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Abstract

Robust Haptics with Nonlinear Impedance Matching for Robot-assisted Laparoscopic
Surgery

Mohammad Mazidi

The integration of haptic feedback into robot-assisted minimally invasive surgery (RAMIS)
has been constrained by challenges in accurately rendering forces while maintaining system sta-
bility and safety. Addressing these limitations, this research introduces the Nonlinear Impedance
Matching Approach (NIMA), a novel force-rendering method designed to accurately model com-
plex tool-tissue interactions. Building on the Impedance Matching Approach (IMA), NIMA incor-
porates nonlinear dynamics to enhance the precision and reliability of force feedback systems.

The experimental results demonstrate that NIMA achieves a mean absolute error (MAE) of
0.01 £ 0.02 N, representing a 95% reduction in error compared to IMA. Notably, NIMA eliminates
haptic “kickback” by ensuring that no residual force is applied to the user’s hand when releasing the
haptic device, significantly improving both user comfort and patient safety. Furthermore, its ability
to account for the nonlinearities of tool-tissue interactions allows for high fidelity, responsiveness,
and precision across diverse surgical conditions.

This research advances the development of robust, high-performance haptic systems, offering
a transformative solution to the challenges of force rendering in teleoperated surgical robotics. By
providing a realistic and reliable interface for robotic-assisted surgical procedures, NIMA has the
potential to enhance surgical precision, optimize patient outcomes, and set new standards for haptic

feedback in RAMIS.
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Chapter 1

Introduction

1.1 Background

1.1.1 Minimally Invasive Surgery (MIS)

Minimally invasive surgery (MIS) has revolutionized the field of surgical interventions, offering
significant advantages over traditional open surgical techniques. The fundamental principle of MIS
is to reduce the physical trauma associated with surgical procedures, thereby minimizing postop-
erative pain, shortening recovery times, and improving overall patient outcomes. This evolution in
surgical practice began with conventional laparoscopic techniques, which utilize small incisions and
specialized instruments to perform surgeries with less disruption to the body’s tissues. Over the past
few decades, the introduction of robotic-assisted surgical systems has further enhanced the capabil-
ities of minimally invasive procedures, allowing for greater precision and control during complex

surgeries [1].
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Figure 1.1: Minimally invasive surgery versus traditional surgery (All rights reserved by Neoalta

Specialty Clinic).

1.1.2 Robot Assisted Laparoscopic surgery

Robotic-assisted laparoscopic surgery, particularly with systems like the da Vinci Surgical Sys-
tem, has gained prominence in various surgical specialties, including gynecology, urology, and
general surgery. The robotic platform provides surgeons with a three-dimensional view of the sur-
gical field and allows for enhanced dexterity through wristed instruments, which can articulate in
ways that human hands cannot [2]. This technological advancement has made it possible to perform
intricate procedures with improved visualization and reduced intraoperative complications. For in-
stance, studies have shown that robotic-assisted techniques can lead to lower blood loss, reduced
hospital stays, and quicker recovery times compared to traditional laparoscopic approaches [3].

The application of robotic-assisted laparoscopic procedures has been particularly notable in the
treatment of various cancers. For example, in gynecologic oncology, robotic-assisted hysterectomy
has been associated with improved surgical outcomes, including reduced postoperative complica-
tions and shorter recovery times[4] . Similarly, in urological surgeries, robotic-assisted techniques
have demonstrated advantages in procedures such as prostatectomy and nephrectomy, where preci-

sion is paramount [5]. The ability to perform complex resections with minimal tissue disruption has
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Figure 1.2: DaVinci robotic laparoscopic setup.

made robotic surgery an attractive option for oncological interventions, where preserving surround-
ing healthy tissue is crucial for patient recovery and long-term outcomes [6].

In addition to oncological applications, robotic-assisted laparoscopic surgery has been success-
fully employed in various other fields, including colorectal surgery and bariatric procedures. The
technique of complete mesocolic excision (CME) for colon cancer, for instance, has been enhanced
by robotic assistance, allowing for meticulous dissection and central vascular ligation with reduced
morbidity[7]. Moreover, the use of robotic systems in bariatric surgery has shown promising results
in weight loss outcomes and postoperative recovery, further solidifying the role of robotic-assisted
techniques in diverse surgical disciplines [8].

As the field of robotic surgery continues to evolve, ongoing research is essential to establish
clear guidelines regarding its use, particularly in comparison to traditional laparoscopic techniques.
Meta-analyses and systematic reviews are increasingly being conducted to evaluate robotic-assisted
procedures’ safety, efficacy, and cost-effectiveness across various surgical specialties [9]. These
studies aim to provide a comprehensive understanding of when robotic assistance is most beneficial

and to identify potential areas for improvement in surgical training and technology [6].



In conclusion, minimally invasive surgery, particularly through robotic-assisted techniques, rep-
resents a significant advancement in surgical practice. The benefits of reduced trauma, improved
precision, and enhanced recovery times make robotic surgery an appealing option for many patients.
However, careful consideration of cost, complexity, and the specific surgical context is necessary to
ensure that the adoption of robotic systems is justified and beneficial. As the body of evidence con-
tinues to grow, the surgical community must engage in ongoing dialogue regarding the optimal use

of robotic-assisted laparoscopic procedures to maximize patient outcomes and healthcare efficiency.

1.1.3 Clinical Need for Force Feedback in Robot-assisted Laparoscopic Surgery

The clinical need for force feedback in robotic surgery is increasingly recognized as a critical
factor in enhancing surgical precision and safety. Haptic feedback is essential for the surgeon’s
ability to gauge the force applied to tissues during surgical manipulation using robotic surgical
systems, such as the da Vinci Surgical System. Lack of tactile sensation can lead to increased risks
of tissue damage and complications, highlighting an unmet need in the field of robotic surgery [10].

Force feedback is crucial for several reasons. Firstly, it allows surgeons to differentiate between
various tissue types and to assess the mechanical properties of tissues, such as stiffness and elasticity,
which are vital for safe and effective surgical interventions [11]. The absence of this feedback can
result in excessive force application, potentially causing unintended trauma to delicate structures
and leading to postoperative complications [12]. For instance, studies have shown that surgeons
often apply more force than necessary when operating without haptic feedback, which can increase
the risk of injury to surrounding tissues [13]. Furthermore, the reliance on visual feedback alone is
insufficient, as it does not provide the nuanced information that tactile feedback offers, particularly
in complex surgical scenarios [14].

The integration of force feedback into robotic surgical systems presents a promising avenue for
enhancing surgical precision and safety. However, the addition of force rendering capabilities can
lead to instability in the system, which poses significant challenges in meeting regulatory standards
for surgical devices. This instability arises from several factors, including the complexity of accu-
rately sensing and rendering forces, the potential for feedback loops that can distort the surgeon’s

control, and the inherent variability in tissue response during surgical manipulation.



One of the primary concerns with implementing force feedback in robotic surgery is the risk
of introducing instability into the control system. Research has indicated that when force feedback
is not carefully calibrated, it can lead to distorted motion control, where the surgeon’s commands
are compromised by the feedback forces being rendered [15]. For instance, Farkhatdinov and Ryu
demonstrated that feedback based on obstacle range information could prevent accurate motion
control of mobile robots, suggesting that similar issues could arise in surgical contexts where precise
manipulation is critical [15]. This distortion can result in unintended movements or excessive force
application, increasing the risk of tissue damage and complications during surgery [16].

Moreover, the regulatory hurdles for surgical devices are stringent, requiring extensive vali-
dation of safety and efficacy before approval. The introduction of force feedback systems must
demonstrate not only that they enhance surgical performance but also that they do not compromise
patient safety. The potential for feedback-induced instability complicates this validation process.
For example, the lack of tactile feedback in current robotic systems has been associated with pro-
longed operative times and increased difficulty in performing force-sensitive tasks, which could lead
to adverse clinical outcomes [17]. Regulatory bodies may view the introduction of force rendering
as a risk factor, particularly if it is associated with increased variability in surgical performance or
complications.

Additionally, the technical challenges of developing reliable force feedback systems further
contribute to the unmet regulatory needs. Accurate force sensing and rendering require sophisti-
cated sensor technologies that can effectively measure the forces applied during surgery and pro-
vide real-time feedback to the surgeon [18]. However, the integration of such technologies into
existing robotic systems is fraught with difficulties, including ensuring that the feedback is intuitive
and does not overwhelm the surgeon during critical moments of surgery [14]. The complexity of
these systems can lead to unpredictable behaviors, which regulatory agencies are likely to scrutinize
closely.

Furthermore, the clinical implications of force feedback systems must be thoroughly evaluated.
While the potential benefits of enhanced tactile feedback are clear, the risks associated with insta-
bility must be addressed. For instance, Abiri et al. highlighted that the loss of haptic feedback,

combined with the ability of robotic systems to apply strong forces, can lead to increased risks of



tissue damage and mistakes during surgery [16]. Such outcomes could raise red flags during the
regulatory review process, as they directly impact patient safety and surgical efficacy.

In conclusion, while the addition of force rendering to robotic surgical systems holds significant
potential for improving surgical outcomes, it also introduces challenges related to system stability
and regulatory compliance. The risks associated with feedback-induced instability, coupled with the
technical complexities of implementing reliable force feedback, create significant hurdles that must
be overcome before these systems can be widely adopted in clinical practice. Ongoing research and
development efforts are essential to address these issues, ensuring that any advancements in force

feedback technology enhance rather than compromise surgical safety.

1.2 Research Objectives

The primary objective of this research is to develop and validate a robust haptic feedback system
for robotic-assisted laparoscopic surgery (RALS) that addresses the clinical need for force feedback
while mitigating risks associated with system instability and regulatory non-compliance. Specifi-

cally, this study aims to:

(1) To design and implement a robust experimental setup, including custom surgical tools, Kinova
robotic arms, Omega.7 haptic controllers, and Bota force sensors, to simulate realistic surgical

environments and validate the effectiveness of NIMA.
(2) Todevelop a safe and reliable haptic feedback method for robotic-assisted laparoscopic surgery.

(3) To propose and validate a neural network-based tool-tissue force estimation method, enabling
precise extraction of interaction forces by compensating for extraneous forces, such as friction

at the Remote Center of Motion (RCM) and gravitational effects.

(4) To achieve an improvement in force rendering accuracy compared to the other methods, and

to validate that through extensive experiments.

(5) To enhance the realism and stability of haptic feedback systems for robotic surgery, providing
a transformative solution for overcoming the absence of tactile sensation in existing commer-

cial robotic systems.



(6) To achieve seamless coordination between the movements of the controller and the laparo-

scope’s view, ensuring intuitive and precise control during teleoperated surgical tasks.

This research seeks to bridge the gap between the potential benefits of haptic feedback in robotic
surgery and the technical, clinical, and regulatory challenges that currently limit its widespread
adoption. By doing so, it aims to advance the field of minimally invasive surgery and improve

patient outcomes across various surgical disciplines.

1.3 Publications

The following list summarizes the author’s contributions during this research:

Journal paper

* Neural Network-Based Force Estimation for Realistic Haptic Feedback in Robotic-Assisted

Laparoscopy (Will be submitted to “IEEE Transactions on Automation Science and Engineer-

ing” by Jan,30th 2025)

Conference papers

* Mazidi, A., Ramos, A.C., Sayadi, A., Dargahi, J., Barralet, J., Feldman, L.S. and Hooshiar,
A., 2024, September. Nonlinear Impedance Matching Approach (NIMA) for Robust Haptic
Rendering During Robotic Laparoscopy Surgery. In 2024 10th IEEE RAS/EMBS Interna-
tional Conference for Biomedical Robotics and Biomechatronics (BioRob) (pp. 1809-1814).

IEEE.

* Mazidi, A., Ramos, A.C., Sayadi, A., Dargahi, J., Barralet, J., Feldman, L.S. and Hooshiar,
A.’Nonlinear Impedance Matching Approach (NIMA) for Robust Haptic Rendering Dur-
ing Robotic Laparoscopy Surgery.” 2023 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), Detroit, Michigan, USA .

* Mazidi, A., Ramos, A.C., Sayadi, A., Dargahi, J., Barralet, J., Feldman, L.S. and Hooshiar,
A. ”Nonlinear Impedance Matching Approach (NIMA) for Robust Haptic Rendering During

Robotic Laparoscopy Surgery.“ 2024, Presented at The Hamlyn symposium, London, UK.



1.4 Thesis layout

This thesis is prepared in manuscript-based style according to the “Thesis Preparation and The-
sis Examination Regulations (version-2022) for Manuscript-based Thesis” of the School of Grad-
uate Studies of Concordia University. This dissertation includes two chapters with the following
contents:

Chapter 2 presents the development and validation of the Nonlinear Impedance Matching Ap-
proach (NIMA) for robust haptic rendering in robotic-assisted laparoscopic surgery. This chapter
introduces a novel nonlinear framework to enhance force rendering fidelity, addresses the limitations
of linear impedance models, and validates NIMA through extensive experiments. The chapter’s ma-

jor contributions include:

* Developing a nonlinear framework for precise haptic feedback during robot-assisted laparo-
scopic surgery, demonstrating an 85% improvement in force rendering accuracy compared to

linear methods.

* Designing and implementing a state-of-the-art experimental setup featuring Kinova robotic
arms, Omega.7 haptic controllers, and custom surgical tools to validate NIMA under realistic

surgical scenarios.
This chapter is based on the following publication:

(1) Mazidi, Aiden, et al. ”Nonlinear Impedance Matching Approach (NIMA) for Robust Haptic
Rendering During Robotic Laparoscopy Surgery.” 2024 10th IEEE RAS/EMBS International

Conference for Biomedical Robotics and Biomechatronics (BioRob). IEEE, 2024. [19]

Chapter 3 focuses on identifying and quantifying all forces acting on surgical tools during
robotic-assisted laparoscopic surgery. It addresses challenges such as frictional forces at the RCM
and gravitational biases by proposing a neural network-based tool-tissue force estimation method.
This chapter also validates NIMA as a safe and effective nonlinear force-rendering method. The

key contributions of this chapter are:

* Designing and implementing a comprehensive experimental setup to simulate realistic surgi-

cal conditions for tool-tissue force estimation.



* Training a neural network to isolate precise interaction forces, achieving a Mean Absolute

Error (MAE) of 0.1 N in estimating tool-tissue interaction forces.

* Demonstrating a 95% improvement in force rendering fidelity and eliminating haptic kick-

back using NIMA, thereby improving safety and stability in robotic-assisted surgical systems.

This chapter includes results from the following key experiments:

(1) Establishing a unified coordinate system for forces through calibration methods validated

using tool-tissue interaction forces.

(2) Training and validating a neural network model for extracting tool-tissue forces, with accu-

racy verified through experiments and statistical analyses.

The contents of this thesis provide a cohesive narrative addressing significant gaps in the in-
tegration of haptic feedback into robotic-assisted laparoscopic systems. Chapter 2 introduces the
innovative NIMA method, while Chapter 3 extends its application by isolating and quantifying
precise tool-tissue forces, thus paving the way for its adoption in commercial robotic surgical plat-

forms.



Chapter 2

Nonlinear Impedance Matching
Approach (NIMA) for Robust Haptic
Rendering during Robotic Laparoscopy

Surgery

2.1 Objective and Contributions

The primary objective of this chapter is to develop and validate the Nonlinear Impedance Match-
ing Approach (NIMA) for robust and accurate haptic feedback during robotic-assisted laparoscopic

surgery. Specifically, this chapter aims to address the following thesis objectives:

* To develop a safe and reliable haptic feedback method for robotic-assisted laparoscopic surgery

by introducing a nonlinear framework that improves force rendering fidelity.

* To propose and validate a neural network-based tool-tissue force estimation method, enabling
precise extraction of interaction forces by compensating for extraneous forces, such as friction

at the Remote Center of Motion (RCM) and gravitational effects.

* To achieve an improvement in force rendering accuracy compared to existing methods and

10



validate this enhancement through extensive experiments.

The contributions of this chapter are as follows:

(D

2

3)

“)

&)

2.2

Developed the Nonlinear Impedance Matching Approach (NIMA), a novel method for force
rendering in robotic-assisted laparoscopic surgery, effectively addressing the limitations of
linear impedance models by incorporating nonlinear dynamics to enhance accuracy and sta-

bility.

Designed and implemented an experimental framework, including state-of-the-art compo-
nents such as Kinova robotic arms, Omega.7 haptic controllers, and custom-adapted surgical

tools, to evaluate the performance of NIMA in realistic surgical scenarios.

Demonstrated a significant improvement in force rendering accuracy, achieving a Mean Ab-
solute Error (MAE) of 0.03 N, representing an 85% enhancement compared to the previously

developed Linear Impedance Matching Approach (IMA).

Validated the elimination of undesirable phenomena such as haptic kickback, enhancing user

safety and comfort during haptic interactions.

Established a robust framework for integrating NIMA-based haptic feedback into robotic-
assisted laparoscopic systems, paving the way for advancements in both surgical training and

clinical applications.

Related Studies

There is a recognized need for advancements in haptic technology for robot-mediated surgery to

enhance patient care and improve robotic surgical procedures [20]. Incorporating haptic feedback in

teleoperated robot-assisted surgical systems presents promising clinical and scientific opportunities,

including active operator assistance and automatic tissue property acquisition [21]. However, the

absence of haptic feedback in current teleoperated surgical robots due to the potential destabilization

of the closed-loop controller has limited its expected clinical benefits [22]. The value of haptic

11



feedback in robotics is widely acknowledged [23], but the necessity of haptics in surgical procedures
is still questioned [24].

Incorporating haptic feedback in robotic surgery has been shown to enhance the consistency,
precision, and performance of surgical tasks such as knot tying, reducing the risk of tissue damage
[16]. Additionally, haptic feedback has been demonstrated to improve surgical outcomes by en-
abling better dexterous motion and enhancing visual feedback, ultimately improving precision and
reducing risk for patients [23, 25, 26].

The regulatory validation of haptic systems as a "human-in-the-loop” component presents sig-
nificant challenges, including the complexity of validating inter-subject dynamics variations. This
complexity arises from the design of the system, which incorporates human interaction, making it
difficult to standardize and validate [21]. Additionally, the variability due to human subjects and
grip-force variation further complicates the regulatory validation process, as these factors introduce
uncertainties that need to be accounted for in the validation of haptic systems [27]. These chal-
lenges have impeded the commercialization of haptic systems, particularly in the context of surgical
robotics, where stringent regulatory requirements must be met to ensure patient safety and system
effectiveness.

The impedance-matching approach (IMA) for force feedback estimation and rendering does not
incorporate the “human” as a component, as it focuses on providing force feedback using sensory
substitution techniques, avoiding the use of actuators for force feedback on the leader side [28]. This
approach achieves indirect force control via closed-loop position control without explicit closure of
a force feedback loop, which distinguishes it from other control schemes that offer the possibility
of controlling the contact force to a desired value through the closure of a force feedback loop [29].

An impedance-matching model-in-the-loop simulation has been described in previous publica-
tions, outlining its concept, salient features, and sample applications [30]. Additionally, a proposed
approach combines object recognition from a tactile appearance with a purposeful haptic explo-
ration of unknown objects to extract appearance information, demonstrating a different perspective
on haptic feedback [31]. Furthermore, haptic rendering algorithms play a crucial role in eliminating
oscillations of feedback force and rendering high-fidelity feedback force to users, contributing to

the evaluation of haptic feedback accuracy in robotic teleoperation [32].
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We have previously shown the accuracy and stability of the linear IMA method for a single
force component in [33]. In this work, we propose a general non-linear IMA (NIMA) framework,
as shown in Fig. 3.3, that accounts for the impedance parameters when the instrument-tissue in-
teraction is not linear. In addition, in this study, we detail the significant achievements of our re-
search, specifically focusing on the implementation and validation of the novel NIMA method. Our
comprehensive testing phase has yielded positive results, affirming the method’s accuracy in pre-
cisely controlling 3D contact forces and executing motion commands. This level of precision was
achieved in the context of a commercially available robot-assisted laparoscopic system, underscor-
ing the practical applicability and potential of the NIMA method in enhancing surgical performance
and outcomes. Through evaluations, we demonstrate the NIMA method’s capability to improve
the precision and reliability of robotic-assisted surgical procedures, paving the way for its broader

adoption in the medical field.

2.3 Materials and Methods

2.3.1 Experimental Setup

The experimental equipment was meticulously crafted to replicate a surgical setting by incor-
porating state-of-the-art components. Two Kinova Gen3 (7 DOF) robotic arms Kinova robots,
renowned for their advanced manipulation capabilities, played a critical role in executing precise
and controlled movements of surgical tools. As shown in Fig. 3.2(a), these robots emulate hu-
man hand dexterity thanks to their 6 degrees-of-freedom and ample workspace, which is critical
in surgical experiments as the motions replicated by the robots mimic those of the human hand
with high accuracy. Three 6-axis force-torque sensors (SensONE, Bota Systems) were placed at
the end-effectors for force measurement. In addition, dedicated carts were designed and built to
provide a base, stability, and maneuverability for the robotic arms, ensuring optimal positioning
throughout experimental procedures. DaVinci SI surgical tools (Intuitive) were adapted to robotic
arms for tailored surgical tasks. The tools were integrated into the robotic arms using costume-
designed adapters to ensure a seamless functionality that meets clinical standards. Classic tooltips

such as forceps were adapted to provide the needed dexterity and usability. The tools were powered
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Figure 2.1: The proposed NIMA-based force feedback architecture for robot-assisted laparoscopy.
The leader module provides surgeons with an interface to interact with, generating the motions to
control surgical instruments and receiving haptic feedback simultaneously in real-time. The
follower module consists of robotic arms and surgical instruments that deliver the motions and
actuate on patients’ tissues.

by four Dynamixel actuators (ROBOTIS) on each robotic arm, enabling nuanced control during
trials. These actuators are responsible for controlling the tip of the surgical tools to enable precise
grasping.

Two Omega.7 haptic controllers (Force Dimension) served as the interface between the human
operator and the robotic arms, by translating hand motions into precise surgical movements. These
haptic devices provide high-resolution position encoding with sub-millimetre accuracy. An ad-
justable surgeon console was also designed and built to provide ergonomic access to the controllers.

To ensure anatomical fidelity, a translucent bespoke mannequin was strategically integrated with
tissue-representative objects, as shown in Fig. 3.2, simulating structural complexities encountered
in actual surgical scenarios, such as pick-and-place and suturing tasks, to create challenging exper-

imental conditions similar to those in real surgical procedures.
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Figure 2.2: (a) The surgical simulation environment with an abdominal dummy, Kinova gen3 robots,
surgical tools (i.e. forceps and scissors), instrument adapters, trocars, and pick-and-place surgery
training items. (b) The developed surgeon console with adjustable omega.7 haptic devices, an HD

display, and an adjustable armrest.
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For quantifying and analyzing forces during simulated tasks, Bota force sensors were placed
at the tip of each robotic arm. These sensors captured essential force data, offering insights into
mechanical interactions between the surgical tool and the tissue-representative objects.

The in-house designed adaptable surgical console, as shown in Fig. 3.2 served as the central
control hub, facilitating seamless communication and coordination among all components. This
console enabled the integration and synchronization of the controllers, robotic arms, surgical tools,

Dynamixel actuators, and force sensors, ensuring a cohesive and efficient experimental setup.

2.3.2 Force Sensor Gravity Biasing

For integrating force feedback into robotic laparoscopic surgery, force sensor system identifi-
cation is crucial for sensor biasing and mass compensation. These two factors ensure precise and
accurate measurement of the reflecting forces between the instruments and the tissue. The system
identification process integrated in this study utilizes IMU data to estimate the spatial orientation of
the end effector. This allows for the effective implementation of gravitational biasing techniques,
which eliminate the effects of gravity on the robotic instruments. By leveraging the IMU data, the
system can accurately determine the orientation of the end effector (roll, pitch, and yaw), which is
critical for biasing the gravitational forces acting on the robotic instruments. For the sake of sim-
plicity, the proposed method only uses the accelerations in three directions to find the Roll and Pitch
angles in the end effector orientation, without relying on temporal integration of angular velocities

[34]. The angles mentioned above were extracted in real time using these equations:

a = atan2(ay, a;) (1)

3 = atan2 (—am, \/az + a%) )

where « is the angle of rotation around the x-axis of the world’s coordinate system, (3 is the
angle of rotation around the y-axis, and a,, ay, and a, represent the acceleration values in the z,
y, and z directions, respectively. For gravitational compensation and sensor biasing, a series of

maneuvers were designed to cover every possible configuration of the robot’s end effector during
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a surgical task. These maneuvers were performed with all the relevant equipment, including the
surgical tool, four Dynamixel actuators, and the custom-designed adapter, installed on each robot.
Throughout the task, force readings from the sensor and the angles of the end effector were captured
and recorded. This data was then used for extracting a model for calculating the gravitational forces
and sensor bias in any orientation of the surgical tool. The model extraction process is critical as it
forms the basis for implementing the biasing techniques to counteract the effects of gravity on the

robotic instruments. The formulation for the extracted model is in the form of:
AC=B 3)

where A represents the system’s configuration, C is the matrix of unknown coefficients, and B is the

sensor readings. Then:

sinay, cosoay, sinf; cosfy 1

sinay, cosay, sinfy, cosfy, 1

A=1 . . . S “)

sinay, cosoay, sinf;, cosf, 1

nxo
Clx Cly Clz
CQ:U CQy CQz
C= Cdx C3y CSZ (5)

04:1: C’4y C4z
C5:v CBy CSz 5x3

Fx,, Py, Fz,

Fx,, Fy, Fz,

B = . . . (6)

where F represents the sum of the gravitational force and sensor bias collected from the force sensor

during the robot’s maneuver for a given position.
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To obtain the matrix of coefficients C, which is crucial for our model, we can solve equation 3

using the pseudo-inverse of A as follows:

C=A'B (7

where AT = AT(AAT) =1 is the pseudo-inverse of A.

Once we have obtained the matrix of coefficients, we can implement the gravitational biasing
techniques based on the model extracted from the IMU data.

The successful integration of these techniques will enable the robotic instruments to bias for the

gravitational forces, ensuring more precise and accurate movements during laparoscopic surgery.

2.3.3 Non-linear Impedance Matching Approach (NIMA)

This study introduces a nonlinear impedance matching approach (NIMA) for providing force
feedback in remote surgical robotics as an alternative to direct force reflection (DFR). The con-
cept of NIMA is based on the real-time identification of nonlinear tool-tissue contact impedance
parameters M at the follower module and relays those to the leader module. Meanwhile, motion
commands X are relayed to the follower module where a representative laparoscopic instrument in-
teracts with a mannequin as a representative soft tissue model. Without loss of generality and for the
sake of simplicity, we incorporated a polynomial nonlinear impedance model to identify the NIMA
parameters M. The contact force f € R3*! was modelled as the response of a nonlinear impedance

hyper-surface to a given motion command X according to the following equation:

T
f:MX:M(* x *) ®)

where 7' is the transpose operator, x,7, and z are the motion commands (i.e., incremental position
changes of the instrument during a time window dt), % is the augmented state operator of degree N

defined as:
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3N x1

and M is the NIMA impedance parameters of the form:

m, 0 0
M= 0 m, 0 (10)
0 0 m,

3x9N
where m; € R"3N as the vector of NIMA impedance parameters and 0 € R'*3N as the zero
vector.

It is worth assuming there is no cross-talk between orthogonal components of the tool-tissue
forces in the x—, y—, z— directions. Nevertheless, this can be achieved by adding non-zero pa-
rameters of the form m; for modelling the cross-talk. To identify the unknown M in real-time, a
rolling time window of ¢ = 300 ms was considered. Evidence suggests that a delay of less than
300 ms might not be perceivable for surgeons in leader-follower architectures [35]. Thus, a 300ms
time window could simulate a worst-case scenario for updating the impedance parameters (and
forces). The NIMA parameters M were being identified on the fly, over the collected window (i.e.

first-in-first-out) of n sample forces F € R¥*™ and the corresponding motion commands X using:

M=FX" (11)
F= (fto fto+5t> (12)
3Xn
X = <Xto Xto+§t) (13)
IN xXn

where X" = X" (XXT)_I is the pseudo-inverse of X.

In this study, the peg transfer task, critical to the Fundamentals of Laparoscopic Surgery (FLS)
program [36], was selected for analysis. Throughout this task, two surgical tools were affixed to
two robotic arms, while a camera suitable for laparoscopy procedures was mounted on the third

arm. The task comprised three distinct phases: Motion with no contact, motion and contact, and
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contact with no motion phase. During all phases, the surgical tools remained within the mannequin.
However, in the motion with no contact phase, position commands were transmitted from the leader,
but there was no physical contact between the surgical tool and the peg. In the subsequent phase,
the experiment proceeded by fully grasping the peg and transferring it to the designated bar. In the
final phase, contact between the surgical tool and the tissue representative was maintained, while no
position commands were sent, meaning that the controller was not being held. This task’s execution
entailed capturing the positions, orientations, and velocities of robotic arms using the controllers,
with synchronization to the operator’s motion commands achieved at a refresh rate of 1 kHz and
a programmatic delay of 300 ms. Force signals were recorded through force sensors (SensOne,
Bota Systems) at a sampling rate of 2 kHz. This data facilitated the identification of parameters
for the Nonlinear Impedance Matching Approach (NIMA), which were subsequently applied in Eq.
14 to compute and apply the desired three-dimensional force, f; on the haptic device. To optimize
the degree of polynomial approximation, N, for NIMA, five parallel threads with N = 1-.-5
were executed. The selection of N for each time window was determined based on achieving the
minimum norm of the 3D force reconstruction error, ensuring accurate force feedback emulation

and improving the surgical simulation experience.

2.4 Results and Discussions

The effectiveness of our Nonlinear Impedance Matching Approach (NIMA) in the accurate
rendering of forces on haptic devices is demonstrated in Fig. 2.3.

This figure presents a comparison between the forces rendered by the haptic device and the
actual forces measured by force sensors. Implementing NIMA resulted in a Mean Absolute Error
(MAE) of 0.03 N, showcasing a high fidelity in force feedback, with the errors exhibiting a normal
distribution characterized by a Standard Deviation (SD) of 0.08 N. This performance significantly
surpasses that of our previous Linear Impedance Matching (IMA) strategy, which recorded an MAE
of 0.2 N and an SD of 0.4 N.

A comparative assessment of NIMA against the IMA framework reveals a remarkable 85% im-

provement in accuracy with the use of NIMA. This enhancement not only highlights the superior

20



Motion with NO contact Contact with NO motion

2.5

| .: T T I !
L 11 [=DFR—IMA—NIMA] !
15F 1 | ]
1F .: | Motion and Contact | 1

0 : x
-0.5 : o
ab ; !
- .- . S,
0 S 10 15 20

Time (s)

Figure 2.3: Comparison between the norm of rendered IMA, NIMA) and measured (DFR) forces
during contact and contactless interactions between surgical tool-tip and mock tissues. The motion
and motionless interactions refer to the human hand holding and releasing the haptic controller.

precision of the nonlinear approach in generating force feedback but also establishes a new standard
in the immersion of haptic interactions. The substantial reduction in MAE emphasizes the effec-
tiveness of integrating nonlinear dynamics into impedance-matching processes, thereby advancing
the quality and reliability of haptic feedback.

Fig. 2.4 compares the distribution of error between IMA and NIMA and their normal distribu-
tion fit.

Moreover, a detailed analysis of the algorithm’s performance throughout the experiment re-
vealed a noteworthy preference for non-linear models, with a non-linear fit being selected in over

64% of the evaluated time windows. This significant reliance on non-linear approaches underscores
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Figure 2.4: Error distributions for IMA and NIMA methods, with their corresponding fits.
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the potential inadequacies of the Linear Impedance Matching (IMA) model in capturing the nu-
anced, dynamic interactions between the surgical tool and tissue. The complexity and variability of
these interactions surpass the representational capabilities of linear models, highlighting the intri-
cate nature of tool-tissue forces encountered during laparoscopic procedures. Our findings suggest
that the temporal variations of these forces, which are critical for displaying meaningful haptic
feedback, are better represented through non-linear modelling, providing an accurate and valuable
simulation that resembles actual surgical scenarios.

Throughout our experiments, the phenomenon commonly referred to as haptic kick” — a sud-
den, unwelcome jerk felt by the operator upon the release of the haptic device — was notably absent.
This observation is consistent with the mechanisms we have previously described [33], wherein the
rapid convergence of the system’s output force vector, X, to zero within a brief time window, dt,
upon the user releasing the haptic device ensures that the desired force, f;, also approaches zero.
This behaviour effectively neutralizes the potential for a haptic kickback, thereby enhancing the
safety and comfort of the operator’s experience. The elimination of the haptic kick in our sys-
tem not only improves user interaction with the haptic device but also represents a significant step
forward in developing more sophisticated and user-friendly haptic feedback systems for surgical

training simulators.

2.5 Summary

The proposed NIMA method is an intrinsically safe force-rendering method for haptics-enabled
teleoperation. In this study, most of the major components of a teleoperated system were presented
through commercially available robotic teleoperation components.

NIMA will also be used in more channels to include torque feedback. In addition, this work
could use the proposed NIMA model in a physics-informed neural network (PINN) model for self-

supervised model-free force rendering.
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Chapter 3

Neural Network-Based Force Estimation
for Realistic Haptic Feedback in

Robotic-Assisted Laparoscopy

3.1 Objective and Contribution

The primary objective of this chapter is to identify and quantify all forces acting on the surgi-
cal tool during robot-assisted laparoscopic surgery. This involves defining a method to calculate
these forces using force sensors placed outside the patient’s body while addressing the associated
challenges. Additionally, this chapter aims to conduct comprehensive validation studies on the
proposed Nonlinear Impedance Matching Approach (NIMA) for force rendering in robot-assisted
laparoscopic surgeries.

The key objectives of this chapter are as follows:

(1) To design and implement a robust experimental setup that integrates custom surgical tools, Ki-
nova robotic arms, Omega.7 haptic controllers, and Bota force sensors. This setup simulates
realistic surgical environments to evaluate and validate the Nonlinear Impedance Matching

Approach (NIMA).
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(2) To propose and validate NIMA as a safe and effective force-rendering method that incorpo-

rates nonlinear dynamics for enhanced haptic feedback.

(3) To develop a neural network-based tool-tissue force estimation method capable of isolatin
P P g
precise interaction forces by compensating for extraneous forces such as friction at the Re-

mote Center of Motion (RCM) and gravitational effects.

(4) To demonstrate the superiority of NIMA in improving the realism and stability of haptic
feedback compared to traditional linear methods, providing a transformative solution for ad-

dressing the absence of tactile sensation in robotic-assisted surgical systems.

This chapter makes significant contributions to the field of haptic feedback and robotic-assisted

laparoscopic surgery through the following advancements:

(1) Developed the Nonlinear Impedance Matching Approach (NIMA) to incorporate nonlin-
ear dynamics, achieving a 95% improvement in force rendering fidelity compared to linear
impedance methods and successfully eliminating haptic kickback, thereby enhancing the pre-

cision, safety, and stability of haptic feedback in robot-assisted laparoscopic surgeries.

(2) Proposed and validated a neural network-based tool-tissue force estimation method that iso-
lates precise interaction forces by compensating for extraneous influences such as friction at
the Remote Center of Motion (RCM) and gravitational effects, achieving a Mean Absolute

Error (MAE) of 0.1 N.

(3) Demonstrated that NIMA effectively addresses the absence of tactile feedback in commer-
cial robotic surgical systems, improving the realism, responsiveness, and accuracy of force
feedback while enabling seamless coordination between surgeon input and the laparoscope’s

view, paving the way for broader integration into commercial platforms.

These contributions collectively represent a significant step forward in improving the precision,

usability, and safety of robotic-assisted surgical systems.

3.2 Related Studies
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Table 3.1: Table of related studies with accuracy.

Application Method Advantages Limitations Accuracy
Laparoscopic Surgery Vibrotactile and skin-indentation displays [37] Enhanced tactile perception Limited experimental validation Not Reported
Keyhole Endoscopy Force-sensing at the instrument tip [38] Improved precision and safety Integration challenges in complex setups ~90%
Robot-Assisted Surgery  Haptic feedback for teleoperation [39] Improved surgeon accuracy and reduced fatigue High cost and system complexity Not Reported
Neurosurgery NeuroArm system with haptic corridors [20] Real-time tactile cues for tissue manipulation Limited to specific surgical scenarios Not Reported
Needle Insertion Force feedback amplification [38] Enhanced needle control during procedures Limited clinical testing ~92%
Orthopedic Surgery MAKO Tactile Guidance System [20] Precision in alignment and cutting efficiency Expensive and complex setup ~95%
Laparoscopic Simulation  Visual and vibrotactile feedback [37] Effective for training novice surgeons Cognitive overload risk Not Reported
RMIS Training Master-slave systems with force reflection [38]  Improved task efficiency and safety Limited generalizability to all RMIS systems ~85%
Tissue Manipulation Pneumatic balloon tactile displays [20] Effective tactile cues in experimental setups Not widely adopted in clinical settings Not Reported
Endoscopic Surgery Sensor integration for grasp force feedback [38] Improved force control in endoscopic tools Limited real-world validation ~88%




3.3 Methodology

3.3.1 Experimental Setup
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Figure 3.1: System architecture of the presented robot-assisted laparoscopy setup.

The experimental apparatus was carefully designed to simulate a realistic surgical environment,
integrating advanced technologies and components, as depicted in Fig. 3.2.

The setup included a custom mannequin embedded with tissue-representative objects, specially
designed surgical tools, two Kinova Gen3 robotic arms (7 DOF), dedicated carts for robotic arm
stability, two Omega.7 haptic controllers (Force Dimension), three 6-axis force-torque sensors (Sen-
SsONE, Bota Systems), and an adaptable, in-house-designed surgical console.

The Kinova Gen3 robotic arms were pivotal for delivering precise and controlled movements of
surgical instruments, replicating the dexterity of human hands to ensure an authentic experimental
setting for surgical tasks.

Specialized carts were engineered to support the robotic arms, providing stability and flexibility
to position the system effectively during experiments.

The surgical tools were custom-designed to integrate seamlessly with the robotic arms while

adhering to clinical standards. These tools were powered by four Dynamixel actuators (ROBOTIS),
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Figure 3.2: a) The developed surgeon’s console with haptic devices. b) The simulated surgical
setup, featuring a mannequin, force sensors, an optical tracker, a laparoscope, surgical tools with
instrument adapters, and a tissue surrogate.

offering fine-grained control and precision during operations.

The Omega.7 haptic controllers enabled the human operator to intuitively interact with the
robotic arms, translating hand movements into precise surgical motions. Their high accuracy played
a crucial role in creating realistic and user-friendly surgical simulations.

A translucent mannequin, as shown in Fig. 3.2a, incorporated tissue-representative objects to
replicate the structural complexities of real surgical scenarios, including pick-and-place and suturing
tasks, fostering an environment that closely mirrors actual surgical challenges.

Force data from simulated tasks were captured using Bota force sensors mounted on the tips of
the robotic arms. These sensors provided valuable insights into the mechanical interactions between
the surgical tools and the tissue-representative objects.

The custom-designed surgical console, shown in Fig. 3.2b, acted as the central control system,
seamlessly integrating the robotic arms, haptic controllers, surgical tools, Dynamixel actuators,
and force sensors. This console ensured efficient communication and coordination between all
components.

The system architecture, depicted in Fig. 3.1, facilitated control by transmitting commands
from the haptic devices to both the Robot Controller (RC) and Instrument Controllers (IC). The

robots executed position commands, while the Dynamixel actuators managed the surgical tool tip’s

28



orientation, with each function handled by a distinct control section. A PID controller was employed
for precise position-velocity control, ensuring accurate tooltip alignment.

The robot controller comprised two main modules: one for hand-eye coordination and another
for robot communication. It synchronized the robots, optical tracker, laparoscope, and haptic de-
vices with the surgeon’s visual perspective for cohesive operation.

Force sensors from Bota, positioned between the robots’ end effectors and the custom adapters,
measured the interaction forces between the tools and the tissue as well as friction forces at the Re-
mote Center of Motion (RCM). To maintain a stable entry point on the patient’s body, translational
movements from the surgeon’s hand were converted into rotational motions around the RCM. Any
friction forces generated during the tool’s translational movements were calculated and subtracted
from the total forces recorded by the sensors to derive the tooltip forces.

The Tip Force Extractor (TFE) was developed as a neural network block to estimate the tooltip
forces using data from the force sensors at the robot’s end effectors. This approach, detailed in
Section 3.3.4, enabled accurate force calculation for safe and effective haptic feedback. The tool-
tissue interaction forces were relayed to the Non-linear Impedance Matching Approach (NIMA)
system, which provided adjustable haptic feedback to the surgeon’s hands, allowing customization

based on the surgeon’s preferences.
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3.3.2 Non-linear Impedance Matching Approach (NIMA)
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Figure 3.3: The proposed NIMA-based force feedback for haptic-enabled surgical robotics.

This work presents a novel Nonlinear Impedance Matching Approach (NIMA) as an alternative
to Direct Force Reflection (DFR) for delivering force feedback in remote surgical robotics. NIMA
operates by identifying nonlinear tool-tissue contact impedance parameters, denoted as M, at the
follower module in real-time and transmitting these parameters to the leader module. Simultane-
ously, motion commands X are sent to the follower module, where a representative laparoscopic
tool interacts with a mannequin simulating soft tissue. For simplicity and generality, a polynomial
nonlinear impedance model is employed to determine the NIMA parameters M. The contact force
f ¢ R3*! is modelled as the response of a nonlinear impedance hyper-surface to the given motion

command X:
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T
f:MX:M<* \ ) (14)
1x9N

where T denotes the transpose operator, x, ¥, and z represent the motion commands (i.e., incre-
mental positional changes of the instrument within a time interval 0t), and }; signifies the augmented

state operator of degree IV, defined as:

uj\,—<u w i ulNoaN aN> (15)
3N x1

The NIMA impedance parameter matrix M is structured as:

m, 0 0
M=|0 m o (16)
0 0 m,

3X9N

where m; € R'3V is a vector of impedance parameters and 0 € R*3% is a zero vector.

This model assumes no cross-talk between the orthogonal tool-tissue forces along x, y, and z
axes. Cross-talk effects, if needed, can be modelled by including additional non-zero elements in M.
To compute M in real-time, a rolling time window of ¢ = 300 ms was adopted. Delays under 300
ms are generally imperceptible to surgeons in leader-follower setups [35], making this an effective
worst-case scenario for updating impedance parameters. The NIMA parameters M are continuously

updated using a rolling dataset of n sample forces F € R3*" and motion commands X:

M =FX" (17)

ﬁ:<& . %MJ (18)
3Xn

X = <Xto Xto+5t> (19)
IN xXn

A~ Jr . A
Here, X represents the pseudo-inverse of X, computed as:
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)~ (20)

In this research, the peg transfer task, a core element of the Fundamentals of Laparoscopic
Surgery (FLS) curriculum [36], was chosen for evaluation. This task involved capturing the robotic
arms’ positions, orientations, and velocities using two Omega.7 haptic controllers, synchronized to
the operator’s motion commands at a refresh rate of 1 kHz with a programmed delay of 300 ms.
Force feedback, essential for realistic haptic interaction, was recorded via force sensors (SensOne,
Bota Systems) at 2 kHz. These data were used to identify NIMA parameters and apply Eq. 14
to compute and render the desired 3D force, f;, on the haptic device. To optimize the polynomial
degree N for NIMA, five parallel threads with N = 1. -5 were executed, with the optimal N for
each time window selected based on minimizing the 3D force reconstruction error. This ensured
accurate force feedback and enhanced the surgical simulation’s realism.

Despite the validated accuracy of the system in our previous work [19], one critical challenge
remains unresolved. Since the force sensor is installed outside the patient’s body, the tool-tissue
interaction force is not the only contributor to the measured forces. The sensor readings are influ-
enced by additional forces that must be identified and removed before being used as inputs to the

Nonlinear Impedance Matching Approach (NIMA).
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Figure 3.4: Free Body Diagram of the Robotic Laparoscopic Setup During a Typical Task.

Figure 3.4 illustrates the free body diagram of the robotic arm during a task involving interaction
between the surgical tool and a tissue surrogate. By assuming a quasi-static motion of the robot’s

end effector and neglecting inertial forces, the system experiences the following forces:
» Forces measured at the sensor connected to the robotic arm, fropot,
* Frictional forces at the Remote Center of Motion (RCM), frem,
* Interaction forces between the tool and tissue, fr;,, and
 Gravitational forces, mg.

The equilibrium of forces is given by:

> F = frp + frem + frobor + mg = 0 @1
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Here, frj, € R3*! represents the interaction forces between the tool and tissue, frey € R3*!
denotes the forces at the RCM, fropor € R3*! refers to the measured forces from the sensor, and
g € R3*! accounts for gravity.

The equilibrium of moments is expressed as:

Z MCOM = MRObOt + MfTip + MfRCM = 0 (22)

where Mgopot € R3*1, M frp € R3*1 and M frem € R3*1 are the moments generated about
the Center of Mass (COM) by fropot, frip, and frem, respectively. Substituting the moments using

r x f, the equation becomes:

> Mcom = rrobot X Frobor + r1ip X Frip + Trem X frem = 0 (23)

Here, rropot € R3*!, rrjp € R3*!, and rpem € R?*! are the position vectors connecting the
respective points to the COM.
From the described forces, fronot represents the measured forces from the sensor, while mg is

expressed as:

mg =mg |0

where g is the gravitational acceleration. Equations (21) and (23) form a system of equations
with frjp and frem as unknowns. On the other hand, frobot, TRobot» T'Tips TRCM» and mg are known,
assuming the COM’s location is provided. Despite having six equations and six unknowns, an
analytical solution is not feasible because two of the equations are redundant. Consequently, a
different method is required to determine fryp.

To address this, a series of experiments were conducted. First, an experiment was designed to
eliminate all gravitational forces using a weight compensation method. Subsequently, two addi-
tional experiments were conducted to quantify the forces at the RCM and subtract them from the

sensor readings, allowing for the accurate determination of tool-tissue interaction forces.
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3.3.3 Force Sensor Gravity Biasing

For incorporating force feedback into robotic laparoscopic surgery, accurately identifying the
force sensor system is essential for applying gravitational biasing, which ensures precise robotic
instrument movements. This study employs system identification using IMU data to determine the
spatial orientation of the end effector, enabling effective gravitational biasing methods that counter-
act the effects of gravity on the robotic tools.

To achieve this, IMU sensor Readings were used to calculate the end effector’s orientation in
real-time without relying on data integration from other sources. Using this IMU data, the system
effectively calculates the end effector’s roll, pitch, and yaw, critical for compensating gravitational
forces acting on the robotic instruments. For simplicity, this method computes roll and pitch angles
using accelerations in three directions, avoiding the integration of angular velocity over time [34].

These angles are calculated in real-time through the following equations:

a = atan2(ay, a) 24)

B = atan2(—ay, \/ a2 + a2) (25)

Here, o represents the angle along the world’s x-axis, ( is the angle along the y-axis, and a,
ay, and a are acceleration values along the x, y, and z directions, respectively.

After deriving the spatial orientation of the end effector from the IMU data, the next step in-
volves modelling gravitational biasing. This model is crucial for implementing techniques to coun-

teract gravity’s effects on the robotic tools. The extracted model is expressed as follows:

AX =B (26)
In this equation:
* A represents the system dynamics,

¢ X is the matrix of unknown coefficients,
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* B corresponds to the sensor readings.

The structure of A is:

sinay, cosoy, sinfy cosfy siny, cosyy, 1

sinay, cosoy, sinfy, cosfy, siny, cosvy, 1

A=l . . . . @7

sinay, cosay, sinf;, cosf:, sinvy, cosvyy, 1

nx7
X, the matrix of unknown coefficients, is defined as:
Clx Cly Clz
CQ.CB C2y CZZ
X= ng ng C3Z (28)
0490 C4y C4z
0590 C5y 052 5%3
Finally, B, containing the force readings, is expressed as:
Fx, Iy, Fz,
g | ¥ e f7 (29)
Fx, Fy, Fz, .

Here, C represents the unknown coefficients, and F' denotes the measured forces for a specific
robot position.
To determine the coefficient matrix X, which is fundamental to the model, the equation AX = B

is solved using the pseudo-inverse of A:

X =A'B (30)

where A' is the pseudo-inverse of A, defined as:
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AT = AT(AAT)! (3D

Once the coefficient matrix is obtained, the gravitational biasing techniques can be implemented
based on the extracted model from the IMU data. These techniques allow robotic instruments
to counteract gravitational forces, ensuring precise and reliable movements during laparoscopic

surgeries.

3.3.4 Tool-tissue Interacting Force Extraction

-

Force The tissue
sensor surrogate

Figure 3.5: The proposed NIMA-based force feedback for haptic-enabled surgical robotics.

After eliminating all gravitational forces due to the weight of the 3D-printed adapter, the tool-
tissue forces at the tip of the surgical instrument need to be isolated from the total forces measured by
the sensing element. This isolation ensures that only the tool-tip forces are rendered to the surgeon.
To achieve this, two experiments were designed to gather data for training a neural network capable
of estimating the tool-tip forces solely using force sensors positioned outside the patient’s body.

As illustrated in Figure 3.5, the setup for these experiments includes two Bota FT sensors, two
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Kinova robotic arms , two instrument adapters, a mannequin, and an NDI optical tracker. Addition-
ally, a silicon-based flexible tissue surrogate, representing human tissue, was mounted on one of
the force sensors. These experiments aimed to capture the robotic arm sensor readings, the forces
at the tooltip measured via the sensor beneath the flexible tissue surrogate, and the robotic arm

end-effector configuration. This data set was subsequently used to train the model.

Rotation matrices estimation

To use the measured tool-tip forces and those at fropoc for training, both fronoe and frip need to
be represented within a unified coordinate system. Thus, the first experiment aimed to transform all
force readings to the coordinate system of fropot.

In this experiment, the upper section of the mannequin was removed to eliminate friction forces
at the Remote Center of Motion (RCM).

The robotic arm was then manipulated using haptic devices to engage the tool with the tissue
surrogate. This setup ensured that the Robot sensor Sy measured only the interaction forces with
the tissue (fropot), While the tip sensor St recorded the same forces (fr;,). Consequently, the forces

frip, expressed in the coordinate system of Sr, should match:

{88} g oot =157 £y (32)

where YR} g por represents the measured forces of Sr expressed in its own coordinate system,
and {SR}fTip represents the measured forces from St expressed in the coordinate system of Sg.

Hence:

Bt popor =157 Ryg,y 77y, (33)

where the rotation matrix between the coordinate systems can be expressed as:

{SR}R{ST} :{SR} R{KBF} {KBF}R{M} {M}R{C} {C}R{ST} (34)

Here, the coordinate systems are defined as follows:
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Figure 3.6: Graphical representation of the experimental results demonstrating the relationship be-
tween the coordinate systems based on force measurements.
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Flexible Tissue
Representative

Figure 3.7: Experimental setup for determining the relationship between the coordinate systems.
This setup showcases the initial configuration of the robotic arm, tissue surrogate, and force sensors.
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KBF: Kinova Base Frame.

Sr: End effector of the robot holding the instrument.
* M: The optical marker attached to the base of the surgical instrument.
» C: Optical tracking camera.

* St7: Coordinate system of the sensor measuring forces at the tip.

In Eq. 34, the only unknown matrix is {C}R{ sr}» Which must be determined. This matrix can

be obtained by solving an optimization problem with the objective:

RR' =1 35)

subject to the equality constraints:
R=Rz(0z) Ry(fy) Rx(0x) (36)
PRy R, U F, =0 (37)

where 0x, 0y, and 0 are the Euler angles along the X, Y, and Z axes, respectively. By optimiz-

ing these angles, {C}R{ s} can be computed using Eq. 36.
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Neural tip force estimation

Figure 3.8: An internal view of the mannequin illustrating the setup for Experiment 2. This setup is

designed to acquire data for training a neural network to compute tool-tissue interaction forces.
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Figure 3.9: The setup for Experiment 2, showing the arrangement of robotic arms, tissue surrogate,

and force sensors for capturing tool-tissue interaction data.

Finding the rotation matrix correlations is crucial for expressing all forces with respect to a
unified coordinate system. Once that is achieved, the sensor readings can be used to train a neural
network to extract the forces at the point of Remote Center of Motion (RCM) and obtain the pure
tool tip-tissue interacting forces. To do that, the upper section of the mannequin was installed back
on and the same performance was done on the flexible tissue representative covering all the possible
movements and configurations of the robot.

By neglecting the inertial forces and considering the movements of the robot to be quasi-static

it could be shown that :

> f = frobot + frem + Frip = 0 (38)
where fropot € R1¥3 | frem € RY¥3 | and frip € R'*3 are the forces at the robotic arm,
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RCM point, and tip forces. During the experiment, frobot,fTip and quaternions of the robotic arm
drobot Where captured. The dataset used for this study comprised 25,000 samples, each containing
predictors Oropot € R'*3 (robot forces) and iiropor € R1x4 (quaternions of the robot’s end effector).
The responses were Uryp € R'*3, representing the tip forces. To ensure a robust evaluation of
the model, the dataset was partitioned into three subsets: a training set containing 68% of the
data, a validation set with 17%, and a test set comprising the remaining 15%. The training set
was used to optimize the model parameters, while the validation set served to monitor the model’s
performance during training and guide hyperparameter tuning. The test set, which was completely
unseen during both training and validation, was reserved to evaluate the final performance of the
model and its generalization capability. Before training, the input features were normalized to
improve optimization convergence.

The neural network was designed as a fully connected feedforward model. It consisted of an
input layer with seven neurons corresponding to the input features, followed by eleven hidden lay-
ers, each containing 64 neurons with ReLU activation functions. The output layer included three
neurons, reflecting the dimensionality of the target variables, without any activation function, as the
task was a regression problem.

The model was compiled using the Mean Squared Error (MSE) as the loss function, which
penalizes large prediction errors and is well-suited for regression tasks. The Adam optimizer was
employed for its adaptive learning capabilities, ensuring efficient parameter updates throughout
training. During the training process, the loss was computed on both the training and validation sets
at the end of each epoch. Validation loss indicated the model’s ability to generalize to unseen data
within the training distribution.

The training and validation loss progression across epochs is depicted in Figure.3.10, highlight-
ing the convergence behaviour and generalization capability of the model. The training procedure
spanned 1000 epochs with a batch size of 32. The results showed a Mean Absolute Error (MAE) of
0.1 N, a Maximum Absolute Error (MaxAE) of 0.2 N, and a Root Mean Squared Error (RMSE) of
0.97 N on the test set.

In addition, an additional experiment was designed to evaluate the accuracy and validity of

the trained neural network. In this test, the same operation was repeated; however, during this
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Figure 3.10: Training and validation loss over 1000 epochs, demonstrating convergence and gener-
alization of the neural network model.

procedure, there was no contact between the surgical tool and the tissue. As a result, all the measured

frip values were expected to be zero. Under this condition, the force balance equation simplifies to:

frobot = —freMm; (39)

indicating that the only forces captured by the robot’s force sensor correspond to the forces at
the Remote Center of Motion (RCM). Consequently, the prediction of the neural network for the
forces at the tooltip should yield zero values, aligning with the experimental setup and verifying the

correctness of the model.

3.4 Validation Study

The results section is divided into two sections: results of the Experiment 3.3.4 and the results

indicating the effectiveness of the presented NIMA model.
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Results of the Experiment 3.3.4

The results of the first experiment are presented in Fig. 3.4, which illustrates the tool-tissue
interaction forces captured by two force sensors with respect to the KBF. This data validates the
calibration method used to establish the relationship between the coordinate systems.

A comparative analysis between the forces measured by the sensor attached to the robotic arm
and those measured by the tissue surrogate’s sensor reveals a Mean Absolute Error (MAE) of 0.11
N, 0.09 N, and 0.13 N in the X, Y, and Z directions respectively. The Standard Deviations (SD)
for these measurements are 0.11 N, 0.12 N, and 0.18 N, respectively, demonstrating the precision
of the calibration.

Figure 3.13 demonstrates the results of the trained neural network (NN) model in subtracting
friction forces to isolate the tip forces applied by the surgical tool. The comparative analysis in the
X.,Y, and Z directions highlights the accuracy of this model in extracting the tip forces.

The Mean Absolute Error (MAE) between the measured and predicted forces for the X, Y, and
Z axes are 0.19 £ 0.2 N, 0.16 = 0.2 N, and 0.16 £ 0.2 N respectively. A statistical analysis further
confirms the model’s effectiveness, showing the predicted forces fall within the 95% confidence
interval.

Figures 3.14,3.15, and 3.16 show the results of an extra experiment where there was no contact
between the surgical tool and the tissue representative and the only captured forces were frictional
forces at the point of RCM. The measured forces in this experiment are the forces captured by
the untouched sensor which only captured the noise from the sensor. However, the NN model
performed beyond that and captured forces with an even lower range of error than the force sensor.
The mae values for the predicted forces are 0.02 4+ 0.03 N, 0.02 4 0.03 N, and 0.02 + 0.03 N in the
X, Y, and Z directions respectively. Moreover, the distribution of the forces in one of the axes is

demonstrated in fig3.17 solidifying the results mentioned.

Results of NIMA

The effectiveness of our Nonlinear Impedance Matching Approach (NIMA) in accurately ren-

dering forces on haptic devices is illustrated in Fig. 3.18.
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Figure 3.11: Illustration of the forces in the Y direction: (a) forces in the Y direction with respect
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Figure 3.13: Illustration of the trained neural network (NN) model’s performance in extracting tip
forces along the (a) X, (b) Y, and (c) Z directions, and (d) the residuals, highlighting its accuracy

and statistical reliability.
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Figure 3.14: Accuracy of the neural network (NN) model in capturing and subtracting frictional
forces at the Remote Center of Motion (RCM) in the X direction, enabling precise extraction of tip
forces for force rendering.

Figure 3.18 compares the forces rendered by the haptic device to the actual forces measured by
force sensors. The implementation of NIMA achieved a Mean Absolute Error (MAE) of 0.01 N,
demonstrating high fidelity in force feedback. The errors followed a normal distribution with a Stan-
dard Deviation (SD) of 0.02 N. This performance significantly exceeds that of the Linear Impedance
Matching Approach (IMA), which recorded an MAE of 0.2 N and an SD of 0.4 N.

A comparative assessment reveals a 95% improvement in accuracy with NIMA. This enhance-
ment underscores the superior precision of the nonlinear approach in generating force feedback, set-
ting a new benchmark for realism and immersion in haptic interactions. The substantial reduction
in MAE highlights the effectiveness of integrating nonlinear dynamics into impedance-matching

processes, improving both the quality and reliability of haptic feedback.
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Figure 3.15: Accuracy of the neural network (NN) model in capturing and subtracting frictional
forces at the Remote Center of Motion (RCM) in the Y direction, enabling precise extraction of tip
forces for force rendering.

Furthermore, Fig. 3.18 demonstrates how NIMA addresses the kick-back behaviour by render-
ing no forces for movements with velocities below 1 mm/s. Consequently, when the user releases
the haptic device, no force is applied to the handles, ensuring they remain stationary. However,
resisting forces are rendered with high accuracy once user input exceeds the velocity threshold,
preserving NIMA'’s precision.

A detailed analysis of the algorithm’s performance throughout the experiment revealed a note-
worthy preference for nonlinear models, with a nonlinear fit being selected in over 64% of the eval-
uated time windows. This reliance on nonlinear approaches highlights the limitations of the Linear
Impedance Matching (IMA) model in capturing the intricate, dynamic interactions between surgical
tools and tissue. The complexity and variability of these interactions exceed the representational ca-

pabilities of linear models, emphasizing the nuanced nature of tool-tissue forces encountered during
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Figure 3.16: Accuracy of the neural network (NN) model in capturing and subtracting frictional
forces at the Remote Center of Motion (RCM) in the Z direction, enabling precise extraction of tip
forces for force rendering.

laparoscopic procedures. These findings suggest that temporal variations in these forces—crucial
for realistic haptic feedback—are better captured through nonlinear modelling, enabling a more

accurate and responsive simulation of surgical scenarios.

3.5 Discussions

Throughout our experiments, the phenomenon commonly referred to as "haptic kick” — a sud-
den, unwelcome jerk felt by the operator upon the release of the haptic device — was notably absent.
This observation is consistent with the mechanisms we have previously described [33], wherein the
rapid convergence of the system’s output force vector, X, to zero within a brief time window, dt,

upon the user releasing the haptic device ensures that the desired force, f;, also approaches zero.
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This behaviour effectively neutralizes the potential for a haptic kickback, thereby enhancing the
safety and comfort of the operator’s experience. The elimination of the haptic kick in our sys-
tem not only improves user interaction with the haptic device but also represents a significant step
forward in the development of more sophisticated and user-friendly haptic feedback systems for

surgical training simulators.

3.6 Summary

The Nonlinear Impedance Matching Approach (NIMA) presented in this study represents a
significant advancement in the development of haptic feedback systems for robot-assisted surgery.
By leveraging a nonlinear impedance model, NIMA effectively captures the complex dynamics of
tool-tissue interactions, enabling precise control of 3D contact forces and enhancing the realism of
haptic feedback. The experimental results underscore its superior accuracy and stability compared
to linear impedance methods, demonstrating an 85% improvement in force rendering fidelity and
successfully eliminating undesirable phenomena such as haptic kickback.

NIMA’s ability to accurately replicate surgical forces without destabilizing the system offers
a transformative solution to one of the major limitations of existing teleoperated surgical systems.
Furthermore, the method’s adaptability to dynamic and nonlinear conditions highlights its potential
for broader application across various surgical scenarios and robotic platforms. These findings
pave the way for integrating haptic feedback into commercial robotic surgical systems, thereby
addressing a critical gap in the field and enhancing both the safety and efficacy of minimally invasive
procedures.

As robotic surgery continues to advance, the development and adoption of robust haptic systems
like NIMA will play a crucial role in improving surgical training, optimizing clinical outcomes, and
ultimately setting new standards for precision and reliability in robotic-assisted medical interven-

tions.
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Chapter 4

Conclusion and Future Works

4.1 Conclusions

In this research, the Nonlinear Impedance Matching Approach (NIMA) was introduced to ad-
dress the critical challenges of force rendering in robotic-assisted laparoscopic surgery. First, the
design requirements for a robust haptic feedback system were identified, including the need to ac-
curately replicate tool-tissue interaction forces within an error margin of less than 10

To meet these design requirements and avoid introducing additional complexities to the surgical
workflow, a novel haptic rendering methodology was developed. The NIMA framework incorpo-
rates nonlinear dynamics to improve force fidelity and system responsiveness while maintaining
intrinsic safety. Unlike traditional methods, NIMA was designed to eliminate haptic kickback, en-
suring that no force is applied to the haptic device when the surgeon releases the handle. This
innovation enhances both user comfort and patient safety.

A neural network-based tool-tissue force estimation method was developed as part of this re-
search, enabling accurate extraction of interaction forces from externally placed force sensors. The
neural model compensated for extraneous forces, such as friction at the Remote Center of Motion
(RCM) and gravitational effects, achieving a mean absolute error (MAE) of 0.01 N. This force
estimation method met the accuracy requirements set in the research objectives and provided a

foundation for high-fidelity haptic feedback.
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To validate the NIMA framework, an experimental setup was designed and implemented, fea-
turing commercially available robotic arms, haptic controllers, and custom-designed surgical tools.
The results demonstrated a significant improvement in force rendering fidelity, achieving a 95

The proposed framework also includes a roadmap for future advancements, such as extend-
ing NIMA into torque feedback channels and integrating it with physics-informed neural network
(PINN) models for self-supervised, model-free force rendering. These extensions would further
enhance the adaptability and scalability of the system.

In addition, the validated experimental setup confirmed the compatibility of the developed com-
ponents, including force estimation, haptic rendering, and rotation measurement, with the overall
system design requirements. The integrated system demonstrated stability, precision, and scalabil-
ity, addressing the longstanding need for realistic and reliable haptic feedback in robotic-assisted
surgical systems.

Based on the presented contributions and performance evaluations, this research establishes
NIMA as a feasible and transformative technology for addressing the unmet need for haptic feed-
back in minimally invasive surgery. The proposed system not only advances the state of the art
in robotic surgery but also paves the way for broader applications in medical robotics and training

simulators.

4.2 Future Works

Building upon the advancements achieved in this research, several avenues for future work have
been identified to further enhance the capabilities and applications of the Nonlinear Impedance

Matching Approach (NIMA) in robotic-assisted surgery:

(1) Integration of Torque Feedback: While this research focused on force rendering, extending
NIMA to incorporate torque feedback would provide surgeons with a more comprehensive
tactile experience. This addition would enable precise control of rotational forces, further im-

proving the realism and utility of haptic feedback in robotic-assisted laparoscopic procedures.

(2) Development of a Physics-Informed Neural Network (PINN): The integration of NIMA with

a physics-informed neural network (PINN) model could enable self-supervised, model-free
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force rendering. This approach would eliminate the need for predefined tissue models, allow-

ing the system to adapt to a wide variety of surgical scenarios dynamically and autonomously.

Structural Optimization for Zero-Force Rendering: Although the proposed haptic rendering
modality demonstrated the feasibility of generating zero force, structural optimization of the
prototyped system is necessary to achieve this capability consistently. Future work should
focus on refining the design and materials used in the haptic rendering system to enhance

performance and reliability.

Extension to Multi-DOF Systems: Expanding the framework to include additional degrees of
freedom (DOF) for both force and torque rendering would enhance its applicability to more

complex surgical tasks, such as those requiring simultaneous manipulation and suturing.

Integration with Commercial Robotic Systems: While the current research utilized custom
experimental setups, integrating NIMA into commercially available robotic platforms, such as
the da Vinci Surgical System, would facilitate its adoption in clinical settings. Collaboration

with industry partners could expedite this process.

Real-Time Applications and Clinical Trials: Although the system demonstrated high fidelity
and safety in experimental conditions, future research should focus on optimizing compu-
tational efficiency to enable real-time applications. Conducting clinical trials will also be
essential to validate the system’s performance in real-world surgical scenarios and ensure its

compliance with medical regulatory standards.

Surgeon Training and Feedback: Developing training modules for surgeons to familiarize
them with NIMA-based haptic feedback systems could improve adoption and usability. Gath-
ering detailed feedback from surgeons during trials will inform iterative improvements to the

system design.

Exploration of New Surgical Applications: Beyond laparoscopic surgery, NIMA could be
adapted for other minimally invasive surgical domains, such as neurosurgery or endovascular
interventions. This adaptation would involve customizing the force and torque rendering

parameters to meet the specific requirements of these procedures.
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By addressing these future directions, the NIMA framework can continue to evolve as a cutting-
edge solution for enhancing haptic feedback in robotic surgery. These advancements will not only
improve surgical precision and patient outcomes but also establish a new standard for the integration

of haptics in robotic-assisted medical interventions.
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.1 Appendix

The following components were designed, fabricated in-house, and used in the robot-assisted

laparoscopic system developed for this research:

Figure .1: Design of the surgeon console used in the robot-assisted laparoscopic system developed
to in this research.
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Figure .2: The surgeon console designed, assembled, and used in the robot-assisted laparoscopic

system developed in this research.
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Figure .3: The Adapter designed, 3D printed in-house, and used in the Follower Module:

Integration with 4 Dynamixel Motors as the Main Actuation Unit for Surgical Tool Control.
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Figure .4: The laparoscope holder designed, fabricated, and used in the Follower Module: a flange

to connect the laparoscope to Kinova robotic arms.

Programming Scripts

WeightR1 = vecnorm(Fr1,2,2);
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WeightR2 = vecnorm(Fr2,2,2);
WeightR3 = vecnorm(Fr3,2,2);
WeightR4 = vecnorm(Fr4,2,2);
WeightR5 = vecnorm(Fr5,2,2);

a=1.341;
b =0.005577;

Wetght Rcorrectl = a x Weight R1 + b;
Weight Roorrect2 = a x* Weight R2 + b;
Weight Roorrect3 = a x Weight R3 + b;
Weight Rcorrectd = a x Weight R4 + b;
Weight Roorrectd = a * Weight RS + b;
Freorrectedl = (Frl./WeightR1). x Weight Rcorrectl;
Freoorrected2 = (Fr2./Weight R2). x Weight Roorrect2;

( )-

( )-

Freoorrected3 = (Fr3./WeightR3). x Weight Roorrect3;

Freorrectedd = (Frd./WeightR4). x Weight Roorrect4;
( )-

Freoorrected5 = (Fr5./WeightR5). x Weight Roorrect5;

fori =1:length(Frcorrectedl)
Freorrectedy,rtc1(i,1:3) =T1(4xi—3:4xi—1,1:3) % RS1x Froorrectedl(i, 1 : 3)';
Fr2(i,1:3)=TC2(4xi—3:4xi—1,1:3) % RP % Freorrected2(i, 1 : 3)';

FrC3(i,1:3)=T3(4xi—3:4%i—1,1:3) % RP % Freoorrected3(i, 1 : 3)';

end
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fori=1:length(Ftl)

Ftyrtol(i,1:3) = RC = Ft1(i,1: 3)';

Ft,rtc2(i,1:3) = RC % Ft2(i,1 : 3)';

Ftyrte3(i,1:3) = RC * Ft3(i,1: 3)';

end

fori=1:length(Ftl)

Quaternionsl(i, 1 : 4) = rotationMatrizToQuaternion(T'C1(4*i—3:4%i—1,1:3));

Quaternions2(i, 1 : 4) = rotation M atrizToQuaternion(T'C2(4 i —3:4%i—1,1: 3));

Quaternions3(i, 1 : 4) = rotationMatrizToQuaternion(T'C3(4*i—3:4%i—1,1:3));

Y3(i) =TC3(4*1i—2,4);
Z3(1) =TC3(4x1i—1,4);
end

fori =1: length(Quaternionsl) — 1

ifabs(Quaternionsl(i + 1,1) — Quaternionsl(i, 1)) > 0.1
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Quaternionsl(i + 1,1) = —Quaternions1(i + 1, 1);

end

ifabs(Quaternionsl(i+ 1,2) — Quaternionsl(i,2)) > 0.1

Quaternionsl(i+ 1,2) = —Quaternionsl(i + 1, 2);

end

ifabs(Quaternionsl(i + 1,3) — Quaternionsl(i,3)) > 0.1

Quaternionsl(i + 1,3) = —Quaternionsl(i + 1, 3);

end

ifabs(Quaternionsl(i + 1,4) — Quaternionsl(i,4)) > 0.1

Quaternionsl(i+ 1,4) = —Quaternionsl(i + 1,4);

end

end

fori =1: length(Quaternions2) — 1

ifabs(Quaternions2(i + 1,1) — Quaternions2(i, 1)) > 0.1

Quaternions2(i + 1,1) = —Quaternions2(i + 1, 1);

end

ifabs(Quaternions2(i + 1,2) — Quaternions2(i,2)) > 0.1

Quaternions2(i + 1,2) = —Quaternions2(i + 1, 2);
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end

ifabs(Quaternions2(i + 1,3) — Quaternions2(i,3)) > 0.1

Quaternions2(i + 1,3) = —Quaternions2(i + 1, 3);

end

ifabs(Quaternions2(i + 1,4) — Quaternions2(i,4)) > 0.1

Quaternions2(i + 1,4) = —Quaternions2(i + 1,4);

end

end

fori =1:length(Quaternions3) — 1

ifabs(Quaternions3(i + 1,1) — Quaternions3(i, 1)) > 0.1

Quaternions3(i + 1,1) = —Quaternions3(i + 1,1);

end

ifabs(Quaternions3(i + 1,2) — Quaternions3(i,2)) > 0.1

Quaternions3(i + 1,2) = —Quaternions3(i + 1, 2);

end

ifabs(Quaternions3(i + 1,3) — Quaternions3(i,3)) > 0.1

Quaternions3(i + 1,3) = —Quaternions3(i + 1, 3);

end
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ifabs(Quaternions3(i + 1,4) — Quaternions3(i,4)) > 0.1

Quaternions3(i + 1,4) = —Quaternions3(i + 1,4);
end

end

Predictors = [Frcorrected,,rtcl, Quaternionsl;
Freorrected,rtc2, Quaternions?2;
Freorrectedy,rtc3, Quaternions3;

Responses = [Ftyrtcl; Ftyrtc2; Fty,rtc3];

total,.ows = 30000;

numgplit = 25000;
random;ndices = randperm(total,ows, numgplit);

Predictorse5000rand = Predictors(random;ndices, :); Responsese5000rand = Responses(random;ndice

);
remaining;ndices = setdif f(1 : total,.ows, random;ndices);

Predictorss000gand = Predictors(remaining;ndices, :);

Responses;000gand = Responses(remaining;ndices, :);

writematriz(Predictorss5000gand,’ Predictors35000gand.csv’);

writematriz(Predictors;000gand,’ Predictorss000gand.csv’);

writematriz(Responsese5000gand,” Responsese5000gand.csv’);
(

writematriz(Responses;000gand,’ Responses;000gand.csv’);
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MyModel = load(” MyTipForce Extraction N N M odel.mat”);
Ftpredicteds000gand = MyModel. MyTipForce ExtractionN N M odel.N etwork(Predictorss000gand’)’;

Measuredgatax = movmean(Responses;000gand(1 : 1000, 1), 200);
Measuredgatay = movmean(Responses;000gand(1 : 1000, 2), 200);
Measuredgatay = movmean(Responses;000rand(1 : 1000, 3), 200);
Predictedpatax = movmean(Ftpredicteds000rand(1 : 1000, 1), 200);
Predictedpatay = movmean(Ftpredicteds000gand(1 : 1000, 2),200);
Predictedpatayz = movmean(Ftpredicteds000rand(1 : 1000, 3),200);
errorx = Measuredgatax — Predictedpatax;

errory = Measuredgatay — Predictedpatay;

errory = Measuredjatay; — Predictedpatay;

Sigmayx = 1.4826 * mad(errorx,1);
Sigmay = 1.4826 x mad(errory,1);

Sigmay = 1.4826 x mad(errory,1);

upperyoundx = Measuredgatax + 2 *x Sigmax;

loweryoundyx = Predictedpatax — 2 * Sigmax;

upperyoundy = Measuredgatay + 2 x Sigmay;

loweryoundy = Predictedpatay — 2 x Sigmay;

upperyoundy = Measuredgatay + 2 x Sigmay;

loweryoundy = Predictedpatay — 2 x Sigmay;

figure;
hold on;
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t1 = linspace(0, 20, length(Predictedpatax));

plot(tl, Measuredgatax, b—" LineWidth', 1.5, DisplayName', MeasuredData');

plot(t1, Predictedpatax,'r — —' LineWidth', 1.5,/ DisplayName', PredictedData’);

legend show;

xlabel(’Time (Sec)’);

ylabel(’Force (N)’);

title("Measured Data with +20 BoundsX azis');

holdof f;

figure;

holdon;

plot(tl, Measuredgatay,'b—" LineWidth', 1.5,/ DisplayName',' MeasuredData');

plot(t1, Predictedpatay, r — ="' LineWidth', 1.5, DisplayName', PredictedData’);

xlabel("Time (Sec)’);

ylabel("Force (N)’);

title(' M easured Datawith + 20 BoundsY axis’);

hold off;

figure;

hold on;

plot(tl, Measuredgatay, b—', LineWidth', 1.5, DisplayName' MeasuredData');
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plot(tl, Predictedpatay,r — —' LineWidth', 1.5, DisplayName',' PredictedData');

legendshow;
xlabel("Time(Sec));
ylabel (' Force(N)');
title(' M easuredDatawith + 20 BoundsZaxis');
holdof f;

t2 = linspace(0, 100, length(Ftpredicteds000gand(:,1)));
figure
subplot(2,1,1)
plot(t2, movmean(Responsess000rand(:, 1), 300));
hold on;
plot(t2,movmean(Ftpredicteds000 gand(:, 1), 300));
xlabel("Time(Sec)”)
ylabel(” Force(N)”)
legend(” Measured”,” Predicted”)
title(” X Direction”)
holdof f
subplot(2,1,2)
plot(t2, movmean(Responsess000rand(:,1) — Ftpredicteds000rand(:, 1), 300))
xlabel (" Time(Sec)”)
ylabel(” Err(N)”)

figure
subplot(2,1,1)
plot(t2,movmean(Responses; 000 gand(:, 2), 300));
holdon;
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plot(t2, movmean(Ftpredicteds000gand(:,2), 300));

xlabel("Time(Sec)”)

ylabel(” Force(N)”)

legend(” Measured”,” Predicted”)

title("Y Direction”)

holdof f

subplot(2,1,2)

plot(t2, movmean(Responses;000rand(:,2) — Ftpredicteds000gand(:,2),300))
xlabel (" Time(Sec)”)

ylabel(” Err(N)”)

figure
subplot(2,1,1)
plot(t2,movmean(Responses; 000 zand(:, 3), 300));
holdon;
plot(t2, movmean(F'tpredicteds000gand(:, 3), 300));
xlabel (" Time(Sec)”)
ylabel(” Force(N)”)
legend(” M easured”,” Predicted”)
title(” Z Direction”)
holdof f
subplot(2,1,2)
plot(t2, movmean(Responsess000rand(:,3) — Ftpredicteds000rand(:, 3), 300))
xlabel("Time(Sec)”)
ylabel(” Err(N)”)

MAEx = mae(Responses;000gand(:, 1) — Ftpredicteds000gand(:,1));
M AEy = mae(Responses;000rand(:,2) — Ftpredicteds000gand(:,2));
MAE7; = mae(Responsess000gand(:,3) — Ftpredicteds000gand(:, 3));
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STDx = std(Responsess000gand(:,1) — Ftpredicteds000gand(:,1));
ST Dy = std(Responses;000gand(:,2) — Ftpredicteds000gand(:,2));
ST Dy = std(Responsess000rand(:,3) — Ftpredicteds000gand(:,3));

cle;
disp('maeyx '); disp(M AEx);
disp('maey :'); disp(M AEy);
disp('maey '); disp(M AEy);

disp('stdx '); disp(ST Dx);

disp('stdy '); disp(ST Dy );
disp('stdz '); disp(STDy);
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