set under cd. The distance of hyperparameters of the training and
test gmms are then used as the basis for cdd. While intuitⅳe, this method makes
strong assumptions on the underlying distribution of data (being Gaussian), requires
experimentation with the initialization of the number of clusters, and the unlabeled test
data is essentially the new batch of data receⅳed to classify, as is common in most other
research works. The unlabeled data is not used to adapt or train the learner either. Haque
et al. [43] presented a semi-superⅵsed K-means clustering method based on ecsminer
[65] (which focused on novelty detection, see section 2.2.2.2). Their method, however,
does address the problem of novelty-detection in a semi-superⅵsed fashion, similar to
ecsminer, rather than generalizing knowledge of the partially labeled data to unlabeled
data. More recently, [104] proposed a cddmethod based on [43], but use Jensen-Shannon
dⅳergence to measure the similarity of current classifier confidence score with those of
the recent batches to detect recurring cds. The latter technique, however, relies on the
semi-superⅵsed K-means clustering approach of ecsminer, thus does not address the
semi-superⅵsed learning problem under cd.

Data flow

The cdd&a methods may work on single instances of the data stream [66, 94] or they may have
to process data in batches [101, 97]. This is often not a requirement of the underlying dsms, as
modern dsmss support both types of stream flow. Most research assumes that data is receⅳed
in batches. This is because these methods—whether superⅵsed or unsuperⅵsed—require
at least one batch of the data stream for training. Additionally, algorithms are often trained
incrementally or online, batch by batch. As a result, these techniques frequently assume that
all instances within a single batch are stationary, and may even disregard the temporal order
within the batch for the sake of simplicity. Those that are instance-based may reduce the
delay between the time at which data is receⅳed and the time cd is detected, proⅵded that the
method is actually processing data instances indⅳidually and not buffering to be processed in
batches. The other difference between true instance-based and batch-based methods is that,

24

most batch-based methods assume no cd of any type in a single batch of data, while it may not
be true in instance-based methods where cd might occur (or start to occur) at any instance.

Another parameter in cdd&a is the length of the window of the stream, or the batch size,
which could be fixed, e.g. [97, 94], or varying, e.g. [13, 43]. The latter requires adaptation
during processing. Adaptⅳe window methods strⅳe for smaller batch sizes when the algorithm
considers a low probability of cd in the upcoming batches. This eliminates the need for large
numbers of training instances. When an algorithm anticipates a cd in the near future, such as
during periodic drifts, it can increase the window size to include more instances. This approach
enhances the accuracy of cdd&a. Conversely, reducing the window size when cd is unlikely
leads to smaller batch sizes, improⅵng efficiency in memory usage and processing power.

Learner multiplicity

Single learners such as [94] use a single classifier model to search through the hypothesis space.
The performance evaluation of the same single classifier can be used for cdd&a. Ensemble
learners such as [65, 57, 98], on the other hand, build a number of base estimators either
independently (averaging methods such as bagging) or sequentially (boosting methods). Most
cdd methods work independently of the multiplicity of the estimator, e.g. [97, 53].

As is the case with themain learning task, ensemblemethods in cdd&a demandmore computing
resources than their single-model counterparts.

Suitability for data streaming

The traditional cdd&a methods that have access to archⅳal or historical data are not suitable
for detection or adaptation in streaming. This is because timely access to historical data is often
not feasible in a data stream processing enⅵronment. On the other hand, if the method only
requires access to online working data in the streaming window, then it can be used in stream
processing engine of a data stream management system.

2.2.2.2 Concept Drift Detection

The goal of concept drift detection (cdd) is to automatically identify pattern changes in data
over time without requiring the involvement or effort of domain experts. Changes in data
can be caused due to (i) a change in the posterior of Bayes’ formula in eq. (1), or (ⅱ) a change
in the Bayes decision boundary from a Bayesian probabilistic perspectⅳe, or (ⅱi) a change in

25

Detection
Detection information

Raw features

Performance
evaluation

CDD&A model

Classifier model

Auxiliary model

Novelty detection

Figure 2.8: A taxonomy of the concept drift detection methods.

deterioration of the performance of the learner from a practical perspectⅳe.

It is worth noting that cdd is crucial in applications where pattern changes are expected (see
section 2.2.1.1) and certain actions must be taken once cd is detected. Examples include network
intrusion detection [84] and finance, banking and insurance fraud detection [1, 42], to name
a few. Selecting a proper cdd method becomes more challenging in the case that cd or its
properties are unpredictable. In such cases, we may instead opt for passⅳe cda in the dsms.

Figure 2.8 shows a taxonomy of the cdd methods. We will discuss different aspects of cdd
methods in the following subsections.

Detection information

There are three major categories of methods based on the kind of information used for the task
of cdd, as shown in Figure 2.9.

• Data feature detectors analyze only independent features in raw data, i.e., test data 𝑋𝑡𝑒𝑠𝑡(𝑡𝑖)
(Figure 2.9a). These methods mainly consider the formal definition of cd, which on the
basis of data flows can be classified into sequential and data distribution-based methods
(section 2.2.2.1). Sequential raw data detectors receⅳe test data instances one at a time,
and determine a cd if a certain number of new instances are deemed to deⅵate from
the original distribution of data. Data distribution-based methods work on batches
(windows) of data, comparing the distribution of data in two windows at different times,

26

Raw data (Xi
test) Main Classifier Predictions (i)

CDD

Raw data (Xj
test) Predictions (j)

ti

tj Main Classifier

Raw data (Xi
test) Main Classifier Predictions (i)

CDD

Raw data (Xj
test) Predictions (j)

ti

tj Main Classifier

(a) Using raw features’ data.

Raw data (Xi
test) Main Classifier Predictions (i)

Raw data (Xj
test)

ti

tj Main Classifier

CDD

Performance

Ground
Truth
(Yi

test)

Performance

Ground
Truth
(Yj

test)

Predictions (j)

Raw data (Xi
test) Main Classifier Predictions (i)

Raw data (Xj
test)

ti

tj Main Classifier

CDD

Performance

Ground
Truth
(Yi

test)

Performance

Ground
Truth
(Yj

test)

Predictions (j)

(b) Using performance evaluation data.

Raw data (Xi
test)

Main Classifier

Predictions (i)

Raw data (Xj
test)

ti

tj

Auxiliary Model

CDD

Performance

Ground
Truth
(Yi

test)

Ground
Truth
(Yj

test)

Performance

Main Classifier

Auxiliary Model Predictions (j)

Raw data (Xi
test)

Main Classifier

Predictions (i)

Raw data (Xj
test)

ti

tj

Auxiliary Model

CDD

Performance

Ground
Truth
(Yi

test)

Ground
Truth
(Yj

test)

Performance

Main Classifier

Auxiliary Model Predictions (j)

(c) Using information from an auxiliary model.

Figure 2.9: Concept drift detection using different sources of detection information.

using statistical methods and probability measures. Since these methods rely only on
raw data measurements, they do not have to wait for ground truth to become available.
This results in performing data analysis earlier than done by superⅵsed methods. This
has the advantage that such methods can work in an unsuperⅵsed or semi-superⅵsed
manner. These methods also have the advantage of proⅵding insight on analyzed data
because of using well-established statistical methods. A downside of these methods is
that, being unsuperⅵsed, they may detect only ⅵrtual drift or detect drift in independent
features that are unrelated to targets 𝑦. Raw data detectors also need true target labels
for the purpose of evaluation. Furthermore, there could also be some delay until enough
data instances or batches is collected by the method in order to be able to perform its
analysis more accurately. This has the advantage of not haⅵng to wait for ground truth
in the first place. For instance, Ditzler and Polikar [28] measure the Hellinger distance of
consecutⅳe batches of data and alarm cds, including ⅵrtual, if the dⅳergence is higher

27

than an adaptⅳe threshold. A more recent example is Yu et al. [98] who use a gmm with
sliding windows to monitor changes in the distribution of unlabeled data streams over
time.

• Many cd detection methods rely on the learner’s predictability performance evaluation
and feedback (Figure 2.9b). These methods are based on the practical definition of cd,
that is, deterioration of the learner’s performance. Generally, such methods wait for
the ground truth to become available (or assume that they are immediately available).
Next, they evaluate the performance of the learner using standard indicators such as
accuracy, precision, f-score, etc. With sufficient evaluation information, performance-
based techniques identify a drift if the learner’s performance falls below a fixed or adaptⅳe
threshold. In case of ensemble learners, the error threshold can be calculated based
on the average, majority, or temporally-weighted deterioration of the base learners.
Learner’s performance-based detectors can properly detect real drifts as they also take
the information about the target variable into account. However, they treat the cd
problem as a black box: the mere deterioration of the learner’s performance or its
error rate does not proⅵde any insights about the actual features, dependent variable
or variables, their distributions, or their correlation. An example of a cdd&a technique
relying on this approach is [43], where classifier confidence scores are used as input to
a ‘‘change point’’ detector. The changes beyond a gⅳen threshold are inferred to as
cd. To detect cd, Yu et al. [99] use a two-step detection test based on the classifier’s
confusion matrⅸ. The two-step detection evaluation has the advantage of reducing the
number of false positⅳes. Similar to [43], Li et al. [57] weight imbalanced data samples
using the classifier’s prediction confidence to detect cd. Wang et al. [94] propose a cdd
technique for detection of abrupt drifts by comparing the distribution of the classifier’s
accuracy between two time windows. The method is based on the assumption that the
classifier’s accuracy is a good indicator of cd, but is not as effectⅳe for gradual drifts.
In the multi-stream framework of Yu et al. [98], the cdd technique in part monitors
the performance of an ensemble of classifiers and alarms cd if the ensemble’s error rate
exceeds a gⅳen threshold.

• Few studies on cdd employ an auⅺliary model in addition to the main learner (Fig-
ure 2.9c). This auⅺliary model is designed to track changes either in the data or through
the model’s prediction performance. Changes in the parameters of these models are
then monitored and used to detect cds. For example, Yang et al. [97] proposed a cdd
technique in which they use an auⅺliary online sequential extreme learning machine
(os-elm) model [60]. Since passⅳe or blind adaptation in the form of re-modeling the
main learner is costly at every time step in terms of computing resources, the auⅺliary
model aims to prevent blind adaptation at each time step by instead re-training the

28

simpler os-elm model. This is due to the fact that training the elm model [47] requires
only random assignment of the model’s parameters or analytical calculation in place
of iteratⅳe backpropagation. The premise of the proposed solution in [97] is that the
auⅺliary model’s parameters change whenever a cd occurs. Based on this premise, the
method re-builds the auⅺliary os-elm model at every time step. It alarms a cd and
re-models the main classifier whenever the difference of the model parameters is above
a set threshold. The technique uses output weights matrⅸ 𝛽 and Euclidean distance
as the model parameters and distance measure, respectⅳely. Smaller threshold values
correspond to more sensitⅳity to changes in the model parameters. The threshold is
calculated based on the desired main classifier accuracy. Therefore, the method works
fully superⅵsed in this manner. In short, the sensitⅳity to changes in the auⅺliary model
parameters is dynamically updated over time based on the predictability performance
feedback of the main model. The method, on the one hand, uses an auⅺliary model
to abstract the features and labels correlation, and hence it is more informatⅳe than
raw data-based detectors. On the other hand, it is based on the learner’s predictability
performance (and can be labeled as such). While this method is intuitⅳe and interesting,
it suffers from certain shortcomings. For instance, it is not applicable to periodic drifts
and is prone to fail if its validation window parameter is not set properly based on (only
one) level of periodicity. Moreover, the parameters have to be determined and experi-
mentally set for different applications based on prior knowledge. Korycki and Krawczyk
[53] proposed a cdd technique, named rbm-im, that employs an rbm as an auⅺliary
model to model changes to data over time (see also section 2.2.1.2). Besides the types
of neural networks used, rbm-im differs from os-elm [97] in how changes to data are
modeled, monitored and used for cdd. rbm-im monitors and detects significant changes
to trends of the network’s errors using a statistical test, whereas os-elm measures the
changes to the weight matrⅸ of the network’s hidden layer and alarms cd if the changes
are above a gⅳen threshold. The primary advantage of rbm-im over os-elm lies in its
improved long-term modeling of cd, specifically by accounting for changes in the error
trends of the auⅺliary model. It is also more robust to data characteristics such as noise
and class imbalance. os-elm, on the other hand, has the advantage of using a simpler
elm model that does not require loss function optimization for training, resulting in a
much less computationally costly model that is also less likely to underfit when trained
on smaller-size datasets. In a more recent study, Li et al. [58] monitor the error rates
of a pre-trained prototypical neural network model, treating the problem as few-shot
learning. The auⅺliary model can detect cd and its type, including abrupt and gradual.

29

Novelty Detection

Novelty detection in the context of this research is a form of anomaly detection where new
observations, henceforth referred to as novelties, may occur but do not belong to the same
distribution as of recent batches data. The difference with outlier detection is that novelties
are not considered abnormal, and they may form a small yet dense cluster, which may even
persist and replace the original data over time as a form of gradual drift. In the context of cdd
in the literature, novelty detection often involves a change in the class priors P(𝑦) in the Bayes’
formula, resulting in either class imbalance or even the introduction of new classes of data.

Most novelty detection techniques follow an unsuperⅵsed or semi-superⅵsed approach, and
assign recently arrⅳed data to a new class if sufficient data is distanced enough from eⅺsting
groups. For example, Masud et al. [65] use an ensemble-based method, called ecsminer, and
K-means clustering to detect outliers that can potentially be declared a novel class. Some novelty
detectors, e.g. [78, 101], try to find a geo-spatial boundary delimiting the distribution of eⅺsting
data, and either classify or assign a probability to new observations based on where and how far
they lie relatⅳe to this boundary. Haque et al. [43] improve ecsminer’s novelty detection by
introducing a change point detector based on the ensemble’s base classifier confidence scores.
More recently, Zheng et al. [104] proposed an improvement to ecsminer to detect recurring cds.
They used Jensen–Shannon dⅳergence to measure the similarity of current classification scores
with those of the recent batches. Similar scores in terms of this measure are deemed recurring.

2.2.2.3 Concept Drift Adaptation

While human brain is capable of adapting to changing enⅵronments, adaptation to concept
changes is challenging for the analytical learner component. It is often the case that a streaming
data application demands maintenance of the analytical model over time once the learned
information begins to become obsolete. Figure 2.10 shows a taxonomy of the concept drift
adaptation (cda) methods.

Adaptation type

The goal of cda is to adapt the learner to new data patterns either continuously or as needed.
The analytical model may be adjusted to changes continuously at each time step or at fixed
intervals, without being explicitly informed of the occurrence of cd. This is referred to as
blind or passive adaptation. This approach can be more beneficial to applications that process
data with unpredictable or gradual cds. It is also possible that the application simply is not

30

Adaptation

Model maintenance

Incremental

Re-learning/re-settingAdaptation type

Informed

Blind

Problem type and
adaptation

information

Figure 2.10: A taxonomy of the concept drift adaptation methods.

interested in learning when cd occurs, but rather in maintaining the model’s performance over
time. Methods that adopt blind adaptation may also experience delays in responding to cd if
they perform model maintenance at fixed intervals, which could occur some time after the drift.

Due to high computational costs associated with frequent remodelings over time, applications
that adopt this approach seek two desirable properties in the model: (i) the model training
should not be computationally costly (to meet application requirements), and (ⅱ) the model
should be easy to maintain incrementally and online (to meet stream processing requirements).
Ensemble methods are favored in this context and are popular approaches among both the
research community and industry, as they fulfill both criteria and are well-known for their
robustness to cd, as well as their ability to maintain high accuracy over time. For instance,
Krawczyk and Woźniak [54] employ a weighted learning and forgetting adaptation mechanism
based on the recency of data batches. Zhang et al. [103] use reinforcement learning to dynamically
weight an ensemble of two temporal convolutional networks (tcns) to adapt to changes. While
effectⅳe in adaptation to cd, this approach uses the same ensemble of base learners for both
cda and the main learning task. Another limitation of this approach is that the two tcns are
not updated during the stream, and maintenance only adjusts their weights for prediction.

Informed adaptations are usually implemented when a cdd method is in place to notify the
system of a potential cd first, and then the cda method to maintain the learner accordingly.
This allows the cdd&a technique to maintain the main learner in a timely manner while
avoiding unnecessary re-training of the model. However, few studies—for instance [97, 94, 98,
58]—adopted this approach, which for cda is often in the form of re-training the learner from
scratch. In other words, there is no underlying common abstraction or information leveraged
for the cdd and cda tasks. This is important because the cda method essentially becomes
limited to and dependent on the performance of the cdd technique used. This in turn affects

31

the performance of the cda method when the cdd method fails to detect cd accurately or timely.
Additionally, this approach may lead to unnecessary remodelings when the cdd technique
detects ⅵrtual drifts or false positⅳes.

Problem type and information

The purpose of a cda method is to maintain the learner’s performance over time by adapting
to new patterns in the data. This can be done unsuperⅵsed (or semi-superⅵsed) for a while
depending on how fast the enⅵronment is changing. However, the method must eventually get
access to the target labels to adapt the learner to current state of the data. Majority of research
in cda, however, assume that the target labels are available at the same time as the data, and
the learner is re-trained at each time step. This leads to another shortcoming of eⅺsting cda
methods, which is inability to maintain the application’s performance beyond one time step.

Model maintenance

Regardless of the type of adaptation presented earlier, the analytical model must be maintained
after the occurrence of cd to adapt to new patterns. In conventional machine learning (ml), the
learner is re-trained or re-modeled, either offline or online, using newly gathered training data.
Since training a new model is a resource consuming task for many conventional learners such as
deep neural networks, certain cda methods opt for incremental learning to avoid re-modeling
the learner from scratch as long as possible.

Ensemble methods such as bagging and boosting gained popularity for stream data processing
because of their suitability for incremental learning. Examples include [43, 88, 91, 104, 29, 32,
66, 73, 52, 65, 81, 89, 98, 58, 103]. However, maintaining the ensemble of learners is challenging
in the long run because of the risk of overfitting and possibly haⅵng high variance as the result,
especially if data is imbalanced in terms of cd (see section 2.2.1.2). Moreover, adding base
models to the boosted ensemble over time incurs computational overhead. Therefore, ensemble
model maintenance for cda has been a research topic over the last decade with the aim of
decreasing variance and computational overhead.

Elwell and Polikar [32] proposed a weighting scheme, named learn++.nse, as a maintenance
technique that weights the base models according to their recent performance (prediction error
and time added) on the stream. This weighting is later used in majority voting of the ensemble
for prediction. This method achieves low variance, thus high prediction accuracy especially on
datasets with gradual drift. It, however, does not address the computational overhead issue
mentioned earlier.

32

Wang et al. [91] proposed a gradient boosting ensemble maintenance method to tackle both
issues of using ensembles on data streams stated. They proⅵde two base model pruning
strategies: one that removes obsolete base models based on a loss improvement criterion they
proposed with the aim of achieⅵng high accuracy, and another based on the Kolmogorov-
Smirnov test with a set confidence limit with the aim of keeping some sub-optimal base models,
hence preserⅵng dⅳersity and low variance in the long run. An interesting observation in this
work is how the deterministic strategy achieved better results (in terms of prediction accuracy)
on datasets that exhibit abrupt drifts, while the statistical strategy had better results on datasets
showing gradual drifts.

In short, blind adaptation with re-modeling is the most common method in stream data
processing which does not take advantage of neither cdd nor incremental learning. Assuming
the application is demanding, a reasonable dsms solution tackles the cd problem by incorporating
a cddmethod tomake an informed decision onwhen tomaintain themodel as well as supporting
online and incremental learning to maintain the learner as long as possible.

2.2.3. Evaluation

Since a dsms that encounters cd has to deal with a variety of problems, the evaluation metrics
will depend on which indⅳidual or combination of these problems are tackled in a certain
research work. These problems include the online data stream management, ml and data
analytics, cdd, and cda. Therefore, we can consider the evaluation metrics in three categories:

• Online data stream management: As dsmss process unbounded streams of data, a
desired solution should use limited memory and processing power. This in particular is
important if stream processing is done at the edge side of the network. Other constraints
include fast response times and limited network bandwidth. Based on these conditions
and constraints, the evaluation metrics for a method focusing on online data stream
management include processing and memory compleⅺty as well as network bandwidth
if the method works in a distributed manner or is deployed on more than one node of
the network.

• Data analytics and ml: Data analytics resides at the core of the spe of the dsms.
Conventional data analytics metrics that are derⅳed from a confusion matrⅸ include
accuracy, true positⅳe rate (tpr) (a.k.a. sensitⅳity, recall or hit rate), true negatⅳe rate
(tnr) (a.k.a. specificity), false negatⅳe rate (fnr) (a.k.a. miss rate), and false positⅳe
rate (fpr) (a.k.a. fall-out). These metrics are commonly used for a learner in superⅵsed

33

learning problems. Methods tackling unsuperⅵsed learning types of problems use metrics
such as homogeneity, completeness, and Silhouette Coefficient [77] for evaluation.

• Concept drift detection and adaptation: As mentioned preⅵously, cd can be defined
in terms of the learner’s predictability performance, leading to evaluation metrics of the
preⅵous category. However, methods tackling cdd may opt for performance indicators
more directly relevant to these tasks. To do this, they treat the cd problem as a binary
classification one, considering cds as positⅳe instances and the rest of data as negatⅳe in-
stances. This requires the availability of datasets with explicitly annotated cds. However,
such datasets with annotated cds are scarce. Therefore, some research in cdd&a evaluate
the performance of their proposed methods on synthetic datasets using cdd metrics,
and evaluate the predictability performance of the main classifier using conventional ml
metrics (see above) on real-world datasets. Common metrics of this category include tpr
(the fraction of correctly identified cds), fnr (the fraction of incorrectly unidentified cd
s), and fpr (the fraction of incorrectly identified cds). It should be noted that certain cds
(mainly abrupt drifts) occur only occasionally within data streams. That means, we have
very few positⅳe instances (cds) versus a large number of negatⅳe instances (regular
data). This leads to an imbalanced dataset of cds, which poses further challenges to the
cdd problem. It is therefore crucial to use the metrics discussed here appropriately to
ensure that the results accurately reflect the actual operational performance of the cdd
method. For example, in a dataset that contains 100 instances with only 3 true cds, a
method might label all 100 instances as cds. This would result in 100% accuracy and tpr
(or 0% fnr) for detecting cds, but still lead to a 97% fpr or just a 3% tnr.

2.3. Conclusion

In this chapter we reⅵewed the literature related to concept drift, concept drift detection,
and concept drift adaptation. We discussed the requirements of cd in the context of dsms
applications and the challenges imposed by these requirements. We also reⅵewed and proⅵded
a taxonomy of the different solution approaches to cdd and cda problems and the evaluation
metrics used in those solutions.

Even though the literature on cdd and cda has been growing a lot over the last decades, there are
still challenges that need to be addressed in the context of stream processing. These challenges
include the need for a more efficient and accurate cdd method that can detect cd in a timely
manner. To address this challenge, we will introduce our proposed solution for cdd using an
auⅺliary ensemble of elm models, and discuss the implementation details and experimental

34

results in chapter 3.

Importantly, a methodical comprehensⅳe study is needed to find a common source of infor-
mation that can be leveraged for both cdd and cda tasks. In chapter 4 we will present a
novel methodology to address this challenge by evaluating the feasibility of feature importance
measures as a common source of information for both cdd and cda tasks. We will then pro-
pose a comprehensⅳe framework, called amytis, founded on the feature importance measures
methodology with cdd and cda solutions in chapter 5.

As reⅵewed in this chapter, the cdd&a techniques that attempt to tackle both cdd and cda
tasks constrain the performance of the cda technique by making it dependent on the cdd
solution. The question of how to leverage multiple models in the cdd and cda tasks that may
not necessarily belong to the same ensemble or be of the same type and taking into account their
recent performance over the stream has been largely unexplored in the literature. We identify
this problem as concept drift resolution (cdr) for which we propose a novel solution to it in
chapter 5.

35

There is a theory which states that if ever anyone
discovers exactly what the Universe is for and why it
is here, it will instantly disappear and be replaced by
something even more bizarre and inexplicable.
There is another theory which states that this has
already happened.

—Douglas Adams, The Hitchhiker’s Guide to the Galaxy (1979)

Chapter 3

An Ensemble Learning Augmentation Method
for Concept Drift Detection

Even though a variety of methods, some of which we reⅵewed in chapter 2, have been developed
to address concept drift detection (cdd) over the past two decades, further research is needed
to support emerging applications which require to handle cdd stream data. Most eⅺsting
methods utilize only a portion of available information for this task. Gama et al. [35] reⅵew the
methods that focused on the predictⅳe performance of the main analytical model. Additionally,
a common shortcoming of eⅺsting cdd methods is that they do not consider the rate of drift
as a key design factor, which we believe can contribute to different cdd solutions for different
application features and requirements.

Another shortcoming of cdd methods is that they often assume that properly labeled data
becomes available almost instantly at every window of streaming data. This assumption,
however, is often unrealistic in many applications, such as insurance, healthcare analytics,
industrial sensor grids, enⅵronmental sensing, smart city, network infrastructure monitoring
and sensing, and social media.

Yang et al. [97] proposed a cdd method which uses an online sequential extreme learning
machine (os-elm) model [60] for cdd. The changes to the output weight matrⅸ 𝛽 of an
extreme learning machine (elm) [47] model is then used to infer drifts in the stream. Since
passⅳe or blind adaptation and thus re-modeling the main classifier at every time step is
computationally expensⅳe, they proposed an auⅺliary model to re-train the simpler os-elm
model. This helps because training the (elm) model requires only random assignment of the
model’s parameters or analytical calculation as opposed to using iteratⅳe back propagation.

36

The premise of the proposed solution in [97] is that the parameters of the auⅺliary model change
whenever a concept drift occurs. Based on this premise, the method re-builds the auⅺliary
os-elm model at every time step. It alarms a cd and re-models the main classifier whenever the
difference of the model parameters exceeds a set threshold. They use output weights matrⅸ 𝛽
and Euclidean distance as the model parameters and distance measure, respectⅳely. Smaller
threshold values correspond to more sensitⅳity to changes in the model parameters. The
threshold is computed based on the desired main classifier accuracy. Therefore, the method
works fully superⅵsed in this manner. In short, the sensitⅳity to changes in the auⅺliary model
parameters is dynamically updated over time based on the predictability performance feedback
of the main model.

While this method is intuitⅳe and interesting, it suffers from certain shortcomings, as follows.
It is not applicable to periodic drifts and is prone to fail if its validation window parameter is
not set properly based on (only one) level of periodicity. Moreover, the parameters have to be
determined and experimentally set for different applications based on prior knowledge.

In this study, we tackle the cdd problem with constraints and requirements imposed by
big data stream processing applications such as high detection accuracy, consumption of as
much information as is available at each streaming window to build a more accurate detection
model, and cope with different drift rate scenarios. More specifically, we proposed [3] an
online incremental streaming algorithm, called Ensemble Learning Augmented Drift Detection
(enlaudd), which employs an ensemble of weak (cheap) classifiers to model concept as a
one-dimensional aggregation of changes in base classifiers. An efficient change-point detection
algorithm is then applied on this one-dimensional signal to detect cd as drastic changes of the
aggregated signal. Moreover, we consider two approaches in our proposed algorithm, one based
on bagging and the other based on boosting with verification with the main classifier to handle
data streams that exhibit different concept drift rates.

We developed and evaluated the performance of enlaudd using real-life and synthetic data
streams exhibiting abrupt and gradual concept drifts. The results of our numerous experiments
indicate that bootstrap aggregation of an ensemble of weak classifiers trained as auⅺliary models
alongside the main classifier leads to lower average variance in cdd. The proposed algorithm
allows using any change-point detection algorithm, especially light-weight methods such as
Z-test, on the aggregated signal to detect extreme deⅵations as an indication of concept drift.

37

3.1. Concept Drift Detection Method

In this section, we present our solution for concept drift detection, described as Algorithm 1.
This algorithm uses Algorithm 2 which updates and maintains the ensemble model.

Algorithm 1: enlaudd concept drift detection algorithm

Input: Batches of data 𝐵 = {𝑋 𝑡
𝑁×𝐷, 𝑦

𝑡
𝑁}, 𝑡 = 1, 2, …, ensemble size 𝑀, bootstrap sample size

𝑛, drift rate 𝜐 ∈ Υ = {‘Abrupt’, ‘Gradual’}, probability of verification with the main
classifier 𝜌

Output: 𝐶𝐷: a boolean value indicating the presence of concept drift in the current batch
𝑋 𝑡

1 Initialize the ensemble Γ⊕ on the first batch of data.
2 Maintain the ensemble using bagging or boosting technique by calling

MaintainEnsemble(𝐵, Γ⊕, 𝑀, 𝑛, 𝜐)
3 Compute the model parameter differences of the ensemble’s base models.
4 Compute the losses of the ensemble’s base models based on their predictions of the current

batch of data.
5 Compute the ensemble’s aggregated change as the weighted average of base model

parameter changes where weights are adjusted rankings of base models according to their
losses.

6 if 𝐵 is training data then
7 Train the main classifier on 𝐵
8 else
9 Feed the aggregated value to the change point detector.
10 if concept drift is detected then
11 Verify the loss of the main classifier with a probability of 𝜌.
12 Maintain the main classifier by training it on 𝐵.
13 return 𝐶𝐷

Inspired by the os-elm method [97], we employ an ensemble of simple basic elm models to be
trained incrementally over the course of data streaming.

The enlaudd algorithm proceeds as follows. On the first batch of the stream, we train 𝑀 basic
elm classifiers to construct the ensemble framework. The main classifier is also trained on this
batch of data. For the rest of the stream, we update the basic models using bootstrap sampling
(with replacement). The main classifier is also trained on subsequent batches of data during
the training phase of the stream. Starting with the test phase, we perform cdd, described in

38

Algorithm 2:MaintainEnsemble

Input: Batches of data 𝐵 = {𝑋 𝑡
𝑁×𝐷, 𝑦

𝑡
𝑁}, 𝑡 = 1, 2, …, ensemble set Γ⊕, ensemble size 𝑀,

bootstrap sample size 𝑛, drift rate 𝜐 ∈ Υ = {‘Abrupt’, ‘Gradual’}
Output: maintained ensemble set Γ⊕

1 if 𝜐 is ‘Abrupt’ then
2 Train each base model in Γ⊕ on a bootstrap sample of size 𝑛 from 𝐵
3 else if 𝜐 is ‘Gradual’ then
4 Add a new base model to the ensemble.
5 Train the newly added base model of the preⅵous step on a bootstrap sample of size 𝑛

from 𝐵
6 return Γ⊕

section 3.1.1, after training the ensemble on the most recent batch of data. In case a concept
drift is detected, then the main classifier will be re-modeled to enable adaptation to the changed
enⅵronment. Therefore, re-modeling is performed only when required and not necessarily on
every batch of data stream.

The algorithm has four parameters: the size 𝑀 of the ensemble to create and maintain, the
bootstrap sample size 𝑛, the drift rate 𝜐, and the probability 𝜌 of verification of occurrence of
concept drift with the main classifier.

After receⅳing the first batch of data (line 1 in Algorithm 1), the algorithm starts by initializing
an ensemble of base elm classifiers. For the first batch only, the ensemble is trained on the
entire batch of data {x𝑡, 𝑦 𝑡}. In this step, we also store the set of weight matrices of the collection
of 𝑀 base models of the ensemble as 𝛽.

Starting with batch 2, we apply bagging or boosting techniques depending on the prior in-
formation proⅵded about the rate of drift 𝜐. This is done by making a call to Algorithm 2 in
line 2 of Algorithm 1. If we believe that the data stream exhibits more abrupt drifts, we perform
bagging by taking a bootstrap sample (with replacement) of every incoming batch 𝐵 of data as
𝑆 and training each base model 𝛾⊕𝑚 on sampled data 𝑆 (line 2 of Algorithm 2).

On the other hand, if the data stream is suspected to have gradual or continuous drifts, we
apply a boosting method by adding a new base model 𝛾⊕,𝑡𝑚 for this batch to the ensemble, taking
a bootstrap sample (with replacement) of the incoming batch 𝐵 of data as 𝑆, and training the
new base model 𝛾⊕,𝑡𝑚 on sampled data 𝑆 (line 5 of Algorithm 2).

In line 3, we compute the matrⅸ norm of the weight parameters 𝛽 for each base model 𝛾⊕𝑚 at
time 𝑡 and 𝛽 of the same base model at time 𝑡 −1. This is the change 𝛿 𝑡𝑚 in the model parameters

39

of each base model after being trained on new data, and the set of these changes at time 𝑡 is
denoted as Δ𝑡. One of the shortcomings of os-elm [97] is that their proposed auⅺliary model,
being a simple base model with high bias, is too sensitⅳe to changes in data. To partially
mitigate this sensitⅳity issue in enlaudd, unlike Yang et al. [97] who used Euclidean norm,
we adopted the minimum norm shown in eq. (5) in order to minimize the overall sensitⅳity of
the ensemble classifiers. 𝑁ℎ denotes the number of neurons in the hidden layer in each elm
model of the ensemble, and 𝑈 is the dimensionality of response 𝑦.

‖𝛽 𝑡𝑚 − 𝛽 𝑡−1𝑚 ‖−∞ =min {
𝑈
∑
𝑗=1

|𝛽 𝑡𝑚𝑗,𝑖 − 𝛽 𝑡−1𝑚𝑗,𝑖 |} ,

∀𝑖 ∈ {1, … , 𝑁ℎ}

(5)

With the ensemble trained on the sampled data, we then compute the training residuals by
making predictions on the set of predictor variables {x𝑡} in sampled data 𝑆 as ̂𝑦 𝑡𝑚 for each
ensemble model 𝛾⊕𝑚 (line 4). Training residual 𝜀 𝑡𝑚 for model 𝛾⊕𝑚 is then computed using mean
squared error (mse) of the predictions ̂𝑦 𝑡𝑚 and true target labels 𝑦 𝑡, as shown in eq. (6).

1
𝑛

𝑛
∑
𝑛=1

(̂𝑦 𝑡𝑚,𝑖 − 𝑦 𝑡𝑖)
2

(6)

After obtaining the set of training residuals 𝜀 𝑡 for the ensemble, we proceed to compute the
set of coefficients 𝜔𝑡 for the base models. We rank all base models in increasing values of
their associated mse from eq. (6). This rank is next used as the base model’s coefficient 𝜔𝑡

𝑚 to
compute the weighted average over all ensemble model’s norms 𝛿 𝑡𝑚 as the aggregation of the
ensemble parameters Δ̄𝑡 in line 5. In other words, the better a base model is trained on the
current batch, the higher its change of parameters will affect the aggregation of the ensemble.
One advantage of this aggregation of the ensemble is that Δ̄𝑡 ∈ ℝ1, meaning that we have
reduced the 𝑀-dimensional norm vector Δ𝑡 to only one dimension. This will make the task of
change-point detection in the next step simpler and more efficient.

3.1.1. Concept Drift Detection

The steps of Algorithm 1 above are performed regardless of training or test phase of the
data stream processing. During the training phase, the algorithm stops and returns without
detecting any concept drifts.

40

During the test phase, we feed Δ̄𝑡 to a change-point detector (cpd). This is done incrementally
at each window of data as soon as we compute Δ̄𝑡. The change-point detector will then use the
set of Δ̄ values receⅳed so far as a temporal signal. We have adopted this approach based on
the 𝑍-test peak detector in [16]. We construct a temporal signal of Δ̄ values incrementally over
time, and perform a detection on a newly computed value of Δ̄𝑡 to see if it deⅵates from the
eⅺsting signal. Our intuition is that if there are changes in the distribution of data batches
𝐵, meaning data has incurred concept drift, such changes affect the ensemble’s base model
parameters, causing Δ̄𝑡 to deⅵate from the distribution of the set Δ̄𝑢, ∀𝑢 < 𝑡. Therefore, the
cpd component is tasked with verifying if the current Δ̄𝑡 has deⅵated by a number of standard
deⅵations from the moⅵng mean of the distribution of the preⅵously seen aggregation values.
Hence we consider a positⅳe response from the cpd as a confirmation of the presence of cd.

If based on prior information, if data stream does not exhibit varying rates of drifts, we verify
an increase of loss of the main classifier compared with its loss of the preⅵous batch with a
probability 𝜌, where 𝜌 = 1 means that we perform the verification at every time step, and 𝜌 = 0
means that no verification is performed and that we solely determine the outcome of cdd based
on the cpd output. We consider the response to this verification as a confirmation of concept
drift in the data.

In this case, the main classifier is re-modeled with the entire batch of data 𝐵 to adapt to changes
that have been detected in the data stream, and the algorithm terminates and signals concept
drift. We experimentally found that the values of 5, 2.4, and 1 for the 𝑙𝑎𝑔, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, and
𝑖𝑛𝑓 𝑙𝑢𝑒𝑛𝑐𝑒 parameters, respectⅳely, yielded better results, as referenced in [16].

3.1.2. Complexity Analysis

The primary factors affecting the computational cost of the proposed cdd algorithm, enlaudd,
are the batch size 𝑁, the feature dimension 𝐷, the ensemble size 𝑀, the bootstrap sample size 𝑛,
and the number of neurons in the hidden layer 𝑁ℎ of each elm base model. When accounting
for the target dimensionality 𝑈, which represents the number of response variables, we assume
that it is much smaller than the input feature dimension 𝐷 (i.e., 𝑈 ≪ 𝐷).

The per-batch compleⅺty of the algorithm is 𝑂(𝑀 ⋅𝑁 ⋅𝐷 ⋅𝑁ℎ), indicating that the computational
cost is proportional to the combined batch size and feature dimension. This demonstrates that
the algorithm is scalable for large datasets and high-dimensional data, even when considering
multi-output responses.

41

3.2. Experiments and Results

All experiments reported in this section were performed on a PC with an i7-10750H CPU
@ 2.60GHz and 32GB of RAM. The reported results are the average and standard deⅵation
of measurements of 30 runs. Each run of enlaudd with bagging took approⅺmately 8 and
10.5 seconds on average on real-world and synthetic datasets, respectⅳely. With boosting,
enlaudd took approⅺmately an average of 15 and 45.5 seconds on those datasets in the same
order. os-elm took on average approⅺmately 162, 120, and 91 seconds on these datasets. For all
experiments in enlaudd, we set 𝑁ℎ = 25, 𝑀 = 200, and 𝑛 to be 40% of the dataset size 𝑁, i.e.,
𝑛 = 0.4 × 𝑁. We set the parameters of os-elm to those suggested in [97].

3.2.1. Datasets

We used a total of nine synthetic and real-world benchmark datasets for a more thorough
evaluation of the performance of the proposed algorithm using data with different characteristics.

Synthetic or ⅵrtually generated datasets have the advantage of specifying the precise attributes
of the concept drift, such as drift type (abrupt or gradual), periodicity and duration. We have
conducted experiments on the following synthetic datasets:

• Rotating checkerboard (rcb) was introduced in [55]. We have used the parameters in
[32] for this dataset, and conducted our experiments on four rotation speed variations of
this dataset that result in different rates of concept drift: rcb-constant (rcb-c), rcb-pulse
(rcb-p), rcb-exponential (rcb-e), and rcb-sinusoidal (rcb-s), each dataset with a batch
size of 400 for a total of 1024 batches.

• Streaming Ensemble Algorithm (sea) dataset was originally introduced in [85]. It has
three continuous features, two of which affect the decision boundary while the third one
is noise. The two classes are determined by comparing the sum of the relevant features
with a threshold 𝜃. In our experiments, we set 𝜃 as done in [85, 32] for two variants of
sea-1 and sea-2. We also experimented on a third variant of this dataset as sea-3 with
values of 𝜃 = 8.0, 9.0, 7.5, 9.0. This threshold changes suddenly throughout the dataset,
resulting in abrupt drifts over the change points. Since concept drifts in this dataset
are discrete, ground truth of precise instants of concept drifts is available to us. This
allows us to evaluate the performance of the techniques in terms of sensitⅳity (recall)
and positⅳe predictⅳe value (precision). Each dataset contains 200 batches with a batch
size of 250 instances.

42

We also evaluated the performance of enlaudd using the following two real-world datasets,
both of which exhibit graduate drifts.

• Bellevue weather dataset (noaa). This periodic data was collected at Offutt Air Force
Base in Bellevue, Nebraska [87], and spans over 50 years (1949–1999). Data consists of
eight features, which are daily weather measurements, and two classes (‘‘rain’’ and ‘‘no
rain’’). This dataset has 605 batches, each with 30 instances. We used the first 36 batches
for training.

• Electricity dataset (elec). This dataset was introduced in [44], and used for the first time
in [36] to evaluate cdd techniques. It was collected from 07/May/1996 to 05/Dec/1998
in New South Wales, Australia, and consists of eight features affecting the change of
electricity price—a binary class label that is ‘‘up’’ or ‘‘down’’. This dataset contains a
total of 944 batches with a batch size of 48 instances, and the first 56 batches were used
for training. In our experiments we used the normalized version of this dataset from the
massⅳe online analysis (moa) framework [14].

3.2.2. Comparison of bagging vs. boosting and effects of verification with

the main classifier

We evaluated our algorithms through experiments using all nine datasets with two approaches
of our algorithm—bagging and boosting—each with different probabilities of 𝜌 = 0, 𝜌 = 1,
and 𝜌 = 0.5 for verification with the main classifier. The goal of this study was to compare
the performance of bagging vs. boosting approaches on datasets with different rates of drift
(i.e., gradual versus abrupt) as well the effects of verification with the main classifier on the
performance of these two approaches. The results are shown in Table 3.1, where a (𝜌 = 0)
denotes boosting without verification, a (𝜌 = 0.5) denotes boosting with 50% chance of
verification, a (𝜌 = 1) denotes boosting with verification on all time steps, b (𝜌 = 0) denotes
bagging without verification, b (𝜌 = 0.5) denotes bagging with 50% chance of verification, and
b (𝜌 = 1) denotes bagging with verification on all time steps. Figure 3.1 depicts this comparison
of the enlaudd approaches and their aforementioned variations in terms of the main classifier
accuracy.

From the results, we observe that boosting with at least some verification outperforms all the
other variations on most datasets. More specifically, on datasets exhibiting gradual drift (rcb
and real-world), the boosting technique clearly outperforms bagging on all these datasets. We
believe this is because adding a fresh new base classifier every batch of data to adapt to this
newly-arrⅳed batch (boosting) allows the ensemble to adapt to continuous changes better

43

Table 3.1: Experimental results of enlaudd boosting (a) and bagging (b) approaches with different probabilities
of verification with the main classifier (𝜌) on rcb, real-world, and sea datasets. The results are reported as the
mean (standard deviation) of 30 runs. The best accuracy and detection F1 score are shown in bold.

a (𝜌 = 0) a (𝜌 = 0.5) a (𝜌 = 1) b (𝜌 = 0) b (𝜌 = 0.5) b (𝜌 = 1)

rcb-c Detections 97.80 (6.52) 45.67 (6.52) 46.83 (4.26) 116.83 (9.97) 29.17 (3.13) 57.60 (5.75)

Accuracy 70.83 (1.20) 71.27 (1.20) 71.41 (0.94) 70.79 (1.03) 70.84 (1.27) 70.65 (1.04)

rcb-p Detections 98.43 (7.50) 45.13 (7.50) 44.40 (3.94) 114.87 (7.48) 27.43 (4.36) 55.57 (4.88)

Accuracy 72.67 (1.47) 72.08 (1.47) 72.16 (1.61) 70.45 (1.96) 70.93 (2.75) 70.35 (2.67)

rcb-e Detections 98.37 (6.52) 48.67 (6.52) 48.27 (4.03) 115.60 (9.43) 28.17 (3.74) 56.73 (5.38)

Accuracy 71.63 (1.20) 71.45 (1.20) 71.51 (1.19) 70.89 (1.31) 71.00 (1.28) 71.11 (1.08)

rcb-s Detections 96.80 (6.27) 46.93 (6.27) 44.83 (4.57) 116.27 (9.23) 28.00 (4.07) 54.57 (4.85)

Accuracy 72.15 (2.26) 72.38 (2.26) 72.11 (1.22) 70.59 (2.26) 70.18 (1.94) 70.53 (1.66)

noaa Detections 102.60 (16.75) 47.10 (5.76) 54.10 (10.71) 101.23 (7.63) 48.47 (4.81) 47.23 (4.77)

Accuracy 61.54 (1.50) 61.02 (1.42) 61.59 (1.64) 60.38 (1.23) 60.22 (1.40) 59.67 (1.85)

elec Detections 122.83 (5.62) 59.03 (4.69) 61.47 (4.49) 149.90 (7.58) 71.67 (5.19) 73.33 (6.27)

Accuracy 74.55 (0.82) 74.53 (0.77) 74.32 (0.85) 74.43 (0.75) 74.41 (0.86) 74.07 (0.75)

sea-1 Detections 25.73 (3.17) 12.40 (3.17) 12.00 (2.10) 25.70 (4.32) 7.00 (1.69) 13.03 (2.51)

Accuracy 93.36 (0.49) 93.09 (0.49) 93.39 (0.41) 93.27 (0.60) 93.30 (0.53) 93.39 (0.49)

Detection F1 score 0.11 (0.06) 0.19 (0.12) 0.21 (0.16) 0.12 (0.06) 0.12 (0.12) 0.21 (0.13)

sea-2 Detections 24.73 (4.02) 12.77 (4.02) 12.80 (2.20) 25.33 (3.92) 6.57 (1.71) 13.10 (2.95)

Accuracy 93.31 (0.44) 93.39 (0.44) 93.10 (0.59) 93.33 (0.68) 93.35 (0.51) 93.21 (0.52)

Detection F1 score 0.12 (0.06) 0.18 (0.11) 0.15 (0.12) 0.12 (0.06) 0.17 (0.15) 0.16 (0.10)

sea-3 Detections 24.63 (3.15) 12.30 (3.15) 11.90 (2.31) 25.30 (3.53) 7.43 (2.30) 12.97 (2.60)

Accuracy 93.25 (0.45) 93.24 (0.45) 93.09 (0.67) 93.20 (0.52) 93.33 (0.52) 93.21 (0.60)

Detection F1 score 0.09 (0.06) 0.20 (0.13) 0.20 (0.12) 0.12 (0.07) 0.13 (0.16) 0.20 (0.11)

44

RCB-C
68

69

70

71

72

73

74

RCB-P

66

68

70

72

74

76

RCB-E

69

70

71

72

73

74

RCB-S

66

68

70

72

74

76

NOAA

57

58

59

60

61

62

63

64

65

ELEC
71

72

73

74

75

SEA1
91.5

92

92.5

93

93.5

94

94.5

SEA2

91

91.5

92

92.5

93

93.5

94

94.5

SEA3
90.5

91

91.5

92

92.5

93

93.5

94

94.5

Bagging
B (ρ=0)
B (ρ=1)
B (ρ=0.5)

Boosting
A (ρ=0)
A (ρ=1)
A (ρ=0.5)

Figure 3.1: Comparison of enlaudd bagging and boosting approaches on rcb, noaa, elec, and sea datasets
according to the main classifier accuracy (vertical axis).

45

and thus perform better in the long run of cdd than re-training all base models every batch
(bagging). We suspect that bagging performs worse because the base models of the ensemble
cannot catch up in learning continuously-changing concepts.

On the other hand, on datasets exhibiting abrupt drift (e.g., sea datasets in table 3.1), the two
ensemble approaches perform comparably well. This is because concept drifts are now discreet,
which proⅵdes the bagging ensemble enough time to adapt its base models over time until the
occurrence of the next abrupt change.

Regarding the effects of verification with the main classifier on the performance of these two
approaches, we observe that some verification is beneficial in general to the performance of our
cdd approaches. Bagging did not perform well on any of the datasets without any verification,
and boosting only performed better in terms of average overall accuracy on few datasets without
verification (this is discussed later). This implies that verification with the main classifier is
an important step when the cdd techniques produce false positⅳes on detection of concept
drift. Furthermore, differences in achieved accuracy on datasets with continuous drifts that
have approⅺmately constant rates are insignificant when verification is done with probabilities
𝜌 = 1 and 𝜌 = 0.5. We suggest using verification with the probability 𝜌 = 0.5 when no prior
knowledge is available about the concept drift rate, and fine tune 𝜌 through further experiments,
if possible.

Lastly, we observe that on rcb-p, rcb-e, and rcb-s datasets, boosting achieved greater or
comparable accuracy without any verification. This is because these three datasets have varying
speeds of concept drift (‘‘acceleration’’ and ‘‘deceleration’’) causing the main classifier to fall
behind in reporting a correct loss (or lack of it thereof) in accuracy after a single batch of data.
In other words, we observe that the main classifier’s accuracy loses its validity as confirmation
to eⅺstence of concept drift when varying rates of concept drift eⅺst in data. We conclude
that, if prior knowledge about eⅺstence of varying rates of drifts is proⅵded, it is better not to
verify a change of loss of the main classifier and rely solely on the speculation of the ensemble
on emergence or continuation of concept drifts.

3.2.3. Comparison with other classifiers

We developed two baseline classifiers to further study and measure the performance im-
provements of the proposed enlaudd algorithm:

• a naïve classifier that naïvely assumes absence of drift in data, and performs as a con-
ventional classifier in a stationary enⅵronment,

46

• a persistent forecast classifier that assumes concept drift continuously occurring at every
time step. Therefore, it does not perform any cdd but simply remodels the main classifier
at every time step.

Intuitⅳely, the two baseline classifiers mentioned above represent two extremes in performance
yield in a changing enⅵronment. An ideal classifier operating in a non-stationary enⅵronment
would fall somewhere in between these two extremes. Such a classifier should be equipped with
a concept drift detector that actⅳely, if not proactⅳely, monitors the enⅵronment (i.e., incoming
data) to react ‘‘promptly’’ to changes. The appropriate course of action would typically involve
remodeling the main classifier only when necessary, thereby avoiding unnecessary training
costs during periods of data stability. In addition to the aforementioned baseline models, we
compare the performance of our proposed enlaudd algorithm with os-elm [97]. As for the
main classifier, all these cdd methods were run alongside a decision tree learner for all the
datasets considered. For enlaudd, we employed the boosting approach (a) with verification
with the main classifier with 𝜌 = 0.5 as this performed best overall in Table 3.1 experiments.

Table 3.2 demonstrates and compares the results of these experiments. Average accuracy
improvement (aai) measures the average improvement of accuracy over os-elm for each category
of datasets (rcb, real-world, and sea). Similarly, average F-score improvement (afi) indicates
the average improvement of F1-score for the sea datasets where ground truth for concept drift
times are available. Figure 3.2 demonstrates a ⅵsual comparison of the cdd techniques in terms
of the main classifier accuracy. To be specific, it compares naïve, persistent forecast, enlaudd
(boosting approach with 𝜌 = 0.5), and os-elm models on the benchmark datasets in terms of
the main classifier accuracy.

On gradual drift datasets, i.e., rcb and real-world datasets, enlaudd achieves comparable results
to os-elm but with significantly smaller number of detections, hence fewer re-modelings of
the main classifier. This is because the ensemble of base models in enlaudd is able to adapt
better to changes in the enⅵronment than os-elm by employing a weighted aggregation of
changes in the base models. This allows the ensemble to keep a memory of recurring patterns
in periodic datasets. Since we employed training loss in weighting and then aggregating the
ensemble base models, any base model that has the lowest loss will be gⅳen the highest weight
in aggregation of the base model changes signal. That means that if the data stream exhibits
recurring patterns, base models already trained on repeating patterns will be assigned a higher
vote, hence keeping a memory of recurring patterns in periodic datasets. This also allows the
drift detection algorithm to adapt better to ongoing changes by training an indⅳidual base
model on each incoming batch of data stream.

We further observed that verification with the main classifier is correlated to the rate at which
data changes. More specifically, verification is beneficial to drift detection when the changes

47

Table 3.2: Experimental results on rcb, real-world, and sea datasets. The results are reported as the mean
(standard deviation) of 30 runs. The best accuracy and detection F1 score between enlaudd and os-elm are
highlighted in bold.

Naïve Persistent Forecast enlaudd–a (𝜌 = 0.5) os-elm

rcb-c Detections 0.00 (0.00) 1,024.00 (0.00) 45.67 (4.17) 80.13 (27.86)

Accuracy 50.08 (0.00) 60.83 (0.00) 71.27 (1.31) 71.48 (2.17)

rcb-p Detections 0.00 (0.00) 1,024.00 (0.00) 45.13 (3.25) 77.10 (27.23)

Accuracy 72.93 (0.00) 62.02 (0.00) 72.08 (2.13) 75.13 (4.62)

rcb-e Detections 0.00 (0.00) 1,024.00 (0.00) 48.67 (4.34) 87.57 (29.40)

Accuracy 49.36 (0.07) 60.88 (0.00) 71.45 (1.17) 71.72 (1.96)

rcb-s Detections 0.00 (0.00) 1,024.00 (0.00) 46.93 (4.57) 86.77 (27.42)

Accuracy 55.45 (0.25) 61.60 (0.02) 72.38 (1.76) 72.42 (2.83)

aai -0.89

noaa Detections 0.00 (0.00) 569.00 (0.00) 47.10 (5.76) 57.10 (42.29)

Accuracy 70.44 (0.00) 66.59 (0.16) 61.02 (1.42) 61.00 (1.77)

elec Detections 0.00 (0.00) 888.00 (0.00) 59.03 (4.69) 118.03 (15.16)

Accuracy 74.88 (0.04) 80.34 (0.10) 74.53 (0.77) 73.18 (1.03)

aai 0.68

sea-1 Detections 0.00 (0.00) 200.00 (0.00) 12.40 (2.55) 15.10 (5.83)

Accuracy 89.67 (0.35) 93.90 (0.07) 93.09 (0.54) 92.27 (1.04)

Detection F1 score 0.00 (0.00) 0.03 (0.00) 0.19 (0.12) 0.09 (0.09)

sea-2 Detections 0.00 (0.00) 200.00 (0.00) 12.77 (1.99) 14.37 (4.45)

Accuracy 89.60 (0.30) 93.92 (0.09) 93.39 (0.38) 92.53 (0.86)

Detection F1 score 0.00 (0.00) 0.03 (0.00) 0.18 (0.11) 0.09 (0.09)

sea-3 Detections 0.00 (0.00) 200.00 (0.00) 12.30 (2.31) 13.23 (5.21)

Accuracy 89.80 (0.36) 93.94 (0.06) 93.24 (0.53) 91.89 (1.36)

Detection F1 score 0.00 (0.00) 0.03 (0.00) 0.20 (0.13) 0.09 (0.09)

aai 1.01

afi 0.10

48

RCB-C
50

55

60

65

70

75

RCB-P

65

70

75

80

RCB-E

50

55

60

65

70

75

RCB-S
55

60

65

70

75

NOAA

56

58

60

62

64

66

68

70

ELEC
70

72

74

76

78

80

SEA1

90

91

92

93

94

SEA2

90

91

92

93

94

SEA3
88

89

90

91

92

93

94

Naïve Persistent Forecast EnLauDD–A (ρ=0.5) OS-ELM

Figure 3.2: Comparison of naïve, persistent forecast, enlaudd (boosting approach with 𝜌 = 0.5), and os-elm on
rcb, noaa, elec, and sea datasets according to the main classifier accuracy (vertical axis).

49

occur slowly over time. However, when the rate of changes is fast, verification may even be
disadvantageous. This is because in fast-changing enⅵronments, the main classifier does not
have enough time to adapt to the changes once the cdd algorithm detects a cd. In other words,
by the time the main classifier is remodeled, the data might have changed so much that its
verification has lost its validity and utility for the cdd algorithm.

With the ground truth of the sea datasets available to us, we analyzed the performance of
different techniques in terms of recall and precision, and computed the F1 scores. The results
show the F1 scores of enlaudd to be twice better than that of os-elm while performing fewer
re-modelings of the main classifier (afi in Table 3.2). Moreover, enlaudd achieved at least sⅸ
times improvements in terms of F1 score compared to the persistent forecast classifier while
requiring re-modeling of the main classifier in at most 6% of the cases to maintain such score
in concept drift detection. Recall that a persistent forecast classifier is a conventional high-end
extreme of a benchmark that is re-trained blindly and continuously on all data batches, hence
demanding the highest computational costs. By achieⅵng sⅸ times improvements in detection
accuracy and at least 6% reduction in computation cost, we conclude that enlaudd is a preferred
method to balance prediction quality and computational costs resulting from re-trainings of
the main classifier over time.

Lastly, it is worth noting that the enlaudd algorithm is significantly more stable overall due to
less variance in the number of drift detections and accuracy than the os-elm algorithm.

3.3. Conclusion

In this chapter, we tackled the problem of cdd with challenges faced in big data stream
processing applications such as high detection accuracy, consumption of as much information
as is available at each streaming window to build a more accurate detection model, and coping
with multiple drift rate scenarios. As a ⅵable solution to this problem, we proposed an online
incremental streaming technique employing an ensemble of base classifiers to model concept
as a one-dimensional weighted aggregation of parameter changes in the base models. We also
took advantage of an efficient change-point detection algorithm applied on the aforementioned
one-dimensional signal to detect concept drift as drastic changes of the weighted aggregated
signal. Our proposed technique consists of two approaches, one based on bagging and the other
based on boosting with verification capability with the main classifier to handle data streams
that exhibit different rates of concept drift.

We conducted a comprehensⅳe study consisting of two baseline naïve and persistent forecast
classifiers, variations of our proposed technique, and a state-of-the-art technique on nine

50

synthetic and real-life streaming benchmark datasets. Using enlaudd, our proposed algorithm,
we achieved lower average variance in detection of concept drift by using bootstrap aggregation
of an ensemble of base classifiers trained as auⅺliary models alongside the main classifier. A
particular advantage of enlaudd is the ability to use any change-point detection algorithm,
especially light-weight methods such as Z-test, on the aggregated signal to detect extreme
deⅵations as a sign of concept drift. We also adopted bootstrapping on top of these techniques
to lower the overall variance of the detection algorithm. As shown by the results of our
experiments [3], this proⅵded cdd prediction performance and higher accuracy of the main
classifier. Our results also demonstrated vast improvements of concept drift detection accuracy
measured in F1 score. This includes an improvement of at least twice the F1 score over the
state-of-the-art method [97] with fewer re-modelings of the main classifier, and at least sⅸ
times improvement over a persistent forecast classifier with less than 7% of the number of
re-modelings on datasets with abrupt drifts, thus proⅵding a better trade-off between prediction
quality and computational cost.

In the next chapter, we continue to investigate the research questions posed in chapter 1, that
whether there eⅺsts a source of information that can be used to address both cdd and cda
problems in the same settings for big data stream processing applications. We will indeed
show that the answer to this quest is affirmatⅳe, and develop concepts and techniques that can
effectⅳely address both cdd and cda problems in the same settings.

51

Disorder increases with time because we
measure time in the direction in which
disorder increases.

—Stephen Hawking, A Brief History of Time (1988)

Chapter 4

Multivariate Vector Error-Correction Analysis of
Feature Importance Measures

Thus far, we have explored the problem of concept drift detection (cdd) in streaming data.
But when we considered the cda problem, we felt the need for a common ground to study
cdd&a in the same settings—if it eⅺsted, which we doubted, in particular since the question
was not raised in then eⅺsting literature. Preⅵous studies mainly focused on cdd&a as two
subproblems separately. However, our ⅵew is that the two are related and in fact well-rooted in
the same concept. Therefore, we hypothesized that these two problems can be studied as facets
of the same problem, thus benefit from a common source of information. In this chapter, we
propose a novel methodology to analyze and evaluate the ⅵability of models of data as common
ground for both concept drift detection and adaptation (cdd&a) tasks. Our analytical study
and the proposed methodology pave the way to finding answers to research questions 1–4 posed
in chapter 1.

4.1. Introduction

In chapter 3, we introduced Ensemble Learning Augmented Drift Detection (enlaudd) and
demonstrated its effectⅳeness: a boosting ensemble of extreme learning machine (elm) models,
to detect concept drift (cd). However, and as noted in [90], these techniques suffer from a
major shortcoming of extreme learning machine (elm) models, namely haⅵng high variance in
each elm base model whose hidden layer does not reveal much information beneficial to the
concept drift detection and adaptation (cdd&a) tasks.

52

To mitigate the aforementioned limitations, we posed the following questions:

1. What if we used a slightly more expensⅳe model than elm if we could afford the com-
puting resources to decrease the variance?

2. Does such a model proⅵde better detection information whose analysis and use could
prove beneficial to the task of cdd&a?

The first question addresses data stream processing application’s requirements. To this end, we
consider gradient boosted decision trees (gbdt) models [34] as a slightly more accurate, more
expensive model to replace elm to lower the bias and achieve higher accuracy.

The second question addresses the effectⅳeness of a ⅵable solution to the cdd&a problem.
To this end, we consider feature importance measures (fims). Breiman [18, 17] formalized
impurity-based feature importance measurements for random forests. Considering an ensemble
of classification or regression trees trained on a stationary dataset, distribution of features whose
scores are calculated and selected as split nodes do not change over time. However, this may
not be true for data streams in which cd occurs [20]. Study of fims has been a subject of
interest in offline machine learning, but not investigated thoroughly in data stream processing
applications, particularly those undergoing cd. Therefore, these fims represent a valuable and
worthwhile source of information for learning, detecting, adapting to, and even predicting cd
in streaming data. Impurity-based importance measurements are prone to high variance as
they are calculated on training data only, and miscalculate on continuous and high-cardinality
features. As a model-agnostic and more robust alternatⅳe, we also consider permutation feature
importance measurements. Permutation importance measurement is the decrease in a model’s
performance when a single feature value is randomly shuffled [18].

Wang et al. [91] demonstrated the effectⅳeness of gbdt for cda. Barddal et al. [12] performed
feature selection by training an Ada boosting ensemble of Hoeffding (online) tree stumps, but
its performance could suffer if only a few features are highly predictⅳe. Cassidy and Deⅵney
[20] applied two online feature scoring metrics to an ensemble of online random forests and
concluded that these metrics follow ⅵrtual cd. Gomes et al. [37] studied cdd using two
impurity-based feature scores from an incremental random forest and an ensemble of Hoeffding
adaptⅳe trees. However, both measures suffer from the limitations of impurity-based scoring
techniques [95].

So far, we considered the constraints and requirements of data stream processing applications
and studied the relationship between fims—which are analyzed from streaming data that
exhibit different characteristics of cd—and the predictability performance metric of the main
classifier. The two groups of fims that we studied—impurity-based importance measurements

53

and permutation importance measurements—are computed over an auⅺliary gbdt ensemble
model that runs in parallel to the main classifier but processes and analyzes the same streaming
data. As such, the two models used are decoupled: the main classifier, whose remodeling can
be potentially costly, has the task of processing streaming data with the goal of prediction on
test instances. The auⅺliary gbdt ensemble model is assigned the task of processing the same
streaming data with the goal of drift analysis. We specifically study the correlation of drift
information, i.e., the two types of fims extracted from the auⅺliary gbdt ensemble, with the
performance of the main classifier. Therefore, no detection or adaptation are performed so that
changes in fims and the main classifier in the face of cd can be monitored and analyzed with
no interference.

The main outcome of this study is proⅵding eⅵdence for strong correlation between fims
computed from a decoupled, cost-effectⅳe model with the performance of a more accurate but
more costly model over time which acknowledges data stream processing requirements and
encounters different types and rates of cd. Establishing the aforementioned correlation further
proⅵdes:

• strong eⅵdence to employ fims as a ⅵable source of drift information for cdd&a appli-
cations, that is, detection of and adaptation to changes reactⅳely,

• better understanding of the behaⅵor of cd in the underlying streaming data and processes,
and,

• a way to investigate prediction of cd, that is, detection of and adaptation to changes
proactⅳely.

A main contribution of this study is a novel approach on the cdd&a problem-solⅵng method-
ology. More specifically, we investigate the direct correlation of detection information with
the main classifier’s predictability performance rather than treating the problem as a black box,
comparing the performance metrics of the main classifier only after incorporating a cdd&a
technique.

4.2. Methodology

We propose the following methodology to study the relationship between the main classifier’s
performance and the fims.

54

4.2.1. Variables

As reⅵewed in chapter 2, cd is defined as a change in the joint probability distribution of the
dependent variable 𝑦 and the feature vector x between the times 𝑡𝑖 and 𝑡𝑖+1, as expressed in
eq. (7) [35, 61, 50].

𝑝𝑡𝑖+1(𝑦𝑗, x) ≠ 𝑝𝑡𝑖(𝑦𝑗, x) (7)

We propose a data stream processing system where batches of streaming data that might exhibit
cd, denoted as 𝐵𝑡 = {< 𝑋 𝑡

𝑁×𝐷, 𝑦
𝑡
𝑁 >}, for 𝑡 ≥ 1, are simultaneously proⅵded as test data to the

initially trained main classifier as well as the gbdt model, where 𝐷 is the dimension of feature
vector x ∈ 𝑋. The two models are decoupled and do not interact with each other throughout the
run of the streams. Figure 4.1 presents the architecture of our proposed data stream processing
system.

Main Classifier Performance
metric

Raw data (Xtest)

Feature
importance

measures

GBDT

Figure 4.1: Architecture of the proposed data stream processing system to study the relationship of the main
classifier’s performance metrics with feature importance measures computed from a gradient-boosting decision
tree used as an auxiliary model.

The accuracy and F1 scores of the main classifier at each time step 𝑡 are collected as predictability
performance metrics, and eventually modeled as two unⅳariate time series 𝒜𝑡 andℬ𝑡, respec-
tⅳely. We compute and model impurity-based feature importance measurements (𝒢𝑑,𝑡) and
permutation importance measurements (ℋ𝑑,𝑡), for each dimension 𝑑 ∈ 𝐷 as unⅳariate time
series models. We then represent impurity-based importance measurements of feature vector x
as a multⅳariate time series 𝒢𝑡 = {𝒢𝑑,𝑡}, for 1 ≤ 𝑑 ≤ 𝐷. Likewise, we represent permutation
importance measurements as a multⅳariate time series, ℋ𝑡 = {ℋ𝑑,𝑡}, for 1 ≤ 𝑑 ≤ 𝐷. Lastly, we
form four multⅳariate time series models out of these two importance measurements types and
the two predictability performance metrics, as denoted in eq. (8).

𝒫𝑡 ={𝒢𝑡, 𝒜𝑡 }
𝒬𝑡 ={𝒢𝑡,ℬ𝑡 }
ℛ𝑡 ={ℋ𝑡, 𝒜𝑡}
𝒮𝑡 ={ℋ𝑡,ℬ𝑡}

(8)

55

For instance,𝒫𝑡 = {𝒢𝑡, 𝒜𝑡} in eq. (8) denotes themultⅳariate time series model of impurity-based
feature importance measurements and the accuracy of the main classifier.

4.2.2. Hypotheses

Based on the research questions raised in section 4.1, we hypothesize that there eⅺstsmeaningful
relationship between fims computed from an auⅺliary model and a main classifier’s predictability
performance as it deteriorates while undergoing cd. Specifically, we consider the following:

• an online, incremental gbdt as the auⅺliary model,

• a main classification model that is at least as costly as the auⅺliary model in terms of
computational resources and data stream processing requirements,

• an impurity-based feature importance measurement 𝒢𝑑, which is the (normalized) total
least squares improvement contributed by x𝑑, as introduced in [34],

• a permutation-based feature importance measurementℋ𝑑, which is the change in mis-
classification after noising feature x𝑑 of test samples by random permutation [18, 17],

• the main classifier’s accuracy and F1 score as the predictability performance metrics,
denoted as 𝒜𝑡 andℬ𝑡, respectⅳely.

The null and alternatⅳe hypotheses for each type of fims and prediction performance metrics
are stated in null hypotheses 1 to 4 and hypotheses 1 to 4, as follows.

Null hypothesis (𝐻0) 1 There is no relationship between impurity-based importance mea-
surements computed by an online, incremental gbdt model and the main classifier’s accuracy
over time while each model analyzes streaming data exhibiting cd separately.

Hypothesis (𝐻1) 1 There exists statistically significant relationship between impurity-based
importance measurements computed by an online, incremental gbdt model and the main
classifier’s accuracy over time while each model analyzes streaming data exhibiting cd separately.

Null hypothesis (𝐻0) 2 There is no relationship between permutation importance measure-
ments computed by an online, incremental gbdt model and the main classifier’s accuracy over
time while each model analyzes streaming data exhibiting cd separately.

56

Hypothesis (𝐻1) 2 There exists statistically significant relationship between permutation
importance measurements computed by an online, incremental gbdt
model and the main classifier’s accuracy over time while each model analyzes streaming data
exhibiting cd separately.

Null hypothesis (𝐻0) 3 There is no relationship between impurity-based importance mea-
surements computed by an online, incremental gbdt model and the main classifier’s F1 score
over time while each model analyzes streaming data exhibiting cd separately.

Hypothesis (𝐻1) 3 There exists statistically significant relationship between impurity-based
importance measurements computed by an online, incremental gbdt model and the main
classifier’s F1 score over time while each model analyzes streaming data exhibiting cd separately.

Null hypothesis (𝐻0) 4 There is no relationship between permutation importance measure-
ments computed by an online, incremental gbdt model and the main classifier’s F1 score over
time while each model analyzes streaming data exhibiting cd separately.

Hypothesis (𝐻1) 4 There exists statistically significant relationship between permutation
importance measurements computed by an online, incremental gbdt model and the main
classifier’s F1 score over time while each model analyzes streaming data exhibiting cd separately.

4.2.3. Statistical methods

The goal of this study is to investigate if the main classifier’s predictability performance metrics
as time series models share a common long-term stochastic drift with fims as time series models
computed from a gbdt constructed and maintained in parallel to the main classifier over the
course of the stream. To this end, we have adopted and performed multⅳariate cointegration
analysis as a valid statistical method in econometrics to establish relationships among the
aforementioned time series models. The motⅳation for this choice follows.

Standard correlation statistics such as Pearson correlation coefficient (𝑟), rank correlation
coefficients such as Spearman’s 𝜌 and Kendall’s 𝜏, and Granger causality test can mislead to
spurious relationships when data is non-stationary [100, 46, 102, 67]. Therefore, employing
these tests over time series initiating from nonstationary drifting data can result in establishing
significant correlations that are either meaningless or are not directly causally related due to
eⅺstence of one or more confounding variables, which is usually the temporal component of
the series [39]. In addition, standard detrending techniques such as differencing do not rectify

57

the problem of spurious relationship when resulting data is still nonstationary or different
series are of different orders of integration [38, 26]. Moreover, long-term information of the
shared stochastic drift between studied variables (fims and performance metrics) may appear
in the levels of data, implying nonstationarity. In such cases, differencing leads to loss of the
aforementioned common long-term information. Therefore, standard statistical practices such
as vector autoregression (var) analysis—where the goal is to establish relationships among the
original variables in levels—or tests such as Granger causality become invalid [83].

Engle and Granger [33] proposed to consider the presence of cointegration when testing for
relationships between time series variables that are integrated of at least order one 𝐼 (1), which
means non-stationary time series variables must be differenced at least once to become stationary.
If two or more time series variables share a common stochastic trend and a linear combination
of them is a stationary time series or one with a lower common order of integration, they
are considered cointegrated. The cointegrating relationships among the variables can thus be
modeled as a vector error-correction (vec) model. The error-correction term in a vec model
measures both the deⅵation from the stationary mean at time 𝑡 − 1 in data as the error, and
the adjustment speeds at which the series correct to move around the common stochastic trend
after a short-term deⅵation in the last period. This allows for balancing the short-term dynamics
of the system with long-term tendencies of time series and their effects on one another. Besides
rectifying the issues described earlier above, a vec can be converted to a var model in levels,
a.k.a. cointegrated var model, to allow simulation and forecast of the future behaⅵor of the
series.

Since we deal with streaming data that exhibits cd, it is likely that any time series information
produced by analyzing non-stationary streaming data is non-stationary per se as well. Therefore,
we study the cointegration of the time series variables to avoid incorrect acceptance of spurious
results. Of the two popular cointegration tests in econometrics, the Engel-Granger method is
used to test the cointegrating relationships between two series at a time. However, it is likely
that the fims from the auⅺliary gbdt model cointegrate together with the performance metric
of the main classifier. Therefore, we adopt the Johansen method [49] in our study because it
allows for multiple simultaneously cointegrating variables, requires no pretesting, and proⅵdes
error correction features on the resulting vec model.

58

Statistical tests start
Are all variables

I(0)?
No

Are the variables
cointegrated?

Standard
stationary VAR,
or VAR in levels

VECM
(cointegrated

VAR)

VAR in
differences

No

Yes Yes

Figure 4.2: Steps of the proposed multivariate cointegration analysis.

4.3. Experiments, Results, and Analyses

4.3.1. Experimental Setup

The steps of our procedure for multⅳariate cointegration analysis are illustrated in Figure 4.2.
We perform this procedure on the four time series models of eq. (8), using data gathered by
running streams of all datasets in section 4.3.2 with no cdd&a technique applied in order to
analyze the behaⅵor of the main classifier in the face of cd in the long run.

We start by testing each unⅳariate time series model in 𝒫𝑡, 𝒬𝑡,ℛ𝑡, and 𝒮𝑡 for stationarity using
adf tests. The null hypothesis of the adf test is non-stationarity, and the alternatⅳe hypothesis
is stationarity.

If we can reject the null, we can determine that all unⅳariate variables in each of the multⅳariate
series are stationary. This in turn enables us to form a var in levels from the fims and the
performance metric of that multⅳariate time series model.

Otherwise, we use the Johansen method [49] to test if all unⅳariate variables in each of the
multⅳariate series are conintegrated. If the tests determine that the impact matrⅸ 𝐶 of the
resulting vec model has any rank 𝑟 > 0, we conclude that there is statistically significant
cointegration between fims of that multⅳariate series and the predictability metric with at
least one cointegrating relation (a stationary linear combination) between them. However, if
the tests determine that the impact matrⅸ 𝐶 of the resulting vec model has rank 𝑟 = 0, the
error-correction term disappears, and we can form a var in differences out of the fims and the
performance metric of that multⅳariate time series model.

59

4.3.2. Datasets

In our experiments, we used several synthetic and real-world datasets for a more thorough
analysis and understanding of the relationship between fims and the main classifier’s long-time
performance using data with different characteristics. These datasets share the same parameters
as those used in the experiments reported in chapter 3 except for the sea-3 dataset, as noted
below. We reⅵew these datasets again here for completeness. We used the following synthetic
datasets:

• Rotating checkerboard (rcb) [55]. We have used the parameters in [32], and considered
four rates of cd as constant (rcb-c), pulse (rcb-p), exponential (rcb-e), and sinusoidal
(rcb-s) each with a batch size of 1024 instances for a total of 400 batches.

• Streaming Ensemble Algorithm (sea) [85]. It has three continuous features, two of which
affect the decision boundary while the third one is noise. We used the threshold values
of 𝜃 considered in [85, 32] for sea-1 and sea-2, and used 𝜃 = 8.0, 9.0, 7.5, 9.0 for sea-3.
This threshold changes three times suddenly throughout the dataset, resulting in three
abrupt drifts. Each dataset consists of 200 batches of streams of size 250 instances each.

We also performed regression analysis on the following two real-world datasets, both of which
exhibit gradual periodic drifts.

• Bellevue weather dataset (noaa) [87]. This dataset consists of eight features as daily
weather measurements, and two classes (‘‘rain’’ and ‘‘no rain’’). It has 605 batches, each
containing 30 instances, with the first 36 batches used for training.

• Electricity dataset (elec) [44, 36]. This dataset consists of eight features affecting the
change of electricity price and two classes (‘‘up’’ and ‘‘down’’). It contains a total of 944
batches with a batch size of 48 instances. We used the first 56 batches for training.

4.3.3. Experiments and Results

The results of the augmented Dickey-Fuller (adf) tests are displayed in Table 4.1. The feature
importance is extracted and tested for staionarity for each feature of synthetic and real-world
datasets. Since importance measurements series 𝒢𝑡 andℋ𝑡 are multⅳariate, we rejected the null
of adf test for these series only if it could be rejected for all indⅳidual importance measurements
series comprising 𝒢𝑡 orℋ𝑡. The highest significance level achieved is noted in Table 4.1. Overall,

60

Table 4.1: Augmented Dickey-Fuller (adf) test stationarity test results.

Dataset Series adf Significance Conclusion

rcb-c 𝒜𝑡 Stationary (I(0)) 99% Standard stationary var

ℬ𝑡 Stationary (I(0)) 99% Standard stationary var

𝒢𝑡 Stationary (I(0)) 95%

ℋ𝑡 Stationary (I(0)) 99%

rcb-p 𝒜𝑡 Nonstationary – Test for cointegration

ℬ𝑡 Nonstationary – Test for cointegration

𝒢𝑡 Nonstationary –

ℋ𝑡 Stationary (I(0)) 95%

rcb-e 𝒜𝑡 Stationary (I(0)) 99% Test for cointegration

ℬ𝑡 Stationary (I(0)) 99% Test for cointegration

𝒢𝑡 Stationary (I(0)) 95%

ℋ𝑡 Inconclusive –

rcb-s 𝒜𝑡 Nonstationary – Test for cointegration

ℬ𝑡 Nonstationary – Test for cointegration

𝒢𝑡 Nonstationary –

ℋ𝑡 Stationary (I(0)) 99%

noaa 𝒜𝑡 Stationary (I(0)) 99% Test for cointegration

ℬ𝑡 Stationary (I(0)) 99% Test for cointegration

𝒢𝑡 Inconclusive –

ℋ𝑡 Stationary (I(0)) 90%

elec 𝒜𝑡 Stationary (I(0)) 95% Test for cointegration

ℬ𝑡 Nonstationary – Test for cointegration

𝒢𝑡 Nonstationary –

ℋ𝑡 Inconclusive –

sea-1 𝒜𝑡 Nonstationary – Test for cointegration

ℬ𝑡 Nonstationary – Test for cointegration

𝒢𝑡 Nonstationary –

ℋ𝑡 Inconclusive –

sea-2 𝒜𝑡 Nonstationary – Test for cointegration

ℬ𝑡 Nonstationary – Test for cointegration

𝒢𝑡 Nonstationary –

ℋ𝑡 Inconclusive –

sea-3 𝒜𝑡 Nonstationary – Test for cointegration

ℬ𝑡 Nonstationary – Test for cointegration

𝒢𝑡 Nonstationary –

ℋ𝑡 Inconclusive –

61

Table 4.2: The Johansen method test results for cointegration of feature importance measures (fims) with
accuracy. eig and trc refer to the eigenvalue statistic and trace statistic in the test, respectively.

Dataset Series eig Sig. lvl. trc Sig. lvl. Conclusion

rcb-c 𝒫𝑡 𝑟(3)—full rank 99% 𝑟(3)—full rank 99% vec

𝒬𝑡 𝑟(3)—full rank 99% 𝑟(3)—full rank 99% vec

rcb-p 𝒫𝑡 𝑟(1) 99% 𝑟(1) 99% vec

𝒬𝑡 𝑟(3)—full rank 99% 𝑟(3)—full rank 99% vec

rcb-e 𝒫𝑡 𝑟(3)—full rank 99% 𝑟(3)—full rank 99% vec

𝒬𝑡 𝑟(3)—full rank 99% 𝑟(3)—full rank 99% vec

rcb-s 𝒫𝑡 𝑟(1) 99% 𝑟(1) 99% vec

𝒬𝑡 𝑟(3)—full rank 99% 𝑟(3)—full rank 99% vec

noaa 𝒫𝑡 𝑟(2) 99% 𝑟(4) 99% vec

𝒬𝑡 𝑟(9)—full rank 99% 𝑟(9)—full rank 99% vec

elec 𝒫𝑡 𝑟(3) 99% 𝑟(2) 99% vec

𝒬𝑡 𝑟(7) 99% 𝑟(7) 99% vec

sea-1 𝒫𝑡 𝑟(0) — 𝑟(0) — vec or var in diff.

𝒬𝑡 𝑟(2) 99% 𝑟(3) 99% vec

sea-2 𝒫𝑡 𝑟(1) 99% 𝑟(1) 90% vec

𝒬𝑡 𝑟(4)—full rank 99% 𝑟(4)—full rank 99% vec

sea-3 𝒫𝑡 𝑟(0) — 𝑟(0) — vec or var in diff.

𝒬𝑡 𝑟(2) 99% 𝑟(3) 99% vec

62

Table 4.3: The Johansen method test results for cointegration of feature importance measures (fims) with F1
score. eig and trc refer to the eigenvalue statistic and trace statistic in the test, respectively.

Dataset Series eig Sig. lvl. trc Sig. lvl. Conclusion

rcb-c ℛ𝑡 𝑟(3)—full rank 99% 𝑟(3)—full rank 99% vec

𝒮𝑡 𝑟(3)—full rank 99% 𝑟(3)—full rank 99% vec

rcb-p ℛ𝑡 𝑟(1) 99% 𝑟(1) 99% vec

𝒮𝑡 𝑟(3)—full rank 99% 𝑟(3)—full rank 99% vec

rcb-e ℛ𝑡 𝑟(1) 99% 𝑟(1) 99% vec

𝒮𝑡 𝑟(3)—full rank 99% 𝑟(3)—full rank 99% vec

rcb-s ℛ𝑡 𝑟(1) 99% 𝑟(1) 99% vec

𝒮𝑡 𝑟(3)—full rank 99% 𝑟(3)—full rank 99% vec

noaa ℛ𝑡 𝑟(2) 99% 𝑟(4) 99% vec

𝒮𝑡 𝑟(9)—full rank 99% 𝑟(9)—full rank 99% vec

elec ℛ𝑡 𝑟(3) 99% 𝑟(2) 99% vec

𝒮𝑡 𝑟(7) 99% 𝑟(7) 99% vec

sea-1 ℛ𝑡 𝑟(1) 99% 𝑟(1) 99% vec

𝒮𝑡 𝑟(2) 99% 𝑟(2) 99% vec

sea-2 ℛ𝑡 𝑟(1) 99% 𝑟(0) – vec or var in diff.

𝒮𝑡 𝑟(4)—full rank 99% 𝑟(4)—full rank 99% vec

sea-3 ℛ𝑡 𝑟(1) 99% 𝑟(1) 99% vec

𝒮𝑡 𝑟(3) 99% 𝑟(3) 99% vec

63

the adf stationarity test results indicate the necessity to test for cointegration of multⅳariate
series 𝒫𝑡, 𝒬𝑡,ℛ𝑡, and 𝒮𝑡 on the next step except for the rcb-c dataset. We nonetheless tested
this dataset’s series alongside the others in order to verify the stationarity test results. Tables 4.2
and 4.3 demonstrate the results of the Johansen method to test for cointegration of impurity-
based and permutation importance measurements with accuracy (𝒫𝑡 and 𝒬𝑡) and F1 score (ℛ𝑡
and 𝒮𝑡), respectⅳely.

4.3.3.1 Gradual vs. Abrupt Drifts

As it can be seen in Table 4.1, among datasets with gradual drifts (rcb-c, rcb-p, rcb-e, rcb-s,
noaa, elec), we can accept the alternatⅳe hypothesis of stationarity of all importance mea-
surements and predictability performance series tested on the rcb-c dataset. The reason for
stationarity of all series in this dataset seems to be constant drift rate in this dataset. Therefore,
𝒫𝑡, 𝒬𝑡,ℛ𝑡, and 𝒮𝑡 can be modeled using a standard stationary vector autoregression (var) or
var in levels. However, this would not be the case for the other variants of the rcb dataset
where the drift rate is non-constant.

On datasets with abrupt drifts (sea variants, for example), performance metrics were unan-
imously nonstationary, and impurity-based importance measurements were stationary. Yet,
permutation importance measurements were stationary only for a subset of features. It appears
that the reason lies in the fact that every abrupt change in these datasets is permanent until the
next drift, hence resulting in a lasting deⅵation from the long-term trend.

The conintegration results shown in Tables 4.2 and 4.3 show that in all datasets exhibiting
gradual drift, the cointegration rank of the impact matrⅸ 𝐶 based on both eigenvalue and trace
statistic is 𝑟 > 0. The impact matrⅸ 𝐶 consolidates the long-term dynamics of each multⅳariate
series: deⅵation from the stationary mean as error and adjustment speeds to correct or revert
to the stationary mean over time. That means, there is highly significant eⅵdence that there
eⅺsts at least one cointegrating relation between any type of fims analyzed from the simpler
gradient-boosting decision tree (gbdt) auⅺliary model and both predictability performance
metrics of the main classifier in the face of cd.

Concerning our hypotheses stated in section 4.2.2, we reject null hypotheses 1 to 4, and accept
the alternatⅳe hypotheses 1 to 4 with significant eⅵdence proⅵded by the results on datasets
that exhibit gradual drifts.

It can be concluded that these fims follow the long-term trend of the performance metrics even
if any of these series are non-stationary. Moreover, even if the fims deⅵate from the performance
metrics in short-term (error), they revert (correct) to the long-term mean of the multⅳariate

64

series.

The conintegration results shown in Tables 4.2 and 4.3 are consistent with the stationarity results
of Table 4.1 on abrupt drift datasets. On these datasets, we can only reject the null hypotheses 2
and 4 and accept alternatⅳe hypotheses 2 and 4 for permutation importance measurements.
We fail to reject null hypotheses 1 and 3 on abrupt drift datasets. Since the abrupt changes are
sudden and persisting, we expect that the changes in importance measurements of features,
except the third noise feature on sea datasets, also persist for a longer time. That results in
fewer cointegrating relations between fims and performance metrics. Indeed, the experimental
results confirm that in series 𝒫𝑡 andℛ𝑡 there is hardly any meaningful relationship between
impurity-based importance measurements and either accuracy or F1 score.

4.3.3.2 Stable vs. Unstable Drift Rates

The rate of drift in rcb-c and rcb-e is constant and monotonic, respectⅳely. All multⅳariate
series are stationary in these two datasets, except for permutation importance measurements
(ℋ𝑡) on rcb-e. This is further supported by cointegration results where the impact matrⅸ 𝐶 is
full rank based on both eigenvalue and trace statistic for both importance measurements types
and accuracy.

On the other hand, the rate of drift is non-monotonic and periodic in rcb-p and rcb-s,
respectⅳely. The stationarity test results show that all series tested are non-stationary except for
permutation importance measurements. Conintegration tests results support this observation
where 𝐶 is restricted to reduced rank for impurity-based multⅳariate series 𝒫𝑡 andℛ𝑡.

Out of the two real-world datasets noaa and elec, noaa has a more consistent periodic behaⅵor,
that is, close to constant drift rate, and does not deⅵate drastically from its mean in long-term.
Therefore, it is not surprising that the stationarity of its performance metrics accuracy (𝒜𝑡) and
F1 score (ℬ𝑡) are significant. Non-stationarity of this dataset’s importance measurements is
either failed to be rejected or is inconclusⅳe. That means, while there is significant eⅵdence
for non-stationarity of some importance measurements, tests results were insignificant for the
others. The elec dataset, however, experiences a drastic change where data for two features
become available partially through the stream. The accuracy of the classifier in the face of these
changes and possibly other phenomenon inducing cd is less significantly stationary, and its
F1 score is non-stationary. Similar to noaa, the importance measurements computed on elec
dataset are either non-stationary or inconclusⅳe.

Our cointegration results are also consistent here, as for noaa most series tested are stationary
with a significance level of 95%, whereas for elec only accuracy is stationary with a significance

65

of 95%. Moreover, cointegration tests found more stationary linear combinations between fims
and performance metrics for noaa than elec, implying fims follow the long-term stochastic
trend of performance metrics accuracy and F1 score more stably.

We can conclude that gⅳen data with constant or monotonic rate of drift, classification models
perform more stably in the long run in terms of stationarity of both feature importance mea-
surements analyzed from data, and their predictability performance. In contrast, when proⅵded
with data exhibiting non-monotonic or periodic rate of drift, both importance measurements
and the predictability performance of classification models in long-term become nonstationary
and unstable in levels.

4.3.3.3 Impurity-based vs. Permutation Feature Importance Measurements

We observe that the conintegration results indicate that permutation importance measurements
are more stable in terms of following long-term trends of performance metrics because the
impact matrⅸ 𝐶 based on both eigenvalue and trace statistic is full rank on all datasets with
gradual drift except for elec. This means, we can form a stationary var in levels with an
additional lag out of the vec model and its error-correction term. Even for elec, permutation
importance measurements had a higher rank, that is, a larger number of cointegrating relations
with the performance metrics. Impurity-based importance measurements achieved this full
rank of cointegrating relations on more stable datasets with constant or monotonic rates of
drift.

Impurity-based importance measurements have the advantage of being computed as part of the
auⅺliary model construction; therefore, they are computationally less costly than permutation
importance measurements. The former is also more insightful as it abstracts impurity of
predictor and response variables according to some criterion. In our experiments, impurity-
based importance measurements had also much less short-term variance than permutation
importance measurements.

We can conclude that impurity-based importance measurements are a ⅵable source of drift
information on datasets with constant or monotonic rates of drift with the advantage of less
computational overhead, more insight on the behaⅵor of data, and less micro-variation. The
test results proⅵde eⅵdence for more consistency and reliability of permutation importance
measurements over impurity-based importance measurements if data exhibits periodic or non-
monotonic rates of drift, or if this prior information about data is unknown.

66

0 50 100 150 200 250 300 350 400
Time steps

0.2

0.4

0.6

0.8

Fe
at

ur
e

im
po

rt
an

ce
s

RCB-C
t

0, t
1, t

(a) rcb-c ⋅ 𝒫𝑡

0 50 100 150 200 250 300 350 400
Time steps

0.0
0.2
0.4
0.6
0.8
1.0

Fe
at

ur
e

im
po

rt
an

ce
s

RCB-P
t

0, t
1, t

(b) rcb-p ⋅ 𝒫𝑡

0 50 100 150 200 250 300 350 400
Time steps

0.2

0.4

0.6

0.8

Fe
at

ur
e

im
po

rt
an

ce
s

RCB-E
t

0, t
1, t

(c) rcb-e ⋅ 𝒫𝑡

0 50 100 150 200 250 300 350 400
Time steps

0.00

0.25

0.50

0.75

1.00

Fe
at

ur
e

im
po

rt
an

ce
s

RCB-S
t

0, t
1, t

(d) rcb-s ⋅ 𝒫𝑡

0 100 200 300 400 500 600
Time steps

0.2

0.4

0.6

0.8

1.0

Fe
at

ur
e

im
po

rt
an

ce
s

NOAA
t

0, t
1, t
2, t
3, t
4, t
5, t
6, t
7, t

(e) noaa ⋅ 𝒫𝑡

0 200 400 600 800
Time steps

0.0
0.2
0.4
0.6
0.8
1.0

Fe
at

ur
e

im
po

rt
an

ce
s

ELECTRICITY
t

0, t
1, t
2, t
3, t
4, t
5, t
6, t
7, t

(f) elec ⋅ 𝒫𝑡

0 25 50 75 100 125 150 175 200
Time steps

0.0

0.2

0.4

0.6

0.8

Fe
at

ur
e

im
po

rt
an

ce
s

SEA1
t

0, t
1, t
2, t

(g) sea-1 ⋅ 𝒫𝑡

0 25 50 75 100 125 150 175 200
Time steps

0.0

0.2

0.4

0.6

0.8

Fe
at

ur
e

im
po

rt
an

ce
s

SEA2
t

0, t
1, t
2, t

(h) sea-2 ⋅ 𝒫𝑡

0 25 50 75 100 125 150 175 200
Time steps

0.0

0.2

0.4

0.6

0.8

Fe
at

ur
e

im
po

rt
an

ce
s

SEA3
t

0, t
1, t
2, t

(i) sea-3 ⋅ 𝒫𝑡

Figure 4.3: Evolution of the accuracy (𝒜𝑡) and impurity-based feature importance measures (𝒢𝑡) undergoing
concept drift over time for the datasets.

67

0 50 100 150 200 250 300 350 400
Time steps

0.2

0.4

0.6

0.8

1.0

Fe
at

ur
e

im
po

rt
an

ce
s

RCB-C
t

0, t
1, t

(a) rcb-c ⋅ ℛ𝑡

0 50 100 150 200 250 300 350 400
Time steps

0.2

0.4

0.6

0.8

1.0

Fe
at

ur
e

im
po

rt
an

ce
s

RCB-P
t

0, t
1, t

(b) rcb-p ⋅ ℛ𝑡

0 50 100 150 200 250 300 350 400
Time steps

0.2

0.4

0.6

0.8

Fe
at

ur
e

im
po

rt
an

ce
s

RCB-E
t

0, t
1, t

(c) rcb-e ⋅ ℛ𝑡

0 50 100 150 200 250 300 350 400
Time steps

0.2

0.4

0.6

0.8

1.0

Fe
at

ur
e

im
po

rt
an

ce
s

RCB-S
t

0, t
1, t

(d) rcb-s ⋅ ℛ𝑡

0 100 200 300 400 500 600
Time steps

0.2

0.4

0.6

0.8

1.0

Fe
at

ur
e

im
po

rt
an

ce
s

NOAA
t

0, t
1, t
2, t
3, t
4, t
5, t
6, t
7, t

(e) noaa ⋅ ℛ𝑡

0 200 400 600 800
Time steps

0.0

0.2

0.4

0.6

0.8

1.0

Fe
at

ur
e

im
po

rt
an

ce
s

ELECTRICITY
t

0, t
1, t
2, t
3, t
4, t
5, t
6, t
7, t

(f) elec ⋅ ℛ𝑡

0 25 50 75 100 125 150 175 200
Time steps

0.2

0.4

0.6

0.8

Fe
at

ur
e

im
po

rt
an

ce
s

SEA1
t

0, t
1, t
2, t

(g) sea-1 ⋅ ℛ𝑡

0 25 50 75 100 125 150 175 200
Time steps

0.4

0.6

0.8

Fe
at

ur
e

im
po

rt
an

ce
s

SEA2
t

0, t
1, t
2, t

(h) sea-2 ⋅ ℛ𝑡

0 25 50 75 100 125 150 175 200
Time steps

0.4

0.6

0.8

Fe
at

ur
e

im
po

rt
an

ce
s

SEA3
t

0, t
1, t
2, t

(i) sea-3 ⋅ ℛ𝑡

Figure 4.4: Evolution of the accuracy (𝒜𝑡) and permutation feature importance measures (ℋ𝑡) undergoing concept
drift over time for the datasets.

68

0 50 100 150 200 250 300 350 400
Time steps

0.2

0.4

0.6

0.8

Fe
at

ur
e

im
po

rt
an

ce
s

RCB-C
t

0, t
1, t

(a) rcb-c ⋅ 𝒬𝑡

0 50 100 150 200 250 300 350 400
Time steps

0.0
0.2
0.4
0.6
0.8
1.0

Fe
at

ur
e

im
po

rt
an

ce
s

RCB-P
t

0, t
1, t

(b) rcb-p ⋅ 𝒬𝑡

0 50 100 150 200 250 300 350 400
Time steps

0.2

0.4

0.6

0.8

Fe
at

ur
e

im
po

rt
an

ce
s

RCB-E
t

0, t
1, t

(c) rcb-e ⋅ 𝒬𝑡

0 50 100 150 200 250 300 350 400
Time steps

0.00

0.25

0.50

0.75

1.00

Fe
at

ur
e

im
po

rt
an

ce
s

RCB-S
t

0, t
1, t

(d) rcb-s ⋅ 𝒬𝑡

0 100 200 300 400 500 600
Time steps

0.0

0.2

0.4

0.6

0.8

1.0

Fe
at

ur
e

im
po

rt
an

ce
s

NOAA
t

0, t
1, t
2, t
3, t
4, t
5, t
6, t
7, t

(e) noaa ⋅ 𝒬𝑡

0 200 400 600 800
Time steps

0.0
0.2
0.4
0.6
0.8
1.0

Fe
at

ur
e

im
po

rt
an

ce
s

ELECTRICITY
t

0, t
1, t
2, t
3, t
4, t
5, t
6, t
7, t

(f) elec ⋅ 𝒬𝑡

0 25 50 75 100 125 150 175 200
Time steps

0.0

0.2

0.4

0.6

0.8

Fe
at

ur
e

im
po

rt
an

ce
s

SEA1
t

0, t
1, t
2, t

(g) sea-1 ⋅ 𝒬𝑡

0 25 50 75 100 125 150 175 200
Time steps

0.0

0.2

0.4

0.6

0.8

Fe
at

ur
e

im
po

rt
an

ce
s

SEA2
t

0, t
1, t
2, t

(h) sea-2 ⋅ 𝒬𝑡

0 25 50 75 100 125 150 175 200
Time steps

0.0

0.2

0.4

0.6

0.8

Fe
at

ur
e

im
po

rt
an

ce
s

SEA3
t

0, t
1, t
2, t

(i) sea-3 ⋅ 𝒬𝑡

Figure 4.5: Evolution of the F1 score (ℬ𝑡) and impurity-based feature importance measures (𝒢𝑡) undergoing
concept drift over time for the datasets.

69

0 50 100 150 200 250 300 350 400
Time steps

0.2

0.4

0.6

0.8

1.0

Fe
at

ur
e

im
po

rt
an

ce
s

RCB-C
t

0, t
1, t

(a) rcb-c ⋅ 𝒮𝑡

0 50 100 150 200 250 300 350 400
Time steps

0.2

0.4

0.6

0.8

1.0

Fe
at

ur
e

im
po

rt
an

ce
s

RCB-P
t

0, t
1, t

(b) rcb-p ⋅ 𝒮𝑡

0 50 100 150 200 250 300 350 400
Time steps

0.2

0.4

0.6

0.8

Fe
at

ur
e

im
po

rt
an

ce
s

RCB-E
t

0, t
1, t

(c) rcb-e ⋅ 𝒮𝑡

0 50 100 150 200 250 300 350 400
Time steps

0.2

0.4

0.6

0.8

1.0

Fe
at

ur
e

im
po

rt
an

ce
s

RCB-S
t

0, t
1, t

(d) rcb-s ⋅ 𝒮𝑡

0 100 200 300 400 500 600
Time steps

0.2

0.4

0.6

0.8

1.0

Fe
at

ur
e

im
po

rt
an

ce
s

NOAA
t

0, t
1, t
2, t
3, t
4, t
5, t
6, t
7, t

(e) noaa ⋅ 𝒮𝑡

0 200 400 600 800
Time steps

0.0

0.2

0.4

0.6

0.8

1.0

Fe
at

ur
e

im
po

rt
an

ce
s

ELECTRICITY
t

0, t
1, t
2, t
3, t
4, t
5, t
6, t
7, t

(f) elec ⋅ 𝒮𝑡

0 25 50 75 100 125 150 175 200
Time steps

0.4

0.6

0.8

Fe
at

ur
e

im
po

rt
an

ce
s

SEA1
t

0, t
1, t
2, t

(g) sea-1 ⋅ 𝒮𝑡

0 25 50 75 100 125 150 175 200
Time steps

0.4

0.6

0.8

Fe
at

ur
e

im
po

rt
an

ce
s

SEA2
t

0, t
1, t
2, t

(h) sea-2 ⋅ 𝒮𝑡

0 25 50 75 100 125 150 175 200
Time steps

0.4

0.6

0.8

Fe
at

ur
e

im
po

rt
an

ce
s

SEA3
t

0, t
1, t
2, t

(i) sea-3 ⋅ 𝒮𝑡

Figure 4.6: Evolution of the f1 score (ℬ𝑡) and permutation feature importance measures (𝒢𝑡) undergoing concept
drift over time for the datasets.

70

4.3.3.4 Evolution of Feature Importance Measurements

While Tables 4.1 to 4.3 proⅵde a statistical analysis of the relationship between fims and the
predictability performance metrics of the main classifier, we can further observe the evolution
of these series over time more closely in Figures 4.3 to 4.6. For demonstration purposes, we
have applied a Saⅵtzky–Golay smoothing filter to impurity-based and permutation importance
measurements series 𝒢 and ℋ respectⅳely to reduce noise and emphasize the long-term trends.
The statistical tests in Tables 4.1 to 4.3, however, were conducted on the raw series with no
smoothing applied.

We can notice how the evolution of either impurity-based or permutation importance mea-
surements proⅵde insight into changes of indⅳidual features of data over time, and how they
correlate with the classifier’s predictⅳe performance. The fims in all synthetic datasets (rcb and
sea) proⅵde a faithful, even more clear representation of the classifier’s performance metrics.

In noaa, there is a pronounced drift at around time step 350, which might be due to missing
data. While this drift is not much noticeable ⅵsually, it affects the classifier’s performance
nonetheless. This phenomenon, however, is better seen ⅵa the lens of fims in Figure 4.4e.
Features 0–3 (temperature, dew point, sea level pressure, ⅵsibility) and 5–7 (maⅺmum sustained
wind speed, maⅺmum temperature, minimum temperature) gained importance after this drift,
whereas feature 4 (average wind speed) lost some importance.

For instance, in Figures 4.3f, 4.4f, 4.5f and 4.6f, we can observe that (zero-indexed) features 0, 1,
5, 6, and 7 had no impact on the predictability performance of the classifier until around time step
300, likely due to missing data. After that, the importance of features 5–7 increased significantly,
whereas the importance of feature 2 decreased. Features 3 and 4 remained consistent, and
features 0 and 1 never had any impact on the classifier’s performance throughout the stream.
This behaⅵor is also reflected in the classifier’s performance metrics, where the accuracy and F1
score of the classifier became unstable and deteriorated significantly approⅺmately after time
step 300.

Lastly, in sea datasets, we can observe that the abrupt drifts affect the relevant features 0 and 1
almost equally significantly, whereas the importance of the irrelevant feature 2 (noise) remains
low and stable. We conclude that the fims proⅵde valuable insight into the behaⅵor of the
classifier in the face of cd without prior knowledge of the drifts or the predictⅳe relevance of
the features to the target variable.

71

4.4. Conclusion

In this chapter, we studied the relationship between feature importancemeasures (fims) analyzed
from streaming data exhibiting different characteristics of concept drift and the predictability
performance metric of the main classifier considering data stream processing application con-
straints and requirements. We considered two groups of fims: impurity-based and permutation
feature importance measurements, which are computed over an auⅺliary gradient-boosting
decision tree (gbdt) ensemble that runs parallel to the main classifier but processes and analyzes
the same streaming data more efficiently. As such, the two models used are decoupled: the
main classifier has the task of processing the streaming data with the goal of prediction on test
instances whose remodeling can be potentially costly. The auⅺliary gbdt ensemble has the
task of processing the same streaming data with the goal of concept drift detection (cdd) and
possibly adaptation of the main classifier to changes in data, but consuming less computational
resources and respecting data stream processing constraints. We specifically studied the correla-
tion of detection information, that is, the two types of fims extracted from the auⅺliary gbdt
ensemble, with the performance of the main classifier.

The main outcome of this study is proⅵding eⅵdence for strong correlation between fims
computed from a decoupled, cost-effectⅳe model with the performance of a costly, though
more accurate model over time which acknowledges data stream processing requirements and
encounters different types and rates of cd.

A key contribution of this study is a novel systematic approach on the concept drift detection
and adaptation (cdd&a) problem-solⅵng methodology. Specifically, we investigated the direct
correlation between detection information and the predictⅳe performance of the main classifier,
rather than treating the problem as a black box. The traditional approach typically evaluates the
main classifier’s performance only after incorporating a cdd&a technique, without considering
whether the selected source of information for the cdd&a task has actual meaningful, non-
spurious correlation with the classifier’s long-term performance. In contrast, our novel approach
has enabled us to analyze the long-term dynamics of the performance of the classifier in the
presence of cd and its relationship to fims as a potential source of detection information.

We further analyzed the aforementioned correlation in regard to major characteristics of data
with cd, that is, rate of drift (gradual vs. abrupt) and stability/predictability of drift (periodicity
and monotonicity).

We conclude that the two types of fims studied follow the long-term stochastic trend of
the performance metrics on gradual drift types of datasets even if any of these fims or the
performance metrics themselves are nonstationary. Moreover, our results demonstrated that

72

even if the fims deⅵate from the performance metrics in short-term, they revert to the long-term
trend of the performance metrics.

In regard to characteristics of data with cd, our results proⅵde significant eⅵdence that gⅳen
data with constant or monotonic rate of drift, classification models perform more stably in
the long run in terms of stationarity of both fims analyzed from data, and their predictability
performance. In contrast, when proⅵded with data exhibiting non-monotonic or periodic rates
of drift, both fims and the predictability performance of classification models in long-term
become nonstationary and less stable.

Our results also indicated that impurity-based feature importance measurements are a ⅵable
source of detection information on datasets with constant or monotonic rates of drift with
the advantage of incurring less computational overhead, more insight on the behaⅵor of data,
and less micro-variation. The test results proⅵde eⅵdence for more consistency and reliability
of permutation importance measurements over impurity-based importance measurements if
data exhibits periodic or non-monotonic rates of drift, or if this prior information about data is
unknown.

In summary, by establishing the relationship between fims and classifier’s performance metrics,
we proⅵde:

• strong eⅵdence to employ fims as a ⅵable source of detection information for cdd&a
applications, that is, detection of and adaptation to changes reactⅳely,

• better understanding of the behaⅵor of cd in the underlying streaming data and processes,
and,

• a way to investigate prediction of cd, that is, detection of and adaptation to changes
proactⅳely.

We published the results of this study in [4]. In chapter 5, we will leverage the methodology
and results of this study to propose a novel cdd&a framework that is founded on the evolution
of the fims as a common source of information for both cdd&a tasks.

4.4.1. Limitations and Future Work

The augmented Dickey-Fuller (adf) tests of stationarity are parametric tests which assume
that the residuals of the regression model used in the test are normally distributed. In our
study, we did not test for the normality of these residuals. Future research could consider using
non-parametric tests for stationarity, such as the Phillips-Perron test [72].

73

Additionally, the Johansenmethod is vulnerable to data with structural changes. We noticed this
shortcoming specifically in datasets exhibiting abrupt drifts. A future study can consider other
cointegration tests that are more resilient to structural breaks, such as the Maki cointegration
test [64].

In regard to training the cointegrating models, there is need for initial training with relatⅳely
large amounts of long-term data in order to achieve an accurate estimation of the cointegrated
vec models. While more training data leading to more accurate modeling of long-term trends
stands to be the case, we have demonstrated that this modeling can be performed incrementally
and in an online fashion in a data stream processing setting.

In regard to the predictability performance metrics of the main classifier, we can consider other
metrics such as prequential auc [19] that are better suited to online streaming data processing.

A major by-product of the cointegration analysis is the vec model of the fims and performance
metrics which consolidates the long-term dynamics of the system. We plan to investigate
application of this model to forecast changes in the performance of the classifier when facing
cd.

74

—It’s not possible.
—No, it’s necessary.

Interstellar (2014)†

Chapter 5

Amytis: A Unified Framework for Concept Drift
Detection, Adaptation, and Resolution

In this chapter, we present a unified concept drift detection, adaptation, and resolution frame-
work, called amytis, which is based on the multⅳariate vector error-correction analysis of
feature importance measures (fims) proposed in chapter 4. The framework is multi-level and
uses fims as a first-level abstraction of changes (concept drift) in data as the common source
of information to address both concept drift detection and concept drift adaptation tasks as
two facets of the same problem. In this chapter, we will proⅵde details of this framework, its
components, and the methodology we used to implement it. Additionally, we introduce the
notion of concept drift resolution (cdr) in the context of concept drift in the stream together
with a novel solution for the first time to the best of our knowledge.

We use the same cd problem formulation and notations as in chapters 3 and 4, but unlike the
preⅵous chapters, we will use superscript instead of subscript, e.g. 𝑦 𝑡 instead of 𝑦𝑡, to denote
the time index of the data streams.

†This dialogue between the characters Cooper (a human pilot) and CASE (a robot with advanced ai) occurs
when Cooper is trying to dock a spacecraft with a rotating space station. The scene is a metaphor for the
challenges of adapting to never-before-seen situations, and conflicting decisions between the human and the
machine due to the latter’s inability to improvise and adapt to the new environment.

75

FIMs

Main Learner

Predictions

CDACDA

CDDCDD

CDRCDR

FIM
FIM

FIM

GBDT (Psi)

Meta-GBDT (Xi)Meta-GBDT (Xi)

Performance

X

y y

y

y

Predictions

Adaptive Stationary
Window

Concept Drift
Resolution

Concept Drift
Resolution

Feature Importance AnalysisFeature Importance Analysis

Predictions

y

Figure 5.1: The architecture of the proposed unified framework.

5.1. Proposed Framework

The high-level ⅵew of the proposed framework is shown in Figure 5.1. The inference (testing
phase) and training phase are presented in algorithms 3 and 4, respectⅳely. The train phase is
performed whenever the ground truth 𝑦 𝑡 becomes available for time 𝑡. The framework consists
of the following five main components:

• The Main Learner

• Feature Importance Analysis

• Concept Drift Adaptation

• Concept Drift Detection

• Concept Drift Resolution

Each of these components is described in detail in the following subsections.

76

Algorithm 3: Amytis concept drift detection, adaptation, and resolution algorithm—infer-
ence phase

Input: Batches of data 𝐵𝑡 = {𝑋 𝑡
𝑁×𝐷, 𝑦

𝑡
𝑁}, 𝐵

𝑡+1 = {𝑋 𝑡+1
𝑁×𝐷}, 𝑡 = 1, 2, …

1 Compute feature importance measurements 𝒢 𝑡
𝑁×𝑑 (eqs. (9) to (12))

2 Find predictions ̂𝑦Ξ ,𝑡+1
𝑁 by performing concept drift adaptation (algorithm 5)

3 Store predictions from concept drift adaptation (̂𝑦Ξ ,𝑡+1
𝑁) as predictions from the algorithm

̂𝑦 𝑡+1𝑁
4 if Concept Drift Detection is enabled then
5 Perform concept drift detection (algorithm 6)
6 Store whether concept drift was detected as cd

7 if Concept Drift Resolution is enabled then
8 Make inference on the MainLearner on test data 𝑋 𝑡+1

𝑁×𝐷 to get predictions

̂𝑦𝑀𝑎𝑖𝑛𝐿𝑒𝑎𝑟𝑛𝑒𝑟 𝑡,𝑡+1
𝑁

9 Perform concept drift resolution on prediction from the concept drift adaptation

(̂𝑦Ξ ,𝑡+1
𝑁) and predictions from the MainLearner (̂𝑦𝑀𝑎𝑖𝑛𝐿𝑒𝑎𝑟𝑛𝑒𝑟 𝑡,𝑡+1

𝑁) (algorithm 7)
10 Store resulting predictions from concept drift resolution as predictions from the

algorithm ̂𝑦 𝑡+1𝑁
11 return ̂𝑦 𝑡+1𝑁 , cd if concept drift detection was performed

Algorithm 4: Amytis concept drift detection, adaptation, and resolution algorithm—train
phase

Input: Batches of data 𝐵𝑡 = {𝑋 𝑡
𝑁×𝐷, 𝑦

𝑡
𝑁}, 𝑡 = 1, 2, …

1 Maintain Ψ 𝑡 and Ξ 𝑡 models
2 Train model Ψ 𝑡 incrementally on train data 𝐵𝑡

3 Train model Ξ 𝑡 incrementally on the most up-to-date meta-matrⅸM⊚,𝑡−1
𝑁×𝐷+1

4 if Concept Drift Detection is enabled and concept drift cd has been detected then
5 Maintain the MainLearner
6 if Concept Drift Resolution is enabled then
7 Maintain a recent window of the performance measurements of the Ξ 𝑡 model and the

main learner on latest ground truth available

77

5.1.1. The Main Learner

The main learner is a generic classification or regression model used to predict the target 𝑦
from the feature vector x at each window of the stream. The main learner is trained mainly on
the initial training data. However, depending on the maintenance strategy, it may be retrained
on the new data arrⅳing in the stream and is prone to concept drifts, which may affect its
performance. We assume that maintaining the main learner is at least as computationally
expensⅳe as the cdd&a strategy adopted to necessitate the use of an auⅺliary model for cdd&a
tasks.

5.1.2. Feature Importance Analysis

The goal of this component is to compute the feature importance measures (fims) of the raw
data stream features over time. This serves as a first-level abstraction of data, with the aim of
capturing the evolⅵng dynamic relationship between the raw data features and target. This
step acts as the foundation on which we built the cdd and cda components.

To this end, we train a gradient-boosting decision tree (gbdt) model, called Ψ , incrementally
and online on raw data features and target. The learning task of this model is the same as
the main learner: the predictor is x and the response is 𝑦. However, unlike the main learner
which is concerned with minimizing the classification error, we are interested in the feature
importance scores of x when constructing and maintaining this model. Thus, we analyze the
fims of the raw data features from the Ψ model.

Specifically, we compute and model impurity-based feature importance measurements as 𝒢 𝑡
𝑑

and permutation importance measurementsℋ 𝑡
𝑑 for each dimension 𝑑 ∈ 𝐷 as unⅳariate time

series models.

In the following discussion, we drop the index 𝑡 for breⅵty, assuming all variables are at time 𝑡
of the stream.

The impurity-based feature importance measurement 𝒢𝑑 is the normalized average total least
squares improvement, denoted as FIM in eqs. (9) to (12), contributed by x𝑑 across all 𝑀Ψ trees
in the ensemble Ψ [71].

Let us assume that x𝑑 is the feature that resulted in the best split in node 𝑐𝑑,𝑠 in tree 𝑠 ∈ Ψ , that
is, the Friedman’s mean squared error (mse) criterion [34, p. 1202, eq. (35)] reduced the most
for this feature during training.

Let us also consider 𝑁𝑐 as the number of samples in node 𝑐𝑑,𝑠, 𝑁𝑐,𝑙 as the number of samples in

78

the left child node of 𝑐𝑑,𝑠, 𝑁𝑐,𝑟 as the number of samples in the right child node of 𝑐𝑑,𝑠, and 𝐶𝑑,𝑠
as the set of all nodes 𝑐𝑑,𝑠 that split on feature x𝑑 in tree 𝑠. Lastly, FMSI𝑐, FMSI𝑐,𝑙, and FMSI𝑐,𝑟
are the Friedman’s mse criterion values (impurities) of nodes 𝑐𝑑,𝑠 and its left and right child
nodes, respectⅳely.

The feature importance FIM𝑑,𝑠,𝑐 of feature x𝑑 in node 𝑐𝑑,𝑠 of tree 𝑠 is computed as the reduction
in the Friedman’s mse criterion in node 𝑐𝑑,𝑠 after splitting on feature x𝑑, weighted by the number
of samples in node 𝑐𝑑,𝑠 and adjusted by the weighted sum of the impurities of the left and right
child nodes of 𝑐𝑑,𝑠. This is shown in eq. (9).

FIM𝑑,𝑠,𝑐 = 𝑁𝑐 × FMSI𝑐 − 𝑁𝑐,𝑙 × FMSI𝑙 − 𝑁𝑐,𝑟 × FMSI𝑟 (9)

The importance FIM𝑑,𝑠 of feature x𝑑 in tree 𝑠 is then computed as the sum of the feature
importances of all nodes in 𝐶𝑑,𝑠, as shown in eq. (10).

FIM𝑑,𝑠 = ∑
𝑐∈𝐶𝑑,𝑠

FIM𝑑,𝑠,𝑐 (10)

The average importance FIM𝑑 of feature x𝑑 is then computed across all trees 𝑠 in the ensemble
Ψ , as shown in eq. (11).

FIM𝑑 =
1

𝑀Ψ

𝑀Ψ

∑
𝑠=1

FIM𝑑,𝑠 (11)

The impurity-based feature importance measurement 𝒢𝑑 is then computed as the normalized
average of the feature importances FIM𝑑 across all trees in the ensemble Ψ , as shown in eq. (12).

𝒢𝑑 =
FIM𝑑

∑𝐷
𝑑=1 FIM𝑑

(12)

These impurity-based importance measurements of feature vector x are then represented as a
multⅳariate time series 𝒢𝑡 = {𝒢 𝑡

𝑑}, for 1 ≤ 𝑑 ≤ 𝐷.

Likewise, we denote permutation importance measurements as a multⅳariate time series
ℋ𝑡 = {ℋ 𝑡

𝑑}, for 1 ≤ 𝑑 ≤ 𝐷. The permutation-based feature importance measurement ℋ 𝑡
𝑑 is

the change in misclassification after noising feature x𝑑 of test samples at time 𝑡 by random
permutation [18, 17].

79

5.2. Concept Drift Adaptation

The goal of this step is to proactⅳely and continuously track the changes in the fims as a
reflection of the changes in the concept. We are interested in analyzing the fims from the
preⅵous step and their association with the targets 𝑦. Such model is used to adjust for the
changes in the concept as the importance of features in relation to the target evolves over time.
This allows the model to learn the evolⅵng patterns as a second-level abstraction of data, and
make robust temporally-adaptⅳe predictions over the course of the stream.

The idea behind our cda algorithm, described in algorithm 5, is to learn the evolution of the
concept by modeling the changes in the fims of the raw data features, analyzed from the Ψ
model during the feature importance analysis phase. This multi-level analysis is similar to
stacked generalization, where the out-of-sample predictions of the first-level models are used
as input to the second-level model. However, stacked generalization techniques such as the
super learner [56] are challenging to implement in streaming data applications due to high
computational cost of training and maintaining the models. Moreover, each time window of
the stream can potentially contain a different distribution of the data, which makes it difficult
to train a single model that can perform and generalize well across all time windows. Lastly,
cross-validation is not feasible in streaming data applications, as it requires the entire dataset to
be available at once, and must ensure to preserve the temporal order of the data.

Therefore, we consider a second-level meta-learner Ξ with the task of adapting to the evolution
of the fims of the raw data features as well as adjusting for the out-of-sample prediction errors
of the Ψ model, both in relation to targets 𝑦. To this end, we create a meta-matrⅸM⊚ from
the fims in the preⅵous step as the first 𝑑 columns. This will proⅵde the meta-learner Ξ with
the necessary information for the first learning task: modeling the changes in the fims of the
raw data features. The last column/feature of the meta-matrⅸ is the out-of-sample predictions
of the Ψ model ̂𝑦Ψ at time 𝑡 on test data at time 𝑡 + 1. This allows the meta-learner to learn and
correct possible errors in the predictions of the Ψ model. Overall, the meta-matrⅸM⊚ is used
as the predictor for the gbdt model Ξ .

Let M⊚ ∈ ℝ𝑁×(𝑑+1) be a matrⅸ defined as the horizontal concatenation of 𝒢𝑁×𝑑 and ̂𝑦Ψ𝑁×1,
where𝒢𝑁×𝑑 is the matrⅸwhose rows consist of vectors of fims computed at time 𝑡, i.e., 𝒢𝑑 orℋ𝑑,
identical for 𝑁 samples of the current batch, and ̂𝑦Ψ𝑁×1 is a column vector of the out-of-sample
(time 𝑡 + 1) predictions of the Ψ model. This is shown in eq. (13).

M⊚ = [𝒢𝑁×𝑑 ̂𝑦Ψ𝑁×1] ∈ ℝ𝑁×(𝑑+1) (13)

The response for the Ξ model is target 𝑦 at time 𝑡 + 1. Therefore, training is done only when

80

Algorithm 5: Concept Drift Adaptation inference

Input: Feature importance measurements 𝒢 𝑡
𝑁×𝑑, models Ψ 𝑡 and Ξ 𝑡, test data 𝑋 𝑡+1

𝑁×𝐷
1 Make inference on Ψ 𝑡 model on test data 𝑋 𝑡+1

𝑁×𝐷 to get predictions ̂𝑦Ψ
𝑡,𝑡+1

𝑁
2 Build the meta-matrⅸM⊚,𝑡 using feature importance measurements 𝒢 𝑡

𝑁×𝑑 and predictions

from the Ψ 𝑡 model (̂𝑦Ψ
𝑡,𝑡+1

𝑁) (eq. (13))

3 Make inference on Ξ 𝑡 model on meta-matrⅸM⊚,𝑡 to get predictions ̂𝑦Ξ
𝑡,𝑡+1

𝑁
4 return Predictions from the Ξ 𝑡 model (̂𝑦Ξ ,𝑡+1

𝑁)

ground truth 𝑦 𝑡+1 becomes available. It is worth mentioning that even though the dependent
variable of the Ξ model is the same as that of the Ψ model, the objectⅳes of the two models
are different. The learning objectⅳe of the Ψ model is analysis and computation of the fim
s, whereas the learning objectⅳe of the Ξ model is to adjust for changes in the concept by
correcting the errors in the out-of-sample predictions of the Ψ model augmented by fims
computed in the preⅵous step. This is accomplished by tracking the changes in the fims of the
raw data features and the out-of-sample predictions of the Ψ model.

At inference, the predictions of theΞ model on test data are used as surrogate to the predictions
of the main classifier. This proactⅳe approach serves as our first and major line of defense
against concept drifts in the stream. The components used so far, that is, the feature importance
analysis using the Ψ model, and the concept drift adaptation using the Ξ model, are both
decoupled from the main classifier and run in parallel to it.

5.3. Concept Drift Detection

In a streaming data application we might be interested in knowing when a concept drift has
occurred in addition to adapting to it. We propose a novel technique to detect concept drifts in
the stream based on the same fims from the Ψ ensemble and their modeling in the Ξ ensemble.
This is done by analyzing the performance of theΞ model whenever the ground truth 𝑦 becomes
available. While analysis of the performance of the main classifier has been well studied in the
literature, our proposed solution technique offers several advantages over eⅺsting methods.
First, it is based on analysis of the fims of the raw data features, which are more informatⅳe and
robust than considering the raw data features themselves. Second, the fims are decoupled from
the main classifier, and are more likely to be less affected by the concept drifts than the main
classifier. Lastly, consistent monitoring of the main classifier’s performance requires continuous
training of it at every time window can be computationally expensⅳe, depending on the main

81

classifier’s compleⅺty. On the other hand, the Ψ and Ξ models are more lightweight, trained
incrementally with low computational cost, and are independent of the main classifier.

The intuition behind the proposed cdd technique is detecting whether an adaptⅳe window
within a recent detection window is stationary or not. This is done by finding and maintaining
the largest stationary window within the detection window, and determining if the adaptⅳe
window can get minimized due to non-stationarity at the end of the detection window. This is
formalized in algorithm 6. Statements in the algorithm starting with ▷ are comments.

While the proposed change-point detection algorithm is general enough to be applied to any
time series data, we focus more on a recent window over the performance of the model Ξ up to
the point at which ground truth is available. This performance time series model is denoted as
𝒫 𝑡−1 in algorithm 6. In other words, we look for detecting recent period of non-stationarity in
the performance of theΞ model as a reflection of recent changes in the concept. Non-stationary
period is determined using augmented Dickey-Fuller (adf) test [27].

The detection window is a recent window of 𝒫 𝑡−1, denoted as 𝒦 𝑡−1 = 𝒫 𝑡−1−𝑘∶𝑡−1, where
|𝒦 𝑡−1| = 𝑘. The size of the detection window 𝑘 determines the number of recent performance
measurements of the Ξ model to consider for detecting concept drifts. The adaptⅳe window
𝒲 𝑡−1 within the detection window 𝒦 𝑡−1 changes size based on stationary analysis where
|𝒲 𝑡−1| = 𝜔. 𝒲 𝑡−1 is defined in eq. (14).

𝒲 𝑡−1 = 𝒦 𝑡−1−𝑘+𝑝1∶𝑡−1−𝑘+𝑝2 , 10 ≤ 𝑙 ≤ 𝜔 = 𝑝2 − 𝑝1 ≤ 𝑚 ≤ 𝑘 (14)

In eq. (14):

• 𝑙 is the minimum size of the adaptⅳe window to reach conclusⅳe stationarity results
with a minimum value of 10 for the augmented Dickey-Fuller (adf) test,

• 𝑚 is the maⅺmum size of the adaptⅳe window,

• 𝑝1 and 𝑝2 are the indices of the adaptⅳe window within𝒦 𝑡−1.

82

Algorithm 6: Concept Drift Detection

Input: predictions from the Ξ 𝑡−1 model on data with latest available ground truth (̂𝑦Ξ
𝑡−1,𝑡−1

𝑁 , 𝑦 𝑡−1𝑁), growth rate
(𝑟⊕), shrink rate (𝑟⊖), minimum window size (𝑙), maⅺmum window size (𝑚), regression type (𝜌),
maⅺmum lag (𝑞), significance level (𝛼), and detection window size (𝑘)

▷ Initilize window indices and concept drift flag

1 𝑝1 ← 0; 𝑝2 ← 0; cd ← False
▷ Update the performance model 𝒫 𝑡−1

𝑁 using the model Ξ 𝑡−1’s predictions on the latest ground truth available

2 𝒫 𝑡−1
𝑁 ← [𝒫 𝑡−1

𝑁 ,PerformanceMeasure(̂𝑦Ξ
𝑡−1,𝑡−1

𝑁 , 𝑦 𝑡−1𝑁)]
▷ Create the detection window 𝒦 𝑡−1

𝑁 from the latest 𝑘 performance measures

3 𝒦 𝑡−1
𝑁 ← 𝒫 𝑡−1−𝑘∶𝑡−1

𝑁
▷ Initilize the stationary window 𝒲 𝑡−1

𝑁 to the first 𝑙 performance measures in the detection window 𝒦 𝑡−1
𝑁

4 𝒲 𝑡−1
𝑁 ← 𝒦𝑡−1−𝑘∶𝑡−1−𝑘+𝑙

▷ Adaptive stationary window test over the detection window 𝒦 𝑡−1
𝑁

5 while 𝑝2 < |𝒦 𝑡−1
𝑁 | do

▷ Increase the adaptive window size |𝒲 𝑡−1
𝑁 | = 𝜔 = 𝑝2 − 𝑝1 by 𝑟⊕ until the window size is greater than 𝑙

6 while 𝑝2 − 𝑝1 < 𝑙 do
7 𝑝2 ← 𝑝2 + 𝑟⊕

▷ Verify that the window size 𝜔 is within the bounds

8 if 𝑙
 𝑝2 − 𝑝1 or 𝑝2 − 𝑝1
 𝑚 or the constraints in eqs. (16) and (17) are not satisfied then
9 return Inconclusive

▷ Update the stationary window 𝒲 𝑡−1
𝑁 to the current window indices in the detection window 𝒦 𝑡−1

𝑁
10 𝒲 𝑡−1

𝑁 ← 𝒦𝑡−1−𝑘+𝑝1∶𝑡−1−𝑘+𝑝2
▷ Test for stationarity of 𝒲 𝑡−1

𝑁 using adf test

11 𝑝-value← ADF(𝒲 𝑡−1
𝑁 , 𝜌, 𝑞)

▷ If the data is stationary, increase the window size 𝜔 as long as the window remains stationary and 𝜔 is within the

bounds

12 while 𝑝-value < 𝛼 and 𝑙 ≤ 𝑝2 − 𝑝1 ≤ 𝑚 and 𝑝2 + 𝑟⊕ < |𝒦 𝑡−1
𝑁 | do

13 𝑝2 ← 𝑝2 + 𝑟⊕

14 𝒲 𝑡−1
𝑁 ← 𝒦𝑡−1−𝑘+𝑝1∶𝑡−1−𝑘+𝑝2

15 𝑝-value← ADF(𝒲 𝑡−1
𝑁 , 𝜌, 𝑞)

▷ If the window size 𝜔 did not grow due to non-stationarity, it is an indication of a change-point

16 if 𝑝-value > 𝛼 then
▷ Shrink the window size 𝜔 as we pass through a non-stationary region but only if the window remains within

the bounds

17 if 𝑝2 − (𝑝1 + 𝑟⊖) ≥ 𝑙 then
18 𝑝1 ← 𝑝1 + 𝑟⊖

19 else if 𝑝2 + 𝑟⊖ < |𝒦 𝑡−1
𝑁 | then

20 𝑝1 ← 𝑝1 + 𝑟⊖

21 𝑝2 ← 𝑝2 + 𝑟⊖

22 if 𝑙
 𝑝2 − 𝑝1 or 𝑝2 − 𝑝1
 𝑚 then
23 Reduce the window size 𝜔 as lines 17 to 21

▷ If the window size 𝜔 is shrunk to the minimum window size 𝑙 or smaller at the end of the detection window 𝒦 𝑡−1
𝑁 , a

concept drift is detected

24 if 𝑝2 − 𝑝1 ≤ 𝑙 then cd← True
25

26 return cd

Table 5.1: Regression parameter 𝜌 values with corresponding interpretations, model specification of the adf
regression equation, and recommended use cases.

𝜌 Interpretation Model specification Recommended use case

1
Constant,

no deterministic trend
Δ𝒲 𝑡−1 = 𝑐 + 𝛾𝒲 𝑡−2 +∑𝑞

𝑖=1 𝛿𝑖Δ𝒲 𝑡−𝑖−1 + 𝜖 𝑡
Abrupt drifts

with long stationary periods

and short-term non-stationary phases

2 Constant
and deterministic linear trend

Δ𝒲 𝑡−1 = 𝑐 + 𝛽𝑡 + 𝛾𝒲 𝑡−2 +∑𝑞
𝑖=1 𝛿𝑖Δ𝒲 𝑡−𝑖−1 + 𝜖 𝑡 Gradual drifts

with constant rate of drift

3

Constant,

and deterministic linear
and quadratic trends

Δ𝒲 𝑡−1 = 𝑐 + 𝛽𝑡 + 𝜃𝑡2 + 𝛾𝒲 𝑡−2 +∑𝑞
𝑖=1 𝛿𝑖Δ𝒲 𝑡−𝑖−1 + 𝜖 𝑡

Gradual drifts
with non-constant rate of drift
(e.g. accelerating and/or decelerating)

The regression parameter 𝜌 specifies the constant term and the trend order of time series model
specification in the adf test on the adaptⅳe window. Possible values, their interpretations,
specifications, and recommended use cases are proⅵded in table 5.1 [80]. We adⅵse a value of
𝜌 = 1 for abrupt drift detection when there are long periods of stationarity and short periods of
drift in the stream. Values of 𝜌 = 2 and 𝜌 = 3 are suitable for gradual drift detection as they
account for linear and quadratic trends in the stream allowing to capture the gradual change
over time. In the case of gradual drifts that exhibit periodic behaⅵor (seasonality), additional
steps such as seasonal differencing and seasonal adjustment might be needed to remove the
seasonality before applying the adf tests in line 11 of algorithm 6. A common technique for this
would be using seasonal-trend decomposition using locally estimated scatterplot smoothing
(loess) (stl) [24], but it is outside the scope of this study.

The symbols used in the regression model specifications in table 5.1 are as follows:

• 𝑐 is the constant term (intercept) in the regression model,

• 𝛽𝑡 is the linear trend term,

• 𝜃𝑡2 is the quadratic trend term,

• Δ𝒲 𝑡−1 is the first difference of the adaptⅳe window𝒲 𝑡−1 −𝒲 𝑡−2,

• 𝛾𝒲 𝑡−2 is the lagged level of the adaptⅳe window where 𝛾 is the coefficient of the lagged
level measuring the tendency of the series to revert to a mean or a trend over time,

• ∑𝑞
𝑖=1 𝛿𝑖Δ𝒲 𝑡−𝑖−1 are the lagged differences of the series,

• 𝜖 𝑡 is the error term,

• 𝑞 is the lag, explained in detail later.

84

Parameters 𝑙 and 𝑚 directly affect sensitⅳity of the cdd algorithm. The minimum window size
𝑙 must be set to the expected maⅺmum length of a non-stationary period in the stream. A
smaller adaptⅳe window size increases the sensitⅳity of the algorithm to detect concept drifts,
and ⅵce versa. A small value of 𝑙 allows the adaptⅳe window to shrink more in presence of
non-stationarity, which causes the change-point detection to stabilize faster after a change is
detected but also increases the risk of false positⅳes. A larger 𝑙 on the other hand, will make
the algorithm more conservatⅳe and less sensitⅳe to concept drifts, taking longer to stabilize
after a change is detected. The maⅺmum window size 𝑚, on the other hand, must be set to the
expected minimum length of a stationary period in the stream.

The maⅺmum lag parameter 𝑞 in the adf test specifies the maⅺmum number of lags to include
in the regression when testing for stationarity, and affects the sensitⅳity of the change detection.
This parameter determines how much the adaptⅳe window𝒲 𝑡−1 should be shifted to calculate
the correlation for the non-stationarity test. In other words, 𝑞 decides how much of the past
within the adaptⅳe window should be considered to detect a change: the smaller the 𝑞, the less
sensitⅳe the change detection, because the test considers less of the past. Too large values of 𝑞,
on the other hand, can be problematic because aggressⅳe desensitization leads to too much of
the past being processed, which might potentially include an entire non-stationary period. The
latter could result in false negatⅳes or delays in detecting changes. If difficult to determine a
priori, the value of 𝑞 can be set based on the adaptⅳe window size 𝜔 as suggested by Greene
[40] and Schwert [79] shown in eq. (15).

𝑞 = ⌊12 (𝜔
100

)
1/4

⌋ (15)

To ensure the validity and reliability of the non-stationarity test results with sufficient number of
samples and to prevent overfitting and multicollinearity, the maⅺmum lag 𝑞 further constrains
the minimum window size 𝑙, as follows. If 𝑙 takes precedence, then the maⅺmum lag 𝑞 is
constrained as eq. (16). If 𝑞 takes precedence, on the other hand, then the minimum window
size 𝑙 is constrained as eq. (17).

𝑞 < 𝑙
2
− 𝜌 − 1 (16)

𝑙 > 2𝑞 + 2𝜌 + 1 (17)

Two parameters growth rate 𝑟⊕ ∈ ℕ and shrink rate 𝑟⊖ ∈ ℕ are used to increase and decrease
the size of the adaptⅳe window, respectⅳely. They can be set according to the characteristics of

85

cd in the stream if prior knowledge is available. Otherwise, they can be set to default values of
1. Growth rates 𝑟⊕ > 1 cause the adaptⅳe window to grow faster in absence of concept drifts,
suitable when it is known a priori that there are long periods of stationarity and concept drifts
are rare. Shrink rates 𝑟⊖ > 1, on the other hand, would cause the adaptⅳe window to shrink
faster in presence of concept drifts, which would be more suitable when it is known a priori
that concept drifts are gradual and/or more frequent.

Lastly, the significance level 𝛼 is the probability of rejecting the non-stationarity null hypothesis
when the adaptⅳe window is actually stationary (Type I error).

The concept drift detection (cdd) algorithm (algorithm 6) starts by initializing window indices
𝑝1 and 𝑝2 representing lower and upper boundaries of the adaptⅳe window𝒲 𝑡−1, respectⅳely.
The cd flag is initialized to False (undetected) (line 1).

Next, we measure the performance 𝒫 𝑡−1, for instance accuracy or 𝐹1 score, of model Ξ’s

predictions ̂𝑦Ξ
𝑡−1,𝑡−1

𝑁 from the cda step proⅵded that ground truth 𝑦 𝑡−1𝑁 has become available
for that time step’s predictions (line 2). Lines 3 and 4 create and initialize the detection window
𝒦 𝑡−1 and adaptⅳe window𝒲 𝑡−1, respectⅳely, to the latest 𝑘 performance measurements from
𝒫 𝑡−1 (line 3) and the first 𝑙 of those 𝑘 performance measurements within the detection window
(line 4).

The main loop of the algorithm (line 5) iterates over the detection window 𝒦 𝑡−1 aiming to
find the largest stationary window𝒲 𝑡−1 within it. The loop runs until the upper boundary
𝑝2 hits the end of the detection window. At each iteration of the loop, the adaptⅳe window
size 𝜔 = 𝑝2 − 𝑝1 is first increased by the growth rate 𝑟⊕ until it reaches the minimum window
size 𝑙 (lines 6 and 7) to ensure the validity of the adaptⅳe window. If this constraint cannot be
satisfied without exceeding the maⅺmum window size 𝑚 (line 8), the algorithm returns with
inconclusⅳe result.

Otherwise, the adaptⅳe window gets adjusted to current indices 𝑝1 and 𝑝2 (line 10). The adf
test is then applied to the adaptⅳe window𝒲 𝑡−1 to determine if it is stationary or not (line 11).

If the null hypothesis of the test is rejected and the adaptⅳe window is found to be stationary,
we ‘‘inflate’’ the window by the growth rate 𝑟⊕ and repeat the stationarity test as long as the
adaptⅳe window remains stationary and within the bounds (lines 12 to 15).

If at any point we stop due to failing to reject the null hypothesis, indicating non-stationarity of
the adaptⅳe window, we ‘‘deflate’’ the window by the shrink rate 𝑟⊖ to allow the algorithm to
slow down and focus on a smaller window as it passes through a non-stationary period (line 16).
Deflation of the window, however, is done only if the window is not compressed more than the
minimum window size 𝑙 allows (line 17). In the latter case, the algorithm tries to compensate by

86

increasing the upper boundary 𝑝2 by the same shrink rate 𝑟⊖ if this doesn’t result in crossing
the end of the detection window (line 21).

In summary, the algorithm inflates the window as long as it remains stationary, and deflates
it when it becomes non-stationary to a minimum size. Only then the minimized window is
moved forward to the next position in the detection window until either the window becomes
stationary again, or it reaches the end of the detection window. We can deduce that once the
algorithm reaches the end of the detection window, the window is greater than the minimum
window size 𝑙 only if it were stationary in the recent past, because stationarity caused the window
to inflate. On the other hand, the only way the window could be non-stationary at the end of
the detection window is if it were non-stationary in the recent past. The reason is only recent
non-stationarity causes the window to deflate to the minimum window size 𝑙 without room on
the upper boundary to inflate or move forward. Therefore, the adaptⅳe window size 𝜔 and its
comparison with the minimum window size 𝑙 at the end of the detection window is what we
use to determine concept drifts within the detection window (line 24).

5.4. Concept Drift Resolution

In general, the major challenge for a stream processing application undergoing cd is maintaining
the performance of its main learning model over time, even with cdd and cda mechanisms
in place. In fact, inclusion of cdd and cda solutions in parallel could increase the level of
compleⅺty in the sense that the application will have to manage the performance of multiple
models in order to achieve acceptable overall performance. This is especially challenging in
a non-stationary enⅵronment because the performance of uncorrelated models, for instance
the main learner and the cda model, might differ significantly at different points in time.
We identify this problem as the concept drift resolution (cdr) problem, which has not been
addressed in the literature to the best of our knowledge.

Although the solutions presented in sections 5.2 and 5.3 offer comprehensⅳe approaches to the
cdd and cda problems, they do not address the cdr problem. More specifically, the application
that uses amytis or any other cdd&a solution might still have to deal with the problem of
conventional (main) learner, and various cdd and cda solutions performing differently due to
cd during stream processing.

In this section we propose a solution beyond what cdd and cda offer to address the cdr
challenge: resolving the cd by reducing the variance in recent performance of the application.
This is done by selecting the model that has outperformed the others recently, such that the
overall performance of the application is maⅺmized. The proposed solution is model agnostic

87

and general enough to be applied to any number of dⅳerse models deployed on a stream
processing pipeline, whether designed as the main learner, cda, or cdd models. For simplicity
and specificity, in this study we focus on the main learner and the cda model (Ξ) in this study
as one application of the proposed cdr solution.

Thus far, considering the fims of the raw data features as a basis to study the cdd and cda
problems, we developed a uniform framework to solve both problems in the same setting.
Specifically, the application could adopt a passⅳe approach to continuously track and adapt
to changes using the cda component, and/or a reactⅳe approach to detect the changes and
adopt the appropriate strategy using the cdd component, such as remodeling the main learner.
However, the application’s performance may suffer if it relies only on one of the aforementioned
components and that component underperforms at a gⅳen time without knowing the exact
time of the drift. Therefore, selecting or combining predictions from these models based on
their recent performance could potentially improve the overall performance of the application.

The essence of the proposed cdr technique is that the application could take advantage of the
information proⅵded by multiple models, the cda model and the main learner in case of our
proposed cdd&a framework, and combine the predictions of both components over time to
achieve better performance. For instance, the application could use the cda component to adapt
to the changes in the concept and maintain an acceptable performance until the cdd component
detects a drift, and decides that remodeling of the main learner is necessary. Remodeling
the main learner in turn might result in a short period of time when the performance of the
main learner is better than the performance of the Ξ model. This is because the Ξ model is
designed to adapt to the changes in the concept, and might not be able to infer as accurately
as a recently remodeled and up-to-recent-date main learner with lower bias due to the greater
compleⅺty of the main learner and its sole objectⅳe of the main learning task. Main learner’s
burst of improved performance, however, is ephemeral in presence of cd, and its performance
will eventually degrade as the concept continues to drift further over the temporal dimension.
This is where the cda component comes into play again, and the application could switch back
to the Ξ model to maintain a reliable performance until the next drift is detected and the main
learner is remodeled. In summary, the application can decide which model’s predictions to use
for the next time step as the final predictions of the application.

As an analogy, consider a narcoleptic pilot of a passenger airliner. The pilot is the main learner,
the auto-pilot is the Ξ model (the cda component), an in-cockpit monitoring system (similar
to a drⅳer monitoring system (dms) for road vehicles) is the cdd component, and lastly the air
traffic controller (atc) is the cdr component. The pilot is responsible for flying the plane with
high accuracy as long as they are awake. However, occasionally and depending on the severity

88

of their condition1, the pilot gets drowsy or falls sleep, underperforming as a result.

Without the knowledge of the exact time when the pilot will become non-responsⅳe, we have
two options. We can wait for the pilot to become non-responsⅳe and then wake them up after
the dms/cdd alarms us. This might result in catastrophic consequences. Alternatⅳely, we can
actⅳate the auto-pilot/cda after take off and rely solely on them to fly the plane. The auto-pilot
is trained to adapt to the changes and maintain a reliable performance regardless of whether
the pilot becomes non-responsⅳe, but its performance might be suboptimal.

A good balance can be achieved by the atc/cdr who is responsible for monitoring the per-
formance of the pilot/main learner and the auto-pilot/cda. The atc/cdr decides when to
switch between the two based on their recent performance. If the pilot has been performing
well recently and better than the auto-pilot, the atc lets the pilot continue to fly the plane.
If the pilot becomes non-responsⅳe, for instance, the auto-pilot takes control of the aircraft
and/or assists the pilot. The atc continues to monitor the recent performance of the pilot
and the auto-pilot, and switches back to the pilot after the dms/cdd detects that the pilot is
non-responsⅳe, awakes them, and the pilot becomes ready to take over the plane again. It is
worth noting that the cdr does not check when the cdd detects a change, but continuously
monitors the performance of the cda and the main learner as there is usually a delay between
detection of a drift by the cdd component and the main learner’s performance stabilizing after
remodeling.

Meanwhile, to the outside observer (that is, the passengers or the application), the plane is
flying smoothly and safely, and they are unaware of the changes in the cockpit and who may be
in charge. This is the essence of the cdr component, which combines the benefits of both the
cdd and cda components.

In order to accomplish this, we propose a technique to analyze the time evolution of the
performance of the Ξ model and the main learner. This is done by comparing the recent
performance of the main learner with the recent performance of the Ξ model. If former is
‘‘better’’ than the latter, likely due to cd in the stream, the application uses the predictions
from the Ξ model to maintain a more desired performance until a drift is detected by cdd
and the main learner is remodeled accordingly. In other words, the application could use
the cdr component to determine the appropriate strategy to decide and adopt based on the
time evolution of the performance of the Ξ model (the cda component) and the main learner
(remodeled based on the cdd component’s output).

1 The attentive reader might duly raise the question, ``Why would a remotely sane person in charge of
the airliner green-light an unfit pilot in the cockpit in the first place?'' The question is valid and reasonable;
however, addressing the relationship between pilot in question and the airliner's ceo satisfactorily is outside
the scope of this study.

89

We will detail the general proposed cdr technique applicable to any number and type of models
in the stream processing pipeline. We will then illustrate, through a specific example, the cdr
technique applied to the cda model Ξ and the main learner in the cdd&a framework.

5.4.1. General Concept Drift Resolution Technique

Let {𝑃 𝑡𝑖 }
𝑛
𝑖=1 be a set of 𝑛 unⅳariate time series models, where 𝑃 𝑡𝑖 denotes the 𝑖-th time series

model representing the performance of the 𝑖-th model at time 𝑡. The performance of the model
is measured using a performance metric, for instance accuracy or 𝐹1 score for a classification
task. We analyze the performance of the models over a recent window consisting of 𝑢 time steps
to determine the recent performance of the models, denoted as ℛ𝑡. The recent performance of
the models is then used to decide which model’s predictions to use for the next time step as
the final predictions of the application.

The trends of the performance measurements alone do not capture how well the two models
have been performing recently with sufficient granularity. Therefore, we analyze each unⅳariate
time series model 𝑃 𝑡𝑖 to compute its recent performance based on two quantities: the trend of
the performance measurements over time, calculated as the slope of the least squares solution
over a window of 𝑢 time steps, denoted as 𝛽 𝑡𝑖 , and the magnitude of change, calculated as the
integral of the performance over the last 𝑢 time steps, denoted as 𝑠𝑡𝑖 . The recent performance
of the model, ℛ𝑡

𝑖 , is then quantified as the magnitude of change scaled by the trend of the
performance over the recent window, as shown in eq. (18). At each time step 𝑡, we select the
model 𝑃 𝑡𝑖 with the maⅺmum recent performance ℛ𝑡

𝑖 value to make predictions for the next
time step, thereby maⅺmizing the overall performance. In this section and throughout the
remainder of this chapter, the window of 𝑢 time steps refers to the last 𝑢 time steps for which
the ground truth is available.

ℛ𝑡
𝑖 = 𝛽 𝑡𝑖 ⋅ 𝑠

𝑡
𝑖 (18)

Algorithm 7 proⅵdes the general cdr technique to resolve the concept drifts in the stream.
The algorithm first iterates over the performance measurements of the models to compute the
recent performance of the modelsℛ𝑡 (lines 1 to 4). We proⅵde detail of the computation for 𝛽 𝑡𝑖
and 𝑠𝑡𝑖 in sections 5.4.2 and 5.4.3.

The algorithm then selects the model ℳ𝑡
𝑖∗ with the maⅺmum recent performance ℛ𝑡

𝑖 to make
predictions for the next time step (line 5 and eq. (19)).

90

Algorithm 7: Concept Drift Resolution

Input: Set of unⅳariate time series models {𝑃 𝑡𝑖 }
𝑛
𝑖=1; window size 𝑢

Output: Predictions ̂𝑦 𝑡𝑖∗

1 for each model 𝑃 𝑡𝑖 do
2 Compute 𝛽 𝑡𝑖 as the slope of least squares fit over recent window [𝑡 − 𝑢, 𝑡] (eq. (29))
3 Compute 𝑠𝑡𝑖 as the magnitude of change of performance over recent window [𝑡 − 𝑢, 𝑡]

(eq. (31))
4 Calculateℛ𝑡

𝑖 as the product of 𝛽
𝑡
𝑖 and 𝑠𝑡𝑖 (eq. (18))

5 Select the best modelℳ𝑡
𝑖∗ with maⅺmumℛ𝑡

𝑖 (eq. (19))
6 Make predictions ̂𝑦 𝑡𝑖∗ from the selected modelℳ𝑡

𝑖∗ (eq. (20))
7 return ̂𝑦 𝑡𝑖∗

𝑖∗ = argmax
𝑖

ℛ𝑡
𝑖 (19)

The selected model is then used to make predictions for the next time step (line 6 and eq. (20)).

̂𝑦 𝑡𝑖∗ = ℳ𝑡
𝑖∗(𝑋

𝑡+1) (20)

Figure 5.2 demonstrates the concept drift resolution technique on some simulated data for two
modelsℳ1 andℳ2. The plot shows performance of the two models over time, shown as 𝑃1
and 𝑃2. Recent trends 𝛽1 and 𝛽2, magnitudes of change 𝑠1 and 𝑠2, and the recent performances
ℛ1 andℛ2 have been computed for each model over the last 𝑢 = 10 time steps prior to current
time 𝑡 = 24.

We can observe from the figure that the two models performed increasingly better from 𝑡 = 0
to 𝑡 = 9, likely due to training incrementally and adapting to the enⅵronment. At time 𝑡 = 9,
a concept drift occurs, and the performance of ℳ1 drops significantly while performance of
ℳ2 remains stable. The cdr technique detects the degradation of the performance of ℳ1 and
switches toℳ2 for the next time step onwards. At time 𝑡 = 14, another concept drift occurs,
and the performance of ℳ2 deteriorates whereas ℳ1 starts to become stable again, perhaps
due to a detection from the cdd component and a remodeling. Unlike the first cd, however,
the cdr technique does not switch back toℳ1 immediately, but waits until the performance
of ℳ1 stabilizes and surpasses the performance of ℳ2 at time 𝑡 = 18. The cdr technique
then switches back toℳ1 for the next time step onwards asℳ1 continues to outperformℳ2
consistently during that period. We can also observe that even thoughℳ2 starts to perform

91

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Time

0

5

10

15

20

25

Performance

P1

Last u Points of P1

β1 = 1.28

s1 = 176.66

P2

Last u Points of P2

β2 = 0.11

s2 = 181.49

Performance adjustment upon CDR

−50

0

50

100

150

200

R

Recent Performance (R1)

Recent Performance (R2)

Last Recent Performance R1 = 225.35

Last Recent Performance R2 = 19.16

Figure 5.2: Demonstration of the concept drift resolution technique on simulated data. Two concept drift
resolutions occur at times 𝑡 = 9 and 𝑡 = 14 when the performance of the two models changes significantly.

92

better at time 𝑡 ≥ 19, the cdr technique does not switch back toℳ2 because ℳ1 continues to
outperformℳ2.

Without the cdr technique, the application would have to rely on one of the models, either
ℳ1 orℳ2. As a result, the application would have to suffer from the performance degradation
of the model in use, for example during 𝑡 = 9 to 𝑡 = 18 when ℳ1 was underperforming, or
during 𝑡 = 18 to 𝑡 = 24 whenℳ2 was underperforming. The cdr technique, instead, allows
the application to maintain the optimal level of performance by selecting the model that has
been performing better recently, shown as bold dashed lines in the figure.

5.4.2. Trend of Performance Measurements

Gⅳen the performance measurements time series 𝑃 𝑖, for 1 ≤ 𝑖 ≤ 𝑢, we want to fit a linear model,
eq. (21), to the last 𝑢 time steps, where 𝑐 is the intercept, 𝛽 is the slope (trend), and 𝜖 𝑖 is the
error term.

𝑃 𝑖 = 𝑐 + 𝛽𝑖 + 𝜖 𝑖 (21)

We create a Vandermonde matrⅸ from the 𝑢 indexes as eq. (22), as follows:

V =

⎡
⎢
⎢
⎢
⎢
⎣

1 1
1 2
1 3
⋮ ⋮
1 𝑢

⎤
⎥
⎥
⎥
⎥
⎦

(22)

Equation (23) represents our system, where 𝑥 = [𝑐𝛽]. The normal equations are gⅳen by

eq. (24).

V𝑥 = 𝑃 (23)

V𝑇V𝑥 = V𝑇𝑃 (24)

To solve for 𝑥, we first construct V𝑇V and V𝑇𝑃 in eqs. (25) and (26).

93

V𝑇V = [𝑢 ∑𝑢
𝑖=1 𝑖

∑𝑢
𝑖=1 𝑖 ∑𝑢

𝑖=1 𝑖2
]

= [
𝑢 𝑢(𝑢+1)

2
𝑢(𝑢+1)

2
𝑢(𝑢+1)(2𝑢+1)

6

]
(25)

V𝑇𝑃 = [
∑𝑢

𝑖=1 𝑃 𝑖
∑𝑢

𝑖=1 𝑖𝑃 𝑖
] (26)

We then calculate the inverse of V𝑇V in eq. (27),

(V𝑇V)
−1

= 1
det(V𝑇V)

[
𝑢(𝑢+1)(2𝑢+1)

6 −𝑢(𝑢+1)
2

−𝑢(𝑢+1)
2 𝑢

]

= [
2(2𝑢+1)
𝑢(𝑢−1) − 6

𝑢(𝑢−1)
− 6
𝑢(𝑢−1)

12
𝑢(𝑢+1)(𝑢−1)

]

(27)

where det(V𝑇V) = 𝑢2(𝑢+1)(𝑢−1)
12 .

Finally, we solve for 𝑥 in eq. (28),

𝑥 = [𝑐𝛽] = (V𝑇V)
−1
V𝑇𝑃 (28)

The trend of the performance measurements at time 𝑡 is gⅳen by the second component of 𝑥 in
eq. (29).

𝛽 𝑡 = [𝑥]2 (29)

5.4.3. Magnitude of Change in Performance Measurements

Gⅳen the performance measurements time series 𝑃 𝑖, for 1 ≤ 𝑖 ≤ 𝑢, we define the magnitude of
change in the performance measurements over the last 𝑢 time steps as eq. (30):

𝑠𝑡 = ∫
𝑢

1
𝑃(𝑡) 𝑑𝑡 (30)

94

The result 𝑠𝑡 of this integral can be approⅺmated using the composite trapezoidal rule as eq. (31).

𝑠𝑡 ≈ 1
2

𝑢
∑
𝑖=1

(𝑃 𝑖 + 𝑃 𝑖+1) (31)

5.4.4. Concept Drift Resolution in amytis

Gⅳen the performance measurements of the Ξ model 𝒫 𝑡 and the main learner ℒ 𝑡 over the
last 𝑢 time steps, we create the set of unⅳariate time series models {𝑃 𝑡} = {𝒫 𝑡, ℒ 𝑡}. We then
compute the recent performance of the two models ℛ𝑡

𝒫 and ℛ𝑡
ℒ using the cdr technique

(algorithm 7).

The algorithm then makes inference on the model with the maⅺmum recent performance ℛ𝑡

value for the next time step (eq. (32)).

̂𝑦 𝑡 = {
̂𝑦 𝑡Ξ 𝑡−1 ifℛ𝑡

𝒫 > ℛ𝑡
ℒ

̂𝑦 𝑡ℒ 𝑡−1 otherwise
(32)

The benefit of accounting for both the recent trend and the magnitude of change in the perfor-
mance measurements is that it allows the cdr component to make more informed decisions
on which model’s predictions to use for the next time step. The trend of the performance
measurements captures how well the model has been performing recently, while the magnitude
of change in the performance measurements captures how much the performance has changed
over the last 𝑢 time steps. For example, this makes the algorithm more resilient to sudden
spikes or drops in the performance measurements that might not be indicatⅳe of a concept drift
but rather a random fluctuation or noise in the stream. Instead, the cdr algorithms waits for
some time, depending on the value of 𝑢, to see if one model has been consistently outperforming
the other before making a decision.

Most importantly, a major benefit of the proposed cdr technique is being model agnostic: not
only does the algorithm work independently of either the cda or the cdd components, it can
be used in conjunction with other eⅺsting or future superⅵsed cdd&a techniques that can be
run in parallel to the main learner. The algorithm can be easily modified to accompany even
two or more cdd&a techniques, as it continuously monitors and selects the best model based
on their recent performance. This is particularly useful in scenarios where the application has
access to multiple models that can be used for the same task, and the performance of these
models can vary depending on the context or the data distribution.

95

5.4.5. Complexity Analysis

In this section, we study the compleⅺty of amytis, considering each component indⅳidually
and summarizing the overall time compleⅺty. The analysis is based on the following key
parameters:

• 𝑁: Number of samples

• 𝐷: Number of features

• 𝑛: Number of models (typically small and considered constant)

• 𝑇: Total number of nodes in the ensemble models (considered constant due to fixed tree
depth and number of trees)

• 𝑘: Window size used for concept drift detection

• 𝑢: Window size used for recent performance for concept drift resolution

5.4.5.1 Feature Importance Measurements

The computation of the impurity-based fims 𝒢𝑑 using the gbdt model Ψ involves traversing all
nodes in the ensemble. The maⅺmum tree depth ℎΨ is a hyperparameter that remains constant
throughout the training and test phases. The number of trees 𝑀Ψ is also a hyperparameter
that can remain constant with a fixed-size ensemble maintenance strategy, e.g., with a growth
rate and prune rate of 1. Therefore, the total number of nodes in the ensemble is constant. That
is, the time compleⅺty 𝑂 (𝑇) is 𝑂 (1), where 𝑇 is the total number of nodes in the ensemble, and
𝐷 is the number of features.

5.4.5.2 Concept Drift Adaptation

This component involves the following steps:

1. Making predictions with Ψ𝑡 on test data 𝑋 𝑡+1
𝑁×𝐷 (line 1 of Algorithm 5). Time per sample

is 𝑂(𝑀Ψ ⋅ ℎΨ), and the total time of this step is 𝑂(𝑁 ⋅ 𝑀Ψ ⋅ ℎΨ).

2. Constructing the meta-matrⅸ M⊚,𝑡 (line 2 of Algorithm 5). Time to construct the
meta-matrⅸM⊚,𝑡 is 𝑂(𝑁 ⋅ 𝐷). Since 𝒢 𝑡

𝑁×𝑑 is identical for all 𝑁 samples, we can optimize
the construction by replicating 𝒢 𝑡

1×𝑑 using efficient data structures such as broadcasting

96

in NumPy, leading to 𝑂(𝑁). Then, time to concatenate 𝒢 𝑡
𝑁×𝑑 and ̂𝑦Ψ

𝑡,𝑡+1
𝑁 is 𝑂(𝑁 ⋅ 𝐷),

resulting in a total time of 𝑂(𝑁 ⋅ 𝐷) for this step.

3. Making predictions with Ξ𝑡 on M⊚,𝑡 (line 3 of Algorithm 5). Time per sample is
𝑂(𝑀Ξ ⋅ ℎΞ), and the total time of this step is 𝑂(𝑁 ⋅ 𝑀Ξ ⋅ ℎΞ).

The total time compleⅺty of the cda component is 𝑂 (𝑁 ⋅ (𝑀Ψ ⋅ ℎΨ + 𝑀Ξ ⋅ ℎΞ + 𝐷)), which
can be reduced to 𝑂 (𝑁 ⋅ 𝐷) by using a fixed-size ensemble maintenance strategy.

5.4.5.3 Concept Drift Detection

The cdd algorithm analyzes the stationarity of a recent performance time series using the
adf test over a detection window of size 𝑘. The main loop iterates over the detection window
of size 𝑘 (line 5 of Algorithm 6). Each adf test within the loop (line 11 of Algorithm 6) has
time compleⅺty 𝑂(1) due to constant window size 𝜔, and the total number of adf tests is
proportional to 𝑘. In this case, the time compleⅺty is linear in window size 𝑘.

5.4.5.4 Concept Drift Resolution

In this component, the algorithm computes the recent performance of each model over a
window of size 𝑢 and selects the ‘‘best’’ model for predictions. The component involves the
following steps from Algorithm 7:

1. For each model 𝑖 (total 𝑛 models) (line 1):

(a) Compute 𝛽 𝑡𝑖 (trend): 𝑂(𝑢) (line 2).

(b) Compute 𝑠𝑡𝑖 (magnitude): 𝑂(𝑢) (line 3).
Total compleⅺty per model is 𝑂(𝑢).

2. Selecting the best model: 𝑂(𝑛) (line 5).

3. Making predictions with the selected model: 𝑂(𝑁) (line 6).

Total time compleⅺty of the cdr component is proportional to the window size 𝑢 and the
number of models 𝑛, or the number of samples 𝑁.

97

5.4.5.5 Training Phase

The training phase involves incrementally updating the models Ψ 𝑡 and Ξ 𝑡 with new batches of
data, as shown in lines 1 to 5 of Algorithm 4. We can therefore see that the time compleⅺty of
this phase is proportional to the combined 𝑁 ⋅ 𝐷, i.e., the number of samples 𝑁 and the number
of features 𝐷 by using a fixed-size ensemble maintenance strategy.

5.4.5.6 Overall Complexity

From the above analyses, we can conclude that the overall time compleⅺty is dominated by the
combined value 𝑁 ⋅ 𝐷, specifically from the cda and training phase.

The amytis framework demonstrates scalability with respect to both the number of samples 𝑁
and the number of features𝐷, making it well-suited for large-scale streaming data processing and
applications that require efficient handling of high-volume, high-dimensional data. This ensures
that computational resources grow proportionally with data size, allowing each component’s
algorithm to maintain performance as data volumes increase. Additionally, the constant-sized
model management (𝑇 = constant) prevents resource exhaustion, keeping the processing
efficient. Furthermore, the framework’s design supports parallelization, particularly in the
prediction and training phases, which allows distributing data samples across computing nodes
to further improve performance. This is more useful in streaming data applications where the
data collected from different sources are to be integrated and processed for cdd&a analyses and
decisions. We have not explored this avenue, but it would be a potential research direction.

5.5. Experiments and Results

In this section, we present the experimental results of the proposed framework, amytis, on
synthetic and real-world datasets. We first compare and discuss the performance of different
components of the framework, cdd, cda, and cdr. We then evaluate the performance of the
cdd, cda, and cdr components of the framework, and compare them with two cdd and cda
techniques, os-elm [97] and learn++.nse [32] respectⅳely. We also compare the performance of
the cdr technique with the main learner and the cda model in the cdd&a framework.

98

5.5.1. Datasets

In our experiments, we used several synthetic and real-world datasets commonly used in related
literature as benchmark (for example in [32, 97, 41, 91]) for a thorough study and analysis of
the relationship between fims and the main learner’s long-term performance in the face of
concept drift. These datasets exhibit various characteristics of concept drift, such as abrupt,
gradual, and periodic drifts with varying magnitudes, durations, and rates of drift, and are good
representatⅳes for evaluating the performance of the proposed cdd, cda, and cdr techniques.

We already presented these datasets in details in chapters 3 and 5; however, here we proⅵde
a brief overⅵew of the datasets used in our study for convenience. We used the following
synthetic datasets:

• Rotating checkerboard (rcb) [55]. We used the parameters as in [32], and considered
the following four rates of cd as constant (rcb-c), pulse (rcb-p), exponential (rcb-e),
and sinusoidal (rcb-s). Each variant has 400 batches with a batch size of 1024 instances.

• Streaming Ensemble Algorithm (sea) [85]. It has three continuous features, two of
which affect the decision boundary while the third one is noise. We used the threshold
values 𝜃 as in [85, 32] for sea-1 and sea-2. This threshold changes three times suddenly
throughout the dataset, resulting in three abrupt drifts. Each dataset consists of 200
batches of streams of size 250 instances for each train and test sets.

For sea-3, we used 𝜃 = 9.5, 7.0, 9.0, 8.0 with the same batch size and number of batches
as sea-1 and sea-2 for training, but extended the test set to 650 batches of 250 instances
each and mirrored the thetas every 150 batches. This results in a total of 12 abrupt drifts
through the test set, with the goal of challenging the cdd&a techniques more than the
ones used in related work.

We used the following two real-world datasets on which we performed regression analysis, both
of which exhibit gradual periodic drifts.

• Bellevue weather dataset (noaa) [87]. This dataset consists of eight features as daily
weather measurements, and two classes (‘‘rain’’ and ‘‘no rain’’). It has 605 batches, each
containing 30 instances, with the first 36 batches used as training set.

• Electricity dataset (elec) [44, 36]. This dataset consists of five features, affecting the
change of electricity price, and two classes (‘‘up’’ and ‘‘down’’). It contains a total of 944
batches with a batch size of 48 with the first 56 batches used as training set.

99

Table 5.2: Hyper-parameters for models Ψ and Ξ .

Ensemble size Maximum depth Learning rate Subsample Growth rate Pruning rate

Ψ 10 5 0.1 1.0 1 1
Ξ 12 5 0.1 1.0 1 1

5.5.2. Experimental Setup

We conducted our experiments on a Debian 12 Bookworm desktop computer with an Intel
Core i9-14900K CPU and 64 GB of RAM. It is worth noting that the memory utilization
by the amytis framework, excluding the datasets, was less than 220 KB on average. No
computations were performed on GPU. The experiments were conducted using Python 3.12.3
and the following libraries: NumPy 1.26.4 [45], scikit-learn 1.5.0 [71], and statsmodels 0.14.2
[80] as well as our implementation of stream processing engine streampy. As the main learner,
we used a decision tree classifier with a maⅺmum depth of 5 and a learning rate of 0.1, and a
multilayer perceptron with one hidden layer of 100 neurons and a learning rate of 0.001. As
the cdr performance indicator metrics (𝑃 𝑡𝑖), we used accuracy (acc), F1 score, and area under
the receⅳer operating characteristic curve (roc auc) score. We repeated each experiment 30
times and report the average and standard deⅵation (in parentheses) of the results for each
combination of datasets, main learner, and cdr performance metric, for a total of 1620 runs.
The results include mean and standard deⅵation (in parentheses) of the metrics and run time
of the algorithms excluding the time taken to load the data and preprocess it. Details of the
experiments on the synthetic and real-world datasets are proⅵded in section 4.3.2.

The hyper-parameters of theΨ andΞ models are listed in Table 5.2, which we set fixed according
to our exploratory experiments for all runs.

• Ensemble size is the maⅺmum number of boosting rounds in the gbdt model allowed
for Ψ andΞ models. The few number of boosting rounds is chosen to prevent overfitting
and to allow the model adapt quickly to changes in the concept.

• Maximum depth is the maⅺmum depth of each decision tree in the gbdt model.

• Learning rate is the step size at each iteration of the boosting process.

• Subsample is the fraction of the training data to sample at each boosting round of the
gbdt model. Commonly used values for gbdt models are less than 1 to prevent overfitting.
However, we set this value to 1 because of the limited number of samples available in
each batch of the stream.

100

• Growth rate and prune rate determine the number of trees to add or remove at each time
step of the stream, respectⅳely without exceeding the ensemble size. As the ensemble of
trees grows throughout the stream, the growth rate is set to 1 to add one tree at each
time step. The prune rate is also set to 1 to remove one tree at each time step. This simple
maintenance strategy guarantees that the ensemble size remains constant throughout
the stream. However, other strategies can be used to maintain the ensemble size, e.g.,
the one proposed by Wang et al. [91].

5.5.3. Comparison of cdd, cda, and cdr Techniques

Tables 5.3 and 5.4 show the performance of the cdd, cda, and cdr components of the amytis
framework on the synthetic and real-world datasets using a decision tree and a multilayer
perceptron as the main learner, respectⅳely. Figures 5.3 to 5.8 demonstrate the detailed perfor-
mance of the amytis components for one run of these results for the duration of the stream.
The shaded area in the figures represents the standard deⅵation of the results over 30 runs.

As can be seen from the results, the cda component outperforms the main learner in all datasets
except rcb-p. This does not come as a surprise, as the rcb-p dataset contains a Gaussian pulse
as the drift rate, which makes it a challenging type of drift for cda techniques. The mean
performance over the stream, however, does not proⅵde a complete picture of the performance of
the models. There are certain times through the stream where the main learner underperforms
the cda component, even if briefly. This is where the cdr component comes into play, which
allows detect these instances and switch to the cda model (like an autopilot) to take charge and
maintain a reliable performance until the drift is detected by the cdd component and the main
learner is remodeled accordingly. This is eⅵdent in Figures 5.3b, 5.4b, 5.5b, 5.6b, 5.7b and 5.8b
at times 𝑡 = 30, 220, 266, 277, and 340. On the other hand, after the main learner is remodeled
and starts to perform better than the cda model, the cdr component switches back to the main
learner, as seen at times 𝑡 = 110, 145, 224, 271, 314, and 323. This overall improvement on the
performance of both the main learner and the cda model is eⅵdent in the results of the cdr
component in Tables 5.3 and 5.4, which demonstrates the effectⅳeness of the cdr component
in maintaining a reliable performance throughout the stream.

Similarly, the cdr component maintains an overall better performance than the cda component
by using the predictions of the main learner whenever the main learner outperforms the cda
model in all the other datasets, as seen in Tables 5.3 and 5.4 and Figures 5.3 to 5.8.

101

0 50 100 150 200 250 300 350 400
Time steps

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

RCB-C

t

t
t

(a) rcb-c ⋅ dt ⋅ acc

0 50 100 150 200 250 300 350 400
Time steps

0.5
0.6
0.7
0.8
0.9
1.0

Ac
cu

ra
cy

RCB-P

t

t
t

(b) rcb-p ⋅ dt ⋅ acc

0 50 100 150 200 250 300 350 400
Time steps

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

RCB-E

t

t
t

(c) rcb-e ⋅ dt ⋅ acc

0 50 100 150 200 250 300 350 400
Time steps

0.6

0.8

1.0

Ac
cu

ra
cy

RCB-S

t

t
t

(d) rcb-s ⋅ dt ⋅ acc

0 100 200 300 400 500 600
Time steps

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

NOAA

t

t
t

(e) noaa ⋅ dt ⋅ acc

0 200 400 600 800
Time steps

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

ELECTRICITY

t

t
t

(f) elec ⋅ dt ⋅ acc

0 25 50 75 100 125 150 175 200
Time steps

0.85

0.90

0.95

1.00

Ac
cu

ra
cy

SEA1

t

t
t

(g) sea-1 ⋅ dt ⋅ acc

0 25 50 75 100 125 150 175 200
Time steps

0.85

0.90

0.95

Ac
cu

ra
cy

SEA2

t

t
t

(h) sea-2 ⋅ dt ⋅ acc

0 100 200 300 400 500 600
Time steps

0.80

0.85

0.90

0.95

1.00

Ac
cu

ra
cy

SEA3

t

t
t

(i) sea-3 ⋅ dt ⋅ acc

Figure 5.3: Accuracies of a decision tree as the main learner (clf ⋅ dt–cdd) asℒ𝑡,Ξ–cda as𝒫𝑡, and the application
(𝒜–cdr) as 𝒜𝑡 over the stream for one run on the datasets.

102

0 50 100 150 200 250 300 350 400
Time steps

0.4

0.6

0.8

1.0

F1
 sc

or
e

RCB-C

t

t
t

(a) rcb-c ⋅ dt ⋅ f1

0 50 100 150 200 250 300 350 400
Time steps

0.4

0.6

0.8

1.0

F1
 sc

or
e

RCB-P

t

t
t

(b) rcb-p ⋅ dt ⋅ f1

0 50 100 150 200 250 300 350 400
Time steps

0.4

0.6

0.8

1.0

F1
 sc

or
e

RCB-E

t

t
t

(c) rcb-e ⋅ dt ⋅ f1

0 50 100 150 200 250 300 350 400
Time steps

0.4

0.6

0.8

1.0

F1
 sc

or
e

RCB-S

t

t
t

(d) rcb-s ⋅ dt ⋅ f1

0 100 200 300 400 500 600
Time steps

0.0

0.2

0.4

0.6

0.8

1.0

F1
 sc

or
e

NOAA

t

t
t

(e) noaa ⋅ dt ⋅ f1

0 200 400 600 800
Time steps

0.0

0.2

0.4

0.6

0.8

1.0

F1
 sc

or
e

ELECTRICITY

t

t
t

(f) elec ⋅ dt ⋅ f1

0 25 50 75 100 125 150 175 200
Time steps

0.7

0.8

0.9

1.0

F1
 sc

or
e

SEA1

t

t
t

(g) sea-1 ⋅ dt ⋅ f1

0 25 50 75 100 125 150 175 200
Time steps

0.75

0.80

0.85

0.90

0.95

1.00

F1
 sc

or
e

SEA2

t

t
t

(h) sea-2 ⋅ dt ⋅ f1

0 100 200 300 400 500 600
Time steps

0.7

0.8

0.9

1.0

F1
 sc

or
e

SEA3

t

t
t

(i) sea-3 ⋅ dt ⋅ f1

Figure 5.4: F1 scores of a decision tree as the main learner (clf ⋅ dt–cdd) asℒ𝑡, Ξ–cda as 𝒫𝑡, and the application
(𝒜–cdr) as 𝒜𝑡 over the stream for one run on the datasets.

103

0 50 100 150 200 250 300 350 400
Time steps

0.4

0.6

0.8

1.0

RO
C

AU
C

sc
or

e

RCB-C

t

t
t

(a) rcb-c ⋅ dt ⋅ roc auc

0 50 100 150 200 250 300 350 400
Time steps

0.5
0.6
0.7
0.8
0.9
1.0

RO
C

AU
C

sc
or

e

RCB-P

t

t
t

(b) rcb-p ⋅ dt ⋅ roc auc

0 50 100 150 200 250 300 350 400
Time steps

0.4

0.6

0.8

1.0

RO
C

AU
C

sc
or

e

RCB-E

t

t
t

(c) rcb-e ⋅ dt ⋅ roc auc

0 50 100 150 200 250 300 350 400
Time steps

0.6

0.8

1.0

RO
C

AU
C

sc
or

e

RCB-S

t

t
t

(d) rcb-s ⋅ dt ⋅ roc auc

0 100 200 300 400 500 600
Time steps

0.4

0.6

0.8

1.0

RO
C

AU
C

sc
or

e

NOAA
t

t
t

(e) noaa ⋅ dt ⋅ roc auc

0 200 400 600 800
Time steps

0.4

0.6

0.8

1.0

RO
C

AU
C

sc
or

e

ELECTRICITY

t

t
t

(f) elec ⋅ dt ⋅ roc auc

0 25 50 75 100 125 150 175 200
Time steps

0.75

0.80

0.85

0.90

0.95

1.00

RO
C

AU
C

sc
or

e

SEA1

t

t
t

(g) sea-1 ⋅ dt ⋅ roc auc

0 25 50 75 100 125 150 175 200
Time steps

0.85

0.90

0.95

1.00

RO
C

AU
C

sc
or

e

SEA2

t

t
t

(h) sea-2 ⋅ dt ⋅ roc auc

0 100 200 300 400 500 600
Time steps

0.80

0.85

0.90

0.95

1.00

RO
C

AU
C

sc
or

e

SEA3

t

t
t

(i) sea-3 ⋅ dt ⋅ roc auc

Figure 5.5: roc auc scores of a decision tree as the main learner (clf ⋅ dt–cdd) as ℒ𝑡, Ξ–cda as 𝒫𝑡, and the
application (𝒜–cdr) as 𝒜𝑡 over the stream for one run on the datasets.

104

0 50 100 150 200 250 300 350 400
Time steps

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

RCB-C

t

t
t

(a) rcb-c ⋅ mlp ⋅ acc

0 50 100 150 200 250 300 350 400
Time steps

0.5
0.6
0.7
0.8
0.9
1.0

Ac
cu

ra
cy

RCB-P

t

t
t

(b) rcb-p ⋅ mlp ⋅ acc

0 50 100 150 200 250 300 350 400
Time steps

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

RCB-E

t

t
t

(c) rcb-e ⋅ mlp ⋅ acc

0 50 100 150 200 250 300 350 400
Time steps

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

RCB-S

t

t
t

(d) rcb-s ⋅ mlp ⋅ acc

0 100 200 300 400 500 600
Time steps

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

NOAA

t

t
t

(e) noaa ⋅ mlp ⋅ acc

0 200 400 600 800
Time steps

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

ELECTRICITY

t

t
t

(f) elec ⋅ mlp ⋅ acc

0 25 50 75 100 125 150 175 200
Time steps

0.80

0.85

0.90

0.95

1.00

Ac
cu

ra
cy

SEA1

t

t
t

(g) sea-1 ⋅ mlp ⋅ acc

0 25 50 75 100 125 150 175 200
Time steps

0.85

0.90

0.95

1.00

Ac
cu

ra
cy

SEA2

t

t
t

(h) sea-2 ⋅ mlp ⋅ acc

0 100 200 300 400 500 600
Time steps

0.85

0.90

0.95

1.00

Ac
cu

ra
cy

SEA3

t

t
t

(i) sea-3 ⋅ mlp ⋅ acc

Figure 5.6: Accuracies of a multilayer perceptron as the main learner (clf ⋅ mlp–cdd) asℒ𝑡, Ξ–cda as 𝒫𝑡, and
the application (𝒜–cdr) as 𝒜𝑡 over the stream for one run on the datasets.

105

0 50 100 150 200 250 300 350 400
Time steps

0.4

0.6

0.8

1.0

F1
 sc

or
e

RCB-C

t

t
t

(a) rcb-c ⋅ mlp ⋅ f1

0 50 100 150 200 250 300 350 400
Time steps

0.4

0.6

0.8

1.0

F1
 sc

or
e

RCB-P

t

t
t

(b) rcb-p ⋅ mlp ⋅ f1

0 50 100 150 200 250 300 350 400
Time steps

0.4

0.6

0.8

1.0

F1
 sc

or
e

RCB-E

t

t
t

(c) rcb-e ⋅ mlp ⋅ f1

0 50 100 150 200 250 300 350 400
Time steps

0.0

0.2

0.4

0.6

0.8

1.0

F1
 sc

or
e

RCB-S

t

t
t

(d) rcb-s ⋅ mlp ⋅ f1

0 100 200 300 400 500 600
Time steps

0.0

0.2

0.4

0.6

0.8

1.0

F1
 sc

or
e

NOAA

t

t
t

(e) noaa ⋅ mlp ⋅ f1

0 200 400 600 800
Time steps

0.0

0.2

0.4

0.6

0.8

1.0

F1
 sc

or
e

ELECTRICITY

t

t
t

(f) elec ⋅ mlp ⋅ f1

0 25 50 75 100 125 150 175 200
Time steps

0.7

0.8

0.9

1.0

F1
 sc

or
e

SEA1

t

t
t

(g) sea-1 ⋅ mlp ⋅ f1

0 25 50 75 100 125 150 175 200
Time steps

0.75

0.80

0.85

0.90

0.95

1.00

F1
 sc

or
e

SEA2

t

t
t

(h) sea-2 ⋅ mlp ⋅ f1

0 100 200 300 400 500 600
Time steps

0.75
0.80
0.85
0.90
0.95
1.00

F1
 sc

or
e

SEA3

t

t
t

(i) sea-3 ⋅ mlp ⋅ f1

Figure 5.7: F1 scores of a multilayer perceptron as the main learner (clf ⋅ mlp–cdd) as ℒ𝑡, Ξ–cda as 𝒫𝑡, and the
application (𝒜–cdr) as 𝒜𝑡 over the stream for one run on the datasets.

106

0 50 100 150 200 250 300 350 400
Time steps

0.4

0.6

0.8

1.0

RO
C

AU
C

sc
or

e

RCB-C

t

t
t

(a) rcb-c ⋅ mlp ⋅ roc auc

0 50 100 150 200 250 300 350 400
Time steps

0.5
0.6
0.7
0.8
0.9
1.0

RO
C

AU
C

sc
or

e

RCB-P

t

t
t

(b) rcb-p ⋅ mlp ⋅ roc auc

0 50 100 150 200 250 300 350 400
Time steps

0.4

0.6

0.8

1.0

RO
C

AU
C

sc
or

e

RCB-E

t

t
t

(c) rcb-e ⋅ mlp ⋅ roc auc

0 50 100 150 200 250 300 350 400
Time steps

0.0

0.2

0.4

0.6

0.8

1.0

RO
C

AU
C

sc
or

e

RCB-S

t

t
t

(d) rcb-s ⋅ mlp ⋅ roc auc

0 100 200 300 400 500 600
Time steps

0.0

0.2

0.4

0.6

0.8

1.0

RO
C

AU
C

sc
or

e

NOAA

t

t
t

(e) noaa ⋅ mlp ⋅ roc auc

0 200 400 600 800
Time steps

0.2

0.4

0.6

0.8

1.0

RO
C

AU
C

sc
or

e

ELECTRICITY

t

t
t

(f) elec ⋅ mlp ⋅ roc auc

0 25 50 75 100 125 150 175 200
Time steps

0.80

0.85

0.90

0.95

1.00

RO
C

AU
C

sc
or

e

SEA1

t

t
t

(g) sea-1 ⋅ mlp ⋅ roc auc

0 25 50 75 100 125 150 175 200
Time steps

0.85

0.90

0.95

1.00

RO
C

AU
C

sc
or

e

SEA2

t

t
t

(h) sea-2 ⋅ mlp ⋅ roc auc

0 100 200 300 400 500 600
Time steps

0.80

0.85

0.90

0.95

1.00

RO
C

AU
C

sc
or

e

SEA3

t

t
t

(i) sea-3 ⋅ mlp ⋅ roc auc

Figure 5.8: roc auc scores of a multilayer perceptron as the main learner (clf ⋅ mlp–cdd) asℒ𝑡, Ξ–cda as 𝒫𝑡,
and the application (𝒜–cdr) as 𝒜𝑡 over the stream for one run on the datasets.

107

0 50 100 150 200 250 300 350 400
Time steps

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

rcb-c

Amytis
OS-ELM
Learn++.NSE

(a) rcb-c ⋅ dt ⋅ acc

0 50 100 150 200 250 300 350 400
Time steps

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

rcb-p

Amytis
OS-ELM
Learn++.NSE

(b) rcb-p ⋅ dt ⋅ acc

0 50 100 150 200 250 300 350 400
Time steps

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

rcb-e

Amytis
OS-ELM
Learn++.NSE

(c) rcb-e ⋅ dt ⋅ acc

0 50 100 150 200 250 300 350 400
Time steps

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

rcb-s

Amytis
OS-ELM
Learn++.NSE

(d) rcb-s ⋅ dt ⋅ acc

0 100 200 300 400 500 600
Time steps

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

noaa

OS-ELM
Learn++.NSE
Amytis

(e) noaa ⋅ dt ⋅ acc

0 200 400 600 800
Time steps

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

electricity

OS-ELM
Learn++.NSE
Amytis

(f) elec ⋅ dt ⋅ acc

0 25 50 75 100 125 150 175 200
Time steps

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

sea1

Amytis
OS-ELM
Learn++.NSE

(g) sea-1 ⋅ dt ⋅ acc

0 25 50 75 100 125 150 175 200
Time steps

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

sea2

Amytis
OS-ELM
Learn++.NSE

(h) sea-2 ⋅ dt ⋅ acc

0 100 200 300 400 500 600
Time steps

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

sea3

Amytis
OS-ELM
Learn++.NSE

(i) sea-3 ⋅ dt ⋅ acc

Figure 5.9: Accuracies of os-elm [97], learn++.nse [32] and Amytis (cdr–acc) on the datasets. All three
techniques used a decision tree as the main learner (clf ⋅ dt). Amytis’s cdr component used accuracy as the
performance metric.

108

0 50 100 150 200 250 300 350 400
Time steps

0.0

0.2

0.4

0.6

0.8

1.0

F1
 sc

or
e

rcb-c

Amytis
OS-ELM
Learn++.NSE

(a) rcb-c ⋅ dt ⋅ f1

0 50 100 150 200 250 300 350 400
Time steps

0.0

0.2

0.4

0.6

0.8

1.0

F1
 sc

or
e

rcb-p

Amytis
OS-ELM
Learn++.NSE

(b) rcb-p ⋅ dt ⋅ f1

0 50 100 150 200 250 300 350 400
Time steps

0.0

0.2

0.4

0.6

0.8

1.0

F1
 sc

or
e

rcb-e

Amytis
OS-ELM
Learn++.NSE

(c) rcb-e ⋅ dt ⋅ f1

0 50 100 150 200 250 300 350 400
Time steps

0.0

0.2

0.4

0.6

0.8

1.0

F1
 sc

or
e

rcb-s

Amytis
OS-ELM
Learn++.NSE

(d) rcb-s ⋅ dt ⋅ f1

0 100 200 300 400 500 600
Time steps

0.0

0.2

0.4

0.6

0.8

1.0

F1
 sc

or
e

noaa

OS-ELM
Learn++.NSE
Amytis

(e) noaa ⋅ dt ⋅ f1

0 200 400 600 800
Time steps

0.0

0.2

0.4

0.6

0.8

1.0

F1
 sc

or
e

electricity

OS-ELM
Learn++.NSE
Amytis

(f) elec ⋅ dt ⋅ f1

0 25 50 75 100 125 150 175 200
Time steps

0.0

0.2

0.4

0.6

0.8

1.0

F1
 sc

or
e

sea1

Amytis
OS-ELM
Learn++.NSE

(g) sea-1 ⋅ dt ⋅ f1

0 25 50 75 100 125 150 175 200
Time steps

0.0

0.2

0.4

0.6

0.8

1.0

F1
 sc

or
e

sea2

Amytis
OS-ELM
Learn++.NSE

(h) sea-2 ⋅ dt ⋅ f1

0 100 200 300 400 500 600
Time steps

0.0

0.2

0.4

0.6

0.8

1.0

F1
 sc

or
e

sea3

Amytis
OS-ELM
Learn++.NSE

(i) sea-3 ⋅ dt ⋅ f1

Figure 5.10: F1 scores of os-elm [97], learn++.nse [32] and Amytis (cdr–acc) on the datasets. All three techniques
used a decision tree as the main learner (clf ⋅ dt). Amytis’s cdr component used f1uracy as the performance
metric.

109

0 50 100 150 200 250 300 350 400
Time steps

0.0

0.2

0.4

0.6

0.8

1.0

RO
C

AU
C

sc
or

e

rcb-c

Amytis
OS-ELM
Learn++.NSE

(a) rcb-c ⋅ dt ⋅ roc auc

0 50 100 150 200 250 300 350 400
Time steps

0.0

0.2

0.4

0.6

0.8

1.0

RO
C

AU
C

sc
or

e

rcb-p

Amytis
OS-ELM
Learn++.NSE

(b) rcb-p ⋅ dt ⋅ roc auc

0 50 100 150 200 250 300 350 400
Time steps

0.0

0.2

0.4

0.6

0.8

1.0

RO
C

AU
C

sc
or

e

rcb-e

Amytis
OS-ELM
Learn++.NSE

(c) rcb-e ⋅ dt ⋅ roc auc

0 50 100 150 200 250 300 350 400
Time steps

0.0

0.2

0.4

0.6

0.8

1.0

RO
C

AU
C

sc
or

e

rcb-s

Amytis
OS-ELM
Learn++.NSE

(d) rcb-s ⋅ dt ⋅ roc auc

0 100 200 300 400 500 600
Time steps

0.0

0.2

0.4

0.6

0.8

1.0

RO
C

AU
C

sc
or

e

noaa

OS-ELM
Learn++.NSE
Amytis

(e) noaa ⋅ dt ⋅ roc auc

0 200 400 600 800
Time steps

0.0

0.2

0.4

0.6

0.8

1.0

RO
C

AU
C

sc
or

e

electricity

OS-ELM
Learn++.NSE
Amytis

(f) elec ⋅ dt ⋅ roc auc

0 25 50 75 100 125 150 175 200
Time steps

0.75

0.80

0.85

0.90

0.95

1.00

RO
C

AU
C

sc
or

e

sea1

Amytis
OS-ELM
Learn++.NSE

(g) sea-1 ⋅ dt ⋅ roc auc

0 25 50 75 100 125 150 175 200
Time steps

0.80

0.85

0.90

0.95

1.00

RO
C

AU
C

sc
or

e

sea2

Amytis
OS-ELM
Learn++.NSE

(h) sea-2 ⋅ dt ⋅ roc auc

0 100 200 300 400 500 600
Time steps

0.80

0.85

0.90

0.95

1.00

RO
C

AU
C

sc
or

e

sea3

Amytis
OS-ELM
Learn++.NSE

(i) sea-3 ⋅ dt ⋅ roc auc

Figure 5.11: roc auc scores of os-elm [97], learn++.nse [32] and Amytis (cdr–acc) on the datasets. All three
techniques used a decision tree as the main learner (clf ⋅ dt). Amytis’s cdr component used roc aucuracy as the
performance metric.

110

0 50 100 150 200 250 300 350 400
Time steps

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

rcb-c

Amytis
OS-ELM
Learn++.NSE

(a) rcb-c ⋅ mlp ⋅ acc

0 50 100 150 200 250 300 350 400
Time steps

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

rcb-p

Amytis
OS-ELM
Learn++.NSE

(b) rcb-p ⋅ mlp ⋅ acc

0 50 100 150 200 250 300 350 400
Time steps

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

rcb-e

Amytis
OS-ELM
Learn++.NSE

(c) rcb-e ⋅ mlp ⋅ acc

0 50 100 150 200 250 300 350 400
Time steps

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

rcb-s

Amytis
OS-ELM
Learn++.NSE

(d) rcb-s ⋅ mlp ⋅ acc

0 100 200 300 400 500 600
Time steps

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

noaa

OS-ELM
Learn++.NSE
Amytis

(e) noaa ⋅ mlp ⋅ acc

0 200 400 600 800
Time steps

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

electricity

OS-ELM
Learn++.NSE
Amytis

(f) elec ⋅ mlp ⋅ acc

0 25 50 75 100 125 150 175 200
Time steps

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

sea1

Amytis
OS-ELM
Learn++.NSE

(g) sea-1 ⋅ mlp ⋅ acc

0 25 50 75 100 125 150 175 200
Time steps

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

sea2

Amytis
OS-ELM
Learn++.NSE

(h) sea-2 ⋅ mlp ⋅ acc

0 100 200 300 400 500 600
Time steps

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

sea3

Amytis
OS-ELM
Learn++.NSE

(i) sea-3 ⋅ mlp ⋅ acc

Figure 5.12: Accuracies of os-elm [97], learn++.nse [32] and Amytis (cdr–acc) on the datasets. All three
techniques used a decision tree as the main learner (clf ⋅ mlp). Amytis’s cdr component used accuracy as the
performance metric.

111

0 50 100 150 200 250 300 350 400
Time steps

0.0

0.2

0.4

0.6

0.8

1.0

F1
 sc

or
e

rcb-c

Amytis
OS-ELM
Learn++.NSE

(a) rcb-c ⋅ mlp ⋅ f1

0 50 100 150 200 250 300 350 400
Time steps

0.0

0.2

0.4

0.6

0.8

1.0

F1
 sc

or
e

rcb-p

Amytis
OS-ELM
Learn++.NSE

(b) rcb-p ⋅ mlp ⋅ f1

0 50 100 150 200 250 300 350 400
Time steps

0.0

0.2

0.4

0.6

0.8

1.0

F1
 sc

or
e

rcb-e

Amytis
OS-ELM
Learn++.NSE

(c) rcb-e ⋅ mlp ⋅ f1

0 50 100 150 200 250 300 350 400
Time steps

0.0

0.2

0.4

0.6

0.8

1.0

F1
 sc

or
e

rcb-s

Amytis
OS-ELM
Learn++.NSE

(d) rcb-s ⋅ mlp ⋅ f1

0 100 200 300 400 500 600
Time steps

0.0

0.2

0.4

0.6

0.8

1.0

F1
 sc

or
e

noaa

OS-ELM
Learn++.NSE
Amytis

(e) noaa ⋅ mlp ⋅ f1

0 200 400 600 800
Time steps

0.0

0.2

0.4

0.6

0.8

1.0

F1
 sc

or
e

electricity
OS-ELM
Learn++.NSE
Amytis

(f) elec ⋅ mlp ⋅ f1

0 25 50 75 100 125 150 175 200
Time steps

0.0

0.2

0.4

0.6

0.8

1.0

F1
 sc

or
e

sea1

Amytis
OS-ELM
Learn++.NSE

(g) sea-1 ⋅ mlp ⋅ f1

0 25 50 75 100 125 150 175 200
Time steps

0.0

0.2

0.4

0.6

0.8

1.0

F1
 sc

or
e

sea2

Amytis
OS-ELM
Learn++.NSE

(h) sea-2 ⋅ mlp ⋅ f1

0 100 200 300 400 500 600
Time steps

0.0

0.2

0.4

0.6

0.8

1.0

F1
 sc

or
e

sea3

Amytis
OS-ELM
Learn++.NSE

(i) sea-3 ⋅ mlp ⋅ f1

Figure 5.13: Accuracies of os-elm [97], learn++.nse [32] and Amytis (cdr–acc) on the datasets. All three
techniques used a decision tree as the main learner (clf ⋅ mlp). Amytis’s cdr component used accuracy as the
performance metric.

112

0 50 100 150 200 250 300 350 400
Time steps

0.0

0.2

0.4

0.6

0.8

1.0

RO
C

AU
C

sc
or

e

rcb-c

Amytis
OS-ELM
Learn++.NSE

(a) rcb-c ⋅ mlp ⋅ roc

0 50 100 150 200 250 300 350 400
Time steps

0.0

0.2

0.4

0.6

0.8

1.0

RO
C

AU
C

sc
or

e

rcb-p

Amytis
OS-ELM
Learn++.NSE

(b) rcb-p ⋅ mlp ⋅ roc

0 50 100 150 200 250 300 350 400
Time steps

0.0

0.2

0.4

0.6

0.8

1.0

RO
C

AU
C

sc
or

e

rcb-e

Amytis
OS-ELM
Learn++.NSE

(c) rcb-e ⋅ mlp ⋅ roc

0 50 100 150 200 250 300 350 400
Time steps

0.0

0.2

0.4

0.6

0.8

1.0

RO
C

AU
C

sc
or

e

rcb-s

Amytis
OS-ELM
Learn++.NSE

(d) rcb-s ⋅ mlp ⋅ roc

0 100 200 300 400 500 600
Time steps

0.2

0.4

0.6

0.8

1.0

RO
C

AU
C

sc
or

e

noaa

OS-ELM
Learn++.NSE
Amytis

(e) noaa ⋅ mlp ⋅ roc

0 200 400 600 800
Time steps

0.0

0.2

0.4

0.6

0.8

1.0

RO
C

AU
C

sc
or

e

electricity

OS-ELM
Learn++.NSE
Amytis

(f) elec ⋅ mlp ⋅ roc

0 25 50 75 100 125 150 175 200
Time steps

0.6

0.7

0.8

0.9

1.0

RO
C

AU
C

sc
or

e

sea1

Amytis
OS-ELM
Learn++.NSE

(g) sea-1 ⋅ mlp ⋅ roc

0 25 50 75 100 125 150 175 200
Time steps

0.6

0.7

0.8

0.9

1.0

RO
C

AU
C

sc
or

e

sea2

Amytis
OS-ELM
Learn++.NSE

(h) sea-2 ⋅ mlp ⋅ roc

0 100 200 300 400 500 600
Time steps

0.75

0.80

0.85

0.90

0.95

1.00

RO
C

AU
C

sc
or

e

sea3

Amytis
OS-ELM
Learn++.NSE

(i) sea-3 ⋅ mlp ⋅ roc

Figure 5.14: Accuracies of os-elm [97], learn++.nse [32] and Amytis (cdr–acc) on the datasets. All three
techniques used a decision tree as the main learner (clf ⋅ mlp). Amytis’s cdr component used accuracy as the
performance metric.

113

Table 5.3: Mean and standard deviation (in parentheses) of the accuracy (acc), F1 score (f1), and area under the
roc curve (roc auc) of a decision tree as the main learner (clf ⋅ dt–cdd), Ξ–cda, and the application (𝒜–cdr)
on the datasets. For all metrics, the mean and standard deviation over 30 runs are shown with the standard
deviation in parentheses. The mean values lie in the interval [0, 1], the higher values are better, and the best
values are highlighted in bold. For the application’s performance (𝒜–cdr), the best values are highlighted in bold
and underlined when the value is greater than or equal to either clf ⋅ dt–cdd or Ξ–cda.

Dataset Metric clf ⋅ dt–cdd Ξ–cda 𝒜–cdr

rcb-c

acc 0.85 (0.0447) 0.87 (0.0003) 0.92 (0.0068)

f1 0.80 (0.0072) 0.88 (0.0045) 0.92 (0.0080)

roc auc 0.81 (0.0468) 0.87 (0.0564) 0.92 (0.0176)

rcb-p

acc 0.94 (0.0060) 0.90 (0.0001) 0.95 (0.0010)

f1 0.93 (0.0209) 0.89 (0.0097) 0.95 (0.0069)

roc auc 0.93 (0.0879) 0.90 (0.0360) 0.95 (0.0499)

rcb-e

acc 0.74 (0.0446) 0.88 (0.0002) 0.91 (0.0042)

f1 0.69 (0.0093) 0.87 (0.0189) 0.90 (0.0066)

roc auc 0.68 (0.0296) 0.88 (0.0308) 0.90 (0.0522)

rcb-s

acc 0.87 (0.0058) 0.89 (0.0004) 0.94 (0.0023)

f1 0.86 (0.0057) 0.88 (0.0277) 0.93 (0.0049)

roc auc 0.86 (0.0486) 0.89 (0.0375) 0.93 (0.0058)

noaa

acc 0.63 (0.0565) 0.69 (0.0025) 0.69 (0.0068)

f1 0.65 (0.1079) 0.80 (0.0015) 0.80 (0.0034)

roc auc 0.58 (0.0364) 0.60 (0.0042) 0.61 (0.0111)

elec

acc 0.70 (0.0238) 0.78 (0.0019) 0.78 (0.0031)

f1 0.53 (0.0681) 0.64 (0.0038) 0.65 (0.0061)

roc auc 0.67 (0.0338) 0.77 (0.0014) 0.77 (0.0028)

sea-1

acc 0.93 (0.0075) 0.96 (0.0037) 0.96 (0.0035)

f1 0.90 (0.0116) 0.94 (0.0058) 0.94 (0.0054)

roc auc 0.92 (0.0067) 0.95 (0.0037) 0.95 (0.0033)

sea-2

acc 0.93 (0.0072) 0.96 (0.0028) 0.96 (0.0027)

f1 0.90 (0.0107) 0.94 (0.0038) 0.94 (0.0038)

roc auc 0.93 (0.0096) 0.95 (0.0053) 0.95 (0.0050)

sea-3

acc 0.93 (0.0046) 0.97 (0.0012) 0.97 (0.0012)

f1 0.90 (0.0036) 0.95 (0.0026) 0.95 (0.0025)

roc auc 0.93 (0.0031) 0.96 (0.0022) 0.96 (0.0022)

Table 5.4: Mean and standard deviation (in parentheses) of the accuracy (acc), F1 score (f1), and area under the
roc curve (roc auc) of a multilayer perceptron as the main learner (clf/mlp–cdd), Ξ–cda, and the application
(𝒜–cdr) on the datasets. For all metrics, the mean and standard deviation over 30 runs are shown with the
standard deviation in parentheses. The mean values lie in the interval [0, 1], the higher values are better, and the
best values are highlighted in bold. For the application’s performance (𝒜–cdr), the best values are highlighted in
bold and underlined when the value is greater than or equal to either clf ⋅ dt–cdd or Ξ–cda.

Dataset Metric clf/mlp–cdd Ξ–cda 𝒜–cdr

rcb-c

acc 0.81 (0.0015) 0.87 (0.0011) 0.91 (0.0007)

f1 0.80 (0.0009) 0.88 (0.0002) 0.91 (0.0004)

roc auc 0.84 (0.0021) 0.87 (0.0004) 0.94 (0.0005)

rcb-p

acc 0.93 (0.0027) 0.90 (0.0037) 0.94 (0.0007)

f1 0.92 (0.0021) 0.89 (0.0003) 0.94 (0.0005)

roc auc 0.96 (0.0015) 0.90 (0.0004) 0.97 (0.0006)

rcb-e

acc 0.68 (0.0008) 0.88 (0.0023) 0.90 (0.0004)

f1 0.68 (0.0011) 0.87 (0.0001) 0.90 (0.0004)

roc auc 0.71 (0.0040) 0.88 (0.0003) 0.92 (0.0004)

rcb-s

acc 0.85 (0.0009) 0.89 (0.0004) 0.93 (0.0005)

f1 0.86 (0.0015) 0.88 (0.0005) 0.93 (0.0006)

roc auc 0.91 (0.0018) 0.89 (0.0003) 0.95 (0.0005)

noaa

acc 0.68 (0.0329) 0.69 (0.0021) 0.70 (0.0135)

f1 0.76 (0.0544) 0.80 (0.0019) 0.79 (0.0058)

roc auc 0.63 (0.0916) 0.60 (0.0039) 0.66 (0.0568)

elec

acc 0.62 (0.0325) 0.78 (0.0017) 0.77 (0.0030)

f1 0.36 (0.1189) 0.64 (0.0036) 0.62 (0.0062)

roc auc 0.77 (0.1598) 0.77 (0.0013) 0.82 (0.0586)

sea-1

acc 0.96 (0.0093) 0.96 (0.0025) 0.97 (0.0029)

f1 0.95 (0.0171) 0.94 (0.0047) 0.96 (0.0052)

roc auc 0.99 (0.0038) 0.95 (0.0051) 1.00 (0.0033)

sea-2

acc 0.96 (0.0091) 0.96 (0.0046) 0.97 (0.0038)

f1 0.94 (0.0118) 0.94 (0.0056) 0.96 (0.0053)

roc auc 0.99 (0.0028) 0.95 (0.0047) 0.99 (0.0028)

sea-3

acc 0.96 (0.0035) 0.97 (0.0009) 0.97 (0.0011)

f1 0.95 (0.0059) 0.95 (0.0018) 0.96 (0.0015)

roc auc 0.99 (0.0008) 0.96 (0.0026) 0.99 (0.0009)

Table 5.5: Mean and standard deviation (in parentheses) of the accuracy (acc), F1 score (f1), area under the roc
curve (roc auc), and run time (in 𝑠) of os-elm [97], learn++.nse [32] and amytis(cdr–acc) on the datasets. All
techniques use a decision tree as the main learner. For all metrics, the mean and standard deviation over 30 runs
are shown with the standard deviation in parentheses. The mean metric values lie in the interval [0, 1], the higher
values are better, and the best values are highlighted in bold. For the run time, the smaller is better.

Dataset Metric os-elm learn++.nse amytis

rcb-c

acc 0.49 (0.0078) 0.68 (0.0059) 0.92 (0.0068)

f1 0.50 (0.0036) 0.64 (0.0115) 0.92 (0.0080)

roc auc 0.49 (0.0079) 0.27 (0.0057) 0.92 (0.0176)

run time 34.24 (6.3177) 313.23 (1.9350) 33.76 (1.5392)

rcb-p

acc 0.72 (0.0020) 0.32 (0.0007) 0.95 (0.0010)

f1 0.72 (0.0036) 0.32 (0.0013) 0.95 (0.0069)

roc auc 0.72 (0.0019) 0.69 (0.0012) 0.95 (0.0499)

run time 40.16 (12.6549) 311.69 (0.4843) 33.52 (1.6156)

rcb-e

acc 0.52 (0.0103) 0.58 (0.0053) 0.91 (0.0042)

f1 0.52 (0.0105) 0.59 (0.0072) 0.90 (0.0066)

roc auc 0.52 (0.0104) 0.40 (0.0064) 0.90 (0.0522)

run time 44.81 (16.4185) 312.39 (0.4886) 33.81 (1.6049)

rcb-s

acc 0.53 (0.0238) 0.43 (0.0029) 0.94 (0.0023)

f1 0.56 (0.0164) 0.44 (0.0045) 0.93 (0.0049)

roc auc 0.53 (0.0239) 0.54 (0.0031) 0.93 (0.0058)

run time 32.11 (1.0334) 311.71 (0.6729) 33.77 (1.6331)

noaa

acc 0.61 (0.0244) 0.27 (0.0017) 0.69 (0.0068)

f1 0.64 (0.0398) 0.17 (0.0043) 0.80 (0.0034)

roc auc 0.58 (0.0127) 0.79 (0.0034) 0.61 (0.0111)

run time 32.11 (1.0334) 311.71 (0.6729) 28.76 (1.5131)

elec

acc 0.72 (0.0122) 0.27 (0.0004) 0.78 (0.0031)

f1 0.60 (0.0182) 0.29 (0.0018) 0.65 (0.0061)

roc auc 0.71 (0.0129) 0.92 (0.0012) 0.77 (0.0028)

run time 32.11 (1.0334) 311.71 (0.6729) 46.21 (2.2068)

sea-1

acc 0.91 (0.0183) 0.09 (0.0010) 0.96 (0.0035)

f1 0.87 (0.0274) 0.12 (0.0031) 0.94 (0.0054)

roc auc 0.90 (0.0195) 0.96 (0.0031) 0.95 (0.0033)

run time 51.51 (23.2786) 27.29 (0.1453) 17.20 (0.7286)

sea-2

acc 0.91 (0.0077) 0.08 (0.0014) 0.96 (0.0027)

f1 0.88 (0.0116) 0.12 (0.0026) 0.94 (0.0038)

roc auc 0.91 (0.0085) 0.96 (0.0032) 0.95 (0.0050)

run time 42.89 (12.7864) 27.35 (0.1022) 17.26 (0.6995)

sea-3

acc 0.91 (0.0092) 0.10 (0.0012) 0.97 (0.0012)

f1 0.87 (0.0141) 0.01 (0.0004) 0.95 (0.0025)

roc auc 0.91 (0.0109) 0.98 (0.0009) 0.96 (0.0022)

run time 139.55 (39.0372) 151.74 (0.3329) 37.57 (1.6185)

Table 5.6: Mean and standard deviation (in parentheses) of the accuracy (acc), F1 score (f1), area under the roc
curve (roc auc), and run time (in 𝑠) of os-elm [97], learn++.nse [32] and Amytis (cdr–acc) on the datasets. All
techniques use a multilayer perceptron as the main learner. For all metrics, the mean and standard deviation over
30 runs are shown with the standard deviation in parentheses. The mean metric values lie in the interval [0, 1],
the higher values are better, and the best values are highlighted in bold. For the run time, the smaller is better.

Dataset Metric os-elm learn++.nse Amytis

rcb-c

acc 0.49 (0.0018) 0.68 (0.0060) 0.91 (0.0007)

f1 0.50 (0.0007) 0.64 (0.0106) 0.91 (0.0004)

roc auc 0.48 (0.0075) 0.27 (0.0083) 0.94 (0.0005)

run time 48.17 (1.0212) 331.26 (0.2432) 33.76 (1.5392)

rcb-p

acc 0.69 (0.0688) 0.32 (0.0022) 0.94 (0.0007)

f1 0.70 (0.0688) 0.32 (0.0021) 0.94 (0.0005)

roc auc 0.69 (0.0763) 0.69 (0.0008) 0.97 (0.0006)

run time 56.16 (1.1571) 332.74 (0.8612) 33.52 (1.6156)

rcb-e

acc 0.51 (0.0078) 0.54 (0.0054) 0.90 (0.0004)

f1 0.51 (0.0109) 0.55 (0.0082) 0.90 (0.0004)

roc auc 0.52 (0.0113) 0.45 (0.0044) 0.92 (0.0004)

run time 58.18 (1.0589) 330.98 (1.3549) 33.81 (1.6049)

rcb-s

acc 0.52 (0.0273) 0.41 (0.0027) 0.93 (0.0005)

f1 0.55 (0.0189) 0.42 (0.0023) 0.93 (0.0006)

roc auc 0.52 (0.0290) 0.57 (0.0012) 0.95 (0.0005)

run time 46.40 (0.0947) 336.44 (1.0781) 33.77 (1.6331)

noaa

acc 0.63 (0.0345) 0.34 (0.0947) 0.70 (0.0135)

f1 0.66 (0.0547) 0.08 (0.1862) 0.79 (0.0058)

roc auc 0.63 (0.0357) 0.81 (0.0686) 0.66 (0.0568)

run time 39.42 (18.0305) 38.74 (4.0410) 28.76 (1.5131)

elec

acc 0.60 (0.0153) 0.33 (0.0036) 0.77 (0.0030)

f1 0.41 (0.0227) 0.31 (0.0071) 0.62 (0.0062)

roc auc 0.73 (0.0218) 0.89 (0.0035) 0.82 (0.0586)

run time 141.14 (30.6052) 124.52 (3.6285) 46.21 (2.2068)

sea-1

acc 0.94 (0.0107) 0.08 (0.0018) 0.97 (0.0029)

f1 0.92 (0.0161) 0.11 (0.0039) 0.96 (0.0052)

roc auc 0.98 (0.0092) 0.97 (0.0056) 1.00 (0.0033)

run time 84.33 (0.0195) 126.41 (0.9534) 17.20 (0.7286)

sea-2

acc 0.95 (0.0120) 0.12 (0.0026) 0.97 (0.0038)

f1 0.93 (0.0175) 0.18 (0.0040) 0.96 (0.0053)

roc auc 0.99 (0.0034) 0.89 (0.0083) 0.99 (0.0028)

run time 84.98 (0.0236) 126.38 (0.8901) 17.26 (0.6995)

sea-3

acc 0.94 (0.0111) 0.09 (0.0014) 0.97 (0.0011)

f1 0.92 (0.0158) 0.01 (0.0007) 0.96 (0.0015)

roc auc 0.99 (0.0035) 0.98 (0.0010) 0.99 (0.0009)

run time 252.91 (0.5583) 162.72 (2.6024) 37.57 (1.6185)

5.5.4. Comparison of Amytis with Other Techniques

Tables 5.5 and 5.6 show the performance of our proposed amytis framework compared to
the os-elm [97] and learn++.nse [32] techniques on the datasets using a decision tree and a
multilayer perceptron as the main learner, respectⅳely. Figures 5.9 to 5.14 demonstrate detailed
performance of the three techniques aggregated over 30 runs throughout the stream.

The results show that amytis outperforms the other techniques in all rcb datasets for all metrics
while achieⅵng a fraction of the run-time, thanks to the light-weight Ψ and Ξ models and
their independence from the main learner. In terms of accuracy, amytis outperformed os-elm
by +31.94% to +87.76%, and learn++.nse by +35.29% to +196.88%. F1 score improvements were
as strong, with gains over os-elm ranging from +31.94% to +84.00%, and over learn++.nse from
+43.75% to +196.88%. roc auc also saw major improvements, particularly against learn++.nse,
which is outperformed by amytis up to +240.74%. Run time improvements were substantial,
with up to 89.24% reduction over learn++.nse, and more modest reductions compared to os-elm,
showing amytis to be superior in efficiency and accuracy for the rcb datasets.

For the real-world datasets noaa and elec, amytis exhibited moderate to substantial im-
provements in accuracy and F1 score compared to os-elm and learn++.nse. For accuracy,
amytis improved over os-elm by +8.33% to +13.11%, while the improvements over learn++.nse
were more significant, reaching +155.56% to +188.89%. F1 score increases were also significant,
particularly against learn++.nse, with gains of +124.14% to +370.59%. However, there was slight
decrease in roc auc against learn++.nse for both these datasets, with a drop of 22.78% for noaa
and 16.30% for elec. We speculate that while learn++.nse consistently ranks the predictions
correctly and hence a high roc auc score, it fails to predict the correct class labels, hence
lower accuracy and F1 score. This is likely due to the fact that learn++.nse is a cda technique
that relies on the predictions of the main learner, which can be unreliable in the presence of
concept drift. On the other hand, amytis uses the predictions of the main learner only when it
outperforms the cda model, which allows it to maintain a reliable performance throughout the
stream. It should be noted that [32] reports higher accuracies on rcb, sea, and noaa datasets
using a support vector machine (svm) as the main learner. The paper does not report F1 and
roc auc scores, which raises the speculation that the svm model might have been overfitting
the data, achieⅵng high accuracy but lacking in generalization ability. In terms of run time,
amytis was generally faster over learn++.nse up to 90.77%, however it was slower (43.93%)
compared to os-elm in the elec dataset. This indicates that amytis can be a desired choice for
tasks prioritizing predictⅳe performance, despite a modest increase in run time. In summary,
these results suggest that amytis may benefit further improvements for better handling of
imbalanced data in terms of discrimination power.

118

On abrupt drifts datasets sea-1, sea-2, and sea-3, amytis showed remarkable improvement in
accuracy and F1 score, particularly compared to learn++.nse, with accuracy increase ranging
from +5.49% to +1,100.00% and F1 score gains as high as +9,400.00%. Against os-elm, the
improvements observed were more moderate but still notable, with accuracy and F1 score
improvements ranging from +5.49% to +9.20%. Although amytis slightly underperformed
on roc auc against learn++.nse, with minor drops in the range 1.04% to 2.04%, its run time
was significantly faster up to 75.25% against learn++.nse, and 73.06% against os-elm. Overall,
amytis excelled in both predictⅳe performance and efficiency on the sea datasets. Figures 5.9g
to 5.9i, Figures 5.10g to 5.10i, and Figures 5.11g to 5.11i show that amytis is faster in response
times with less delay in detecting drifts and adapting accordingly compared to os-elm and
learn++.nse. This demonstrates effectⅳeness of the cdr component in maintaining a reliable
performance throughout the stream data processing, particularly in the presence of abrupt
drifts.

Furthermore, our results demonstrate consistency of amytis’s performance across different
datasets with both gradual and abrupt drifts, as well as across different main learners. This
consistency is attributed to several factors, including independence of the components from
the main learner, and the ability of the cdr component to adapt to the changes in the stream
by selecting the ‘‘best’’ model based on the recent performance of the models. The latter
maintains an ‘‘optimal’’ level of performance throughout the stream regardless of the type, rate,
or duration of the concept drift.

Compared to the os-elm and learn++.nse techniques, amytis maintains low and stable variance
in the performance metrics throughout the stream, which is crucial for real-world stream data
applications where the performance of the model needs to be reliable, accurate, and consistent.

5.6. Conclusion

In this chapter, we introduced amytis, a unified and comprehensⅳe concept drift detection
and adaptation framework for addressing the corresponding challenges in stream processing
applications. By leveraging multⅳariate vector error-correction analysis of feature importance
measures (fims) used as a basis in its design and development, amytis unifies concept drift
detection, adaptation, and resolution into a single, multi-level framework. It proⅵdes a novel
solution to the concept drift resolution (cdr) problem, which has been overlooked in the
literature, by addressing the need for maintaining consistent performance across multiple
models in a non-stationary enⅵronment.

119

Amytis effectⅳely manages the performance of the main learner alongside cdd and cda com-
ponents, ensuring that the overall framework remains robust even under varying conditions
and types of concept drift. Through the cdr component, amytis can dynamically switch be-
tween the models based on their recent performance, thereby reducing variance and improⅵng
reliability and accuracy. This adaptability is critical in some eⅺsting and emerging real-world
applications where the rate, type, and nature of concept drift can vary significantly.

The results of our numerous experiments using real and synthetic benchmark datasets demon-
strate that amytis outperforms eⅺsting techniques, particularly in scenarios involⅵng gradual
and abrupt drifts, and maintains a consistent level of performance across different datasets and
main learners. The ability of amytis to maintain low and stable variance in performance metrics
is especially important for real-world applications, where consistent and reliable performance is
crucial.

Amytis demonstrated substantial improvements across most datasets compared to os-elm and
learn++.nse, particularly in accuracy and F1 scores. The accuracy gains over learn++.nse ranged
from 35.29% to 196.88%, while improvements over os-elm were more moderate, ranging from
5.49% to 87.76%. Improvement in F1 score followed a similar pattern, notably over learn++.nse
and os-elm, ranging from 8.33% to 84.00%. Amytis also generally performed better in terms
of run time up to 90.77%, especially when compared to learn++.nse. However, compared to
learn++.nse, we observed minor declines in roc auc on a few datasets. Overall, amytis proⅵdes
a balance between predictⅳe accuracy and computational efficiency.

Overall, the amytis framework demonstrates an effectⅳe solution framework to maintain
reliable and consistent performance across various datasets and types of concept drift. By
effectⅳely balancing the contributions of the main learner and the cda component through the
cdr mechanism, amytis addresses the major issue of performance variance that often challenged
real-world applications. Compared to other solution techniques that were effectⅳe in either
cdd or cda tasks, amytis achieves a lower and more stable variance in performance metrics of
both cdd and cda tasks, which is essential for applications that require dependable, long-term
operation under non-stationary conditions. This consistency underscores the framework’s
potential for broader applicability in enⅵronments where concept drift detection, adaptation,
and resolution are much needed.

We are currently reⅵsing a journal article based on our results in this chapter [5].

120

With them the seed of Wisdom did I sow,
And with mine own hand wrought to make it
grow;
And this was all the Harvest that I reap’d—
‘‘I came like Water, and like Wind I go’’

—Omar Khayyám, The Rubaiyat (1120)

Chapter 6

Conclusion

In this research, we focused on concept drift (cd) in streaming data and studied methods to
overcome the challenges involved. The goal is to ensure accuracy and performance of application
over long periods of time using machine learning techniques. Concept drift, if undetected or
poorly managed, can severely affect the effectⅳeness of predictⅳe models, leading to incorrect
inferences and decisions. This issue is particularly prevalent in real-world applications such as
insurance, healthcare, industrial monitoring, enⅵronmental sensing, smart cities, and finance,
where data streams are often non-stationary and exhibit varying patterns over time.

6.1. Summary of Contributions

This research addressed several key challenges associated with concept drift detection, adap-
tation, and resolution in a single unified framework. The primary contributions of this work
are as follows:

• Novel approach to study concept drift detection and adaptation (cdd&a): We
proposed a novel approach based on multⅳariate vector error-correction analysis of feature
importance measures (fims). This approach proⅵdes a solid basis to analyze streaming
data for detecting and adapting to concept drifts by capturing the dynamic relationships
between raw data features and target variables.

• Unified framework—amytis: We developed a unified framework named amytis,
using which concept drift analysis, detection, adaptation, and resolution are all studied

121

and ⅵewed as different facets of the same core concept, namely feature importance
measures (fims). To the best of our knowledge, this is the first framework in the
literature to leverage fims analysis in such a comprehensⅳe manner.

• Robust and explainable concept drift adaptation model: A new model for concept
drift adaptation was proposed, emphasizing effectⅳeness, efficiency, and explainability.
This model is designed to adapt to drifts in streaming data while maintaining explain-
ability, making it suitable for applications requiring interpretability, such as healthcare
and finance.

• Innovative techniques for concept drift detection: We developed two novel tech-
niques for concept drift detection, one based on ensemble methods and the other based
on fims analysis. These techniques are effectⅳe in identifying drifts in streaming data and
are designed to preserve interpretability, making them suitable for real-world applications.

• Novel concept drift resolution technique: We addressed the concept drift resolution
(cdr) problem and proposed a cdr technique that combines the recent performance of
the main learner, improved by the proposed cdd technique, and cda methods. This
technique ensures that the application remains robust and adaptable even in the face of
significant concept drifts.

• Comprehensive development and evaluation: Extensⅳe experiments were conducted
to evaluate the proposed methodologies and models on various real-world and synthetic
datasets that exhibit concept drifts with different characteristics and magnitudes of
change over time such as gradual, abrupt, non-monotonic, and periodic drifts. The
results demonstrate the effectⅳeness and efficiency of the proposed solutions in handling
concept drifts in streaming data.

• Open-Source software framework: A fleⅺble and extensible software framework
was developed to support concept drift analysis and data stream processing. This frame-
work proⅵdes a foundation for future research and development in this area, enabling
researchers and practitioners to build and deploy concept drift analysis and evaluation
systems.

6.2. Future Directions

The findings of this research have significant implications and applications for various disciplines
in which continuous data streams are processed and analyzed. By proⅵding a unified framework

122

for cdd&a, this work bridges the gap between concept drift detection and adaptation, offering
a holistic solution that balances performance with interpretability.

A future direction for this work would be leveraging the vector autoregression and vector
error-correction models as byproducts of the proposed methodology to analyze and forecast
the relationships between features and target variables in streaming data. This could lead to
more accurate and reliable predictions, especially in applications where the underlying data
distribution is non-stationary.

We mainly focused on parametric statistical tests and ensemble methods for concept drift
detection in this research. Future work could explore the use of non-parametric methods for
analytics. Additionally, further research could consider cointegration analysis tests that are
more robust to structural changes in the data distribution.

Future improvement would be refining the proposed methods and exploring their applicability
in more dⅳerse real-world scenarios. Additionally, extending the software framework to include
more advanced features and integrations with popular data processing tools like Apache Kafka
and Apache Flink could further enhance its utility.

Finally, ongoing research could explore the possibility of integrating more sophisticated machine
learning models and algorithms into the amytis framework, potentially improⅵng its accuracy
and adaptability even further.

In conclusion, this thesis contributes to the growing body of knowledge and technology for
concept drift analysis by offering novel methodologies, models, and tools that address both
theoretical and practical challenges. The proposed solutions pave the way for more reliable,
efficient, and explainable data stream processing systems, ultimately benefiting a wide range of
applications that rely on streaming data analysis.

123

References

[1] Aisha Abdallah, Mohd Aizaini Maarof, and Anazida Zainal. “Fraud Detection System:
A Survey”. In: Journal of Network and Computer Applications 68 (June 1, 2016), pp. 90–
113. issn: 1084-8045. doi: 10/ggpkf7. url: http://www.sciencedirect.com/science/
article/pii/S1084804516300571 (cit. on pp. 1, 26).

[2] Jan Niklas Adams et al. “Explainable Concept Drift in Process Mining”. In: Information
Systems 114 (Mar. 1, 2023), p. 102177. issn: 0306-4379. doi: 10/gtnj67. url: https:
//www.sciencedirect.com/science/article/pii/S0306437923000133 (cit. on p. 1).

[3] Ali Alizadeh Mansouri, Abbas Javadtalab, and Nematollaah Shiri. “An Ensemble Learn-
ing Augmentation Method for Concept Drift Detection over Data Streams”. In: Ad-
vances in Data Science and Information Engineering. The 18th Int. Conference on
Data Science (ICDATA’22). Las Vegas: Springer, 2022 (cit. on pp. 37, 51).

[4] Ali Alizadeh Mansouri, Abbas Javadtalab, and Nematollaah Shiri. “Streaming Data
Analytics for Feature ImportanceMeasures in Concept Drift Detection and Adaptation”.
In: Database and Expert Systems Applications. Ed. by Christine Strauss et al. Lecture
Notes in Computer Science. Cham: Springer Nature Switzerland, 2023, pp. 114–128.
isbn: 978-3-031-39847-6. doi: 10/gs6fsb (cit. on p. 73).

[5] Ali Alizadeh Mansouri and Nematollaah Shiri. “Amytis: A Unified Framework for
Concept Drift Detection, Adaptation, and Resolution”. Manuscript under reⅵsion.
2024 (cit. on p. 120).

[6] Apache Flink. Apache Software Foundation. url: https://flink.apache.org/ (cit. on
p. 8).

[7] Apache Kafka. Apache Software Foundation. url: https://kafka.apache.org/ (cit. on
p. 8).

[8] Apache Spark. Apache Software Foundation. url: https://spark.apache.org/ (cit. on
p. 8).

124

https://doi.org/10/ggpkf7
http://www.sciencedirect.com/science/article/pii/S1084804516300571
http://www.sciencedirect.com/science/article/pii/S1084804516300571
https://doi.org/10/gtnj67
https://www.sciencedirect.com/science/article/pii/S0306437923000133
https://www.sciencedirect.com/science/article/pii/S0306437923000133
https://doi.org/10/gs6fsb
https://flink.apache.org/
https://kafka.apache.org/
https://spark.apache.org/

[9] Shruti Arora, Rinkle Rani, and Nitin Saxena. “A Systematic Reⅵew on Detection and
Adaptation of Concept Drift in Streaming Data Using Machine Learning Techniques”.
In:WIREs Data Mining and Knowledge Discovery 14.4 (2024), e1536. issn: 1942-4795.
doi: 10.1002/widm.1536. url: https://onlinelibrary.wiley.com/doi/abs/10.1002/widm.
1536 (cit. on pp. 1, 11).

[10] AWS HPC. Amazon Web Serⅵces. url: https://aws.amazon.com/hpc/ (cit. on p. 8).

[11] Azure IoT Edge. Microsoft. url: https://github.com/Azure/iotedge (cit. on p. 8).

[12] Jean Paul Barddal et al. “Boosting Decision Stumps for Dynamic Feature Selection on
Data Streams”. In: Information Systems 83 (July 1, 2019), pp. 13–29. issn: 0306-4379
(cit. on p. 53).

[13] Albert Bifet and Ricard Gavaldà. “Learning from Time-Changing Data with Adaptⅳe
Windowing”. In: Proceedings of the 2007 SIAM International Conference on Data
Mining (SDM). Proceedings. Society for Industrial and Applied Mathematics, Apr. 26,
2007, pp. 443–448. isbn: 978-0-89871-630-6. doi: 10.1137/1 .9781611972771 .42. url:
https://epubs.siam.org/doi/abs/10.1137/1.9781611972771.42 (cit. on p. 25).

[14] Albert Bifet et al. “MOA: Massⅳe Online Analysis”. In: Journal of Machine Learning
Research 11.52 (2010), pp. 1601–1604. issn: 1533-7928. url: http://jmlr.org/papers/v11/
bifet10a.html (cit. on p. 43).

[15] R. P. Jagadeesh Chandra Bose et al. “Dealing With Concept Drifts in Process Mining”.
In: IEEE Transactions on Neural Networks and Learning Systems 25.1 (Jan. 2014),
pp. 154–171. issn: 2162-2388. doi: 10/f5ngxj. url: https://ieeexplore.ieee.org/abstract/
document/6634264 (cit. on p. 1).

[16] J.P.G. van Brakel. Robust Peak Detection Algorithm Using Z-Scores. Stack Overflow.
2014. url: https://stackoverflow.com/questions/22583391/peak-signal-detection-in-
realtime-timeseries-data/22640362#22640362 (cit. on p. 41).

[17] Leo Breiman. “Manual on Setting up, Using, and Understanding Random Forests v3. 1”.
In: Statistics Dept., University of California, Berkeley, CA, USA 1.58 (2002), pp. 3–42
(cit. on pp. 53, 56, 79).

[18] Leo Breiman. “Random Forests”. In:Machine Learning 45.1 (Oct. 1, 2001), pp. 5–32.
issn: 1573-0565 (cit. on pp. 53, 56, 79).

[19] Dariusz Brzezinski and Jerzy Stefanowski. “Prequential AUC: Properties of the Area
under the ROC Curve for Data Streams with Concept Drift”. In: Knowledge and
Information Systems 52.2 (Aug. 1, 2017), pp. 531–562. issn: 0219-3116. doi: 10.1007/s10115-
017-1022-8. url: https://doi.org/10.1007/s10115-017-1022-8 (cit. on p. 74).

125

https://doi.org/10.1002/widm.1536
https://onlinelibrary.wiley.com/doi/abs/10.1002/widm.1536
https://onlinelibrary.wiley.com/doi/abs/10.1002/widm.1536
https://aws.amazon.com/hpc/
https://github.com/Azure/iotedge
https://doi.org/10.1137/1.9781611972771.42
https://epubs.siam.org/doi/abs/10.1137/1.9781611972771.42
http://jmlr.org/papers/v11/bifet10a.html
http://jmlr.org/papers/v11/bifet10a.html
https://doi.org/10/f5ngxj
https://ieeexplore.ieee.org/abstract/document/6634264
https://ieeexplore.ieee.org/abstract/document/6634264
https://stackoverflow.com/questions/22583391/peak-signal-detection-in-realtime-timeseries-data/22640362#22640362
https://stackoverflow.com/questions/22583391/peak-signal-detection-in-realtime-timeseries-data/22640362#22640362
https://doi.org/10.1007/s10115-017-1022-8
https://doi.org/10.1007/s10115-017-1022-8
https://doi.org/10.1007/s10115-017-1022-8

[20] Andrew Phelps Cassidy and Frank A. Deⅵney. “Calculating Feature Importance in
Data Streams with Concept Drift Using Online Random Forest”. In: 2014 IEEE
International Conference on Big Data (Big Data). 2014 IEEE International Conference
on Big Data (Big Data). Oct. 2014, pp. 23–28 (cit. on p. 53).

[21] Paola Alexandra Castro-Cabrera et al. “Superⅵsed and Unsuperⅵsed Identification of
Concept Drifts in Data Streams of Seismic-Volcanic Signals”. In: Advances in Artificial
Intelligence - IBERAMIA 2018. Ed. by Guillermo R. Simari et al. Lecture Notes in
Computer Science. Springer International Publishing, 2018, pp. 193–205. isbn: 978-3-
030-03928-8 (cit. on p. 1).

[22] Peter Chapman et al. CRISP-DM 1.0: Step-by-Step Data Mining Guide. 2000. url:
https://www.semanticscholar.org/paper/CRISP-DM-1.0%3A-Step-by-step-data-
mining-guide-Chapman-Clinton/54bad20bbc7938991bf34f86dde0babfbd2d5a72 (cit. on
pp. 6, 7).

[23] N. V. Chawla et al. “SMOTE: SyntheticMinorityOver-sampling Technique”. In: Journal
of Artificial Intelligence Research 16 (June 1, 2002), pp. 321–357. issn: 1076-9757. doi:
10.1613/jair.953. url: https://www.jair.org/index.php/jair/article/view/10302 (cit. on
p. 21).

[24] Robert B Cleveland et al. “STL: A Seasonal-Trend Decomposition Procedure Based on
Loess”. In: Journal of Official Statistics 6.1 (1990), pp. 3–73 (cit. on p. 84).

[25] Andrea Dal Pozzolo et al. “Credit Card Fraud Detection: A Realistic Modeling and a
Novel Learning Strategy”. In: IEEE Transactions on Neural Networks and Learning
Systems 29.8 (Aug. 2018), pp. 3784–3797. issn: 2162-2388. doi: 10/gdxz24 (cit. on pp. 21,
22).

[26] Babak Mahdaⅵ Damghani et al. “The Misleading Value of Measured Correlation”. In:
Wilmott 2012.62 (2012), pp. 64–73. issn: 1541-8286 (cit. on p. 58).

[27] Daⅵd A. Dickey and Wayne A. Fuller. “Distribution of the Estimators for Autoregres-
sⅳe Time Series with a Unit Root”. In: Journal of the American Statistical Association
(June 1, 1979). issn: 0162-1459. url: https://www.tandfonline.com/doi/abs/10.1080/
01621459.1979.10482531 (cit. on p. 82).

[28] G. Ditzler and R. Polikar. “Hellinger Distance Based Drift Detection for Nonstationary
Enⅵronments”. In: 2011 IEEE Symposium on Computational Intelligence in Dynamic
and Uncertain Environments (CIDUE). 2011 IEEE Symposium on Computational
Intelligence in Dynamic and Uncertain Enⅵronments (CIDUE). Apr. 2011, pp. 41–48.
doi: 10/c3cg5t (cit. on pp. 1, 27).

126

https://www.semanticscholar.org/paper/CRISP-DM-1.0%3A-Step-by-step-data-mining-guide-Chapman-Clinton/54bad20bbc7938991bf34f86dde0babfbd2d5a72
https://www.semanticscholar.org/paper/CRISP-DM-1.0%3A-Step-by-step-data-mining-guide-Chapman-Clinton/54bad20bbc7938991bf34f86dde0babfbd2d5a72
https://doi.org/10.1613/jair.953
https://www.jair.org/index.php/jair/article/view/10302
https://doi.org/10/gdxz24
https://www.tandfonline.com/doi/abs/10.1080/01621459.1979.10482531
https://www.tandfonline.com/doi/abs/10.1080/01621459.1979.10482531
https://doi.org/10/c3cg5t

[29] G. Ditzler and R. Polikar. “Semi-Superⅵsed Learning in Nonstationary Enⅵron-
ments”. In: The 2011 International Joint Conference on Neural Networks. The 2011
International Joint Conference on Neural Networks. July 2011, pp. 2741–2748. doi:
10/dzfcjg (cit. on pp. 24, 32).

[30] Gregory Ditzler and Robi Polikar. “Incremental Learning of Concept Drift from Stream-
ing Imbalanced Data”. In: IEEE Transactions on Knowledge and Data Engineering
25.10 (Oct. 2013), pp. 2283–2301. issn: 1558-2191. doi: 10/f4745g (cit. on pp. 21, 22).

[31] Richard O. Duda, Peter E. Hart, and Daⅵd G. Stork. Pattern Classification (2nd
Edition). USA: Wiley-Interscience, 2000. isbn: 978-0-471-05669-0 (cit. on pp. 11–13).

[32] Ryan Elwell and Robi Polikar. “Incremental Learning of Concept Drift in Nonstationary
Enⅵronments”. In: IEEE Transactions on Neural Networks 22.10 (Oct. 2011), pp. 1517–
1531. issn: 1045-9227, 1941-0093. doi: 10/bgxfrz (cit. on pp. 20, 21, 32, 42, 60, 98, 99,
108–113, 116–118).

[33] Robert F. Engle and C. W. J. Granger. “Co-Integration and Error Correction: Repre-
sentation, Estimation, and Testing”. In: Econometrica 55.2 (1987), pp. 251–276. issn:
0012-9682. JSTOR: 1913236 (cit. on p. 58).

[34] Jerome H. Friedman. “Greedy Function Approⅺmation: A Gradient Boosting Machine”.
In:The Annals of Statistics 29.5 (2001), pp. 1189–1232. issn: 0090-5364. JSTOR: 2699986
(cit. on pp. 53, 56, 78).

[35] João Gama et al. “A Survey on Concept Drift Adaptation”. In: ACM Computing
Surveys (CSUR) 46.4 (Jan. 4, 2014), p. 44. issn: 0360-0300. doi: 10.1145/2523813. url:
http://dl.acm.org/citation.cfm?id=2597757.2523813 (cit. on pp. 1, 11, 14, 16, 17, 36, 55).

[36] João Gama et al. “Learning with Drift Detection”. In: Advances in Artificial Intelligence
– SBIA 2004. Ed. by Ana L. C. Bazzan and Sofiane Labidi. Lecture Notes in Computer
Science. Berlin, Heidelberg: Springer, 2004, pp. 286–295. isbn: 978-3-540-28645-5. doi:
10/ckzcm4 (cit. on pp. 43, 60, 99).

[37] Heitor Murilo Gomes et al. “Feature Scoring Using Tree-Based Ensembles for Evolⅵng
Data Streams”. In: 2019 IEEE International Conference on Big Data (Big Data).
2019 IEEE International Conference on Big Data (Big Data). Dec. 2019, pp. 761–769
(cit. on p. 53).

[38] C. W. J. Granger. “Some Properties of Time Series Data and Their Use in Econometric
Model Specification”. In: Journal of Econometrics 16.1 (May 1, 1981), pp. 121–130. issn:
0304-4076 (cit. on p. 58).

[39] C. W. J. Granger and P. Newbold. “Spurious Regressions in Econometrics”. In: Journal
of Econometrics 2.2 (July 1, 1974), pp. 111–120. issn: 0304-4076 (cit. on p. 57).

127

https://doi.org/10/dzfcjg
https://doi.org/10/f4745g
https://doi.org/10/bgxfrz
http://www.jstor.org/stable/1913236
http://www.jstor.org/stable/2699986
https://doi.org/10.1145/2523813
http://dl.acm.org/citation.cfm?id=2597757.2523813
https://doi.org/10/ckzcm4

[40] William H. Greene. Econometric Analysis. Prentice Hall, 2003. 1026 pp. isbn: 978-0-13-
110849-3. Google Books: 7i9lQgAACAAJ. url: https://books.google.ca/books?id=
7i9lQgAACAAJ (cit. on p. 85).

[41] Husheng Guo et al. “Concept Drift Detection and Accelerated Convergence of Online
Learning”. In: Knowledge and Information Systems 65.3 (Mar. 1, 2023), pp. 1005–1043.
issn: 0219-3116. doi: 10/gtnj7c. url: https://doi.org/10.1007/s10115-022-01790-6
(cit. on p. 99).

[42] Daⅵd J. Hand and Niall M. Adams. “Selection Bias in Credit Scorecard Evaluation”.
In: Journal of the Operational Research Society 65.3 (Mar. 1, 2014), pp. 408–415. issn:
0160-5682. doi: 10/f5tmzw. url: https://doi.org/10.1057/jors.2013.55 (cit. on pp. 1, 26).

[43] Ahsanul Haque, Latifur Khan, and Michael Baron. “Semi Superⅵsed Adaptⅳe Frame-
work for Classifying Evolⅵng Data Stream”. In: Advances in Knowledge Discovery and
DataMining. Ed. by Tru Cao et al. Lecture Notes in Computer Science. Cham: Springer
International Publishing, 2015, pp. 383–394. isbn: 978-3-319-18032-8. doi: 10/gmvzrd
(cit. on pp. 23–25, 28, 30, 32).

[44] Michael Harries andNew SouthWales. SPLICE-2 Comparative Evaluation: Electricity
Pricing. 1999 (cit. on pp. 43, 60, 99).

[45] Charles R. Harris et al. “Array Programming with NumPy”. In: Nature 585.7825 (Sept.
2020), pp. 357–362. issn: 1476-4687. doi: 10/ghbzf2. url: https://www.nature.com/
articles/s41586-020-2649-2 (cit. on p. 100).

[46] Zonglu He and Koichi Maekawa. “On Spurious Granger Causality”. In: Economics
Letters 73.3 (Dec. 1, 2001), pp. 307–313. issn: 0165-1765 (cit. on p. 57).

[47] Guang-Bin Huang, Qin-Yu Zhu, and Chee-Kheong Siew. “Extreme Learning Machine:
Theory and Applications”. In:Neurocomputing. Neural Networks 70.1 (Dec. 1, 2006),
pp. 489–501. issn: 0925-2312. doi: 10/dq3m9m. url: http://www.sciencedirect.com/
science/article/pii/S0925231206000385 (cit. on pp. 29, 36).

[48] Gareth James et al. An Introduction to Statistical Learning: With Applications in R.
Springer Texts in Statistics. New York: Springer-Verlag, 2013. isbn: 978-1-4614-7137-0.
url: https://www.springer.com/gp/book/9781461471370 (cit. on pp. 11, 13, 14, 17).

[49] Søren Johansen. “Estimation and Hypothesis Testing of Cointegration Vectors in
Gaussian Vector Autoregressⅳe Models”. In: Econometrica 59.6 (1991), pp. 1551–1580.
issn: 0012-9682. JSTOR: 2938278 (cit. on pp. 58, 59).

128

http://books.google.com/books?id=7i9lQgAACAAJ
https://books.google.ca/books?id=7i9lQgAACAAJ
https://books.google.ca/books?id=7i9lQgAACAAJ
https://doi.org/10/gtnj7c
https://doi.org/10.1007/s10115-022-01790-6
https://doi.org/10/f5tmzw
https://doi.org/10.1057/jors.2013.55
https://doi.org/10/gmvzrd
https://doi.org/10/ghbzf2
https://www.nature.com/articles/s41586-020-2649-2
https://www.nature.com/articles/s41586-020-2649-2
https://doi.org/10/dq3m9m
http://www.sciencedirect.com/science/article/pii/S0925231206000385
http://www.sciencedirect.com/science/article/pii/S0925231206000385
https://www.springer.com/gp/book/9781461471370
http://www.jstor.org/stable/2938278

[50] Imen Khamassi et al. “Discussion and Reⅵew on Evolⅵng Data Streams and Concept
Drift Adapting”. In: Evolving Systems 9.1 (Mar. 1, 2018), pp. 1–23. issn: 1868-6486. doi:
10.1007/s12530-016-9168-2. url: https://doi.org/10.1007/s12530-016-9168-2 (cit. on
pp. 14, 16, 17, 55).

[51] Martin Khannouz and Tristan Glatard. “Mondrian Forest for Data Stream Classification
under Memory Constraints”. In: Data Mining and Knowledge Discovery 38.2 (Mar.
2024), pp. 569–596. issn: 1384-5810, 1573-756X. doi: 10/gtnj7d. url: https://link.
springer.com/10.1007/s10618-023-00970-4 (cit. on p. 2).

[52] T. Al-Khateeb et al. “Stream Classification with Recurring and Novel Class Detection
Using Class-Based Ensemble”. In: 2012 IEEE 12th International Conference on Data
Mining. 2012 IEEE 12th International Conference on Data Mining. Dec. 2012, pp. 31–
40. doi: 10/gf6fck (cit. on p. 32).

[53] Łukasz Korycki and Bartosz Krawczyk. “Concept Drift Detection from Multi-Class
Imbalanced Data Streams”. In: 2021 IEEE 37th International Conference on Data
Engineering (ICDE). Apr. 2021, pp. 1068–1079. doi: 10/gm859d (cit. on pp. 22, 25, 29).

[54] Bartosz Krawczyk andMichał Woźniak. “One-Class Classifiers with Incremental Learn-
ing and Forgetting for Data Streams with Concept Drift”. In: Soft Computing 19.12
(Dec. 1, 2015), pp. 3387–3400. issn: 1433-7479. doi: 10/f7z3x2. url: https://doi.org/10.
1007/s00500-014-1492-5 (cit. on p. 31).

[55] Ludmila I. Kuncheva. Combining Pattern Classifiers: Methods and Algorithms. 2nd ed.
John Wiley & Sons, Sept. 9, 2014. 384 pp. isbn: 978-1-118-31523-1. Google Books:
MZgtBAAAQBAJ. url: https : / / onlinelibrary .wiley . com/doi / book / 10 . 1002 /
9781118914564 (cit. on pp. 42, 60, 99).

[56] Mark J. van der Laan, Eric C. Polley, and Alan E. Hubbard. “Super Learner”. In:
Statistical Applications in Genetics and Molecular Biology 6.1 (Sept. 16, 2007). issn:
1544-6115. doi: 10/cbgkdr. url: https://www.degruyter.com/document/doi/10.2202/
1544-6115.1309/html (cit. on p. 80).

[57] Ang Li et al. “Online Actⅳe LearningMethod forMulti-Class Imbalanced Data Stream”.
In: Knowledge and Information Systems 66.4 (Apr. 1, 2024), pp. 2355–2391. issn: 0219-
3116. doi: 10.1007/s10115-023-02027-w. url: https://doi.org/10.1007/s10115-023-02027-
w (cit. on pp. 25, 28).

[58] Jinpeng Li et al. “Concept Drift Adaptation by Exploiting Drift Type”. In: ACM Trans.
Knowl. Discov. Data 18.4 (Feb. 12, 2024), 96:1–96:22. issn: 1556-4681. doi: 10/nd8q.
url: https://doi.org/10.1145/3638777 (cit. on pp. 29, 31, 32).

129

https://doi.org/10.1007/s12530-016-9168-2
https://doi.org/10.1007/s12530-016-9168-2
https://doi.org/10/gtnj7d
https://link.springer.com/10.1007/s10618-023-00970-4
https://link.springer.com/10.1007/s10618-023-00970-4
https://doi.org/10/gf6fck
https://doi.org/10/gm859d
https://doi.org/10/f7z3x2
https://doi.org/10.1007/s00500-014-1492-5
https://doi.org/10.1007/s00500-014-1492-5
http://books.google.com/books?id=MZgtBAAAQBAJ
https://onlinelibrary.wiley.com/doi/book/10.1002/9781118914564
https://onlinelibrary.wiley.com/doi/book/10.1002/9781118914564
https://doi.org/10/cbgkdr
https://www.degruyter.com/document/doi/10.2202/1544-6115.1309/html
https://www.degruyter.com/document/doi/10.2202/1544-6115.1309/html
https://doi.org/10.1007/s10115-023-02027-w
https://doi.org/10.1007/s10115-023-02027-w
https://doi.org/10.1007/s10115-023-02027-w
https://doi.org/10/nd8q
https://doi.org/10.1145/3638777

[59] Zeng Li et al. “Incremental Learning Imbalanced Data Streams with Concept Drift:
The Dynamic Updated Ensemble Algorithm”. In: Knowledge-Based Systems 195 (May
2020), p. 105694. issn: 0950-7051. doi: 10/gm859c (cit. on p. 22).

[60] Nan-ying Liang et al. “A Fast and Accurate Online Sequential Learning Algorithm for
Feedforward Networks”. In: IEEE Transactions on Neural Networks 17.6 (Nov. 2006),
pp. 1411–1423. issn: 1941-0093. doi: 10/bdjqwh (cit. on pp. 2, 28, 36).

[61] Jie Lu et al. “Learning under Concept Drift: A Reⅵew”. In: IEEE Transactions on
Knowledge and Data Engineering 31.12 (Dec. 2019), pp. 2346–2363. issn: 1558-2191.
doi: 10/gjgc2d (cit. on pp. 1, 11, 14, 16, 55).

[62] Yang Lu, Yiu-ming Cheung, and Yuan Yan Tang. “Dynamic Weighted Majority for
Incremental Learning of Imbalanced Data Streams with Concept Drift.” In: IJCAI.
2017, pp. 2393–2399 (cit. on p. 22).

[63] Abdul Razak M. S. et al. “A Survey on Detecting Healthcare Concept Drift in AI/ML
Models from a Finance Perspectⅳe”. In: Frontiers in Artificial Intelligence 5 (Apr. 17,
2023). issn: 2624-8212. doi: 10/gtnj6t. url: https://www.frontiersin.org/articles/10.
3389/frai.2022.955314 (cit. on p. 1).

[64] Daiki Maki. “Tests for Cointegration Allowing for an Unknown Number of Breaks”. In:
Economic Modelling 29.5 (Sept. 1, 2012), pp. 2011–2015. issn: 0264-9993. doi: 10/f38xd4.
url: https://www.sciencedirect.com/science/article/pii/S0264999312001162 (cit. on
p. 74).

[65] M. Masud et al. “Classification and Novel Class Detection in Concept-Drifting Data
Streams under Time Constraints”. In: IEEE Transactions on Knowledge and Data
Engineering 23.6 (June 2011), pp. 859–874. issn: 1041-4347. doi: 10/bg6qw7 (cit. on
pp. 24, 25, 30, 32).

[66] Mohammad M. Masud et al. “Facing the Reality of Data Stream Classification: Coping
with Scarcity of Labeled Data”. In: Knowledge and Information Systems 33.1 (Oct. 1,
2012), pp. 213–244. issn: 0219-3116. doi: 10/fxf6cw. url: https://doi.org/10.1007/s10115-
011-0447-8 (cit. on pp. 16, 23, 24, 32).

[67] Mariusz Maziarz. “A Reⅵew of the Granger-causality Fallacy”. In: The Journal of
Philosophical Economics : Reflections on Economic and Social Issues VIII.2 (May 20,
2015), pp. 86–105. issn: 1843-2298, 1844-8208 (cit. on p. 57).

[68] Andrew V. Metcalfe and Paul S.P. Cowpertwait. Introductory Time Series with R. New
York, NY: Springer, 2009. isbn: 978-0-387-88697-8 978-0-387-88698-5. doi: 10.1007/978-
0-387-88698-5. url: https://link.springer.com/10.1007/978-0-387-88698-5 (cit. on
p. 19).

130

https://doi.org/10/gm859c
https://doi.org/10/bdjqwh
https://doi.org/10/gjgc2d
https://doi.org/10/gtnj6t
https://www.frontiersin.org/articles/10.3389/frai.2022.955314
https://www.frontiersin.org/articles/10.3389/frai.2022.955314
https://doi.org/10/f38xd4
https://www.sciencedirect.com/science/article/pii/S0264999312001162
https://doi.org/10/bg6qw7
https://doi.org/10/fxf6cw
https://doi.org/10.1007/s10115-011-0447-8
https://doi.org/10.1007/s10115-011-0447-8
https://doi.org/10.1007/978-0-387-88698-5
https://doi.org/10.1007/978-0-387-88698-5
https://link.springer.com/10.1007/978-0-387-88698-5

[69] Michalis P. Michaelides et al. “Contaminant Event Monitoring in Intelligent Buildings
Using aMulti-Zone Formulation”. In: IFAC Proceedings Volumes. 8th IFAC Symposium
on Fault Detection, Superⅵsion and Safety of Technical Processes 45.20 (Jan. 1, 2012),
pp. 492–497. issn: 1474-6670. doi: 10/gf6n96. url: http://www.sciencedirect.com/
science/article/pii/S1474667016348029 (cit. on p. 1).

[70] Ivan Adriyanov Nikolov et al. “Seasons in Drift: A Long-TermThermal Imaging Dataset
for Studying Concept Drift”. In: Thirty-Fifth Conference on Neural Information
Processing Systems. 2021 (cit. on p. 1).

[71] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In: Journal of Machine
Learning Research 12 (2011), pp. 2825–2830 (cit. on pp. 78, 100).

[72] Peter C. B. Phillips and Pierre Perron. “Testing for a Unit Root in Time Series Regres-
sion”. In: Biometrika 75.2 (1988), pp. 335–346. issn: 0006-3444. doi: 10/bgcrpz. JSTOR:
2336182. url: https://www.jstor.org/stable/2336182 (cit. on p. 73).

[73] R. Polikar et al. “Learn++: An Incremental Learning Algorithm for Superⅵsed Neural
Networks”. In: IEEE Transactions on Systems, Man, and Cybernetics, Part C (Appli-
cations and Reviews) 31.4 (Nov. 2001), pp. 497–508. issn: 1094-6977, 1558-2442. doi:
10/b68tgr (cit. on pp. 20, 32).

[74] Victor Ulisses Pugliese, Renato Duarte Costa, and Celso Massaki Hirata. “Comparatⅳe
Evaluation of the SuperⅵsedMachine Learning ClassificationMethods and the Concept
Drift Detection Methods in the Financial Business Problems”. In: Enterprise Informa-
tion Systems. Ed. by Joaquim Filipe et al. Cham: Springer International Publishing,
2021, pp. 268–292. isbn: 978-3-030-75418-1. doi: 10/gtnj69 (cit. on p. 1).

[75] Redis. Redis Labs. url: https://redis.io/ (cit. on p. 8).

[76] Thomas Reinartz. Focusing Solutions for Data Mining: Analytical Studies and Exper-
imental Results in Real-World Domains. Lecture Notes in Artificial Intelligence. Berlin
Heidelberg: Springer-Verlag, 1999. isbn: 978-3-540-66429-1. doi: 10.1007/3-540-48316-0.
url: https://www.springer.com/gp/book/9783540664291 (cit. on pp. 6, 7).

[77] Peter J. Rousseeuw. “Silhouettes: A Graphical Aid to the Interpretation and Validation
of Cluster Analysis”. In: Journal of Computational and Applied Mathematics 20 (Nov. 1,
1987), pp. 53–65. issn: 0377-0427. doi: 10/fdxwqh. url: http://www.sciencedirect.
com/science/article/pii/0377042787901257 (cit. on p. 34).

[78] Bernhard Schölkopf et al. “Estimating the Support of a High-Dimensional Distribution”.
In:Neural Computation 13.7 (July 1, 2001), pp. 1443–1471. issn: 0899-7667. doi: 10/
bxmnv3. url: https://doi.org/10.1162/089976601750264965 (cit. on pp. 20, 30).

131

https://doi.org/10/gf6n96
http://www.sciencedirect.com/science/article/pii/S1474667016348029
http://www.sciencedirect.com/science/article/pii/S1474667016348029
https://doi.org/10/bgcrpz
http://www.jstor.org/stable/2336182
https://www.jstor.org/stable/2336182
https://doi.org/10/b68tgr
https://doi.org/10/gtnj69
https://redis.io/
https://doi.org/10.1007/3-540-48316-0
https://www.springer.com/gp/book/9783540664291
https://doi.org/10/fdxwqh
http://www.sciencedirect.com/science/article/pii/0377042787901257
http://www.sciencedirect.com/science/article/pii/0377042787901257
https://doi.org/10/bxmnv3
https://doi.org/10/bxmnv3
https://doi.org/10.1162/089976601750264965

[79] G. William Schwert. “Tests for Unit Roots: AMonte Carlo Investigation”. In: Journal of
Business & Economic Statistics 7.2 (1989), pp. 147–159. issn: 0735-0015. doi: 10/cz2hgg.
JSTOR: 1391432. url: https://www.jstor.org/stable/1391432 (cit. on p. 85).

[80] Skipper Seabold and Josef Perktold. “statsmodels: Econometric and statistical modeling
with python”. In: 9th Python in Science Conference. 2010 (cit. on pp. 84, 100).

[81] Tegjyot Singh Sethi and Mehmed Kantardzic. “On the Reliable Detection of Concept
Drift from Streaming Unlabeled Data”. In: Expert Systems with Applications 82 (Oct.
2017), pp. 77–99. issn: 0957-4174. doi: 10/gf5mhf (cit. on pp. 2, 32).

[82] Lavanya Settipalli, G. R. Gangadharan, and Ugo Fiore. “Predictⅳe and Adaptⅳe Drift
Analysis on Decomposed Healthcare Claims Using ART Based Topological Clustering”.
In: Information Processing & Management 59.3 (May 1, 2022), p. 102887. issn: 0306-
4573. doi: 10/gtnj6n. url: https://www.sciencedirect .com/science/article/pii/
S0306457322000164 (cit. on p. 1).

[83] Christopher A. Sims, James H. Stock, and Mark W. Watson. “Inference in Linear Time
Series Models with Some Unit Roots”. In: Econometrica 58.1 (1990), pp. 113–144. issn:
0012-9682. JSTOR: 2938337 (cit. on p. 58).

[84] S.J. Stolfo et al. “Cost-Based Modeling for Fraud and Intrusion Detection: Results from
the JAM Project”. In: Proceedings DARPA Information Survivability Conference and
Exposition. DISCEX’00. Proceedings DARPA Information Surⅵvability Conference
and Exposition. DISCEX’00. Vol. 2. Jan. 2000, 130–144 vol.2. doi: 10/cpj827 (cit. on
pp. 1, 26).

[85] W. Nick Street and YongSeog Kim. “A Streaming Ensemble Algorithm (SEA) for Large-
Scale Classification”. In: Proceedings of the Seventh ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. KDD ’01. New York, NY, USA:
Association for Computing Machinery, Aug. 26, 2001, pp. 377–382. isbn: 978-1-58113-
391-2. doi: 10/b776vb. url: https://doi.org/10.1145/502512.502568 (cit. on pp. 22, 42,
60, 99).

[86] Joe Sullⅳan. Enable Rapid Insights and Real-Time Data Analytics Pipelines from
Edge to Hybrid Cloud. May 2, 2019. url: https ://community .hpe .com/t5/AI-
Insights/Enable-rapid-insights-and-real-time-data-analytics-pipelines/ba-p/7044733
(cit. on p. 7).

[87] Unknown. Global Surface Summary of the Day - GSOD. url: https://www.ncei.
noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.ncdc:C00516 (cit. on
pp. 43, 60, 99).

132

https://doi.org/10/cz2hgg
http://www.jstor.org/stable/1391432
https://www.jstor.org/stable/1391432
https://doi.org/10/gf5mhf
https://doi.org/10/gtnj6n
https://www.sciencedirect.com/science/article/pii/S0306457322000164
https://www.sciencedirect.com/science/article/pii/S0306457322000164
http://www.jstor.org/stable/2938337
https://doi.org/10/cpj827
https://doi.org/10/b776vb
https://doi.org/10.1145/502512.502568
https://community.hpe.com/t5/AI-Insights/Enable-rapid-insights-and-real-time-data-analytics-pipelines/ba-p/7044733
https://community.hpe.com/t5/AI-Insights/Enable-rapid-insights-and-real-time-data-analytics-pipelines/ba-p/7044733
https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.ncdc:C00516
https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.ncdc:C00516

[88] Mark van Heeswijk et al. “Adaptⅳe Ensemble Models of Extreme Learning Machines
for Time Series Prediction”. In: Artificial Neural Networks – ICANN 2009. Ed. by
Cesare Alippi et al. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer,
2009, pp. 305–314. isbn: 978-3-642-04277-5. doi: 10/bjczbh (cit. on p. 32).

[89] Alexander Vergara et al. “Chemical Gas Sensor Drift Compensation Using Classifier
Ensembles”. In: Sensors and Actuators B: Chemical 166-167 (May 20, 2012), pp. 320–329.
issn: 0925-4005. doi: 10/tcd. url: http://www.sciencedirect.com/science/article/pii/
S0925400512002018 (cit. on pp. 1, 20, 32).

[90] Jian Wang et al. “A Reⅵew on Extreme Learning Machine”. In:Multimedia Tools and
Applications 81.29 (Dec. 1, 2022), pp. 41611–41660. issn: 1573-7721 (cit. on p. 52).

[91] Kun Wang et al. “Evolⅵng Gradient Boost: A Pruning Scheme Based on Loss Im-
provement Ratio for Learning Under Concept Drift”. In: IEEE Transactions on Cyber-
netics 53.4 (Apr. 2023), pp. 2110–2123. issn: 2168-2275. doi: 10/gm6mrn (cit. on pp. 32,
33, 53, 99, 101).

[92] Shuo Wang, Leandro L. Minku, and Xin Yao. “A Systematic Study of Online Class
Imbalance Learning With Concept Drift”. In: IEEE Transactions on Neural Networks
and Learning Systems 29.10 (Oct. 2018), pp. 4802–4821. issn: 2162-2388. doi: 10/gfcqm8
(cit. on p. 21).

[93] Shuo Wang et al. “Concept Drift Detection for Online Class Imbalance Learning”. In:
The 2013 International Joint Conference on Neural Networks (IJCNN). Aug. 2013,
pp. 1–10. doi: 10/gf6nwt (cit. on p. 21).

[94] XueSong Wang et al. “Multiscale Drift Detection Test to Enable Fast Learning in
Nonstationary Enⅵronments”. In: IEEE Transactions on Cybernetics 51.7 (July 2021),
pp. 3483–3495. issn: 2168-2275. doi: 10/gm854z (cit. on pp. 23–25, 28, 31).

[95] Allan P. White and Wei Zhong Liu. “Bias in Information-Based Measures in Decision
Tree Induction”. In:Machine Learning 15.3 (June 1994), pp. 321–329. issn: 1573-0565
(cit. on p. 53).

[96] Gerhard Widmer and Miroslav Kubat. “Learning in the Presence of Concept Drift and
Hidden Contexts”. In:Machine Learning 23.1 (Apr. 1, 1996), pp. 69–101. issn: 1573-0565.
doi: 10.1023/A:1018046501280. url: https://doi.org/10.1023/A:1018046501280 (cit. on
p. 17).

[97] Z. Yang et al. “A Novel Concept Drift Detection Method for Incremental Learning
in Nonstationary Enⅵronments”. In: IEEE Transactions on Neural Networks and
Learning Systems 31.1 (Jan. 2020), pp. 309–320. issn: 2162-2388. doi: 10/ggk944. url:
https://ieeexplore.ieee.org/abstract/document/8674766 (cit. on pp. 2, 23–25, 28, 29, 31,
36–38, 40, 42, 47, 51, 98, 99, 108–113, 116–118).

133

https://doi.org/10/bjczbh
https://doi.org/10/tcd
http://www.sciencedirect.com/science/article/pii/S0925400512002018
http://www.sciencedirect.com/science/article/pii/S0925400512002018
https://doi.org/10/gm6mrn
https://doi.org/10/gfcqm8
https://doi.org/10/gf6nwt
https://doi.org/10/gm854z
https://doi.org/10.1023/A:1018046501280
https://doi.org/10.1023/A:1018046501280
https://doi.org/10/ggk944
https://ieeexplore.ieee.org/abstract/document/8674766

[98] En Yu et al. “Online Boosting Adaptⅳe Learning under Concept Drift for Multistream
Classification”. In: Proceedings of the AAAI Conference on Artificial Intelligence 38.15
(15 Mar. 24, 2024), pp. 16522–16530. issn: 2374-3468. doi: 10 / gt75cq. url: https :
//ojs.aaai.org/index.php/AAAI/article/view/29590 (cit. on pp. 25, 28, 31, 32).

[99] Shujian Yu et al. “ConceptDriftDetection andAdaptation withHierarchical Hypothesis
Testing”. In: Journal of the Franklin Institute 356.5 (Mar. 2019), pp. 3187–3215. issn:
0016-0032. doi: 10/gnjdpt (cit. on p. 28).

[100] G. Udny Yule. “Why Do We Sometimes Get Nonsense-Correlations between Time-
Series?--A Study in Sampling and the Nature of Time-Series”. In: Journal of the Royal
Statistical Society 89.1 (1926), pp. 1–63. issn: 0952-8385. doi: 10/crfzdj. JSTOR: 2341482.
url: https://www.jstor.org/stable/2341482 (cit. on p. 57).

[101] Poorya ZareMoodi, Sajjad Kamali Siahroudi, and Hamid Beigy. “Concept-Evolution
Detection in Non-Stationary Data Streams: A Fuzzy Clustering Approach”. In: Knowl-
edge and Information Systems 60.3 (Sept. 1, 2019), pp. 1329–1352. issn: 0219-3116. doi:
10/gf6c67. url: https://doi.org/10.1007/s10115-018-1266-y (cit. on pp. 24, 30).

[102] Lingⅺang Zhang and Xiaotong Zhang. “Spurious Granger Causality between a Broken-
Trend Stationary Process and a Stochastic Trend Process”. In:Mathematics and Com-
puters in Simulation 81.8 (Apr. 1, 2011), pp. 1673–1681. issn: 0378-4754 (cit. on p. 57).

[103] Yifan Zhang et al. “OneNet: Enhancing Time Series Forecasting Models under Concept
Drift by Online Ensembling”. In: Advances in Neural Information Processing Systems
36 (Dec. 15, 2023), pp. 69949–69980. url: https://proceedings.neurips.cc/paper_files/
paper/2023/hash/dd6a47bc0aad6f34aa5e77706d90cdc4-Abstract-Conference.html
(cit. on pp. 31, 32).

[104] Xiulin Zheng et al. “Semi-Superⅵsed Classification on Data Streams with Recurring
Concept Drift and Concept Evolution”. In: Knowledge-Based Systems 215 (Mar. 2021),
p. 106749. issn: 0950-7051. doi: 10/gmvzq5 (cit. on pp. 24, 30, 32).

[105] Morteza Zihayat et al. “Mining High Utility Sequential Patterns from Evolⅵng Data
Streams”. In:Proceedings of the ASE BigData& SocialInformatics 2015. ASEBD&SI
’15. Kaohsiung, Taiwan: Association for Computing Machinery, Oct. 7, 2015, pp. 1–6.
isbn: 978-1-4503-3735-9. doi: 10.1145/2818869.2818883. url: https://doi.org/10.1145/
2818869.2818883 (cit. on pp. 8, 20).

[106] Indrė Žliobaitė, Mykola Pechenizkiy, and João Gama. “An Overⅵew of Concept Drift
Applications”. In: Big Data Analysis: New Algorithms for a New Society. Ed. by Nathalie
Japkowicz and Jerzy Stefanowski. Studies in Big Data. Cham: Springer International
Publishing, 2016, pp. 91–114. isbn: 978-3-319-26989-4. doi: 10.1007/978-3-319-26989-4_4.
url: https://doi.org/10.1007/978-3-319-26989-4_4 (cit. on pp. 7, 11).

134

https://doi.org/10/gt75cq
https://ojs.aaai.org/index.php/AAAI/article/view/29590
https://ojs.aaai.org/index.php/AAAI/article/view/29590
https://doi.org/10/gnjdpt
https://doi.org/10/crfzdj
http://www.jstor.org/stable/2341482
https://www.jstor.org/stable/2341482
https://doi.org/10/gf6c67
https://doi.org/10.1007/s10115-018-1266-y
https://proceedings.neurips.cc/paper_files/paper/2023/hash/dd6a47bc0aad6f34aa5e77706d90cdc4-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/dd6a47bc0aad6f34aa5e77706d90cdc4-Abstract-Conference.html
https://doi.org/10/gmvzq5
https://doi.org/10.1145/2818869.2818883
https://doi.org/10.1145/2818869.2818883
https://doi.org/10.1145/2818869.2818883
https://doi.org/10.1007/978-3-319-26989-4_4
https://doi.org/10.1007/978-3-319-26989-4_4

[107] Paweł Zyblewski, Robert Sabourin, and Michał Woźniak. “Preprocessed Dynamic Clas-
sifier Ensemble Selection for Highly Imbalanced Drifted Data Streams”. In: Information
Fusion 66 (Feb. 2021), pp. 138–154. issn: 1566-2535. doi: 10/gm854r (cit. on p. 22).

135

https://doi.org/10/gm854r

	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Background and Related Work
	Definitions
	Data mining life cycle and pipeline
	Concept Drift

	Methods
	Concept drift setting and requirements
	Approaches to [hyper=false]cdda solutions
	Evaluation

	Conclusion

	An Ensemble Learning Augmentation Method for Concept Drift Detection
	Concept Drift Detection Method
	Concept Drift Detection
	Complexity Analysis

	Experiments and Results
	Datasets
	Comparison of bagging vs. boosting and effects of verification with the main classifier
	Comparison with other classifiers

	Conclusion

	Multivariate Vector Error-Correction Analysis of Feature Importance Measures
	Introduction
	Methodology
	Variables
	Hypotheses
	Statistical methods

	Experiments, Results, and Analyses
	Experimental Setup
	Datasets
	Experiments and Results

	Conclusion
	Limitations and Future Work

	Amytis: A Unified Framework for Concept Drift Detection, Adaptation, and Resolution
	Proposed Framework
	The Main Learner
	Feature Importance Analysis

	Concept Drift Adaptation
	Concept Drift Detection
	Concept Drift Resolution
	General Concept Drift Resolution Technique
	Trend of Performance Measurements
	Magnitude of Change in Performance Measurements
	Concept Drift Resolution in Letters=SmallCapsaCharacterVariant=26:2 mCharacterVariant=50:0 yCharacterVariant=40:0 tis
	Complexity Analysis

	Experiments and Results
	Datasets
	Experimental Setup
	Comparison of [hyper=false]cdd, [hyper=false]cda, and [hyper=false]cdr Techniques
	Comparison of ACharacterVariant=26:2 mCharacterVariant=50:0 yCharacterVariant=40:0 tis with Other Techniques

	Conclusion

	Conclusion
	Summary of Contributions
	Future Directions

	References

