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Abstract

Novel Deep Learning Techniques for the Detection and Classification of
Neurodegenerative Diseases using Resting State Electroencephalography

Christopher Almeida Neves

Neurodegenerative diseases are debilitating conditions that progressively deteriorate the life

quality of those affected. Compared with traditional neuroimaging modalities, such as Magnetic

Resonance Imaging, Electroencephalography (EEG) can provide a more cost-effective and acces-

sible alternative to help underprivileged populations obtain an early diagnosis of their condition,

which is paramount for effective patient care. Resting-state EEG (rs-EEG), which records signals

while a subject is at rest, offers an alternative to the commonly used task-based experiments for

easier-to-adopt data acquisition protocols. While deep learning techniques have been shown to be

effective for automatically classifying most EEG signals, they struggle with modeling the long-

range temporal dependencies, complex spatial relationships, and the lack of time-locked events in

rs-EEG. Aiming to address these issues, we first propose an explainable Graph Neural Network

technique for rs-EEG-based Parkinson’s disease detection. Our method uses structured global con-

volutions to model long-range dependencies and novel multi-head graph structure learning to cap-

ture the complex spatial relationships in EEG data. We also propose a head-wise gradient-weighted

graph attention explainer to obtain rich connectivity insights. Our second major contribution lever-

ages recent innovations in state space modeling techniques to classify individuals with dementia,

and we explore spectral and spatial approaches for learning relationships between EEG channels

for the designated task. Additionally, we probe our model’s outputs with explainability techniques

and demonstrate that our model learns physiologically relevant features. This thesis puts forth novel

deep-learning methods that show promise in addressing challenges in neurodegenerative disease

classification using rs-EEG.
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Chapter 1

Introduction

1.1 What are Neurodegenerative Diseases?

Neurodegenerative diseases are a group of conditions that progressively deteriorate or damage

parts of the nervous system. The most widespread types of neurodegenerative diseases include

Alzheimer’s disease (AD), multiple sclerosis, amyotrophic lateral sclerosis (ALS), and Parkinson’s

disease (PD), with Parkinson’s disease and Alzheimer’s disease being the two leading disorders,

according to the National Institute of Environmental Health Sciences [94]. Neurodegenerative dis-

eases are debilitating and often life-threatening, and an early diagnosis is imperative for effective

treatment. Parkinson’s and Alzheimer’s disease are usually diagnosed based on assessments of

symptom manifestations, including self-evaluation, cognitive tests, and behavioral evaluations. As

these diagnostic tools can be subject to inconsistency due to variations in the delivery of such tests by

the evaluators, diagnostic accuracy can benefit from more objective evidence, such as blood samples

and neuroimaging data. Therefore, this thesis will study the potential of Electroencephalography

(EEG) as a diagnostic tool for Parkinson’s and Alzheimer’s disease, the most prevalent neurodegen-

erative conditions.

Structural and functional Magnetic Resonance Imaging (sMRI and fMRI) is often used to study

PD and AD with the goal of discovering reliable structural and functional imaging-based biomarkers

within the brain. Such biomarkers can help better understand the mechanisms and progression of the

diseases. These imaging modalities boast strong spatial resolution, but suffer in terms of temporal
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resolution with prohibitively high costs to use, thus limiting their availability in less privileged

nations. Their lack of accessibility also means that identifying potential disease biomarkers early

is challenging for many, limiting the opportunity for rapid interventions that can significantly affect

patient outcomes. A strong alternative to these modalities is electroencephalography, which also

captures functional changes in the brain, but with a more portable and cost-effective device.

1.2 Neurodegenerative Disease Functional Neuroimaging Using EEG

EEG is a non-invasive functional neuroimaging technique that measures the electric potentials

on the scalp surface arising from the synchronized post-synaptic activity of neuron groups within

the cortex. EEG imaging setups vary depending on the applications and can include portable brain-

computer interface devices (BCI) embedded in everyday consumer electronics, electrode caps used

in clinical settings, and even intracranial EEG, where electrodes are surgically inserted into the

skull. EEG data is recorded at very high sampling rates, meaning that massive amounts of data are

produced for relatively short recording times. This high recording frequency means that EEG has a

temporal resolution far exceeding fMRI. Still, the relatively small magnitude of the measured elec-

trical signals means that EEG lacks fine-grained spatial resolution, is susceptible to environmental

interference, and struggles to locate signals from sources deep in the brain. Nevertheless, studies

have shown that EEG is a powerful imaging modality, especially in resource-limited regions. No-

tably, one key application of EEG lies in Epilepsy detection, where temporal resolution is crucial in

dynamic brain imaging.

For individuals who are severely impaired by their neurodegenerative diseases, performing task-

based experiments in functional neuroimage acquisition can be inconvenient, overly demanding,

and complex. This makes many of the experimental paradigms common in EEG trials difficult and

sometimes impossible to administer, particularly for the senior population. Resting-state EEG (rs-

EEG) offers an alternative recording protocol and is collected while a participant is resting and not

performing any specific actions. However, this increased accessibility and ease of recording comes

at a cost. The lack of clear signal responses to real-time events makes interpreting rs-EEG more

challenging. Thus, techniques that can accurately extract and use salient biomarkers from rs-EEG
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data for pathology classification are sorely needed. To that end, this thesis will focus primarily on

EEG recorded during resting state experiments.

1.3 Deep Learning: A Boon for EEG Classification

The large quantity of data produced by EEG makes manual annotation and interpretation tedious

and time-consuming. Furthermore, extracting relevant features from the data requires significant

amounts of domain expertise. Performing this analysis for a large quantity of subjects becomes

infeasible without automation. Recently, the rise of machine learning (ML) has made these pro-

cessing pipelines substantially more efficient. However, many machine learning approaches still

rely on hand-crafted features extracted by domain experts. EEG is also severely susceptible to ar-

tifacts and requires substantial preprocessing before features can be extracted. This preprocessing

step is not only time-consuming, but has been shown to influence the statistical significance of

downstream analyses depending on which preprocessing implementation is used [24]. In addition,

manually engineered features introduce a bias to the task and can supersede more predictive quali-

ties of the underlying signals in favor of more commonly studied features [64]. We experience this

phenomenon in Chapter 4, where frequencies often discarded in traditional preprocessing pipelines

turn out as the most predictive features when performing dementia classification.

The advent of powerful deep learning (DL) techniques has opened the door for automated fea-

ture learning and has been applied to EEG tasks with great levels of success. They have facilitated

the analysis of vast amounts of EEG data and have been imperative in enabling the use of BCI de-

vices. By automatically learning which portions of the input signals are relevant to the task, they

can learn to ignore artifacts, and perform well on minimally preprocessed data, removing the need

for elaborate preprocessing pipelines [61][124]. Interestingly, post-hoc analysis of trained deep

learning models shows that many of the learned features are physiologically relevant, and some

architectures can learn processing steps that mimic signal processing filters used in more traditional

analyses [29]. Although powerful, deep learning techniques still face many challenges when applied

to EEG, particularly rs-EEG, which will be described in the following section.
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1.4 Challenges of Deep Learning Applied to Resting State EEG

Deep learning techniques struggle to model EEG signals due to long sequence lengths, non-

stationarity, and low signal-to-noise ratio. The majority of studies using deep learning on time-series

data use benchmarks with input sequences that are substantially shorter than those seen in EEG.

Successful deep learning models must not only extract important temporal features from input data

measuring in the thousands of timesteps, but must also model complex spatial relationships between

EEG electrodes. Architectures developed specifically for sequential modeling, such as LSTMs and

Transformers, still struggle with raw EEG signals for reasons we elaborate on in Chapter 2, and

the task becomes more difficult when using data collected from resting-state paradigm experiments.

Resting-state EEG is more prone to random signal fluctuations and lacks the time-locked events

recorded using experimental paradigms, which means that models need to exploit latent temporal

and spatial patterns more effectively. Many of the state-of-the-art deep learning models for EEG

are developed for event-triggered tasks, including BCI, sleep stage classification, and epilepsy, all

exhibiting clearer temporal patterns than those found in rs-EEG.

Another important issue to consider is the relatively small size of typical EEG datasets compared

to other imaging modalities, and the strong inter-subject and inter-site variability present in the

data. Subject-specific physiological and affective differences can introduce strong variability into

recorded signals. In addition, large variations may be introduced in the signals by different recording

locations and times. This necessitates rigorous validation schemes to ensure the robustness of deep

learning methods, and novel sequential and spatial modeling techniques to handle EEG signals

effectively.

1.5 Thesis Contributions

In this thesis, we begin by proposing a novel Graph Neural Network technique that emphasizes

learning the spatial relationships between EEG electrodes for Parkinson’s disease detection from

resting state EEG data. Our work also proposes a novel method of learning the latent graph struc-

ture connecting the electrodes with respect to disease detection. In our second work, we shift our
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attention to dementia classification. In particular, we emphasize leveraging state-of-the-art tech-

niques in sequence modeling to extract long-range temporal features from a subject’s resting state

EEG signals. More specifically, we exploit recent advances in state-space models to classify par-

ticipants’ stage of cognitive decline while exploring the modeling of relationships between EEG

electrodes in the spectral domain. Our contributions aim to advance deep learning techniques for

the two most common neurodegenerative diseases while simultaneously extracting relevant physio-

logical insights from model outputs.

Our first work presents the following major contributions in Chapter 3:

• We combine structured global convolutions [73] and self-supervised contrastive learning to

better model long sequences of EEG data with a limited dataset for the first time.

• We propose a novel dynamic multi-head graph structure learning technique to model relation-

ships between EEG electrodes without making any assumptions about underlying connectiv-

ity in contrast to conventional Graph Neural Network methods.

• To enhance the interpretability of our model, we introduce a new technique based on head-

wise gradient-weighted attention scores to generate more informative explanations in contrast

to more common attention score aggregation techniques.

Our subsequent work offers the following major contributions in Chapter 4:

• We develop a novel Mamba-based architecture to address the need for long-range sequential

modeling techniques in rs-EEG signal classification.

• Our method uses a channel-independent modeling approach to extract robust features from

the underlying data, and we explore spectral and spatial approaches for learning relationships

between channels.

• We are the first to benchmark a Mamba-based architecture on the first large-scale dementia

rs-EEG dataset, recently released by [61], and show improved classification performance over

previous benchmarks while using substantially fewer DL model parameters.

• We probe our model’s outputs to extract clinically relevant insights from the data and show

that our model can learn physiologically relevant features.
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1.6 Thesis Outline

This thesis begins with a review of important deep learning models used for EEG classifica-

tion, emphasizing deep sequential modeling techniques. We present each method’s strengths and

where they fall short for modeling rs-EEG signals. We also give a brief review of unsupervised

learning and domain adaptation techniques that have been used to address inter-subject variabil-

ity. In Chapter 3, we present a novel Graph Neural Network model that jointly classifies subjects

with Parkinson’s disease while learning important relationships between electrodes. Additionally,

we employ a contrastive learning strategy adapted for EEG signals to extract robust features from

a limited dataset. In Chapter 4, we introduce a Mamba-based modeling technique that efficiently

models long rs-EEG signals while using fewer parameters than baseline models, and we study the

physiological significance of the features learned by our model. Finally, in Chapter 5, we conclude

the thesis, describe the limitations of our work, and elaborate on promising future avenues of study.
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Chapter 2

Background

This chapter begins by introducing EEG as a functional neuroimaging modality. We then pro-

vide an overview of traditional machine learning methods applied to EEG followed by a summary

of the most important deep learning techniques used to classify EEG signals and describe their

strengths and weaknesses. The chapter ends with a brief review of unsupervised learning techniques

and domain adaptation methods used to address subject differences in EEG.

2.1 What is EEG?

As previously touched upon in Chapter 1, EEG records the electrical potential emanating from

the synchronized activity of cortical neurons. More specifically, it is the postsynaptic activities of

pyramidal neurons in the cortical portions of the brain that constitute most of the recorded signal.

This is due to their perpendicular alignment and proximity to the cortical surface. Neurons located

in deeper parts of the brain are too far from the surface of the head and lack the alignment required

to project signals to the scalp, and thus cannot be accurately recorded using EEG devices.

EEG signals record activity from multiple cognitive processes occurring simultaneously. It

is common in EEG research to sub-divide the frequency spectrum of the signals into five major

sub-bands, and many argue that each sub-band has a unique signature across the scalp surface

and reflects different affective or cognitive states. There are no universally agreed-upon start and

end values for each of the frequency bands, with many papers reporting delineations that vary by
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Figure 2.1: Raw EEG signal decomposed into canonical frequency sub-bands using a pass-band
filter.

a few Hertz. However, the general spectrum range remains similar between studies. The most

commonly agreed upon frequency sub-bands include the Delta (0.5-4 Hz), Theta (4-8 Hz), Alpha

(8-13 Hz), Beta (13-30 Hz), and Gamma (30-90 Hz) ranges and are shown in Figure 2.1. Different

psychiatric disorders often show abnormalities localized in one or more of the frequency bands,

and the power of the band-wise signal is one of the most common biomarkers that is studied in

EEG. In Chapter 4, we show that our model learns salient patterns in the Theta, Beta and Gamma

bands while classifying individuals with dementia, and many of these learned features are echoed

in clinical literature.

EEG devices typically consist of an array of electrodes placed on a subject’s head, an amplifi-

cation unit that amplifies the low-voltage EEG signals, and an output device. Electrode caps, often

made out of mesh, are typically used to help arrange the electrodes at specific positions over an

individual’s scalp and help hold them in place. Setups vary greatly (see Figure 2.2), and the number

of electrodes used can vary from 4 to 256 and typically depend on the phenomena being studied.

These electrodes are placed over the scalp following standardized systems, with the most common

being the 10-20 System, which splits the scalp area into segments of 10 to 20% of the total dis-

tance of the skull and defines the relative positions of each electrode. The sampling rates of EEG

acquisition devices also vary depending on the task but can extend to thousands of hertz. This high

sampling rate, coupled with the number of electrodes used in a study, means that EEG devices pro-

duce large amounts of data every second and can be used to image the brain at its native temporal

resolution. This sets EEG apart from other functional imaging modalities, such as fMRI and PET,
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Figure 2.2: EEG recording devices can take many forms. From left to right: Wearable BCI head-
phones (Neurable), standard EEG setup with mesh cap to hold electrodes in place, high-density
EEG electrode array, intra-cranial EEG electrode array placed over the surface of the brain (Elec-
trocorticography).

which boast high spatial resolutions but temporal resolutions that pale in comparison to EEG. How-

ever, some studies aim to perform multi-modal imaging of brain activity by pairing EEG with fMRI,

which can help optimally couple brain structure and dynamics. Magnetoencephalography (MEG)

is one of the only other functional imaging modalities that can rival the temporal resolution of EEG

while achieving a better spatial resolution. Whereas EEG measures the electrical activity of neu-

rons, MEG records the magnetic fields that arise from the electrical currents in the brain. However,

MEG requires more specialized equipment to shield interference from external magnetic fields and

is much more expensive than EEG.

To summarize, the accessibility and cost-effectiveness of EEG means that it is uniquely posi-

tioned to offer functional neuroimaging to underserved populations. Although many studies exist

linking EEG biomarkers to different pathologies, the low spatial resolution makes it difficult to

study more abstract cognitive processes or phenomena that occur deep within the brain. However,

as automated detection techniques become more sophisticated, EEG can provide an opportunity for

rapid and accurate diagnosis of many disorders. In the next section, we will briefly summarize some

of the most common EEG features used with traditional Machine Learning techniques.

2.2 Machine Learning for EEG

Many traditional non-deep learning machine learning (ML) algorithms have been effectively ap-

plied to classification tasks for neurodegenerative disorders using EEG. The most popular methods

include Support Vector Machine (SVM), k-Nearest Neighbor (KNN), and Random Forests (RF),
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and are almost always used in conjunction with hand-crafted feature extraction techniques. There

exists a vast number of features that have been proposed and used in conjunction with machine learn-

ing algorithms, with the most commonly used features largely falling into three main categories:

time-domain features, frequency-domain features, time-frequency domain features [27][120].

Time-domain features express signal characteristics with reference to their variation in time.

These features are important when observing time-locked events, such as epileptic seizures and

motor imagery tasks. Common time domain features include complexity measures, such as the

Higuchi Fractal Dimension, Hurst Exponent and Katz’s fractal dimension, which is a measure of

self-similarity and quantifies the predictability and regularity of the signals. These non-linear com-

plexity measures have been used along with machine learning algorithms to classify individuals

with Alzheimer’s disease [2]. Mean or absolute signal value, zero crossings, and slope sign changes

are other common time-domain measures that, while simple, have shown success when coupled

with machine learning [27].

Frequency-domain features characterize the distribution of a signal across a spectrum of fre-

quencies. Analyzing a signal in the frequency domain makes it easier to observe periodic compo-

nents of the signal and one of the most common frequency-domain features is the power spectral

density (PSD), which describes the distribution of the underlying signal’s power over a given fre-

quency range. The relative power of each canonical frequency band is also often used with machine

learning methods and has been shown to be discriminative for detecting certain neurodegenerative

conditions [62].

Time- and frequency-domain features alone only capture a fraction of the behavior of the un-

derlying signal. Time-domain features are susceptible to artifacts, and frequency-domain features

ignore transient events crucial for many classification tasks. Time-frequency domain features jointly

extract time and spectral information to generate features that describe how frequency components

of the data change with respect to time. These features are some of the most commonly used with

machine learning techniques and include the Short-Time Fourier Transform (STFT), the Wavelet

transform, and the Filter Bank Common Spatial Pattern (FBCSP).

When the optimal choice of features for a task is known, manual feature engineering and simple

machine learning algorithms are powerful choices for effective classifiers. Unfortunately, this is
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often not the case and many times, features that are discriminative for one task may be spurious for

another. This necessary domain expertise, along with the heavy preprocessing and time investment

required to extract many of these manual features, makes the automated representation learning

aspects of deep learning a much more attractive choice. In the following section, we will provide an

overview of important deep-learning architectures for extracting salient features from EEG data.

2.3 EEG Representation Learning for Neurodegenerative Disease Clas-

sification

Extracting manual features for EEG classification tasks is a time-consuming process that re-

quires task-specific expertise. In-depth knowledge is required to understand which features are

relevant to the task at hand and how to properly preprocess the data before feature extraction. In

addition, using manual features in a machine learning pipeline can introduce biases into the pro-

cess. Deep learning can automatically learn representative features and achieve performance that is

on par with, or exceeds manual feature engineering methods. In the following sections, we describe

the most commonly used architectures in deep learning for EEG, such as Convolutional Neural Net-

works, Recurrent Neural Networks, and Transformers, and discuss issues that these architectures

may have when dealing with rs-EEG in particular. We then provide an overview of more recent

techniques that have shown great promise in modeling spatial or temporal relationships in EEG

signals, such as Graph Neural Networks and State Space models. Finally, we provide a brief in-

troduction to unsupervised learning and domain adaptation techniques that can help minimize the

negative effects of inter-subject variability in EEG tasks.

2.3.1 Convolutional Neural Networks

Convolutional Neural Networks (CNN) revolutionized the field of deep learning and trans-

formed how practitioners approach computer vision tasks. The vast majority of deep learning tech-

niques in medical imaging involve CNNs in some capacity, and although they are not specifically

designed to handle sequences, they have achieved state-of-the-art performance in many 1D sequence

tasks.
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Similar to how 2D CNN filters learn primitive patterns that become more abstract as the number

of layers increases, the filters in 1D CNNs learn local patterns that are composed to perform abstract

tasks such as attenuating artifacts and emphasizing valuable frequencies [29]. A CNN is typically

composed of interleaved layers of learned 1D filters, Batch-Normalization layers, non-linear acti-

vation functions, and pooling operations to learn salient features from the underlying data. These

features are then used by a number of fully connected layers to perform the downstream task, either

regression or classification.

CNNs make up the majority of deep learning architectures applied to EEG data. For motor

imagery tasks, the EEGNet architecture is the most widely used [71]. It employs a paradigm of-

ten seen in temporal convolutional networks (TCN), which is splitting temporal and channel-wise

convolutions into two distinct steps [29][112]. EEGNet also uses a temporal convolution filter size

that is equal to half of the sampling frequency. Trying to increase CNN kernel sizes without having

to design deeper models while achieving stable training is a trend that is becoming increasingly

more common for time series tasks [80][73]. Others have modified popular 2D CNNs to accept 1D

signals with great success, instead of designing new models from the ground up. For example, the

well-known Inception architecture famous for its proficiency in computer vision tasks [123] was

adapted for 1D signals by creating an ensemble model made of Inception modules with kernels of

various lengths [53]. This adapted model has shown success on EEG data [104] and other time-

series tasks. ResNet [45] and VGG [117], two foundational vision models, also perform well on

EEG data [61]. This suggests that many of the design patterns used to create effective CNNs for

image tasks translate to 1D signals. Others have introduced innovative designs like Omni-Scale

CNNs, specifically for time series tasks. They use a rule-based approach for selecting the quantity

and size of the kernels used [127], removing the need for manual tuning.

Although effective, CNNs excel when there are clear local patterns in the underlying data, such

as in epilepsy detection, sleep stage classification, or motor imagery tasks. However, in tasks using

rs-EEG, obvious responses to event-related stimuli are not always present. In these cases, being

able to model global temporal patterns and intricate relationships between electrodes becomes more

important. This reduces the efficacy of CNNs and calls for more sophisticated architectures to

capture task-related structures in the signals.
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2.3.2 Sequential Modeling

Although effective on 1D signals, CNNs have a locality bias that leads them to place higher

importance on adjacent features [6]. This makes modeling long-range relationships challenging.

Models that are built from scratch for sequential processing are crucial for learning important fea-

tures from time series, and the following subsections will outline some of the most prominent ar-

chitectures designed for this purpose.

Recurrent Architectures

A Recurrent Neural Network (RNN) generalizes feed-forward neural networks to sequences

[122] and allows for input and output vectors to vary in length. This is useful for medical time series,

which can be heterogeneous. RNNs allow information to flow across time steps by maintaining a

hidden state, which functions like a memory of past inputs. They integrate information from each

time step sequentially into their hidden state, and their recurrent formulation considers the previous

hidden state along with the current input to generate an output. The RNN updates its current hidden

state ht with a new input xt and information from the previous hidden state ht−1 to produce an

output yt at time t according to Equation 1 [122].

ht = σ(W hxxt +W hhht−1)

yt = W yhht

(1)

Although RNNs were a pioneering step towards designing neural architectures specifically for

sequences, they suffer from vanishing or exploding gradients. This occurs due to gradients ac-

cumulating across multiple time steps during back-propagation, causing them to either disappear

(vanish) or grow disproportionately large (exploding) due to instabilities in the initial conditions of

the network’s initialization. This made handling very long sequences challenging. Long Short-Term

Memory networks (LSTM) were soon developed to address these issues [48]. The LSTM replaces

the RNN units with a memory cell, depicted alongside the simple structure of an RNN in Figure

2.3.

The introduction of the cell state C is the core improvement of the LSTM. It acts as a persistent
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Figure 2.3: A) The cell of an RNN. B) The LSTM cell.

long-term memory that uses three main gates to modulate the information it retains, depending on

current inputs and past hidden states. The input gate controls the portions of input data that enter

the cell memory, the forget gate decides which data should be discarded from the cell state, and the

output gate determines what information from the cell state should be used to produce the output.

By introducing the cell state, the LSTM avoids the issue of vanishing gradients by providing at least

one path, where the gradients will not accumulate sequentially and disappear.

LSTMs are overwhelmingly used over their more dated RNN counterparts for EEG time-series

classification. They can also be used in conjunction with CNN layers to improve local feature

extraction [21]. Although effective for capturing both long- and short-term dependencies, LSTMs

still face problems when input sequences get too long. Their sequential processing characteristics

make them hard to parallelize, and longer input sequences can result in lengthy training times. They

also have a limited memory capacity since information must be compressed into a cell state and

they struggle to revise information storage decisions made by their gates [7]. In general sequential

modeling, they have largely fallen out of favor to Transformer architectures that are significantly

easier to parallelize. However, some of these shortcomings have been addressed by the recent

release of the xLSTM model [7], a revised LSTM variant that may be well poised for very long

sequence modeling in the future.
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Transformers

The Transformer architecture, first introduced by Vaswani et al. for the purpose of natural

language processing (NLP) [132], quickly became the state of the art for sequence modeling tasks.

By leveraging the self-attention mechanism, Transformers are able to attend to different tokens

in an input sequence with various levels of importance, which allows them to ignore noise and

focus on portions of the input that are important to the downstream task. Self-attention, given by

Equation 2, first linearly maps an input sequence to query Q, key K and value V vectors. A softmax

operation then generates attention weights for each element in the value vector, and the resulting

multiplication with V generates a weighted output. In Transformers, the self-attention mechanism

is further extended to multi-head self attention, which performs the same operation H times, once

for each “head” and linearly combines the result from each head. The multi-head extension can be

compared to the multiple kernels in CNNs, and is able to learn multiple different representations in

parallel, increasing expressivity.

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (2)

For medical time series, Transformers are rarely applied naively to the input sequence due to

the quadratic computational complexity of the self-attention mechanism relative to the input length.

Instead, the time steps in the input time series are often grouped into windows or patches, and

projected to a higher-dimensional embedding space. These patches are then fed to a Transformer.

Although effective on sequences, Transformers typically make very little assumptions about the

underlying structure of the data compared to CNNs (locality assumption [138]) and LSTMs (re-

current bias [129]). This means that Transformers require significantly greater amounts of training

data compared to CNNs and LSTMs in order to learn latent relationships. However, unsupervised

or semi-supervised pretraining can alleviate this issue to certain degree. In EEG, an example of this

is LaBraM, a large Transformer model that is pretrained by learning how to reconstruct the phase

and amplitude of input signals. The pretrained Transformer is used for a BCI downstream task

[56]. BENDR is another Transformer model that is instead pretrained using a contrastive learning

objective in order to perform well on BCI applications and even outperforms other fully-supervised
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benchmarks [67]. Although pretrained Transformers show promising results in EEG tasks, there are

still no true foundation Transformer models akin to those in computer vision and NLP. Currently,

Transformer architectures are created for narrow experimental paradigms, and how they work on

other tasks remains to be studied. The question about the optimal Transformer architecture for

time-series analysis is still an open question, and recent models developed for other time-series

tasks suggest that inverted Transformer models, where attention is applied per input channel (i.e.,

recording from an electrode position) instead of per token, may prove to be more effective [76].

Most recently, a novel class of models has emerged, termed deep State Space models, and have

presented a promising alternative to Transformers for sequence modeling while addressing many of

their downsides. These models will be introduced in the following section.

State Space Models

State space models (SSM) are commonly used in the field of control systems to model dynamic

systems. They have recently been adapted for deep learning tasks, where they show great success

in efficiently modeling very long-range sequences. These models use two core equations, the state

equation and the output equation. These equations govern how new inputs are integrated into a

hidden state and how the hidden state will generate the next output. This hidden state is conceptually

similar to hidden states in feed-forward networks [36]. The state and output equations, shown in 3,

relate the input, hidden state, and output by using four distinct parameter matrices A,B,C, and D.

h
′
(t) = Ah(t) +Bx(t)

y(t) = Ch(t) +Dx(t)

(3)

A determines how the previous hidden state h(t) will affect the current state h
′
(t) and the matrix

B dictates the effect that the input x(t) has on the hidden state. Both A and B are part of the state

equation. In the output equation, C modulates the influence that the hidden state has on the output,

and D is usually compared to a residual connection [39] and allows the input to have a direct effect

on the output.

The class of state space models used in deep learning are usually referred to as Deep State

Space Models. This distinction refers to models that allow the A,B,C, and D matrices to be
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learned using gradient descent. The key to success for deep state space models on time-series

tasks lies in how the state space matrices are initialized. One of the first works to propose a deep

SSM for long-range sequence modeling was the Legendre Memory Unit (LMU) [136]. Voelker

et al. use an SSM based on the dynamics of spiking neural networks, where the A and B state

matrices are initialized in a way such that the system is capable of remembering a sliding window

of history as a linear projection of Legendre Polynomials [137][136]. By projecting onto a basis of

polynomials, the LMU is capable of remembering a greater number of timesteps than other recurrent

architectures while using fewer parameters. Voelker et al. are able to efficiently model upwards of

100,000 time steps using their method, whereas a traditional LSTM would struggle past 2,000. The

interaction of this memory unit with an RNN’s hidden state is trainable through gradient descent,

but the actual state matrices A and B are not. In a follow-up paper released in 2021, Chilkuri and

Eliasmith show how to view their SSM equation as a convolution as opposed to a recurrence [18].

The parameterization of the A and B state equations, as well as the convolutional view of the SSM

equation, paved the way for modern SSM variants

Gu et al. expand on the LMU and introduce Linear State Space Layers (LSSL) [40]. Their

method allows the state matrices themselves to be trainable using gradient descent, and they use the

recurrent and convolutional views of an SSM proposed by Chilkuri et al. to allow for fast inference

and training, respectively. Their tests showed the state-of-the-art performance on very long sequence

processing at the time. However, the LSSL suffered from a prohibitive computational complexity,

which prevented their widespread use. Their follow-up work introduces Structured State Spaces

(S4) [39] and S4-v2 [41]. These innovations use special parametrizations for the A matrix, reducing

the computation time of their deep SSM by orders of magnitude compared to previous iterations.

S4 and S4-v2 achieve great performance on long-range sequential modeling tasks and close the

gap to Transformers for modeling sequences of discrete data, like images and text. S4 has also

shown promising results for modeling EEG and has been used for seizure classification [125] and

for generating EEG data [59] due to its impressive ability to capture relationships present in very

long sequences.

These innovations in deep state space models resulted in an explosion of novel sequence mod-

eling techniques, like Structured Global Convolutions (SGConv) [73], which we use in Chapter 3
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Figure 2.4: SGConv decaying kernel parameterization [73].

to extract temporal features from EEG data. SGConv was introduced to simplify the S4 structure

by using insights from its success to develop a global convolution kernel. It does this by creating

a decaying multi-scale kernel through the concatenation of a set of weighted sub-kernels, shown

in Figure 2.4. This global convolution method has shown great results in Parkinson’s disease de-

tection [92] and in the generation of EEG data [135]. Other powerful SSMs include H3 [33] and

Hyena [102]. However, the recently released Mamba SSM [37] is the first true sequential modeling

technique that presents a viable alternative to Transformers.

Mamba, proposed by Albert Gu and Tri Dao, has taken the world of sequential modeling by

storm. Previous state space models, like S4, are not capable of selectively filtering out parts of their

hidden state depending on current inputs. This means that it cannot use the current input to decide

which parts of the hidden state to forget, which leads to inefficient use of hidden state memory. Up

until the introduction of Mamba, self-attention was more expressive as it enabled Transformers to

dynamically change attention scores in an input-dependent fashion. Previously, state space models

lagged behind in tasks, such as selective copying and induction heads due to this weakness [36].

However, Mamba improves on its predecessors by removing the linear time invariance constraint

imposed on the state space matrices. That is, it allows the state parameters A,B,C, and D to vary

with the inputs to the model, leading to the updated state and output equations shown in Equation 4.
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h
′
(t) = A(t)h(t) +B(t)x(t)

y(t) = C(t)h(t) +D(t)x(t)

(4)

We use Mamba in chapter 4 to model temporal dependencies in EEG data for classifying in-

dividuals with dementia, and although it performs quite well, Mamba still has certain drawbacks

compared to Transformers. Its use of a hidden state means that it still performs the compression

of previous time steps. However, Mamba’s efficient implementation allows it to attend to a signif-

icantly longer input length while maintaining a sub-quadratic computational complexity, allowing

for more efficient scaling than Transformers.

2.3.3 Graph Neural Networks

Whereas the previous sequence modeling techniques excel at capturing the long-range temporal

dependencies in EEG data, Graph Neural Networks (GNN) have been proposed as a promising way

to model spatial relationships in EEG recordings. Having a useful inductive bias for a task means

that acceptable results can be achieved with fewer parameters, increased robustness, and quicker

convergence. Graph neural networks introduce a relational inductive bias to a task, meaning that

they place greater importance on relationships between graph elements [108]. This can take ad-

vantage of advances in network neuroscience for EEG, which analyzes EEG signals as complex

graphs and studies network properties, such as functional connectivity. However, instead of ex-

tracting features and statistics from these EEG graphs manually and experiencing many of the same

disadvantages as other manual feature extraction techniques mentioned in Section 2.2, GNNs can

take advantage of the graph structure of EEGs and extract important relationships that are relevant

to the task at hand [64].

We define an EEG graph as a set G = (V,E,H), where V represents the set of all nodes, E

is the set of edges, and H is the matrix of D-dimensional node features. In an EEG graph, D can

be a window of raw EEG signals or even features extracted manually from a single electrode. In

the EEG graph, individual electrodes are represented by graph nodes, and the edges between the

nodes can be represented by a range of connectivity or distance measures. The two most often

used metrics for the edges include the physical distance [25] and functional connectivity between
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Figure 2.5: EEG modeled as a graph.

two electrodes (e.g., Pearson Correlation Coefficient [49], Absolute Cross-Correlation [124], and

Granger Causality [65]). Figure 2.5 shows this graph construction approach and illustrates how

relational information between EEG electrodes can be integrated into a graph.

Once signals are converted to graphs, they can be used alongside graph neural networks for a

range of tasks. GNNs can perform edge imputation, node classification, or whole graph classifica-

tion, the latter of which is the most common task in EEG studies. The standard GNN architecture

for graph classification is shown in Figure 2.6 and is composed of three main components: a node

representation learning stage, a readout function, and a classification layer [140]. The node repre-

sentation learning stage updates node representations with information from itself and the connected

neighboring nodes. In this stage, graph pooling layers can be added similarly to the mean or max

pooling layers used in CNNs to reduce the number of nodes in a graph. The readout layer is a

function that maps the set of node representations to a graph representation using Equation 5. With-

out a node aggregation step, performing classification using a set of nodes can be computationally

expensive, as an MLP classifier would have to classify a feature vector of size V ×D resulting from

the concatenation of all node feature vectors in a graph.

hG = Readout(hK1 , hK2 , ..., hKn ) (5)

where K is the index of the last graph convolution layer, hG is the final graph embedding, and hn
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Figure 2.6: General architecture of a Graph Neural Network. GNNs are often composed of graph
convolution operators, readout functions and classification heads.

is the embedding of the n-th node in the graph. The mean, max, and sum readout functions are

the most commonly used [140] because they are permutation invariant (which is a highly desir-

able property when working with graphs), are quick to compute, and often produce great results.

However, there has been more recent work that tries to develop adaptive readout functions using

techniques like self-attention or gating to generate more expressive graph embeddings from node

representations [12]. Once a graph embedding is obtained, it is classified using a multi-layer per-

ceptron (MLP).

The graph convolution operators responsible for learning node representations fall into two gen-

eral categories: spatial graph convolutions and spectral graph convolutions. Both are described in

the following sections.

Spatial Graph Neural Networks

Spatial graph neural networks work by iteratively passing information between nodes. A node

receives information from its neighbors, which is used to update its own representation [10]. This

process is known as message passing, and a node updates its information according to Equation 6.

h
(l+1)
i = σ

⎛⎝W
(l)
1 h

(l)
i +

∑︂
j∈N(vi)

W
(l)
2 h

(l)
j eji

⎞⎠ (6)
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Figure 2.7: Neighboring nodes used to update a node’s embedding. A) 1-Hop Neighborhood of the
current node. B) 2-Hop Neighborhood of current node.

A node vi with an embedding hi in layer l updates its embedding to hl+1
i through a linear combi-

nation of nodes in its neighborhood N . W1 and W2 are trainable parameters,
∑︁

is the aggregation

function that determines how the neighbor node embeddings are combined, eji is the edge weight

of the edge connecting neighbor vj to vi, and σ is non-linearity. Information can be transferred from

longer-distance nodes through the addition of more graph convolution layers in the GNN. A single

message-passing operation is performed by a spatial graph convolution and will exchange informa-

tion between a node and its 1-hop neighbors. That is, nodes that are a single connection away, as

shown in Figure 2.7 A). A second GNN layer will allow communication between 2-hop neighbors,

and so on. This is similar to the concept of receptive fields in CNNs, where deeper networks allow

the model to extract information from elements that are much further apart in the input.

Spatial GNNs are powerful as they are capable of handling graphs with inconsistent numbers of

nodes. This makes them flexible and an ideal choice for datasets where graph sizes vary. However,

deep spatial GNNs suffer from a phenomenon known as over-smoothing. This describes a collapse

in message variance that occurs when messages travel through too many nodes and converge to

similar information [64]. This ultimately leads to nodes having similar embeddings and yielding

graph representations that lack expressiveness.
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Spectral Graph Neural Networks

Instead of the message-passing operation described in the previous section, spectral GNNs rely

on the Graph Fourier Transform (GFT). The GFT decomposes a graph into its spectrum, which is

defined as the eigen-decomposition of the Laplacian matrix into its eigenvalues and eigenvectors

[64, 140]. The graph Laplacian is defined as L = D −A, where D is the degree matrix, describing

the degree of each node, and A is the adjacency matrix. The GFT is then given by Ĥ = UTH ,

where H is the set of node features H ∈ RV×D and U is the eigenvectors of the graph Laplacian. A

spectral GNN can then be written as the convolution of a graph and a spatial kernel g in the spectral

domain, which gives rise to the following element-wise multiplication[64]:

H ∗ g = U((UTH)⊙ (UT g)) (7)

where g is a kernel in the spectral domain, and UT g is a learnable matrix. This defines a learned

convolution on the spectral representation of a graph. Since a spectral convolution requires the

adjacency matrix to be known a priori, it can only be applied to graphs with a fixed number of nodes.

They are also more computationally expensive than spatial GNNs. However, spectral convolutions

inherently capture global graph information, which is something that spatial GNNs cannot do with

a single layer. Spectral GNNs are also more interpretable than spatial GNNs, as the learned filters

applied to the spectral graph representation can be directly analyzed [10].

One of the most popular spectral convolution variants is the ChebConv graph convolution oper-

ator [22]. It reduces the computational complexity of performing a full spectral graph convolution

by using a series of localized filters based on Chebyshev polynomials. This approach avoids having

to perform the full eigenvalue decomposition of the Laplacian, which is what makes spectral con-

volutions so taxing to compute for large graphs. ChebConv is also one of the most commonly used

spectral convolution filters for EEG tasks [64] and is the method we use in our GNN in Chapter 3.

Latent Graph Structure Learning

For certain tasks, the optimal functions used to calculate edge weights are not already known. Edge

weights calculated using hand-crafted features, such as functional connectivity values are prone to
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the same biases as manually extracted features used in machine learning tasks. We show this in

Chapter 3 by demonstrating that the Pearson Correlation Coefficient, which is often used to con-

struct the edges in an EEG graph, can severely overemphasize the connection strengths of adjacent

nodes due to volume conduction effects in rs-EEG. One way to partially remedy this is by using

Graph Attention networks (GAT) [133], which assign attention weights to edges between elec-

trodes, thereby creating a proxy for edge values. However, this suffers from two main issues. First,

although GATs can modulate the importance of a neighboring node’s features, they still require

an adjacency matrix that describes whether nodes are connected or not, meaning that connectivity

needs to be determined beforehand. Second, the message-passing operation used in a GAT may

not be optimal for the given task, so decoupling the graph structure learning operation from the

message-passing operation is valuable.

Latent graph structure learning (GSL) aims to learn the underlying graph topology most rele-

vant to the downstream task. That is, they apply a data-driven approach to learning the underlying

adjacency matrix. Graph structure learning techniques can be categorized into two broad categories:

unsupervised and supervised. Unsupervised methods do not require labeled data to learn node rela-

tionships. This makes them highly valuable in low-data regimes. However, because the downstream

task has no influence on the generation of these graphs, they may not represent graph structures that

are important for the downstream task. Supervised methods obtain relevant graph representations at

the cost of requiring larger quantities of labeled data [16].

Within these two broad categories, GSL techniques can be further classified as either metric-

based, neural, or direct approaches [148]. Metric-based approaches use pre-defined functions to

generate similarity values between two node embeddings. For example, Zhang et al. [147] use

cosine similarity to determine edge weights between nodes. On the other hand, neural approaches

use neural networks to generate edge weights given node embeddings as inputs. For example, Pilco

et al. [101] use local and global features extracted from nodes and a simple neural network to

iteratively learn the edges between vertices. Finally, direct approaches treat the adjacency matrix

itself as a set of learnable parameters and do not depend on input features or node embeddings to

determine edge weights. [118] use this technique to learn an adjacency matrix for an EEG graph

used in emotion recognition. In Chapter 3, we use a self-attention-based neural approach to uncover
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key task-relevant edges for the task of Parkinson’s disease detection and show how it can surpass

results obtained using the more common Pearson correlation coefficient approach when used with

rs-EEG.

2.4 Unsupervised Learning and Domain Adaptation for Electroen-

cephalography

2.4.1 Unsupervised Learning

Medical imaging datasets are expensive to collect, need to be properly anonymized, and require

substantial domain expertise to label and curate. This demanding time and resource requirement

leads to dataset sizes that pale in comparison to those found in fields like natural vision and NLP.

EEG datasets are comparatively smaller than many other imaging modalities, such as CT and MRI,

and have only recently begun to grow in size [95][61]. In order to design effective classifiers that can

make use of limited amounts of data, unsupervised learning techniques are often employed. They

use pretext tasks to extract expressive feature representations that can then be used by a secondary

network for the downstream task. Although there is no general consensus on the official taxonomic

division of unsupervised learning techniques for EEG, many studies commonly refer to contrastive

and generative pretext tasks as the main categorical divisions [23][139].

For unsupervised learning, it is useful to think of the deep learning network as a combination of a

feature encoder and a classification head. The feature extractor maps the input data to a latent space,

and the classification head uses this lower-dimensional feature representation for classification. In

unsupervised learning, the weights of the feature encoder are learned using a pretext task with

unlabeled data. The classification head can then be trained along with the feature encoder, or the

feature encoder weights can be frozen (not having their weights adjusted) during training with the

labeled dataset.
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Contrastive Pretext Tasks

Contrastive pretraining has achieved excellent results in computer vision tasks, with techniques

like SimCLR [15] and MoCo [46] sometimes outperforming fully supervised methods. Contrastive

learning techniques aim to learn robust features by minimizing the distance between an anchor and

its positive samples and maximizing the distance between negative sample pairs. Specifically, a

positive sample pair is often an augmented view of a data sample (i.e., anchor), and a negative pair

refers to a separate instance or a data point from a different class. The most critical components

of a contrastive learning framework are the data augmentations used to form positive and negative

pairs, and the loss function. For example, SimCLR uses a form of the InfoNCE loss function (more

specifically, NT-Xent), shown in Equation 8.

ℓi,j = − log
exp(sim(zi, zj)/τ)∑︁2N

k=1 1[k ̸=i] exp(sim(zi, zk)/τ)
(8)

where sim(zi, zj) is the cosine similarity between a sample’s feature vector and its augmented

counterpart, τ is a temperature parameter used to adjust the weight of negative samples. The values

zi, zj , and zk are the outputs from a projection head attached to the feature extractor of the model

being pretrained. The SimCLR framework does not explicitly sample negatives, but instead uses all

other samples in a batch as negative pairs. For EEG data, Mohsenvand et al. [88] use this framework

to learn rich features from signals that can then be used in a downstream classification task. They

apply augmentations to EEG signals similar to those applied to images in computer vision. These

augmentations, along with an overview of the SimCLR framework, are shown in 2.8.

Although powerful, the downside of many contrastive learning techniques is the process of selecting

negative samples. When using a dataset with few distinct classes, there is a high chance that the

negative and positive samples will belong to the same class. This reduces the effectiveness of

contrastive pretraining methods. Contrastive pretraining methods also require large batch sizes to

increase the odds of selecting positive and negative pairs from distinct classes, which means that

computational costs are higher compared to other pretraining pretext tasks. However, contrastive

methods are simple to implement and can still perform well for small datasets, even with low label

counts. In Chapter 3, we make use of the SimCLR framework to increase the performance of a
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Figure 2.8: A) SimCLR contrastive learning framework applied to 2D images. The loss function
encourages bringing augmented views of a data point closer in latent space while repelling unrelated
samples. B) Data augmentations applied to EEG [88].

classifier for Parkinson’s disease detection with a small dataset.

Generative Pretext Tasks

Generative pretext tasks either generate unseen signals that can extend outside of the range of the

input data or reconstruct input signals in order to learn robust and generalizable features that capture

contextual information and correlations [139]. In EEG pretraining, the most common generative

pretext task is masked signal reconstruction. In this task, portions of input signals are occluded,

and the model predicts the values of the original signals [97][56]. Another less-used but effective

technique when pretraining models for event-based tasks is future signal forecasting. This task

involves using a historical portion of an EEG sample to predict future time steps and has previously

been used in seizure classification [125] and motor imagery tasks [47].

The commonly used loss functions in generative pretext tasks are the Mean Average Error

(MAE) and Mean Squared Error (MSE) [23]. There is no general consensus as to which is best

for generative tasks involving signals, but MAE tends to be more resilient against outliers, while

MSE penalizes outliers more severely. In general, generative pretext tasks require the training of an

encoder and decoder, which makes the training process more complex, and contrastive pretext tasks

are largely favored for EEG.
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2.4.2 Domain adaptation

Medical imaging is very vulnerable to domain shift, and EEG is no exception. Domain shift

describes a change in the distribution of the training and testing datasets. In EEG data, strong dis-

tribution shifts are encountered between subjects. Individual differences in a subject’s physiology

and cognitive processes can lead to signals that vary substantially, and a model that performs well

for one individual may completely fail when tested on another. Even intra-subject differences can

heavily influence results [107]. The mental and emotional state of a subject can have an effect on

the recorded signals during the same trial, especially in rs-EEG [85]. Variations in sensor place-

ment, sensor type, and even environmental changes can affect signal recordings and can skew the

distributions of the data. This problem is exacerbated for very large datasets [95][61] as it is even

more difficult to ensure experimental consistency across recording sessions spread over the span of

many years. This is the main reason why studies that perform validations using training and testing

sets containing data from the same subjects on the same recording days usually tend to be inflated,

as they do not account for the domain shift issues in EEG. A model trained on a certain distribution

will deteriorate when tested on a different one, and domain adaptation and generalization techniques

refer to the methods used to address this problem.

Domain adaptation is a technique used to adapt the trained model to the testing dataset. Mean-

while, domain generalization refers to a model trained to be generalizable to any unseen domain

without access to the target dataset [111]. Domain adaptation is practiced more often than domain

generalization in EEG tasks, and techniques vary greatly depending on the available data and down-

stream tasks. For example, Dose et al. [29] use the first few seconds of an unseen subject’s data

to calibrate their model. By including some labeled examples from the target domain, their model

is capable of adapting to the distribution of a test subject’s data, and they experience a significant

performance boost in doing so. Although effective for BCI tasks, this method cannot be used for

neurodegenerative disease classification using rs-EEG as that would require knowing a subject’s

diagnosis for the domain adaptation task.

Asgarian et al. [5] use the mix-up data augmentation technique to align representations between

source and target domains, with the source domain being the trials in a subject’s training set and the
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target domain being unseen trials. They employ this technique in the context of a motor imagery

task for BCIs and show significant improvements in performance. Chai et al. [13] use an unsu-

pervised domain adaptation technique, which uses a labeled source and unlabeled target dataset to

align distributions, to improve generalizability for an emotion recognition task. They employ an

autoencoder to project source and target data to a shared feature space and use a distance-based sub-

space alignment technique to bring the representations closer. Peng et al. [100] propose a domain

adaptation method for seizure classification that first learns a generalized feature vector through the

adversarial training of an auto-encoder, then aligns the feature vector to the target domain using a

transform along the Riemannian manifold.

The methods mentioned above fall into the “alignment” class of domain adaptation algorithms,

which aims to align either a data instance, classifier, or domain to the target distribution. Although

an official taxonomy has not been settled upon, domain adaptation methods can also include tech-

niques, such as pseudo-labeling and data manipulation [111]. Pseudo-labeling refers to when a

model is trained on the source domain using pseudo-labels (labels different from the labels of the

target domain and the downstream task) and asked to generate pseudo-labels for the target domain

[79]. Data manipulation techniques can also help alleviate distribution shifts and work on the pre-

processing level to correct input data before being fed to the classifier. It has been shown that simple

normalization techniques, such as channel-wise standardization, can reduce the loss of generaliz-

ability caused by domain shift [63].
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Chapter 3

Multi-Head Graph Structure Learning

using Gradient Weighted Graph

Attention Explanations for Parkinson’s

Disease Detection from Resting State

EEG

A version of this chapter was presented at the MLCN (Machine Learning for Clinical Neu-

roimaging) 2024 workshop hosted in conjunction with the 27th Medical Imaging Computing and

Computer Assisted Interventions (MICCAI) conference. In addition, the paper received the Best

Paper Award (1st place) at the workshop.

C. Neves, Y. Zeng, Y. Xiao, “Parkinson’s Disease Detection from Resting State EEG using

Multi-Head Graph Structure Learning with Gradient Weighted Graph Attention Explanations,” The

7th MICCAI workshop on Machine Learning in Clinical Neuroimaging (MLCN), LNCS 15266, in

press, 2024. (arxiv:2408.00906) [92]
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3.1 Introduction

Parkinson’s Disease (PD) is the second most common neurodegenerative disorder worldwide

[128]. Primarily characterized by motor symptoms, the complex disease can also include psychiatric

and cognitive issues. MRI-based biomarkers have attracted major attention, including biochemical

alteration shown in quantitative MRI and structural/functional connectivity changes revealed by

diffusion and functional MRI [91]. However, electroencephalography (EEG), which records electric

signals from a network of locations on the scalp is a much more cost-effective neuroimaging tool

with higher temporal resolution than MRI that has also been investigated to provide neurological

insights and potential biomarkers for the disease. This is especially true for remote or less privileged

regions, where MRI scanners are difficult to access.

Recently, deep learning (DL)-based techniques have provided excellent outcomes for EEG anal-

ysis, but several challenges remain. First, most existing DL techniques for EEG rely on Con-

volutional Neural Networks (CNNs) that aggregate signals across channels [29][71], but such ap-

proaches can miss key spatial characteristics of EEG signals, limiting clinically relevant brain con-

nectivity insights and explainability. Second, to better incorporate spatial information, graph neural

networks (GNNs) that model different EEG sensors and their relationships as nodes and edges of

a graph (often represented as an adjacency matrix) have been proposed. However, although sta-

tionary connectivity metrics, such as the Pearson Correlation Coefficient (PCC) or Absolute Cross-

Correlation (ACC) are straightforward for deriving the graph for GNN, they often fail to capture

non-stationary connectivity, overestimate the correlation between adjacent nodes due to mixing of

electrical signals over the scalp surface, and may not provide true functional connectivity insights in

many situations. Third, EEG data sampled at high frequencies often involves very long sequences,

which can pose challenges for commonly used sequential DL models to capture task-relevant fea-

tures. Recently, Li et al. [73] tackled this issue with an effective convolutional model called Struc-

tured Global Convolution (SGConv) that has surpassed state-of-the-art sequence models, including

Transformers [132] and Structured State Spaces [39], by designing a global convolutional kernel

that can span the length of the entire sequence. Finally, compared with other medical imaging

data, the typically small cohort sizes of EEG datasets can pose challenges for developing robust DL
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techniques in the domain.

In this work, we aim to address the aforementioned issues with three contributions. First,

we combined structured global convolutions [73] and self-supervised contrastive learning to better

model complex and long sequences of EEG data with a limited cohort for the first time; Second,

we proposed a novel dynamic multi-head graph structure learning technique to learn the adjacency

matrix of the underlying EEG data without imposing potential biases in contrast to conventional

static GNN methods; Third, to enhance explainability of our DL model for potential clinical in-

sights, we introduced a new technique based on head-wise gradient-weighted attentions to generate

an informative adjacency matrix to reveal key task-relevant connectivities in the learnt graph. The

proposed method is demonstrated for PD detection with resting state EEG.

3.2 Related Works

To date, several GNN-based methods [64] have been explored for EEG analysis, particularly

for seizure detection in epilepsy. Traditionally, manually defined EEG features, such as Short Time

Fourier Transform [20], power spectral density [58], and selective frequency bands [118] have been

used in machine/deep learning, but can introduce biases while being time-consuming and expertise-

demanding. Therefore, automatic feature extraction methods have become more desirable to reduce

biases and improve efficiency. Among these, Dissanayake et al. [28] and Sun et al. [121] used

stacked Long Short-Term Memory (LSTM) networks and Transformers to generate feature embed-

dings. Li et al. [73] proposed the Structural Global Convolution, which showed superior ability to

model long and complex sequential signals than prior approaches. Using EEG feature embeddings

as node features, different GNN designs incorporating temporal features and spatial properties of

EEG data have been devised. One notable trend is the rise of attention-based GNNs, which allow for

the visualization of salient edges relevant to the designated tasks to enhance DL model transparency.

He et al. [44] used a graph attention network (GAT) in conjunction with a bi-directional LSTM for

seizure detection and Demir et al. [26] used a GAT with additional temporal convolutions to decode

motor signals. To mitigate issues with static graphs, Tang et al. [125] and Song et al. [118] em-

ployed the concept of attention to learn the graph adjacency matrix instead of the attention weights
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between nodes (as in GATs). However, both of their formulations use a single attention head. In

EEG-based PD analysis, Chang et al. [14] developed a GNN that learns attention coefficients with

a graph sparsity constraint to modulate the node feature vectors for PD detection during an auditory

oddball task. Further explorations are still required to enhance the efficiency, accuracy, robustness,

and transparency of DL-based EEG analysis, especially for GNN-based approaches.

3.3 Methods and Materials

Figure 3.1 outlines an overview our proposed DL architecture, which is composed of a feature

encoder (LongConv feature encoder), a multi-head graph structure learner (MH-GSL), a Chebyshev

GNN, and a classifier made of fully connected layers for PD vs. Healthy classification.

3.3.1 Feature Encoder with Contrastive Learning

Following the success of Structured Global Convolutions (SGConv) [73] for modeling long se-

quential data in deep learning tasks, we incorporate it into our EEG feature encoder design, which

encodes the input EEG signal to X̃e ∈ RC×dm (C is the number of channels and dm is model di-

mension). Specifically, we follow the feature extraction network setup in the work of Vetter et al.

[135], who modify the Structured Global Convolution layer from its original formulation to have

more fine-grained control over its kernel size (referred to as SLConv in Fig. 3.1). The feature extrac-

tion network (called LongConv) consists of interleaved masked 1D convolutions, which project the

input channels to a set of hidden ones while SLConv layers extract long-range temporal information

from each hidden channel. Each masked 1D convolution is followed by a batch normalization layer

and a GELU activation. In our adapted LongConv feature encoder design, we add an additional

max pooling operation followed by a 1D convolution (Conv1D) to their network structure before

the MH-GSL and Chebyshev GNN layers. To alleviate some of the issues presented by the large

inter-subject variability of EEG and the relatively small dataset size, we pretrained the LongConv

encoder using the SimCLR [15] framework. First proposed for natural images, SimCLR learns self-

supervised data representation by maximizing agreement between differently augmented versions
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of the same data sample based on a contrastive loss in the latent space. For EEG contrastive learn-

ing (CL), we adopted the data augmentations by Mohsenvand et al.[88], including combinations of

random additive Gaussian noise, random signal masking, a flip along either the signal or electrode

dimension or random DC shifts. During training, we used a simple two-layer feed forward network

as the projector after the LongConv encoder to obtain a latent space representation used to compute

the InfoNCE loss [96]. We used a learning rate of 0.0001, a temperature of 0.005 [88], and a batch

size of 100 over 160 SimCLR training epochs.

3.3.2 Multi-Head Graph Structure Learner

Graph topology of EEG signals obtained from stationary connectivity measures and/or the phys-

ical distance between electrodes for GNN learning can be misleading and sub-optimal. To tackle

this, we proposed a novel graph structure learner (GSL) using multi-head attention. Based on the

graph structure layer by Tang et al. [125], which adopts the self-attention mechanism [132] to learn

edge weights, we extended this approach to include multiple attention heads. Thus, the resulting

graph structure learner can attend to different graph representations (adjacency matrices) in paral-

lel, with each attention head providing the edge weights for its paired graph representation. Then,

each head-wise learnt graph representation, together with the encoded EEG features are passed to

a Chebyshev GNN, updating the features with the learnt spatial relationships. The output of the

Chebyshev GNN for each head is then concatenated and projected back to the model dimension dm

using a linear layer. The adjacency matrix Ah ∈ RC×C for a single attention head h out of H heads

is given by:

Qh = X̃eWqh ,Kh = X̃eWkh

Ah = softmax(
QhK

T
h√

dK
)

(9)

where X̃e ∈ RC×dm are the feature embeddings, and Wqh and Wkh are the parameter matrices

projecting X̃e to query Qh and key Kh, respectively.

34



LongConv Encoder

Max Pool

Conv1D

LongConv
Blocks

MH-GSL

C
on

ca
t

Li
ne

ar +

Av
er

ag
e 

Po
ol

Li
ne

ar

PD

HC

Chebyshev
GNN

H

Input
Signals

MaskedConv1D

SLConv

LongConv Block

Batch Norm

GELU...

Figure 3.1: Overview of the model architecture for PD detection.

3.3.3 Graph-based EEG Classification

As shown in Fig. 3.1, the final EEG classification is achieved by first adding the head-wise ag-

gregated output from the Chebyshev GNN and EEG feature embeddings from the temporal feature

encoder, and average pooling the result along the electrode dimension to yield a final representa-

tion of shape X̃g ∈ RC×1. A linear layer is then used to perform Healthy vs. PD classification.

We use the cross-entropy loss and AdamW optimizer [78] to train our model. Here, we use the

Chebyshev GNN in our model, as it has previously been used for EEG analysis [28] [78] and is

an effective method of integrating an adjacency matrix with EEG feature embeddings by efficiently

approximating graph convolutions using Chebyshev polynomials.

3.3.4 Head-wise Gradient-Weighted Graph Attention Explainer

In multi-head self-attention networks, the average or maximum of the head-wise attention scores

[133] are often used to provide graph explainations, but this could be insufficient as some heads may

carry greater contributions for decision-making. Inspired by the work of Rasoulian et al. [105],

where head-wise gradient-weighted self-attention maps were used to improve the specificity of the

attention map, we adapted the core idea for GNN-based EEG analysis. Specifically, we obtain a

graph explanation by first weighing the head-wise graph representation Ah with the norm of its

gradient based on the class activation. Then, the final adjacency matrix A ∈ RC×C is generated as:

A =
1

H

H∑︂
h=1

⃦⃦⃦⃦
∂Y

∂Ah

⃦⃦⃦⃦
·Ah (10)

where H is the number of attention heads and Y is the target class to generate a graph representation

for. Finally, A is thresholded to keep the attention scores within two standard deviations from the

mean, and then are normalized to [0,1].
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3.3.5 Dataset and Preprocessing

We used the UC San Diego Parkinson’s disease resting-state EEG (rs-EEG) dataset [106] for

our study. The dataset contains the resting-state data of 15 PD patients (63.2±8.2 years, 8 females)

and 16 healthy controls (63.5±9.6 years, 9 females). All PD patients had mild to moderate disease

severity. Each participant had at least 3 minutes of resting state data recorded using a 32-channel

Biosemi ActiveTwo EEG system (sampling rate = 512 Hz). We minimally preprocessed each sub-

ject’s EEG by first setting the reference to the mean of the EXG7 and EXG8 mastoid electrodes

and band-pass filtered the raw signal to 0.5-80 Hz. The data was then segmented into 2 sec of

non-overlapping windows, resulting in 90 trials per participant.

3.3.6 Experimental Setup and Ablation Studies

To assess the classification performance of our proposed framework, we compared it against

a variety of DL models and configurations. With CNN methods dominating EEG analysis, as a

baseline, we re-implemented the method by Dose et al. [29] that showed great success on small

datasets. To further validate the benefits of each design component of our method, we performed

a series of ablation studies. First, to confirm the contribution of the Chebyshev GNN, we com-

pared the full version of our method (CL-Encoder+Freeze) against PD detection only based on the

temporal feature encoder (LongConv Encoder). Second, to verify whether our multi-head GSL had

a positive impact on the network performance, we replaced the learnt graph structure input to the

Chebyshev GNN with a static graph based on PCC, and evaluate the classification accuracy against

the original design (“Full Model w/o MH-GSL vs. Full Model with MH-GSL”, both without CL).

Third, to quantify the performance gain from the SimCLR framework, we compared the proposed

frameworks with and without self-supervised pre-training (“CL-Encoder+Freeze vs. Full Model

with MH-GSL”). Finally, as some studies demonstrated the benefit of finetuning pre-trained fea-

ture encoder, we further tested our proposed method by finetuning the feature encoder weights that

were pre-trained using the SimCLR framework, and compared the outcome to freezing the feature

encoder weights after SimCLR pre-training (“CL-Encoder+Finetune vs. CL-Encoder+Freeze”).

We computed classification accuracy, precision and recall, macro F1-score, and AUC metrics for all
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Table 3.1: PD vs. Healthy classification performance for all model configurations.
Method Accuracy % AUC F1-Score Precision Recall
LongConv Encoder 64.68±1.85 0.638±0.039 0.643±0.017 0.649±0.020 0.644±0.018
Full Model w/o MH-GSL 66.97±1.29 0.670±0.013 0.663±0.009 0.677±0.021 0.666±0.011
Full Model with MH-GSL 67.73±0.85 0.715±0.024 0.672±0.009 0.682±0.009 0.674±0.009
CL-Encoder + Freeze 69.40±1.59 0.656±0.036 0.682±0.016 0.716±0.021 0.688±0.015
CL-Encoder + Finetune 66.34±2.68 0.707±0.010 0.658±0.030 0.668±0.026 0.660±0.027
CNN classifier [29] 62.99±4.07 0.640±0.061 0.629±0.040 0.629±0.041 0.629±0.040

experimental setups over 3 random seeds (i.e., model weight initialization).

We trained and evaluated all configurations using a leave-one-out cross-validation, where a

single subject was used for testing and the rest for training to avoid data leakage. For each fold, two

subjects (one healthy and one PD) were randomly selected from the training data as a validation set.

Unlike the more common sample-wise cross-validation in EEG-related DL algorithms, our subject-

wise strategy can better assess the generalizability of the proposed framework to unseen subjects.

Each model was trained with a batch size of 8 with a MultiStep learning rate (LR) scheduler at an

initial LR of 1E-4 and a gamma of 0.1. The MH-GSL model was trained using 2 attention heads

and the Chebyshev GNN used a single layer with K=5 and a dropout rate of 0.2.

3.4 Results

We present the PD vs. Healthy classification performance of all experiments in Table 3.1, and with

an accuracy of 69.40±1.59%, our proposed method (CL-Encoder+Freeze) outperformed the CNN

baseline [29] (accuracy=62.99±4.07%) and the other model configurations. For the ablation studies,

we confirmed the positive impact of Chebyshev GNN, multi-head graph structure learner, simCLR-

based encoder pretraining. Furthermore, between CL-Encoder+Finetune and CL-Encoder+Freeze,

further finetuning the feature encoder during full model training decreased all evaluation metrics

by 3∼5%. In addition, Fig. 3.2 presents the resulting adjacency matrices averaged for the PD and

HC groups for all correctly classified samples based on static PCC-based graphs, mean of head-

wise attentions from our MH-GSL, and gradient-weighted mean head-wise attention also from our

MH-GSL. The gradient-weighted adjacency matrices show a greater amount of connections towards

the inion (back) of the skull compared to their non-weighted counterparts. The PCC graphs show
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Figure 3.2: Group-wise mean adjacency matrices for PD and healthy subjects for static PCC, mean
head-wise attention, and gradient-weighted mean head-wise attention.

almost exclusively connections between neighboring nodes.

3.5 Discussion

Our novel multi-head graph structure learner presents a more dynamic approach that estab-

lishes task-driven graphs with improved performance in comparison to static connectivity graphs.

This observation agrees with previous studies [125]. So far, despite many attempts to learn graph

edge weights using attention mechanisms[125][14], very few extended their formulation to include

multiple attention heads despite their great success in vision and language tasks. Different from

approaches where attention scores are multiplied with the features in an initial graph [14][72], we

directly learn different node features for each adjacency matrix from MH-GSL in parallel, and fi-

nally concatenate them for classification. After testing different numbers of attention heads (2, 4

and 8), we found that two heads yielded superior performance for this task. To the best of our

knowledge, we are the first to propose a head-wise gradient weighted graph attention explanation to

obtain visual interpretation for task-relevant brain connectivity properties. This approach helps fur-

ther highlight task-relevant graph information. Figure 3.2 reveals that graphs learnt with our method

focus more on global connections across the scalp, and overcome the overemphasis on adjacent con-

nections seen in commonly used stationary graphs. It is also interesting to note that weighing the
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head-wise adjacency matrices by the norm of their gradients results in a more connected graph

structure compared to its unweighted counterpart. Qualitatively, the number of connections seems

to greatly increase with gradient-weighing for PD subjects, thus showing a higher connection count

to be important for classification. Although an increase in functional connectivity has been shown

in PD patients in resting state EEG studies [11], additional analysis of the generated edge explana-

tions is required before drawing neuroscientific conclusions. Nevertheless, the presented technique

offers great potential for deriving important connectivity information for the disorder under study.

We will further validate the physiological significance of the resulting graph explanation with joint

EEG-fMRI studies as the relevant insights could be of more value than PD vs HC classification.

In our experiments, we adopted a subject-wise leave-one-out cross-validation instead of a sample-

wise one seen in many reports. The latter approach is often used to accommodate limited subjects

in EEG datasets, but can easily cause data leakage issues, resulting in exaggerated accuracy. When

adopting this commonly used strategy, our model yields near perfect classification results (∼98%

accuracy) potentially due to memorizing subject-specific details instead of task relevant ones. To

help address limited data size, we employed contrastive learning to enhance the robustness of our

feature encoder, and its benefit is evident in our experiment (1.67% accuracy increase). In com-

parison to fMRI and task-based EEG, rs-EEG is easier to acquire, but requires more sophisticated

feature extraction techniques. Through PD detection, we demonstrated great performance of the

proposed DL method and a novel graph explanation technique. We will showcase its adaptability in

extended applications in the future.

3.6 Conclusion

We have developed a novel GNN technique for PD detection from resting state EEG based on

dynamic graph structure learning, with a head-wise gradient-weighted graph explainer. In addition,

we demonstrated the benefit of contrastive learning in efficient and robust feature extraction from

a small cohort. With thorough evaluations and ablation studies, the performance of our proposed

method has a great potential to offer clinical insights for PD and extended neurological applications

with more accessible EEG sensors.
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Chapter 4

EEG-SSFormer: Towards a Robust

Mamba-Based Architecture for

Dementia Detection from Resting State

Electroencephalography

A version of this chapter will be submitted to the Imaging Neuroscience journal, published by

The MIT Press.

4.1 Introduction

Dementia affects more than 58 million individuals globally [9] and encapsulates several neu-

rodegenerative diseases, of which Alzheimer’s disease (AD) is the most common. The chronic

condition can manifest through a progressive deterioration of cognitive abilities, along with drastic

psychological changes, and more than 60% of those affected live in low to middle-income countries

[9]. Individuals commonly show signs of mild cognitive impairment (MCI) before being diagnosed

with dementia, with symptom progression that varies depending on the underlying cause. Many

treatments and interventions that may slow the course of the disease need an early diagnosis, ideally
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while a patient is still in the mild cognitive impairment phase or earlier [55]. Biomarkers point-

ing to the dementia-related structural and functional changes of the brain can be used to chart its

progression, and structural changes are often identified using Magnetic Resonance Imaging (MRI).

Functional MRI (fMRI) and Positron Emission Tomography (PET) are used to study functional and

metabolic changes brought on by the disease as potential biomarkers, and recent work has shown

that cerebrospinal fluid (CSF) and blood samples can also help monitor the physiological processes

underlying Alzheimer’s disease [113]. However, most of these potential tests are prohibitively ex-

pensive for many, considering that 60% of affected individuals reside in lower-income nations. They

are also potentially invasive (e.g., CSF tests and PET scans), and all lack portability, making them

challenging to administer to remote and/or underprivileged communities. With a rapidly aging pop-

ulation, there exists an urgent need for practical, inexpensive, and accessible diagnostic methods

that can offer objective diagnosis and prognosis of dementia.

Electroencephalography (EEG) is a functional imaging alternative that positions itself favor-

ably thanks to its low cost, portability, non-invasiveness, and high temporal resolution. Earlier, the

imaging modality has shown promise in reflecting functional anomalies arising from the structural

changes caused by dementia [90]. In addition, irregular EEG patterns have also been observed to be

common to early-onset dementia of many causes, and these irregularities become markedly more

severe in early-onset Alzheimer’s patients [83, 81], making it a promising tool for an early diagno-

sis. Resting-state EEG (rs-EEG) is recorded while a participant is at rest and does not require any

elaborate task-based experimental protocols. This is more convenient than task-based EEG acqui-

sition for both the patients and the EEG technicians, and a technique that can automatically detect

dementia from rs-EEG can be of great value for an early and accessible diagnosis.

To date, a wide range of EEG-based biomarkers have been explored to help characterize demen-

tia among the population. Modir et al. [86] show that the onset of dementia leads to a slowing of

EEG dynamics. Measuring the latency of specific Event-Related Potentials (ERP) shows differences

between the MCI and AD populations [110, 145]. In the spectral domain, studies have linked in-

creased rs-EEG frequency band power to AD [31]. Furthermore, a loss of EEG complexity, which

characterizes the regularity and predictability of signals [69], has also been used to differentiate
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MCI [50] and AD [34] individuals from healthy controls (HCs). More recently, deep learning al-

gorithms have garnered attention as they can automatically learn discriminative features from raw

EEG signals without the need for complex preprocessing, which could have adverse impacts on

the downstream analyses [24, 17]. Thanks to the rapid developments in deep learning approaches,

developing automated diagnostic tools for the identification of dementia using raw EEG signals,

particularly at its early stages, has become a real possibility.

The majority of the existing deep learning solutions applied to the task of AD and MCI de-

tection involve Convolutional Neural Networks (CNN) either applied to raw EEG signals [52],

two-dimensional spectrograms [51] or selective frequency spectrum features [66]. Recurrent mod-

els, such as Long-Short Term Memory (LSTM) and Recurrent Neural Networks (RNN) that were

designed to process sequential data, have also been used to classify both raw EEG signals [4] and

hand-crafted features [3] to some degree of success, and Transformer models, which model contex-

tual importance of tokens in sequential data with self-attention, have also achieved promising results

when being applied to 2D spectral representations [84] and raw signals [57] for EEG. However,

learning salient features from raw rs-EEG data is much more challenging as the lack of apparent

signal responses to external event-based stimuli means that deep learning techniques must instead

capture sophisticated symptom-related hidden characteristics in the recordings. In this regard, re-

current DL architectures like LSTMs become difficult to train on the lengths of data seen in rs-EEG

studies due to their limited memory capacity and non-parallelizable nature, while Transformers of-

ten struggle to model complex features unless given large amounts of training samples, which is

usually unrealistic for EEG experiments. They also suffer from a computational complexity that

scales quadratically with input length due to their self-attention mechanism, making it difficult for

them to train on long signal sequences. Therefore, convolutional neural networks are often strong

choices for these tasks, as they are more robust to these issues and are typically competitive with

other methods [61, 60]. Additionally, the validity of some existing methods on how temporal con-

volutional networks and Transformers have been applied to time-series data has recently been called

into question [80, 143]. Traditionally, deep learning techniques jointly embed the input channels

of a multivariate time series. More specifically, as traditional deep learning models process the

multivariate time series, they mix all input channels simultaneously during a projection to a higher
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dimensional feature space. This means that each feature learned by the model will contain infor-

mation from all input channels [93]. However, recent work has shown that better outcomes can be

achieved by treating each separate input channel as a univariate time series and projecting each one

to a separate feature space. This implies that each feature will contain learned patterns from only

one input channel. It is believed that the increase in performance that results in using a channel-

independent modeling technique may also be due to the observation that greater differences exist

between channels in a multivariate time series like EEG than in computer vision tasks, where only

the Red-Green-Blue channels are present [80]. Others have argued that methods combining all input

channels simultaneously fail in multivariate time-series tasks because they assume that each input

channel contains data emanating from the same underlying process [43]. This assumption does

not hold true in EEG, where although electrodes may share some signal components due to effects

like volume conduction, they ultimately capture the activity of many distinct underlying neural pro-

cesses [19]. This univariate modeling strategy has found some success in EEG but is still not widely

adopted. Notably, some recent EEG DL methods have benefited from the univariate modeling strat-

egy, ranging from EEG data synthesis with generative diffusion DL models [134] to more accurate

seizure detection and classification [126]. Integrating these insights and finding more effective ways

of dealing with very long sequences is crucial in being able to model lengthy rs-EEG sequences.

Very recently, state space models (SSM) have positioned themselves as a strong option for

very long sequence modeling as the framework describes the behavior of a dynamical system by

modeling it as a collection of states and how the system transitions between these states. Deep state

space models, such as Mamba [38], have achieved state-of-the-art performance in challenging long-

range sequence tasks with results that match and often exceed Transformer models while boasting

a computational complexity that scales linearly with sequence length. This enhanced scalability, in

contrast to Transformers, is beneficial when handling the high sampling rates of EEG data, but what

an effective Mamba-based DL model for robust EEG feature extraction looks like remains an open

question. For the task of sleep stage and sleep disorder classification, Siddhad et al. [116] propose

a dual-branch Mamba architecture, and Zhang et al. [144] combine a bi-directional Mamba with

attention. In terms of multi-task EEG classification, Gui et al. [42] propose a bi-directional Mamba

architecture with a task-aware mixture of experts to perform epilepsy, sleep stage, emotion, and
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motor-imagery classification. Behrouz et al. [8] design a hybrid Mamba and graph neural network

model capable of processing EEG and fMRI data, and Panchavati et al. [97] modified a U-Net

architecture with Mamba layers for seizure detection. For motor-imagery classification, Yang et

al. [141] apply Mamba across both the temporal and channel dimensions to extract relevant EEG

features. To the best of our knowledge, the approach by Tran et al. [130] is the only other Mamba-

based method for EEG-based differential diagnosis for dementia. Specifically, they attempt to detect

Alzheimer’s disease and frontotemporal dementia from the resting state EEG of 88 participants.

However, they perform a trial-wise validation in their experiments (subjects may have data present

in both training and testing splits), which is known to severely overestimate model performance as

it trivializes individual differences between subjects, degrading generalization.

In this work, we intend to address the aforementioned issues with deep learning methods applied

to rs-EEG with the following contributions. First, we design a novel Mamba-based DL model to ad-

dress the need for long-range sequential modeling techniques in rs-EEG signal classification, which

we use to allow differential diagnosis of dementia (i.e., HC vs. MCI vs. dementia classification).

Specifically, our method uses a channel-independent modeling approach with effective temporal

and channel mixing strategies to extract robust EEG features. Second, we are the first to benchmark

a Mamba-based architecture using the first large-scale dementia rs-EEG dataset [61], and show im-

proved classification performance over existing methods while using substantially fewer parameters.

Third, by using occlusion-based explainability methods, we examine the validity of features learned

by the proposed DL model and reveal key physiologically relevant insights regarding dementia and

mild cognitive decline.

4.2 Materials and Methods

Figure 4.1 outlines our proposed DL architecture for HC, MCI and dementia classification based

on rs-EEG. First, input EEG samples are reshaped so that each electrode channel (referred to as

channel throughout the text) can be treated as a univariate time series throughout the model. Sec-

ond, we apply patching to parse the input time series into discrete segments of length P while
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Figure 4.1: Overview of the model architecture for HC, MCI, and Dementia classification. C,D,L
represent the sizes of the channel, feature, and temporal dimensions.

independently projecting each channel to a D-dimensional feature vector. Next, signals are pro-

cessed by 3 EEG-SSFormer blocks. Each block after the first is preceded by a fully connected

layer that doubles the number of features per electrode (Project + Dropout). Within each EEG-

SSFormer block, a channel-wise LayerNorm and a Mamba SSM layer learn relationships between

sequence segments. Then, a feature mixer learns interactions between each of the D number of

features for each channel individually, after which the channel mixer captures interactions between

the C number of channels for each feature. Finally, outputs from the last EEG-SSFormer block are

average-pooled and concatenated with the age of the participant to obtain a final vector of shape

X ′′ ∈ R(C×D)+1, which is then classified using a linear layer as HC, MCI, or dementia. To miti-

gate overfitting to the training dataset, we incorporate Dropout layers [119] for regularization. We

apply Dropout after the fully connected layer in the Project + Dropout block and in all three of the

EEG-SSFormer blocks on the outputs of the Mamba SSM as well as after the feature and channel

mixing operation.

In the following sections, we will provide an overview of the different components of our pro-

posed DL model, including the time-series patching, channel-independent feature extraction, and

decoupled channel and feature mixing. We then describe the dataset used, experimental setup, and

techniques employed to interpret model outputs for potential physiological insights.
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4.2.1 Channel independent feature learning

We adopt the channel-independent modeling strategy that was employed previously [80, 77, 93]

to better capture distinct electrode-specific features in the input EEG data and reduce the effects of

distribution shift [43]. This is done by applying the patching, projection, channel-wise LayerNorm,

and Mamba operations separately for each channel.

Time series patching

Before passing through the EEG-SSFormer blocks, the input signal undergoes channel-wise

z-score normalization by each channel’s own mean and standard deviation instead of the more com-

mon global normalization with the mean and standard deviation of the full training dataset. We then

perform patching on the input signals. The input time series is parsed into smaller segments of P

number of time steps, where P is referred to as the patch length. These segments of time series

data are then projected to a higher dimensional feature space of dimension D. Normally, this patch-

ing operation (parsing + projection) is performed in two distinct steps [93]. However, we perform

patching using a single 1D convolution layer, similar to the work of Luo et al. [80]. Specifically,

the fully convolutional patching first reshapes input signals to X ∈ RC×1×L. Next, we apply a 1D

convolution with a stride and kernel length equal to the patch size P . The convolution operation

will result in a patched output X ′ ∈ RC×D×L′
, where L′ is equal to the number of segments. Unlike

individual words in Natural Language Processing tasks, a single time step does not have semantic

meaning or context. Patching extracts local semantic information between groups of time steps and

reduces the overall computational complexity of the model [93], motivating its use in our DL archi-

tecture. After the patching operation, the input data is normalized in a channel-wise manner using

an inverted LayerNorm technique, which will be described in the following section.

Inverted LayerNorm

Unlike standard z-score normalization that is applied to input data at the preprocessing stage,

LayerNorm is a mini-batch processing technique that is applied to normalize processed intermedi-

ate features between layers. The commonly used LayerNorm module can have two main issues.
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First, when normalizing all features for a single time step, the resulting time series will contain few

variations between features, reducing the representation power. Second, due to the large differences

between time series channels, large fluctuations related to an event in one channel may introduce

spurious noise in another when using the standard LayerNorm technique, thus removing the benefits

of a channel-independent modeling strategy. To solve these, the inverted LayerNorm technique was

introduced by Liu et al. [77] and normalizes data along the time step dimension rather than the

feature dimension. This channel-wise normalization has been shown to be more robust to distribu-

tion shifts and more effective when dealing with non-stationary signals [77, 63, 75]. The detailed

formulation of the inverted LayerNorm is described in Equation 11.

LayerNorm(X ′) =
X ′

n − µn

σn
, for all n ∈ {1, ..., N} where N = C ×D (11)

Learning temporal dependencies using Selective State Spaces

After the inverted LayerNorm, we use a Mamba state space model (SSM) to extract global

temporal relationships between time steps from the data. State space models describe dynamic

systems and project an input signal x(t) to a hidden state h(t), which is then used to obtain an

output state y(t). This is performed through Equation 12, where the MA matrix governs how the

hidden state h(t) changes over time, MB decides how the current input affects the hidden state, MC

influences how the hidden state impacts the output and MD allows the input to directly modulate

the output.

h
′
(t) = MAh(t) +MBx(t)

y(t) = MCh(t) +MDx(t)

(12)

Mamba improves upon previous state space models like S4 [39] by allowing the state matrices

MA,MB,MC and MD to vary based on the input. This allows Mamba to filter irrelevant portions of

an input sequence while highlighting important information in a data-dependent way. This filtering

process requires input channels to be mixed and projected to a higher dimensional space, so we

reshape inputs to X ′ ∈ R(B×C)×L′×D before the Mamba layer, with B representing the batch

dimension. This is done so that Mamba can learn temporal patterns independently for each input
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channel C. In this work, we take advantage of Mamba’s powerful long-range sequential modeling

to learn global temporal patterns in rs-EEG data.

4.2.2 Decoupled channel-and-feature mixing

Figure 4.2: Decoupled feature and channel mixing. Feature mixing shares information between
features of the same channel. Channel mixing captures cross-channel relationships for a group of
features.

The patching layer and Mamba SSM jointly learn both local and global temporal patterns while

treating each channel as a separate univariate time series. An important next step is to capture im-

portant cross-feature and cross-channel relationships. In this work, we adapt the strategy proposed

by Luo et al. [80], who decouples the channel and feature mixing steps into two distinct operations.

Many works learn feature relationships in a coupled approach. That is, they learn inter-channel

and inter-feature interactions jointly in a single mixing step, often using a simple convolution [61].

However, when using a channel-independent modeling approach, this coupled channel and fea-

ture modeling can substantially increase parameter counts. Decoupling the two operations (feature

mixing and channel mixing) not only drastically reduces the parameter count of the model which de-

creases computational complexity, but also forces the model to use the parameters more efficiently

[80].

This decoupled approach is illustrated in Figure 4.2 for a toy example of an input with two input

channels and 3 features per channel. It starts with performing mixing across the feature dimension

by reshaping the inputs to X ′ ∈ R(C×D)×L′
and performing a grouped convolution, with the number
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of groups equal to the number of EEG electrode channels C. This means that C number of individ-

ual filters are used to capture relationships between each of their D number of features. Then, to

model relationships between channels, we simply reshape and permute the data to X ′ ∈ R(D×C)×L′

and perform another grouped convolution with a number of groups equal to the number of feature

dimensions per electrode channel, D.

In our final computational framework, we employed the decoupled channel and feature mixing

in the spatial domain. However, alternative spectral domain mixers have been shown to be effective,

and we further validate our decision to perform spatial domain-based mixing against the spectral

domain counterpart for the designated application. We present this comparison as an ablation ex-

periment in Section 4.2.2.

Feature and channel mixing in the spatial domain

We implement the decoupled feature and channel mixing step using a series of point-wise con-

volutions in the spatial domain. A point-wise convolution is a convolution that uses a kernel size

of 1 and is functionally similar to a linear layer. For both the feature and channel mixers, we use

two point-wise convolutions following an inverted bottleneck structure. That is, the first point-wise

convolution projects either the number of features D (for the feature mixing step) or the number

of channels C (for the channel mixing step) to be twice as wide as the input dimension. There-

fore, for the feature mixer, the first point-wise convolution projects inputs from X ′ ∈ R(C×D)×L′

to X ′ ∈ R(C×2D)×L′
and for the channel mixer, the first pointwise convolution projects inputs from

X ′ ∈ R(D×C)×L′
to X ′ ∈ R(D×2C)×L′

. Afterwards, we apply a ReLU non-linearity, followed by a

second point-wise convolution, to return the features or channels back to their original dimension.

Feature and channel mixing in the spectral domain

Recent work has shown that frequency domain mixers may sometimes lead to better modeling

results [142, 99] for time-series data compared to their spatial counterparts. To that end, we test if

this is also the case for rs-EEG classification.

To model the relationships between channels and between features in the spectral domain, we

adapt the frequency domain mixer initially proposed by Patro et al. [99] called EinFFT and use

49



Table 4.1: Mean and standard deviation of the ages (years) for all subjects
in the training, validation and testing dataset splits.

Condition Training Validation Testing

Healthy Controls 65.37±9.48 64.91±10.43 63.21±8.43
Mild Cognitive Impairment 73.71±7.83 75.02±7.13 72.75±8.57
Dementia 76.59±8.01 77.25±9.57 77.25±7.17

it for both the feature and channel mixing. First, data that has been patched and processed by the

Mamba SSM is reshaped and permuted to X ′ ∈ RB×L′×(C×D). The EinFFT mixer then performs

the Fourier transform of the processed input data to obtain X ′ ∈ CB×L′×(C×D). The data is then

linearly transformed using complex-valued weights W and biases B, which essentially acts as a

linear layer in the frequency domain. A ReLU nonlinearity is then applied to the transformed

output, followed by a second linear transformation in the frequency domain, after which the signals

are finally converted back to the spatial domain using the inverse Fourier transform.

In their work, Patro et al. [99] parameterize the complex weight matrix W as a block diagonal

matrix to reduce the overall parameter count of the model. However, they set a fixed number of 4

blocks in their parametrization, meaning that not all channels or features can share information. To

enable the decoupled channel and feature mixing mentioned above, we remove the fixed constraint

on the number of blocks in W and instead set the number of blocks to C (corresponding to the num-

ber of EEG channels) for the feature mixing step and D (corresponding to the number of features

per channel) for the channel mixing step. This exactly emulates the grouped convolution mentioned

in Section 4.2.2. It is important to note that both the spatial and spectral mixers have an identical

number of learnable parameters to allow for a fair comparison.

4.2.3 Dataset and preprocessing

For our study, we used the Chung-Ang University Hospital EEG (CAUEEG) dataset [61], which

is the largest rs-EEG dataset of patients with various stages of dementia to date. Our experiments

focus on the dementia subset of this dataset, which categorizes subjects as healthy controls (HC),

having mild cognitive impairment (MCI), or diagnosed with dementia. This dataset includes rs-EEG

data of 1,155 subjects, with some recorded during photic stimulation. The dataset is subdivided into
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training, validation, and testing sets. The training dataset contains 950 subjects (367 HC, 334 MCI,

and 249 dementia), the validation set contains 119 subjects (46 HC, 42 MCI, and 31 dementia), and

the testing set contains 118 subjects (46 HC, 41 MCI, 31 dementia). Most participants have well-

annotated clinical diagnoses of dementia subtype, and the sex distribution consists of 6 males for

every 10 females. Note that the sex of each specific participant in the dataset is removed to preserve

their anonymity. The means and standard deviations of the ages for all HC, MCI, and dementia

subjects in the training, validation, and testing datasets are detailed in Table 4.1.

In order to be classified as HC, MCI, or dementia, Kim et al. [61] use a series of inclusion crite-

ria, which we summarize here. The criteria for a healthy control include: 1) no interruption in daily

activities 2) no abnormality (within a standard deviation of age and education-adjusted baselines)

on a series of neuropsychological tests [1, 54]. To be classified as having MCI, the following crite-

ria must be met: 1) no interruption in daily activities 2) there must have been complaints regarding

issues with memory 3) cognitive impairment is assessed during a range of neuropsychological tests

(impairment must be ≥ 1 standard deviation of age and education adjusted norms) [1, 54] 4) 0.5

rating in clinical dementia 5) the subject is not categorized as demented according to the DSM-IV

criteria [32]. Finally, to be considered as having dementia, the participants must conform to the

probable dementia criteria of the National Institute of Neurological and Communicative Disorders

and Stroke and Alzheimer’s Disease and Related Disorders Association, as well as the DSM-IV

[30]. We will refer the readers to the original publication [61] for further details.

For the curated data, each subject has a minimum of 5 minutes of EEG recordings, sampled at

200 Hz and recorded using 19 EEG electrodes placed according to the 10-20 placement system. An

EKG or ECG electrode and a channel for the photic stimulus are also included. Since this study

aims to explore the classification capabilities of deep learning architectures on raw rs-EEG data,

the photic and EKG/ECG channels are left unused in our case. The EEG data is band-pass filtered

between 0.5 and 70 Hz at the time of acquisition and is referenced to the common average. As in

the work by Kim et al. [61], we do not perform any further pre-processing. We provide models

with 10 seconds of EEG data that are randomly sampled from each participant’s total available

data, following the same procedure as Kim et al. [61]. This study is the first to apply a Mamba-

based architecture to this corpus, and the size of the dataset ensures a robust evaluation of model
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performance.

4.2.4 Experimental setup and ablation studies

To assess the effectiveness of our proposed methods, we conduct experiments comparing them

to various baselines and ablated configurations in terms of HC vs. MCI vs. dementia classification

performance. To measure classification performance, we compute the macro-averaged classifica-

tion accuracy, macro-averaged AUROC, and the class-wise F1-scores for all baselines and model

configurations. We calculate each metric over 3 random seeds and report each metric’s mean and

standard deviation.

As CNNs are the most commonly used DL architectures in EEG classification and the best-

performing models tested by Kim et al. [61] on the CAUEEG dataset were CNNs, we implement

the strongest CNN models from the previous investigation [61] as baselines. These include a 1D-

ResNet-18, the best performing 1D-VGG model (1D-VGG-19), as well as a popular long-short term

memory (LSTM) [48] architecture. We use the optimal hyperparameters determined by Kim et al.

[61] for the CNN models since they were already subjected to a rigorous hyperparameter tuning

scheme. We set the number of layers and hidden units of the LSTM to match those of our proposed

method.

In addition, we perform experiments to validate various design choices for our proposed DL

architecture. First, we assess the optimal domain for feature and channel mixing by comparing

our model using the spatial channel mixer described in Section 4.2.2 (EEG-SSFormer-PW) against

one model variant using its spectral counterpart (EEG-SSFormer-EinFFT). Second, we quantify the

effectiveness of the inverted LayerNorm technique described in Section 4.2.1 on EEG signals by

testing a variant of our model with the conventional LayerNorm (EEG-SSFormer-PW w/o I-LN).

Third, we confirm the performance benefits of decoupling the feature and channel mixing into two

separate sequential steps described in Section 4.2.1 by using a single coupled feature and channel

mixer in the spatial domain (EEG-SSFormer-PW Coupled). Finally, since age has been shown to

be a critical risk factor for dementia [82], we integrate it into our prediction pipeline similar to other

works [61]. We name this model EEG-SSFormer-PW + Age. This model is compared with a model

variant without utilizing such information (EEG-SSFormer-PW).
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All models are trained using the same random-cropping scheme as in Kim et al. [61], where

a training sample consists of 10 seconds of signal randomly cropped from a subject’s data. This

acts as a form of regularization and helps models see a larger variety of signals. We discard the

first 10 seconds of each participant’s data to avoid recording artifacts emanating from the trial start.

During training, each model sees 100,000 random crops of signals per epoch over a total of 50

training epochs, resulting in 5,000,000 random crops seen per model over their training regime. We

use identical training, validation, and testing splits as the previous authors [61], who split data in a

subject-wise manner to avoid data leakage for fair evaluation. For the validation and testing sets, we

split each participant’s data into 10-second non-overlapping windows, resulting in 9123 samples in

the validation set (3153 HC, 3435 MCI, 2535 dementia) and 8795 samples in the testing set (3027

HC, 3350 MCI, 2418 dementia). All models are trained using the AdamW optimizer. For the LSTM

and SSFormer models, we use base learning rates of 0.0003 and 0.0001, respectively, a minibatch

size of 32, and a cosine decay learning rate scheduler for both. We apply Gaussian noise as a data

augmentation to the input signals for all methods to improve the robustness of model training.

The EEG-SSFormer architecture in Figure 4.1 employs 3 EEG-SSFormer blocks with hidden

feature sizes of 32, 64, and 128 per channel. We use a dropout rate of 0.05 in the Project + Dropout

layer before the second and third EEG-SSFormer blocks, a rate of 0.2 applied to the Mamba SSM

outputs in all EEG-SSFormer blocks, and a rate of 0.05 for the feature and channel mixers. We

use a patch size of 8 for all model variants. For the experiment involving age, we first normalize

the age value using the mean and standard deviation of the training set, and add random Gaussian

noise to the value. This prevents the model from memorizing the age of the subject, and overfitting

to the subjects in the training dataset. We then concatenate it to the average pooled results before

classifying them using the Linear layer.

4.2.5 Model interpretability

Beyond the designated classification task, investigation of the discriminative features crucial to

the task can also offer relevant clinical knowledge to better understand the diseases. Therefore, we

probe our model for physiologically relevant insights using an occlusion sensitivity analysis on both

the individual EEG channel electrodes and each of the canonical frequency bands.
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Channel occlusion sensitivity topographic maps

We generate channel occlusion sensitivity topographic maps to understand which EEG elec-

trodes/channels (or scalp regions) are the most important for the downstream HC vs. MCI vs.

dementia classification task.

We first select the subset of correctly classified HC, MCI, and dementia samples from the testing

set consisting of a total of 8795 10-second samples extracted from 118 subjects. We then sequen-

tially occlude each electrode, measure the associated drop in predicted class probability from our

DL model for the correct class, and record the average value across all samples in the relevant co-

hort. Note that the class probabilities are obtained by applying the softmax function to the model’s

output logits. These channel-wise probability changes are then mapped over an outline of a scalp

according to their positions in the 10-20 EEG electrode placement system, and intermediate values

between the electrode positions are interpolated in order to generate a smooth heatmap over the

scalp surface. The values in the resulting topographic maps further from 0 imply that the signals

from that electrode were more relevant to the model’s final classification. A positive number repre-

sents a drop in predicted class probability, whereas a negative number signifies that the probability

for the predicted class increased after occluding the electrode. This may happen if those channels

are particularly noisy or do not contain useful information for the predicted class and only serve to

confound the model. Since the topographic maps are generated using correctly classified samples,

electrodes that drop the class-specific probability better reflect the importance of the class.

Canonical frequency band analysis

To understand which canonical frequency bands are more relevant to the classification task

with our model, we iteratively band-stop filter each of the delta (0.5-4 Hz), theta (4-8 Hz), alpha

(8-13 Hz), beta (13-30 Hz), and gamma (30-90 Hz) bands of test dataset as specified by Diessen

et al. [131]. For each occluded frequency band, we calculate the new classification accuracy of

the model. We then compare this new classification accuracy with the accuracy obtained without

removing frequency bands and compute the relative change. We accumulate this relative accuracy

change over 3 random seeds using the EEG-SSFormer-PW + Age model and report the mean and
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standard error. If the model made use of features mostly present within a certain frequency band,

then we expect a large drop in relative accuracy once that specific band is removed.

4.3 Results

4.3.1 Classification performance of baseline models and ablation studies

Table 4.2 presents the classification accuracies of our proposed method, variants of the proposed

technique, the CNN baselines and the LSTM. With an accuracy of 60.14 ± 0.57%, our proposed

method outperforms all of the CNN baselines, the LSTM, and model variants. The second-best

accuracy is achieved by a variant of our proposed method without the inclusion of the age sig-

nal (58.42 ± 1.10%). The channel and feature mixing in the spatial domain (EEG-SSFormer-PW,

58.42±1.10%) outperforms the model variant with mixing in the spectral domain (EEG-SSFormer-

EinFFT, 57.65±0.66%) on average. When switching the LayerNorm module to perform normaliza-

tion across tokens (EEG-SSFormer-PW) instead of across features (EEG-SSFormer-PW w/o I-LN),

we see a rise in all classification metrics with an almost 2% increase in classification accuracy.

Performing the channel and feature mixing in a single coupled step (EEG-SSFormer-PW Coupled)

sees a drop in classification accuracy of 4.82% when compared to the decoupled counterpart (EEG-

SSFormer-PW). The model configuration that includes the age signal (EEG-SSFormer-PW + Age)

performs the strongest among all EEG-SSFormer architectures. This configuration includes the

token-wise LayerNorm and decoupled spatial channel and feature mixing.

Compared to the CNN baseline models, we confirm the effectiveness of the Mamba-based ar-

chitecture. EEG-SSFormer-PW and EEG-SSFormer-EinFFT outperform the 1D-VGG-19 model,

the 1D-ResNet-19, and the LSTM model on average. All models perform the best on HC classifi-

cation, and the performance of the MCI group is lowest across all methods despite the MCI group

having a greater number of training subjects in comparison to the dementia group (334 vs. 249,

respectively).

In terms of parameter counts, the 1D-VGG-19 model is the largest with 20.2 million parameters,

followed by the 1D-ResNet-18 model with 11.4 million parameters. The LSTM is the smallest
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Table 4.2: Classification results of all model configurations. Best results are in bold, second best results are
underlined.

Method Acc. (%) Macro AUROC HC F1 MCI F1 Dementia F1

LSTM 52.14±0.70 0.688±0.010 0.615±0.013 0.426±0.003 0.517±0.007
1D-ResNet-18 52.66±0.73 0.701±0.006 0.654±0.002 0.416±0.010 0.499±0.015
1D-VGG-19 54.99±0.39 0.714±0.003 0.689±0.003 0.460±0.002 0.491±0.016
EEG-SSFormer-PW + Age 60.14±0.57 0.784±0.004 0.715±0.007 0.483±0.008 0.590±0.016

EEG-SSFormer-PW Coupled 53.60±0.17 0.721±0.004 0.645±0.009 0.474±0.018 0.477±0.016
EEG-SSFormer-PW w/o I-LN 56.53±0.44 0.742±0.002 0.657±0.005 0.469±0.011 0.564±0.002
EEG-SSFormer-EinFFT 57.65±0.66 0.754±0.005 0.678±0.003 0.482±0.007 0.562±0.013
EEG-SSFormer-PW 58.42±1.10 0.759±0.006 0.686±0.005 0.480±0.027 0.584±0.005

model with 399,000 parameters, and the EEG-SSFormer-PW, EEG-SSFormer-EinFFT and EEG-

SSFormer-PW + Age models have approximately 5.1 million parameters.

4.3.2 Channel occlusion sensitivity topographic maps

Figure 4.3 shows the channel occlusion scores described in Section 4.2.5. The channel occlu-

sion scores are mapped to a birds-eye view of the scalp surface using their corresponding positions

of the 10-20 placement system. Correctly classified samples from subjects in the test set are used

to generate the topographic maps, which includes 2229 HC, 1704 MCI and 1336 dementia samples

for the no-age group and 2481 HC, 1483 MCI and 1395 dementia samples from the topographic

maps with age included. Areas between electrodes use values interpolated from the other electrodes

to create smooth contours across the scalp. The top row of the figure shows the occlusion scores for

the EEG-SSFormer-PW model trained without the age signal. The bottom row depicts the results

for the EEG-SSFormer-PW + Age model, which includes the age signal. Overall, including the age

adds robustness to the features learned by the model. There are fewer fluctuations in class proba-

bility when using a participant’s age, whereas the model without age is more prone to prediction

probability changes when zeroing out a channel.

The electrodes that have the greatest effect on predicted probability are over the frontal lobe, left-

temporal and central-parietal lobe for HC, the central-parietal, right-temporal, and occipital lobe for

MCI, and mostly over the occipital and temporal-right lobe for dementia subjects. The inclusion of

age leaves these areas relatively unchanged across conditions but shifts some importance from the
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center of the scalp to the inion for the MCI group.

Figure 4.3: Channel occlusion sensitivity topographic maps for EEG-SSFormer model trained with-
out and with the age signal.

4.3.3 Canonical frequency band analysis

The relative changes in class accuracies after iteratively band-stop filtering each canonical fre-

quency band are shown in Figure 4.4. Removing the delta band has the lowest relative accuracy

decrease of all the frequency bands but results in an 8.1% relative increase in accuracy for the de-

mentia class. The removal of the theta band shows a substantial decrease in relative classification

accuracy of 39.7% in dementia, with little performance change for the HC and MCI cohorts. The

absence of the alpha band results in an equal and opposite effect for the MCI and dementia groups,

with an 8.6% drop in relative accuracy for the MCI group, albeit with a large standard error, and a

corresponding 12.2% increase for the dementia detection accuracy. The filtering of the beta band is

responsible for the largest drop in HC performance among all frequency bands, with a 21.6% drop in

relative accuracy, but is accompanied by an increase in classification performance for the MCI and

dementia groups. Finally, the removal of the gamma band sees a large drop in MCI classification
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performance, the largest drop for MCI of all the frequency bands with a 32.9% relative decrease in

accuracy performance.

Figure 4.4: Relative accuracy change of best performing EEG-SSFormer model configuration with
canonical frequency band-stop filter.

4.4 Discussion

In this work, we present a novel Mamba-based channel-independent architecture that effectively

extracts salient features from raw rs-EEG signals for classifying dementia while outperforming

models with close to four times as many parameters. This suggests that Mamba-based architectures

may be more suitable than pure CNN architectures, which have achieved state-of-the-art results in

EEG classification tasks. Additionally, our model is validated on the largest public dementia rs-EEG

databases, and exploring the features learned by our model reveals physiologically relevant insights.

While gaining strong popularity in computer vision and natural language processing domains,

Mamba has seldom been used for EEG classification and even less for resting-state paradigms and

dementia detection tasks. Recently, Tran et al. [130] use an ensemble model featuring Mamba to

classify inputs containing both raw EEG and manually extracted spectral features for the task of

discriminating between subjects with Alzheimer’s disease, frontotemporal dementia, and healthy
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individuals. To the best of our knowledge, they are the only existing work attempting to apply

Mamba to dementia detection using EEG, but their use of manually extracted features steer the

scope of the task away from using minimally processed signals. In addition, they use a trial-based

experimental protocol, where they shuffle the extracted EEG segments from all participants and

split the segments into training and testing sets. As a result, in this setup, a model will be able to

see data from a single subject in both the training and testing splits (i.e., data leakage), allowing

the model to memorize subject-specific instead of task-specific details, reducing the algorithm’s

generalizability to unseen subjects. Other studies have applied more traditional DL techniques

for dementia classification. Sen et al. [114] use the intrinsic time-scale decomposition to extract

rotation components from EEG signals, then use a 1D CNN to classify patients with Alzheimer’s

disease in an in-house dataset. However, they also employ the trial-based validation setup and report

a classification accuracy of 94%. Radwan et al. [103] use graph neural networks with Granger

causality graphs for the binary classification of abnormal EEGs with the CAUEEG dataset [61].

Finally, Farina et al. [31] compare machine learning classifiers trained separately on manually

extracted features from fMRI and rs-EEG data for AD vs. HC, MCI vs. HC, and AD vs. MCI

classification. Similar to the results reported in Table 4.2, they also show that the MCI group is the

hardest to classify correctly out of the three conditions. Due to the difference in algorithm validation

setup and differences in the datasets, it is difficult to directly compare the classification accuracy of

our method against these aforementioned works.

To validate our approach, we compare our work to the models developed by Kim et al. [61],

which include the popular ResNet-18 and VGG-19 CNN architectures adapted for EEG data and

tested on the CAUEEG dataset. To compare our model to classic recurrent architectures, we in-

clude an LSTM baseline as well. Both our spectral and spatial EEG-SSFormer variants outperform

the baseline models, with the spatial variant (EEG-SSFormer-PW) achieving a 3.43% improvement

over the next best-performing baseline model (1D-VGG-19) without the inclusion of the age sig-

nal. Notably, our proposed architecture contains 5.1 million trainable parameters, substantially less

than the 20.2 million parameters of the 1D-VGG-19 and the 11.4 million parameters of the 1D-

ResNet-18, suggesting that using a state space model and a channel-independent approach allows
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for learning the long-range features unique to each channel that are discriminative for the down-

stream classification task more efficiently.

In the experiment comparing the mixing of the model’s hidden features and input channels in

the spatial and spectral domains, the spatial mixing achieves superior classification scores, outper-

forming the spectral mixing by 0.77%. The frequency mixer applies the Fourier transform across all

elements of the sequence, which means that it observes the global periodic components of the data

but fails to localize important frequency components in time. On the other hand, time-frequency

techniques such as the short-time Fourier transform are so valuable in EEG data as they combine the

best of both worlds and are capable of determining when an important change in signal frequency

occurs [89]. By ignoring the temporal component of the data, the spectral channel mixer may be

ignoring important characteristics in the data that could lead to a correct dementia classification.

Although frequency domain variate mixing has shown success in time-series tasks before [142, 99],

the datasets used contain a maximum input length of 336 time steps. This number is dwarfed by the

2000 time steps used for 10 seconds of rs-EEG data in our experiments, and modeling the variations

in frequency components over time may be less important.

Our ablation test comparing the decoupled feature and channel mixing with its coupled coun-

terpart shows that decoupling the mixing yields a substantial increase in classification performance,

with the decoupled mixer outperforming coupled mixing by 4.82%. In general, in non-channel-

independent approaches, all of a model’s input channels are projected to a higher dimensional fea-

ture space using a single convolution operation [61, 70]. This produces features that are a combi-

nation of data from all input channels. However, using this coupled approach poses problems when

treating each input channel as a univariate time series. For a single channel-independent feature

and channel mixer, to capture interactions between C number of input channels and D number of

features per input channel, a coupled approach would require approximately (C ×D)2 parameters.

For comparison, the model variant that was tested with coupled channel and feature mixing (EEG-

SSFormer-PW Coupled) contained a total of 34 million trainable parameters, whereas the decoupled

version (EEG-SSFormer-PW) has only 5.1 million. This reduction in parameters not only reduces

the computational burden of training the model but increases its performance as well.

60



To better understand the decision-making process of our deep learning algorithm, we investi-

gate the contributions that individual EEG channels and frequency bands have on the classification

outcomes. In classic EEG analysis, these factors are often of great interest as potential biomarkers

for disease diagnosis or insights to better understand the target neural processes. In the channel oc-

clusion plots in Figure 4.3, we observed similar patterns of channel importance between the models

with and without using the age factor in the classification. Overall, the model that makes use of age

shows lower changes in prediction probability, suggesting that the introduction of the age signal can

lead to greater robustness in the classifier. This is likely due to the fact that advanced aging is often

correlated with cognitive function decline [109]. Notably, for MCI, our model attributes greater

importance to central, frontocentral, and right parietal areas of the scalp, which is consistent with

findings by Chetty et al. [17] showing that these areas exhibit significantly higher gamma/alpha

ratios in the prodromal AD participants. Farina et al. [31] also discover that the best differentiator

of amnestic MCI, which is also the most common form of MCI in the CAUEEG dataset, is elevated

beta power in the right temporoparietal areas. In terms of the dementia subjects, there is a lower

emphasis on central regions of the scalp as shown in Figure 4.3, and a higher emphasis is placed

on occipital regions, with some important electrodes located on the right temporal regions. In their

study, Giustiniani et al. [35] find that the central and occipital areas of Alzheimer’s disease indi-

viduals exhibit higher theta power than those with frontotemporal dementia and vascular dementia.

Although the dataset used in this study includes a collection of dementia subtypes, patients with

Alzheimer’s disease substantially outnumber those with vascular dementia (230 vs. 79) and thus

may be overrepresented in the occlusion plots.

We also investigate the importance of features learned throughout individual canonical fre-

quency bands on the diagnostic task. As shown in Figure 4.4 the theta frequency band is crucial for

dementia detection. This is consistent with the conclusion of Farina et al. [31] that theta power is the

strongest predictor of Alzheimer’s disease status in resting-state EEG, and they report that the sig-

nificance of the theta band is consistent across multiple regions of the scalp. Chetty et al. [17] come

to the same conclusion when discriminating between Alzheimer’s disease, prodromal Alzheimer’s

disease, and healthy controls from resting-state EEG features. They find that the theta power of

Alzheimer’s patients was elevated compared to their prodromal and healthy counterparts. Besides
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theta band, previous studies [68, 35] also suggested increased delta band in rs-EEG to be associated

with Alzheimer’s disease. In our case, the removal of the delta band contributed to a slight increase

in the classification accuracy of dementia. This may be due to the fact that we focus on the symptom

of dementia across a number of underlying causes other than specifically AD. For health controls,

we find the most discriminative frequency band lies in the beta band. This finding is mirrored in

the work of Farina et al. [31], who state that beta band power is the most significant predictor of

healthy control status. Finally, increased gamma vs. alpha power ratio and gamma-band functional

connectivity in the prodromal Alzheimer’s disease population has been shown in previous studies

[17], which are consistent with the significant drop in relative classification accuracy that our model

experiences for the MCI class when removing the alpha and gamma bands.

Although we show improved performance using our novel DL technique, some limitations to the

current work remain that can provide opportunities for future explorations. The CAUEEG dataset

is the largest rs-EEG dataset for dementia, but there exists a few sources of heterogeneity among

subjects that may impact our classification accuracy. First, the dataset contains two different experi-

mental protocols, with a sub-cohort of patients receiving photic stimulation during data acquisition.

Although our model was still capable of learning relevant EEG features for differential diagnosis,

the discrepancy in experimental protocols may interfere with the learning process. Future work

can explore strategies to harmonize this difference and quantify the impact of photic stimulation in

rs-EEG-based dementia detection. Another source of heterogeneity lies in the diversity of disease

diagnoses among the population in the dataset. While the majority of the subjects in the dataset

were assigned general labels of dementia, MCI, or HC, the causes of dementia vary (e.g., Parkin-

son’s disease dementia vs. vascular dementia), which may contribute to different characteristics in

EEG activities. Future investigations that reveal the common and distinct EEG patterns of different

causes for MCI and dementia may help better reveal the mechanisms of the symptoms.

4.5 Conclusion

In this work, we propose a novel Mamba-based channel-independent DL model for HC vs.

MCI vs. dementia classification. Using a subject-wise validation scheme, we develop and test our
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proposed method based on the CAUEEG dataset with the largest corpus of rs-EEG collected from

dementia patients. Our results demonstrate superior performance compared to the state-of-the-art

CNN models while reducing the model parameter by approximately four times. Furthermore, we

show that our model is capable of extracting physiologically relevant features from the resting state

signals, with insights in line with the current neuroimaging literature. Our state-of-the-art results

offer a promising avenue to leverage rs-EEG for the diagnosis and study of dementia, which is

particularly beneficial for remote areas and underprivileged communities.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this thesis, we address the unique challenges of developing deep learning methods for resting

state EEG data and introduce two novel methods. In Chapter 3, we propose a hybrid GNN model

using Chebyshev graph convolutions and a novel multi-head graph structure learning framework

to extract spatial relationships between EEG electrodes and structured global convolutions to learn

temporal patterns in the signals. We introduce a novel graph explainability technique that weighs

the learned attention-based edge weights by their head-wise gradients to produce adjacency matrices

that are more descriptive than the mean and max aggregation that has been more commonly adopted.

Our framework shows promising performance for classifying patients with Parkinson’s disease, and

we push the capabilities of our model even further by using a contrastive pretraining task designed

specifically for 1D signals. Our work shows that manually designed edge weights based on the

commonly used Pearson correlation coefficient are sub-optimal for identifying important electrode

relations in resting state EEG, and graph structure learning can be a promising alternative.

Our second contribution, presented in Chapter 4, shifts attention to the task of dementia de-

tection. We introduce a novel deep-learning architecture that leverages the power of the Mamba

state-space model and a channel-independent modeling technique to classify individuals’ cognitive

decline stages. Our study also tests the viability of modeling cross-feature and cross-channel in-

teractions in both the spatial and spectral domains, and we show that applying conventional deep
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learning methods in a channel-independent strategy helps increase model generalization in EEG.

We also show that our model can learn physiologically relevant insights in a data-driven manner

instead of the classic hypothesis-driven exploration in typical neuroimaging research.

Diagnostic screening should generally be accessible for individuals regardless of economic sta-

tus or physical capabilities. EEG, particularly rs-EEG, is a step towards more accessible testing

alternatives for many disorders. In this thesis, I presented novel deep learning methods that can

address issues encountered when using deep learning with resting state EEG and offer researchers

insights into what leads the proposed models to their conclusions. Hopefully, these insights can

spur more focused work into relevant physiological biomarkers to help describe neurodegenerative

diseases.

5.2 Future Work

In our first contribution, our graph structure learning layer learns adjacency matrices that are

more descriptive than commonly used hand-crafted ones. Although there are some similarities

between the graphs learned by our method and those extracted from Parkinson’s disease patients

using network analysis, future studies can help confirm our observation in relation to the existing

neuroscience literature by studying the subject-wise graphs learned from a much larger cohort. To

expand on this research direction, group-wise differences between Parkinson’s disease subtypes can

be investigated and corroborated with the existing clinical literature to evaluate the robustness of the

physiological insights generated by our technique.

Previous works that employ graph structure learning for EEG have imposed graph regulariza-

tion constraints on the adjacency matrix during the training process [125]. These constraints can

enforce sparsity, low node degree values, and varying degrees of smoothness to encourage the struc-

ture learning layers to learn EEG graphs with desirable properties that can be more easily compared

with insights from the network neuroscience literature. Regularizing the graph learning process can

also help avoid solutions converging to sub-optimal results, such as a single node with a dispropor-

tionately high degree value.
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In our second main contribution, the Mamba temporal feature extractor models long-range de-

pendencies in the underlying signal. While our model outperforms CNNs that have significantly

more model parameters, testing the efficacy of other SSM variants may potentially lead to increased

performance in future studies. Mamba uses a purely real-valued hidden state, which allows it to

excel at many tasks while remaining very computationally efficient. However, some preliminary

results show that real-value SSMs under-perform their complex-valued counterparts (e.g., S4) on

some tasks involving audio and video data. It is hypothesized that complex-valued hidden states

may be optimal for continuous data modalities. In contrast, real-valued hidden states may be better

for discrete data such as texts. So far, a wide range of SSMs have been developed, and it can be

interesting to understand how the trade-off of complex vs. real hidden states affects EEG data pro-

cessing for downstream tasks. In addition, we extend our second main contribution by performing

a preliminary study on model pretraining with a forecasting task, which is outlined in Appendix A.
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Appendix A

Investigating future data forecasting as a

SSL pretext task for dementia

classification using resting state EEG

This section shows the results of an investigation on the feasibility of self-supervised pretraining

using data forecasting as a pretext task for dementia classification from rs-EEG. Previous research

in computer vision using Mamba has demonstrated improved performance through pretraining [74].

Self-supervised (SSL) pretraining tasks may help the model generate valuable representations from

limited-size datasets without requiring additional data annotations. These representations may then

be used in a downstream classification task. However, in the context of EEG, future data forecast-

ing as a pretext task has been largely under-explored. Most studies have focused on pretraining

techniques related to signal reconstruction [97, 57], contrastive learning [115, 87], or synthetic data

generation [134, 98]. The work by Tang et al. [124] is notable for being the first to employ signal

forecasting as a self-supervised pretraining task for seizure classification using EEG and He et al.

[47] use future data forecasting for a motor imagery task. To the best of our knowledge, nobody has

applied this pretext task to rs-EEG data.

For this task, we train the EEG-SSFormer-PW model introduced in Chapter 4 to predict the next

n time steps of preprocessed EEG data given a 10-second input segment. We replace the final linear
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classification head with a forecasting head, which consists of a flattening operation that converts

average pooled outputs from X ∈ RB×C×D×1 to X ∈ RB×(C×D), and a linear layer that generates

predictions for the following n time steps. We use a Mean-Squared Error (MSE) loss function

similar to He et al. [47], shown in Equation 13 where Yi is the ground truth of the ith time step, and

Yĩ is the model prediction. We evaluate the model’s performance using macro-averaged Accuracy

(%).

MSE =
1

n

n∑︂
i=1

(Yi − Ỹ i)
2 (13)

The pretraining pretext task is evaluated in two experimental setups. We finetune the model

using the labeled dataset during model training in the first setup. This is ”Finetuned Accuracy” in

Table A.1. The second setup freezes the model, except for a Linear classification head. This test

aims to quantify the quality of the features extracted by the pretrained model. These results are

reported under ”Frozen Accuracy” in Table A.1. We pretrain the EEG-SSFormer model for up to

350 epochs with a base learning rate of 0.0002 using a cosine-decay learning-rate scheduler and

forecast the next 2 seconds (400 time steps) of data. The model is evaluated every 50 epochs. We

use the same EEG-SSFormer-PW model hyperparameters as in Chapter 4.

Across the board, pretraining the model with the forecasting task deteriorates performance on

the downstream classification task, with the frozen feature encoder obtaining worse results. Our

experiments show that this pretext does not improve classification accuracy when applied to rs-

EEG data for dementia classification. With epilepsy and motor imagery tasks, there is a clear

dependence between time steps. For example, seizures are usually characterized by the prodrome,

ictal, and post-ictal stages, indicating that the seizure is incoming, onset, and subsiding. This implies

a temporal ordering that may be easier to model for a forecasting pretraining task. According to

[146], if a forecasting pretext task is used for signals or sequences with high degrees of uncertainty,

randomness, or sudden unexpected events, then the model may struggle to forecast future values.

This negatively impacts the effectiveness of the self-supervised learning task. Rs-EEG data lacks the

clearer structure of event-based tasks and is prone to seemingly random fluctuations, which may be

why the forecasting pretraining is ineffective. The decrease in classification accuracy is noticeably
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Table A.1: Performance of frozen and fine-tuned pre-trained models on
the classification task outlined in Chapter 4.

Pre-training Epochs Finetuned Accuracy (%) Frozen Accuracy (%)

50 54.97 50.10
100 55.60 48.74
150 54.82 48.03
200 56.37 44.24
250 54.96 41.41
350 55.47 43.45

worse for the frozen encoder configuration, suggesting that the features the model learns to extract

during the self-supervised learning task are not informative enough for classification.
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