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Abstract

EV-based Load-altering Attacks and their Impacts on the Stability of Power Grids

Ahmadreza Abazari, Ph.D.

Concordia University, 2025

The extensive use of electric vehicles (EVs) provides energy-critical infrastructures with some

advantages and drawbacks at the same time. The large-scale deployment of EVs can improve the

reliability and efficiency of the power grid through, for instance, bidirectional energy transfers be-

tween grids and EVs, reduction in electricity bills, and ancillary services. The majority of these

advantages are enabled by the use of communication and information technologies (ICTs) in the EV

infrastructures and their associated smart power grids. Moreover, EV supplies equipment (EVSE)

network, e.g., charging stations, including a variety of Internet of Things (IoT) devices and smart-

phone applications that facilitate the charging process for users. However, such a broad deployment

of cyber devices and information technologies makes the EV ecosystem prone to cyber-attacks in

the form of data manipulation, malware, and intrusions. The attacks against public and private EV

charging stations, which are often designed without security concerns in mind, are threats against

owners and can lead to complicated security issues for smart grids. Additionally, compromising

the security of these large-scale EV infrastructures can propagate into the wide-area transmission

power grid, cause resonance events, and result in instability and even blackouts. Studying poten-

tially vulnerable points in the EV ecosystems that adversaries can exploit to impact the stability of

power grids, and suggesting proper detection and mitigation strategies is of paramount importance.

Finally, designing security metrics for distribution and transmission systems can assist power grid

utilities in informing about the power grid security status in the presence of attacks originating from

EV ecosystems.
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Chapter 1

Introduction

In this chapter, we start by outlining the motivation behind this thesis, then a clear definition of

the problem statement, and finally the key research contributions of this thesis.

1.1 Problem Statement

Electric vehicles (EVs) play an increasingly critical role in modern society due to their signif-

icant impact on reducing greenhouse gas emissions and fossil fuel consumption. Accordingly, the

electrification of private and public transportation systems, e.g., through the use of EVs, is a crucial

step towards achieving a sustainable future and reducing the negative environmental impacts of tra-

ditional transportation methods. As of 2021, there were approximately 7.2 million EVs worldwide,

with a record 3.2 million EVs sold during the COVID-19 pandemic in 2020. Furthermore, global

sales of electric cars have kept rising strongly in 2022, with 2 million sold in the first quarter, up

75% from the same period in 2021. It is projected that this number will rise to 170 ∼ 245 million at

the end of 2030, which can provide a noticeable surface for different types of EV-based attacks [4].

Indeed, large-scale deployment of EVs provides power grid operators with several opportuni-

ties, such as bidirectional energy transfers and frequency and voltage ancillary services, that can

improve the reliability and efficiency of power grids. However, to fully realize these advantages for

EV ecosystems and power grids, information and communication technologies (ICTs) in the EV
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infrastructure and smart power grids must be widely employed[5]. Moreover, the EV supply equip-

ment (EVSE) network, which includes charging stations, relies on various Internet of Things (IoT)

devices and smartphone applications to facilitate the charging process for EV users[6]. However,

the widespread deployment of cyber devices and information technologies makes the EV ecosystem

vulnerable to cyber attacks in the real world, including data manipulation, malware, and intrusions

[7]. Attackers can maliciously exploit physical and wireless vulnerabilities in EV ecosystems to

impact the EV charging process, to severely damage the stability of power grids, even in the pres-

ence of renewable energies[8]. The increasing use of high-power EV chargers and the growing

number of EVs on the road have prompted researchers to consider the impact of EV loads on the

stability of power grids[2]. In some research papers [9, 10, 11], the impact of load-altering at-

tacks (LAAs) originating from cyber layers of the EV ecosystem has been only investigated without

proposing effective detection and mitigation methods. On this basis, potential vulnerabilities in the

EV ecosystem, which can be maliciously exploited by adversaries to impact the stability of power

grids, should be first investigated. Then, model-based or learning-based methods must be devel-

oped for the estimation of EV-based attack vectors in a timely manner. Finally, wide-area damping

controllers can be suggested to alleviate the impacts of such attack vectors on the stability of power

grids.

1.2 State of The Art

The negative impacts of load-altering attacks (LAAs), which actually change consumers’ power

consumption, on power grid stability have been investigated in several existing studies[12, 13, 14].

These LAAs can be categorized into static, dynamic, and switching attacks. Reference [13] investi-

gates a static LAA, in which a portion of aggregated high-wattage loads is manipulated to impact the

power grid operation and cause blackouts. A dynamic LAAÐ which is crafted using specific states

of the smart grid, i.e., the frequency of the gridÐcan impact the stability of the closed-loop system

by transferring the lightly-damped modes of the system to the unstable area [14]. Switching attacks

are another type of LAAs that excite unstable and lightly-damped modes of the power grid aiming to
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cause unacceptable frequency deviation and oscillatory behaviours in the systems [12, 10, 11]. Sev-

eral recent studies in the literature have shown that cyber-physical attacks can be launched from the

EV ecosystem by compromising potential vulnerabilities and attack vectors, leading to critical prob-

lems in power grids [9, 15, 16]. One of the most frequent types of these threats is the load-switching

attack, which has been analyzed and investigated in several papers [17, 12, 10, 11]. In [17], the au-

thors demonstrated how, through a successful cyber intrusion and by having some knowledge about

the grid, an adversary can compute and apply a coordinated switching sequence to a circuit breaker

to disrupt the system’s operation within a short interval of time. A coordinated switching attackÐ

that targets loads of the two-area Kundur benchmarkÐis implemented in [12] to drive a group of

synchronous generators (SGs) out of step and create inter-area instability. In reference [10], authors

leveraged the EV ecosystems and aggregated EV loads to launch switching attacks on power grids.

Moreover, authors in [11] developed a learning-based detection method in the cloud management

system along with an H∞-based mitigation approach to address the EV security issues. Recently,

some researchers have developed a real-time co-simulation test-bed that emulates the components

of the EV ecosystem and studies the impact of EV-based attacks on power grid stability [2]. In

another work [8], a virtualization environment, which has been developed by the Hydro-Quebec

research team, consists of a transmission system simulator, a distribution network simulator, and

an EV ecosystem emulator. This environment studies the impacts of compromising aggregated EV

loads in distribution networks that can be propagated into transmission system behaviours. It has

been shown that the impact of cyber attacks on EV loads at the distribution networks can be seen

as a disturbance in the frequency and voltage of the transmission buses. Based on two technical

reports [18, 19] from SANDIA National Laboratories, the impacts of compromising EV loads at the

distribution levels on the stability of transmission systems, have been illustrated by several practical

examples. On this basis, it is important to investigate the impacts of EV-LAAs on the stability of

power grids.

1.3 Targeted Research Gaps

Inspired by the above discussion, several research gaps can be investigated as follows:
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• The impact of EV-LAAs on the inertia-area stability of the power grid has been studied by

several works. New surfaces of these switching attacks can be developed that can lead to

other instabilities in a power grid, e.g., subsynchronous resonance events.

• Introducing reconnaissance techniques that can be applied to obtain instability oscillation

modes of the power grid in a stealthy manner instead of short circuit faults and apparent

methods of obtaining information.

• Developing new strategies for issuing malicious charging and discharging commands in charg-

ing stations with the aim of more destructive impacts on the frequency and voltage response

of power grids.

• Estimating EV-LAAs vectors through model-based methods during the availability of system

parameters, or machine learning-based approaches during the availability of historical data.

• Introducing wide-area damping controllers in the mitigation phase to deliver the best perfor-

mance in case of load-altering attacks.

• Studying EV-LAAs in the presence of renewable energy sources, e.g., wind farms, during

different uncertainties in the power grids.

• Developing a security metric for potential attack vectors in EV ecosystems and their impacts

on the stability of power grids.

1.4 Research Contributions

Based on the identified gaps, we make the following contributions which are explained briefly

here and will be expanded in four chapters through this thesis.

1.4.1 Electric Vehicle Switching Attacks Against Subsynchronous Stability of Power

Systems

In Chapter 3, first, the cyber-physical connections between the EV ecosystem and the power grid

are discussed to represent a threat model for coordinated electric vehicle switching attacks (EVSAs)
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that can excite the torsional modes of the system. Then, it will be demonstrated that a traditional

proportional-integral (PI)-based subsynchronous resonance damping controller (SSRDC) cannot

stabilize the power grid. With the help of a customized unknown input observer (UIO), an adaptive

control framework is developed based on a model predictive control (MPC). This framework can

generate online control signals and add them to the internal control framework of the synchronous

generators (SGs). A modified IEEE Second Benchmark (M-IEEE-SBM) is used to demonstrate

the EV-LAAs’ consequences and evaluate the effectiveness of the developed adaptive technique.

The proposed strategy is also studied through real-time simulations under a testbed that integrates a

virtual sphere (vSphere) for an EV ecosystem with power grids simulated in a real-time simulator

(i.e., OPAL-RT 5650). To demonstrate the feasibility of this switching attack vector in an actual

power system and its impact on SSR stability, the Palo Verde Nuclear Generating Station (PVNGS)

is also simulated in this real-time simulator, and the effectiveness of the proposed adaptive control

framework is validated under the EV-LAAs.

1.4.2 Deep Learning Detection and Robust MPC Mitigation for EV-Based Load-

Altering Attacks on Wind-Integrated Power Grids

Due to the high penetration of wind energy in traditional power systems, Chapter 4 studies the

impact of the EV-based load-altering attacks (EV-LAAs) against the subsynchronous control inter-

action (SSCI) of the wind-integrated power grid. First, the cyber-physical connections between the

EV ecosystem and the power grid are discussed in detail to represent a threat model for coordinated

EV-LAAs that can excite the SSCI modes of the system. Then, a convolutional neural network

(CNN) is trained based on data from phasor measurement units (PMUs) at wind farm substations

for detecting this attack, separating it from benign events, e.g., fault or line disconnection, and es-

timating attack vectors. The developed CNN detection model may neglect a few EV-LAAs due

to the huge number of attack vectors with different combinations of amplitudes and frequencies

during uncertainties in wind speeds and the number of WTG outages, leading to generating false

negatives. As such, a robust model predictive controller (RMPC) is developed as a supplementary

solution for mitigation purposes based on linear-matrix inequalities (LMIs). Possible uncertainties

in wind speed and wind turbine generator (WTG) outages during different amplitudes of EV-LAAs
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are investigated when defining these LMIs. The performance of mitigation schemes is evaluated and

compared with recent wide-area damping controllers, e.g., the two-degree freedom (2DOF), linear

quadratic regulator (LQR), and H∞ under the co-simulation of EMTP-RV and MATLAB/Simulink.

1.4.3 Developing a Security Metric for Assessing the Power Grid’s Posture against

Attacks from the EV Charging Ecosystem

After studying the impact of load-altering attacks originating from EV ecosystems on the stabil-

ity of power grids, we have decided to design security metrics for power utilities to provide informa-

tion about the security status of the systems. On this basis, Chapter 5 develops a metric that captures

the security posture of EV ecosystems, considering the possible attacks and their associated impacts

on distribution grids. First, potential attack graphs are obtained to show the connections between

the adversaries’ access points and the consequences of attack vectors. Then, a Markov decision pro-

cess (MDP) tree is generated, using probabilities of adversaries’ success rates for a specific attack

vector and unique reward functions. The developed MDP tree is then resolved by a policy iteration

algorithm to calculate the value function of each state, related subsequent adversarial actions from

the attackers’ viewpoint, and quantify the security posture of each state. Finally, using the obtained

metric, a deep convolutional neural network (CNN) is trained offline to notify the distribution sys-

tem operators (DSOs) of the security status of EV ecosystems, i.e., secure and alarm situations.

DSOs can use the developed security metrics to design consequent corrective actions during criti-

cal cyber-attacks. To demonstrate the usefulness of the proposed security metric in quantifying the

security status of the grid, a cyber-physical testbed is built. This testbed integrates a virtual sphere

(vSphere) to simulate the cyber parts of the EV ecosystem as well as a real-time simulator to model

two distribution networks, i.e., IEEE 33- and 141-bus, under DSO control center based on IEC

61850. For a distribution network with dynamic sections that can be created using the operation

of tie-switches, a supplementary strategy has also been suggested. This strategy is evaluated under

the IEEE 69-bus distribution network to calculate the related security metric and update the security

monitoring framework.
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1.4.4 Designing a Security Metric for EV-based Load-altering Attacks in Transmis-

sion Systems

Lastly, Chapter 6 uses the measurements of the transmission grid and information on its cyber

layer to derive a security metric that can be used for diagnosis and condition monitoring of the

transmission grid’s security state. First, common vulnerabilities in EV ecosystems are analyzed

to devise related attack graphs. Afterward, a Markov decision process (MDP) tree is established

based on the obtained attack graphs to display the possible attacker’s actions and their detrimental

consequences. In this MDP, to calculate the probabilities of adversaries’ success in each branch, a

customized common vulnerability scoring system (CVSS) is developed. Furthermore, control input

and measurement signals are used to identify the transmission systems’ model. Using this model,

the damping ratio, controllability, and observability of low-damping modes, as well as the number of

compromised charging stations, can be obtained for calculating the terms of a reward function. The

generated MDP tree is resolved by the Epsilon-Greedy Q-learning algorithm to calculate the value

of each state in the MDP tree and the related optimal adversarial action. This metric is integrated

into a back propagation neural network (BPNN) to provide a security monitoring framework for

attacks originating from the EV ecosystem. The security monitoring framework is evaluated on

a testbed to demonstrate its usefulness in quantifying the security status in the case of EV-LAAs.

This testbed consists of a virtual sphere (vSphere) of an EV ecosystem with the New England 39-bus

transmission system simulated in a real-time simulator (RTS).

1.5 Thesis Organization

The remainder of this thesis is organized as follows:

• Chapter 2: provides information about the cyber layers of EV ecosystems, potential vulner-

abilities in such ecosystems, attack graphs related to attack vectors, and impact of EV-based

attack on operation of power grids.

• Chapter 3: studies the impact of EV-based load altering attacks on the resonance stability of

power grids and introduces an adaptive framework to mitigate their impacts.
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• Chapter 4: investigates the impacts of load-altering attacks originating from EV ecosystems

on the stability of wind-integrated power grids. Then it provides a machine-learning based

model for detection and robust controller for mitigating these attacks.

• Chapter 5: defines a new metric for power grid utilities during EV-based attacks and designs

an security monitoring framework to provide information about security status of distribution

networks.

• Chapter 6: extends the security metric for transmission system in the presence of the load-

altering attacks originating from EV ecosystems.

• Chapter 7: concludes the thesis and provides the possible future works.
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Chapter 2

Background

This section first illustrates a layout of the physical and cyber layers of the EV ecosystem,

which is supplied through a power grid. Then, vulnerabilities in cyber layers, which attackers

can maliciously compromise to disrupt the performance of charging stations, are represented. Full

attack graphs for vulnerable points in the EV ecosystem are obtained to show how attackers can

penetrate this ecosystem and impact the stability of power grids. Finally, some recent cyber attacks

that originated from EV cyber layers with the aim of disrupting the performance of power grids will

be discussed.

2.1 Generic EV Ecosystem Model

EV ecosystems are connected to distribution networks and encompass a cyber-physical model

with cyber and physical layers that are tangled together in an interdependent manner. In order to

facilitate interactions between EV consumers and power grids, these ecosystems consist of essential

elements that have been depicted in Fig. 2.1. In this configuration, EVCSs, which serve as an

interface between the charging station management system (CSMS) and EVs, are IoT devices that

host management firmware. EVCSs are generally categorized into three different categories based

on their charging rate: (i) Level-1 chargers with a charging rate of 1.4 kW; (ii) Leve-2 chargers with

a charging rate of up to 40 kW; and (iii) Level-3 direct current fast chargers with a charging rate

of 40kW to 240 kW [5]. The communication protocol between the CSMS and EVCS is the open
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Table 2.1: Cyber attacks on EV charging and impacts on power grids.

Reference Threat Impacts on power grids

[7]
Existing public data on power grid

and EV ecosystems
Over frequency and cascading blackouts

[27] Control systems of EVCSs
Low power factor, harmonic distortion and

frequency instability

[28] EV botnet Under voltage and overloads in lines

[29] EV botnet Under-frequency events and power outages

been illustrated in Fig. 2.4.

2.4 Impacts of EV-based Attacks on Power Grids

Attackers can exploit physical and wireless vulnerabilities in EVs, EVCSs, or both to impact

the EV charging and discharging actions and damage the stability of the power grid. For exam-

ple, a data-driven attack mechanism was developed in [7] that has caused frequency instability by

manipulating EVCS demands. The proposed attack benefited from publicly accessible EVCS and

power grid data that allowed for a prior evaluation of the worst-case attack impact on the power

grid. In another work, [27], the impacts of the cyber attacks on the EVCS control system on power

quality were studied. In this cyber intrusion, coordination between different converters and power

conditioning units of a 50 kW DC EVCS was interrupted, leading to unacceptable total harmonic

distortions in the EVCS current fed by the power grid with a relatively low power factor. Further-

more, in [28], attackers have designed a botnet with the aim of comprising EVs and fast-charging

direct current stations and interrupting the power grid. This research investigated 33-bus and 39-bus

IEEE distribution and transmission networks, as well as real-life EV mobility and charging data ob-

tained from the Toronto Parking Authority in Canada. Simulation results showed that the EV botnet

could create under-voltage events and power outages in some parts of the mentioned networks. In

[29], another botnet is investigated that consisted of 7 kW residential L2 EVCSs to create under-

frequency outages in the California region as a part of the Western interconnection of the US power

grid. The outcome of this study is that this botnet will need to simultaneously shut down 12% EVs

in California to cause a frequency drop of 0.5 Hz, which is sufficient for triggering under-frequency

alarms in the western interconnection. Table 2.1 summarizes the studies dedicated to the analysis

of cyber attacks on the power grid that exploit vulnerabilities in EV ecosystems.
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Chapter 3

Electric Vehicle Switching Attacks

Against Subsynchronous Stability of

Power Systems

3.1 Motivation

Wide-area power grids inherently have several physical vulnerabilities, i.e., resonance condi-

tions, which can result in growing oscillations in system parameters, such as voltage and angular

speed of generators. Among these instability issues, a frequent one is a subsynchronous resonance

(SSR) that is created between components of synchronous generators, e.g., their mechanical struc-

ture, and fixed series capacitors in the power grid. The oscillations resulting from this resonance

occur at frequencies lower than the grid’s nominal frequency, e.g., between 5 and 55 Hz in a 60 Hz

power grid. It is worth mentioning that fixed series capacitors are deployed in transmission lines to

enhance the power transfer capacity and improve the voltage profile [30]. The first reported case of

SSR occurred at Mohave Power Station in Arizona. In this incident, the generator shaft was sub-

jected to a continuously increasing torque that finally led to a shaft fracture[31]. The rotors of two

turbo-generators cracked due to SSR at the Dresden nuclear power plant in 2004, and several SSR

15



events also occurred at the Yimin power plant in China, which led to the shaft fracture of a turbo-

generator in 2008 [32]. These potential real-world SSR instability events, along with EV charging

stations that are widely distributed among power system loads, can persuade adversaries to com-

promise cyber vulnerabilities in the EV ecosystem and switch a portion of controlled EV loads with

a specific frequency to excite torsional modes of steam turbine generators and create SSR events.

Despite the numerous studies that have focused on designing SSR damping controllers (SSRDCs)

to resolve SSR issues [33], their performance is only evaluated following abrupt one-time events in

power grids, e.g., faults or line outages. Since the impact of continuous external events has been

ignored in the framework of these controllers, they cannot generate online control input signals dur-

ing LAA vectors, making them inadequate frameworks for mitigating continuous cyber events, such

as EV-LAAs propagated into transmission systems[34, 35]. To the best of the authors’ knowledge,

an online attack vector estimation and adaptive mitigation technique for EV-LAAs, which excite

torsional modes of the power grid, has not been studied yet.

3.2 Contributions

Inspired by the above discussion, this paper investigates a new family of EV-LAAs that origi-

nate from switching aggregated EV loads in distribution networks but impact the operation of trans-

mission grids, create SSR conditions, and damage generators’ mechanical parts. This switching

attack vector is launched through manipulation of CSMS and changes in the EVCSs’ firmware with

the aim of injecting malicious malware into the targeted firmware of the EVCSs and sending fake

charging and discharging commands in a coordinated manner. Initially, it will be demonstrated that

the conventional PI-based damping controller cannot mitigate coordinated EVSAs due to ignoring

external events in the state-space model of the system. Thus, by customizing an unknown input

observer (UIO), which can estimate the system’s state variables and components of the switching

attack vector in a timely manner, an adaptive control framework is developed based on a model pre-

dictive controller (MPC) during continuous events. The MPC, with its multi-input and multi-output

structure, is also suitable for a wide-area control framework. This controller can generate online

and optimum control input signals by solving optimization problems, and add these supplementary
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signals to the internal control framework of the synchronous generators (SGs). This collaboration

between customized UIO and MPC to mitigate the implications of EV-LAAs is studied under a

modified IEEE second benchmark model (M-IEEE-SBM). To show the impacts of EV-LAAs on

the SSR stability of real power grids, the Palo Verde Nuclear Generating Station (PVNGS) is also

simulated to validate the proposed attack vector estimation and adaptive mitigation technique for

coordinated EVSAs. In summary, the main contributions of this paper are:

(1) Introducing a coordinated EV-LAAs that aims to excite the unstable or lightly-damped tor-

sional modes of power grids based on a feasible threat model and demonstrating the incapa-

bility of a frequent type of SSRDCs, i.e., a PI-based damping controller, in mitigating this

attack;

(2) Developing a UIO to update the system state variables and estimate components of the switch-

ing attack vector in a timely manner;

(3) Combining the developed UIO with an MPC framework to suggest an adaptive control tech-

nique for updating the system model and mitigating continuous switching attacks through

generating online control input signals in the form of a wide-area damping controller. To

demonstrate the impacts of EV-LAAs on the SSR stability of a real power grid, the PVNGS

is simulated, and the effectiveness of the proposed adaptive technique is validated under this

switching attack.

Threat Model for Switching Attack Vector

3.3 Threat Model for Switching Attack Vector

In this research, the proposed threat model is described as follows: (i) Attacker’s Objective:

The aim of adversarial actions is to create SSR oscillations, damage the turbo-generator shaft of a

synchronous generator, and cause the outage of generation units, which can result in a mismatch

between load and energy production capacity. (ii) Attacker’s Knowledge: In a wide-area power

grid that includes EV infrastructure, several pieces of information, i.e., the location and the total

number of available charging stations as well as their charge rating, are entirely available for pub-

lic use. As a result, attackers can monitor the interaction between the EV ecosystem and power
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grids through mobile and web services for EVs or through the CSMS that is connected via OCPP

to EVCSs. Furthermore, launching this EV switching attack requires a model of the power grid

and the calculation of unstable modes. Such modeling needs parameters of the power grid, which

can be obtained by gathering public knowledge about the power grid [7], reconnaissance activi-

ties [10], or developing system identification methods in control engineering [11]. (iii) Attacker’s

Actions: First, adversaries obtain privileged access to the CSMS, for example, through SQL in-

jection, change the firmware of EVCSs to inject malware into the firmware and build switching

attack vectors as outlined before in Section Background. Then, they will obtain the mathematical

model of the grid using system identification methods and create an oscillatory behavior in the EV

charging/discharging commands to excite the torsional modes of the system. (iv) Formulation of

EV Loads Switching Attacks: Two mathematical equations for making components of the related

switching attack vector are represented, i.e., sinusoidal and ON/OFF patterns. Based on (1) and

Fig. 3.1. (a), the aggregated EV loads in distribution networks are manipulated and switched by a

sinusoidal pattern, whose frequency is equal to the torsional mode of the power grid. The component

of the switching attack vector for a sinusoidal EV load pattern is represented as follows:

Asin atck(t) = ∆PEV sin(2πfTM t+ φ) (1)

where ∆PEV is defined as the active power of EVCSs that are targeted by attackers for switching

attacks. fTM , tsw, and φ are the torsional mode frequency, the period of EVSA, and the phase shift

of the sinusoidal switching attack, respectively. Fig. 3.1. (b) shows aggregated EV loads that are

switched based on the ON/OFF (charging/discharging) pattern with the torsional mode frequency.

The related components of a switching attack vector for a specific area are:

Aon atck(t) =







±∆PEV : 0 ≤ t ≤ Dswtsw

0 : 1−Dswtsw ≤ t ≤ tsw

(2)

where Dsw is the duty cycle of attacks. To launch this attack, the number of required EVCSs for

charging or discharging commands is calculated at each sampling time Ts:

NEV CS p =

⌊

abs(
∆PEV (Ts)

Pn EV CS
)

⌋

+ 1 (3)

where Pn EV CS is the nominal power rate of the EVCS. The total number of EVCSs that are avail-

able in each area should surpass the number of required EVCSs for building the components of the
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Figure 3.2: The pattern of changes in aggregated EV loads as EVSA for different 4 areas in a power

grid: (a) attack model A, (b) attack model B.

Figure 3.3: (a) ON/OFF (Charging and discharging) switching attack for 4 areas, (b) Pattern for

dealing with amplitude problem of switching attack.

where MC&C is defined as the communication capacity of the attacker’s C&C in [23]. Algorithm

2 shows how adversaries can build components of a switching attack vector in different areas to

impact the SSR stability of the power grid. (v) Instruction for Implementing EV Loads Switch-

ing Attacks: Since the frequency of torsional modes is relatively large (fTM < 60Hz) compared

to inter-area modes (0.1-1Hz) studied in [12], switching compromised EV loads can be carried out

based on several strategies to reduce the switching attack’s frequency and the amplitude of aggre-

gated EV loads as follows: To deal with the frequency issue, aggregated EV loads of distribution

networks can be switched at nominated areas with a sub-harmonic frequency of the torsional modes’

frequency. This strategy can be divided into two subgroups for sinusoidal switching attacks, i.e.,

attack models A and B. In attack model A, the adversary divides the compromised power grid’s

areas (Nb) into Np separate pairs. In each of these pair areas, the adversary manipulates aggregated

EV loads based on a positive half-cycle of a sinusoidal pattern in the first area and a negative half-

cycle in another area. This process continues for all the pair areas, and consequently, the frequency

of participation for each area will be fsw = fTM

Np
, where fTM is the frequency of the torsional mode.

For instance, Fig. 3.2. (a) shows the attack model A for a four-area power grid, which has two pairs
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of areas. In the attack model B, adversaries manipulate EV loads based on full sinusoidal patterns

in each area, one after the other, sequentially. In such a case, the frequency of participation for EVs

in each area will be fTM

Nb
. This attack model for a 4-area power grid is shown in Fig. 3.2. (b). The

attack model B, where the attacker manipulates EV ecosystems and only turns ON/OFF the aggre-

gated EV loads in different areas based on the frequency of torsional mode, is shown in Figs. 3.3.

(a). To deal with the amplitude issue, the adversary can slightly change the attack models A and B

by grouping existing areas and launching the same attack. For instance, in the attack model A, each

pair can consist of a cluster of areas with aggregated EV loads instead of a single area. Fig. 3.3.

(b) shows the attack strategy A when an adversary switches ON/OFF a cluster of aggregated EV

loads, e.g., Area1 and Area2 in one cluster and then Area3 and Area4 in another cluster. As a re-

sult, the amount of required EV loads for launching the proposed EV-LAAs decreases at the cost of

increasing the frequency of switching.

3.4 Modeling SSR under EV-based Load-altering Attacks

The IEEE-SBM is often used for SSR studies in the literature [36]. Although this test system

represents a small-scale transmission grid, larger grids can be converted to a similar model using the

Thevenin equivalent technique. Thus, to investigate the impact of EV-LAAs in a coordinated man-

ner on SSR events discussed in 3.3, the IEEE-SBM is extended to four areas that consist of equiv-

alent synchronous generators (SGs), distribution networks with aggregated EV loads connected to

EVCSs, transmission lines compensated by the series capacitor, OCPP communication, and CSMS

as shown in Fig. 3.4. Each area of the power grid is assumed to have a total of 200 MW of different

loads. Using the similar ratio for EVs to the total loads represented in [7] for the realistic case of

the Manhattan grid in the U.S., we assumed that roughly 70,000 EVs exist in each area of the power

grid. According to the International Energy Agency (IEA), governments and operators tend to main-

tain an average of 1 public EVCS for every 10 EVs on the road [4], which results in having 7,000

EVCSs in our grid. Assuming 24 kW as the average global charging rate of EVCSs [4] and approx-

imately 30% chance of being compromised by adversaries, each of the areas will have around 50

MW as feasible aggregated EV loads for EV-LAAs. It is supposed that each area delivers 540 MW
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∆ẏpss i = −
KPiT1i

2HiT2i

N
∑

j=1

(k1 ij∆δj)−
KPiT1i

2HiT2i
KGLi(∆δi)

−KPiT1i

2HiT2i

N
∑

j=1

(k2 ij∆E′
qj) +

KPiT1i

2HiT2i
(∆Tmi−Aon atck−i)

+KPi

T2i
(1− DiT1i

2Hi
)∆ωGi −

KPiT1i

2HiT2i
KGLi(∆δLPi)−

1
T2i

∆ypss i

(10)

∆ω̇Gi =
1

2Hi
[Di∆ωGi −

N
∑

j=1

(k1 ij∆δj)−KGLi∆δi

−
N
∑

j=1

(k2 ij∆E′
qj) +KGLi∆δLPi + (∆Tmi−Aon atck−i)

(11)

∆δ̇i = ωs∆ωGi (12)

where Aon atck−i is defined as components of the switching attack vector (ζ(t)) in Areai that is

discussed in 3.3 and obtained from (1) or (2). ∆δi and ∆ωGi are the angle and speed deviations

of the rotor, respectively. ∆E′

qi and ∆Efdi are the internal voltage behind the d-axis transient

reactance and equivalent excitation voltage, respectively. Hi and Di are the machine inertia constant

and damping coefficient, respectively. ωs is the nominal synchronous speed. T ′

doi is the d-axis open-

circuit transient time constant and ∆Tmi is the mechanical torque. Kai and Tai are the automatic

voltage regulator gain and time constant, respectively; k1 ij±k6 ij are the coefficients that can be

obtained from the linearization of the algebraic stator equations and impedance of transmission

lines in power grids. ∆ypss i is the signal obtained from PSS for mitigation of oscillations. For a

power system with N machines equipped with PSS and excitation systems, the state variables of ith

machine can be defined as follows:

xi(t) = [ ∆E′
qi ∆Efdi ∆ypss i ∆δi ∆ωGi ...

∆δLPi ∆ωLPi ∆δHPi ∆ωHPi
]T

(13)

where these variables can continue for j = 1, .., N machine and interconnection between ith and

jth machines should be also defined to make a comprehensive state variable vector x(t). Finally,

the state-space equations of the power grid can be summarized as follows:







ẋ(t) = Ax(t) +Bu(t) +Raζ(t)

∆ωG(t) = Cx(t) +Du(t)
(14)
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where A, B, C, D, and Ra describe the state, control input, output, feed-forward, and EV-LAAs

matrices, respectively. The output signals are the rotor speed deviation of four equivalent SGs, i.e.,

∆ωG(t) = [ ∆ωG1 ∆ωG2 ∆ωG3 ∆ωG4 ]T (15)

Control input signalsÐobtained from adaptive mitigation techniqueÐare also added to the PSS

of each equivalent generator of each area in an online manner, as shown in Fig. 3.5:

u(t) = [ uG1 uG2 uG3 uG4 ]T (16)

The ζ(t) is a switching attack vector that consists of some components. Each component of

this vector is aggregated EV loads that are switched by intruders at nominated areas based on the

suggested threat model and Algorithm 1. This vector is added to the state-space model of the power

grid for sinusoidal switching attacks in four areas, as follows [11, 12]:

ζ(t) = [ Asin atck−1 Asin atck−2 Asin atck−3 Asin atck−4 ]T (17)

From the state-space model, A can provide all modes of the system, where the real part of the

torsional modes and their related frequency can be calculated as follows:

σ ± j(2πf) = det(λI −A) (18)

These torsional modes, which can be calculated by adding mechanical steam turbine equa-

tions (6 and 7) to the state-space model, have a low damping ratio. On this basis, EV-LAAs can

be launched by adversaries with different strategies based on the proposed threat model to excite

lightly-damped torsional modes of power grids and lead to SSR events. Using eigenvalue anal-

ysis, the torsional modes of the M-IEEE-SBM are −0.29496 ± j195.58 with a damping ratio of

0.15% and torsional frequency of fTM1=31.143 Hz, and −0.062301 ± j156.05 with a damping

ratio of 0.04% and torsional frequency of fTM2=24.85 Hz. All modes of M-IEEE-SBM have been

illustrated in Fig. 3.6 by the eigenvalue analysis.

In previous works, e.g., [34, 39], authors have introduced a traditional SSRDC based on PI

control framework with the aim of SSR mitigation in power grids. This PI-based damping controller
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Figure 3.6: Eigenvalues analysis of M-IEEE-SBM for Torsional Modes (TM).
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Figure 3.7: Rotor speed deviation of equivalent G1 (a) with and without PI-based damping con-

troller during a line disconnection, and (b) with PI-based damping controller during EV loads

switching attack.

can deliver an acceptable performance when the second line of the M-IEEE-SBM is disconnected

and the SSR condition occurs. The deviation of the angular speed for the equivalent SG in Area1

has been depicted in Fig. 3.7. (a). However, this controller can not perform well in the case of

EV-LAAs with a frequency of 24.85 Hz using the strategy in Fig. 3.3. (a). To demonstrate the

incapability of this controller, the angular speed of the rotor for G1 has been shown in Fig. 3.7.

(b). Despite the acceptable performance of the PI-based damping controller in normal conditions,

it cannot mitigate the impacts of continuous EV load switching attacks due to its limited design for

a specific condition. On this basis, an adaptive and wide-area damping control framework can be

developed with the integration of UIO and MPC to follow the components of the switching attack

vector in a timely manner, update the state-space model, and then, generate the online and optimum

control input signals to mitigate oscillations resulted from EV-LAAs.

3.5 Adaptive Technique for EV-LAA Mitigation

As before discussed, the previous damping controller cannot deliver acceptable performance

in the case of continuous cyber events, e.g., EV-LAAs, that excite lightly-damped torsional modes
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where K1 +K2 = KUIO. The state estimation error (ė(t) = Fe(t)) can be equal to zero, provided

that the following equations, i.e., (HC − I)Ra = 0, I − HC = T , A − HCA − K1C = F ,

and FH = K2, hold true. The estimation error, i.e., e(t) = x(t) − x̂(t), will approach zero

asymptotically (x̂(t) → x(t)) when the eigenvalues of the UIO dynamic matrix (F ) are located in

the left-half plane. In this regard, UIO is designed by resolving a set of mentioned four equations,

and ensuring that all eigenvalues of F are located in a stable area. Before discussing the necessary

conditions for customizing the UIO of the under-study system, two lemmas are introduced:

Lemma 1: Equation (HC − I)Ra = 0 has a solid solution if rank(CRa) = rank(Ra). One

solution that can be obtained for this matrix is H∗ = Ra[(CRa)
TCRa]

−1(CRa)
T . To find more

proof related to these lemmas, one can refer to [42].

Lemma 2: Let to have, C1 = [ C CA ]T . It can be asserted that the detectability of the pair

(C1, A) is equivalent to that of the pair (C,A). It is important to mention that detectability is weaker

compared to the observability condition. The C1 is detectable, provided that all unobservable modes

were located on the left side of the s plane [42].

Theorem 1: The necessary and adequate conditions for (19), that is a UIO for the system

defined by (14), is:

• rank(CRa) = rank(Ra)

• (C1, A) is a detectable pair, and A1 is defined as:

A1 = A−Ra[(CRa)
TCRa]

−1(CRa)
TCA (21)

In this case, F = A−HCA−K1C = A1−K1C is stable if the gain matrix K1 is appropriately

selected. To achieve acceptable stability during SSR events, K1 is obtained by pole placement

techniques that aim to move the torsional modes to the stable area of the s plane. For finding the

proof of Theorem 1, please refer to [43]. Based on a consolidated definition of external inputs, the

UIO has the ability to separate external signals from state variables. In this regard, the estimation

of aggregated EV loads, that can be switched by attackers and added to the state-space model as

components of a switching attack vector, i.e., ζ̂(t), is calculated from the developed UIO[44]:

ζ̂(t) = (CRa)
−1[∆ ˙̂ωG(t)− CAx̂(t)− CBu(t)] (22)
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quadratic cost function J(M) is defined:

J(M) = J∆ωG
(M) + Ju(M) + J∆u(M) (26)

where J∆ωG
(M), Ju(M), and J∆u(M) are defined to consider system output signals, control input

signals, and variation rate in control signals, respectively, as follows [45]:

J∆ωG
(M) =

NO
∑

l=1

Ql[∆ωG(k + l|k)− r(k + l)]2 (27)

Ju(M) =

NC
∑

h=0

Λh[uG(k + h|k)− uG(k + h− 1)]2 (28)

J∆u(M) =

NC
∑

h=0

Φh[∆uG(k + h− 1)]2 (29)

where ∆ωG(k + l|k) is the predicted output signals and r(k + l) is the future reference trajectory

at the lth future sample. Furthermore, Ql = W
∆ωG

l

/

S
∆ωG

l , Λh = W u
h /S

u
h and Φh = W∆u

h

/

S∆u
h

are introduced as balancing coefficients in the proposed cost function. The W∆ωG , W u, and W∆u

are defined as weighted factors of output signals, control input signals, and variation rate in control

signals, respectively. Besides, S∆ωG , Su, and S∆u are referred to as scaling factors that adjust out-

put signals, control signals, and their changes, respectively. Two parameters, i.e., NO and NC , are

referred to as the prediction horizon and the prediction control, respectively. Constraints on control

input signals (uG1, uG2, uG3, uG4), the variation rate in control input signals (∆uG1, ∆uG2, ∆uG3,

∆uG4) and the output signals (∆ωG1, ∆ωG2, ∆ωG3, ∆ωG4) of the M-IEEE-SBM are assumed:

umin ≤ uG(k + h) ≤ umax, h = 0, 1, ..., NC (30)

∆umin ≤ ∆uG(k + h) ≤ ∆umax, h = 0, 1, ..., NC (31)

∆ωGmin ≤ ∆ωG(k + l) ≤ ∆ωGmax, l = 1, 2, ..., NO (32)

A summary of the collaboration between the customized UIO and MPC to establish an adaptive

mitigation technique has been presented in Algorithm 3.
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Algorithm 3: Adaptive Technique for EV-LAA Mitigation

Require: Model of power grid, matrices A, B, C, D, Ra using Threat Model

1) Compute: H∗ = Ra[(CRa)
TCRa]

−1(CRa)
T

2) Compute: T = I −HC and A1 = T ∗A

3) Check: Detectability of pair (C1, A)

4) Calculate: K1 gain using the pole placement method

5) Calculate: F = A−HCA−K1C = A1 −K1C

6) Calculate: Matrix of UIO: KUIO = K1 +K2

7) Initialize: Prediction horizon (NO) and the prediction control (NC)

8) Design: Adaptive technique based on integration of UIO and MPC

for k = 1 : 1 : {Time interval}/ Ts do
Measure: ∆ωG(t) and u(t) at time step k

Estimte: State variable vector x̂(k) based on (23)

Estimate: Switching attack vector ζ̂(k|k) from customized UIO by (22)

Update: components of J(M)

Check: All constraints in (30)-(31)

Predict: u(k + h|k) and ∆ω(k + l|k) for hth and lth step ahead, respectively

Implement: Online control input and output signals to the power grid

end

3.6 Simulation Results and Discussion

In the first subsection, EVSAs are applied to the M-IEEE-SBM based on the proposed threat

models, and the impacts of these attacks on different mechanical parts of SGs are studied. After-

ward, the proposed adaptive technique is developed to estimate switching attack vectors and mitigate

torque oscillation between mechanical sections, resulting from different EV-LAAs scenarios listed

in Table 3.1. The impacts of EV-LAAs on the SSR stability of a real power grid, i.e., PVNGS are

also studied to validate the proposed adaptive mitigation technique.

3.6.1 Impact of EV Loads Switching Attack on System’s Stability

According to the proposed threat model, the attacker makes enough effort to control the EVCSs

and switches aggregated EV loads in areas with a specific frequency to excite torsional modes.

The speed deviation of the rotor and LP section is shown in Fig. 3.11 when the attack described in

Scenario I is applied to the system. It can be observed that launching this attack creates continuous

oscillations in the speed of the equivalent SG’s rotor and other mechanical parts, e.g., LP and HP

sections in the steam turbine, and the angular speed of the equivalent generator in the first area (G1).
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Table 3.1: A summary of different Scenarios (fTM=24.85 Hz)

Scenario EV loads Duration fsw (Hz) EVSA model

I 25MW Continuous 6.2125 Model B (ON/OFF)

II 50MW Continuous 6.2125 Model B (ON/OFF)

III 50MW Continuous 12.425 Model A(Sinusoidal)

IV 50MW [0,1] 12.425 Model A (Sinusoidal)

V 50MW [0,1] 6.2125 Model B(Sinusoidal)

VI 50MW Continuous 12.425 Model A (ON/OFF)
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Figure 3.10: Speed deviation of mechanical parts of G1 (Scenario I)

3.6.2 Performance of Proposed Method during EVSAs

1) Charging/discharging Switching Attack: In this part, the attacker switches aggregated EV

loads ON/OFF based on scenario II suggested in Table 3.1 at four nominated areas of the M-IEEE-

SBM. From Fig. 3.11, it can be concluded that EV-LAAs in nominated distribution networks can be

propagated into the transmission system and impact the voltage and frequency of related buses con-

nected to 500 kV transmission lines. As a result, the customized UIO must estimate components of

the attack vector within a phase shift of 40 ms between nominated areas that are shown in Fig. 3.12.

The pole placement techniques are carried out to increase the damping ratio of the torsional mode

(24.85 Hz) from its nominal value to more than three times, with the aim of achieving acceptable

performance during the attack vector estimation. A comparison between the performance of PI-

based SSRDC and the proposed method is also provided in Fig. 3.13. It can be observed that the

proposed method can deliver an acceptable performance and keep the system response within ac-

ceptable limits. It is worth noting that since the attack remains continuously in the system, keeping

the system parameters within the acceptable range provides enough time for the operator to preserve

the grid operation and resolve the switching attack issue. Moreover, the angular speed deviation of

the SG’s rotor and LP section for G1 has been shown in Fig. 3.14. A 2.5% deviation in the angular

speed of different mechanical sections of SGs is sufficient to cause trip SGs and instability in the

power grid.
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Figure 3.11: Voltage at 500kV transmission bus (p.u.) and frequency of transmission system (Hz)

created by EV-LAAs (Scenario II).
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Figure 3.12: Estimation of switching attack vectors for Scenario II.

0 0.5 1 1.5 2
Time (s)

0.5

1

1.5

T
o

rq
u

e 
b

et
w

ee
n

 

G
E

N
 a

n
d

 L
P

 S
ec

ti
o

n
 (

p
.u

.) PI-based SSRDC (Scenario II)

Adaptive Technique  (Scenario II)

0 0.5 1 1.5 2

Time (s) 

0.2

0.3

0.4

0.5

0.6

0.7

T
o

rq
u

e 
b

et
w

ee
n

L
P

 a
n

d
 H

P
  

S
ec

ti
o

n
s 

(p
.u

.) PI-based SSRDC (Scenario II)

Adaptive Technique (Scenario II)

Figure 3.13: Comparison between the performance of proposed mitigation strategy and PI-based

SSRDC during Scenario II for (G1).
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Figure 3.14: Angular speed of rotor and LP of G1 for Scenario II

2) Sinusoidal Switching Attack: In this part, adversaries switch aggregated EV loads in distribu-

tion networks with a sinusoidal pattern based on Scenarios III and IV in Table 3.1. In this regard, the

amplitude of aggregated EV loads is changed based on a positive half cycle of a sinusoidal pattern

in the first area pair to generate the first component of the switching attack vector (Asin atck−1), and

the negative half cycle in another area to generate another component (Asin atck−2). This switching

33



0 0.05 0.1 0.15
0

50

A
si

n
_
a
tc

k
-1 Estimated

Actual

0 0.05 0.1 0.15
0

50

A
si

n
_
a
tc

k
-3

0 0.05 0.1 0.15
Time (s)

-50

0

A
si

n
_
a
tc

k
-2

0 0.05 0.1 0.15
Time (s)

-50

0

A
si

n
_
a
tc

k
-4

Figure 3.15: Estimation of switching attack vector for Scenario III.
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Figure 3.16: Comparison between the performance of the proposed method and PI-based SSRDC

in case of Scenario III and IV for (G1).
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Figure 3.17: Estimation of sinusoidal EVSAs for Scenario V.
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Figure 3.18: Comparison between the performance of adaptive technique and PI-based SSRDC in

case of Scenario V.

of EV loads continues for other pairs of areas in the power grid to obtain related components, i.e.,

(Asin atck−4 and Asin atck−3). It is clear that the frequency of EV loads switching attacks from the

adversaries’ viewpoint is 12.425 Hz, whereas the frequency of torsional mode is 24.85 Hz. The

customized UIO can estimate components in an online manner as shown in Fig. 3.15. To compare

34





3.7 Real-Time Simulation of M-IEEE-SBM

This section evaluates the performance of the adaptive technique based on the integration of the

designed UIO and the MPC. For this purpose, a testbed for real-time simulations is developed, as

shown in Fig. 3.19. This framework includes OPAL-RT-5650 as a real-time simulator for simulat-

ing the M-IEEE-SBM with realistic data, online UIO for attack vector estimation, and the proposed

adaptive control mechanism. To consider the detailed transient behavior of the grid, the time step

for this framework is considered to be 2.5 µs. To demonstrate the effectiveness of the developed

techniques, it has been assumed that the adversary launches a switching attack based on Scenario VI

in Table 3.1. In this scenario, an attacker classifies aggregated EV load areas into 2 clusters. Then,

he/she switches aggregated EV loads in the first cluster with an ON/OFF (charging/discharging)

pattern to obtain related components of the attack vector (Aon atck−1 and Aon atck−2) with the 30%

and 70% portion of total compromised EV loads, i.e., 15MW and 35MW, respectively. Then, an-

other cluster of aggregated EV loads is switched with an ON/OFF pattern to generate remaining

components, i.e., Aon atck−3 and Aon atck−4. To show the performance of the proposed method in

the attack estimation and mitigation, torque between HP and LP sections for G1 has been illustrated

in Fig. 3.20. It can be concluded that the proposed method yields a satisfactory performance, com-

pared to the PI-based SSRDC, and keeps the parameters of M-IEEE-SBM within the acceptable

range. This will provide enough time for the operator to act and preserve the grid stability.

3.7.1 Realistic Power Grids under EV-LAAs

To show the possibility of this coordinated EV-LAAs in a real power grid with capacitor-

compensated transmission lines, the Palo Verde Nuclear Generating Station (PVNGS) in Arizona

state in the USA, is simulated, as shown in Fig. 3.21. This power plant consists of three equiva-

lent synchronous generators with a capacity of 1270 MW (24 kV and 1800 rpm)Ðequipped with

steam turbine governorsÐthat supply several distribution networks, i.e., Phoenix, Los Angeles, and

Imperial Valley and North Gila, through five transmission lines (two of them are series capaci-

tor compensated) with a level of 500 kV. All technical data about transmission lines, synchronous

36







0 1 2 3
0.2

0.25

0.3

T
G

E
N

-L
P

B

0 1 2 3
0.4

0.5

0.6

0.7

T
L

P
B

-L
P

A PI SSRDC

Adaptive

0 1 2 3
Time (s)

0.4

0.6

0.8

T
IP

-L
P

B

0 1 2 3
Time (s)

0.7
0.8
0.9

1
1.1

T
H

P
-I

P

Figure 3.26: Torque Oscillation between different mechanical sections of turbo-shaft model (GEN,

LP-B, LP-A, IP, and HP)

0 1 2 3

0

2

4

6

 
H

P

10
-3

0 1 2 3

0

2

4

6

 
IP

10
-3

PI SSRDC

Adaptive

0 1 2 3
Time (s)

0

5

10

 
L
P

B

10
-3

0 1 2 3
Time (s)

0
2
4
6

 
G

E
N

10
-3

0 3

-1

2

10-4

Figure 3.27: Speed deviation (∆ω) of different mechanical sections of G1.

at least 5% of the total loads as EV loads, a minimum amount of available EVCSs, that can be

targeted based on the threat model for building components of an actual switching attack vector,

i.e., ∆PEV =30 MW, is defined in each distribution network. The frequency of the torsional modes

and the number of distribution networks are selected as fTM=9.55Hz and Nb=3. Using attack model

B, the frequency of EVSA can be calculated as fsw=fTM

Nb
=3.18 Hz, and this attack vector is applied

to the PVNGS according to the ON/OFF strategy illustrated in Fig. 3.3. (a) for three different areas.

Based on Algorithm 2, adversaries switch aggregated EV loads in different areas one after the other,

sequentially, to make components of the switching attack vector. It can be shown from Fig. 3.24

that EVSA in the distribution networks can be propagated into the transmission system and impact

the voltage and frequency of transmission buses, for example, the West-sing feeder connected to

transmission lines. On this basis, the customized UIO for the PVNGS system can estimate these

components in an online manner as shown by the dashed lines in Fig. 3.25. (a). As shown in
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Fig. 3.21, the UIO estimates EV-LAA vectors and the state variables vector in an online manner

and collaborates with the MPC to build an adaptive control framework. This adaptive technique can

generate optimum control input signals based on Fig. 3.25. (b), and add them to the internal control

frameworks of generation units to mitigate the impacts of switching attacks on mechanical parts of

SGs. Torque oscillation of mechanical sections of the steam turbine shaft model in the presence

of the PI-based SSRDC and the proposed adaptive technique have been illustrated in Fig. 3.26. It

can be seen that the mechanical sections of steam turbine shafts are subjected to a continuously

increasing torque that can finally lead to a shaft fracture. Furthermore, the angular speed deviation

of four mechanical sections, i.e., HP, IP, LP-B, and rotor of G1 has been shown in Fig. 3.27. The

2.5% deviation in the speed of SG’s rotor speed can lead to tripping SGs and instability of the

PVNGS. As such, the PI-based SSRDC fails to mitigate the SSR events crafted by EV-LAAs due to

limitations in designing for limited operating points [48].

3.8 Conclusion

In this section, a new family of EV-based load-altering attacks, that could be launched by com-

promising charging stations, was introduced. The crafted EV switching attacks (EVSAs) aim at

exciting torsional modes of the grid and create SSR events to damage the mechanical part of the

generators. First, it was shown that the PI-based SSRDC could not alleviate the developed switch-

ing attacks. Then, using an unknown input observer (UIO), which estimated switching attack vec-

tors online, an adaptive control framework was developed based on a model predictive controller

(MPC). This controller could generate control input signals and mitigate the impacts of EVSAs

through a wide-area controller. The effectiveness of the proposed adaptive technique was evaluated

using M-IEEE-SBM designed for SSR studies. To show the impacts of EV-LAAs on the SSR sta-

bility of realistic power grids, the Palo Verde Nuclear Generating Station (PVNGS) was simulated

to validate the proposed adaptive mitigation technique for coordinated EVSAs.
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Chapter 4

Deep Learning Detection and Robust

MPC Mitigation for EV-Based

Load-Altering Attacks on

Wind-Integrated Power Grids

4.1 Motivation

In modern power systems, the integration level of renewable energy sources is increasing [49].

Such integration can create several stability and resonance issues in the grid, for instance, due to

the interaction between the grid and control systems of wind farms [50]. Among these issues, sub-

synchronous control interaction (SSCI) is one of the most important and frequent ones, evidenced

by numerous incidents in the U.S. and China [51, 52]. Thus, the subsynchronous modes of wind-

integrated grids can be also excited if the appropriate load behavior is injected into the grid by EVs

with a similar frequency to those modes. Therefore, it is of paramount importance to develop detec-

tion and mitigation techniques against switching EVCSs in EV ecosystems that target the subsyn-

chronous stability of wind-integrated power grids. Recently, several data-driven approaches have

been developed to detect cyber-physical attacks against wide-area power systems using the data
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obtained from phasor measurement units (PMUs) [53, 54]. For example, cyber threats in power

systems with sparse monitoring sensors are detected using a data-driven hierarchical monitoring

scheme in [55]. A data-driven strategy is also suggested to detect oscillations using robust principal

component analysis in [56]. However, the performance of these data-driven methods is heavily de-

pendent on their internal parameters that make them inappropriate for online detection. In addition,

these solutions neglect the cyber threats originating from the EV ecosystem along with their unique

specifications. On this basis, there is a lack of online data-driven methods to estimate the switching

attack vector and increase the operator’s awareness during an attack considering existing uncertain-

ties in the power grid. Following the SSCI events, wide-area mitigation strategies were introduced

to alleviate subsynchronous oscillations in power grids, e.g., a linear quadratic regulator (LQR)

technique [3], a two-degree-of-freedom damping control loops [57], a data-driven adaptive method

[58], and µ-synthesis method [59]. The mentioned control frameworks are generally developed for

a specific operating point without considering uncertainties stemming from possible load-altering

attacks during different wind speeds and WTGs outages. In other words, their performance is only

evaluated following abrupt one-time events, e.g., faults in power grids. As a result, these instability

events along with cyber vulnerabilities and attack cases on EV ecosystems highlight the importance

of having rigorous learning-based detection to notify the security status of the system and robust

mitigation techniques to counter these possible switching attacks on the stability of wind-integrated

power grids.

4.2 Contributions

Motivated by the above discussions, this paper discusses a surface of switching attacks that can

be launched by adversaries through manipulation of EVCS’s firmware and switching aggregated

EV loads ON/OFF based on the frequency of unstable or lightly-damped SSCI modes of the wind-

integrated power grid. It will be shown that this attack can excite SSCI modes of the transmission

system and cause instability in wind-integrated power grids, even in the presence of frequent damp-

ing wide-area controllers. In the detection phase, a deep convolutional neural network (CNN) is

trained based on a set of voltage and current measurements obtained from the PMU at the wind
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farm point of interconnection (POI). During the learning process, a wide range of uncertainties,

e.g., wind speed and the number of wind turbine generators (WTGs), which impact SSCI modes,

are also considered in the case of the different amplitude of switching attacks. This customized

CNN is used to estimate the switching attack vector and to notify the operator of the security status

of the power grid, i.e., EV-based load-altering attacks, normal operation, or fault and line discon-

nection. Due to the lack of 100% accuracy of the detection method (which is also the case in all

data-driven methods), a robust model predictive controller (RMPC) is developed by solving linear

matrix inequalities (LMIs) equations to guarantee the stability of the power grid under different

uncertainties. In summary, the main contributions of this paper are as follows:

(1) Introducing new coordinated EV-based load-altering attacks (EV-LAAs), where adversaries

can downgrade the firmware repository of the CSMS by uploading a less secure version. Af-

terward, they can upload malware to the targeted firmware of EVCSs and build a botnet for

EVSE to inject fake charging and discharge commands. These fake charging and discharging

commands can be triggered by an attacker’s command and control (C&C) center in a coor-

dinated manner based on a predefined time pattern, i.e., the frequency required to excite the

unstable or lightly-damped SSCI modes of wind-integrated power grids.

(2) Developing a CNN model as a classification tool to determine the source of the event that

results in oscillations (i.e., fault, line disconnection, or switching attack). This model is also

used as a regression tool to estimate the switching attack vector. This neural network model

with consecutive convolutional layers can extract better features from input data for classifica-

tion and regression tasks, making it an online detection framework in the presence of different

uncertainties in the operation of wind-integrated power girds.

(3) This detection framework may neglect a few EV load switching attack vectors and generate

false negatives due to the huge number of attack vectors with different combinations of ampli-

tudes and frequencies during uncertainties in wind speeds and the number of WTG outages.

Also, EV-LAAs can lead to SSCI events during uncertainties in the operation of the wind-

integrated power grid. On this basis, a robust model predictive controller (RMPC) is also
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Figure 4.2: Impact of WTGs outage on SSCI mode at different wind speeds.

p.u., 1 p.u.]) and the number of WTGs from 266 to 50 (Nwtg =[266, 50]), are assumed during the

operation of the power grid. It is assumed that the system’s operator has installed a PMUÐwhich

captures 50 samples per secondÐat the wind farm substation. This PMU communicates with the

wide-area measurement system (WAMS) to transmit the measured data for monitoring and control

of the power grid. Since the main purpose of research is to study the oscillation events, voltage

and current measurements of this substation can provide valuable data regarding the operation of

the power grid. Moreover, it is considered that each area of the system has a total of 200MW of

different loads. We assume that there are around 70,000 EVs in each area using a comparable ra-

tio for EVs to the total loads mentioned in the realistic scenario of the Manhattan system in the

US[7]. The International Energy Agency (IEA) estimates that governments and operators typically

maintain 1 public EVCS for every 10 EVs on the road, which results in our wind-integrated power

grid having 7,000 EVCSs. Considering 24kW as the average charging rate of commercial level

2 chargers [2, 4] and approximately 30% chance of being compromised by attackers, each of the

areas can be estimated to have approximately 50MW as viable aggregated EV loads for switching

attacks. Adversaries can monitor the communication interaction between the wide-area controller

and the power grid by penetrating the WAMS and deploying system identification methods based

on prediction error minimization technique [10, 61] to obtain unstable SSCI modes of systems as

illustrated in Fig. 4.2.
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4.4 Feasibility of Coordinated EV Loads Switching Attacks

To investigate the feasibility of this attack, three important assumptions must be discussed: (i)

The adequate number of installed EVCSs in distribution networks of power grids: Based on [2, 4],

the global number of EVs on the road has increased to more than 17 million in 2021. It is projected

that this number will rise to roughly 200 million at the end of 2030 across the world that can provide

a noticeable surface for this switching attack [8]; (ii) Resonance conditions in wind-farm integrated

power grids: Subsynchronous oscillations have been observed in several real-world wind farms

around the world, e.g., in US and China [50, 51, 52]; (iii) Availability of vulnerable points in the

cyber layer of the EV ecosystem: Different attack graphs can be defined in the EV ecosystem that

shows how adversaries can take steps to penetrate into cyber layers and jeopardize the stability

of the power grids[18]. To run a switching attack with the aim of exciting unstable SSCI modes

of the system, a generic botnet can be designed based on Fig. 2.3. As mentioned in [21], several

vulnerable points in well-known CSMSs, e.g., EV-Link and CSWI Etrel, can be maliciously targeted

by attackers to launch this attack. In fact, adversaries can exploit SQL injection vulnerabilities to

obtain access to the database of the CSMS, which consists of user records including high-privilege

user account information and administrator credentials, and change the firmware hosted by EVCS

similar to other IoT devices (Step 1) [22]. Then, malware/ransomwareÐlike BlackEnergy malware

injected into Ukraine’s power grid or Stuxnet Malware infected Iran’s nuclear power plants±with the

aim of sending charging and discharging commands can be injected into EVCSs at different areas of

the power grid in an offline manner (Step 2)[8]. Finally, these charging and discharging commands

can be triggered from the attackers’ command and control (C&C) center based on a predefined

time pattern, i.e., the frequency of unstable or lightly-damped SSCI modes (Step 3)[23]. Since the

frequency of SSCI modes is relatively large (fSSCI < 60Hz) compared to inter-area modes (0.1-

1Hz) studied in [12], switching aggregated EV loads can be carried out based on several strategies

to reduce the switching frequency and the amplitude of aggregated EV loads. As discussed in

[23], due to compromising the CSMS, adversaries can have access to EVCSs in more than one area

practically and implement two attack models as follows: In attack model A, to deal with the problem

of SSCI mode’s frequency, attackers compromise aggregated EV loads in each area, one after the
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Figure 4.4: Current and voltage measurements of PMU at wind farm bus for several amplitudes of

EV-based load-altering attacks using an LQR controller.

These indexes are defined as the mean and standard deviation of voltage and current of PMU’s data

[µv, σv, µi, σi]. Finally, the input data are reshaped into a multi-dimensional structure to effectively

interpret them during the training phase for both regression and classification.

4.5.2 Data Generation for Training Phase

As can be seen from Fig. 4.2, different uncertainties can cause unstable SSCI modes in the

system. These uncertainties along with the possible attack amplitudes and frequencies can be used

to cover all possible situations during the learning process. Based on the topology of the under-study

power grid, aggregated EV loads are switched between different areas from 25 MW (minimum level

of EV load to have SSCI impacts) to 50 MW (maximum level of existing compromised EV loads

defined in each area) in the presence of uncertainties. To calculate the mean and standard deviation

of voltage and current sample data during transient behaviors, the observation window is defined to

be 1.5s. Considering PMU’s sampling frequency to be 50 samples/second, the total samples will

be 75 for each voltage and current data in each window. Since CNNs are generally designed for

image processing applications, input data are similarly arranged to a set of images with different

dimensions. For this customized deep CNN, raw data can be arranged in the form of matrices with

dimensions of 4×nsw×nunc, where nsw and nunc indicate the discrete step changes in aggregated

EV load compromised by adversaries and the total number of uncertainties in the wind-integrated

power grid that can cause unstable or lightly-damped SSCI modes. The target (output) data are

also arranged in the form of matrices with dimensions of 2 × nsw × nunc, where the number 2

indicates the amplitude of EV load switching attack (∆Psw) and the frequency of switching attack
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4.5.3 Designing a Customized Deep CNN Structure

The structure of customized deep CNN for regression and classification of the system has been

shown in Fig. 4.5. This structure includes three convolutional layers (Conv) for feature extraction

from the mean and standard deviation of PMU’s data. Each Conv layer consists of learnable kernel

functions which conduct the convolution operation to calculate the feature of input data. In the

customized deep CNN, the convolutional kernel sizes for three layers are [4,4,1,16], [4,4,2,32],

and [2,2,1,64], respectively. In this format, the first, second, and third number is referred to as the

height, width, and depth of the kernel function, and the last one indicates the number of kernel

functions. To maintain the height and width of kernel functions, zero padding is also considered.

Since the relationship between inputs and target data is non-linear, rectified linear unit ReLU is

implemented as an activation function in this structure. This function can be deployed in deep CNN

due to its quasi-linearity property, which keeps it as generalizable as linear models. The output

of the third convolutional layer will go through two fully connected layers allocated for regression

and classification purposes. The first output is the estimation of the switching attack vector. In the

second output, after the FC layer, the softmax function is also deployed to give information about

the situation of the power grids and distinguish different classes based on the PMU measurement

data. Since the proposed deep CNN structure is a multi-task learning model used for both regression

and classification processes, the related loss function during training can be calculated as:

Lreg =
1
Ns

Ns
∑

s=1
( 1
nunc

nunc
∑

j=1

(∆P̂sw(j, s)−∆Psw(j, s))
2
)

+...
nunc
∑

j=1

(f̂sw(j, s)− fsw(j, s))
2
)1/2

(33)

Lcls =
−1
Ns

Ns
∑

s=1
ŷs log(ys) (34)

where Ns and nunc are, respectively, the numbers of training samples and different uncertainties

during a wide range of switching attacks. Lreg is the root mean square error (RMSE) of the switch-

ing attack vector, where ∆P̂sw(j, s) and ∆Psw(j, s) are referred to as the estimated and actual

amplitude of compromised EV loads, respectively. Moreover, f̂sw(j, s) and fsw(j, s) are the esti-

mated and actual frequency of the attack. Finally, Lcls is the cross-entropy that is used for the loss

function of multi-classification problems. In this equation, ŷs and ys are referred to as the predicted

and real security status of the wind-integrated power grid, respectively. To have online performance,

Algorithm 4 with the help of customized CNN is implemented in the WAMS structure of the system
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4.6.2 Designing Robust Model Predictive Controller

The state-space model of the wind-integrated power grid can be obtained using system identifi-

cations as follows:






x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k), x(0) = x0

(35)

where x(k), u(k) = uRMPC(k), y(k) = IConv(k), and x0 are defined as state variables, con-

trol input signals, output signals, and initial state variable vector, respectively. Different EV load

switching attacks, uncertainties in wind speed, and the number of WTGs can create a family of un-

certain subsystems. These subsystems, shown by K, are defined as the convex hull of the nominal

state-space model with poly-topic uncertainties[62]:

K = Convex hull{[A1, B1], ...[Anv
, Bnv

]} (36)

If [A,B] ∈ K, for 0 < λl < 1, we can have:

[A,B] =

nv
∑

l=1

λl[Al, Bl] (37)

where subscript l is a natural number between 1 and nv that indicates different vertex subsets of

K for the total number of vertices nv. For example, {A1, B1} is the nominal state-space model to

evaluate the control performance of the uncertain system.

Main Problem: The problem of designing a robust MPC is to compute a state-feedback con-

troller with the gain matrix F (k) that ensures the robust stability of the closed-loop system for each

subset of the K as follows:

u(k + h|k) = F (k)x(k + h|k) (38)

where u(k+h|k) and x(k+h|k) are control input and state signals at time k+h, predicted based on

the measurement at time k. A quadratic quality criterion is used to evaluate the control performance

for different uncertainties during prediction horizon p:

Jp(k) =
p
∑

h=1

[x(k + h|k)
T
Wxx(k + h|k)+

u(k + h|k)TWuu(k + h|k)]

(39)

where Wx and Wu are symmetric weighting matrices of the state variable and control input signals,

respectively. The main aim is to calculate the set of optimum control input signals for a control
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horizon m, i.e., u(k + h|k), h = 0, ...,m. These control signals should minimize the maximum

value of the quadratic function over the set K, corresponding to several variable models, i.e., [A(k+

h), B(k+h)] ∈ K,h ≥ 0. On this basis, the control law for the m can be obtained by minimization

of a robust performance objective, as follows:

Min
u(k+h|k),h=0,...,m

Max
[A(k+h),B(k+h)]∈K,h≥0

Jp(k) (40)

To resolve this min-max problem, we first derive an upper bound on the robust performance

objective. Then, this upper bound can be minimized by calculating a state-feedback control law,

i.e., u(k + h|k) = F (k)x(k + h|k).

Lemma 1: Schur complements can convert convex quadratic inequalities into linear matrix

inequalities (LMIs). It is assumed that R(x) and A(x) are symmetric and positive-definite. Also,

S(x) depends affinely on variable x. Then matrix inequalities, i.e.,

A(x)− S(x)R(x)−1S(x)T > 0, R(x) > 0 (41)

or, equivalently,

R(x)− S(x)TA(x)−1S(x) > 0, A(x) > 0 (42)

are equivalent to this LMI as follows[63]:





A(x) S(x)

S(x)
T

R(x)



 > 0 (43)

Deriving upper bound on robust performance objective: A quadratic Lyapunov function,

i.e., V (x) = xTPx, P = P T > 0 of state x(k|k) is considered. At sampling time k, it is supposed

that for all x(k + h|h), u(k + h|h), and any [A(k + h), B(k + h)] ∈ K,h ≥ 0, the convergence

condition of system’s states hold true[62]:

V (x(k + h+ 1|k))− V (x(k + h|k)) ≤

−[x(k + h|k)TWxx(k + h|k) + u(k + h|k)TWuu(k + h|k)]
(44)

For the mentioned robust performance objective function to be finite, we must have x(∞|k) = 0,
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and so V (x(∞|k)) = 0 [62]. Finally, we can sum equation (44) from h = 0 to h =∞ as follows:

∞
∑

h=1

V (x(k + h+ 1|k))− V (x(k + h|k)) ≤

∞
∑

h=1

−[x(k + h|k)
T
Wxx(k + h|k) + u(k + h|k)

T
Wuu(k + h|k)]

(45)

At the final stage, we can summarize the above equation as follows:

−V (x(k|k)) ≤ −J∞(k)⇒ J∞(k) ≤ V (x(k|k)) (46)

Since we want to calculate the maximum value of the quadratic function over the set of K, we

select the maximum value of V (x(k|k)) equal to a parameter ξ as follows:

Max
[A(k+h),B(k+h)]∈K,h≥0

J∞(k) ≤ V (x(k|k)) ≤ ξ (47)

Thus, equation (40) can be summarized in a simpler form:

Min
u(k+h|k)=F (k)x(k+h|k)

ξ (48)

Theorem 1: It is assumed that x(k|k) = x(k) is the state of the power grid in (35) under a set

of uncertainty that is modeled by a convex hull, i.e., K. The state feedback matrix that minimizes

the upper bound of V (x(k|k)) at each sampling time k is given by:

F (k) = Y (k)Q−1(k) (49)

where Q > 0 and Y can be obtained from the following linear objective minimization problem as

follows:

Min ξ
ξ,Q,Y

(50)

Subject to two different LMIs as follows:





1 x(k)
T

x(k) Q



 ≥ 0 (51)
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and


















Q ∗ ∗ ∗

AlQ+BlY Q ∗ ∗

Wx
1/2Q 0 ξI ∗

Wu
1/2Y 0 0 ξI



















≥ 0, l = 1, 2, .., nv (52)

where ∗ is used to show the symmetric structure of a matrix.

Proof (LMI-1): As already mentioned, minimizing the function of V (k|k) = x(k|k)TPx(k|k),

P = P T > 0 can be equivalent to:

Min ξ
ξ,P

(53)

subject to x(k|k)TPx(k|k) ≤ ξ. With defining Q−1 = Pξ−1 and using lemma 1, this will be

equivalent to:

Min ξ
ξ,Q,Y

(54)

Subject to:




1 x(k)
T

x(k) Q



 ≥ 0 (55)

Proof (LMI-2): In this section, the proof for equation (52) is represented. The control law and

state-space model are first substituted in (44). As a result, we will have:

x(k + h)T [(A(k + h) +B(k + h)F )TP (A(k + h))

+B(k + h)F − P +Wx + FTWuF ]x(k + h) ≤ 0
(56)

That is satisfied for all h ≥ 0 if,

(A(k + h) +B(k + h)F )TP (A(k + h))

+B(k + h)F − P +Wx + FTWuF ≤ 0
(57)

Then, P = ξQ−1 and Y = FQ are substituted in the equation (57) and pre- and post-

multiplying by Q. Finally, we use lemma 1 to have this equation:



















Q ∗ ∗ ∗

A(k + h)Q+B(k + h)Y Q ∗ ∗

Wx
1/2Q 0 ξI ∗

Wu
1/2Y 0 0 ξI



















≥ 0 (58)
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This inequality is affine in [A(k+h), B(k+h)]. Hence it is satisfactory for all [A(k+h), B(k+

h)] ∈ K,h ≥ 0, and this equation is also proven.

Theorem 2 (Constraints on Control Input and Output Signals): The following equations

can define constraints on control input signals u(k) and output signals y(k):

∥u(k + h|k)∥2 ≤ umax, ∥y(k + h|k)∥2 ≤ ymax (59)

where umax and ymax are the maximum values of the control input and output signals, respectively.

∥∥ is defined as a norm-2 matrix. It is worth noting that constraints on the control input and output

signals of the system can be equal to the following LMIs as well:





u2
maxI Y

Y T Q



 ≥ 0,





y2maxI C(AlQ+BlY )

(AlQ+BlY )
T
CT Q



 ≥ 0, l = 1, ..., nv

(60)

Proof for Control Input signals: At sampling time h, and based on F = Y Q−1, we can have:

max
h≥0
∥u(k + h|k)∥

2
2 = max

h≥0

∥

∥Y Q−1x(k + h|k)
∥

∥

2

2

≤ max
z∈Ψ

∥

∥Y Q−1z
∥

∥

2

2
= αmax(Q

−1/2Y TY Q−1/2)
(61)

where the predicted states of the uncertain system can be proved to be always bound to a z ∈ Ψ

value. Then,

Q−1/2Y TY Q−1/2 ≤ u2
max → u2

maxI − Y TQ−1Y ≥ 0 (62)

Consequently, we can convert the above equation to the first LMI related to constraints on control

input signals using the Schur complements.

Proof for Output Signals: For any [A(k + h), B(k + h)] ∈ K,h ≥ 0, we can have:

max
h≥0
∥y(k + h|k)∥2

= max
h≥0
∥C(A(k + h) +B(k + h)F )x(k + h|k)∥2

≤ max
z∈ψ
∥C(A(k + h) +B(k + h)F )z∥2 =

α′
max[(C(A(k + h) +B(k + h)Y Q−1)] ≤ ymax

(63)

57



We can rewrite this inequality based on norm-2 of both sides of the previous inequality:

[C(A(k + h) +B(k + h)Y Q−1)] ≤ ymax →

Q−1/2[A(k + h) +B(k + h)Y ]TCTC[A(k + h)

+B(k + h)Y ]Q−1/2 ≤ y2maxI

(64)

We can use the Schur complements to prove the second LMI relating to output signals. The

above equation can satisfy all convex hulls (l = 1, ..., nv).

4.7 Simulation Results and Discussion

4.7.1 Performance of Deep CNN Model

Training a deep CNN model under imbalanced data samples during the classification task can

lead to poor performance in minority classes and misleading metrics, e.g., accuracy. In other words,

the accuracy metric can be calculated as a high value for imbalanced data samples, even if the model

fails to accurately predict minority classes. To prevent such problems, we have provided a balanced

data sample for three main classes, i.e., normal operation of the system (7,650 samples), EV-based

load-altering attacks (7,650 samples), and fault and line disconnection (7,500 samples). All data

have been collected from the co-simulation platform developed in the EMTP-RV. The training and

testing datasets are partitioned by 80% and 20% of the total datasets, respectively. The accuracy and

loss function behavior for the training and testing dataset of the classification task has been depicted

in Fig. 4.8. To show the trained CNN model’s performance during classification, several evaluation

metrics, i.e., balanced accuracy (BACC), precision, recall, and F1 score, can be suggested. The

main reason for selecting balanced accuracy is that it can provide a more acceptable evaluation of

the proposed deep CNN, especially in the presence of imbalanced data samples. These metrics for
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Figure 4.8: Plot of accuracy and loss function for training and testing dataset.
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Figure 4.9: Confusion matrix for different methods of the classification task.

three classes can be calculated as follows[64]:

BACC = 1
3(

TPn

TPn+FNan+FNfn
+ TPa

TPa+FNfa+FPna

+
TPf

TPf+FPnf+FPaf
)

Precision =
TPn+TPa+TPf

TPn+TPa+TPf+FPna+FPnf+FPaf

Recall =
TPn+TPa+TPf

TPn+TPa+TPf+FNan+FNfn+FNfa

F1score =
2×Precision×Recall
Precision+Recall

(65)

where TPn, TPa, and TPf are true positive labels for normal, attack, and fault classes, respectively.

Also, FNan, FNfn, and FNfa are false negative labels, and FPna, FPnf , and FPaf are defined
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Table 4.1: Comparison Between Different Methods for Classification Task

Approach
Balanced

Accuracy
Precision Recall F1 score

CNN with 3 Conv Layers 98.02 % 99.03 % 98.97 % 99.00 %

CNN with single Conv Layer 93.45 % 96.74 % 96.48 % 96.61 %

DNN 93.05 % 96.54 % 96.26 % 96.40 %

SVM 87.12 % 93.40 % 92.84 % 93.12 %

Table 4.2: Comparison Between Different Methods for Regression Task

Approach
Number of samples Error

Training Testing ∆P̂sw f̂sw

CNN with 3 Conv Layers 6120 1530 5.7e-3 2.0e-4

CNN with single Conv Layer 6120 1530 1.7e-1 5.7e-1

SVM 6120 1530 23e-1 11e-1

MLP 6120 1530 35e-1 13e-1

to represent interaction between different classes. The confusion matrices for our proposed model

and several techniques used in classification tasks, e.g., the CNN model with one Conv layer that

consists of learnable kernel functions for convolution operation, a deep neural network (DNN),

and a support vector machine (SVM) [65], have been illustrated in Fig. 4.9. These matrices can

summarize the performance of a classification task by comparing true and predicted classes for

the testing dataset. It can be seen that true positive labels for normal, attack, and fault classes

for our proposed CNN model are higher than other techniques. Moreover, a numerical analysis

has been represented for the proposed CNN model and the techniques mentioned in classification

tasks in Table 4.1. Based on this table, the proposed model possesses a higher level of evaluation

metrics for giving information about the security status of the power grid. The main reason is

that a deep CNN structure including multiple convolutional layers can extract better features for

classification and regression, making this framework a proper tool for complicated applications

with many uncertainties in operation. Another evaluation metric is AUC (area under curve), which

can be used to evaluate the performance of the trained model in scenarios where the classes might

be imbalanced [64]. To calculate this metric, we must first plot the receiver operating characteristic

(ROC) curve, representing the true positive rate against the false positive rate for different classes.

These ROC curves have been illustrated in Fig. 4.10 for the three mentioned classes. As a result, the

AUC of normal, attack, and fault classes are calculated as 0.9590, 0.9873, and 0.9808, respectively.
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Figure 4.11: Plot of RMSE and loss function for training and testing dataset.

According to the online switching attack vector estimation framework in Fig. 4.6, after com-

pleting the above classification task, the amplitude and frequency of switching attacks must only

be predicted for the attack class. For this regression task, we have also considered 7,650 total sam-

ples during uncertainties in the system’s operation, e.g., different wind speeds and WTG outages in

the wind farm versus amplitudes of EV load switching attacks. In Table 4.2, the level of error for

the amplitude and the frequency of the switching attack over the testing dataset have been shown.

It can be seen that the proposed deep CNN with three Conv layers delivers the best performance

compared to the CNN with a single Conv layer, SVM, and Multi-Layer Perceptron (MLP) models.

The root mean square error (RMSE) and loss function of the training and testing datasets for the

regression task have been shown in Fig. 4.11. After training this dataset for regression purposes, it

can be seen that the RMSE and loss function values have converged rapidly. The main reason for

this rapid convergence is that the number of convolutional layers and their sizes, along with the Max

pooling and dropping layers, have been appropriately selected, capturing the hierarchical features
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Figure 4.12: Performance of Algorithm 3 in notifying the system’s security status and estimating

the amplitude and frequency of a switching attack.

of the generated dataset. Moreover, instead of the prolonged data samples of voltage and current

during observation windows (i.e., 90 samples for voltage and 90 samples for current), we have used

the mean and standard deviation of these samples (i.e., the mean and standard deviation of voltage

and current, [µv, σv, µi, σi]) as input data, making the training of these datasets easier and more

efficient.

To show the performance of the proposed CNN with three Conv layers in the case of a specific

uncertainty, Vw =0.6 p.u. and Nwtg =150, an EV load switching attack with the amplitude of 30

MW at t =5s is applied to the system. Algorithm II can determine the security status of the power

grid and then estimate the switching attack vector, as shown in Fig. 4.12. (a). It can be seen that the

delay for estimating the switching attack vector is about 5 cycles (∼ 80ms), making this algorithm

a model for online detection purposes. Moreover, the performance of the proposed algorithm in

detecting a three-phase fault occurred at t =2s, and distinguishing faults from the normal operation

has been shown in Fig. 4.12. (b).
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4.7.2 Performance of Proposed Mitigation Technique

Due to the lack of 100% accuracy of the proposed method for detecting EV-LAAs, a wide-

area damping controller can also be developed. To demonstrate the superiority of our proposed

controller, its performance can be compared with recent wide-area damping controllers in power

grids:

• A two-degree of freedom (2DOF) approach has been suggested in[57] to mitigate subsyn-

chronous resonances in wind-integrated power grids. This 2DOF controller consists of deriva-

tive blocks added to the current control loop of the RSC.

• Another wide-area damping controller deployed for mitigating the SSCI in wind-integrated

power grids is the linear quadratic regulator (LQR) [3] in the industrial environment. This

controller is an optimal state-feedback strategy that minimizes a quadratic cost function by

calculating an optimal control gain matrix through the solution of the algebraic Riccati equa-

tion. The LQR controller balances control efforts and state deviations to achieve acceptable

performance in power grid applications.

• H∞ controller as a robust technique has been used in various power system applications[11].

In this controller, the main aim is to design a gain matrix that ensures external disturbances,

e.g., load-altering attacks, do not disrupt the power grid’s performance. During the design

of this controller, a set of objectives in time and frequency domains, such as closed-loop

system poles restricted into a desired region of the s-plane, can be defined using linear matrix

inequality (LMIs).

• Finally, a robust supplementary technique based on MPC is designed for online control opti-

mization at the wind farm level during EV load switching attacks, considering the uncertain-

ties in wind speed and WTG outages.

To design our controller and obtain a convex hull from the nominal model with poly-topic

uncertainties based on (36), different wind speeds (Vw = [0.6 p.u., 1 p.u.]) and WTG outages

(Nwtg = [266, 50]) are first studied. As such, their corresponding state-space models, i.e., matrices

Al, Bl (l ∈ nv), and C, can be extracted using system identification approaches based on the
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Algorithm 5: Robust Control Technique for Switching Attack Mitigation

for 1 : 1 : nunc (number of uncertities in system) do
Transfer: Control input and output signals from EMTP-RV to MATLAB

Calculate: State-space model of the system for different uncertainties

Reduce: order of model by Hankel singular value (HSV) technique

end

1) Build: a convex hull of all calculated state-spaces, i.e., K = Convex hull{[A1, B1], ...[Anv , Bnv ] for the total number of vertices nv

2) Select: weighting matrices Wx and Wu

3) Select: matrices umax and ymax based on (59)

4) Build: quadratic quality criterion based on (39): Jp(k) for prediction horizon p

5) Resolve: LMIs equations, i.e., (51, 52, and 60), using YALMIP Toolbox

6) Calculate: Q(k) and Y (k) as auxiliary matrices by resolving LMIs

7) Calculate: gain matrix based on (49): F (k) = Y (k)Q−1(k)

8) Transfer: gain matrix F (k) from MATLAB to EMTP-RV using FMIKits

EMTP-RV and MATLAB has been illustrated in Fig. 4.14. It can be seen that the calculated control

input signal, i.e., uRMPC = [udr, uqr, udg, uqg], is added to the inner PI control loop to mitigate

the SSCI impacts created by EV load switching attacks. As a practical example, the matrices of a

linearized model of the wind-integrated power grid for a particular uncertainty, e.g., Vw =0.6 p.u.

and Nwtg =150, after the order reduction HSV technique, are obtained as follows:

A =















































6.207 −50.857 −96.2419 156.80 235.57 −290.395 −17.687 −51.722

39.514 −2.020 −75.86 108.855 −51.923 184.792 −160.190 100.613

77.563 64.584 −13.8080 162.033 −196.766 205.10 −198.34 117.2809

−152.063 −159.255 −250.932 −90.724 207.458 311.27 98.145 −96.831

−357.41 17.492 37.90 −833.966 −432.193 −2457.3 −876.887 2639.8

624.178 −264.442 −204.096 507.796 225.393 −897.726 1144.5 −2488.3

−11.555 100.427 49.800 −495.985 22.998 −1732.7 −323.38 1318.3

130.572 −51424 109.951 989.728 −2088.2 5256.8 −177.187 −2617.1















































(66)
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Table 4.3: Different Selections of Weighting Matrices for Optimizing Performance of RMPC

Different Wx and Wu Time of solving (s) Jp(k) ξ

Wx=diag[0.5,0.5,0.5,0.5],

Wu=diag[0.2,0.2,0.2,0.2]
1.269 15.295 1.57 ×104

Wx=diag[1,1,1,1],

Wu=diag[0.2,0.2,0.2,0.2]
1.256 15.258 1.61 ×104

Wx=diag[1.5,1.5,1.5,1.5],

Wu=diag[0.2,0.2,0.2,0.2]
1.256 15.255 1.61 ×104

Wx=diag[1.5,1.5,1.5,1.5],

Wu=diag[0.25,0.25,0.25,0.25]
1.253 15.312 1.58 ×104

Wx=diag[1.5,1.5,1.5,1.5],

Wu=diag[0.15,0.15,0.15,0.15]
1.251 15.128 1.61 ×104

Wx=diag[1.5,1.5,1.5,1.5],

Wu=diag[0.1,0.1,0.1,0.1]
1.249 14.988 1.63 ×104

Wx=diag[1.5,1.5,1.5,1.5],

Wu=diag[0.05,0.05,0.5,0.05]
1.251 15.012 1.61 ×104

B =



















22.526 10.719 −70.696 222.55 −28.218 −12.636 −32.148 −0668.77

23.363 9.4403 −71.355 223.872 −28.08 −13.598 −32.129 −667.251

22.402 9.715 −70.094 2525.11 −26.581 −14.281 −31.782 −660.987

22.0435 8.588 −71.253 223.48 −21.568 −12.68 −30.698 −658.369



















T

(67)

Considering the same steps, a convex hull of the nominal state-space models, i.e., [A,B] ∈ K,

can be obtained under existing uncertainties in wind speed and WTG outages of the wind farm. The

weighting matrices that are used in the quadratic quality criterion, (39), can be selected from Ta-

ble 4.3 with a minimum value of the quadratic quality criterion (Jp(k)) and a maximum value of the

upper bound of the Lyapunov function (ξ). It is worth mentioning that trade-offs between tracking

a desired reference trajectory and minimum control efforts have been considered when selecting the

weighting matrices for both state and control input signals in the proposed quality criterion. In some

cases, increasing the output weighting matrix may lead to higher control efforts. As a result, the

maximum control input signals and output signals are considered to be umax = [0.1, 0.1, 0.1, 0.1]T

and ymax = [0.15, 0.15, 0.15, 0.15]T , respectively. Constraints on control input signals can prevent

saturation of the RSC and GSC used in the wind-integrated power grid. Constraints on output or

measurement signals can lead the wind farm to remain connected to the power grid and maintain its

continuous operation against cyber attacks. In other words, the wind farm through monotonic active

power generations can mitigate the impacts of EV-LAAs that want to excite the SSCI mode of the
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Figure 4.15: The pattern of aggregated EV load switching attacks for two consecutive periods.

wind-integrated power grid. The output matrix, i.e., C, is also obtained as:

C =



















−13.534 −2.1078 −1.0350 −3.567 −11.589 −0.429 18.7614 0.3477

0.6592 27.659 2.076 −1.198 1.088 0.055 −2.0008 −0.0364

−1.0878 −1.192 3.841 0.0785 −0.0147 −0.0019 0.0001 −0.0005

0.5253 0.226 −0.065 −0.0324 0.0116 −0.0059 0.0002 0.0001



















(68)

Finally, the proposed RMPC is designed using the MUP toolbox [66] and the optimization

problem is formulated by the YALMIP toolbox and resolved by SeDuMi[67]. In this regard, the

feedback controller gain, F (k), is calculated accordingly:

F =



















23.802 64.663 0.374 2.707 20.354 0.765 −33.469 −0.613

25.933 −17.780 7.884 8.428 23.868 0.838 −38.569 −0.708

22.246 0.601 1.109 6.171 18.205 0.744 −29308 −0.561

10.738 −56.664 −11.741 5.065 6.306 0.192 −9.661 −0.176



















(69)

A summary of steps that can be taken to design this robust LMI-based control framework has

been represented in Algorithm 5. To show the performance of the RMPC, two different scenarios

are discussed based on attack models A and B defined in Section 4.4, respectively:
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Figure 4.16: Performance of different controllers during EV load switching attacks under uncer-

tainty (i.e., Vw=0.8 p.u., Nwtg=150).

Scenario I

In this scenario, EV load switching attacks with an amplitude of 40 MW are applied to four

areas of the power grid under a specific uncertainty, i.e., Vw =0.8 p.u. and Nwtg =150. The men-

tioned uncertainty causes an unstable SSCI mode, i.e., 1.2±j248.36. The patterns of aggregated EV

loads, which can be switched based on rectangular patterns with the frequency of the SSCI mode

(fSSCI = 39.54Hz), have been illustrated in Fig. 4.15. This switching attack vector can excite the

mentioned mode, leading to changes in active power generated by the wind farm. The performance

of the robust MPC framework has been compared to recent wide-area damping controllers, e.g., the

2DOF, LQR, and H∞ controllers in the case of mitigating oscillations, as illustrated in Fig. 4.16.

It can be seen that the 2DOF cannot reduce the impacts of switching attacks effectively. The main

reason is that this controller can deliver acceptable performance for a single operating condition

when the power grid’s model remains constant. Moreover, high-frequency disturbances can impact

the controller’s action due to existing derivative blocks in the structure of the 2DOF controller. Re-

garding the performance of the LQR, it can be seen that this controller cannot mitigate the impact

of such attacks, and from the first moments, the active power generated by the wind farm starts to

oscillate. Since we cannot model control objectives, e.g., disturbance rejection and noise attenu-

ation, in the framework of the LQR controller, it fails to provide satisfactory performance during

external disturbances and uncertainties in the state-space model of the system. Moreover, for the

H∞ controller with a more complex control structure, control objectives, e.g., disturbance rejection,

noise attenuation, and minimizing the control effort, can be satisfied. On this basis, it can be ob-
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Figure 4.17: The pattern of switching aggregated EV load switching attacks to deal with the ampli-

tude of this attack.
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Figure 4.18: Performance of different controllers during EV load switching attacks under uncer-

tainty (i.e., Vw=0.6 p.u., Nwtg=100).

served that this controller can be resilient to this switching attack vector until 0.6 seconds, and then

it moves toward instability. In designing H∞, some external disturbances, e.g., EV load switching

attacks, can be modeled. However, other uncertainties, e.g., wind speed and WTG outages, which

can lead to changes in the components of the matrix A in the state-space model of the system, can-

not be modeled using the H∞ controller. In summary, an accurate and fixed mathematical model

of the system must be available to implement the H∞ framework in wind-integrated power girds.

Using the proposed robust method, poly-topic uncertainties in the power grid’s operations can be

represented as a convex hull of the nominal state-space model (K). From Fig. 4.16, it takes about

0.8 seconds for the proposed control technique to adjust control input signals at the wind farm’s

level and mitigate the impacts of the EV loads switching attack during the mentioned uncertainties.

However, the conventional wide-area controllers, i.e., the 2DOF, the LQR, and the H∞, cannot ac-

tively participate in the mitigation schemes due to their limited stability margins. In contrast, the
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proposed robust controller can harness the active power oscillation and reach a stable point, lead-

ing wind farms to remain connected to the power grid and participate in continuous active power

generation.

Scenario II

In this scenario, an additional pattern is implemented to decrease the amplitude of manipulated

EV loads in different areas of the power grid for EV load switching attacks, as discussed and illus-

trated in Fig. 4.3. (b). In this scenario, the wind speed and the number of WTGs are Vw =0.6 p.u.

and Nwtg =100, respectively. This uncertainty can result in a pair of unstable SSCI modes, i.e.,

1.903 ± j267.62, that can be calculated using the system identification approaches. The pattern of

this EV load switching attack with the aim of exciting the SSCI mode (fSSCI = 42.61Hz) is shown

in Fig. 4.17. In this figure, 10 MW and 20 MW of EV loads in Area1 and Area2 are compromised

to launch this switching attack. Similarly, this pattern is also repeated for EV loads in Area3 and

Area4 of the power grid. As such, the required EV loads for launching the proposed switching

attack can be distributed among four areas. To compare the performance of the proposed RMPC

with the mentioned controllers, the active power generated by the wind farm during this switching

attack vector is shown in Fig. 4.18. It can be seen that the 2DOF cannot stabilize the power grid

due to its dependency on a single operating point. The LQR controller cannot guarantee stability

in the presence of new uncertainty. Therefore, it cannot stabilize the subsynchronous oscillations

for the proposed wind-integrated power grid. Also, subsynchronous oscillations in the power grid

cannot be mitigated using the H∞ controller due to existing uncertainties in the system’s model

that can lead to several SSCI modes with different damping values and frequencies. In contrast,

the proposed RMPC can cover all lightly damped or unstable SSCI modes in the form of a convex

hull and calculate the gain matrix to stabilize the system effectively. Since this uncertainty (i.e.,

Vw =0.6 p.u. and Nwtg =100) contributes to the SSCI mode near the imaginary axis of the s-plane,

fluctuations in active power generated by the wind farm in this uncertainty are lower compared to

the first scenario. Since the system’s model is fixed during the design of the 2DOF, the LQR, and

H∞ controllers, their stability margins are limited compared to the case when the model of the

wind farm is continuously updated. As a result, traditional controllers cannot deliver acceptable
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performance in mitigating oscillations originating from EV load switching attacks [68].

4.8 Conclusion

In this chapter, adversaries could maliciously exploit EV charging stations (EVCSs) and inject

malicious malware into their firmware to launch coordinated EV-LAAs based on the frequency of

subsynchronous control interaction (SSCI) modes in a wind-integrated power grid. A deep convolu-

tional neural network (CNN) was trained based on voltage and current measurements obtained from

the phasor measurement unit (PMU) at the wind farm substations. This trained model could classify

the source of the event that results in oscillation with a balanced accuracy of 98.02% and then esti-

mate the switching attack vectors. This model included consecutive convolutional layers to extract

better features from input data, making it a detection framework in the presence of different uncer-

tainties in the operation of wind-integrated power girds. Since this CNN model might neglect a few

EV-LAAs due to the huge number of attack vectors with varying combinations of amplitudes and

frequencies during uncertainties in wind speeds and the number of WTG outages, a robust model

predictive controller (RMPC) was defined as a supplementary solution. Existing uncertainties in

wind speeds and WTG outages during different amplitudes of EV-LAAs and constraints on control

input and output signals were investigated when defining linear matrix inequalities (LMIs). After

solving this set of LMIs, a state-feedback controller was obtained to alleviate the impacts of such

attacks in the presence of uncertain dynamical systems with external disturbances. The authors have

conducted a performance comparison between the proposed robust controller and recent wide-area

controllers, such as 2DOF, LQR, and H∞ controllers, which proved ineffective in handling uncer-

tainties and attacks. However, designing this robust controller needs the state-space model of the

system during different uncertainties, and its performance is not optimal in the wide range of differ-

ent load-altering attacks. From this perspective, one future research direction can be developing a

reinforcement learning control framework that helps operators design a controller without an accu-

rate model of the system. This controller can mitigate the impacts of such attacks during different

uncertainties by interacting with the environment and updating control input signals. Another future

research direction is to design an adaptive control framework, where this load-altering attack vector
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can be estimated to design online control signals in the case of different uncertainties and external

disturbances.
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Chapter 5

Developing a Security Metric for

Assessing the Power Grid’s Posture

against Attacks from the EV Charging

Ecosystem

5.1 Motivation

Providing reliable and efficient services for EV users necessitates the use of cyber layers on top

of physical layers in EV ecosystems. The deployment of such cyber layers, however, makes these

ecosystems an appealing target for various cyber-attacksÐe.g., data manipulation, malware injec-

tion, and intrusionsÐwhich are crafted to deteriorate the operation of power distribution networks.

On this basis, this chapter develops a metric that captures the security posture of EV ecosystems,

considering the possible attacks and their associated impacts on distribution grids. First, potential

attack graphs are obtained to show the connections between the adversaries’ access points and the

consequences of attack vectors. Then, a Markov decision process (MDP) tree is generated, using

probabilities of adversaries’ success rates for a specific attack vector and unique reward functions.
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The developed MDP tree is then resolved by a policy iteration algorithm to calculate the value func-

tion of each state, related subsequent adversarial actions from the attackers’ viewpoint, and quantify

the security posture of each state. Finally, using the obtained metric, a deep convolutional neural

network (CNN) is trained offline to notify the distribution system operators (DSOs) of the security

status of EV ecosystems, i.e., secure and alarm situations. DSOs can use the developed security

metrics to design consequent corrective actions during critical cyber-attacks. To demonstrate the

usefulness of the proposed security metric in quantifying the security status of the grid, a cyber-

physical testbed is built. This testbed integrates a virtual sphere (vSphere) to simulate the cyber

parts of the EV ecosystem as well as a real-time simulator to model two distribution networks, i.e.,

IEEE 33- and 141-bus, under DSO control center based on IEC 61850. For a distribution network

with dynamic sections that can be created using the operation of tie-switches, a supplementary strat-

egy has also been suggested. This strategy is evaluated under the IEEE 69-bus distribution network

to calculate the related security metric and update the security monitoring framework.

5.2 Contribution

Recently, the possible attack vectors have persuaded researchers to scrutinize the impacts of

compromising components of the EV ecosystem on power grid operation. As such, they have in-

troduced detection and mitigation strategies to alleviate these impacts [69, 11]. However, the men-

tioned approaches cannot cover all possible attack vectors in EV ecosystems. Moreover, operators

should have a monitoring system and related metrics to measure the security posture of their cyber-

physical systems. The importance of security metrics has recently motivated researchers to design

security evaluation techniques. These metrics can be used to infer information from system opera-

tions and warnings from installed security monitoring systems with the intent of quantifying overall

system security[70, 71]. As such, two main approaches have been suggested in the literature to

define security metrics for power grids. In the first method, a set of mathematical equations, which

are generally obtained from state estimations and load flow analysis, are used to formulate the se-

curity status of the power grids. For example, in [72], authors have introduced a security metric that

quantifies cyber attack impacts on IP-based substations and identified compromised substations that
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can pose a significant risk to power grids. In another work [73], a security index is defined based

on mathematical load flow equations that can measure the margin between normal operation and

critical situations of the power grids. A security-oriented risk management technique, i.e., CPIndex,

has been developed in [74]. It calculates cyber-physical security indices using generated logs and

topological information about the power network configuration using Bayesian network models.

However, the performance of proposed security metrics is limited to a single contingency, and they

cannot consider all probable security situations in cyber-physical models[75]. In the second ap-

proach, researchers have used the Markov Decision Process (MDP) to quantify the physical impact

of cyber attacks on different components of power grids and define a security metric accordingly.

In [76], cyber and physical network topologies are used to define a security metric, i.e., the SOCCA

metric, representing the overloading of transmission lines in the case of cyber attacks. Another

security metric is designed in [77], which associates cyber alerts received by an operator with their

potential physical impacts on the grid operation using an MDP tree. Moreover, a definition for a

cyber-physical resilience metric is suggested in [78]. This metric can quantify the resilience level

of the cyber-physical model based on the MDP as well as formulate compromised components of

power grids and their inter-dependencies. The benefit of using the MDP tree in these works is that

during cyber attacks, there are decisions that can be partly randomized based on different attack

vectors and partly under the control of attackers as decision-makers. The states and branches in

those MDP trees are formed to model compromised components of power grids and the behavior

of adversaries in such systems. However, a security metric has not yet been tailored to consider

the unique vulnerabilities of cyber layers in the EV ecosystem. Moreover, the existing metrics have

been designed for transmission systems while neglecting the need for a security metric for power

distribution networks in the presence of the mentioned EV-based attacks.

In light of this discussion and considering the mentioned research gaps, this chapter investigates

possible attack vectors in EV ecosystems. This chapter also explores their corresponding impacts

on the operations of distribution networks by developing an EV-based attack security metric. First,

cyber and physical vulnerabilities in EV ecosystems are studied to obtain attack graphs and analyze

compromised components of EV ecosystems and related adversarial actions. Second, an MDP tree

is developed using the common vulnerability scoring system (CVSS) to assign the probabilities of
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adversaries’ success rates to each branch of this tree. Moreover, a reward function is calculated and

allocated to each branch for sabotaging EVCSs in the distribution network based on voltage devia-

tion at different buses, excessive active power losses of lines, and unavailability of charging stations

for EV users. Then, the proposed MDP tree is solved by the modified policy iteration algorithm to

calculate the value of each state in the MDP tree and the related optimal adversarial action. These

numerical values for each state provide a security index that quantifies cyber threats that compro-

mise charging stations in different zones of distribution networks. This metric not only considers

compromised EVCSs in a single zone of distribution networks but also investigates multiple con-

tingencies that may occur in different zones of such networks. Finally, for different operations of

distribution networks in the presence of EV-based attacks, i.e., secure and alarm, the developed

MDP tree can be resolved to gather a collection of raw data for training a deep convolutional neural

network (CNN). The trained deep CNN will be deployed to inform DSOs about the security status of

the grid. This information can be used for preventing potential power outages and taking remedial

action during emergency conditions. A real-time testbed that integrates the distribution network

model with cyber and physical layers of the EV ecosystem is used to show the usefulness of the

proposed security metric in quantifying the security status of IEEE 33-bus and 141-bus of Caracas.

The topology of the distribution network may change due to multiple switching scenarios, creat-

ing dynamic sections. As such, a supplementary strategy has also been introduced to calculate our

security metric and update the security monitoring system in the looped IEEE 69-bus distribution

network. In summary, the main contributions of this chapter can be summarized as follows:

(1) Investigating cyber vulnerabilities in EV ecosystems and obtaining attack graphs to analyze

the impacts of EV-based attacks on the operation of distribution grids;

(2) Developing a metric that quantifies the security status of EV ecosystems and their associated

distribution grids using an MDP tree. This tree is formed based on power flow equations,

vulnerabilities in the cyber layers of EV ecosystems, and multiple contingencies in different

zones of distribution networks;

(3) Solving the customized MDP tree using a policy iteration algorithm to quantify the security

status of distribution networks. Then, a deep CNN is trained offline based on the obtained set
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of different results from the MDP trees to infer the system’s security status, i.e., secure and

alarm situations. To do this, a testbed that integrates the cyber layers of the EV ecosystem

in the virtual sphere (vSphere) with a real-time model of distribution networks in OPAL-RT

5650 is used to illustrate the application of the developed metric in the DSO control center.

(4) Since the topology of the distribution networks may change due to multiple switching scenar-

ios, the voltage profiles are not necessarily related to closed buses in fixed zones. As such,

a supplementary strategy has also been suggested to calculate our security metric and update

the security monitoring framework in the presence of dynamic sections in the looped IEEE

69-bus distribution network.

5.3 Customizing MDP Tree for EV Ecosystems

An MDP tree is a graphical representation that can be employed to illustrate the decision-making

process under different contingencies. This tree can provide a mathematical framework to model

cyber attack paths where decisions are partly randomized based on potential vulnerabilities in EV

ecosystems and partly under the knowledge and control of attackers. In the MDP tree, a decision-

maker (i.e., attacker) can move from the first state s (i.e., component) to the second state s′ (i.e.,

another component) by taking action a with the probability of Pa(s, s
′). For this transition, the

decision-maker may obtain a reward, i.e., RFa(s, s
′). Based on potential vulnerabilities in the EV

ecosystem discussed in Section 2.2, states of the MDP tree can be mapped to the components of

this system that can be maliciously targeted by adversaries. Moreover, logical branches, which are

compatible with adversarial actions, can be established among states of an MDP tree. Initially,

adversaries may have no access to the cyber layers of EV ecosystems; however, they will obtain

adequate privilege to cause detrimental impacts on the operation of such networks. The main aim

of building this MDP tree based on states and branches is to show how attackers can compromise

components of the EV ecosystem sequentially, penetrate cyber or physical layers of charging sta-

tions, and finally manipulate EV loads in distribution networks. Generally, an MDP tree includes a

set of components, i.e., {S,A, Pa(s, s
′), RFa(s, s

′), γ}, that can be described as follows:
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5.3.1 Set of States

States in an MDP tree represent environmental configurations or circumstances that can consist

of different factors, such as location and time. In this work, we define a finite set of states for the

MDP tree as compromised components of EV ecosystems and indicate them by S . As mentioned

before, cyber componentsÐsuch as CSMS, OCPP, mobile and web applications, and physical USB

portsÐcan be defined as the attacker’s access points and accessible primary states in the MDP tree.

The states of this MDP tree can also reflect the attack propagation in the cyber-physical model of our

EV ecosystem and the privileges that can be obtained through performing adversarial actions. For

example, in the first attack graph, OCPP and charging stations in different zones of the power grid

are defined as the states of the MDP tree. In the second attack graph, CSMS, firmware repository,

and charging stations, that can be compromised to impact the distribution network, are defined as

states.

5.3.2 Set of Adversarial Actions

A is a set of adversarial actions that an attacker might select. Each adversarial action is defined

as known or zero-day vulnerability explorations in cyber-physical models. An attacker can use

different techniques, e.g., MitM attack and SQL injection, to penetrate the cyber layers of the EV

ecosystems and obtain access to further states of systems to achieve more malicious purposes. When

attackers take action and move from one component to another, they can leverage the system’s inter-

dependency and connectivity. In other words, they can take control of an additional component of

the EV ecosystem that augments their reward and brings them closer to their target.

5.3.3 Transition Probability Function

Pa(s, s
′) is defined as the transition probability function for a successful transfer from the cur-

rent state (s) to a new state (s′) by taking action a ∈ A. The CVSS V3.1 can be deployed to allocate

probabilities to the transition between the current and new state [77, 79]. This scoring system in-

cludes three index groups, i.e., base, temporal, and environmental indexes, that can be determined

to calculate a risk score for a specific vulnerability from 0 to 10. Since the environmental index

can cover items in base and temporal indexes, it represents the overall CVSS score with several
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confidentiality, integrity, and availability requirements. The environmental index in CVSS V3.1 rep-

resents the severity of a vulnerability within a specific environment and takes into account additional

factors, i.e., the impact on confidentiality, integrity, and availability in the understudy environment.

It is important to mention that a numerical value has been allocated to each item, as illustrated in

Fig. 5.1, that will be used in the following formulations. The environmental index is calculated

based on the base index and additional items related to the environment. On this basis, first, the

base index, which depends on sub-formulas for impact sub-score (ISS), impact, and exploitability,

is defined as follows [81]:

ISS = 1− [(1− Confidentiality)× (1− Integrity)

× (1−Availability)]
(70)

Then, the impact and exploitability coefficients can be calculated as follows:


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Scope→ Unchanged :

6.42× ISS

Scope→ Changed :

7.52× (ISS − 0.029)− 3.25× (ISS − 0.02)
15

(71)

Exploitability = 8.22×AttackV ector ×AttackComplexity×

PrivilegesRequired× UserInteraction

(72)

Finally, the base index can be calculated based on the following equation:
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Impact ≤ 0 : 0

Scope→ Unchanged :

R up (Min [(Impact+ Exploitability) , 10])

Scope→ Changed :

R up (Min [1.08× (Impact+ Exploitability) , 10])

(73)

where Min returns the smaller of its two arguments. Also, R up returns the smallest number, spec-

ified to 1 decimal place, that is equal to or higher than its input. The environmental index depends

on a modified impact sub-score (MISS), modified impact (ImpactM ), and modified exploitability

80



(ExploitabilityM ) as follows:

MISS = Min(1− [(1− ConfidentialityReq ×

ConfidentialityM )× (1− IntegrityReq ×

IntegrityM ) × (1−AvailabilityReq×

AvailabilityM )], 0.915)

(74)

where subscript Req means requirement. In this section, ImpactM and ExploitabilityM can be

calculated as follows:



































ScopeM → Unchanged :

6.42×MISS

ScopeM → Changed :

7.52× (MISS − 0.029) − 3.25× (MISS × 0.9731− 0.02)
13

(75)

ExploitabilityM = 8.22×AttackV ectorM

×AttackComplexityM × PrivilegesRequiredM

×UserInteractionM

(76)

Finally, we can calculate the environmental index as follows:
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ScopeM → Unchanged :

R up (R up [Min[ ImpactM + ExploitabilityM ] , 10)]×

ExploitCodeMaturity ×RemediationLevel

×ReportConfidence)

ScopeM → Changed :

R up (R up [Min(1.08× [ ImpactM + ExploitabilityM ] ,

10)]× ExploitCodeMaturity ×RemediationLevel ×

ReportConfidence)

(77)

It is worth noting that operators select the mentioned items in base, temporal, and environmental

indexes according to their needs and available resources within their infrastructure. Given that our

infrastructure is an EV ecosystem, we used the National Vulnerability Database (NVD) [82] to

identify similar existing attacks within this system. Consequently, these items are chosen based on

the data from similar existing attacks. For more information about how these factors are calculated
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angles. Then, the power flow is calculated under normal operating conditions or different contin-

gency attack scenarios for the customized MDP tree in the DSO control center. Different loads in

the system are assumed to absorb current Ik when their terminal voltage is equal to Vk, representing

as follows:

Ik = IRk + jIIk = (
Pk + PEVk

+ jQk + jQEVk

Vk
)∗ (78)

where IRk and IIk are real and imaginary parts of the load currents, respectively. Pk + jQk is the

power consumption of residential/industrial loads in complex format, while PEVk
+ jQEVk

are

the power consumption of EV loads connected to charging stations that can be readily compro-

mised by different potential vulnerabilities in EV ecosystems. Kirchhoff Current and Voltage laws

(KVL/KCL) can be applied to the distribution network to establish the relationship between load

current and branch current (IB) as[85]:

[ IB1
IB2

... IBNb

]T = [BIBC][ I1 I2 ... INL
]T (79)

where NL and Nb are referred to as the number of loads and branches in the distribution network,

respectively. BIBC is the bus-injection to the branch-current matrix that represents the connections

and topology of the distribution networks. Moreover, the connection between the bus voltages and

the branch currents can be obtained as follows:

[

V1 V1 ... V1

]T

−
[

V2 V3 ... VNL

]T

=

[BCBV]
[

IB1
IB2

... IBNb

]T (80)

where BCBV matrix is branch-current to bus-voltage that is also dependent on the topology of

the distribution network. Using equations (109) and (80) and load characteristics, the relationship

between bus current injections and bus voltages can be expressed as:

V = V1 + [BCBV][BIBC]I = V1 + [DLF]I (81)

where DLF is a multiplication matrix of BCBV and BIBC that can be solved iteratively to obtain

states of systems, i.e., voltages and their corresponding phase angles[85]. From this perspective, the

summation of the bus voltage deviated from the reference voltage, i.e., ∆V Ave
d , can be calculated
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for all buses (l ∈ {1, ..., Nbus}) after compromising charging stations as follows:











∆V Ave
d =

Nbus
∑

l=1

∆Vd

∆Vd =
∣

∣

∣

V l
a(s,s

′)−V l
nom

V l
nom

∣

∣

∣

(82)

where V l
nom is the nominal voltage defined in buses of distribution networks, and V l

a(s, s
′) is the

bus voltage after manipulating EVCSs in the EV ecosystem and moving from state s to state s′ by

taking action a. Active power losses of each branch (p ∈ {1, ..., Nb}) can be calculated as:

∆PLossp = I2pRp (83)

By summing up all of the active power losses of each branch, the total active power losses for

the distribution network can be calculated:

∆PLossT =

p=Nb
∑

p=1

∆PLossp (84)

In summary, to consider the concerns of the DSO, a reward function for each of the two consec-

utive states in the MDP tree can be defined as follows:

RFa(s, s
′) = α1(

NComp
a (s,s′)

NEV CS
T

) + α2∆V Ave
d + ...

α3(
∆PLoss

a (s,s′)−∆PLoss
T

∆PLoss
T

)
(85)

where NEV CS
T and N

Comp
a (s, s′) are the total number of charging stations installed in distribution

networks and the number of targeted EVCSs after moving from state s to s′ by taking adversarial

action a, respectively. ∆PLoss
a (s, s′) is also defined as the total active power loss of the distribution

network after compromising EVCSs connected to EV loads by taking action a. Also, α1, α2, and

α3 are coefficients that can be used to weigh the terms of the proposed reward function. It is worth

mentioning that the DSO can set the value of each coefficient to zero or one based on his opinion and

the priority of the DSO control center. In our work, EV users’ satisfaction and quality of services

are important. As such, the α1 can be set to the same value as the α2 and α3 when generating and

solving the MDP tree. Finally, the distinction in importance between present and future rewards can

be considered by defining a discount factor (γ). This discount factor can be tuned between 0 and
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1 (0 ≤ γ ≤ 1) to control the balance between immediate and future rewards during the decision-

making process in the MDP tree. A higher discount factor prioritizes long-term rewards, while a

lower discount factor prioritizes immediate rewards. This factor also ensures the convergence of

the algorithm for solving the MDP tree. Generally, a discount factor of less than 1 ensures that the

expected cumulative rewards remain bounded.

5.3.5 Generating MDP Tree for Different Contingencies

To generate the proposed MDP tree, an initial state, i.e., s1 = ϕ, is defined as a starting point

where no component of the EV ecosystem is targeted. In the first stage, the power distribution

network can be divided into several zones to investigate the impact of cyber attacks on charging

stations in single and multiple zones of the power grid. Dividing a distribution network into different

zones is a common approach in power system planning and operation to deliver better management,

control, and maintenance of these systems[86]. In our work, buses located in a geographical region

and lateral branches have the same behavior in voltage deviation, and they can be treated as separate

zones for planning and operation purposes [87]. It is important to mention that the number of

zones, i.e., ZT , can be changeable based on the DSO’s opinion. However, the number of zones can

increase the burden of calculations and complexities. When attackers decide to compromise EVCSs

in different zones of the distribution network, they may select charging stations in a single zone or

multiple zones, leading to single or multiple contingencies, respectively. On this basis, we will have

a combination of different zones in the developed MDP tree, that is, a selection of single or multiple

zones from total separate zones, as follows:





ZT

0



+
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

ZT

1



+





ZT

2



 ...+





ZT

ZT



 = 2ZT (86)

It can be proven that the sum of this combination is equal to 2ZT [88]. Furthermore, a single

contingency in the MDP tree is the combination of one event from total zones as follows:





ZT

1



 = ZT (87)

87



Algorithm 6: MDP Tree Generator for Different Contingencies

Determine: Number of zones in distribution network (ZT )

Calculate: Combination of different contingencies 2ZT − 1

Initialize: Number of attackers’ access points in ecosystem(nv)

Create: Initial state (ϕ) in MDP tree

for i = 1 : 1 : nv do

for z = 1 : 1 : 2ZT − 1 do

if (i is an attacker’s access point) then
Build a new reachable state si

for j as a compromised component do

if (i is not connected to j) then
Continue Serach for new connection

end

if (i and j connected) then
Build new state sj Define a transition between si and sj

Determine Pa(si, sj) using CVSS

Calculate RFa(si, sj) using (85) Continue for new connection with sr

Build new state and transition among them

end

end

end

end

end

To calculate multiple contingencies in the MDP tree, this mathematical equation can be repre-

sented as follows:





ZT

2



+ ...+





ZT

ZT



 = 2ZT −





ZT

1



−





ZT

0



 = 2ZT − ZT − 1 (88)

In the following, Algorithm 6 can be organized to create all states and define transitions among

them. Based on this algorithm, the attacker’s access points (si), extracted from attack graphs, can

be considered an accessible state in the MDP tree. Then, a new reachable state (sj) can be added to

the tree starting from the attacker’s access point whenever compromised component j is associated

with component i. Making a new state can be continued until the final state is obtained where

charging stations in a specific zone have been compromised. For example, to build a branch of

the customized MDP tree, we can randomly select an attacker’s access point like CSMS in the EV

ecosystem and move from the initial state (ϕ) to the new state (CSMS). On this basis, the CSMS can

be considered an accessible state from the attackers’ viewpoint. Then, adversaries can move from
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Algorithm 7: Modified Policy Iteration Algorithm (2 Stages)

Initialize: V (s) and π(s) arbitrarily for s ∈ S

Initialize: θ as positive small number Results: Optimal policy π∗ and optimal value function V ∗ for S

1. Policy Evaluation ∆int ← 0 while ∆ < θ do

for each s ∈ S do
Vnew(s)←

∑

s′
Pπ(s)(s, s

′)[RFπ(s)(s, s
′) + γV (s′)]

∆new ←Max(∆int, |Vold(s)− Vnew(s)|)

end

end

2. Policy Improvement

Policy Stable← True

for each s ∈ S do
πold
πnew(s)← argmaxa

∑

s′
Pa(s, s

′)[Ra(s, s
′) + γV (s′)]

if πold ̸= πnew then
Policy Stable← false

end

end

if Policy Stable then
Return optimal policy π∗ and optimal value function V ∗

else
Go to Policy Evaluation

end

policy, π(s), as follows:

V (s) =
∑

s′

Pπ(s)(s, s
′)[RFπ(s)(s, s

′) + γV (s′)] (89)

where Pπ(s)(s, s
′) and RFπ(s)(s, s

′) are the transition probability from state s to s′ and reward

received after action π(s), respectively. The proposed algorithm can check for convergence by

measuring the difference between the new computed value function, i.e., Vnew(s), and the previous

value function, i.e., Vold(s). Then the algorithm can calculate this change and compare it with the

previous one as follows:

Max(∆int, |Vold(s)− Vnew(s)|)→ ∆new (90)

where ∆int is initialized to zero at the first iteration. If the change in the calculated value function

is lower than a predefined threshold θ, i.e., (∆new < θ), the algorithm stops indicating that the

algorithm has converged. Otherwise, it continues iterating. The algorithm performs the policy
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improvement stage when the value function is updated. It updates the π(s) policy to select the

action in each state that maximizes the expected cumulative reward according to the updated value

function, i.e., Vnew(s). This step is crucial for iteratively refining the policy to make better decisions:

π(s) = argmaxa
∑

s′

Pa(s, s
′)[Ra(s, s

′) + γV (s′)] (91)

where argmaxa stands for the adversarial action a that results in the maximum expected cumulative

reward when taken from the state s according to the updated value function. This iteration continues

until πold = πnew, leading the algorithm to stop. In other words, this algorithm creates a series of

policies, where each policy is improved compared to the old ones. To show how this approach can

evaluate and improve the policy, Algorithm 7 is represented. The final results of this algorithm are

the optimal value function (V ∗) and the optimal policy (π∗) for each state in the customized MDP

tree.

5.5 Monitoring Framework Implementation

5.5.1 Deep CNN Model for Security Monitoring

To design a monitoring framework that can notify DSOs of the system’s security status, a deep

CNN is trained based on a wide range of results obtained from the customized MDP trees. To

generate a training data set, the MDP tree is established by Algorithm 6 and resolved by Algorithm

7 for different EV load penetrations in an offline manner. The raw data (i.e. input data) for training

this deep CNN model is the calculated value of states in the MDP tree, i.e. Nst, when single and

multiple contingencies are investigated and the compromised EV load penetration changes from

0% until 25% with the NEV step. On this basis, raw data can be arranged in the form of matrices

with dimensions of Ncomb×Nst, where Ncomb indicates the total combination of different EV load

penetration levels for each single or multiple zones of the distribution network. When attackers

select a single zone of the distribution network, they may compromise different levels of EV loads

in single zones as follows:
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where Ψth is a threshold for this ratio, initializing to 5% in this work without loss of generality.

This threshold has been selected based on several works that studied the impact of compromising

aggregated EV loads on the operation of power grids [90, 91]. However, it can be changed based on

the opinion of DSOs or EV vendors.

2. A nominal voltage, i.e., V l
nom, has been defined for each bus. We can calculate the deviation

from this nominal voltage when adversaries manipulate EV loads in different buses, i.e., V l
a(s, s

′),

and divide it by the nominal voltage. This ratio for at least one bus is supposed to exceed the

predefined threshold, i.e., Vth. In this case, it can be defined as a condition for an alarm situation in

the distribution network, as follows:

∣

∣

∣

∣

V l
a(s, s

′)− V l
nom

V l
nom

∣

∣

∣

∣

≥ Vth (95)

Otherwise, we can define a secure situation for distribution networks. In this study, the Vth can be

adjusted within a 5% range, thus setting the threshold at Vth = ±2.5%. For sensitive electronic

equipment, including EV charging stations, the voltage fluctuation limit is often set within ±2.5%

to 5% of the nominal voltage based on IEC 61000-3-3 standard[92]. It is worth noting that this al-

lowable range can be set lower than this value, depending on the sensitivity of distribution operators

and the presence of sensitive industrial loads in power grids [93].

3. The total active power loss on all branches compared to the total loss can be measured

using several micro phasor measurement units (PMUs) installed in different branches of distribution

networks [94]. For the alarm situation, this value must exceed a predefined threshold as follows:

∆PLossa

∆PLossT

≥ ∆PLossth (96)

where this threshold, i.e., ∆PLoss
th , for total active power loss, is defined as 8%. According to IEEE

standards [95], the total losses in a distribution system are typically expected to be in the range of 5%

to 10% of the total input power for well-designed systems. Without loss of generality, considering

losses in switches, capacitors, and other EV loads equipment, in our manuscript, we have assumed

that 8% can be defined as the value of the threshold for active power loss. However, distribution

network operators can select another value while designing the security metric for their network. In

summary, two different situations of a distribution network after compromising charging stations in
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all buses can be defined in Table. 5.1.

The structure of a customized deep CNN for classification of the security status of distribution

networks under EV-based attacks is depicted in Fig. 5.8. This model consists of two convolutional

layers (Conv) for feature extraction from the value functions obtained from resolving the MDP trees.

First, a two-dimensional (2D) convolutional layer with 32 kernel functions of size 5×1 is applied to

the raw data for learning spatial features. Another 2D convolutional layer with 64 kernel functions

of size 3×1 is applied to learn more advanced features in the data. Since the relationship between

inputs and target data is non-linear, this structure implements the rectified linear unit ReLU as an

activation function. The 2D Maxpooling layer is also employed to down-sample the feature maps

and further reduce the dimension of the under-processed data. A flattened layer is added to the

deep CNN model to convert the multi-dimensional output from the previous layers into a 1D vector

for the next dense layer. The output of the final layer goes through a fully connected layer (FC)

allocated for classification purposes. After the FC layer, the softmax function is deployed to provide

information about the situation of the distribution networks. Finally, a cross-entropy loss function

Lcls is defined to update the weights of the neural network for three classes as follows:

Lcls = −
1

Nt

Nt
∑

t=1

ŷt log(yt) (97)

where Nt is the total number of training samples and ŷt and yt are actual security classification and

estimated security classification, respectively.

5.5.2 Application of Security Metric in DSO Control Center

All the mentioned subsections can be integrated to build a framework for monitoring the secu-

rity status of distribution networks using the developed metric, as shown in Fig. 5.9. This metric can

be implemented in the DSO control center of real-world power grids, where all data is collected for

power flow analysis, system planning, and issuing control commands for different parts of power

grids. The security metric thoroughly scans the integrated cyber-physical components in the EV

ecosystem and identifies single and multiple contingencies based on measurement signals obtained

from distribution network topologies and the cyber layers of charging stations. On this basis, our
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wide area network (WAN) [97]. Using the analytics unit, first, the number of manipulated EVCSs

is reported, and then the reward functions are calculated to generate a related MDP tree and resolve

it. Finally, the numerical values of all states are obtained and passed through a trained CNN model

to provide information about the security status of the power distribution network.

5.6.2 IEEE 33-bus Distribution Network

Building MDP Tree: To study the impact of manipulating EV loads connected to charging sta-

tions on the operation of the distribution network, an EV ecosystem including cyber and physical

layers is integrated into the IEEE 33-bus system, as shown in Fig. 6.6. In this cyber-physical model,

CSMS, OCPP, mobile/web applications, and USB ports mounted on charging stations can be con-

sidered the attacker’s access points. The number of vulnerabilities in EV ecosystems and zones in

the distribution network can be defined as 4 and 5 (nv = 4, ZT = 5), respectively, as shown in

Fig. 5.11. Since we are going to evaluate the proposed security metric for the IEEE 33-bus system

in the presence of different events, the number of single and multiple contingencies can be calcu-

lated as 5 and 26, i.e., (2ZT − 1) − ZT = 26, respectively. The number 5 shows five single zones,

including Zone1, Zone2, Zone3, Zone4, and Zone5. The number 26 indicates different combinations

of zones in the distribution network where their charging stations can be manipulated by adversaries

in multiple zones, leading to multiple contingencies in the MDP tree: {Zone1,2, Zone1,3, Zone1,4,

Zone1,5, Zone2,3, Zone2,4, Zone2,5, Zone3,4, Zone3,5, Zone4,5, Zone1,2,3, Zone1,2,4, Zone1,2,5,...,

Zone1,2,3,4,5}. Based on Algorithm 6 and considering four well-known vulnerabilities in the EV

ecosystem, an MDP tree with 36 states and 56 actions can be obtained for targeting single zones of

the IEEE 33-bus distribution network, as illustrated in Fig. 5.12.

Calculating Probabilities: To assign the probabilities of adversaries’ success rates for a wide

range of adversarial actions and add these numbers to the branches of the MDP tree, the CVSS

V3.1 is deployed. To show how we can calculate this probability for each branch of the MDP

tree, a numerical example can be provided as follows: it is assumed that adversaries decide to

compromise mobile and web application networks and move from the initial state (ϕ) to state (Mb)

in the MDP tree, as shown in Fig. 5.12. As such, items of the base index, i.e., Attack vector,
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Table 5.2: Calculating probabilities of each branch in MDP Tree using CVSS V3.1

Action Pa(s, s
′) Action Pa(s, s

′) Action Pa(s, s
′) Action Pa(s, s

′) Action Pa(s, s
′)

a1 0.74 a13 0.72 a25 0.79 a37 0.79 a49 0.88

a2 0.77 a14 0.89 a26 0.87 a38 0.87 a50 1

a3 0.79 a15 1 a27 1 a39 1 a51 0.71

a4 1 a16 0.89 a28 0.79 a40 0.65 a52 0.88

a5 0.79 a17 1 a29 0.87 a41 0.69 a53 1

a6 1 a18 0.89 a30 1 a42 0.71 a54 0.71

a7 0.79 a19 1 a31 0.79 a43 0.88 a55 0.88

a8 1 a20 0.89 a32 0.87 a44 1 a56 1

a9 0.79 a21 1 a33 1 a45 0.71

a10 1 a22 0.89 a34 0.79 a46 0.88

a11 0.79 a23 1 a35 0.87 a47 1

a12 1 a24 0.77 a36 1 a48 0.71

IntegrityReq, and AvailabilityReq are selected as High, Low, and Low, respectively [82]. Finally,

the environmental index can be calculated at 7.6 using equation (77). This final number is divided

by 10 and allocated to the mentioned branch of the MDP tree. To calculate probabilities for other

branches with different adversarial actions, we can use the CVSS V3.1 [81], as listed in Table. 5.2.

Calculating Reward Functions: To acquire the reward function for each transition between the

current and subsequent state in this tree, the behavior of bus voltage and active power losses is

measured in the DSO control center. The number of compromised charging stations is also reported

using the framework in Fig. 5.4. Using this framework, if adversaries manipulate charging stations

and issue malicious charging and discharging commands, the proposed ML detector can determine

this abnormal pattern in charging and discharging commands. To show how we can calculate the

reward function for each branch of the proposed MDP tree, it is assumed that 25% of the total

loads in each zone of the IEEE 33-bus system can be defined as EV loads. To calculate this EV

load penetration rate, it can be seen that the first zone of the IEEE 33-bus distribution network

supplies about 430 kW of different loads. Based on technical discussions in [4, 7, 69], we can

assume that there are around 150 electric vehicles (EVs) in this zone of the IEEE 33-bus distribution

network using a comparable ratio for EVs to the total loads mentioned in the realistic scenario of

the Manhattan system of New York City in the US[7]. The International Energy Agency (IEA)

estimates that governments and operators typically maintain 1 public EVCS for every 10 EVs on

the road, which results in this zone including around 15 EVCSs. Considering 22 kW as the average

charging rate of commercial level 2 and level 3 chargers [69, 4] and approximately 30% chance of

EVCS availability, this zone of the network can be estimated to consist of roughly 5 viable charging
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Table 5.3: Calculating terms of developed reward function for five different zones

Action From s to s′
N

Comp
a (s,s′)

NEV CS
T

∆V Ave
d

∆PLoss
a (s,s′)−∆PLoss

T

∆PLoss
T

RFa(s, s
′)

a3 s3 to s4 0.1064 1.5467 0.0196 1.6727

a5 s3 to s5 0.0851 1.5356 0.0049 1.6256

a7 s3 to s6 0.2553 1.5599 0.0562 1.8714

a9 s3 to s7 0.2553 1.6305 0.1395 2.0253

a11 s3 to s8 0.2979 1.6709 0.1654 2.1342

Table 5.4: Security Metric Evaluation of Single Contingency MDP Tree for Two Discount Factors

State
V ∗ π∗ V ∗ π∗

State
V ∗ π∗ V ∗ π∗

γ = 0.95 γ = 0.5 γ = 0.95 γ = 0.5

s1 37.1798 a24 1.0309 a13 s19 32.5120 a30 3.2512 a30

s2 30.9029 a2 1.2846 a2 s20 37.1504 a32 3.4826 a32

s3 33.0152 a3 2.9529 a3 s21 37.4280 a33 3.7428 a33

s4 33.4540 a4 3.3454 a4 s22 40.2056 a35 3.7690 a35

s5 32.5120 a6 3.2512 a6 s23 40.5060 a36 4.0506 a36

s6 37.4280 a8 3.7428 a8 s24 42.3675 a38 3.9717 a38

s7 40.5060 a10 4.0506 a10 s25 42.6840 a39 4.2684 a39

s8 42.6840 a12 4.2684 a12 s26 39.4691 a54 1.6591 a54

s9 41.7462 a22 3.4854 a22 s27 33.2274 a43 3.1319 a43

s10 33.4540 a15 3.3454 a15 s28 33.4540 a44 3.3454 a44

s11 32.5120 a17 3.2512 a17 s29 32.2918 a46 3.0437 a46

s12 37.4280 a19 3.7428 a19 s30 32.5120 a47 3.2512 a47

s13 40.5060 a21 4.0506 a21 s31 37.1745 a49 3.5039 a49

s14 42.6840 a23 4.2684 a23 s32 37.4280 a50 3.7428 a50

s15 39.7211 a37 1.7529 a37 s33 40.2317 a52 3.7921 a52

s16 33.2059 a26 3.1128 a26 s34 40.5060 a53 4.0506 a53

s17 33.4540 a27 3.3454 a27 s35 42.3949 a55 3.9959 a55

s18 32.2709 a29 3.0252 a29 s36 42.6840 a56 4.2684 a56

stations for attacks that are equal to about 25% of the total loads in the first zone of the network.

To display the worst-case attack scenario, all mentioned EV loads are compromised by adversaries.

After manipulating EV loads, the voltage deviates from its nominal values in different buses of

the distribution network, and their average can be calculated using power flow analysis based on

(82). Furthermore, the active power loss of each branch in the system will increase, leading to more

total active power losses. Based on these calculations, the active power loss of the system during

normal operation is 181.2 kW. However, during cyber attacks on EV loads in Zone1, Zone2, Zone3,

Zone4, and Zone5, this number increases to 184.8 kW, 182.1 kW, 191.4 kW, 206.5 kW, and 211.2

kW, respectively. According to the calculated numbers in the DSO control center, each term of

the reward function can be obtained using (85) and summarized in Table. 5.3 under the assumption

α1 = α2 = α3 = 1. For branches a1 and a2, we have no reward. Since attackers stay in states

s4, s5, s6, s7, s8 and repeat the same actions, related branches, i.e., a4, a6, a8, a10, a12, will receive

the same reward functions. This calculation will also be repeated for other vulnerabilities.

Numerical Analysis: The sets of S = {s1, ..., s36} and A = {a1, ..., a56} have been referred to

as states and adversarial actions of the MDP tree, respectively. The s1 is the initial state where no
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Table 5.5: Security Metric Evaluation for Multiple Contingencies with γ=0.95

State V ∗ π∗ State V ∗ π∗ state V ∗ π∗ State V ∗ π∗ State V ∗ π∗ State V ∗ π∗ State V ∗ π∗

s1 59.4158 a65 s29 52.5480 a54 s57 50.2360 a109 s85 45.5500 a155 s113 52.4280 a197 s141 35.4713 a240 s169 50.1418 a282

s2 59.1581 a2 s30 58.0460 a56 s58 52.4280 a111 s86 39.3885 a157 s114 55.1670 a199 s142 35.7600 a241 s170 51.8540 a283

s3 63.2017 a63 s31 62.6660 a58 s59 55.7320 a113 s87 39.7360 a158 s115 55.7320 a200 s143 39.9409 a243 s171 57.7675 a285

s4 33.4540 a4 s32 62.0560 a60 s60 55.1360 a115 s88 42.0192 a160 s116 54.5771 a202 s144 40.2660 a244 s172 59.7400 a286

s5 32.5120 a6 s33 54.7400 a62 s61 52.5480 a117 s89 42.3900 a161 s117 55.1360 a203 s145 43.0179 a246 s173 48.5773 a288

s6 37.4280 a8 s34 64.5560 a64 s62 58.0460 a119 s90 44.5965 a163 s118 51.9388 a205 s146 43.3680 a247 s174 50.2360 a289

s7 40.5060 a10 s35 63.7590 a126 s63 62.6660 a121 s91 44.9900 a164 s119 52.5480 a206 s147 45.1822 a249 s175 50.6969 a291

s8 42.6840 a12 s36 31.9265 a67 s64 62.0560 a123 s92 46.9438 a166 s120 57.3731 a208 s148 45.5500 a250 s176 52.4280 a292

s9 35.7600 a14 s37 32.5120 a69 s65 54.7400 a125 s93 47.3580 a167 s121 58.0460 a209 s149 39.4152 a252 s177 53.8918 a294

s10 40.2660 a16 s38 37.4280 a71 s66 64.5560 a127 s94 49.1087 a169 s122 61.9395 a211 s150 39.7360 a253 s178 55.7320 a295

s11 43.3680 a18 s39 40.5060 a73 s67 59.4248 a219 s95 49.5420 a170 s123 62.6660 a212 s151 42.0478 a255 s179 53.3155 a297

s12 45.5500 a20 s40 42.6840 a75 s68 33.2059 a130 s96 52.3620 a172 s124 61.3366 a214 s152 42.3900 a256 s180 55.1360 a298

s13 39.7360 a22 s41 35.7600 a77 s69 33.4540 a131 s97 52.8240 a173 s125 62.0560 a215 s153 44.6268 a258 s181 51.8993 a300

s14 42.3900 a24 s42 40.2660 a79 s70 32.2709 a133 s98 42.1444 a175 s126 54.1054 a217 s154 44.9900 a259 s182 52.5480 a301

s15 44.9900 a26 s43 43.3680 a81 s71 32.5120 a134 s99 42.5760 a176 s127 54.7400 a218 s155 46.9756 a261 s183 57.3294 a303

s16 47.3580 a28 s44 45.5500 a83 s72 37.1504 a136 s100 44.7933 a178 s128 63.7092 a220 s156 47.3580 a262 s184 58.0460 a304

s17 49.5420 a30 s45 39.7360 a85 s73 37.4280 a137 s101 45.2520 a179 s129 64.5560 a221 s157 49.1420 a264 s185 61.1615 a306

s18 52.8240 a32 s46 42.3900 a87 s74 40.2056 a139 s102 46.9532 a181 s130 59.1786 a314 s158 49.5420 a265 s186 62.6660 a307

s19 42.5760 a34 s47 44.9900 a89 s75 40.5060 a140 s103 47.4340 a182 s131 33.2274 a225 s159 52.3975 a267 s187 61.2899 a309

s20 45.2520 a36 s48 47.3580 a91 s76 42.3675 a142 s104 48.7428 a184 s132 33.4540 a226 s160 52.8240 a268 s188 62.0560 a310

s21 47.4340 a38 s49 49.5420 a93 s77 42.6840 a143 s105 49.2420 a185 s133 32.2918 a228 s161 41.1702 a270 s189 54.0642 a312

s22 49.2420 a40 s50 52.8240 a95 s78 35.4472 a145 s106 51.3283 a187 s134 32.5120 a229 s162 42.5760 a271 s190 54.7400 a313

s23 51.8540 a42 s51 42.5760 a97 s79 35.7600 a146 s107 51.8540 a188 s135 37.1745 a231 s163 43.7578 a273 s191 63.7590 a315

s24 59.7400 a44 s52 45.2520 a99 s80 39.9138 a148 s108 59.1344 a190 s136 37.4280 a232 s164 45.2520 a274 s192 64.5560 a316

s25 50.2360 a46 s53 47.4340 a101 s81 40.2660 a149 s109 59.7400 a191 s137 40.2317 a234 s165 45.8678 a276

s26 52.4280 a48 s54 49.2420 a103 s82 42.9887 a151 s110 49.7268 a193 s138 40.5060 a235 s166 47.4340 a277

s27 55.7320 a50 s55 51.8540 a105 s83 43.3680 a152 s111 50.2360 a194 s139 42.3949 a237 s167 47.6161 a279

s28 55.1360 a52 s56 59.7400 a107 s84 45.1516 a154 s112 51.8965 a196 s140 42.6840 a238 s168 49.2420 a280

components of the EV ecosystem have been targeted. Based on the mentioned attacker’s access

points, adversaries may take the first action (a1) and move from the initial state (s1) to the Mb/web

application state (s2) randomly. Then, they can target the business network of EVSE, i.e., s3, using

the attack graphs discussed in Section 2.3 by taking the next adversarial action (a2). Afterward, the

attacker acts a3 and gains control of EVCSs in the first zone, reaching state s4 and issuing charging

or discharging commands. They can also repeat this adversarial action (a4) causing more impact

on the distribution network operation. The proposed MDP tree is resolved by Algorithm 7, and

the values of each state (V ∗) and optimal adversarial action (π∗) for α1 = α2 = α3 = 1 and two

values of discount factor γ = 0.95 and γ = 0.5 are listed in Table. 5.4. A series of preliminary

experiments are performed to identify an optimal range for the threshold value, i.e., θ [98]. The

choice of θ can be based on a balanced performance in terms of convergence speed (i.e., the number

of algorithm iterations to converge) and accuracy [99]. To quantify the impact of θ on convergence

speed, we have measured the number of iterations required for the algorithm to converge under

different threshold values. Furthermore, to calculate the accuracy of the modified policy iteration

algorithm against changes in the threshold value, we can run the algorithm with a specific threshold

value and calculate the error by comparing the obtained state values to the benchmark values. For

this purpose, we can compare the state values obtained from the algorithm with the benchmark state

values and calculate the error using a metric such as mean squared error (MSE):

MSE =
1

Nst

Nst
∑

s=1

(Vθ(s)− Vnom(s))
2

(98)
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where Nst is the number of states in the generated MDP trees, Vθ(s) and Vnom(s) can be defined

as the values for state s from the algorithm and benchmark, respectively. Finally, we can normalize

the error values and convert them into accuracy percentages, as follows[99]:

Accuracy = 100%− (
MSE

Maximum vlaue of MSE
× 100%) (99)

where the maximum possible MSE can be defined as a value that represents the worst-case scenario,

i.e., comparing all state values to zero. This process can be repeated for each threshold value to

obtain a set of accuracy values. Finally, both accuracy and convergence speed of the modified

policy iteration algorithm for different threshold values have been illustrated in Fig. 5.13. It can

be concluded that minor deviations from the chosen threshold, i.e., θ=0.01, cannot significantly

impact the overall performance of our algorithm, indicating that our selection of θ can be optimal

and reliable. At this threshold, the number of iterations is about 88, and the state accuracy value

has been obtained at about 98.12%. The variation of γ depicts the attacker’s interest in future

rewards (γ=0.95) instead of immediate rewards (γ=0.5). It can be seen that a discount factor near

1 assigns more weight to future rewards, encouraging the agent of the proposed iteration algorithm

to prioritize long-term rewards, leading to more numerical values for states. Moreover, when the

adversaries prefer one term of the reward function over the other terms, the related coefficient, i.e.,

{α1, α2, α3}, can be initialized to one in the related term. Based on the results from Table. 5.4, this

security metric can quantify the impacts of attacks originating from the EV ecosystem by calculating

a value for each state resembling the compromised parts of EV ecosystems. For example, in this

table, for γ=0.95, the value function (V ∗) for the first state (s1) and next optimal adversarial action

(π∗) are obtained as 37.1798 and a24, respectively. It means that the second action after this state

to achieve the highest cumulative reward function and severe impacts on the system operation is

a24. By taking this action, the attackers compromise the CSMS and move to a new state, i.e., s15.

The next adversarial action for the state s15 is a37, which means targeting the firmware repository

of EVCSs in the Zone5 of the IEEE 33-bus system and moving to state s24. The value function

of this state is 42.3675, and the next adversarial action is a38. This action means adversaries take

control of EVCS in the Zone5 of the system and issue the charging-discharging commands. They

can stay in the state s25 for more severe impacts and continue these commands by taking action a39.
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With the definition of another value for the discount factor, the value function for each state and

the next adversarial action may differ. In the following, the developed security metric is evaluated

in the presence of multiple contingencies, where adversaries can manipulate more than one zone in

the distribution network by compromising 25% of the total loads as EV loads. In this situation, the

number of states and adversarial actions for the customized MDP tree will increase to 192 and 316,

respectively. The related MDP tree generated through Algorithm 6 has been shown in Fig. 5.14.

The result of resolving this MDP tree by Algorithm 7 has been summarized in Table. 5.5. It can

be concluded from this table that multiple contingencies put the IEEE 33-bus system at more risk

from several vulnerabilities in the EV ecosystem, and the value of each state is greater than a single

contingency MDP tree that was previously developed. Moreover, adversaries can select more states

of the MDP tree to cause severe impacts on the operation of the distribution network.

Comparative Analysis with Existing Security Metrics: The performance of our metric can also

be compared with the SOCCA metric [76] to represent a numerical analysis and highlight the ad-

vantages of the proposed security metric. In the SOCCA metric, the reward function is based on

overloaded transmission lines after cyber attacks. First, in SOCCA’s reward function, it is impossi-

ble to distinguish between overloading originating from peak loads or manipulated charging stations

due to the lack of a framework to report compromised EVCSs. As a result, SOCCA fails to quantify

the security posture of the distribution network during EVCS manipulation. Moreover, the calcu-

lated value of states in the MDP tree obtained from SOCCA’s reward function for the EV ecosystem

integrated into distribution networks is lower than our proposed security metric. This can lead to

confusion in the interpretation of states during the design of the monitoring security system and

DSOs. For example, the SOCCA’s reward function calculates the first state value (s1) as 1.6084,

compared to the value state obtained from our security metric which is 37.1789.

Designing Monitoring Framework: The customized deep CNN can be trained on a total data

sample of 7,775, which is generally collected from resolving different MDP trees using the policy

iteration algorithm. The previous three conditions can give meaningful margins for the security

status of distribution networks under EV-based attacks. To assign secure and alarm labels, the

106



5 10 15 20 25 30

Bus Number (Single Contingency)

0.95

0.96

0.97

0.98

0.99

1

1.01

1.02

1.03

1.04

1.05

V
o
la

te
g
 (

p
.u

.)

Without Attack

Zone
5

Zone
4

Zone
1

Zone
2

Zone
3

13 14 15 16 17 18

0.96

0.97

0.98

Figure 5.15: Voltage deviation at different buses of the IEEE 33-bus system under cyber attacks on

EV loads in single zones.
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Figure 5.16: Voltage deviation at different buses of the IEEE 33-bus system under cyber attacks on

EV loads in multiple zones.

voltage deviation at different buses of IEEE 33-bus for five zones and critical multiple zones after

manipulating 25% of EV loads has been illustrated in Fig. 5.15 and Fig. 5.16, respectively. It can be

concluded from Fig. 5.15 that targeting EVCSs in Zone5 among single contingencies can lead to the

most voltage deviation. Without manipulating EV loads, the nominal voltage of Bus 18 is 0.9770

p.u. If attackers can manipulate EV loads located in buses of Zone5, the bus voltage decreases

107



Table 5.6: Metrics for Trained Deep CNN Model

Approach Accuracy Precision Recall F-Score

Multi-layer deep CNN 98.314 94.079 92.556 93.311

SVM [65] 92.497 91.289 88.058 89.644

to 0.9570 p.u., leading to a deviation of 2.01%. From Fig. 5.16, among multiple contingencies,

manipulating EV loads in Zone1,2,3,4,5 can lead to the most voltage deviation. Also, manipulating

EV loads in 15 combinations of multiple contingencies, e.g., Zone1,5, Zone2,5, Zone3,5, Zone4,5,...,

Zone1,2,3,4,5, causes an unacceptable voltage deviation from its nominal value of more than 2.5%

at Bus 18. For example, without manipulating EV loads, the nominal voltage of Bus 18 is 0.9770

p.u. When adversaries manipulate the EV loads of buses in both Zone2 and Zone5, this voltage

decreases to 0.9525 p.u., leading to a deviation of 2.51%. Moreover, the percentage of manipulated

EVCS to total EVCS (40%) and the total active power loss (21.2%) after manipulating EV loads in

these zones are bigger than their thresholds. As such, this situation can be labeled as an alarm for

the offline training process. For Zone1,2,3,4,5, this voltage also decreases to 0.9454 p.u., which leads

to a deviation of 3.28%, labeling it an alarm situation. To train the CNN model in an offline manner,

the training, validation, and testing data sets are partitioned by 80%, 10%, and 10% of the total data

sets, respectively. The cross-entropy loss and accuracy plots of training and validation data sets have

been illustrated in Fig. 5.17 for the IEEE 33-bus distribution network. It can be observed that the

cross-entropy loss function decreases gradually in the initial epochs of the validation process, while

the binary classification accuracy plot increases during training. This behaviour means the CNN

model can deliver acceptable performance in providing information about the security status of the

power grid for DSOs during EV-cyber attacks. After offline training of the developed deep CNN

model, its performance can also be compared with support vector machine (SVM) [65] using several

criteria, e.g., accuracy, precision, recall, and the F-score that has been calculated in Table. 5.6. The

proposed deep CNN model provides higher accuracy in giving information about the security status

of the distribution network. The main reason is that multiple convolutional layers, along with a deep

CNN structure, can extract better features for classification, making this framework a proper tool

for applications of security status monitoring.
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Table 5.8: Security Metric Evaluation for IEEE 141-bus with γ=0.95

State V ∗ π∗ State V ∗ π∗ State V ∗ π∗ State V ∗ π∗

s1 65.4941 a48 s19 72.8440 a33 s37 72.7240 a63 s55 74.6808 a91

s2 69.4562 a2 s20 72.7240 a35 s38 71.4621 a65 s56 75.1900 a92

s3 74.2037 a7 s21 71.9960 a37 s39 71.9960 a66 s57 72.3507 a94

s4 73.0740 a4 s22 69.8300 a39 s40 69.3122 a68 s58 72.8440 a95

s5 72.4400 a6 s23 70.6500 a41 s41 69.8300 a69 s59 72.2315 a97

s6 75.1900 a8 s24 70.8300 a43 s42 70.1261 a71 s60 72.7240 a98

s7 72.8440 a10 s25 70.3900 a45 s43 70.6500 a72 s61 71.5084 a100

s8 72.7240 a12 s26 73.4640 a47 s44 70.3047 a74 s62 71.9960 a101

s9 71.9960 a14 s27 69.9708 a55 s45 70.8300 a75 s63 69.3571 a103

s10 69.8300 a16 s28 72.9192 a50 s46 69.8680 a77 s64 69.8300 a104

s11 70.6500 a18 s29 73.4640 a51 s47 70.3900 a78 s65 70.1716 a106

s12 70.8300 a20 s30 71.9028 a53 s48 72.9192 a80 s66 70.6500 a107

s13 70.3900 a22 s31 72.4400 a54 s49 73.4640 a81 s67 70.3503 a109

s14 0 a1 s32 74.6324 a56 s50 69.5269 a90 s68 70.8300 a110

s15 74.2037 a30 s33 75.1900 a57 s51 72.5791 a85 s69 3.4957 a112

s16 73.0740 a27 s34 72.3038 a59 s52 73.0740 a86 s70 0 a1

s17 72.4400 a29 s35 72.8440 a60 s53 71.9494 a88 s71 72.9665 a115

s18 75.1900 a31 s36 72.1847 a62 s54 72.4400 a89 s72 73.4640 a116

in Fig. 5.19. It is also assumed that 10% of the total load in each bus is EV loads that attackers

can maliciously target. To allocate the probabilities for each branch of the MDP tree, the proposed

CVSS V3.1 is used, as shown by the red numerical values in Fig. 5.19. Furthermore, the voltage

deviation of different buses, active power loss, and the number of compromised charging stations

are measured in the DSO control center, and the related reward function for each adversarial action

can be calculated as shown in Table. 5.7. The generated MDP tree for the 141-bus network can

be resolved using the modified policy iteration algorithm with γ=0.95. The results obtained for

each state’s value and optimal adversarial action can be summarized in Table 5.8. According to this

table, the value of the first state is 65.4941, and the best adversarial action is a48. It means that if

adversaries take action a48, they must compromise the CSMS of the EV ecosystem and move toward

state s27. The value of this state is 69.9708, and the best action that can be taken to cause a severe

impact will be a55. With this action, adversaries could compromise the firmware repository of the

EV ecosystem in the third zone of the 141-bus distribution network and access to state s32. In this

state, the best action is a56, which means targeting charging stations in this zone and manipulating

the EV loads in this zone. Finally, they can stay in the state s33 and repeat their action to have the

most severe impact. For two states, i.e., s14 and s70, the state value is calculated as 0 with the next

adversarial action a1. It means that the best strategy for the attacker is to return to state s1 and take

action a48.
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Table 5.9: Security Metric Evaluation for Dynamic 69-bus Distribution Network (Five Loops)

State V ∗ π∗ State V ∗ π∗ State V ∗ π∗ State V ∗ π∗ State V ∗ π∗ State V ∗ π∗ State V ∗ π∗

s1 45.1263 a196 s43 44.9870 a82 s85 47.4298 a165 s127 28.6002 a235 s169 47.8952 a298 s211 45.0098 a362 s253 29.2787 a425

s2 44.3698 a2 s44 50.9624 a84 s86 47.8952 a167 s128 45.0789 a237 s170 43.1578 a300 s212 45.1216 a363 s254 29.5587 a426

s3 51.1598 a83 s45 44.2597 a86 s87 43.5102 a169 s129 45.3902 a238 s171 43.5102 a301 s213 29.1220 a365 s255 29.7138 a428

s4 29.3671 a4 s46 46.5703 a88 s88 29.5071 a171 s130 29.4428 a240 s172 29.4110 a303 s214 29.6987 a366 s256 29.9300 a429

s5 43.1574 a6 s47 44.1890 a90 s89 29.6631 a173 s131 29.7418 a241 s173 29.5071 a304 s215 29.3346 a368 s257 42.8907 a431

s6 43.9658 a8 s48 42.9348 a92 s90 43.2078 a175 s132 43.3389 a243 s174 29.2281 a306 s216 29.6988 a369 s258 43.0278 a432

s7 44.0025 a10 s49 42.9966 a94 s91 42.8118 a177 s133 43.8564 a244 s175 29.6631 a307 s217 43.0720 a371 s259 42.7207 a434

s8 43.9812 a12 s50 43.5648 a96 s92 44.9870 a179 s134 42.4412 a246 s176 43.0099 a309 s218 43.2687 a372 s260 42.9287 a435

s9 45.1215 a14 s51 43.2080 a98 s93 50.9624 a181 s135 42.5701 a247 s177 43.2078 a310 s219 43.9661 a374 s261 43.7782 a437

s10 45.1216 a16 s52 51.1598 a180 s94 44.2597 a183 s136 42.0733 a249 s178 42.4579 a312 s220 44.2888 a375 s262 44.0213 a438

s11 29.6987 a18 s53 29.8971 a101 s95 46.5703 a185 s137 42.3399 a250 s179 42.8118 a313 s221 44.1045 a377 s263 47.1144 a440

s12 29.6988 a20 s54 43.1574 a103 s96 44.1890 a187 s138 42.8122 a252 s180 44.7712 a315 s222 44.2678 a378 s264 47.4298 a441

s13 43.2687 a22 s55 43.9658 a105 s97 42.9348 a189 s139 43.0189 a253 s181 44.9870 a316 s223 28.2789 a380 s265 47.7701 a443

s14 44.2888 a24 s56 44.0025 a107 s98 42.9966 a191 s140 42.8712 a255 s182 50.6007 a318 s224 28.6002 a381 s266 47.8952 a444

s15 44.2678 a26 s57 43.9812 a109 s99 43.5648 a193 s141 43.1009 a256 s183 50.9624 a319 s225 45.0789 a383 s267 43.1578 a446

s16 28.6002 a28 s58 45.1215 a111 s100 43.208 a195 s142 42.3317 a258 s184 44.0013 a321 s226 45.3902 a384 s268 43.5102 a447

s17 45.3902 a30 s59 45.1216 a113 s101 51.2489 a317 s143 42.6987 a259 s185 44.2597 a322 s227 29.4428 a386 s269 29.4110 a449

s18 29.7418 a32 s60 29.6987 a115 s102 28.9187 a198 s144 42.6668 a261 s186 46.4129 a324 s228 29.7418 a387 s270 29.5071 a450

s19 43.8564 a34 s61 29.6988 a117 s103 29.8971 a199 s145 42.9037 a262 s187 46.5703 a325 s229 43.3389 a389 s271 29.2281 a452

s20 42.5701 a36 s62 43.2687 a119 s104 43.0142 a201 s146 29.6129 a264 s188 43.9910 a327 s230 43.8564 a390 s272 29.6631 a453

s21 42.3399 a38 s63 44.2888 a121 s105 43.1574 a202 s147 29.9401 a265 s189 44.1890 a328 s231 42.4412 a392 s273 43.0099 a455

s22 43.0189 a40 s64 44.2678 a123 s106 43.2581 a204 s148 42.9100 a267 s190 42.7008 a330 s232 42.5701 a393 s274 43.2078 a456

s23 43.1009 a42 s65 28.6002 a125 s107 43.9658 a205 s149 43.1463 a268 s191 42.9348 a331 s233 42.0733 a395 s275 42.4579 a458

s24 42.6987 a44 s66 45.3902 a127 s108 43.8000 a207 s150 43.0789 a270 s192 42.8102 a333 s234 42.3399 a396 s276 42.8118 a459

s25 42.9037 a46 s67 29.7418 a129 s109 44.0025 a208 s151 43.2039 a271 s193 42.9966 a334 s235 42.8122 a398 s277 44.7712 a461

s26 29.9401 a48 s68 43.8564 a131 s110 43.7128 a210 s152 42.5518 a273 s194 43.3309 a336 s236 43.0189 a399 s278 44.9870 a462

s27 43.1463 a50 s69 42.5701 a133 s111 43.9812 a211 s153 42.8735 a274 s195 43.5648 a337 s237 42.8712 a401 s279 50.6007 a464

s28 43.2039 a52 s70 42.3399 a135 s112 45.1014 a213 s154 42.4403 a276 s196 43.1199 a339 s238 43.1009 a402 s280 50.9624 a465

s29 42.8735 a54 s71 43.0189 a137 s113 45.1215 a214 s155 42.7203 a277 s197 43.2080 a340 s239 42.3317 a404 s281 44.0013 a467

s30 42.7203 a56 s72 43.1009 a139 s114 45.0098 a216 s156 29.2787 a279 s198 51.1007 a463 s240 42.6987 a405 s282 44.2597 a468

s31 29.5587 a58 s73 42.6987 a141 s115 45.1216 a217 s157 29.5587 a280 s199 28.9187 S344 s241 42.6668 a407 s283 46.4129 a470

s32 29.9300 a60 s74 42.9037 a143 s116 29.1220 a219 s158 29.7138 a282 s200 29.8971 a345 s242 42.9037 a408 s284 46.5703 a471

s33 43.0278 a62 s75 29.9401 a145 s117 29.6987 a220 s159 29.9300 a283 s201 43.0142 a347 s243 29.6129 a410 s285 43.9910 a473

s34 42.9287 a64 s76 43.1463 a147 s118 29.3346 a222 s160 42.8907 a285 s202 43.1574 a348 s244 29.9401 a411 s286 44.1890 a474

s35 44.0213 a66 s77 43.2039 a149 s119 29.6988 a223 s161 43.0278 a286 s203 43.2581 a350 s245 42.9100 a413 s287 42.7008 a476

s36 47.4298 a68 s78 42.8735 a151 s120 43.0720 a225 s162 42.7207 a288 s204 43.9658 a351 s246 43.1463 a414 s288 42.9348 a477

s37 47.8952 a70 s79 42.7203 a153 s121 43.2687 a226 s163 42.9287 a289 s205 43.8000 a353 s247 43.0789 a416 s289 42.8102 a479

s38 43.5102 a72 s80 29.5587 a155 s122 43.9661 a228 s164 43.7782 a291 s206 44.0025 a354 s248 43.2039 a417 s290 42.9966 a480

s39 29.5071 a74 s81 29.9300 a157 s123 44.2888 a229 s165 44.0213 a292 s207 43.7128 a356 s249 42.5518 a419 s291 43.3309 a482

s40 29.6631 a76 s82 43.0278 a159 s124 44.1045 a231 s166 47.1144 a294 s208 43.9812 a357 s250 42.8735 a420 s292 43.5648 a483

s41 43.2078 a78 s83 42.9287 a161 s125 44.2678 a232 s167 47.4298 a295 s209 45.1014 a359 s251 42.4403 a422 s293 43.1199 a485

s42 42.8118 a80 s84 44.0213 a163 s126 28.2789 a234 s168 47.7701 a297 s210 45.1215 a360 s252 42.7203 a423 s294 43.2080 a486

cause a single contingency in the developed cyber-physical model. To achieve this aim, 25% of

the total loads are defined as accessible EV loads for adversaries that can be manipulated in each

load bus. First, the number of manipulated charging stations is reported using the OCPP logs on

the client side of charging stations. Then, the DSO conducted a power flow analysis to extract the

voltage deviation for each bus and the excessive active power loss, calculating the related items of

the reward function. Based on the attacker’s success rate and obtained reward functions, we can

generate the MDP tree for a single contingency and resolve it to quantify the security status of the

IEEE 69-bus distribution network in the presence of dynamic sections based on close situations

of five tie-switches. Considering four well-known vulnerabilities in the EV ecosystem, an MDP

tree with 294 states and 486 actions can be obtained for targeting EV loads in single buses during

dynamic changes in the distribution network, as shown in Fig. 5.21. The generated MDP tree is

resolved using the modified policy iteration algorithm with the assumption of γ=0.95, and the results
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Table 5.10: Security Metric Evaluation for Dynamic 69-bus Distribution Network (Three Loops)

State V ∗ π∗ State V ∗ π∗ State V ∗ π∗ State V ∗ π∗ State V ∗ π∗ State V ∗ π∗ State V ∗ π∗

s1 43.1317 a196 s43 42.9986 a82 s85 45.3334 a165 s127 27.3361 a235 s169 45.7782 a298 s211 43.0204 a362 s253 27.9846 a425

s2 42.4087 a2 s44 48.7099 a84 s86 45.7782 a167 s128 43.0864 a237 s170 41.2502 a300 s212 43.1272 a363 s254 28.2522 a426

s3 48.8985 a83 s45 42.3034 a86 s87 41.5870 a169 s129 43.3840 a238 s171 41.5870 a301 s213 27.8348 a365 s255 28.4005 a428

s4 28.0690 a4 s46 44.5119 a88 s88 28.2029 a171 s130 28.1414 a240 s172 28.1110 a303 s214 28.3860 a366 s256 28.6071 a429

s5 41.2498 a6 s47 42.2358 a90 s89 28.3520 a173 s131 28.4272 a241 s173 28.2029 a304 s215 28.0380 a368 s257 40.9949 a431

s6 42.0225 a8 s48 41.0371 a92 s90 41.2980 a175 s132 41.4233 a243 s174 27.9362 a306 s216 28.3861 a369 s258 41.1260 a432

s7 42.0576 a10 s49 41.0962 a94 s91 40.9195 a177 s133 41.9179 a244 s175 28.3520 a307 s217 41.1682 a371 s259 40.8324 a434

s8 42.0372 a12 s50 41.6392 a96 s92 42.9986 a179 s134 40.5653 a246 s176 41.1089 a309 s218 41.3562 a372 s260 41.0313 a435

s9 43.1271 a14 s51 41.2982 a98 s93 48.7099 a181 s135 40.6885 a247 s177 41.2980 a310 s219 42.0228 a374 s261 41.8432 a437

s10 43.1272 a16 s52 48.8985 a180 s94 42.3034 a183 s136 40.2137 a249 s178 40.5813 a312 s220 42.3312 a375 s262 42.0756 a438

s11 28.3860 a18 s53 28.5756 a101 s95 44.5119 a185 s137 40.4685 a250 s179 40.9195 a313 s221 42.1551 a377 s263 45.0319 a440

s12 28.3861 a20 s54 41.2498 a103 s96 42.2358 a187 s138 40.9199 a252 s180 42.7923 a315 s222 42.3112 a378 s264 45.3334 a441

s13 41.3562 a22 s55 42.0225 a105 s97 41.0371 a189 s139 41.1175 a253 s181 42.9986 a316 s223 27.0290 a380 s265 45.6587 a443

s14 42.3312 a24 s56 42.0576 a107 s98 41.0962 a191 s140 40.9763 a255 s182 48.3641 a318 s224 27.3361 a381 s266 45.7782 a444

s15 42.3112 a26 s57 42.0372 a109 s99 41.6392 a193 s141 41.1958 a256 s183 48.7099 a319 s225 43.0864 a383 s267 41.2502 a446

s16 27.3361 a28 s58 43.1271 a111 s100 41.2982 a195 s142 40.4606 a258 s184 42.0564 a321 s226 43.3840 a384 s268 41.5870 a447

s17 43.3840 a30 s59 43.1272 a113 s101 48.9837 a317 s143 40.8114 a259 s185 42.3034 a322 s227 28.1414 a386 s269 28.1110 a449

s18 28.4272 a32 s60 28.3860 a115 s102 27.6405 a198 s144 40.7809 a261 s186 44.3614 a324 s228 28.4272 a387 s270 28.2029 a450

s19 41.9179 a34 s61 28.3861 a117 s103 28.5756 a199 s145 41.0074 a262 s187 44.5119 a325 s229 41.4233 a389 s271 27.9362 a452

s20 40.6885 a36 s62 41.3562 a119 s104 41.1130 a201 s146 28.3040 a264 s188 42.0466 a327 s230 41.9179 a390 s272 28.3520 a453

s21 40.4685 a38 s63 42.3312 a121 s105 41.2498 a202 s147 28.6167 a265 s189 42.2358 a328 s231 40.5653 a392 s273 41.1089 a455

s22 41.1175 a40 s64 42.3112 a123 s106 41.3461 a204 s148 41.0134 a267 s190 40.8134 a330 s232 40.6885 a393 s274 41.2980 a456

s23 41.1958 a42 s65 27.3361 a125 s107 42.0225 a205 s149 41.2392 a268 s191 41.0371 a331 s233 40.2137 a395 s275 40.5813 a458

s24 40.8114 a44 s66 43.3840 a127 s108 41.8640 a207 s150 41.1748 a270 s192 40.9180 a333 s234 40.4685 a396 s276 40.9195 a459

s25 41.0074 a46 s67 28.4272 a129 s109 42.0576 a208 s151 41.2943 a271 s193 41.0962 a334 s235 40.9199 a398 s277 42.7923 a461

s26 28.6167 a48 s68 41.9179 a131 s110 41.7807 a210 s152 40.6710 a273 s194 41.4157 a336 s236 41.1175 a399 s278 42.9986 a462

s27 41.2392 a50 s69 40.6885 a133 s111 42.0372 a211 s153 40.9785 a274 s195 41.6392 a337 s237 40.9763 a401 s279 48.3641 a464

s28 41.2943 a52 s70 40.4685 a135 s112 43.1079 a213 s154 40.5644 a276 s196 41.2140 a339 s238 41.1958 a402 s280 48.7099 a465

s29 40.9785 a54 s71 41.1175 a137 s113 43.1271 a214 s155 40.8321 a277 s197 41.2982 a340 s239 40.4606 a404 s281 42.0564 a467

s30 40.8321 a56 s72 41.1958 a139 s114 43.0204 a216 s156 27.9846 a279 s198 48.8420 a463 s240 40.8114 a405 s282 42.3034 a468

s31 28.2522 a58 s73 40.8114 a141 s115 43.1272 a217 s157 28.2522 a280 s199 27.6405 S344 s241 40.7809 a407 s283 44.3614 a470

s32 28.6071 a60 s74 41.0074 a143 s116 27.8348 a219 s158 28.4005 a282 s200 28.5756 a345 s242 41.0074 a408 s284 44.5119 a471

s33 41.1260 a62 s75 28.6167 a145 s117 28.3860 a220 s159 28.6071 a283 s201 41.1130 a347 s243 28.3040 a410 s285 42.0466 a473

s34 41.0313 a64 s76 41.2392 a147 s118 28.0380 a222 s160 40.9949 a285 s202 41.2498 a348 s244 28.6167 a411 s286 42.2358 a474

s35 42.0756 a66 s77 41.2943 a149 s119 28.3861 a223 s161 41.1260 a286 s203 41.3461 a350 s245 41.0134 a413 s287 40.8134 a476

s36 45.3334 a68 s78 40.9785 a151 s120 41.1682 a225 s162 40.8324 a288 s204 42.0225 a351 s246 41.2392 a414 s288 41.0371 a477

s37 45.7782 a70 s79 40.8321 a153 s121 41.3562 a226 s163 41.0313 a289 s205 41.8640 a353 s247 41.1748 a416 s289 40.9180 a479

s38 41.5870 a72 s80 28.2522 a155 s122 42.0228 a228 s164 41.8432 a291 s206 42.0576 a354 s248 41.2943 a417 s290 41.0962 a480

s39 28.2029 a74 s81 28.6071 a157 s123 42.3312 a229 s165 42.0756 a292 s207 41.7807 a356 s249 40.6710 a419 s291 41.4157 a482

s40 28.3520 a76 s82 41.1260 a159 s124 42.1551 a231 s166 45.0319 a294 s208 42.0372 a357 s250 40.9785 a420 s292 41.6392 a483

s41 41.2980 a78 s83 41.0313 a161 s125 42.3112 a232 s167 45.3334 a295 s209 43.1079 a359 s251 40.5644 a422 s293 41.2140 a485

s42 40.9195 a80 s84 42.0756 a163 s126 27.0290 a234 s168 45.6587 a297 s210 43.1271 a360 s252 40.8321 a423 s294 41.2982 a486

obtained for each state’s value and optimal adversarial action are summarized in Table 5.9. Based

on this table, the value of the first state, i.e., s1, can be defined as 45.1263, and the best adversarial

action is a196. It means that if adversaries take action a196, they can compromise the CSMS of the

EV ecosystem and move toward a new state s101. The value of this state is 51.2489, and the next

effective adversarial action that can be taken to cause a severe impact on the operation of the power

grid will be a317. With this action, adversaries could compromise the firmware repository of the

EV ecosystem in Bus 61 of the IEEE 69-bus distribution network and access to state s182 even if

the topology of the distribution network changes due to the operation of tie-switches. In this state,

the best action is a318, which means targeting charging stations in this load bus, manipulating their

EV loads, and moving to the final state, i.e., s183. Finally, they can stay in the state s183 and repeat

their action to have the most severe impact. As another example, the situation of the mentioned

tie-switches changes where two of them are open between buses (11, 43) and (50, 59), and the three
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Algorithm 8: MDP for Network with Dynamic Sections

Identify: Number of tie-switches in distribution network (Nsw)

Determine: Number of load buses in distribution network (NL)

Calculate: Combination of different contingencies (2NL − 1)

Initialize: Number of attackers’ access points in ecosystem (nv)

for 0 : 1 : 2Nsw do
Assume: 0 : when all tie-switches are open

Assume: 2Nsw : when all tie-switches are close

Create: Initial state (ϕ) in MDP tree

for i = 1 : 1 : nv do

for z = 1 : 1 : 2NL − 1 do

if (i is an attacker’s access point) then
Build a new reachable state si

for j as a compromised component do

if (i is not connected to j) then
Continue Serach for new connection

end

if (i and j connected) then
Build new state sj Define a transition between si and sj

Determine Pa(si, sj) using CVSS

Calculate RFa(si, sj) using (16)

Continue for new connection with sr Build new state and transition among them

end

end

end

end

end

end

remaining tie-switches are close, as illustrated in Fig. 5.22. For these dynamic changes in the IEEE

69-bus with three loops ({Loop 1, Loop 2, Loop 3}), the related MDP tree can also be generated

and resolved, and the obtained results can be summarized, as shown in Table 5.10. This process can

be repeated for different combinations of open or close tie-switches (i.e., 2Nsw ) to produce various

dynamic sections of a distribution network and investigate all probable situations for generating

their related MDP trees. To achieve this aim, Algorithm 8 has been provided to show how state

values can be calculated for a wide range of MDP trees when dynamic sections exist in the topology

of distribution networks.

In the final stage, we have trained the CNN model for numerous MDP trees that have been

resolved for the IEEE 69-bus network, taking into account the dynamic sections created by changes

in the distribution network’s topology. In other words, we can generate MDP trees and identify all
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Figure 5.23: Voltage deviation at different buses of IEEE-69 bus distribution network with dynamic

sections.
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Figure 5.24: Voltage deviation at different buses of IEEE 69-bus distribution network with dynamic

sections.

labels to classify the system’s security status into secure and alarm situations based on Table 5.1.

To clarify, the voltage deviation at buses in the IEEE 69-bus system when all tie-switches are closed

and the EV ecosystem is under cyber attacks on EV loads for single buses has been illustrated

in Fig. 5.23. This figure provides a comparison between under-attack load buses and the normal

operation of the distribution network. Manipulating EV loads in several single-load buses, e.g.,

Bus 61, Bus 64, Bus 49, and Bus 50, leads to an unacceptable voltage deviation from its nominal

value of more than a 2.5% at the nominated Bus 65. Using three conditions in Table 5.1, we
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can define the mentioned situations as alarm labels, while other single buses are labeled as secure

situations. Furthermore, the voltage deviation after manipulating several load buses at the same

time (i.e., multiple contingencies) in the proposed network has been illustrated in Fig. 5.24. Since

manipulating EV loads in several combinations, e.g., Bus {49, 50, 46}, Bus {61, 64}, Bus {50, 12},

Bus {59, 11}, Bus {8, 7, 18, 29, 64}, can lead to a voltage deviation of more than 2.5%[92], these

situations can also be labeled as alarms in the IEEE 69-bus distribution network. For example,

without manipulating EV loads, the nominal voltage of the nominated Bus 65 is 0.9315 p.u. When

adversaries manipulate the EV loads of buses in both Bus 61 and Bus 64, this voltage decreases to

0.8920 p.u., leading to a deviation of 4.24%. For training this CNN model in an offline manner, the

training, validation, and testing data sets are partitioned by 80%, 10%, and 10% of the total data sets,

respectively. The cross-entropy loss and accuracy plots of training and validation data sets have been

illustrated in Fig. 5.25 for the IEEE 69-bus distribution network. It can be observed that the cross-

entropy loss function decreases gradually in the initial epochs of the validation process, while the

binary classification accuracy plot increases during training. This behavior means the CNN model

can deliver acceptable performance in providing information about the security status of the power

grid for DSOs during EV-cyber attacks. To show the trained CNN model’s performance during

classification, evaluation metrics, i.e., accuracy, precision, recall, and F-score, can be calculated as

98.629 %, 97.776 %, 93.120 %, and 95.391 %, respectively.

As a last point, when adversaries manipulate EVCSs in load buses of distribution networks,

it can cause different impacts on the voltage profiles and equivalent power losses. For instance,

greater voltage deviations can be observed at the ends of the laterals of each section. This is primar-

ily because the current has to travel the entire distance to the substation, passing through numerous

lines, impacting the voltage at other buses, and resulting in more line power losses. However, if

adversaries compromise the same EV loads in buses connected to the main feeder, changes in volt-

age and active power loss are minimal. In the IEEE 33-bus and IEEE 69-bus distribution networks,

we can see that manipulating charging stations has the most severe impacts on Bus 18 and Bus 65,

respectively [103].

118



0 200 400 600 800 1000
Epoch Number

0

0.5

1

1.5

L
o
ss

20

40

60

80

100

A
cc

u
ra

cy
 (

%
)

Loss-Training

Loss-Validation

Acuuracy-Training

Acuuracy-Validation

Figure 5.25: Training and validation accuracy and loss for the deep CNN.

5.7 Conclusion

In this chapter, first, cyber vulnerabilities in EV ecosystems that could be maliciously exploited

to impact the normal operation of distribution networks were studied, and several attack graphs were

generated to analyze compromised components of this ecosystem and related adversarial actions.

Then, a security metric was developed based on a Markov decision process (MDP) tree. In this

tree, a common vulnerability scoring system and a comprehensive reward function are developed to

assign the probabilities of adversaries’ success rates and rewards for sabotaging the operation of the

distribution network, respectively. Finally, this MDP tree is solved by the modified policy iteration

algorithm to calculate the value of each state and related adversarial action. This metric showed the

detrimental impacts of EV-based attacks can be exposed in the form of voltage deviations, excessive

active power loss, and the unavailability of EVCSs for EV users. Finally, a deep CNN was trained

based on a set of different results from the MDP trees to infer the security status of the system,

i.e., secure and alarm situations. Since the topology of the distribution network may change due

to multiple switching scenarios, a supplementary strategy has also been introduced to calculate our

security metric and update the security monitoring system in the looped IEEE 69-bus distribution

network. This metric was evaluated under a testbed that integrated the cyber layers of the EV

ecosystem in the virtual sphere (vSphere) with a real-time model of distribution networks in OPAL-

RT 5650.
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Chapter 6

Designing a Security Metric for

EV-based Load-altering Attacks in

Transmission Systems

6.1 Motivation

Due to their cyber vulnerabilities, the increasing integration of electric vehicles (EVs) and their

related electric vehicle supply equipment (EVSE) makes power grids prone to a variety of cyber

attacks. Among possible threats, adversaries can observe frequency measurements and alter the

consumption of EVs accordingly, creating an EV-based load-altering attack (EV-LAA). On this

basis, in this chapter, research uses the measurements of the transmission grid and information on

its cyber layer to derive a security metric that can be used for diagnosis and condition monitoring of

the transmission grid’s security state. First, common vulnerabilities in EV ecosystems are analyzed

to devise related attack graphs. Afterward, a Markov decision process (MDP) tree is established

based on the obtained attack graphs to display the possible attacker’s actions and their detrimental

consequences. In this MDP, to calculate the probabilities of adversaries’ success in each branch, a

customized common vulnerability scoring system (CVSS) is developed. Furthermore, control input

and measurement signals are used to identify the transmission systems’ model. Using this model,
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the damping ratio, controllability, and observability of low-damping modes, as well as the number of

compromised charging stations, can be obtained for calculating the terms of a reward function. The

generated MDP tree is resolved by the Epsilon-Greedy Q-learning algorithm to calculate the value

of each state in the MDP tree and the related optimal adversarial action. This metric is integrated

into a back propagation neural network (BPNN) to provide a security monitoring framework for

attacks originating from the EV ecosystem. The security monitoring framework is evaluated on

a testbed to demonstrate its usefulness in quantifying the security status in the case of EV-LAAs.

This testbed consists of a virtual sphere (vSphere) of an EV ecosystem with the New England 39-bus

transmission system simulated in a real-time simulator (RTS).

6.2 Contribution

According to our studies in this area, we realized that exiting generic metrics developed for

transmission systems do not account for the unique vulnerabilities of cyber layers in the EV ecosys-

tem that can be maliciously exploited to launch EV-LAAs, impacting the frequency stability of

transmission systems. On this basis, these metrics cannot be applied to transmission systems inte-

grated with EV ecosystems, and a new security metric must be designed to investigate the impact of

compromising EV loads on transmission systems. As a result, this chapter develops a security met-

ric to quantify the security status of the transmission system in the case of EV-LAAs. In this type

of attack, attackers measure frequency signals and manipulate EV loads periodically to cause fre-

quency instability. To achieve this aim, first, potential vulnerabilities in EV ecosystems are studied

to devise related attack graphs. An MDP tree is established based on the obtained attack graphs to

display the possible attacker’s actions and their consequences on the stability of power grids. To cal-

culate the probabilities of adversaries’ success in branches of the MDP tree, a common vulnerability

scoring system (CVSS) is developed. This scoring system is based on real features of vulnerabil-

ities reported in the National Vulnerability Database (NVD) concerning the EV ecosystem. Con-

trol input and output measurement signals can be employed to estimate the transmission system’s

state-space model using the system identification approach. Using this approach, the damping ra-

tio, controllability, and observability of low-damping modes can be extracted. Another framework
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is also designed based on OCPP logs of charging stations to report the number of compromised

charging stations in each load bus of the power grid. Since EV-LAAs can transfer low damping

modes of the system from a stable to an unstable area of the s-plane, this ratio can be defined in

the formulation of the reward function. Moreover, launching EV-LAAs from a different load bus

using a specific measurement signal, i.e., the rotor speed deviation of synchronous generators, can

cause different impacts on power grid stability. As such, the observability and controllability of

low-damping modes for different attack vectors and measurement signals are also added as new

terms to the reward function. Finally, the generated MDP tree is resolved by the Epsilon-Greedy

Q-learning algorithm to calculate the value of each state in the MDP tree and the related optimal

adversarial action. The advantage of this algorithm is its effectiveness in balancing exploration and

exploitation, making it a broadly used technique in reinforcement learning applications. This secu-

rity metric can be integrated into a back propagation neural network (BPNN) to provide a security

monitoring framework when cyber attacks originating from the EV ecosystem occur. To demon-

strate the usefulness of the proposed security metric in quantifying the security status, EV-LAAs

are applied to the 39-bus New England transmission system that is implemented in the real-time

simulator (RTS). In summary, the main contributions of this paper can be summarized as follows:

(1) Investigating cyber vulnerabilities in EV ecosystems and obtaining attack graphs to analyze

the impacts of EV-LAAs on the stability of transmission systems;

(2) Developing a security metric that quantifies the security posture of transmission systems un-

der EV-LAAs using an MDP tree. In this MDP tree, a customized CVSS is deployed to assign

probabilities of adversaries’ success in launching EV-LAAs. A reward function is also formu-

lated based on the damping ratio of low damping modes, the controllability and observability

of these modes for different attack vectors, and measurement signals in the reward function.

The number of compromised charging stations in load buses is also considered in this reward

function;

(3) Resolving the customized MDP tree using a reinforcement learning method, i.e., the Epsilon-

Greedy Q-learning algorithm, to quantify the security status of transmission systems under
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EV-LAAs. The proposed EV ecosystem and the transmission system are simulated in the vir-

tual sphere (vSphere) and the real-time simulator (OPAL-RT 5650), respectively, to demon-

strate security metric usefulness in quantifying the security status during such attacks.

(4) A BPNN is trained based on the calculated state values of different MDP trees to develop a

security monitoring framework and provide information about the security status of transmis-

sion systems. The robustness of the monitoring system is evaluated against noisy measure-

ment signals, missing data, and outlier data.

6.3 Transmission System under EV-LAAs

A transmission system with total buses, i.e., N = NG ∪NL can be studied, where NG and NL

are the numbers of generator buses and load buses, respectively. Using linear swing equations, the

synchronous generator dynamics at each generator bus (i ∈ NG) can be modeled as follows[104]:

dδi

dt
= δ̇i = ωi (100)

2HG
i

dωi

dt
= 2HG

i ω̇i = PMi −DG
i ωi − PGi (101)

where ωi, H
G
i , and DG

i are referred to as the rotor speed deviation of a generator, inertia constant,

and damping coefficient, respectively. The PG
i is power injected by a synchronous generator at bus

i that can be calculated using power flow equations:

PGi =
∑

j∈NG

Yij(δi − δj) +
∑

j∈NL

Yij(δi − θj) (102)

where δi and δj are phase angles at the i-th and j-th generator bus, and θj-th is referred to as

the phase angle of the j load bus. Yij is the transmission line’s admittance between buses i and

j. Furthermore, PM
i is the mechanical power of the synchronous generator at bus i that can be

calculated as follows:

PMi = −KP
i ωi −KI

i

∫

ωidt (103)

In transmission systems, uncontrollable and controllable but frequency-insensitive loads can be

shown by PL
i . Moreover, controllable and frequency-sensitive loads can be expressed using the

−DL
i θ̇i. On this basis, for each load bus (i ∈ NL), load flow equations can be summarized as
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follows [105]:

−DL
i θ̇i − PLi =

∑

j∈NG

Yij(θi − δj) +
∑

j∈NL

Yij(θi − θj) (104)

Finally, the state-space model of the system is defined by the combination of (100)-(104):







ẋ(t) = Ax(t) +Bu(t)

∆ωG = Cx(t)
(105)

where x(t) = [ δ θ ω ]T is the state variable of the power grid, and u(t) = PL is an input vector

that consists of power consumption of all load buses. Matrix A and B can be defined as follows:

A =











I 0 0

0 (DL)
−1

0

0 0 −(MG)
−1











×











0 0 I

Y LG Y LL 0

KI + Y GG Y GL KP +DG











, B =











0

(DL)
−1

0











(106)

where DL,MG,KI , and KP are diagonal matrices with proper dimensions. Y LG, Y LL, Y GG, and

Y GL are components of imaginary part of the admittance matrix:

Ybus =





Y GG Y GL

Y LG Y LL



 (107)

Generally, u(t) = PL can be divided into two parts: (i) EV loads that can be manipulated by

adversaries (PEV
i ) and (ii) secure part of loads or other normal loads (PS

i ) for a load bus:

PL
i = PEV

i + PS
i , i ∈ NL (108)

In EV-LAAs, it is supposed that adversaries can have access to measurement signals at the

generator bus (i ∈ NG), i.e., rotor speed deviation of generators, and launch an attack vector at

some nominated load buses (i ∈ NL) of the transmission system as follows:

∆P atck
i =

∑

j∈NG

−Katck
ij ∆ωj (109)

where Katck
ij is the coefficient of EV-LAAs, where adversaries measure the frequency deviation of

the generator (∆ωj) at bus j and compromise EV loads at nominated load bus i. When the attack
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vector ∆P atck
i is applied to transmission systems, it can cause the transfer of low-damping modes of

the system from stable to unstable area of the s-plane, leading to frequency instability [7, 106, 14].

6.4 MDP Tree Components for EV-LAAs

To establish an MDP tree to quantify the security posture of transmission systems under EV-

LAAs, potential vulnerabilities in EV ecosystems, discussed in Section 2.2, are defined as states of

the MDP tree, and attackers’ actions are considered as branches of this tree. The main aim of the

MDP tree is to show how adversaries can penetrate the cyber and physical layers of EV ecosys-

tems and disrupt the operation of power grids by taking several consecutive adversarial actions and

compromising charging stations. The MDP tree provides a mathematical framework to model cyber

attack paths, where decisions are partly randomized based on different potential attack vectors in

EV ecosystems and partly under the control and policy of attackers. Generally, an MDP tree in-

cludes a set of components, i.e., {S,A, RFa(s, s
′), Pa(s, s

′), γ}, that can be described as follows:

6.4.1 Set of States

A set of states in the MDP tree, that is shown by S , are physical or cyber components that can

be targeted by attackers to launch EV-LAAs with the aim of instability in transmission systems. For

example, the CSMS can be defined as an important state in the MDP tree, where adversaries can

start manipulating the cyber layers of the EV ecosystem and impact the operation of power grids.

Also, charging stations, which are compromised in a specific load bus of the transmission system,

are defined as final states in the MDP tree. These states can be linked together by meaningful

branches that can show attack propagation in the cyber-physical model and privileges obtained

through performing adversarial actions.

6.4.2 Set of Adversarial Actions

Adversaries may choose from a set of adversarial actions, which can be denoted asA. Exploring

known or zero-day vulnerabilities in cyber-physical models can be defined as adversarial actions.

Some techniques, e.g., MitM attacks or SQL injections, can be employed by intruders to gain access
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that for a set of consecutive coefficients, i.e., {Katck 1
ij ,Katck 2

ij ,Katck 3
ij , ...}, the location of low-

damping modes moves from the left side to the right side of the s-plane, leading to changes in the

damping ratio (ξ) of the low-damping modes. The ξmar is a margin value for the damping ratio of

the power grid’s modes that can be defined based on standards or TSO’s opinion [107].

Calculating Damping Ratio: System identification is a measurement-based approach to es-

timating the state-space model of dynamic systems from control input and output measurement

signals. The goal is to determine the parameters of a mathematical model that describes the power

grid’s behaviour. To achieve this aim, first, input data and output data for t = 1, 2, ..., Ns samples

can be collected for ∆ωG(t) and u(t) at each time step t. To represent the state-space model of the

system, the auto-regressive with exogenous inputs (ARX) strategy is used as follows [108]:

∆ωG(t) + a1∆ωG(t− 1) + ...+ ah∆ωG(t− h) =

b1u(t− 1) + ...+ blu(t− l) + e(t)
(110)

where a1,...,ah and b1,...,bl are model parameters and e(t) is the error function. For multiple time

steps, the regression problem can be defined as follows:

∆ω′
G = Φϕ+ E (111)

where ∆ω′

G is the actual output measurements for t from h+ 1 until Ns:

∆ω′
G =

[

∆ωG(h+ 1) .... ∆ωG(Ns)
]T

(112)

Also, the Φ matrix, which includes previous output and input values, can be used to form the

regression problem, as follows:

























−∆ωG(2) −∆ωG(1) u(2) u(1)

...
...

...
...

−∆ωG(h) −∆ωG(h− 1) u(l) u(l − 1)

...
...

...
...

−∆ωG(Ns − 1) −∆ωG(Ns − 2) u(Ns − 1) u(Ns − 2)

























(113)
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The ϕ is the vector of parameters that must be be estimated:

ϕ = [ a1 ... ah b1 ... bl ]T (114)

The E matrix also represents the difference between the actual measurements and the system

identification’s predictions. The main aim of this method is to minimize the sum of squared residu-

als:

J(ϕ) = ETE = (∆ω′
G − Φϕ)2 (115)

To calculate ϕ, we can minimize J(ϕ) by setting the gradient for ϕ to zero:

∂J(ϕ)

∂ϕ
= −2ΦT (∆ω′

G − Φϕ) = 0→ ΦTΦϕ = ΦT∆ω′
G (116)

Finally, we will obtain a solution for calculating the parameters of the system:

ϕ = (ΦTΦ)−1ΦT∆ω′
G (117)

In the following, the state-space model of the power grid, i.e., matrices A, B, C, and D, can be

calculated using canonical forms[108]. The modes of the system using the estimated state matrix,

i.e., A, can be calculated as follows:

det(λI −A) = σ ± j(2πf) (118)

Finally, the damping ratio for the system’s mode in the form of σ±j(2πf) is calculated accord-

ingly:

ξ = cos η =
−σ

√

σ2 + (2πf)2
(119)

where σ and 2πf are the real and imaginary parts of the system’s mode, respectively.

Calculating Controllability and Observability: Launching EV-LAAs from some load and

generator buses in the transmission systems compared to other buses might have different impacts

on the frequency excursion. As a result, adversaries might be more motivated to launch this attack

from specific load or generator buses of power grids [109]. From this perspective, controllability

and observability concepts are introduced to examine which input and output signals have a greater
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influence on low-damping modes of transmission systems. The controllability of a low-damping

mode, i.e., m, in the transmission system for a specific input signal (i.e., EV-LAA vector) at bus

p ∈ NL can be calculated using a geometric approach as follows [110]:

Ctrbm(p) =

∣

∣bTpΨm
∣

∣

∥Ψm∥
∥

∥bTp
∥

∥

, p ∈ NL (120)

where bp is the p-th column of the estimated matrix B using the proposed system identification and

Ψm is the left eigenvector of the proposed low-damping mode of the transmission system. Also,

superscript T , |.|, and ∥.∥ are referred to as the transpose operator, the modulus, and Euclidean

norms of a matrix, respectively. The observability of the low-damping mode, i.e., m, for a specific

output measurement signal (i.e., rotor speed deviation of synchronous generators) at generator bus

q ∈ NG can be calculated using a geometric approach as follows [110]:

Obsvm(q) =
|cqΦm|

∥Φm∥ ∥cq∥
, q ∈ NG (121)

where cq is the q-th row of the estimated matrix C and Φm is the right eigenvector of the proposed

low-damping mode of the transmission system. Finally, to show the impact of launching EV-LAAs

from different buses on the operation of the transmission system, two coefficients can be defined as

follows:

Ctrbm(p)
∑

k∈NL

Ctrbm(k)
,

Obsvm(q)
∑

k∈NG

Obsvm(k)
(122)

The first term represents the ratio of the controllability of a low-damping mode, m, for a load

bus, where an attack vector is implemented, to the summation of all load buses’ controllability

(k ∈ NL). The second term indicates the ratio of the observability of a low-damping mode, m, for a

nominated generator bus to the summation of all generator buses’ observability (k ∈ NG). It is im-

portant to say that the mentioned terms can be calculated based on system identification approaches

carried out in the TSO control center using control input and measurement output signals[10, 11].

Formulation of Reward Function: In summary, to consider the concerns of the TSO about

the stability and security issues of transmission systems, a reward function for each of the two

consecutive states (s,s′) after taking adversarial action a in the MDP tree, can be developed as
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Algorithm 9: MDP Tree Generator for Transmission System

Determine: Number of load buses in transmission system (NL)

Initialize: Number of vulnerabilities in EV ecosystem (Nv)

Create: Initial state (ϕ) in MDP tree

for h = 1 : 1 : Nv do

for z = 1 : 1 : NL do

if (h is an attacker’s access point) then
Build a new state sh

for r as a compromised component do

if (h is not connected to r) then
Continue Search for new connection

end

if (h and r connected) then
Build state sr Define a transition between sh and sr

Calculate RFa(sh, sr) using (123)

Assign Pa(sh, sr) using CVSS

Continue for new connection with sr

Build new state and transition among them Calcualte new RFa(s, s
′) and Pa(s, s

′)

Continue

end

end

end

end

end

penetrating the physical or cyber layers from the accessible state and taking several adversarial ac-

tions to gain control of the charging stations in a specific load bus of the transmission system and

launch EV-LAAs to cause frequency instability in the power grid. To generate this tree, Algorithm

9 has been developed to create logical connections between different states of the MDP tree and

consider transitions among these states. In this algorithm, the attacker’s access point can be defined

as an accessible state under sh. Afterward, a new reachable state (sr) can be searched in the attack

graph spaces where there is a logical connection between component r and compromised compo-

nent h, and adversaries can move from the previous state sh to new state sr. This new state can be

added to the tree starting from the attacker’s access point by using a new branch. Finally, for the

established branch between states sh and sr, the reward function RFa(sh, sr) can be calculated us-

ing (123), and the success probability of this transition Pa(sh, sr) is obtained through the proposed

CVSS. For more clarification, a branch of the developed MDP tree is illustrated in Fig. 6.3. As

such, it is assumed that a Mobile/web application can be selected as the accessible state (Mb) in the
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Algorithm 10: Epsilon-Greedy Q-Learning Algorithm for MDP Tree

Parameters: Learning rate: α, Discount factor: γ, Greedy exploration: ϵ

Outputs: A table including optimal state-action values: V (s), aopt

Initialize: Values of Q(s, a) randomly and Q(terminal, 0)→ 0

Calculate and Update: Q-value for each step in each episode

for Each episode do
Initialize state s ∈ S by resetting the environment

for each step in episode do
Choose adversarial action a ∈ A using epsilon-greedy policy

Take adversarial action a ∈ A from s ∈ S

Observe Pa(s, s
′)

Observe RFa(s, s
′) and s′ ∈ S

Calculate: (1− α).Qold(s, a) + ... α(RFa(s, s
′) +

∑

s′ Pa(s, s
′).maxa′Q(s′, a′))

Replace: Qnew(s, a) with the calculated number

Update: new state (s← s′)

While s ∈ S is not terminal state

end

end

transition probabilities in different branches of the proposed MDP tree, can be expressed as follows:

Qnew(s, a)← (1− α).Qold(s, a)+

α(RFa(s, s
′) +

∑

s′ Pa(s, s
′).maxa′Q(s′, a′))

(124)

where Qnew(s, a) and Qold(s, a) are the current and old versions of the state-action pair, respec-

tively. The term maxa′Q(s′, a′) is the maximum Q-value among possible actions in the next state

s′. Moreover, the term
∑

s′ Pa(s, s
′).maxa′Q(s′, a′) represents the expected future cumulative re-

ward, taking into account the probabilities of transitioning to different next states in the tree. The

term α is the learning rate that controls the weight given to the new information. To illustrate how

this approach can update the Q-value and calculate the value of each state and optimal adversarial

action in each step, Algorithm 10 has been summarized. Based on this algorithm, the agent first

takes action in the current state and observes the resulting immediate reward in the next state. Then,

it updates the Q-value for the current state-action pair using the update rule, where the transition

probabilities influence the computation of the expected future reward.

133









that helps operators use this metric effectively to detect attacks in real applications. To address this

issue, these state values pass through the well-trained BPNN to provide information about the se-

curity status of the transmission system. When a new potential vulnerability is identified in one of

the components of the EV ecosystem or a change in the power grid topology has been made, this

metric can be easily updated at the station level. This framework for monitoring the security status

of power grids has been illustrated in Fig. 6.5.

6.7 Simulation Results and Discussion

6.7.1 Co-simulation Platform of EV Ecosystem and Transmission Systems

A general schematic of the cyber and physical layers of the EV ecosystem integrated into a

transmission system, i.e., the 39-bus New England system, has been illustrated in Fig. 6.6. This lay-

out consists of the OPAL-RT 5650 as an RTS for simulating components of the transmission system

as well as a virtual sphere (vSphere) to show the interaction between different parts of this ecosys-

tem using Python software. The SCADA system of the transmission system based on IEC 61850

with the architecture of the developed security metric has been shown in Fig. 6.6. Based on the

proposed standard, three different levels, i.e., process, bay, and station, can be defined to design and

implement communication protocols for substation automation systems. At the process level, criti-

cal parameters such as voltage, current, and power flow across the network are collected to ensure

optimal performance and reliability. All measurement data (i.e., control inputs and output measure-

ment signals) can be collected through merging units (MUs) and remote terminal units (RTUs) and

transmitted to the upstream level[97]. At the bay level, protection and monitoring/control intelligent

electronics (IEDs) are widely used to facilitate a fast and efficient exchange of status information be-

tween bay-level devices for rapid decision-making and response to dynamic operational conditions.

Additionally, PMUs can measure real-time electrical signals on transmission lines and monitor volt-

age, current, frequency, and phase angle using the phasor data concentrator (PDC). According to

the IEEE C37.118 standard, the typical sample rates for PMUs range from 1 sample per cycle (e.g.,

60 samples per second). However, for our security metric, we need to have one sample per second

for both control input and output measurement signals to generate the proposed MDP tree. At the
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using the potential attack vectors discussed in Section 2.2. It is important to mention that this value

can be changeable based on the opinion of TSO, and our proposed security metric can quantify the

security of power grids under different penetration levels of EV loads in power grids. First, the

number of vulnerabilities in EV ecosystems and load buses in the 39-bus New England system is

assumed to be 4 and 19 (nV = 4, NL = 19), respectively. Then, Algorithm 9 is deployed to gen-

erate the related MDP tree and enumerate accessible states and transitions among states. To assign

the probabilities of adversaries’ success rates during launching EV-LAAs from the potential attack

vectors to the branches of the MDP tree, the CVSS is deployed based on the table shown in Fig. 5.1

(Chapter 5). Also, for each transition between the current and the subsequent state in this tree, the

value of the damping ratio, controllability, and observability of low-damping mode (i.e., -0.2 ± j

4.2) in the proposed power grid are calculated using system identification. Based on Algorithm 9

and considering four well-known vulnerabilities in the EV ecosystem, an MDP tree with 120 states

and 196 adversarial actions, as shown in Fig. 6.8, can be generated where adversaries manipulate

EV loads in all 19 load buses of the proposed transmission system and launch EV-LAAs. We have

provided two next sections to calculate the probabilities and reward function for each branch of the

generated MDP tree in detail, as follows:

Calculating Reward Functions: First, the number of EVCS compromised in each load bus is

reported using the framework that has already been developed in Fig. 5.4 (Chapter 5). As an ex-

ample, if adversaries compromise charging stations and issue malicious charging and discharg-

ing commands with a specific frequency, e.g., the frequency of the proposed low-damping mode

(fmode = 0.67 Hz), it can cause EV-LAAs that impact the stability of the power grid. The proposed

detector can determine this abnormal pattern in charging and discharging commands, as illustrated

in Fig. 6.9. Since this local detector will identify LAAs with different frequencies, e.g., the fre-

quency of low-damping modes, the proper observation window can be assigned in the range of 5

seconds. Finally, each branch’s reward function can be calculated using (123). For example, the lo-

cation of the low-damping mode after compromising 10% of EV loads and implementing EV-LAAs

in all 19 load buses of the New England transmission system has been illustrated in Fig. 6.10. It can

be observed that compromising EV loads at Bus 20 can have a more severe impact on the location
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Table 6.1: Calculating Reward function for Adversarial Actions

From s to s′ Action RFa(s, s
′) From s to s′ Action RFa(s, s

′)

s1 to s2 a1 0 s3 to s13 a21 1.4046

s2 to s3 a2 0 s3 to s14 a23 1.6009

s3 to s4 a3 0.8089 s3 to s15 a25 1.3246

s3 to s5 a5 0.9521 s3 to s16 a27 0.6871

s3 to s6 a7 0.4994 s3 to s17 a29 0.5574

s3 to s7 a9 0.6271 s3 to s18 a31 0.8964

s3 to s8 a11 0.1777 s3 to s19 a33 0.8404

s3 to s9 a13 1.0921 s3 to s20 a35 0.2111

s3 to s10 a15 1.3427 s3 to s21 a37 0.2088

s3 to s11 a17 0.5940 s3 to s22 a39 0.3410

s3 to s12 a19 2.5333 s1 to s23 a41 0

of low-damping mode, causing a large value of damping ratio (ξ) compared to other load buses in

the system. Moreover, the controllability and observability of the low-damping mode are illustrated

in Fig. 6.11 and Fig. 6.12, respectively. It can be concluded that if adversaries manipulate EV loads

at load Bus 20 and measure the rotor speed deviation signal at generator Bus 1, respectively, it can

cause the highest values of observability and controllability of this low-damping mode compared

to when they compromise EV loads in other load and generator buses. For each transition between

different states, the amount of the reward function has been calculated with the assumption that

β1 = β2 = β3 = β4 = 1 in Table. 6.1. We have not defined rewards for branches a1 and a2. The

main reason is that we have used these actions to achieve the final states of the MDP tree. Since

adversaries will stay at final states in the MDP tree, e.g., s4, s5, s6, s7, and repeat their actions to

cause the most severe impact on the stability, the reward function for these actions, e.g., s4, s6, s8,

..., received the same reward. For other vulnerabilities, this reward function can be calculated in the

same manner.

Calculating Probabilities: To calculate the success rate of each adversarial action in the proposed

MDP tree, a numerical example is provided. For instance, adversaries have decided to compromise

the mobile and web applications of the EV ecosystem, moving from the initial state s1 to the next

state s2. In the following, we will discuss how the items in CVSS can be selected. When adversaries

target this vulnerability to launch load-altering attacks, they must have access to the network. As

a result, the attack vector is a network. Implementing such an attack is complicated, and attack

complexity is defined as high. The level of privileges an attacker must possess when exploiting the

vulnerability is defined as high. Moreover, adversaries may contact EV users. On this basis, user
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Table 6.2: Calculating Probabilities of Each Branch in MDP Tree using CVSS V 3.1

Action Pa(s, s
′) Action Pa(s, s

′) Action Pa(s, s
′) Action Pa(s, s

′) Action Pa(s, s
′)

a1 0.76 a40 1 a79 1 a118 0.87 a157 1

a2 0.77 a41 0.66 a80 0.77 a119 1 a158 0.71

a3 0.79 a42 0.89 a81 0.79 a120 0.79 a159 0.88

a4 1 a43 1 a82 0.87 a121 0.87 a160 1

a5 0.79 a44 0.89 a83 1 a122 1 a161 0.71

a6 1 a45 1 a84 0.79 a123 0.79 a162 0.88

a7 0.79 a46 0.89 a85 0.87 a124 0.87 a163 1

a8 1 a47 1 a86 1 a125 1 a164 0.71

a9 0.79 a48 0.89 a87 0.79 a126 0.79 a165 0.88

a10 1 a49 1 a88 0.87 a127 0.87 a166 1

a11 0.79 a50 0.89 a89 1 a128 1 a167 0.71

a12 1 a51 1 a90 0.79 a129 0.79 a168 0.88

a13 0.79 a52 0.89 a91 0.87 a130 0.87 a169 1

a14 1 a53 1 a92 1 a131 1 a170 0.71

a15 0.79 a54 0.89 a93 0.79 a132 0.79 a171 0.88

a16 1 a55 1 a94 0.87 a133 0.87 a172 1

a17 0.79 a56 0.89 a95 1 a134 1 a173 0.71

a18 1 a57 1 a96 0.79 a135 0.79 a174 0.88

a19 0.79 a58 0.89 a97 0.87 a136 0.87 a175 1

a20 1 a59 1 a98 1 a137 1 a176 0.71

a21 0.79 a60 0.89 a99 0.79 a138 0.65 a177 0.88

a22 1 a61 1 a100 0.87 a139 0.69 a178 1

a23 0.79 a62 0.89 a101 1 a140 0.71 a179 0.71

a24 1 a63 1 a102 0.79 a141 0.88 a180 0.88

a25 0.79 a64 0.89 a103 0.87 a142 1 a181 1

a26 1 a65 1 a104 1 a143 0.71 a182 0.71

a27 0.79 a66 0.89 a105 0.79 a144 0.88 a183 0.88

a28 1 a67 1 a106 0.87 a145 1 a184 1

a29 0.79 a68 0.89 a107 1 a146 0.71 a185 0.71

a30 1 a69 1 a108 0.79 a147 0.88 a186 0.88

a31 0.79 a70 0.89 a109 0.87 a148 1 a187 1

a32 1 a71 1 a110 1 a149 0.71 a188 0.71

a33 0.79 a72 0.89 a111 0.79 a150 0.88 a189 0.88

a34 1 a73 1 a112 0.87 a151 1 a190 1

a35 0.79 a74 0.89 a113 1 a152 0.71 a191 0.71

a36 1 a75 1 a114 0.79 a153 0.88 a192 0.88

a37 0.79 a76 0.89 a115 0.87 a154 1 a193 1

a38 1 a77 1 a116 1 a155 0.71 a194 0.71

a39 0.79 a78 0.89 a117 0.79 a156 0.88 a195 0.88

interaction is defined as required. Since exploiting this vulnerability impacts components beyond

their security scope, the scope has been changed. This attack can impact the confidentiality of

EV users considerably. However, the integrity and availability of data may not be considerably

affected by attackers for EV-LAAs. As such, confidentiality, integrity, and availability are defined

as high, low, and low, respectively. This selection can be customized based on the real features

of this vulnerability (mobile and web applications) that have already been reported in the National

Vulnerability Database (NVD) [82]. After selecting these items and deploying the CVSS V3.1

website, the scoring for this adversarial action can be calculated as 7.6. This amount can be divided

by 10 to provide the probabilities of each branch in the MDP tree. To calculate probabilities for

other branches with different adversarial actions, we have used this standard and summarized the

calculated probabilities in Table. 6.2. This probability has also been added to each branch of the

MDP by using red numbers.
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Figure 6.11: Controllability of different 19 load buses of transmission system
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Figure 6.12: Observability of 10 different generator buses.

6.7.3 Numerical Evaluation

The set of S = {s1, ..., s120} has been referred to as compromised components of the EV

ecosystem (i.e., states of the MDP tree). Also, adversarial actions taken by attackers have been

shown through the set ofA = {a1, ..., a196}. The s1 is the initial state where intruders can penetrate

the cyber and physical layers of the EV ecosystem and manipulate charging stations to launch EV-

LAAs, leading to frequency instability in the 39-bus New England system. As such, the attacker

takes the first action (a1) and moves from the initial state (s1) to the Mb/web application state (s2)

as a vulnerable point. Then, intruders can target the business network of EVSE (s3) using attack

graphs mentioned in Section 2.3 by taking another adversarial action (a2) and having access to

EVCSs at Bus 3 of the proposed transmission system (s4). By taking adversarial action (a3), the

attackers take control of the targeted EVCSs at Bus 3 and launch EV-LAAs from this load bus. For

more severe impacts, adversaries can stay in state s4 and repeat this adversarial action (a4). The

proposed MDP tree is resolved by Algorithm 10, and the values of each state, V (s), and optimal

adversarial action, aopt, for β1 = β2 = β3 = β4 = 1 and two values of discount factors, i.e., γ =

144



Table 6.3: Security Metric Evaluation of Customised MDP Tree for Two Discount Factors γ=0.95

and γ=0.5

State
V (s) aopt V (s) aopt State

V (s) aopt V (s) aopt State
V (s) aopt V (s) aopt State

V (s) aopt V (s) aopt

γ=0.95 γ=0.5 γ=0.95 γ=0.5 γ=0.95 γ=0.5 γ=0.95 γ=0.5

s1 44.1325 80 0.9051 80 s31 11.8800 57 1.1880 57 s61 50.6660 107 5.0666 107 s91 3.5299 153 0.3327 153

s2 46.8024 2 1.9455 2 s32 50.6660 59 5.0666 59 s62 27.8837 109 2.6139 109 s92 3.5540 154 0.3554 154

s3 50.0014 19 4.4722 19 s33 28.0920 61 2.8092 61 s63 28.0920 110 2.8092 110 s93 21.6941 156 2.0448 156

s4 16.1780 4 1.6178 4 s34 32.0180 63 3.2018 63 s64 31.7806 112 2.9792 112 s94 21.8420 157 2.1842 157

s5 19.0420 6 1.9042 6 s35 26.4920 65 2.6492 65 s65 32.0180 113 3.2018 113 s95 26.6721 159 2.5140 159

s6 9.9880 8 0.9988 8 s36 13.7420 67 1.3742 67 s66 26.2955 115 2.4650 115 s96 26.8540 160 2.6854 160

s7 12.5420 10 1.2542 10 s37 11.1480 69 1.1148 69 s67 26.4920 116 2.6492 116 s97 11.7995 162 1.1122 162

s8 3.5540 12 0.3554 12 s38 17.9280 71 1.7928 71 s68 13.6401 118 1.2787 118 s98 11.8800 163 1.1880 163

s9 21.8420 14 2.1842 14 s39 16.8080 73 1.6808 73 s69 13.7420 119 1.3742 119 s99 50.3229 165 4.7432 165

s10 26.8540 16 2.6854 16 s40 4.2220 75 0.4222 75 s70 11.0653 121 1.0373 121 s100 50.6660 166 5.0666 166

s11 11.8800 18 1.1880 18 s41 4.1760 77 0.4176 77 s71 11.1480 122 1.1148 122 s101 27.9018 168 2.6299 168

s12 50.6660 20 5.0666 20 s42 6.8200 79 0.6820 79 s72 17.7950 124 1.6682 124 s102 28.0920 169 2.8092 169

s13 28.0920 22 2.8092 22 s43 47.1491 105 2.0806 105 s73 17.9280 125 1.7928 125 s103 31.8012 171 2.9974 171

s14 32.0180 24 3.2018 24 s44 16.0580 82 1.5053 82 s74 16.6834 127 1.5640 127 s104 32.0180 172 3.2018 172

s15 26.4920 26 2.6492 26 s45 16.1780 83 1.6178 83 s75 16.8080 128 1.6808 128 s105 26.3126 174 2.4801 174

s16 13.7420 28 1.3742 28 s46 18.9008 85 1.7718 85 s76 4.1907 130 0.3928 130 s106 26.4920 175 2.6492 175

s17 11.1480 30 1.1148 30 s47 19.0420 86 1.9042 86 s77 4.2220 131 0.4222 131 s107 13.6489 177 1.2865 177

s18 17.9280 32 1.7928 32 s48 9.9139 88 0.9294 88 s78 4.1450 133 0.3886 133 s108 13.7420 178 1.3742 178

s19 16.8080 34 1.6808 34 s49 9.9880 89 0.9988 89 s79 4.1760 134 0.4176 134 s109 11.0725 180 1.0436 180

s20 4.2220 36 0.4222 36 s50 12.4490 91 1.1670 91 s80 6.7694 136 0.6346 136 s110 11.1480 181 1.1148 181

s21 4.1760 38 0.4176 38 s51 12.5420 92 1.2542 92 s81 6.8200 137 0.6820 137 s111 17.6608 183 1.6715 183

s22 6.8200 40 0.6820 40 s52 3.5276 94 0.3307 94 s82 46.8500 164 1.9694 164 s112 17.9280 184 1.7928 184

s23 50.3548 58 4.7717 58 s53 3.5540 95 0.3554 95 s83 16.0684 141 1.5145 141 s113 16.6942 186 1.5735 186

s24 16.1780 43 1.6178 43 s54 21.6800 97 2.0324 97 s84 16.1780 142 1.6178 142 s114 16.8080 187 1.6808 187

s25 19.0420 45 1.9042 45 s55 21.8420 98 2.1842 98 s85 18.9130 144 1.7827 144 s115 4.1934 189 0.3953 189

s26 9.9880 47 0.9988 47 s56 26.6549 100 2.4987 100 s86 19.0420 145 1.9042 145 s116 4.2220 190 0.4222 190

s27 12.5420 49 1.2542 49 s57 26.8540 101 2.6854 101 s87 9.9204 147 0.9350 147 s117 4.1477 192 0.3909 192

s28 3.5540 51 0.3554 51 s58 11.7919 103 1.1054 103 s88 9.9880 148 0.9988 148 s118 4.1760 193 0.4176 193

s29 21.8420 53 2.1842 53 s59 11.8800 104 1.1880 104 s89 12.4571 150 1.1741 150 s119 6.7738 195 0.6385 195

s30 26.8540 55 2.6854 55 s60 50.2903 106 4.7144 106 s90 12.5420 151 1.2542 151 s120 6.8200 196 0.6820 196

0.95 and γ = 0.5, are listed in Table. 6.3. The variation of γ depicts the attacker’s interest in future

rewards (γ=0.95) instead of immediate rewards (γ=0.5). Moreover, when the adversaries prefer

one term of the reward function over the remaining terms, the related coefficient {β1, β2, β3, β4}

can be initialized in the related term. Based on the results from Table. 6.3, the proposed security

metric can investigate different vulnerable points and their impacts on the frequency stability of

the power grid during EV-LAAs and quantify cyber attack impacts by calculating a value for each

state resembling the compromised parts of EV ecosystems. For example, in this table, for γ=0.95,

the value function, i.e., V (s), for the first state (s1) and next optimal adversarial action (aopt) are

obtained as 44.1325 and 80, respectively. It means that the second action from this state to achieve

the highest value function and severe impacts on the frequency stability of the power grid is a80.

By taking this action, the attackers compromise the CSMS and move to a new state, i.e., s43. The

next adversarial action from the state s43 is a105, which means targeting the firmware repository of

EVCSs at the Bus 20 of the New England system and moving to state s60. The value function of this

state is 50.2903, and the next adversarial action is a106. This action means adversaries take control

of the system’s charging stations at Bus 20, launch the EV-LAAs, and reach state s61. They can stay

in the state s61 for more severe impacts and continue another EV-LAA by taking action a107. With

the definition of another value for the discount factor, the value function for each state and the next

adversarial action may differ.
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Figure 6.13: Loss function and accuracy for training and testing dataset during 500 epoch number

6.7.4 Developing Security Monitoring Framework

In this section, a BPNN is trained for different EV load penetrations in an offline manner to

provide the security status of the transmission system when EV-LAAs occur in the EV ecosystems.

To achieve this aim, we have resolved the proposed MDP tree for different EV-LAAs and collected

3,780 data samples for the training phase. During the training, the BPNN model will be fed a com-

prehensive dataset containing state values of MDP trees that can be labeled as the normal operation

of the transmission system or frequency instability when EV-LAAs occur in real-time (i.e., critical

class). The loss function and accuracy plots for training and testing datasets have been illustrated

in Fig. 6.13 for the 39-bus New England system. It can be seen that the loss function gradually

decreases, and accuracy for both testing and training datasets has increased during epoch number.

Since the ReLU functions have been used in hidden layers of the BPNN, the non-linear and complex

relationship between input data (i.e., state values of the MDP tree) and target data can be modeled.

To evaluate the performance of the proposed neural network, evaluation metrics, e.g., accuracy,

precision, recall, and F-score, have also been calculated as follows:

Accuracy =
(TP + TN)

(TP + TN+ FP + FN)
(127)

Precision =
TP

(TP + FP)
(128)
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Table 6.4: Evaluation Metrics for Different Hidden Layers

Number of Hidden Layers Accuracy Precision Recall F score

50 92.52 92.98 92.46 92.72

100 95.12 96.11 95.74 95.79

150 96.25 96.89 96.02 96.45

200 96.83 97.40 96.84 97.12
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Figure 6.14: Confusion matrix for training and testing datasets

Recall =
TP

(TP + FN)
(129)

Fscore =
2× Precision×Recall

Precision+Recall
(130)

where TP, TN, FP, and FN are referred to as true positive, true negative, false positive, and false

negative, respectively. These evaluation metrics for different hidden layers have been calculated and

listed in Table. 6.4. It can be seen that when the number of hidden layers increases, the BPNN can

learn complex values of states during different EV-LAAs in transmission systems and deliver better

performance in terms of accuracy, precision, recall, and F score. Moreover, confusion matrices for

secure and critical classes during testing and training datasets have been shown in Fig. 6.14.

6.7.5 Verifying Robustness of Security Monitoring With Data Quality Issues:

In this section, the robustness of the proposed security monitoring framework using the BPNN

against (i) noisy input and output measurement signals, (ii) missing data measurements, and (iii)

outliers of these data, and their impacts on the reliability of the security monitoring framework, will

be discussed. As already studied in [113], the Gaussian noise can be used to model measurement

devices’ noise, such as PMUs in the SCADA of the transmission systems. The accuracy of our
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monitoring framework when the signal-to-noise ratio (i.e., SNR = 20 log(signal/noise)) changes

in the range of 10-60 dB has been illustrated in Fig. 6.15. It can be seen that with low SNR, the

accuracy of the security monitoring is generally lower. In other words, noise in input and output

measurement signals can distort the input features and labels, leading the BPNN to learn incorrect

mappings. This can result in poor performance on both training and test datasets. However, the

obtained results demonstrate that our security monitoring framework’s accuracy does not change

significantly in the presence of noise. In the following, we have evaluated the proposed framework’s

performance for other practical problems, such as missing and outlier data measurements due to

equipment failures. Therefore, the terms of the reward function are calculated when 5% of randomly

selected data measurements are missing, and the MDP tree is generated and resolved. Afterward,

the obtained state values pass through the well-trained BPNN to provide information about the

security status of the transmission system. It is important to mention that the missing data is set

to zero. Furthermore, the reward function terms are calculated when 5% - 10% of the randomly

selected data measurements consist of outlier data. To generate outlier data measurements, we

multiply the true signal value by a specific random value in the range of 0.01 and 0.1. Afterward,

we replace the corresponding data measurements with these manipulated values. The accuracy of

the proposed method for different hidden layers during missing and outlier data measurements has

also been shown in Fig. 6.16. It can be seen that the well-trained monitoring framework delivers an

acceptable performance for missing and outlier data. The main reason is that the proposed MDP tree

can quantify the security status of the system and map accurately a set of value states to the secure

and critical labels during offline training, making our monitoring framework robust against data

quality issues. It is important to mention that outlier data points differ greatly from the surrounding

data measurements compared to missing data. Consequently, the training of the BPNN can be more

affected by outliers in the input data than by missing data. This can lead to extended training time

and a less precise security monitoring framework [114].
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Figure 6.15: Robustness of security monitoring framework against noise in data measurement
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Figure 6.16: Robustness of security monitoring framework against missing and outlier data mea-

surements

6.8 Conclusion

In this paper, we first examined cyber vulnerabilities in EV ecosystems that adversaries could

maliciously exploit to apply EV-based load-altering (EV-LAAs) and impact the frequency stability

of transmission systems. On this basis, to quantify the security posture of power grids in the pres-

ence of such attacks, several attack graphs were devised to determine potential components of the

EV ecosystem that can be targeted and related adversarial actions that can be taken by adversaries

in a customized Markov decision process (MDP) tree. In this tree, a common vulnerability scoring

system (CVSS) was used to assign the probabilities of adversaries’ success rates to the branches of

this tree. Since EV-LAAs could cause the transfer of low-damping modes in the s-plane, the value
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of the mode’s damping ratio, controllability, and observability of low-damping modes, as well as

the number of compromised charging stations, was formulated in a reward function to give a score

to attackers for sabotaging power grid stability. Finally, this MDP tree was resolved by the Epsilon-

Greedy Q-learning algorithm to calculate the value of each state and the related optimal adversarial

action in the MDP tree. The developed security metric integrated into a neural network was eval-

uated under the 39-bus New England system to quantify the security status and make a security

monitoring framework for providing information about the situation of the transmission system.

This security monitoring framework is developed based on two distinct measurement signals, i.e.,

(i) signals for reporting manipulated EVCSs and (ii) signals for calculating stability-related terms.

Even if adversaries bypass the framework for reporting manipulated EVCSs, the impacts of such

attacks on stability terms remain detectable. In other words, the attack’s impact can be assessed

using other measurement devices and system identification techniques.
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Chapter 7

Conclusion and Future Directions

In this PhD program, we presented a new surface of load-altering attacks (LAA) originating

from EV cyber layers that can impact the stability of power grids. First, we have shown that this

type of attack can excite the unstable or lightly-damped torsional modes of the system, leading to

increasing torque between mechanical sections of the turbine governor model and subsynchronous

resonance (SSR) events. Using an unknown input observer (UIO), which estimated switching at-

tack vectors in an online manner, an adaptive control framework was developed based on a model

predictive controller (MPC). This controller could generate control input signals and mitigate the

impacts of switching attacks in the form of a wide-area controller. The effectiveness of the pro-

posed adaptive technique was evaluated using M-IEEE-SBM designed for SSR studies. Then, it

has been shown that this type of attack can impact the subsynchronous control interaction (SSCI)

stability in wind-integrated power grids. In the detection phase, a deep CNN was trained based on a

set of voltage and current measurements obtained from the phasor measurement unit (PMU) at the

wind farm bus. During this learning process, several uncertainties, e.g., wind speed and the number

of WTG, which could cause unstable SSCI modes, were also considered for different amplitude

of switching attacks. This customized CNN was deployed to estimate the switching attack vector

and inform the operator about the security status of the under-study power grid. Due to the lack

of accuracy of the detection method, a robust model predictive controller (RMPC) was designed

by resolving as a set of linear matrix inequalities (LMIs) equations to guarantee the stability of

the power grid under different switching attacks and uncertainties. Based on the obtained potential
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Table 7.1: List of Publications during PhD Program

Title Venue Situation

Electric Vehicle Switching Attacks Against Subsynchronous

Stability of Power Systems
IEEE Transactions on Industrial Informatics Accepted

Electric Vehicle-based Load-altering Attacks and their Impacts

on Power Grids Operations
IEEE Reliability Magazine Accepted

Deep Learning Detection and Robust MPC Mitigation for EV-based Load-altering

Attacks on Wind-integrated Power Grids
IEEE Transactions on Industrial Cyber-Physical System Accepted

Developing a Security Metric for Assessing the Power Grid’s Posture against Attacks

from the EV Charging Ecosystem
IEEE Transactions on Smart Grid Accepted

Data-Enabled Modeling and PMU-Based Real-Time Localization of

EV-Based Load-Altering Attacks
IEEE Transactions on Smart Grid Accepted

Designing a Security Metric for EV-based Load-altering Attacks

in Transmission Systems
IEEE Transactions on Instrumentation and Measurement Accepted

vulnerabilities in EV ecosystems, we have developed a security metric that captures the security

posture of EV ecosystems considering the possible attacks and their associated impacts on distri-

bution grids. This security metric has leveraged the Markov decision process (MDP) tree based

on power flow equations, vulnerabilities in the cyber layers of EV ecosystems, attack graphs, and

multiple contingencies that can occur in different zones of distribution networks. Using this metric

we will demonstrate the detrimental impacts of EV-based attacks in the form of voltage deviations,

excessive active power loss, and the unavailability of EVCSs for EV users in distribution networks.

Lastly, we have designed this metric for transmission systems where the operators had different

stability concerns. The developed security metric integrated into a neural network was evaluated

under the 39-bus New England system to quantify the security status and make a security monitor-

ing framework for providing information about the situation of the transmission system. The results

of these chapters have been six papers that have been recently published in different IEEE journals,

as listed in Table. 7.1.

In the future, we are going to develop Attack-defense trees (ADTs) as hierarchical models to

illustrate the potential routes an attacker might follow within the proposed cyber-physical system to

reach their goal (i.e., frequency instability in power grids), alongside the defensive actions (detection

or mitigation strategies) that can be implemented to thwart these adversarial actions. These trees

depict potential vulnerabilities that attackers exploit as leaf nodes, which are connected through

logical operators such as AND and OR, culminating in the root node that signifies the ultimate

objective of the attackers. The probability of each leaf node in ATDs can be calculated using CVSS

discussed in the previous chapters. The attacker’s cost to exploit the potential vulnerability in the

node of ADTs and the defender’s cost to secure the system against the attacker’s action can be
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also defined for each leaf node. Finally, ADT adopts a game-theoretic approach to model attacker-

defender interactions, enabling defenders to identify the most optimal strategies based on the newly

proposed payoff calculation technique to have an accurate and practical result.
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