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ABSTRACT 
 

 

Analyzing the Cryptocurrency Market: Event Studies and Pricing Factors 

 

Weiyu Gao, Ph.D. 

Concordia University, 2024 

This thesis investigates the application of event study methodologies and cross-sectional factors 

in cryptocurrency markets, with a focus on understanding market dynamics and the drivers of 

cryptocurrency returns. Through two distinct but complementary studies, this work addresses both 

the methodological challenges of event studies in highly volatile markets and the role of novel 

factors in pricing ERC-20 tokens. 

The first study examines the suitability of traditional event study methodologies in the context 

of cryptocurrency markets. Given the unique characteristics of cryptocurrencies—such as non-

normal return distributions and extreme volatility—the study explores the efficacy of various 

parametric and non-parametric statistical tests. It identifies non-parametric approaches as more 

robust, particularly for smaller and highly volatile cryptocurrencies, and highlights the importance 

of sample size in achieving reliable results. 

The second study investigates cross-sectional return predictors in the cryptocurrency market, 

with a specific focus on ERC-20 tokens. By leveraging both traditional factors such as size and 

momentum, as well as novel on-chain variables—including transaction value, transfer counts, and 

active addresses—the study constructs crypto-specific factors that provide deeper insights into 

token valuation and market behavior. It further demonstrates the relevance of these factors in 

explaining the variation in token returns. 

Collectively, these studies contribute to the growing body of research on cryptocurrency 

markets by refining event study methodologies and introducing novel factors to better understand 

market reactions and return dynamics. The findings have broad implications for financial analysis 

in emerging and volatile asset classes, offering tools for researchers and investors to navigate the 

complexities of cryptocurrency markets. 
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Chapter 1: Introduction 

 
The exponential growth of cryptocurrency markets has introduced a new and complex asset class 

to the field of finance, challenging conventional market theories and analytical methodologies. 

Cryptocurrencies, known for their decentralized nature and rapid adoption, are distinct from 

traditional financial assets in terms of volatility, liquidity, and underlying technology. This unique 

behavior prompts an urgent need to examine both market efficiency and the determinants of returns 

in cryptocurrency markets. This thesis addresses two primary research questions: (1) How 

effective are existing event study methodologies in detecting market efficiency within 

cryptocurrency markets? (2) What are the key empirical factors driving cross-sectional returns of 

crypto-assets, particularly ERC-20 tokens? By integrating event study analysis with asset pricing 

models, this thesis provides a comprehensive exploration of the mechanisms underlying 

cryptocurrency markets, contributing significantly to the evolving literature on digital finance. 

Can Event Study Methodology Keep Up with Cryptocurrencies? 

Event studies are pivotal in finance, enabling the assessment of how swiftly and accurately market 

prices reflect new information. Historically, event studies have been applied extensively to 

traditional financial markets to test market efficiency, evaluate regulatory impacts, and analyze 

corporate events. Seminal works by Fama, Fisher, Jensen, and Roll (1969) introduced the basic 

framework, while subsequent research, such as Brown and Warner (1980, 1985), focused on 

refining statistical techniques to improve accuracy. In response to non-normal return distributions 

often observed in financial markets, Corrado (2011) proposed adjustments to parametric tests, 

enhancing robustness against misspecification. 

However, the application of event study methodologies to cryptocurrency markets remains 
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limited. Cryptocurrencies exhibit highly non-normal return distributions characterized by 

skewness, high kurtosis, and extreme volatility, as noted by Liu and Tsyvinski (2018) and Biais et 

al. (2023). These distributional characteristics can cause substantial bias in traditional parametric 

tests, leading to inaccurate detection of abnormal returns. Prior research, including studies by 

Shanaev et al. (2019) and Tomić (2020), has utilized event studies to explore market efficiency in 

response to security incidents and blockchain events, yet these studies often lack comprehensive 

evaluations of test effectiveness in cryptocurrency contexts. 

This study builds on the framework proposed by Marks and Musumeci (2017), conducting an 

extensive evaluation of six parametric and four non-parametric statistical tests to assess their 

suitability for cryptocurrency markets. Non-parametric tests, such as the Wilcoxon signed-rank 

test (1945), Corrado’s rank test (1989), and Cowan’s generalized sign test (1992), have shown 

promise in handling extreme return characteristics, making them more appropriate for volatile 

markets. The results of this study highlight that non-parametric tests perform particularly well 

under conditions of high volatility and non-normal return distributions, supporting previous 

findings by Ante and Fiedler (2021) and Joo et al. (2020). 

Event studies also confront the joint hypothesis problem, a fundamental issue in testing market 

efficiency. This problem arises from the dependence on an asset pricing model to estimate 

abnormal returns, making the interpretation of results contingent on the model’s validity. For 

cryptocurrencies, existing pricing models may not fully capture their unique features, as observed 

by Liu et al. (2022) and Cong et al. (2018). Therefore, this study not only evaluates event study 

methodologies but also seeks to refine asset pricing models to better represent cryptocurrency 

markets, offering a more comprehensive analysis of market efficiency. 
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Deciphering Cryptocurrency Returns: Novel Factors and Insights 

The emergence of cryptocurrencies has driven researchers to develop theoretical models that 

address their pricing mechanisms. Unlike traditional assets, which are typically valued based on 

expected future cash flows, cryptocurrencies lack such cash flows, prompting alternative valuation 

approaches. Initial theoretical models, such as those by Huberman et al. (2017) and Pagnotta and 

Buraschi (2018), focus on decentralized consensus mechanisms and their impact on intrinsic value, 

while empirical models often incorporate factors unique to cryptocurrency markets, including 

liquidity, momentum, and network effects. 

Liu et al. (2022) introduced a three-factor model for cryptocurrencies, incorporating factors 

such as momentum, size, and investor attention, which are tailored to the unique characteristics of 

crypto-assets. Bhambhwani et al. (2019) and Howell et al. (2018) further explored factors like 

investor sentiment and on-chain activities, suggesting that these variables play a crucial role in 

shaping cryptocurrency returns. This study extends this body of work by concentrating specifically 

on ERC-20 tokens—tokens that operate within the Ethereum blockchain and account for a 

significant share of the crypto market. 

The choice of ERC-20 tokens is driven by their standardized characteristics and the wealth of 

on-chain data available, which provides insights into blockchain activities such as transaction 

volume, active addresses, and transfer counts. Empirical research, such as Ante (2023), has 

highlighted the importance of these on-chain variables in explaining cross-sectional returns of 

cryptocurrencies. This study utilizes a sample of over 1,000 ERC-20 tokens, examining 19 

characteristics, including market-related predictors (e.g., size and volume), on-chain factors (e.g., 

transaction counts), and quasi-value metrics (e.g., transaction value-to-market cap ratios). The 

results indicate that significant risk premiums are associated with these factors, aligning with 
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previous findings by Ramos et al. (2021) and Chokor and Alfieri (2021). 

By constructing long-short zero-investment portfolios based on these predictors, this study 

reveals statistically significant risk premiums related to size, liquidity, and transaction volume, 

further supporting the role of on-chain activity as a proxy for intrinsic value. Additionally, the 

introduction of quasi-value predictors, inspired by concepts from the stock market such as book-

to-market ratios (Fama and French, 1992), offers a novel perspective on evaluating the valuation 

of tokens. 

Contributions of this Thesis 

This thesis contributes to the literature by integrating event study methodologies with empirical 

asset pricing models, providing a holistic understanding of cryptocurrency markets. Key 

contributions include: 

1. Refined Event Study Tests for Cryptocurrencies: The comprehensive evaluation of 

event study tests in this thesis offers a more accurate framework for detecting abnormal 

returns in cryptocurrency markets. The findings suggest that non-parametric tests are better 

suited to handle the extreme return distributions of digital assets, providing insights that 

build on the work of Corrado (2011) and Cowan (1992). 

2. Crypto-Specific Asset Pricing Factors: By focusing on ERC-20 tokens and incorporating 

on-chain variables as predictors, this study extends the empirical asset pricing literature. 

The identification of significant risk premiums linked to market-related, on-chain, and 

quasi-value predictors contributes to a better understanding of cross-sectional return 

variations in cryptocurrencies. This aligns with the research of Liu et al. (2022) and 

Bhambhwani et al. (2019), who have emphasized the importance of crypto-specific factors. 

3. Implications for Investors, Policymakers, and Researchers: This thesis provides 
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practical implications for market participants and regulators. The refined event study 

methodologies can aid in regulatory assessments of market efficiency, while the empirical 

pricing factors can inform investment strategies and risk management in the crypto space. 

Furthermore, the insights from this research can serve as a foundation for future studies 

exploring market behavior and pricing dynamics in digital finance. 
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Chapter 2: Can Event Study Methodology Keep 

Up with Cryptocurrencies? 
 

 

 

 

 

Abstract 

 

This study evaluates the suitability of various event study methodologies for 

cryptocurrency markets, focusing on identifying the most effective statistical tests for 

event-induced returns and volatility across different cryptocurrency sub-samples. 

Through extensive analysis, we find that non-parametric tests provide more robust and 

reliable results, particularly in environments characterized by high volatility and non-

normal return distributions. Our findings demonstrate that value-weighted indices serve 

as effective benchmarks for large-cap cryptocurrencies due to their ability to capture 

market-wide trends. However, these indices demonstrate limitations when applied to 

smaller or highly volatile cryptocurrencies. This research enhances the adaptability of 

event study methodologies to the dynamic nature of cryptocurrency markets, offering 

broader implications for these emerging and volatile financial markets. 
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2.1. Introduction 

Event study methodology is a fundamental tool in finance and corporate finance, offering a robust 

framework for analyzing the effects of specific events on asset prices. Its wide-ranging 

applications include assessing market efficiency, evaluating the impact of corporate actions, 

regulatory changes, and technological innovations, among other phenomena. By quantifying how 

markets react to events, event studies generate critical insights into the functioning of financial 

markets, thereby guiding investment strategies, corporate governance, and policy decisions. As 

financial markets evolve, particularly with the emergence of new asset classes like 

cryptocurrencies, the importance of adapting event study methodologies to these changes becomes 

increasingly evident. 

Cryptocurrencies, underpinned by blockchain technology, represent one of the most disruptive 

innovations in modern finance. Their unique characteristics, including rapid growth and sharp 

declines, distinguish them from traditional investments like stocks and bonds. Unlike these 

traditional assets, cryptocurrency returns are often characterized by non-normal distributions, 

exhibiting skewness, high positive excess kurtosis, and unstable distribution parameters over time.  

These properties, coupled with phases of extreme market fluctuations like “bull runs” and “crypto 

winters,” pose significant challenges to standard event study methodologies, which typically 

assume normality in return distributions. While previous research has attempted to address such 

distributional issues for traditional financial assets (e.g., Corrado, 2011), the distinct behavior of 

cryptocurrencies necessitates tailored approaches to better capture their abnormal returns. 

Several studies have explored the application of event study methodologies within 

cryptocurrency markets, focusing on different types of events and their implications for market 

efficiency. For example, Ante and Fiedler (2021) analyzed price reactions to large Bitcoin 
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transactions, contributing to the understanding of weak-form efficiency. Other studies have 

assessed semi-strong form efficiency by examining how cryptocurrencies respond to publicly 

available information, including general news (Joo et al., 2020; Yue et al., 2021), blockchain-

related events like forks (Tomić, 2020), and security breaches (Shanaev et al., 2019; Ramos et al., 

2021; Almaqableh et al., 2022). In addition, researchers have examined the effects of regulatory 

changes (Öget, 2022; Chokor and Alfieri, 2021) and social media influences (Ante, 2023), 

providing insights into how effectively cryptocurrency markets process external information. 

Moreover, the impact of “black swan” events, such as the COVID-19 pandemic (Abraham, 

2021) and cryptocurrency exchange failures (Yousaf et al., 2023), has also been examined in the 

context of cryptocurrency price behavior. In the corporate domain, Jumah and Karri (2020) 

investigated how public disclosures related to corporate involvement with cryptocurrencies affect 

stock prices. Collectively, these studies offer a broad understanding of how various events shape 

the dynamics and efficiency of cryptocurrency markets. 

The latest event study research in cryptocurrency markets has attempted to adjust key aspects 

of traditional event study methodologies to better adapt to the unique features of the crypto 

ecosystem. For instance, these studies often employ diverse estimation windows — ranging from 

minutes to months — and models such as the mean return model and the market model to calculate 

expected returns more precisely. Improved expected return estimation facilitates the detection of 

abnormal returns. Statistical methods used in these analyses include standard t-tests and various 

nonparametric tests, which are better suited to accommodate the unique distributional 

characteristics of cryptocurrency returns. More details of these previous studies, including their 

sample selection, sample period, statistical tests applied, estimation periods, and key findings, are 

summarized in Table A1 to provide a comprehensive overview of existing event study 
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methodologies in cryptocurrency markets. 

– Table A1 about here – 

However, significant limitations remain in the existing body of research. The choice of 

estimation windows, return models, and test statistics in previous studies has often been ad hoc, 

lacking systematic criteria for application. Moreover, these studies predominantly focus on highly 

traded or large-cap cryptocurrencies, primarily issued during the boom periods of 2016 and 2017, 

when market activity and trading volumes surged. While convenient, this focus introduces 

selection bias and limits the generalizability of findings, as highly traded or large-cap 

cryptocurrencies exhibit distinct return behaviors and efficiency levels compared to smaller-cap 

ones.  

Another critical challenge lies in the distributional peculiarities of cryptocurrency returns, 

particularly for small-cap tokens. The foundation of event studies—reliance on the Central Limit 

Theorem (CLT)—becomes problematic when applied to the highly skewed and fat-tailed 

distributions of cryptocurrency returns. As noted by Brown and Warner (1985), the convergence 

rate to normality slows in such cases, potentially leading to misspecifications. This limitation 

underscores the urgent need for refined event study methodologies that can handle the statistical 

complexities of the entire cryptocurrency market, including its smaller and more volatile segments. 

To address these challenges, it is essential to evaluate the effectiveness of both parametric and 

nonparametric tests under the unique conditions of cryptocurrency markets. The widely used cross-

sectional t-test, for example, often struggles with increased variance in returns around event dates, 

particularly when returns are equal-weighted (Corrado, 2011). Patell (1976) introduced 

standardized abnormal returns to mitigate this issue, and Boehmer, Musumeci, and Poulsen (BMP, 

1991) further refined this approach by accounting for event-day volatility. However, both methods 
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are prone to cross-sectional correlation, which can lead to an over-rejection of the null hypothesis. 

To address this, Kolari and Pynnönen (2010) proposed adjusted versions of the Patell and BMP 

tests.  

In addition to parametric tests, researchers have employed nonparametric tests that impose 

fewer distributional assumptions. Pioneering work by Wilcoxon (1945) introduced the signed-rank 

test, while Corrado (1989) developed a nonparametric test based on ranking daily returns. Corrado 

and Zivney (1992) extended this approach to account for volatility changes due to events. Given 

the high skewness of cryptocurrency returns, the generalized sign test by Cowan (1992) appears 

particularly suitable for this context. 

In traditional stock markets, studies such as Marks and Musumeci (2017) have systematically 

evaluated event study methodologies to determine their suitability under varying distributional 

conditions. However, similar analyses in cryptocurrency markets remain limited. The distinct 

feature of cryptocurrency returns — such as non-normality, skewness, and extreme volatility — 

pose significant challenges for existing test statistics, potentially leading to biased estimates, wider 

confidence intervals, and unreliable inferences. To overcome these challenges, this study employs 

the method proposed by Marks and Musumeci (2017), tailoring it to the unique statistical 

properties of cryptocurrency returns. By identifying the most effective event study methodologies 

for this asset class, the study aims to improve the reliability and validity of empirical findings. 

This paper contributes to the literature by establishing systematic criteria for selecting 

appropriate event study techniques under different cryptocurrency market conditions. These 

criteria improve the robustness of empirical results, facilitating a deeper understanding of market 

reactions in this rapidly evolving sector. The remainder of the paper is organized as follows: 

Section 2.2 introduces the datasets, Section 2.3 establishes the research design and details the 
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parametric and non-parametric tests applied, Section 2.4 presents the empirical results, and Section 

2.5 provides concluding remarks and directions for future research. 

 

2.2 Data 

To construct a comprehensive and survivorship bias free data set of cryptocurrencies, we follow 

the approach of Buchwalter et al. (2024) collecting cryptocurrencies prices from CoinMarketCap 

starting August 2015 when Ethereum started to trade until July 2023. Market data from 

cryptocurrency data providers, such as CoinMarketCap or CoinGecko, come with several 

challenges, most prominently stemming from the lack of regulation that some coins or tokens are 

created without a related venture and are “scams”. Scam tokens often have artificially inflated 

prices due to wash trading, fake volume, pump and dump schemes, and other deceptive practices. 

This makes the data unreliable and can mislead the token’s true market value and liquidity. 

Furthermore, coins and tokens can be removed from the cryptocurrency data providers at some 

point in time when e.g. the trading volume is too low and are deemed “dead,” which can lead to a 

survivorship bias.  

To minimize the impact of the challenges on the results, we applied the data cleaning 

procedures as described in Buchwalter et al. (2024)1 to the comprehensive dataset of “active” and 

“dead” cryptocurrencies. This resulted in a dataset of 6,448,883 daily cryptocurrency price 

observations for 17,792 unique cryptocurrencies. The dataset is thereby among the most 

                                                      
1   The cleaning process involves several steps: removing stable coins, excluding economically insignificant 

cryptocurrencies based on minimum market capitalization or volume, truncating data for "inactive" or "dead" 

cryptocurrencies, eliminating those with significant data gaps, removing cryptocurrencies subject to market 

manipulation, and imputing small data gaps with the average trading return evenly distributed over the missing 

periods.  
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comprehensive datasets used in the context of cryptocurrency research.  

In the second step, we ensure that the event study methodology can be meaningfully applied. 

We require cryptocurrencies to have a minimum return history of 190 days to allow for sufficiently 

long estimation and event window combinations, this reduces the dataset to 5,685,595 observations 

and 8,794 cryptocurrencies. Next, we account for obvious market manipulations including but not 

limited to pump-and-dump schemes. Therefore, we remove cryptocurrencies from the sample 

when a daily return is lower than minus 90%, or when daily returns are greater than 10,000% for 

more than four times resulting in removing 810 cryptocurrencies. This approach helps mitigate 

potential biases and ensures that our findings are not unduly influenced by extreme price 

movements or anomalies typically associated with smaller, less liquid cryptocurrencies. Based on 

the final sample, we calculate a market capitalization-weighted cryptocurrency index with daily 

rebalancing, referred to as the value-weighted index (VW). 

Our final sample is comprised of 7,984 cryptocurrencies and 5,097,332 daily observations 

with a mean (median) daily return of 0.44% (-0.28%) a standard deviation of 17.51%. Returns are 

not normally distributed with a 5% (95%) quintile of -14.47% (15.90%) and a skewness of 22.77 

and a kurtosis of 1319. Based on the final sample we calculate a value-weighed market index. 

Cryptocurrencies exhibit varied levels of price volatility and market behavior depending on 

factors such as market capitalization and trading volume. Larger market cap cryptocurrencies 

generally demonstrate greater liquidity and stability, potentially reducing the impact of market-

wide events. In contrast, smaller cryptocurrencies exhibit stronger price fluctuations compared to 

larger cryptocurrencies, which may impact the statistical significance of event study tests. 

Furthermore, cryptocurrencies with high trading volumes may respond more sensitively to market 

news, reflecting greater investor engagement and sentiment-driven movements. Consequently, 
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segmenting the market into distinct sub-categories is crucial for nuanced analysis. To account for 

this, we distinguish four different segments. Specifically, we identify the top 100 cryptocurrencies 

by volume (Top100 Volume) or market capitalization (Top100 MC) at any point in time, 

representing the largest and most liquid cryptocurrencies (see e.g., Kosc et al., 2019). Furthermore, 

we categorize cryptocurrencies as larger (≥ 25M MC) or smaller (< 25M MC) than 25 million MC 

at any point in time, which is a typical minimum requirement in cryptocurrency research (see e.g., 

Liu et al., 2022). By distinguishing cryptocurrencies by size and liquidity, we can better isolate the 

effects of specific events and provide a more nuanced analysis of market reactions. 

Table 1 Panel A provides an overview of the number of different cryptocurrencies included 

in our respective size sub-samples as of January 1 each year, while Panel B shows the descriptive 

statistics by sub-sample and for the value-weighted index. The table reveals several key differences 

between smaller cryptocurrencies (with less than 25 million MC or non-reported MC) and larger 

cryptocurrencies (with more than 25 million MC). 

– Table 1 about here – 

On average, smaller cryptocurrencies have lower daily mean (median) returns of 0.4%  

(-0.3%) compared to 0.6% (-0.1%) for larger cryptocurrencies. They also exhibit higher standard 

deviations (18.1% compared to 13.6%), indicating greater volatility. Additionally, smaller 

cryptocurrencies display higher positive skewness (40.2 compared to 21.3) and larger kurtosis, 

indicating more pronounced fat tails. 

The top 100 cryptocurrencies by market capitalization and volume show higher average daily 

returns, with mean (median) returns of 0.8% (0%) and 1.3% (0%), respectively. Their standard 

deviations are only slightly higher, at 14.4% and 14.6%, respectively, with skewness (32.7 and 
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18.9, respectively) somewhat lower but still positive, indicating the presence of fat tails. 

 

2.3 Methodology 

2.3.1 Research Design 

The primary objective of this research is to evaluate which event study techniques can consistently 

and reliably detect abnormal returns by properly rejecting or failing to reject the null hypothesis 

(𝐻0: 𝐴𝑅 = 0). To achieve this, we adopt the simulation framework proposed by Marks and Musumeci 

(2017), generating event-induced effects (∆𝑖,𝐸) that incorporate both event-induced returns (𝑟̅𝑖,𝐸) and event-

induced volatility (𝜃𝑖,𝐸). The original dataset, consisting of 5,097,332 daily realized returns, serves as the 

base data for testing the impact of simulated events. 

The simulation procedure begins by randomly selecting an event date from the original 

dataset, which typically contains daily returns for multiple cryptocurrencies. From the set of 

cryptocurrencies available on that date, we randomly select one daily return to represent the 

benchmark for that event. Since event studies focus on detecting abnormal returns induced by 

specific events, we estimate the expected return for the selected cryptocurrency as the benchmark. 

Expected returns are calculated using the value-weighted crypto-market index (𝑅𝑉𝑊,𝐸) as a proxy 

for the market factor. Specifically, the following equation is used to estimate the market beta (𝛽̂𝑖) over a 

100-day period ending 11 days prior to the event date: 

𝐸(𝑅𝑖,𝐸) = 𝛼̂𝑖 + 𝛽̂𝑖 ∙ 𝑅𝑉𝑊,𝐸 (1) 

Here, 𝛽̂𝑖 captures the relationship between the cryptocurrency and the market index. 

The simulated event effect (∆𝑖,𝐸(𝑟̅𝑖,𝐸 , 𝜃𝑖,𝐸)) is generated by introducing an average event-induced 

return (𝑟̅𝑖,𝐸) set between 0% and 5%, and event-induced volatility (𝜃𝑖,𝐸) proxied by the standard error of the 

regression from Equation (1). Using the randomly selected daily return as the benchmark and its 

corresponding expected return, we calculate the abnormal return for the cryptocurrency on the event date 
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as follows: 

𝐴𝑅𝑖,𝐸 = (𝑅𝑖,𝐸 + ∆𝑖,𝐸) − 𝐸(𝑅𝑖,𝐸) (2) 

This abnormal return (𝐴𝑅𝑖,𝐸) represents one element of the testing sample. The procedure is 

repeated iteratively, selecting new event dates and calculating abnormal returns until the desired 

sample size (𝑁) is reached.  

Once the sample is formed, the average abnormal return (𝐴𝐴𝑅𝑛) is calculated as: 

 

𝐴𝐴𝑅𝑛 =
1

𝑁
∑ 𝐴𝑅𝑖,𝐸

𝑁

𝑖=1

(3) 

 

The sample-based average abnormal return (𝐴𝐴𝑅𝑛 ) is then tested using various event study 

statistical techniques to evaluate their ability to detect the simulated event-induced returns under 

different conditions, including scenarios with or without event-induced volatility. 

This research design provides a systematic framework for assessing the performance of event 

study techniques in cryptocurrency markets. By simulating event-induced returns and volatility, 

the study ensures that the evaluation of statistical tests is robust and tailored to the unique 

characteristics of cryptocurrencies. The findings contribute to identifying the most effective 

methodologies for analyzing abnormal returns in this highly dynamic and volatile market. 

 

2.3.2 Parametric and Non-Parametric Tests 

Next, we calculate a variety of parametric tests, which typically require that abnormal returns are 

normally distributed, as well as nonparametric tests which do not require such an assumption to 

study which of the tests is most suitable in the context of cryptocurrencies.2 Including following 

                                                      
2 We use Stata eventsudy2 module to do all event study calculations. 
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tests for absolute abnormal returns: 1) The standard t-test for AAR (t-test) provides a standard 

significance test assuming cross-sectional independence. It is sensitive to non-normal distributions 

and event-induced volatility and may not be suitable for non-normal returns. 2) The t-test for 

AAR (CDA T) by Brown and Warner (1980/1985) adjusts for cross-sectional dependence using 

crude dependence adjustment (CDA) but still assumes normality, making it biased for non-normal 

returns. 3) The z-test on abnormal standardized returns (Patell Z) by Patell (1976) adjusts for 

heteroscedasticity but also assumes normality. It is robust against the distribution of Ars across the 

cumulative event window but sensitive to cross-sectional correlation and event-induced volatility. 

4) The z-test on abnormal standardized returns (Adj. Patell Z) with Kolari and Pynnönen 

(2010) adjustments corrects for cross-sectional correlation and is suitable for non-normal returns, 

albeit with a complex calculation. 5) The z-test on average abnormal cross-sectional 

standardized returns (StdCSect Z) suggested by Boehmer et al. (1991) adjusts for event-induced 

variance but is not suitable for non-normal returns due to its normality assumption. It is robust 

against the distribution of Ars across the cumulative event window and accounts for event-induced 

volatility and serial correlation. 6) The z-test on average abnormal cross-sectional standardized 

returns (Adj. StdCSect Z) with Kolari and Pynnönen (2010) adjustments accounts for cross-

sectional correlation and is suitable for non-normal returns.  

In addition, we include following sign/rank tests: 7) The rank test (Rank) by Corrado (1989) 

examines these returns using non-standardized ranks, providing an assessment without normal 

distribution assumptions. 8) The Corrado and Zivney (1992) Rank Test (Rank Z) modifies the 

original Rank Test by Corrado (1989) to include a consideration for  event-induced volatility of 

rankings.  It achieves this through the application of re-standardized abnormal returns, thereby 

enhancing the test’s sensitivity to fluctuations caused by the event. However, it may exhibit 
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inferior performance for longer event windows but is robust against skewness in the return 

distribution. 9) The generalized sign test (Gen. Sign Z) by Cowan (1992) extends the traditional 

sign test to address non-independence among observations, such as in clustered events, by 

considering both the sign and the magnitude of returns. Lastly, 10) the Wilcoxon (1945) rank test 

(Wilcoxon) is applied across various fields beyond finance, assessing differences in median 

values by analyzing signs and magnitudes of abnormal returns, though it is less powerful in 

small sample sizes. These tests are chosen for their robustness against non-normal distributions 

and their ability to thoroughly analyze both the sign and magnitude of abnormal returns, enhancing 

our comprehensive event study analysis. For further details and formulas of the significance tests 

used, please also refer to Event Study Tools3.  

 

2.4 Empirical Results 

The primary goal of this research is to establish systematic criteria for selecting appropriate event 

study test statistics under specific conditions. To achieve this, we analyze the performance of 

various event study methodologies across four distinct subsamples: Top 100 by MCAP, MCAP ≥ 

25M, Top 100 by Volume, and MCAP < 25M. These subsamples reflect key cryptocurrency 

characteristics such as token capitalization, trading volume, and market dynamics, which may 

influence the performance and specification of statistical tests.  

In addition to token characteristics, market conditions are incorporated into the analysis by 

introducing event-induced returns and volatility (∆𝑖,𝐸(𝑟̅𝑖,𝐸 , 𝜃𝑖,𝐸)). These factors allow us to assess 

how test performance varies under different levels of induced market effects, ranging from no 

impact (∆𝑖,𝐸= 0) to significant abnormal returns (𝑟̅𝑖,𝐸 > 0) and heightened volatility (𝜃𝑖,𝐸 > 0). By 

                                                      
3 See also https://www.eventstudytools.com/significance-tests 
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varying sample sizes, we further examine how the robustness and sensitivity of event study 

techniques are influenced by dataset size and distributional characteristics. This comprehensive 

approach provides insights into the conditions under which specific tests are most effective, 

particularly in the context of the volatile and highly heterogeneous cryptocurrency market. 

 

2.4.1 SAR Distribution 

In this section, we compare the empirical distributions of standardized abnormal returns (SAR) 

with the theoretical normal distribution (N (0,1)) across four cryptocurrency sub-samples. 

Figure 1 – Panel A shows the distribution of SAR for the Top 100 cryptocurrencies by 

market capitalization and Panel C for cryptocurrencies with a market capitalization greater 

than USD 25 million. Both empirical distribution deviate from the theoretical N (0,1) distribution, 

exhibiting heavier tails and a slight right skew. This indicates the presence of extreme abnormal 

returns, suggesting that events in large-cap cryptocurrencies, while generally more stable, still 

experience significant deviations from normality.  

– Figure 1 – Panel A about here – 

– Figure 1 – Panel C about here – 

In contrast, Figure 1 – Panel B presents the SAR distribution for the Top 100 

cryptocurrencies by trading volume. The empirical distribution here also shows heavier tails, 

but the right skew is more pronounced compared to the market capitalization sub-sample. This 

suggests that high-volume cryptocurrencies are more sensitive to market events, often leading to 

large, sentiment-driven price swings. The deviations from normality are more significant in this 

sub-sample, implying that tests relying on normality assumptions may be less reliable. 

– Figure 1 – Panel B about here – 
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Finally, Figure 1 – Panel D shows the SAR distribution for cryptocurrencies with a market 

capitalization less than USD 25 million (excluding outliers). Despite excluding outliers, the 

distribution still exhibits significant deviations from the normal distribution, with pronounced right 

skew and heavy tails. This suggests that smaller-cap cryptocurrencies are still highly volatile, even 

after removing extreme cases. The persistence of large price fluctuations in this sub-sample 

indicates that smaller cryptocurrencies are more susceptible to market shocks, and parametric tests 

relying on normality assumptions, like the Patell test, may be inadequate for capturing these 

effects. 

– Figure 1 – Panel D about here – 

Overall, across all sub-samples, we observe systematic deviations from the normal 

distribution, particularly in terms of skewness and kurtosis. These findings imply that traditional 

parametric tests based on normality assumptions may not be suitable for the cryptocurrency 

market. This is particularly true for smaller or high-volume cryptocurrencies, where extreme price 

movements are more common. As a result, more robust non-parametric tests may be necessary to 

capture the full impact of events in these markets. 

 

2.4.2 Simulated Average Abnormal Returns (AARs) Tests 

As a first step, we evaluate whether Average Abnormal Returns (AARs) accurately reflect 

simulated event-induced returns across different scenarios. These scenarios include event-induced 

returns ranging from 0% to 5%, both with and without event-induced volatilities. The results 

presented in Table 2 detail the average abnormal returns for four sub-samples, with varying sample 

sizes from 𝑁 = 100 to 𝑁 = 8,000. In the baseline scenario (∆𝑖,𝐸(0, 0)), where no event-induced 

returns or volatility are present, the AARs should theoretically converge to 0% if the value-
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weighted market index effectively captures systematic influences on cryptocurrency market prices. 

– Table 2 about here – 

For the sub-sample of the Top 100 cryptocurrencies by market capitalization (Panel A), 

significant bias in AAR estimates is observed, especially for smaller sample sizes. For instance, 

when 𝑁 = 100, 𝐴𝐴𝑅 values of −1.16% and −2.09% are recorded in scenarios without event-

induced returns (∆𝑖,𝐸(0, 0)) or with event-induced volatility (∆𝑖,𝐸(0, 𝜃𝑖,𝐸)). Even when event-

induced returns range from 1% to 5%, the AAR estimates deviate from the true simulated returns. 

These biases are exacerbated by higher event-induced volatility 𝜃𝑖,𝐸, which further distorts AAR 

estimates. However, as sample sizes increase, the AAR estimates improve and converge closer to 

the true simulated returns, demonstrating that larger samples mitigate bias effectively. 

A similar pattern emerges for smaller cryptocurrencies (Panel D), where lower market 

capitalization amplifies noise and volatility in AAR estimation. Smaller sample sizes produce 

significant biases in AARs, although increasing sample size reduces the deviation. However, the 

improvement is less pronounced compared to large-cap cryptocurrencies, suggesting that small-

cap tokens face additional challenges due to heightened volatility and idiosyncratic factors. 

Similarly, the sub-sample of high-volume cryptocurrencies (Panel B) exhibits stronger deviations 

in AAR estimates, likely driven by susceptibility to extreme price movements and event-related 

shocks. These findings indicate that parametric tests relying on normality assumptions may be less 

reliable for sub-samples characterized by high volatility or extreme events. 

The results indicate that AAR estimation improves with larger sample sizes. Larger datasets 

help smooth out noise and idiosyncratic factors, enabling the market index to better approximate 

expected returns. For large-cap cryptocurrencies, the value-weighted market index effectively 

captures market trends, enhancing the reliability of AAR estimation. However, for smaller-cap 



21 

 

cryptocurrencies, higher levels of noise and volatility reduce the effectiveness of the market index 

as a predictor, particularly in smaller samples. 

In summary, the results underscore the importance of market capitalization as a critical factor 

influencing the precision of AAR estimation. Large-cap cryptocurrencies exhibit more reliable 

AAR convergence compared to small-cap tokens, highlighting the role of market capitalization in 

reducing noise and enhancing estimation accuracy. Increasing the sample size significantly 

improves AAR precision by mitigating biases and enabling convergence to true simulated returns. 

Furthermore, the improvement in AAR estimation highlights the effectiveness of the market index 

as a predictor, as larger samples allow the index to filter out noise and better approximate expected 

returns. These findings provide valuable insights into the factors that influence the reliability of 

event study methodologies in cryptocurrency markets. 

 

2.4.4 Performance Tests for Event Study Tests 

This section evaluates the performance of both parametric and non-parametric statistical tests in 

correctly rejecting or failing to reject the null hypothesis (𝐻0: AAR = 0) across four cryptocurrency 

subsamples. The analysis uses the p-values reported in Tables 3, 4, and 5, focusing on the ability 

of these tests to detect abnormal returns under various scenarios.  

In scenarios where no event-induced abnormal returns are present (∆𝑖,𝐸(0, 0)), a correctly 

performing test should fail to reject the null hypothesis, indicating no real abnormal return exists. 

Table 5 shows that for the two larger cryptocurrency subsamples—Top 100 by Market 

Capitalization and MCAP ≥ 25M—most tests perform adequately, with a significant number of p-

values exceeding the 10% threshold. Interestingly, for these larger cryptocurrencies, the improved 

parametric tests (e.g., CDA T, Std-CSect Z, and Adj.Std-CSect Z) do not outperform the standard 
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t-test, suggesting that symmetric return distributions dominate within this group.  

When event-induced volatility ( 𝜃𝑖,𝐸 ) is introduced, the performance of parametric tests 

declines significantly. Most fail to maintain robustness, incorrectly rejecting the null hypothesis 

even with larger sample sizes (𝑁). In contrast, nonparametric tests, particularly Rank, Rank Z, and 

Gen.Sign Z, demonstrate greater resilience under these conditions. This dominance is especially 

evident in the small-cap subsample (MCAP<25M), where severe asymmetry and the presence of 

outliers pose challenges for parametric methods. Among parametric tests, only Std-CSect Z and 

Adj.Std-CSect Z show slight improvement due to their adjustments for event-induced variance. 

For the Top 100 by Trading Volume subsample, parametric tests perform better under 

conditions with event-induced volatility than without it. This improved performance may be 

attributed to the higher susceptibility of high-volume cryptocurrencies to shifts in investor 

sentiment and speculative behavior, which lead to non-standard return distributions better 

managed by variance-adjusted methodologies.  

The Wilcoxon test displays inconsistent behavior. It inappropriately rejects the null hypothesis 

for the Top 100 by Market Capitalization and MCAP ≥ 25M under both scenarios, while aligning 

correctly for the Top 100 by Volume and MCAP < 25M. This suggests that the Wilcoxon test may 

be less effective for detecting abnormalities in larger, more stable cryptocurrencies but better 

suited for subsamples characterized by higher trading volumes or smaller market caps. 

In summary, subsamples of larger-cap cryptocurrencies demonstrate greater resilience in 

identifying the absence of events, reducing the likelihood of false positives. Conversely, for small-

cap cryptocurrencies, the reliability of the tests diminishes in the presence of volatility. 

Nonparametric tests—Rank, Rank Z, and Gen.Sign Z—consistently outperform parametric tests, 

demonstrating superior accuracy in environments with pronounced data anomalies. 
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– Table 3 about here – 

To further evaluate the effectiveness of these tests, we analyzed scenarios with simulated 

event-induced returns ranging from 1% to 5%, as detailed in Table 6. Ideally, effective tests should 

produce p-values below the 10% significance level when detecting abnormal returns. 

For large-cap cryptocurrencies, the effectiveness of tests improves with larger sample sizes 

when detecting smaller abnormal returns (e.g., 1% or 2%). For instance, when the induced return 

is 1%, all tests become effective at N=1,000. For the Top 100 by Trading Volume subsample, the 

sample size threshold decreases to N=250. As induced returns increase to 3% or more, all tests 

demonstrate strong detection power, becoming sample-size invariant. Therefore, results for returns 

exceeding 3% are omitted to focus on the more challenging cases of low-induced returns.  

In contrast, for the small-cap subsample (MCAP<25M), the detection power of parametric 

tests declines sharply for smaller induced abnormal returns (e.g., 1% or 2%). For example, in Panel 

D, parametric tests such as the t-test, CDA T, Std-CSect Z, and Adj.Std-CSect Z fail to detect these 

returns, yielding high p-values and a loss of test power. Nonparametric tests—Rank, Rank Z, and 

Gen.Sign Z—continue to outperform parametric tests, demonstrating robustness across various 

scenarios. 

– Table 4 about here – 

Upon introducing event-induced volatility, 𝜃𝑖,𝐸 , alongside varying levels of event-induced 

returns, we observed consistent patterns in Table 5 that mirror those reported in Table 4. Across 

all four subsamples, lower induced returns, such as 1% or 2%, significantly reduce the power of 

all tests, necessitating larger sample sizes (N), particularly for the small-cap subsample. However, 

once the induced returns reach 3% or higher, most statistical tests are able to properly reject the 

null hypothesis. This indicates that both parametric and nonparametric tests are effectively 



24 

 

sensitive to the presence of genuine event-induced abnormal returns, thereby improving their 

reliability in detecting significant market impacts.  

– Table 5 about here – 

Notably, in scenarios where no induced returns or volatility are present (∆𝑖,𝐸(0, 0)), most 

parametric tests fail by incorrectly rejecting the null hypothesis (𝐻0: AAR = 0). This issue becomes 

more pronounced when event-induced volatility is introduced, as increasing the sample size (N) 

does not significantly improve precision for parametric methods. 

Under scenarios featuring event-induced returns, both with and without added volatility, 

nonparametric tests consistently outperform parametric tests. Nevertheless, the reliability of 

parametric tests improves markedly with larger sample sizes. This finding underscores the critical 

role of sample size in the statistical detection of abnormalities. It suggests that while both test types 

can be effective, their performance depends heavily on the sample size, distribution characteristics, 

and expected event magnitude.  

Once the induced abnormal returns reach a certain threshold, such as 3% or higher, most tests 

perform equally well, regardless of sample size or cryptocurrency subsamples. However, small-

cap cryptocurrencies pose greater challenges for parametric tests due to increased volatility and 

noise. When the induced return is relatively low (e.g., 1% or 2%), small-cap cryptocurrencies 

require significantly larger sample sizes for reliable detection. In general, nonparametric tests, 

especially Rank, Rank Z, and Gen.Sign Z, exhibit relatively consistent performance across various 

scenarios and subsamples, reinforcing their robustness in handling the complexities of 

cryptocurrency returns. 

 

2.4.5 Robustness Performance Tests 

 

For the N=100 sample size, the results are particularly unstable, heavily dependent on the specific 
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cryptocurrencies randomly drawn. This instability suggests that drawing small samples introduces 

more noise and variability into the test results. To address this, we performed a bootstrap analysis 

by iteratively drawing N=100 samples 80 times, resulting in a total of 8,000 randomly drawn 

events. 

During each iteration, we applied each of the 10 statistical tests to determine the 

appropriateness of rejecting or retaining the null hypothesis (𝐻0: 𝐴𝐴𝑅 = 0). The decision to reject 

or fail to reject 𝐻0 was classified as correct if it aligned with the expected outcome for the given 

scenario—whether abnormal returns or event-induced volatility were present. Conversely, 

incorrect decisions occurred when the test outcome contradicted the expected result. 

After completing the 80 draws, the number of correct decisions for each test was aggregated, 

and the percentage correct was calculated by dividing the total number of correct decisions by 80 

and expressing the result as a percentage. This metric captures the reliability of each test across 

varying conditions. By replicating this procedure for multiple scenarios and significance levels 

(10%, 5%, and 1%), we assessed the robustness and reliability of the statistical tests. 

Results for the “percentage correct” at the 10% significance level are presented in Table 6. 

Notably, nonparametric tests generally outperform parametric tests, achieving correct decision 

rates above 90% across various scenarios and subsamples. Interestingly, simpler parametric tests 

such as the t-test and Crude Dependence Adjustment Test (CDA T) performed comparably to more 

complex parametric tests, especially in subsamples of large cryptocurrencies and those with high 

trading volumes. This pattern confirms that all tests exhibit enhanced detection capabilities under 

scenarios with clear event-induced returns or volatility, as evidenced by increased correct decision 

rates corresponding to heightened event-induced activity. 

– Table 6 about here – 
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When the significance level decreases from 10% to 5% or 1%, as shown in Tables 7 and 8, 

correct decision rates decline across all tests, as expected. For large-cap and high trading volume 

subsamples, the performance differences between parametric and non-parametric tests are 

minimal. However, in scenarios featuring induced volatility, non-parametric tests, particularly 

Rank, Rank Z, and Generalized Sign Z, demonstrate a slight performance advantage over 

parametric tests. This advantage is evident in the higher average detection ratios reported in the 

first rows of Tables 7 and 8. 

For the small-cap subsample, the performance gap between parametric and non-parametric 

tests becomes more pronounced. Non-parametric tests—especially Rank, Rank Z, and Generalized 

Sign Z—consistently outperform parametric tests, demonstrating higher reliability in detecting 

abnormal returns. Parametric tests struggle with the increased noise and prevalence of outliers 

inherent in small-cap cryptocurrencies, which violate the normality assumptions underlying these 

methods. 

– Table 7 about here – 

– Table 8 about here – 

This bootstrap analysis confirms the robustness of the methodology and underscores the value 

of iterating sample formation to provide a more reliable comparison of test performance. Iteration 

reduces the influence of sample-specific biases and outliers, enhancing the generalizability of 

results. Across detection ratios for each scenario and average detection ratios, non-parametric tests, 

particularly Rank, Rank Z, and Generalized Sign Z, consistently outperform parametric tests across 

all subsamples at the commonly used significance levels of 5% and 1%. 

When the induced abnormal returns reach 3% or higher, most tests exhibit reliable 

performance. However, non-parametric tests maintain a slight advantage in scenarios with event-
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induced volatility. This further highlights their robustness in addressing the unique challenges 

posed by high volatility and non-normal return distributions in cryptocurrency markets. 

 

2.5 Conclusion 

This study marks the first exploration into the applicability of event study methodologies using 

crypto-asset returns, a significant advancement given the unique volatility and trading dynamics 

of this asset class. Utilizing the simulation approach pioneered by Marks and Musumeci (2017), 

we analyzed the performance of six parametric and four non-parametric test statistics across four 

distinct subsamples. These subsamples were scrutinized under various scenarios, encompassing 

conditions both with and without event-induced returns or volatilities. 

Our findings highlight the context-dependent nature of event study methodologies in 

cryptocurrency markets, emphasizing that the choice of statistical tests depends on factors such as 

sample size, token characteristics, market conditions, and coin capitalization. The dynamic and 

volatile nature of cryptocurrencies necessitates careful consideration of these variables to ensure 

the reliability of empirical findings. 

Traditional t-tests, while widely used in event studies, prove to be largely unsuitable for 

cryptocurrency markets. Their sensitivity to non-normal distributions and event-induced volatility 

often leads to biased results and unreliable conclusions. This limitation underscores the importance 

of employing alternative methodologies that are better suited to the unique statistical properties of 

cryptocurrency returns. 

For events without induced volatility and an event impact of at least 3%, parametric tests—

excluding t-tests—are generally appropriate. This suitability extends to scenarios involving Top 

100 tokens by market capitalization or other large-cap cryptocurrencies. Without event-induced 

volatility and for events with an impact of 3% or higher, parametric tests can reliably detect 
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abnormal returns. When event-induced volatility is introduced, parametric tests remain effective 

provided the event impact is at least 4%, demonstrating their adaptability in such conditions. 

In contrast, non-parametric tests consistently outperform parametric counterparts in scenarios 

characterized by high volatility and smaller market capitalizations. Among these, the Rank, Rank 

Z, and Generalized Sign Z tests emerge as the best overall performers for cryptocurrency event 

studies. Their robustness against non-normal distributions and heightened volatility makes them 

particularly well-suited for small-cap tokens and other subsamples prone to outliers and extreme 

price movements. 

In summary, the results of this research not only underscore the importance of meticulous test 

selection and calibration but also provide a practical framework for applying event study 

methodologies to cryptocurrency markets. By tailoring test selection to specific scenarios and 

adjusting for factors such as significance levels, sample size, and market conditions, researchers 

can significantly enhance the accuracy and reliability of their findings. These insights have 

implications beyond cryptocurrencies, offering a foundation for the application of refined event 

study methods in other emerging or volatile markets. This study serves as a stepping stone for 

further advancements in financial analysis techniques, paving the way for a deeper understanding 

of dynamic and complex asset classes. 
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Figure 2. 1: Empirical versus Theoretical distribution of standardized abnormal returns 

(SAR) for Top 100 Cryptocurrencies by Market Capitalization (MCAP) 

 

Figure 2. 2: Empirical versus Theoretical distribution of standardized abnormal returns 

(SAR) for Top 100 Cryptocurrencies by Trading Volume (Volume) 
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Figure 2. 3: Empirical versus Theoretical distribution of standardized abnormal returns 

(SAR) for the Cryptocurrencies with Market Capitalization above $25 Million 

 
 

Figure 2. 4: Empirical versus Theoretical distribution of standardized abnormal returns 

(SAR) for the Cryptocurrencies with Market Capitalization less than $25 Million 
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Table 2. 1: Sample Description 

Panel A: Sample Cryptocurrency Counts by Year and Subsample 

This panel displays the annual count of sample cryptocurrencies across four distinct subsamples: the top 

100 cryptocurrencies by trading volume (Top100 by Volume), the top 100 by market capitalization (Top100 

by MCAP), cryptocurrencies with a market capitalization greater than 25 million (≥ 25M MCAP), and those 

with less than 25 million (< 25M MCAP). 

 

DATE TOP100 

BY MCAP 

TOP100 

BY VOLUME 

≥25M 

MCAP 

< 25M 

MCAP 

TOTAL 

01/07/2015 94 94 4 90 94 

01/01/2016 94 94 4 90 94 

01/01/2017 100 100 14 140 154 

01/01/2018 100 100 254 376 630 

01/01/2019 100 100 104 1,072 1176 

01/01/2020 100 100 132 1,133 1265 

01/01/2021 100 100 287 1,751 2038 

01/01/2022 100 100 671 3,888 4559 

01/01/2023 100 100 393 3,865 4258 

ALL 794 794 1,859 12,315 14174 

 

Panel B: Descriptive Statistics by Sub-Sample and Year 

This panel displays the summary statistics of the daily returns from 2015 to 2023 for four distinct 

cryptocurrency market segments and the value-weighted index. These statistics include the number of 

cryptocurrencies (N), the mean, median, standard deviation (SD), the 5th quintile (p5), the 95th quintile 

(p95), skewness (Skew) and kurtosis (Kurt) of the daily returns. 

Year N Mean Median SD p5 p95 Skewness Kurtosis 

All 5,097,332 0.4% -0.3% 17.5% -14.4% 15.9% 22.8 1319 

Top100 by MCAP 288,327 0.8% 0.0% 14.4% -11.2% 14.3% 32.7 2,724.8 

 Top100 by 

Volume 
288,330 1.3% 0.0% 14.6% -12.0% 17.6% 18.9 1,110.8 

≥ 25M MCAP 709,379 0.6% -0.1% 13.6% -10.8% 13.1% 21.3 1,163.7 

< 25M MCAP 4,387,849 0.4% -0.3% 18.1% -15.1% 16.5% 40.2 3,658.1 

VW Index 2,901 0.4% 0.3% 3.9% -6.0% 6.3% -0.5 9.5 
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Table 2. 2: Average Abnormal Returns (AAR) for Simulated Events by Sub-Sample 

This table displays the Average Abnormal Returns (AAR) across various sample sizes (N=100 to N=8,000) 

for simulated events for our four sub-samples. The first (second) row in each panel represents no event 

return or volatility (no event return but event volatility), while subsequent rows show the AAR for different 

levels of event return (1%-5%) with or without event-induced volatility.  

Panel A – Top 100 by MCAP 

Simulated Event N=100 N=250 N=500 N=1,000 N=2,500 N=5,000 N=8,000 

N
o

 

E
v

en
t 𝛥𝑖,𝐸  (0,0) -1.16% -0.66% -0.78% -0.13% 0.12% 0.00% 0.04% 

𝛥𝑖,𝐸 (0%, 𝜃𝑖,𝐸̂) -2.09% -1.81% -1.50% -0.52% -0.36% -0.55% -0.55% 

E
v

en
t 

R
et

u
rn

 

b
u

t 
n

o
 e

v
en

t 

v
o

la
 

𝛥𝑖,𝐸  (1%,0) -0.14% 0.34% 0.23% 0.87% 1.11% 1.00% 1.04% 

𝛥𝑖,𝐸  (2%,0) 0.86% 1.34% 1.22% 1.86% 2.10% 1.99% 2.02% 

𝛥𝑖,𝐸  (3%,0) 1.86% 2.32% 2.21% 2.84% 3.08% 2.96% 3.00% 

𝛥𝑖,𝐸  (4%,0) 2.84% 3.29% 3.18% 3.81% 4.04% 3.93% 3.97% 

𝛥𝑖,𝐸  (5%,0) 3.81% 4.26% 4.15% 4.78% 5.00% 4.89% 4.93% 

E
v
en

t 
R

et
u
rn

 

an
d
 e

v
en

t 

v
o
la

 

𝛥𝑖,𝐸 (1%, 𝜃𝑖,𝐸̂) -0.70% 0.33% -0.34% 0.43% 0.53% 0.51% 0.56% 

𝛥𝑖,𝐸 (2%, 𝜃𝑖,𝐸̂) -1.08% 0.06% 0.24% 1.43% 1.58% 1.53% 1.57% 

𝛥𝑖,𝐸 (3%, 𝜃𝑖,𝐸̂) 2.76% 2.28% 2.44% 3.14% 2.90% 2.71% 2.48% 

𝛥𝑖,𝐸 (4%, 𝜃𝑖,𝐸̂) 0.58% 2.48% 2.77% 3.10% 3.57% 3.31% 3.37% 

𝛥𝑖,𝐸 (5%, 𝜃𝑖,𝐸̂) 3.96% 4.17% 4.18% 4.93% 4.89% 4.79% 4.67% 

 

Panel B – Top 100 by Volume 

Simulated Event N=100 N=250 N=500 N=1,000 N=2,500 N=5,000 N=8,000 

N
o
 

E
v
en

t 𝛥𝑖,𝐸  (0,0) 0.24% 0.80% 0.72% 0.57% 0.44% 0.44% 0.38% 

𝛥𝑖,𝐸 (0%, 𝜃𝑖,𝐸̂) -0.80% 0.42% 0.31% 0.38% 0.14% -0.03% -0.09% 

E
v
en

t 
R

et
u
rn

 

b
u
t 

n
o
 e

v
en

t 

v
o
la

 

𝛥𝑖,𝐸  (1%,0) 1.23% 1.79% 1.71% 1.56% 1.43% 1.43% 1.38% 

𝛥𝑖,𝐸  (2%,0) 2.21% 2.77% 2.69% 2.54% 2.42% 2.42% 2.36% 

𝛥𝑖,𝐸  (3%,0) 3.18% 3.74% 3.66% 3.51% 3.39% 3.39% 3.33% 

𝛥𝑖,𝐸  (4%,0) 4.14% 4.70% 4.63% 4.47% 4.35% 4.35% 4.29% 

𝛥𝑖,𝐸  (5%,0) 5.09% 5.65% 5.58% 5.42% 5.30% 5.30% 5.25% 

E
v

en
t 

R
et

u
rn

 

an
d

 e
v
en

t 
v
o
la

 

𝛥𝑖,𝐸 (1%, 𝜃𝑖,𝐸̂) 1.17% 1.68% 1.20% 1.31% 0.67% 0.88% 0.83% 

𝛥𝑖,𝐸 (2%, 𝜃𝑖,𝐸̂) 2.59% 3.06% 2.72% 2.39% 2.26% 1.96% 1.81% 

𝛥𝑖,𝐸 (3%, 𝜃𝑖,𝐸̂) 2.49% 2.98% 2.44% 2.73% 2.60% 2.79% 2.76% 

𝛥𝑖,𝐸 (4%, 𝜃𝑖,𝐸̂) 3.79% 4.71% 4.52% 4.22% 3.90% 4.00% 3.93% 

𝛥𝑖,𝐸 (5%, 𝜃𝑖,𝐸̂) 5.52% 4.65% 5.09% 5.38% 4.95% 4.96% 4.97% 
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Panel C – MCAP ≥ 25M 

Simulated Event N=100 N=250 N=500 N=1,000 N=2,500 N=5,000 N=8,000 
N

o
 

E
v

en
t 𝛥𝑖,𝐸  (0,0) -0.76% -0.56% -0.43% -0.31% -0.05% -0.13% -0.03% 

𝛥𝑖,𝐸 (0%, 𝜃𝑖,𝐸̂) -1.60% -1.57% -1.19% -0.84% -0.27% -0.39% -0.25% 

E
v

en
t 

R
et

u
rn

 

b
u

t 
n

o
 e

v
en

t 

v
o

la
 

𝛥𝑖,𝐸  (1%,0) 0.25% 0.45% 0.57% 0.69% 0.95% 0.87% 0.97% 

𝛥𝑖,𝐸  (2%,0) 1.25% 1.44% 1.56% 1.68% 1.94% 1.86% 1.95% 

𝛥𝑖,𝐸  (3%,0) 2.24% 2.43% 2.54% 2.66% 2.91% 2.84% 2.93% 

𝛥𝑖,𝐸  (4%,0) 3.21% 3.40% 3.51% 3.63% 3.88% 3.81% 3.90% 

𝛥𝑖,𝐸  (5%,0) 4.18% 4.36% 4.48% 4.59% 4.84% 4.76% 4.86% 

E
v

en
t 

R
et

u
rn

 

an
d

 e
v
en

t 

v
o

la
 

𝛥𝑖,𝐸 (1%, 𝜃𝑖,𝐸̂) -0.55% -0.36% 0.24% 0.52% 0.70% 0.54% 0.83% 

𝛥𝑖,𝐸 (2%, 𝜃𝑖,𝐸̂) 1.33% 0.60% 0.81% 1.22% 1.52% 1.45% 1.48% 

𝛥𝑖,𝐸 (3%, 𝜃𝑖,𝐸̂) 2.40% 1.67% 2.28% 2.28% 2.72% 2.43% 2.54% 

𝛥𝑖,𝐸 (4%, 𝜃𝑖,𝐸̂) 1.72% 3.00% 3.46% 3.57% 3.86% 3.77% 3.62% 

𝛥𝑖,𝐸 (5%, 𝜃𝑖,𝐸̂) 3.50% 3.61% 4.07% 4.21% 4.39% 4.41% 4.54% 

 

Panel D – MCAP < 25M 

Simulated Event N=100 N=250 N=500 N=1,000 N=2,500 N=5,000 N=8,000 

N
o
 

E
v
en

t 𝛥𝑖,𝐸  (0,0) -0.99% -1.06% -0.32% -0.68% -0.92% -0.68% -0.74% 

𝛥𝑖,𝐸 (0%, 𝜃𝑖,𝐸̂) -3.44% -2.38% -1.84% -1.75% -1.92% -1.52% -1.67% 

E
v
en

t 
R

et
u
rn

 

b
u
t 

n
o
 e

v
en

t 

v
o
la

 

𝛥𝑖,𝐸  (1%,0) 0.04% -0.03% 0.70% 0.33% 0.09% 0.33% 0.27% 

𝛥𝑖,𝐸  (2%,0) 1.05% 0.98% 1.70% 1.34% 1.09% 1.33% 1.27% 

𝛥𝑖,𝐸  (3%,0) 2.06% 1.98% 2.69% 2.33% 2.09% 2.32% 2.26% 

𝛥𝑖,𝐸  (4%,0) 3.05% 2.97% 3.68% 3.32% 3.07% 3.30% 3.24% 

𝛥𝑖,𝐸  (5%,0) 4.04% 3.96% 4.65% 4.29% 4.04% 4.27% 4.21% 

E
v
en

t 
R

et
u
rn

 

an
d
 e

v
en

t 

v
o
la

 

𝛥𝑖,𝐸 (1%, 𝜃𝑖,𝐸̂) 0.45% 0.76% 1.20% 0.17% -0.69% -0.47% -0.64% 

𝛥𝑖,𝐸 (2%, 𝜃𝑖,𝐸̂) -0.95% -0.16% 0.65% 0.24% -0.07% 0.15% 0.10% 

𝛥𝑖,𝐸 (3%, 𝜃𝑖,𝐸̂) -0.58% 0.46% 2.19% 1.93% 1.20% 1.44% 1.25% 

𝛥𝑖,𝐸 (4%, 𝜃𝑖,𝐸̂) 4.85% 2.83% 4.12% 3.05% 3.13% 2.85% 2.63% 

𝛥𝑖,𝐸 (5%, 𝜃𝑖,𝐸̂) 0.74% 2.18% 2.34% 2.51% 2.85% 3.32% 3.33% 
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Table 2. 3: Performance Tests for Event Study Methods (No Event) 

This table shows the AAR (see also Table 2) for different sample sizes, along with the corresponding p-values for the ten tests mentioned in the 

methodology section. The results are presented for two simulated conditions: no event return and no volatility, and no event return but with event-

induced volatility. Under these conditions, the AARs should not significantly differ from zero, as no event return was simulated. The null hypothesis 

(H₀) being tested is that AAR = 0, meaning there is no abnormal return. If the p-value is greater than the chosen significance level (e.g., 10%), we 

fail to reject the null hypothesis, as expected in the absence of an event return. p-values that support this conclusion are highlighted in green. 

Panel A – Top 100 by MCAP 
 

 AAR t-test CDA T Patell Z 

Adj. 

Patell Z 

Std-

Csect Z 

Adj. Std-

Csect Z Rank Rank Z 

Gen. 

Sign Z 

Will-

coxon 

𝛥𝑖,𝐸  (0%,0)            

N=100 -1.16% 0.11 0.08 0.35 0.29 0.47 0.41 0.52 0.85 0.49 0.03 

N=250 -0.66% 0.21 0.17 0.26 0.24 0.35 0.33 0.89 0.56 0.98 0.03 

N=500 -0.78% 0.02 0.02 0.01 0.01 0.05 0.03 0.48 0.88 0.50 0.00 

N=1,000 -0.13% 0.63 0.62 0.00 0.00 0.01 0.01 0.63 0.64 0.65 0.00 

N=2,500 0.12% 0.47 0.46 0.39 0.35 0.47 0.43 0.20 0.01 0.59 0.00 

𝛥𝑖,𝐸 (0%, 𝜃𝑖,𝐸̂)            

N=100 -2.09% 0.00 0.00 0.01 0.00 0.17 0.12 0.03 0.31 0.90 0.04 

N=250 -1.81% 0.00 0.00 0.00 0.00 0.05 0.04 0.07 0.47 0.63 0.02 

N=500 -1.50% 0.00 0.00 0.00 0.00 0.01 0.00 0.13 0.94 0.13 0.02 

N=1,000 -0.52% 0.04 0.04 0.00 0.00 0.01 0.01 0.63 0.20 0.00 0.02 

N=2,500 -0.36% 0.03 0.03 0.00 0.00 0.06 0.04 0.31 0.00 0.00 0.05 

 

 

 

 

 

 

Panel B – Top 100 by Volume 
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 AAR t-test CDA T Patell Z 

Adj. 

Patell Z 

Std-

Csect Z 

Adj. Std-

Csect Z Rank Rank Z 

Gen. 

Sign Z 

Will-

coxon 

𝛥𝑖,𝐸  (0%,0)            

N=100 0.24% 0.70 0.70 0.94 0.94 0.94 0.94 0.80 0.80 0.89 0.42 

N=250 0.80% 0.11 0.09 0.05 0.06 0.26 0.28 0.12 0.01 0.25 0.77 

N=500 0.72% 0.05 0.04 0.02 0.02 0.13 0.14 0.17 0.01 0.11 0.48 

N=1,000 0.57% 0.02 0.02 0.01 0.02 0.07 0.09 0.04 0.00 0.01 0.28 

N=2,500 0.44% 0.01 0.01 0.00 0.00 0.01 0.02 0.00 0.00 0.00 0.03 

𝛥𝑖,𝐸 (0%, 𝜃𝑖,𝐸̂)            

N=100 -0.80% 0.20 0.21 0.16 0.20 0.36 0.40 0.23 0.75 0.89 0.52 

N=250 0.42% 0.40 0.37 0.07 0.08 0.37 0.40 0.20 0.01 0.01 0.50 

N=500 0.31% 0.38 0.38 0.03 0.04 0.26 0.27 0.12 0.00 0.00 0.36 

N=1,000 0.38% 0.10 0.13 0.00 0.00 0.07 0.09 0.00 0.00 0.00 0.23 

N=2,500 0.14% 0.36 0.39 0.00 0.01 0.07 0.11 0.00 0.00 0.00 0.22 

 

Panel C – MCAP ≥ 25M 

 AAR t-test CDA T Patell Z 

Adj. 

Patell Z 

Std-

Csect Z 

Adj. Std-

Csect Z Rank Rank Z 

Gen. 

Sign Z 

Will-

coxon 

𝛥𝑖,𝐸  (0%,0)            

N=100 -0.76% 0.28 0.27 0.39 0.39 0.35 0.35 0.89 0.80 0.83 0.03 

N=250 -0.56% 0.22 0.20 0.50 0.50 0.54 0.54 0.91 0.71 0.97 0.02 

N=500 -0.43% 0.22 0.23 0.31 0.30 0.35 0.35 0.50 0.33 0.77 0.01 

N=1,000 -0.31% 0.20 0.20 0.51 0.49 0.55 0.54 0.28 0.11 0.33 0.00 

N=2,500 -0.05% 0.77 0.78 0.43 0.41 0.48 0.46 0.57 0.16 0.79 0.00 

𝛥𝑖,𝐸 (0%, 𝜃𝑖,𝐸̂)            

N=100 -1.60% 0.02 0.02 0.04 0.04 0.06 0.06 0.09 0.17 0.54 0.06 

N=250 -1.57% 0.00 0.00 0.01 0.01 0.05 0.06 0.15 0.47 0.67 0.02 

N=500 -1.19% 0.00 0.00 0.01 0.01 0.06 0.06 0.52 0.70 0.06 0.06 

N=1,000 -0.84% 0.00 0.00 0.04 0.04 0.19 0.18 0.94 0.13 0.00 0.07 

N=2,500 -0.27% 0.11 0.13 0.02 0.02 0.14 0.12 0.87 0.03 0.00 0.02 

Panel D – MCAP < 25M 
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 AAR t-test CDA T Patell Z 

Adj. 

Patell Z 

Std-

Csect Z 

Adj. Std-

Csect Z Rank Rank Z 

Gen. 

Sign Z 

Will-

coxon 

𝛥𝑖,𝐸  (0%,0)            

N=100 -0.99% 0.53 0.52 0.01 0.01 0.22 0.19 0.83 0.48 0.72 0.67 

N=250 -1.06% 0.22 0.19 0.02 0.02 0.17 0.15 0.85 0.43 0.60 0.21 

N=500 -0.32% 0.57 0.57 0.18 0.20 0.41 0.43 0.97 0.24 0.97 0.03 

N=1,000 -0.68% 0.09 0.07 0.00 0.00 0.03 0.03 0.56 0.52 0.68 0.00 

N=2,500 -0.92% 0.00 0.00 0.00 0.00 0.00 0.00 0.48 0.76 0.62 0.00 

𝛥𝑖,𝐸 (0%, 𝜃𝑖,𝐸̂)            

N=100 -3.44% 0.03 0.03 0.00 0.00 0.13 0.11 0.94 0.67 0.45 0.74 

N=250 -2.38% 0.01 0.00 0.00 0.00 0.09 0.07 0.73 0.61 0.25 0.42 

N=500 -1.84% 0.00 0.00 0.00 0.00 0.12 0.14 0.90 0.40 0.05 0.21 

N=1,000 -1.75% 0.00 0.00 0.00 0.00 0.00 0.00 0.34 0.64 0.07 0.03 

N=2,500 -1.92% 0.00 0.00 0.00 0.00 0.00 0.00 0.11 0.77 0.00 0.00 

 

 

 

 

 

 

 

 

 

 

Table 2. 4: Performance Tests for Event Study Methods (with Event Returns) 

This table shows the AAR (see also Table 2) for different sample sizes, along with the corresponding p-values for the ten tests mentioned in the 
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methodology section. The results are presented for event-induced returns ranging from 1% to 5% and no volatility. Under these conditions, the 

AARs should significantly differ from zero, as event return was simulated. If the p-value is greater than the chosen significance level (e.g., 10%), 

we fail to reject the null hypothesis and falsely assume the absence of an event return. For brevity, the results presented in this table include only 

iterations where notable changes in p-values are observed. Rows with results that closely mirror previous iterations, exhibiting minimal variation, 

have been omitted to avoid redundancy. p-values that support this conclusion are highlighted in green.  

Panel A – Top 100 by MCAP 

 AAR t-test CDA T Patell Z 

Adj. 

Patell Z 

Std-

Csect Z 

Adj. Std-

Csect Z Rank Rank Z 

Gen. 

Sign Z 

Will-

coxon 

𝛥𝑖,𝐸  (1%,0)            

N=100 -0.14% 84.2% 82.8% 24.4% 18.0% 37.0% 30.3% 2.2% 1.6% 0.6% 70.0% 

N=250 0.34% 51.1% 47.0% 6.1% 5.1% 11.9% 10.5% 0.0% 0.0% 0.0% 10.3% 

N=500 0.23% 51.1% 48.3% 8.0% 6.1% 14.9% 12.4% 0.0% 0.0% 0.0% 13.0% 

N=1,000 0.87% 0.1% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

𝛥𝑖,𝐸 (2%,0)            

N=100 0.86% 22.8% 18.9% 0.1% 0.0% 1.4% 0.5% 0.0% 0.0% 0.0% 1.5% 

N=250 1.34% 1.1% 0.5% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

𝛥𝑖,𝐸 (3%,0)            

N=100 1.86% 1.0% 0.5% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 
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Panel B – Top 100 by Volume 

 AAR t-test CDA T Patell Z 

Adj. 

Patell Z 

Std-

Csect Z 

Adj. Std-

Csect Z Rank Rank Z 

Gen. 

Sign Z 

Will-

coxon 

𝛥𝑖,𝐸  (1%,0)            

N=100 1.23% 5.0% 5.4% 3.4% 4.9% 3.3% 4.9% 0.6% 0.6% 1.7% 14.8% 

N=250 1.79% 0.0% 0.0% 0.0% 0.0% 0.4% 0.7% 0.0% 0.0% 0.0% 0.3% 

N=500 1.71% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 

N=1,000 1.56% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

𝛥𝑖,𝐸 (2%,0)            

N=100 2.21% 0.1% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

N=250 2.77% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

𝛥𝑖,𝐸 (3%,0)            

N=100 3.18% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

 

Panel C – MCAP ≥ 25M 

 AAR t-test CDA T Patell Z 

Adj. 

Patell Z 

Std-

Csect Z 

Adj. Std-

Csect Z Rank Rank Z 

Gen. 

Sign Z 

Will-

coxon 

𝛥𝑖,𝐸  (1%,0)            

N=100 0.25% 72.3% 71.6% 24.3% 24.2% 20.3% 20.2% 1.4% 1.6% 2.7% 49.6% 

N=250 0.45% 31.9% 30.7% 1.5% 1.6% 2.9% 3.0% 0.0% 0.0% 0.0% 15.1% 

N=500 0.57% 11.2% 11.6% 0.1% 0.1% 0.3% 0.2% 0.0% 0.0% 0.0% 0.6% 

N=1,000 0.69% 0.5% 0.6% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

𝛥𝑖,𝐸 (2%,0)            

N=100 1.25% 7.9% 7.1% 0.2% 0.1% 0.1% 0.1% 0.0% 0.0% 0.0% 0.1% 

N=250 1.44% 0.2% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

𝛥𝑖,𝐸 (3%,0)            

N=100 2.24% 0.2% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 
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Panel D – MCAP < 25M 

 AAR t-test CDA T Patell Z 

Adj. 

Patell Z 

Std-

Csect Z 

Adj. Std-

Csect Z Rank Rank Z 

Gen. 

Sign Z 

Will-

coxon 

𝛥𝑖,𝐸  (1%,0)            

N=100 0.04% 98.1% 98.1% 8.7% 6.9% 40.3% 37.4% 16.0% 15.0% 17.3% 61.0% 

N=250 -0.03% 96.8% 96.6% 67.9% 66.5% 79.9% 79.0% 2.4% 0.7% 0.7% 49.7% 

N=500 0.70% 21.8% 21.8% 12.5% 14.3% 34.0% 36.1% 0.0% 0.0% 0.0% 13.6% 

N=1,000 0.33% 40.4% 38.2% 29.0% 28.3% 44.2% 43.5% 0.0% 0.0% 0.0% 17.3% 

N=2,500 0.09% 72.2% 72.6% 7.2% 8.3% 13.1% 14.4% 0.0% 0.0% 0.0% 6.1% 

𝛥𝑖,𝐸 (2%,0)            

N=100 1.05% 50.5% 49.2% 40.1% 37.2% 67.5% 65.6% 1.3% 2.7% 1.0% 12.2% 

N=250 0.98% 25.1% 22.0% 15.0% 13.1% 37.0% 34.8% 0.0% 0.0% 0.0% 0.7% 

N=500 1.70% 0.3% 0.3% 0.0% 0.0% 0.7% 0.9% 0.0% 0.0% 0.0% 0.0% 

N=1,000 1.34% 0.1% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

𝛥𝑖,𝐸 (3%,0)            

N=100 2.06% 19.3% 18.1% 98.3% 98.2% 99.1% 99.1% 0.0% 0.3% 0.1% 1.3% 

N=250 1.98% 2.1% 1.4% 0.1% 0.1% 4.0% 3.2% 0.0% 0.0% 0.0% 0.0% 

N=500 2.69% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

𝛥𝑖,𝐸 (4%,0)            
N=100 3.05% 5.4% 4.8% 38.3% 35.4% 64.9% 62.9% 0.0% 0.0% 0.0% 0.1% 

N=250 2.97% 0.1% 0.0% 0.0% 0.0% 0.1% 0.1% 0.0% 0.0% 0.0% 0.0% 

𝛥𝑖,𝐸 (5%,0)            

N=100 4.04% 1.1% 0.9% 8.6% 6.8% 36.2% 33.3% 0.0% 0.0% 0.0% 0.0% 

N=250 3.96% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 
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Table 2. 5: Performance Tests for Event Study Methods (with Event Returns and Volatility) 

This table shows the AAR (see also table 2) for different sample sizes, along with the corresponding p-values for the ten tests mentioned in the 

methodology section. The results are presented for event returns ranging from 1% to 5% and event volatility. Under these conditions, the AARs 

should significantly differ from zero, as event return was simulated. If the p-value is greater than the chosen significance level (e.g., 10%), we fail 

to reject the null hypothesis and falsely assume the absence of an event return. For brevity, the results presented in this table include only iterations 

where notable changes in p-values are observed. Rows with results that closely mirror previous iterations, exhibiting minimal variation, have been 

omitted to avoid redundancy. p-values that support this conclusion are highlighted in green.  

Panel A – Top 100 by MCAP 
 

 AAR t-test CDA T Patell Z 

Adj. 

Patell Z 

Std-

CSect Z 

Adj. Std-

CSect Z Rank Rank Z 

Gen. 

Sign Z 

Will-

coxon 

𝛥𝑖,𝐸  (1%,𝜃𝑖,𝐸̂)            

N=100 -0.70% 32.4% 28.3% 89.7% 88.2% 93.6% 92.6% 98.6% 62.8% 18.2% 61.1% 

N=250 0.33% 52.9% 48.9% 3.3% 2.7% 19.0% 17.2% 0.9% 0.3% 0.1% 17.7% 

N=500 -0.34% 32.6% 29.5% 77.2% 75.8% 85.6% 84.6% 38.1% 3.7% 1.0% 76.4% 

N=1,000 0.43% 9.6% 8.6% 0.0% 0.0% 0.3% 0.1% 0.0% 0.0% 0.0% 21.0% 

𝛥𝑖,𝐸 (2%,𝜃𝑖,𝐸̂)            

N=100 -1.08% 13.1% 10.1% 19.5% 13.6% 46.8% 40.4% 2.0% 1.3% 0.6% 44.3% 

N=250 0.06% 91.5% 90.6% 0.5% 0.3% 8.0% 6.8% 0.0% 0.0% 0.0% 11.0% 

N=500 0.24% 49.2% 46.3% 0.1% 0.0% 5.4% 4.0% 0.0% 0.0% 0.0% 1.1% 

𝛥𝑖,𝐸 (3%,𝜃𝑖,𝐸̂)            

N=100 2.76% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 
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Panel B – Top 100 by Volume 

 AAR t-test CDA T Patell Z 

Adj. 

Patell Z 

Std-

CSect Z 

Adj. Std-

CSect Z Rank Z Sign Z 

Gen. 

Sign Z 

Will-

coxon 

𝛥𝑖,𝐸  (1%,𝜃𝑖,𝐸̂)            

N=100 1.17% 6.3% 6.7% 16.3% 19.7% 35.1% 38.8% 9.6% 5.6% 1.7% 34.5% 

N=250 1.68% 0.1% 0.0% 0.0% 0.0% 3.1% 4.1% 0.1% 0.0% 0.0% 4.5% 

N=500 1.20% 0.1% 0.1% 0.0% 0.0% 0.7% 0.9% 0.0% 0.0% 0.0% 1.6% 

N=1,000 1.31% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

𝛥𝑖,𝐸 (2%,𝜃𝑖,𝐸̂)            

N=100 2.59% 0.0% 0.0% 0.0% 0.0% 0.7% 1.2% 0.0% 0.0% 0.0% 1.4% 

N=250 3.06% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.0% 0.0% 0.0% 0.0% 

𝛥𝑖,𝐸 (3%,𝜃𝑖,𝐸̂)            

N=100 2.49% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 

 

Panel C – MCAP ≥ 25M 

 AAR t-test CDA T Patell Z 

Adj. 

Patell Z 

Std-

CSect Z 

Adj. Std-

CSect Z Rank Z Sign Z 

Gen. 

Sign Z 

Will-

coxon 

𝛥𝑖,𝐸  (1%,𝜃𝑖,𝐸̂)            

N=100 -0.55% 43.8% 42.4% 60.8% 60.6% 69.4% 69.3% 5.7% 4.8% 0.1% 60.4% 

N=250 -0.36% 41.7% 40.6% 22.0% 22.5% 38.8% 39.3% 2.9% 1.4% 0.0% 80.9% 

N=500 0.24% 50.4% 50.9% 0.4% 0.4% 4.8% 4.6% 0.0% 0.0% 0.0% 5.9% 

N=1,000 0.52% 3.4% 3.5% 0.0% 0.0% 0.1% 0.1% 0.0% 0.0% 0.0% 0.7% 

𝛥𝑖,𝐸 (2%,𝜃𝑖,𝐸̂)            

N=100 1.33% 6.0% 5.3% 0.1% 0.1% 0.4% 0.4% 0.0% 0.0% 0.0% 0.6% 

N=250 0.60% 18.4% 17.3% 0.1% 0.1% 3.1% 3.3% 0.0% 0.0% 0.0% 2.4% 

N=500 0.81% 2.5% 2.6% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

𝛥𝑖,𝐸 (3%,𝜃𝑖,𝐸̂)            

N=100 2.40% 0.1% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 
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Panel D – MCAP < 25M 

 AAR t-test CDA T Patell Z 

Adj. 

Patell Z 

Std-

CSect Z 

Adj. Std-

CSect Z Rank Z Sign Z 

Gen. 

Sign Z 

Will-

coxon 

𝛥𝑖,𝐸  (1%,𝜃𝑖,𝐸̂)            

N=100 0.45% 77.8% 77.1% 11.2% 9.1% 43.7% 40.9% 43.0% 28.2% 45.0% 93.0% 

N=250 0.76% 37.7% 34.3% 69.6% 68.3% 82.9% 82.1% 0.3% 0.2% 0.1% 22.4% 

N=500 1.20% 3.4% 3.4% 1.7% 2.3% 19.5% 21.5% 0.0% 0.0% 0.0% 8.6% 

N=1,000 0.17% 67.4% 65.8% 27.1% 26.4% 52.7% 52.1% 0.0% 0.0% 0.0% 2.2% 

N=2,500 -0.69% 0.7% 0.8% 79.9% 80.6% 87.7% 88.1% 0.0% 0.0% 0.0% 5.3% 

𝛥𝑖,𝐸 (2%,𝜃𝑖,𝐸̂)            

N=100 -0.95% 54.8% 53.6% 4.1% 3.0% 37.8% 34.9% 12.3% 13.6% 7.8% 49.8% 

N=250 -0.16% 84.9% 83.8% 65.5% 63.9% 82.0% 81.1% 0.0% 0.0% 0.0% 2.5% 

N=500 0.65% 24.9% 24.8% 0.2% 0.3% 10.2% 11.8% 0.0% 0.0% 0.0% 0.5% 

N=1,000 0.24% 55.4% 53.4% 0.7% 0.6% 12.8% 12.2% 0.0% 0.0% 0.0% 0.2% 

N=2,500 -0.07% 79.1% 79.4% 0.0% 0.0% 0.4% 0.5% 0.0% 0.0% 0.0% 0.0% 

𝛥𝑖,𝐸 (3%,𝜃𝑖,𝐸̂)            

N=100 -0.58% 71.1% 70.3% 20.0% 17.3% 53.8% 51.3% 12.8% 10.2% 45.0% 71.1% 

N=250 0.46% 58.9% 56.0% 3.0% 2.3% 23.9% 21.7% 0.0% 0.0% 0.0% 4.2% 

N=500 2.19% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

𝛥𝑖,𝐸 (4%,𝜃𝑖,𝐸̂)            
N=100 4.85% 0.2% 0.2% 10.2% 8.2% 46.1% 43.4% 0.0% 0.0% 0.1% 0.1% 

N=250 2.83% 0.1% 0.0% 0.0% 0.0% 1.5% 1.1% 0.0% 0.0% 0.0% 0.0% 

𝛥𝑖,𝐸 (5%, 𝜃𝑖,𝐸̂)            

N=100 0.74% 63.8% 62.8% 59.4% 57.2% 80.6% 79.4% 0.5% 1.9% 1.0% 20.5% 

N=250 2.18% 1.2% 0.7% 0.0% 0.0% 1.2% 0.9% 0.0% 0.0% 0.0% 0.0% 
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Table 2. 6: Heat Map —— N=100 Samples Drawn 80 Times, p-level 10% 

This table presents the results for the ten tests, with N=100 samples drawn 80 times, representing a total of 8,000 randomly drawn events for each 

of the four sub-samples. The results encompass all scenarios: no event (with and without volatility), event without volatility, and event with both 

return and volatility. The percentages in the table indicate how often each respective test correctly identified an event (or non-event in the case of 

no-event scenarios) at the 10% level (other tested levels can be found in the online appendix). The last row reports the average percentage of correct 

(Avg.Pct.Correct) identifications for each test across different scenarios. Percentages that meet or exceed the usual significance threshold of 90% 

are highlighted in red to draw attention to particularly robust test performance. 

Panel A – Top 100 by MCAP 

 

 t-test CDA T Patell Z 

Adj. 

Patell Z 

Std-

Csect Z 

Adj. Std-

Csect Z Rank Rank Z 

Gen. 

Sign Z 

Will-

coxon 

 Avg.Pct. Correct 92% 93% 77% 77% 85% 85% 84% 84% 93% 94% 

N
o
 

E
v
en

t 

𝛥𝑖,𝐸  (0,0) 93% 95% 89% 84% 88% 88% 91% 89% 88% 88% 

𝛥𝑖,𝐸 (0%, 𝜃𝑖,𝐸̂) 90% 84% 60% 60% 65% 64% 88% 88% 83% 86% 

E
v
en

t 
R

et
u
rn

 

b
u
t 

n
o
 e

v
en

t 

v
o
la

 

𝛥𝑖,𝐸  (1%,0) 84% 81% 36% 36% 56% 56% 53% 56% 90% 91% 

𝛥𝑖,𝐸  (2%,0) 100% 99% 81% 80% 96% 96% 94% 94% 100% 100% 

𝛥𝑖,𝐸  (3%,0) 100% 100% 98% 98% 100% 100% 98% 98% 100% 100% 

𝛥𝑖,𝐸  (4%,0) 100% 100% 99% 99% 100% 100% 100% 100% 100% 100% 

𝛥𝑖,𝐸  (5%,0) 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

E
v

en
t 

R
et

u
rn
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d

 e
v
en

t 
v
o

la
 

𝛥𝑖,𝐸 (1%, 𝜃𝑖,𝐸̂) 56% 68% 35% 35% 40% 39% 21% 24% 63% 66% 

𝛥𝑖,𝐸 (2%, 𝜃𝑖,𝐸̂) 85% 90% 60% 60% 84% 84% 70% 73% 89% 94% 

𝛥𝑖,𝐸 (3%, 𝜃𝑖,𝐸̂) 98% 99% 80% 79% 96% 96% 91% 91% 99% 99% 

𝛥𝑖,𝐸 (4%, 𝜃𝑖,𝐸̂) 100% 100% 89% 89% 99% 99% 99% 99% 100% 100% 

𝛥𝑖,𝐸 (5%, 𝜃𝑖,𝐸̂) 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 
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Panel B – Top 100 by Volume 

 

 t-test CDA T Patell Z 

Adj. 

Patell Z 

Std-

Csect Z 

Adj. Std-

Csect Z Rank Rank Z 

Gen. 

Sign Z 

Will-

coxon 

 Avg.Pct. Correct 93% 92% 84% 84% 88% 88% 87% 88% 93% 92% 

N
o
 

E
v
en

t 

𝛥𝑖,𝐸  (0,0) 84% 90% 89% 88% 74% 74% 86% 86% 84% 79% 

𝛥𝑖,𝐸 (0%, 𝜃𝑖,𝐸̂) 83% 68% 73% 71% 69% 68% 89% 89% 76% 69% 

E
v
en

t 
R

et
u
rn

 

b
u
t 

n
o
 e

v
en

t 

v
o
la

 

𝛥𝑖,𝐸  (1%,0) 85% 75% 55% 58% 76% 76% 65% 66% 91% 91% 

𝛥𝑖,𝐸  (2%,0) 100% 100% 93% 94% 98% 98% 98% 98% 100% 100% 

𝛥𝑖,𝐸  (3%,0) 100% 100% 99% 99% 100% 100% 100% 100% 100% 100% 

𝛥𝑖,𝐸  (4%,0) 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

𝛥𝑖,𝐸  (5%,0) 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

E
v
en

t 
R
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u
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d
 e

v
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t 
v
o
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𝛥𝑖,𝐸 (1%, 𝜃𝑖,𝐸̂) 65% 71% 48% 48% 60% 59% 41% 43% 65% 71% 

𝛥𝑖,𝐸 (2%, 𝜃𝑖,𝐸̂) 94% 95% 71% 69% 89% 89% 76% 79% 95% 98% 

𝛥𝑖,𝐸 (3%, 𝜃𝑖,𝐸̂) 100% 100% 88% 88% 98% 98% 94% 95% 100% 100% 

𝛥𝑖,𝐸 (4%, 𝜃𝑖,𝐸̂) 100% 100% 99% 99% 99% 100% 99% 99% 100% 100% 

𝛥𝑖,𝐸 (5%, 𝜃𝑖,𝐸̂) 100% 100% 99% 99% 100% 100% 100% 100% 100% 100% 
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Panel C – MCAP ≥ 25M 

 

 t-test CDA T Patell Z 

Adj. 

Patell Z 

Std-

Csect Z 

Adj. Std-

Csect Z Rank Rank Z 

Gen. 

Sign Z 

Will-

coxon 

 Avg.Pct. Correct 93% 93% 79% 79% 86% 86% 84% 84% 93% 93% 

N
o
 

E
v
en

t 

𝛥𝑖,𝐸  (0,0) 93% 98% 89% 86% 84% 83% 83% 80% 89% 85% 

𝛥𝑖,𝐸 (0%, 𝜃𝑖,𝐸̂) 91% 81% 66% 66% 68% 68% 83% 85% 83% 83% 

E
v
en

t 
R

et
u
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b
u
t 

n
o
 e

v
en

t 

v
o
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𝛥𝑖,𝐸  (1%,0) 83% 83% 38% 38% 53% 51% 49% 49% 88% 88% 

𝛥𝑖,𝐸  (2%,0) 100% 100% 69% 71% 94% 94% 96% 96% 100% 100% 

𝛥𝑖,𝐸  (3%,0) 100% 100% 99% 99% 100% 100% 100% 100% 100% 100% 

𝛥𝑖,𝐸  (4%,0) 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

𝛥𝑖,𝐸  (5%,0) 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

E
v
en

t 
R

et
u
rn

 

an
d
  

ev
en

t 
v
o
la

 

𝛥𝑖,𝐸 (1%, 𝜃𝑖,𝐸̂) 60% 66% 45% 44% 58% 60% 34% 30% 63% 69% 

𝛥𝑖,𝐸 (2%, 𝜃𝑖,𝐸̂) 88% 91% 60% 60% 84% 84% 70% 73% 89% 90% 

𝛥𝑖,𝐸 (3%, 𝜃𝑖,𝐸̂) 99% 98% 83% 84% 93% 93% 90% 90% 100% 100% 

𝛥𝑖,𝐸 (4%, 𝜃𝑖,𝐸̂) 100% 100% 98% 98% 100% 100% 100% 100% 100% 100% 

𝛥𝑖,𝐸 (5%, 𝜃𝑖,𝐸̂) 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 
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Panel D – MCAP < 25M 

 

 t-test CDA T Patell Z 

Adj. 

Patell Z 

Std-

Csect Z 

Adj. Std-

Csect Z Rank Rank Z 

Gen. 

Sign Z 

Will-

coxon 

 Avg.Pct. Correct 86% 87% 56% 56% 69% 70% 62% 62% 88% 89% 

N
o
 

E
v
en

t 

𝛥𝑖,𝐸  (0,0) 98% 96% 79% 79% 76% 74% 76% 75% 94% 94% 

𝛥𝑖,𝐸 (0%, 𝜃𝑖,𝐸̂) 96% 98% 55% 55% 60% 60% 78% 76% 85% 91% 

E
v
en

t 
R

et
u
rn

 

b
u
t 

n
o
 e

v
en

t 

v
o
la

 

𝛥𝑖,𝐸  (1%,0) 49% 53% 11% 15% 16% 20% 15% 19% 60% 60% 

𝛥𝑖,𝐸  (2%,0) 96% 100% 30% 29% 53% 55% 45% 45% 99% 99% 

𝛥𝑖,𝐸  (3%,0) 100% 100% 51% 50% 89% 90% 88% 88% 100% 100% 

𝛥𝑖,𝐸  (4%,0) 100% 100% 80% 81% 96% 96% 96% 95% 100% 100% 

𝛥𝑖,𝐸  (5%,0) 100% 100% 96% 96% 100% 100% 99% 99% 100% 100% 

E
v
en

t 
R

et
u
rn

 

an
d
 e

v
en

t 
v
o
la

 

𝛥𝑖,𝐸 (1%, 𝜃𝑖,𝐸̂) 40% 40% 45% 45% 31% 33% 11% 11% 48% 50% 

𝛥𝑖,𝐸 (2%, 𝜃𝑖,𝐸̂) 73% 71% 33% 33% 51% 54% 21% 21% 76% 83% 

𝛥𝑖,𝐸 (3%, 𝜃𝑖,𝐸̂) 89% 93% 49% 48% 68% 68% 51% 49% 93% 94% 

𝛥𝑖,𝐸 (4%, 𝜃𝑖,𝐸̂) 98% 99% 71% 71% 93% 93% 81% 81% 99% 98% 

𝛥𝑖,𝐸 (5%, 𝜃𝑖,𝐸̂) 99% 99% 74% 74% 95% 95% 88% 88% 99% 99% 
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Table 2. 7: Heat Map —— N=100 Samples Drawn 80 Times, p-level 5% 

This table presents the results for the ten tests, with N=100 samples drawn 80 times, representing a total of 8,000 randomly drawn events for each 

of the four sub-samples. The results encompass all scenarios: no event (with and without volatility), event without volatility, and event with both 

return and volatility. The percentages in the table indicate how often each respective test correctly identified an event (or non-event in the case of 

no-event scenarios) at the 5% level (other tested levels can be found in the online appendix). The last row reports the average percentage of correct 

identifications for each test across different scenarios. Percentages that meet or exceed the usual significance threshold of 90% are highlighted in 

red to draw attention to particularly robust test performance. 

Panel A – Top 100 by MCAP 

 

 t-test CDA T Patell Z 

Adj. 

Patell Z 

Std-

Csect Z 

Adj. Std-

Csect Z Rank Rank Z 

Gen. 

Sign Z 

Will-

coxon 

 Avg.Pct. Correct 76% 76% 85% 85% 82% 83% 91% 92% 93% 80% 

N
o
 

E
v
en

t 

𝛥𝑖,𝐸  (0,0) 96% 94% 91% 93% 93% 94% 93% 93% 95% 83% 

𝛥𝑖,𝐸 (0%, 𝜃𝑖,𝐸̂) 76% 74% 74% 74% 93% 91% 86% 90% 84% 89% 

E
v
en

t 
R

et
u
rn

 

b
u
t 

n
o
 e

v
en

t 

v
o
la

 

𝛥𝑖,𝐸  (1%,0) 28% 30% 50% 50% 44% 46% 83% 84% 81% 34% 

𝛥𝑖,𝐸  (2%,0) 71% 70% 95% 95% 94% 94% 100% 100% 99% 94% 

𝛥𝑖,𝐸  (3%,0) 98% 98% 99% 99% 98% 98% 100% 100% 100% 100% 

𝛥𝑖,𝐸  (4%,0) 99% 99% 100% 100% 100% 100% 100% 100% 100% 100% 

𝛥𝑖,𝐸  (5%,0) 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

E
v

en
t 

R
et

u
rn

 

an
d

 e
v
en

t 
v
o

la
 

𝛥𝑖,𝐸 (1%, 𝜃𝑖,𝐸̂) 28% 30% 36% 34% 20% 20% 53% 56% 68% 24% 

𝛥𝑖,𝐸 (2%, 𝜃𝑖,𝐸̂) 53% 51% 80% 81% 63% 64% 84% 85% 90% 63% 

𝛥𝑖,𝐸 (3%, 𝜃𝑖,𝐸̂) 75% 76% 91% 93% 88% 88% 98% 98% 99% 84% 

𝛥𝑖,𝐸 (4%, 𝜃𝑖,𝐸̂) 88% 88% 99% 99% 96% 96% 100% 100% 100% 95% 

𝛥𝑖,𝐸 (5%, 𝜃𝑖,𝐸̂) 98% 98% 100% 100% 100% 100% 100% 100% 100% 100% 
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Panel B – Top 100 by Volume 

 

 t-test CDA T Patell Z 

Adj. 

Patell Z 

Std-

Csect Z 

Adj. Std-

Csect Z Rank Rank Z 

Gen. 

Sign Z 

Will-

coxon 

 Avg.Pct. Correct 82% 81% 88% 88% 85% 84% 92% 93% 92% 83% 

N
o
 

E
v
en

t 

𝛥𝑖,𝐸  (0,0) 91% 91% 83% 83% 91% 90% 93% 84% 90% 89% 

𝛥𝑖,𝐸 (0%, 𝜃𝑖,𝐸̂) 81% 78% 78% 78% 93% 91% 85% 83% 68% 95% 

E
v
en

t 
R

et
u
rn

 

b
u
t 

n
o
 e

v
en

t 

v
o
la

 

𝛥𝑖,𝐸  (1%,0) 41% 43% 66% 68% 56% 56% 84% 85% 75% 45% 

𝛥𝑖,𝐸  (2%,0) 86% 85% 98% 98% 93% 94% 100% 100% 100% 93% 

𝛥𝑖,𝐸  (3%,0) 98% 99% 100% 100% 100% 100% 100% 100% 100% 100% 

𝛥𝑖,𝐸  (4%,0) 99% 99% 100% 100% 100% 100% 100% 100% 100% 100% 

𝛥𝑖,𝐸  (5%,0) 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

E
v
en

t 
R

et
u
rn

 

an
d
 e

v
en

t 
v
o
la

 

𝛥𝑖,𝐸 (1%, 𝜃𝑖,𝐸̂) 41% 41% 51% 51% 30% 29% 53% 65% 71% 21% 

𝛥𝑖,𝐸 (2%, 𝜃𝑖,𝐸̂) 61% 61% 81% 84% 63% 63% 93% 94% 95% 65% 

𝛥𝑖,𝐸 (3%, 𝜃𝑖,𝐸̂) 83% 81% 96% 96% 94% 93% 99% 100% 100% 86% 

𝛥𝑖,𝐸 (4%, 𝜃𝑖,𝐸̂) 99% 99% 99% 99% 99% 99% 100% 100% 100% 98% 

𝛥𝑖,𝐸 (5%, 𝜃𝑖,𝐸̂) 99% 99% 100% 100% 100% 100% 100% 100% 100% 100% 
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Panel C – MCAP ≥ 25M 

 

 t-test CDA T Patell Z 

Adj. 

Patell Z 

Std-

Csect Z 

Adj. Std-

Csect Z Rank Rank Z 

Gen. 

Sign Z 

Will-

coxon 

 Avg.Pct. Correct 76% 76% 85% 85% 81% 82% 92% 93% 93% 80% 

N
o
 

E
v
en

t 

𝛥𝑖,𝐸  (0,0) 94% 94% 90% 91% 91% 90% 96% 93% 98% 76% 

𝛥𝑖,𝐸 (0%, 𝜃𝑖,𝐸̂) 74% 75% 73% 74% 94% 93% 91% 91% 81% 95% 

E
v
en

t 
R

et
u
rn

 

b
u
t 

n
o
 e

v
en

t 

v
o
la

 

𝛥𝑖,𝐸  (1%,0) 26% 26% 44% 44% 41% 43% 81% 83% 83% 25% 

𝛥𝑖,𝐸  (2%,0) 66% 66% 90% 90% 88% 88% 100% 100% 100% 94% 

𝛥𝑖,𝐸  (3%,0) 96% 94% 100% 100% 100% 100% 100% 100% 100% 100% 

𝛥𝑖,𝐸  (4%,0) 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

𝛥𝑖,𝐸  (5%,0) 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

E
v
en

t 
R

et
u
rn

 

an
d
 e

v
en

t 
v
o
la

 

𝛥𝑖,𝐸 (1%, 𝜃𝑖,𝐸̂) 36% 35% 50% 50% 21% 23% 53% 60% 66% 23% 

𝛥𝑖,𝐸 (2%, 𝜃𝑖,𝐸̂) 51% 54% 80% 80% 59% 59% 85% 88% 91% 59% 

𝛥𝑖,𝐸 (3%, 𝜃𝑖,𝐸̂) 76% 76% 90% 90% 86% 86% 99% 99% 98% 86% 

𝛥𝑖,𝐸 (4%, 𝜃𝑖,𝐸̂) 95% 95% 100% 100% 98% 99% 100% 100% 100% 98% 

𝛥𝑖,𝐸 (5%, 𝜃𝑖,𝐸̂) 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 
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Panel D – MCAP < 25M 

 

 t-test CDA T Patell Z 

Adj. 

Patell Z 

Std-

Csect Z 

Adj. Std-

Csect Z Rank Rank Z 

Gen. 

Sign Z 

Will-

coxon 

 Avg.Pct. Correct 50% 50% 66% 66% 59% 58% 84% 86% 87% 63% 

N
o
 

E
v
en

t 

𝛥𝑖,𝐸  (0,0) 90% 91% 84% 83% 86% 85% 98% 98% 96% 75% 

𝛥𝑖,𝐸 (0%, 𝜃𝑖,𝐸̂) 63% 63% 65% 65% 86% 85% 90% 96% 98% 91% 

E
v
en

t 
R

et
u
rn

 

b
u
t 

n
o
 e

v
en

t 

v
o
la

 

𝛥𝑖,𝐸  (1%,0) 4% 4% 13% 13% 9% 10% 46% 49% 53% 5% 

𝛥𝑖,𝐸  (2%,0) 20% 19% 40% 40% 40% 40% 95% 96% 100% 56% 

𝛥𝑖,𝐸  (3%,0) 44% 44% 85% 86% 83% 83% 100% 100% 100% 94% 

𝛥𝑖,𝐸  (4%,0) 71% 69% 96% 96% 95% 95% 100% 100% 100% 99% 

𝛥𝑖,𝐸  (5%,0) 93% 93% 99% 99% 99% 99% 100% 100% 100% 100% 

E
v
en

t 
R

et
u
rn

 

an
d
 e

v
en

t 
v
o
la

 

𝛥𝑖,𝐸 (1%, 𝜃𝑖,𝐸̂) 28% 28% 20% 19% 4% 5% 34% 40% 40% 8% 

𝛥𝑖,𝐸 (2%, 𝜃𝑖,𝐸̂) 23% 21% 36% 39% 8% 5% 66% 73% 71% 9% 

𝛥𝑖,𝐸 (3%, 𝜃𝑖,𝐸̂) 41% 43% 64% 64% 39% 39% 88% 89% 93% 44% 

𝛥𝑖,𝐸 (4%, 𝜃𝑖,𝐸̂) 55% 56% 90% 90% 73% 71% 98% 98% 99% 81% 

𝛥𝑖,𝐸 (5%, 𝜃𝑖,𝐸̂) 70% 68% 95% 95% 83% 83% 99% 99% 99% 89% 
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Table 2. 8: Heat Map —— N=100 Samples Drawn 80 Times, p-level 1% 

This table presents the results for the ten tests, with N=100 samples drawn 80 times, representing a total of 8,000 randomly drawn events for each 

of the four sub-samples. The results encompass all scenarios: no event (with and without volatility), event without volatility, and event with both 

return and volatility. The percentages in the table indicate how often each respective test correctly identified an event (or non-event in the case of 

no-event scenarios) at the 1% level (other tested levels can be found in the online appendix). The last row reports the average percentage of 

correct identifications for each test across different scenarios. Percentages that meet or exceed the usual significance threshold of 90% are 

highlighted in red to draw attention to particularly robust test performance. 

Panel A – Top 100 by MCAP 

 

 t-test CDA T Patell Z 

Adj. 

Patell Z 

Std-

Csect Z 

Adj. Std-

Csect Z Rank Rank Z 

Gen. 

Sign Z 

Will-

coxon 

 Avg.Pct. Correct 69% 69% 81% 82% 76% 76% 88% 88% 89% 75% 

N
o
 

E
v
en

t 

𝛥𝑖,𝐸  (0,0) 98% 98% 98% 96% 100% 100% 100% 100% 100% 95% 

𝛥𝑖,𝐸 (0%, 𝜃𝑖,𝐸̂) 88% 86% 89% 89% 99% 99% 94% 95% 94% 100% 

E
v
en

t 
R

et
u
rn

 

b
u
t 

n
o
 e

v
en

t 

v
o
la

 

𝛥𝑖,𝐸  (1%,0) 10% 10% 25% 30% 21% 24% 66% 66% 56% 15% 

𝛥𝑖,𝐸  (2%,0) 48% 48% 89% 90% 81% 83% 98% 98% 98% 80% 

𝛥𝑖,𝐸  (3%,0) 85% 86% 96% 98% 96% 96% 100% 100% 100% 98% 

𝛥𝑖,𝐸  (4%,0) 98% 98% 100% 100% 99% 99% 100% 100% 100% 100% 

𝛥𝑖,𝐸  (5%,0) 99% 99% 100% 100% 100% 100% 100% 100% 100% 100% 

E
v

en
t 

R
et

u
rn

 

an
d

  
ev

en
t 

v
o

la
 

𝛥𝑖,𝐸 (1%, 𝜃𝑖,𝐸̂) 11% 13% 20% 21% 6% 6% 35% 31% 48% 9% 

𝛥𝑖,𝐸 (2%, 𝜃𝑖,𝐸̂) 43% 43% 70% 70% 40% 43% 76% 76% 79% 39% 

𝛥𝑖,𝐸 (3%, 𝜃𝑖,𝐸̂) 68% 68% 91% 91% 78% 78% 93% 93% 93% 74% 

𝛥𝑖,𝐸 (4%, 𝜃𝑖,𝐸̂) 83% 84% 99% 99% 93% 91% 100% 100% 100% 93% 

𝛥𝑖,𝐸 (5%, 𝜃𝑖,𝐸̂) 95% 95% 100% 100% 98% 99% 100% 100% 100% 100% 

 

 

  



55 

 

Panel B – Top 100 by Volume 

 

 t-test CDA T Patell Z 

Adj. 

Patell Z 

Std-

Csect Z 

Adj. Std-

Csect Z Rank Rank Z 

Gen. 

Sign Z 

Will-

coxon 

 Avg.Pct. Correct 76% 76% 85% 86% 78% 78% 89% 90% 89% 76% 

N
o
 

E
v
en

t 

𝛥𝑖,𝐸  (0,0) 96% 96% 88% 88% 99% 99% 99% 91% 98% 95% 

𝛥𝑖,𝐸 (0%, 𝜃𝑖,𝐸̂) 90% 91% 86% 85% 96% 98% 93% 91% 86% 98% 

E
v
en

t 
R

et
u
rn

 

b
u
t 

n
o
 e

v
en

t 

v
o
la

 

𝛥𝑖,𝐸  (1%,0) 25% 24% 46% 50% 33% 31% 65% 70% 56% 23% 

𝛥𝑖,𝐸  (2%,0) 59% 60% 88% 88% 85% 85% 99% 99% 96% 85% 

𝛥𝑖,𝐸  (3%,0) 95% 95% 100% 100% 99% 99% 100% 100% 100% 100% 

𝛥𝑖,𝐸  (4%,0) 99% 99% 100% 100% 100% 100% 100% 100% 100% 100% 

𝛥𝑖,𝐸  (5%,0) 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

E
v
en

t 
R

et
u
rn

 

an
d
  

ev
en

t 
v
o
la

 

𝛥𝑖,𝐸 (1%, 𝜃𝑖,𝐸̂) 28% 28% 43% 45% 10% 13% 41% 43% 50% 9% 

𝛥𝑖,𝐸 (2%, 𝜃𝑖,𝐸̂) 51% 50% 76% 78% 45% 45% 83% 86% 85% 40% 

𝛥𝑖,𝐸 (3%, 𝜃𝑖,𝐸̂) 73% 76% 95% 95% 76% 78% 94% 96% 99% 74% 

𝛥𝑖,𝐸 (4%, 𝜃𝑖,𝐸̂) 96% 96% 99% 99% 94% 94% 99% 99% 99% 91% 

𝛥𝑖,𝐸 (5%, 𝜃𝑖,𝐸̂) 95% 95% 100% 100% 99% 99% 100% 100% 100% 99% 
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Panel C – MCAP ≥ 25M 

 

 t-test CDA T Patell Z 

Adj. 

Patell Z 

Std-

Csect Z 

Adj. Std-

Csect Z Rank Rank Z 

Gen. 

Sign Z 

Will-

coxon 

 Avg.Pct. Correct 70% 70% 82% 82% 76% 77% 89% 90% 89% 74% 

N
o
 

E
v
en

t 

𝛥𝑖,𝐸  (0,0) 96% 98% 99% 99% 99% 98% 100% 100% 99% 91% 

𝛥𝑖,𝐸 (0%, 𝜃𝑖,𝐸̂) 86% 86% 89% 85% 100% 100% 99% 99% 95% 99% 

E
v
en

t 
R

et
u
rn

 

b
u
t 

n
o
 e

v
en

t 

v
o
la

 

𝛥𝑖,𝐸  (1%,0) 13% 11% 30% 33% 20% 21% 61% 65% 58% 10% 

𝛥𝑖,𝐸  (2%,0) 46% 46% 79% 78% 78% 80% 99% 99% 100% 81% 

𝛥𝑖,𝐸  (3%,0) 80% 84% 100% 100% 100% 100% 100% 100% 100% 100% 

𝛥𝑖,𝐸  (4%,0) 99% 99% 100% 100% 100% 100% 100% 100% 100% 100% 

𝛥𝑖,𝐸  (5%,0) 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

E
v
en

t 
R

et
u
rn

 

an
d
  

ev
en

t 
v
o
la

 

𝛥𝑖,𝐸 (1%, 𝜃𝑖,𝐸̂) 25% 28% 30% 30% 8% 6% 34% 41% 40% 9% 

𝛥𝑖,𝐸 (2%, 𝜃𝑖,𝐸̂) 33% 33% 70% 73% 43% 45% 76% 79% 78% 33% 

𝛥𝑖,𝐸 (3%, 𝜃𝑖,𝐸̂) 73% 73% 88% 88% 75% 78% 94% 94% 95% 71% 

𝛥𝑖,𝐸 (4%, 𝜃𝑖,𝐸̂) 91% 90% 100% 100% 96% 96% 100% 100% 100% 96% 

𝛥𝑖,𝐸 (5%, 𝜃𝑖,𝐸̂) 98% 98% 100% 100% 100% 100% 100% 100% 100% 100% 
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Panel D – MCAP < 25M 

 

 t-test CDA T Patell Z 

Adj. 

Patell Z 

Std-

Csect Z 

Adj. Std-

Csect Z Rank Rank Z 

Gen. 

Sign Z 

Will-

coxon 

 Avg.Pct. Correct 39% 40% 58% 58% 50% 51% 78% 78% 80% 56% 

N
o
 

E
v
en

t 

𝛥𝑖,𝐸  (0,0) 96% 98% 93% 91% 93% 95% 100% 100% 100% 90% 

𝛥𝑖,𝐸 (0%, 𝜃𝑖,𝐸̂) 81% 81% 79% 73% 96% 95% 98% 100% 100% 96% 

E
v
en

t 
R

et
u
rn

 

b
u
t 

n
o
 e

v
en

t 

v
o
la

 

𝛥𝑖,𝐸  (1%,0) 1% 1% 3% 3% 0% 0% 30% 33% 28% 0% 

𝛥𝑖,𝐸  (2%,0) 8% 9% 26% 26% 23% 24% 89% 86% 94% 41% 

𝛥𝑖,𝐸  (3%,0) 24% 25% 65% 65% 59% 61% 99% 99% 100% 86% 

𝛥𝑖,𝐸  (4%,0) 49% 48% 93% 93% 88% 90% 100% 100% 100% 99% 

𝛥𝑖,𝐸  (5%,0) 75% 78% 98% 96% 96% 95% 100% 100% 100% 100% 

E
v
en

t 
R

et
u
rn

 

an
d
  

ev
en

t 
v
o
la

 

𝛥𝑖,𝐸 (1%, 𝜃𝑖,𝐸̂) 11% 15% 10% 10% 0% 1% 16% 15% 28% 1% 

𝛥𝑖,𝐸 (2%, 𝜃𝑖,𝐸̂) 14% 14% 19% 19% 1% 1% 40% 41% 45% 0% 

𝛥𝑖,𝐸 (3%, 𝜃𝑖,𝐸̂) 21% 21% 43% 45% 18% 21% 74% 71% 80% 23% 

𝛥𝑖,𝐸 (4%, 𝜃𝑖,𝐸̂) 40% 40% 84% 83% 54% 54% 94% 94% 93% 61% 

𝛥𝑖,𝐸 (5%, 𝜃𝑖,𝐸̂) 54% 55% 88% 88% 70% 73% 99% 96% 98% 80% 
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Table 2A. 1: Summary of Event Study Research 

Authors Events  Period Token Sample Estimation 

Window 

Event 

Window 

Abnormal 

Return 

Event Study 

Tests 

Findings 

Weak-form Efficiency Test / Cross-sectional Approach 

Ante and 

Fiedler 

(2021) 

2,132 Large Bitcoins 

Transfers 

06 Sep 

2018 – 14 

Nov 2019 

Bitcoin Minutes (-

141, -21) 

Minutes 

(-15, 15) 

Mean 

Return 

Model 

Standard t-

test; Wilcoxon 

sign-rank test  

Significant 

market reactions 

to large Bitcoin 

transfers 

Semi-strong Form Efficiency Test / Cross-sectional Approach 

Ante (2019) 327 exchange listings  2017 – 

2019 

180 cryptos on 

22 different 

exchanges 

Day (-30, -

10) 

Day (-3, 

+3), (-7, 

+7) 

Constant 

Mean 

Return 

Model; 

Market 

Model 

(Bitcoin) 

Standard t-

test; Wilcoxon 

sign-rank test 

Cryptocurrency 

markets respond 

strongly to new 

exchange 

listings. 

Joo et al., 

(2020) 

Major positive/negative news 

announcements 

2015 – 

2018 

3 primary 

cryptos: Bitcoin, 

Ethereum and 

Ripple 

60, 180 or 

365 days 

Day (0, 

0), (-3, 6), 

(0, 6) 

Mean-

Adjusted 

Returns 

Model 

Nonparametric 

Tests: Corrado 

(1989), Kolar 

and Pynnonen 

(2011) 

Larger 

magnitudes of 

CARs are 

observed for 

negative events 

compared to 

positive ones. 

Tomić 

(2020) 

Three Bitcoin forks: Bitcoin 

Cash (BCH), Bitcoin Gold 

(BTG), and Bitcoin Satoshi 

Vision (BSV) 

2016, 

2017, 

2018 

8 cryptos: BTC, 

ETH, XRP, 

LTC, ETC, 

XMR, XLM, and 

DASH 

8 months 

prior to 

events 

Day (0, 

+3) 

Market 

Model 

Standard t-

test, Rank and 

Sign Tests 

The forks of 

Bitcoin Gold 

and Bitcoin SV 

resulted in 

significant 

negative effects 

on the crypto 

market. 

Jumah and 

Karri 

(2020) 

Major cryptocurrency-related 

events 

N/A 4 major 

cryptocurrencies: 

Bitcoin, Ripple, 

Litecoin, and 

230 days 

prior to 

events 

Day (-20, 

+20) 

Market 

Risk-

Adjusted 

Excess 

Standard t-test 

and other 

parametric 

tests 

External events 

significantly 

impact firm 

performance, 
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Etheereum Return particularly in 

terms of stock 

price reactions 

to regulatory 

and security-

related events. 

Abraham 

(2021) 

COVID-19 pandemic 

announcements 

January 1, 

2018 – 

July 17, 

2020 

Bitcoin and 14 

Altcoins 

Day (-250, 

-10) 

Day (-10, 

10) 

Market 

Model 

Standard t-test While all 

cryptocurrencies 

experienced 

negative 

impacts due to 

COVID-19, 

Altcoins were 

more adversely 

affected than 

Bitcoin. 

Yue et al., 

(2021) 

5 positive & 5 negative news 

in the crypto market  

2013 – 

2019 

Top 5 and Top 

100 cryptos 

based on market 

capitalization 

N/A Day 0, (-

1, +1) … 

(-5, +5), 

(0, +10) 

& (0, 

+20) 

N/A Standard t-test The effects of 

positive news 

persist longer 

Öget (2022) Major listing and airdrop 

announcements. Major 

delisting announcement and 

SEC enforcements. 

2020, 

2021 

Specific 

cryptocurrencies 

associated with 

the events (e.g., 

Ripple for SEC 

enforcement, 

Celo for listing). 

120 days Day (-5, 

+10) 

Market 

Model 

(Bitcoin as 

the market 

proxy) 

Standard t-test Negative events 

have a more 

substantial and 

lasting impact 

on prices than 

positive events. 

Ante (2023) Twitter activity by Elon 

Mush 

April 

2019 – 

July 2021 

Bitcoin and 

Dogecoin 

Minutes 

(−360, 

−60) 

The time 

of the 

tweets be 

posted 

Constant 

Mean 

Return 

Model 

Standard t-

test, Wilcoxon 

sign rank tests 

Musk’s tweets 

lead to 

significant 

positive 

abnormal 

returns and 

increased 
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trading 

volumes, 

particularly with 

Dogecoin. The 

impact on 

Bitcoin is less 

pronounced and 

varies 

depending on 

the sentiment of 

the tweet. 

Yousaf et 

al., (2023) 

The collapse of the 

cryptocurrency exchange 

FTX 

November 

2021 – 

November 

2022 

Bitcoin, 

Ethereum, and 

Binance Coin 

235 days 

prior the 

event 

Day (-4, 

+7) 

Market 

Model 

OLS 

regression 

The collapse 

notably affected 

cryptocurrencies 

with Bitcoin, 

Ethereum, and 

Binance Coin 

showing 

significant 

negative 

abnormal 

returns. 

Semi-strong Form Efficiency Test / Pooled Analysis 

Shanaev et 

al., (2019) 

14 individual 51% attacks 2013, 

2016, 

2018 

13 (PoW) 

Cryptocurrencies  

30 days 

pre-event 

Day (0, 

0), (-3, 0), 

(-1, 0), (0, 

1), (0, 3), 

(0, 6). 

Market 

Model 

F-tests 51% attacks 

lead to a 

significant 

decline in the 

value. 

Ante et al., 

(2021) 

565 issuances of stablecoins April 

2019 – 

March 

2020 

7 stablecoins:  

USDC, HUSD, 

USDT, PAX, 

BUSD, DAI, and 

GUSD 

Hours (-

150, -30) 

Hours (-

24, -24) 

Mean-

Adjusted 

Returns 

Model 

Standard t-

test, Wilcoxon 

Sign Rank 

test, and the 

adjusted BMP 

test 

The market 

experiences 

downturns in 

the week before 

an issuance and 

generally shows 

positive 

abnormal 
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returns within 

twenty-four 

hours around 

the issuance. 

Ramos et 

al., (2021) 

Specific cyber attacks: 51% 

attacks, hard forks and wallet 

attacks 

2017, 

2018, 

2019, 

2020 

PoW 

cryptocurrencies 

80 days 

prior to 

events 

Day (-14, 

5), (-5, 5), 

(0, 1), (0, 

10) 

Market 

Model 

Standard T-

test 

Different types 

of cyber attacks 

have varying 

impacts on 

cryptocurrency 

returns, with 

some leading to 

significant 

negative CARs. 

Chokor and 

Alfieri 

(2021) 

The events that signal the 

likelihood of increased 

regulation in the 

cryptocurrency market 

2015 – 

2019 

N/A Day (-120, 

-5) 

Day (-1, 

+1) 

Market 

Model 

Standard T-

tests and non-

parametric 

tests 

Regulatory 

events generally 

lead to negative 

abnormal 

returns. 

Almaqableh 

et al. (2022) 

21 specific terrorist attacks April 

2013 – 

February 

2018 

100 largest 

cryptocurrencies 

260 days 

prior to 

events 

Day (-

180, 

+180) 

Market 

Model 

Standard T-

test 

Terrorist attacks 

generally lead to 

positive 

abnormal 

returns. 
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Chapter 3: Deciphering Cryptocurrency Returns: 

Novel Factors and Insights 
 

 

 

 

 

 

Abstract 

 

We explore various factors aimed at capturing cross-sectional expected returns in the 

cryptocurrency market, utilizing a substantial sample comprising solely over 1,000 ERC-20 

tokens. Beyond established factors such as size and momentum, we introduce additional factors 

derived from on-chain variables, including the dollar-value of transactions, transfer counts, and 

unique active addresses. These novel factors seek to serve as proxies for real economic activity 

on the blockchain and to elucidate the intrinsic values of the tokens. 
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3.1. Introduction 

Since the emergence of blockchain technology in 2008, attributed to an enigmatic figure or group 

known as Satoshi Nakamoto, global anticipation has surrounded its potential. Originally conceived 

as a decentralized ledger system to underpin the digital currency Bitcoin, blockchain has since 

fostered the creation of numerous cryptocurrencies in the form of tokens and coins over the past 

decade. A pivotal moment arrived in January 2024 when Bitcoin exchange-traded funds (ETFs) 

debuted on US stock exchanges, signaling a shift towards mainstream acceptance. 

To ensure decentralized consensus on the blockchain, two primary consensus mechanisms 

have been employed to verify transactions and prevent double-spending without reliance on a 

central authority. The first, Proof of Work (PoW), mandates miners to contribute substantial 

processing power to solve complex cryptographic puzzles for transaction verification and block 

addition to the blockchain. In return, the successful miner is rewarded with a predetermined 

amount of cryptocurrency. Alternatively, Proof of Stake (PoS) selects validators for the latest block 

based on their staked crypto funds within the network. 

These cryptocurrencies, typically hosted on their own blockchains, are generated through 

transaction confirmations and serve as units of account for storing value to sustain their respective 

blockchains. Termed "Coins," they have been instrumental in fueling blockchain ecosystems 

(Bariviera et al., 2017). Moreover, blockchain technology enables the decentralization of not only 

currency but also various scarce assets such as currencies, securities, properties, loyalty points, 

and gift certificates (Tapscott, 2016; Buterin, 2014). These assets can be tokenized through initial 

coin offerings (ICOs), akin to initial public offerings (IPOs) for stocks, atop existing blockchains. 

Referred to as "Tokens," they often possess utility tied to the products or services offered by a 

company or represent ownership stakes in a company's ventures. 
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Since the emergency of the cryptocurrency, research has focused on developing theoretical 

models of cryptocurrencies. Weber (2016) imagines a monetary system depending on Bitcoin 

standards and investigates the similarities and differences between the new standards and the gold 

standard. Even though the Bitcoin standard dominates the fiat standards, the author still believes 

that the cryptocurrency standard will not come into existence. Huberman et al. (2017) establish a 

model of the decentralized payment system of Bitcoin and find that this system can avoid 

monopoly pricing. They also use computational power as an exogenous variable in the model to 

build the equilibrium. Chiu and Koeppl (2017) consider bitcoin as a means of payment and 

formalize the system from the feasibility and security for example double-spending. 

The primary challenge in digital record-keeping lies in establishing consensus on ledger 

updates (Abadi and Brunnermeier, 2018). Due to the perceived efficiency and security advantages 

of decentralized consensus over centralized authority, scholars explore whether decentralized 

consensus mechanisms can enhance social welfare and consumer surplus. Cong and He (2018) 

investigate blockchain mechanisms for decentralized consensus generation and explore potential 

economic outcomes, including market equilibria and implications for industrial organization and 

competition. Schilling and Uhlig (2019) model an endowment economy with competing but 

inherently valueless currencies (Dollar, Bitcoin), while Biais et al. (2023) analyze the proof-of-

work blockchain protocol as a stochastic mining game, discussing multiple equilibria. Pagnotta 

and Buraschi (2018) and Pagnotta (2018) examine Bitcoin as a decentralized network asset, linking 

equilibrium price to demand-supply fundamentals and network security. 

There is other research in cryptocurrencies from the perspective of empirical asset pricing. 

Liu and Tsyvinski (2021) pioneeringly conduct a comprehensive analysis of to examine 

cryptocurrencies’ returns. They investigate how do major cryptocurrencies comove with 
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traditional assets, macroeconomic factors, and the cryptocurrency market specific factors and 

conclude that the variations of crypto returns can only be explained by the crypto specific factors 

such as momentum and investor attention. 

Our research is in the line of exploiting empirical patterns in cryptocurrencies returns. The 

previous empirical analyses in the pricing drivers of cryptocurrency either have small samples (Liu 

and Tsyvinski, 2021; Bhambhwani et al., 2019) or big samples without distinguishing between 

coins and tokens (Liu, Tsyvinski and Wu, 2021). Coins are usually used as a store of value, while 

tokens are used to power decentralized applications. Thus, the price of a coin should be driven by 

demand for storing value, while the price of a token is often determined by demand for utility. 

Since coins and tokens may share different fundamentals, we intend to apply empirical pricing 

research solely on crypto tokens. 

The reason for choosing ERC-20 tokens is first of all, the ERC20 standard has been a dominant 

pathway for the creation of new tokens in the cryptocurrency space for some time. It has been 

particularly popular with ICOs and crowdfunding companies. There have now been tens of 

thousands of distinct tokens that have been issued and are operating according to the ERC20 

standard. This will provide us with a large sample base. Meanwhile, ERC-20 tokens are solely 

issued on Ethereum blockchain, which is one of the most successful blockchain. These ERC20 

tokens have well-established properties and the contract code is straightforward to read, which 

may reassure investors (Howell, Niessner, and Yermack, 2018). 

With the support of Ethereum block scanners (i.e., Ethereum.io), we can access to the on-

chain information of each ERC-20 tokens such as the dollar value of transactions, the counts of 

transactions and the daily active unique addresses, which may reflect the true economic activity 

happened on the blockchain. Thus, besides the traditional return predictors, we can construct 
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crypto-specific predictors by using those on-chain characteristics and test the cross-sectional 

relationship between them and token returns. More importantly, the on-chain characteristics can 

be used as proxies of the intrinsic value of tokens, with which we can construct the counterpart of 

the value factor (BE/ME) in the equity market. 

In the following sections, we begin by constructing the characteristics of ERC-20 utility 

tokens and assess their efficacy in elucidating cross-sectional returns within our sample. We 

examine a total of 19 characteristics, encompassing market-related predictors, six on-chain 

predictors, and two quasi-value predictors. Subsequently, we employ a zero-investment strategy, 

executing long-short positions based on the spread between the first and fifth quintiles for each 

characteristic. 

Traditional asset pricing literature has extensively analyzed equity market returns, identifying 

several established factors for explaining cross-sectional variations in stock returns. Drawing from 

this literature, we select predictors that can be derived solely from market information, including 

price, market capitalization, and trading volume, and develop their cryptocurrency analogs. Tokens 

are reallocated into quintile portfolios based on a chosen predictor value every Sunday, with each 

quintile held for one week. We then compute the weekly value-weighted and equal-weighted time-

series average excess returns over the risk-free rate for each quintile. Employing a long position 

in the fifth quintile and a short position in the first quintile, we calculate the risk premium of the 

zero-investment strategy for each cross-sectional return predictor. 

Our findings reveal statistically significant long-short strategies related to size, volume, and 

liquidity. However, among the eight momentum predictors examined, only three exhibit 

significant long-short strategies associated with past two-week (𝑟−2), three-week (𝑟−3), and four-

week (𝑟−4) returns. 
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The two quasi-value predictors serve as analogs to the widely-used book-to-market equity 

ratio prevalent in equity market analysis. Adopting the perspective that on-chain transactions 

reflect genuine economic activity occurring within the blockchain (Hubrich, 2017), we utilize the 

dollar value of on-chain transactions as a substitute for book equity, forming the ratio of on-chain 

transaction value to market capitalization (VTM). Additionally, given that tokens underpin the 

corresponding peer-to-peer networks, with token price positively correlated to network user base 

(Cong, Li, and Wang, 2018), we regard the number of active unique addresses as an approximation 

of the network's intrinsic value. Consequently, we construct the ratio of active unique addresses to 

market capitalization as another "value" predictor. 

Diverging from coins, crypto tokens can be viewed as venture capital investments for projects, 

thus warranting treatment as assets and adherence to asset pricing principles. Consequently, in the 

ensuing section, we aim to assess whether a select few characteristics can encapsulate other cross-

sectional predictors of token returns. Embracing the beta-pricing model, a variant of the Arbitrage 

Pricing Theory (APT), we proceed to construct four pricing factors: the crypto market factor, size 

factor, "value" factor, and momentum factor.  

The crypto market factor is derived from the S&P broad index, serving as a proxy for the 

entire cryptocurrency market, with excess returns calculated relative to the risk-free rate (𝑅𝐶𝑀−𝑅𝑓). 

The size factor is predicated on market capitalization, while the "value" factor is crafted using 

network valuation as the benchmark. Lastly, the momentum factor is based on the past two-week 

return (𝑟𝑟−2), chosen for its superior performance in zero-investment strategies.  

To evaluate the efficacy of these crypto-specific factors, we analyze cross-sectional zero-

investment premiums and conduct double-sorting on 25 Size – NTM ratio portfolios. Additionally, 

drawing from Huang et al. (2019), further research is undertaken to assess the fundamental 
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momentum of on-chain variables. 

Our paper proceeds as follows: Section 3.2 describes the sample data of the selected ERC-20 

tokens including the characteristics of the sample distribution. Section 3.3 presents the 

methodology of factors’ formations and zero-investment long-short strategies coupled with 

corresponding results. We conclude in Section 3.4. 

 

3.2. Data 

Our sample consists of all active ERC-20 utility tokens listed on Coingecko.com with an average 

market capitalization of over one million dollars from 2016 to the beginning of 2023. We collected 

data on all ERC-20 utility tokens available through the API provided by Coingecko.com. After 

excluding tokens with missing values and those with insufficient data periods, we retained a total 

of 1,020 tokens. 

Using the complete list of these 1,020 tokens, we further collected data on on-chain 

characteristics, including the dollar value of transactions, transaction counts, the number of unique 

receivers, the number of unique senders, and the total number of unique addresses, from the 

Ethereum blockchain scanner etherscan.io. The summary statistics of all variables, as presented in 

Table 1, indicate a high level of skewness. Therefore, we applied winsorization to the dataset at 

the 1% level to limit extreme values and mitigate the potential impact of outliers. 

The daily close price represents the last traded price at the end of the trading day and is 

commonly regarded as a reliable indicator of daily trading activity. We calculate daily returns 𝑟𝑖,𝑡
𝐷  

using the formula: 

𝑟𝑖,𝑡
𝐷 =

𝑝𝑖,𝑡 − 𝑝𝑖,𝑡−1

𝑝𝑖,𝑡−1

(1) 
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To mitigate volatility and noise, we further convert daily returns 𝑟𝑖,𝑡
𝐷  to weekly returns using 

the formula 

𝑟𝑖,𝑡
𝑊 = ∏(1 + 𝑟𝑖,𝑡

𝐷 ) − 1

𝑇

𝑡

(2) 

Given the continuous trading nature of cryptocurrencies, which operate 24/7, we have devised 

our own week structure based on consecutive trading days rather than traditional calendar weeks. 

We assign week numbers based on the initial trading day of each token and increment by 1 for 

every subsequent Monday. This approach aligns our "weeks" more closely with the trading 

dynamics of cryptocurrencies, mitigating the impact of irregularities introduced by conventional 

weekly boundaries.  

Market capitalization (MktCap) denotes the total market value of a cryptocurrency, calculated 

by multiplying the current token price by the total circulating supply. It serves as a crucial metric 

for evaluating the overall size of a token in the trading market. Daily trading volume (Volume) 

reflects the total value of transactions conducted within typically 24 hours, offering insights into 

market activity and liquidity levels.  

With assistance from the Ethereum blockchain scanner, we gather on-chain data such as 

transaction amount (TxAmt), transaction counts (TxCnt), and daily active unique addresses (DAU). 

Transaction amount represents the value of transactions in the native token of the involved smart 

contract. To provide a standardized measure of economic activity on the blockchain, we compute 

the dollar amount of transactions (TxUSD) by multiplying the transaction amount by the daily 

price.  

Expanding our analysis to include additional dimensions of on-chain economic activities, we 

introduce three fundamental characteristics. These encompass the ratio of the dollar amount of 
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transactions to the number of active unique addresses (TVU), the ratio of transaction counts to the 

number of active unique addresses (TCU), and the ratio of the dollar amount of transactions to 

transaction counts (TVC). These ratios offer insights into various aspects of the relationship 

between transactional volume, user engagement, and transaction efficiency.  

The relationship between firm characteristics and stock returns has been extensively explored 

in the stock market. Empirical studies have consistently shown that the cross-sectional pattern of 

stock returns can be exemplified by firm characteristics such as size, book-to-market ratio, and 

past returns (momentum). Fama and French (1993) posit that the correlation between these firm 

characteristics and their stock returns stems from size and book-to-market ratios serving as proxies 

for non-diversifiable factor risk. Employing a similar methodology, we aim to uncover the cross-

sectional relationship between token characteristics and weekly excess returns.  

Breakpoints for portfolio formation are determined using all tokens within the sample for the 

specified period. To ensure an adequate number of tokens in each portfolio, we divide the sample 

into five portfolios based on the 20th, 40th, 60th, and 80th percentiles as the portfolio breakpoints. 

At the conclusion of each week (t), tokens in the sample are assigned to one of the five portfolios 

by comparing their values with the percentile breakpoints. These sorted portfolios are constructed 

or rebalanced every Sunday and held without further trading for the ensuing week (t+1). 

Subsequently, one-week-ahead excess portfolio returns ( 𝑟𝑡+1 ) are computed as the outcome 

variable. 

 

3.3. Methodology and Results 

In this section, we outline the formation of long-short portfolios based on selected characteristics, 

aiming to determine whether these portfolios can generate significant abnormal returns during the 
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sample period. Using characteristic-based portfolio construction, we first create single-sorted long-

short portfolios and then extend this approach by employing a double-sorting technique. This 

allows us to more thoroughly capture interactions between different factors. Following the 

methodology of Fama and French (1995), we assess the explanatory power of these return 

predictors by testing their ability to account for excess returns in the portfolios. This approach 

provides a robust framework for evaluating whether the identified characteristics significantly 

contribute to explaining the cross-sectional variation in cryptocurrency returns. 

3.3.1. Size Quintile Portfolios 

The size effect has long been regarded as a significant anomaly to the classic Capital Asset Pricing 

Model (CAPM). This phenomenon was initially documented by Banz (1981) and Reinganum 

(1981). While some recent empirical studies suggest that firm size may not consistently yield a 

risk premium, it is still commonly regarded as a proxy for risks associated with low productivity 

and high financial leverage (Chan and Chen, 1991). In the cryptocurrency markets, the size effect 

has also been observed by Liu, Tsyvinski, and Wu (2022) based on a sample comprising over 

1,000 coins and tokens. In our study, we are particularly interested in evaluating the performance 

of the size effect within a sample exclusively composed of Ethereum-based utility tokens (ERC-

20). 

We refer the log value of market capitalization as size (𝑆𝑖𝑧𝑒). Table 2 displays the outcomes 

of weekly excess returns across size quintiles. Both value-weighted and equal-weighted weekly 

average returns exhibit a monotonically decreasing trend from the small size group to the large 

size group. The disparities in the average returns between the smallest and largest quintiles amount 

to 6.1% and 4.0% respectively, demonstrating statistical significance at the 1% level. This aligns 

with the findings of Chan and Chen (1988), indicating that size engenders a broad spread of 
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average returns. 

– Table 2 about here – 

 

3.3.2. Volume Quintile Portfolios  

We aim to explore another sorting variable: daily trading volume, which quantifies the daily 

trading volume in USD. Chordia, Subrahmanyam, and Anshuman (2000) regarded trading volume 

as a measure of liquidity, a notion further investigated in the cryptocurrency market by researchers 

such as Liu, Tsyvinski, and Wu (2022). The volume variable is indicative of token liquidity, where 

higher trading volume signifies greater liquidity and reduced exposure to liquidity-related risks.  

We construct quintile portfolios based on the log value of volume variable and present the 

time-series weekly excess returns in Table 3. The value-weighted returns consistently rise from 

the 1st quintile (low-volume portfolio) to the 5th quintile (high-volume portfolio). The average 

excess returns across different portfolios suggest that the low-volume portfolio outperforms the 

high-volume portfolio in terms of future returns.  

The findings outlined in Table 3 reveal that both value-weighted and equal-weighted weekly 

average excess returns decline from the lowest volume quintile portfolio to the highest quintile 

portfolio. The disparities in average returns between the lowest and highest quintiles amount to 

2.9% and 3.9% respectively, demonstrating significance at the 1% level. 

– Table 3 about here – 

3.3.3. Momentum Quintiles Portfolios  

Since Jegadeesh and Titman (1993) first observed the tendency for stocks that performed well in 

previous months to continue performing well in subsequent months, the momentum effect has 

garnered significant attention in financial markets. Investigating whether a similar phenomenon 
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exists in the cryptocurrency market is another key objective of this research.  

The results presented in Table 4 reveal that the past one-week (𝑟−1), two-week (𝑟−2), three-

week (𝑟−3), and four-week (𝑟−4) momentum quintile portfolios exhibit average excess returns that 

are nearly monotonic across the quintiles. All three momentum predictors demonstrate statistically 

significant positive returns for zero-investment strategies, where winners are longed, and losers 

are shorted. 

– Table 4 about here – 

3.3.4. Liquidity Quintile Portfolios  

One of the key assumptions of CAPM is that all securities are perfectly liquid. However, Amihud 

and Mendelson (1989) demonstrated that the level of liquidity, measured using the bid-ask spread, 

exhibits a positive cross-sectional relation with future stock returns after controlling for other 

related variables. In our study, we also employ the liquidity measure developed by Amihud (2002), 

which offers the advantage of requiring only return and trading volume data for calculation.  

This measure, which actually quantifies illiquidity, operates on the premise that higher values 

indicate lower liquidity. Its underlying concept is to estimate the extent to which returns are 

influenced by trading volume. If a security generates a certain absolute return from a large trading 

volume, it is relatively liquid. Conversely, if a security realizes a large absolute return on a small 

trading volume, it is deemed illiquid, as even a small volume of trading can substantially impact 

its price. The formula for illiquidity is defined as follows: 

𝐼𝑙𝑙𝑖𝑞𝑢𝑖𝑑𝑖𝑡𝑦𝑡 =
1

𝐷
∑

|𝑅𝑖,𝑑|

𝑉𝑜𝑙𝑢𝑚𝑒𝑖,𝑑

𝐷

𝑑=1

(3) 

In this formula, 𝑅𝑖,𝑑  represents the daily return of security 𝑖 , the denominator 𝑉𝑜𝑙𝑢𝑚𝑒𝑖,𝑑 

denotes the USD volume of security i traded at day d, and D represents the number of days used 
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as the estimation period. In our calculation, we use D=7 days, implying that the current illiquidity 

equals the average illiquidity of the previous 7 days.  

Table 5 presents the time-series average excess returns. Both the value-weighted and equal-

weighted excess returns of the low-liquidity quintile portfolio (I5) surpass those of the high-

liquidity quintile portfolio (I1). 

– Table 5 about here – 

3.3.5. On-Chain Quintile Portfolios  

In addition to market-related predictors, we have gathered data on three on-chain characteristics 

— namely, the dollar value of on-chain transactions (TxUSD), transaction counts (TxCnt), and the 

number of active unique addresses (DAU) from the Ethereum blockchain scanner. We then utilize 

the logarithm of these characteristics to construct quintile portfolios.  

Tables 6 to 8 reveal that the observed patterns are consistently and mostly monotonic, with 

average weekly excess returns declining from the lower quintile portfolios to the higher quintile 

portfolios. This implies that tokens exhibiting lower log values of on-chain characteristics tend to 

exhibit greater exposure to underlying risk factors and consequently show higher excess returns. 

We find that only the dollar-value transactions quintile portfolios demonstrate a significant value-

weighted return of 1.2% for the zero-investment strategy (see Table 6). However, when focusing 

on equally weighted returns we find that the dollar-value as well as count transactions and daily 

active user addresses quintile portfolios show a significant return of 2.7%, 1.5% and 1.2% return 

for the zero-investment strategies (see Tables 6 to 8) 

– Tables 6, 7 and 8 about here – 

To delve deeper into on-chain activities, we derive additional fundamental characteristics by 

formulating ratios that encompass various dimensions of on-chain economic activities. The ratio 



75 

 

of dollar amount of transactions over the number of active unique addresses (TVU) serves as an 

indicator of the average transaction value per active unique address, offering insights into the 

average economic activity or transaction value associated with each user. A higher ratio may 

indicate more substantial economic activity per user, while a lower ratio could suggest smaller 

transaction sizes but potentially higher user engagement. 

Similarly, the ratio of transaction count over the number of active unique addresses (TCU) 

reflects the average number of transactions per active unique address, providing an indication of 

the level of transactional activity per user. A higher ratio may imply more active participation from 

each user, while a lower ratio could suggest less frequent interaction. Lastly, the ratio of dollar 

amount of transactions over transaction counts offers insights into the efficiency or size of 

transactions on the network. A higher ratio may indicate larger individual transactions, whereas a 

lower ratio could suggest smaller but possibly more frequent transactions. By creating these 

normalized ratios, we aim to contextualize raw on-chain data by considering the number of active 

unique addresses, thereby enhancing our understanding of users' economic activities and behaviors 

in relation to specific on-chain metrics. 

Upon constructing quintile portfolios based on these three ratios, we observe consistent 

monotonic patterns in excess portfolio returns across Tables 9, 10, and 11. Notably, average 

weekly excess returns demonstrate a discernible decline across quintile portfolios, indicating a 

consistent inverse relationship between the analyzed ratios and return performance over weekly 

intervals. With the exception of TCU, both TVU and TVC ratios exhibit statistically significant 

value-weighted long-short returns. 

– Tables 9, 10 and 11 about here – 
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3.3.6. Quasi Value Quintile Portfolios  

In traditional asset pricing factor models, the value factor holds significant importance in 

fundamental valuation. It serves to assess whether the market value of an asset is accurately 

reflected or mispriced by the market. Unlike traditional assets, cryptocurrencies lack conventional 

cash flows, posing a challenge in determining their fair value.  

To address this challenge, Hubrich (2017) introduces a quasi-value factor, which is the ratio 

of on-chain dollar amount of transactions (V) to the current market capitalization (M). This ratio 

leverages the dollar value of on-chain transactions as a potential proxy for the actual economic 

activity facilitated by the blockchain. Hubrich contends that the "fair" value could be inferred from 

the value of daily on-chain transactions. Moreover, the time-series behavior of VTMs for sample 

cryptocurrencies suggests frequent mean-reverting, indicating market tendencies to under- or 

overestimate their "fair values."  

In our study, we replicate this cross-sectional excess predictor using on-chain transaction 

volume data collected from etherscan.io. Tokens with high VTM ratios are perceived as 

undervalued, with higher expected returns compared to tokens with low VTM ratios. We establish 

breakpoints based on the z-score of VTM to construct quintile portfolios. Surprisingly, the results 

in Table 12 deviate from expectations, with return differences between high and low quintiles 

proving insignificant. 

– Table 12 about here – 

Network economics plays a pivotal role in understanding the adoption dynamics of 

technologies such as the internet and social media. Sarnoff’s law posits that the value of a broadcast 

network is directly proportional to its viewership, while Metcalfe’s law suggests a nonlinear 

increase in network value as more users join. Reed (2001) expands on this concept by highlighting 

the exponential growth in network utility, surpassing mere user or connection count.  
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Blockchain technology offers a decentralized communication model, facilitating peer-to-peer 

interactions without central servers. ERC-20 tokens, adhering to the "ERC20" scripting standard, 

operate exclusively within this framework. Cong, Li, and Wang (2018) develop a dynamic model 

of cryptocurrencies, establishing a positive relationship between user base and token price. 

Increased user base enhances transaction liquidity, elevating platform utility and consequently, 

token value.  

Drawing on the network effect theorem, we employ the number of active addresses as a proxy 

for "fair value," constructing a value factor represented by the ratio of active addresses (N) to 

market capitalization (M). Tokens with promising prospects, evidenced by high market value per 

active address and low NTM ratios, are expected to yield lower returns compared to tokens with 

high NTM ratios indicating poorer prospects.  

The results in Table 13 align with expectations. Both value- and equal-weighted analyses 

demonstrate lower expected excess returns for low NTM ratio quintiles compared to high ratio 

quintiles, with significant positive returns observed for zero-investment strategies. Results from 

double-sorting portfolios in Table 14 further corroborate these findings, indicating consistent 

patterns across NTM and Size quintiles. This suggests that size and NTM ratio serve as relatively 

independent proxies for underlying state variables in the crypto market. 

– Tables 13 and 14 about here – 

3.3.7. Fundamental Momentum  

Cochrane (2011) highlights the potential of expected fundamentals in forecasting future stock 

returns, grounded in the idea that anticipated fundamentals significantly shape asset prices and, 

consequently, expected returns. As future expected fundamentals 𝐹𝑖,𝑡+1  remain unobservable, 

historical fundamental values and their trends, captured by moving averages (MAs), serve as 
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proxies for these future expectations.  

The incorporation of MAs enables the model to capture historical momentum in fundamentals, 

potentially containing insights into future expected values. While historical values themselves may 

not directly impact expected returns, they are believed to reflect aspects of unobservable future 

expectations. Thus, utilizing MAs facilitates the integration of both current fundamental value and 

its historical momentum, offering a comprehensive representation of expected fundamentals and 

their potential influence on expected returns.  

Prior financial literature often emphasizes price momentum (Huang et al., 2019), which 

focuses on historical price movements' ability to forecast future stock returns. This concept 

suggests that stocks demonstrating strong past performance are likely to continue performing well, 

and vice versa. In contrast, fundamental momentum pertains to historical patterns or momentum 

observed in a stock's fundamental values.  

The rationale behind fundamental momentum lies in the belief that historical fundamental 

patterns may contain insights into future expected fundamentals, subsequently impacting expected 

returns. In our study, we adopt the methodology developed by Huang et al. (2019) to investigate 

the predictive power of token fundamentals. 

Cochrane (2011) posits that expected fundamentals play a significant role in predicting future 

stock returns. The relationship is expressed as: 

𝐸𝑡[𝑟𝑖,𝑡+1] = 𝛼𝑖,𝑡+1 + 𝛽𝐸𝑡[𝐹𝑖,𝑡+1] (4) 

where 𝐸𝑡[𝐹𝑖,𝑡+1] represents the market's expectation regarding future fundamentals, and 𝛽 is the 

sensitivity coefficient of expected returns to expected fundamentals. The aim is to estimate 

𝐸𝑡[𝑟𝑖,𝑡+1] by integrating current and past fundamental information. 

The term 𝐸𝑡[𝐹𝑖,𝑡+1]  captures the market's expectation about future fundamental changes, 
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albeit unobservable. To address this, we follow Huang et al. (2019) by using the moving average 

(MA) of historical fundamentals as a proxy for 

𝐸𝑡[𝐹𝑖,𝑡+1] = 𝑀𝐴𝑖,𝑡,𝐿     𝑤. 𝑟. 𝑡.   𝑀𝐴𝑖,𝑡,𝐿 =
𝐹𝑖,𝑡 + 𝐹𝑖,𝑡−1 + ⋯ + 𝐹𝑖,𝑡−𝐿+1

𝐿
(5) 

The methodology indirectly incorporates information about future expectations by leveraging 

historical trends as proxies, facilitating a comprehensive assessment of factors influencing 

expected returns. 

To ascertain the appropriate value for L, we conduct tests across multiple short-term (L=1, 2, 

4) and long-term (L=26, 52, 104 weeks) momentum measures. Additionally, we incorporate 

various token fundamentals, such as Dollar Value Transactions (TxUSD), Counts of Transactions 

(TxCnt), Daily Active Unique Address (DAU), and other blockchain-related metrics. These metrics 

offer insights into the activity level and efficiency of the blockchain ecosystem, positioning our 

research at the forefront of fundamental momentum analysis for tokens. 

In our methodology, we estimate β through cross-sectional regressions of each token return 

𝑟𝑖,𝑡 on both short-term (ST) and long-term (LT) fundamental momentums: 

𝑟𝑖,𝑡(𝑆𝑇) = 𝛼𝑡
𝑓

+ ∑ 𝛽𝐿,𝑡
𝑓

𝑀𝐴𝑖,𝑡−1,𝐿
𝑓

𝐿=1,2,4

+ 𝜀𝑖,𝑡 (6) 

and 

𝑟𝑖,𝑡(𝐿𝑇) = 𝛼𝑡
𝑓

+ ∑ 𝛽𝐿,𝑡
𝑓

𝑀𝐴𝑖,𝑡−1,𝐿
𝑓

𝐿=26,52,104

+ 𝜀𝑖,𝑡 (7) 

The coefficients 𝛽𝐿,𝑡
𝑓

 represent the impact of lagged fundamental variables 𝑀𝐴𝑖,𝑡−1,𝐿
𝑓

 on current 

token returns at time 𝑡. These coefficients are estimated using data up to time 𝑡−1, without 

explicitly including the current fundamental value at time 𝑡. 

In the next step, these coefficients are used to forecast the expected return for the next period, 
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𝐸𝑡[𝐹𝑖,𝑡+1], represented by Token’s Fundamental Implied Return 𝑇𝐹𝐼𝑅𝑖,𝑡
𝑓

: 

𝑇𝐹𝐼𝑅𝑖,𝑡
𝑓

= ∑ 𝐸𝑡[𝛽𝐿,𝑡+1
𝑓

]

𝐿=1,2,4

𝑀𝐴𝑖,𝑡,𝐿
𝑓 (8) 

and 

𝑇𝐹𝐼𝑅𝑖,𝑡
𝑓

= ∑ 𝐸𝑡[𝛽𝐿,𝑡+1
𝑓

]

𝐿=26,52,104

𝑀𝐴𝑖,𝑡,𝐿
𝑓 (9) 

As true coefficients for time 𝑡+1 are not available, we employ estimated coefficients as proxies. 

This forecasting approach leverages information up to time 𝑡−1, effectively addressing concerns 

related to future information usage and avoiding look-forward biases. Subsequently, we construct 

long-short quintile portfolios based on TFIR to assess risk premiums. 

The results, presented in Table 15, highlight that among the short-term fundamental implied 

returns, only the historical trend of the fundamental TVC (Dollar Amount of Transactions per 

Transaction Count) exhibits both monotonic returns and a significant long-short premium within 

quintile portfolios. In contrast, findings from Table 16 concerning long-term fundamental implied 

returns unveil divergent behavior for DAU (Daily Active Unique Address) and TCU (Transfer 

Count per Unique Address) compared to short-term fundamental momentum. Specifically, DAU 

and TCU demonstrate opposing monotonic returns, with a negative long-short premium observed 

when longing high fundamental quintile portfolios and shorting low quintile portfolios. 

– Table 15 and 16 about here – 

3.3.8. Factors Returns and Factor Regressions 

One of the objectives of this study is to evaluate the performance of cryptocurrency-specific 

factors, which correspond to the most extensively researched pricing factors in the equity market, 

including size, value, and momentum factors. Following the framework outlined by Fama and 

French (2015), we derive factors through independent 2×3 sorts by intersecting size with quasi 
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value (NTM) and momentum, respectively. 

Each Sunday of week t, all tokens are divided into two groups based on size—small (S) and 

big (B)—and further classified independently into three groups based on volume—low (L), median 

(M), and high (H). By taking intersections, we create six Size–NTM portfolios. Weekly value-

weighted portfolio returns are then computed for the subsequent week t+1, and the portfolios are 

rebalanced on the following Sunday of week t+1. Subsequently, the Network/ME factor (TNTM) 

return is calculated as the average of the returns of the two high NTM ratio portfolios (SH, BH) 

minus the average of the returns of the two low NTM ratio portfolios (SL, BL): 

𝑇𝑁𝑇𝑀 =
𝑆𝐻 + 𝐵𝐻

2
−

𝑆𝐿 + 𝐵𝐿

2
(10) 

Finally, the size factor (TSMB) is the average return of six small portfolios minus the average 

return of the six big portfolios: 

𝑇𝑆𝑀𝐵 =
𝑆𝐿 + 𝑆𝑀 + 𝑆𝐻 + 𝑆𝐿 + 𝑆𝑀 + 𝑆𝑊

6
−

𝐵𝐿 + 𝐵𝑀 + 𝐵𝐻 + 𝐵𝐿 + 𝐵𝑀 + 𝐵𝑊

6
(11) 

Table 17 presents the summary statistics of the time-series factor returns. It is evident that all three  

factors—TSMB, TNTM, and TMOM—exhibit statistically significant results at conventional 

levels, further affirming their significance in our analysis. 

– Table 17 about here – 

 

3.3.9. Testing Long-Short Strategy Premiums 

In this sub-section, we assess the efficacy of the four crypto-specific factors in pricing seven cross-

sectional zero-investment strategies. Our analysis underscores the pivotal role of the size factor 

(TSMB) in mitigating pricing errors across multiple long-short strategies (see Table 18). 

Specifically, the incorporation of the size factor leads to insignificant alphas for strategies 
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involving Volume, Illiquidity, and three on-chain variables (TxUSD, TVU, and TVC).  

The positive and significant coefficients associated with the size factor (TSMB) and the 

"value" factor (TNTM) indicate that tokens with low trading volume and liquidity issues tend to 

exhibit smaller size and distress, as indicated by the NTM ratio. However, the coefficients of TNTM 

are found to be insignificant for both volume and illiquidity premiums (see Table 18). 

While most coefficients of the crypto-market factor (𝑅𝐶𝑀 − 𝑅𝑓)  in Table 18 are either 

insignificant or only marginally significant, this outcome can be attributed to the zero-investment 

strategy's effectiveness in eliminating the common component related to the entire market through 

the long fifth quintile portfolio and short first quintile portfolio.  

Despite the inclusion of the four-factor model, it falls short of fully explaining the return 

premiums of the other five strategies. Particularly noteworthy is the momentum factor (TMOM), 

which demonstrates no pricing power for the size strategy. Despite highly significant coefficients 

in the regressions of all momentum strategies, it fails to eliminate pricing errors and render the 

alphas insignificant. This disparity in results may potentially be attributed to extreme values, 

particularly in the early sample period when the limited number of tokens in each quintile portfolio 

led to less diversified portfolios. 

– Table 18 about here – 

3.3.10. Testing 25 Size-NTM Portfolios 

In this sub-section, we investigate whether the three factors established in the previous section 

adequately price all the excess returns of the 25 Size-NTM portfolios. Following the approach 

outlined by Fama and French (1996), we conduct regressions of the time-series portfolios’ excess 

returns on the returns of factor mimicking portfolios. If the factors effectively capture the expected 

returns of portfolios, the time-series regression intercepts should approximate 0.  
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Our regression analysis aims to ascertain whether the risk factors formulated in the previous 

section encapsulate the cross-sectional variation of the ERC-20 utility tokens’ average excess 

returns. In Table 19, we present the results of the regression model (12) for the 25 Size – NTM 

portfolios on the broad cryptocurrency market excess return.  

𝑅(𝑡) − 𝑅𝑓(𝑡) = 𝑎 + 𝑏[𝑅𝑀(𝑡) − 𝑅𝑓(𝑡)] + 𝑒(𝑡) (12) 

The highly significant coefficient values of b underscore a robust explanatory power of the 

cryptocurrency market factor on the LHS portfolios. However, despite this, the market factor 

leaves certain variations in portfolio excess returns unexplained, as evidenced by the significant 

values of most intercepts. For instance, the portfolio with the smallest size and highest NTM ratio 

exhibits a notably significant intercept of 11.6% with a t-statistic of 8.13. 

– Table 19 about here – 

By incorporating the size factor (TSMB), “value” factor (TNTM), and momentum factor 

(TMOM), we employ the four-factor regression model (13) for all 25 portfolios and present the 

results in Table 20.  

𝑅(𝑡) − 𝑅𝑓(𝑡) = 𝑎 + 𝑏[𝑅𝑀(𝑡) − 𝑅𝑓(𝑡)] + 𝑠𝑇𝑆𝑀𝐵(𝑡) + 𝑛𝑇𝑁𝑇𝑀(𝑡) + 𝑚𝑇𝑀𝑂𝑀(𝑡) + 𝑒(𝑡) (13) 

Most portfolios exhibit significant size factor coefficients, denoted as s, and “value” factor 

coefficients, denoted as n. As anticipated, portfolios in the smaller size groups (𝑆1, 𝑆2 and 𝑆3) tend 

to display higher and positive size coefficients compared to those in the larger size groups (𝑆4 and 

𝑆5), reflecting the greater exposure of the smaller size portfolios to the size factor. Similarly, given 

that high NTM ratio portfolios exhibit higher exposure to the “value” factor than low NTM ratio 

portfolios, we observe a growth pattern of “value” factor coefficients from the low NTM quintile 

to the high quintile.  

Upon comparing the intercepts in Table 20 with those in Table 19, it becomes evident that the 
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majority of intercepts in Table 20 are insignificant. Moreover, with higher average 𝑅2 values and 

lower Root MSEs, the four-factor model demonstrates superior pricing power on the 25 Size-NTM 

portfolios compared to the one-factor model. However, some portfolios in the small size and high 

NTM ratio groups still exhibit significant intercepts.  

– Table 20 about here – 

3.4. Conclusion  

This research paper delves into the intricate landscape of cryptocurrencies, specifically focusing 

on the distinctions between crypto-coins and crypto-tokens, with a primary emphasis on ERC-20 

utility tokens within the Ethereum blockchain. By examining a comprehensive set of 19 return 

predictors — encompassing market-related variables, on-chain activity metrics, and quasi-value 

proxies — this study sheds light on the cross-sectional return patterns in cryptocurrency markets.  

The paper introduces a novel pricing-factor model inspired by Fama and French (1996), 

tailored to the unique characteristics of cryptocurrencies. Notably, the quasi-value factors, VTM 

and NTM, stand out as innovative approaches to capture the intrinsic value of tokens, shedding 

light on the economic activity facilitated by blockchain technology. Furthermore, the research 

provides a robust methodology, employing a zero-investment strategy and evaluating the 

performance of crypto-specific factors through cross-sectional zero-investment premiums and 

double-sorting portfolios.  

Our findings reveal several return predictors that exhibit statistically significant long-short 

premiums. Notably, size, volume, and liquidity predictors display consistent and significant 

premiums across quintile portfolios, underscoring their importance in explaining cryptocurrency 

returns. Among the eight momentum predictors analyzed, only the past two-week, three-week, and 

four-week returns demonstrate significant long-short strategies, highlighting the short-term nature 
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of momentum effects in cryptocurrency markets  

For the quasi-value predictors serving as proxies for intrinsic value, while the VTM-based 

portfolios yield insignificant differences between high and low quintiles, the NTM ratio emerges 

as a robust predictor, producing significant positive returns in zero-investment strategies and 

maintaining consistency across double-sorting portfolios based on size and NTM. These findings 

suggest that network activity, as captured by on-chain metrics, plays a critical role in 

cryptocurrency valuation. 

Building on these predictors, we develop crypto-specific factors, including the crypto-market 

factor, size factor (TSMB), quasi-value factor (TNTM), and momentum factor (TMOM), to 

explain the cross-sectional variation in token returns. The four-factor model demonstrates 

significant explanatory power, particularly for the size and NTM factors, as evidenced by the 

regression tests on long-short strategy premiums and 25 size-NTM portfolios. The inclusion of 

size and quasi-value factors significantly reduces pricing errors for strategies involving volume, 

illiquidity, and on-chain metrics, while the momentum factor exhibits limited pricing power, 

particularly for the size-based strategies. 

Empirical results from the 25 size-NTM portfolios further validate the model, with most 

intercepts becoming insignificant upon incorporating the size, NTM, and momentum factors, 

thereby enhancing the model’s pricing accuracy. However, some portfolios, particularly those in 

the small size and high NTM ratio groups, continue to display significant intercepts, indicating 

potential areas for future refinement. 

In summary, this chapter provides empirical evidence that market-related predictors, on-chain 

activity metrics, and quasi-value proxies are critical in deciphering cryptocurrency returns. The 

developed crypto-specific factors, particularly size and NTM, offer substantial explanatory power 
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for cross-sectional return variations, contributing to the broader asset pricing literature in digital 

finance. These findings not only enhance our understanding of cryptocurrency pricing mechanisms 

but also offer a robust framework for future research exploring the dynamic interplay between 

market fundamentals and blockchain-based economic activities. 
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Table 3. 1: Summary Statistics for Ethereum-based tokens (ERC-20) Utility Tokens 

This table provides a comprehensive overview of summary statistics for a sample comprising 1,020 ERC-20 utility tokens. Encompassing data from 2016 to 2022, 

inclusive, the sample includes ERC-20 tokens with market values exceeding 1 million. Panel A presents the annual mean, standard deviation (Std) and median for 

the market-related variables: 𝑀𝑘𝑡𝐶𝑎𝑝 (market capitalization in millions) and 𝑉𝑜𝑙𝑢𝑚𝑒 (trading volume in millions); Panel B presents the annual summary statistics 

including mean, standard deviation (Std) and median for the three on-chain variables: 𝑇𝑥𝑈𝑆𝐷 (dollar value of transactions in millions), 𝑇𝑥𝐶𝑛𝑡 (transaction counts) 

and 𝐷𝑈𝐴 (unique active addresses). Panel C presents a more complete summary statistics for both market-related and on-chain variables for the entire sample 

period. The summary statistics includes the mean (mean), standard deviation (Std), skewness (skew), kurtosis (kurt), minimum (min), 5th percentile (5%), 25th 

percentile (25%), median (median), 75th percentile (75%), 95th percentile (95%), and maximum (max) values. The variables also include 𝑟𝐷 (daily returns in 

percentage) and 𝑟𝑊 (weekly returns in percentage). 

 

Panel A 

Year Number of Tokens 
MktCap (Millions) Volume (Millions) 

Mean Std Median Mean Std Median 

2016 7 10.61 7.82 8.56 0.07 0.07 0.06 

2017 77 105.65 123.44 69.62 4.90 8.86 1.86 

2018 184 79.04 152.09 22.65 4.76 11.64 0.88 

2019 233 46.66 221.50 6.97 5.39 19.32 0.69 

2020 423 60.96 255.51 8.07 12.35 57.25 0.92 

2021 831 291.86 2233.99 33.46 28.12 137.12 1.73 

2022 1015 181.36 1776.54 14.80 12.10 63.20 0.56 

2023 1015 127.12 1465.22 7.90 5.73 32.15 0.21 
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Panel B 

Year Number of Tokens 𝑻𝒙𝑼𝑺𝑫 (Millions) 𝑻𝒙𝑪𝒏𝒕 DUA 

  Mean Std Median Mean Std Median Mean Std Median 

2017 72 3.47 4.82 0.91 551 704 391 447 537 309 

2018 180 1.15 2.21 2.30 220 394 103 155 251 84 

2019 260 0.66 2.30 0.36 183 557 52 93 215 37 

2020 474 22.41 398.94 0.08 428 1149 94 194 498 61 

2021 891 16.22 157.23 0.28 350 1231 95 197 753 63 

2022 1,014 3.73 26.99 1.18 222 2056 35 111 1030 25 

2023 971 0.91 5.65 0.22 204 3086 21 110 1558 16 

Panel C 

 Number of Tokens Mean Std Skew Kurt Min Q5 Q25 Median Q75 Q95 Max 

𝒓𝑫 1020 0.13 0.74 8.63 153.75 -2.53 -0.62 -0.16 0.10 0.32 0.94 14.69 

𝒓𝑾 1020 0.62 3.65 1.47 10.53 -16.85 -4.43 -1.30 0.52 2.05 6.43 31.12 

MktCap (Millions) 1020 139.96 849.73 20.33 516.64 0.06 1.37 6.38 18.51 62.54 430.05 23058.52 

Volume (Millions) 1020 13.63 58.39 9.13 103.15 0.00 0.03 0.26 1.02 5.15 47.70 891.07 

TxUSD (Millions) 1020 7.87 98.65 29.80 929.67 0.00 0.02 0.15 0.54 1.79 18.12 3099.41 

TxCnt 1020 286 2023 28 833 0 4 24 68 180 831 61991 

DAU 1020 149 1028 28 841 0 3 17 43 108 425 31553 
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Table 3. 2: Size Quintile Portfolios 

This table presents the time-series averages of weekly value-weighted and equal-weighted excess returns for all size 

(log value of Market Capitalization) quintile portfolios throughout the entire sample period from 2016 to 2022, along 

with the return differences obtained by longing the small size portfolio and shorting the large size portfolio. Every 

Sunday, tokens are reallocated to five size groups (from small to big), with each group being held for one week. 

Statistical significance levels are denoted by ***, **, and *, indicating significance at the 1%, 5%, and 10% levels, 

respectively. 
   Small 2 3 4 Large Small - Large 

Size Portfolios        

Value Weighted Mean 0.057∗∗∗ 0.012 0.012 0.007 -0.004 0.061∗∗∗ 
  t-value (5.66) (1.44) (1.40) (0.84) (-0.56) (8.15) 
         

Equally Weighted Mean 0.022∗∗ −0.015∗ -0.012 -0.013 −0.018∗∗ 0.040∗∗∗ 
  t-value (2.55) (-1.93) (-1.48) (-1.58) (-2.31) (6.24) 

 

Table 3. 3: Volume Quintile Portfolios 

This table presents the time-series averages of weekly value-weighted and equal-weighted excess returns for all 

volume (log value of trading volume) quintile portfolios throughout the entire sample period from 2016 to 2022. The 

results show the time-series averages of weekly value-weighted and equal-weighted returns and the return difference 

by long low volume portfolio and short high-volume portfolio. ***, **, and * indicate statistical significance at the 

1%, 5%, and 10% level, respectively. 
   Low 2 3 4 High Low - High 

Volume Portfolios        

Value Weighted Mean 0.020∗∗ 0.010 0.008 0.003 -0.009 0.029∗∗∗ 

  t-value (2.11) (1.18) (0.94) (0.42) (-1.22) (3.93) 

         

Equally Weighted Mean 0.014∗ -0.004 -0.007 −0.013∗ −0.025∗∗∗ 0.039∗∗∗ 

  t-value (1.69) (-0.45) (-0.89) (-1.72) (-3.20) (6.09) 
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Table 3. 4: Momentum Quintile Portfolios 

This table reports the univariate portfolio analysis results based on multiple momentum strategies including past one-

week 𝑟−1, two-week 𝑟−2, three-week 𝑟−3, four-week 𝑟−4, eight-week 𝑟−8, half-year (26 weeks 𝑟−26), one-year (52 

weeks 𝑟−52) and two-year (104 weeks 𝑟−104) returns. The time-series of weekly value-weighted and equal weighted 

returns are presented from Panel A to Panel H, respectively. The return differences by long winner portfolio and short 

loser portfolio are reported in the last column. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% 

level, respectively.  

Momentum Portfolios Loser 2 3 4 Winner 
Winner -  

Loser 

Panel A: One Week       

Value-Weighted 
Mean -0.005 -0.003 0.003 0.007 0.006 0.011 

t-value (-0.60) (-0.41) (0.39) (0.80) (0.74) (1.46) 

Panel B: Two Weeks       

Value Weighted 
Mean -0.001 0.001 -0.001 0.003 0.016∗ 0.017∗∗ 

t-value (-0.16) (0.07) (-0.08) (0.32) (1.76) (2.15) 

Panel C: Three Weeks       

Value Weighted 
Mean -0.004 -0.002 0.006 0.001 0.012 0.016∗∗ 

t-value (-0.48) (-0.22) (0.68) (0.16) (1.36) (2.18) 

Panel D: One Month       

Value Weighted 
Mean -0.002 -0.005 0.002 0.001 0.013 0.016∗∗ 

t-value (-0.30) (-0.65) (0.29) (0.11) (1.49) (2.16) 

Panel E: Two Months       

Value Weighted 
Mean 0.005 0.000 0.009 -0.001 0.003 -0.003 

t-value (0.65) (0.01) (1.06) (-0.15) (0.31) (-0.34) 

Panel F: Half-Year       

Value Weighted 
Mean 0.000 0.000 -0.012 -0.001 0.000 0.000 

t-value (-0.02) (0.03) (-1.52) (-0.10) (-0.01) (0.02) 

Panel G: One Year       

Value Weighted 
Mean -0.006 -0.008 -0.006 0.003 -0.007 -0.002 

t-value (-0.77) (-0.92) (-0.63) (0.25) (-0.81) (-0.19) 

Panel H: Two Years       

Value Weighted 
Mean -0.011 -0.003 -0.006 −0.017∗∗ -0.011 0.000 

t-value (-1.33) (-0.31) (-0.68) (-2.11) (-1.33) (-0.05) 
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Table 3. 5: Illiquidity Quintiles Portfolios 

This table reports the mean of time-series weekly returns of illiquidity quintiles. The value of illiquidity equals to the 

results of the equation: 𝐼𝑙𝑙𝑖𝑞𝑢𝑖𝑑𝑖𝑡𝑦𝑡 =
1

𝐷
∑

|𝑅𝑖,𝑑|

𝑉𝑜𝑙𝑢𝑚𝑒𝑖,𝑑

𝐷
𝑑=1 . The results include the time-series averages of weekly value-

weighted and equal-weighted excess returns for all illiquidity quintile portfolios over the entire sample period from 

2016 to 2022 and the return differences by long low illiquidity portfolio (I5) and short high illiquidity (or 

liquidity) portfolio (I1). On every Sunday, all ERC-20 tokens are re-allocated to five illiquidity groups (Low to High). 

Each group is held for one week. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% level, 

respectively. 
   Liquidity(I1) I2 I3 I4 Illiquidity(I5) I5 – I1 

Illiquidity Portfolios       

Value Weighted 
Mean 0.004 0.004 0.011 0.014 0.027∗∗∗ 0.022∗∗∗ 

t-value (0.55) (0.51) (1.32) (1.58) (2.80) (3.27) 
         

Equally Weighted 
Mean 0.013∗ 0.010 0.013∗ 0.018∗∗ 0.044∗∗∗ 0.031∗∗∗ 

t-value (1.76) (1.31) (1.75) (2.34) (4.89) (4.72) 

 

Table 3. 6: Dollar Value Transactions (TxUSD) 

This table reports the univariate portfolio analysis results of log value of on-chain dollar-value transactions (TxUSD). 

The results show the time-series averages of weekly value-weighted and equal-weighted returns and the return 

difference by long the low transaction quintile portfolio (the 1st quintile) and short the high transaction quintile 

portfolio (the 5th quintile). ***, **, and * indicate statistical significance at the 1%, 5%, and 10% level, respectively.   
   Low 2 3 4 High Low - High 

Ln (TxUSD)        

Value Weighted 
Mean 0.009 0.004 0.007 0.006 -0.004 0.012∗∗ 

t-value (1.07) (0.44) (0.73) (0.66) (-0.45) (2.11) 
         

Equally Weighted 
Mean 0.030∗∗∗ 0.019∗∗ 0.019∗∗ 0.013 0.003 0.027∗∗∗ 

t-value (3.80) (2.38) (2.12) (1.54) (0.40) (5.72) 

 

Table 3. 7: Counts of Transactions (TxCnt) 

This table reports the univariate portfolio analysis results based on log value of the counts of on-chain transactions 

(TxCnt). The results show the time-series averages of weekly value-weighted and equal-weighted returns and the 

return difference by long the low transaction quintile portfolio (the 1st quintile) and short the high transaction quintile 

portfolio (the 5th quintile). ***, **, and * indicate statistical significance at the 1%, 5%, and 10% level, respectively. 
   Low 2 3 4 High Low - High 

Ln (TxCnt)        

Value Weighted 
Mean 0.003 0.008 0.003 -0.001 -0.002 0.005 

t-value (0.33) (0.90) (0.38) (-0.12) (-0.26) (0.85) 
         

Equally Weighted 
Mean 0.022∗∗∗ 0.024∗∗∗ 0.020∗∗ 0.012 0.007 0.015∗∗∗ 

t-value (2.93) (2.95) (2.21) (1.40) (0.85) (3.31) 
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Table 3. 8: Daily Active Unique Address (DAU) 

This table reports the univariate portfolio analysis results based on log value of the number of daily active unique 

address (DAU). The results show the time-series averages of weekly value-weighted and equal-weighted returns and 

the return difference by long the low transaction quintile portfolio (the 1st quintile) and short the high transaction 

quintile portfolio (the 5th quintile). ***, **, and * indicate statistical significance at the 1%, 5%, and 10% level, 

respectively. 

      Low 2 3 4 High Low - High 

𝐥𝐧 𝑫𝑨𝑼               

Value Weighted 
Mean 0.007 -0.001 0.005 -0.003 -0.001 0.001 

t-value (0.86) (-0.12) (0.60) (-0.36) (-0.18) (1.50) 
         

Equally Weighted 
Mean 0.022∗∗∗ 0.019∗∗ 0.021∗∗ 0.010 0.010 0.012∗∗ 

t-value (3.02) (2.32) (2.30) (1.16) (1.25) (2.46) 

 

Table 3. 9: TVU Quintile Portfolios 

This table reports the univariate portfolio analysis results of TVU (Dollar Amount of Transactions/Number of Active 

Unique Addresses). The results show the time-series averages of weekly value-weighted and equal-weighted returns 

and the return difference by long the low TVU quintile portfolio (the 1st quintile) and short the high TVU quintile 

portfolio (the 5th quintile). ***, **, and * indicate statistical significance at the 1%, 5%, and 10% level, respectively.   

      Low 2 3 4 High Low - High 

TVU               

Value Weighted 
Mean 0.008 0.006 0.012 -0.002 -0.004 0.012∗∗ 

t-value (0.94) (0.71) (1.26) (-0.19) (-0.54) (2.09) 

                  

Equally Weighted 
Mean 0.031∗∗∗ 0.021∗∗∗ 0.018∗∗ 0.008 0.004 0.028∗∗∗ 

t-value (3.84) (2.69) (2.02) (1.00) (0.47) (5.55) 

 

Table 3. 10: TCU Quintile Portfolios 

This table reports the univariate portfolio analysis results of TCU (Transaction Counts/Number of Active Unique 

Addresses). The results show the time-series averages of weekly value-weighted and equal-weighted returns and the 

return difference by long the low TCU quintile portfolio (the 1st quintile) and short the high TCU quintile portfolio 

(the 5th quintile). ***, **, and * indicate statistical significance at the 1%, 5%, and 10% level, respectively. 

      Low 2 3 4 High Low - High 

TCU               

Value Weighted 
Mean 0.003 0.006 0.000 -0.006 0.000 0.003 

t-value (0.37) (0.67) (-0.02) (-0.71) (-0.01) (0.48) 

                  

Equally Weighted 
Mean 0.021∗∗∗ 0.025∗∗∗ 0.018∗∗ 0.011 0.008 0.013∗∗ 

t-value (2.81) (2.87) (2.04) (1.44) (0.98) (2.43) 
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Table 3. 11: TVC Quintile Portfolios 

This table reports the univariate portfolio analysis results of TVC (Dollar Amount of Transactions/Transaction 

Counts). The results show the time-series averages of weekly value-weighted and equal-weighted returns and the 

return difference by long the low TVC quintile portfolio (the 1st quintile) and short the high TVC quintile portfolio (the 

5th quintile). ***, **, and * indicate statistical significance at the 1%, 5%, and 10% level, respectively. 
   Low 2 3 4 High Low - High 

TVC        

Value Weighted 
Mean 0.011 0.010 0.011 0.008 -0.007 0.017∗∗∗ 

t-value (1.20) (1.08) (1.26) (0.73) (-0.84) (3.11) 
         

Equally Weighted 
Mean 0.033∗∗∗ 0.021∗∗ 0.015∗ 0.012 0.004 0.029∗∗∗ 

t-value (3.97) (2.55) (1.85) (1.25) (0.53) (6.29) 

 

Table 3. 12: VTM Quintile Portfolios 

This table reports the univariate portfolio analysis results of VTM variable, which is defined as the z-score of the ratio 

of the trailing 7-day average of dollar-valued on-chain transactions current market capitalization. The results include 

the time-series averages of weekly value-weighted and equal-weighted excess returns for all the VTM quintile 

portfolios over the entire sample period from 2016 to 2022 and the return differences by long low VTM portfolio and 

short high VTM portfolio. Every Sunday, all ERC-20 tokens are re-allocated to five VTM groups (Low to High). Each 

group is held for one week. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% level, respectively.  
   Low 2 3 4 High High - Low 

VTM         

Value Weighted 
Mean 0.002 0.001 -0.002 0.003 -0.005 -0.007 

t-value (0.19) (0.09) (-0.30) (0.41) (-0.64) (-1.23) 
         

Equally Weighted 
Mean -0.007 -0.004 -0.001 -0.003 -0.010 -0.003 

t-value (-0.91) (-0.46) (-0.10) (-0.32) (-1.23) (-0.77) 

 

Table 3. 13: NTM Quintile Portfolios 

This table reports the univariate portfolio analysis results of the z-score of NTM variable (Network to Market Cap). 

The network equals the previous 7-days average number of unique active addresses. The results include the time-

series averages of weekly value-weighted and equal-weighted excess returns for all the NTM quintile portfolios over 

the entire sample period from 2016 to 2022 and the return differences by long low NTM portfolio and short high 

NTM portfolio. Every Sunday, all ERC-20 tokens are re-allocated to five NTM groups (Low to High). Each group is 

held for one week. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% level, respectively. 

      Low 2 3 4 High Low - High 

NTM                

Value Weighted 
Mean -0.003 -0.006 -0.003 0.014 0.031∗∗∗ 0.030∗∗∗ 

t-value (-0.36) (-0.80) (-0.38) (1.39) (2.73) (3.73)          

Equally Weighted 
Mean 0.010 0.006 0.012 0.022∗∗∗ 0.051∗∗∗ 0.043∗∗∗ 

t-value (1.49) (0.83) (1.49) (2.66) (4.91) (5.89) 
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Table 3. 14: Average Weekly Returns for Portfolios Formed on Size and NTM: ERC-20 

Tokens Sorted on Market Capitalization (Vertical) then NTM (Horizontal) 

Portfolios are formed weekly. The breakpoints for the size (the value of market capitalization) quintiles are determined 

on Sunday of week t by using all available ERC-20 tokens on Ethereum blockchain. And then, the breakpoints for the 

z-score of NTM (the ratio of the amount of active unique addresses to market capitalization) quintiles are further 

determined for the same token sample on the same Sunday. After that, the 5 by 5 value-weighted two-dimensional 

portfolios at the intersections of the rankings can be constructed. The value-weighted returns on the resulting 25 Size-

NTM portfolios are then calculated for week t+1. ***, **, and * indicate statistical significance at the 1%, 5%, and 

10% level, respectively. 

Size Quintile 

NTM Quintiles 

Low 2 3 4 High High - Low 

Small 0.029∗∗ 0.022∗ 0.040∗∗∗ 0.061∗∗∗ 0.102∗∗∗ 0.086∗∗∗ 

 (2.31) (1.92) (3.22) (4.64) (6.47) (5.81) 

2 -0.005 0.000 0.012 0.020∗∗ 0.040∗∗∗ 0.052∗∗∗ 

 (-0.52) (-0.04) (1.14) (2.04) (3.33) (4.86) 

3 0.000 0.006 0.015 0.012 0.026∗∗ 0.030∗∗∗ 

 (-0.04) (0.62) (1.47) (1.18) (2.23) (3.48) 

4 -0.008 0.016 -0.002 0.002 0.030∗∗∗ 0.034∗∗∗ 

 (-0.87) (1.56) (-0.16) (0.22) (2.70) (4.25) 

Big -0.012 -0.006 −0.015∗ 0.003 0.000 0.019∗∗ 

 (-1.43) (-0.62) (-1.72) (0.30) (-0.02) (2.51) 

Small - Big 
0.044∗∗∗ 0.028∗∗∗ 0.052∗∗∗ 0.060∗∗∗ 0.095∗∗∗  

(3.68) (3.03) (5.39) (5.25) (6.63)   
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Table 3. 15: TFIR Quintile Portfolios (Short-term) 

This table reports the univariate portfolio analysis results based on short-term token’s fundamental implied return 

(TFIR) including past 1 week, 2 weeks and 4 weeks moving average. The token fundamentals include Dollar Value 

Transactions (TxUSD), Counts of Transactions (TxCnt), Daily Active Unique Address (DAU), ratio between Dollar 

Amount of Transactions and Number of Active Unique Addresses (TVU), ratio between Transaction Counts and 

Number of Active Unique Addresses (TCU) and ratio between Dollar Amount of Transactions and Transaction Counts 

(TVC). The return differences by long high TFIR portfolio and short low TFIR portfolio are reported in the last column. 

***, **, and * indicate statistical significance at the 1%, 5%, and 10% level, respectively.  

TFIR Portfolios Low 2 3 4 High High - Low 

Panel A: TxUSD             

Value-Weighted 
Mean 0.004 0.011 0.009 0.005 0.000 -0.004 

t-value (0.44) (1.02) (0.72) (0.49) (0.01) (-0.56) 

Panel B: TxCnt             

Value Weighted 
Mean 0.002 -0.005 0.003 0.004 -0.002 -0.002 

t-value (0.20) (-0.54) (0.30) (0.36) (-0.18) (-0.35) 

Panel C: DAU             

Value Weighted 
Mean 0.003 -0.005 0.002 0.001 -0.002 -0.006 

t-value (0.31) (-0.47) (0.14) (0.12) (-0.14) (-0.90) 

Panel D: TVU             

Value Weighted 
Mean 0.000 -0.001 0.014 0.008 0.012 0.011 

t-value (0.04) (-0.04) (1.03) (0.72) (1.00) (1.35) 

Panel E: TCU             

Value Weighted 
Mean 0.004 0.006 0.002 0.003 0.005 -0.005 

t-value (0.35) (0.61) (0.14) (0.24) (0.46) (-0.67) 

Panel F: TVC             

Value Weighted 
Mean -0.006 0.000 0.005 0.014 0.025∗∗ 0.026∗∗∗ 

t-value (-0.58) (0.03) (0.44) (1.11) (1.99) (3.16) 
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Table 3. 16: TFIR Quintile Portfolios (Long-term) 

This table reports the univariate portfolio analysis results based on long-term token’s fundamental implied return 

(TFIR) including past 26 weeks, 52 weeks and 104 weeks moving average. The token fundamentals include Dollar 

Value Transactions (TxUSD), Counts of Transactions (TxCnt), Daily Active Unique Address (DAU), ratio between 

Dollar Amount of Transactions and Number of Active Unique Addresses (TVU), ratio between Transaction Counts 

and Number of Active Unique Addresses (TCU) and ratio between Dollar Amount of Transactions and Transaction 

Counts (TVC). The return differences by long high TFIR portfolio and short low TFIR portfolio are reported in the 

last column. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% level, respectively. 

TFIR Portfolios   Low 2 3 4 High High - Low 

Panel A: TxUSD         

Value-Weighted 
 Mean 0.012 0.031∗∗ 0.005 0.033∗∗∗ 0.026∗∗ 0.008 

 t-value (1.02) (2.45) (0.47) (2.75) (2.05) (0.83) 

Panel B: TxCnt         

Value Weighted 

 Mean 0.027∗ 0.010 0.010 0.002 0.008 -0.018 

 t-value (1.98) (0.77) (0.69) (0.21) (0.62) (-1.60) 

Panel C: DAU         

Value Weighted 

 Mean 0.024∗ 0.012 0.011 0.000 0.004 −0.020∗ 
 t-value (1.80) (1.05) (0.83) (0.01) (0.29) (-1.97) 

Panel D: TVU         

Value Weighted 
 Mean 0.018 0.021 0.021 0.030∗∗ 0.023∗ 0.004 

 t-value (1.54) (1.60) (1.62) (2.37) (1.79) (0.30) 

Panel E: TCU         

Value Weighted 
 Mean 0.025∗ 0.010 0.019 0.000 0.003 −0.017∗ 
 t-value (1.94) (0.87) (1.39) (-0.04) (0.27) (-1.75) 

Panel F: TVC         

Value Weighted 
 Mean 0.019 0.025∗ 0.024∗ 0.026∗ 0.019 -0.002 

 t-value (1.49) (1.95) (1.83) (1.94) (1.57) (-0.14) 

 

 

Table 3. 17: Time-series Factor Return Summary Statistics 

 𝑹𝑪𝑴 - 𝑹𝒇 TSMB TNTM TMOM 

Mean -0.010 0.041∗∗∗ 0.023∗∗∗ 0.010∗∗ 

Std. dev. 0.113 0.086 0.123 0.103 

t(Mean) (-1.48) (6.22) (4.31) (2.22) 

***, **, and * indicate statistical significance at the 1%, 5%, and 10% level, respectively. 
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Table 3. 18: Cryptocurrency Specific Factor Regressions for Simple Weekly Excess Returns 

on 10 Long-Short Strategies 

This table reports the regressions of long-short strategy return premiums on the four crypto-specific factors, including 

the crypto-market factor 𝑅𝐶𝑀 − 𝑅𝑓, crypto-size factor 𝑇𝑆𝑀𝐵, crypto - “value” factor 𝑇𝑁𝑇𝑀, and crypto-momentum 

factor 𝑇𝑀𝑂𝑀. The alpha is the intercept of the regression and represents the pricing error. The LHS of each regression 

is the time-series weekly return premium of each zero-investment (long-short) strategy including Size, Volume 

(trading volume), Illiquidity, Past Two-week (𝑟−2), Three-week (𝑟−3), Four-week (𝑟−4) returns and three on-chain 

variables including Dollar Value Transactions (TxUSD), Dollar Amount of Transactions/Number of Active Unique 

Addresses (TVU), and Dollar Amount of Transactions/Transaction Counts (TVC). The RHS are the time-series 

mimicking portfolios returns based on each crypto-specific factor. The values of alpha, coefficients, R-squares and 

the root of mean squared error (Root MSE) are reported for each strategy, and the t-statistics for coefficients and F-

value for R-squares are presented in parentheses. ***, **, and * indicate statistical significance at the 1%, 5%, and 

10% level, respectively.  

Long-Short 

Strategies 
Alpha 𝑹𝑪𝑴 − 𝑹𝒇 TSMB TNTM TMOM R2 

Root 

MSE 

Size Premium 

0.026∗∗∗ 0.077∗∗ 0.946∗∗∗ 0.135∗∗∗  0.601 0.065 

(5.69) (2.17) (18.35) (4.04)  (137.23)  

0.028∗∗∗ 0.104∗∗∗ 0.968∗∗∗  0.010 0.578 0.067 

(6.14) (2.89) (18.32)  (0.25) (124.39)  

0.026∗∗∗ 0.078∗∗ 0.947∗∗∗ 0.139∗∗∗ -0.025 0.602 0.065 

(5.71) (2.19) (18.34) (4.07) (-0.59) (102.76)   

Volume Premium 

0.001 −0.102∗∗ 0.419∗∗∗ 0.003  0.171 0.072 

(0.15) (-2.59) (7.31) (0.08)  (18.75)  

0.003 −0.092∗∗ 0.430∗∗∗  −0.154∗∗∗ 0.185 0.070 

(0.52) (-2.42) (7.69)  (-3.43) (21.21)  

0.002 −0.098∗∗ 0.425∗∗∗ 0.030 −0.162∗∗∗ 0.207 0.071 

(0.40) (-2.52) (7.57) (0.81) (-3.52) (17.74)   

Illiquidity Premium 

0.003 -0.045 0.435∗∗∗ 0.005  0.165 0.075 

(0.50) (-1.08) (7.29) (0.12)  (18.02)  

0.004 -0.034 0.446∗∗∗  −0.152∗∗∗ 0.196 0.074 

(0.86) (-0.86) (7.66)  (-3.24) (22.21)  

0.004 -0.040 0.442∗∗∗ 0.031 −0.160∗∗∗ 0.198 0.074 

(0.75) (-0.99) (7.54) (0.81) (-3.34) (16.80)   

𝒓−𝟐 Premium 

0.026∗∗∗ -0.041 −0.180∗∗ 0.088  0.024 0.108 

(3.51) (-0.69) (-2.1) (1.57)  (2.24)  

0.021∗∗∗ -0.061 −0.207∗∗∗  0.607∗∗∗ 0.293 0.092 

(3.37) (-1.22) (-2.84)  (10.35) (37.65)  

0.022∗∗∗ -0.058 −0.205∗∗∗ -0.014 0.611∗∗∗ 0.293 0.092 

(3.37) (-1.14) (-2.79) (-0.30) (10.17) (28.17)   

𝒓−𝟑 Premium 

0.024∗∗∗ -0.006 -0.132 -0.058  0.017 0.102 

(3.40) (-0.11) (-1.63) (-1.11)  (1.57)  

0.018∗∗∗ -0.045 −0.172∗∗  0.431∗∗∗ 0.170 0.094 

(2.79) (-0.88) (-2.31)  (7.21) (18.68)  
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0.020∗∗∗ -0.019 −0.151∗∗ −0.136∗∗∗ 0.465∗∗∗ 0.193 0.093 

(3.18) (-0.37) (-2.05) (-2.79) (7.71) (16.30)   

𝒓−𝟒 Premium 

0.027∗∗∗ 0.021 −0.200∗∗ -0.074  0.032 0.102 

(3.86) (0.38) (-2.47) (-1.41)  (3.02)  

0.022∗∗∗ -0.016 −0.236∗∗∗  0.351∗∗∗ 0.129 0.096 

(3.28) (-0.30) (-3.09)  (5.71) (13.48)  

0.024∗∗∗ 0.010 −0.215∗∗∗ −0.138∗∗∗ 0.386∗∗∗ 0.153 0.095 

(3.66) (0.20) (-2.84) (-2.76) (6.22) (12.26)   

TxUSD Premium 

-0.001 -0.042 0.399∗∗∗ −0.093∗∗  0.117 0.086 

(-0.12) (-0.89) (5.82) (-2.1)  (12.05)  

-0.003 -0.064 0.381∗∗∗  0.038 0.104 0.087 

(-0.52) (-1.36) (5.53)  (0.69) (10.60)  

-0.001 -0.044 0.397∗∗∗ −0.104∗∗ 0.065 0.121 0.086 

(-0.21) (-0.93) (5.78) (-2.29) (1.16) (9.38)   

TVU Premium 

0.001 0.001 0.313∗∗∗ -0.028  0.088 0.085 

(0.12) (0.02) (5.04) (-0.64)  (8.89)  

-0.002 -0.012 0.330∗∗∗  0.131∗∗ 0.112 0.084 

(-0.36) (-0.27) (5.38)  (2.47) (11.49)  

-0.001 -0.001 0.325∗∗∗ -0.054 0.146∗∗ 0.117 0.084 

(-0.09) (-0.02) (5.29) (-1.23) (2.68) (9.01)   

TVC Premium 

0.006 0.025 0.272∗∗∗ 0.008  0.069 0.085 

(1.01) (0.53) (4.35) (0.19)  (6.74)  

0.004 0.019 0.286∗∗∗  0.153∗∗∗ 0.100 0.084 

(0.71) (0.42) (4.65)  (2.88) (10.16)  

0.005 0.023 0.284∗∗∗ -0.020 0.158∗∗∗ 0.101 0.084 

(0.79) (0.50) (4.61) (-0.45) (2.90) (7.65)   
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Table 3. 19: Portfolio Excess Return Regressions 

This table presents the results of 25 regressions based on the following regression: 𝑅(𝑡) − 𝑅𝑓(𝑡) = 𝑎 +

𝑏[𝑅𝑀(𝑡) − 𝑅𝑓(𝑡)] + 𝑒(𝑡). The LHS variables in each set of the 25 regressions are the weekly excess returns on the 

25 Size-NTM portfolios. The RHS variable is the cryptocurrency market factor defined as the excess market return, 

𝑅𝐶𝑀 − 𝑅𝑓. The results include intercepts, slopes for the market factor, R-squares and the root of mean squared error 

(Root MSE). All the t-statistics for these coefficients are also reported. ***, **, and * indicate statistical significance 

at the 1%, 5%, and 10% level, respectively. 
 NTM Quintiles 

Size Quintile Low 2 3 4 High Low 2 3 4 High 

  a t-value 

Small 0.039∗∗∗ 0.032∗∗∗ 0.051∗∗∗ 0.075∗∗∗ 0.116∗∗∗ 3.34 3.14 5.07 6.59 8.13 

2 0.001 0.010 0.018∗∗ 0.026∗∗∗ 0.054∗∗∗ 0.21 1.36 2.46 3.54 4.94 

3 0.002 0.018∗∗ 0.026∗∗∗ 0.025∗∗∗ 0.036∗∗∗ 0.27 2.12 3.34 2.71 3.63 

4 0.001 0.023∗∗∗ 0.012∗ 0.010 0.041∗∗∗ 0.14 3.08 1.66 1.34 4.12 

Big -0.003 0.003 -0.001 0.009 0.013 -0.47 0.35 -0.20 1.23 1.56 

  b t-value 

Small 1.039 0.940 1.032 0.990 1.073 10.10 10.47 11.62 9.84 8.65 

2 0.766 0.863 0.823 0.942 0.929 12.63 13.07 12.57 14.47 9.66 

3 0.859 0.898 0.977 0.879 0.927 13.73 12.38 14.22 10.98 10.67 

4 0.843 0.934 0.985 0.800 0.912 13.58 14.29 15.74 12.43 10.43 

Big 0.799 0.805 0.866 0.706 0.796 13.95 12.01 14.85 11.29 11.05 

  R2 Root MSE 

Small 0.259 0.282 0.324 0.262 0.209 0.200 0.170 0.169 0.186 0.239 

2 0.359 0.382 0.360 0.430 0.251 0.118 0.124 0.124 0.124 0.181 

3 0.405 0.356 0.417 0.300 0.290 0.118 0.137 0.132 0.152 0.164 

4 0.396 0.420 0.470 0.351 0.284 0.118 0.126 0.119 0.123 0.164 

Big 0.414 0.334 0.448 0.312 0.318 0.109 0.129 0.108 0.119 0.129 
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Table 3. 20: Portfolio Excess Return Regressions Including Additional Factors 

This table presents the results of 25 regressions based on the following regression: 𝑅(𝑡) − 𝑅𝑓(𝑡) = 𝑎 +

𝑏[𝑅𝑀(𝑡) − 𝑅𝑓(𝑡)] + 𝑠𝑇𝑆𝑀𝐵(𝑡) + 𝑛𝑇𝑁𝑇𝑀(𝑡) + 𝑚𝑇𝑀𝑂𝑀(𝑡) + 𝑒(𝑡) . The LHS variables in each set of the 25 

regressions are the weekly excess returns on the 25 Size-NTM portfolios. The RHS variables are the cryptocurrency 

market factor defined as the market excess return, 𝑅𝐶𝑀 − 𝑅𝑓 , size factor 𝑇𝑆𝑀𝐵 , “value” factor 𝑇𝑁𝑇𝑀 , and 

momentum factor 𝑇𝑀𝑂𝑀. The results include intercepts, slopes for the market factor, size factor, NTM factor and 

momentum factor coupled with R-squares and root of mean squared error (Root MSE). All the t-statistics for these 

coefficients are also reported. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% level, respectively. 
 NTM quintiles 

Size quintile Low 2 3 4 High Low 2 3 4 High 
 a t-value 

Small 0.024∗∗ 0.020∗ 0.038∗∗∗ 0.036∗∗∗ 0.041∗∗∗ 2.23 1.79 3.37 3.03 2.99 

2 -0.007 0.008 0.003 0.013 0.010 -0.93 0.94 0.32 1.57 0.90 

3 -0.004 0.000 0.011 0.013 0.029∗∗∗ -0.49 0.03 1.33 1.37 2.63 

4 -0.002 0.010 0.000 0.007 0.028∗∗ -0.20 1.25 0.05 0.85 2.55 

Big 0.006 -0.001 0.005 0.008 0.011 0.88 -0.09 0.65 1.06 1.27 
 b t-value 

Small 0.940 0.907 1.027 0.819 0.874 11.47 10.29 11.71 8.74 8.14 

2 0.727 0.844 0.780 0.930 0.853 11.87 12.63 12.26 14.48 10.03 

3 0.854 0.866 0.905 0.854 0.948 13.81 12.37 13.80 12.00 11.05 

4 0.852 0.866 0.911 0.787 0.870 14.54 14.07 14.77 12.44 10.32 

Big 0.813 0.738 0.903 0.721 0.828 14.24 15.14 15.61 12.11 11.47 
 s t-value 

Small 0.430 0.563 0.442 0.687 1.029 3.43 4.29 3.21 4.86 6.25 

2 0.339 0.087 0.416 0.277 0.510 3.63 0.85 4.27 2.81 3.94 

3 0.045 0.210 0.288 0.142 -0.031 0.47 1.96 2.85 1.28 -0.24 

4 0.080 -0.098 -0.027 -0.023 0.042 0.89 -1.03 -0.28 -0.24 0.32 

Big -0.169 -0.134 -0.292 -0.391 -0.389 -1.95 -1.80 -3.32 -4.13 -3.54 
 n t-value 

Small -0.277 -0.310 -0.111 0.194 0.845 -2.88 -2.96 -1.08 1.71 6.73 

2 -0.134 0.0497 -0.003 0.043 0.680 -1.87 0.64 -0.04 0.57 6.71 

3 0.052 0.150 0.107 0.057 0.183 0.71 1.82 1.38 0.68 1.82 

4 -0.021 0.227 0.182 0.084 0.259 -0.31 3.16 2.50 1.13 2.58 

Big -0.151 -0.017 0.237 0.411 0.405 -2.24 -0.29 3.46 5.83 4.66 
 m t-value 

Small 0.024 0.019 0.022 -0.211 -0.261 0.27 0.19 0.23 -1.98 -2.23 

2 -0.079 -0.089 -0.081 -0.016 0.173 -1.19 -1.22 -1.16 -0.22 1.86 

3 0.066 -0.016 -0.136 0.036 0.012 0.98 -0.21 -1.87 0.46 0.13 

4 0.009 -0.029 0.028 0.013 -0.132 0.14 -0.43 0.42 0.19 -1.41 

Big 0.204 0.024 0.024 -0.065 0.040 3.30 0.46 0.38 -0.97 0.50 
 R2 Root MSE 

Small 0.378 0.354 0.388 0.340 0.466 0.151 0.157 0.160 0.167 0.197 

2 0.393 0.393 0.425 0.487 0.485 0.112 0.123 0.116 0.116 0.153 

3 0.438 0.411 0.465 0.379 0.334 0.113 0.128 0.120 0.013 0.130 

4 0.456 0.454 0.475 0.381 0.318 0.108 0.112 0.113 0.116 0.153 

Big 0.447 0.461 0.495 0.417 0.383 0.104 0.090 0.104 0.109 0.124 
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Table 3A. 1: Literature Overview of Cryptocurrency Factors 

Title/Authors Sample/Sample Period Factors/Predictors Findings 

“Risks and Returns of 

Cryptocurrency” 

 

Liu and Tsyvinski 

(2018) 

3 coins: 

(1) Bitcoin (January 1, 2011 - May 31, 

2018); 

(2) Ripple (August 4, 2013 - May 31, 

2018); 

(3) Ethereum (August 7, 2015 - to May 

31, 2018). 

1. Momentum; 

2. Investor Attention Proxies;  

3. Negative Investor Attention Proxy; 

4. Price-to-“Dividend” Ratio; 

(“Dividend” – active addresses)  

5. Realized Volatility; 

6. Supply Conditions Proxies. 

Momentum and both investor 

attention proxies appear to have 

significant predictive power. 

“Do Fundamentals 

Drive Cryptocurrency 

Prices?” 

 

Bhambhwani et al., 

(2019) 

5 coins: 

(1) Bitcoin (BTC) 

(2) Ethereum (ETH) 

(3) Litecoin (LTC) 

(4) Monero (XMR) 

(5) Dash (DSH) 

 

Sample Period: 

Start Date: August 7, 2015 

End Date: January 31, 2019 

1. Computing Power (Miners' 

Activity); 

2. Network Adoption (Active 

Addresses). 

Both factors explain return 

variation across the sample 

cryptocurrencies.  

“Know When to Hodl 

'Em, Know When to 

Fodl 'Em': An 

Investigation of Factor 

Based Investing in the 

Cryptocurrency Space” 

 

Hubrich (2017) 

11 coins including BTC, DASH, DCR, 

DOGE, ETC, ETH, LTC, PIVX, XEM, 

XMR, and ZEC. 

 

Sample Period: 

From each coin’s respective first 

observation date to the most current date. 

1. Momentum; 

2. Value; 

3. Carry. 

Short-term momentum and 

valuation factors play a 

significant role in explaining 

returns, while longer-term 

factors and carry have weaker 

impacts. 
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“Common Risk Factors 

in Cryptocurrency” 

 

Liu, Tsyvinski and Wu 

(2022) 

1,827 coins and tokens; 

 

Sample Period: 

From the beginning of 2014 to July of 

2020. 

1. Size-Related Characteristics; 

2. Momentum-Related 

Characteristics; 

3. Volume-Related Characteristics; 

4. Volatility-Related Characteristics. 

A three-factor model with 

cryptocurrency market factor 

(CMKT), cryptocurrency size 

factor (CSMB), and 

cryptocurrency momentum 

factor (CMOM) successfully 

accounts for the excess returns of 

all ten identified successful zero-

investment strategies based on 

the four types of characteristics. 
 

 

 

 


