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Abstract

Informative Machine Learning Model Explanation Techniques

Ningsheng Zhao, Ph.D.

Concordia University, 2025

Explainable AI (XAI) is an emerging field focused on providing human-interpretable

insights into complex and often black-box machine learning (ML) models. Shapley value

attribution (SVA) is an increasingly popular XAI method that quantifies the contribution

of each feature to a model’s behavior, which can be either an individual prediction (local

SVAs) or a performance metric (global SVAs). However, recent research has highlighted

several limitations in existing SVA methods, leading to biased or incorrect explanations

that fail to capture the true relationships between features and model behaviors. What’s

worse, these explanations are vulnerable to adversarial manipulation.

Additionally, global SVAs, while widely used in applied studies to gain insights into

underlying information systems, face challenges when applied to ML models trained on

imbalanced datasets, such as those used in fraud detection or disease prediction. In these

scenarios, global SVAs can yield misleading or unstable explanations.

This thesis aims to address these challenges and improve the reliability and informa-

tiveness of SVA explanations. It makes three key contributions: 1) Proposing a novel error

analysis framework that comprehensively examines the underlying sources of bias in exist-

ing SVA methods; 2) Introducing a series of refinement methods that significantly enhance

the informativeness of SVA explanations, as well as their robustness against adversarial

attacks; 3) Developing a standardization method for evaluating global model behaviors on

imbalanced datasets, advancing the development of an explainable model monitoring sys-

tem. Our experiments demonstrate that these methods substantially improve the ability of

SVAs to uncover informative patterns in model behaviors, making them valuable tools for

knowledge discovery, model debugging, and performance monitoring.
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Chapter 1

Introduction

1.1 Motivation

Machine learning (ML) and artificial intelligence (AI) are increasingly integrated into

our daily lives thanks to their powerful predictive performance. Because of their state-

of-the-art accuracy, both scientific and industrial researchers and practitioners increasingly

rely on them to handle intricate tasks. However, most ML models are black-box with com-

plex structures and numerous parameters, making it difficult for humans to understand why

certain predictions are made. For example, it can be difficult to understand the predic-

tion generated for a single patient’s diagnosis. While we usually prioritize how accurate

these models are, there are certain applications where it is crucial to know how they actually

work. Industries such as finance, healthcare, and criminal justice place a premium on model

transparency due to its potential to identify undesired dependencies, build trust among users

or organizations, and assess whether models operate like expert decision-makers.

To increase the transparency and trustworthiness of ML and AI, explainable AI (XAI)

arises as an emerging field that aims to explain ML models. An increasingly popular XAI

method is Shapley value attribution (SVA), which assigns importance scores to features

regarding model behaviors (I. Covert, Lundberg, & Lee, 2020; Lundberg & Lee, 2017).

1



The literature suggests that SVA methods can be true to the model and/or true to the data

(Chen, Covert, Lundberg, & Lee, 2023; Chen, Janizek, Lundberg, & Lee, 2020). SVA

methods that are true to the model aim to understand the model’s functional or algebraic

dependencies on features. However, standard supervised ML learning models typically do

not explicitly model dependencies between features (Janzing, Minorics, & BlÈobaum, 2020;

Watson, 2022). Moreover, in the presence of feature interdependence, a model can often

be written in different algebraic forms that perform identically (Frye et al., 2020). Hence,

even if an attribution is exactly true to the model, it still might not correctly represent the

intrinsic relationships between features and the model’s output. If knowledge discovery is

our objective, we want SVAs to be true to the data, representing the model’s informational

dependencies on features. SVA methods that are true to the data put less emphasis on

the particular model but more on the true underlying data-generating process (Chen et al.,

2020).

In this work, we focus on the study of SVAs that are true to the data. Since they

can explain ML models more informatively, we call them informative SVAs. In practice,

SVAs have been widely used to assist decision explaining and model debugging. Moreover,

researchers have recently begun applying SVAs to scientific discoveries. For example, SVA

techniques have been used to identify risk factors for diseases and mortality (Alatrany,

Khan, Hussain, Kolivand, & Al-Jumeily, 2024; Kırboğa & Kucuksille, 2023; Qiu et al.,

2022; Snider, Patel, & McBean, 2021); gain valuable new insights into genetic or molecular

processes (Janizek et al., 2021; Novakovsky, Dexter, Libbrecht, Wasserman, & Mostafavi,

2023; Yagin et al., 2023); and capture informative patterns for fraud detection (Psychoula

et al., 2021), etc.

2



1.2 Problem Statement

Error-prone challenge While SVAs provide promising directions to improve the under-

standing of underlying information systems, concerns remain about their accuracy. Specif-

ically, informative SVAs that are true to the data must be computed based on the true

underlying distributions of the data, which are typically unknown in practice. Thus, we

can only estimate these distributions using an observed dataset. However, the given dataset

is usually too sparse to capture the complex distributions of high-dimensional or many-

valued features, leading to significant estimation errors (Sundararajan & Najmi, 2020). To

address data sparsity, a number of approaches have been proposed (Aas, Jullum, & Lùland,

2021; Frye et al., 2020; Lundberg, Erion, & Lee, 2018; Mase, Owen, & Seiler, 2019).

Nevertheless, (Chen et al., 2023) and (Yeh, Lee, Liu, & Ravikumar, 2022) demonstrate

that all of these approaches suffer from some drawbacks that lead to undesirable errors.

Hence, in practice, instead of estimating the true distribution, most built-in SVA tools are

designed based on some distributional assumptions, such as feature independence assump-

tion. However, untenable assumptions may also result in incorrect attributions (Frye et al.,

2020), making SVAs vulnerable to model perturbation or adversarial attacks (Lin, Covert,

& Lee, 2024; Slack, Hilgard, Jia, Singh, & Lakkaraju, 2020). In this sense, most of the

existing SVA methods are unreliable and error-prone.

Data-imbalance challenge The informative SVA can be further categorized into local

SVA and global SVA. Local SVAs focus on interpreting individual predictions, while global

SVAs provide insights into the informative patterns across the entire dataset. Global SVAs

are promisingly powerful tools for knowledge discovery and model monitoring. When

conducting global SVAs, it is essential to choose a targeted performance metric, analyzing

how each feature affects it (I. C. Covert, Lundberg, & Lee, 2021). For example, I. Covert

et al. (2020) proposes a cross-entropy-based global SVA method to identify informative

3



factors, and detect feature corruptions. However, many machine learning models today

are deployed on imbalanced classification datasets, such as those used for fraud detection,

disease diagnosis, and risk identification. In such datasets, the distribution of classes is of-

ten skewed, ranging from slight biases to severe imbalances where the minority class may

represent only a fraction of the total examples. This class imbalance presents a significant

challenge for both model performance evaluation and explanation. On the one hand, tra-

ditional metrics like classification accuracy and cross-entropy tend to be less informative

or uninformative about the minority class, potentially leading to misleading SVA expla-

nations. On the other hand, confusion matrix-based metrics, such as f1 score, Matthews

Correlation Coefficient (MCC), lift, and Precision-Recall curves (PRC), are highly sensi-

tive to class imbalance. This sensitivity undermines their reliability as universal measures

for model evaluation and monitoring, particularly when classifying highly imbalanced data.

As a result, global SVAs based on these metrics may be unstable or unreliable explanations,

especially when diagnosing and explaining model performance drifts. Hence, so far in the

literature, few SVA methods have been proposed to understand features’ impacts on those

commonly used performance metrics.

1.3 Contributions and Thesis Outline

This thesis aims to address the aforementioned challenges in applying SVA methods

for generating informative explanations in machine learning models. We will begin by

establishing the necessary notations, concepts, and preliminaries in Chapter 2. In Chapter 3

and 4, we will focus on analyzing the sources of errors in SVA explanations and proposing

solutions to refine these explanations. In Chapter 5, we will tackle the challenge of data

imbalance in global SVA explanations, presenting some novel approaches to make SVAs

more robust in such scenarios. Finally, the thesis will conclude with a summary of our

contributions and potential avenues for future research. The core contributions of this work
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are presented in Chapter 3, 4, and 5.

In Chapter 3, we propose a novel error theoretical analysis framework, in which the ex-

planation errors of SVAs are decomposed into two components: observation bias and struc-

tural bias. We further clarify the underlying causes of these two biases and demonstrate

that there is a trade-off between them. Based on this error analysis framework, we develop

two novel concepts: over-informative and under-informative explanations. We demonstrate

how these concepts can be effectively used to understand potential errors of existing SVA

methods. In particular, we find that the widely deployed assumption-based SVAs can easily

be under-informative due to the distribution drift caused by distributional assumptions. We

propose a measurement tool to quantify such a distribution drift. Finally, our experiments

illustrate how different existing SVA methods can be over- or under-informative.

In Chapter 4, we propose a series of refinement methods that combine out-of-distribution

(OOD) detection and importance sampling techniques to alleviate the SVA biases discussed

in Chapter 3. In essence, these methods aim to correct the distribution drift caused by dis-

tributional assumptions that are made to reduce data complexity. We apply our refinement

methods to two widely-used SVAs: the marginal SVA and the surrogate model-based SVA.

Our extensive experiments show that the proposed methods can not only achieve a signifi-

cantly better balance between observational and structural biases but also protect the SVA

explanations from adversarial attacks, thereby greatly enhancing the informativeness and

reliability of both local and global SVA explanations.

In Chapter 5, we propose a standardization method for confusion matrix-based perfor-

mance metrics called the outperformance score (OPS) function. Based on this function,

we further propose a standardized global SVA method, OPS-SAGE. The OPS function is

universal in the sense that it standardizes any given performance metric to a consistent

range of [0, 1] and provides a uniform interpretation. Essentially, the OPS function cal-

culates the probability that the observed classification performance outperforms a random

5



performance given the class imbalance rate, while the OPS-SAGE attributes this probabil-

ity to individual features. Both the OPS and OPS-SAGE are comparable across various

performance metrics and test sets with differing imbalance rates. Our experiments on real

datasets demonstrate the utility of our proposed methods, showing that the resulting model

performance and feature importance scores remain robust to class imbalance rates.

1.4 Publications and Papers

There are five first-author papers related to this thesis. Three of them have already been

published, while the remaining two are at different stages: one is ready for submission, and

the other is still in preparation for submission, as detailed below.

• Ningsheng Zhao, Jia Yuan Yu, Trang Bui, and Krzysztof Dzieciolowski. A Transpar-

ent and Explainable Machine Learning Model Monitoring System. In preparation

for submission.

• Ningsheng Zhao, Trang Bui, Jia Yuan Yu, and Krzysztof Dzieciolowski. Outperfor-

mance Score: A Universal Standardization for Confusion-Matrix Based Classifica-

tion Performance Metrics. Ready for submission with available manuscript.

• Ningsheng Zhao, Jia Yuan Yu, Trang Bui, and Krzysztof Dzieciolowski. Correcting

Biases of Shapley Value Attributions for Informative Machine Learning Model Ex-

planations. In ACM International Conference on Information and Knowledge Man-

agement, CIKM, 2024.

• Ningsheng Zhao, Jia Yuan Yu, Krzysztof Dzieciolowski, and Trang Bui. Error Anal-

ysis of Shapley Value-Based Model Explanations: An Informative Perspective. In AI

Verification (SAIV 2024). Lecture Notes in Computer Science, vol 14846. Springer,

Cham.
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• Ningsheng Zhao, Jia Yuan Yu, and Krzysztof Dzieciolowski. Classifier Rank - A

New Classification Assessment Method. In Proceedings of IADIS International Con-

ference Big Data Analytics, Data Mining and Computational Intelligence, 2022.
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Chapter 2

Background

2.1 Notation for Data and Models

We seek to explain an ML model, denoted by f : X → Y , which takes an instance

x = (x1, . . . , xd) of d features, from the domain set X = (X1, . . . ,Xd), as input and

outputs predictions for a target variable Y ∈ Y ⊆ R (for classification, we typically focus

on the predicted probability of a given class). In this paper, we use uppercase symbols

X , Y to denote random variables, and lowercase symbols x, y to denote specific values.

Furthermore, we use the notation XS to refer to a sub-vector of X containing features in

the subset S ⊆ [d] ≡ {1, . . . , d}, and XS̄ to refer to its complementary sub-vector, which

contains features from S̄ = [d]\S. We assume that X and Y follow an unknown distribution

p(X, Y ). Instead of the true distribution, we are provided with a dataset Dp(X, Y ) =

{(x(n), y(n))}Nn=1 of N samples observed from p(X, Y ). This can be a training or testing set.

Similarly, we useDp(XS, Y ) to denote the portion ofDp(X, Y ) containing only features in

the subset S, and Dp(X, Y |XS = xS) to denote the portion containing samples that satisfy

XS = xS . Thus, sub-dataset Dp(XS, Y ) is drawn from p(XS, Y ) and Dp(X, Y |XS = xS)

is drawn from p(X, Y |XS = xS).
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2.2 What is Model Explanation?

So far, there is no unified mathematical definition of understandability, interpretability,

explainablility, and explanation. However, it is convenient to address the confusion about

the distinction between these terms first. I prefer to summarize their definitions, based on

literature (Arrieta et al., 2019) and (Miller, 2019), as the following:

• Understandability denotes the characteristic of a model to make a human under-

stand its function without any need for explaining its internal structure or the algo-

rithm means by which the model processes data internally (Arrieta et al., 2019).

• Interpretability is defined as a passive characteristic of a model referring to the

degree to which a human observer can understand the cause of a decision (Arrieta et

al., 2019; Miller, 2019). It is usually considered as two aspects:

◦ Intrinsic interpretability refers to models that are considered interpretable due

to their simple structure, such as decision trees and linear models.

◦ Post hoc interpretability refers to the application of post hoc explanation

methods after model training.

• Explanation is one mode in which an observer may obtain understanding, but clearly,

there are additional modes that one can adopt, such as making decisions that are in-

herently easier to understand or via introspection (Miller, 2019).

◦ Local explanations provide insights into individual predictions.

◦ Global explanations provide insight into model performance across the entire

dataset.

• Explainablility can be viewed as an active characteristic of a model, denoting any

action or procedure taken by the model to clarify or detail its internal functions (Ar-

rieta et al., 2019). However, in (Miller, 2019), the author equates ‘interpretability’
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with ‘explainability’.

In a word, we seek to find explanation methods to increase the interpretability or ex-

plainability of a complex model so that a human observer can easily understand its output.

2.3 Feature Attribution

There are many possible ways to explain ML models, such as counterfactuals, exem-

plars, surrogate models, etc., but one extremely popular approach is feature attributions.

Feature attributions explain the ML model f by quantifying each feature’s contribution to

a specific model output, which can be denoted by a vector ϕ = (ϕi, . . . , ϕd), where each

ϕi is called the attribution score or importance score of feature i. The model output could

be either an individual prediction f(x) for a specific sample x, or a performance metric

M(f,Dp(X, Y )) evaluated across the entire datasetDp(X, Y ). In the former case, we term

ϕ as local feature attribution, whereas in the latter case, ϕ is referred to as global feature

attribution. For the example of linear models of form f(x) = β0 + β1x1 + . . . + βdxd,

each coefficient βi can be viewed as a global feature attribution, while βixi is a reasonable

local feature attribution on the given explicand. Hence, linear models are often considered

interpretable because each feature is linearly related to the prediction via a single parameter.

Linear models offer a straightforward case for understanding the role of each feature

by examining the model parameters. In such models, the coefficients directly indicate

the influence of each feature on the prediction, providing a clear, interpretable relationship.

However, this approach does not extend easily to more complex model types, such as neural

networks, or tree-ensemble models. These models involve a large number of operations

and interactions between features, making it difficult to interpret feature roles solely based

on their parameters. To address this challenge, many researchers have turned to Shapley

value explanations to summarize feature attributions for more complex models. To design
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Shapley value explanation algorithms, we can adopt the removal-based framework.

2.4 Removal-Based Framework

Many methods have been proposed to assign feature attributions, and almost all of

them can be unified into the removal-based framework (I. C. Covert et al., 2021). This

framework takes the idea that, to understand a feature’s importance, remove it and see how

the prediction changes. It includes three choices:

(1) (Feature removal) How does the method remove features from the model?

(2) (Model behavior) What model behavior does the method analyze?

(3) (Summary technique) How does the method summarize each feature’s impact on the

model?

2.4.1 Feature Removal

The principle behind removal-based explanations is to remove certain features to un-

derstand their impact on a model. However, a machine learning model requires all the

input features to make predictions. Hence, each method requires a removal function of the

form fS : Rd × 2d → R to make predictions given an arbitrary subset of features. The

removal function should agree with the original model f in the presence of all features, i.e.,

f|d|(x|d|) = f(x). The following are some examples:

• (Marginalize with conditional) Remove features by marginalizing them out using

their conditional distribution p(XS̄ | XS = xS):

fS(xS) = E[f(X) | XS = xS]. (1)

However, in practice, this approach is computationally challenging.
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• (Marginalize with marginal) Remove features by marginalizing them out using their

joint marginal distribution p(XS̄):

fS(xS) = EXS̄
[f(xs, XS̄)]. (2)

Here, we assume that the features X1, . . . , Xd are independent.

• (Mean values) Remove features by setting them to their mean values:

fS(xS) = f(xS,E[XS̄]). (3)

Here, we add an additional assumption of model linearity.

• (Zeros) Remove features by simply setting them to zeros:

fS(xS) = f(xS, 0). (4)

2.4.2 Model Behavior

To generate explanations, we have to determine which model behavior to be explained.

Typically, there are two types of model behaviors:

• Local model behaviors related to individual predictions.

• Global model behaviors related to model performance on the entire dataset.

The model behavior can be quantified by a value function of the form v : 2d 7→ R, which

generates an output based on each subset of features S ⊆ |d|. The value function v is

associated with the selected removal function fS . The following are some examples:

Examples of local model behaviors:
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• (Prediction) Analyze how holding out different features chances a model’s prediction

for an individual input x:

vx(S) = fS(xS). (5)

For classification models, we can also use the log-odds ratio of the predicted proba-

bility.

• (Local loss) Consider the prediction loss, using a loss function L, for an individual

input x:

vxy(S) = −L(fS(xS), y). (6)

Those methods that choose this model behavior try to examine whether certain fea-

tures make the prediction more or less correct.

Examples of global model behaviors:

• (Global loss) Consider the expected loss across the whole dataset:

vXY (S) = −EXY [L(fS(XS), Y )] , (7)

such as MSE and cross-entropy.

• (Other performance metrics) In imbalanced classification like risk identification, in-

stead of prediction loss, confusion-matrix-based performance metrics are preferred:

vXY (S) = M(fS,Dp(XS, Y )), (8)

such as f1 score, MCC, lift, average precision. Those methods that choose these

global model behaviors aim to understand how much the model’s performance de-

grades when certain features are withheld.
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2.4.3 Summarizing Feature Attribution

The attribution score ϕi can be understood as each feature’s contribution to the model

behavior v(S). However, there are total 2d feature subsets S, plus all possible underlying

feature interactions. We have too much information, but how to summarize them into a

vector of d feature attributions ϕ = (ϕ1, . . . , ϕd)? The following are some commonly used

summarization techniques:

• (Exclude individual) Calculate the feature attribution by excluding individual fea-

tures from the full set of features, i.e.,

ϕi = v(|d|)− v(|d| \ {i}). (9)

• (Include individual) Calculate the feature attribution by adding individual features to

the empty set, i.e.,

ϕi = v({i})− v(∅). (10)

• (Linear model) Fit a weighted linear model as a proxy for the value function v. Then,

the feature attributions can be summarized using the learned coefficients:

ϕ1, . . . , ϕd = argminβ0,...,βd

∑

S⊆D
Π(S)

(
β0 +

∑

i∈S
βi − v(S)

)2

, (11)

where Π is the weighting kernel. This method is also known as Local Interpretable

Model-agnostic Explanations (LIME) (Ribeiro, Singh, & Guestrin, 2016).

• (Shapley values) Consider the model behavior as a cooperative game, then calculate

the feature attributions using the Shapley values, see more details in the following

section.
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2.5 Cooperative Game and Shapley Value Attribution

2.5.1 Cooperative Game and Model Explanation

A cooperative game (Shapley, 1953) is a set function of the form v : P([d]) 7→ R,

describing the payoff achieved when a coalition of players S ⊆ [d] participate in the game.

Cooperative game theory research focuses on analyzing how payoffs can be distributed

among players to incentivize their participation in the game, and predicting which coali-

tions will ultimately form. Cooperative game theory becomes increasingly important in

model explanation problems because almost all the model behaviors (as discussed in Sec-

tion 2.4.2) can be framed in terms of cooperative games. With this framework, the players

are the model’s features; the coalitions are subsets of those features; the payoff v(S) cor-

responds to the model’s output when using a coalition of features S; and the allocation

of payoffs is the feature attribution that fairly reflects each feature’s importance in model

outputs. Specifically, the terminology in the scenario of a cooperative game is introduced

as:

• Players: In model explanation, the features [d] = {1, . . . , d} act as the players in the

cooperative game.

• Coalitions: Subsets of features S represent coalitions.

• Payoff : The payoff of a coalition is represented by the model’s output v(S) when

only features in subset S ⊆ [d] are considered.

• Marginal Contribution: a player i’s marginal contribution to a coalition S ∈ [d]\{i}

can be defined as the difference in the model’s output when feature i is added to the

coalition S, i.e., v(S
⋃{i})− v(S). This measures how much value the feature adds

to the coalition.
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• Allocations: An allocation ϕ ∈ R
d that assigns payoffs to each player is treated as

feature attribution.

Under the removal-based framework discussed in Section 2.4, if a model behavior is viewed

as a cooperative game, then each summarization technique can be understood in terms of

allocation strategies for this game.

2.5.2 Shapley Value Attribution (SVA)

To be fair, allocation strategies must be designed based on each player’s contribution

to the game. The Shapley value (Shapley, 1953) is such a kind of fair allocation that

calculates the average marginal contribution, v(S ∪ {i}) − v(S), of player i across all

possible coalitions S that excludes i. They have been recently utilized to summarize each

feature’s contribution in model outputs (I. Covert et al., 2020; Lundberg & Lee, 2017).

Specifically, using Shapley values, each feature i’s importance score can be calculated as

ϕi(v) =
∑

S⊆[d]\{i}
π(S) (v(S ∪ {i})− v(S)) , where π(S) =

|S|!(d− |S| − 1)!

d!
. (12)

With this formula, the feature attribution ϕ(v) = (ϕ1(v), . . . , ϕd(v)) is referred to as the

Shapley value attribution (SVA).

As discussed in Section 2.4, the SVA method can be characterized under the removal-

based framework. Specifically, to design an SVA algorithm (also called a Shapley value

explainer), we need to specify two components:

• A removal function (RF) fS(xS) that can make predictions based on a sub-vector

of input xS instead of the full input vector x.

• A value function vfS(S) associated with the selected RF fS . For example, for local

SVAs, we specify the value function as vfS(S) = fS(xS), while for global SVAs, the
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value function can be designed as vfS(S) = M(fS,Dp(XS, Y )) (see more discus-

sions in (I. C. Covert et al., 2021)).

Example 1 (Local SVA). We consider a 3-dimensional case where we have an ML model f

that makes predictions based on three input features X = (X1, X2, X3). We aim to design

an SVA algorithm to assign importance scores (ϕ1, ϕ2, ϕ3) to all three features to represent

their impacts on an individual prediction f(x1, x2, x3). First, for each S ∈ P({1, 2, 3}) =

{∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}, we specify the RF as fS(xS) = f(xS, 0).

In other words, we remove features by setting their values as 0. Then, for the local SVA,

the value function v(S) = f(xS, 0) as well. Finally, the importance scores ϕ1, ϕ2, ϕ3 can

be computed as

ϕ1 =
1

3
[f(x1, 0, 0)− f(0, 0, 0))] +

1

6
[f(x1, x2, 0)− f(0, x2, 0)]+

1

6
[f(x1, 0, x3)− f(0, 0, x3)] +

1

3
[f(x1, x2, x3)− f(0, x2, x3)]

ϕ2 =
1

3
[f(0, x2, 0)− f(0, 0, 0)] +

1

6
[f(x1, x2, 0)− f(x1, 0, 0)]+

1

6
[f(0, x2, x3)− f(0, 0, x3)] +

1

3
[f(x1, x2, x3)− f(x1, 0, x3)]

ϕ3 =
1

3
[f(0, 0, x3)− f(0, 0, 0)] +

1

6
[f(x1, 0, x3)− f(x1, 0, 0)]+

1

6
[f(0, x2, x3)− f(0, x2, 0)] +

1

3
[f(x1, x2, x3)− f(x1, x2, 0)].

2.5.3 The Properties of SVAs

Fairness Axioms

Research in game theory (Hart, 1989; Roth, 1988) has proved that, based on a set of

fairness axioms, Shapley values are the unique allocation of the total payoff v([d]) obtained
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by the grand coalition [d]. Specifically, for a cooperative game v, the Shapley values are

the unique credit allocation scheme that satisfies the following desirable properties:

(1) Efficiency:
∑d

i=1 ϕi(v) = v([d])− v(∅).

(2) Symmetry: if v(S ∪ {i}) = v(S ∪ {j}) for all S ∈ [d] \ {i, j}, then ϕi(v) = ϕj(v).

(3) Dummy: if v(S) = v(S ∪ {i}) for all S ∈ [d] \ {i}, then ϕi(v) = 0.

(4) Monotonicity: if v(S ∪ {i})− v(S) ≥ v′(S ∪ {i})− v′(S) for all S ∈ [d] \ {i}, then

ϕi(v) ≥ ϕi(v
′).

(5) Linearity: if v(S) =
∑n

k=1 ckvk(S), then for each player i, ϕi(v) =
∑n

k=1 ckϕi(vk).

Weighted Least Square Characterization

As discussed in section 2.4.3, each feature’s contribution can also be summarized by

solving a weighted least square problem in Equation (11), where a linear additive model of

the form

g(S) = β0 +
∑

i∈S
βi (13)

is fitted as a proxy for the cooperative game, i.e., g(S) ≈ v(S). Different selections of

weighting kernel Π in Equation (11) may lead to different solutions of optimal coefficients

(β∗
1 , . . . , β

∗
d). However, surprisingly, it has been proved by Lundberg and Lee (2017) that

Shapley values are the only solution when the weighting kernel is defined as

Π(S) =
d− 1(

d
|S|
)
|S|(d− |S|)

. (14)

It is important to note that Π(∅) = Π([d]) =∞, which enforces constraints β0 = v(∅), and

∑d
i=1 βi = v([d])− v(∅).

For simplicity, we denote the non-intercept coefficients as β = (β1, . . . , βd) ∈ R
d, and

denote each subset using the corresponding binary vector z ∈ {0, 1}d so that v(z) ≡ v(S)
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and Π(z) ≡ Π(S) for S = {i : zi = 1}. We then define a random variable Z with

distribution p(z) ∝ Π(z) when 0 < 1
T z < d and p(z) = 0 otherwise. With this, we can

write that the Shapley values can be calculated by solving the optimization problem

argminβ EZ
[
v(0) + ZTβ − v(Z))

]2

s.t. 1
Tβ = v(1)− v(0).

(15)

However, to solve this problem, we must take into account all 2d coalitions. Hence, it is

hard to calculate the exact Shapley values with the high-dimension d. In Appendix A, some

popular estimation approaches are introduced to solve this problem.
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Chapter 3

Error Analysis of SVA Explanations: An

Informative Perspective

3.1 Introduction

Generally speaking, when explaining something, we draw upon our observations and

existing knowledge structures. This concept also applies to model explainers. The dataset

Dp(X), such as the training or testing sets, serves as the observations, and the chosen re-

moval function fS mentioned in section 2.5.2 acts as the knowledge structure. However,

both of them could be biased. Specifically, Dp(X) is usually too sparse to represent com-

plex distributions (Chen et al., 2023; Sundararajan & Najmi, 2020), and estimating fS for

all possible subsets S is NP-hard (Aas et al., 2021). Due to these two reasons, almost all

existing SVA algorithms are error-prone and possibly computationally expensive, leading

to incorrect explanations (see discussion in Chen et al. (2023)). To gain better insights into

this problem, in this chapter, we establish a unified error analysis framework for SVAs.

Under the proposed error analysis framework, all explanation errors can be decom-

posed into two components: observation bias and structural bias. We analyze that ob-

servation bias arises due to the data sparsity, while structural bias results from unrealistic
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structural assumptions. We further demonstrate the trade-off between observation bias and

structural bias. Based on this trade-off, we propose two novel concepts to describe SVAs:

over-informativeness (with large observation bias) and under-informativeness (with large

structural bias). Using our proposed error analysis framework, we theoretically analyze the

potential over- and under-informativeness of various existing SVA methods. Furthermore,

for the widely deployed distributional assumption-based SVA methods, we provide a math-

ematical analysis that shows how these methods can cause distribution drifts and produce

under-informative explanations. To evaluate this risk, we propose a measurement tool to

quantify the distribution drift.

We verify our theoretical error analyses on the Bike Sharing dataset (Fanaee-T, 2013)

and the Census Income dataset (Becker & Kohavi, 1996). The experimental results con-

firm our theoretical analysis that SVA methods that rely on structural assumptions tend

to be under-informative, while excessive data smoothing methods can be sensitive to data

sparsity, especially in low-density regions. This highlights the applicability of our error

analysis framework, which can discern potential errors in many existing and future feature

attribution methods.

Related work We provide a comprehensive analysis of potential explanation errors of

SVA methods, while related works discussing SVA errors are primarily method-specific

and example-based (Aas et al., 2021; Frye et al., 2020; Mase et al., 2019; Slack et al.,

2020; Sundararajan & Najmi, 2020; Yeh et al., 2022). There has not been a comprehensive

theoretical analysis of the errors of SVAs. Furthermore, here we focus on the problems

of SVA methods for discovering the informational dependencies between features and the

target, while others consider causal relationships (Janzing et al., 2020; Taufiq, BlÈobaum, &

Minorics, 2023) or the conceptual inadequacies of Shapley values for explanations (Huang

& Marques-Silva, 2023; I. Kumar, Scheidegger, Venkatasubramanian, & Friedler, 2021;

I. E. Kumar, Venkatasubramanian, Scheidegger, & Friedler, 2020).
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As shown in Equation (16), to compute the CRF fS , we need to know the conditional

distribution p(XS̄|XS = xS). However, it is typically unavailable in practice because the

true underlying distribution p(X) is unknown. Therefore, we can only estimate fS(xS)

using the given dataset Dp(X) (which we call the explaining set), such as the training set

or testing set. Hence, the core objective of this study is to estimate the CRF fS(xS) for

any arbitrary subset S given access to an ML model f and an explaining set Dp(X).

There are two main challenges associated with this estimation task:

NP-hard It is evident that the complete computation of SVA in Equation (12) requires

the estimation of fS for all possible S ∈ P([d]) except f∅ and f[d]. f∅ is a constant, and

f[d] = f . In the context of lower dimensions, such as the case when d = 3, it entails only

23 − 2 = 6 function estimations: f{1}, f{2}, f{3}, f{1,2}, f{1,3} and f{2,3}. As proposed by

works (Lipovetsky & Conklin, 2001; Štrumbelj, Kononenko, & Šikonja, 2009), a straight-

forward way is to train six separate models on their corresponding sub-dataset Dp(X1, Y ),

Dp(X2, Y ), Dp(X3, Y ), Dp(X1, X2, Y ), Dp(X1, X3, Y ) and Dp(X2, X3, Y ), respectively.

However, the number of required models grows exponentially with dimension d, leading to

a significant computational challenge. For instance, when d = 20, it is impractical to train

220 − 2 = 1048574 models, especially for complex ML models like neural networks and

tree ensemble models. Therefore, it is imperative to design a scalable estimation algorithm.

Data Sparsity In essence, for each fS(xS), we need to estimate the conditional distribu-

tion p(XS̄|XS = xS) using the explaining set Dp(X). For example, fS(xS) can be empir-

ically estimated from samples in the explaining set that match the condition XS = xS , as

follows:

fS(xS) ≈ Ex(n)∼Dp(X|XS=xS)
f(x(n)) =

1
∑N

n=1 1(x
(n)
S = xS)

N∑

n=1

f(x(n))1(x
(n)
S = xS).

(17)
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However, in the explaining set, there could be very few or even no samples that match the

condition XS = xS . In other words, the number
∑N

n=1 1(x
(n)
S = xS) could be too low or

even 0. This problem usually happens in problems that involve high-dimensional or many-

valued features (Chen et al., 2023; Sundararajan & Najmi, 2020). For example, within

a ºbank datasetº, it is unlikely to find any individual that exactly satisfies the condition:

ºcredit score = 3.879, income = $112, 643º.

3.3 The Estimation of CRF

While training separate models and empirical estimation are often impractical due to

the above two challenges, various popular scalable methodologies have been proposed in

recent research to estimate the CRF fS (see discussion in I. C. Covert et al. (2021)). These

methodologies can be categorized into two main approaches: smoothing the data and mak-

ing distributional assumptions.

3.3.1 Data-Smoothing Approaches

To address the challenge of data sparsity, data-smoothing approaches focus on approx-

imating the conditional expectation E[f(X)|XS = xS] by smoothing the provided explain-

ing set Dp(X) = {x(n)}Nn=1. The underlying rationale is the assumption that samples in the

explaining set with feature sub-vectors x
(n)
S similar to the target value xS provide informa-

tive insights into the conditional expectation E[f(X)|XS = xS]. Essentially, Smoothing

relaxes the strict condition that exactly matches XS = xS . The explaining set can typ-

ically be smoothed using two popular ways: non-parametric kernel-based approaches or

parametric model-based approaches.
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Kernel-Based Non-Parametric Estimation

In section 3.2, we discuss that strict empirical estimation may be susceptible to data

sparsity. To alleviate this, some relaxed empirical methods make the estimation using sam-

ples with similar feature values XS ≈ xS , rather than exact match XS = xS . Hence, a

similarity weight is assigned to each sample x(n) in the explaining set using a predefined

kernel function κ(n)(xS). The CRF fS can then be approximated by the weighted average

of the model predictions, as follows:

fS(xS) ≈
1∑N

n=1 κ
(n)(xS)

N∑

n=1

κ(n)(xS)f(x
(n)). (18)

For instance, the cohort kernel (Mase et al., 2019) and Gaussian kernel (Aas et al., 2021)

have been proposed as the similarity weight.

• With the cohort kernel, the similarity weight is defined as

κ(n)(xS) =
∏

i∈S
1(|x(n)

i − xi| ≤ σi) =





1, if |x(n)
i − xi| ≤ σi, ∀i ∈ S

0, otherwise.

(19)

For each feature i ∈ S, the condition Xi = xi is relaxed into |Xi − xi| ≤ σi with

a selected bandwidth σi controlling the smoothness. For example, rather than us-

ing samples that exactly match ºincome = $112, 643º, we use samples that satisfy

º|income− $112, 643| ≤ $5000º.

• With the Gaussian kernel, the similarity weight is defined as

κ(n)(xS) = exp

(
−D(xS, x

(n)
S )2

2σ2

)
, (20)

where D(·) represents a distance function and σ is the selected bandwidth. Notably,
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the Gaussian kernel is a soft version of the cohort kernel.

Model-based parametric estimation

We can also use a parametric model to learn the valuable information provided by an

arbitrary conditioned value XS = xS . The model could be the original model f if it has

a tree structure, or a new model trained with the Empirical Risk Minimization (ERM)

principle (Shalev-Shwartz & Ben-David, 2014) on the explaining set Dp(X).

• (Conditional Generative Model) Since only using samples from the explaining set

Dp(X) may suffer from the data sparsity, recent researches (Belghazi, Oquab, &

Lopez-Paz, 2019; Frye et al., 2020) proposed drawing samples from a conditional

generative model. For instance, Frye et al, (Frye et al., 2020) introduce a masked

variational autoencoder(MVA) model, comprising three integral components: an en-

coder qξ(Z|X), a decoder pθ(X|Z), and a masked encoder eψ(Z|XS) that maps an

arbitrary sub-vector XS to the latent space that agrees with the encoder qξ(Z|X) as

well as possible. Consequently, the CRF fS can be approximated as

fS(xS) ≈
∫

Epθ(X|Z=z)[f(X)]eψ(Z = z|XS = xS)dz. (21)

Via the MVA model, the expected model prediction is estimated conditionally on the

latent variable Z = z inferred from the information XS = xS , rather than being

directly conditioned on it.

• (Surrogate Model) Alternatively, Frye et al, (Frye et al., 2020) proposed the adoption

of a supervised surrogate model hθ(xS) for the direct estimation of the CRF fS(xS).

The surrogate model is a neural network trained to match the original model’s pre-

dictions, with masked features represented by zeros. The parameter set θ can be
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estimated by minimizing the empirical MSE loss function:

θ̂ = argminθ Ex∼Dp(X)ES∼Shapley[hθ(xS)− f(x)]2. (22)

It has been demonstrated that both the MVA model and the surrogate model offer the

same flexibility across diverse distributions, but the surrogate model may be more

effective in practice (Chen et al., 2023; Frye et al., 2020). However, it is worth noting

that the complete training process for both models demands an exponential number

of samples, rendering them susceptible to the curse of dimensionality.

• (Tree-Structured Model) TreeSHAP (Lundberg et al., 2020) is a specific SVA for

tree-structured models. TreeSHAP roughly approximates the conditional expectation

E[f(X)|XS = xS] by averaging the predictions from all possible leaves that are

not against the condition XS = xS , weighted by the proportion of the explaining

set Dp(X) falling in those leaves. Essentially, this procedure relaxes the condition

XS = xS into a set of branches induced by the conditioned value. For instance,

considering a stump with only two edges ºX1 < 10º and ºX1 ≥ 10º, we approximate

E[f(X)|X1 = 8] ≈ E[f(X)|X1 < 10].

3.3.2 Distributional Assumptions-Based Approaches

Data-smoothing methods usually leverage samples drawn from the true underlying dis-

tribution p(X) but with relaxed conditions. Conversely, distributional assumptions-based

approaches focus on samples that strictly adhere to the condition XS = xS but from an

assumed distribution q(XS̄|XS = xS). This assumed distribution is a rough approximation

of the true conditional distribution p(XS̄|XS = xS) based on certain robust assumptions.

Once q(XS̄|XS = xS) is defined, fS(xS) can be empirically approximated through samples
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drawn from it, as follows:

fS(xS) ≈ Ex′
S̄
∼q(XS̄ |XS=xS)[f(xS, x

′
S̄)]. (23)

Here, (xS, x
′
S̄
) represents a hybrid sample where the removed features in S̄ take replace-

ment values sampled from the assumed distribution q(XS̄|XS = xS).

Baseline RF with Constant Assumption

The simplest way to remove features in subset S̄ is to replace their values with a fixed

baseline xb, i.e., we let XS̄ = xb
S̄

(Chen et al., 2023; Sundararajan & Najmi, 2020). This

essentially assumes that the missing features are constant values, rather than random vari-

ables following a complex conditional distribution. Formally, we define the assumed re-

moval distribution q(XS̄|XS = xS) = 1(XS̄ = xb
S̄
), and then the approximation formula

for fS in Equation (23) simplifies to:

fS(xS) ≈ f(xS, x
b
S̄). (24)

This is also called the baseline RF. While the constant assumption might be overly re-

strictive, it greatly streamlines the computational process. This makes the baseline RF a

practical choice, particularly for scenarios where computational resources are limited.

Marginal RF with Feature Independence Assumption

Another common way is to assume feature independence (I. Covert et al., 2020; Lund-

berg & Lee, 2017). For any given subset S, if we assume that the sub-vector XS is inde-

pendent of its complement XS̄ , then the conditional distribution p(XS̄|XS = xS) becomes

the joint marginal distribution p(XS̄), and the CRF becomes the marginal RF. In this case,

the empirical estimate can be easily implemented using the entire dataset Dp(XS̄) rather
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than matched sub-dataset Dp(XS̄|XS = xS):

fS(xS) ≈ Ep(XS̄)
[f(xS, XS̄)] ≈

1

N

N∑

n=1

f(xS, x
(n)

S̄
). (25)

It is even possible to assume independence among all features, i.e., q(XS̄|XS = xS) =
∏

i∈S̄ p(Xi), which is referred to as the product of marginal RF (Datta, Sen, & Zick, 2016).

However, this assumption is significantly stronger but offers no additional computational

benefit, so it is seldom used in practice.

Parametric RF with Parametric Assumption

We can also assume p(X) is a parametric distribution, such as Gaussian or uniform

distribution. As discussed in literature (Aas et al., 2021; Chen et al., 2020; Janzing et

al., 2020), if we assume a multivariate Gaussian distribution, the conditional distribution

p(XS̄|XS = xS) can then be written by a closed-form formula (see Appendix B). In this

case, we the approximated RF the Gaussian RF. However, this formula requires a matrix in-

version with complexity O(|S|3), which is computationally expensive in high-dimensional

cases. Another approach is the uniform RF, which assumes that each removed feature fol-

lows an independent uniform distribution (Aas et al., 2021; Chen et al., 2023). However,

it makes even stronger assumptions than the product of marginal, thus also seldom used in

practice.

3.4 Observation Bias & Structural Bias Trade-Off

The SVA in Equation (12) is a function of the value function v(S). Furthermore, the

value function is intrinsically related to the CRF, which is estimated based on the explaining

set and the selected approach framework. As a result, errors in estimating the CRF will

directly cause errors in evaluating the value function, leading to errors in SVAs.
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3.4.1 Overfitting and Underfitting of the RF

We use the notation f̂
(N)
S to denote an estimated CDF based on an explaining set of

size N . Let f̂S = limN→∞ f̂
(N)
S be the limit of the estimate when using an infinitely large

explaining set. For instance, Frye et al. (2020) proposed adopting a supervised surrogate

model hθ(xS) for the estimation of the CDF fS(xS). In this case, f̂
(N)
S (xS) = hθ̂(N)(xS)

and f̂S(xS) = hθ∗(xS), where θ̂(N), θ∗ are obtained by minimizing the empirical MSE and

true MSE, respectively. In essence, f̂
(N)
S is an estimate of f̂S , and f̂S is a proxy for the true

CDF fS .

The error associated with an estimated RF f̂
(N)
S can be decomposed into two compo-

nents: the estimation error and the approximation error (Shalev-Shwartz & Ben-David,

2014), expressed as:

f̂
(N)
S − fS = (f̂

(N)
S − f̂S) + (f̂S − fS)

= ϵestimation + ϵapproximation.

(26)

The estimation error quantifies the risk of utilizing a finite dataset for the CRF estima-

tion. This type of error can be highly sensitive to data sparsity but can be mitigated by

either smoothing the data (Sundararajan & Najmi, 2020) or increasing the data size. The

estimated RF f̂
(N)
S is said to be overfitting at a point XS = xS if it exhibits a significant

absolute estimation error |f̂ (N)
S (xS)− f̂S(xS)|.

On the other hand, the approximation error measures the level of risk associated with

making distributional or modeling assumptions. In this case, the estimated RF f̂
(N)
S is said

to be underfitting at a point XS = xS if it demonstrates a significant absolute approximation

error |f̂S(xS)− fS(xS)|. It is worth noting that underfitting cannot be alleviated through an

increase in data size, but can be exacerbated by excessive data smoothing.
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3.4.2 Explanation Error Decomposition

Since we use f̂
(N)
S to estimate the true CRF fS , the true value function vfS is estimated

by v
f̂
(N)
S

. The difference between these two value functions causes explanation errors for the

SVAs in Equation (12). Using similar ideas as in Section 3.4.1, we propose to decompose

the explanation error into

ϕ(v
f̂
(N)
S

)− ϕ(vfS) =
(
ϕ(v

f̂
(N)
S

)− ϕ(vf̂S)
)
+
(
ϕ(vf̂S)− ϕ(vfS)

)

= observation bias + structural bias.

(27)

We call the first component ϕ(vf̂ (N)) − ϕ(vf̂ ) the observation bias, which occurs be-

cause we make explanations based on only a finite number of observations of the whole

distribution. Next, we call the second component ϕ(vf̂ )−ϕ(vf ) the structural bias, arising

from the utilization of an imperfect or limited knowledge structure to make explanations.

While observation bias is caused by the estimation error, structural bias arises from the

approximation error (see Equation (26)).

Observation bias may become substantial when the explaining set is too sparse to accu-

rately capture the complex underlying distribution. To mitigate this, we can make simpli-

fying structural assumptions to approximate fS , for example, by using a surrogate model

or an assumed distribution. However, imposing assumptions may cause the approximation

to be inadequate. For example, using a surrogate model hθ(xS) with complexity |θ|may be

insufficient to encompass a perfect θ∗ that satisfy hθ∗ = fS . Moreover, making unrealistic

distributional assumptions may drift the true underlying distribution p(X) to a different one

q(X). Therefore, there is typically a trade-off between observation bias and structural bias

in estimating the CRF using a finite explaining set. Figure 3.2 gives an illustration of this

trade-off.
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2020) of these CRFs at (5, 1), which are:

f̂
(100)
{∅} (x∅) =

1

100

100∑

i=1

f(x
(i)
1 , x

(i)
2 ) =

1

100

100∑

i=1

10x
(i)
2 ≈ 0,

f̂
(100)
{1} (5) =

∑100
i=1 I(x

(i)
1 = 5)f(x

(i)
1 , x

(i)
2 )

∑100
i=1 I(x

(i)
1 = 5)

= 10,

f̂
(100)
{2} (1) =

∑100
i=1 I(x

(i)
2 = 1)f(x

(i)
1 , x

(i)
2 )

∑100
i=1 I(x

(i)
2 = 1)

= 10.

With these estimates, using Equation (12), we can calculate ϕ̂1 ≈ 5. This implies that X1

contributes half to the prediction f(5, 1) = 10. However, it is clear that, in reality, X1 is

an uninformative feature for f and ϕ1 should always be 0. This error occurs because we

observe only one sample with X1 = 5 in the dataset, making the empirical estimator f̂
(100)
{1}

overfitting at (5, 1). Since the true CRF is f{1} = 0, the estimation error is 10, causing

the observation bias to be 5. In this case, the SVA score ϕ̂1 is over-informative and it

erroneously assigns importance to irrelevant features.

3.4.4 Under-informative Explanation

Conversely, when the absolute value of structural bias |ϕ(vf̂S) − ϕ(vfS) is large, we

say that the corresponding SVA is under-informative. In practice, making unreasonable

assumptions is the primary reason for under-informativeness. When the SVA is under-

informative, it may underestimate or even ignore some relevant mutual information be-

tween input features and model outputs. For example, Chen et al. (2020) demonstrates

that assuming feature independence can result in highly correlated features receiving con-

siderably different importance scores. We give a toy two-dimensional example below to

illustrate an under-informative SVA.

Example 3 (Under-informative SVA). Suppose we are given two features X1 and X2,

where X1 = 2X2, representing the same factor in two different units, e.g., price in different
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currencies or temperature in different scales. Consider two linear models f1(x1, x2) =

10x1 + x2 and f2(x1, x2) = x1 + 19x2, which both equals 21x2. In essence, f1 and f2 are

the same models with different algebraic forms. However, under the feature independence

assumption, they can be explained in two different ways. Assume E[X1] = E[X2] = 0

and suppose we are interested in explaining the same prediction f1(2, 1) = f2(2, 1) = 21.

Using the SVA formula for linear models under independent feature assumptions1, we can

calculate ϕ̂1 = 20, ϕ̂2 = 1 for f1, and ϕ̂1 = 2, ϕ̂2 = 19 for f2. That means X1 is given

dominantly high feature attribution for f1 while X2 is given dominantly high feature at-

tribution for f2. In reality, X1 and X2 should receive the same attribution score, i.e.,

ϕ1 = ϕ2, because they provide the same information. In this case, both explanations are

under-informative due to the unrealistic feature independence assumption.

In summary, SVA could be over-informative if it is estimated based on insufficient

observations. Meanwhile, it could also be under-informative if it is approximated based

on unrealistic structural assumptions. In the following sections, we use the error analy-

sis framework proposed in Equation (27) to analyze the over- and under-informativeness

of existing CRF estimation methods. As discussed in Chapter 3.3, these methods can be

categorized into two main approaches: smoothing the data and making distributional as-

sumptions.

3.4.5 Explanation Error Analysis of Data-Smoothing Approaches

To address the challenge of data sparsity, one effective method is to smooth the ex-

plaining set. Typically, the data can be smoothed using either non-parametric kernel-based

approaches or parametric model-based approaches. However, excessive data smoothing

can lead to serious structural bias. Unfortunately, it is unclear to what extent the explaining

1Following (Lundberg & Lee, 2017), given a linear model f(x) =
∑d

j=1
βjxj + β0, under the feature

independence assumption, the SVA for the jth feature can be calculated as φj = βj(xj − E[Xj ]).
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set should be smoothed (Sundararajan & Najmi, 2020). Below we analyze the potential

explanation errors of some popular data smoothing methods.

Empirical CRF : the structural bias is zero because the empirical estimator will converge

to the true CRF when the data size goes to infinity. However, the empirical CRF is usually

seriously over-informative when data sparsity exists (as illustrated in Example 1).

Non-parametric kernel-based approaches : for this type of approach, the extent of

data smoothing is controlled by the bandwidth(s) of the kernel, which could be set either

too conservatively, resulting in over-informativeness, or too generously, leading to under-

informativeness. Moreover, the selected kernel function might not correctly define the

similarity between samples (Chen et al., 2023), causing undesirable structural bias.

Parametric model-based approaches : for both the conditional generative model and

supervised surrogate model proposed in (Frye et al., 2020), the extent of data smooth-

ing is controlled by the complexity of the selected neural networks. Over-informativeness

and under-informativeness respectively coincide with the overfitting and underfitting of the

trained neural network. However, controlling the overfitting and underfitting of this trained

neural network is challenging. First, since the neural network is trained on an exponential

number of all possible sub-datasets Dp(XS), it is sometimes difficult to ensure learning

optimality within an acceptable computation time (Chen et al., 2023). As a result, non-

optimal learning may result in structural bias. Furthermore, even if a neural network is

well-trained, it might still be overfitting under data sparsity in low-density regions (see

examples in (Yeh et al., 2022)), causing observational bias.

TreeSHAP : this is a specific SVA method for tree-structured models. TreeSHAP is usu-

ally under-informative. First, it utilizes the predefined tree structure of the original model,

which was trained under unclear assumptions about feature dependencies (Aas et al., 2021).
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Second, it approximates the conditional expectation E[f(X)|XS = xS] by averaging the

predictions from all leaves that are not against the condition XS = xS . Essentially, this pro-

cedure relaxes the condition XS = xS into a set of weaker conditions. For instance, with a

stump containing two leaves ºX1 < 10º and ºX1 ≥ 10º, we approximate E[f(X)|X1 = 8]

by E[f(X)|X1 < 10]. This relaxation of conditions introduces structural bias.

3.4.6 Explanation Error Analysis of Distributional Assumptions-Based

Approaches

Besides smoothing the data, an alternative way to mitigate data sparsity is to approx-

imate the conditional distribution p(XS̄|XS = xS) with an assumed distribution r(XS̄).

In this work, we call r(XS̄) the removal distribution, as it is the assumed distribution for

removed feature subset XS̄ . As discussed in Section 3.3.2, there are four common removal

distributions:

(1) Baseline: r(XS̄) = 1(XS̄ = xb
S̄
), assuming XS̄ has a constant value xb

S̄
.

(2) Marginal: r(XS̄) = p(XS̄), assuming XS and XS̄ are independent.

(3) Product of marginal: r(XS̄) =
∏

i∈S̄ p(Xi), assuming each feature in S̄ is indepen-

dent.

(4) Uniform: r(XS̄) =
∏

i∈S̄ ui(Xi), where ui denotes a uniform distribution over Xi. In

this case, each feature in S̄ is assumed to be independently and uniformly distributed.

With p(XS̄|XS = xS) ≈ r(XS̄), the CRF fS in formula (16) can be approximated as

f̂S(xS) = Er(XS̄)
[f(xS, XS̄)] =

∫
f(xS, x

′
S̄)r(XS̄ = x′

S̄)dx
′
S̄, (28)
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which can be empirically estimated by

f̂
(N)
S (xS) =

1

N

N∑

n=1

f(xS, x
(n)

S̄
), (29)

using an explaining set Dr(X) = {(x(n))}Nn=1 drawn from r(X).

Observational bias: The purpose of making assumptions is to reduce the distribution

complexity, and thus the observation bias. In particular, to estimate the conditional distri-

bution p(XS̄|XS = xS) for any arbitrary xS , we require a dataset with complexity O(|X |).

This complexity will change when using an assumed removal distribution r(XS̄). Table 3.1

summarizes the data complexity requirement for the above four removal distributions.

Table 3.1: The complexity of different removal functions.

Removal distribution Formula Data complexity required

Conditional p(XS̄|XS = xS) O(|X |)
Baseline 1(XS̄ = xb

S̄
) O(1)

Marginal p(XS̄) O(|XS̄|)
Product of marginals

∏
i∈S̄ p(Xi) O

(∏
i∈S̄ |Xi|

)

Uniform
∏

i∈S̄ ui(Xi) O
(∏

i∈S̄ |Xi|
)

From Table 3.1, we can see that the baseline removal distribution simplifies the condi-

tional distribution into a constant value, thus having a zero observation bias. The marginal

removal distribution also decreases the data complexity requirement from O(|X |) into

O(|XS̄|). However, not all the distributional assumptions can ensure a decrease in com-

plexity, even though the assumptions are strong. For example, both products of marginal

and uniform removal distributions require a dataset with a complexity of O
(∏

i∈S̄ |Xi|
)
,

which might not be necessarily lower than the complexity requirement of conditional dis-

tribution (i.e., O(|X |)) in the presence of dependencies among features.
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Structural bias: By reducing the data complexity requirement, making some distribu-

tional assumptions can reduce the observation bias. However, if these assumptions are far

from the true underlying distribution, they could also engender considerable structural bias.

Specifically, distributional assumptions can make the true joint distribution p(X) drift to-

wards a different distribution q(X), where q(XS̄|XS = xS) = r(XS̄). To analyze the

structural bias induced by distributional drift, we introduce the following definitions.

Definition 1. A sample x is defined as an out-of-distribution (OOD) sample of p(X),

denoted as x /∈ p(X), if p(X = x) = 0. Conversely, if p(X = x) > 0, it is defined as an

in-distribution sample of p(X), denoted as x ∈ p(X).

Definition 2. The OOD rate of q(X) to p(X) is defined as the proportion of samples drawn

from q(X) that are OOD samples of p(X), denoted as Pr{X /∈ p(X)|X ∈ q(X)}.

For an arbitrary value xS observed from p(XS), the instance x = (xS, x
′
S̄
) where x′

S̄
∼

r(XS̄) is called a hybrid sample (Chen et al., 2023). As a result of the distribution drift,

hybrid samples (xS, x
′
S) ∼ q(X) could be either in-distribution or OOD samples of p(X).

Thus, we can derive the approximation error of the CRF estimator f̂S(xS) in Equation (28)

as

f̂S(xS)− fS(xS)

=

∫

(xS ,x
′
S̄
)∈q(X)

f(xS, x
′
S̄)r(XS̄ = x′

S̄)dx
′
S̄ − fS(xS)

=

∫

(xS ,x
′
S̄
)/∈p(X)

f(xS, x
′
S̄)r(XS̄ = x′

S̄)dx
′
S̄ +

∫

(xS ,x
′
S̄
)∈p(X)

f(xS, x
′
S̄)r(XS̄ = x′

S̄)dx
′
S̄ − fS(xS)

=

∫

(xS ,x
′
S̄
)/∈p(X)

f(xS, x
′
S̄)r(XS̄ = x′

S̄)dx
′
S̄ +

∫

(xS ,x
′
S̄
)∈p(X)

f(xS, x
′
S̄) [r(XS̄ = x′

S̄)− p(XS̄ = x′
S̄|XS = xS)] dx

′
S̄. (30)
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Therefore, the approximation error of assumption-based RFs stems from two sources: (i)

the inclusion of OOD samples in the approximation; and (ii) changes in the probability

density of in-distribution samples. The OOD sample-related approximation error may con-

tribute to a large proportion of structural bias, especially when the OOD rate is high. In

practice, some OOD samples may be senseless. For instance, the OOD samples could rep-

resent a bank client who is 20 years old but has 25-year working experience, or a clinic

patient whose systolic blood pressure is lower than his diastolic blood pressure. Moreover,

adversarial attacks have been designed in the literature (Slack et al., 2020) to arbitrarily

manipulate model explanations (feature attributions). Under our error analysis framework,

it is easy to see that these attacks essentially target the OOD sample-related approximation

error in Equation (30), intentionally modifying the structural bias.

3.5 OOD Measurement of Distribution Drift

In practice, assumption-based RFs, such as the baseline RF and marginal RF, are widely

used thanks to their simple implementations (Lin et al., 2024). For these methods, expla-

nation errors mainly arise from structural bias caused by distributional assumptions, which

are unchangeable once the assumptions are made. Hence, evaluating structural bias or

under-informativeness resulting from distributional assumptions is crucial. However, it

is impossible to directly measure the structure bias because the true conditional RF fS

is unknown. As discussed in Section 3.4.6, structural bias arises from distribution drift,

which usually leads to the use of OOD samples in estimating SVAs. Therefore, we can

alternatively assess structural bias or under-informativeness by measuring how much the

distribution drifts, and how high the OOD rate is.
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3.5.1 Distribution Drift

Let S be a random variable on domain P([d]) \ [d] (i.e., the power set of [d] excluding

[d], which is the set of all possible subsets involved in the computation of SVA scores for

all d features).

Lemma 1. For each S ∈ P([d]) \ [d], Pr{S = S} = 1

d·( d
|S|)

.

Proof. According to Equation (12), the Shapley value feature attribution of the ith feature

ϕi is essentially the weighted average of feature i’s marginal contribution over all possible

subsets S ⊆ [d] \ {i}, with weights equal π(S). In the context of all d features, a subset S

only appears when computing SVA scores for features that are not in S. There are d− |S|

such features. Therefore, the probability function of S can be derived as

Pr{S = S} = d− |S|
d

π(S) =
d− |S|

d
· |S|!(d− |S| − 1)!

d!
=

1

d ·
(
d
|S|
) . □

Given S = S and an instance x, we have

p(X = x|S = S) = p(XS = xS)p(XS̄ = xS̄|XS = xS).

By assuming a removal distribution r(XS̄) on the conditional distribution p(XS̄ = xS̄|XS =

xS), the distribution drift into

q (X = x|S = S) = p(XS = xS)r(XS̄ = xS̄). (31)

Then, considering all possible subsets S, the marginal density of a hybrid sample x ∼ q(X)
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can be computed as

q (X = x) =
1

d

∑

S∈P([d])\[d]

1(
d
|S|
)p(XS = xS)r(XS̄ = xS̄). (32)

If the assumed removal distribution r(XS̄) ̸= p(XS̄|XS = xS), there will be a distribution

drift from p(X) to q(X). For example, when using baseline and marginal removal distribu-

tions, the true distribution p(X) could drift into qbaseline(X) and qmarginal(X), respectively,

where

qbaseline(X) =
1

d

∑

S∈P([d])\[d]

1(
d
|S|
)p(XS)1(XS̄ = xbS̄), and (33)

qmarginal(X) =
1

d

∑

S∈P([d])\[d]

1(
d
|S|
)p(XS)p(XS̄). (34)

3.5.2 OOD Detection and OOD Classifier

To detect the OOD samples, Slack et al. (2020) proposed training a binary classifier

ood score(x) to predict whether a given sample x belongs to p(X) or q(X). Specifically,

we first generate a M -size dataset Dq(X) from q(X) and label it as 0. This dataset is then

combined with the provided explaining set Dp(X) labeled as 1 to train the classifier. The

classifier returns an OOD score, approximating the probability that the input x comes from

p(X). A hybrid sample (xS, x
′
S) is considered an OOD sample if ood score(xS, x

′
S) is

smaller than a selected threshold t.

Furthermore, let C = ood score(X) denote the OOD score random variable, and let

p(C), q(C) denote the distributions of C induced by p(X), q(X) respectively. If no dis-

tribution drift occurs, i.e., q(X) = p(X), then we have q(C) = p(C). Conversely, if

q(C) ̸= p(C), then q(X) ̸= p(X), indicating a distribution drift. Thus, to detect the dis-

tribution drift, we propose comparing the distribution drift by examining the distributions

of OOD scores C calculated on Dp(X) and Dq(X). One possible way to compare the two
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distributions is to visualize their density histograms in a single plot (see Figure 3.3 and

Figure 3.3 for an example). Another way is to quantify the distribution drift by calculating

the total variation distance (Devroye, GyÈorfi, & Lugosi, 1996):

DTV [p(C), q(C)] =
1

2

∫ 1

0

|p(C = c)− q(C = c)|dc. (35)

The total variation distance can be conveniently estimated by half the absolute sum of

density difference in all bins between the two density histograms.

3.6 Experiments

In this section, we conduct experiments to verify the error analyses we performed on

existing SVA methods in previous sections. First, we demonstrate how to apply the method

we proposed in Section 3.5.2 to detect and measure the distribution drifts caused by differ-

ent distributional assumptions that have been used in the literature. Next, we will show that

this distribution drift can lead to under-informative attributions, which assign significantly

different important scores to highly correlated features. Finally, we demonstrate how data

sparsity can cause over-informative attributions, which assign highly important scores to

irrelevant or noisy features.

Dataset To assure the generalizability of our conclusions, we conduct our experiments on

two datasets. Our first dataset is the Bike Sharing Dataset, which contains 17,389 records of

hourly counts of bike rentals in 2011-2012 in the Capital Bike Sharing system (Fanaee-T,

2013). The dataset comprises a set of 11 features, following an unknown joint distribution.

The objective is to predict the number of bikes rented during a specific hour of the day,

based on various features related to time and weather conditions, such as hour, month,

humidity, and temperature. The second dataset that we use is the Census Income (also
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known as Adult) dataset, which contains information such as age, work class, education,

etc. of 48,842 adults (Becker & Kohavi, 1996). The goal is to predict whether an adult’s

income exceeds 50,000 dollars. The dataset is extracted from the 1994 Census database. In

each dataset, samples with missing data are removed.

For the Bike Sharing dataset, we aim to explain an xgBoost regressor trained on a

training set of 15,379 samples and tested on a testing set of 2,000 samples. In addition, we

split the Census Income dataset into a training set of 32,561 samples and a testing set of

4,000 samples. Our goal for the Census Income dataset is to explain an xgBoost classifier

trained and tested on the respective sets.

3.6.1 Distribution Drift Detection

In this section, we will demonstrate how different distributional assumptions caused

distribution drifts and estimate the corresponding OOD rates. Besides the training and test

datasets described above, we generate four sets of hybrid samples by using four different

removal distributions: uniform, product of marginal, marginal, and baseline. To make the

results comparable, we calculate the OOD scores of the four hybrid sample sets using a

single OOD classifier. Such an OOD classifier is trained using samples from the training

set (labeled as 1) and hybrid samples generated from uniform removal distribution (labeled

as 0). Note that this OOD classifier is still valid for OOD detection on hybrid samples gen-

erated from the other distributions because those samples are in-distribution of the uniform

removal distribution.

The trained OOD classifier is then used to calculate OOD scores C for all real sam-

ples from both the training and testing sets, as well as for all hybrid samples in the four

generated sets. We plot density histograms of these OOD scores in Figure 3.3 (for the

Bike Sharing dataset) and Figure 3.4 (for the Census Income dataset). The total variance
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Table 3.2: The OOD rates and total variance distance

Removal distribution OOD rate (t=0.3) Total Variance Distance

Bike Sharing Dataset

Uniform 0.866 0.868

Product of Marginal 0.757 0.77

Marginal 0.538 0.578

Baseline 0.666 0.696

Census Income Dataset

Uniform 0.901 0.903

Product of Marginal 0.69 0.729

Marginal 0.448 0.524

Baseline 0.756 0.804

datasets highlights the severity of the distribution drifts.

3.6.2 Under-informativeness Audit

In Section 3.6.1, we showed that assumption-based methods caused severe distribution

drifts. In this section, we will demonstrate that these distribution drifts can contribute to

under-informative attributions.

For both datasets, we explain model predictions on 100 samples using SVAs calculated

from five different RFs, namely SHAP-B (with baseline RF), SHAP-M (with marginal

RF), SHAP-PoM (with product of marginal RF), SHAP-U (with uniform RF) and SHAP-S

(with surrogate model-estimated CRF). In addition, TreeSHAP is also used to explain the

predictions of xgBoost models on each dataset.

Intuitively, an informative feature attribution should (1) assign similar attribution scores

to the two highly correlated features ºTemperatureº and ºFeeling Temperatureº with

Pearson correlation of 0.99 for the Bike Sharing dataset as they convey almost the same

information; (2) assign exactly the same attribution score to features ºHours per weekº
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and ºMinutes per weekº for the Census Income Dataset because they hold the same in-

formation but in different scales.

From Figure 3.5a, we can observe that TreeSHAP, SHAP-B, SHAP-M, SHAP-PoM,

and SHAP-U all assign much higher importance scores to feature ºTemperatureº than

ºFeeling Temperatureº. Moreover, in Figure 3.5b, TreeSHAP, SHAP-B, SHAP-M,

SHAP-PoM, and SHAP-U only assign importance to feature ºHours per weekº and ig-

nore feature ºMinutes per weekº. This is because these methods do not consider the de-

pendencies among features, leading to under-informative attributions. In contrast, SHAP-S

trains a surrogate model to learn feature correlations, thus able to allocate similar impor-

tance scores to ºTemperatureº and ºFeeling Temperatureº. For the Census Income

dataset, even though SHAP-S mitigates the problem of under-informativeness by assigning

importance to both ºHours per weekº and ºMinutes per weekº, however, these scores

are not the same. This indicates that the SHAP-S still produces structural bias and does not

completely resolve the under-informativeness problem for the Census Income dataset.

3.6.3 Over-informativeness Audit

In this section, we turn our attention to over-informativeness and observation bias. Re-

call that, the observation bias in Equation (27) is ϕ(v
f̂
(N)
S

)−ϕ(vf̂S) where f̂S = limN→∞ f̂
(N)
S .

However, since we do not have an infinite explaining set, we cannot evaluate the observa-

tional bias directly. In this experiment, we estimate f̂S by f̂
(M)
S , where f̂

(M)
S is estimated

using the whole training sets of both datasets. That is, M = 15, 379 for the Bike Shar-

ing dataset and M = 32, 561 for the Census Income dataset. For random explaining sets

with N ∈ {10, 100, 1000, 10000}, we estimate the average absolute observation bias in the

SVAs of 100 predictions, namely

1

100

1

d

10∑

i=1

d∑

j=1

|ϕij(vf̂ (N)
S

)− ϕij(vf̂ (M)
S

)|,
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where ϕij is the SVA of the jth feature in the ith prediction. The results are plotted in Fig-

ure 3.6. We observe similar trends in both datasets. Generally, observation bias decreases

when the size of the explaining set increases. This illustrates the relationship between

observation bias and data sparsity. However, different methods exhibit different sensitiv-

ity to data sparsity. Specifically, SHAP-B always has 0 observation bias, which agrees

with our analysis in Section 3.4.6. For SHAP-M, SHAP-PoM, and SHAP-U, observation

bias quickly stabilizes at N = 1, 000. In contrast, SHAP-S shows high sensitivity to data

sparsity, especially for the Census Income Data, at N = 10, 000, the observation bias of

SHAP-S is still much higher than those of other methods. Note that both datasets that we

use contain less than 20 features. If the data is high-dimensional, SHAP-S will be more

impacted by data sparsity, producing higher observation bias.

As discussed in Section 3.4.5, even if the surrogate model has an overall good fit on a

large explaining set, SHAP-S can still be over-informative on low-density regions where

data sparsity persists. To verify this remark, we generate a noisy feature from a mixed

Gaussian distribution: Z ∼ N (0, 1) with probability 0.999 and Z ∼ N (10, 1) otherwise.

For each dataset, we train a surrogate model on the whole training set with this noisy

feature added. Even when the explaining set is large, the values from N (10, 1) are still

sparse, so the surrogate model is easy to overfit at points with Z ∼ N (10, 1). To see this,

we use the SHAP-S feature attribution that utilizes the trained surrogate model to explain

100 predictions where Z ∼ N (0, 1) versus where Z ∼ N (10, 1). The feature attribution

results are plotted in Figure 3.7. We can see that, in both datasets, even with a surrogate

model trained on a large explaining set, SHAP-S still assigns high importance to noisy

features if given predictions with Z ∼ N (10, 1). This noisy feature should be given 0

importance because it is sampled independently from all other features.
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bias, which generate feature attributions that are respectively over- or under-informative.

We apply our error analysis to discern potential errors in various existing SVA techniques.

Carefully designed experimentation verifies our theoretical analysis. Future work can uti-

lize our error analysis framework to develop new SVA methods that can effectively mitigate

both under- and over-informativeness.
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Chapter 4

Correcting Biases of SVAs for

Informative Model Explanations

4.1 Introduction

Recent research has pointed out that existing SVA methods are error-prone and cannot

capture the true informational structure (Chen et al., 2023; Sundararajan & Najmi, 2020).

For example, Frye et al. (2020) demonstrated that SVAs based on the feature independence

assumption can ignore model dependence on relevant features. They proposed a surrogate

model to capture dependencies among features. However, Yeh et al. (2022) shows that this

method can generate unreasonable explanations in low-density regions. In Chapter 3, we

further analyzed that these explanation errors stem from a trade-off between two biases:

observation bias due to data sparsity and structural bias due to untenable distributional

assumptions. These biases lead to explanation errors, causing what we term over- and

under-informative explanations.

In this chapter, we aim to provide solutions to reduce the observation and structural

biases of existing SVA methods. Our key idea is to correct the distribution drift resulting

from structural assumptions that are placed to reduce data complexity requirements. By
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doing so, we can obtain a better trade-off between observation and structural biases. To

realize this vision, we propose a novel combination of out-of-distribution (OOD) detection

techniques and important sampling methods to refine two existing SVA methods, one based

on the feature independence assumption (Lundberg & Lee, 2017; Sundararajan & Najmi,

2020), and the other based on a surrogate model (Frye et al., 2020). Our contributions can

be summarized as follows.

• We propose in-distribution and OODIS refinement methods to remedy the distribu-

tion drift caused by the feature independence assumption.

• We propose an OODIS refinement method to reduce the sensitivity to data sparsity

of the SVA method based on surrogate models.

• We provide a computational trick to calculate the importance sampling weights based

on an OOD classifier without requiring complex density estimations.

• Our experiments verify that the proposed methods can greatly improve the informa-

tiveness of SVAs in both local and global explanation tasks.

4.2 Quick Reviews

We consider a supervised learning setting where a target variable Y ∈ Y is to be pre-

dicted based on an input variable X = (X1, . . . , Xd) that consists of d features. Let p

denote the underlying distribution, and Xp denote the domain set of X . We aim to explain

an ML model f : Xp → Y by quantifying each feature’s contribution using the SVA method

in Equation (12). As discussed in Section 2.5.2, to design an SVA algorithm, we need to

specify a removal function fS(xS) which makes predictions based on a subset of input xS .

Furthermore, to enable the SVAs to capture the informational dependencies between model

outputs and input features, fS(xS) should be defined as the conditional removal function
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(CRF) as:

fS(xS) := Ep(XS̄ |XS=xS)[f(xS, XS̄)]

=

∫
f(xS, x

′
S̄)p(XS̄ = x′

S̄|XS = xS)dx
′
S̄.

(36)

CRF Estimation It is challenging to estimate the CRF fS(xS) because the conditional

distribution p(XS̄|XS = xS) is typically unavailable in practice. Therefore, we need to

estimate it using a given explaining set Dp(X) ≡ {(x(n))}Nn=1. In practice, empirical esti-

mates using the explaining set may be susceptible to data sparsity, particularly in the context

of high-dimensional and many-valued features (Chen et al., 2023; Sundararajan & Najmi,

2020). Besides, estimating the CRF fS for all possible subsets S is NP-hard (Aas et al.,

2021). As discussed in Section 3.3, several methods have been proposed to approximate

the CRF fS , which either smooth the explaining set or make distributional assumptions.

In this work, we focus on two popular approaches: the surrogate model and the marginal

removal function (MRF). In the following, we use f̂
(N)
S to denote the estimate of fS using

one of the two approaches on an explaining set of size N . Let f̂S = limN→∞ f̂
(N)
S denote

the approximated CRF when we have access to an infinite amount of data.

• (Surrogate Model) We can train a neural network hθ(xS) as a surrogate for the CRF

fS(xS). This neural network is trained to mimic the original model’s predictions,

with removed features represented by zeros. The set of neural network parameters θ

can be estimated by minimizing the empirical loss function L(·):

θ̂ = argminθ Ex∼Dp(X)ES∼ShapleyL (hθ(xS), f(x)) . (37)

In this case, we have f̂
(N)
S = hθ̂ and f̂S = hθ.

• (MRF) Alternatively, we can approximate the conditional distribution p(XS̄|XS =

xS) by making feature independence assumptions. Specifically, we can assume XS
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and XS̄ to be independent, then the conditional distribution p(XS̄|XS = xS) can be

approximated by the marginal distribution p(XS̄). With p(XS̄|XS = xS) ≈ p(XS̄),

the CRF fS in formula (36) can be approximated as

f̂S(xS) = Ep(XS̄)
[f(xS, XS̄)] =

∫
f(xS, x

′
S̄)p(XS̄ = x′

S̄)dx
′
S̄, (38)

which can be empirically estimated by

f̂
(N)
S (xS) =

1

N

N∑

n=1

f(xS, x
(n)

S̄
) (39)

using the explaining set Dp(X).

Distribution Drift The purpose of making the feature independence assumption is to re-

duce the data complexity requirement and thus mitigate data sparsity. However, in practice,

the feature independence assumption is typically untenable, which could engender undesir-

able distribution drift. Specifically, the computation of both the CRF in Equation (36) and

the MRF in Equation (38) involve the hybrid sample (xS, x
′
S̄
). In both cases, xS ∼ p(XS).

When x′
S̄
∼ p(XS̄|XS = xS), the hybrid sample (xS, x

′
S̄
) follows the true underlying distri-

bution p(X). However, as shown in Section 3.5.1, when x′
S̄
∼ p(XS̄) ̸= p(XS̄|XS = xS)

as in the MRF method of Equation (38), the hybrid sample (xS, x
′
S̄
) follows a different

distribution qmarginal(X), which can be written as

qmarginal(X) =
1

d

∑

S∈P([d])\[d]

1(
d
|S|
)p(XS)p(XS̄). (40)

In other words, the distributional assumption made by the MRF method causes the data

distribution to drift from p(X) to qmarginal(X). Such a distribution drift can cause hybrid

samples (xS, x
′
S̄
) ∈ qmarginal(X) involved in the CRF estimation to be out-of-distribution
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(OOD) samples of p(X), i.e., (xS, x
′
S̄
) /∈ Xp or p(xS, x

′
S̄
) = 0. Especially in the pres-

ence of many high-correlated features, qmarginal may have a very high OOD rate to p(X),

denoted as Rp(q
marginal) = Eqmarginal(X) [1(X /∈ Xp)]. A high OOD rate suggests a se-

vere distribution drift, which could lead to considerable estimation error of fS , and thus

explanation error of the corresponding SVA.

Explaination Error Since we use f̂
(N)
S to estimate the true CRF fS , the true SVA ϕ(vfS)

in Equation (12) is estimated by ϕ(v
f̂
(N)
S

). However, most existing CRF estimation methods

are error-prone, so the explanation error ϕ(v
f̂
(N)
S

) − ϕ(vfS) may occur due to the differ-

ence f̂
(N)
S − fS . As discussion in Chapter 3, the error f̂

(N)
S − fS can be decomposed into

two components: the estimation error, f̂
(N)
S − f̂S , and the approximation error, f̂S − fS .

Correspondingly, the explanation error can also be decomposed into two components: the

observation bias, ϕ(vf̂ (N))−ϕ(vf̂ ), which is associated with the estimation error f̂
(N)
S − f̂S ,

arising from the utilization of insufficient observations (i.e., data sparsity); the structural

bias, ϕ(vf̂ ) − ϕ(vf ), which is associated with the approximation error f̂S − fS , stemming

from the distribution drift caused by structural assumptions.

Both observation bias and structural bias can reduce the informativeness of SVAs. To

describe SVAs suffering from observation bias and/or structural bias, we employ the termi-

nologies defined in the following:

Definition 3 (Over-informativeness). A SVA is over-informative if it has a large absolute

value of observation bias |ϕ(v
f̂
(N)
S

)− ϕ(vf̂S)|.

Definition 4 (Under-informativeness). A SVA is under-informative if it has a large abso-

lute value of structural bias |ϕ(vf̂S)− ϕ(vfS)|.

In essence, the informativeness of SVAs is determined by the accuracy of the selected

estimate f̂
(N)
S . Hence, in this work, we aim to enhance the informativeness of SVAs by

improving the accuracy of the surrogate model and MRF methods.
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4.3 Proposed Methods

4.3.1 In-Distribution Refinement

The MRF method is widely used in practice to calculate SVA (I. Covert et al., 2020;

Lundberg & Lee, 2017) because of its simple implementation. In particular, the feature in-

dependence assumption helps reduce the data complexity requirement and thus the observa-

tion bias (as discussed in Chapter 3). On the other hand, the feature independence assump-

tion is typically untenable, leading to considerable structural bias and under-informative

SVAs. In essence, the MRF f̂S in Equation (38) is a rough approximation of the CRF fS in

Equation (36), and the approximation error can be derived as

f̂S(xS)− fS(xS)

=

∫

(xS ,x
′
S̄
)/∈Xp

f(xS, x
′
S̄)p(XS̄ = x′

S̄)dx
′
S̄ +

∫

(xS ,x
′
S̄
)∈Xp

f(xS, x
′
S̄) [p(XS̄ = x′

S̄)− p(XS̄ = x′
S̄|XS = xS)] dx

′
S̄. (41)

This equation shows that the approximation error of the MRF method stems from two

sources: (i) the inclusion of OOD samples in the approximation; and (ii) the changes in the

probability density of in-distribution samples. The first part, which is caused by OOD sam-

ples, may contribute to a large proportion of the approximation error. Therefore, the first

refinement method we propose to reduce the approximation error is to remove OOD sam-

ples from the MRF computation. With OOD samples removed, the MRF can be modified

as

f̂S(xS) = Ep(XS̄)
[f(xS, XS̄)1 ((xS, XS̄) ∈ Xp)] . (42)

Here, we call the approximated removal function in Equation (42) the in-distribution MRF.

To detect the OOD samples, as proposed by Slack et al. (2020), we can train an OOD

classifier ood score(x) to predict whether a given sample x comes from p(X) or from
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qmarginal(X) in Equation (40). When ood score(x) is high, x is more likely to come from

p(X) rather than qmarginal(x). A hybrid sample (xS, x
′
S̄
) is considered an OOD sample

if ood score(xS, x
′
S̄
) is smaller than a selected threshold t. The in-distribution MRF can

then be empirically estimated by the in-distribution hybrid samples:

f̂
(N)
S (xS) =

1

N

N∑

n=1

f(xS, x
(n)

S̄
)1
(
ood score(xS, x

(n)

S̄
) ≥ t

)
. (43)

The selection of threshold t There is a trade-off when selecting the threshold t. As t

increases, on the one hand, more and more true OOD samples are screened out from the

estimation, helping reduce the structural bias of the corresponding SVA; on the other hand,

the sample size for the estimation is reduced (e.g., some true in-distribution samples could

be misclassified as OOD samples and removed) and thus the observation bias may increase.

4.3.2 OOD Importance Sampling (OODIS) Refinement

The most effective way to mitigate over-informativeness is to increase the sample size.

Nevertheless, it is infeasible to sample directly from an unknown distribution p(XS̄|XS).

To address this problem, we can sample from an assumed distribution q(XS̄|XS). How-

ever, as discussed in Section 4.2, distributional assumptions may induce distribution drift

leading to structural bias and under-informativeness. We thus propose using an importance

sampling method, which can be derived from the CRF formula in Equation (36):

fS(xS) =

∫
f(xS, x

′
S̄)p(XS̄ = x′

S̄|XS = xS)dx
′
S̄

=

∫
f(xS, x

′
S̄)
p(XS̄ = x′

S̄
|XS = xS)

q(XS̄ = x′
S̄
|XS = xS)

q(XS̄ = x′
S̄|XS = xS)dx

′
S̄

=
q(XS = xS)

p(XS = xS)

∫
p
(
X = (xS, x

′
S̄
)
)

q
(
X = (xS, x′

S̄
)
)f(xS, x′

S̄)q(XS̄ = x′
S̄|XS = xS)dx

′
S̄

=
1

wS(xS)
Ex′

S̄
∼q(XS̄ |XS=xS) [w(xS, x

′
S̄)f(xS, x

′
S̄)] , (44)
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where

w(x) =
p (X = x)

q (X = x)
, (45)

and

wS(xS) =
p(XS = xS)

q(XS = xS)

=

∫
p
(
X = (xS, x

′
S̄
)
)

q(XS = xS)
dx′

S̄

=

∫
p
(
X = (xS, x

′
S̄
)
)

q
(
X = (xS, x′

S̄
)
)q(XS̄ = x′

S̄|XS = xS)dx
′
S̄

= Ex′
S̄
∼q(XS̄ |XS=xS) [w(xS, x

′
S̄)] . (46)

In Equation (44), w(xS, x
′
S̄
) acts as the importance weight of a hybrid sample (xS, x

′
S̄
), and

wS(xS) acts as the normalizing constant.

The selection of q(X) An appropriate assumed distribution q(X) should fulfill three

essential criteria: (1) It should facilitate easy sampling from the conditional distribution

q(XS̄|XS = xS); (2) For any subset S and any x ∈ Xp, the probability density q(XS̄ =

xS̄|XS = xS) > 0, ensuring that all plausible in-distribution instances have positive prob-

abilities of being sampled; and (3) the OOD rate Rp(q
marginal) should not be too high to

ensure sufficient in-distribution instances being sampled. Based on these three criteria, we

suggest choosing qmarginal(X) for the importance sampling.

OODIS MRF When selecting q(X) = qmarginal(X) or q(XS̄|XS = xS) = p(XS̄), we

call the removal function in Equation (44) the OODIS MRF, which is exactly equal to

the CRF fS , indicating a zero approximation error. The OODIS MRF can be empirically
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estimated from the explaining set Dp(X) by:

f̂
(N)
S (xS) =

∑N
n=1 w(xS, x

(n)

S̄
)f(xS, x

(n)

S̄
)

∑N
n=1 w(xS, x

(n)

S̄
)

. (47)

Essentially, this is a modified version of the MRF estimator in Equation (39). The dis-

tribution drift induced by the feature independence assumption is rectified by the impor-

tance sampling technique. However, this correction comes at a cost: when the OOD rate

Rqmarginal(p) is high, the data sparsity problem that was well mitigated by the feature inde-

pendence assumption could again be magnified to some extent. Specifically, many hybrid

samples (xS, x
(n)

S̄
) could be screened out due to being identified as OOD samples and re-

ceiving trivial or zero importance weights. This may lead to an increase in the observation

bias of the corresponding SVA.

OODIS Surrogate Model The OODIS method not only can address the distribution drift

problem of the MRF, but it can also moderate the data sparsity problem of the surrogate

model hθ(xS). In particular, rather than the explaining set Dp(X), we train hθ(xS) on a

larger generated dataset Dq(X) (e.g., Dqmarginal(X)), where each sample x weighted by

w(x). In other words, instead of the loss function in Equation (37), the parameter set θ can

be estimated by minimizing the following weighted loss function:

θ̂ = argminθ Ex∼Dq(X)ES∼Shapleyw(x)L (hθ(xS), f(x)) . (48)

We call this the OODIS surrogate model. This proposed method can alleviate the spar-

sity problem of the surrogate model by increasing the in-distribution sample size. With a

sufficiently large sample set Dq(X), not only the original observed samples in the explain-

ing set, i.e., x ∈ Dp(X), but also many other non-observed in-distribution samples (i.e.,

x ∈ Xp \Dp(X)) can be generated and used in the estimation of hθ(xS). Meanwhile, OOD
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samples are discounted via the importance weight w(x).

The estimation of w(x)

Directly estimating w(x) using Equation (45) entails complex density estimation of

p(X) and q(X). However, in the following, we demonstrate how we approximate w(x)

using an OOD classifier without the need to estimate any density functions. Specifically,

given an OOD classifier ood score(x) trained on a combination of an M -size dataset

Dq(X) and an N -size explaining set Dp(X), according to Bayes’ theorem, we can write

ood score(x) ≈ Pr{X ∈ Xp|X = x}

=
p(X = x)Pr{X ∈ Xp}

p(X = x)Pr{X ∈ Xp}+ q(X = x)Pr{X ∈ Xq}
.

Then w(x) can be approximated as

w(x) =
p (X = x)

q (X = x)
=

Pr{X ∈ Xq}
Pr{X ∈ Xp}

· Pr{X ∈ Xp|X = x}
1−Pr{X ∈ Xp|X = x}

≈ M

N
· ood score(x)

1− ood score(x)

∝ ood score(x)

1− ood score(x)
. (49)

Equation (49) offers a computationally efficient means of estimating w(x) without explicit

density estimations.

The approximation of w(x) in Equation (49) is solely determined by the OOD classifier

ood score(x). Therefore, the correctness of the trained ood score(x) directly impacts the

estimation error and approximation error of both the OODIS MRF and the OODIS surro-

gate model, thus the observation bias and structural bias of the corresponding SVAs. A

highly smooth ood score(x) tends to classify most samples in Dq(X) as in-distribution

samples, potentially including some true OOD samples. In this case, the observation
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bias decreases while the structural bias increases. Conversely, an excessively overfitted

ood score(x) might classify most non-observed samples (i.e., x /∈ Dp(X)) as OOD sam-

ples, even though some of them are indeed in-distribution. In this case, the data sparsity

mitigation of the OODIS method is minimal, and the OODIS MRF and the OODIS sur-

rogate model are not very different from the empirical CRF estimator and the ordinary

surrogate model.

4.4 Experiments

In this section, we conduct two sets of experiments to demonstrate that our proposed

in-distribution and OODIS refinement methods can produce more informative SVAs. The

first experiment focuses on local feature attributions that explain model predictions, while

the second focuses on global feature attributions that explain model performance on the

entire dataset.

4.4.1 Informative Local Explanations of Model Predictions

Experiment settings: Our first set of experiments is conducted on the Bike Sharing

Dataset Fanaee-T (2013) with 17,389 records of hourly counts of bike rentals in 2011-

2012 in the Capital Bike Sharing system. There are 11 features following an unknown

joint distribution p(X). The explanation task of interest is to assign feature attributions for

the predictions made by an xgBoost regression model trained on a training set of 15,379

samples and tested on a test set of 2,000 samples. We compare the performance of our

refinement methods applied on the MRF (SHAP-M) and surrogate model (SHAP-S) to

popular existing SVA methods, namely TreeSHAP (Lundberg et al., 2020, 2018) and base-

line SHAP1 (SHAP-B) (Sundararajan & Najmi, 2020).

1SHAP-B has the removal function f̂S(xS) = f(xS , x
b
S̄
) for a baseline value xb. Specifically, in our

experiments, we use the data mean as the baseline.
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Under-informativeness Correction

First, we demonstrate that our proposed refinement methods can effectively correct the

distribution drift caused by the feature independence assumption of the MRF method, and

thus address the corresponding under-informativeness.

Distribution drift correction: To detect the distribution drift, we use the methods pro-

posed in Section 3.5. Specifically, we train an OOD classifier ood score(x) (xgBoost) on

a dataset that contains samples observed from the original dataset (labeled as 1) and hybrid

samples from the assumed distribution qmarginal(X) (labeled as 0). Based on this OOD

classifier, we apply the in-distribution and OODIS refinement methods on the above hybrid

samples (generated from qmarginal(X)) to generate two other sets of hybrid samples: one by

removing the estimated OOD samples (with t = 0.3); another by resampling according to

the importance weight w(x). The distribution of ood score(x) for samples x from each of

the four data sets are compared using density histograms in Figure 4.1. If those data sets are

produced from the same distribution (i.e., no distribution drift), the corresponding density

histograms of ood score(x) should be identical. We can see that the histogram for hybrid

samples generated from qmarginal(X) (shaded green) greatly deviates from the histogram

for samples from the original dataset (red line). In contrast, hybrid samples generated using

our refinement methods closely resemble the original samples, with the OODIS refinement

method (blue line) performing slightly better than the in-distribution counterpart (yellow

line). Furthermore, the total variation distance (TVD) (in Equation 35) between the his-

tograms generated by the sample set from qmarginal(X) and the original dataset is as high

as 0.633, implying a significant distribution drift. The proposed in-distribution and OODIS

refinement methods greatly reduce this value to 0.196 and 0.082, respectively. This sug-

gests that the in-distribution refinement can drastically mitigate the distribution drift, and

the OODIS refinement can even almost perfectly eliminate the distribution drift.
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4.4.2 Informative Global Explanations - Gene Retrieval

Experimental setting This experiment explores the application of global feature attribu-

tions for scientific discovery, exemplified by a gene retrieval task (Chen et al., 2020). In

particular, we employ the Mechanisms of Action (MoA) Prediction Dataset from Kaggle

(inversion et al., 2020), containing hundreds of gene expression features. In particular, we

randomly select 20 true genes X from the dataset, then simulate another 20 synthetic genes

X ′ that are highly correlated to the selected true genes (Pearson correlations > 0.99). Ad-

ditionally, we introduce 200 noisy genes Z randomly generated from Gaussian distribution

N (0, 1). This results in a dataset consisting of 40 informative genes (including synthetic

genes X ′) and 200 uninformative genes. A synthetic disease target variable is generated

using the 40 informative genes following one of the two models below:

• Linear model:

Y = sigmoid

(
1

40

40∑

i=1

Xi

)
> 0.5 (50)

• Nonlinear model:

Y =

(
1

40

40∑

i=1

cosX2
i

)
> 0.9 (51)

Our objective is to retrieve the 40 genes that are informative to the target disease variable

by explaining a classification model trained on 1,500 samples of the generated dataset

and tested on another 1,000 samples. For Y generated from Model (50), we consider a

logistic ElasticNet model (test accuracy 0.958). For Y generated from Model (51), due to

poor classification performance of the logistic ElasticNet model (test accuracy 0.648), we

additionally consider an xgBoost classification model (test accuracy 0.879).

Global Explanation Methods Building upon the work of I. Covert et al. (2020), we em-

ploy the cross-entropy-based SVA, known as Shapley additive global importance (SAGE),

to identify the informative genes. SAGE offers insights into intrinsic relationships between
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features and the target variable when both the original model f and the CRF fS are op-

timal. To achieve this, we compute SAGE values for all 240 genes using three removal

functions: the baseline (SAGE-B), the surrogate model (SAGE-S), and the OODIS surro-

gate model (SAGE-OS). Due to the high computational cost in the global setting, the MRF,

in-distribution MRF, and OODIS MRF are not considered in this experiment. We compare

the performance of the SAGE methods to two commonly used global feature importance

methods, namely the absolute value of the feature coefficients in the logistic ElasticNet

model (since regression models are inherently interpretable) and the permutation feature

importance method (PFI) (Fisher, Rudin, & Dominici, 2019; Pedregosa et al., 2011).

Evaluation Metrics We evaluate the gene retrieval performance using three evaluation

metrics: the total operating characteristic (TOC) curve (Pontius & Si, 2014), the precision-

recall (PR) curve (Manning, 2009; Raghavan, Bollmann, & Jung, 1989), and the exclu-

sion curve (Jethani, Sudarshan, Covert, Lee, & Ranganath, 2022; Petsiuk, Das, & Saenko,

2018). Specifically, the TOC and PR curves are employed to compare the true and retrieved

genes where a higher area under the curve (AUC) suggests better performance. While the

TOC and PR curves offer valuable metrics, their practical application is limited in real-

world cases where the ground truth set of informative genes is often unknown. To address

this, the exclusion curve is proposed, which essentially tracks the degradation of model

performance (e.g., classification accuracy) as features are progressively excluded based on

their assigned importance. If the global feature attribution method accurately captures the

true information each feature holds regarding the target variable, the exclusion curve should

exhibit a significant drop in performance as informative features are removed. This trans-

lates to a lower AUC for the exclusion curve, referred to as the exclusion AUC by Jethani

et al. (2022). In this experiment, the exclusion curve monitors validation accuracy, derived

from averaging 50 validation results through Monte-Carlo Cross Validation (Xu & Liang,

2001).
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Results Our results are plotted in Figures 4.7 and 4.8. In the case where the target

disease variable is generated from a linear model (50), our proposed SAGE-OS method has

the best performance on all three evaluation curves. In more detail, the top 40 genes with

the highest global feature importance scores produced by the proposed SAGE-OS method

contain 39 out of the true 40 genes, implying a near-perfect gene retrieval performance.

The only missing gene is closely ranked at the 41st place. The ElasticNet Coefficient and

SAGE-B methods also produce good results, with their top 40 genes containing 35 and

36 true genes, respectively. This is because the true model is linear and the ElasticNet

model considers feature correlation to a certain extent (Chen et al., 2020). Furthermore, by

excluding the top 20% important genes evaluated using the SAGE-OS method, the model

accuracy decreases to 0.506. In comparison, this value is 0.55, 0.61, 0.65, and 0.68 when

using the SAGE-S, SAGE-B, ElasticNet coefficient, and PFI methods, respectively. In the

nonlinear case, our proposed SAGE-OS method significantly outperforms other methods

on all three evaluation curves. It perfectly recovers all the true 40 genes by assigning

them the highest importance scores. In contrast, the performance of ElasticNet coefficients

deteriorates greatly as the true model becomes nonlinear: the top 40 genes with the highest

absolute coefficients value contain only 17 true genes. In this case, excluding the top

20% important genes with SAGE-OS reduces the model accuracy to 0.51, while the model

accuracy remains above 0.65 when using other global feature attribution methods.

4.5 Related Work

Our paper aims to correct explanation errors caused by existing SVA methods. Many

papers have discussed how existing SVA methods make unreasonable explanations (Chen

et al., 2023; Huang & Marques-Silva, 2023; I. E. Kumar et al., 2020). However, these

papers did not provide remedies for the illustrated problems. Other papers proposed new

SVA methods (Aas et al., 2021; Frye et al., 2020; Mase et al., 2019; Sundararajan & Najmi,
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2020), however, these methods only target one specific problem, leaving the others unre-

solved (Chen et al., 2023). In Chapter 3, we formalized a comprehensive error analysis

framework for SVA methods, where the explanation errors are decomposed into observa-

tion and structural biases. Our refinement methods target both these biases, resulting in

more informative SVAs.

There have also been papers (Slack et al., 2020; Taufiq et al., 2023; Yeh et al., 2022)

that use OOD detection techniques. Specifically, Slack et al. (2020) uses an OOD classifier

to create adversarial attacks on SVA methods. Yeh et al. (2022) use an OOD classifier

for density estimations that help avoid such adversarial attacks. Although the on-manifold

restricted method proposed by Taufiq et al. (2023) is similar to our in-distribution method,

they focus on interventional SVAs while we focus on observational SVAs.

Finally, although OOD detection and importance sampling are well-established meth-

ods in the literature, to the best of our knowledge, we are the first to combine these two

methods and apply them to model explanation tasks using SVAs.

4.6 Conclusion

In this chapter, we seek to correct the observation and structural biases produced by

existing SVA methods, resulting in under- and over-informative explanations. To do so, we

propose two novel solutions: the in-distribution and out-of-distribution importance sam-

pling (OODIS) refinement methods. The two methods aim to alleviate the data sparsity and

untenable feature independence assumption problem by increasing the sample size while

correcting the distribution drift. Via extensive experiments, we show that our refinement

methods outperform existing SVA methods in both local and global explanation tasks, pro-

ducing local feature attributions that are simultaneously less over- and under-informative,

and retrieving correct global feature-target informational dependency. In future work, we

wish to apply our methods to facilitate business decisions and scientific discovery.
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Chapter 5

A Universal Standardization for Global

Model Behaviors on Imbalanced Data

5.1 Introduction

While Chapters 3 and 4 focus on addressing challenges related to the first element,

feature removal, of the removal-based framework (detailed in Section 2.4), this chapter

shifts its focus to the second element: model behavior. In the context of SVA explanations,

specifying the model behavior to be explained is crucial. This behavior could represent an

individual prediction (e.g., in local SVA) or a performance metric evaluated over the entire

dataset (e.g., in global SVA). In this chapter, we concentrate on global model behavior, with

a particular emphasis on classification performance metrics.

Classification is an important ML task with wide applications in fields such as finance,

healthcare, business, and more. In practice, a classifier is trained on huge amounts of data,

thus interpretable and reliable performance metrics are important to evaluate and track the

classifier’s performance and notify the developer if the classifier needs to be retrained.

There have been many performance metrics proposed in the literature (Fawcett, 2006;

Japkowicz & Shah, 2011; Powers, 2020) to evaluate classifiers, such as precision, f1 Score,
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Matthews Correlation Coefficient (MCC), Receiver Operating Characteristic (ROC) curve,

Precision-Recall curve (PRC), lift curve, etc. However, researchers have not agreed on

a single general-purpose classification performance metric (Chicco, TÈotsch, & Jurman,

2021). In fact, in different applications, different performance metrics are preferred. For

example, while the ROC curve is preferred for balanced data, the PRC and f1 Score are

more favorable in imbalanced datasets (Saito & Rehmsmeier, 2015). On the other hand,

Chicco et al. (2021) recommends the MCC for reliable classification. Since each perfor-

mance metric has a different range of values, which depends on the test set, and a different

interpretation, there are no universal criteria to evaluate the goodness of classifiers and

model drift detection.

Furthermore, most classification tasks are trained and tested on imbalanced data, e.g.,

fraud detection, disease diagnosis, or custom recommendations. As many performance

metrics are sensitive to the imbalance rates, it is hard to evaluate and monitor classifica-

tion performance using the preferred performance metrics if the test sets have different

imbalance rates. Such sensitivity is studied by Luque, Carrasco, MartÂın, and de las Heras

(2019), however, they did not suggest a method to address the problems caused by class

imbalance. Koyejo, Natarajan, Ravikumar, and Dhillon (2014) propose a generalization of

performance metrics, however, their focus is on utilizing such metrics to train classifiers

rather than evaluate them. They also do not consider the issue of class imbalance.

In this work, we aim to provide a universal standardization to evaluate classification

performance that can applied to any confusion matrix-based performance metrics while

alleviating the dependency on class imbalance. Our key idea is to evaluate classification

performance relative to all possible performances given the test set. In particular, we pro-

vide a detailed mathematical formulation, justifications, explanations, and experiments to

demonstrate how such an idea can be implemented. Our contributions are summarized as

follows.
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• We formalize a mathematical framework for confusion matrix-based classification

performance metrics. We categorize them into labeling and scoring metrics and de-

rive the common properties of each type of metric.

• We propose a universal standardization called the outperformance score function,

or OPS function, which is essentially the head probability of the observed perfor-

mance with respect to a distribution of possible performances given the class imbal-

ance rates. The function can be applied to any confusion matrix-based performance

metrics, and the resulting outperformance scores share the same scale and simi-

lar interpretation. Hence, our outperformance scores, as well as their corresponding

global SVA, termed OPS-SAGE, can be compared across datasets and metrics of the

same category.

• We present how we select the assumed distribution of performances that are used to

compare to the observed performance. We further demonstrate how to calculate the

outperformance scores by setting reasonable distributions of possible performance

given the imbalanced rates.

• We illustrated via experiments how our method can be used on different performance

metrics. We find that our proposed outperformance scores are robust to class imbal-

ance and thus can be used to compare or track performances over different datasets.

Furthermore, the OPS-SAGE can be applied to explain the model drift.

5.2 Classifier Performance Metrics

5.2.1 Preliminary

Let us consider a binary classification problem, where the goal is to predict label Y ∈

{0, 1} based on features X = (X1, ..., Xd) ∈ X ⊂ R
d using the observed data set Dtrain =
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{(xi, yi)}mi=1, where yi is the true class label of input data point xi, i = 1, ...,m. A classifier

f̂ can be obtained by training a classification model f on the data set Dtrain. Depending on

the classification model f , for an input x ∈ X , the classifier f̂ can output either a binary

label f̂(x) ∈ {0, 1}, or a score f̂(x) ∈ [0, 1]. This score is usually related to the probability

that the instance associated with input x has class membership 1 instead of 0. It also can

be thought of as the quantified relevance to the positive class (label 1). When a binary label

is produced, the predicted class membership ŷ is equal to the classifier’s output f̂(x). On

the other hand, when a score is produced, a threshold t must be applied to determine the

instance’s predicted class membership

ŷ =





1 if f̂(x) ≥ t

0 otherwise

. (52)

The performance of the classifier f̂ can be evaluated using a test data setDtest = {(xi, yi)}ni=1

of size n. Specifically, the classifier’s outputs {f̂(xi)}ni=1 are compared to the true labels

{yi}ni=1 using some performance metrics. Many performance metrics are defined based on

the confusion matrix.

5.2.2 Confusion Matrix

For each instance i in the test set Dtest, there are four possible combinations of the

actual label yi and the predicted label ŷi, that is {(1, 1), (0, 1), (1, 0), (0, 0)}. The confusion

matrix is a 2 × 2 table that counts the number of instances in the test set Dtest that fall

into each of these four value combinations. As illustrated Table 5.1, the confusion matrix

consists of four elements {n1, n2, n3, n4}, where n1 =
∑n

i=1 I(yi = 1, ŷi = 1), counting

the true positives (TP); n2 =
∑n

i=1 I(yi = 0, ŷi = 1), counting the false positive (FP);

n3 =
∑n

i=1 I(yi = 1, ŷi = 0), counting the false negative (FN); and n4 =
∑n

i=1 I(yi =
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Table 5.1: A confusion matrix

True labels

1 0

Predicted labels
1 n1 n2

0 n3 n4

0, ŷi = 0), counting the true negative (TN). It is easy to see that n1 + n2 + n3 + n4 = n.

From the confusion matrix, we can calculate the Type-I error α, Type-II error β and the

class imbalance rate (also called prevalence) π as follows.

α =
n2

n2 + n4

, β =
n3

n1 + n3

, and π =
n1 + n3

n
. (53)

WLOG, we say that class imbalance happens when π is low, that is, when there are much

fewer instances in the positive class (true label 1) than in the negative class (true label 0).

Lemma 2. For a confusion matrix, {n, π, α, β} is a re-parametrization of {n1, n2, n3, n4}

when π ∈ (0, 1) (i.e., when α and β are well-defined).

Proof. We can write {n1, n2, n3, n4} as functions of {n, π, α, β}, i.e.

n1 = nπ(1− β), n2 = nπβ, n3 = n(1− π)α, and n(1− π)(1− α).

The Jacobian for this transformation is




π(1− β) n(1− β) 0 −nπ

πβ nβ 0 nπ

(1− π)α −nα n(1− π) 0

(1− π)(1− α) −n(1− α) −n(1− π) 0



.

The determinant of the Jacobian is n3π(1 − π), which is non-zero when π ̸= 0 and

π ̸= 1. Thus, the Jacobian is nonsingular, and {n, π, α, β} is a re-parametrization of
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{n1, n2, n3, n4}.

Lemma 2 shows that we can identify a confusion matrix based on the sample size

n ∈ N, the class imbalance rate π ∈ (0, 1), the Type-I error rate α ∈ [0, 1] and the Type-II

error rate β ∈ [0, 1]. This is convenient, compared to {n1, n2, n3, n4}, especially when we

want to focus on the class imbalance rate π. As mentioned in Section 5.2.1, many classifier

performance metrics are calculated based on the confusion matrix. We classify them into

two categories: labeling metrics and scoring metrics.

5.2.3 Labeling Metrics

Labeling metrics ML are computed from a single confusion matrix C of the predicted

and actual labels {(yi, ŷi)}ni=1. Examples of labeling metrics are recall, precision, and

f1 score (Powers, 2020), and the Matthews correlation coefficient (MCC) (Chicco et al.,

2021), the formulas of which are given in Table 5.2. We can see that these metrics are only

dependent on π, α, β, but independent of the test data size n. This illustrates the usefulness

of the new parametrization.

Table 5.2: Formulas of some labeling metrics terms of two parameterizations of the confu-

sion matrix.

Metrics In terms of {n1, n2, n3, n4} In terms of {n, π, α, β}
Recall n1

n1+n3
1− β

Precision n1

n1+n2

π(1−β)
π(1−β)+(1−π)α

f1 score 2n1

2n1+n2+n3

2π(1−β)
π(2−β)+(1−π)α

MCC n1×n4−n2×n3√
(n1+n2)(n1+n3)(n4+n2)(n4+n3)

1−α−β√
(1−α+ π

1−π
β)(1−β+ π

1−π
α)

5.2.4 Scoring Metrics

When predicting labels of an instance given input x, instead of directly outputting a

binary label ŷ ∈ {0, 1}, many machine learning classifiers return a numeric score p =

82



f̂(x) ∈ [0, 1]. The predicted label is obtained by specifying a threshold t ∈ (0, 1) and

then applying it to Equation (52). Thus, given the true labels {yi}ni=1 and classifier output

{f̂(xi)}ni=1, a threshold t uniquely defines a confusion matrix C. Although the threshold

t = 0.5 is often used, there is no stringent criterion of threshold selection due to two main

reasons. First, the prediction score p = f̂(x) is not well-calibrated, because it does not

represent the correct prediction likelihood despite being often interpreted as the predicted

probability (Guo, Pleiss, Sun, & Weinberger, 2017; Naeini, Cooper, & Hauskrecht, 2015;

Niculescu-Mizil & Caruana, 2005). Second, the threshold should be flexibly selected with

regard to different applications. For example, a high threshold is usually used in custom

marketing to reduce the Type-1 error. On the other hand, a low threshold is preferred in

risk detection to control for the Type-2 error.

This motivates the use of scoring metrics that summarize classifiers’ overall perfor-

mance for all possible thresholds. Essentially, they visualize certain trade-offs for all pos-

sible thresholds in curves. For example, the Receiver Operating Characteristics (ROC)

curve (Fawcett, 2006) visualizes the trade-off between a low Type-1 error rate α and a high

recall 1 − β. Another example is the Precision-Recall curves (PRC) (Powers, 2020) visu-

alizes the trade-off between a high precision and a high recall. Table 5.3 summarizes the

formulas of popular scoring metrics curves. We again see that the formulas of the x- and

y-axes for these curves do not involve n.

Table 5.3: Formulas of some scoring metrics terms of {n, π, α, β}.

Curve ϕx: x-axis ϕy: y-axis ideal AUC

ROC Type I error: α recall: 1− β 1

PRC recall: 1− β precision:
π(1−β)

π(1−β)+(1−π)α 1

Lift Curve percentage:1π(1− β) + (1− π)α lift:
(1−β)

π(1−β)+(1−π)α 1− log π

Gain Curve percentage: π(1− β) + (1− π)α recall: 1− β 1− π
2

It is not trivial or possible to find the formula (relating the x- and y-axis) of the curve.

1Percentage means the percentage of instances predicted as positive by the classifier
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Hence, in practice, the curves are approximately plotted from points computed based on

a sequence of J thresholds 1 = t1 > t2 > . . . > tJ−1 > tJ = 0. In this case, we can

say that the scoring metrics MS are approximated from a sequence of confusion matrices

C1, C2, ..., CJ obtained by decreasingly varying the thresholds t from 1 to 0.

To summarize the curve into a single numeric value, people often calculate the area

under the curve, i.e., AUC. For all curves, the larger the AUC the better the performance.

The last column of Table 5.3 shows the ideal AUC when the predicted labels perfectly

match the true labels. We can divide the AUC to the ideal value to obtain the Normalized

AUC or NAUC, whose values range from 0 to 1, i.e.,

NAUC =
AUC

ideal AUC
=

AUC

AUC induced by the ideal classifier
. (54)

The NAUC measures how close the selected classifier is to the ideal classifier that predicts

everything correctly.

5.2.5 Issues with Confusion Matrix-Based Performance Metrics

Dependence on Imbalance Rates From Tables 5.2 and 5.3, we can find that some met-

rics, such as ROC, depend only on the classification errors {α, β}, but not on π, thus they

are robust to class imbalance. However, due to the loss of information for class distri-

bution, they might be misleading and less informative. For example, as analysis in (Lobo,

JimÂenez-Valverde, & Real, 2008), ROC has some drawbacks including the decoupling from

the class skew. On the other hand, most other metrics such as f1 score, MCC, and PRC,

include π in their formulas and hence are more informative and preferable when the data

is imbalanced. For example, the study in (Saito & Rehmsmeier, 2015) shows that PRC

is more informative than ROC when evaluating classification performance on imbalanced

data. However, through π, these metrics may be sensitive to class imbalance. Specifically,
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π can affect the calibrations of these metrics, making it difficult to measure the quality of

a classifier. A low value does not necessarily indicate a poor quality. For example, the

value of f1 = 0.6 suggests a poor classifier when data is balanced, i.e., π = 0.5. When

π = 0.1, on the contrary, f1 = 0.6 suggests a good classifier. As a result, a value decrease

is not necessarily a quality degradation. Changes in π can cause significant fluctuations

in these metrics, making them unreliable to detect drifts in a classifier’s performance. In

applications, the prevalence π of the test set, such as the COVID infection rate, often varies

over time. Hence, it is not good practice to monitor classifier performance by comparing

the values of these metrics on test sets of different time periods. Moreover, π can even

change the range of these metrics, making them not legitimate to be averaged over mul-

tiple classes or test sets with different class ratios or imbalance rates. As a result, it is

difficult to extend these performance metrics to multi-class evaluation and apply them for

cross-validation.

No Free Lunch There is an ongoing discussion about what metrics should be used to

evaluate the performance of classification models (Chicco et al., 2021; Hossin & Sulaiman,

2015). In fact, different applications may prefer different performance metrics. For ex-

ample, lift curve is preferred in custom recommendation, and PRC is preferred in event

identification. Since different performance metrics have different ranges of values, there is

no universal standard to evaluate the classification performance.

5.3 A Universal Standardization

To address the problems discussed in Section 5.2.5, we aim to mitigate the sensitivity of

certain performance metrics on class imbalance rates and thus provide a universal standard

for classification performance evaluation.
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Definition 5. A Universal Standardization of classification performance evaluation is a

methodology that ensures performance metrics are consistently calibrated across different

test sets, regardless of data imbalance. Specifically, a universally standardized metric must

satisfy the following criteria:

(1) a decrease in its value always suggests a quality degradation;

(2) a common evaluation criterion (e.g., a fixed threshold) can be uniformly applied

across all test sets to judge a classifier’s quality;

(3) its values can be meaningfully averaged across multiple classes or test sets, regard-

less of class distributions or imbalance rates.

In this work, we propose that universal standardization can be achieved by evaluating

the relative performance of a classifier with respect to a distribution of possible perfor-

mances conditioned on the class imbalance rates. To gain more insight into this conception,

let’s consider a metaphor. We can think about classifiers as students, and the corresponding

learning task as a certain course. To evaluate their performance for this course (learning

task), the students (classifiers) are usually tested on some given exams (test sets). How-

ever, the average value of the testing grades (metrics) always decreases as exams (test sets)

become more difficult (imbalanced). Hence, it is not a good idea to judge how good a stu-

dent (classifier) is depending simply on the grade (metric) without considering the effect

of exam difficulty (data imbalance). Let’s assume a difficult exam to be the university en-

trance examination, then what is the common admission criterion? The answer is student

rank. For example, a student, who achieves a grade of only 70/100 but is ranked in the top

5% of all the candidates, can also be considered as an excellent student and will be selected

by most universities.

Similarly, to fairly judge how good a classifier is, we need to consider all performances

that can be possibly achieved given the test set. In other words, we need to consider the
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distribution of possible performances conditioned on the test set. Note the information that

the test set contributes to a confusion matrix is completely captured by π and n. However,

as seen in Sections 5.2.3 and 5.2.4, most confusion-based metrics do not depend on n. Con-

ditioning on n may make the standardization unnecessarily dependent on n. Specifically,

the space of the possible performances being compared to, which corresponds to the space

of possible values of α and β, depends on n. This may cause the standardization to be

incomparable across datasets and metrics.

We thus consider two classes of confusion matrix-based performance metrics which

depend on only the Type I and Type II errors and the class imbalance rate. Let ML denote

a labeling metric and MS denote a scoring metric. As discussed in Sections 5.2.3 and

5.2.4, labeling metrics are a function of a single confusion matrix while scoring metrics

can be estimated by a sequence large enough number of confusion matrices. Thus, ML is

a function of α, β and π, and MS can be estimated by M̂S(α1, α2, ..., αJ , β1, α2, ..., βJ , π),

where (αj, βj, π) encodes the information from confusion matrix Cj corresponding to a

threshold tj . WLOG, we assume that the higher value of M indicates better classification

performance (for those matrices M that the lower value indicates better performance, we

can consider −M, or 1
M

if M > 0). Let uppercase notation A,B and P denote the random

variable version of α, β and π, respectively.

Definition 6 (Outperformance Score Function). Consider a classifier f̂ evaluated on a

given dataset Dtest = {(xi, yi)} using a performance metrics M, which return a perfor-

mance score µ. The outperformance score (OPS) function can then be defined as:

OPSM(µ; π) = Pr{M < µ|P = π}. (55)

Specifically, for a labeling metric ML,

OPSML
(µ; π) = Pr{ML(A,B, P ) < µ|P = π},
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and for a scoring metric MS estimated using J confusion matrices,

OPS
M̂S

(µ; π) = Pr{M̂S(A1, ..., AJ , B1, ..., BJ , P ) < µ|P = π},

where the probabilities are taken with respect to an assumed joint distribution given P of

(A,B) or (A1, ..., AJ , B1, ..., BJ), respectively.

Essentially, the outperformance score is the probability that the observed performance

outperforms a random performance given the class imbalance rate. Thus, when applied

to any confusion matrix-based classification performance metrics, the returned outperfor-

mance score always ranges within [0, 1], and the higher the outperformance score, the bet-

ter the classification performance. This provides a universal standard to evaluate classifiers

and a universal interpretation. As a probability, the outperformance score has the following

linear property:

Property 6.1 (Linear Property). If performance metrics M1 and M2 satisfy M2 = aM1+b

where a > 0 and b are constants, then M1 and M2 has the same outperformance scores.

Proof. Let M1 and M2 return values of µ1 and µ2 = aµ1+ b, respectively. By definition 6,

we have

OPSM2(µ2; π) = Pr{M2 < µ2|P = π}

= Pr{aM1 + b < aµ1 + b|P = π}

= Pr{M1 < µ1|P = π}

= OPSM1(µ1; π).

Given P = π, the property also holds if a and b are functions of π. This linear property
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is useful because many existing performance metrics have linear relations. For example,

lift = precision/π, that is, their OPS function returns the same value for the same classifier.

In Definition 6, the outperformance score is taken with respect to an assumed joint dis-

tribution of Type I and Type II errors given the imbalance rate. Such an assumed distribu-

tion needs to satisfy the properties and constraints of confusion matrices. In the following,

we describe how we choose such distributions for labeling and scoring metrics.

5.4 Outperformance Score of Labeling Metrics

Note that labeling matrices are functions of a single confusion matrix. For independent

instances (yi, ŷi)
n
i=1, in which the probabilities that an instance i falls into each of the four

categories {(1, 1), (0, 1), (1, 0), (0, 0)} are equal, given the class imbalance rate, Type I and

Type II errors are independent. Indeed, the cells of confusion matrices that summarize such

instances follow an equiprobability multinomial distribution. Since conditioning on π im-

plies conditioning on subtotals n1+n3 and n2+n4, properties of multinomial distributions

dictate that subvectors (n1, n3) and (n2, n4) are independent. Together with Equation (53),

this implies that for fixed test size and given the imbalance rate, Type I and Type II errors

are independent.

We thus consider the case where Type I error A and Type B error B independently fol-

low Unif[0, 1] distribution when calculating the outperformance score of labeling metrics.

This implies that all possible performances are equally likely. We discussed in Section 5.3

that n can limit possible values of Type I and Type II errors. Hence, by assuming A and

B independently follow Unif[0, 1] distribution, we implicitly assume infinite test size n.

Thus, a careful interpretation of the outperformance score (for labeling metrics) is ºthe

probability that the classifier outperforms random (equally likely) performances, given that

it gives a similar performance on an infinitely large test set with class imbalance rate πº.

The above-described distribution of labeling matrices can be represented by a simple
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divides the unit square into two parts, where the left part indicates better performance

(f1 > µ), and right part indicates worse performance (f1 < µ). The outperformance

score OPSf1(µ; π) is the area of the right part, representing the proportion of all possible

performances that are outperformed by f1 = µ. Moreover, as shown in Figure 5.2 (c), the

imbalance rate π changes the distribution of f1 score, and for the same value f1 = 0.6,

the outperformance score and thus the quality of the classifier increases as π decreases.

Hence, lower values of the f1 score could be satisfactory for highly imbalanced data while

inadequate for balanced data.

5.5 Outperformance Score of Scoring Metrics

Recall that scoring metrics are estimated using a sequence of confusion matrices cor-

responding to a sequence of thresholds t1, ..., tJ . Given π, this in turn corresponds to a

sequence of Type I errors α1, ..., αJ and a sequence of Type II errors β1, ..., βJ . According

to Equation (52), if tj < tk, then the number of predicted positive labels using threshold tj

will be greater than that using tk. Thus, αj > αk and βj < βk. This shows the trade-off

between preferably low Type I and Type II errors when choosing the threshold. Never-

theless, when calculating the outperformance score for scoring metrics, the assumed joint

distribution of (A1, A2, ..., AJ , B1, B2, ..., BJ) should respect the property that As and Bs

have opposite ordering, that is if Aj < Ak, then Bj > Bk.

It is challenging to specify such a distribution so that all possible performances are

equally likely. Moreover, if such a distribution exists, it would also be difficult to de-

rive analytic formulas for the OPS function. Thus the outperformance scores will be es-

timated using Monte Carlo approximation. To do it, we propose a Directed Binary Tree

(DBT) distribution, which is easy to sample from, to represent the joint distribution of

(A1, A2, ..., AJ , B1, B2, ..., BJ). In more details, let E = (A,B) and θ = (lA, uA, lB, uB)

where (lA, uA) is the possible range of A and (lB, uB) is the possible range of B. We can
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draw a sample from the DBT distribution by first drawing the Type I and Type II errors

(α1, β1) independently from Unif[0, 1]. The obtained sample α1 and β1 each divides the

range [0, 1] into two parts. These parts can be used to draw the next two sets of errors:

(α2, β2) drawn uniformly from the left part of α1 and right part of β1, and (α3, β3) from

the right part of α1 and left part of β1. The next four samples can be drawn similarly using

(α2, β2) and (α3, β3), and so on. This procedure returns a sample (α1, ..., αJ , β1, ..., βJ) that

satisfy the opposite ordering we discussed above. We summarize the sampling procedure

in Algorithm 1 and visualize it using a directed binary tree, as illustrated by Figure 5.3.

Algorithm 1: Sampling from the Directed Binary Tree distribution

Input : Number of Iteration K
Output: A sample from the Directed Binary Tree distribution of J = 2K−1 + 1

points

1 ActiveRange← list that contains (0, 1, 0, 1);

2 NewActiveRange← empty list;

3 SampleSet← empty list;

4 for k ← 1 to K do

5 foreach l ∈ ActiveRange do

6 Sample α ∼ Unif[lA, uA] and β ∼ Unif[lA, uA];
7 Add e = (α, β) into SampleSet;
8 Add θl = (lA, α, β, uB) and θr = (α, uA, lB, β) into NewActiveRange ;

9 end

10 ActiveRange← NewActiveRange;

11 NewActiveRange← empty list;

12 end

13 return SampleSet.

With G samples from the binary tree distribution, we can estimate the outperformance

score to be

OPS
M̂L

(µ; π) ≈ 1

G

∑

g

I

(
M̂L(α

(g)
1 , ..., α

(g)
J , β

(g)
1 , ..., β

(g)
J , π) < µ

)
. (60)

In practice, a large number of samples can be generated once and stored to calculate any

outperformance scores in the future.
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Similarly, as depicted in Figure 5.4b, for a given point (e.g., (0.8, 0.5)), the outperformance

score increases as π decreases. This indicates that, in imbalanced data, achieving high

recall does not necessarily require high precision, and lower precision may still reflect

good performance.

In addition to the PRC, we also discuss the outperformance score of another widely

used metric, the lift curve, in Appendix C.2.

5.6 A Universally Standardized Global Feature Importance

In the above, we introduced the outperformance score as a form of universal standard-

ization for classification performance evaluation. Can a similar universal standardization be

applied to the evaluation of feature importance? The answer is affirmative. By utilizing the

SVA method in conjunction with the outperformance score, we can establish a universally

standardized framework for feature importance.

As discussed in Section 2.5.2, for global SVAs, we need to design a value function

vfS(S) = M(fS,Dp(XS, Y )) targeted to a specific performance metric M. Essentially, the

global SVA ϕ = (ϕ1, . . . , ϕd) attributes the achieved performance score M(f,D(X, Y ))

into each feature Xi. Hence, the performance metric M and global SVA ϕ are measured

in the same scale. Since the outperformance score is a universally standardized metric,

selecting it as the target metric M implies that the corresponding global SVA will also

function as a universally standardized metric for measuring feature importance. To align

with the terminology introduced by I. Covert et al. (2020), we refer to the outperformance

score based global SVA as OPS-SAGE2. Since OPS-SAGE is a universally standardized

feature importance score, a reduction in its value signifies a corresponding decline in the

importance of the associated feature, regardless of any data imbalance.

2SAGE: Shapley additive global importance, which is originally targeted to the cross entropy by I. Covert

et al. (2020).
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Property 6.2. If a model f exhibits a performance drift, M(f,D)−M(f,D′), across two

test sets D and D′, then the SVA for this performance drift, denoted as ϕM(f,D)−M(f,D′), is

equal to the SVA drift ϕM(f,D) − ϕM(f,D′) corresponding to M. In other words, the drift in

the model’s performance can be explained by the drift in the features’ importance.

The proof of Property 6.2 is straightforward from the linearity property of Shapley value

(see Section 2.5.2). This property allows us to analyze model degradation (i.e., a decline in

outperformance score) by simply examining the change in the OPS-SAGE scores. In par-

ticular, when the OPS-SAGE is an informative SVA (see Section 3.2), its variation reflects

a change in the underlying information patterns.

5.7 Experiments

In this section, we demonstrate the use of our proposed outperformance score and OPS-

SAGE method to evaluate and explain three types of classification performance: predic-

tion performance (with a threshold), risk identification performance, and recommendation

performance. The experiments are conducted on two datasets: the Heart Disease Health

Dataset (Teboul, 2022) and the Loan Default Dataset (NIKHIL, 2019). However, in this

section, we focus exclusively on analyzing the experimental results from the Heart Disease

Health Dataset, while the results for the Loan Default Dataset are presented in Appendix D.

Heart Disease Dataset This dataset contains 253,680 responses from the health-related

telephone survey conducted by the Behavioral Risk Factor Surveillance System in 2015.

The goal of the classification task is to predict whether an individual has heart disease

using 21 input variables. To exemplify the universal standardization property of the outper-

formance score and OPS-SAGE, we generate three distinct groups of individuals as testing

sets for evaluation, as described below:
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• (General group) This test set is randomly sampled from the original dataset, with

approximately 9% of individuals labeled as having heart disease (i.e., positive class).

• (Old-age group) This test set is randomly sampled from individuals that are more

than 70 years old, with around 19% of them having heart disease.

• (Hospital group) This test set is independently sampled in each class, with a class

ratio of 3:7 (i.e., 30% of them having heart disease). This group is presumed to

represent individuals visiting a hospital, as it has a relatively higher proportion of

positive cases.

The summary of these test sets is given in Table 5.4. An XgBoost classifier is trained on

the remaining data samples. The performance of the classifier is then evaluated on each of

the three test groups, with detailed analysis provided in the subsequent sections.

Table 5.4: Summary of the test sets.

Info General Group Old-age Group Hospital Group

Sample Size 9,000 9,043 9,206

Class Imblance Rates 0.091 0.19 0.3

5.7.1 Evaluate and Explain Prediction Performance with a Threshold

The Xgboost classifier can make predictions by selecting a threshold t, and its perfor-

mance can be evaluated by labeling metrics. In this experiment, we select the threshold

t = 0.19, which is determined by maximizing the f1 score of a validation set. To eval-

uate the prediction performance with this threshold, we consider the f1 score, MCC, and

their outperformance scores, i.e., OPS(f1) and OPS(MCC). The values of these metrics

are presented in Table 5.5. We can see that the Xgboost classifier returns similar results

for both the f1 score (0.408 and 0.453) and MCC (0.348 and 0.3) on the general and old-

age groups, while significantly higher values are observed for the hospital group, with an
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Table 5.5: The Xgboost classifier’s prediction performance given t = 0.19.

Test Sets f1 OPS(f1) MCC OPS(MCC)

General Group (π = 0.091) 0.408 0.892 0.348 0.874

Old-age Group (π = 0.19) 0.453 0.799 0.3 0.779

Hospital Group (π = 0.3) 0.614 0.85 0.468 0.859

f1 score of 0.614 and MCC of 0.468. However, do these differences indicate model degra-

dation on the general and old-age groups? Additionally, given that these metrics appear

relatively low, does this imply that the quality of the XgBoost classifier is poor? These

questions are difficult to answer based solely on the f1 score and MCC, as both are not

universally standardized and are highly dependent on data imbalance or prevalence π. In

contrast, the proposed outperformance score method provides a more reliable answer to

these questions. The results in Table 5.5 show that, despite the lower f1 score and MCC,

the outperformance scores for the general group are slightly higher than those for the hospi-

tal group, with OPS(f1): 0.892 > 0.85, and OPS(MCC): 0.874 > 0.859. Furthermore, the

fact that these outperformance scores exceed 0.85 demonstrates that the XgBoost classifier

outperforms at least 85% of all possible performance outcomes, indicating good quality.

On the other hand, for the old-age group, even though the f1 score and MCC are similar to

those for the general group, the outperformance scores are notably lower, with OPS(f1) of

0.799 and OPS(MCC) of 0.779. This suggests that the XgBoost classifier performs slightly

worse when predicting heart disease in older individuals.

As discussed in Section 5.6, the achieved outperformance scores can be attributed to

each feature using the proposed OPS-SAGE method (all OPS-SAGEs mentioned in the

following are informative SVAs, as we select the OODIS surrogate model in equation 47

as the CRF estimator). The Xgboost classifier’s OPS-SAGE scores w.r.t. OPS(f1) and

OPS(MCC) are presented in Figure 5.5. We can see that these OPS-SAGE scores are

measured on the same scale, allowing for direct comparison across all three test groups,

despite variations in class imbalance. Specifically, in Figure 5.5a, we observe that the three
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groups display similar risk patterns w.r.t. OPS(MCC), while the old-age group exhibits a

noticeably distinct risk pattern. This drift in risk pattern leads to a reduction in OPS(MCC)

for the old-age group. Particularly, the importance of the feature Age decreases signifi-

cantly, accounting for nearly half of the performance drift.

5.7.2 Evaluate and Explain Risk Identification Performance

A robust risk identification classifier should be able to achieve a possibly high precision

while maintaining a required risk coverage rate (i.e., recall). The precision-recall curve

(PRC) is commonly used to evaluate a classifier’s performance in risk identification. In this

experiment, we assess two types of risk identification performance: overall performance

across the entire recall range and specific performance at a fixed recall of 0.9. The following

metrics are used for evaluation:

Metrics for overall risk identification performance:

• AUC(PRC): the area under the PRC, often interpreted as the average precision across

the recall range.

• OPS(AUC): the outperformance score of AUC(PRC).

• AOPS(Precision): the average outperformance score of precision across the recall

range.

Metrics for risk identification performance at recall=0.9:

• Precision: the fraction of true positives among the predicted positives.

• OPS(Precision): the outperformance score of precision.

The values of these metrics are presented in Table 5.6, with the PRC shown in Fig-

ure 5.6a. Additionally, we also introduce the OPS(Precision)-Recall curve (OPRC) in Fig-

ure 5.6b, which visualizes the OPS(Precision) at 20 points across the recall range. The
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appear similar, while they differ noticeably for the old-age group. In particular, the impor-

tance of feature Age is greatly diminished in the old-age group. This reduction occurs be-

cause all individuals in this group are at high-risk ages, making Age a less informative fac-

tor in identifying heart disease risk within this cohort. Furthermore, risk patterns may vary

depending on the specific targeted metric. For example, the feature Stroke is highly infor-

mative for the OPS(AUC) of PRC (as shown in Figure 5.7a), yet it is far less informative

for the OPS(Precision) at recall=0.9 (as shown in Figure 5.7b). This discrepancy arises be-

cause Stroke is overall a strong indicator of heart disease (i.e., Pr{heart disease|stroke}

is significant), but only a small fraction of heart-diseased individuals have a stroke (i.e.,

Pr{stroke|heart disease} is low). As a result, the feature Stroke becomes less critical

for achieving high recall like 0.9.

From Table 5.6, we also observe that the precision is very low at recall=0.9 across

all three groups. In practice, risk identification is often conducted on highly imbalanced

datasets, and to capture the majority of the true risks, a significant number of false posi-

tives are typically generated. However, this does not necessarily indicate poor risk identifi-

cation performance. As long as the selected model achieves a high outperformance score,

it can still be deemed qualified. For instance, to identify 90% of heart disease cases in the

general group, the XgBoost classifier yields a low precision of 0.183, yet achieves a high

OPS(Precision) of 0.901, reflecting excellent performance.

5.7.3 Evaluate and Explain Recommendation Performance

In recommendation tasks, we typically care more about the precision of the recom-

mended items from the dataset, without the need for a recall threshold such as 0.9. The lift

curve is often employed to measure how much better the selected classifier performs com-

pared to the random classifier, whose precision always equals the prevalence π. We also
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consider two types of recommendation performance: the overall performance for recom-

mending all possible percentages of items from the dataset, and the specific performance

when recommending a fixed number of 500 items (denoted as K=500, for example, we

need to recommend 500 individuals to receive specific treatment for heart disease). The

following metrics are considered for evaluation:

Metric for overall recommendation performance:

• AUC(Lift curve): the area under the lift curve, which is often interpreted as the

average lift across the entire percentage range.

• NAUC(Lift curve): normalized AUC (as shown in Equation 54) of the lift curve,

quantifying how close the classifier is to the ideal classifier.

• OPS(AUC or NAUC): the outperformance score for AUC(Lift curve) or NAUC(Lift

curve).

• AOPS(Lift or Precision): the average outperformance score of lift or precision

across the entire percentage range.

Metric for recommendation performance at K=500:

• Precision: the fraction of true positive items among the total recommended items.

• Lift: defined as
precision

π
, measuring how many times better the selected classifier is

compared to the random classifier.

• OPS(Lift or Precision): the outperformance score of lift or precision.

It is important to note that, according to Property 6.1, OPS(AUC) is equivalent to OPS(NAUC)

for any scoring metric curves, and OPS(Lift) is equivalent to OPS(Precision) when recom-

mending a fixed number or percentage of items. The results of these metrics are sum-

marized in Table 5.7, with the lift curve illustrated in Figure 5.8a. Similar to the OPRC,
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with similar performance across the old-age and hospital groups. However, the NAUC(Lift

curve) results show that the classifier performs best on the hospital group, with similar

performance on the general and old-age groups. This discrepancy between the two metrics

can be confusing. A similar issue arises when evaluating the specific recommendation

performance at K=500 using precision and lift. However, this confusion can be resolved by

standardizing these metrics with the proposed OPS function. Once standardized, AUC and

NAUC share the same outperformance score, and so do precision and lift. The values of

OPS(AUC or NAUC) and OPS(Lift or Precision) reveal that the Xgboost classifier performs

similarly well on the general and hospital groups, with slightly lower performance on the

old-age group. This conclusion aligns with the findings in Section 5.7.2 regarding risk

identification performance.

Similarly, the proposed OPS-SAGE method can be employed to attribute recommenda-

tion performance to features, as demonstrated in Figure 5.9. Notably, there is a significant

reduction in the importance of the feature Age for the old-age group, reflecting the same

rationale discussed in Section 5.7.2. Moreover, the general and hospital groups exhibit

similar informative patterns regarding overall recommendation performance, but there is

a slight divergence in patterns for the recommendation performance at K=500. Specifi-

cally, for the hospital group, the Xgboost classifier relies more on features like Stroke and

GenHlth, and less on features such as Age and HighBP, when recommending 500 individu-

als for heart disease treatment compared to the general group. Furthermore, across all three

groups, the feature Stroke plays a more important role in recommending 500 individuals

than in the overall recommendation performance. This is logical, as individuals with a his-

tory of stroke are more likely to have heart disease and should be prioritized when only

a small percentage of people are recommended for treatment. These observations further

validate that the OPS-SAGE method provides reasonable and reliable explanations.
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distribution of potential performances, given the imbalance rates. The proposed outperfor-

mance scores allow practitioners to standardize their preferred performance metrics, facili-

tating consistent evaluation and comparison of classifiers across diverse datasets. Addition-

ally, we proposed a uniformly standardized global feature importance method, OPS-SAGE,

which attributes the outperformance score to individual features. OPS-SAGE enables prac-

titioners to uncover and compare informative patterns underlying different datasets. Our

experiments demonstrate the robustness of the proposed methodology in handling datasets

with varying imbalance rates, making it a valuable tool for monitoring and explaining

model performance drifts across different data groups. Furthermore, since the outperfor-

mance scores are directly comparable across labels with varying imbalance rates, they can

be (weighted) averaged to evaluate multi-label classifiers effectively.

One limitation of our method is that outperformance scores for labeling and scoring

metrics rely on different distributions of potential performances. Thus, it may not be ap-

propriate to compare the outperformance score applied on a labeling metric to the outper-

formance score applied on a scoring metric. Future research can try to look deeper into this

issue.
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Chapter 6

Discussion

This thesis has explored novel methods to address key challenges of Shapley value

attribution (SVA), with a focus on informative SVA that is true to the data. We tackled two

central issues in generating informative explanations: (1) the error-prone nature of SVAs

due to reliance on estimated distributions from sparse datasets and untenable distributional

assumptions, and (2) the challenges caused by class imbalance in global SVA methods.

To address the first challenge, in Chapter 3, we developed an error theoretical analysis

framework to decompose explanation errors into observation bias and structural bias. This

decomposition enabled a deeper understanding of how existing SVA methods may become

under-informative due to distributional assumptions, or over-informative due to data spar-

sity. In Chapter 4, our proposed refinement methods, combining out-of-distribution (OOD)

detection and importance sampling techniques, significantly reduced these biases, offering

more robust explanations across both local and global SVA settings.

For the second challenge of class imbalance, in Chapter 5, we introduced the outperfor-

mance score (OPS) function to standardize confusion matrix-based performance metrics.

Building on this function, we further proposed a novel standardized global SVA, named the

OPS-SAGE. These contributions provide a uniform interpretation of model performance

across varying levels of class imbalance, enhancing the robustness and interpretability of
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global SVA explanations in real-world scenarios.

Our experiments demonstrated that the proposed methods improved the reliability and

informativeness of SVA explanations, particularly in high-dimensional, sparse, and im-

balanced data contexts. The proposed error framework, refinement techniques, and OPS-

SAGE showed substantial improvements over traditional SVA methods, contributing to the

broader goal of making machine learning models more transparent and reliable for practical

applications in fields such as healthcare and finance.

While this work advances the XAI field by addressing several core challenges in SVA

methods, there remains room for future research. We highlight some promising directions

as follows:

• (Causal Inference in SVA) In this work, we primarily focus on informative SVA

methods, but there is growing interest in developing causal SVA techniques that go

beyond informational dependency to identify true cause-and-effect relationships be-

tween features and model outcomes. Integrating principles from causal inference,

such as counterfactual analysis, into the existing SVA framework could lead to more

robust, causally informative explanations. Such methods would be particularly use-

ful in high-stakes domains, such as healthcare, where understanding the underlying

causal mechanisms is essential for making informed decisions.

• (SVA in Complex Data Structures) Most of the current SVA methods focus on single-

modal data types, such as tabular or image data. However, many real-world problems

involve various data, combining text, images, and structured data, which introduces

new challenges for SVA methods. Future work could explore how SVAs can be ex-

tended or adapted in these complex data structures, ensuring that attributions remain

meaningful and interpretable across different varieties of data.

• (Applications in Scientific Discovery) While we have demonstrated the utility of

SVA in scientific discovery, such as identifying risk factors for diseases, more work
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remains to be done in this area. Future research could focus on refining the appli-

cation of SVAs in specific domains, such as genomics, neuroscience, and climate

science, where understanding complex informative patterns among variables is cru-

cial for new discoveries. Furthermore, interdisciplinary collaborations between AI

researchers and domain experts could help tailor SVA methods to the specific needs

of different scientific fields.
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Appendix A

The Estimation of Shapley Values

A.1 Monte-Carlo Sampling Algorithm

The Monte-Carlo Sampling Algorithm approximates the effect of removing a feature

from the model by integrating over samples from the training data (Molnar, 2020; Štrumbelj

& Kononenko, 2014). Specifically, let x be the explicand for explaining, x∗ be a random

data point from the training data, S−i ⊆ D \ {i} be a random coalition excluding feature

i, S̄−i = {D \ {i}} \ S−i be the set of missing features excluding feature i. Then, we can

construct two mixed instance x+i = [xS−i
, xi, x

∗
S̄−i

], and x−i = [xS−i
, x∗

i , x
∗
S̄−i

] by replacing

the missing feature values of x with the corresponding ones in x∗. By using this method,

we can draw a sample set {xm+i, xm−i}Mm=1 to approximate the Shapley value as

ϕ̂i =
1

M

M∑

m=1

(
f(xm+i)− f(xm−i)

)
. (64)

The detailed steps of the algorithm are as following:

• Input: number of samples M , instance of interest x, feature index i, training data X ,

and model f
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• Initialize ϕ̂i = 0

• for m = 1 to M do:

(1) Draw random instance x∗ from X

(2) Choose a random permutation o of D = {1, . . . , d}

(3) order x: xo = (xo[1], . . . , xi, . . . , xo[d])

(4) order x∗: x∗
o = (x∗

o[1], . . . , x
∗
i , . . . , x

∗
o[d])

(5) construct two mixed instance

◦ x+i = (xo[1], . . . , xi, . . . , x
∗
o[d])

◦ x−i = (xo[1], . . . , x
∗
i , . . . , x

∗
o[d])

(6) compute ∆ = f(x+i)− f(x−i)

(7) update ϕ̂i = ϕ̂i +∆

• Return ϕ̂i
M

Note that we have to repeat the above sampling estimate d times for each feature.

A.2 Estimation via Linear Regression

Using the Lagrangian method, the solution of the optimization problem in (15) can be

directly derived as the following closed-form formula:

β∗ = A−1

(
b− 1

1
TA−1b− v(1) + v(0)

1TA−11

)
, (65)

where

A = E[ZZT ] and b = E [Z (v(Z)− v(0))] .
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We have that the Shapley value ϕi(u) = β∗
i . However, unfortunately, this formula cannot

be directly calculated in practice without evaluating v(z) for all 2d coalitions z.

A.2.1 KernelSHAP

Rather than considering all 2d coalitions, KernelSHAP (Lundberg & Lee, 2017) pro-

poses to subsample a set of coalitions, and then optimize an approximate objective. Specif-

ically, KernelSHAP first samples n i.i.d. coalitions (z1, . . . , zn) from the distribution p(Z),

then estimates Shapley values of cooperative game u by solving the following problem:

argminβ
1

n

n∑

i=1

(
v(0) + zTi β − v(zi)

)2

s.t. 1
Tβ = v(1)− v(0).

(66)

Similarly, with the Lagrangian method, the solution β̂n is straightforward as the following

β̂n = Ân
−1

(
b̂n − 1

1
T Â−1

n b̂n − v(1) + v(0)

1T Â−1
n 1

)
, (67)

where

Ân =
1

n

n∑

i=1

ziz
T
i and b̂n =

1

n

n∑

i=1

zi (v(zi)− v(0)) .

First of all, we can conclude that β̂n is a consistent estimator that converges to the

correct Shapley values β∗ given a sufficiently large number of samples, i.e.,

lim
n→∞

β̂n = β∗.

This can be proved by the strong law of large numbers, which implies that

lim
n→∞

Ân = A and lim
n→∞

b̂n = b.
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Nevertheless, β̂n may not be an unbiased estimator, even though both Ân and b̂n are unbi-

ased. The reason is that it is difficult to characterize the interaction between Ân and b̂n in

Equation (67), such as E[Â−1
n b̂n].

A.2.2 Unbiased KernelSHAP

As shown by I. Covert and Lee (2020), the d × d matrix A can be exactly calculated

with the known distribution p(Z). Specifically, the diagonal entries Aii can be computed

by Aii = E[Z2
i ] = E[Zi] = p(Zi = 1), and the off-diagonal entries Aij can be computed

by Aij = E[ZiZj] = p(Zi = Zj = 1). Therefore, instead of the estimator Ân, we can

directly use A’s exact form and approximate β∗ by estimating only b. Using the exact value

of E[Z], b can be estimated by

b̄n =
1

n

n∑

i=1

ziv(zi)− E[Z]v(0).

Replacing b with b̄n in Equation (65), we have an alternative estimator for β∗:

β̄n = A−1

(
b̄n − 1

1
TA−1b̄n − v(1) + v(0)

1TA−11

)
. (68)

Same as β̂n, this is obviously a consistent estimator, i.e., limn→∞ β̄n = β∗. However, unlike

β̂n, the estimator β̄n is also unbiased, i.e., E[β̄n] = β∗, because of its linear dependence on

an unbiased estimator b̄n. Hence, β̄n is referred to as unbiased KernelSHAP.

In addition, by the central limit theorem (CLT), it is easy to find that b̄n converges in

distribution to a multivariate Gaussian,

b̄n
D−→ N (b,

Σb̄

n
), (69)
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where Σb̄ = Cov(Zv(Z)). Since β̄n is a linear function of b̄n, it also converges to a multi-

variate Gaussian,

β̄n
D−→ N (β∗,

Σβ̄

n
), (70)

where the covariance Σβ̄ is given by

Σβ̄ = CΣβ̄C
T (71)

C = A−1 − A−1
11

TA−1

1TA−11
. (72)

That suggests that the unbiased KernelSHAP β̄n has a variance that reduces at a rate of

O( 1
n
).

A.2.3 Convergence Detection

Even though the original KernelSHAP β̂n is difficult to analyze theoretically, I. Covert

and Lee (2020) show empirically that its bias is negligible and its variance is lower than

the unbiased KernelSHAP β̄n. That suggests that the O( 1
n
) rate should also hold for β̂n in

practice. This property is difficult to prove, but it can be used for convergence detection in

practice.

The KernelSHAP’s covariance, for both Σβ̂n
and Σβ̄n , can be empirically estimated

using an online algorithm. Specifically, for any n, we can select an intermediate value

m << n, and calculate multiple independent estimates β̂m or β̄m while running the sam-

pling algorithm, then the covariance can be estimated as

Σ̂β̂n
=

m

n
Cov(β̂m) or Σ̂β̄n =

m

n
Cov(β̄m).

Finally, the algorithm can be considered converged when the largest standard deviation is a

sufficiently small proportion t (e.g., t = 0.01) of the range in the estimated Shapley values.
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That is, for the original KernelSHAP, we stop at step n when

max
i

√
(Σ̂β̂n

)ii

n
< t
(
max
i

(β̂n)i −min
i
(β̂n)i

)
.

A.3 Projected Stochastic Gradient Algorithm

Similar to all other linear regression problems, the objective function in (15) can also

be solved using the stochastic gradient descent (SGD) algorithm. Moreover, the learning

algorithm has to be implemented within certain convex sets caused by the constraints. More

details are given in the following.

A.3.1 Projected SGD Algorithm

To avoid a large gradient norm, we assume that the model outputs and the norm of

Shapley values are both upper bounded, i.e., for all z ∈ p(Z), |v(z)| ≤ C1 and ||ϕ(u)|| ≤

C2 with C1, C2 > 0 which can be large enough. Let’s denote function h(β, Z) = v(0) +

ZTβ−v(Z), and convex sets K1 = {β : 1Tβ = v(1)−v(0)}, K2 = {β : ||β|| ≤ C2}, and

K = K1∩K2. The objective is to find a unique solution β∗ on K to minimize Ep(Z)h(β, Z).

To solve it, the projected SGD algorithm, at each iteration t, follows the steps:

zt ∼ p(Z),

βt = ProjK (βt−1 − γ∇h(βt−1, zt)) ,

where ProjK is the orthogonal projection on K, and γ is the learning rate. As shown in

(Simon & Vincent, 2020), Dykstra’s algorithm can be used to find the orthogonal projection

ProjK .

To ensure a constant upper bound of the stochastic gradient norm E[||∇h(βt, Z)||2],
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Simon and Vincent (2020) suggests that, instead of p(Z), we can sample coalition zt from

a distribution q(Z), which is defined as

q(Z) ∝ p(Z)
√
|Z|(C1 + C2

√
|Z|),

where |Z| is the size of the coalition. Then, using importance sampling rate, the projected

SGD algorithm becomes:

zt ∼ q(Z),

βt = ProjK

(
βt−1 − γ

p(zt)

q(zt)
∇h(βt−1, zt)

)
.

With this change, we can find an upper bound for the stochastic gradient norm:

Eq(Z)

[
||p(Z)
q(Z)

∇h(βt, Z)||2
]
≤ B2 = 4

[
d−1∑

l=1

d− 1√
l(d− l)

(C1 + C2

√
l)

]
.

A.3.2 Convergence Rate

As analyzed by Simon and Vincent (2020), the convergence rate of the projected SGD

algorithm depends on the chosen learning rate. In details, denoting T as the total number

of iterations, and µ = 1− 1
d
, then,

• with an inverse decreasing learning rate γt =
2

µ(t+1)
and β̄T = 2

(T+1)(T+2)

∑T
t=0(t +

1)βt, the convergence rate is

E
[
||β̄T − β∗||2

]
≤ 4B2

µ2T
= O(

1

T
);

• with a square root decreasing learning rate γt = 2C2

B
√
t

and β̄T = 1
T

∑T
t=0 βt, the
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convergence rate is

E
[
||β̄T − β∗||2

]
≤ 4BC2

µ
√
T

= O(
1√
T
);

• with a constant learning rate γ < 1
µ
= d

d−1
, the convergence rate is

E
[
||βT − β∗||2

]
≤ (1− γµ)T ||β0 − β∗||2 + γB2

µ
= O(ρT ) +O(γ),

where ρ = 1− γµ.
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Appendix B

Gaussian Removal Function

If we assume that the input features follow a multivariate Gaussian distribution with

mean vector µ and covariance matrix Σ, i.e., X ∼ N (µ,Σ), then an arbitrary feature sub-

vector also follows a multivariate Gaussian XS ∼ N (µS,ΣSS). In more details, given a

subset S ∈ P([d]), we can write p(X) = p(XS, XS̄) ≈ N (µ,Σ) with µ = (µS, µS̄)
T

and Σ =



ΣSS ΣSS̄

ΣS̄S ΣS̄S̄


, and p(XS) ≈ N (µS,ΣSS). Then, the conditional distribution

p(XS̄|XS = xS) can be computed as

p(XS̄|XS = xS) =
p(XS = xS, XS̄)

p(Xs = xs)
≈ N (µS̄|S,ΣS̄|S) (73)

with

µS̄|S = µS̄ + ΣS̄SΣ
−1
SS(xS − µS) (74)

and

ΣS̄|S = ΣS̄S̄ − ΣS̄SΣ
−1
SSΣSS̄. (75)

The mean vector µ and covariance Σ can be estimated by the samples from the explaining

set Dp(X). Once we have the above multivariate Gaussian estimate of p(XS̄|XS = xS),
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we can sample from it, and empirically estimate fS as

fS(xS) ≈ Ex′
S̄
∼N (µS̄|S ,ΣS̄|S)

[f(xS, x
′
S̄)].
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Appendix C

Additional Examples of Outperformance

Score

C.1 Outperformance Score of MCC

Different from f1 score which cares more about the performance of the positive class,

Matthews Correlation Coefficient (MCC) is a performance metric trying to balance both

classes. The formula of MCC can be written as

MCC(α, β, π) =
1− α− β√

(1− α + π
1−πβ)(1− β + π

1−πα)
. (76)

It is complicated to compute the closed-form formula of the outperformance function of

MCC, but it can be approximated by the trapezoidal rule or Monte Carlo algorithm. MCC

has a symmetric domain on [−1, 1], and its baseline is always 0, which is achieved by the

trivial majority classifier (TMC) that always predicts the majority class. Because of the

symmetric domain, the TMC always returns an outperformance score of 0 for MCC, i.e.,

OPSMCC(0; π) = Pr{MCC < 0|P = π} = 0.5.
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decreases, while for a given value of NAUC (e.g., 0.7), the outperformance score increases

as π decreases.

For a specific point (u, v) on the lift curve, by the linear property, at percentage = u,

the outperformance score of lift = v and precision = πv are equivalent. Figures C.2c and

C.2d demonstrate the OPS functions of lift and precision, respectively, at percentage=0.1,

conditioned on various values of π. We observe that for a fixed lift value (e.g., 2), the

outperformance score decreases as π decreases, while for a fixed precision value (e.g., 0.6),

the outperformance score increases as π decreases.
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Appendix D

Experimental Results on Loan Default

Dataset for Section 5.7

Loan Default Dataset This dataset contains 255,347 loan holders, each characterized

by 17 features related to their personal profiles and loan information. The objective is to

predict, based on these features, which individuals are at the highest risk of defaulting on

their loans. Similarly, three groups of samples are generated as test sets:

• (General group) This test set is randomly sampled from the original dataset, with

11.24% of individuals labeled as having loan default.

• (Low-income group) This test set is randomly sampled from loan holders whose

income is lower than 35K, with around 20% of them having loan default.

• (Aid-center group) This test set is independently sampled in each class, with a cus-

tomized proportion of 30% of individuals having loan default. This group can be

presumed to represent loan holders visiting a location where a financial aid center is

situated.
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Table D.1: Summary of the test sets for loan default dataset.

General Group Low-income Group Aid-center Group

Sample Size 10,000 10,108 10,063

Class Imblance Rates 0.112 0.203 0.3

Table D.2: The classifier’s prediction performance on Loan Default Dataset. (t = 0.19).

Test Sets f1 OPS(f1) MCC OPS(MCC)

General Group (π = 0.112) 0.361 0.825 0.268 0.798

Low-income Group (π = 0.203) 0.475 0.806 0.316 0.787

Aid-center Group (π = 0.3) 0.514 0.735 0.344 0.78

Table D.3: The classifier’s risk detection performance on the Loan Default Dataset.

General Group Low-income Group Aid-center Group

(π = 0.112) (π = 0.203) (π = 0.3)

Overall risk detection performance

AUC(PRC) 0.316 0.485 0.581

OPS(AUC) 0.808 0.838 0.832

AOPS(Precision) 0.797 0.813 0.798

Risk detection performance at recall=0.9

Precision 0.151 0.278 0.376

OPS(Precision) 0.784 0.784 0.813

Table D.4: The classifier’s recommendation performance on the Loan Default Dataset.

General Group Low-income Group Aid-center Group

(π = 0.112) (π = 0.203) (π = 0.3)

Overall recommendation performance

AUC(Lift curve) 1.915 1.807 1.621

NAUC(Lift curve) 0.601 0.696 0.736

OPS(AUC or NAUC) 0.849 0.869 0.857

AOPS(Lift or Precision) 0.783 0.812 0.794

Recommendation performance at K=500

Lift 3.843 3.387 2.627

Precision 0.432 0.686 0.788

OPS(Lift or Precision) 0.805 0.832 0.821
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