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Abstract 

 

A Novel Hybrid Model for Electricity Price Forecasting Based on the Integration of Bi-
Directional Long Short-Term Memory and Gated Recurrent Unit 

Amirhossein Hajigholam Saryazdi  

 

The prediction of electricity prices plays a pivotal role in the wholesale electricity markets, 

influencing sale prices, bidding strategies, electricity dispatch, control, and the management of 

market. Notably, forecasting in a deregulated electricity market is challenging due to multiple 

factors such as high volatility, non-stationarity and multi-seasonality of electricity prices. In 

response to this challenge, this research proposes a novel hybrid deep learning model employing 

Bi-directional Long Short-Term Memory (Bi_LSTM) and Gated Recurrent Unit (GRU) for real-

time electricity price forecasting. In this model, the output sequences from the Bi_LSTM layer, 

which captures both past and future temporal dependencies, are directly fed into the GRU layer 

to refine the feature extraction.  This hybrid approach not only reduces overfitting risk of a single 

model, but also increases robustness and adaptability of model. Three studies are conducted in 

New York City (NYC), electricity market to evaluate the model by systematically comparing the 

obtained results. First, the proposed model, Bi_LSTM-GRU, outperforms several baseline 

models, spanning a statistical time-series method: Auto Regressive Integrated Moving Average 

(ARIMA), Machine Learning approaches: Linear Regression (LR), Random Forest (RF), 

eXtreme Gradient Boosting (XGB), and Support Vector Regression (SVR), and Deep Learning 

techniques: Long Short-Term Memory (LSTM), Bi-LSTM, GRU, and Convolutional Neural 

Network (CNN). Secondly, the possibility of hybridizing CNN and Recurrent Neural Network 

(RNN) architectures has been examined. The proposed model also surpasses CNN-LSTM, CNN-

Bi-LSTM, and CNN-GRU. Lastly, the potential contribution of data decomposition techniques in 

enhancing the proposed model has been assessed. It is found out that adding Wavelet Transform 

(WT) or Fourrier Transform (FT) to decompose the data leads to higher error rates. 

Keywords: Electricity Price Forecasting, Deep Learning, Comparative study, Interconnected 

Grids, Power Market 
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1 Introduction 

As the power industry undergoes liberalization and deregulation, trading activities within the 

power market exhibit a growing array of concealed dynamics and uncertainties. In this situation, 

electricity price has is the dominant player in the market, and accurate electricity price 

forecasting (EPF) has become essential for market participants. Firstly, it can help power 

generation companies to obtain higher economic profit by selecting bidding strategies in day-

ahead market. Secondly, customers can have a better electricity consumption plan according to 

the predicted price. Finally, having a reference of electricity price prediction, can not only enable 

market regulators to prevent other players with high market power from manipulating electricity 

price but also help system operators to ensure electric grid reliability (Jiang et al., 2023) (Meng 

et al., 2022). 

In comparison to other commodities such as crude oil and natural gas, electricity exhibits certain 

different characteristics. To name a few, the electricity demand is relatively inelastic; it cannot be 

stored in large quantities at reasonable price, so a constant balance between electricity 

generational and consumption is crucial to prevent blackouts or overloading the grid; and 

electricity supply is a combination of flexible, inflexible, intermittent, and volatile plants, thus 

complicating the energy distribution (Lehna et al., 2022). Considering these factors, electricity 

prices demonstrate intrinsic traits that pose challenges in forecasting. These include high 

frequency and volatility, unstable mean and variance, multi-seasonality, nonlinearity, negative 

prices and extreme highs, referred to as spikes, a phenomenon uncommon in other commodity 

markets (Ehsani et al., 2024). 

Interconnected grids enable operators to have electricity exchange, known as import/export, with 

neighboring markets. Contrary to Europe where an operator runs the whole power market in 

country (e.g. Spain) or even a group of countries (e.g. Nordpool), there are multiple market 

operators in both the US and Canada. Among those in the US, New York System Operator 

(NYISO) is the only market that has import and export through interconnections with two 

Canadian markets, namely Ontario and Quebec, and two US markets namely New England and 
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Pennsylvania–New Jersey-Maryland (PJM) (FERC, 2024). This unique characteristic qualifies 

NYISO as a challenging dynamic market for being explored in terms of EPF. 

This study proposes employing Bi-LSTM-GRU model, a hybrid model based on RNN 

architecture, in the New York electricity market. The proposed model is evaluated and compared 

to commonly used Machine Learning (ML) and Deep Learning (DL) and statistical models using 

prediction performance metrics. To the best of the author's knowledge, this research is one of the 

initial attempts to apply and evaluate this method in the electricity market. 

1.1 Background 

The electricity market generally comprises generators, transmission operators, distributors, and 

end users. It can be regulated, where a single entity owns and operates all these components and 

sets rates (e.g., Hydro-Québec in Quebec). Alternatively, in deregulated markets, Independent 

System Operators (ISOs) manage the transmission grid and coordinate market operations (e.g., 

IESO in Ontario, NYISO in New York). ISOs play a vital role in overseeing the electricity 

market, fostering competition, and planning to meet future demand with secure resources. One of 

their primary responsibilities is ensuring grid reliability and balancing supply and demand by 

receiving and evaluating bids and offers from generators and consumers. Generators submit 

offers indicating the price at which they are willing to produce electricity, while consumers (or 

load-serving entities) submit bids reflecting their demand. Figure 1 indicates the position of 

system operator in a deregulated power market (Hajigholam Saryazdi, 2024a) 
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Figure 1: The position of system operator in a deregulated power market (transpower.co.nz, 2024)  

Wholesale trading involves bulk buying and selling of electricity through several market 

mechanisms. The Day-Ahead Market (DAM) allows participants to commit to supply or 

consumption a day before delivery, ensuring they avoid being negatively affected by market 

volatility. The Real-Time Market (RTM) addresses immediate balancing needs, letting market 

participants sell and buy wholesale electricity throughout the course of an operating day with no 

set or previously agreed prices but a price that reflects market demand. Bilateral contracts 

involve private agreements between entities, where both the buyer and seller negotiate specific 

terms such as the price, quantity, and delivery schedule of electricity, providing flexibility and 

often used for long-term commitments or tailored supply arrangements. Accurate year-ahead 

price forecasting enables market participants to better anticipate future price movements, 

allowing for more informed decisions, particularly in bilateral contracts and market trades, 

ultimately enhancing strategic planning and financial stability across the power market 

(Hajigholam Saryazdi, 2024b).  
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1.2 Motivation and Contribution  

The contribution of this study is four-fold in terms of selecting the forecasting horizon, market, 

variables, availability, and model: 

I. Although numerous models have been proposed for EPF, they are limited to the market 

and timespan of their study due to the unique characteristics of each market and different 

pricing mechanism (Lago et al., 2021). Hence, each market requires separate and up-to-

date research. New York electricity market, which is the scope of this paper, shows lack 

of price forecasting literature comparing to other electricity markets worldwide 

(Aggarwal et al., 2009).  

II. Interconnected electricity markets are one of the key factors that influence the electricity 

price (Lago, De Ridder, Vrancx, et al., 2018) yet among the least explored in the 

literature (Lu et al., 2021). This paper aims to bridge this gap by selecting a market that is 

interconnected with four other markets. 

III. Many previous researchers have not shared their data or model preventing academic 

community and practitioners to build upon their work (Lago, De Ridder, Vrancx, et al., 

2018). However, this study aims to use publicly available data as well as to provide an 

open-source model for the benefit of future researchers. 

IV. Although the practice of using hybrid models have been well-established in the domain 

of EPF, Bi-LSTM-GRU hybridization has not been previously used for this purpose. 

1.3 Literature review 

According to the literature (Lu et al., 2021), the prediction model of electricity price can be 

divided into three modules: data preprocessing method, optimizer , and prediction model. Data 

preprocessing techniques encompass various methods, including the Wavelet Transform (WT) 

(Antonini et al., 1992), Variational Mode Decomposition (VMD) (Dragomiretskiy & Zosso, 

2014), Empirical Mode Decomposition (EMD) (N. E. Huang et al., 1998), and their respective 

variants. These techniques serve as tools for time series decomposition, with the aim of 

improving prediction accuracy. The objective of an optimizer lies in the refinement of 

hyperparameters within a prediction model, achieved through the minimization of errors. 
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Noteworthy among these optimization techniques are metaheuristic algorithms, such as 

Differential Evolution (DE) (Storn, 1997), recognized for its stochastic search methodology. 

Additionally, Bayesian Optimization (BO) stands out as a probabilistic model, selecting 

hyperparameters by estimating the posterior distribution of the objective function through the 

application of Bayes’ theorem (Cheng et al., 2019). The data-driven prediction model is 

responsible for forecasting and is broadly categorized as statistical, ML/DL, and hybrid models. 

Traditional statistical such as Regression Model, Exponential Smoothing (ES), Autoregressive 

Moving Average (ARMA), Autoregressive Integrated Moving Average (ARIMA), Generalized 

Autoregressive Conditional Heteroskedasticity (GARCH), and vector autoregressive model 

(VAR), are used for EP prediction. These simple methods consider temporal relationship of data, 

rendering them suitable for predicting stable series characterized by minor fluctuations and low-

frequency changes. Nevertheless, it is noteworthy that most statistical models operate as linear 

forecasters and may exhibit suboptimal performance when confronted with high-frequency data, 

such as hourly electricity price fluctuations (Lago, De Ridder, & De Schutter, 2018). The 

complexity of electricity price dynamics, encompassing complex features like high and low 

frequencies, volatility, variable means and variances, as well as a substantial occurrence of 

atypical prices, pose a challenge for conventional methods, constraining their precision in 

predicting electricity prices (AL-Musaylh et al., 2018). 

ML and DL models exhibit proficiency in discerning complex nonlinear features within 

electricity price datasets. These approaches alleviate the necessity of adhering to statistical 

assumptions and have demonstrated superior accuracy in forecasting nonlinear time series data. 

A compilation of models recently employed for EPF is provided in Table 1.  

DL models that excel in EPF include Long Short-Term Memory (LSTM) (Cheng et al., 2019; 

Peng et al., 2018; Xiong & Qing, 2023), Gated Recurrent Unit (GRU) (Lago, De Ridder, & De 

Schutter, 2018), Attention Mechanism (Meng et al., 2022), Auto-Encoder (AE) (Qiao & Yang, 

2020) and Convolution Neural Network (CNN) (Ehsani et al., 2024; Ghimire et al., 2024). Lago, 

De Ridder, & De Schutter (2018) conducted a comparative analysis of various DL models, 

including DNN, GRU, and LSTM, along with ML models such as RF and RBFNN, as well as 
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the ARIMA statistical model. They utilized European power exchange (EPEX) Belgium datasets 

to predict spot EP. The study revealed that DL models outperformed ML models, as indicated by 

the Symmetric Mean Absolute Percentage Error. 

Leveraging optimization techniques, Peng et al. (2018) used DE to fine-tune hyperparameters for 

LSTM. Through an extensive analysis of electricity markets in New South Wales (NSW), 

Germany/Austria, and France, conducted for both one-step-ahead and multi-step-ahead 

forecasting, their DE-LSTM model demonstrated superior performance when compared to 

ARIMA, ANN, RNN, SVM, and DE_BPNN models, as evidenced by lower MAE, MSE, 

MAPE, and RMSE.  

Harnessing decomposition techniques, Cheng et al. (2019) incorporated WT in conjunction with 

LSTM and evaluated its performance using datasets from New South Wales, Australia, and 

France. WT was applied to decompose the data, breaking the EP time-series into several 

component series with minor variances. These decomposed time-series were individually trained 

and predicted using LSTM, and the resulting predictions were aggregated to obtain the final 

forecast. The utilization of WT contributed to the stabilization of the variance in the time-series 

data, enabling LSTM to more accurately capture fluctuations in EP. This approach significantly 

improves prediction accuracy compared to a model that combined ARIMA and Artificial Neural 

Network (ANN) models. Additionally, Cheng et al. highlighted the advantages of the Adam 

optimizer when paired with LSTM, demonstrating its superiority over Stochastic Gradient 

Descent (SGD) and RMSProp optimizers in their study. 

The methodology for incorporating preprocessing and optimization techniques into prediction 

models is an evolving domain. Cheng et al. (2019) introduced a progressive hybrid model 

denoted as EWT-SVR-BiLSTM-BO. In this model, the low-frequency output of Empirical 

Wavelet Transform (EWT) was directed to a Support Vector Regression (SVR) model, while the 

high-frequency output was fed into a Bidirectional Long Short-Term Memory (BiLSTM) model. 

Notably, hyperparameters for the entire ensemble were finely tuned using Bayesian Optimization 

(BO). This innovative approach resulted in superior performance, as evidenced by lower 
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prediction errors when compared to SVR, Gradient Boosted Decision Trees (GBDT), Extreme 

Learning Machine (ELM), and BiLSTM models. 

Despite the success of individual prediction models, the intricate nature of EP poses challenges 

in achieving optimal predictions through a single model. Consequently, the adoption of hybrid 

models has become a prevalent approach for EPF. These hybrid models integrate various ML 

and DL techniques, leveraging their complementary strengths to attain superior accuracy in 

prediction. Scholars have introduced diverse hybrid models that exhibit superior performance 

compared to their individual model counterparts. For instance, in New York market, GRU 

hybridized with VMD-CNN exhibited superior performance compared to LSTM, CNN, and 

VMD-CNN models in short-term EPF (C.-J. Huang et al., 2021). In a similar vein, Qiao & Yang 

(2020) employed WT, Stacked Autoencoder (SAE), and LSTM models to generate price 

predictions for United State electricity markets. Despite the superior prediction accuracy 

exhibited by the SAE-LSTM model, the WT-SAE-LSTM model was considered to hold greater 

practical value surpassing the predictive performance of both LSTM and BiLSTM. 

In the context of Danish electricity market EWT proved to be superior to VMD and Ensemble 

Empirical Mode Decomposition (EEMD) preprocessing when integrated with LSTM. The 

incorporation of an Attention Mechanism (AM) further reduced errors in the joint EWT-LSTM 

model. Through optimization by Cuckoo Search Algorithm (CSO), the EWT-AM-LSTM-CSO 

model achieved lower error rates, surpassing the performance of EWT-SVM, and GRUs (Meng 

et al., 2022). In a extensive investigation aimed at identifying the optimal combination of feature 

selection, decomposition, and optimization techniques in the PJM market, Xiong & Qing, (2023) 

discovered that the ACBFS-VMD-LSTM-BOHB hybrid model emerged as the most effective 

among various alternatives, particularly in terms of minimizing errors. 

Indeed, it is crucial to note that the superiority of hybrid methods is not universally guaranteed, 

and there are instances where a single prediction model might perform comparably or even 

outperform its hybrid counterparts. Similarly, the assumption that DL models consistently 

outshine statistical methods is challenged by (Lehna et al., 2022). 
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In the pursuit of identifying a winning model, ensemble models, which combine multiple 

forecasts from the same model calibrated on different windows, have consistently demonstrated 

significantly better results than their individual counterparts across various electricity markets, 

including PJM, France, Belgium, Nord pool, and Germany (Lago et al., 2021). Building upon 

this research, Tschora et al. (2022) have shown that incorporating the price history of 

neighboring countries significantly enhances the quality of day-ahead forecasting (Tschora et al., 

2022). This highlights the potential benefits of leveraging ensemble methods and considering 

broader regional factors for more accurate and robust electricity price predictions. 

An additional innovative approach that can be integrated into a model involves incorporating an 

error compensation stage. This enhancement has demonstrated improved performance, 

particularly in real-time half-hourly price prediction within the Australian electricity market 

(Ghimire et al., 2024).  

In the exploration of additional input variables for electricity market forecasting, the inclusion of 

factors like wind or solar generation, wind speed, temperature, and predicted load has been 

studied extensively. However, findings from research in the Ontario electricity market suggest 

that incorporating exogenous variables with low correlation (less than 0.5) can lead to an 

increase in prediction errors (Ehsani et al., 2024) 
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Table 1: Selected literature 

 

 

1 www.aemo.com.au/Electricity 
2 www.epexspot.com 
3 www.epexspot.com 
4 www.eia.gov 

Author Market (Year) Decomp-

osition 

Base 

Model 

Opti-

mizer 

Horizon Target (Input) 

Variables 

Data Split 

(Size) 

(Peng et 

al., 2018) 

NSW1 (2013) 

Germany/Austri

a2 (2012-2015) 

France3 (2017) 

_ LSTM DE H 

D 

H 

HEP 700:20:24 

876:87:220 

1008:144:2

88 

(Chang et 

al., 2019) 

NSW (2013) 

France (2017) 

France (2018) 

WT LSTM Adam H 

H 

HEP (744) 

(100) 

(1008) 

(Cheng et 

al., 2019) 

European Power 

Exchange 

EWT SVR-

BiLSTM 

BO H HEP 504:216 

(Qiao & 

Yang, 

2020) 

EIA (US) 4 

(1997-2020) 

WT SAE-

LSTM 

_ M HEP 221:50:17 

(C.-J. 

Huang et 

al., 2021) 

New York 

(2015-2018) 

VMD CNN-

GRU 

_ H HEP  

(Lehna et 

al., 2022) 

Germany _ CNN-

LSTM 

_ H HEP, Wind speed, 

Consumer Load, 

Avg. solar 

radiation, Fuel 

price, CO2 

emission price 

720 
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(Meng et 

al., 2022) 

Denmark (2018-

2019) 

EWT AM-

LSTM 

CSO H HEP, Wind Power 

Generation, Solar 

power Generation, 

Predicted Load 

730 

(Xiong & 

Qing, 

2023) 

PJM (2015-

2016, 2017) 

VMD 

(ACBFS) 

LSTM BOH

B 

H HEP 

 

1272:168 

[each 

season] 

2015-

2016:2017 

(Ghimire 

et al., 

2024) 

Queensland 

(2014-2022) 

VMD CNN-

LSTM 

_ H-H 

Real-

time 

Historical 

electricity price 

 

~ 110000: 

27000: 

4000 

[seasonal] 

(13000) 

[yearly] 

(Ehsani et 

al., 2024) 

Ontario (2021-

2022) 

_ TriCNN-

GRU 

_ H HEP, 

import/export, 

demand, weather, 

generations 

7066:1766:

168 
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2 Methodology 

This section describes data, base line predictive models, proposed forecasting models, 

decomposition techniques, and evaluation criteria employed in this research from a technical 

point of view. 

2.1 Data 

This study focuses on predicting electricity price in New York, USA. Two main reasons behind 

this selection are: Firstly, it fills the lack of research in this market relatively to other markets 

around the world (Aggarwal et al., 2009). Secondly, this data is publicly available by New York 

Independent System Operator (NYISO) 5  enabling future researchers to freely replicate this 

research and build upon this line of literature. This market consists of different zones, each has 

separate regional price. The focus of this paper is NYC (zone J) due to its largest size in terms of 

both electricity load and population. 

NYISO set the real-time price in 5 min intervals. It also generated an integrated version of real-

time price which is the average of 12 set prices in each hour. In this paper, the integrated 

electricity price is the target variable to predict. in this market. The data set consists of hourly 

integrated electricity price in real-time of NYC from 01-03-2021 to 28-02-2024, including 36 

months. The last twelve months are considered for the test set. Table 2 summarizes the 

characteristics of this data. 

Table 2: Description of integrated real-time electricity price data used in this paper 

Dataset Training samples Val. Testing samples 

NYC 

integrate 

real-time 

1 March 2021 to 28 Feb 2023  1 March 2023 to 28 Feb 2024 

Max Min Std Skew Kurt N % Max Min Std Skew Kurt N 

3121 -8.1 72.2 16.5 537.3 17520 20 1195 -2.9 32.9 13.6 336.7 8784 

 

 

 

5 www.nyiso.com 
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2.2 Baseline Models 

2.2.1 Statistical model 

One of the widely used statistical model for time series forecasting is ARIMA where the three 

parameters of the model are: the autoregressive parameters (𝜙𝑡 , . . . , 𝜙𝑝),  the moving average 

parameters (θ𝑡 , . . . , θ𝑞), and ∇𝑑𝑋𝑡 which is the lag operator. It is denoted by ARIMA(p ,d, q) 

where p and q are autoregressive and moving average components respectively and d denotes the 

number of differencing happens at lag-one (Weron, 2014). The formula can be written as:  

𝜙(𝐵)∇𝑑𝑋𝑡 =  𝜃(𝐵)𝜀𝑡 (1) 

Where 𝜀𝑡 is the error term at time t,  𝜙(𝐵) and 𝜃(𝐵) represent polynomials in the backshift or lag 

operator. 

2.2.2 Machine Learning models 

Lasso linear regression is one of the first learning algorithm that revolutionized regression based 

models (Tibshirani, 1996). The difference between Lasso and regular regression is that it 

minimizes the residual sum of squares subject to a constraint that makes the sum of the absolute 

value of the coefficients to be less than a threshold. This regularization approach prevent 

overfitting through penalizing coefficients. 

min ∑ (𝑦𝑖 −  ∑ 𝛽𝑗

𝑗

𝑥𝑖𝑗)

2
𝑁

𝑖=1

+  λ ∑|𝛽𝑗|

𝑗

(2) 

Where N is the total number of observations, X is the predictor,  is the coefficient to estimate, 

and 𝛌 is a regularization parameter that controls the strength of the regularization term. 

XGB stands for eXtreme Gradient boosting library  utilizing regularization on gradient boosting 

framework (Chen & He, 2015). Gradient boosting builds ensemble model where each weak/base 

learner, typically a simple decision tree, is trained sequentially to minimize the gradient of a pre-
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defined loss function (Friedman, 2001). XGB algorithm can be formulated as the following 

optimization problem aimed at minimizing a loss function with regularization. 

min ∑ ℒ (𝑦𝑖 −  ∑ 𝑓𝑘(𝑥𝑖)

𝐾

𝑘=1

)

𝑁

𝑖=1

+ 𝜆 ∑ Ω(𝑓𝑗)

𝐽

𝑗=1

(3) 

Where N is the total number of observations, ℒ is the loss function that measures the discrepancy 

between the ground truth 𝑦𝑖  and the predicted output ∑ 𝑓𝑘(𝑥𝑖)
𝐾
𝑘=1  the i-th observation, 𝑓  is 

individual tree (or base learner) in the ensemble, K is the total number of trees, J is the total 

number of leaf node, Ω(𝑓𝑗)  is a regularization term that penalizes the complexity of each 

individual tree, and 𝜆 is a regularization parameter. 

Random Forest (RF) is also a tree-based ensemble model widely used for prediction. Each tree is 

trained independently using a random subset of the training data and a random subset of the input 

features, overcoming the overfitting issue of decision trees. The generalization error converges as 

the number of trees increases (Breiman, 2001). The final prediction is obtained by averaging the 

predictions of all individual trees as the following formula indicates. 

𝑦̂𝑖 =
1

𝐾
∑ 𝑓𝑘(𝑥𝑖)

𝐾

𝑘=1

(4) 

Where 𝑦̂𝑖 represents the predicted output for the i-th observation, 𝑓 is individual tree, K is the 

total number of trees, 𝑓𝑘(𝑥𝑖) is the prediction of the n-th tree for the input features 𝑥𝑖. 

Unlike traditional regression, instead of minimizing the error between the predicted and actual 

values using a chosen loss function, Support vector approach (SVR) aims to minimize the 

generalization error. It is based on the concept of support vectors (Cortes & Vapnik, 1995), 

aiming to find a hyperplane in the feature space that best fits the training data while maximizing 

the margin and minimizing errors. In SVR, the goal is to find the optimal hyperplane that 

separates the data into two classes: those within a certain margin (epsilon) from the hyperplane, 

called support vectors, and those outside the margin (Drucker et al., 1996). This optimization 

problem is formulated to minimize the empirical risk, penalized by a regularization term, subject 
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to the constraints defined by the margin and epsilon-insensitive loss (Smola & Schölkopf, 2004). 

Mathematically, the prediction 𝑦̂(𝑥) in SVR using kernel function can be represented as: 

𝑦̂(𝑥) = ∑(𝛼𝑖 − 𝛼𝑖
∗)

𝑁

𝑖=1

𝐾(𝑥𝑖 , 𝑥) + 𝑏 (5) 

Where 𝑥 is the new input data point for which the prediction is made, 𝑥𝑖 are the support vectors 

from the training data, 𝐾(𝑥𝑖 , 𝑥)  is the kernel function, which effectively computes the dot 

product of the input vectors and new data points in a transformed feature space. 𝛼𝑖 and 𝛼𝑖
∗ are the 

Lagrange multipliers, which are non-zero only for support vectors and indicate the importance of 

the corresponding data points, and 𝑏 is the bias term.  

2.2.3 Deep Learning models 

Long Short-Term Memory (LSTM) is a form of recurrent neural network (RNN) developed to 

address vanishing gradient problem in back-propagation process of classic RNNs by introducing 

specialized memory cells and gating mechanisms that allow the network to selectively remember 

or forget information over time (Hochreiter & Schmidhuber, 1997).  

LSTM networks contain memory cells, which are composed of three main components: the input 

gate, the forget gate, and the output gate. The input gate controls what piece of new input 

information to keep in the current state of the memory cell, the forget gate decides which 

information to abandon from the cell's previous state, and the output gate determines the 

information to be output from the current state (Gers et al., 2000). Mathematically, the forward 

direction can be represented as follows. 

𝑓𝑡 =  𝜎(𝑊𝑓𝑥𝑡 + 𝑈𝑓ℎ𝑡−1 + 𝑏𝑓) (6)

𝑖𝑡 =  𝜎(𝑊𝑖𝑥𝑡 + 𝑈𝑖ℎ𝑡−1 + 𝑏𝑖)

𝑜𝑡 =  𝜎(𝑊𝑜𝑥𝑡 + 𝑈𝑜ℎ𝑡−1 + 𝑏𝑜)

𝑔𝑡 =  tanh(𝑊𝑔𝑥𝑡 + 𝑈𝑔ℎ𝑡−1 + 𝑏𝑔)

𝑐𝑡 =  𝑓𝑡 ⊙ 𝑐𝑡−1 + 𝑖𝑡 ⊙ 𝑔𝑡

ℎ𝑡 =  𝑜𝑡 ⊙ tanh (𝑐𝑡)
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Where at time t, 𝑥𝑡 is the input vector, ℎ𝑡 is the hidden state vector, 𝑐𝑡 is the cell state vector, 

𝑓𝑡 , 𝑖𝑡 , 𝑜𝑡 , and 𝑔𝑡 are the forget gate, input gate, output gate, and candidate memory cell activation 

vectors, respectively. 𝜎  is the sigmoid activation function, ⊙  denotes element-wise 

multiplication, 𝑏∗ are bias vectors,  𝑊∗ and 𝑈∗are weight matrices for the input and hidden state 

connections, respectively. The above formulas mechanics can be seen in the figure 1(a). 

Gated Recurrent Unit (GRU) is another form of RNN that simplifies the architecture of LSTM 

by merging the forget and input gates into a single update gate, resulting in fewer parameters and 

faster training times (Cho, van Merrienboer, Gulcehre, et al., 2014). The mathematical structure 

is shown the following formula: 

𝑧𝑡 =  𝜎(𝑊𝑧𝑥𝑡 + 𝑈𝑧ℎ𝑡−1 + 𝑏𝑧) (7)

𝑟𝑡 =  𝜎(𝑊𝑟𝑥𝑡 + 𝑈𝑟ℎ𝑡−1 + 𝑏𝑟)

𝑜𝑡 =  𝜎(𝑊𝑜𝑥𝑡 + 𝑈𝑜ℎ𝑡−1 + 𝑏𝑜)

𝑔𝑡 =  tanh(𝑊𝑔𝑥𝑡 + 𝑈𝑔(𝑟𝑡 ⊙ ℎ𝑡−1) + 𝑏𝑔)

ℎ𝑡 = (1 − 𝑧𝑡) ⊙ ℎ𝑡−1 + 𝑧𝑡 ⊙ 𝑔𝑡

 

Where at time t, 𝑧𝑡 is the update gate, 𝑟𝑡 is the reset gate, ℎ𝑡 is the hidden state vector, and 𝑔𝑡 is 

the candidate memory cell activation vectors, respectively. 𝜎 is the sigmoid activation function, 

⊙ denotes element-wise multiplication, 𝑏∗ are bias vectors,  𝑊∗ and 𝑈∗are weight matrices for 

the input and hidden state connections, respectively. GRU architecture is represented in the 

figure 1(b). 

Bidirectional Long Short-Term Memory (Bi-LSTM) is made up of two LSTMs one that 

processes input in a forward direction and the other in reverse. This allows the Bi-LSTM to 

monitor information flow from both the previous and following timesteps, which helps it capture 

long-term dependencies (Schuster & Paliwal, 1997). In other words, in LSTM information is 

only being carried through a forward layer structure. However, as shown in figure 1, Bi-LSTM 

adds a backward layer to this structure enabling it to incorporate information both ways. 
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Figure 2: (a) LSTM cell, (b) GRU cell  (Olah, 2015) 

 

Figure 3: Bi-LSTM architecture (Olah, 2015) 
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Another class of deep neural networks is Convolutional Neural Networks (CNNs) that 

automatically learns features and the hierarchical representation of data via filters (or kernel) 

optimization and addresses vanishing/exploding gradients problems through regularization 

(Lecun et al., 1998).  

A typical CNN architecture consists of an input layer, convolutional layer, pooling layer, and a 

fully connected layer. The input layer receives the input data with defined shape (length and 

number of features). Convolutional layer extracts temporal features from the input data by 

applying convolution operations using learnable filters. Each filter slides (convolves) across the 

input sequence, computing dot products between the filter weights and the input patch it overlaps 

(Goodfellow et al., 2016). Mathematical formulation is as follow: 

(𝑓 ∗ 𝑥)𝑡 = ∑ 𝑥𝑡+𝑚
𝑚

. 𝑓𝑚 (8) 

Where x is the input data, f is the filter, and m represents the position within the filter ranging 

over the size of the filter, and thus 𝑓𝑚 is the filter weights at position m learned during training. 

Pooling layer slides a window over the input feature map and takes the maximum value within 

each window. Through this operation, it reduces the temporal dimensions of the feature maps, 

leading to a reduction in the number of parameters and computation in the network, and helping 

to make the detected features invariant to small translations. After several layers of convolutions 

and pooling, the output is flattened and fed into one or more fully connected layers to compute a 

weighted sum of the inputs and applies a non-linear activation function (Goodfellow et al., 

2016).  

2.2.4 Hybrid models 

Hybrid models in time series forecasting integrate two or more distinct modeling approaches to 

leverage their individual strengths and mitigate their weaknesses, aiming for improved prediction 

accuracy. Initially, statistical methods, such as ARIMA, were combined with ML techniques like 

SVR leveraging linear capability of statistical models and non-linear capacity of ML architecture 

(Zhang, 2003). In recent years, however, the focus has shifted towards combining deep learning 
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models to further improve forecasting accuracy. For instance, hybrid models now often integrate 

CNN with RNN, capitalizing on the CNN's strength in feature extraction and the RNN's ability 

to capture temporal dependencies (Ehsani et al., 2024; Ghimire et al., 2024). In an experiment 

within the next section, this paper studies three CNN-RNN hybridizations and compares their 

forecasting performance with the proposed model. 

2.3 Proposed Model 

This paper proposes a novel hybrid model combining Bi-LSTM and GRU networks for the task 

of electricity price forecasting. This hybrid architecture leverages the strengths of both Bi-LSTM 

and GRU, making it particularly effective for capturing complex temporal dependencies and 

nonlinear patterns in time series data (Q. Li et al., 2023; X. Li et al., 2022; Michael et al., 2024), 

which are inherent in price related data (Althelaya et al., 2018; Karim et al., 2022).  

The model begins with a BiLSTM layer. BiLSTM networks are well-known for their capability 

to learn long-term dependencies in sequence data due to their ability to retain information over 

long periods. The bidirectional nature of the BiLSTM allows the model to learn in backward and 

forward fashion, providing a more comprehensive understanding of the temporal dynamics 

(Graves et al., 2013; Schuster & Paliwal, 1997). This is crucial for identifying hourly electricity 

price patterns. A dropout layer is added after the Bi-LSTM layer to prevent overfitting. Dropout 

is a regularization technique that randomly drops units (along with their connections) during 

training, which helps in making the model more robust (Srivastava et al., 2014). Following the 

dropout, a GRU is employed. It adds another layer of sequential analysis to capture significant 

temporal dependencies yet in a more efficient way due to fewer parameters compared to LSTMs 

(Cho et al., 2014). Another dropout layer is included after the GRU layer to further ensure 

robustness against overfitting. Finally, a dense (fully connected) layer with a single neuron is 

used to produce the output, which in this case is the forecasted electricity price. 

The implementation of the Bi_LSTM-GRU is carried out using the Keras library. The dataset 

used for training and evaluation is normalized to ensure that all features contribute equally to the 

training process. The sequences were generated using a sequence length of 24, which 

corresponds to 24 hours, aligning with the granularity of hourly electricity price data. Figure 3 



 
 
  

19 

shows the architecture of the proposed hybrid DL model. It can be generalized to other DL 

models through modifying the modeling block. 

 

Figure 4: Architecture of proposed Bi-LSTM-GRU hybrid model 

2.3.1 Rationales for using Bi-LSTM-GRU for electricity price forecasting 

Hybridizing Bi-LSTM with GRU for electricity price forecasting offers several unique 

advantages that may not be as effectively achieved by other models or different combinations of 

neural network architectures. Three key merits of such hybrid model are: 

I. Efficient Deep Learning: Capturing extensive contextual dependencies typically 

needs a deep neural network, which can significantly increase computational 

resources and training time. The proposed model strategically balances in-depth 

learning with computational efficiency. Complementing Bi-LSTM with a simpler, yet 

deep GRU model effectively enhances accuracy by leveraging a deeper network 

architecture while mitigating the computational demands associated with increased 

depth. 
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II. Superior Error Correction: In the hybrid Bi-LSTM and GRU model, error signals 

are back-propagated first through the GRU for initial feature filtering adjustments, 

then through the Bi-LSTM for comprehensive refinement using its bidirectional 

structure. This sequential and layered approach to error correction significantly 

enhances the model's precision in tuning predictions, making it exceptionally 

effective in complex and noisy environments such as electricity price markets. This 

hybrid method ensures robust convergence on accurate predictions despite the 

complex temporal dynamics involved. 
III. Enhanced Robustness to Sequence Length Variability: In the electricity market, 

factors like weather can have unpredictable effects on demand and supply, often 

deviating from typical daily patterns. To effectively accommodate these variations 

and maintain forecasting accuracy, this hybrid model first leverages the Bi-LSTM's 

gate mechanisms to dynamically adjust its sensitivity to former and later data points. 

This allows the model to effectively respond to changes in sequence length triggered 

by such conditions. Subsequently, the GRU layer focuses on refining the most crucial 

features extracted by the Bi-LSTM, focusing on elements that are predictive of 

subsequent price points. This ensures robust prediction, even as data characteristics 

fluctuate significantly. 

2.4 Data decomposition techniques 

Decomposition techniques can be employed in data preprocessing stage of time series 

forecasting, as they decompose the original, non-stationary data with high fluctuation into more 

stable subseries, facilitating better analysis and prediction. In recent years, these techniques have 

been widely applied to energy forecasting with favorable outcomes (Chang et al., 2019; Qiao & 

Yang, 2020). Typically, decomposition-based hybrid models follow a consistent framework: the 

original time series is segmented into various subseries; each subseries is then forecasted 

separately; finally, an aggregate prediction is formulated by combining the results from all 

subseries (Liu & Chen, 2019). The Fourier transform (FT) is a fundamental techniques in signal 

analysis, widely used in energy forecasting to address non-stationary time-series (González-

Romera et al., 2008; Yu et al., 2018). FT converts a time series from the time domain to the 
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frequency domain, allowing for the identification of individual frequency components. This 

provides a comprehensive view of the global frequency content of the signal (Musbah & El-

Hawary, 2019). The discrete Fourier transform (DFT) is as follow: 

𝑋𝑘 = ∑ 𝑥𝑛

𝑁−1

𝑛=0

. 𝑒−2𝜋𝑖.
𝑘.𝑛
𝑁       for    𝑘 = 0, 1, 2, . . . , 𝑁 − 1 (10) 

Where 𝑋𝑘 represents the k-th frequency component of the original sequence, 𝑥𝑛 is the original 

time-domain signal at the n-th time point, 𝑁  is the total number of points in the sequence, 

𝑒−2𝜋𝑖.
𝑘.𝑛

𝑁  is the complex exponential function that encodes the frequency information, and 𝑖 is the 

imaginary unit. 

Wavelet transform (WT) is another frequency-based decomposition method that enhances the 

capabilities of FT by enabling time-frequency localization and multiresolution analysis (Yao et 

al., 2000). When combined with neural network models, WT has significantly improved 

prediction accuracy in various forecasting tasks, including generation forecasting (Liu et al., 

2013), load forecasting (Rana & Koprinska, 2016), and price forecasting models (Chang et al., 

2019; Qiao & Yang, 2020). WT excels in analyzing signals with transient features and localized 

variations by facilitating a multi-resolution analysis that captures both time and frequency 

dimensions. It decomposes the original time series using low-frequency and high-frequency 

filters. The low-frequency filter generates an approximate series, while the high-frequency filter 

produces detailed series. Further decompositions of the low-frequency series at each level result 

in a final output consisting of one low-frequency approximate subseries and multiple high-

frequency detailed subseries. Both the approximation and detail coefficients are used for training 

and testing (Qian et al., 2019). Below, the mathematical description of Wavelet Transform (WT) 

for discrete series is provided: 

𝑥(𝑡) = ∑ 𝑎𝑘

𝑘

. 𝜙𝑘(𝑡) + ∑ ∑ 𝑑𝑗,𝑘  .  𝜓𝑗,𝑘(𝑡)

𝑘

𝐽

𝑗=1

(9) 
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Where 𝜙𝑘(𝑡)  is the scaling function, which captures the low-frequency (approximation) 

components of the signal, 𝑎𝑘 are the approximation coefficients,  𝜓𝑗,𝑘(𝑡) is the wavelet function, 

which captures the high-frequency (detail) components at different scales, 𝑑𝑗,𝑘  are the detail 

coefficients at scale 𝑗 and position 𝑘.  

This paper investigates the impact of frequency-based decomposition methods during the 

preprocessing stage, particularly in the context of electricity price forecasting, where periodic 

patterns, cycles, and seasonality are often present. The Fast Fourier Transform (FFT), an 

optimized algorithm to compute the DFT, is employed for its efficiency in transforming data. 

Similarly, the Discrete Wavelet Transform (DWT) is selected from the WT family for its 

effectiveness. The decomposition level parameter in DWT, which controls the number of 

iterative decompositions into lower resolution components, is set to 5 to balance capturing fine 

details and computational complexity. The ‘db1’ wavelet is chosen for its simplicity and 

efficiency in capturing abrupt changes in signal levels (Daubechies, 1992).  

As shown in Figure 4, decomposition techniques are typically applied after data normalization. 

This step ensures numerical stability and consistent interpretation, which is especially important 

when dealing with data that exhibits large variations in magnitude (Chang et al., 2019). The 

decomposition function outputs a list of coefficients/components, which are then used to create 

sequences that are fed into the prediction model. 
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Figure 5: Data decomposition stage in preprocessing 

 

2.5 Evaluation criteria 

Systematic comparison of the prediction performance of different models in the domain of 

energy price forecasting can be conducted utilizing various evaluation metrics (Lu et al., 2021). 

Two widely used metrics are Mean Absolute Error (MAE) and Root Mean Squared Error 

(RMSE). MAE measures the average magnitude of errors between predicted and actual values, 

providing a straightforward interpretation of the forecast accuracy. It is calculated using the 

following formula: 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑖 − 𝑦̂𝑖|

𝑛

𝑖=1
(10) 

where 𝒚𝒊 represents the actual values,  𝒚̂𝒊 represents the predicted values, and n is the number of 

observations. MAE is robust to outliers, as it does not square the errors, making it particularly 

useful when large deviations are not as critical (Willmott & Matsuura, 2005). 
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In contrast, RMSE gives more weight to larger errors due to the squaring of the error terms, 

making it sensitive to outliers. RMSE is particularly useful when large errors are highly 

undesirable and need to be penalized more severely. This metric provides a measure of the 

standard deviation of the residuals (prediction errors), giving insight into the model's overall 

error distribution (Chai & Draxler, 2014). Following formula shows its calculation: 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑖 − 𝑦̂𝑖)2

𝑛

𝑖=1
(11) 

Mean absolute percentage error (MAPE) is another widely used metric in energy market, 

especially for demand or load forecasting. However, it is not applicable for EPF due to an 

undefined formula in case of having a zero price (Ehsani et al., 2024). 
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3 Empirical Results 

The models described in the previous section of this paper are trained and tested on this data 

separately. Table 3 indicates the value of hyperparameters for all models as well as the 

explanatory variables used. The hyperparameter space is defined based on relevant models from 

the literature, and grid search is employed to optimize hyperparameter selection in both statistical 

and machine learning models. The hyperparameter space is defined based on relevant models 

from the literature, and grid search is employed to optimize hyperparameter selection in both 

statistical and machine learning models. According to the literature, hyperparameter tuning has a 

relatively minor effect on the performance compared to the architecture of deep learning models. 

Therefore, given the high computational demands of deep learning, this study prioritizes 

comparing different architectures while keeping the same hyperparameters consistent across all 

models. 

Table 3: Summary of the models hyperparameters and variables 

Model Hyperparameters Variables 

ARIMA (5, 1, 1)  

Lasso alpha = 7 Temporal dummies, Lag24 

XGB colsample_bytree: 0.840, gamma: 0.354, learning_rate: 0.016, max_depth: 

4, min_child_weight: 8.219, n_estimators: 513, reg_alpha: 0.212, 

reg_lambda: 0.181, subsample: 0.673 

Temporal dummies, Lag24 

RF Bootstrap: True, max_depth: 6, max_features: 'auto', min_samples_leaf: 8, 

min_samples_split: 8, n_estimators: 221 

Temporal dummies, Lag24 

SVR C=100, epsilon=0.1, kernel='rbf' Temporal dummies, Lag24 

LSTM 𝐿𝑅 = 0.001, units = 50, Dense layer = 1, 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟 = 𝐴𝑑𝑎𝑚 None 

Bi-LSTM 𝐿𝑅 = 0.001, units = 50, Dense layer = 1, 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟 = 𝐴𝑑𝑎𝑚 None 

GRU 𝐿𝑅 = 0.001, units = 50, Dense layer = 1, 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟 = 𝐴𝑑𝑎𝑚 None 

CNN 𝐿𝑅 = 0.001, filters = 64, , 𝑘𝑒𝑟𝑛𝑒𝑙_𝑠𝑖𝑧𝑒 = 3, 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟 = 𝐴𝑑𝑎𝑚 None 

Bi-LSTM-

GRU 

𝐿𝑅 = 0.001, units = 50, Dense layer = 2, Dropout=0.2, 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟 = N𝐴𝑑𝑎𝑚 None 
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The forecasting performance of baseline models being measured in terms of MAE and RMSE 

metrics and being compared against the proposed model performance are reported in Table 4. 

The proposed model shows the lowest error among others. 

Table 4: Results of forecasting models on Integrated Realtime Market electricity price in NYC 

Model Statistical Machine Learning (ML) Deep Learning (DL) 

Metric ARIMA LR 

(Lasso) 

XGB RF SVR CNN LSTM Bi-

LSTM 

GRU GRU-

Bi_LSTM 

Bi_LSTM-GRU 

(Proposed) 

RMSE 38.745 45.318 48.838 48.955 39.279 25.238 24.175 24.773 24.143 24.781 23.604 

MAE 27.876 35.653 35.989 36.058 26.535 8.125 7.708 6.809 6.848 7.329 6.602 

Figures 5 depicts the graphs of actual price and the predicted price by the proposed model, over 

the period of the test set from March 2023 to March 2024 in NYC. The graphs of the forecast 

result of the ML and DL baseline models versus true values are represented in figures 6 to 14. 

Figure 6: Hourly electricity price for NYC from March 2023 to March 2024 and the proposed Bi-LSTM-GRU model prediction 
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Figure 7: Hourly electricity price for NYC from March 2023 to March 2024 and Ridge model prediction 

Figure 8: Hourly electricity price for NYC from March 2023 to March 2024 and RF model prediction 
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Figure 9: Hourly electricity price for NYC from March 2023 to March 2024 and XGB model prediction 

Figure 10: Hourly electricity price for NYC from March 2023 to March 2024 and SVR model prediction 
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Figure 11: Hourly electricity price for NYC from March 2023 to March 2024 and LSTM model prediction 

Figure 12: Hourly electricity price for NYC from March 2023 to March 2024 and Bi-LSTM model prediction 
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Figure 13: Hourly electricity price for NYC from March 2023 to March 2024 and GRU model prediction 

Figure 14: Hourly electricity price for NYC from March 2023 to March 2024 and CNN model prediction 
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Figure 15: Hourly electricity price for NYC from March 2023 to March 2024 and GRU-Bi-LSTM model prediction 

3.1 CNN-RNN Experiment 

In this experiment, the possible contribution of combining CNN architecture with that of RNN is 

explored. Three CNN-RNN models are trained and tested on the data and the performance then 

compared with the proposed model. As shown in Table 5, adding CNN is of limited contribution 

and none of the new hybrid models can beat the proposed model performance. 

Table 5: Comparison of CNN-RNN hybridization with the proposed model 

Figures 15 to 18 represent the graphs of the forecast result of the models in this experiment. 

 

Metric CNN-LSTM CNN-Bi_LSTM CNN-GRU Bi-LSTM-GRU (Proposed) 

RMSE 24.019 24.367 24.402 23.604 

MAE 7.068 7.368 7.551 6.602 
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Figure 16: Hourly electricity price for NYC from March 2023 to March 2024 and CNN-LSTM model prediction 

Figure 17: Hourly electricity price for NYC from March 2023 to March 2024 and CNN-GRU model prediction 
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Figure 18: Hourly electricity price for NYC from March 2023 to March 2024 and CNN-Bi-LSTM model prediction 

3.2 Decomposition Experiment 

This experiment is designed to answer the question of whether data decomposition can further 

enhance the proposed model. WT and FT techniques are employed in data preprocessing stage 

before applying the proposed model for prediction. The results in table 6 indicate that the 

proposed model will be worst off after employing these two data decomposition techniques. 

Table 6: The effect of adding a data decomposition method to the proposed model 

Electricity prices are influenced by a variety of factors, including demand and supply dynamics, 

weather conditions, market regulations, and random shocks. While some of these factors exhibit 

periodic or cyclic patterns, which frequency-based decomposition might capture, the data can 

also contain a significant amount of noise, abrupt changes, or irregular trends that are not well-

suited to this type of decomposition, leading to inferior performance. FT may not significantly 

alter the model's performance because it is capturing the dominant frequency components that 

Metric WT-Bi-LSTM-GRU FT-Bi-LSTM-GRU Bi-LSTM-GRU (Proposed) 

RMSE 30.734 23.680 23.604 

MAE 10.261 6.702 6.602 
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are already well-represented in the raw data. This suggests that the model is already capturing 

these components effectively without the need for additional transformation. WT decomposes 

the signal into approximation and detail coefficients. If the detail coefficients do not add 

meaningful information or if they introduce noise, the model's performance can degrade. 

Specifically, if the high-frequency components captured by WT do not correspond to relevant 

patterns in the electricity price data but instead capture noise, this can negatively affect the 

model. 

3.3 Discussion 

This study compared the performance of various predictive models against the proposed 

Bi_LSTM-GRU hybrid model for electricity price forecasting. The experimental results clearly 

indicate that the Bi_LSTM-GRU model outperforms all the other models in terms of widely used 

evaluation metrics in the domain. In addition to these models, two experiments were conducted: 

first, a CNN-RNN hybrid model including CNN-LSTM, CNN-GRU, and CNN-Bi-LSTM was 

built and evaluated, and second, data decomposition techniques such as Wavelet Transform 

(WT) and Fast Fourier Transform (FFT) were employed alongside the proposed model. Both 

approaches failed to surpass the performance of the Bi_LSTM-GRU model. Below, we discuss 

the reasons behind the inferior performance of each alternative model and why our proposed 

model excels. 

ARIMA model performed the worst among all the models evaluated. This is largely due to its 

linear nature and assumption of stationarity. Since electricity price data often exhibit non-linear 

patterns and abrupt changes, linear models perform poorly on this task. LASSO also suffers from 

the same issue as it assumes a linear relationship between the input features and the target 

variable. Moreover, Lasso's regularization can overly penalize important predictors, leading to 

underfitting and poor generalization performance. 

While XGB, RF, and SVR can handle non-linearity, they do not inherently model the sequential 

nature of time series data. They require manual feature engineering to create lagged variables 

and other temporal features. Even with these enhancements, they lack the capability to capture 

complex temporal patterns and long-term dependencies effectively. 
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CNNs can capture local patterns through convolutional filters but lack the mechanism to model 

long-term dependencies and sequential patterns effectively. This limitation becomes evident in 

the context of electricity price forecasting, where understanding long-term trends and temporal 

dependencies is crucial. While CNNs performed better than ARIMA, XGBoost, RF, and SVR 

due to their ability to extract complex features from the data, they still fell short of RNN family 

models which are specifically designed to capture sequential dependencies. LSTM, Bi-LSTM, 

and GRU are designed to capture long-term dependencies in sequential data. However, when 

used individually, they are prone to overfitting.  

In the first experiment, various CNN-RNN hybrid models (CNN-LSTM, CNN-GRU, and CNN-

Bi-LSTM) were evaluated. While these models benefit from CNN's ability to extract local 

features and RNN's capability to capture temporal dependencies, they still fell short of the 

Bi_LSTM-GRU model. The primary reason is that the Bi_LSTM-GRU model's architecture, 

starting with a bidirectional LSTM layer, allows for more comprehensive temporal feature 

extraction before the GRU layer refines this information, providing better overall performance. 

In the second experiment, data decomposition techniques such as WT and FFT were employed 

alongside the proposed model. These techniques aim to break down the time series data into 

different frequency components to improve forecasting accuracy. However, they did not enhance 

the performance of the Bi_LSTM-GRU model. The likely reason is that while decomposition can 

provide insights into different components of the data, the Bi_LSTM-GRU model already 

captures complex temporal dependencies effectively, making additional decomposition 

redundant or even disruptive. 

The proposed Bi_LSTM-GRU model significantly outperformed baseline models due to its 

ability to fully leverage the strengths of both Bi-LSTM and GRU architectures. The Bi-LSTM 

layer first captures comprehensive temporal dependencies by processing the input sequence in 

both forward and backward directions. This enriched representation is then refined by the GRU 

layer, which processes the sequential data efficiently, ensuring that important temporal patterns 

are retained without excessive computational overhead. Moreover, introducing dropout layers 

after the Bi-LSTM and GRU layers helps in regularizing the model by randomly setting a 
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fraction of input units to zero at each update during training time. This prevents the model from 

overfitting to the training data, thereby improving its generalization capability to unseen data. 

Additionally, Bi_LSTM-GRU also outperformed GRU-Bi_LSTM architecture with the same 

dropout layer structure. This can be explained by the nature of the data and task in this research. 

Electricity prices are influenced not only by past trends but also by future market conditions, 

regulations, and external factors. Starting with a Bi-LSTM ensures that the model extracts a 

comprehensive set of features that incorporate both past and future information. This rich 

representation is then efficiently processed by the GRU, making the model robust and effective 

in capturing long-term dependencies without excessive computational overhead. 

It is important to acknowledge that direct comparisons between the performance of the proposed 

Bi-LSTM-GRU model and those reported in the literature are challenging due to differences in 

datasets, such as the time periods, data resolutions, and geographical focuses. However, it is 

observed in the literature that RNN models, which belong to the deep learning family, tend to 

perform best in complex time-series forecasting tasks, especially with highly volatile data such 

as electricity prices. Hybridization of different deep learning models has proven to be more 

effective, as this approach can mitigate the shortcomings of individual models, providing greater 

reliability and flexibility. Nevertheless, there is no universally optimal hybridization strategy; in 

each context, various scenarios must be explored to determine which approach works best. 

3.4 Limitations 

Despite the promising results of the proposed Bi_LSTM-GRU model for electricity price 

forecasting, this model, and this study for that matter, have limitations that must be 

acknowledged to provide a comprehensive understanding of the findings and implications. 

On the modeling side, the proposed model has the common limitations of general DL 

architecture. It is computationally intensive due to the high number of parameters to calculate 

and extensive hyperparameter to tune. The model's performance is highly dependent on the 

quality and quantity of input data, making it vulnerable to degradation when faced with sparse, 

noisy, or small amount of data. Its "black-box" nature poses challenges for interpretability, which 
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can limit its usage in a company where transparency and explainability of the prediction task are 

required. 

The study's limitations include the three-year period of the data used spanning from 2021 to 

2024. This period selection was unavoidable due to the impact of COVID-19 on the electricity 

price before 2021. Data aggregation from 5-minute intervals to hourly averages may result in a 

loss of granularity and potentially valuable information. The geographic and market specificity 

of the data limits the generalizability of the findings to other regions or markets. Additionally, 

the study does not explicitly account for external factors such as regulatory changes and 

macroeconomic conditions, which can impact the price in the long run. 

3.5 Implications for the electricity market 

This study has significant implications across various stakeholders in the electricity market. By 

providing accurate and reliable price forecasts for the upcoming year, this model can influence 

decision-making processes, operational strategies, and financial planning.  

For electricity generators, precise price forecasting is crucial for optimizing the generation 

schedule and maximizing profitability. With advanced notice of potential price fluctuations, 

generators can adjust their output to match periods of high prices, thereby increasing revenue. 

Additionally, accurate forecasting helps generators make informed decisions regarding fuel 

purchases, maintenance scheduling, and potential investments in new technologies or capacity 

expansions. 

System operators, who are for ensuring the reliable supply of electricity, can enhance grid 

reliability through better resource allocation, demand response strategies, and contingency 

planning. Furthermore, accurate price predictions assist in the integration of renewable energy 

sources, which can be unpredictable due to their dependence on weather conditions. The ability 

to forecast electricity prices accurately aids in balancing supply and demand dynamically, 

maintaining grid stability, and minimizing the cost of electricity for all users. 

For wholesale customers such as large industries who buy electricity on the wholesale market or 

through bilateral contracts, the ability to forecast electricity prices accurately is essential for 
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budgeting, securing the best possible rates and negotiating long-term contracts. Wholesale 

customers can better plan their energy purchases to take advantage of lower prices and avoid 

periods of high prices, thus reducing their overall energy costs. 
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4 Conclusion 

This research addressed the complex challenge of electricity price forecasting in the deregulated 

electricity market of New York, characterized by high volatility, non-stationarity, and multi-

seasonality. By developing a novel hybrid deep learning model that combines Bi_LSTM with 

GRU, the study advanced the field of electricity price forecasting. The Bi_LSTM-GRU model 

not only mitigates the risk of overfitting but also enhances both the robustness and adaptability 

of the forecasts, proving particularly effective for real-time application in dynamic market 

environments. 

The performance of the Bi_LSTM-GRU model was thoroughly evaluated against a 

comprehensive array of both traditional and contemporary forecasting models. Demonstrating 

superior accuracy, the hybrid model outperformed baseline models including ARIMA, Linear 

Regression, Random Forest, eXtreme Gradient Boosting, Support Vector Regression, as well as 

advanced deep learning approaches such as LSTM, Bi-LSTM, GRU, and Convolutional Neural 

Network. This superiority highlights the efficacy of integrating LSTM and GRU architectures to 

capture the intricate dynamics of electricity prices more effectively than single-mechanism 

models. 

Further explorations within this study assessed the integration of CNN with RNN architectures 

and the impact of employing data decomposition techniques like Wavelet Transform and Fourier 

Transform. The findings revealed that while CNN-RNN hybrids did not surpass the Bi_LSTM-

GRU model, the application of data decomposition methods resulted in increased error rates, 

suggesting that for the NYC electricity market, sophisticated deep learning configurations 

without data decomposition offer the most accurate forecasting tools. 

Future research directions could explore integrating additional data types, such as weather-

related data and economic indicators, and testing advanced neural network architectures like 

Transformers. Another potential direction could be examining the effectiveness of wavelet 

function type and level of wavelet decomposition on performance of deep learning systems. 

Additionally, alternative decomposition techniques beyond frequency-based methods could be 

investigated to capture diverse data patterns and enhance forecasting accuracy. Enhancing model 
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interpretability, reducing computational demands, and developing real-time adaptive learning 

models that dynamically adjust to new data are also promising areas. These efforts could further 

refine the theoretical and practical aspects of forecasting models, broadening their applicability 

and effectiveness in the energy sector. 
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