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Abstract 

 

Combining Environmental Factors and Species Co-occurrence Patterns to Predict Species 
Abundance and Community Biomass: Method Development and Validation in Ontario 

Lakes 

 

Aliénor M.E. Stahl, Ph.D. 

Concordia University, 2024 

 

Predicting species abundance and community biomass is vital for ecosystem management, 

particularly in freshwater lakes, where this information guides conservation efforts, resource 

management, and biodiversity assessments. These metrics provide crucial insights into population 

dynamics, ecosystem productivity, and ecological balance. However, traditional models often rely 

on abiotic factors or limited species presence-absence data, missing the complex interspecies 

relationships that shape community structure and ecosystem function. This thesis aims to enhance 

predictive models of species abundance and biomass by incorporating community-level data, using 

latent variables derived from species co-occurrence and environmental variables. Latent variables 

are unobserved or hidden variables that are inferred from observed data. By integrating both biotic 

and abiotic factors, this approach enhances the accuracy of ecological predictions, offering more 

reliable tools for ecosystem management and conservation efforts. The three chapters build upon 

one another, progressively expanding the scope of the models and their applications. Chapter 2 lays 

the groundwork using simulated data to refine single-species abundance models, exploring how 

different levels of information (true environmental drivers versus latent variables based on species 

co-occurrence) affect model accuracy. This simulation framework is essential for understanding 

the robustness of the models before their application to real-world data. Chapter 3 extends this 
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work by applying the developed framework to empirical data from lakes, focusing on sport fish 

species. It examines the role of latent variables and various fish assemblages in improving 

abundance predictions and explores how lake-specific characteristics influence model 

performance. This real-world application allows for a deeper understanding of how the framework 

operates under natural conditions, particularly in aquatic ecosystems. Finally, Chapter 4 uses the 

abundance predictions from Chapter 3 to develop a stacked model for predicting community 

biomass. It compares the stacked model’s effectiveness to a community model across varying 

spatial scales and species richness levels. By transitioning from single-species models to multi-

species and ultimately biomass prediction, the chapters are sequentially linked, each addressing a 

broader ecological question while refining and testing the models at different levels of complexity. 

This cohesive approach enhances both the predictive accuracy of species abundance and the 

practical applications of these models for ecosystem management. 

 

Résumé 

Prédire l’abondance des espèces et la biomasse des communautés est essentiel à la gestion des 

écosystèmes, particulièrement dans les lacs d’eau douce, où ces informations guident les efforts de 

conservation, la gestion des ressources, et les évaluations de la biodiversité. Ces métriques 

fournissent des connaissances cruciales sur la dynamique des populations, la productivité des 

écosystèmes et l’équilibre écologique. Cependant, les modèles traditionnels s’appuient souvent sur 

des facteurs abiotiques ou sur des données limitées sur présence-absence d’espèces, omettant les 

relations interspécifiques complexes qui façonnent la structure de la communauté et le 

fonctionnement de l’écosystème. Cette thèse vise à améliorer les modèles prédictifs d'abondance 

des espèces et de biomasse en incorporant des données à l'échelle de la communauté, et en utilisant 



 v 

des variables latentes dérivées de la cooccurrence des espèces et des variables environnementales. 

Les variables latentes sont des variables non observées ou cachées qui sont déduites à partir de 

données observées. En intégrant à la fois les facteurs biotiques et abiotiques, cette approche 

améliore la précision des prévisions écologiques, offrant des outils plus fiables pour la gestion des 

écosystèmes et les efforts de conservation. Les trois chapitres sont construits de manière 

séquentielle, élargissant progressivement la portée des modèles et leurs applications. Le Chapitre 

2 pose les bases en utilisant des données simulées pour affiner les modèles d’abondance mono-

espèce, en explorant comment différents niveaux d’information (véritables moteurs 

environnementaux par rapport aux variables latentes basées sur la cooccurrence des espèces) 

affectent la précision du modèle. Ce cadre de simulation est essentiel pour comprendre la robustesse 

des modèles avant leur application à des données réelles. Le Chapitre 3 étend ce travail en 

appliquant le cadre développé à des données empiriques de lacs, en se concentrant sur les espèces 

de poissons de sport. Il examine le rôle des variables latentes et de divers assemblages de poissons 

dans l’amélioration des prévisions d’abondance et explore comment les caractéristiques 

spécifiques des lacs influencent les performances du modèle. Cette application concrète permet de 

mieux comprendre le fonctionnement du cadre de modélisation dans des conditions naturelles, 

notamment dans les écosystèmes aquatiques. Enfin, le Chapitre 4 utilise les prévisions d’abondance 

du chapitre 3 pour développer un modèle empilé permettant de prédire la biomasse de la 

communauté. Il compare l’efficacité du modèle empilé à un modèle communautaire à travers 

différentes échelles spatiales et niveaux de richesse en espèces. En passant des modèles mono-

espèces aux modèles multi-espèces et finalement à la prédiction de la biomasse, les chapitres sont 

liés séquentiellement, chacun abordant une question écologique plus large tout en affinant et en 

testant les modèles à différents niveaux de complexité. Cette approche cohésive améliore à la fois 
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la précision prédictive de l’abondance des espèces et les applications pratiques de ces modèles pour 

la gestion des écosystèmes.  
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Chapter 1: General introduction 

“The thing the ecologically illiterate don’t realize about 
an ecosystem is that it’s a system. A system! A system 
maintains a certain fluid stability that can be destroyed 
by a misstep in just one niche. A system has order, a 
flowing from point to point. If something dams that flow, 
order collapses. The untrained might miss that collapse 
until it was too late. That’s why the highest function of 
ecology is the understanding of consequences.” 

Frank Herbert, Dune 

1.1. Ecology, biodiversity loss and the role of biodiversity monitoring 

The importance of ecology (i.e., the study of interactions among organisms and their environment) 

has surged in response to escalating biodiversity loss and ecosystem degradation. Human activities 

such as habitat destruction, pollution, overexploitation of natural resources, and climate change 

have accelerated extinction rates to 100–1,000 times the natural background rate (Barnosky et al. 

2011; Ceballos et al. 2015). This rapid decline in biodiversity threatens ecosystem services 

essential for human well-being, including food security, water purification, and climate regulation 

(Cardinale et al. 2012). The clustering of extinction patterns within specific regions and taxa 

(Leung et al. 2020), highlights the need for targeted conservation efforts to protect vulnerable 

species and habitats. Understanding ecological relationships, such as how species interact through 

food webs, mutualism, competition and energy flow, is essential for mitigating biodiversity loss. 

By comprehending how species interact with each other and their environment, we can inform 

sustainable practices and preserve the health and resilience of ecosystems (Cardinale et al. 2012; 

Díaz et al. 2006). As global challenges intensify, ecological research remains indispensable for 

developing strategies that balance human development with environmental stewardship. 
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Consequently, identifying key variables for measurement has become crucial for accurately 

evaluating ecosystems and the species they support (Failing et al. 2007; Pereira & David Cooper 

2006). 

One such effort resulted in the definition of Essential Biodiversity Variables (EBVs), a set of critical 

measurements required to understand, monitor, and manage biodiversity changes over time (Pereira 

et al. 2013). Conceptualized by the Group on Earth Observations Biodiversity Observation 

Network (GEO BON), EBVs provide a standardized framework that enables consistent and 

comprehensive biodiversity monitoring. They are intended to bridge the gap between data 

collection and policy, enabling scientists, conservationists, and policymakers to effectively assess 

biodiversity trends, the success of conservation actions, and understand the impacts of 

environmental changes (Kissling et al. 2018; Navarro et al. 2017). The EBV framework covers a 

wide range of biodiversity dimensions, from genetic composition to ecosystem function, providing 

a comprehensive view of ecosystem health. Within this framework, species population EBVs hold 

particular importance. By tracking changes in species abundance and distribution, these variables 

provide key insights into how species respond to pressures such as habitat loss, climate change, 

and other human activities (Parmesan 2006). These variables not only reveal long-term trends in 

species numbers but also serve as indicators of broader ecosystem health and stability (Kissling et 

al. 2018). They can pinpoint areas where ecosystems are most threatened or where restoration 

efforts are succeeding (Tittensor et al. 2014). This makes species population EBVs indispensable 

for prioritizing conservation efforts, informing environmental policy, and enhancing our 

understanding of the broader impacts of environmental change on biodiversity. 
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1.2. The significance of species abundance in ecological research 

Understanding species abundance (i.e., the number of individuals of a species within a given area) 

is a cornerstone of ecological and biological research (Buckland et al. 2005; McGill et al. 2006). 

Species abundance provides critical insights into population dynamics, community structure, and 

environmental conditions (Mace & Baillie 2007; Magurran & McGill 2011). By examining 

abundance patterns, researchers can infer the availability of resources, the presence and intensity 

of competition and predation, and the overall stability and resilience of the ecosystem (Loreau et 

al. 2002; Paine 1966). Species abundance data are vital for effective conservation and management 

strategies, as it helps identify species at risk of decline and the factors driving these changes (Gaston 

& Fuller 2008). 

Moreover, studying species abundance contributes to our understanding of biodiversity patterns 

and ecosystem functioning (Loreau & de Mazancourt 2013; Tilman et al. 2014). The distribution 

of abundances among species within a community (often described by species abundance 

distributions) reflects underlying ecological processes such as niche partitioning, competitive 

interactions, and environmental selection (Chesson 2000; McGill et al. 2007). Higher species 

richness and evenness in abundance are generally associated with greater ecosystem stability and 

resilience, as diverse communities can better withstand environmental changes and recover from 

disturbances (Chapin et al. 2000). Conversely, low abundance can signal ecological imbalances 

resulting from anthropogenic stressors, such as habitat degradation, pollution, or overexploitation, 

necessitating immediate conservation actions (Pimm et al. 2014). 

The importance of species abundance extends to understanding community interactions, as it 

reveals patterns of species coexistence and competition, shedding light on the underlying 

mechanisms that structure ecological communities (Chesson 2000; MacArthur & Levins 1967; 
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MacArthur 1965). For instance, higher abundances of a keystone species can promote biodiversity 

by maintaining the structure and integrity of the ecosystem by controlling populations of other 

species, thereby promoting biodiversity (Estes et al. 2011; Mills & Doak 1993; Paine 1969). 

Conversely, the overabundance of invasive species can lead to declines in native populations 

through competition for resources or predation (Mack et al. 2000). 

In addition, species abundance data also aid in predicting the responses of ecological communities 

to environmental changes. Shifts in abundance due to climate change, habitat alteration, or other 

anthropogenic factors can alter community composition, competitive dynamics, and food web 

structures (Walther et al. 2002). Such shifts can ultimately influence the resilience of ecosystems 

to disturbances and the sustainability of natural resources (Hughes et al. 2003; Loreau et al. 2001; 

Tilman 1996). 

While species abundance offers insights into biodiversity, it may not fully capture ecosystem 

productivity. For instance, two species may have similar abundances but differ greatly in size, 

biomass, and ecological roles (McGill et al. 2007; White et al. 2007). Therefore, incorporating 

additional metrics such as biomass (i.e., which accounts for organism size and energy flow) 

provides a more comprehensive understanding of trophic dynamics and ecosystem function that 

abundance data alone cannot offer. 

1.3. The interplay of species abundance and biomass in ecosystem dynamics and stability 

Biomass refers to the total mass of living organisms within a given area or ecosystem and is a 

critical metric in ecological research. Unlike species abundance, which counts the number of 

individuals, biomass accounts for the size and number of organisms, providing a more holistic 

measure of ecosystem functionality, productivity, and energy flow (Cebrián 1999; Odum 1969). 

Biomass reflects the amount of organic material available in each trophic level, influencing the 
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distribution of energy among producers, consumers, predators, and decomposers (Reiss et al. 2009; 

Trebilco et al. 2013). Changes in biomass often signal shifts in resource availability or 

environmental conditions, highlighting its ecological importance in maintaining balance and 

sustainability (Cebrián & Duarte 1995; Chapin et al. 2011). 

Analyzing community biomass, or the total biomass of all species within an ecosystem, provides 

valuable insights into community interactions and management strategies (Hilborn & Walters 

1992). Biomass dynamics reflect competition, predation, mutualism, and other interspecific 

interactions, influencing overall community structure and function (Loreau 2010; Tilman 2020). 

As such, community biomass is often used in the context of ecosystem management to maintain 

biodiversity and ecosystem services (Hooper et al. 2005). For instance, biomass-based approaches 

help manage fisheries, forests, and agricultural systems by focusing on the sustainability of 

resource extraction while ensuring long-term ecosystem productivity (Pauly et al. 1998). 

Monitoring changes in community biomass allows for early detection of overexploitation or 

environmental degradation, making it an essential tool for adaptive management (Noss 1990; Pimm 

1984). 

The relationship between species abundance and biomass is complex and varies among 

ecosystems. Species with high abundance may not dominate in terms of biomass, particularly if 

they are small-bodied species, while larger species may have significant biomass despite lower 

abundances (Cyr & Pace 1993). Therefore, integrating both species abundance and biomass 

provides a more nuanced understanding of community dynamics and ecosystem function. Together, 

these metrics are essential for developing effective conservation and management strategies, as 

changes in abundance or biomass can have cascading effects on ecosystem stability and resilience 

(Cardinale et al. 2012; Paine 1966). 
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By monitoring species abundance and community biomass, ecologists can develop models to 

predict ecological outcomes and devise strategies to mitigate negative impacts on biodiversity. 

These insights are crucial for managing ecosystems sustainably and preserving the ecological 

balance. 

1.4. Challenges in sampling species abundance and the need for predictive models 

Species abundance data are fundamental for constructing and validating ecological models that 

predict population trends and ecosystem responses to various stressors, such as climate change, 

habitat fragmentation, and invasive species (Brook et al. 2008). Accurate abundance data ensure 

that these models can reliably forecast future scenarios, aiding policymakers and conservationists 

in making informed decisions (Cardinale et al. 2012). However, sampling the abundance of species 

in ecosystems is both time-consuming and financially demanding. 

Accurate assessments often require extensive fieldwork involving deploying numerous survey 

methods such as quadrat sampling, transect lines, and mark-recapture techniques (Sutherland 

2006). These methods necessitate significant investments of time to ensure that sampling is 

representative and unbiased, often requiring multiple visits to different sites under varying 

conditions. Additionally, the costs associated with fieldwork, including travel expenses, equipment, 

and personnel, can be substantial (Lindenmayer & Likens 2010). Advanced technologies, such as 

remote sensing and genetic barcoding, though potentially more efficient, add further to the financial 

burden due to their high initial setup and operational costs (Dickinson et al. 2010). The logistical 

challenges of accessing remote or difficult terrain further escalate both time and budget 

requirements (Yoccoz et al. 2001). 

To overcome these challenges, scientists have developed predictive models to estimate species 

abundance without the need for extensive fieldwork. These models aim to provide accurate 
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abundance estimates of species abundance by relying on a variety of ecological and environmental 

variables (Bradley 2016; Brosse et al. 1999; VanDerWal et al. 2009), based on the widely held but 

debated assumption that community assembly mechanisms operate through three selection 

processes: environmental conditions, biotic interactions, and dispersal (Figure 1.1, 

HilleRisLambers et al. 2012; Kraft et al. 2015). For instance, habitat characteristics, climate data, 

land use patterns, and species-specific traits such as reproductive rates and dispersal abilities are 

frequently incorporated into these models (Elith & Leathwick 2009; Guisan & Thuiller 2005). 

Advanced statistical techniques, including machine learning algorithms and Bayesian approaches, 

are often employed to enhance predictive accuracy (Franklin 2010). 

Figure 1.1: Conceptual diagram of community assembly and the mechanisms assumed to be 
involved. This diagram illustrates the process of community assembly, starting from the regional 
species pool, which consists of five species. Species disperse across the landscape through natural 
movement and chance (depicted by blue arrows). As they disperse, species encounter 
environmental selection (green) that select based on abiotic conditions, and biotic filters (brown), 
which involve species interactions such as competition or predation. These selection processes 
shape the composition of local communities, both in terms of presence-absence (represented by 
the grey arrows) and relative abundance (illustrated by the pie charts, with species proportions). 
The outcome reflects how regional dynamics and local selection combine to create unique 
communities at different locations. This figure has been adapted from HilleRisLambers (2012). 
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Despite their potential, these models face several challenges. One significant issue is the quality 

and resolution of input data; as inaccurate or coarse data can lead to unreliable predictions (Araújo 

& Guisan 2006). Models may also struggle to account for complex interactions between species 

and their environments, such as biotic interactions and feedback mechanisms, which can 

significantly influence abundance patterns (Kissling et al. 2012). Temporal variability also poses a 

challenge, as environmental conditions and species dynamics can change over time, necessitating 

models that can adapt to these fluctuations (Thorson et al. 2016). A particularly challenging aspect 

is the lag time between environmental changes and the corresponding response in species 

abundance. This delay can complicate model predictions, as immediate responses may not be 

evident, requiring long-term data to accurately capture these dynamics (Lindenmayer et al. 2010). 

Moreover, while models can reduce the need for direct sampling, they still require initial data for 

calibration and validation, which can be resource intensive. Thus, while predictive models are 

valuable tools for estimating species abundance, they must be carefully constructed and 

continuously refined to ensure their reliability and applicability across different contexts. 

Previous research has demonstrated that the presence-absence data can serve as effective predictors 

for species abundance (Brotons et al. 2004; Pearson & Dawson 2003; Tyre et al. 2003). This 

approach leverages two assumptions: that community composition can significantly influence 

individual species' abundances (MacKenzie et al. 2002), and that it can serve as an indirect measure 

of environmental conditions. Indeed, community composition, which encompasses the variety of 

species within an ecosystem, provides a comprehensive snapshot of ecological interactions and 

environmental conditions (Holyoak & Leibold 2006). Species distributions are often influenced by 

specific environmental factors, such as temperature, humidity, or salinity (Guisan & Thuiller 2005). 

When direct measurements of these environmental variables are unavailable, presence-absence 
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data can act as a proxy, reflecting the tolerances and preferences of species to different 

environmental conditions. For instance, the presence of a species known to thrive in a particular 

habitat condition can indicate the prevalence of that condition in the study area, even if they are 

not directly measured. Conversely, the absence of a species might signal unfavorable 

environmental conditions or the presence of competing species.  

By analyzing presence-absence data, researchers can infer both biotic interactions and abiotic 

environmental factors, providing a more comprehensive understanding of ecosystem dynamics 

(MacKenzie et al. 2002; Tyre et al. 2003). Including community composition as a predictor in 

abundance models enhances their accuracy by accounting for biotic interactions such as predation, 

competition, and mutualism, which are critical drivers of species abundance (Gaston, 2003). This 

approach allows for a more nuanced understanding of the factors influencing species abundance 

and can improve the predictive performance of ecological models.  

However, there are limitations to using presence-absence data as predictors of species abundance. 

One primary challenge, often referred to as the Eltonian shortfall, is the lack of detailed knowledge 

about species interactions and ecological functions (Hortal et al. 2015). Focusing on a limited 

number of species with well-established interactions can constrain the model's scope and 

generalizability (Elith & Leathwick 2009). Alternatively, including a broader range of species leads 

to high-dimensional datasets, complicating the modelling process (Guisan & Thuiller 2005). High 

dimensionality not only increases computational demands but also introduces the risk of 

overfitting, where the model becomes tailored to the specific dataset rather than providing 

generalizable predictions (Franklin 2010). 

To address these challenges, researchers are developing new methods to manage high-dimensional 

data and complex interactions without compromising model efficiency (Dormann et al. 2013). 
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Advances statistical modelling is becoming increasingly important. In particular, the incorporation 

of latent variables offers a promising solution by capturing the underlying structure of complex 

ecological datasets, thus improving model performance and predictive accuracy. 

1.5. Latent variables: concept, origins, and applications in ecology 

Latent variables are unobserved or hidden variables that are inferred from observed data. 

Originating from statistical theory, they are used to account for hidden or unmeasured factors that 

influence the relationships among observed variables but are not directly measured. Essentially, 

latent variables capture underlying structures within a dataset that impacts the observed data 

(Bollen 1989). They were first utilized in psychology and social sciences, particularly in Structural 

Equation Modelling (SEM), to model complex relationships between observed variables by 

introducing unobservable constructs (latent variables) that influence these relationships (Kline 

2015). For instance, in psychology, latent variables represent abstract concepts such as intelligence 

or satisfaction, which cannot be directly measured but are inferred from responses to various tests 

or survey items (Bartholomew et al. 2011). 

In ecology, the concept of latent variables has been gradually adopted to address the complexity of 

ecological data, where numerous environmental factors and species interactions often remain 

unmeasured or unknown (Chakraborty et al. 2011; Clark et al. 2017). Latent variables in ecological 

models serve as proxies for these unobserved factors, helping to explain variability in species 

distribution, abundance, and community composition that cannot be accounted for by observed 

variables alone (Warton et al. 2015a). One of the early applications of latent variables in ecology 

was through ordination methods like correspondence analysis, where latent variables helped to 

reduce the dimensionality of ecological data and to identify underlying environmental gradients 

influencing species distributions (Legendre & Legendre 2012; Popovic et al. 2022). More recently, 



 11 

latent variables have been incorporated into more complex models such as joint species distribution 

models (JSDMs) and Gaussian copula models. In these models, latent variables help to account for 

species co-occurrence patterns driven by unmeasured environmental factors or species interactions 

(Hui et al. 2017; Ovaskainen et al. 2017). For example, Hui (2013) demonstrated that clustering 

species by environmental affinities (i.e., captured through latent variables), could significantly 

improve the predictive performance of species distribution models. The use of latent variables in 

these models allows ecologists to handle high-dimensional data more effectively, providing a more 

accurate representation of ecological processes and improving predictions of species distributions 

and community dynamics (Niku et al. 2019).  

As ecological datasets continue to grow in complexity and size, latent variables offer a powerful 

tool to unravel the intricate relationships between species and their environments, aiding in the 

development of more robust ecological models. However, their application is not without 

challenges. 

In highly dynamic systems, the predictive power of latent variables often decreases because the 

relationships between species, their environment, and the community structure are continuously 

changing (Dormann 2007b; Legendre & Legendre 2012). These systems include environments 

such as tropical forests with highly seasonal rainfall, intertidal zones influenced by tidal 

fluctuations, or temperate ecosystems experiencing significant seasonal shifts in resources like 

temperature and light (Clark et al. 2014). In these cases, latent variables, which typically capture 

static or semi-static ecological processes (Warton et al. 2012), may not effectively account for rapid 

temporal changes in species distributions and interactions. For example, in intertidal ecosystems, 

species distributions are driven by constantly changing abiotic factors like water levels and salinity, 

which vary on hourly or daily scales (Harley & Helmuth 2003). Latent variables capturing more 
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stable, underlying processes, such as long-term environmental gradients, might not predict species’ 

responses to these rapid changes accurately (Warton et al. 2015a). Similarly, in ecosystems with 

distinct wet and dry seasons, rapid shifts in resource availability can alter species interactions and 

abundance patterns in ways that static latent variables may fail to capture (Ovaskainen et al. 2016b). 

This inability to model temporal variability can lead to inaccuracies, especially when dynamic 

fluctuations strongly influence species occurrence, abundance, or biomass. 

Despite these challenges, in certain cases, it is acceptable and even advantageous to assume 

ecosystems to be static, particularly when the goal is to establish baseline relationships between 

species and their environment (Guisan & Thuiller 2005). Static models offer a way to simplify 

complex ecological systems, providing essential insights when developing or testing a framework. 

By focusing on a fixed moment in time, researchers can isolate environmental variables and species 

interactions without the confounding influence of temporal dynamics (Bahn & McGill 2013). This 

simplification is also helpful when datasets provide only snapshots, lacking the temporal resolution 

necessary for dynamic modelling (Guisan & Zimmermann 2000).  

Static models serve as an important initial step for comparing model performance and refining 

predictions under idealized conditions. Assuming static conditions allow researchers to identify 

limitations in the model and make precise adjustments in later stages when dynamics are 

incorporated (Wisz et al. 2008). Although ecosystems are naturally dynamic (i.e., subject to 

seasonal changes, resource availability, anthropogenic disturbances), testing a framework in a static 

context is a practical and essential step before introducing complexity (Beale & Lennon 2012; 

Dormann et al. 2013). 



 13 

1.6. The necessity of model testing: from simulations to empirical validation 

Studying a model using simulated data is an invaluable approach for understanding its mechanics, 

potential failures, and inherent biases (Grimm & Railsback 2013). Simulated data provide a 

controlled environment where true parameters and underlying distributions are known, allowing 

researchers to systematically test the model's performance and validate its outputs. This controlled 

setting makes it easier to identify how well the model captures the relationships within the data and 

to pinpoint specific scenarios where the model may falter (Gelman & Hill 2006). Furthermore, 

working with simulated data enables the exploration of a wide range of conditions and edge cases 

(i.e., scenarios with extreme conditions) that might be difficult to encounter in real-world datasets 

(Efron & Tibshirani 1994). This helps in identifying biases, such as overfitting or underfitting, and 

in understanding the limitations of the model. Additionally, simulated data can be generated to 

include known levels of noise and variability, providing insights into the model's robustness and 

sensitivity to different types of data imperfections (Harrell 2015). Overall, using simulated data as 

a preliminary step allows for a thorough and rigorous evaluation of a model, facilitating 

improvements before applying it to real-world data where such control and clarity are not possible. 

Once a model has been validated through simulations, the next crucial step is its application to 

empirical data. This process is essential for several reasons. First, while simulations offer controlled 

environments to test model behavior under a variety of scenarios, they often fail to capture the full 

complexity and variability present in real-world systems (Bansal et al. 2007). Second, empirical 

evaluation allows researchers to assess how well the model performs when confronted with the 

stochasticity, noise, and potential biases inherent in observational data (Dietze et al. 2018). 

Moreover, testing on empirical datasets can reveal unanticipated model limitations or dependencies 

that were not evident during simulation-based testing, thus offering valuable insights into model 
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generalizability (Grimm & Railsback 2013). Selecting relevant and appropriately challenging 

empirical datasets is essential to ensure that they account for the known limitations of the model, 

such as missing variables or assumptions about species interactions (Evans et al. 2013). Ultimately, 

this step is crucial for verifying the model's utility in practical applications and for guiding further 

refinement. 

The overarching goal of this thesis is to improve predictive models of species abundance and 

biomass by incorporating community data and environmental information. The three chapters are 

designed to build upon each other, progressively expanding the scope and application of these 

models (Figure 1.2). Chapter 2 establishes the foundation by focusing on simulated data to refine 

single-species abundance models, specifically examining how varying levels of information (i.e., 

true environmental drivers versus latent variables based on species co-occurrence) affect model 

accuracy. This chapter lays the groundwork for understanding how the inclusion of latent variables 

can enhance the model’s predictive capabilities. Chapter 3 extends this work by applying the 

developed framework to empirical data from lakes, with a focus on sport fish species. This chapter 

addresses whether latent variables and the inclusion of different fish assemblages improve 

abundance predictions and explores how specific lake characteristics influence the predictive 

performance of the models. By transitioning from simulations to real-world aquatic ecosystems, 

Chapter 3 allows for a deeper evaluation of the framework in natural conditions, particularly where 

dispersal is limited, and species interactions are mediated by environmental selection. Finally, 

Chapter 4 builds on the abundance predictions from Chapter 3 to compare stacked and community 

models for predicting biomass across different spatial scales and levels of species richness. This 

chapter examines whether a stacked model, which predicts biomass by first estimating species 

abundance, or a community model that predicts biomass directly from environmental data and 
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community composition performs better. By progressing from single-species abundance models to 

multi-species predictions and finally to biomass modelling, these chapters are sequentially linked, 

each addressing broader ecological questions while refining and testing the models at increasing 

levels of complexity. 

Figure 1.2: Conceptual diagram illustrating the commonalities and distinctions across chapters. 
Chapter 2 focuses on simulated communities where environmental selection (green arrow) is the 
sole assumed mechanism driving community assembly. In contrast, Chapters 3 and 4 utilize an 
empirical dataset that incorporates all three assumed selection processes: environmental (green 
arrow), biotic (brown arrow), and dispersal (blue arrow). Across all chapters, presence-absence 
data are used to generate latent variables which are then used as predictors. Chapter 2 predicts 
both presence-absence and abundance, while Chapter 3 focuses solely on predicting abundance. 
Finally, Chapter 4 expands on this by using abundance predictions to estimate community 
biomass. 
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1.7. Chapters overview and novelty of research 

1.7.1. Chapter 2: Advancing single species abundance models: robust models for 

predicting abundance using co-occurrence from communities 

Chapter 2 introduces a novel framework that integrates environmental variables with species co-

occurrence data to predict single-species abundance distributions. Environmental variables 

represent ecological filters that shape species distributions, while co-occurrence data offer insights 

into potential species interactions or unmeasured environmental influences. By employing latent 

variable models, we reduce the complexity of these datasets and uncover hidden structures that 

would otherwise remain elusive. Building on existing approaches, this framework utilizes 

dimensionality reduction techniques to combine environmental and latent variables, enabling more 

accurate predictions of species abundance. 

We assessed the model’s performance through detailed simulations, evaluating its ability to account 

for predictive errors caused by unmeasured drivers. In particular, we aimed to: (1) derive guidelines 

for determining the number of latent variables used in modelling single species abundances; (2) 

contrast model performance containing varying levels of information on the true underlying drivers 

of abundance (environment) versus containing latent variables (environmental proxies based on 

co-occurrence patterns of species sharing variable levels of environmental affinities); and (3) assess 

how predictive performance varies as a function of sample size. To test these objectives, we 

simulated assemblages of species with varying strengths of relationships to environmental 

variables and without biotic interactions. We assessed the conditions that improved model 

predictions for a target species by using co-occurrence data from the remaining species as proxies 

for missing environmental predictors. This approach allowed us to evaluate how well the model 
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could predict the abundance of the target species by incorporating indirect information provided 

by the presence and absence of other species within the community. 

Our results showed that incorporating presence-absence latent predictors generally improved 

model performance when compared to models lacking relevant environmental predictors, although 

there was considerable variation in performance across simulations. Notably, all models tended to 

have greater error rates when predicting abundant species compared to rare species. 

One important aspect of the proposed framework is its versatility. It is highly flexible in terms of 

parameter estimation, as it can accommodate any regression style approach. This allows one to 

predict both presence-absence and abundance and demonstrates strong performance in predicting 

low-abundance species. Moreover, the framework is not limited to Gaussian copulas; other latent 

modelling procedures can be employed. The framework could also be used to predict biomass 

rather than abundance by replacing the family of the Generalised Linear Model (GLM) used, 

depending on the variable of highest interest for management. 

1.7.1. Chapter 3: Advancing single species abundance models: leveraging multi-

species data to uncover lake-specific predictive patterns and improve fisheries 

predictions 

Chapter 3 builds directly upon the foundation laid in Chapter 2 by applying the developed 

framework to an empirical dataset. This transition from controlled simulations to real-world data 

is a critical step in validating the model's effectiveness. Species abundance is influenced by a 

combination of three key ecological filters: environmental selection, species interactions, and 

dispersal (HilleRisLambers et al. 2012; Vellend 2010). While the simulations in Chapter 2 were 

designed to isolate the effects of environmental selection (i.e., intentionally excluding species 

interactions and dispersal to focus on environmental drivers and the role of latent variables), the 
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exclusion of two fundamental ecological processes that are essential in shaping community 

structure in natural ecosystems introduced a significant limitation. 

To address this limitation, it was imperative to select an empirical dataset for Chapter 3 that 

inherently minimized the influence of dispersal, thereby aligning with the assumptions and 

constraints of the framework established in Chapter 2 (i.e., as one cannot control for species 

interactions). Lakes were chosen as the study system because they are relatively closed 

environments with limited opportunities for species dispersal (de Bie et al. 2012; Shurin 2000). 

This characteristic makes lakes an ideal natural laboratory for testing the framework's predictions. 

Although it is impossible to entirely exclude species interactions in real-world datasets, selecting a 

system with constrained dispersal allows for a more direct assessment of environmental selection's 

role in shaping species abundance. The insights gained from this empirical evaluation will not only 

test the robustness of the framework but also provide a clearer understanding of its applicability in 

complex, real-world ecological scenarios. 

Several adaptations were necessary to adjust to the available data. First, we selected models capable 

of handling non-linearity and the relative abundance of species were selected to better capture the 

complexities of the system. Additionally, we implemented specific adjustments to manage the wide 

array of environmental variables at our disposal, ensuring that the models could accurately account 

for these diverse influences. These modifications were critical for aligning the framework with the 

empirical dataset, ultimately leading to a more robust and reliable analysis. These considerations 

led to the formulation of our main research questions, aimed at understanding how different lake 

types and species interactions influence predictive ability. Specifically, we set out to investigate: 

(1) whether including latent variables improved predictions; (2) whether the predictions of sport 

fish abundances are better improved using sport fish, non-sport fish, or all fish species as predictors; 
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(3) which types of lakes significantly increase or decrease predictive ability and whether lakes that 

affect predictive ability are rare or ubiquitous in their environment and/or species composition; (4) 

how much species share lakes in which they increase or decrease predictive ability; and (5) whether 

sport fish abundances are better predicted by including all lakes or only lakes where the species is 

present. 

We discovered that low abundance species were better predicted by models based solely on 

environmental variables, while high abundance species were better predicted by models 

incorporating latent variables derived from species co-occurrence data. We also found that the 

contributions of lakes to predictive models were correlated within species groups based on their 

occurrence levels. Species with low abundance exhibited different patterns of lake contributions 

compared to those with high abundance. Notably, these patterns were independent of the lakes' 

environmental uniqueness, species community uniqueness, or specific environmental variables. 

These findings highlight the complexity of predicting species abundance, aligning with Chapter 2's 

results, where incorporating presence-absence latent predictors improved model performance. The 

lack of consistent patterns across environmental factors further underscores the need for flexible 

models that can account for diverse influences on species distributions. 

1.7.2. Chapter 4: Predicting biomass: a comparative analysis of community models 

and stacked abundance models across spatial scales 

In Chapter 4, we shift focus from species abundance to community biomass, a critical metric for 

understanding ecosystem productivity and health. While the framework developed in the previous 

chapters demonstrated its utility in predicting species abundance using environmental data and 

latent variables derived from presence-absence data, biomass prediction introduces new challenges 

and opportunities. Building on the framework foundation laid, we introduce a stacked model that 



 20 

first predicts the abundance of individual species and then, after weighting each by the average 

species weight, sums these predictions to estimate community biomass. We set out to investigate 

the following questions: (1) whether a stacked abundance model or a community model (i.e., 

directly predicting community biomass from environmental data and latent variables) would better 

predict total biomass; (2) whether diverse lakes (i.e., in terms of species richness) are better 

predicted than non-diverse lakes; and (3) whether regional biomass is better predicted than local 

biomass. 

The results indicate that the stacked model tends to overestimate biomass, particularly in 

ecosystems where a few highly abundant species dominate. This overprediction is likely due to 

correlated errors in species abundance, which become amplified in the biomass estimates. In 

contrast, the community model demonstrated a narrower distribution of predictive errors, 

suggesting it may better capture community-level processes and offer more reliable biomass 

predictions. Furthermore, we observed that the predictive accuracy of both models varied with 

species richness, with more diverse and evenly distributed lakes (i.e., more equitable distribution 

of individuals across species) generally showing higher accuracy. These findings provide valuable 

insights into refining biomass prediction models, with significant implications for applications in 

fisheries management and biodiversity monitoring.  
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Chapter 2: Advancing single species abundance models: robust models for 

predicting abundance using co-occurrence from communities1 

“The smallest, most seemingly insignificant event is part 
of an intricate whole and to understand why one 
particular mote of dust falls in one particular path, and 
lands in one particular location, is to understand the will 
of Amaat. There is no such thing as “just a 
coincidence”.” 

Ann Leckie, Ancillary Justice 

2.1. Abstract 

Accurate estimates of abundance are crucial for successful conservation and management. 

However, gathering abundance data is costly. Species Abundance Models (SAMs) are increasingly 

used to predict variation in abundance for resource management for single species, but collecting 

enough relevant environmental information to build effective SAMs can often be challenging. 

Species co-occurrence patterns may provide additional information on missing environmental 

predictors, and data on presence-absence species co-occurrence are typically easier to collect than 

abundance or detailed environmental data. However, it is still not clear when supplementing abiotic 

data with co-occurrence data should improve abundance predictions, as co-occurrence data itself 

represents a noisy indicator of the local environment. Using simulated data where we manipulated 

the strength of relevant environmental predictors across multiple species, we assessed the 

conditions that improve model predictions of a target species by using co-occurrence data on the 

remaining species as a proxy for missing environmental predictors. Because species often share 

 
1 A version of chapter 2 is currently in review at Ecosphere; it is also available as a preprint on EcoEvoRxiv. Stahl, 
A., Pedersen, E. J., & Peres-Neto, P. R. (2024). Advancing single species abundance models: robust models for 
predicting abundance using co-occurrence from communities. EcoEvoRxiv [Preprint]. 
https://doi.org/10.32942/X2S32J  
 



 22 

environmental preferences in nature, an aspect simulated in our data, latent variables are expected 

to summarize important environmental gradients across co-occurring species. We employed 

Gaussian copulas to generate presence-absence co-occurrence-based latent variables as proxies. 

These latent variables, along with various combinations of environmental predictors, were 

subsequently used as predictors in SAMs. We evaluated the accuracy of these models in predicting 

the presence and abundance of target species through model validation exercises. Our results 

showed that incorporating presence-absence latent predictors generally improved model 

performance when compared to models lacking relevant environmental predictors, although there 

was considerable variation in performance across simulations. All models tended to have greater 

error rates when predicting abundant species compared to rare species. The goal of our proposed 

framework is to offer a novel and easy to implement method for accurately predicting abundance 

from both biotic and environmental information. 

2.2. Introduction 

Community ecology has grown increasingly quantitative in response to the demand for a deeper 

understanding and more accurate predictions regarding how ecological factors and processes 

influence abundance, biomass, and interactions among both coexisting and non-coexisting species 

(Flecker & Matthews 1999; Persson 2008). Abundance serves as a critical indicator for individual 

species, their communities, and/or the state of the environment, enabling us to quantify ecosystem 

functioning (e.g., predation pressure, densities of preys available, probability of reproductive 

encounters) (Degnbol & Jarre 2004). However, abundance data are generally difficult to collect 

across many different locations in heterogeneous landscapes (e.g., across many lakes in a 

landscape) whereas data on the presence or absence of communities of species can be easier to 

collect at landscape scales (Jackson & Harvey 1997). As such, it would be useful for landscape-
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scale management to be able to predict the local abundance of specific species based on easier-to-

sample data such as the presence or absence of other species. 

Many conventional models used to predict abundance rely on local (e.g., lake temperature) and 

regional (e.g., number of growing degree days) environmental variables (Boyce et al. 2016; 

Bradley 2016; Brosse et al. 1999; Lek et al. 1996; Sobrino et al. 2020; VanDerWal et al. 2009). 

While environmental variables are relatively easy to gather through sampling or existing datasets, 

they are unlikely to encompass the multitude of sources of variation necessary for accurately 

predicting the abundances of target species of interest and other responses related to their 

communities, such as species composition. This limitation arises because it is not often possible to 

measure all relevant environmental variables, and many species and community responses depend 

on factors beyond just environmental ones. Additional factors, such as species interactions and 

history of introducing exotic species, among many others, also play important roles in shaping 

species patterns of species distributions, including abundance, and biodiversity (richness and 

species composition) in local communities and regionally (i.e., large scale variation). 

In many cases, however, the environmental data gathered and used for predicting abundance 

variation in space (e.g., across sites) may stand as the primary source of low predictive accuracy, 

rather than other additional factors. For instance, relevant environmental variables may be missing 

or subject to measurement errors, or there could be time lags in environmental fluctuations and 

related changes in abundances (Bengtsson et al. 1997; Dornelas et al. 2013; Myers 1998); and these 

lags may vary spatially and temporally (i.e., non-stationarity in lag-responses) even for the same 

species. If an unmeasured driver affects the abundance of at least two species, whether positively, 

negatively, or even in opposite directions between the species, one can expect that information 

about the distribution of one of these two species would improve the prediction of the other. This 
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is especially expected when the probability of a species’ presence or absence is related to its 

abundances, and when the presence or absence of other species act as proxies for unmeasured 

quantitative factors (e.g., low versus high values), or qualitative factors (e.g., presence or absence 

of the missing factor). Indeed, several studies have shown that, for certain species, the most 

accurate predictor of abundance was information regarding the presences and absences of other 

species (González-Salazar et al. 2013; Lewis et al. 2017; Öğlü et al. 2020; Olkeba et al. 2020). 

While pairwise comparisons can be somewhat effective when studying single species, the 

interactions among multiple species can be complex and may not be adequately captured by 

pairwise comparisons alone. 

It is generally not feasible to include the presence of all species in a regional species pool as 

predictors in a model targeting even the abundance of a single species. This limitation arises 

because even a moderately sized regional species pool may result in tens or hundreds of additional 

predictors in any abundance model. As such, incorporating the presence of other species into 

abundance models requires some form of dimension reduction of the species pool prior to analysis. 

In addition, many dimension reduction methods can borrow information across species and 

characterize their patterns of co-occurrence in a much-reduced number of axes, thereby improving 

predictive power based on these axes rather than considering all species separately (Carreira-

Perpiñán 1997; Cunningham 2008). 

A solution to incorporating complex co-occurrence data while retaining a low dimensionality is to 

employ latent variable models (Walker & Jackson 2011). Latent variables are unobservable 

variables or factors that are not directly measured but rather estimated based on the associations 

(covariation) among species. These latent variables aim to estimate the joint model probability 

distribution of species presences-absences and represent the underlying structure or patterns in the 
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data by specifying how data points (e.g., species composition across local communities or sites) 

are likely to be generated. Several methods exist to estimate latent variables from abundance or 

presence-absence data, including non-model-based (e.g., classic ordination methods such as 

principal component analysis) and model-based (e.g., mixed-model ordinations) methods (Popovic 

et al. 2019, 2022; Walker & Jackson 2011). The power of latent variable methods stems from their 

ability to capture hidden variation in a dataset in low dimensionality (ter Braak 1985; ter Braak & 

Prentice 1988). Our contribution here is to demonstrate the robustness of modelling the abundances 

of single target species as function of latent variables that model the co-occurrence (presence-

absence patterns) of the other species. This aspect is particularly important for the management and 

conservation programs tailored to specific species. We introduce this general modelling framework 

and evaluate its ability to represent sources of predictive error caused by unmeasured drivers 

through detailed simulations. 

The goal of this study is to assess the robustness of our proposed framework for advancing single 

species abundance distribution models using species co-occurrence data of other species in their 

communities. We used detailed simulations to contrast the performance of models containing 

various levels of information on the environment and community composition. Moreover, because 

we generate abundance distributions for all species in our simulations, we can contrast our model 

performance between abundance-based and species-co-occurrence based. Specifically, using 

comprehensive simulations, we set out to assess the performance of our proposed species-

abundance framework by: (1) deriving guidelines for determining the number of latent variables 

used in modelling single species abundances, (2) contrasting model performance containing 

varying levels of information about the true underlying drivers (environment) versus latents (i.e., 

environmental proxies based on co-occurrence patterns of species sharing variable levels of 
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environmental affinities; Figure 2.1), and (3) assessing how predictive performance varies as a 

function of sample size (i.e., number of sites or local communities used as input into the model). 

In this study, we focused on scenarios in which species and their communities are influenced solely 

by environmental variation, without considering the impact of species interactions or dispersal, 

which can either enhance or diminish model performance (i.e., increase or decrease predictive 

accuracy, respectively). 

Figure 2.1: The rationale underlying our model framework and simulation workflow to assess its 
performance. First, species abundances were simulated for all species (top left panel) as a function 
of multiple environmental factors. In this example, two environmental variables were used to 
simulate species abundances (X1 and X2; bottom left panel). Species abundances are then 
transformed into presence-absence data and used to derive latent variables (bottom left panel). 
Here, only one latent variable is presented for simplicity, allowing one to more easily associate it 
with the abundances of the original simulated species. Variation in species abundances (target 
species) across sites is then modeled against latent and environmental variables or reduced 
combinations (e.g., removing an environmental variable and assess the conditions that affect latent 
performances), depending on specific simulation scenarios. The model can produce either 
abundance or presence-absence predictions for each site. The black rectangular outline highlights 
the target species (species 10) that the model aims at predicting. 
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2.3. Materials and methods 

The simulations to test our framework followed the subsequent steps (see Figure 2.1 for an 

illustration of how this general workflow for a single simulated landscape): 

1. Use stochastic simulations to generate landscape-scale environmental variation for each site 

in a landscape, and to generate coefficients for each species determining how average 

species abundance should vary as a function of environmental variables. 

2. Simulate the abundance of species in each site, based on the environmental variables and 

coefficients generated in step 1. 

3. Calculate latent variables from the presence-absence data of the previously generated 

abundance using Gaussian Copulas (statistical tools used to model the dependence structure 

between normal variables while allowing each variable to maintain its own marginal 

distribution, Popovic et al. 2022). 

4. Using a subset of the data generated, train a set of statistical models for each species to 

predict local abundance. Trained models varied in the number of included environmental 

variables and whether the model included latent variables. 

5. Use a suite of metrics to evaluate the ability of each model to predict patterns of presence-

absence and abundance for the sites that were not used to estimate the models. 

2.3.1. Steps 1 and 2: simulating communities 

We used a Poisson model to simulate species abundances across different landscapes representing 

communities spread across E environmental gradients, assuming that the values of the 

environmental gradients were uncorrelated from one another, and that the log of the mean 

abundance of each species was equal to the sum of linearly dependent functions of each of the 

environmental gradients plus a species-specific intercept: 
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𝐴𝐴𝑠𝑠,𝑗𝑗,𝑢𝑢 ∼ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃�𝜇𝜇𝑠𝑠,𝑗𝑗,𝑢𝑢� 

𝜇𝜇𝑠𝑠,𝑗𝑗,𝑢𝑢 =  exp (𝑏𝑏0,𝑠𝑠,𝑢𝑢 + 𝑏𝑏1,𝑠𝑠,𝑢𝑢𝑋𝑋1,𝑗𝑗,𝑢𝑢 + 𝑏𝑏2,𝑠𝑠,𝑢𝑢𝑋𝑋2,𝑗𝑗,𝑢𝑢 + ⋯+ 𝑏𝑏𝐸𝐸,𝑠𝑠,𝑢𝑢𝑋𝑋𝐸𝐸,𝑗𝑗,𝑢𝑢) 

Equation 2.1a 

Equation 2.1b 

 

Here 𝜇𝜇𝑠𝑠,𝑗𝑗,𝑢𝑢 is the expected number of individuals (abundance) of a species at a site, conditional on 

the environmental covariates included in the model. The abundance values were drawn from a 

Poisson distribution with mean 𝜇𝜇𝑠𝑠,𝑗𝑗,𝑢𝑢. 𝑠𝑠 denotes species, 𝑗𝑗 sites, and 𝑢𝑢 the landscape. 𝐴𝐴𝑠𝑠,𝑗𝑗,𝑢𝑢 is the 

abundance of the sth species in site 𝑗𝑗 of landscape 𝑢𝑢, 𝑋𝑋1,𝑗𝑗,𝑢𝑢 to 𝑋𝑋𝐸𝐸,𝑗𝑗,𝑢𝑢 are the E environmental 

covariates that vary for each site 𝑗𝑗 of each landscape 𝑢𝑢, 𝑏𝑏0,𝑠𝑠,𝑢𝑢 the intercept that vary for each species 

𝑠𝑠 and landscape 𝑢𝑢, and 𝑏𝑏1,𝑠𝑠,𝑢𝑢 to 𝑏𝑏𝐸𝐸,𝑠𝑠,𝑢𝑢 fixed coefficients relative to environmental variables 1 to E 

for species 𝑠𝑠 in landscape 𝑢𝑢. 

Table 2.1: Variable symbols and indexes, and their associated values and distributions used in the 
simulation study. Bold letters indicate that the variable is a vector or a matrix. 

Variable name Variable Values  
A Abundance 0 to ∞ 
S, s Number of species, species index {10, 20, 30} 
U, u Number of landscapes, landscape index 30 
J, j Number of sites, site index  
E Number of environmental variables 3 
𝑏𝑏0,𝑠𝑠,𝑢𝑢 Intercept for species s and landscape u Uniform(-2.4, 1.2) 
𝑏𝑏1,𝑠𝑠,𝑢𝑢 𝑡𝑡𝑡𝑡 

𝑏𝑏𝐸𝐸,𝑠𝑠,𝑢𝑢 
Slopes for species s, landscape u and 
environmental variables 1 to E 

Uniform(-0.8, 0.8) 

𝑋𝑋1,𝑢𝑢,𝑗𝑗 to 
𝑋𝑋𝐸𝐸,𝑗𝑗,𝑢𝑢 

Environmental variables 1 to E for site j of 
landscape u 

Normal(0,1) 

L Number of latent variables 3 
X Environmental variable  
Z Latent variable  

 

We simulated environmental covariates by drawing J independent, normally distributed values for 

each of the E environmental variables for each landscape (step 1). Thus, values for each covariate 

were statistically independent, with each environmental covariate having a mean of 0 and a 
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variance of 1 across sites. These environmental covariates can be interpreted as environmental 

gradients given that they were generated independently. The coefficients (𝑏𝑏0,𝑠𝑠,𝑢𝑢, 𝑏𝑏1,𝑠𝑠,𝑢𝑢, … 𝑏𝑏𝐸𝐸,𝑠𝑠,𝑢𝑢) for 

each species were drawn from a uniform distribution with a range of -2.4 to 1.2 for the intercept, 

and -0.8 to 0.8 for the slopes. The ranges for the coefficients were determined through simulation 

trials where we identified the minimum and maximum coefficients that allowed for all species to 

be present in at least 10% of sites and at most in 90% of sites. The selected parameters allowed to 

generate species with different levels of strength between abundance and environment variables 

(e.g., narrow versus broad niche breadths; step 2). Table 2.1 summarizes how each variable in 

Eq. 2.1 was generated. The distribution across species of spatially averaged species abundance 

within each landscape was approximately log-normally distributed (Figure 2.2), resembling 

common patterns found in natural communities. 

Figure 2.2: The density of average species abundance across sites within each landscape. For each 
landscape, we calculated the average abundance of each species and plotted the density of 
abundances in each of the 30 landscapes (grey lines). We also plotted the density of abundances 
across all landscapes to represent the average landscape (black line). The red line is a reference line 
indicating the probability density function of a log-normal distribution with the same log-mean and 
log-standard deviation of the average abundance distribution across replicates. 
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2.3.2. Step 3: Latent variables generation and their abilities to represent missing 

environmental variation 

Different methods are available for incorporating presence-absence information into a latent model 

(Blanchet et al. 2020; Popovic et al. 2019; Zou & Zhang 2009). The copula approach used here is 

a model-based latent approach to estimate latent variables from multivariate datasets, as 

implemented in the ecoCopula R package (Popovic et al. 2019). This Gaussian Copula graphical 

model approach combines a multivariate distribution (e.g., multivariate Gaussian) with a set of 

marginal distributions (e.g., binomial, Poisson). Due to its high versatility (i.e., allowing for the 

selection of the multivariate distribution as well as the modelling of the appropriate discrete 

marginal distributions), it holds significant potential for applications in ecology (Anderson et al. 

2019). Additionally, it has been shown to be one of the most accurate latent estimation methods in 

heterogenous environments (i.e., varying with a binary environmental covariate, Popovic et al. 

2019) and has been identified as the fastest and most robust latent variable quantification method 

for count and binomial (presence-absence) data (Popovic et al. 2022). 

However, the copula model requires specifying the number of latent variables to estimate prior to 

model fitting. In general, at least E latent variables should be required to capture the variation in E 

independent environmental gradients, but it may be the case that more latent variables are needed 

to fully capture environmental variation. One frequently used method for determining the number 

of latent variables to retain is to compare AIC (Akaike Information Criterion) or BIC (Bayesian 

Information Criterion) for models with increasing numbers of latent variables until the chosen 

matrix reaches a minimum value (i.e., best predictive value of co-occurrence). However, initial 

testing on landscapes (simulated using the method in step 1) with varying numbers of latent 

variables consistently showed that, using the BIC method calculated in ecoCopula, the BIC score 
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was always lowest for models with a single latent variable, regardless of the number of 

environmental predictors used to simulate species abundances. As such, we conducted a 

preliminary trial to evaluate the number of latent variables needed to best approximate the 

environmental gradients in our simulated landscapes. 

Using Eq. 2.1, we simulated U landscapes of size J (number of sites), containing S species and a 

varying E number of environmental predictors (U = 450, J ∈ {100, 200, 300}, S ∈ {10, 20, 30}, E 

∈ [1,5]; Table 2.1). To evaluate the optimal number of latent parameters (axes) needed to best 

approximate the environmental gradients in our simulated landscapes and compare the impact of 

adding or removing latent variables, we generated several numbers of latent variables for each 

possible combination of parameter values. Therefore, for each possible combination of parameter 

values, we fitted the presence-absence data into a stacked species regression model before using a 

model-based ordination with Gaussian copulas by using the functions stackedsdm and cord from 

the package ecoCopula (Popovic et al. 2019, version 1.0-2) with L different numbers of latent 

factors to model them (L ∈ [1,5]).  

We extracted the BIC value of each of these models and subtracted from them the BIC of the best 

model from any given simulation set (i.e., lowest BIC for the species considered in the current 

landscape). To evaluate the effectiveness of the latent variables in representing (i.e., serve as a 

proxy) environmental variation, we conducted a redundancy analysis (RDA) of the original 

environmental variables used to simulate species abundance regressed against the extracted latents 

using the function rda from the package vegan (Oksanen et al. 2024, version 2.6-2). Ability of 

latents to represent environmental variation was measured via the RDA adjusted R2 (Peres-Neto et 

al. 2006). We determined from this trial that, regardless of the number of sites J or species S in the 

simulation, BIC was always lowest with a single latent variable (Figure S2.2), but adjusted R2 did 
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increase with the number of latent predictors, until the number of latents equaled E, after which the 

adjusted R2 did not increase with more latent variables (Figure S2.2), so there is no reason to extract 

more than E latent variables for any given simulation.  

2.3.3. Step 4: Contrasting the performance of abundance models 

We compared the models containing only the environmental variables used to generate species 

abundances (Eq. 2.1) against the ones containing selected environmental variables and the latent 

variables (community composition). This allowed us to compare model performance under ideal 

conditions because we used the true environmental drivers used to simulate species abundances 

against models from which we removed various combinations of environmental variables 

(scenarios) and replaced them with latent variables (proxies) to represent the missing sources of 

variation. Note, however, that ideal conditions do not imply perfect model performance, as different 

species were simulated with varying degrees of strength and associated errors relative to 

environmental variables (e.g., narrow versus broad niche breadths). 

For this contrast, we created U landscapes, and for each landscape u, we generated K replicates 

(U = 30, K = 10 replicates per landscape). For each replicate k, we simulated abundances for each 

s species in each site j using Eq. 2.1, using three environmental variables 𝑿𝑿1, 𝑿𝑿2 and 𝑿𝑿3 per 

landscape containing multiple sites. We simulated 20 species and 1000 sites per landscape. We 

fixed the number of latent factors to 3 as we had three environmental variables (see RDA results in 

previous section). Replicates (i.e., landscapes using the same coefficients but had varying values 

of environmental gradients) were used to allow a reasonable estimate of the metrics used to contrast 

model performances. 

We randomly sampled 100 sites (out of the 1000 simulated) from each landscape u (referred here 

as to the training set), and for each training set we estimated abundance models with different 
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combinations of environmental and latent predictors (step 4). Each model was estimated using a 

Generalized Linear Model (GLM), using a Poisson distribution with a log-link function (Kéry & 

Royle 2015; Nelder & Wedderburn 1972). We used the manyglm function from the R package 

mvabund (Wang et al. 2022, version 4.2-1) to fit separate models for each replicate landscape 

simultaneously for all species separately. 

We were interested in comparing models containing different combinations of environmental 

variables and latent variables. The complete list of model scenarios considered is described in Table 

2.2. As each species had different strengths of relationship with each environmental variable (i.e., 

different coefficient values in Eq. 2.1 were used to simulate each species), we ordered the models 

based on the absolute decreasing values of the environmental coefficients used to simulate the 

species’ abundance. For instance, if species A had the values of -0.5, 0 and 0.8 as coefficients for 

the environmental variables 𝑿𝑿1, 𝑿𝑿2, and 𝑿𝑿3, respectively, 𝑿𝑿3 had the largest influence on driving 

abundance values, followed by 𝑿𝑿1 (i.e., importance is given by absolute decreasing coefficient 

values) and 𝑿𝑿2. But if species B had values of 0.7, -0.5 and 0.3 as coefficients for the environmental 

variables 𝑿𝑿1, 𝑿𝑿2, and 𝑿𝑿3 respectively, its abundance was mostly driven by variations of 𝑿𝑿1, then 

𝑿𝑿2 and finally 𝑿𝑿3. When removing 𝑿𝑿1 from the predictors of a model, species A and B were not 

impacted in the same way due to the lesser influence 𝑿𝑿1 had on the abundance of species A. We 

predicted that including latent variables should increase predictive ability more when added to a 

model that only included environmental predictors that weakly predicted the abundance of an 

individual species. To test this, we compared model performance with and without latent variables 

for models including different combinations of strengths of environmental variables.  

For models containing one environmental variable as predictor, we labeled the predictors as “high”, 

“intermediate”, and “low”, corresponding to the decreasing values of coefficients of the 
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environmental variables. For models incorporating two environmental variables, we designated the 

model with the two highest coefficients as “high”, the model with the highest and lowest coefficient 

as “intermediate”, and the model with the two lowest coefficients as “low”. 

Table 2.2: All models considered in this study based on combinations of environmental variables 
and community composition (latents). The best model is expected to be the “true” model 
considering all three environmental variables. A refers to the abundance matrix, X1 to X3 to the 
environmental variables, and Z1 to Z3 to the community composition (latent variables). 

Variables included Model specification Regression formula 

Environmental variables 

3 environmental variables 𝑨𝑨 ~ 𝑿𝑿1 + 𝑿𝑿2 + 𝑿𝑿3 

2 environmental variables 
𝑨𝑨 ~ 𝑿𝑿1 + 𝑿𝑿2 
𝑨𝑨 ~ 𝑿𝑿1 + 𝑿𝑿3 
𝑨𝑨 ~ 𝑿𝑿2 + 𝑿𝑿3 

1 environmental variable 
𝑨𝑨 ~ 𝑿𝑿1 
𝑨𝑨 ~ 𝑿𝑿2 
𝑨𝑨 ~ 𝑿𝑿3 

Environmental variables and 
community composition 

2 environmental variables and 
community composition 

𝑨𝑨 ~ 𝑿𝑿1 +  𝑿𝑿2 + 𝒁𝒁1:𝒁𝒁3 
𝑨𝑨 ~ 𝑿𝑿1 + 𝑿𝑿3 + 𝒁𝒁1:𝒁𝒁3 
𝑨𝑨 ~ 𝑿𝑿2 + 𝑿𝑿3 + 𝒁𝒁1:𝒁𝒁3 

1 environmental variable and 
community composition 

𝑨𝑨 ~ 𝑿𝑿1 + 𝒁𝒁1:𝒁𝒁3 
𝑨𝑨 ~ 𝑿𝑿2 + 𝒁𝒁1:𝒁𝒁3 
𝑨𝑨 ~ 𝑿𝑿2 + 𝒁𝒁1:𝒁𝒁3 

 

2.3.4. Step 5: comparison of model performance 

For each model estimated for each replicate within the same landscape, we generated predictions 

for species abundances at the remaining 900 sites in the landscape from which the sites were 

sampled from (the test set). To establish baselines for optimal model performance, we also 

calculated predicted abundances in the test set using the oracle model: i.e., the model employing 

the true coefficients used to simulate each species’ abundances to predict the conditional expected 

abundance for each species in each site. The oracle model represents the best possible model for 

estimating the simulated abundances in each test set that could be derived using data from the 

training set. Two other models were singled out: (i) a benchmark model containing all three 

environmental variables, to identify in which scenarios having access to all environmental variables 
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(drivers of the abundance) did not suffice to properly estimate the environmental coefficients (by 

comparing the performance of the benchmark model to that of the oracle model), and (ii) a latent 

model containing only the latent variables, to study how species co-occurrence patterns performed 

as predictors of their own. We assessed how effectively the different models, including the oracle 

model, predicted the pattern of presences and absences as well as the true abundances in the test 

set. 

Although our primary focus was on predicting abundance, we evaluated the models for both 

presence-absence and abundance predictions. This approach was taken because, in many cases, the 

interest may lie in predicting presence or absence of a particular target species. It is important to 

note, however, that the latents used as predictors were always derived based on the presence-

absence of other species. 

Metrics for evaluating presence-absence predictions 

The Poisson regression models estimated in step 4 can predict the probability of presence of each 

species in a given site, but to evaluate the effectiveness of the model for predicting presence, these 

probabilities need to be translated into concrete predictions for presence or absence (Lawson et al. 

2014; Phillips & Elith 2013). If we only treated a model as predicting a species present if the 

probability of presence was over 50%, models for rare species would only predict absences (and 

vice versa for common species), so using a fixed probability threshold would lead to all models of 

rare (common) species having the same predictive performance as a model that just predicts the 

species always being absent (present).  

Therefore, instead of using a fixed probability threshold to convert the probabilities into presence-

absence predictions, we used a prevalence-based approach. For each species, we set a threshold 
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equal to the true occurrence (prevalence) rate of the species across a given landscape (Liu et al. 

2005). We used this threshold to generate a predicted presence-absence matrix for each site and 

each species in each landscape for a given model. This was achieved by determining whether the 

expected abundance by the model for that site was greater (present) or lower (absent) than the 

threshold value. We then compared the performance of each model to the oracle model using a 

range of metrics, the equations for which are provided in Table 2.3. Using the predicted presence-

absence matrices, we calculated the True Skill Statistic (TSS, Peirce 1884; Table 2.3) for each 

model, species and landscape replicate. The TSS, which ranges from -1 to +1, measures the 

difference between the sensitivity and specificity of the model. A score of +1 indicates a perfect 

agreement between the model’s predictions and the true presence-absence, while a score of 0 or 

lower signifies performance no better than random (Allouche et al. 2006). We calculated the ratio 

of the TSS of the model over the TSS of the oracle and computed the mean for each model, species 

and landscape. Then, we grouped species into bins based on occurrence rates across different 

landscapes. A TSS ratio of ≥1 indicates that the model performed as well or better than the oracle, 

while a TSS ratio of ≤0 means that the model predicted presence as badly or worse than random 

chance.  

To compare whether including latent predictors increased model performance relative to just using 

environmental variables, we also calculated the delta TSS, defined as the TSS of environmental 

model minus the TSS of corresponding latent model (i.e., models containing the same 

environmental variables where the only difference in specification was the inclusion of latent 

variables as predictors). A positive delta TSS indicates the environmental model to have the best 

performance, whereas a negative value suggests that the model including of latent variables 

performs best. 
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Table 2.3: Metrics used for assessing model predictive performance based on presence-absence and 
abundance of target species. J represents the number of sites, As the true abundance of the (target) 
species, Ps the predicted abundance, TP the true positives, FP the false positives, TN the true 
negatives, and FN the false negatives. Bold letters indicate that the variable is a vector or a matrix. 
The True Skill Statistic (TSS), sensitivity, and specificity are calculated for all sites of the 
landscape. Having evaluated the presence-absence predictions of the models and to avoid 
artificially inflating the error rate of the abundance metrics, the Mean Absolute Percentage Error 
(MAPE), Root Mean Squared Percentage Error (RMSPE), Relative Mean Squared Error (RMSE), 
Symmetric Mean Absolute Percentage Error (SMAPE), and Root Mean Ratio Percentage Error 
(RMRPE) are calculated for sites where the species is truly present (i.e., abundance of 1 or more). 

Metric Equation 

TSS 𝑇𝑇𝑇𝑇𝑇𝑇 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
+

𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹

− 1 

Sensitivity 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
 

Specificity 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
 

MAPE 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =
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RMSPE 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �
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RMSE 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �
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�
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SMAPE 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =
1
𝐽𝐽
�
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� log �
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Metrics for evaluating abundance predictions  

When evaluating how each model predicted species abundance, we limited comparisons to sites 

where the species was present (i.e., abundance of 1 or higher) and calculated the following 

prediction metrics for each model, species and landscape replicate: Mean Absolute Percentage 

Error (MAPE), Root Mean Squared Percentage Error (RMSPE), Relative Mean Squared Error 
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(RMSE), Symmetric Mean Absolute Percentage Error (SMAPE), and Root Mean Ratio Percentage 

Error (RMRPE) (see Table 2.3 for definitions of these metrics). We calculated the ratio of each 

metric to the corresponding metric calculated for the oracle model (i.e., best possible scenario) and 

calculated the average ratio for each model, species and landscape (referred to as the ratio metric 

in the results). We also calculated the delta metric, defined as the metric calculated for a model 

containing only environmental variables minus the metric calculated for a model with the same 

environmental variables as well as latent variables. As above, a negative delta metric indicated that 

the latent model performed better than the same model lacking latent variables.  

To illustrate how different metric performances varied with species abundance across simulations, 

we grouped species in different landscapes into percentile bins, based on the average (true) 

abundance of the species in its own landscape, and then calculated average ratio metrics and delta 

metrics for each percentile bin across landscapes and replicates.  

2.4. Results 

2.4.1. Number of latent variables needed to capture environmental variation 

We first focus on determining the optimal number of latent dimensions to select when using 

Gaussian copulas. To assess the goodness of fit of the models, we examined both the RDA adjusted 

R2, which represents the proportion of variance explained by the model, and the Bayesian 

Information Criterion (BIC), which is typically used to determine the optimal number of latent 

variables to retain. The RDA enabled us to estimate how effectively the latents characterize the 

original environmental variables (gradients) based on community composition, while the BIC 

helped us determine whether this criterion indeed allows for selection of an appropriate number of 

latents to represent community composition. 
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The adjusted R2 consistently increased with the number of latent dimensions until it equaled the 

actual number of environmental variables used to simulate the data, at which point it plateaued 

(Figure 2.3, Figure S2.2). This indicates that additional latent variables did not improve the model’s 

ability to predict the environmental state of a given location. The maximum fraction of variance 

explained was not significantly affected by the number of true environmental variables used to 

generate (simulate) species abundances; capturing variation from one environmental gradient was 

as feasible as capturing it from three or four environmental gradients (i.e., variables). Note, again, 

Figure 2.3: Variation in adjusted R2 as a function of the number of latent variables used, as well as 
the true dimensions of the environment and the number of species in the landscape. Here we used 
500 sites, and variations according to other number of sites are presented in Figure S2.2. Colors 
represent the varying number of species in the landscape, and each panel indicates the true 
dimension of the environment (i.e., number of environmental variables used to simulate the 
abundance of a given target species). 
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that the interpretation here as gradients is possible because environmental variables were generated 

independently. The adjusted R2 was not sensitive to the number of sites in the landscape used to 

estimate the latent variables, but it was sensitive to the number of species used: models based on 

10 species could only explain about 30% of the variation in environmental variables, regardless of 

the number of latent variables used, whereas models based on 30 species could explain ~60% of 

variation in the environmental matrix (Figure S2.2). 

In contrast, the Bayesian Information Criterion (BIC) consistently increased with the number of 

latent dimensions, without showing any signs of reaching a plateau (Figure S2.1). While models 

with lower BIC are generally expected to have better predictive ability for unobserved data - 

suggesting that the best model would always retain one latent variable regardless of the 

environmental dimension - this expectation did not align with our observations for the adjusted R2. 

This discrepancy indicates that BIC (as calculated by ecoCopula) is not a good metric of the 

predictive performance of the latent model, at least when applied to gradients driving abundances 

while their latents were extracted from presence-absence data. Therefore, we did not report BIC of 

the estimated latent models for the remainder of our simulations.  

2.4.2. Models’ performance 

Presence-absence predictions 

We now focus on the models’ performance in predicting presence-absence, including the ratio TSS 

(representing how well each model performed compared to the oracle model) and delta TSS 

(represented how well models without latent variables performed relative to models including 

latent variables). The ratio of the TSS had a mean of 0.7 and ranged from -1.6 to 1.7 (recall that 

any value below 0 indicates that the model did not perform better than random, while any value 

above 1 represents better performance compared to the oracle). Initially examining the TSS across 
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species occurrence percentiles, there were no obvious patterns (Figure 2.4). In this case, the number 

of occurrences of a target species did not influence model’s performance. When comparing models, 

those containing two environmental variables performed better on average than those with only 

one, regardless of whether latents are included or not. 

When comparing models with and without latent variables, any delta TSS value above 0 indicates 

that the environmental model performs better, while any negative value indicates a better 

performance by the latent model. Models containing latent variables generally performed better on 

average across all (target) species, especially for those with high occurrence and in models 

containing only one environmental predictor (Figure 2.4). The differences are less pronounced 

when comparing models that contain two environmental variables (i.e., where only one 

environmental predictor is missing from the model). Reducing the number of sites used to fit the 

model did not affect the performance of the TSS, sensitivity, or specificity (Figure S2.3). 

When comparing the TSS as performance of the oracle (i.e., a model using the true coefficients of 

the environmental variables to generate the species’ conditional expectations), benchmark (i.e., a 

model containing all three environmental variables), and latent models (i.e., a model containing 

only the latent variables), we can notice that they are very correlated across species occurrence 

percentiles (Figure 2.5). The benchmark and oracle models have extremely similar performances. 

Regarding sensitivity, the benchmark and oracle models are also highly correlated, while the latent 

model demonstrates good correlation for species with low occurrence. For specificity, the 

benchmark and oracle models are correlated for high occurrence species, while the benchmark and 

latent models are correlated for low occurrence species. 



 42 
  

Figure 2.4: Ratio TSS and delta TSS for each model and bin of species occurrence percentiles. The 
ratio TSS was averaged across all landscapes and replicates per model and species, with species 
binned by percentile of occurrence (percentage of sites occupied) and divided by the TSS of the 
oracle model. A value of 1 for the ratio TSS indicates an identical performance between the model 
and the oracle model, while a value below 0 represents a performance similar to that of a random 
model. To improve contrast between colors, we confined the color scheme between 0 and 1. Any 
value below 0 indicates a prediction of presence-absence no better than a random model, and any 
value above 1 indicates a better prediction than the oracle model. The environment panel represents 
models containing only environmental variables, while the latent panel is for models containing 
latent variables (mix of latent and environmental predictors); the models were then ordered from 
bottom to top as fewest to the greatest number of environmental variables included and sorted by 
coefficients relative to each environmental variable (see Methods for more information, note that 
the “mid” model refers to the “intermediate” model). The delta TSS was measured as the TSS of 
the model with environmental variables minus the TSS of the model with the same combination 
of environmental variables and latent variables. A negative value indicates that the model with 
latent predicts the presence-absence of the species better than the model containing only 
environmental variables. 
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Abundance predictions 

To assess the goodness of fit for abundance-based models (i.e., target species include abundance 

information while latents are based on presence-absence of the other species), we calculated six 

metrics to assess the extent to which the models mispredict species abundances. Again, we used 

the ratio of each metric over the same metric calculated for the oracle model (i.e., representing the 

Figure 2.5: Correlation between the metrics studied (TSS, sensitivity, and specificity) depending 
on the model across species occurrence percentiles. The vertical panels indicate the different 
metrics, with models represented in different colors. The oracle model refers to the model using 
the true environmental coefficients, while the other models were fitted using all environmental 
variables (benchmark) or latent variables (latent). The True Skill Statistic (TSS) measures the 
difference between sensitivity and specificity of the model and ranges from -1 to +1. A score of +1 
indicates a perfect agreement between the predictions of the model and the true presence-absence, 
while a score of 0 or less represents a performance no better than random. Sensitivity represents 
the ability to correctly classify a species as “present”, while specificity represents the ability to 
correctly classify a species as “absent”. Their values can be interpreted as a percentage, with values 
of 1 indicating perfect classification of either presence or absence, and values of 0.5 no better than 
random. Here we used 500 sites, and variations according to other number of sites are presented in 
Figure S2.3. 
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best possible predictive scenario), along with the delta metric to compare models that differ in 

composition due to the inclusion or exclusion of latent variables. 

To assess across all species the impact on model performance of removing any given environmental 

predictor, we had to consider the varying strengths in the relationship between each species 

abundance and each environmental variable to compare the predictive ability of latents. As a 

reminder, in models containing one environmental variable as predictor, we labeled the predictors 

as “high”, “intermediate”, and “low”, corresponding to the decreasing coefficients of the 

environmental variables. For models incorporating two environmental variables, we designated the 

model with the two highest coefficients as “high”, the model with the highest and lowest coefficient 

as “intermediate”, and the model with the two lowest coefficients as “low”. Regardless of the metric 

considered, we observe the following patterns: prediction error increases as species abundance 

increases, and models containing two environmental variables outperform models containing only 

one environmental variable (Figure 2.6, Figure S2.4). When comparing models with or without 

latent variables, highly abundant species were best predicted by models containing latent variables 

(Figure 2.6, Figure S2.4). For species with low and medium abundances, the inclusion or exclusion 

of latent did not impact the performance of the models; they exhibited very similar values of error. 

When comparing the metrics in relation to the performance of the oracle (i.e., a model using the 

true coefficients of the environmental variables to generate the species’ conditional expectations), 

benchmark (i.e., a model containing all three environmental variables) and latent models (i.e., a 

model containing only the latent variables), we observe identical trends across all metrics. The 

performance of the three models was very similar for low abundance species; however, the latent 
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model diverged when the abundance percentile was higher than 70%, with an increase in predictive 

error (Figure S2.5). The metrics were not sensitive to the number of sites in the landscape used to 

fit the models (Figure S2.6). 

Figure 2.6: Ratio Mean Absolute Percentage (MAPE) and delta MAPE are presented for each 
model and bins of species abundance percentiles. The MAPE is averaged across all landscapes and 
replicates per model and species, with the species binned by percentile of abundance and divided 
by the MAPE of the oracle model to derive the ratio MAPE. The environment panel represents 
models containing only environmental variables, while the latent panel depicts models containing 
latent predictors. The models are then ordered from bottom to top, from the fewest to the greatest 
number of environmental variables included and sorted by coefficients relative to each 
environmental variable. See Methods for more information, note that the “mid” model refers to the 
“intermediate” model. Delta MAPE was measured as the MAPE of the model with environmental 
variables only minus the MAPE of the model with the same combination of environmental and 
latent predictors. A positive value indicates that the model with latent predicts the abundance of the 
species better than the model containing only environmental variables. 
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2.5. Discussion 

2.5.1. Number of latent variables needed to capture environmental variation 

Our first goal was to establish guidelines for determining the number of latent variables used in 

modelling single species abundances. To achieve this, we examined the behavior of two metrics, 

the BIC and the adjusted R2, within a simulated landscape. Our results indicate that the BIC was 

not a useful metric for deciding the appropriate number of latent variables when employing 

Gaussians copulas. Instead of plateauing once the latent variables captured as much of the 

environment as possible, it continued to increase, implying that the best number of latent variables 

was consistently one even in cases where multiple independent environmental gradients were set 

to simulate species distributions. It is plausible that current calculation method for BIC is incorrect 

or does not employ an appropriate penalty measure (number of parameters and sample size). Note 

that there is a general lack of consensus about the best criteria for assessing latent models (Weller 

et al. 2020). On one hand, the BIC is generally regarded as a reliable metric for latent models 

(Nylund et al. 2007); however, it is also criticized for being overly conservative (Mindrila 2023) 

as it was the case here. Note, however, that the underperformance of BIC to decide the number of 

latents to use in species abundance models may be due to the fact that, in our simulations, species’ 

responses to environmental gradients were in the form of abundances, whereas latent predictors 

were extracted from presence-absence data. Consequently, the more liberal AIC might be a 

preferable option for the Gaussian copulas used in our study. Note that regardless of whether we 

use AIC or BIC to assess the number of latents to retain, this assessment is intrinsic and solely 

based on the community data used to estimate the latent variables, which are then used as predictors 

in abundance distribution models of single species. As we will discuss, an extrinsic selection, in 

which latents that improve abundance predictive accuracy are chosen, may prove to be a better 
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strategy when using latent models based on co-occurrence data to predict abundance of single 

(target) species. 

Note that the goal of the RDA analysis, based on the R2 metric, was to assess whether the latent 

structures used here could serve as a good proxy for the true environmental variables used to 

simulate species distributions. Given that the adjusted R2 plateaued when the number of latent 

variables equaled the true number of environmental dimensions, it instills confidence that these 

latents serve as robust proxies. However, it is important to note that this analysis cannot generally 

be performed, as in true empirical cases we do not know whether the measured predictors are 

important. Further, this plateau of latent predictive ability when the number of latent predictors 

equals the number of environmental predictors is likely due to the fact that our abundance 

simulations only used linear environment-abundance relationships; it is likely that if abundance-

environment relationships were nonlinear (e.g. uni- or multi-modal), a larger number of latent 

variables would be needed to capture the same number of environmental dimensions. 

Additionally, although the RDA analysis demonstrated that the correct number of latents can 

represent the true number of environmental gradients structuring co-occurring species, it is 

important to note that the original simulations generated abundance values that were then 

transformed into presence-absence for generating latents. Although using presence-absence data 

allows our models to be applicable across many systems - given that researchers often only have 

abundance data for a few target species and presence-absence data for multiple other co-occurring 

species - there is certainly loss of environmental signal by doing so. This explains why the adjusted 

R2 is generally not very high. 
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2.5.2. Model performance 

Our second and third objectives were aimed at contrasting model performance that contained 

varying levels of information (i.e., number of predictors) about the true underlying drivers versus 

latent predictors and assessing how predictive performance varied as a function of sample size. We 

first compared model performance based on the presence-absence predictions, with the goal of 

assessing accuracy and comparing it to current models used by management which in most cases, 

do not contain all relevant environmental drivers. Although our study was primarily designed to 

predict abundance, the ability to derive accurate presence-absence predictions would enable 

researchers to apply an even more general framework for species distribution modelling based on 

latent predictors. 

 

Presence-absence predictions 

As to be expected, adding relevant environmental variables to the models improves predictions. 

Since the species’ abundance - and consequently presence-absence - is linearly related to these 

variables, any environmental information enables the model to capture more variation and thus 

predict abundance more accurately. Including all environmental variables leads to a perfect 

prediction. Although our goal was to develop and assess the performance of a general framework 

for predicting species distributions of target species based on latents of co-occurring species, 

different issues could be considered in future studies. For instance, the perfect prediction including 

all predictors was an outcome to be expected given that we did not include measurement error for 

environmental predictors or species abundances (i.e., white noise) in our simulations (see 

(McInerny & Purves 2011) for potential approaches for attenuating the potential effects of 

environmental measurement error species distributional models). It would be interesting to perform 
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a sensitivity analysis after including measurement errors either in the way environment (e.g., spatial 

variation within sites, temporal lags in species responses to environments) or abundance (e.g., 

estimates based on mark-recapture) are measured. 

The inclusion of species co-occurrence patterns through latent variables also leads to an 

improvement in predictions, indicating that the latent variables can capture unobserved 

environmental variation and serve as a proxy for missing (but relevant) environmental drivers. 

Indeed, models that incorporate two environmental variables and latent variables tended to perform 

better than models containing only two environmental variables. This result is particularly 

important because empirical datasets are unlikely to capture all relevant environmental drivers. 

Although presence-absence datasets are common, a model capable of predicting the presence and 

absence of an invasive species or a rare species based on the rest of the community composition 

could be useful for conservation efforts, especially with methods such as eDNA surveys that can 

collect information on presence from relatively few samples (Rees et al. 2014). 

The lack of influence of number of sites sampled on model performance may initially seem 

surprising. However, the training set of sites used to fit the models was sampled independently of 

the values of the environmental variables and without measurement error. This means that 

regardless of number of sites used to fit the model, the relationship between abundance and 

environment would have been accurately captured. It would be interesting to assess how changing 

the relationship from linear to quadratic would influence the results; as there would be increased 

complexity in the link, we’d expect to have a greater impact of number of sites sampled on the 

predictions. 
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Abundance predictions 

The species’ average abundance was generally low in our simulations. However, since we were 

interested in relative abundance error rather than true abundance error, we made a deliberate 

decision not to adjust the parameters of our simulations, maintaining a low average abundance. The 

shape of the abundance density curve was, to us, the most salient characteristic we aimed to 

replicate. Keeping the average abundance low also allowed us to maintain the occurrence of species 

within an ecologically meaningful range (i.e., between 10% and 90% of occurrence across the 

landscape). 

As expected, adding environmental variables improved the abundance predictions. Since no 

measurement error was included in the simulations for either environmental variables or species 

abundances, the inclusion of any environmental variable is likely to improve predictive accuracy. 

However, it is interesting to note that adding community composition only improved predictions 

for the high abundance species. One possible explanation for this is that the way we generated 

species abundances resulted in low-abundance species also being only weakly predictable from 

environmental variation (and thus only weakly predictable from community composition). In our 

simulations, a species would have low average abundance if it either had a small intercept (𝑏𝑏0) and 

values of the environmental slopes (𝑏𝑏1 to 𝑏𝑏𝐸𝐸 values) close to zero (so it would be roughly equally 

distributed across the landscape), or if it had a very small intercept value (𝑏𝑏0) and one large 

environmental slope value, so it was well-predicted by a single environmental variable. As such, 

the low predictive power of latent variables for rare species observed in our results may not 

generalize to species in natural settings. In fact, one might expect that species with intermediate 

abundances are likely to be best predicted due to the positive relationship typically observed 

between occupancy (number of sites occupied) and abundance (Gaston 1996; Wright 1991). 
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Species with low abundances may not occupy all suitable habitats, while those with high 

abundances could be generalists, occupying an excess of environments. Additionally, many other 

non-environmental factors (e.g., biogeography, dispersal limitation, species interactions, species 

introductions) may plays an important role in shaping patterns of species distributions and 

biodiversity in local communities and regionally (Boulangeat et al. 2012; Guisan & Thuiller 2005; 

Lewis et al. 2017). We suggest that future research could extend these simulations to incorporate 

nonlinear and non-stationary environmental gradients, given the growing interest in how such 

dynamics influence species abundance (Doser et al. 2024). 

Unlike presence-absence predictions, where no pattern related to species incidence could be 

identified, we observe a clear trend for the abundance predictions. The more abundant a species is, 

the higher the model’s predictive error. Since we measure the relative error in prediction and not 

the absolute error, this is not an artefact related to the total abundance of the species but rather it is 

related to the fact that the high abundance sites are poorly predicted. However, it may be due to the 

fact that we simulated species abundance from a Poisson distribution, where the variance in 

outcome increases linearly with the mean abundance, which would lead to higher variability in 

abundance even between sites with identical environmental variables. This does not make this 

result an artifact of our simulations, however; positive mean-variance relationships are typical in 

ecological populations (He & Gaston 2003), so we expect that it should be more difficult in general 

to predict abundances of common species compared to rare ones. It is important to highlight the 

fact that using a different statistical family to model species’ abundance might allow for a better fit 

of the model with empirical data and further improve the predictions (see review by Waldock et al. 

2022). Note, however, that the main component of our framework - the use of latents based on 

species co-occurrence patterns to predict species abundances - can be directly applied to any 
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modelling procedure, whether it is based on maximum likelihood, Bayesian or machine learning 

models. 

One intriguing result was observing the convergence of the models’ performance for low-

abundance species. Indeed, for species in the 0 to 50 percentiles of abundance, regardless of the 

metric used, a model containing only community composition can perform as well as one 

containing all environmental variables. This result may demonstrate the true potential for our 

framework as a management tool. However, again, this may be due to the Poisson expectation of 

our simulations as explained earlier. This performance does not apply to high abundance species, 

where there is a significant divergence in the models’ performance, likely caused by a few sites 

with very high abundances. Applications to empirical datasets may require downweighing the 

importance of sites containing high abundances to avoid skewing the model's predictive accuracy. 

The use of more robust models that may account for different types of overdispersion (e.g., very 

low and high abundances) can be considered within the context of our framework (e.g., Poisson-

log normal model, Harrison 2014). 

Additionally, increasing the number of sites sampled did not influence predictive performance, a 

result we anticipated since we sampled uniformly across the landscapes and captured the entire 

range of variation when fitting the model. However, such uniform sampling across landscapes is 

unlikely to be realistic when using empirical data, particularly in complex and patchy landscapes 

in which environmental features are clumped and spatially autocorrelated. This issue extends 

beyond our study. Various approaches have been proposed to mitigate the impact of complex 

landscapes on the predictive performance of species distribution models based on environmental 

features. Different sampling methods (Christianson & Kaufman 2016; Fortin et al. 1989), model 

validation techniques (Wenger & Olden 2012), and modelling frameworks (e.g., Dormann 2007a 
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for a review, Guélat & Kéry 2018) are among these proposed solutions and could, in principle, be 

incorporated into our modelling framework given its flexibility.  

We did not include any species interactions in our model simulations: as such, our results 

demonstrate that latent community composition variables can capture similar patterns of 

environmental interactions even in the absence of species interacting with one another. Although 

latent variable models can represent species interactions (e.g., competition, trophic interactions) 

via networks (e.g., Ovaskainen et al. 2016a), adjustments to the latent extraction may be necessary 

in order to incorporate more complex processes underlying pattern of species co-occurrences. It is 

likely that including direct species interactions (e.g., competition or predation) would increase the 

power of latent parameters for predicting species abundances as long as strong species interactions 

were relatively rare, or species interaction networks are relatively sparse; strong species 

interactions and dense species interaction networks can result in complex feedbacks, such that the 

net effect of presence or absence of a given species on a focal species may be indeterminant 

(Tunney et al. 2017).  

Finally, it is important to consider that we used all species in any given simulated landscape to 

generate latents. However, it is likely that certain reduced number of species combinations would 

better serve as inputs for latent generation. For instance, consider a scenario involving two species 

and two independent environmental predictors. If one species is highly associated with one 

environmental predictor but randomly associated with the other; and the second species shows the 

reverse pattern, then the two species will not effectively predict each other. One possible solution 

is to cluster species based on their environmental affinities prior to latent generation (see Hui et al. 

2013 for a discussion). As such, latents could be tailored to only consider species that increase the 

model performance of the target species. 
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Our proposed framework offers considerable promise for several compelling reasons. First, it is 

highly flexible in terms of parameter estimation, as it can accommodate any regression style 

approach. This allows to predict both presence-absence and abundance, and it demonstrates very 

good performance in predicting low-abundance species. Moreover, one can also use other latent 

modelling procedures and not necessarily Gaussian copulas. The framework could also be used to 

predict biomass rather than abundance by replacing the family of the GLM used, depending on the 

variable of highest interest for management. Overall, our proposed framework is incredibly 

versatile, allowing for significant flexibility and adaptability to accommodate the available data. 
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2.6. Supplementary Information 

Figure SI 2.1: Variation in delta BIC as a function of the number of latent variables used, as well 
as the true dimensions of the environment, the number of species in the landscape and the number 
of sites. Horizontal panels represent the number of sites, and each vertical panel indicates the true 
dimension of the environment (i.e., number of environmental variables used to simulate the 
abundance of a given target species). Colors represent the varying number of species in the 
landscape. The delta BIC is calculated as the BIC of the model minus the BIC of the best model 
for the ongoing simulation. 
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Figure SI 2.2: Variation in adjusted R2 as a function of the number of latent variables used, as well 
as the true dimensions of the environment, the number of species in the landscape and the number 
of sites. Horizontal panels represent the varying number of sites, and each vertical panel indicates 
the true dimension of the environment (i.e., number of environmental variables used to simulate 
the abundance of a given target species). Colors represent the varying number of species in the 
landscape.  
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Figure SI 2.3: Average value of the studied metrics (Ratio TSS, ratio sensitivity, and ratio 
specificity) depending on the number of sites used to fit the models, the model used, and the 
occurance of species. Horizontal panels represent the different occurrence: species with low, 
medium and high occurrence corresponding respectively to bins of 15, 50, and 80 percentiles of 
occurrence. Vertical panels indicate the metrics considered, with the models represented in different 
colors. The ratio metric is calculated as the metric for the predictions of a model for a species of 
the landscape divided by the same metric calculated for the oracle model. For the ratio TSS, a score 
of 1 indicates a perfect agreement between the predictions of the considered model and the oracle 
model, while a score of 0 or less represents a performance no better than random. For the ratio 
sensitivity, it represents the ability to correctly classify a species as “present”, while the ratio 
specificity represents the ability to correctly classify a species as “absent”. For both metrics, values 
above 1 indicate a better performance than the oracle model and values below 1 indicate a lesser 
performance. The benchmark model refers to the model containing all environmental variables, 
2V.high the model with the two environmental variables with the highest coefficients, 1V.high the 
model with the environmental variable with the highest coefficient, and Latent the model 
containing the latent variables. 
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Figure SI 2.5: Correlation between the metrics studied (MAPE, RMSPE, RMSE, SMAPE, 
and RMRPE) depending on the model across species abundance percentiles. The vertical 
panels indicate the different metrics, with models represented in different colors. Each 
metric is averaged across all landscapes and replicates per model and species, with the 
species binned by percentile of abundance. The oracle model refers to the model using the 
true environmental coefficients while the other models were fitted using all environmental 
variables (benchmark) or latent variables (latent). 

Figure SI 2.4: Abundance metrics and the comparison of performance between 
environmental models and latent models measured as delta metrics. Each metric is averaged 
across all landscapes and replicates per model and species, with the species binned by 
percentile of abundance, and divided by the metric of the oracle model to give the ratio 
metric. The environment panel represents models containing only environmental variables, 
while the latent panel depicts models containing latent predictors. The models are then 
ordered from bottom to top, from the fewest to the greatest number of environmental 
variables included and sorted by coefficients relative to each environmental variable. See 
Methods for more information, note that the “mid” model refers to the “intermediate” 
model. The delta metric was measured as the metric of the model with environmental 
variables only minus the metric of the model with the same combination of environmental 
and latent predictors. A positive value indicates that the model with latent predicts the 
abundance of the species better than the model containing only environmental variables. 
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Figure SI 2.6: Average value of the studied metrics (MAPE, RMSPE, RMSE, SMAPE, 
and RMRPE) depending on the number of sites used to fit the models, the model used, 
and the abundance of species. Horizontal panels represent the different abundances: 
species with low, medium and high occurrence corresponding respectively to bins of 
15, 50, and 80 percentiles of occurrence. Vertical panels indicate the metrics considered, 
with the models represented in different colors. Each metric is averaged across all 
landscapes and replicates per model and species, with the species binned by percentile 
of abundance and divided by the metric of the oracle model to give the ratio metric. The 
benchmark model refers to the model containing all environmental variables, 2V.high 
the model with the two environmental variables with the highest coefficients, 1V.high 
the model with the environmental variable with the highest coefficient, and Latent the 
model containing the latent variables. 
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Chapter 3: Advancing single species abundance models: leveraging multi-

species data to uncover lake-specific patterns for improved fisheries 

predictions2 

“Deep in the human unconscious is a pervasive need for 
a logical universe that makes sense. But the real universe 
is always one step beyond logic.” 

Frank Herbert, Dune 

3.1. Abstract 

Predicting species abundance is critical for understanding ecological dynamics and informing 

conservation and management strategies. Traditional species abundance models (SAMs) often rely 

on environmental variables and the presence or absence of key species to predict abundance. 

However, these models may overlook the broader community context and cannot account for 

unmeasured environmental variation. Community composition at a location can serve as a proxy 

for both the effects of unobserved environmental variables and biotic interactions on the abundance 

of a focal species. In this study, we tested whether incorporating community composition 

information improved the ability of SAMs to predict the observed abundance of sport fish in a 

landscape-scale lake dataset. We used a recently developed modelling framework that uses latent 

variables derived from community composition as proxies for unmeasured environmental factors. 

We assessed the impact of varying the number of latent variables and the subset of the community 

used for constructing latents on the prediction accuracy of the models. We also examined whether 

lakes contributed similarly across species, attempted to identify specific types of lakes that 

significantly influence predictive ability, and evaluated whether including lakes where the species 

 
2 We plan to submit this chapter to the Canadian Journal of Fisheries and Aquatic Sciences (CJFAS) for publication. 
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was absent increased predictive error. We found that low abundance species were better predicted 

by models based solely on environmental variables, while high abundance species were better 

predicted by models incorporating latent composition variables. Additionally, we observed that 

lake contributions to predictive models were correlated within species groups based on their 

occurrence levels, with low abundance species showing a different pattern of lake contributions 

compared to high abundance species. Importantly, these patterns were not related to the lakes' 

environmental or ecological distinctiveness or any specific environmental variables. Finally, we 

identified that the best latent model for predicting sport fish abundance varied by species, with no 

clear pattern correlating with trophic level, occurrence, or abundance. These findings emphasize 

the importance of tailoring predictive models to specific species and contexts, recognizing the 

complex interplay between species abundance, environmental variables, and community 

composition.  

3.2. Introduction 

Species abundance serves as a key indicator of population health and viability within ecosystems. 

It offers critical insights into a species’ vulnerability to local extinction, detectability, and potential 

impact on their local communities, thereby guiding conservation strategies and promoting 

sustainable management practices. Understanding distributional patterns of species abundance is 

essential for assessing whether local populations or a species within a large region are at risk and 

require conservation efforts, or if they can be sustainably harvested without compromising their 

long-term viability (Degnbol & Jarre 2004). Such information is invaluable for policymakers, 

conservationists, and resource managers responsible for balancing ecological integrity with societal 

demands. However, accurately estimating species abundance presents considerable challenges. 

Data collection is often resource-intensive, requiring extensive fieldwork, all of which can be costly 
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and time-consuming (Dickinson et al. 2010; Lindenmayer & Likens 2010; Yoccoz et al. 2001). 

Ethical concerns also arise, as many methods for estimating fish abundance involve some degree 

of fish handling.  

Sampling constraints limit the frequency and spatial coverage of abundance assessments (e.g., 

across multiple lakes, streams or watersheds), making it challenging to generate comprehensive 

data across large geographic areas, over extended time periods (Jackson & Harvey 1997), and for 

multiple species. These constraints are especially challenging when rapid conservation or 

management actions are required at the species or lake level. To mitigate these limitations, fisheries 

researchers often reduce sampling efforts (e.g., number of waterbodies) and develop predictive 

models to estimate abundance across broader regions, notably using Species Abundance Models 

(SAMs, Waldock et al. 2022). Many conventional SAMs incorporate local and regional 

environmental variables as proxies to estimate abundance (Boyce et al. 2016; Brosse et al. 1999; 

Lek et al. 1996; Sobrino et al. 2020; VanDerWal et al. 2009). Variables such as temperature, habitat 

quality, and substrate, among many others, are typically relatively easy to measure and can serve 

as predictors for species abundances in space and time. While these models can offer useful 

abundance estimates, they often lack the precision and accuracy needed for fine-scale management 

decisions and may not fully account for complex biotic interactions, such as competition and 

predation, that also influence abundance distributions (Gaston 2003; Mack et al. 2000; MacKenzie 

et al. 2002). Consequently, there is a continuing need to refine predictive models by integrating 

new data sources and quantitative frameworks to better capture the multifaceted drivers of species 

abundances. 

Stahl et al. (2024) proposed a framework that advances species abundance prediction by integrating 

both environmental variables and co-occurrence data. While prior SAMs have incorporated 
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presence-absence data as predictors, these models typically only included the presence of species 

with well-known interactions with the target species, such as those between a predator and its prey 

(Boulangeat et al. 2012; Lewis et al. 2017; Olkeba et al. 2020). Stahl et al.’s (2024) framework 

addresses this limitation by incorporating presence-absence data for the entire local community as 

predictors of local abundance of a target species, thus offering a more comprehensive perspective. 

This modelling framework offers at least two advantages over traditional approaches. First, by 

incorporating patterns of co-occurrence across multiple species, it can use these patterns as proxies 

for unmeasured environmental predictors. Second, it allows integrating species interaction 

networks at both local and regional scales, serving as predictors of abundance variation for a given 

target species. The framework employs Gaussian copulas to generate latent variables from species 

covariation, enabling the identification and characterization of more complex covariation patterns 

within multispecies data (Popovic et al. 2018). Latent variables were initially introduced to address 

the challenge of describing high dimensional species patterns and (e.g., indirect gradient analysis) 

and, more recently, to represent unobservable factors inferred from species covariation in 

ecological models (e.g., species interactions, missing environmental predictors; see Walker & 

Jackson 2011). Latent factors are a small set of variables that have been estimated from co-

occurrence data to capture as much variation in community composition as possible; as such, if 

local community composition is primarily shaped by species responses to large-scale 

environmental gradients and local inter-specific interactions, then these latent variables can serve 

as proxies for these missing factors when included in abundance models. Stahl et al. (2024) 

demonstrated that copula-based latent variables serve as robust proxies for unmeasured 

environmental variables, improving abundance predictions in simulations where local species 

abundances were modelled as a linear function (Poisson regression) of environmental conditions 

and location-specific process error (i.e., without simulating species interactions and non-linear 
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responses to environmental gradients were not simulated). In this context, the latent abundance-

predictive approach effectively identified and represented the simulated missing environmental 

gradients that underlined the target species’ abundance distribution. This improvement in 

performance was consistent across various scenarios, highlighting the framework’s robustness 

across diverse ecological contexts. 

However, in real-world ecosystems, species interactions, such as competition, predation, and 

mutualism, often play a critical role in shaping community structure and species abundance (Chase 

& Leibold 2003; Tylianakis et al. 2008). These interactions introduce additional complexities that 

latent variables can uncover. By capturing both environmental influences and species interactions, 

latent variables offer a more comprehensive representation of the factors driving species 

abundances. This dual capacity to reflect environmental conditions and species interactions 

highlights the potential of latent variables to improve the accuracy and robustness of ecological 

models when applied to empirical data. Here, we apply a latent abundance-predictive approach to 

an empirical dataset of lake fishes, providing a valuable opportunity to evaluate the model’s 

accuracy and assess the ability of latent variables without the potential confounding effects of both 

species’ interactions and dispersal. Lake fish communities, being more isolated systems compared 

to riverine and terrestrial systems, should be more strongly influenced by environmental factors 

and species interactions due to limited dispersal between lakes. As a result, local species 

compositions and abundance distributions are more likely to respond to local-lake influences, 

raising the possibility that variations between lakes could be effectively captured by latent factors.  

This study aims to expand the framework introduced by Stahl et al. (2024) by testing its 

performance on a large empirical dataset of multiple species across almost 600 lakes and across 

very diverse environmental conditions. Specifically, we seek to determine whether incorporating 
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latent variables improves predictive accuracy of species abundance in real-world ecosystems, 

where interactions and habitat specificity are key factors. We focused on predicting sport fish 

abundances because of their important role in ecological systems (e.g., large biomass), their cultural 

and economic significance, and their increased vulnerability to fishing pressure. Sport fishes are 

key targets of resource management strategies, and applying our models in this context allows us 

to demonstrate the practical utility of our framework in real-world management scenarios. Three 

modelling scenarios were considered: one where each sport fish species is modelled using latent 

variables derived solely from other sport fishes, a second where each sport fish species is modelled 

using latent variables derived solely from non-sport fishes, and another where latent variables are 

based on the entire species community, including both sport and non-sport fishes. 

To evaluate model performance, we developed a set of assessment tools that analyze both 

individual species predictions and community-level patterns. These tools will also be valuable to 

future users of our species abundance modelling framework. We began by evaluating which lake 

types significantly affect predictive performance and whether these lakes exhibit rare or common 

environmental conditions and/or species compositions. This approach should provide valuable 

insights into the generalizability of our models across diverse multispecies ecological contexts. 

Additionally, we analysed shared patterns in species’ predictive errors, as correlated errors may 

indicate these species are shaped by similar interactions and habitat use – key considerations for 

developing conservation strategies that incorporate community dynamics. Finally, we evaluated 

whether sport fish abundances are better predicted by models that include all lakes or only those 

where the species is present, addressing the trade-off between model generality and specificity. 

This comprehensive assessment approach allows us to evaluate the framework’s robustness in 

capturing the complexities of lake ecosystems, identify areas for further refinement in predictive 
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modelling, and provide a roadmap for future applications by modellers and fisheries managers. 

Notably, our proposed modelling and assessment frameworks are flexible and can be readily 

adapted to various modelling approaches. 

3.3. Materials and methods 

3.3.1. Dataset 

Fish abundance was collected in 707 lakes by the Ontario Broadscale Monitoring Program (Lester 

et al. 2021; Sandstrom et al. 2011) of the Ontario Ministry of Natural Resources and Forestry 

(OMNRF, 2012), Canada. The lakes spanned from a latitude of 43° to 54° and a longitude of -95° 

to -76°, with areas of 0.21 to 905 km2 and maximum depth of 1.2 to 213 m. The lakes were sampled 

Figure 3.1: Map of the 594 lakes in Ontario, Canada, included in our models. Each point is color-
coded to represent the number of species present in the lake (i.e., species richness). Black lines 
delineate the provincial political boundaries, while grey lines delineate the secondary watersheds 
(Ontario Ministry of Natural Resources and Forestry - Provincial Mapping Unit 2024). 
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during the summers (June to September) from 2008 to 2012. The selection process used a stratified 

random sampling design, with strata defined by geographic zone and lake surface area. The lakes 

spanned three primary watersheds and 21 secondary watersheds (Figure 3.1, watershed 

delimitations were obtained through Ontario Ministry of Natural Resources and Forestry - 

Provincial Mapping Unit (2024)). 

A depth-stratified design was employed to sample and estimate fish abundance (see Lester et al. 

2021 and Sandstrom et al. 2011 for more details on methods). The number of nets set per stratum 

was scaled with the surface area and depth strata within each lake to standardize sampling effort. 

Within each depth stratum, a number of small mesh gillnets (stretch mesh size between 13 and 

38 mm) and a number of large mesh gillnets (stretch mesh size between 38 and 127 mm) were 

deployed overnight for 18 hours (Appelberg 2000; Arranz et al. 2022). All fish captured were 

identified to the species level. Counts of fish from each lake were converted to catch per unit effort 

(CPUE) by dividing the number of fish caught by the total length of net deployed. It reflects the 

expected catch per 100 meters of net over 18-hour period, with the number of species per lake 

ranging from 2 to 25. We assumed that CPUE was an accurate proxy for local density of each 

species in each lake (Olin et al. 2009). 

The original dataset contained 87 species in total. To streamline the analysis and reduce 

computational time, 39 species that occurred in fewer than 10 lakes were excluded, as they had 

minimal impact on the abundance of the remaining 48 species (i.e., present in less than 2% of our 

dataset, McGarigal et al. 2000). For abundance predictions, we focused on 14 sport fish species, 

which are critical for management purposes (see Table 3.1 and Figure S3.2; selection of sport fish 

species was made following personal correspondence with Dr. Dylan Fraser, Concordia University, 
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Montreal, Canada). After applying these filters, we retained 34 non-sport fish species, resulting in 

a final dataset of 48 species across 594 lakes (Figure 3.1). 

Table 3.1: List of species included in the dataset, with both common and scientific names. The 
“category” column indicates whether the species is classified as a sport fish, based on guidance 
from Dr. Dylan Fraser, Concordia University, Montreal, Canada. The study primarily focused on 
predicting the abundance of sport fish. Within each category, species are ordered by incidence in 
the dataset (i.e., percentage of lakes in which the species occur), from highest at the top to lowest 
at the bottom. 

Category Common name Scientific name Incidence (%) 

Sp
or

t f
is

h 

Yellow perch Perca flavescens 84 
Northern pike Esox lucius 71 
Walleye Sander vitreus 68 
Cisco  Coregonus artedi 58 
Lake whitefish Coregonus clupeaformis 53 
Smallmouth bass Micropterus dolomieu 48 
Lake trout Salvelinus namaycush 45 
Burbot Lota lota 38 
Largemouth bass Micropterus nigricans 16 
Brook trout Salvelinus fontinalis 11 
Black crappie Pomoxis nigromaculatus 10 
Rainbow smelt Osmerus mordax 9 
Muskellunge Esox masquinongy 6 
Sauger Sander canadensis 5 

N
on

-s
po

rt 
fis
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White sucker Castotomus commersonii 93 
Spottail shiner Notropis hudsonius 48 
Rock bass Ambloplites rupestris 43 
Trout perch Percopsis omiscomaycus 42 
Pumpkinseed Lepomis gibbosus 29 
Logperch Percina caprodes 26 
Common shiner Luxilus cornutus 23 
Golden shiner Notemigonus crysoleucas 23 
Emerald shiner Notropis bifrenatus 21 
Brown bullhead Ameiurus nebulosus 20 
Blacknose shiner Notropis heterolepis 18 
Bluntnose minnow Pimephales notatus 17 
Lake chub Couesius plumbeus 14 
Longnose sucker Castotomus castotomus 12 
Shorthead redhorse Moxostoma macrolepidotum 12 
Bluegill Lepomis macrochirus 9 
Ninespine stickleback Pungitius pungitius 9 
Blackchin shiner Notropis heterodon 7 
Mimic shiner Notropis volucellus 7 
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Category Common name Scientific name Incidence (%) 
Mottled sculpin Cottus bairdii 7 
Pearl dace Margariscus margarita 7 
Slimy sculpin Cottus cognatus 7 
Brook stickleback Culaea inconstans 6 
Creek chub Semotilus atromaculatus 6 
Fathead minnow Pimephales promelas 6 
Johnny darter Etheostoma nigrum 6 
Northern redbelly dace Chrosomus eos 6 
Spoonhead sculpin Cottus ricei 3 
Yellow bullhead Ameiurus natalis 3 
Common carp Cyprinus carpio 2 
Fallfish Semotilus corporalis 2 
Iowa darter Etheostoma exile 2 
Longnose dace Rhinichthys cataractae 2 
Silver redhorse Moxostoma anisurum 2 

 

3.3.2. Environmental predictors 

Multiple environmental variables were measured for each lake at the same time they were sampled 

for fish abundances (see Sandstrom et al. 2011 on the choice of variables to measure, and the 

sampling methods used for each variable). A total of 64 environmental variables were recorded per 

lake (Table S3.2). These variables included measurements of local climate conditions (16 

variables), hydro morphology (13 variables), lake chemistry (11 variables), lake productivity (10 

variables), human activity on the lake (seven variables), watershed characteristics (five variables), 

as well as latitude and longitude. To streamline the analysis and reduce redundancy, we first 

standardized all variables to mean zero and unit variance, so they had a common scale and then 

applied Principal Component Analysis (PCA) followed by a sparsification step via varimax to 

derive a smaller number of composite environmental variables (Zou et al. 2006). Varimax aims to 

produce axes where many of the environmental loadings are close to zero, simplifying 

interpretation by emphasizing the most important relationships between environmental variables 

and PCA axes. We used the prcomp and varimax from the R package stats (R Core Team 2017) for 
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this analysis. Since the dataset was split into a calibration and validation sets, we first ran the PCA 

on the calibration set data and then projected the validation set onto the newly generated 

multivariate (PCA) environmental axes. This approach reduced dimensionality while maintaining 

consistent predictive structures between the calibration and validation sets, and it was applied to 

each validation replicate. To identify the optimal number of PC environmental axes, we conducted 

an analysis where the number of latent variables was fixed while the number of environmental PCA 

axes varied (see Supp. Information III for details). The combination yielding the lowest out-of-

sample error was selected, leading to the use of 10 composite environmental PCA axes for all 

subsequent analysis (Table S3.3 and Figure S3.3). 

3.3.3. Latent variable generation 

We generated latent variables representing species covariation patterns based on presence-absence 

data for groups of species of interest (see following section Modelling structure overview). Latent 

variables were generated by first producing a stacked species regression model with a binomial 

family, followed by a model-based ordination with Gaussian copulas using the functions 

stackedsdm and cord from the R package ecoCopula (Popovic et al., 2019, version 1.0-2). This 

method was selected due to its robustness for binomial data and computational speed (Popovic et 

al. 2022). The stacked species regression model is fitted as a null model specifically to generate 

Dunn-Smyth residuals (Dunn & Smyth 1996). These residuals, which approximate standard normal 

residuals, are particularly useful for models with non-normal data, such as Generalized Linear 

Models (GLMs). They are well-suited for non-Gaussian responses, including binary, count, and 

Poisson-distributed data. The Gaussian copula model is then fitted on these residuals. To account 

for bias due to lake size, we included the log-transformed area of each lake as a predictor in the 

stacked species regression model. 
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We generated sets of latent variables from three species groups: (1) sport fish species, (2) non-sport 

fish species, and (3) all fish species. These latent variable sets were then used as predictors in our 

single-species abundance models for sport fishes. By using different groups of species 

combinations as a basis for latent variable generation, we were able to contrast their effectiveness 

in improving abundance predictions. This is particularly important because sampling and 

identifying all fish species in a lake may not be necessary for predicting the abundance of a target 

species if they do not contribute to improving predictive accuracy. The groups were also structured 

to reflect management’s varying interest in these respective species. For example, if a group of 

species is identified as important for predicting the abundance of a target species, it could 

strengthen the case for incorporating them into management strategies aimed at the target species. 

To maintain consistency in the numbers of predictors, we limited the number of latent variables to 

four for each group. Similarly to environmental variables, we conducted an analysis to identify the 

optimal number of latent variables to generate, where the number of composite environmental 

variables was fixed while the number of latent variables varied (see Supp. Information III for 

details). The combination that resulted in the lowest out-of-sample error was selected, resulting in 

using four latent variables for subsequent analysis (Figure S3.4). 

3.3.4. Modelling structure overview 

To apply the framework from Stahl et al. (2024) to our dataset, we modified the original approach 

and implemented the following steps: 

- Using all lakes (n = 594), we derived three sets of latent variables from the presence-

absence data of: (1) sport fish species, (2) non-sport fish species, and (3) all fish species. 

- The dataset was randomly split into a calibration set and a validation set, representing 

respectively 70 % (n = 416 lakes) and 30 % (n = 178 lakes) of the dataset considered. This 
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split was performed multiple times for each target sport fish species to assess uncertainty 

over model performance.  

- Environmental variables of the calibration set were summarized by PCA with a 

sparsification step (Zou et al. 2006), and the environmental variables of the validation set 

were subsequently projected onto the same PCA axes (see section Environmental predictors 

for rationale).  

- The calibration set was used to fit (train) statistical models for predicting lake abundance 

of each of the 14 sport fish species. The trained models varied in their inclusion of different 

sets of predictors: (1) environmental variables summarized by sparse PCA axes, (2) 

environmental PCA axes combined with latent variables generated from presence-absence 

of the 14 sport fish species, (3) environmental PCA axes with latent variables generated 

from presence-absence of all non-sport fish species, and (4) PCA environmental axes and 

latent variables from the presence-absence of all fish species. This approach aimed to 

contrast the effects of different species groups on predictive ability and provide a 

comparison with models relying only on environmental data, as is commonly done in 

abundance modelling.  

- The validation set was used to evaluate the performance of each model in predicting species 

abundance, with accuracy measured by the log error. 

- The process of cross validation was replicated 1000 times. To determine the contribution of 

each lake to the dataset, we calculated the difference in error between two scenarios (1) 

when the lake was included in the calibration dataset, and (2) when the lake was excluded 

from the calibration dataset. This step allowed us to assess how influential a particular lake 

is on model performance and to identify whether certain lakes have a disproportionate effect 

on prediction accuracy. 
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3.3.5. Model fitting 

We compared models containing (1) PCA environmental axes, (2) PCA environmental axes and 

latent variables generated from presence-absence of sport fish, (3) PCA environmental axes and 

latent variables generated from presence-absence of non-sport fish, and (4) PCA environmental 

axes and latent variables generated from presence-absence of all fish species.  

We modelled variation in local abundance using Tweedie distribution (Tweedie 1984) with a log-

link function within a Generalized Additive Model (GAM) framework, using the functions tw and 

gam from the R package mgcv (Wood 2004, 2017, version 1.9-1). Each predictive variable was 

modelled with a 2nd order thin-plate regression spline smoother (Wood 2003) with three basis 

functions using the function s from the R package mgcv. All models were estimated using restricted 

maximum likelihood (Wood 2011) using only data from the calibration set. The Tweedie 

distribution was selected for its flexibility in modelling a wide range of mean-variance 

relationships, which is particularly advantageous given that the available abundance data are 

expressed as a density (number of catches per unit effort, CPUE, a commonly used metric in 

fisheries research). Since CPUE data often include many zeros and continuous positive values, the 

Poisson and negative binomial distributions are less appropriate for accurately capturing the 

underlying structure of the data. Our focus was on predicting the abundance of 14 economically 

important species, commonly referred as sport fish (Table 3.1). 

3.3.6. Metrics for evaluating model predictive ability 

Although our models can be fit to predict both presence-absence and abundance, we focused 

exclusively on evaluating their performance in abundance predictions. Given our interest in 

predictive accuracy, all metrics discussed below compare predicted abundance with observed 

abundance, but only in the cases where the species was present. Note again, though, that our models 
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were fit considering all lakes regardless of whether the species was present or not. This is important 

as some applications may require models to estimate potential abundance capacity in lakes where 

the species is absent, particularly for management purposes such as stocking, and our models are 

well-suited for such use. To assess whether a specific lake improved or reduced predictive ability, 

we used log error of predicted abundance as a measure of the bias of model prediction (Eq. 3.1). 

𝐿𝐿𝐿𝐿𝑠𝑠,𝑚𝑚,𝑙𝑙 = 𝑙𝑙𝑙𝑙𝑙𝑙10 �
𝑌𝑌�𝑠𝑠,𝑚𝑚,𝑙𝑙

𝑌𝑌𝑠𝑠,𝑚𝑚,𝑙𝑙
� Equation 3.1 

where s, m, l are indexes for individual species, model, and individual lakes. Y refers to the observed 

abundance and Ŷ to the predicted abundance. 

This metric assesses whether the model overestimated or underestimated the species' abundance in 

that lake. A positive log error quantitatively indicates the model overpredicting abundance, whereas 

a negative log error reflects an underprediction. By examining the direction of the error, we could 

assess the impact of each lake on the overall predictive performance. The log error is also useful 

for evaluating the accuracy of predictive models when dealing with skewed data or data spanning 

several orders of magnitude (Tofallis 2015). The log error for a given observation (species in a 

lake) is defined as the log10 of the ratio of predicted abundance to observed abundance. 

The log error measures the relative magnitude of the difference between predictions and 

observations, rather than the absolute difference between the two. Again, the log error was only 

calculated for lakes where the species was present (i.e. abundance greater than 0). For each 

calibration replicate (i.e., where lakes were selected randomly to be part of the calibration or 

validation set), the mean error across the validation set was assigned to the corresponding lakes of 

the validation set. The median was then calculated across replicates for each model specification 

based on groups of species, target (response) species, and lake. This approach allowed to stabilize 
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the error metric, as some lakes may have, in certain replicates, been part of a set with an extreme 

error rate. 

3.3.7. Target analyses based on key questions 

(1) Does the inclusion of latent variables improve prediction accuracy?  

To determine whether including latent predictors tended to improve model predictions compared 

to models with only environmental variables, we calculated a metric, ∆LE, for each model and 

species, equal to the difference between the median of the absolute log error of out-of-sample 

predictions of the model containing only environmental variables to the median of the absolute of 

the log error of out-of-sample predictions (Eq. 3.1) of the model that incorporated latent variables 

(Eq. 3.2). 

∆𝐿𝐿𝐿𝐿𝑠𝑠,𝑚𝑚 = 𝑄𝑄2��𝐿𝐿𝐿𝐿𝑠𝑠,𝑙𝑙,𝑚𝑚0�� − 𝑄𝑄2��𝐿𝐿𝐿𝐿𝑠𝑠,𝑙𝑙,𝑚𝑚�� Equation 3.2 

where s, m, l are indexes for individual species, models, and individual lakes. Q2 refers to the 

median across lakes for a single fold and m0 to the model containing only environmental variables. 

Our goal was to determine whether the advantages observed in the original framework (Stahl et al. 

2024), which was tested on simulated data, could be replicated with an empirical dataset. 

 

(2) Are predictions of sport fish abundances more accurate when using sport fish, non-sport fish, 

or all fish species as predictors?  

We visually contrasted the distribution of log error (Eq. 3.1) of models with latent variables derived 

from three different community subsets (sport fish, non-sport fish, or all fish). 
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(3) What types of lakes significantly increase or decrease predictive ability, and are these lakes 

rare or common in terms of environment and/or species composition? 

We calculated (1) the environmental distinctiveness of a lake as the lake pairwise Mahalanobis 

distance matrix based on environmental variation (i.e., PCA axes), and (2) the ecological 

distinctiveness of lake as its Local Contribution to Beta Diversity (LCBD, Whittaker 1960). To 

assess each lake’s predictive contribution, we compared the median log error when the lake was 

included in the model calibration to the median log error when the lake was excluded (i.e., the lake 

was in the validation set, Eq. 3.3). To the best of our knowledge, this represents a novel approach 

for assessing how individual observations (in this case, lakes) contribute to model performance 

(i.e., leverage), which can be generalized to any modelling framework whereas based on likelihood 

approaches (as in here) or machine learning techniques.  

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑙𝑙,𝑠𝑠 = Q2𝑙𝑙∈𝐶𝐶𝑗𝑗��𝐿𝐿𝐿𝐿𝑠𝑠,𝑗𝑗�� − Q2𝑙𝑙∈𝑉𝑉𝑗𝑗��𝐿𝐿𝐿𝐿𝑠𝑠,𝑗𝑗�� Equation 3.3 

where l, s, j are indexes for individual lakes, individual species, and replicates. The median 

(referred to as Q2 in Eq 3.3) 𝐿𝐿𝐿𝐿𝑗𝑗,𝑠𝑠 was calculated for the lakes in the validation set for species s in 

replicate j. Vj in Eq. 3.3 represents the validation set for replicate j, and Cj represents the calibration 

for the same replicate. For each species, we used the log error values of the best-performing model, 

defined as the one with the absolute median (Q2) log error closest to zero. 

Unlike the Euclidean distance, the Mahalanobis distance accounts for correlations between 

variables (De Maesschalck et al. 2000; Mahalanobis 1936). The pairwise Mahalanobis distance 

between lakes was calculated over the first 62 axes of a PCA based on the 64 environmental 

variables. We applied Principal Component Analysis (PCA) instead of using the original variables 

because their correlation structure exhibited rank deficiency: the last two eigenvalues were exactly 
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zero. This indicates that some variables were linearly dependent or provided redundant 

information, reducing the effective dimensionality of the data. The PCA was conducted using the 

function princomp from the R package stats (R Core Team 2017). For each lake, we calculated the 

average Mahalanobis distance between it and all other lakes. A smaller distance indicates that the 

lake's environmental conditions are uncommon (rare) compared to the others, while a larger 

distance suggests that the lake shares many common environmental features with other lakes. 

Local Contributions to Beta Diversity (LCBD) is a metric used to quantify the unique contribution 

of individual communities (here lakes) to the overall beta diversity within a region (Legendre & 

De Cáceres 2013) and as such can be viewed as a measure of ecological distinctiveness of a lake 

in the dataset. High LCBD values indicate that a lake has a more distinct (rare) community 

composition compared to other lake communities, while low values suggest that the species 

composition is more widespread and common across lakes. LCBD was calculated from the 

presence-absence dataset of all species using the functions beta.div.comp and LCBD.comp from 

the R package adespatial (Dray et al., 2023, version 0.3-23). 

 

(4) To what extent do species share lakes that either improve or reduce predictive accuracy? 

We calculated Pearson correlations between all pairs of species of the lake-specific contributions 

to model predictive ability for each species (i.e., models containing the same environmental and 

latent variables, as per Eq. 3.3). By visually examining these correlations, we aimed to identify 

patterns of shared environmental or biotic factors that might impact multiple species in similar 

ways. This approach allowed us to determine whether certain lakes consistently played a greater 

role in predicting abundance for multiple species or if their influence varied by species. 
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A lack of correlation would indicate that different species respond to distinct, lake-specific factors, 

highlighting the importance of accounting for species-specific ecological requirements and 

interactions when modelling species abundance across landscapes. This method is essential for 

determining whether a lake’s contribution to model performance for one species can be generalized 

to other species which is key for developing robust and transferable ecological models. Identifying 

shared drivers across species could streamline management efforts by focusing on key 

environmental factors that support multiple species simultaneously. Conversely, recognizing 

species-specific contributions allows for tailored management strategies address the unique needs 

of individual species (Legendre 1993; Legendre & Fortin 1989). 

 

(5) Are sport fish abundances better predicted using all lakes or only those where the species is 

present? 

To address this question, we conducted the same analysis but restricted the pool of lakes to those 

where species was present (i.e., abundance greater than 0). For this analysis, we excluded two 

species, muskellunge and sauger, due to their very low occurrences - present in only 38 and 29 

lakes, respectively - which resulted in insufficient variation in the community composition of these 

lakes and made it impossible to fit the various models. As before, we first measured the average 

log error per lake (Eq. 3.1) across replicates, and then compared the performance of the two models 

with the metric ∆SLE, defined as the difference between absolute mean log error of the model fitted 

using all lakes and the absolute mean log error of the model fitted using the reduced lake pool (Eq. 

3.4).  
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where s, m, l, M, Ls, are indexes for individual species, models, individual lakes, all lakes of the 

dataset, and lakes where species s is present. 

A positive ∆SLE indicates that the model using only lakes where the species is present perform 

better, while a negative value suggests that the model fitted with all lakes performs better.  

3.4. Results 

Our first goal was to identify whether including latent variables improved our predictions by 

evaluating the ∆LE between the environmental model and the latent models. Not all species 

benefitted from the inclusion of latent variables (Figure 3.2). Importantly, the method used to 

generate these latent variables did not affect the direction of the ∆LE values; this consistency 

indicates that including latent variables, regardless of the method employed, produced the same 

overall effect on predictive ability, whether that be an improvement or decline compared to the 

environmental model. A distinct trend emerged: species with low occurrences were predicted more 

accurately by the environmental model, whereas those with higher occurrences were better 

predicted by models incorporating latent variables. We then evaluated the impact of different 

species groups on predictive performance by comparing the effectiveness of latent models, 

contrasting those based on sport fish species, non-sport fish species, or all fish species combined. 

Our analysis revealed that the best-performing model varied by species, although the differences 

in LE densities across models were relatively modest, indicating that the variation in predictive 

accuracy between models was not necessarily substantial (Figure 3.3, Table S3.4). Cisco, lake 

whitefish, largemouth bass, northern pike, and smallmouth bass were best predicted by the model 
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incorporating all fish species. In contrast, black crappie, lake trout, rainbow smelt, walleye, and 

yellow perch were better predicted by the model using non-sport fish species. The remaining four 

species were most accurately predicted by the model that included only sport fish species. 

Figure 3.2: ∆LE as a function of model and species. The ∆LE was calculated as the median absolute 
log error of the model with only environmental variables, minus the median absolute log error of 
the model incorporating latent predictors (Eq. 3.2). Positive values (in blue) indicate that the model 
with latent predictors performed better, while negative values (in red) signify better performance 
by the environmental model. Latent variables were generated using one of three groups (1) sport 
fish species, represented (“Env.sport”), (2) non-sport fish species, represented (“Env.non.sport”), 
or (3) all fish species (“Env.all”). Species are ordered by incidence (number of lakes present) in the 
dataset, from highest at the top to lowest at the bottom. 
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Next, we focused on identifying which type of lakes influenced predictive ability by analysing their 

contribution to LE and determining whether lakes that affected predictive ability were rare or 

common in terms of their environmental characteristics and/or community composition (Figure

Figure 3.3: Density plot of the log error as a function of species and model. The log error was 
calculated following Eq. 3.1, and for each lake, the median log error was taken across replicates 
for each species and model. Latent variables were generated using three groups: (1) sport fish 
species (green), (2) non-sport fish species (blue), and (3) all fish species (red). All models also 
included environmental variables. The dotted vertical line represents an error of 0, meaning the 
median prediction equals the median observed values. Species are ordered by their incidence 
(number of lakes occupied) in the dataset, from highest at the top to lowest at the bottom. 



 83 

Figure 3.4: Contribution of each lake to the log error as a function of environmental distinctiveness 
and Local Contribution to Beta Diversity (LCBD) per species (see methods how these values were 
calculated). The lake’s contribution was measured as the median across replicates of the difference 
between the log error when the lake was included in calibrating the model and the log error when 
the lake was excluded (i.e., in the validation set, Eq. 3.3). A positive contribution indicates that 
including the lake in model improved predictions, while a negative contribution indicates that 
excluding it improved predictions. Point color indicate species presence (black) or absence (white) 
in the lake. High LCBD values indicate that a lake has a more distinct community composition in 
relation to other lakes, whereas a low value suggests a common composition. Each sport fish 
species is shown in a separate panel, and the log error values are from the best model (i.e., the 
model with a median log error closest to 0; see Appendix 2 for model details per species). The 
dotted horizontal line represents an error of 0, indicating that the median prediction equals the 
observed values). Species were ordered by incidence (number of lakes occupied) in the dataset, 
from highest at the top to lowest at the bottom. 
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3.4). The LE metric showed no correlation with how rare or common a lake was in terms of its 

environmental characteristics (Mahalanobis distance) or its species composition (LCBD). To 

further identify types of lakes that influenced predictive ability, either positively or negatively, we 

plotted the contribution to the log error against each environmental variable. These variables 

included log-transformed area (in km²), altitude (in meters), maximum water temperature (in °C), 

and Trophic Status Index (TSI) based on phosphorus levels (Figure S3.5). No clear pattern emerged 

in relation to key environmental variations. Taken together, these results indicate that our models 

are robust against variations in lake rarity, whether defined by environmental characteristics or 

community composition, and are not strongly influenced by specific environmental factors, 

reinforcing the general applicability of the predictive framework across diverse lake types. 

We evaluated whether the predictive contributions of individual lakes were consistent across 

species by calculating the correlation of lake-specific contributions between species for each model 

specification (i.e., sport fish species, non-sport fish species, and all fish species; Figure S3.6). 

Visual analysis revealed three distinct groups with similar correlations across models: (1) rainbow 

smelt, muskellunge, and sauger; (2) burbot, lake trout, black crappie, brook trout, and largemouth 

bass; and (3) yellow perch, smallmouth bass, northern pike, walleye, lake whitefish, and cisco.  

The first and third groups showed negative correlations with each other but positive correlations 

within their respective groups (Table 3.2). In contrast, species in the second group exhibited 

idiosyncratic responses, with no significant correlations either within or between groups. 

Additionally, the species groups appear to be correlated with their occurrence rates (i.e., number of 

lakes that the species was present): group 1 consisted of low-occurrence species, group 2 included 

medium-occurrence species, and group 3 represented high-occurrence species. 
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Table 3.2: Mean and standard deviation of correlation between species groups across models. We 
calculated the correlation between lake contributions for each species and model, revealing distinct 
grouping patterns (see Figure S3.6). The species were grouped as follows: (Group 1) rainbow smelt, 
muskellunge, and sauger; (Group 2) burbot, lake trout, black crappie, brook trout, and largemouth 
bass; and (Group 3) yellow perch, smallmouth bass, northern pike, walleye, lake whitefish, and 
cisco. 

 Group 1 Group 2 Group 3 
Group 1   0.72 ± 0.04   
Group 2 - 0.09 ± 0.03 - 0.03 ± 0.09  
Group 3 - 0.75 ± 0.06   0.12 ± 0.04 0.80 ± 0.05 

 

Finally, we examined whether sport fish abundances were better predicted by models fitted using 

data from all lakes or only from lakes where the species was present. The results varied by species 

but were extremely consistent across models (Figure 3.5). For rainbow smelt, lake trout, and lake 

whitefish, models fitted using only the lakes where the species occurred performed better on 

average. In contrast, for black crappie, brook trout, largemouth bass, burbot, smallmouth bass, 

cisco, walleye, northern pike, and yellow perch, predictions were more accurate when models 

included data from all lakes in the dataset. This finding highlights an important aspect of modelling 

species abundances: a one-size-fits-all approach is not the most effective, as each species may 

require different model specifications to produce accurate abundance predictions. 
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3.5. Discussion 

Our first goal was to assess whether a latent-abundance model, as designed by Stahl et al. 2024, 

could improve prediction accuracy of species abundances in a large, complex natural system. The 

original approach was tested only through simulations and did not account for species interactions, 

Figure 3.5: Boxplot of the ∆SLE per species. The ∆SLE is calculated as the absolute mean log error 
fitted using all lakes minus the absolute mean log error of the model fitted using only where the 
species is present (Eq. 3.4). A positive ∆SLE indicates better performance when using the reduced 
lake pool, while a negative ∆SLE suggests that the model using all lakes performs better. Each 
point represents a model, and the boxplots group the results of all four models per species. The 
dotted horizontal line represents an identical performance between models trained on either all 
lakes or only those where the species is present. Muskellunge and sauger were excluded due to 
their extremely low occurrences (number of lakes occupied), which rendered the analysis 
infeasible. Species are ordered by incidence in the dataset, from lowest on the left to highest on the 
right. 
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such as those found in large scale lake-fish ecosystems. One of the key advantages of this modelling 

framework is its ability to use presence-absence data, which are easier to generate than abundance 

data, to extract latent variables that are then used to predict the abundance distributions of target 

species. The results show that while latent variables improved predictions for high-occurrence 

species, they did not consistently improve predictive ability across all species, particularly for low 

occurrence species. Our second goal was to assess whether the choice of species subset to generate 

latent variables impacted predictive performance. We found that no single species subset performs 

best across all target species. This suggests the framework’s effectiveness is relative insensitive to 

species subsets.  

These above findings are consistent with the original framework assessment on simulated data, 

which also found better prediction for higher occurrence species when latent variables were 

included. They also align with the broader literature, which suggest that low-occurrence species 

are generally more vulnerable to stochastic environmental fluctuations and demographic instability 

(Brown et al. 1995; Gaston 1994), while high-occurrence species tend to engage in more complex 

biotic interactions (Araújo & Luoto 2007; Mouquet et al. 2003). However, it is possible that these 

outcomes are system-specific, and the modelling framework could perform better for low-

occurrence species in other ecosystems. The framework is flexible enough to be generalized across 

different taxa and systems. Future applications could explore alternative methods for combining 

species to generate latent variables that maximize the predictive accuracy for target species—such 

as using model selection tailored to select particular species combinations that improve predictions 

for specific species (see below for other alternative for species selections).  

Our third goal was to identify the types of lakes that significantly affect predictive ability, either 

positively or negatively, by examining the relationship between log error contribution and both 
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environmental and community composition distinctiveness (LCBD). We found no correlation 

between log error contribution and the rarity or commonality of lake environmental features, 

community compositions, or specific environmental features. Essentially, this suggests that large 

lakes are just as likely to improve predictions as small lakes, and models’ predictive power is not 

influenced on the specific environmental attributes or species compositions of the lakes. On one 

hand, this finding is significant as it challenges the common assumption that certain environmental 

and biotic characteristics inherently enhance predictive power in ecological models. For instance, 

one might expect larger lakes, being more stable (May 1972) and supporting more diverse habitats, 

to provide more reliable predictions (Magnuson et al. 2005). Alternatively, larger lakes could be 

seen as less predictable due to the greater likelihood of them containing more microhabitats and 

local environmental variation (Strayer & Findlay 2010). On the other hand, the results suggest that 

predictive accuracy is not inherently tied to these environmental complexities, increasing the 

generality of our predictive framework across various and diverse lakes. This implies that our 

models are robust across different environmental contexts, a valuable attribute for broad-scale 

ecological applications. 

The correlation of lake contribution across species allows us to effectively group species by their 

occurrence rates, revealing underlying ecological patterns that shape species distributions and 

abundances. This correlation suggests that species within the same occurrence group (low, medium, 

or high) likely respond to similar environmental drivers or ecological interactions in lake 

ecosystems, supporting findings from other studies (Araújo & Guisan 2006; Legendre & Legendre 

2012; Ovaskainen et al. 2010). These results underscore the complexity of ecosystem dynamics 

and the need for sophisticated models that account for diverse interactions and environmental 

conditions. Models that incorporate a broad range of variables, including both environmental 
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factors and species interactions, are essential for capturing the intricate nature of ecological 

communities (Wisz et al. 2008). Given the distinct correlation patterns among the three species 

groups, generating latent variables specific to each group could be a promising avenue for 

improving abundance predictions. This strategy leverages ecological similarities within each 

group, potentially capturing more relevant interactions and environmental gradients that influence 

species abundance. Moreover, identifying species combinations (groups) that are consistently used 

across models for multiple target species may be more appropriate for management and 

conservation practices than identifying different species combinations that maximize abundance 

predictions for each individual target species as discussed earlier. This is because using a consistent 

set of species groups simplifies decision-making, enhances the applicability of the models across 

various contexts, and facilitates the development of broader, ecosystem-wide management 

strategies rather than focusing on species-specific predictions. 

The analysis of whether sport fish abundances were better predicted using data from all lakes or 

only those where the species was present revealed variations across species, with no clear pattern 

emerging in relation to occurrence, abundance, or trophic level. This suggests that the predictive 

success of each approach may be driven by species-specific ecological factors, such as habitat 

specificity, life history traits, or community interactions – factors that are potentially not fully 

captured by the diverse and numerous environmental predictors we considered. These findings are 

consistent with previous studies (see Dormann et al. 2013; Elith et al. 2010; Thuiller et al. 2005 

among others), highlighting the importance of incorporating species-specific ecological dynamics 

in predictive models. The consistency of our results across models - whether based solely on 

environmental variables or a combination of environmental variables and community composition 

factors - emphasizes the need for nuanced approaches that consider the unique ecological contexts 
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of each species. This complexity presents a challenge when developing broad conservation and 

management strategies for multiple species, where balancing species-specific needs with general 

models for multiple species may be essential. 

Our study reveals a series of interconnected patterns across the questions we explored. First, we 

found that low abundance species are better predicted by environmental models, while high 

abundance species show improved predictions when latent variables are included (Question 1). 

This distinction suggests that environmental factors play a more significant role in shaping the 

distribution of low abundance species, whereas high abundance species may be more influenced 

by community interactions potentially captured by latent variables. Supporting this, we observed 

that individual lake contributions to predictive accuracy are correlated within low abundance 

species as well as within high abundance species (Question 4). However, these correlations do not 

extend between the two groups, indicating that the factors driving the predictive success of lakes 

for low abundance species are distinct and inversely related to those influencing high-abundance 

species. Interestingly, these patterns in lake contributions do not correlate with environmental 

distinctiveness, species composition distinctiveness, or any of the environmental variables assessed 

(Question 3). Together, these findings suggest that while environmental variables are key predictors 

for low abundance species (Brown et al. 1995; Gaston 1994), high abundance species are likely 

responding to more complex, community-level interactions that are better captured by latent 

variables (Araújo & Luoto 2007; Mouquet et al. 2003). The distinct and negatively correlated 

patterns of lake contributions across these species’ groups point to underlying ecological processes 

not linked to traditional environmental or spatial predictors used in species distribution models. 

These results highlight the need for further investigation into the specific ecological drivers 
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underlying these patterns, particularly species interactions and community dynamics, which may 

differ fundamentally between low- and high-abundance species. 

Our findings echo those of Hui (2013), who demonstrated that clustering species by their 

environmental affinities, or ‘archetypes’, improved predictive accuracy. In a similar way, we found 

that clustering species based on their occurrence patterns, particularly low- and high-abundance 

species, enhanced our ability to predict species distributions. This suggests that identifying and 

leveraging such clusters, whether based on environmental affinities or other ecological traits such 

as abundance, is essential for improving ecological predictive models. It underscores that a one-

size-fits-all approach may not be optimal when modelling species distributions, especially in 

complex ecosystems like lakes, where species interactions and community dynamics play a 

significant role. 

While our study provides valuable insights, it has limitations. A key limitation is its reliance on a 

dataset from lake ecosystems, where dispersal is relatively constrained. While our modelling 

framework is applicable to any system, the empirical findings derived from our studied lake system 

may limit the generalizability to other ecosystems, particularly those where species dispersal plays 

a more dominant force in shaping community structure and species distributions (Leibold et al. 

2004; Peres-Neto et al. 2012; Thompson & Gonzalez 2017; Urban et al. 2012). Additionally, 

generating latent variables from presence-absence data may oversimplify the ecological processes 

influencing species abundance, especially in communities with complex, non-linear, or context-

dependent interactions. For example, mutualistic or competitive interactions that vary in strength 

across different environmental conditions may not be adequately captured by latent variables 

derived from binary data (Ovaskainen et al. 2017 but see Clark et al. 2018 for a method that does). 

This simplification can introduce biases in model predictions, particularly when addressing 
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intricate species interactions or generalizing results across different ecosystems. Another limitation 

is our use of random sampling to split calibration and validation sets for simplicity and efficiency. 

DiRenzo et al. (2023) and Roberts et al. (2017) recommend more robust methods such as spatial 

cross-validation or blocking, especially in cases where data are autocorrelated or where the 

covariance structure of predictors shifts between datasets. As Wenger & Olden (2012) point out, 

failing to account for these factors can reduce the transferability and accuracy of ecological models. 

Incorporating techniques such as stratified sampling may yield more reliable predictions. In 

summary, while our study advances the understanding of species abundance prediction, it 

underscores the need for more comprehensive modelling approaches that better account for the 

complex interplay of environmental, spatial, and biotic factors. 

In conclusion, our study demonstrates the value of integrating latent variables and co-occurrence 

data into predictive models for species abundance, particularly in lake ecosystems. We found that 

low abundance species were better predicted by environmental models, while high abundance 

species benefited more from models incorporating latent variables. Additionally, lake contributions 

to predictive accuracy were correlated with species occurrence patterns, suggesting distinct 

ecological processes at play for low- and high-abundance species. However, these contributions 

were not linked to environmental or community distinctiveness, suggesting that other, yet 

unidentified factors may be influencing variation among lakes in predictive performance. 

Alternatively, this could indicate that our modelling framework is robust to variation among lakes. 

Our findings highlight the importance of considering species occurrence patterns and 

environmental affinities when developing predictive models, as clustering species based on these 

factors can enhance model accuracy. This reinforces the notion that tailored modelling approaches 

are essential for understanding and managing complex ecological systems. Future research should 
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aim to identify the specific factors driving the observed patterns of lake contributions and further 

exploring the role of latent variables in capturing species interactions. Additionally, grouping 

species based on other ecological characteristics, such as trophic levels or life history traits, could 

offer deeper insights into the underlying mechanisms governing species distributions and 

abundance in aquatic ecosystems. 

3.6. Supplementary Information 

3.6.1. Identification of optimal number of composite environmental variables and 

latent variables. 

Methods 

Given the high dimensionality of our data, we needed to decide how many variables to use in 

recombining the environmental variables, as well as how many latent variables to generate to best 

predict species abundance. To optimize these selections, we performed a two-step analysis. First, 

we fixed the number of one group of variables while varying the other (i.e., environmental variables 

or latent variables), and then repeated the process in reverse. Specifically, we set the number of 

variables to five for the fixed group and tested variables ranging from 2 to 15 in increments of 1, 

as well as 17 and 20 for the varying group. For each tested combination, we randomly split the data 

into calibration and validation sets (respectively 292 and 291 lakes). We then fitted a Generalized 

Additive Model (GAM) with a Tweedie distribution, using the functions tw and gam from the R 

package mgcv (Wood 2004; Wood et al. 2016, version 1.9-1). Each explanatory variable was fitted 

with a 2nd order thin-plate regression spline smoother (Wood 2003) with 3 bases functions using 

the function s from the R package mcgv and linking the smoothing parameters across environmental 

and latent variables. All models were estimated using restricted maximum likelihood (Wood 2011) 

using only data from the calibration set and used the double penalty approach for term selection 
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(Marra & Wood 2011). This procedure was repeated 100 times and for six species with different 

occurrence rates representative of the whole dataset (Table S3.1). The out-of-sample average 

prediction was calculated across replicates, and the median across species of the Mean Squared 

Error (MSE) was derived. 

Table SI 3.1: List of species considered in the dataset, including both common and scientific name 
as well as percentage of occurrence in the dataset. Species are organized by occurrence, with high 
occurrence species at the top of the table and low occurrence species at the bottom of the table. 

Common name Scientific name Occurrence rate (in %) 
Lake whitefish Coregonus clupeaformis 54 
Common shiner Luxilus cornutus 23 
Black crappie Pomoxis nigromaculatus 10 
Brook stickleback Culaea inconstans 6 
Fallfish Semotilus corporalis 2 
Channel catfish Ictalurus punctatus 1 

 

Results 

When fixing the number of latent variables and varying the number of environmental variables, the 

lowest Mean Squared Error (MSE) was observed when using 10 environmental variables (Figure 

S3.1). Conversely, when fixing the number of environmental variables and varying the number of 

latent variables, the lowest MSE was achieved with four latent variables. This pattern aligns with 

expectations, where MSE typically decreases as the number of variables increases until an optimal 

point is reached, after which overfitting causes the error to rise. Overfitting occurs because the 

model becomes overly complex, capturing noise in the training data rather than the underlying 

signal, leading to poorer generalization to new data (Burnham & Anderson 2004; Hastie et al. 

2009). Therefore, we selected 10 environmental variables and four latent variables for generating 

the composite environmental variables and latent variables in the main analysis.  
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Figure SI 3.1: Median Mean Squared Error (MSE) as a function of number of composite 
environmental and latent variables. The figure shows the median Mean Squared Error (MSE); 
with the MSE calculated for out-of-sample abundance predictions across replicates and the 
median calculated across species. The number of variables generated was varied from 2 to 15 
in increments of 1, as well as 17 and 20, while the fixed group used 5 variables. Each facet 
indicates the group being varied. The MSE is represented on a log10 scale, with the expectation 
of observing a decrease in MSE until an optimal point is reached, after which the error increases 
due to model overfitting. 
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3.6.2. Extended results 

Table SI 3.2: Table of environmental variables and their units grouped by categories (e.g., climate, 
productivity). See Sandstrom et al. (2011) for details on sampling methods. 
 
Category Environmental variable 

H
yd

ro
 m

or
ph

ol
og

y 

Area (km2) 
Maximum lake depth (m) 
Minimum lake depth (m) 
Numeric code indicating lake size 
Observed hypolimnetic area 
Observed hypolimnetic volume 
Observed thermocline depth (m) 
Perimeter lake (no islands, km) 
Proportion of lake area below 20m in depth 
Proportion of littoral (< 4.6m) 
Shoreline development factor 
Total shoreline of lake (perimeter and islands, km) 
Volume (m3) 

Fi
sh

in
g 

ac
tiv

iti
es

 Annual angling pressure based on aerial survey counts (angler-hours/ha-year) 
Conservation status (binary; 1 implies some form of conservation status) 
Fisheries management zone (categorical) 
Mean count of fishing boats in summer 
Mean count of ice huts in winter 
Mean count of open ice fishers in winter 
Mean count of shore fishers in summer 

Pr
od

uc
tiv

ity
 

Dissolved Inorganic Carbon (mg.L) 
Dissolved Organic Carbon (mg.L) 
Ratio of ammonia over ammonium (mg.L) 
Ratio of nitrate over nitrite (ug.L) 
Secchi depth of lake in spring (m) 
Total dissolved solids (mg.L) 
Total Kjeldahl nitrogen (ug.L) 
Total phosphorus (ug.L) 
Trophic status index based on phosphorous 
True color (TCU) (see Moore et al. 1997 for details) 

C
lim

at
e 

Average date of the first day above 0°C (ordinal day) 
Average date of the last day above 0°C (ordinal day) 
Average rainfall from 1981-2010 (mm) 
Cumulative degree days where temperature was above 0°C 
Cumulative degree days where temperature was below 0°C 
Degree days above 5°C from 1981-2010 
Maximum monthly air temperature (°C) 
Maximum surface temperature (°C) 
Maximum water temperature (°C) 
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Category Environmental variable 
Mean annual air temperature from 1981-2010 (°C) 
Minimum monthly air temperature (°C) 
Number of days where temperature was above 0°C 
Number of ice-free days 
Proportion of cold days (between 8 and 12°C) during ice free period 
Proportion of cool days (between 22 and 26°C) during ice free period 
Proportion of warm days (between 16 and 20°C) during ice free period 

W
at

er
sh

ed
 

ch
ar

ac
te

ris
ti

cs
 

Age of tertiary watershed 
Altitude above sea level (m) 
Elevation within tertiary watershed (max-min, m) 
Tertiary watershed area (km2) 
Tertiary watershed elevation (meters above sea level) 

W
at

er
 c

he
m

is
try

 

Alkalinity (mg.L.CaCO3) 
Calcium concentration (mg.L) 
Chloride concentration (mg.L) 
Conductivity (uS.cm.s) 
Iron 
Magnesium concentration (mg.L) 
pH 
Potassium concentration (mg.L) 
Silicate concentration (mg.L) 
Sodium concentration (mg.L) 
Sulphate concentration (mg.L) 
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Table SI 3.3: Table of the loadings of the PCA conducted on 64 environmental variables. We kept the first 10 axes of the PCA. 
Environmental variables are grouped by categories (e.g., climate, productivity). See Sandstrom et al. (2011) for details on sampling 
methods. 
 
Variable Axis 1 Axis 2 Axis 3 Axis 4 Axis 5 Axis 6 Axis 7 Axis 8 Axis 9 Axis 10 
Latitude -0.89 0.11 -0.06 -0.12 -0.01 0.33 0.05 -0.08 0.03 0.15 
Longitude 0.63 -0.09 0.04 0.17 0.11 -0.6 -0.28 0.09 -0.08 -0.02 
Area (km2) -0.1 0.2 -0.75 0.04 -0.13 -0.1 -0.08 0.03 -0.11 0 
Maximum lake depth (m) -0.02 -0.22 -0.37 -0.09 -0.76 -0.02 -0.07 -0.06 0.17 -0.14 
Minimum lake depth (m) 0 -0.24 -0.13 -0.12 -0.9 0.01 -0.03 -0.03 0.16 -0.09 
Numeric code indicating lake size -0.21 0.02 -0.71 0.16 -0.23 0.08 0.04 -0.05 0.24 0.14 
Observed hypolimnetic area 0.07 -0.08 0.06 -0.06 -0.79 0.04 0.07 0.05 -0.39 0.1 
Observed hypolimnetic volume 0.03 -0.12 -0.02 -0.08 -0.8 -0.01 0.07 0.04 -0.35 0.06 
Observed thermocline depth (m) -0.15 -0.07 -0.21 0.09 -0.07 0.05 -0.1 -0.01 0.74 -0.01 
Perimeter lake (no islands -0.12 0.02 -0.96 0.01 -0.08 0.04 -0.01 -0.01 0.01 0.01 
Proportion of lake area below 20m in 
depth 0.01 0.24 0.11 0.09 0.87 0.02 0.01 0.01 -0.16 0.05 

Proportion of littoral (< 4.6m) -0.06 0.27 0.06 0.17 0.73 -0.07 -0.09 0.07 -0.06 0 
Shoreline development factor -0.04 -0.12 -0.89 -0.06 0.09 0.14 0.12 -0.07 0.05 0.02 
Total shoreline of lake (perimeter and 
islands -0.1 0.01 -0.96 0 -0.04 0.03 0.01 0 -0.04 0 

Volume (m3) -0.04 0.15 -0.59 0 -0.33 -0.08 -0.21 0.01 0.01 -0.14 
Annual angling pressure based on aerial 
survey counts (angler-hours/ha-year) 0.46 0.06 0.02 0.31 0.14 0.12 0.03 0.7 -0.02 -0.2 

Conservation status (binary; 1 implies 
some form of conservation status) 0.01 0.03 -0.28 -0.15 -0.2 -0.13 -0.12 -0.08 0.13 -0.08 

Fisheries management zone (categorical) 0.85 -0.07 0.04 0.2 0.08 -0.32 -0.21 0.08 -0.05 -0.06 
Mean count of fishing boats in summer 0.45 0.07 -0.01 0.36 0.17 0.18 0.02 0.54 -0.03 -0.23 
Mean count of ice huts in winter 0.09 0.01 0.05 0.06 -0.1 -0.27 0.03 0.66 0.12 0.22 
Mean count of open ice fishers in winter 0.18 -0.11 0.1 -0.01 0.04 0 -0.07 0.71 -0.07 -0.08 
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Variable Axis 1 Axis 2 Axis 3 Axis 4 Axis 5 Axis 6 Axis 7 Axis 8 Axis 9 Axis 10 
Mean count of shore fishers in summer 0.08 0 -0.03 -0.03 -0.04 -0.02 -0.09 -0.02 -0.31 0.05 
Dissolved Inorganic Carbon (mg.L) 0.03 0.06 0.01 0.88 0.08 0 -0.04 0 -0.03 -0.05 
Dissolved Organic Carbon (mg.L) -0.43 0.65 -0.01 0.01 0.34 0.12 -0.17 -0.07 0.07 -0.11 
Ratio of ammonia over ammonium (mg.L) 0.2 0.31 0.09 0.4 0.25 -0.24 0.26 0 -0.2 -0.05 
Ratio of nitrate over nitrite (ug.L) 0.18 0.04 -0.04 0.09 -0.17 -0.07 0.07 0.08 0.05 -0.68 
Secchi depth of lake in spring (m) 0.19 -0.69 0.02 0.04 -0.4 0.01 -0.01 0.03 0 0.02 
Total dissolved solids (mg.L) 0.25 0.08 0.01 0.94 0.06 -0.05 0.02 0.08 0.05 -0.03 
Total Kjeldahl nitrogen (ug.L) -0.02 0.71 0.05 0.4 0.34 0.07 0.1 -0.03 -0.05 -0.07 
Total phosphorous (ug.L) 0.01 0.84 -0.06 0.34 0.1 -0.04 0.15 0.01 -0.1 0.06 
Trophic status index based on 
phosphorous -0.03 0.81 -0.03 0.33 0.27 0.06 0.06 0 -0.07 0.07 

True color (TCU) (see Moore et al. 1997 
for details) -0.31 0.75 -0.04 -0.18 0.24 0.04 -0.18 -0.02 0.08 -0.18 

Average date of the first day above 0°C 
(ordinal day) -0.96 0.03 -0.03 -0.09 0.09 -0.12 -0.12 -0.03 -0.02 -0.03 

Average date of the last day above 0°C 
(ordinal day) 0.92 -0.09 0.07 0.17 0 -0.24 -0.09 0.11 -0.05 -0.04 

Average rainfall from 1981-2010 (mm) 0.71 -0.1 0.03 -0.04 0.02 -0.2 0.13 0.11 -0.02 -0.32 
Cumulative degree days where 
temperature was above 0°C 0.94 -0.01 0.01 0.14 -0.08 0.11 0.06 0.04 0.01 0.16 

Cumulative degree days where 
temperature was below 0°C 0.94 -0.12 0.08 0.09 -0.03 -0.2 0.01 0.08 -0.02 -0.1 

Degree days above 5°C from 1981-2010 0.91 0.02 -0.02 0.16 -0.08 0.23 0.05 0.03 0.01 0.16 
Maximum monthly air temperature (°C) 0.79 0.06 -0.03 0.1 -0.11 0.3 0.1 -0.01 0.04 0.33 
Maximum surface temperature (°C) 0.89 -0.09 0.33 0.01 0.05 -0.07 0 0.07 -0.13 -0.09 
Maximum water temperature (°C) 0.75 0.04 0.12 -0.08 0.35 0.02 0.22 -0.01 -0.08 0.16 
Mean annual air temperature for 1981 and 
2010 (°C) 0.97 -0.07 0.05 0.14 -0.05 -0.04 0 0.07 -0.02 -0.03 

Minimum monthly air temperature (°C) 0.93 -0.12 0.08 0.12 -0.02 -0.2 -0.01 0.09 -0.03 -0.12 
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Variable Axis 1 Axis 2 Axis 3 Axis 4 Axis 5 Axis 6 Axis 7 Axis 8 Axis 9 Axis 10 
Number of days where temperature was 
above 0°C 0.96 -0.07 0.05 0.15 -0.04 -0.11 -0.01 0.08 -0.02 -0.01 

Number of ice-free days 0.94 -0.04 -0.11 0.21 -0.09 -0.02 -0.01 0.07 0.04 0.01 
Proportion of cold days (between 8 and 
12°C) during ice free period -0.46 -0.08 0.08 -0.33 -0.23 -0.08 0.44 -0.12 0.21 0.09 

Proportion of cool days (between 22 and 
26°C) during ice free period -0.85 0.08 -0.23 -0.14 -0.11 0.06 0.17 -0.12 0.22 0.06 

Proportion of warm days (between 16 and 
20°C) during ice free period 0.81 -0.04 0.16 0.21 0.16 -0.02 -0.27 0.13 -0.23 -0.07 

Age of tertiary watershed 0.83 0.03 -0.02 0.08 -0.12 0.23 0.08 0.03 -0.04 -0.01 
Altitude above sea level (m) -0.5 -0.11 0.04 -0.43 0.08 0.14 0.36 -0.14 -0.02 -0.36 
Elevation within tertiary watershed (max-
min 0.24 -0.16 0.14 -0.18 0.02 -0.78 0.02 0.04 -0.08 -0.17 

Tertiary watershed area (km2) -0.56 0.08 -0.11 -0.09 0.02 0.37 0.03 -0.03 0.15 -0.08 
Tertiary watershed elevation (meters 
above sea level) -0.46 -0.03 -0.05 -0.4 -0.13 0.17 0.52 -0.13 0.09 -0.17 

Alkalinity (mg.L.CaCO3) 0.17 0.04 0.03 0.94 0.1 0.03 -0.1 0 0 -0.03 
Calcium concentration (mg.L) 0.18 0.05 -0.01 0.94 0.1 -0.03 -0.03 0.05 0.04 -0.04 
Chloride concentration (mg.L) 0.39 0.14 -0.02 0.6 0.02 -0.03 0.34 0.23 0.12 -0.02 
Conductivity (uS.cm.s) 0.25 0.08 0.01 0.94 0.07 -0.04 0.02 0.08 0.05 -0.03 
Iron -0.07 0.55 -0.01 -0.21 -0.1 0.17 -0.21 0 0.12 -0.06 
Magnesium concentration (mg.L) 0.13 0.05 0.06 0.83 0.06 -0.01 -0.15 -0.03 0.03 -0.02 
pH -0.03 0.02 -0.04 0.84 0.1 0.07 -0.1 0.02 -0.04 0.17 
Potassium concentration (mg.L) 0.28 0.31 -0.08 0.65 -0.09 0.18 0.3 0.1 0.11 0.01 
Silicate concentration (mg.L) -0.13 0.32 0.1 -0.06 0.12 -0.13 -0.19 -0.04 0.21 -0.42 
Sodium concentration (mg.L) 0.33 0.18 -0.02 0.56 -0.01 -0.03 0.37 0.25 0.14 -0.03 
Sulphate concentration (mg.L) 0.42 0.04 -0.03 0.32 -0.2 -0.39 0.25 0.22 0.14 0.03 
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Table SI 3.4: Table of the best model of all and the best latent model for each species. The models 
varied on whether they included (1) recombined environmental variables, (2) recombined 
environmental variables and latent variables generated from presence-absence of sport fish, (3) 
recombined environmental variables and latent variables generated from presence-absence of non-
sport fish, and (4) recombined environmental variables and latent variables generated from 
presence-absence of all fish species. When identifying the best model, we selected the model with 
the median log error closest to 0. For the best model of all, we considered all four models and for 
the best latent model, we considered models 2, 3, and 4. Species are organised by occurrence, with 
high occurrence species at the top of the table and low occurrence species at the bottom of the table. 
 

Common name Scientific name Best model of all Best latent model 
Yellow perch Perca flavescens Non sport fish Non sport fish 
Northern pike Esox lucius All fish All fish 
Walleye Sander vitreus Non sport fish Non sport fish 
Cisco Coregonus artedi All fish All fish 
Lake whitefish Coregonus clupeaformis All fish All fish 
Smallmouth bass Micropterus dolomieu All fish All fish 
Lake trout Salvelinus namaycush Non sport fish Non sport fish 
Burbot Lota lota Environmental Sport fish 
Largemouth bass Micropterus nigricans All fish All fish 
Brook trout Salvelinus fontinalis Environmental Sport fish 
Black crappie Pomoxis nigromaculatus Environmental Non sport fish 
Rainbow smelt Osmerus mordax Environmental Non sport fish 
Muskellunge Esox masquinongy Environmental Sport fish 
Sauger Sander canadensis Environmental Sport fish 
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Figure SI 3.2: Maps showing the abundance distribution of each sport fish species. Species are 
organized by incidence within the dataset, with the most common species at the top and the least 
common at the bottom. Each point represents a lake where the species was observed. Abundance 
values are represented on a log10 scale, providing a clearer depiction of the wide range of abundance 
levels across the lakes. 
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Figure SI 3.3: Maps illustrating the spatial patterns for the first 10 axes of the Principal Component 
Analysis (PCA) conducted on 64 environmental variables. These axes capture the major gradients 
in environmental variation across the study area, with each map representing one of the top 10 PCA 
axes. 
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Figure SI 3.4: Maps showing the spatial distribution of latent variables derived from three different 
fish assemblages. We generated the latent variables using (1) sport fish species, labeled as ‘Sport,’ 
(2) non-sport fish species, labeled as ‘Non.sport,’ and (3) all fish species, labeled as ‘All.fish.’ 
These latent variables were based on the presence-absence data for the respective fish groups. Each 
column represents a different model, while each row corresponds to a specific latent variable, 
visually depicting how these variables vary across the landscape for each fish assemblage. 
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Figure SI 3.5: Contribution of each lake to the log error as a function of environmental variables. 
The contribution was calculated as the median log error when the lake was part of the calibration 
set minus the median log error when the lake was part of the validation set. A positive contribution 
indicates that including the lake in the calibration set improved predictions. Color of the points 
represents whether the species is present (black) or absent (white) from the considered lake. The 
blue line represents the linear trend across all lakes. The four environmental variables selected 
were: log transformed area (in km2), altitude (in m), maximum water temperature in °C, and 
Trophic Status Index based on phosphorus levels (TSI). The environmental variables selected are 
meant to represent different types of lakes in terms of, respectively, hydro-morphology, watershed 
characteristics, climate, and productivity. Species are organised by occurrence, with high 
occurrence species at the top of the table and low occurrence species at the bottom of the table 
 

 

Figure SI 3.6: Correlation of lake contributions between species for model containing latent 
variables generated from all fish species. The patterns observed allowed us to group species in the 
following manner: (Group 1) rainbow smelt, muskellunge, and sauger; (Group 2) burbot, lake trout, 
black crappie, brook trout, and largemouth bass; and (Group 3) yellow perch, smallmouth bass, 
northern pike, walleye, lake whitefish, and cisco. Correlations above 0.5 are highlighted in red and 
correlations below -0.5 in blue. Species are organised by occurrence, with high occurrence species 
on the right and low occurrence species on the left.  
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Chapter 4: Comparative assessment of community and stacked abundance 

models for predicting biomass across spatial scales3 

“Even worthless things can become valuable once they 
become rare. This is the grand lesson of my life.” 

Micaiah Johnson, The Space Between Worlds 

4.1. Abstract 

Accurately predicting biomass in aquatic ecosystems is essential for advancing fisheries 

management and biodiversity conservation. Biomass models provide critical insights into 

ecosystem productivity, trophic dynamics, and energy flow – key components for sustaining 

ecosystem resilience under environmental changes. This study evaluates two common modelling 

approaches - stacked abundance models and community models - for predicting fish community 

biomass in lake ecosystems. The stacked model estimates biomass by aggregating species-specific 

abundance predictions, while the community model directly predicts biomass at the community 

level, incorporating environmental variables and latent variables derived from species co-

occurrence patterns. We assess the predictive performance of both approaches across gradients of 

species richness, biomass, and latitude. Our results show that the stacked model tends to 

overestimate biomass, particularly in lakes dominated by a few highly abundant species. In 

contrast, the community model yields narrower error distributions, indicating improved predictive 

accuracy by capturing community-level processes. Additionally, predictive accuracy for both 

models varies with species richness, with more diverse and evenly distributed communities 

achieving better predictions. These findings highlight the strengths and limitations of each 

 
3 We plan to submit this chapter to Oikos for publication. 
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modelling approach, offering valuable insights for refining biomass predictions to support fisheries 

management and biodiversity monitoring efforts. 

4.2. Introduction 

Biomass, a fundamental metric of community health, is tightly coupled within ecosystem 

functioning, providing essential insights into energy flow and productivity within and among 

ecosystems (White et al. 2007). As a result, there is an increasing demand for predictive models 

capable of estimating biomass in response to environmental variation across ecosystems and 

changes within ecosystems. The demand for such models stems from their potential to guide 

conservation efforts, optimize resource management, and forecast the impacts of human-driven 

activities on biodiversity and ecosystem services (Pecl et al. 2017). These models enable decision-

makers to implement proactive strategies for preserving biodiversity, rather than responding to 

population declines or species extinctions after they occur (Leung et al. 2020). 

Despite its importance, predicting biomass at various spatial scales remains a significant challenge 

in ecology. Traditional methods of estimating biomass have primarily relied on environmental 

variables such as temperature, nutrient availability, and habitat structure to explain ecosystem 

productivity and health (Smith 1998). These variables serve as proxies for energy input, growth 

rates, and carrying capacity, playing a crucial role in biomass predictions, particularly in aquatic 

environments (Pauly & Christensen 1995; Ware & Thomson 2005). However, these models often 

face limitations when dealing with high-dimensional data and complex ecological interactions, 

leading to potential predictive inaccuracies (Leung et al. 2020). Additionally, ecosystem 

heterogeneity, temporal variability, and the dynamic nature of species interactions introduce 

complexities that are difficult to capture using environmental variables alone (Guisan & Thuiller 

2005; McGill et al. 2006). A further challenge arises from the limitations of presence-absence data, 
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which, while valuable for predicting species distribution and abundance, may be insufficient for 

accurately estimating biomass, particularly in diverse ecosystems with intricate interspecies 

relationships (Hébert & Gravel 2023). These challenges underscore the need for innovative 

approaches that integrate multiple sources of ecological data and account for the uncertainty 

inherent in ecological predictions (Ferrier & Guisan 2006). 

A promising approach to improving biomass prediction is the application of stacked abundance 

models. These models first estimate the abundance of individual species based on environmental 

variables and presence-absence data, and subsequently aggregate these predictions to derive 

community biomass (Ovaskainen et al. 2017). This framework offers advantages over traditional 

community-level models by accounting for species-specific responses to environmental factors and 

propagating uncertainty throughout the modelling process (Hébert & Gravel 2023; Leung et al. 

2020). However, the effectiveness of stacked abundance models is not guaranteed; inaccuracies in 

abundance predictions can accumulate, potentially increasing variance in biomass estimates, 

particularly for rare or hard-to-predict species (Warton et al. 2015a). Therefore, evaluating the 

performance of stacked abundance models relative to direct community biomass models is essential 

for determining which approach provides more accurate and reliable predictions (Warton et al. 

2015a). Furthermore, given the role of species compositions in influencing biomass (Arranz et al. 

2022), it is essential to investigate how these compositions affect the outcomes of both modelling 

strategies. 

Beyond selecting between stacked and community models, a key consideration is whether 

predictive accuracy is influenced by species richness and community composition. Species 

diversity plays a well-established role in shaping ecosystem stability and functioning, and it may 

also affect the accuracy of biomass predictions (Arranz et al. 2022). Species-rich lakes, 
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characterized by more complex food webs and interactions, present greater modelling challenges 

compared to less diverse systems (Tunney et al. 2017). Accurately predicting biomass in these 

diverse communities may require models that incorporate species interactions and community 

structure, adding further complexity. Determining whether diversity enhances or hinders predictive 

accuracy is essential for improving model performance and informing conservation strategies in 

complex ecosystems. 

Lastly, predictive models must demonstrate predictive accuracy across different spatial scales, 

ranging from local to regional levels. Ecological processes often operate at different scales, making 

it essential to assess whether models that perform well at the lake level can be reliably extended to 

broader scales, such as watersheds or regions (Cumming et al. 2017). Accurate biomass predictions 

at regional scales are particularly valuable for large-scale management and policymaking, as they 

can inform decisions on fisheries management, pollution control, and biodiversity conservation, 

among other concerns. In this study, we address three key research questions: (1) whether a stacked 

abundance model or a community model (i.e., one that directly predicts community biomass from 

environmental data and latent variables) generates better biomass predictions, (2) whether lakes 

with higher species richness are predicted more accurately than less diverse lakes, and (3) whether 

regional biomass predictions outperform (i.e., greater accuracy) local biomass predictions. Through 

these investigations, we aim to generate insights into the effectiveness of predictive models for 

supporting conservation and management efforts across spatial scales. 

4.3. Materials and methods 

4.3.1. Dataset 

We used fish abundance and biomass data from 707 lakes, generated by the Ontario Broad-scale 

Monitoring Program (Lester et al. 2021; Sandstrom et al. 2011) and conducted by the Ontario 
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Ministry of Natural Resources and Forestry (OMNRF, 2012) in Canada (Figure 4.1 and S4.1). The 

sampled lakes ranged from 43° to 54° latitude and -95° to -76° longitude, with surface areas 

between 0.21 to 905 km2 and maximum depths from 1.2 to 213 m. Sampling occurred during the 

summer months (June to September) from 2008 to 2012. Lakes were selected using a stratified 

random sampling design, with strata based on geographic zones and lake surface area. A depth-

stratified sampling approach was implemented to ensure accurate estimates of both fish abundance 

and biomass (see Lester et al. 2021 and Sandstrom et al. 2011 for more details on methods). The 

dataset covers 25 secondary watersheds and 82 tertiary watersheds. 

 

Figure 4.1: Map of the 583 lakes surveyed in Ontario, Canada. Each point is color-coded to indicate 
species richness (i.e., the number of species present in the lake). Black lines denote provincial 
boundaries within Canada. 
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The number of nets set per stratum was scaled with the surface area and depth strata within each 

lake to standardize sampling effort. Within each depth stratum, two types of gillnets were deployed 

overnight for 18 hours: a number of small mesh gillnets with stretch mesh size ranging between 13 

and 38 mm, and a number of large mesh gillnets of stretch mesh sizes ranging between 38 and 

127 mm (Appelberg 2000; Arranz et al. 2022). The catch from these nets was used to calculate the 

index of fish abundance density (number of fish caught per unit effort, CPUE) and the index of fish 

biomass density (weight of fish caught per unit effort, BPUE) for each species in each lake. These 

indices reflect the expected catch per 100 meters of each net type over an 18-hour period. We 

assumed that CPUE was an accurate proxy for local density of each species in each lake (Olin et 

al. 2009). 

The dataset originally included 87 species, with species richness per lake ranging from 2 to 25. To 

streamline the analysis and reduce computational demands, species occurring in fewer than six 

lakes (i.e., less than 2% of the dataset; McGarigal et al. 2000) were excluded. After applying this 

threshold, a total of 54 species across 583 lakes were retained for further analysis (Table 4.1, Figure 

4.1). All fish were identified at the species level. 

Table 4.1: List of species included in the dataset, with common and scientific names, along with 
their average weight (in kg). The average adult weight was calculated as the mean of the minimum 
and maximum weights reported in the Ontario Freshwater Fishes Life History Database by Eakins 
(version 5.31, 2024). 

Common name Scientific name Average weight (kg) 
Black crappie Pomoxis nigromaculatus 0.295 
Blackchin shiner Miniellus heterodon 0.002 
Blacknose dace Rhinichthys atratulus 0.003 
Blacknose shiner Notropis heterolepis 0.002 
Bluegill Lepomis macrochirus 0.195 
Bluntnose minnow Pimephales notatus 0.003 
Bowfin Amia ocellicauda 1.950 
Brook stickleback Culaea inconstans 0.001 
Brook trout Salvelinus fontinalis 0.810 
Brown bullhead Ameiurus nebulosus 0.350 
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Common name Scientific name Average weight (kg) 
Burbot Lota lota 2.350 
Central mudminnow Umbra limi 0.006 
Cisco Coregonus artedi 0.260 
Common carp Cyprinus carpio 3.300 
Common shiner Luxilus cornutus 0.022 
Creek chub Semotilus atromaculatus 0.051 
Deepwater sculpin Myoxocephalus thompsonii 0.015 
Emerald shiner Notropis atherinoides 0.005 
Fallfish Semotilus corporalis 0.360 
Fathead minnow Pimephales promelas 0.003 
Golden shiner Notemigonus crysoleucas 0.029 
Greater redhorse Moxostoma valenciennesi 1.350 
Iowa darter Etheostoma exile 0.001 
Johnny darter Etheostoma nigrum 0.002 
Lake chub Couesius plumbeus 0.038 
Lake trout Salvelinus namaycush 3.650 
Lake whitefish Coregonus clupeaformis 2.450 
Largemouth bass Micropterus nigricans 1.250 
Logperch Percina caprodes 0.015 
Longnose dace Rhinichthys cataractae 0.007 
Longnose sucker Catostomus catostomus 0.650 
Mimic shiner Paranotropis volucellus 0.002 
Mottled sculpin Cottus bairdii 0.008 
Muskellunge Esox masquinongy 8.950 
Ninespine stickleback Pungitius pungitius 0.001 
Northern pike Esox lucius 3.200 
Northern redbelly dace Chrosomus eos 0.002 
Pearl dace Margariscus nachtriebi 0.009 
Pumpkinseed Lepomis gibbosus 0.145 
Rainbow smelt Osmerus mordax 0.050 
Rock bass Ambloplites rupestris 0.205 
Round whitefish Prosopium cylindraceum 0.280 
Sauger Sander canadensis 0.825 
Shorthead redhorse Moxostoma macrolepidotum 1.100 
Silver redhorse Moxostoma anisurum 1.350 
Slimy sculpin Cottus cognatus 0.005 
Smallmouth bass Micropterus dolomieu 0.750 
Spoonhead sculpin Cottus ricei 0.003 
Spottail shiner Hudsonius hudsonius 0.009 
Trout perch Percopsis omiscomaycus 0.008 
Walleye Sander vitreus 2.200 
White sucker Catostomus commersonii 0.800 
Yellow bullhead Ameiurus natalis 0.320 
Yellow perch Perca flavescens 0.160 
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4.3.2. Variables and transformation 

At each lake, a comprehensive set of environmental variables was recorded alongside fish 

abundance and biomass sampling. A total of 65 environmental variables were recorded for each 

lake, categorized into hydro-morphology, fishing activities, productivity, climate, watershed, and 

water chemistry (Table S4.1, see Sandstrom et al. 2011 for details on sampling methods). To reduce 

redundancy, all variables were standardized to a common scale (mean = 0 and variance = 1) and 

processed through Principal Component Analysis (PCA) with varimax rotation to generate a 

smaller set of composite environmental variables (Zou et al. 2006). This approach streamlined the 

dataset while preserving essential variability. The analyses were conducted using the prcomp and 

varimax functions from the R package stats (R Core Team 2017). Since the dataset was divided 

into calibration and validation sets (see the Model fitting section for details), the PCA dimension-

reduction step was first performed on the calibration set. The resulting environmental axes were 

then applied to project the validation set, ensuring the orthogonality of the axes was preserved as 

new lakes (validation) were incorporated. This method preserved the data structure while reducing 

dimensionality and was repeated for each validation replicate. Ultimately, 10 principal components 

were retained as aggregate variables for subsequent analysis (see section 3.6.1 for details); they 

accounted for about 18% of the total environmental variation (i.e., depending on the replicate). 

We converted species presence-absence data into latent variables using a stacked species regression 

model, followed by a model-based ordination with Gaussian copulas (Stahl et al. 2024). This 

analysis was performed using the stackedsdm and cord functions from the R package ecoCopula 

(Popovic et al. 2019, version 1.0-2). This method was selected due to its robustness for binomial 

data and computational speed (Popovic et al. 2022). The stacked species regression model is fitted 

as a null model specifically to generate Dunn-Smyth residuals (Dunn & Smyth 1996). These 
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residuals, which approximate standard normal residuals, are particularly useful for models with 

non-normal data, such as Generalized Linear Models (GLMs). They are well-suited for non-

Gaussian responses, including binary, count, and Poisson-distributed data. The Gaussian copula 

model is then fitted on these residuals. To account for bias due to lake size, we included the log10-

transformed area of each lake as a predictor in the stacked species regression model. Latent 

variables were generated using all fish species included in the analysis, with the number of latent 

variables set to 4. To determine the optimal number of composite environmental variables (PCA 

axes) and latent variables, we performed an analysis in which one was held constant while the other 

was varied (see section 3.6.1 for details). The combination yielding the lowest out-of-sample error 

was selected, leading to the use of 10 composite environmental variables and four latent variables. 

4.3.3. Model fitting 

To address the research questions outlined in the Introduction, we followed the framework detailed 

below: 

Latent variable generation: latent variables were derived using presence-absence data from all 

fish species (i.e., the ones that passed the threshold; presence in at least six lakes) across the entire 

dataset. 

Dataset partitioning: the dataset was randomly divided into a calibration set (70%) and a 

validation set (30%). 

Sparse PCA: sparce PCA was applied to the environmental variables in the calibration set, with 

the resulting axes used to project the environmental variables of the validation set. This ensured 

that the PCA axes remained orthogonal between the two sets. 
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Species abundance prediction: The calibration set was used to train models predicting the local 

abundance of each fish species, and the validation set was used to predict out-of-sample abundance. 

This process was repeated 1,000 times, and the median predicted abundance of each species and 

lake was calculated. 

Biomass prediction: species abundances per lake were multiplied by species’ average weight and 

summed to estimate total biomass for each lake. Data on species’ weight ranges were obtained from 

the Ontario Freshwater Fishes Life History Database (Eakins 2024), and the average of the 

provided weight range was used to represent each species. Similar to the previous step, the 

abundance data were randomly split into calibration and a validation sets to predict out-of-sample 

biomass. This process was repeated 1,000 times and the median predicted biomass for each lake 

was calculated. 

Direct community biomass model: a direct community biomass model was fitted to the 

calibration set using both composite environmental variables and latent variables. The model was 

used to predict out-of-sample biomass, and this process was repeated 1,000 times to calculate the 

median predicted biomass for each lake. 

We compared two strategies to predict biomass: (1) a direct model that predicts community biomass 

using composite environmental variables and latent variables derived from presence-absence, and 

(2) a stacked model that first predict species abundance using composite environmental variables 

and latent variables generated from presence-absence. In the stacked approach, predicted species 

abundances for each lake were multiplied by average weight of each species, and the resulting 

values were summed to estimate community biomass. We modelled variation in local abundance 

and biomass using a Tweedie distribution (Tweedie 1984) with a log-link function within a 

Generalized Additive Model (GAM), using the tw and gam functions from the R package mgcv 
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(Wood 2004; Wood et al. 2016, version 1.9-1). Each explanatory variable was fitted with a second-

order thin-plate regression spline smoother (Wood 2003) with three basis functions (k = 3) and 

additional penalty on the null space for each smoother, allowing them to shrink to zero if necessary 

(Marra & Wood 2011). All smoothing parameters were estimated using Restricted Maximum 

Likelihood (REML, Wood 2011) based on data from the calibration set. The Tweedie distribution 

was selected for its flexibility in modelling various mean-variance relationships, making it well-

suited for the abundance and biomass data, which were represented as densities (i.e., number of 

fish caught per unit effort, CPUE; weight of fish caught per unit effort, BPUE). This approach was 

more appropriate than count-based distributions, such as Poisson or negative binomial, given the 

continuous nature of our data. We used three basis functions to balance flexibility and parsimony, 

allowing the GAM to capture the main trends without overfitting, as our goal was to identify large-

scale patterns while preserving generalizability. Separate models were fitted for each species to 

predict abundance, and this process was repeated across multiple folds of calibration and validation 

to ensure robust model performance across different data subsets. 

Species abundances were adjusted by multiplying each species’ predicted abundance by its average 

weight to account for the disproportionate contributions of larger species to total biomass, ensuring 

that biomass predictions reflected their greater contribution to biomass. Predicted abundance was 

only considered for lakes where the species was known to occur, as presence-absence data served 

as model input. This approach leverages occurrence information to minimize potential error, 

prevent predictions where species are absent, and reduce model bias, thereby enhancing predictive 

accuracy. Species weight data were obtained from the Ontario Freshwater Fishes Life History 

Database (Eakins 2024), with the average of the reported weight range used to represent each 

species. 
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4.3.4. Analysis 

As a reminder, we set out to answer three questions: (1) whether a stacked abundance model or a 

community model (i.e., directly predicting community biomass from environmental data and latent 

variables) would better predict total biomass, (2) whether diverse lakes (i.e., in terms of species 

richness) are better predicted than non-diverse lakes, and (3) whether regional biomass is better 

predicted than local biomass. 

To evaluate lake diversity, we calculated both species richness per lake (i.e., the number of species 

present per lake) and Shannon’s diversity index (Shannon 1948). Shannon’s Index (also known as 

the Shannon-Wiener Index) quantifies community diversity incorporating for both species richness 

(i.e., the number of species) and species evenness (i.e., the relative biomass of each species). Higher 

values indicate greater diversity, reflecting both a higher number of species and a more equitable 

distribution of individuals among them. Shannon’s diversity index was calculated using the 

diversity function from the R package vegan (Oksanen et al. 2024, version 2.6-6.1). Here we used 

biomass to calculate Shannon’s Index as it better represented the energy flow and functional roles 

of species, linking diversity with ecosystem productivity and resilience (Fung et al. 2013; White et 

al. 2007). 

We hypothesized that species richness would correlate with latitudinal gradients, as biodiversity 

typically increases toward lower latitudes (Hillebrand 2004; Willig et al. 2003). To further explore 

the relationship between predictive error and biodiversity metrics, including species richness and 

Shannon’s Diversity Index, we analyzed spatial patterns in predictive error for both models. For 

these analyses, we fitted a Generalized Additive Model (GAM) using a Gamma distribution with a 

log-link function. A tensor product smoother was applied on latitude and longitude, using five basis 

functions to capture potential nonlinear spatial patterns (Wood 2003). The latitude and longitude 
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of each lake were recorded at its geographic center. The tensor product smoother was chosen for 

its ability to apply separate smoothing penalties to latitude and longitude, ensuring that their distinct 

effects on the response variable were accurately represented. Unlike thin-plate regression splines, 

which assume equal effects of latitude and longitude, tensor product smoothers treat each 

dimension independently, accommodating differences in units or scales and providing greater 

flexibility and accuracy in modelling spatial variation (Wood 2006, 2017). Smoothing parameters 

were estimated using restricted maximum likelihood (REML), known for its robustness in 

smoothing estimation (Wood 2011). We used the te and gam functions from the R package mgcv 

to fit the models (Wood 2004; Wood et al. 2016, version 1.9-1) and the draw function from the R 

package gratia to visualize the partial plots of latitude and longitude (Simpson 2024, version 0.9-

2). The te function captures flexible relationships between predictors without assuming explicit 

interactions between them. Partial plots show the relationship between each predictor and the 

response variable while holding other predictors constant, allowing us to isolate and understand 

each predictor’s specific influence on prediction error in our models (Wood 2017). 

To evaluate prediction accuracy across spatial scales, lakes were grouped lakes by secondary and 

tertiary watersheds. Predicted and observed biomass were aggregated at three levels: (1) individual 

lakes, (2) tertiary watersheds, and (3) secondary watersheds. Specifically, the biomass of lakes 

within the same watersheds was summed, resulting in a single predicted and observed value for 

each watershed. The predictive performance of both models was assessed by calculating the ratio 

error (Eq. 4.1) at each spatial scale, allowing a comparison of the models’ effectiveness at local and 

regional levels. The ratio error measures the relative magnitude of the discrepancy between 

predictions and observations, rather than the absolute difference. 
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𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑚𝑚,𝑙𝑙 =
𝑌𝑌�𝑚𝑚,𝑙𝑙

𝑌𝑌𝑚𝑚,𝑙𝑙
 Equation 4.1 

where m represents the model and l the lake or aggregation of lakes. Y refers to the observed 

biomass and Ŷ to the predicted biomass. 

We also evaluated two other aggregation methods: grouping by the nearest neighboring lakes and 

by lakes within a fixed distance. For the nearest neighboring method, pairwise distances were 

calculated to identify the 10 and 50 nearest neighboring lakes. We aggregated the predictions from 

each model, along with the observed biomass, for these groups (Eq. 4.2) and calculated the 

predictive error (Eq. 4.1) at three spatial levels: (1) individual lakes, (2) groups of the 10-nearest-

lakes level, and (3) groups of the 50-nearest-lakes. This approach yielded a predictive error for 

each lake. The group sizes of 10 and 50 lakes were arbitrarily chosen to represent approximately 

2% and 9% of the dataset, respectively. 

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑚𝑚,𝑙𝑙,𝑎𝑎,𝑔𝑔 = �𝑌𝑌�𝑚𝑚,𝑘𝑘
𝑘𝑘

 Equation 4.2 

where m denotes the model, l the focal lake, a the aggregation method (e.g., nearest neighboring 

lakes), g the group (e.g., the 10 nearest neighboring lakes), and k an index representing the lakes 

within the selected group, including a the focal lake (i.e., for the 10 nearest neighboring lakes, k 

refers to each of these 10 lakes as well as the focal lake). Ŷ represents the predicted biomass. The 

same equation was applied to calculate the observed biomass, by substituting Ŷ with Y. 

For the fixed distance method, we identified all lakes within a 50 km and 100 km radius of each 

focal lake by calculating pairwise distances. Predictions from each model, along with the observed 

biomass, were then aggregated for the lakes within each radius to assess prediction accuracy across 

spatial scales (Eq. 4.2). Predictive error was calculated at three levels: (1) individual lake level, (2) 



 121 

within a 50 km radius around the focal lake, and (3) within a 100 km radius around the focal lake. 

This approach evaluates the models’ performance as predictions are scaled up from local to broader 

spatial levels and yielded a predictive error for each lake. The 50 km and 100 km distances 

correspond to approximately the 2.5th and 7.5th quantiles of the pairwise geographics distances 

between lakes, respectively. 

4.4. Results 

Our primary objective was to assess whether the stacked abundance model or the community model 

provided better predictions of total biomass in a large lake-fish ecosystem. To achieve this, we 

compared the predicted biomass from both models with the observed biomass (Figure 4.2). These 

plots confirm that the stacked model tends to predict biomass with less variability, with predictions 

clustering closer to the mean values, indicating constrained estimates. In contrast, the community 

model exhibits greater flexibility, providing a wider range of predictions that align more closely 

Figure 4.2: Comparison of predicted 
versus observed biomass for the two 
models. The stacked model (top panel) 
predicts species abundance using 
composite environmental variables and 
community composition, multiplies the 
predicted abundance by the average 
species weight, and fits a second model 
to estimate community biomass by 
summing these values. The community 
model (bottom panel) directly predicts 
community biomass using composite 
environmental variables and species 
composition. The dashed line 
represents the 1:1 line, indicating 
perfect agreement between predicted 
and observed biomass. The blue line 
represents the trend across all lakes 
(i.e., linear regression between 
predictive and observed biomass). A 
version of this figure using log10 scale 
is available in Figure S4.2. 
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with the observed biomass. This suggests that the community model may perform better at 

capturing variation, particularly for higher biomass values, while the stacked model appears more 

conservative in its predictions. This is evident in the stacked model’s limited ability to predict 

biomass values outside a specific range, resulting in a narrower range of predictions overall (Figure 

S4.2). In contrast, the community model captured a wider spectrum of biomass values, reflecting 

greater variability across lakes (Figures 4.2 and S4.2). Comparing the tendencies of the two models, 

we found that the stacked model frequently overpredicted biomass, leading to a pronounced skew 

toward overprediction (Figure 4.3). While the community model also showed a tendency to 

overpredict, its distribution was more balanced, with a longer tail reflecting a greater mix of both 

under- and overpredictions. 

Figure 4.3: Histogram of predictive error by model type. Predictive error is calculated as the ratio 
of predicted biomass to observed biomass and displayed on a log10 scale. The stacked model (red) 
predicts species abundance and then estimates biomass, while the community model (blue) directly 
predicts biomass using composite environmental variables and community composition (see 
methods for more details). The dashed line indicates perfect prediction, where predicted biomass 
matches observed biomass.  
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For the second objective, we evaluated how lake diversity, measured by species richness and 

Shannon’s index, affected prediction accuracy. In the stacked model, no clear relationship emerged 

between prediction accuracy and species richness (Figure 4.4). However, predictive error (log10-

scale) showed a positive trend with and Shannon’s index, indicating that lakes with lower richness 

were generally underpredicted, while those with higher richness tended to be overpredicted. The 

community model followed a similar trend with Shannon’s index, though the trend was less 

pronounced. Interestingly, for species richness, the community model exhibited an inverse 

relationship in which lakes with lower richness were more often overpredicted, whereas those with 

higher richness were typically underpredicted. An analysis of the spatial smooths of predictive 

errors reveals a clear latitudinal trend in both the stacked and community models. Lakes in the 

southern regions consistently showed a positive partial effect, indicating overpredictions of 

biomass, while northern lakes exhibited a negative partial effect, reflecting underpredictions 

(Figure S4.3). Notably, the stacked model displayed a slightly different pattern, with localized 

hotspots of overprediction in southern parts of Eastern and Western Ontario. Despite these spatial 

trends, the explained deviance of the models remained relatively low, at 9.7% for the stacked model 

and 4.1% for the community model. 

Our final objective was to determine whether regional biomass predictions provided greater 

accuracy than local biomass predictions. To do so, again, we evaluated three aggregation methods: 

grouping by watershed levels (Figure 4.5), using a fixed number of nearest neighbors (Figure S4.4), 

and grouping neighbors within a fixed distance (Figure S4.5). Across all methods and models, the 

results consistently indicated that increasing the level of aggregation level reduced prediction error. 

This trend is reflected in the density distributions where higher aggregation levels produced 
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sharper, narrower peaks centered around a predictive value of 1 on the log10 scale (Figures 4.5, 

S4.4 and S4.5). 

Comparing the two models across aggregation methods, the community model exhibited lower 

variability in predictive errors than the stacked model (Figure 4.5). In contrast, the stacked model 

showed a more dispersed distribution with a slight bias toward overprediction. This pattern is 

further highlighted in the empirical cumulative distribution function (ECDF), where the stacked 

Figure 4.4: Predictive error of biomass per lake plotted against community diversity. Predictive 
error is calculated as the ratio of predicted biomass to observed biomass and presented on a log10 
scale. Community diversity is measured using both species richness (i.e., number of species per 
lake; left panels) and Shannon’s index (i.e., species diversity weighted by biomass; right panels). 
The stacked model results are shown in the top panels, while the community model results are in 
the bottom panels. The dashed line indicates perfect prediction, where predicted biomass matches 
observed biomass. The blue line represents the trend across all lakes, obtained from linear 
regression between predictive error and community diversity for each model and diversity metric. 
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model reached a predictive error of 1 on the log10 scale more rapidly than the community model, 

reflecting greater variability and reduced precision in its predictions. 

4.5. Discussion 

The comparison between the stacked and community models reveals key differences in their 

predictive tendencies. Notably, the stacked model’s predictions exhibit shrinkage toward the mean, 

Figure 4.5: Histogram and Empirical Cumulative Distribution Function (ECDF) of predictive error 
across different aggregation levels and models. Predictive error is calculated as the ratio of 
predicted biomass to observed biomass and presented on a log10 scale. Aggregation levels are 
shown on the vertical panel, with the lowest aggregated level at the top (lake level) and the most 
aggregated level (secondary watershed) at the bottom. The stacked model (red) predicts species 
abundance and then estimates biomass, while the community model (blue) directly predicts 
biomass using composite environmental variables and species composition. The left panels show 
the density of predictive error, while the right panels display the ECDF of predictive error. The 
dashed line indicates a perfect prediction, where predicted biomass matches observed biomass. 
Alternative aggregation methods are shown in Figure S4.4 and S4.5. 
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resulting in more conservative predictions for extreme biomass values. This phenomenon, known 

as “shrinkage,” is a characteristic of hierarchical or multi-level models, where partial pooling of 

information across groups helps to regularize predictions and reduce overfitting (Gelman et al. 

2013). This results in more stable but potentially biased predictions, particularly when capturing 

extreme values is crucial. In this study, the stacked model struggled to predict biomasses below or 

above certain thresholds, indicating that it may smooth over important ecological variability that 

influences biomass dynamics. This shrinkage arises from the model’s structure, where species-

specific abundance predictions are generated independently and subsequently aggregated to 

estimate total biomass (Clark et al. 2014).  

Since the stacked model relies on individual species predictions, errors in these predictions can 

propagate, contributing to the overall tendency to compress extreme values. While shrinkage can 

be beneficial in preventing overfitting, it may pose challenges in ecological contexts where rare or 

highly abundant species play a disproportionate role in ecosystem functioning. In such cases, this 

limitation could obscure important ecological patterns (Royle & Dorazio 2008). In contrast, the 

community model produced a broader range of predictions, capturing greater variability in biomass 

across lakes. By treating the entire community as a single unit of analysis, community models 

better capture complex inter-species dynamics – such as competition, facilitation, and shared 

resource use - by directly incorporating these interactions within the model (Warton et al. 2015b). 

This approach offers greater flexibility in representing ecological heterogeneity, which likely 

explains the model’s wider range of predictions in this study. However, it also increases the risk of 

overfitting, particularly when species interactions are complex or not well understood or captured 

by the model (Ovaskainen et al. 2017). 
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The skewed tendency of the stacked model to overpredict biomass more often than it underpredicts 

suggests a potential bias inherent to the stacking process. When species abundances are summed, 

correlated errors in individual predictions can inflate overall biomass estimates (Latimer et al. 

2006). As demonstrated in Chapter 3 (Figure 3.3), frequently occurring species were generally 

overpredicted, while rare species were often underpredicted, indicating that dominant species may 

be distorting the final biomass predictions. In contrast, the community model exhibited a longer 

tail toward overprediction, but its distribution was more balanced. This balance likely reflects the 

ability of community models to account for both environmental and biotic factors simultaneously, 

integrating information across species and environmental conditions simultaneously to minimize 

systematic bias (Ovaskainen et al. 2017; Warton et al. 2015a). 

To assess whether lake diversity, measured by species richness and Shannon’s index, influences 

biomass prediction, we compared the predictive errors across models. In the stacked model, the 

absence of a clear trend with species richness, coupled with a significant trend with Shannon’s 

Index, suggests that community evenness, rather than richness alone, affects predictive accuracy. 

Sites with lower richness but more uneven species distributions were often underpredicted, likely 

because to the dominance of a few species distorted the model's ability to generalize effectively 

(Hillebrand et al. 2008). 

In the community model, the weaker trend with Shannon’s Index and the reverse trend with species 

richness - where low-richness lakes were often overpredicted and high-richness lakes 

underpredicted – suggest that the model may perform better in more homogeneous communities 

with fewer or simpler species interactions (Ovaskainen et al. 2017). This reversal of trends with 

richness implies that the community model captures broader ecological dynamics, including 

interspecies interactions, which may be less prominent in lower-diversity ecosystems dominated 
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by only a few species (Warton et al. 2015a). Similar patterns have been observed in other studies 

comparing stacked species distribution models with joint models, where community-level 

approaches often excel at capturing complex ecological interactions (Ovaskainen & Abrego 2020). 

Both the stacked and community models revealed a clear latitudinal trend in the spatial smooths of 

predictive errors. These spatial patterns likely reflect the large latitudinal scale of the dataset, which 

introduces substantial variability in environmental conditions and species compositions across 

regions. It is important to note that the latent and environmental predictors included in the models 

did have clear spatial trends (see Chapter 3, Figures S3.3 and S3.4), meaning that the remaining 

spatial trends in error occur even after including highly spatially structured predictors. Northern 

lakes, typically characterized by lower species richness and biomass, are inherently more 

challenging to predict accurately, contributing to discrepancies between observed and predicted 

values (Villéger et al. 2017). Notably, the stacked model displayed regional spots of overprediction 

in both Eastern and Western Ontario. This may be due to the stacked model’s sensitivity to species-

level abundances, which can amplify errors when dominant species are mispredicted (Dormann et 

al. 2018). However, this sensitivity could also enable the model to capture variations in species 

interactions across the latitudinal gradient. Indeed, interactions such as competition and predation 

often shift along latitudinal gradients in response to changing environmental conditions and species 

richness (Schemske et al. 2009). This variation can significantly influence ecosystem dynamics, 

particularly in fish communities, where predation pressure and interspecific competition vary 

between northern and southern lakes (Garvey et al. 2003; Law 2022; Roesti et al. 2020). Such 

biotic interactions may introduce complexities that the community model does not fully capture. 

The low explained deviance of the spatial smoothers for predictive error in both models suggest 

that spatial gradients are not the primary drivers of predictive error. It is possible that unmeasured 
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key environmental drivers are influencing model performance (Ovaskainen et al. 2017). Although 

including latitude and longitude (or smooth terms) could help account for spatial autocorrelation – 

serving as proxy for unmeasured factors - the low explained deviance suggests that this adjustment 

would likely yield only marginal improvements in biomass predictions (Guisan et al. 2013). 

Finally, our investigation of the impact of aggregating predictions at different scales revealed that 

increasing the aggregation level (i.e., whether by watershed levels, nearest neighbors, or distance) 

consistently reduced prediction error for both the stacked and community models. This finding 

aligns with previous research, which shows that spatial aggregation improves prediction accuracy 

by smoothing out local variations and accounting for larger-scale ecological processes (Ay et al. 

2017; Chardon et al. 2016). As aggregation increases, local noise and fine-scale variability 

diminish, enabling the model to capture broader patterns that drive biomass predictions (Jackson 

& Fahrig 2015; de Knegt et al. 2010). Note however, that we averaged predictions across individual 

lakes and did not fit the models at the different aggregated levels, unlike the literature. When 

comparing the two models, the stacked model exhibited slightly more dispersed prediction errors 

and a tendency toward overprediction, consistent with research indicating that stacking species-

level predictions can introduce biases (Ovaskainen et al. 2010). In contrast, community models, 

which inherently accounts for species co-occurrence and shared environmental conditions, 

demonstrated more accurate predictions, as reflected in its narrower predictive error distribution 

(Clark et al. 2014; Pollock et al. 2014). The cumulative distribution function (ECDF) further 

supports this, showing that the stacked model reached a predictive error of 1 more rapidly, 

highlighting its bias toward overprediction. This bias likely arises from treating species 

independently, which can overlook the complex interactions among species within communities. 

To improve model performance, several studies suggest that aggregation approaches, such as 

watershed- or nearest-neighbor-based methods, are effective tools for ecological predictions by 
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accounting for spatial autocorrelation and expanding the spatial scope of predictions (Dormann et 

al. 2007; Ferrier et al. 2002; Jackson & Fahrig 2015; Wagner & Fortin 2005). These approaches 

help reduce local error by considering spatial relationships. However, further refinements - such as 

incorporating latent spatial predictors or using latitude and longitude as covariates - could enhance 

predictive accuracy (Ay et al. 2017). Additionally, by accounting for spatial autocorrelation, we 

could mitigate the observed biases across regions, particularly in regions where the models tend to 

over- or underpredict. 

In this study, we evaluated the performance of stacked and community models in predicting 

biomass across a range of lake ecosystems. Using composite environmental variables and presence-

absence data, we demonstrated that the community model consistently outperformed the stacked 

model, producing a narrower, and less skewed distribution of predictive errors. However, the 

community model exhibited sensitivity to species richness, tending to overpredict biomass in low-

richness sites and underpredict in high-richness ones. In contrast, the stacked model introduced 

biases into biomass predictions, likely driven by errors in predicting the abundances of dominant 

species, which disproportionately affect total biomass. For practitioners aiming to predict biomass, 

our results suggest that directly modelling biomass through community models could provide more 

robust predictions, especially in systems with balanced species compositions. However, due to 

potential dataset-specific dynamics, we recommend further validation across diverse ecosystems.  

Future research should also explore more refined modelling approaches that better account for the 

influence of dominant species in biomass predictions. Additionally, testing models across various 

ecosystems and incorporating dispersal dynamics could further improve these models. Evaluating 

the potential of hybrid approaches that combine elements of stacked and community models would 

also be valuable, as such methods could capture both species-specific contributions and broader 
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ecosystem dynamics, improving the robustness and applicability of biomass predictions in diverse 

ecological contexts. 

4.6. Supplementary Information 

Table SI 4.1: Table of environmental variables and their units grouped by categories (e.g., climate, 
productivity). See Sandstrom et al. (2011) for details on sampling methods. 
Category Environmental variable 

H
yd

ro
 m

or
ph

ol
og

y 

Area (km2) 
Maximum lake depth (m) 
Minimum lake depth (m) 
Numeric code indicating lake size 
Observed hypolimnetic area 
Observed hypolimnetic volume 
Observed thermocline depth (m) 
Perimeter lake (no islands, km) 
Proportion of lake area below 20m in depth 
Proportion of littoral (< 4.6m) 
Shoreline development factor 
Total shoreline of lake (perimeter and islands, km) 
Volume (m3) 

Fi
sh

in
g 

ac
tiv

iti
es

 Annual angling pressure based on aerial survey counts (angler-hours/ha-year) 
Conservation status (binary; 1 implies some form of conservation status) 
Fisheries management zone (categorical) 
Mean count of fishing boats in summer 
Mean count of ice huts in winter 
Mean count of open ice fishers in winter 
Mean count of shore fishers in summer 

Pr
od

uc
tiv

ity
 

Dissolved Inorganic Carbon (mg.L) 
Dissolved Organic Carbon (mg.L) 
Ratio of ammonia over ammonium (mg.L) 
Ratio of nitrate over nitrite (ug.L) 
Secchi depth of lake in spring (m) 
Total dissolved solids (mg.L) 
Total Kjeldahl nitrogen (ug.L) 
Total phosphorous (ug.L) 
Total phosphorus (ug.L) 
Trophic status index based on phosphorous 
True color (TCU) (see Moore et al. 1997 for details) 

C
lim

at
e Average date of the first day above 0°C (ordinal day) 

Average date of the last day above 0°C (ordinal day) 
Average rainfall from 1981-2010 (mm) 
Cumulative degree days where temperature was above 0°C 
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Category Environmental variable 
Cumulative degree days where temperature was below 0°C 
Degree days above 5°C from 1981-2010 
Maximum monthly air temperature (°C) 
Maximum surface temperature (°C) 
Maximum water temperature (°C) 
Mean annual air temperature for 1981 and 2010 (°C) 
Mean annual air temperature from 1981-2010 (°C) 
Minimum monthly air temperature (°C) 
Number of days where temperature was above 0°C 
Number of ice-free days 
Proportion of cold days (between 16 and 20°C) during ice free period 
Proportion of cold days (between 22 and 26°C) during ice free period 
Proportion of cold days (between 8 and 12°C) during ice free period 

W
at

er
sh

ed
 

ch
ar

ac
te

ris
tic

s Age of tertiary watershed 
Altitude above sea level (m) 
Elevation within tertiary watershed (max-min, m) 
Tertiary watershed area (km2) 
Tertiary watershed elevation (meters above sea level) 

W
at

er
 c

he
m

is
try

 

Alkalinity (mg.L.CaCO3) 
Calcium concentration (mg.L) 
Chloride concentration (mg.L) 
Conductivity (uS.cm.s) 
Iron 
Magnesium concentration (mg.L) 
pH 
Potassium concentration (mg.L) 
Silicate concentration (mg.L) 
Sodium concentration (mg.L) 
Sulphate concentration (mg.L) 
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Figure SI 4.1: Map of the 583 lakes surveyed in Ontario, Canada. Each point is color-coded to 
indicate community biomass (i.e., total weight of fish caught per unit effort (BPUE) for each lake). 
Black lines denote provincial boundaries within Canada. 
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Figure SI 4.2: Comparison of predicted versus observed biomass for the two models on the log10 
scale. The stacked model (top panel) predicts species abundance using composite environmental 
variables and community composition, multiplies the predicted abundance by the average species 
weight, and fits a second model to estimate community biomass by summing these values. The 
community model (bottom panel) directly predicts community biomass using composite 
environmental variables and species composition. The dashed line represents the 1:1 line, 
indicating perfect agreement between predicted and observed biomass. The blue line represents the 
trend across all lakes (i.e., linear regression between predictive and observed biomass).  
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Figure SI 4.3: Map and estimated spatial smooths of the prediction errors for the two models. The 
stacked model (left panel) predicts abundance and then estimates biomass, while the community 
model (right panel) directly predicts biomass from composite environmental variables and 
community composition. The predictive error is calculated as the log10 of predicted biomass over 
observed biomass. The maps show underprediction in blue and overprediction in red. The black 
lines represent the delimitations of the secondary watersheds. The spatial smooths show in blue, 
areas where lake biomass tend to be more underestimated and in red, areas where lake biomass 
tends to be more overestimated. 
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Figure SI 4.4: Histogram and Empirical Cumulative Distribution Function (ECDF) of predictive 
error across different aggregation levels and models using the nearest neighbor method. Predictive 
error is calculated as the ratio of predicted biomass to observed biomass and presented on a log10 
scale. Aggregation levels are shown on the vertical panel, with the lowest aggregated level at the 
top (lake level) and the most aggregated level (50 closest lakes to the focal lake) at the bottom. The 
stacked model (red) predicts species abundance and then estimates biomass, while the community 
model (blue) directly predicts biomass using composite environmental variables and species 
composition. The left panels show the density of predictive error, while the right panels display the 
ECDF of predictive error. The dashed line indicates a perfect prediction, where predicted biomass 
matches observed biomass.  
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Figure SI 4.5: Histogram and Empirical Cumulative Distribution Function (ECDF) of predictive 
error across different aggregation levels and models using the distance-based method. Predictive 
error is calculated as the ratio of predicted biomass to observed biomass and presented on a log10 
scale. Aggregation levels are shown on the vertical panel, with the lowest aggregated level at the 
top (lake level) and the most aggregated level (all lakes within a 100 km radius around the focal 
lake) at the bottom. The stacked model (red) predicts species abundance and then estimates 
biomass, while the community model (blue) directly predicts biomass using composite 
environmental variables and species composition. The left panels show the density of predictive 
error, while the right panels display the ECDF of predictive error. The dashed line indicates a 
perfect prediction, where predicted biomass matches observed biomass.  
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Chapter 5: Concluding remarks, assumptions, and future directions 

“I don't pretend to see the path, but I know it's there all 
the same. One day, we'll look back and wonder how we 
ever missed it.” 

Peter V. Brett, The Warded Man 

The overarching goal of this thesis was to improve predictive models of species abundance and 

biomass using community data and environmental proxies to contribute to more informed 

ecosystem management and conservation practices. The three chapters build upon each other, 

progressively expanding the scope of the models and their applications. Chapter 2 establishes the 

foundation by focusing on simulated data to refine single-species abundance models, exploring 

how different levels of information (true environmental drivers versus latent variables based on 

species co-occurrence) affect model accuracy. This simulation framework is essential for 

understanding the robustness of the models before their application to real-world data. Chapter 3 

extends this work by applying the developed framework to empirical data from lakes, focusing on 

sport fish species. It investigates the role of latent variables and different fish assemblages in 

improving abundance predictions and explores how lake-specific characteristics influence model 

performance. This real-world application allows for a deeper understanding of how the framework 

operates under natural conditions, particularly in aquatic ecosystems. Finally, Chapter 4 takes the 

abundance predictions from Chapter 3 and uses them to build a stacked model for predicting 

community biomass. It compares the effectiveness of the stacked model versus a community model 

in predicting biomass across varying spatial scales and species richness levels. By progressing from 

single-species models to multi-species and finally to biomass prediction, the chapters are 

sequentially linked, each addressing a broader ecological question while refining and testing the 

models at different levels of complexity. This cohesive approach enhances both the predictive 
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accuracy of species abundance and the practical applications of these models for ecosystem 

management. 

Throughout this thesis, we made the simplifying assumption that the ecosystem under study was 

static, i.e., that the environmental conditions, species interactions, and community structure 

remained constant over time. While this assumption facilitated model development and allowed us 

to focus on key relationships, it is well understood that ecosystems are inherently dynamic. Natural 

fluctuations (e.g., seasonal changes, variations in resource availability), anthropogenic influences 

(e.g., pollution, habitat degradation, climate change), and species interactions continuously reshape 

ecosystems (Levin 1998; Parmesan & Yohe 2003). Ecological dynamics influence species 

distribution, abundance, and community structure over time, which can affect predictive accuracy 

(Dormann et al. 2013; Grimm & Railsback 2013; Tilman 1994). While testing a framework on a 

static snapshot is crucial for identifying the model’s strengths and limitations in a controlled 

environment, it is equally important to incorporate temporal dynamics moving forward (Hastings 

2004). This consideration is particularly relevant in the context of climate change and 

anthropogenic impacts, where accounting for these dynamics will enhance the model’s 

applicability to real-world scenarios. Future research should explore the integration of temporal 

data that captures ecosystem changes over time.  

When simulating communities in Chapter 2, we had to make crucial decisions about which 

mechanisms driving species abundance to simulate. Given the computational complexities and the 

challenges involved in accurately simulating species interactions, we chose to focus solely on 

environmental selection. This approach allowed us to model species distributions based on 

environmental variables, but we acknowledge that this choice limits the applicability of our results 

to real-world scenarios. Environmental selection represents only one mechanism in the complex 
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processes governing species abundance, and as shown in Chapter 3, the results from these 

simulations might differ from empirical data, where species interactions play a significant role 

(Ovaskainen et al. 2010). This, however, does not mean that the framework is not useful; rather, it 

is that the conclusions of Chapter 2 had to be tested on an empirical dataset to understand the 

variations generated by other mechanisms driving species abundance. 

Another limitation in Chapter 2 is that the relationship between environmental variables and 

species abundance was modeled as linear for simplicity of interpretation. However, ecological 

systems often exhibit more complex, non-linear relationships. For example, quadratic or other 

curvilinear relationships between environmental gradients and species abundance are likely closer 

to reality, as species tend to respond to optimal conditions within a range, rather than continuously 

increasing or decreasing with changes in the environment (Dormann et al. 2013). Though we began 

exploring these non-linear relationships, these investigations were not integrated into the thesis, 

leaving an important venue for future research. Furthermore, the results in Chapter 3 revealed that 

while some divergence existed between the predicted patterns in Chapter 2 and empirical 

observations, the primary trends remained consistent, aligning with expectations based on 

theoretical models and prior research. 

In Chapter 3, we were able to show that latent variables did not always improve predictions, 

highlighting the complexity of modelling species abundance. This finding aligns with existing 

literature, where latent variables (often used to capture unmeasured environmental or biotic factors) 

have shown varying success in improving predictive accuracy depending on the context (Warton 

et al. 2015b). In our study, the results suggested that the influence of these latent variables is more 

pronounced in widespread species, while for rare or low-occurring species, environmental selection 

played a more critical role. This dichotomy between the predictors of species abundance based on 
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occurrence is supported by several ecological studies (Khattar et al. 2021; Magurran & Henderson 

2003). Rare species, often more specialized and sensitive to environmental changes, are primarily 

influenced by specific habitat features and environmental variables (Gaston 1994). Studies have 

shown that environmental heterogeneity can also drive the distribution of rare species, making 

them more vulnerable to environmental shifts (Chesson 2000; Tilman 1994). Conversely, abundant 

or widely distributed species are often more influenced by biotic interactions, such as competition 

and facilitation, which play a critical role in shaping community structure (Götzenberger et al. 

2012). Our results, which demonstrated that high-occurring species were more sensitive to species 

interactions (i.e., through being better predicted when including latent variables), are consistent 

with studies showing that the abundance of dominant species is often modulated by interspecific 

interactions, such as predation or competition, particularly in ecosystems with complex community 

dynamics (Kraft et al. 2015). 

While Chapter 3 primarily focused on patterns across lakes and our analyses considered species 

based on their occurrence and abundance, we did not investigate how species’ traits (e.g., ecological 

role, behavior, or life history) might affect community structure and species interactions. Looking 

through a functional lens, rather than a strictly taxonomic one, could reveal how trait redundancies 

or complementarity shape ecosystem dynamics and affect model predictions (Cadotte et al. 2011). 

For instance, species that share similar traits or ecological niches may introduce redundancies, 

minimizing their individual importance in structuring communities. Conversely, rare or 

functionally unique species could play disproportionately large roles, driving key ecosystem 

processes despite their low abundance (Mouillot et al. 2013). By not considering these functional 

traits in our current models, we may overlook key interpretations that could provide more nuanced 

insights into the patterns observed. 
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In Chapters 3 and 4, we chose to exclude species that were present in fewer than 10 and six sites, 

respectively, to facilitate faster and more reliable convergence of our models, particularly those 

incorporating latent variables. This approach is supported by research indicating that species with 

low occurrences can contribute disproportionate noise to models while providing minimal 

additional information beyond that more common species offer (Gauch 1982; McCune & Grace 

2002). However, the exclusion of rare species is not without controversy. Several studies suggest 

that rare species may serve as sensitive indicators of ecosystem stress or habitat degradation (Cao 

et al. 2001; Faith & Norris 1989), implying their potential value in ecological models. As such, the 

removal of these species remains a topic of debate in ecological modelling (Poos & Jackson 2012). 

While thresholds, like excluding species occurring in fewer than 5-10% of sites are commonly 

recommended (Marchant 1990; McCune & Grace 2002; McGarigal et al. 2000), our approach was 

more conservative, as we excluded species found in less than 1-2% of sites. This decision aligns 

with some recommendations, though there is evidence suggesting that even applying these 

thresholds can affect model outcomes, especially when it comes to rare species’ contributions (Poos 

& Jackson 2012). Future research could explore alternative approaches, such as weighting rare 

species differently rather than excluding them altogether. 

In Chapter 4, we adopted a “predict first, assemble later” strategy for aggregating species 

predictions (Ferrier et al. 2002). This approach, while common in predictive modelling, is just one 

of several possible aggregation strategies (e.g., joint modelling or hierarchical approaches, Ferrier 

& Guisan 2006; Overton et al. 2002). Given the structure of our dataset, particularly the fact that 

environmental variables were measured at individual lake sites, it was logistically challenging, if 

not impossible, to apply an alternative aggregation method that combined variables across multiple 

lakes. As a result, we did not explore or compare different strategies in this study. Nevertheless, the 
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choice of aggregation method could influence predictive accuracy, potentially affecting error rates 

(Ovaskainen et al. 2017; Royle & Dorazio 2008). Future studies could test alternative modelling 

strategies on datasets that allow for aggregation across larger spatial or temporal scales, which may 

provide further insight into error reduction (Ferrier & Guisan 2006). 

There are numerous metrics available to measure predictive error in ecological models (Fielding 

& Bell 1997; Piñeiro et al. 2008), each with strengths and limitations depending on the context and 

objective of the analysis (e.g., measuring out of sample error). Throughout the different chapters 

of this thesis, we adopted various metrics to better capture the patterns observed, shifting from True 

Skill Statistic (TSS) and Mean Absolute Percentage Error (MAPE) to log error. This transition was 

driven by the need for more nuanced approaches that could account for specific aspects of the 

predictions, such as separating over- and underprediction. For example, log error provided insights 

into relative error, allowing us to highlight the magnitude of prediction discrepancies, particularly 

for skewed distributions. The right choice of metric depends on several factors: the distribution of 

the data, the nature of the response variable, and whether the focus is on absolute or relative 

prediction accuracy (Willmott & Matsuura 2005). Each time, the selection of the metric was 

carefully considered, not only in relation to the model’s objectives and the nature of the data, but 

also with attention to the known biases and limitations inherent to each metric (Botchkarev 2019; 

Fielding & Bell 1997; Lobo et al. 2008). Choosing the appropriate error metric is crucial because 

it influences the interpretation of the results (Piñeiro et al. 2008). For instance, signed metrics can 

provide information about whether models systematically over- or underpredict, while unsigned 

metrics are often used to assess general accuracy without distinguishing directionality. Therefore, 

researchers should consider not only the mathematical properties of a metric but also how it aligns 

with their specific research questions and the ecological patterns they aim to capture. 
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In conclusion, this thesis advances a novel framework for predicting species abundance, evolving 

from single-species models based on simulations to multi-species models and community biomass 

prediction using empirical data. The flexibility of the framework was demonstrated, showing that 

it can be tailored to specific datasets and ecological contexts. Throughout this work, we identified 

several strengths, including the capacity of the community model to capture complex ecosystem 

processes, as well as some limitations, such as biases in species-rich and species-poor 

environments. These limitations, however, present opportunities for refinement, particularly 

through the inclusion of species traits, functional roles, and improved handling of species 

interactions. Given the framework’s adaptability, future research could expand on its potential for 

more robust applications in ecosystem management, offering critical insights into biodiversity 

monitoring and ecosystem productivity. The foundation laid here opens the door to further 

innovations in ecological modelling. 
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