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Abstract

Advanced Blind Source Separation Methods for Multivariate Data Modeling and Clustering

Ali Al-gumaei, Ph.D.

Concordia University, 2025

As the amount of data being generated keeps growing, there is an increasing demand for adapt-

able approaches that can effectively extract the overall trends while also maintaining subject-specific

information from large-scale datasets. Modeling complex and high-dimensional data presents sig-

nificant challenges across healthcare, human action recognition, and speech recognition.

In this dissertation, we develop a bounded multivariate generalized Gaussian mixture model

(BMGGMM) integrated with independent component analysis (ICA) to effectively capture the cor-

related features in multivariate data. While independent vector analysis (IVA) extends ICA to handle

multiple datasets by leveraging inter-dataset dependencies and preserving their correlation struc-

tures, it suffers from limitations when dealing with complex datasets. To overcome this, we pro-

pose a novel blind source separation (BSS) method that combines IVA with the BMGGMM frame-

work, enabling robust modeling of complex data distributions with varying shapes and dimensions.

Second, we introduced the integration of the ICA-BMGGMM and IVA-BMGGMM to the hidden

Markov model (HMM) to boost their performance in terms of source separation. The performance

of IVA deteriorates as the number of datasets and sources increases. To address this limitation, we

propose the adaptive constrained IVA (acIVAMGGMM) and bounded acIVAMGGMM techniques.

These methods integrate multiple reference signals into the IVA function and adaptively control the

reference-estimated source relations. Finally, we introduce a new approach, ICA and IVA for com-

mon subspace analysis (ICABMGGMM-CS) and IVABMGGMM-CS, designed for the subspace

analysis of multi-subject fMRI data. These methods leverage the strengths of both ICA and IVA

while effectively addressing the challenges posed by high dimensions.
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Chapter 1

Introduction

1.1 Problem statement and motivations

The growing accumulation of large databases has transformed data analysis and modeling into

powerful tools capable of revolutionizing various fields of science and engineering. These advance-

ments present significant opportunities across diverse areas, including e-commerce, industry, health-

care, and social media. The widespread applications of data analysis in these domains have driven

an increasing demand for the development of sophisticated data mining techniques. Advancements

in this field are essential to enhance information retrieval, facilitate knowledge discovery, and en-

able learning from data patterns to support smart and intelligent decision-making. In recent years,

the application of machine learning has grown exponentially, demonstrating its potential to extract

valuable information and uncover patterns from complex datasets. The development of machine

learning algorithms and techniques has emerged as a highly active area of research over the past

few decades, driven by the rapidly increasing demand for artificial intelligence (AI) applications

across diverse domains. The exponential growth of machine learning applications and advance-

ments in data mining techniques have unlocked new opportunities for extracting valuable insights

from complex datasets across various domains. These developments are particularly relevant in

fields like healthcare, where sophisticated methods for information retrieval and knowledge discov-

ery are crucial for interpreting intricate patterns.

One prominent application of data-driven techniques lies in the medical field, where advanced
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technologies are increasingly utilized to investigate and understand complex biological systems.

However, the analysis of medical data, whether from imaging modalities such as functional mag-

netic resonance imaging (fMRI), computed tomography (CT), or electroencephalography (EEG), or

from non-imaging sources like electronic health records and genetic data, presents significant chal-

lenges. These challenges include issues like low signal-to-noise ratios, biological variability, and

the sheer volume and complexity of data, which underscore the need for advanced machine learn-

ing algorithms to extract meaningful and interpretable patterns. This intersection of data science

and medical research holds immense potential to revolutionize healthcare, enabling breakthroughs

in diagnostics, treatment planning, and personalized medicine. For instance, machine learning al-

gorithms can identify early markers of diseases such as cancer or Alzheimer’s, predict patient re-

sponses to therapies, and optimize treatment strategies. Furthermore, these approaches support

real-time decision-making in critical care scenarios, enhance drug discovery processes, and enable

precision medicine by tailoring interventions to individual patient profiles. By addressing the com-

plexities of medical data, data-driven techniques have the potential to transform healthcare practices

and significantly improve patient outcomes.

Beyond healthcare, machine learning models have also demonstrated significant potential in

domains such as human action recognition and energy disaggregation, both of which face unique

challenges that necessitate innovative solutions. In human action recognition, machine learning

techniques are employed to analyze data from video, motion sensors, or wearable devices to iden-

tify and classify human activities. Despite its broad applications—including improved safety in

industrial settings, enhanced human-computer interaction, and advancements in smart surveillance

and assistive technologies for the elderly or disabled—this field presents considerable challenges.

These include dealing with variations in lighting, occlusion of subjects, differences in perspectives,

and the diversity of human behaviors and movement patterns. Additionally, sensor noise and the

need for real-time processing add further complexity to the development of robust and accurate

models.

Similarly, energy disaggregation—analyzing aggregate energy consumption data to disaggre-

gate it into individual appliance-level usage—offers transformative benefits but comes with its own
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set of challenges. These include the high variability of energy consumption patterns across house-

holds, appliances with overlapping consumption profiles, and the lack of labeled training data for

many real-world scenarios. Moreover, achieving accurate disaggregation often requires balancing

model complexity with computational efficiency to ensure scalability for widespread adoption. De-

spite these hurdles, successful energy disaggregation enables consumers to monitor and optimize

their energy usage, supports energy efficiency initiatives, and helps utilities improve grid manage-

ment and demand forecasting.

Given these complexities, there is a critical need for robust, data-driven methods capable of

effectively analyzing diverse and complex datasets while remaining resilient to the inherent con-

founding factors. In healthcare, such methods are essential for extracting meaningful patterns from

noisy and heterogeneous data, enabling breakthroughs in diagnostics, treatment planning, and per-

sonalized medicine. Similarly, in human action recognition, advanced data-driven approaches are

vital to address challenges like sensor noise, variations in lighting and perspective, and the diver-

sity of human behaviours, thereby facilitating applications in safety, assistive technologies, and

smart surveillance. In energy disaggregation, these methods play a pivotal role in distinguishing

overlapping appliance-level usage patterns from aggregate energy data, overcoming issues such as

variability across households and limited labeled datasets. By addressing these unique challenges,

data-driven approaches can enhance our understanding of the underlying structures within these

datasets and drive advancements across fields, ultimately enabling smarter, more efficient, and im-

pactful solutions.

1.2 Thesis Contributions

In this dissertation, we address the aforementioned challenges through the following contribu-

tions:

✍ Bounded multivariate generalized Gaussian mixture model using ICA and IVA.
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This work proposes a bounded multivariate generalized Gaussian mixture model (BMG-

GMM) integrated with independent component analysis (ICA), relaxing strict source inde-

pendence for more flexible modeling. Extending to multi-source datasets like fMRI and elec-

troencephalogram (EEG), this work introduces IVA-BMGGMM, a generalized framework

that enhances ICA-based techniques, improving adaptability and performance in complex

scenarios.

This work is published in Pattern Analysis and Applications Journal [2].

✍ ICA and IVA bounded multivariate generalized Gaussian mixture-based hidden Markov

models.

In this work, we integrate ICA and independent vector analysis (IVA) with a bounded mul-

tivariate generalized Gaussian mixture model (ICA-BMGGMM) into the hidden Markov

model (HMM) framework. To address the limitation of ICA’s assumption of source indepen-

dence, we combine IVA and IVA-BMGGMM with HMM to enhance modeling capabilities.

We validate the proposed models through applications in human action recognition, speech

recognition, and energy disaggregation.

This work is published in Engineering Applications of Artificial Intelligence [3].

✍ Adaptive constrained IVAMGGMM: Application to mental disorders detection.

In this work, we propose the constrained ICA-MGGMM, an ICA-based multivariate Gaussian

mixture model that relaxes ICA’s independence assumption. Additionally, we introduce the

adaptive constrained ICA-MGGMM (acICA-MGGMM) to manage the relationship between

reference signals and estimated sources. While IVA can capture patterns from fMRI data,

its performance declines with increasing datasets and weak correlations. To address this, we

present cIVA-MGGMM, incorporating reference signals for high-dimensional data, and its

adaptive version (acIVA-MGGMM) using a full covariance matrix. These models integrate

prior information into ICA/IVA to overcome their limitations in high-dimensional data.

This work is published in IEEE Transactions on Emerging Topics in Computational Intelli-

gence [4].

✍ Novel approach for ECG separation using adaptive constrained IVABMGGMM.

4



In this work, we introduce constrained independent vector analysis integrated with the bounded

multivariate generalized Gaussian mixture model (cIVABMGGMM) to address the limita-

tions of ICA for multivariate data, along with its adaptive version, acIVABMGGMM, de-

signed to reduce constraints. The acIVABMGGMM uses a full covariance matrix to account

for feature correlations, effectively overcoming the challenges of ICA and IVA in multivariate

data analysis. This adaptive framework combines data-driven adaptability with the ability to

handle noise and artifacts in model-based approaches.

This work is published in Digital Signal Processing [5]. Part of this work is published in the

International Conference on Advanced Technologies for Signal and Image Processing (AT-

SIP) [6] and presented in part at the 31st International Conference on Neural Information

Processing (ICONIP 2024) [7] [accepted].

✍ Identifying the common subspaces regions using independent component analysis and

graph-theoretical analysis.

This work introduces ICAMGGMM-CS, a model for common subspace estimation based

on the multivariate generalized Gaussian mixture distribution, enabling the identification of

common patterns and enhancing diagnostic precision and scalability. To further improve

robustness in source separation, the framework incorporates a bounded indicator function,

forming the ICABMGGMM-CS model, which combines data-driven adaptability with model-

based stability to manage noise and artifacts. Additionally, a multivariate graph-theoretical

framework summarizes components into meaningful, interpretable features.

This work is submitted to IEEE transaction on Artificial Intelligence.

✍ Homogeneous Subgroup Identification in Resting State fMRI using Common Subspace

Independent Vectors Analysis.

In this work, we propose the IVABMGGMM-CSS model, a novel common subspace IVA

framework based on the bounded multivariate generalized Gaussian mixture distribution, to

address the limitations of joint blind source separation in capturing latent structures across

multiple datasets, specifically its inefficiency with high-dimensional data. The model cap-

tures common structures shared across datasets while preserving subject-specific variability
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to manage noise and artifacts in high-dimensional data.

This work is submitted to IEEE Transactions on Signal Processing.

1.3 Thesis Outline

The rest of the thesis is organized as follows:

❏ Chapter 2 introduces the Bounded multivariate generalized Gaussian mixture model using

ICA and IVA.

❏ In Chapter 3, we present ICA and IVA bounded multivariate generalized Gaussian mixture

based hidden Markov models.

❏ Chapter 4 displays the adaptive constrained IVAMGGMM for application to mental disorders

detection.

❏ In Chapter 5, we discuss the novel approach for ECG separation using adaptive constrained

IVABMGGMM and ICABMGGMM.

❏ Chapter 6 presents the identification of the common subspaces regions using independent

component analysis and graph-theoretical analysis.

❏ In Chapter 7, we discuss the homogeneous subgroup identification in resting state fMRI using

common subspace independent vectors analysis.

❏ Chapter 8 concludes the thesis with discussion remarks and future insights.
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Chapter 2

Bounded Multivariate Generalized

Gaussian Mixture Model using ICA and

IVA

A bounded multivariate generalized Gaussian mixture model with a full covariance matrix is

proposed for modeling data in a bounded support region. For model selection, we propose the mini-

mum message length criterion. Furthermore, we propose a bounded multivariate generalized Gaus-

sian mixture model with independent component analysis. By employing the mixture model with

independent component analysis, the assumed independence of the sources can be relaxed. For data

with multiple sources such as functional magnetic resonance imaging and electroencephalogram

databases, we propose the bounded multivariate generalized Gaussian mixture model with indepen-

dent vector analysis as a generalized technique for the independent component analysis-based one.

For a more insightful model analysis, we validate the proposed mixture model in data clustering

through a variety of medical applications. We also propose the application of the independent com-

ponent analysis-based model in speech (Romanian read-speech corpus), Electrocardiogram, and

Electroencephalogram databases. For validation of the independent vector analysis-based model

performance, different medical and speech databases are used. The results presented demonstrate

the effectiveness of the proposed approaches for modeling different types of data.
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2.1 Introduction

Finite mixtures are flexible and powerful probabilistic data modeling tools which are often em-

ployed for signal and image processing [8], computer vision [9], and machine learning [10]. The

three primary difficulties in mixture modeling are determining the probability density function, es-

timating the parameters, and determining the number of clusters. The Gaussian mixture model

(GMM) is the most popular technique for statistical data modeling, used in various applications.

However, the Gaussian distribution has several limitations, such as the rigidity of its shape. For

that, the generalized Gaussian mixture model (GGMM) was proposed to improve data modeling,

given that it can provide more flexibility to fit data better than the conventional Gaussian [11]. The

GGMM comprises the Laplacian, and Gaussian distributions as special examples, as well as the

uniform distribution as a limiting case [12], and has been used to solve a variety of challenging

problems [8, 11, 13, 14]. Several studies have shown that the GGMM can be a good alternative to

the GMM due to the flexibility of its shape, which allows modeling a wide range of non-Gaussian

signals [15, 16, 17]. For more flexibility, the multivariate generalized Gaussian mixture model (MG-

GMM) was proposed to model non-Gaussian data with correlated features using a full covariance

matrix [18, 19]. Despite the outstanding clustering results obtained with the aforementioned models,

the observed data in many real applications fall within bounded support regions [20]. To overcome

the issues associated with unbounded mixture models, the bounded generalized Gaussian mixture

model (BGGMM) has been proposed in [20] and [21]. BGGMM has proven to be successful in

many speech processing applications [22, 23] for its flexibility to fit different shapes of data. How-

ever, the BGGMM is not able to deal with correlated features as the covariance matrix is taken as

diagonal. Motivated by the aforementioned observations, we propose a new bounded model, which

is an extension to the MGGMM to deal with bounded support regions. The BMGGMM takes into

account correlated features using a full covariance matrix and has the flexibility to fit a large variety

of non-Gaussian bounded support data shapes.

In terms of parameter estimation, the most widely used strategy for mixture model is based

on maximizing the likelihood function using the expectation maximization (EM) framework [24].

To apply the EM method, an appropriate number of clusters must be predefined; otherwise, the
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EM algorithm would produce unsatisfactory results. Therefore, determining the number of optimal

components that best characterize the data is crucial for the mixture model. Different techniques

for automatically determining the number of clusters have been proposed in literature [25, 26] such

as Akaike information criterion (AIC) [27], minimum description length (MDL) [28], and Laplace

empirical criterion (LEC) [10]. However, the number of clusters may be overestimated or underes-

timated using these criteria. Furthermore, the minimum message length (MML) criterion was intro-

duced in [29] and [30] as a technique to find the optimal number of mixture components. Therefore,

in order to accurately find the number of clusters, we propose an MML criterion for choosing the

best number of components that can describe the data using BMGGMM.

In our research work, we are interested in signal processing applications. One of the most chal-

lenges in these applications is separating the signal from the noise. This problem can be easily

solved with blind source separation (BSS). BSS is one of the most active research areas due to its

applicability to a wide range of problems, especially when little information is known about the

observed data. BSS techniques are used in a variety of applications including audio separation

[31], target detection in video sequences [32], and medical imaging data analysis [33]. ICA was

effectively applied to solve the BSS problem instantaneously under the assumption of statistical in-

dependence of the latent sources. The main assumption of ICA is that the observations are linear,

statistically independent mixtures of the sources, which will be separated by maximizing output in-

dependence. By employing a mixture model, this assumption can be relaxed; this is known as ICA

mixture model [34]. The mixture model of the ICA is supposed to classify the observed data into

mutually exclusive classes and provide a linear combination of independent sources with compo-

nents of the model [35]. Several improvements have been proposed for ICA mixture models applied

to various applications, including segmentation, image enhancement, and BSS [36]. ICA extended

by BGGMM has been proposed to overcome unbounded mixture model limitations [37, 38]. In this

work, we consider the statistical independence and the sparsity to propose the integration of BMG-

GMM into the ICA framework, addressing the limitations of traditional ICA. ICA-BMGGMM al-

lows for the modelling of classes with non-Gaussian structure and the identification of statistically

significant structures in data. The algorithm for learning the model’s parameters employs gradient

ascent to maximize the log likelihood function.
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ICA was limited by permutation and scaling issues, which are detailed in [39]. Hence, the

independent vector analysis (IVA) approach is an extension of the ICA that was proposed to reduce

the permutation problem that occurs in most of the BSS algorithms [40]. The IVA technique is based

on a dependence model that preserves inter-frequency dependencies within each source vector. In a

frequency domain, dependent sources are organized together as a multivariate variable where each

source’s inter-frequency dependencies depend on the prior source signal. In the ICA technique,

the independence is calculated separately for each frequency component in each frequency bin. In

ICA conventional algorithms, sources were assumed independent. In contrast, the IVA technique

formulates the problem by not considering the independence of the frequency bins but by accepting

that dependencies exist between frequency bins. Therefore, it measures dependency over the entire

multivariate sources and preserves a higher order of frequency inter-dependence and structure. The

IVA method employs the score function, and its shape is critical to the algorithm’s performance. All

sources were modeled in the original IVA algorithm through the identical Laplacian distributions

[40]. Different sources can have distinct statistical features, and the best solution may not be to

model all the sources with the same distribution. Among the IVA solutions, IVA-Gaussian (IVA-G)

takes advantage of linear dependencies but ignores higher-order statistics [41]. IVA with generalized

Gaussian distribution (IVA-GGD) is a more general IVA implementation that considers both second

and higher-order statistics. However, IVA-GGD employs a fixed set of shape parameter values [42].

We propose IVA-BMGGMM for multivariate data such as fMRI and EEG. IVA-BMGGMM is an

algorithm that accounts for both higher order statistics (HOS) and second order statistics (SOS)

and provides a more suitable model for multivariate non-Gaussian data. Furthermore, the IVA-

BMGGMM assumes second-order correlation within support component vectors, which provides

more flexibility for extracting knowledge from the data.

In a nutshell, the main purpose of this research work is to improve the clustering capability of

the existing models such as GMM, GGMM, MGGMM, and BGGMM. The BMGGMM model can

model multivariate, non-Gaussian data in bounded regions. We also propose to integrate the MML

with the BMGGMM to automate the determination of the number of clusters which will improve

the ability to model data in different real-world applications. According to the literature, several

mixture models were used to improve the ICA model’s performance in the separation of mixture
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sources. To that end, we propose integrating BMGGGMM into the ICA model to improve its

separation capability. To address the ICA limitation in multivariate data, we propose incorporating

BMGGMM into the IVA model to improve further its ability to separate mixture sources.

The BMGGMM will be explored in several clustering applications, including medical diagnosis

of skin cancer, Alzheimer, diabetes, and stroke diseases. In this work, the MML criterion for model

selection is developed for BMGGMM and verified through different medical datasets that are chal-

lenging to cluster and model selection methodologies. Similar experiments are carried out using

different techniques chosen from the literature to validate the proposed model selection criterion

(MML). We consider the presented ICA-BMGGMM model in data clustering applications includ-

ing speech, EEG, and ECG databases to insight into the analysis of the model. For heartbeat sound

separation, SUFHSDB dataset is chosen. Due to the limitation of ICA in multivariate datasets,

we also propose the IVA-BMGGMM to overcome these limitations. We evaluate the performance

of the proposed model (IVA-BMGGMM) using different applications such as speech signal, EEG,

ECG, and schizophrenic fMRI data.

The rest of this Chapter is organized as: In Section 2.2, we describe the BMGGMM and the

parameters estimation. Section 2.3 introduces the model selection using the MML criterion adopted

to the BMGGMM. Next, we explain the extended BMGGMM using ICA and IVA algorithms in

Section 3.2.1 and Section 3.2.2, respectively. In Section 2.6, we report and discuss the results of the

proposed models (BMGGMM, ICA-BMGGMM, and IVA-BMGGMM). Finally, we conclude our

Chapter in Section 3.4.

2.2 Bounded multivariate generalized Gaussian mixture model

2.2.1 Model definition

Bounded support mixtures were proposed to tackle the problems posed by unbounded distribu-

tions when the data are defined in a bounded support range. In this Section, we present a bounded

multivariate generalized Gaussian distribution (BMGGMM) and the estimation of its parameters

using a maximum likelihood estimation via the EM algorithm. Consider a D-dimensional random

variable xn=(x1, ...,xD), the probability distribution function for the finite mixture model can be
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written as:

p(x|Θ) =
M∑︂
j=1

p(x|ξj)pj (2.1)

where pj is the prior probability for each cluster with the constraint that ∀j , pj ≥ 0;
∑︁M

j=1 pj =1.

Here Θ is the complete set of parameters, ξj is the mixture model parameters of jth component,

and M is the number of components in the mixture model. Given the data X = (x1, ...,xn), the

likelihood is written as:

p(X|Θ) =
N∑︂

n=1

M∑︂
j=1

p(xn|ξj)pj (2.2)

To develop the BMGGMM, an indicator function defining the boundary conditions must be pre-

sented, which is defined as:

H(xn|j) =

⎧⎪⎪⎨⎪⎪⎩
1 if xn ∈ Ωj

0 otherwise
(2.3)

where Ωj represents the bounded support region. Using the indicator function, we present the

bounded distribution given as:

p(xn|ξj) =
f(xn|ξj)H(xn|j)∫︁

Ωj
f(u|ξj)du

(2.4)

In this work, we consider the term f(xn|ξj) to be the multivariate generalized Gaussian distribution

(MGGD) for each component of the mixture model defined by:

f(x|Θ) =
Γ
(︁
D
2

)︁
π

D
2 Γ
(︂

D
2βj

)︂
2

D
2βj

βj

(cj)
D
2 |Σj |

1
2

exp

{︄
− 1

2(cj)
βj

[︂
(x− µj)

TΣ−1
j (x− µj)

]︂βj

}︄
(2.5)
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where xn ∈ RD, µj , Σj and βj are mean, covariance matrix, and shape parameter, respectively,

and cj is the scale parameter defined as:

cj =

(︄
βj

DN

N∑︂
n=1

(xT
nΣ

−1
j xn)

βj

)︄ 1
βj

(2.6)

2.2.2 Parameter estimation of the bounded multivariate generalized Gaussian mix-

ture model

We apply the maximum likelihood (ML) approach via EM algorithm for estimating the BMG-

GMM parameters. The complete log-likelihood function is given by:

L(X , Z,Θ) =

N∑︂
n=1

M∑︂
j=1

log

(︃
p(xn|ξj)pj

)︃Znj

(2.7)

where Z = {Z1, ..., ZN}, Znj is a membership indicator that encodes the membership of each

observation to its belonging mixture component. By replacing each Znj by its expectation, the

posterior probability can be written as:

Ẑnj =
p(xn|ξj)pj

M∑︁
j=1

p(xn|ξj)pj
(2.8)

Equation (2.7) can be maximized by taking the gradient of the log-likelihood with respect to µj , Σj

and βj .

Mixing parameter estimation

While estimating pj , a Lagrange multiplier is used to guarantee that the constraints pj ≥ 0 and∑︁M
j=1 pj = 1 are met. Then, the complete log-likelihood is written as:

L(Θ, Z,X ) =

N∑︂
n=1

M∑︂
j=1

Ẑnj log

(︃
p(xn|ξj)pj

)︃
+ Λ

(︃
1−

M∑︂
j=1

pj

)︃
(2.9)
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where Λ is the Lagrangian multiplier. Taking the gradient of the log-likelihood function with respect

to pj , we get the estimated value of pj as:

p̂j =
1

N

N∑︂
n=1

p(j|xn) (2.10)

where N is the number of observations.

Mean estimation

Maximizing the log-likelihood given in Equation (2.7) with respect to µj , we estimate the up-

date of µj . Derivation details are given in Appendix A; by using these derivations, µj can be

estimated as follows:

µĵ =

N∑︁
n=1

Ẑnj

[︃
xn −

∫︁
Ωj

f(u|ξj)(un−µj)du∫︁
Ωj

f(u|ξj)du

]︃
N∑︁

n=1
Ẑnj

(2.11)

The expectation term
∫︁
Ωj
f(u|ξj)(u−µj)du of function (un − µj) can be approximated as:

∫︂
Ωj

f(u|ξj)(un − µj)du ≈
1

V

V∑︂
v=1

(sjv − µj)H(sjv |j) (2.12)

where sjv represents the random variable that is derived from the generalized Gaussian distribution

for the jth component of the mixture model. V is the number of random variables sjv . Similarly,

the term
∫︁
Ωj
f(u|ξj)du can be approximated as:

∫︂
Ωj

f(u|ξj)du ≈
1

V

V∑︂
v=1

H(sjv |j) (2.13)

µ̂j =

N∑︁
n=1

Ẑnj

⎡⎣xn −

V∑︁
v=1

(sjv−µj)H(sjv |j)

V∑︁
v=1

H(sjv |j)

⎤⎦
N∑︁

n=1
Ẑnj

(2.14)
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Covariance estimation

The new value of the covariance matrix Σj can be estimated by maximizing the log-likelihood

function given in Equation (2.7) with respect to Σj . The computation derivative of log-likelihood

with respect to Σj is given in Appendix A.

Σ̂j =
1

N∑︁
n=1

Ẑnj

N∑︂
n=1

Ẑnj

{︄
βj

(cj)
βj

N∑︂
n=1

yβj−1(xn − µj)(xn − µj)
T

−

∫︁
Ωj
f(u|ξj)

{︄
βj

(cj)
βj

N∑︁
n=1

yβj−1(un − µj)(un − µj)
T − Σj

}︄
du∫︁

Ωj
f(u|ξj)du

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (2.15)

where y=(xn−µj)
TΣ−1

j (xn−µj). The term
∫︁
Ωj
f(u|ξj)

[︃
βj

(cj)
βj

N∑︁
n=1

yβj−1(u−µj)(u−µj)
T−Σj

]︃
du

in Equation (2.15) can be approximated as:

∫︂
Ωj

f(u|ξj)

[︄
βj

(cj)
βj

N∑︂
n=1

yβj−1(un − µj)(un − µj)
T − Σj

]︄
du

≈
V∑︂

v=1

[︄
βj

(cj)
βj

N∑︂
n=1

yβj−1(sjv − µj)(sjv − µj)
T − Σj

]︄
H(sjv |j) (2.16)

Σ̂j =
1

N∑︁
n=1

Ẑnj

N∑︂
n=1

Ẑnj

{︄
βj

(cj)
βj

N∑︂
n=1

yβj−1(xn − µj)(xn − µj)
T

−

V∑︁
v=1

[︄
βj

(cj)
βj

N∑︁
n=1

yβj−1(sjv − µj)(sjv − µj)
T − Σj

]︄
H(sjv |j)

V∑︁
v=1

H(sjv |j)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (2.17)

Shape parameter estimation

The new value of the shape parameter βj can be estimated by maximizing the log-likelihood

function given in Equation (2.7) with respect to βj . The computation derivative of log-likelihood
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with respect to βj is given in Appendix A, and by following these derivations, the βj can be esti-

mated as:

β̂m+1 = β̂j −
α(β̂j)

α̂(β̂j)
(2.18)

α(β̂j) =
N∑︂

n=1

Ẑnj

{︄
Q− yβj

2(cj)
βj

[︄
log(y)− log(cj)

]︄

−

∫︁
Ωj
f(u|ξj)

{︄
Q− y

βj
u

2(cj)
βj

[︄
log(yu)− log(cj)

]︄}︄
du∫︁

Ωj
f(u|ξj)du

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (2.19)

whereQ= 1
βj

+ D
2βj

ψ( D
2βj

)+ D
2β2

j
log(2), y=(xn−µj)

TΣ−1
j (xn−µj), yu=(un−µj)

TΣ−1
j (un−

µj) and ψ is the digamma function. The above Equation (2.19) can be approximated as:

α(β̂j) =
N∑︂

n=1

Ẑnj

{︄
Q− yβj

2(cj)
βj

[︄
log(y)− log(cj)

]︄

−

V∑︁
v=1

{︄
Q− y

βj
s

2(cj)
βj

[︄
log(ys)− log(cj)

]︄}︄
H(sjv |j)

V∑︁
v=1

H(sjv |j)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (2.20)

where ys=(sjv −µj)
TΣ−1

j (sjv −µj). The complete learning procedure for the BMGGMM model

is illustrated in Algorithm 1.

2.3 Model selection using MML criterion for BMGGMM

Several methods of model selection have been presented in order to estimate the number of

components of a mixture model [43]. We propose the minimum message length (MML) criterion

for model selection in BMGGMM, which is based on information theory. The optimal number of
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Algorithm 1 BMGGMM
1: Dataset X
2: Output: Θ.
3: Initialization Algorithm
4: Apply K-means to obtain mean and covariance for each component. Set βj=2.
5: if change in likelihood > threshold then
6: E-step:
7: Compute posterior probabilities using Equation (2.8)
8: else
9: M-step:

10: Update the mixing parameter p̂j using Equation (2.10)
11: Update µj using EM algorithm: Equation (2.14)
12: Update Σj using Equation (2.17)
13: Update βj using Newton-Raphson method: Equation (2.18), (2.19) and (2.20).
14: end if when the likelihood is converged
15: Return the model’s parameters µ̂j , β̂j and Σĵ .

components in the mixture is determined by applying MML using the following formula:

MML(M) ≈ − log

[︃
p(ΘM )

]︃
− L(ΘM , Z,X ) +

1

2
log |F (ΘM )|+ Np

2
+
Np

2
log(MNp) (2.21)

where p(ΘM ) is the prior probability, |F (ΘM )| is the determinant of the Fisher information matrix,

Np =M(3D + 1) is the number of free parameters, and MNp is the optimal quantization lattice

constant, which is equal to 1/12 for Np=1 [26]. To use Equation (2.21), we derive the p(ΘM ) and

F (ΘM ) as a first step.

2.3.1 Derivation of the prior distribution

In the mixture model, the parameters of different classes are assumed independent. Thus, we

present the prior distribution as follows:

p(Θ) = p(π)p(µ)p(β)p(Σ) (2.22)

where µ=(µ1, ...,µM ), Σ=(Σ1, ...,ΣM ), β=(β1, ...,βM ) and π= {(p1, ...,pM ) :
∑︁M

j=1 pj =

1}. Using a uniform prior, the prior of the mixing weights is represented as:

p(π) = (M − 1)! (2.23)
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For the parameter µ and Σ, we adopt the prior distribution as described in [44]. Thus, the joint prior

distribution for the mean µ and the covariance Σ is as follows:

p(µ,Σ) ∝
M∏︂
j=1

|Σ|−M D+1
2 (2.24)

We use a uniform distribution U [0, h] for the shape parameter β, where h is the maximum value.

The prior for β is then given by:

p(β) =
1

hM
(2.25)

By substituting Equations (2.23) and (2.25) in Equation (2.22), we get:

p(Θ) ∝ |Σ|(−M D+1
2

)(M − 1)!

hM
(2.26)

Derivation of the Fisher information matrix

The Fisher information is approximated by the determinant of the Hessian matrix. Fisher in-

formation for a mixture leads to a complex analytical form of MML. We approximate the Fisher

information as follows:

|F (Θ)| = |F (π)|
M∏︂
j=1

|F (µj)||F (βj)||F (Σj)| (2.27)

where |F (π)|, |F (µj), |F (βj)| and |F (Σj)| are determinants of Fisher information matrices for π,

µj , Σj , and βj , respectively. Following [11, 45], the Fisher information for the mixing weights is

given by:

|F (π)| =
NM−1

M∑︁
j=1

pj

(2.28)
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where N is the number of observations. The Hessian matrices for parameters µj , Σj , and βj are

given by:

F (µj) = −∂
2L(Θ, Z,X )
∂µjm1∂µjm2

(2.29)

F (Σj) = −
∂2L(Θ, Z,X )
∂Σjm1∂Σjm2

(2.30)

F (βj) = −∂
2L(Θ, Z,X )

∂β2
j

(2.31)

wherem1,m2 ∈ {1, ..., D}. Derivatives are calculated with regard to these parameters, which gives

the required Fisher information matrices detailed in Appendix A.

2.4 ICA mixture of bounded multivariate generalized Gaussian dis-

tributions

In the ICA mixture model, observed data is supposed to come from a mixture model and to be

categorized in mutually exclusive classes [46], where each data vector xn can be represented as:

xn = Ajsj + bj (2.32)

where Aj is a mixing matrix, sj is the source vector, and bj is the bias vector for each mixture

component j [47, 48, 36]. ICA-BMGGMM can be defined by adopting Equation (2.32) in Equation

(2.4).
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2.4.1 Parameter estimation using ICA and gradient ascent

The essential assumption of parameter estimation using ICA is zero mean and unit variance. For

each class, the gradient of complete data log-likelihood for parameters is given as:

∇AjL(Θ, Z,X ) = ∇Aj

N∑︂
n=1

M∑︂
j=1

Ẑnj log

(︃
p(xn|ξj)pj

)︃
(2.33)

where ∇Aj represents gradient with respect to mixing weight, mean, covariance matrix, shape

parameter, basis function, and bias vector, respectively.

Basis functions estimation

The standard ICA model for the log-likelihood is given by:

log

(︃
p(xn|ξj)

)︃
= log

p(sj)

|detAj |
(2.34)

For each ICA mixture component, the adaptation of basis functions is obtained by maximizing the

log-likelihood with respect to basis functions Aj , for each mixture model component:

∇AjL(Θ, Z,X ) = ∇Aj

N∑︂
n=1

Ẑnj log

(︃
p(xn|ξj)

)︃
(2.35)

where∇Aj represents gradient with respect to basis functions. The parameterAj is estimated using

gradient ascent as follows:

Âj = Aj + α

(︄
ẐnjAj

[︄
I − 2 tanh(sj)s

T
j

]︄)︄
(2.36)

where α represents step size and sj given by:

sj = A−1
j

(︃
xn − bj

)︃
(2.37)

The complete computation to estimate basis functions is given in Appendix B.
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Bias vector estimation

An estimate of bias vector using gradient ascent is as follows:

b̂j =

N∑︁
n=1

xnẐnj

N∑︁
n=1

Ẑnj

(2.38)

Estimation steps for mean, covariance, and shape parameters are given in detail in Section 2.2. The

Algorithm 2 ICA-BMGGMM
1: Dataset X
2: Output: Θ.
3: Initialization Algorithm
4: Apply K-means to obtain mean and covariance for each component. Set βj=2.
5: if Change in likelihood > threshold then
6: E-step:
7: Compute posterior probabilities using Equation (2.8)
8: else
9: M-step:

10: Start ICA algorithm
11: Update the basis functions Aj using Equation (2.36)
12: Update the bias vector bj using Equation (2.38)
13: End ICA algorithm
14: Update the mixing parameter p̂j using Equation (2.10)
15: Update µj using EM algorithm: Equation (2.14)
16: Update Σj using Equation (2.17)
17: Update βj using Newton-Raphson method: Equation (2.18), (2.19) and (2.20)
18: end if when the likelihood is converged
19: Return the model’s parameters Âj , b̂j , µ̂j , β̂j and Σ̂.

complete procedure for the ICA mixture model is shown in Algorithm 2.

2.5 IVA mixture of multivariate generalized Gaussian distributions

In several applications, it is necessary to jointly analyze not just a single but several sources,

with dependence among them. Examples include processing the medical data, such as multi-subject

fMRI and EEG, and multiple frequency bins while addressing the problem of a convolutive ICA

in the frequency domain. IVA is a natural extension of ICA for the simultaneous extraction of

independent components from multiple sources, which creates a framework to avoid the blind source

separation permutation problem [49].
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In IVA, components within a source are independent, while corresponding components ex-

tracted from different mixture sources are maximally dependent. Thus, corresponding component

dependence across multiple sources and component independence within a single source are maxi-

mized simultaneously as described in Fig. 2.1. This cannot be achieved by running separate ICAs

on each source [50].

In IVA, each mixture source x
[m]
n , m=1, ...,M is a linear mixture of N independent sources.

x[m]
n = A

[m]
j s

[m]
j , m=1, ...,M (2.39)

where A
[m]
j is an invertible mixing matrix and s

[m]
j is a vector of sources for mth mixture sources.

The source vector s[m]
j is defined by concatenating nth sources from each M mixture source. The

goal of the IVA algorithm is to estimate M mixing matrices that yield source estimates y[m] =

W[m]x[m]. This is achieved by minimizing the mutual information cost function, which is equiva-

lent to maximizing the likelihood function as:

JIV A =
N∑︂

n=1

H(yn)−
M∑︂

m=1

log|det(W[m])| −H(x) (2.40)

where H(yn) is the differential entropy of nth source vectors and H(x) is considered as constant.

By definition, the termH(yn) is given by
∑︁M

m=1H(y
[m]
n )−I(yn), where I(yn) denotes the mutual

information within the tth source component vector (SCV). The optimization of the cost function

takes into account both the independence within the dataset (via the entropy term) and the depen-

dence across datasets (via the mutual information term). The gradient of the cost function is given

by:

∂JIV A

∂W[m]
= −

N∑︂
n=1

E

⎧⎪⎪⎨⎪⎪⎩
∂ log

(︃
p(yn)

)︃
∂y

[m]
n

∂y
[m]
n

∂W[m]

⎫⎪⎪⎬⎪⎪⎭−
(︃
W[m]

)︃−T

(2.41)

where p(yn) is a probability density function, which plays an important role in the development

of the IVA algorithm. In our case, we use p(yn) of BMGGMM to improve the IVA model. Using
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Equations (2.4) and (2.40), the cost function for IVA mixture can be expressed as:

JIV A =− log(ϕj) +
D

2
log(cj) +

1

2
log |Σj |+

1

2(cj)
βj

yβj − log |hTnW[m]
n |

−

∫︁
Ωj
f(u|ξj)

[︄
− log(ϕj) +

D
2 log(cj) +

1
2 log |Σj |+ 1

2(cj)
βj
(yu)

βj

]︄
du∫︁

Ωj
f(u|ξj) du

(2.42)

where ϕj=
[︃

βjΓ(
D
2
)

π
D
2 Γ( D

2βj
)2

D
2βj

]︃
, y is defined as:

y=(xn − µj)
TΣ−1

j (xn − µj),yu=(u− µj)
TΣ−1

j (u− µj) and the gradient of the cost function

of IVA-BMGGMM is given by:

∂JIV A

∂W[m]
= E

[︄
βj

2(cj)
βj

(y)βj−1Σ−1
j

(︂
x[m]
n − µj

)︂
x[m]
n

]︄
− h

[m]
n(︂

h
[m]
n

)︂T
W

[m]
n

−

∫︁
Ωj
f(u|ξj)

[︃
βj

2(cj)
βj
(yu)

βj−1Σ−1
j

(︂
x
[m]
n − µj

)︂
x
[m]
n

]︃
du∫︁

Ωj
f(u|ξj) du

(2.43)

where the term h
[m]
n

(h
[m]
n )TW

[m]
n

is introduced to solve the issue of poor convergence that is raised due

to the inverse of W at each iteration. The M mixing matrices are updated as follows:

(W[m]
n )new = (W[m]

n )old − γ ∂IIV A

∂W[m]
(2.44)

where γ is a scalar step size and can be fixed to a small number.

2.6 Experimental results

This Section will discuss and demonstrate the validation of the proposed models, namely BMG-

GMM, ICA-BMGGMM, and IVA-BMGGMM, as described in the following subsections.
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Figure 2.1: General framework of the IVA model. The nth source component vectors (SCV) is
formed by grouping the corresponding mth source from each source vector together.

2.6.1 Experimental evaluation of BMGGMM

We consider medical applications, including stroke, skin cancer, alzheimer, diabetes, and human

resources analysis datasets to validate the performance of BMGGMM.

In terms of performance metrics, we compared the performance of the employed models using

both objective and subjective measures. We selected widely used measures namely accuracy, recall,

precision, F1 score, false-positive rate (FPR), Jaccard score and Log loss. Recall is used to validate

the model’s ability to recognize positive labels. Precision is calculated by dividing the percentage of

corrected positive labels by the total number of positive labels. The F1 score combines precision and

sensitivity into a single metric. The F1 score will range between 0 and 1. FPR is a rate calculated

from the confusion matrix, where the FPR is the ratio of false positive labels to negative labels. The

log-loss value represents how close the prediction probability is to the true value (0 or 1 in the case

of binary classification). The greater the difference between predicted and actual probability, the

greater the log-loss value. For more details, the reader is referred to [51, 52, 53].

Stroke detection

Stroke is one of the leading causes of adult mortality worldwide, affecting 6.2 million people

each year [54]. As a result, significant research has been conducted in order to facilitate better

and more accurate stroke detection [55, 56]. The stroke dataset is composed of 4900 observations
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recorded for 4692 healthy subjects and 208 patients, and it has ten attributes such as gender, age,

various diseases, and smoking status. This dataset was created to classify healthy persons and pa-

tients with stroke. We apply the BMGGMM on the stroke data to validate its performance. The

results of the BMGGMM are compared to GMM, GGMM, BGGMM, and MGGMM. From Ta-

ble 2.1, it can be observed that accuracy (95.77%), precision (95.64%) and all other performance

metrics indicate that the proposed model (BMGGMM) outperforms the compared models (GMM,

GGMM, BGGMM, MGGMM) in clustering stroke datasets to its relevant classes. Thus, we can

conclude that BMGGMM can be used in medical diagnosis process.

Table 2.1: Performance on Stroke data based on different metrics.

Model Accuracy Precision Recall F1 score FPR Jaccard score Log loss
BMGGMM 95.77 95.64 99.21 97.43 16.61 95.54 4.09
MGGMM 80.26 95.34 83.25 89.64 35.52 80.44 6.81
BGGMM 79.77 94.77 81.32 77.84 34.12 75.77 11.45
GGMM 64.02 94.23 64.72 76.65 35.33 61.24 12.11
GMM 62.02 94.52 64.53 76.46 31.35 62.12 13.11

Skin cancer detection

Skin cancer is one of the most common cancers in the world. To reduce skin cancer death

rates, early detection of this form of the disease is vital. Machine learning has recently proven an

effective way of identifying tumors of the skin as either malignant or benign [57]. The skin dataset

consists of 3272 observations from 1776 benign subjects and 1496 malignant subjects. The objec-

tive of using this data in this experiment is to categorize benign and malignant subjects through

clustering. To efficiently extract the essential features of an image, we used the scale-invariant

Table 2.2: Performance on skin cancer data based on different metrics.

Model Accuracy Precision Recall F1 score FPR Jaccard score Log loss
BMGGMM 74.08 73.43 69.52 71.61 13.45 75.63 8.95
MGGMM 66.98 73.22 64.13 65.43 13.82 66.91 11.40
BGGMM 60.81 67.26 58.39 59.50 13.60 63.26 13.53
GGMM 55.06 52.09 52.18 53.44 16.39 52.56 15.52
GMM 54.48 52.32 54.24 58.55 19.23 54.95 15.72
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feature transform (SIFT) technique. We used bags-of-visual-words (BoVW) to represent data as D-

dimensional feature vectors [58]. In this experiment, we applied the proposed model (BMGGMM)

to distinguish between benign and malignant subjects. BMGGMM’s clustering performance is com-

pared to GMM, GGMM, and MGGMM. FPR (13.45) and Log loss (8.95) from Table 2.2 indicate

lower rates, demonstrating that our proposed model outperforms MGGMM, BGGMM, GGMM,

and GMM. The proposed algorithm demonstrates its effectiveness in clustering skin cancer from

non-skin cancer classes, implying that BMGGMM may be used in cancer detection in the early

stage.

Alzheimer disease diagnosis

Alzheimer’s disease (AD) is one of the most common causes of dementia. According to the

Alzheimer report [59], approximately 50 million people were affected by Alzheimer’s disease in

2018, with the number expected to triple by 2050. The dataset was collected using longitudinal MRI

data from 5069 subjects aged from 60 to 96. Each subject was scanned at least once. Throughout

this data, 2560 subjects were classified as non-dementia and 2509 as dementia. We used the BoVW

approach to represent the features of data. Next, we applied our proposed model (BMGGMM) to

differentiate between Alzheimer patients and healthy subjects. We observe from Table 2.3 that accu-

racy (79.83%), precision (81.54%), F1 score (76.22%) and other metrics indicate that our proposed

model performed better than GMM, GGMM, BGGMM, and MGGMM in distinguishing between

Alzheimer and healthy subjects.

Table 2.3: Performance on Alzheimer data based on different metrics.

Model Accuracy Precision Recall F1 score FPR Jaccard score Log loss
BMGGMM 79.83 81.54 65.23 76.22 16.56 72.84 6.97
MGGMM 74.93 78.92 70.83 66.72 18.56 69.84 8.66
BGGMM 75.53 79.23 71.32 72.34 15.27 70.34 7.31
GGMM 74.79 80.93 65.65 72.49 20.75 68.34 8.70
GMM 51.85 51.76 50.38 66.26 21.42 49.16 16.63
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Diabetes experiment

Diabetes mellitus is one of the most common diseases among the elderly. According to the In-

ternational Diabetes federation, 451 million people worldwide had diabetes in 2017 (World Health

Organization)1. Early detection and management of DM also prevents complications and helps to

reduce the chances of severe health problems [60]. We consider a dataset containing 390 observa-

tions with 16 attributes categorized into diabetes and healthy subjects for this application.

From results in Table 2.4, it is observed that BMGGMM successfully distinguishes between

diabetes and non-diabetes categories. Accuracy (84.61%), recall (96.47%), F1 score (91.96%) and

other performance measures indicate the effectiveness of BMGGMM as compared to other models.

Table 2.4: Performance on Diabetes data based on different metrics.

Model Accuracy Precision Recall F1 score FPR Jaccard score Log loss
BMGGMM 84.61 84.32 96.47 91.96 14.28 84.17 5.31
MGGMM 74.10 84.53 85.41 84.94 18.89 73.37 8.94
BGGMM 66.15 80.90 66.66 76.92 15.33 62.50 11.69
GGMM 56.41 85.74 58.65 69.83 21.19 51.27 15.05
GMM 54.41 84.53 56.62 66.48 26.93 49.21 17.05

Human resources analysis experiment

The development of the global workforce and the increasing importance of business analysis as

a strategic organizational capacity today have a significant impact on human resources management

[61]. The Human resources dataset 2 is composed of 14,999 employees, and each observation has

ten features such as satisfaction level, number of projects, and salary. The dataset is categorized

into two groups where the employee stays or leaves a specific job. BMGGMM is conducted to

examine the level of satisfaction and then classify employees into two classes. Table 2.5 provides

the results for our proposed model compared to GMM, GGMM, BGGMM, and MGGMM. FPR

(17.57) and Log loss (8.22) show lower error rates for our proposed model compared to MGGMM,

BGGMM, GGMM, and GMM. These results demonstrate the efficacy of BMGGMM performance
1https://www.who.int/news-room/fact-sheets/detail/diabetes
2https://www.kaggle.com/jacksonchou/hr-data-for-analytics
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in clustering the level of employer satisfaction in certain jobs.

As shown in Table 2.5, the improvement in the proposed BMGGMM model is clearly not sig-

nificant when compared to other models, which can be explained by the nature, complexity, and

dimensionality of the data. As shown in the Table, the high dimensionality of this data degrades

the performance of both our proposed model and the compared models. A dimensionality reduc-

tion technique such as PCA or a feature selection algorithm to extract the most effective features is

highly recommended to improve the classification capability of our proposed model.

Table 2.5: Performance on human resources data based on different metrics.

Model Accuracy Precision Recall F1 score FPR Jaccard score Log loss
BMGGMM 76.19 76.45 94.95 86.88 17.57 76.38 8.22
MGGMM 75.69 76.74 94.95 86.39 20.22 75.17 8.39
BGGMM 73.45 73.07 85.35 83.15 24.64 67.67 12.62
GGMM 63.98 73.56 82.29 77.48 21.91 63.85 12.43
GMM 61.95 72.74 79.93 76.82 23.19 61.37 13.14

2.6.2 Experiments and results for clustering using BMGGMM-MML

Model selection through MML is validated using the same experiments that were used to vali-

date the BMGGMM. The proposed MML technique for model selection is compared to several de-

terministic model selection criteria including Akaike’s information criterion (AIC) [27], Bayesian

inference criterion (BIC) [62], Consistent AIC (CAIC) [63], LEC [64], and MDL [65]. MML re-

Table 2.6: Number of clusters determined by MML.

Data D N K* MML AIC BIC CAIC LEC MDL
Stroke 10 4900 2 2 3 2 2 5 2
Skin Cancer 16 3272 2 2 3 4 4 1 4
Alzheimer 16 5068 2 2 2 2 2 3 2
Diabetes 15 390 2 2 5 3 3 2 3
employee 8 14998 2 2 2 2 2 5 2

∗ Actual number of clusters in the data.

sults are compared to other model selection criteria to assess the performance of our technique, and

noteworthy findings are drawn from these results. Each dataset is tested to evaluate the performance
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and viability of MML. Model selection criteria were employed to detect the exact number of clus-

ters in each dataset. The results of each method against each dataset are summarized in Table 2.6,

where it is observed that MML has successfully determined the number of categories in all datasets.

2.6.3 Experimental results for BMGGMM with ICA

In this subsection, we evaluate the proposed model (ICA-BMGGMM) using a variety of ap-

plications, including speech, electrocardiogram (EOG), and electroencephalogram databases, as

described in the following subsections.

Separating heartbeat sounds

The pregnancy period is critical in the diagnosis and prevention of a variety of fetal abnormali-

ties. Pregnant women should be monitored regularly in most developed countries. Monitoring fetal

heart rate (FHR) usually begins around the 24th week, using doppler ultrasonographic cardiotocog-

raphy [66]. In this experiment, we used a Shiraz University fetal heart sounds database (SUFHSDB)

3. The SUFHSDB dataset is collected from mothers aged 16 to 47 years with a digital stethoscope

placed on the lower maternal abdomen. It consists of 99 subjects who had one signal recorded,

three subjects who had two signals recorded, and seven cases of twins recorded separately, totaling

109 recordings. The sampling rate was generally 16,000 Hz with 16-bit quantization, and a few

recordings were made at 44,100 Hz.

Firstly, the ICA mixture model is used to estimate basis functions, which are then used to sep-

arate mixed signals. In this experiment, we estimated the basis functions of 2 × 2 to compute two

heartbeat sound sources. We have used linear mixtures of 2 sources to recover the heartbeat sound

sources and executed blind source separation by employing ICA-BMGGMM. Subjective and ob-

jective measures on recovered sources were performed to assess the quality of recovered heartbeat

signals and the viability of the ICA mixture model in BSS. The subjective analysis includes heart-

beat signals before and after source separation. The objective analysis includes signal-to-distortion

ratio (SDR), signal-to-interference ratio (SIR), signal-to-noise ratio (SNR), signal-to-artefact ratio

(SAR), and intersymbol interference (ISI) [67]. Figs. 2.2 and 2.3 compare the performance of the
3https://physionet.org/content/sufhsdb/1.0.1/
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Table 2.7: Objective measure for separation of heartbeat signals.

Model
BSS of ECG
SDR SIR SAR SNR ISI

ICA-BMGGMM 77.93 78.99 84.57 77.73 0.49
ICA-MGGMM 45.91 38.72 62.56 55.64 0.51
ICA-BGGMM 28.30 28.32 30.41 29.29 0.49
ICA 12.45 13.51 19.28 25.26 0.53

proposed model to ICA visually. The fetal and maternal acoustic ECG signals had similar morphol-

ogy, but the fetal heartbeat frequency was higher than the maternal heartbeat frequency. Table 2.7

compares the performance of ICA-BMGGMM to that of ICA, ICA-BGGMM, and ICA-MGGMM

using SDR, SIR, SAR, SNR, and ISI performance metrics. It is clearly shown that ICA-BMGGMM

outperforms ICA, ICA-BGGMM, and ICA-MGGMM for all four measures: SDR (77.93), SIR

(78.99), SAR (84.57), and SNR(77.73). Furthermore, ISI (0.49) for ICA-BMGGMM is lower than

that for ICA, ICA-BGGMM, and ICA-MGGMM models.

Figure 2.2: BSS for heartbeat signals using ICA. The left acoustic signal represents the fetal heart-
beat sound, while the right acoustic signal represents the mother heartbeat sound.

Fetal ECG extraction

Cardiotocography (CTG) measures the relationship between FHR and uterine contractions dur-

ing pregnancy [68]. Intravenously, CTG measures the FHR and uterine pressure to ensure the

optimal health of the fetus. Machine learning techniques are being developed to assist in predicting

the fatal cardiac disease. Pregnant woman dataset4 contains nine channels; we only keep the first
4https://homes.esat.kuleuven.be/ tokka/daisydata.html
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Figure 2.3: BSS for heartbeat signals using ICA-BMGGMM. The fetal heartbeat sound is rep-
resented by the left acoustic signal, while the mother heartbeat sound is represented by the right
acoustic signal.

three recordings, as shown in Fig. 2.4, captured using electrodes placed on the patient’s abdomen.

There are 2500 measurements in each captor signal. The ICA mixture model is used to estimate

basis functions 2 x 2, 3 x 3, 4 x 4, and 5 x 5 in separated experiments to compute 2, 3, 4, and 5

sources. In BSS, only ECG signals after linear mixing are visible. The basis functions that will

be used during the source separation are unknown. ICA mixture models were evaluated using sub-

jective and objective measures. In the subjective analysis, ECG signals obtained before and after

source separation are used. SDR, SIR, SAR, SNR, and ISI are among the objective metrics that

are evaluated. We conducted four experiments using this BSS framework to compute 2, 3, 4, and

Figure 2.4: Original ECG channels. These three channels were extracted from a pregnant women
dataset.

5 ECG sources. We used a linear mixture of 2, 3, 4, and 5 ECG sources from the database and
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Figure 2.5: ICA-BMGGMM ECG channels. On the left are the extracted ICA-BMGGMM ECG
signals for mother. On the right is the fetal ICA-BMGGMM ECG signal.

conducted BSS using three models (ICA, ICA-BGGMM, ICA-MGGMM, and ICA-BMGGMM)

to recover 2, 3, 4, and 5 ECG sources, respectively. Objective analysis is performed on recovered

sources to determine the quality of recovered ECG signals and the viability of ICA mixture models

in BSS. This experiment is repeated ten times with different linear ECG mixtures from the original

database, and then the objective measures are averaged across these ten separated experiments. The

objective measures obtained after recovery of ECG source signals are shown in Tables 2.8 and 2.9

for the majority of performance measures. In case of BSS for 2 ECG signals, we find that the ICA-

BMGGMM model outperforms ICA, ICA-BGGMM, and ICA-MGGMM models for SDR (28.46),

SIR (27.09), SAR (261.57), and also the other metrics. Figs. 2.4 and 2.5 show a comparison of ECG

signals before and after BSS. The morphology of the fetal and maternal ECG signals was similar,

but the fetal heartbeat frequency was higher than the maternal heartbeat frequency. The above BSS

Table 2.8: Objective measure for separation of 2 and 3 ECG signals.

Model
BSS for of 2 ECG signals BSS for of 3 ECG signals
SDR SIR SAR SNR ISI SDR SIR SAR SNR ISI

ICA-BMGGMM 28.46 27.09 261.57 32.40 0.45 19.01 19.02 256.79 19.34 0.45
ICA-MGGMM 9.50 9.50 255.58 16.80 0.46 9.91 9.91 251.63 16.22 0.47
ICA-BGGMM 9.20 9.21 253.32 20.31 0.45 14.63 14.53 235.45 10.22 0.45
ICA 8.76 8.76 246.20 15.74 0.47 8.45 8.46 248.85 15.88 0.49

experiments demonstrate the effectiveness of ICA-BMGGMM in comparison to commonly used

ICA, ICA-BGGMM, and ICA-MGGMM models. It is also observed that the rate of improvement

slows as the number of linear mixtures in source separation increases. These findings show that
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Table 2.9: Objective measure for separation of 4 and 5 ECG signals.

Model
BSS for of 4 ECG signals BSS for of 5 ECG signals
SDR SIR SAR SNR ISI SDR SIR SAR SNR ISI

ICA-BMGGMM 14.01 14.02 256.26 14.26 0.44 14.08 14.87 251.79 19.26 0.43
ICA-MGGMM 10.44 10.45 251.86 15.03 0.47 12.16 10.16 249.68 17.78 0.48
ICA-BGGMM 9.48 9.58 252.80 14.29 0.52 10.59 10.56 251.76 17.12 0.44
ICA 7.36 7.36 248.66 13.22 0.48 10.10 8.10 245.37 16.43 0.49

the ability of ICA-BMGGMM to recover the sources decreases as the mixing complexity increases.

This is a limitation of the ICA-BMGGMM that will be addressed in future work.

Blind source separation of speech signals

We evaluate our proposed technique with random signals obtained from Romanian read-speech

corpus (RoDigits) dataset5. This corpus contains 37.5 hours of connected spoken digits from 154

people between 20 and 45 years old. In the final corpus, each speaker recorded 100 clips of 12

Romanian-generated digits at random, with a sampling frequency of 16 kHz, in a total of 15,389

sound files. In BSS, the ICA mixture model estimates basis functions, which are then separated

from mixed signals. To compute 2, 3, 4, and 5 sources, we estimated basis functions 2 x 2, 3 x 3,

4 x 4, and 5 x 5 in separated experiments. Only speech signals after linear mixing are observed

when using BSS. There is no prior knowledge of the basis functions that will be used in the source

separation. The BSS framework is evaluated using both subjective and objective measures. Speech

signals obtained before and after source separation are used in the subjective analysis. The major

components of objective analysis are SDR, SIR, SAR, SNR, and perceptual evaluation of speech

quality (PESQ) [67]. In order to validate the BSS on ICA mixture models, RoDigits speech corpora

Table 2.10: Objective measure for separation of 2 and 3 speech signals.

Model
BSS of 2 speech signals BSS of 3 speech signals
SDR SIR SAR SNR PESQ ISI SDR SIR SAR SNR PESQ ISI

ICA-BMGGMM 28.27 28.83 59.97 26.28 1.25 0.46 9.91 9.98 58.18 18.62 1.91 0.36
ICA-MGGMM 21.22 22.24 49.42 16.78 1.23 0.47 8.72 8.73 46.98 17.79 1.71 0.39
ICA-BGGMM 26.99 26.67 56.23 20.53 1.24 0.5 9.88 9.88 54.60 17.19 1.07 0.73
ICA 11.77 13.28 36.03 9.57 1.09 0.51 8.23 8.24 40.49 16.46 1.65 0.53

are employed. We conducted four experiments with the BSS framework to compute two, three, four,
5https://speed.pub.ro/downloads/speech-datasets/

33



Table 2.11: Objective measure for separation of 4 and 5 speech signals.

Model
BSS of 4 speech signals BSS of 5 speech signals
SDR SIR SAR SNR PESQ ISI SDR SIR SAR SNR PESQ ISI

ICA-BMGGMM 7.93 7.93 49.54 17.27 1.45 0.37 7.34 7.37 45.95 17.68 1.39 0.35
ICA-MGGMM 7.35 6.37 45.03 16.57 1.39 0.38 6.31 6.48 44.58 15.29 1.33 0.36
ICA-BGGMM 6.08 6.08 47.82 15.94 1.03 0.76 6.10 6.10 45.85 16.16 1.01 0.79
ICA 6.86 6.19 41.22 15.17 1.35 0.49 6.15 6.39 42.96 14.76 1.29 0.52

and five speech sources. We took a linear mixture of these speech sources from the database, and

we employed three models (ICA, ICA-BGGMM, ICA-MGGMM, and ICA-BMGGMM) to recover

them. Once the source is recovered, objective analysis will be performed to determine the quality

of speech signals recovered and the viability of ICA mixture models in BSS. The experiment is per-

formed ten times with objective measures averaged over ten separated experiments using different

linear speech mixtures of 2, 3, 4, and 5 from the original database sources.

Figure 2.6: Speech signals and their corresponding spectrograms from source 1. The first row
represents both the raw speech signal and its spectrogram. The second row illustrates the speech
mixed signal and its spectrogram. The third row represents the extracted speech signal using ICA-
BMGGMM and its corresponding spectrogram.

The objective measures obtained after the recovery of speech source signals are shown in Ta-

bles 2.10 and 2.11. For the majority of performance metrics such as SDR (28.27) and SIR (28.83)

for BSS of 2 speech signal, we find that the proposed model (ICA-BMGGMM) outperforms ICA,

ICA-BGGMM, and ICA-MGGMM models. It is also worth noting that when the number of lin-

ear mixtures in source separation increases, improvement decreases as shown in Tables 2.10 and

2.11. Figs. 2.6 and 2.7 present speech signals and their corresponding spectrograms before mixing,
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Figure 2.7: Speech signals and their corresponding spectrograms from source 2. The first row
represents both the raw speech signal and its spectrogram. The second row illustrates the speech
mixed signal and its spectrogram. The third row represents the extracted speech signal using ICA-
BMGGMM and its corresponding spectrogram.

after mixing, and after BSS for two different speech sources to provide a clear comparison to the

reader. As demonstrated by these two figures, The ICA-BMGGMM is capable of recovering speech

resources signals from mixed speech signals.

EEG eye blink removal

In the electroencephalogram analysis, eye movements and blink artifacts can cause various is-

sues. EEG contaminated by ocular artifacts can be manually removed. An electrocardiogram uses

electrodes placed above and around the eyes to measure eye movement activity directly. EEG data

6 from 14 males and 13 females were used to evaluate the proposed algorithm for removing EOG

artifacts. This EEG data were collected at a sampling rate of 200 Hz with a bandpass filter set to

0.5-40 Hz on 19 channels (Fp1, Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6,

O1, and O2).

After pre-processing the actual continuous EEG signals, EEG data dimensions are M = 19

channels and N = 5601 observations. ICA, ICA-BGGMM, ICA-MGGMM, and ICA-BMGGMM

models were used to assess the performance in ten separate experiments, each with its own set of

EEG data. Artifact rejection can be implemented after the artifactual sources have been separated
6https://data.mendeley.com/datasets/wb6yvr725d/1
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using ICA-BMGGMM by automatically detecting and removing the artifactual sources. The objec-

tive measures (SDR, SIR, SAR, SNR, and ISI) are used to compare the performance.

Table 2.12 shows objective measures after recovery of EEG signals. We find that ICA-BMGGMM

exceeds those of ICA, ICA-BGGMM, and ICA-MGGMM models for SAR (254.35), SNR (29.43),

and other measures. We have taken the FP1 channel as an example to clarify ICA-BMGGMM per-

formance in removing EEG artifacts, as shown in Fig. 2.8. The obtained Fp1 EEG signal demon-

strates ICA-BMGGMM’s ability to eliminate eye blinking caused by Fp1 EEG electrodes placed

around the eye. This BSS experiment showed that the ICA-BMGGMM model outperforms ICA,

ICA-BGGMM, and ICA-MGGMM models.

Figure 2.8: Fp1 channel before and after blink removal. On the upper, the EEG signal is contam-
inated by eye blinking signals. After the eye blink signals have been removed, the cleaning EEG
signal is shown at the bottom.

Table 2.12: Objective measures for EEG experiments.

Model
BSS of EEG
SDR SIR SAR SNR ISI

ICA-BMGGMM 46.13 43.74 254.35 29.43 0.45
ICA-MGGMM 45.02 42.76 249.08 26.77 0.52
ICA-BGGMM 45.16 42.98 252.17 24.55 0.53
ICA 44.26 41.90 245.20 22.65 0.63

2.6.4 Experimental results for IVA-BMGGMM

In this subsection, we evaluated the performance of the proposed model (IVA-BMGGMM)

using different multivariate applications, including speech, ECG, fMRI, and EEG databases, as
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explained in the following subsections.

Speech separation using IVA-BMGGMM

The speech data used in this subsection is described in Subsection 2.6.3. The IVA mixture

model estimates basis functions in BSS, which is then used to separate mixed signals. We estimated

basis functions 2 x 2, 3 x 3, 4 x 4, and 5 x 5 in separate experiments to compute 2, 3, 4, and 5

sources. When using BSS, only speech signals after linear mixing are observed. There is no previous

knowledge of the basis functions that will be employed during the source separation. Both subjective

and objective measures are used to evaluate the BSS framework. The subjective analysis comprised

of speech signals is obtained before and after source separation. SDR, SIR, SAR, SNR, ISI, and

PESQ are major components of objective analysis [69, 67]. RoDigits speech corpora are used to

validate blind source separation based on IVA mixture models. We executed four experiments using

this BSS framework to compute 2, 3, 4, and 5 speech sources.

Table 2.13: Objective measure for separation of 2 and 3 speech signals.

Model
BSS of 2 speech signals BSS of 3 speech signals
SDR SIR SAR SNR PESQ ISI SDR SIR SAR SNR PESQ ISI

IVA-BMGGMM 30.78 30.92 87.26 29.67 2.38 0.38 10.94 10.95 81.96 28.55 2.81 0.33
ICA-BMGGMM 28.27 28.83 59.97 26.28 1.25 0.46 9.91 9.98 58.18 18.62 1.91 0.36
IVA-MGGMM 25.45 25.53 76.27 19.89 2.28 0.39 9.13 10.14 79.82 24.17 2.76 0.36
ICA-MGGMM 21.22 22.24 49.42 16.78 1.23 0.47 8.72 8.73 46.98 17.79 1.71 0.39
IVA-BGGMM 29.25 29.38 62.35 27.91 1.25 0.49 8.72 8.76 61.17 24.60 1.09 0.49
ICA-BGGMM 26.99 26.67 56.23 20.53 1.24 0.50 9.88 9.88 54.60 17.19 1.07 0.73
IVA 20.60 20.71 61.87 13.06 2.10 0.48 8.95 9.50 64.99 19.27 2.61 0.41
ICA 11.77 13.28 36.03 9.57 1.09 0.51 8.23 8.24 40.49 16.46 1.65 0.53

Table 2.14: Objective measure for separation of 4 and 5 speech signals.

Model
BSS of 4 speech signals BSS of 5 speech signals
SDR SIR SAR SNR PESQ ISI SDR SIR SAR SNR PESQ ISI

IVA-BMGGMM 8.28 8.29 64.00 22.59 2.74 0.32 7.69 7.69 71.55 22.73 2.58 0.31
ICA-BMGGMM 7.93 7.93 49.54 17.27 1.45 0.37 7.34 7.37 45.95 17.68 1.39 0.35
IVA-MGGMM 7.65 7.66 63.30 22.30 2.66 0.35 6.95 6.96 69.39 22.62 2.48 0.33
ICA-MGGMM 7.35 6.37 45.03 16.57 1.39 0.38 6.31 6.48 44.58 15.29 1.33 0.36
IVA-BGGMM 7.23 7.26 62.17 21.57 1.09 0.51 5.05 5.07 63.94 15.52 1.03 0.52
ICA-BGGMM 6.08 6.08 47.82 15.94 1.03 0.76 6.10 6.10 45.85 16.16 1.01 0.79
IVA 6.95 6.96 62.56 20.36 2.53 0.40 6.48 6.48 68.01 19.83 2.31 0.38
ICA 6.86 6.19 41.22 15.17 1.35 0.49 6.15 6.39 42.96 14.76 1.29 0.52

We considered a linear mixture of 2, 3, 4, and 5 speech sources from the RoDigits database
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and performed the BSS using six different models (IVA, IVA-BGGMM, IVA-MGGMM, IVA-

BMGGMM, ICA, ICA-BGGMM, ICA-MGGMM, and ICA-BMGGMM) to recover the speech

sources. Once sources have been recovered, they are subjected to objective analysis to determine

the quality of the recovered speech signals and the viability of IVA mixture models in BSS. Using

different linear speech mixtures of 2, 3, 4, and 5 sources from the original database, the experiment

is repeated ten times with the objective measures averaged over these ten separated experiments.

These results show that the ability of IVA-BMGGMM to recover the sources decreases as the mix-

ing complexity increases.

Tables 2.13 and 2.14 indicate the objective measures obtained after the recovery of speech

source signals. For 2, 3, 4, and 5 sources, we find that the proposed model (IVA-BMGGMM) out-

performs compared models includes IVA-MGGMM, IVA-BGGMM, IVA, ICA-BMGGMM, ICA-

MGGMM, ICA-BGGMM, and ICA for most performance metrics. For BSS of 2 speech signal,

we observed a significant improvement for IVA-BMGGMM (SDR = 30.78) compared to ICA-

BMGGMM (SDR = 28.27), IVA-MGGMM (SDR = 25.45), ICA-MGGMM (SDR = 21.22), IVA-

BGGMM (SDR = 29.25), ICA-BGGMM (SDR = 26.99), IVA (SDR = 20.60), and ICA (SDR =

11.77). However, when source signals increase as in BSS of 5 speech signals, we noticed low

improvements. According to this BSS experiments, IVA-BMGGMM effectiveness performance is

better than IVA-MGGMM, IVA-BGGMM, IVA, ICA-BMGGMM, ICA-MGGMM, ICA-BGGMM,

and ICA models. Also, it has been noticed that when the number of linear mixtures in source

separation increases, the rates of improvement decrease.

EEG eye blink removal experiment

An EEG dataset is used to evaluate the proposed algorithm. This database was described in

2.6.3 in detail. This continuous EEG data were segmented in a 10-second EEG window, where

each window will be referred to as an epoch. After epoching, 200 epochs are extracted from one

recording per channel. Then the data was reshaped to be in a source vector form, then used as

input for IVA models. Then the IVA models are implemented to remove EOG artifacts as shown

in Fig. 2.9. After preprocessing actual continuous EEG signals, EEG data dimensions are M =19

channels, T =10 time points, and N =200 epochs. After that, 200 epochs are used to run multiple
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Figure 2.9: EEG block diagram. Illustration of epoching on continuous EEG data to build a dataset
for IVA algorithms to obtain estimated components for EEG artifact removal. SCVs formed from
estimates are also depicted.

IVA algorithms for ten repeated experiments. When IVA has separated artifactual sources, artifact

rejection can be implemented by automatically detecting and removing the sources corresponding

to the artifact. IVA, IVA-BGGMM, IVA-MGGMM, IVA-BMGGMM, ICA, ICA-BGGMM, ICA-

MGGMM, and ICA-BMGGMM are evaluated on ten separate experiments, each with its own set of

EEG data. The objective measures averaged out over these ten separated experiments. The objective

Figure 2.10: EEG channels before eye blink removal. EEG signal contaminated by the artifacts of
eye blinking.

measures (SDR, SIR, SAR, SNR, and ISI) obtained after the recovery of EEG signals are shown in
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Table 2.15. We find that the IVA-BMGGMM model exceeds the compared models, including IVA-

MGGMM, IVA-BGGMM, IVA, ICA-BMGGMM, ICA-MGGMM, ICA-BGGMM, and ICA for the

majority of performance metrics. SDR (51.89), SIR (59.02), SAR (259.97), and SNR (34.34), for

the proposed model IVA-BMGGMM, are highly significant compared to other models.

Figs. 2.10 and 2.11 indicate EEG signals prior and after artifact removal using BSS, and it

is observed that EOG artifacts were removed correctly. For visualization purposes, we only show

the first 6 EEG signals out of a total of 19. The first six EEG channels’ results demonstrate that

IVA-BMGGMM can eliminate eye blinking caused by Fp1 and Fp2 EEG electrodes placed around

the eye. For more clarification, we took the FP1 channel as an example to clarify the performance

of IVA-BMGGMM to remove EEG artifacts as shown in Fig. 2.12. BSS experiments show that

the IVA-BMGGMM model has better performance than compared models namely: IVA-MGGMM,

IVA-BGGMM, IVA, ICA-BMGGMM, ICA-MGGMM, ICA-BGGMM, and ICA. This success in

IVA-BMGGMM can be used to improve the performance of the existing BSS system that uses EEG

artifact removal.

Figure 2.11: EEG channels after eye blink removal. The obtained EEG signals after removing eye
blink artifacts with IVA-BMGGMM.

Schizophrenia detection

Early detection of mental disorders is still a challenging task. Schizophrenia is a common psy-

chiatric brain disorder that affects about 1% of the global population [70]. This disorder affects

many brain functions and is distinguished by hallucinations, disorganized thinking, delusions, and
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Table 2.15: Objective measure for separation of EEG signals.

Model
BSS of EEG
SDR SIR SAR SNR ISI

IVA-BMGGMM 51.89 59.02 259.97 34.34 0.33
ICA-BMGGMM 46.13 43.74 254.35 29.43 0.45
IVA-MGGMM 47.51 44.98 251.82 32.03 0.37
ICA-MGGMM 45.02 42.76 249.08 26.77 0.52
IVA-BGGMM 49.03 46.33 253.77 27.50 0.60
ICA-BGGMM 45.16 42.98 252.17 24.55 0.53
IVA 44.48 42.93 247.51 30.64 0.41
ICA 44.26 41.90 245.20 22.65 0.63

Figure 2.12: Fp1 channel before and after BSS. The blue EEG signal represents EEG signals
contaminated by eye-blinking artifacts. The yellow one represents the clean EEG signals obtained
after IVA-BMGGMM was used to eliminate eye blinking.

disintegration of reality perception [71]. We used the Center of Biomedical Research Excellence

(COBRE) dataset7 to classify schizophrenic patients and healthy subjects. Preprocessing was per-

formed on the data to correct motion correction and spatial normalization into standard Montreal
7https://fcon1000.projects.nitrc.org/indi/retro/cobre.html
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Neurological Institute template (MNI). The preprocessed data was parcellated into 116 regions us-

ing automated anatomical labeling (AAL) to extract the regions of interest signals (ROIs). IVA,

IVA-BGGMM, IVA-MGGMM, IVA-BMGGMM, ICA, ICA-BGGMM, ICA-MGGMM, and ICA-

BMGGMM are applied. To get the activated regions, we reconstruct the original dimensions. All

these steps are illustrated in Fig. 2.13.

In MATLAB software, the data processing and analysis for brain imaging (DPABI) tool [72]

was used to execute all preprocessing steps. For each participant, slice time correction was applied

for interleaved acquisition. Head motion correction based on Friston’s 24-parameter motion model

[73] was performed. Co-registration of structural and functional images to map the functional in-

formation to the anatomical space was executed. Then, the images were spatially normalized to the

MNI standard using the DARTEL template [74] and resampled to 3 x 3 x 3 mm3. The generated

images were spatially smoothed with a 4 mm full-width half-maximum (FWHM) Gaussian kernel.

Additionally, a band-pass filter with a frequency range of 0.01 − 0.1 Hz was employed to linearly

detrend and temporally filter the images, effectively reducing low-frequency drifts and eliminating

physiological high-frequency noise. Then, we applied brain parcellation using AAL atlas on the pre-

processed data. IVA, IVA-BGGMM, IVA-MGGMM, IVA-BMGGMM, ICA, ICA-BGGMM, ICA-

MGGMM, and ICA-BMGGMM algorithms are executed to evaluate performance on ten separated

experiments, each with separate fMRI data. SDR, SIR, SAR, SNR, and ISI measuring parameters

are used to compare performance. These measures are averaged over ten times for fMRI data. In

this experiment, it is observed that IVA-BMGGMM outperforms IVA-MGGMM, IVA-BGGMM,

IVA, ICA-BMGGMM, ICA-MGGMM, ICA-BGGMM, and ICA models for the majority of per-

formance metrics as described in Table 2.16. Although the improvement is not highly significant

for IVA-BMGGMM (SDR = 65.58 and SIR = 59.87) compared to ICA (SDR = 61.15 and SIR =

55.37), these findings open the door to do more modifications on IVA models to be used instead

of ICA for detecting the brain activation regions in schizophrenic patients. The activated regions

for schizophrenic patients are illustrated in Fig. 2.14. We picked (5, 7, 18) IVA components to

see the different defected regions in schizophrenic patients. It is observed from Fig. 2.14 that the

frontal network and default mode network (DMN) is highly activated in schizophrenic patients. The
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Figure 2.13: Block diagram of the proposed schizophrenia detection system.

DMN is responsible for remembering and thinking about future whereas the frontal network con-

trolling decision making, planing and organizing. As we can see, these two networks are defective

in schizophrenic patients.

Table 2.16: Objective measure for fMRI signals.

Model
BSS of fMRI
SDR SIR SAR SNR ISI

IVA-BMGGMM 65.58 59.87 135.92 73.39 0.32
ICA-BMGGMM 63.23 57.61 135.39 33.89 0.37
IVA-MGGMM 65.17 59.65 135.76 65.34 0.31
ICA-MGGMM 61.69 56.25 133.91 31.20 0.39
IVA-BGGMM 63.02 55.79 133.93 29.94 0.38
ICA-BGGMM 61.64 54.11 132.09 26.29 0.36
IVA 65.01 59.38 135.65 62.41 0.36
ICA 61.15 55.37 133.87 29.94 0.41

Fetal ECG extraction

The previous Section explained the context for this experiment 2.6.3. Traditional maternal tech-

niques that focused primarily on fetal heartbeat and uterine contractions were used to ensure the
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Figure 2.14: The defected regions for schizophrenic patients. On the left are the defected regions
for frontal networks. The activated regions in the DMN are shown on the right.

well-being of the fetus [75]. However, due to the involuntary movements of the fetus and the small

size of the heart, assessing the fetal heart is still challenging. Therefore, new technologies such

as machine learning that improve initial obtained images, help extract measures, or aid in cardiac

problems detection are critical for optimal fetal heart assessment. For this experiment, the ECG

dataset8 contains nine channels; we only keep the first three recordings as shown in Fig. 2.15, that

were captured using electrodes placed on the abdomen of a pregnant woman. Each captor signal

contains 2500 measurements. IVA mixture model is used to estimate basis functions 2 x 2, 3 x 3,

Figure 2.15: Original ECG channels. These three channels were extracted from a pregnant women
dataset.

4 x 4, and 5 x 5 in separate experiments to compute 2, 3, 4, and 5 sources. Only ECG signals after
8https://homes.esat.kuleuven.be/ tokka/daisydata.html
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Figure 2.16: IVA-BMGGMM ECG channels. On the left are the extracted IVA-BMGGMM ECG
signals for mother. On the right is the fetal ICA-BMGGMM ECG signal.

linear mixing are visible in BSS. There is no prior knowledge of the basis functions that will be

used during the source separation. Subjective and objective measures were used to evaluate the IVA

mixture models. ECG signals obtained before and after source separation are used in the subjective

analysis. The objective analysis includes SDR, SIR, SAR, SNR, and ISI.

We conducted four experiments using this BSS framework to compute 2, 3, 4, and 5 ECG

sources. We used a linear mixture of 2, 3, 4, and 5 ECG sources from the database and conducted

BSS using six models (IVA, IVA-BGGMM, IVA-MGGMM, IVA-BMGGMM, ICA, ICA-BGGMM,

ICA-MGGMM, and ICA-BMGGMM) to recover 2, 3, 4, and 5 ECG sources, respectively. The

recovered sources are subjected to objective analysis to determine the quality of recovered ECG

signals and the viability of IVA and ICA mixture models in BSS. The experiment is repeated ten

times using different linear ECG mixtures of 2, 3, 4, and 5 sources from the original database, with

the objective measures averaged out over these ten separated experiments.

Tables 2.17 and 2.18 show objective measures obtained after the recovery of ECG source sig-

nals. We find that the IVA-BMGGMM model outperforms IVA-MGGMM, IVA-BGGMM, IVA,

ICA-BMGGMM, ICA-MGGMM, ICA-BGGMM, and ICA models for 2, 3, 4, and 5 sources. In

BSS of 2 ECG signals, we observed a highly significant improvement for both IVA-BMGGMM and

ICA-BMGGMM compared to other models. SDR (37.26), SIR (36.59), SAR (269.65), and SNR

(39.09) for IVA-BMGGMM are the best measures among all performance metrics. A comparison

of ECG signals before and after BSS can be seen in Figs. 2.15 and 2.16. Fig. 2.16 shows the ability

of IVA-BMGGMM to recover the fetal and mother ECG signals from the mixed ECG signal. The
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fetal ECG signal has a higher frequency than the mother’s ECG signal. The above BSS experiments

show the effectiveness of IVA-BMGGMM compared with widely used different models such as

IVA-MGGMM, IVA-BGGMM, IVA, ICA-BMGGMM, ICA-MGGMM, ICA-BGGMM, and ICA.

It is also observed that as the number of linear mixtures in source separation increases, the improve-

ment rate decreases. These findings show that as the mixing complexity increases, the ability of

IVA-BMGGMM to recover the sources decreases. This is an IVA-BMGGMM limitation that can

be addressed in future work.

Table 2.17: Objective measure for separation of 2 and 3 ECG signals.

Model
BSS of 2 ECG signals BSS of 3 ECG signals
SDR SIR SAR SNR ISI SDR SIR SAR SNR ISI

IVA-BMGGMM 37.26 36.59 269.65 39.09 0.28 33.50 32.94 259.22 29.49 0.31
ICA-BMGGMM 28.46 27.09 261.57 32.40 0.45 19.01 19.02 256.79 19.34 0.45
IVA-MGGMM 31.69 31.25 263.08 37.92 0.32 26.89 26.46 256.62 26.65 0.33
ICA-MGGMM 9.50 9.50 255.58 16.80 0.46 9.91 9.91 251.63 16.22 0.47
IVA-BGGMM 28.84 28.84 259.48 25.85 0.49 26.99 25.99 245.85 20.95 0.51
ICA-BGGMM 9.20 9.21 253.32 20.31 0.45 14.63 14.53 235.45 20.22 0.45
IVA 26.26 25.75 258.31 27.26 0.40 21.84 21.41 252.39 23.38 0.42
ICA 8.76 8.76 246.20 15.74 0.47 8.45 8.46 248.85 15.88 0.49

Table 2.18: Objective measure for separation of 4 and 5 ECG signals.

Model
BSS of 4 ECG signals BSS of 5 ECG signals
SDR SIR SAR SNR ISI SDR SIR SAR SNR ISI

IVA-BMGGMM 31.73 31.17 259.72 26.29 0.30 33.41 32.56 258.25 25.98 0.37
ICA-BMGGMM 14.01 14.02 256.26 14.26 0.44 14.08 14.87 251.79 19.26 0.43
IVA-MGGMM 29.72 28.25 256.66 24.29 0.36 29.67 29.81 256.04 24.81 0.38
ICA-MGGMM 10.44 10.45 251.86 15.03 0.47 12.16 10.16 249.68 17.78 0.48
IVA-BGGMM 29.91 29.71 253.34 20.35 0.52 19.74 20.13 253.16 24.40 0.51
ICA-BGGMM 9.48 9.58 252.80 14.29 0.52 10.59 10.56 251.76 17.12 0.44
IVA 25.05 24.53 251.64 21.58 0.42 26.04 25.17 252.26 22.49 0.43
ICA 7.36 7.36 248.66 13.22 0.48 10.10 8.10 245.37 16.43 0.49

2.7 Conclusion and discussions

In this Chapter, we proposed the BMGGMM to address the issues associated with unbounded

mixture models. Furthermore, we proposed BMGGMM for data clustering in various applications,

including medical diagnosis for diseases such as stroke, Alzheimer, skin cancer, and diabetes, as

well as data analysis for human resources. Using different metrics, we verified the effectiveness
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of BMGGMM, which outperforms GMM, GGMM, BGGMM, and MGGMM in clustering several

data sets. The number of optimal components that best characterize the data is critical for the

mixture model. As a result, we proposed MML as a model selection criterion using BMGGMM

to accurately determine the number of clusters in a dataset to enhance unsupervised learning of the

mixture model. Moreover, we validated MML over the same applications.

This work proposed BMGGMM with ICA as a model for statistical learning, which is further

proposed in BSS to validate the algorithm’s effectiveness using speech, ECG, and EEG databases.

This algorithm overcomes the limitations of ICA, which assumes that sources are independent of one

another. The presented applications have demonstrated the proposed model’s success. According to

the results of the BSS experiments, ICA-BMGGMM outperforms ICA, ICA-BGGMM, and ICA-

MGGMM models. It is also observed that the rate of improvement slows as the number of linear

mixtures in source separation increases.

In this work, we also proposed BMGGMM with independent vector analysis as a generalization

for the ICA-BMGGMM model. The proposed model relaxed the ambiguity issue related to the ICA

model, and it is more applicable for data with multiple sources such as fMRI and EEG databases.

IVA-BMGGMM was validated through different medical datasets, including ECG, EEG, fMRI, and

speech signals, to assess the success of the proposed model compared to ICA and IVA different mod-

els. The results of the proposed model (IVA-BMGGMM) are compared with (IVA-MGGMM, IVA-

BGGMM, IVA, ICA-BMGGMM, ICA-MGGMM, ICA-BGGMM, and ICA) models for speech and

medical datasets, where IVA-BMGGMM demonstrated its effectiveness.
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Chapter 3

ICA and IVA bounded multivariate

generalized Gaussian mixture based

hidden Markov models

Machine learning, a branch of artificial intelligence, is an area of computational science that

is concerned with the analysis and interpretation of patterns and structures in data to enable learn-

ing and decision-making without the participation of a human. Hidden Markov models (HMMs),

which have been acknowledged for decades but have recently made a significant revival in machine

learning, are one of the most impressively powerful probabilistic models. HMMs are frequently

employed in machine learning to model heterogeneous time series data. In this Chapter, we in-

tegrate traditional ICA and ICA with a bounded multivariate generalized Gaussian mixture model

(ICA-BMGGMM) into the HMM approach. One limitation of ICA is that it assumes the sources

to be independent from each other. This assumption can be relaxed by combining standard IVA

and IVA with the BMGGMM (IVA-BMGGMM) into the HMM approach to improve their mod-

eling capability. We validate our proposed models using a variety of applications, such as human

action recognition, speech recognition, and energy disaggregation. The results presented in the

work demonstrate the effectiveness of the proposed approaches for modeling different types of data.

These data include KTH and Weizmann datasets for human action recognition, TIMIT and SDR for
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speech recognition, REDD dataset for energy disaggregation and EEG dataset for elliptic Seizure

classification. For all conducted experiments, our proposed models outperform other comparing

models for all performance metrics such as accuracy, sensitivity, and precision. The best detection

results were found using the IVABMGGMM-HMM for the reported experiments.

3.1 Introduction

Numerous approaches, including ICA, principal component analysis (PCA), and IVA, have been

developed to address the BSS problem [76]. ICA effectively solves BSS under the assumption

that observations are linear, statistically independent mixtures of sources, separated by maximizing

output independence [77, 78]. This assumption is relaxed in the ICA mixture model, which classifies

data into exclusive classes and combines independent sources using model components [34, 36].

To address unbounded mixture model limitations, ICA with a bounded multivariate generalized

Gaussian mixture model (BMGGMM) has been proposed [37, 79, 80, 38]. In previous work, we

incorporated BMGGMM into ICA by leveraging statistical independence and sparsity [2].

As mentioned in [81], ICA is limited by permutation and scaling issues. To tackle these con-

straints, the IVA was proposed to reduce the permutation problem that occurs in most of the BSS

algorithms [40]. IVA decomposes each dataset into a linear combination of statistically indepen-

dent variables that take into account cross-dataset correlations. It has been successfully applied

to a variety of applications where joint source separation is required, and statistical information

from multiple datasets must be fully leveraged, such as joint analysis of electroencephalographic

datasets [82], fMRI applications [83], and multi-channel audio array processing [84]. To develop

IVA, a variety of algorithms have been proposed that take into account different kinds of statisti-

cal features such as second-order statistics (SOS) and higher-order statistics (HOS). IVA-Gaussian

(IVA-G) [49] takes full use of SOS, but IVA-Laplacian (IVA-L) [85], which assumes a Laplacian

distribution as source prior, uses only statistics greater than two. Multivariate generalized Gaussian

distribution over the IVA model (IVA-GGD) [42] assumes a multivariate generalized Gaussian dis-

tribution (MGGD) as the source prior. This model includes a wide range of unimodal distributions
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such as sub-Gaussian, super-Gaussian, and normal distributions and thus exploits SOS and HOS be-

tween and within datasets. When estimating the scatter matrix, IVA-GGD assumes that the samples

are independent and identically distributed (i.i.d.) and uses a fixed set of shape parameter values.

For problems with unbounded distributions for data that fall within bounded regions, the IVA model

is enhanced using the BMGGMM. The bounded regions are included in IVA-BMGGMM, which is

an improvement over IVA-MGGD.

A hidden Markov model (HMM) is a dynamic probabilistic approach that is employed in several

domains, including speech processing [86], object and gesture classification [87], [88], and unusual

event detection [89],[90]. HMM has received a lot of attention from researchers and has been

used successfully in a variety of fields as it has unique properties that other traditional learning

methods don’t have [91, 92]. HMM, a dual stochastic process, has hidden Markov chains with

a fixed number of states and a set of observable random functions. However, each function is

significant to a state of the chains, and the hidden process may be represented using the visible

process’s sequences. HMM is well-suited to modeling dynamic time series and has good pattern

classification capabilities, particularly for signals with a large amount of information.

According to the literature, several studies have employed ICA and IVA in speech recognition

[93, 94, 95, 96], object detection [97, 98], artifact removal for EEG data [99, 100] and estimat-

ing the time-varying representations for large-scale resting-state fMRI data [101]. To tackle the

ICA limitations, the integration of mixture models and ICA has been proposed in several studies

[38, 37, 80, 102]. Moreover, ICA and HMM have been combined in [103] and [104] for fatigue

detection and fault recognition respectively. We integrate the IVA technique into the HMM frame-

work, inspired by the integration of ICA and HMM. To the best of our knowledge, this is the first

study of the IVA approach’s integration with the HMM scheme. Furthermore, we propose the ICA

mixture combined with HMM to relax the issues related to ICA. Finally, we propose the integra-

tion of the IVA-BMGGMM and the HMM framework to improve the IVA-HMM scheme. The

IVABMGGMM-HMM is a more general IVA-HMM implementation that uses the shape parameter

and covariance matrix to account for both second and higher-order statistics. In addition, this model

is more suitable for data that fall in bounded regions.

To validate these three proposed models, we also considered several applications. To start,
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we employed our models for human action recognition. In computer vision and pattern recogni-

tion, human activity modeling has been an important research area [105]. Robotics, health care,

video surveillance systems, and human-to-computer interfaces are applications that use activity

recognition. The challenge for action recognition systems is accurately classifying incoming data

(video/images). Feature extraction and action learning are the two most important processes in hu-

man activity recognition. We picked the KTH dataset [106] to validate the proposed models. We

also used the Weizmann data to test our models’ ability to identify different actions. Furthermore,

we applied the proposed algorithms for speech recognition. In this case, the TIMIT dataset with

eight dialects is used to validate our models. For more than two decades, TIMIT’s phone recog-

nition has been the subject of extensive research, and its performance has steadily improved over

time. When it comes to evaluation, there are several methods available, but they focus on three ar-

eas: phone segmentation [107], phone classification [108], and phone recognition [109, 110]. In our

case, we used TIMIT to validate our models capability for phone recognition applications. Using

the spoken digit dataset, we extended the validity of our models in the field of speech recognition.

We tested our models’ ability to recognize the digit classes in this data. Moreover, we applied our

models to energy disaggregation, a process also known as non-intrusive load monitoring (NILM).

NILM plays a crucial role in modern smart grid applications, offering significant potential in areas

such as demand-side management, load forecasting, and energy conservation. The goal of energy

disaggregation is to use aggregated meter data to estimate the energy usage of each appliance on a

customer site. Various approaches for NILM have been proposed, each employing a different sig-

nal processing and machine learning technique (reviews can be found in [111, 112]). The HMMs

and their variants (see, for example, [113, 114]), signal processing methods such as dynamic time

warping [115, 116], single-channel source separation [117], graph signal processing [118, 119],

and support vector machines with K-means [120] are among the approaches proposed. In our case,

we proposed integrating the IVA, IVA-BMMGGMM, and ICABMGGMM into the HMM frame-

work. These models are able to model both Gaussian and non-Gaussian data. Furthermore, the

IVABMGGMM-HMM and the ICABMGGMM-HMM can handle correlated features in bounded

support regions. For this application, we used the REDD dataset to test the capability of our pro-

posed models to categorize the active state of the selected appliances which plays an important role
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in energy saving.

The rest of this Chapter is organized as follows: The proposed models (ICA-BMGGMM, IVA,

IVA-BMGGMM) integrated with HMM are discussed in Section 3.2. Section 3.3 evaluates the

proposed method’s performance using different experiments. Section 3.4 concludes our Chapter.

3.2 Integration of ICA and IVA into the HMM framework

3.2.1 ICA mixture of bounded multivariate generalized Gaussian distributions

The observed data in the ICA mixture model is assumed to come from a mixture model and be

classified into mutually exclusive classes [46], where each data vector xn can be represented as:

xn = Ajsj + bj (3.1)

ICA-BMGGMM is defined by substituting Equation (3.1) in Equation (2.4). The ICA mixture

model is described in Chapter 2.

3.2.2 IVA mixture of bounded multivariate generalized Gaussian distributions

IVA considers components within a source to be independent, and components taken from dif-

ferent mixture sources to be maximally dependent. As shown in Fig. 2.1, equivalent component

dependency across many sources and component independence within a single source is maximized

simultaneously. This cannot be accomplished by performing individual ICAs on each source [50].

In IVA, each mixture source x
[m]
n , m=1, ...,M is a linear mixture of N independent sources.

x[m]
n = A

[m]
j s

[m]
j , m=1, ...,M (3.2)

The mathematical Equations for the IVA mixture are given in detail in Chapter 2.
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3.2.3 Hidden Markov model

The hidden Markov model is a probabilistic model used to describe random process statistical

features. It is divided into two parts: the hidden Markov chain (known as the hidden layer) and the

observed quantity (known as the observation layer). A collection of parameters governs a hidden

Markov model, such as the number of state transitions and the emission probability. HMM-based

modeling has three main tasks: the first is to optimize the model’s parameters given training data;

the second is scoring, which calculates the joint probability of a sequence given the model; and the

third is decoding, which finds the optimal series of hidden states as shown in Fig. 3.1.

It is worth mentioning that the emission probability for continuous observations is generally

taken as a Gaussian mixture [86, 87, 121]. For any applications of HMM, we always have to solve

three major problems:

• The evaluation problem: This is mainly considered by computing the probability of a par-

ticular sequence of observations. This problem can be solved by the forward and backward

algorithms [122, 123].

• The decoding problem: It can be tackled by finding the most likely sequence of hidden states

which could have generated a given sequence of observations. This problem can be solved by

the Viterbi algorithm [124, 125].

• The learning problem: This is also considered as the selection process among all models to

determine which model best matches the observations. We use the Baum–Welch algorithm

[121] to find the best set of state transitions and emission probabilities to estimate the param-

eters that maximise the probability of a given set of observations (see Fig. 3.2).

HMM can be defined by the following parameters: according to [86], given time-series obser-

vations X = [x1,x2, ...,xN ] generated by hidden states Z = [z1, z2, ..., zN ]; zk ∈ [1,K], where K

is the number of the hidden states, a transition probabilities matrix: Bjk = p(zn = j|zn−1 = j
′
)

and the emission probabilities matrix: p(xn|Λ) are defined. The initial probability is defined as

πj , which is the probability of starting the observation sequence from state j. The joint probability
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distribution for both hidden states and observable variables is written as:

p(X , Z|Θ) = p(Z1|π)
(︃
πNn=2p(zN |zn−1, B)

)︃
πNn=1p(xn|Λ) (3.3)

where Θ={π,B,Λ} defines the set of parameters of HMM. There are numerous options for emis-

sion distribution, including Gaussian distribution and mixture models such as the GMM. In our

case, we consider IVA, IVA-BMGGMM, and ICA-BMGGMM to be used as emission distributions.

Maximum likelihood estimation

We used the maximum log-likelihood technique via the EM algorithm [126], which identifies

the best matches to the data. The EM framework begins with initial parameters. Then, in the E step,

we use the forward-backwards algorithm to determine the state’s posterior distribution. We update

parameters Θ using this posterior distribution by maximizing the full data likelihood concerning

each parameter in the M step as shown in Fig. 3.2. By denoting Z as hidden variables and X as the

data, we can express the data likelihood as:

L(Θ,Θold) =
∑︂
Z

p(Z|X ,Θold) log p(X , Z|Θ) (3.4)

By introducing the Lagrange multiplier λ, the marginal posterior distribution and the joint posterior

distribution are given by:

λ(Znk) = p(Znk|X ,Θ) (3.5)

ξ(Zn−1,j , Znk) = p(Zn−1,j , Znk|X ,Θ) (3.6)

Here, λ(Znk) represents the conditional probability where Znk = 1 if xn is emitted from the kth
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state and 0 otherwise. Then, the complete-data log-likelihood is expressed as:

logL(X , Z|Θ) =
K∑︂
k=1

λ(Z1k) log πk +
N∑︂

n=2

M∑︂
j=1

K∑︂
k=1

ξ(Zn−1,j , Znk) logBjk

+
N∑︂

n=1

K∑︂
k=1

λ(Znk) log p(xn|Λnk) (3.7)

where λ(Z1k) is the conditional probability, ξ(Zn−1,j , Znk) is the posterior distribution and

p(xn|Λnk) is the emission distribution.

Figure 3.1: Graphical representation for the HMM model.

Figure 3.2: Training procedures for HMM.

3.2.4 ICA-BMGGMM and IVA-BMGGMM integration into the HMM framework

As demonstrated in the previous subsection, the emission distribution p(xn|Λnk) is commonly

used as the GMM for the majority of continuous observation cases. In this Chapter, we propose to
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integrate IVA, IVA-BMGGMM, and ICA-BMGGMM into the HMM scheme. The primary moti-

vation behind the choice of adopting the ICA-BMGGMM, IVA and IVA-BMGGMM distributions

as emission probabilities is the capability of these distributions to model both Gaussian and non-

Gaussian data. This integration can be done by substituting the p(xn|Λnk) in Equation (3.7) with

Equations (3.2) and (2.4) for IVA-BMGGMM. Similarly, to integrate ICA-BMGGMM to the HMM

model, we substitute the p(xn|Λnk) in Equation (3.7) by Equations (3.1) and (2.4). A schematic of

this integration is shown in Fig. 3.3. To estimate the parameters, we maximize the expectation of

the complete-data log-likelihood in Equation (3.7) with respect to π,B,Λ as:

Estimation of π and B

The maximization of πk and Bjk using the Lagrange multiplier are given as:

πk =
λ(Z1k)

M∑︁
j=1

λ(Z1j)

(3.8)

Bjk =

N∑︁
n=1

ξ(Zn−1,j , Znk)

K∑︁
k=1

N∑︁
n=2

ξ(Zn−1,j , Znk)

(3.9)

where πk and Bjk follow these constrains:
∑︁K

k=1 πk = 1 and
∑︁K

k=1Bjk = 1 respectively. The

estimation of Λ is detailed in Appendix B.

Figure 3.3: Integration of the proposed models into the HMM framework.
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The complete learning of ICABMGGMM-HMM is given in Algorithm 3. The goal of this

algorithm is to find the optimal parameters of the ICABMGGMM-HMM. The gradient descent

method [127, 128] is used in the training process. The optimal estimation of the parameter Θ is

obtained as follows:

Θ∗ = argmax
Θ
L(X , Z|Θ) (3.10)

whereL(X , Z|Θ) is the complete-data likelihood. During the testing process, log-likelihood feature

functions are calculated using the parameters from ICABMGGMM-HMM and IVABMGGMM-

HMM learned during the training stage. Therefore, the most probable class label y∗ of the testing

sequence is inferred as follows:

y∗ = argmax
y∈Y
L(y|X ,Θ∗) (3.11)

Algorithm 3 ICABMGGMM-HMM
1: Dataset X ={x1, ...,xn}.
2: Output: {π,B,Λ}.
3: Initialization for Θ=[π,B,Λ].
4: while iterations ≤Max iterations or parameters do not converge do
5: E-step:
6: for do[x1, ...,xn]
7: Compute λ(Znk) and ξ(Zn−1,j , Znk) use the forward-backward algorithm.
8: Compute the posterior distribution of the state using Equation (3.4).
9: end for

10: M-step:
11: for 1 ≤ j ≤M do
12: Update πk and Bjk using Equations (3.8) and (3.9).
13: Update the mixing parameter p̂kj using Equation (2.10).
14: Update µkj using Equation (2.14).
15: Update Σkj using Equation (2.17).
16: Update βkj using the Newton-Raphson method: Equations (2.18) and (2.20).
17: Update the basis functions Akj using Equation (2.36).
18: Update the bias vector bkj using Equation (2.38).
19: end for
20: end while when the likelihood becomes stable.
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3.3 Experimental results

We propose validating our proposed models (ICABMGGMM-HMM, IVA-HMM, and IVABMGGMM-

HMM) by categorizing video and speech datasets. We used the KTH and Weizmann datasets for

our human action recognition experiments. The KTH dataset includes six action classes: boxing,

hand-clapping, hand-waving, running, walking, and jogging. In the Weizmann dataset, the actions

are: bending, jumping jack, jumping, jumping in place, side jumping, running, skip jumping, walk-

ing, waving one hand, and waving two hands. Many speech processing applications use speech

data clustering, such as speaker verification, classification, and speech recognition. We used the

TIMIT and spoken digits datasets for the speech experiments. Both male and female speakers are

represented in the TIMIT dataset. The spoken digits dataset contains ten types of data from various

speakers. We extended the validation of our models to include an application related to energy con-

sumption. We chose the REDD dataset for this experiment to validate our models’ ability to detect

the state of appliances. Furthermore, we tested the capability of our proposed models to distinguish

between Seizure patients and healthy subjects using EEG signals.

In terms of performance metrics, we compared the performance of the employed models using

both objective and subjective measures. We select the most important measures to demonstrate the

differences in each model’s performance for the objective metrics. Accuracy, sensitivity, specificity,

precision, F1 score, negative predictive value (NPV), Matthews’ correlation coefficient (MCC),

FPR, false-negative rate (FNR), false discovery rate (FDR), and Log loss are the performance met-

rics. Accuracy, sensitivity, specificity, precision, F1 score, and Log loss are discussed in Chapter 2.

The percentage of true negative labels to total negative labels is defined as the NPV. MCC measures

the overall quality of the model by taking into account the total number of true labels as well as

the false positive and negative labels for both classes. FPR and FNR are rates calculated from the

confusion matrix, where the FPR is the ratio of false positive labels to negative labels and the FNR

is the ratio of false-negative labels to positive labels. FDR is the ratio of false positive labels to total

positive labels.

For the subjective measures, we used a confusion matrix, receiver operating characteristics

(ROC) curves, and the area under the curve (AUC). A confusion matrix is a matrix that compares
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the number of correct versus incorrect predictions for each class. Confusion matrix compares the

actual target values to those predicted by the machine learning model. This provides us with a com-

prehensive picture of how well our classification model is performing and what types of errors it is

making. For a binary classification problem, we would have a 2 x 2 matrix with four values: True

negative (TN), true positive (TP), false positive (FP), and false negative (FN). The ROC curve is

a plot of the model’s performance (a plot of the true positive rate and the false positive rate) at all

classification thresholds [129]. The AUC is used to measure the entire two-dimensional area under

the curve and thus measuring the model’s performance at all possible classification thresholds.

3.3.1 Human action recognition

Weizmann data

Human action recognition is an important topic in computer vision and has various real-world

applications. Human activity recognition seeks to assess and understand ongoing activities in video

sequences. The Weizmann dataset includes 90 low-resolution videos of 10 natural actions (bending,

jumping jack, jumping, jumping in place, side jumping, running, skip jumping, walking, waving one

hand, waving two hands). These actions are shown in Fig. 3.4. To begin, we preprocessed the data

by employing a fixed-size box around the actors in each video to maximize classification accuracy

while minimizing background noise. Then, the dense optical flow features from the video sequences

were extracted. Optical flow features are effective and accurate motion information representation

in video sequences [130]. These dense optical flow features were computed between two consec-

utive frames t and t + 1. This results in 2D vectors each representing the horizontal and vertical

movement of a pixel at position (x, y), respectively. Then we set one action video for testing and

other action videos for training. We trained and tested our proposed models over the extracted dense

optical flow features. Here, we set the number of states K = 10. From Table 3.1, we notice that

the proposed models (ICABMGGMM-HMM, IVA-HMM, IVABMGGMM-HMM) outperform the

compared model (ICA-HMM) for several performance metrics. The accuracy (93.80%, 84.32%,

83.36%) , the sensitivity (94.95%, 87.57%, 86.28%), and the F beta (93.74%, 83.94%, 83.33%)

, for the IVABMGGMM-HMM, the IVA-HMM and the ICABMGGMM-HMM, respectively, are
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Figure 3.4: A sample frame for each action in the Weizmann action dataset: (top row) running,
side jumping, skip jumping, jumping, and jumping in place; (bottom row) bending, jumping jack,
walking, one hand waving, and two hands waving.

better than those for the ICA-HMM. In terms of recognizing precision, we clearly see that the pro-

posed models (96.13%, 88.44%, 86.27%) are significantly better than the base model (76.38%).

For the low rate metrics, FPR (0.71%, 1.79%, 1.90%) and FNR (5.04%, 12.42%, 13.71 %) for

Table 3.1: Performance on Weizmann data based on different metrics.

Performance metrics / Model IVABMGGMM-HMM IVA-HMM ICABMGGMM-HMM ICA-HMM
Accuracy 93.80 84.32 83.36 75.58
Sensitivity 94.95 87.57 86.28 73.35
Specificity 99.28 98.20 98.09 76.13
Precision 96.13 88.44 86.27 76.38
F1 score 95.54 88.00 86.28 79.69
F beta 93.74 83.94 83.33 74.66
NPV 99.30 98.24 98.09 76.14
Jaccard 89.39 75.70 73.52 51.31
MCC 93.14 82.59 81.19 71.76
FNR 5.04 12.42 13.71 26.64
FPR 0.71 1.79 1.90 3.86
FDR 3.86 11.55 13.72 33.61

the proposed models are lower than the FPR (3.86%) and FNR (26.64%) of the base model. Most

performance metrics show that the IVABMGGMM-HMM is the best model in our system. That

reflects the capability of this model to classify the different actions in Weizmann data. This success

is explained by the fact that this model considers the full covariance matrix and relaxes the limita-

tions of the ICA models. The confusion matrix for this model is shown in Fig. 3.5, along with the

classification accuracy for each class. It is clear from the confusion matrix that the main source of
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Figure 3.5: Confusion matrix for the IVABMGGMM-HMM model for Weizmann data.

misclassification happens in ”wave1” and ”wave2,” in which 12% and 25% of the test videos were

wrongly classified and received prediction labels of “bend” instead. The proposed models have thus

successfully demonstrated their effectiveness in clustering video data into specific activities, which

opens the door to be used in real-world scenarios for recognition and AI-assisted surveillance in an

unsupervised manner.

KTH data

In this application, the KTH human action dataset [106] is used to evaluate the performance of

our system. There are 600 action videos (2391 video sequences) in this dataset that describe vari-

ous human activities such as running, hand-waving, boxing, walking, jogging, and hand-clapping.

The dataset contains videos of 25 people where each subject repeats the six actions in four differ-

ent scenarios: outdoors, outdoors with zooming in and out, outdoors with different clothes, and
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indoors. Fig. 3.6 shows some illustrations for this dataset for different actions in various scenar-

ios. First step, we preprocessed the data by drawing a fixed-size box around the actors in each

video to improve classification accuracy while reducing background noise. Then, the dense optical

flow features (optical flow vector) are estimated by the optical flow model between two consecu-

tive frames t and t + 1. In our case, the intuition is that this will help to describe the motions of

the limbs in the videos. These features corresponding to each human action are illustrated in Fig.

3.7. After the feature extraction step, we trained and tested the ICABMGGMM-HMM, IVA-HMM,

and IVABMGGMM-HMM models, as well as the ICA-HMM over the dense optical flow extracted

features. In the training process, for each action, we set 10 subject’s videos for the testing and

others videos for the training. In total, we have 360 videos for training and 140 videos for test-

ing. Here, we set the number of states K = 6. The performance metrics for our models and

Figure 3.6: Examples of frames from the KTH dataset showing various human actions in different
scenarios. d1: outdoors, d2: outdoors with scale variations, d3: outdoors with different clothes, d4:
indoors.

the ICA-HMM compared model are shown in Table 3.2. In terms of the high rate metrics, accu-

racy (93.34%, 86.77%, 80.78%), precision (93.18%, 87.70%, 78.62%), F1 score (93.12%, 86.86%,

78.96%), and other metrics demonstrate that the proposed models outperform the compared model

with accuracy (78.5%), precision (76.26%), and F1 score (79.34%). In terms of low rate measures,
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Figure 3.7: Example for the dense optical flow features for boxing, handclapping, and jogging.
The first row represents the human action, and the second row represents the extracted features
corresponding to each action.

FPR (1.33%, 2.71%, 4.41%) and other performance metrics show the (ICABMGGMM-HMM, IVA-

HMM, IVABMGGMM-HMM) are more effective than the ICA-HMM (FPR = 8.34%). Also, we

see clearly that the IVABMGGMM-HMM obtains the highest accuracy (93.34%) among other mod-

els. In other words, better results for the IVABMGGMM-HMM are attained by taking into account

the bounded region and the full covariance matrix. The confusion matrix for the best performance is

shown in Fig. 3.8, along with the classification accuracy for each class. As we can notice from the

confusion matrix that the main source of misclassification was between the “jogging”, “running”

and ”walking”, which are highly similar actions. These promising results demonstrate our models’

ability in human action recognition and related applications such as object recognition.

Table 3.2: Performance on KTH data based on different metrics.

Performance metrics / Model IVABMGGMM-HMM IVA-HMM ICABMGGMM-HMM ICA-HMM
Accuracy 93.34 86.77 80.78 78.54
Sensitivity 93.06 86.04 77.22 77.92
Specificity 98.66 97.28 95.58 83.53
Precision 93.18 87.70 78.62 76.26
F1 score 93.12 86.86 78.96 79.34
NPV 98.66 97.36 95.75 86.46
MCC 91.96 84.03 74.24 75.66
FPR 1.33 2.71 4.41 8.34
FNR 6.81 13.95 20.95 22.25
FDR 7.55 12.29 19.21 22.64
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Figure 3.8: Confusion matrix for the IVABMGGMM-HMM model for KTH data.

3.3.2 Speech recognition

TIMIT data

Phone-based speech recognition has been the subject of intensive research because it is free of

vocabulary limitations. The quality of the phone recognizer determines the performance of large vo-

cabulary automatic speech recognition (LVASR) systems. That is why research teams are constantly

working to improve phone recognizers’ performance. Phone recognition is, in fact, a recurring is-

sue in the speech recognition community. Phone recognition is used in a variety of applications. In

addition to standard LVASR systems [131, 1], it can be found in applications related to language

recognition [132, 133], keyword detection [133], music identification and translation [134, 135],

and applications of speaker identification [136]. Phone recognition in TIMIT has been the subject
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of extensive research for more than two decades, and its performance has steadily improved over

time. There are numerous methods available, but in terms of evaluation, they focus on three areas:

phone segmentation, phone categorization, and phone recognition.

The DARPA TIMIT acoustic-phonetic continuous speech corpus (TIMIT - Texas instruments

(TI) and Massachusetts institute of technology (MIT)), described in [137], contains phonetically

balanced prompted english speech recordings. It was recorded at 16 kHz with a Sennheiser close-

talking microphone and a sample resolution of 16 bits. TIMIT contains 6300 sentences (5.4 hours)

spoken by 630 speakers from eight major dialect regions of the United States. At the phone level,

all sentences were manually segmented. The training set contains 4620 utterances, but usually only

SI and SX sentences are used, resulting in 3696 sentences from 462 speakers. The test set con-

tains 1344 utterances from 168 speakers. The data was divided into 7 classes, as shown in Table

3.3. These classes are namely Stops, Affricates, Fricatives, Nasals, Vowels, Semi-vowels and Si-

lences. For the feature extraction step, the 13th-order Mel-frequency cepstral coefficients (MFCCs)

were obtained; their delta and acceleration features were combined to generate 39-dimensional

feature vectors. Next, we trained and tested the ICABMGGMM-HMM, the IVA-HMM, and the

IVABMGGMM-HMM, as well as the ICA-HMM over the obtained features. In this experiment,

we set the number of states K=7.

Table 3.4 provides the performance metrics for our proposed models (ICABMGGMM-HMM,

IVA-HMM, IVABMGGMM-HMM) compared to the ICA-HMM model. For the high rate measures,

our proposed models perform well in terms of accuracy (72.63%, 69.82%, 67.05%), sensitivity

(72.60%, 69.81%, 67.12%), and specificity (94.86%, 94.97%, 92.97%) when compared to the ICA-

HMM, which has accuracy (65.34%), sensitivity (65.32%), and specificity (91.23%). For the low

rate metrics, FPR (5.02%, 5.13%, 7.02%) and Log loss (3.21%, 6.98%, 8.57%) show the lower

error rates for our proposed models compared to the ICA-HMM with FPR (7.54%) and Log loss

(12.53%). The results clearly show that the IVABMGGMM-HMM has demonstrated its success

in clustering speech features, which can be used to improve the speech recognition systems. This

success (7.29% accuracy improvement for the IVABMGGMM-HMM compared to ICA-HMM) is

ascribed to the effect of the full covariance matrix and the viability of the IVABMGGMM to relax

the limitations of ICA models.
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Table 3.3: Classes of phones in TIMIT data used in this experiment.

Phone class # TIMIT labels TIMIT labels
Stops 14 b d g p t k dx q dcl gcl pcl tcl kcl dcl bcl
Affricates 2 jh ch
Fricatives 8 s sh z zh f th v dh
Nasals 7 m n ng em en eng nx
Semi-vowels 7 l r w y hh hv el
Vowels 20 iy ih eh ey ae aa aw ay ah ao oy ow uh uw ux er ax ix axr ax-h
Silences 3 pau epi h#

Table 3.4: Performance on TIMIT data based on different metrics.

Performance metrics / Model IVABMGGMM-HMM IVA-HMM ICABMGGMM-HMM ICA-HMM
Accuracy 72.63 69.82 67.05 65.34
Sensitivity 72.60 69.81 67.12 65.32
Specificity 94.86 94.97 92.97 91.23
Precision 63.78 63.01 60.53 57.42
F1 score 67.03 66.24 61.86 59.81
NPV 94.46 93.11 94.55 92.33
MCC 63.49 63.25 63.04 52.44
FPR 5.02 5.13 7.02 7.54
Log loss 3.21 6.98 8.57 12.53

TIMIT data with 5 classes

To investigate the behaviour of the classes, we extended the TIMIT experiment following the

suggested class organization in [1]. They have proposed combining the classes of Vowels and Semi-

vowels to be one class (Vowels). They also merged the Affricates and Fricatives classes to be in one

class (Fricatives) as shown in Table 3.5. Here, the number of states is equal to K = 5. Table 3.6

shows that when dealing with TIMIT classes using the suggested criteria (5 classes), our models

outperformed the models in the previously suggested method in Table 3.3 (7 classes). It is worth

mentioning that the three proposed models outperform the baseline model (ICA-HMM) for most

of the performance metrics as shown in Table 3.6. The performance outcomes of our models for

TIMIT with 5 and 7 classes are visualized in Fig. 3.9. The enhancement for the ICABMGGMM-

HMM and IVA-HMM models in TIMIT with five classes is slightly better than those in the same

data with seven classes. In the five classes case, the IVABMGGMM-HMM model outperforms the

same model in TIMIT with 7 classes by 7.27%.

From this experiment, we notice that the preparation of the data and the behaviour of the classes
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play an important role in the clustering performance. This success for our models is explained by the

fact that these models consider the full covariance matrix and tackle the ICA limitations. Also, that

reflects the ability of our models to detect features in bounded Gaussian regions. We also see from

the TIMIT experiment that the IVABMGGMM-HMM has effectively demonstrated its viability in

clustering speech features to improve the representation of speech data.

Table 3.5: 5 classes of phones in TIMIT data used in this experiment [1].

Phone class # TIMIT labels TIMIT labels
Vowels 25 aa, ae, ah, ao, ax, ax-h, axr, ay, aw, eh, el, er, ey, ih, ix, iy, l, ow, oy, r, uh, uw, ux, w, y
Stops 8 p, t, k, b, d, g, jh, ch
Fricatives 10 s, sh, z, zh, f, th, v, dh, hh, hv
Nasals 7 m, em, n, nx, ng, eng, en
Silences 11 h#, epi, pau, bcl, dcl, gcl, pcl, tcl, kcl, q, dx

Table 3.6: Performance on TIMIT data with 5 classes based on different metrics.

Performance metrics / Model IVABMGGMM-HMM IVA-HMM ICABMGGMM-HMM ICA-HMM
Accuracy 79.90 68.28 67.52 63.58
Sensitivity 68.70 64.71 62.52 60.23
Specificity 94.96 92.95 91.74 90.40
Precision 73.18 66.92 66.94 65.15
F1 score 70.87 65.80 63.70 60.66
NPV 95.45 92.18 92.01 90.31
MCC 74.1 64.36 62.19 60.58
FPR 0.05 0.08 0.08 0.09
Log loss 2.81 3.07 5.05 7.84

English spoken digit data

In this subsection, we used the spoken-digit dataset to validate the robustness of our proposed

models. This data contains recordings of spoken digits ranging from 0 to 9 at 8 kHz. The recordings

have been trimmed such that there is almost no silence at the beginning and end. It consists of 3000

utterances from 6 English speakers 1. The MFCCs were obtained in the feature extraction step. The

ICABMGGMM-HMM, the IVA-HMM, and the IVABMGGMM-HMM, as well as the ICA-HMM,

are then trained and tested over the retrieved MFCCs features. Here, we set the number of states

K=10.

Table 3.7 compares the performance metrics of our proposed models (ICABMGGMM-HMM,
1https://github.com/Jakobovski/free-spoken-digit-dataset
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Figure 3.9: The accuracy differences between the proposed models on TIMIT data with 7 and 5
classes.

IVA-HMM, and IVABMGGMM-HMM) to the ICA-HMM. In terms of high rate, our models out-

performed the ICA-HMM model. Accuracy, precision, and F1 score are higher than those for the

ICA-HMM. In terms of error rates, such as FPR, FDR, and FNR are lower than the comparable met-

rics for the ICA-HMM. The enhancement of our proposed models is 11.74% as shown in terms of

accuracy of IVBMGGMM-HMM (96.97%) compared to ICA-HMM (85.23%). The classification

accuracy for each class and the confusion matrix for the best performance is shown in Fig. 3.10. We

see clearly from the confusion matrix that the main source of misclassification happens in the “6”

digit, in which 29% of the test utterances were wrongly classified, and received prediction labels

of “3” or “8” instead. From this experiment, we can notice the robustness of our models compared

to the TIMIT experiments. This enhanced performance can be ascribed to the nature of the data

and the behaviour of the classes. Furthermore, the IVABMGGMM-HMM model includes the full

covariance matrix and can tackle the ICA limitations. These three speech experiments infer that our

proposed models can be used in speech recognition systems and their applications.
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Table 3.7: Performance on spoken digit data based on different metrics.

Performance metrics / Model IVABMGGMM-HMM IVA-HMM ICABMGGMM-HMM ICA-HMM
Accuracy 96.97 95.29 92.97 85.23
Sensitivity 96.01 95.37 93.07 85.17
Specificity 99.55 99.47 99.22 87.02
Precision 96.35 95.98 93.66 83.03
F1 score 96.18 95.67 93.37 82.09
NPV 99.56 99.48 99.23 89.06
MCC 95.60 94.85 92.31 80.56
Jaccard 92.26 91.02 86.87 83.88
FPR 0.04 0.05 0.07 0.97
FNR 3.98 4.62 6.92 8.82
FDR 3.64 4.01 6.33 6.96

Figure 3.10: Confusion matrix for the IVBMGGMM-HMM for spoken digit data.

3.3.3 Energy disaggregation

Energy disaggregation of appliances using non-intrusive load monitoring (NILM) is a set of

information processing methods used to extract appliance-level information from a meter’s total or
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aggregate load. The world is currently focusing on reducing our use of electricity while also being

concerned about other resources such as natural gas, water, and grey water. To address these issues,

numerous technologies are being developed. One of the most effective cost-cutting techniques is

NILM. NILM algorithms can determine which appliances are running in a home-based on power

line analysis. Solutions to NILM inform about consumption issues or present conservation solutions

to homeowners that would allow them to understand their home’s consumption and take action to

reduce electricity consumption. For this application, we used the REDD dataset [117] to validate

our proposed models. It includes actual power measurements for six houses. Two aggregate signals

of phases A and B with sampling frequencies of 1 Hz and sub-metered power signals of individual

loads with sampling frequencies of 1/3 Hz are recorded in each house. In this work, data from

houses 1− 5 is used for training while data from house 6 is reserved for testing. We picked four ap-

pliances: Refrigerator (Ref), Washer-dryer (WD), Dishwasher (DW), and Kitchen outlets (KO) over

the consumption period of one year. Table 3.8 presents the training houses, testing houses, and the

setting for each appliance to be active. We trained our models, including ICABMGGMM-HMM,

IVA-HMM, and IVABMGGMM-HMM and compare them with ICA-HMM using each appliance

individually. We repeated these steps for the four different appliances. We validated the perfor-

mance of our proposed models using several performance metrics. For this experiment, we chose

the number of states to be K = 2. This real-world test was used to show the ability of our mod-

els to handle completely unknown appliances, duty cycles, and consumption—see, for example,

Fig. 3.11. Table 3.9 compares the performance of the suggested models over the Refrigerator,

Table 3.8: Appliances and houses used.

Appliance Training houses Testing houses On state (Watts)
Refrigerator 1,2,3,5 6 >80 No Refrigerator in house 4
Dishwasher 1,2,3,5 6 > 25 No Dishwasher in house 4
Washer-dryer 1,2,3,4,5 6 >25 All houses are included
Kitchen outlets 1,2,3,4,5 6 >25 All houses are included

Dishwasher, Washer-dryer and Kitchen outlets. In this Table, when comparing state estimation and

consumption estimation performance of the proposed models and the base model across all results,

we observe that our proposed models outperformed the comparable model. For the Refrigerator
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Figure 3.11: Typical appliance signatures for Ref, DW, WD and KO.

Table 3.9: Performance on REDD data based on different metrics for all appliances.

Performance metrics
IVABMGGMM-HMM IVA-HMM ICABMGGMM-HMM ICA-HMM

Ref DW WD KO Ref DW WD KO Ref DW WD KO Ref DW WD KO
Accuracy 93.21 94.18 96.01 97.98 88.34 88.28 88.78 87.12 66.25 71.28 67.18 81.03 62.35 62.43 61.25 70.63
Sensitivity 93.98 96.40 97.98 98.03 90.69 93.14 83.36 88.35 66.25 71.28 59.22 87.32 60.43 60.32 55.32 71.73
Specificity 93.96 96.36 97.92 98.31 90.62 93.24 83.46 88.45 66.35 71.38 59.32 87.42 59.64 65.34 54.53 71.43
Precision 73.37 73.84 83.25 92.31 66.51 65.49 78.54 89.74 69.64 80.08 72.74 56.61 64.67 69.44 69.57 52.62
F1 score 82.41 83.63 74.63 88.40 76.74 76.91 72.73 69.87 67.91 75.43 63.68 67.00 61.32 70.53 58.43 58.92
Jaccard 87.29 89.00 92.33 96.05 79.11 79.02 79.83 77.14 59.54 55.38 60.58 68.11 52.64 50.31 52.57 60.75
FPR 00.06 00.03 00.02 00.01 00.09 00.06 00.16 00.12 00.33 00.28 00.40 00.11 00.52 00.42 00.92 01.10
Log loss 02.34 02.00 01.37 00.69 04.02 04.04 11.33 02.93 11.65 09.91 03.87 06.55 14.43 11.62 06.42 10.42

appliance, the proposed models (IVABMGGMM-HMM, IVA-HMM, ICABMGGMM-HMM) per-

formed better than the comparable model for all selected measures. For the Dishwasher; accuracy,

sensitivity, and Jaccard for our models are higher than those for the ICA-HMM. In terms of the lower

rate metrics, FPR and Log loss for our proposed models are lower than FPR and Log loss for the

base model. Similarly, we see that our models outperformed the comparable model for all selected

metrics in the case of Washer-dryer and Kitchen outlets. When comparing state estimation and

consumption estimation performance of the proposed models, we notice that the IVABMGGMM-

HMM is the best performing model compared to the performance of other models. We present

the performance outcomes for our models in terms of accuracy in Fig. 3.12. We see a clear per-

formance improvement for the IVABMGGMM-HMM (blue colour) compared to the base model
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(green colour). In this experiment, we used the ROC curves to describe the AUC for the four mod-

els. Fig. 3.13 demonstrates that the IVABMGGMM-HMM is the best model compared to other

models. We noticed that the AUC for the IVABMGGMM-HMM (0.97) is the largest area compared

to the ICA-HMM area (0.74). To summarize, the AUC for the proposed models is greater than the

AUC for the compared model. This experiment demonstrates the ability of our presented models

to categorize the active state appliance correctly. This success reflects the ability of our models to

detect features in bounded Gaussian regions. These promising results can be used as guidance to

researchers in the field of energy consumption applications.

Figure 3.12: The accuracy differences for the proposed models over the four appliances.

3.3.4 Epileptic Seizure clustering using EEG signals

The proposed methods are validated using the EEG dataset described in [138]. The same 128-

channel amplifier system is used to record all EEG signals, with an average common reference. The

dataset is divided into five subsets (labelled Z, O, N , F , and S), each with 100 single-channel EEG

segments lasting 23.6 seconds. Subsets Z and O contain EEG data from five healthy volunteers

with their eyes open and closed. The F and N subsets are made up of EEG data from five Seizure

patients collected during the Seizure-free period; F is collected from the epileptic zone, while N is

collected from the hippocampal formation in the opposite hemisphere of the brain. Subset S records

EEG data from patients during Seizure activity.
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Figure 3.13: ROC curves for refrigerator using the four models IVABMGGMM-HMM, IVA-HMM,
ICABMGGMM-HMM and ICA-HMM.

The proposed EEG-based epileptic Seizure clustering approach comprises many primary pro-

cesses, including pre-processing, time-frequency analysis, feature extraction, and clustering. For

both time and frequency domain smoothing, we used a 64-point Hamming window. For the feature

extraction step, 13 cepstral coefficients were obtained for each window in the EEG dataset from a

filter-bank consisting of nine filters. The input EEG signal is first transformed into the frequency

domain using the fast Fourier transform and then applied to a bank of triangular filters to compute a

weighted sum of filter spectral components approximating a Mel scale [139]. The MFCCs are ob-

tained by converting the log Mel spectrum into the time domain using the discrete cosine transform.

The performance is evaluated over ten iterations, with a random selection of training and testing

datasets of EEG signals at each step. In this experiment, our goal is to distinguish between the

Seizure and non-Seizure EEG signals, we chose the number of states K=2. At each iteration, we

selected 80% of the EEG data as a training dataset, with an equal number of data points in each class,

and the remaining EEG segments are used for testing. Then our proposed models are used to train
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and test the extracted features. As shown in Table 3.10 the proposed models outperform the ICA-

HMM. Sensitivity (90.22%, 89.47%, 89.47%), specificity (97.47%, 95.04%, 94.14%), precision

(96.97%, 95.88%, 96.78%), and other performance metrics indicate the effectiveness of the pro-

posed models as compared to the ICA-HMM with sensitivity of 87.64%, specificity of 90.69%, and

precision of 90.33%. In terms of accuracy, the IVABMGGMM-HMM (95.54%) has improved by

7.11% when compared to the base model (ICA-HMM) (88.43%). The improved IVABMGGMM-

HMM performance can be ascribed to the model’s ability to detect features in bounded Gaussian

regions. Furthermore, as compared to ICA models, the IVA models perform better with multivariate

data such as EEG.

Table 3.10: Performance on EEG Seizure data based on different metrics.

Performance metrics / Model IVABMGGMM-HMM IVA-HMM ICABMGGMM-HMM ICA-HMM
Accuracy 95.54 94.58 93.54 88.43
Sensitivity 90.22 89.47 89.47 87.64
Specificity 97.47 95.04 94.14 90.69
Precision 96.97 95.88 96.78 90.33
F1 score 95.00 93.93 92.93 91.42
NPV 95.33 91.22 91.05 81.55
FNR 9.44 10.52 10.53 14.32
FPR 1.95 2.85 9. 85 11.63
FDR 1.11 3.21 9.52 9.67

3.4 Conclusion

We investigated the integration of ICA, IVA, ICA-BMGGMM and IVA-BMGGMM into HMM

to improve their capability for modeling data. Initially, we tested the combination of ICA and

HMM as the base model. Then, we proposed the ICA-BMGGMM to be integrated into the HMM

framework to improve the ICA-HMM modeling capability. Next, we tackled the ICA limitations

for multivariate data by investigating the integration of IVA into HMM. Finally, we explored the

combination of IVA-BMGGMM and HMM to improve the modeling ability of IVA-HMM. We val-

idated our proposed models using different applications. We used the KTH and Weizmann datasets

to train our models to recognise various human actions. For the speech recognition, we tested our

models’ ability to detect different types of speech using TIMIT and english spoken digit datasets.

We extended our validation process by using our proposed models to distinguish the active state of
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the selected appliances for energy disaggregation. Furthermore, we used the EEG dataset to train

our models to identify Seizure patients from healthy subjects. We improved the modeling capability

for ICA and IVA to model Gaussian and non-Gaussian data. The presented experiments demon-

strated the capability of our models to distinguish between the classes when compared to the base

model. Specifically, the IVABMGGMM-HMM revealed its ability to detect the classes using the

presented experiments as compared to other proposed models.
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Chapter 4

Adaptive constrained IVAMGGMM:

Application to neurological disorders

detection

There is an increasing demand for adaptable approaches to examine extensive fMRI data, aim-

ing to capture overall patterns that represent a population while retaining the unique characteristics

of individuals. The use of ICA is on the rise as a valuable tool for examining the concealed spatio-

temporal patterns present in brain imaging data. ICA has limitations in separating the correlated

sources in multivariate data such as fMRI. For that, we propose an ICA-based multivariate gener-

alized Gaussian mixture model combined with the constrained ICA to form the cICA-MGGMM.

This model relaxes the independence assumption of ICA. Also, we propose the adaptive constrained

ICA-MGGMM (acICA-MGGMM) to adaptively control the association between reference signals

and estimated sources. IVA is a data-driven technique that concurrently calculates global spatial

and temporal patterns from fMRI data involving multiple subjects, effectively maintaining individ-

ual variability. Nonetheless, as our findings indicate, the performance of IVA is compromised when

the quantity of datasets and components increases, particularly in cases of weak correlations among
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these components across the datasets. In this Chapter, we investigate this problem and propose an ef-

ficient approach to tackle it by integrating reference signals of the estimation patterns into the formu-

lation, offering guidance in high-dimensional situations. For that, we propose the cIVA-MGGMM

to relax the ICA limitations for multivariate data. cIVA-MGGMM provides an effective framework

for including references, but its effectiveness relies on user-defined constraint parameters. These pa-

rameters enforces a predetermined level of association between the reference signals and estimation

patterns. To tackle these limitations, we introduce the adaptive cIVA-MGGMM (acIVA-MGGMM)

to adapt and separate the activated brain sources. This model employs a full covariance matrix,

which takes into account the feature correlation. ICA and IVA models face restrictions when used

with multivariate high-dimensional data, such as resting state fMRI data. For that, our four con-

strained methods incorporate prior information about the sources into the ICA and IVA models to

address the limitations of ICA and IVA in high-dimensional data. We validate our proposed mod-

els using simulation, Alzheimer’s, Schizophrenia, EEG, and Attention-deficit/hyperactivity disorder

datasets. Based on the presented performance metrics, our proposed models outperform the base

models on the conducted experiments.

4.1 Introduction

As the amount of data being generated keeps growing, there is an increasing demand for adapt-

able approaches that can effectively extract the overall trends while also maintaining subject-specific

information from large-scale datasets. Joint blind source separation (JBSS) is a method used in sig-

nal processing and machine learning to separate multiple signals that have been mixed together into

a single signal without any prior knowledge about the mixing process or the original sources. The

goal of JBSS is to recover the original sources from the observed mixture. Two popular methods

for BSS are ICA [140] and IVA [42].

ICA has proven to be effective in various applications of BSS, such as speech separation [141],

image processing, and biomedical signal analysis [142]. ICA’s assumption of source independence

is one of its limitations. However, a method for addressing this limitation by employing mixture

models is proposed in [143]. In a mixture model, the observed data is categorized into distinct and
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mutually exclusive classes [144, 145, 146, 147, 148]. This model is known as the ICA mixture

model.

Constrained ICA (cICA) has emerged as a highly effective semi-blind technique. The concept

of cICA, as introduced in [149], involves incorporating prior information into the ICA cost function

through the utilization of equality and inequality constraints within a Lagrangian framework. By

doing so, cICA algorithms have demonstrated enhanced performance in source estimation, lever-

aging the advantages of model-driven methodologies, such as noise robustness, while preserving

the adaptable data-driven nature of ICA [150]. Several studies on c-ICA have demonstrated that

incorporating reliable prior information enhances its overall performance in source separation for

resting-state fMRI data [151, 152, 153]. In this work, we propose cICA-MGGMM by combining

the ICA multivariate generalized Gaussian mixture model (ICA-MMGGMM) and the constrained

model. The objective of cICA-MGGMM is to offer a structured and adaptable approach for integrat-

ing additional assumptions and prior information, when accessible, into the cost function. By doing

so, it transforms an initially ill-posed ICA problem into a better-posed one, enabling a wider range of

applications. The cICA-MGGMM is based on user-defined parameters but selecting the right con-

straint parameters can be difficult because prior information accuracy is frequently unknown. To

that end, we propose adaptive cICA-MGGMM, which allows us to control the association between

estimated and reference sources adaptively. The adaptive cICA-MGGMM method guarantees that

the prior information is employed to guide the solution without imposing inaccurate constraints.

IVA is a more recent BSS method that extends ICA by incorporating mixing matrix information

into the estimation process. Unlike ICA, which assumes an unknown mixing matrix, IVA assumes a

known mixing matrix up to scaling and permutation. IVA attempts to estimate the original sources

by determining a linear transformation that maximizes the non-Gaussianity of the transformed com-

ponents. IVA has been demonstrated to be effective in situations where the sources are highly de-

pendent, and it has applications in blind speech separation [154] and blind source separation of

fMRI data [155].

IVA was initially designed to solve the convoluted ICA problem in the frequency domain by

employing multiple frequency bins [156]. As a result, the IVA-Laplacian (IVA-L) algorithm [49]

was created, which considers only HOS and assumes a Laplacian distribution for the underlying
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source component vectors. IVA-Gaussian (IVA-G) [49] takes advantage of linear dependencies but

ignores HOS. Finally, multivariate generalized Gaussian IVA is a more general IVA that takes into

account both second and higher-order statistics [42, 157, 158].

Constrained IVA (cIVA), a method highlighted in [159], optimizes the IVA cost function by

integrating prior knowledge regarding the sources or columns of the mixing matrix. It relaxes

the assumption of independence by permitting a favorable combination of data-driven and model-

driven techniques while also ensuring model matching through the utilization of precise constraints.

Several studies have provided evidence of cIVA’s effectiveness in discriminating between individ-

uals with mental illnesses and those who are in a healthy state [159, 101, 160]. In this Chapter,

we propose a general mathematical formulation called cIVA-MGGMM, which provides a general

framework for cIVA by utilizing a multivariate generalized Gaussian mixture (MGGMM). This

formulation enables the inclusion of diverse types of prior information concerning the sources or

mixing vectors. The new cIVA-MGGMM framework combines the flexibility of data-driven meth-

ods with the robustness to noise and other artifacts of model-based methods, as well as exploiting

dependence across datasets, making it an effective source separation tool.

The cIVA-MGGMM, on the other hand, uses user-defined constraint parameters to control the

degree of correspondence between the reference signal and the estimated component. In real-world

scenarios, choosing the right constraint parameters can be difficult because the accuracy of the

prior information is frequently unknown. This task becomes even more difficult when prior knowl-

edge about multiple signals is used. To that end, we introduce adaptive cIVA-MGGMM (acIVA-

MGGMM) to enable adaptive control over the association between estimation patterns and refer-

ence signals. This method makes it easier to incorporate multiple reference signals into the IVA

framework. Rather than imposing inaccurate constraints, the acIVA-MGGMM technique uses prior

knowledge to guide the solution effectively.

To validate the effectiveness of our four models, we employ cICA-MGGMM, acICA-MGGMM,

cIVA-MGGMM, and acIVA-MGGMM on simulation data, four real-world applications for diagnos-

ing mental health conditions, Attention-deficit/hyperactivity disorder (ADHD), and Seizure predic-

tion. The global concern over mental illnesses, such as Alzheimer’s and Schizophrenia, has grown.

To address these disorders effectively, it is crucial to conduct appropriate and timely assessments for
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accurate differentiation between these diseases and their corresponding healthy subjects. Machine

learning, a sub-field of artificial intelligence, focuses on classification, regression, and clustering

problems. By leveraging data and algorithms, ML mimics human learning processes and contin-

ually enhances accuracy across various tasks [161]. With the increasing availability of extensive

fMRI datasets, there is a growing need for a methodology capable of accurately estimating mean-

ingful global functional networks while simultaneously capturing individual-specific characteris-

tics. Achieving this objective is crucial in advancing precision medicine, as it requires thorough

consideration of individual variability. cIVA-MGGMM, as an efficient approach, integrates prior

knowledge regarding the sources or columns of the mixing matrix into the IVA cost function. By

incorporating a balance between data-driven and model-driven approaches, it relaxes the assump-

tion of independence and ensures a desirable level of flexibility. Furthermore, it maintains a strong

model match by employing precise constraints. In contrast, cIVA-MGGMM utilizes user-defined

constraint parameters to regulate the level of correspondence between the estimated component and

the reference signal.

The effectiveness of cIVA-MGGMM relies on both the prior information and the user-defined

constraint parameters. In cases where the prior information is accurate, it is necessary to increase

the constraint parameters and conversely, decrease them when the prior information is unreliable.

However, selecting appropriate constraint parameters becomes challenging in most practical appli-

cations due to the uncertainty regarding the accuracy of the prior information. This task becomes

even more complex when incorporating prior information for multiple signals. For that, we employ

acIVA-MGGMM on these datasets with high dimensionality, which dynamically adjusts the rela-

tionship between the reference signals and the estimated patterns. This adaptation allows for the

effective integration of multiple reference signals into the IVA framework. We assess the perfor-

mance of our models using a simulated dataset. We also use the Alzheimer’s disease neuroimaging

initiative (ADNI) dataset to evaluate the ability of our models to differentiate between individu-

als with and without Alzheimer’s disease. The obtained acIVA-MGGMM components are used to

detect the particular brain areas that are affected by Alzheimer’s disease. To further evaluate the

effectiveness of our models, we employ them on a dataset provided by the COBRE database to

identify the early stages of Schizophrenia and differentiate between individuals with Schizophrenia
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and those who are healthy. We also use the resulting acIVA-MGGMM components to identify the

defective brain regions in Schizophrenic patients. To enhance validation, we implemented our pro-

posed models for predicting Seizures and ADHD. Overall, our models have demonstrated potential

usefulness in diagnosing various mental health conditions.

The Chapter is organized as follows: Section 4.2 introduces the related work and motivation.

Section 4.3 describes the adaptive constrained ICA models. In Section 4.4, we introduce the gen-

eral framework for incorporating adaptive constrained parameters into the IVA objective function.

Section 4.5 describes our experimental results followed by the conclusion in Section 4.7.

4.2 Related Work

4.2.1 Constrained ICA models

cICA, as introduced by Lu and Rajapakse in 2005, offers the capability to automatically extract

desired components in a predefined sequence and reduce computational overhead by incorporating

constraints into the traditional ICA [144]. cICA employs a specific type of prior knowledge to create

constraints that can be applied to either the source matrix or the mixing matrix [149]. In terms of

fMRI data analysis, cICA was employed to separate temporally independent components associated

with the task, utilizing temporal constraints on the source matrix, all without the need to separate

all sources [162, 163, 164]. Long (2019) [164] applied cICA to estimate temporarily independent

components of interest from fMRI data, employing temporal constraints on the mixing matrix. To

enhance the convergence of cICA, Wang (2011) [148] introduced learning-rate-free cICA algo-

rithms, which were then used to separate spatially independent components from fMRI data while

applying temporal constraints to the mixing matrix. Furthermore, cICA was employed to isolate

the spatially independent components of interest from fMRI data by applying spatial constraints to

the source matrix [165]. Rasheed [166] proposed a constrained spatiotemporal ICA, employing two

successive cICA stages, one for each domain, to identify the most independent yet desired sources in

both spatial and temporal domains. Prior information available in the spatial/temporal domain was

input into the first cICA stage, and the output of this stage was subsequently utilized as a constraint

in the second cICA stage.
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4.2.2 Constrained IVA models

IVA is a data-driven method that extends the capabilities of ICA to handle multiple datasets

[77]. IVA has demonstrated its effectiveness in capturing the variability across these datasets when

compared to group ICA [167, 168]. This makes it an appealing approach for studying brain dynam-

ics, particularly when dealing with spatial variations [169, 170]. However, it’s important to note

that IVA faces a challenge related to dimensionality when the number of datasets and components

increases beyond a certain threshold, especially with a fixed number of samples in each observation

[171]. cIVA is a highly efficient approach that integrates prior knowledge about either the sources or

the columns of the mixing matrix into the IVA cost function [159, 172]. It alleviates the strict inde-

pendence assumption by allowing for a flexible equilibrium between data-driven and model-driven

methodologies, offering an improved model fit through the utilization of precise constraints. The

study conducted in [169] delved into the variations present in fMRI data across both the temporal

and spatial dimensions using the cIVA approach. However, it’s important to note that cIVA relies on

user-defined constraint parameters that govern the level of agreement between the reference signal

and the estimated component. Nevertheless, in many real-world scenarios, choosing appropriate

constraint parameters poses a challenge because it’s often unclear whether the provided prior infor-

mation is precise. This challenge becomes even more intricate when dealing with the integration

of prior information related to multiple signals. As the availability of large-scale fMRI datasets

continues to grow, there is a pressing need for a method that can effectively estimate meaningful

global functional networks while also capturing individual-specific characteristics. This is a critical

step in enabling precision medicine, which aims to fully account for individual differences. In this

study, we propose an effective approach to address the high dimensionality challenge of independent

ICA and IVA by integrating reference information about functional networks into the ICA and IVA

framework respectively. This integration serves as a guide in scenarios with high-dimensional data.

cICA-MGGMM and cIVA-MGGMM are valuable methods that incorporate prior information about

the sources or columns of the mixing matrix into the ICA and IVA cost functions. They strike a bal-

ance between data-driven and model-driven techniques by relaxing the independence assumption
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and enforcing accurate constraints. However, cICA-MGGMM and cIVA-MGGMM rely on user-

defined constraint parameters, which determine the level of correspondence between the reference

signal and the estimated component. The success of these two methods depends on selecting the

appropriate prior information and constraint parameters. For instance, when the prior information

is inaccurate, lower constraint parameters should be used to avoid imposing incorrect constraints on

the decomposition. Conversely, when the prior information is correct, a higher constraint parame-

ters is necessary to minimize the influence of noise and artifacts on the components. Nevertheless,

in practical applications, selecting an optimal constraint parameter can be challenging because it

is often unclear whether the prior information is accurate. This complexity is further compounded

when incorporating prior information related to multiple signals. For that, we introduce adaptive

versions for both cICA-MGGMM and cIVA-MGGMM. These adaptive models can regulate the

relationship between the reference signals and the estimated patterns, facilitating the seamless inte-

gration of multiple reference signals into the ICA and IVA frameworks. The acICA-MGGMM and

acIVA-MGGMM methods guarantee that prior information is leveraged to guide the solution rather

than imposing incorrect constraints.

4.3 Adaptive constrained ICA models

4.3.1 ICA based on multivariate generalized Gaussian mixture model

In the ICA mixture model, it is assumed that the observed data originates from a mixture model

and be classified into mutually exclusive classes [46]. In ICA mixture each data vector xn can be

represented as:

xn = Ajsj,n + bj (4.1)
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To establish the framework for a multivariate generalized Gaussian mixture model (MGGMM), we

assume that each component of this mixture is given as:

p(x|ξj) =
Γ(D2 )

π
D
2 Γ

(︃
D
2βj

)︃
2

D
2βj

βj

c
D
2
j |Σj |

D
2

exp

⎡⎣ −1
2c

βj

j

(yj)
βj

⎤⎦ (4.2)

where x ∈ RD, µj , Σj and βj are mean, covariance matrix, and shape parameter respectively,

yj=(xn − µj)
TΣ−1

j (xn − µj), and cj is the scale parameter defined as:

cj =

(︄
βj

DN

N∑︂
n=1

(xT
nΣ

−1
j xn)

βj

)︄ 1
βj

(4.3)

To develop the ICA mixture model (ICA-MGGMM), we adopt Equation (4.2) in Equation (4.1).

We use the EM algorithm to estimate the parameters of the MGGMM within the ICA mixture

framework through the maximum likelihood approach as discussed in Chapter 2.

4.3.2 Constrained ICA-MGGMM

In this subsection, we introduce the cICA-MGGMM, which is considered an improved version

of ICA-MGGMM. To define the constraint parameters within the objective function of ICA mixture

(ICA-MGGMM), we combine the maximum likelihood of ICA-MGGMM with constraint param-

eters (γl, λl), represented in Equation (4.6). The goal is to minimize this objective function while

adhering to inequality constraints, as specified in Equation (4.4). In this context, a regularization

parameter λl is employed to prevent over-fitting and guide the optimization algorithm towards so-

lutions that align more closely with the desired characteristics. The penalty parameter (γl) plays a

crucial role in controlling the trade-off between maximizing independence and penalizing complex-

ity. The likelihood objective function of the ICA-MGGMM is optimized subject to these constraints,

resulting in the formulation of the cICA-MGGMM cost function:

hl(yl, rl) = ρl − ϵ(yl, rl) ≤ 0 (4.4)

where inequality constraint function denoted as hl(yl, rl), a distance measure represented by ϵ,
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a reference value for source yl indicated as rl, and an inequality constraint threshold denoted as

ρl. The distance measure is typically defined using correlation distance and mean square error.

However, we utilize the absolute value of Pearson’s correlation coefficient to define the distance

measure as:

ϵ(yl, rl) =

⃓⃓⃓⃓
corr(yl, rl)

⃓⃓⃓⃓
(4.5)

where the condition 0 ≤ ϵ(yl, rl) ≤ 1 is met. The optimization function for cICA-MGGMM is

given by:

JcICA−MGGMM = E

[︃
log p(yl)

]︃
+ log |hTl yl|+

1

2γl

(︄(︃
max{0, γlhl(yl, rl) + λl}

)︃2

− λ2l

)︄
(4.6)

where λl is a regularization parameter, γl is the penalty parameter and p(yl) indicates the ICA-

MGGMM objective function.

4.3.3 Adaptive Constrained ICA-MGGMM

Incorporating reference signals offers a valuable approach to relax the assumption of indepen-

dence and enhance the optimization process toward an improved solution. To achieve this, we

introduce the acICA-MGGMM method, which effectively regulates the level of correspondence be-

tween the estimated source and the reference signal. In our approach, we denote L as the total

number of constraints, where each constraint is associated with a constraint parameter ρl. Addition-

ally, rl represents the reference signal for the lth constraint. To determine the appropriate constraint

parameter, the acIVA-MGGMM method selects a value for ρl from a predefined set of possible val-

ues denoted as P . Learning steps for acICA-MGGMM are provided in Algorithm 4. The gradient

update function for this algorithm is given as:

∂JacICA-MGGMM

∂Wl
= E

[︃
∂

∂Wl
log p(yl)

]︃
+

hTl
hTl yl

+ h
′
l(yl, rl)λlr

T
l (4.7)
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where h
′
l represents the derivative of hl w.r.t (yl, rl). In each iteration of the algorithm, we update

the Lagrange multiplier using gradient ascent:

λl ← max

{︃
0, γlhl(yl, rl) + λl

}︃
(4.8)

The constraint parameter is given as:

ρ̂l = arg min
ρl∈P

{︄
min

[︃⃓⃓⃓⃓
ρl − |corr(yl, rl)|

⃓⃓⃓⃓]︃}︄
(4.9)

Algorithm 4 Adaptive constrained ICA-MGGMM

1. Define a set of ρl values for P sorted in ascending order.
2. Randomly initialize Wl and set λl=0, γl as a positive value.
3. For n=1, ..., N do

Compute y=Wx.
5. IF Reference rl is available then

Compute λl using Equation (4.8).
Compute ρl using Equation (4.9).
Compute ∂JacICA-MGGMM

∂Wl
using Equation (4.7).

Wl=Wl +
∂JacICA-MGGMM

∂Wl

10. else
Let ∂JacICA-MGGMM

∂Wn
= E[ ∂

∂Wn
log p(yn)] +

hT
n

hT
nWn

Wn = Wn + ∂JacICA-MGGMM

∂Wn

13. end if
14. End For
15. Repeat step 3 to 14 until convergence.

4.4 Adaptive constrained IVA models

4.4.1 IVA based on multivariate generalized Gaussian mixture model

IVA method assumes that components within a single source are independent while components

from different sources are as dependent as possible. Fig. 2.1 demonstrates that IVA simultaneously

achieves maximum independence within each source and maximum dependence across multiple

sources. Unlike performing separate ICAs on each source, IVA achieves this joint optimization
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[50]. The traditional IVA model is given in detail in Chapter 2.

The gradient of the cost function for the IVA mixture can be determined by incorporating Equa-

tions (4.2) and (2.40) as:

∂JIV A-MGGMM

∂W [m]
= E

[︄
βj

2c
βj

j

(yj)
βj−1Σ−1

j (xn − µj)x
[m]
n

]︄
− h

[m]
n

(h
[m]
m )TW

[m]
n

(4.10)

where yj=(xn − µj)
TΣ−1

j (xn − µj).

4.4.2 Constrained IVA-MGGMM

By combining the advantages of both techniques, cIVA effectively captures the unique variabil-

ity exhibited by the features extracted from a group of subjects. The cIVA approach incorporates

prior knowledge about the sources into the IVA model, constraining the solution space and effec-

tively addressing the challenges posed by high-dimensionality. By introducing a constraint term,

the cost function for the constrained IVA-MGGMM can be expressed as:

JcIVA-MGGMM = JIVA-MGGMM −
L∑︂
l=1

1

2γl

m∑︂
m=1

{︃[︂
max

{︂
0, λ

[m]
l + γ

[m]
l g

(︂
y
[m]
l , r

[m]
l

)︂}︂]︂2
−

(︂
λ
[m]
l

)︂2}︃
(4.11)

where λ[m]
l is the regularization parameter, γ[m]

l is the penalty parameter and g(y
[m]
l , rl) is the

inequality constraint function given as:

g(y
[m]
l , r

[m]
l ) = ρl − ϵ(y

[m]
l , r

[m]
l ) ≤ 0 (4.12)

where y
[m]
l = (W

[m]
l )x[m] is the estimated constraint component, r[m]

l is the reference vector for

each corresponding constraint component of the SCVs, ϵ(., .) is a function to measure the similarity

between the estimated SCVs and the reference signal and ρl is the constraint parameter. The con-

straint function, defined in Equation (4.12), provides flexibility in choosing dissimilarity functions,

including the inner product, mean square error, mutual information, and correlation. In this work,
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we utilize the absolute value of Pearson’s correlation coefficient as follows:

ϵ(y
[m]
l , r

[m]
l ) =

⃓⃓⃓⃓
corr(y

[m]
l , r

[m]
l )

⃓⃓⃓⃓
(4.13)

The absolute value of Pearson’s correlation coefficient as a similarity measure restricts ϵ(y[m]
l , r

[m]
l )

to be between 0 and 1, steering ρl ≤ 1.

4.4.3 Adaptive constrained IVA-MGGMM

We propose the acIVA-MGGMM method, which allows for regulating the level of correspon-

dence between the estimated source and the reference signal. The acIVA-MGGMM algorithm se-

lects a value of ρl from a set of possible values denoted as P . The demixing matrices, denoted as

W[m], are randomly initialized, and we set λ[m]
l =0 and γ[m]

l to a positive scalar value. During each

iteration, we estimate the sources, y[m]
l , where m ranges from 1 to M and l ranges from 1 to L. The

first SCV is selected as the constrained component, followed by the estimation of λ[m]
l and ρl using

the following Equations, respectively:

λ
[m]
l = max

[︃
0, γ

[m]
l g(y

[m]
l , r

[m]
l ) + λ

[m]
l

]︃
(4.14)

ρ̂l = arg min
ρl∈P

{︄
min

[︃⃓⃓⃓⃓
ρl−
⃓⃓⃓⃓
corr(y

[m]
l , r

[m]
l )

⃓⃓⃓⃓⃓⃓⃓⃓]︃}︄
(4.15)

The acIVA-MGGMM gradient is computed as:

∂JacIVA-MGGMM

∂W
[m]
l

=
∂JIVA-MGGMM

∂W
[m]
l

− 1

γ
[m]
l

{︄[︂
max

(︂
0, γ

[m]
l

(︂
ρ̂l − ϵ

(︂
y
[m]
l , r

[m]
l

)︂)︂)︂
+ λ

[m]
l

]︂2
− (λ

[m]
l )2

}︄
(4.16)

To update this parameter, we search for the highest value of ρl from the set P that satisfies the

condition specified in Equation (4.12) for all M subjects. Subsequently, we compute the distance

ϵ(., .) of the estimated correlation for all possible values of ρl from the set P across all subjects.
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Algorithm 5 Adaptive constrained IVA-MGGMM
1: Define a set of ρl values for P sorted in ascending order.
2: Randomly initialize M de-mixing matrices W[m].
3: Set λ[m]

l = 0, γ[m]
l as a positive value.

4: for n=1, ..., N do
5: for m=1, ...,M do
6: Compute y[m] = W[m]x[m], m=1, ...,M .
7: if n ∈ {1, ..., L} then
8: i=1
9: repeat

10: i← i+ 1
11: until ρli − |ϵ(y

[m]
l , r

[m]
l )| < 0 < ρli+1 − |ϵ(y

[m]
l , r

[m]
l )|

12: Compute λ[m]
l using Equation (4.14).

13: Compute ρ̂l using Equation (4.15).
14: Compute ∂JacIV A-MGGMM

∂W
[m]
l

using Equation (4.16).

15: Update W
[m]
l ←W

[m]
l + ∂JacIV A-MGGMM

∂W
[m]
l

.

16: else
17: Compute ∂JIV A-MGGMM

∂W
[m]
n

.

18: Update W
[m]
n ←W

[m]
n + ∂JIV A-MGGMM

∂W
[m]
n

.
19: end if
20: end for
21: end for
22: Repeat until convergence.

The value of ρl associated with the smallest distance is selected. This new value of the constraint

parameter is utilized to calculate the gradient in line 14 of Algorithm 5 and update the demixing

matrix. The process is then repeated, obtaining a new estimation of the sources, until convergence

is achieved.

4.5 Results and discussion

We apply our proposed models cICA-MGGMM, acICA-MGGMM, cIVA-MGGMM, and acIVA-

MGGMM to detect mental disorders in their early stages. Initially, we evaluate the effectiveness

of our models by applying them to simulated data generated randomly from the multivariate gen-

eralized Gaussian distribution. In this experiment, we examine how well our models can estimate

the mixture models and evaluate their convergence. To differentiate the performance between the

cIVA-MGGMM and acIVA-MGGMM, we assess their performance based on the dissimilarity fac-

tor. In real-world applications, we employ these models to distinguish between healthy subjects
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and Alzheimer’s patients using the ADNI public dataset. For this, we collected 120 subjects from

the ADNI website with Alzheimer’s and healthy controls. We also use our models to detect the

most defective brain regions for Alzheimer’s patients. Then, we test our proposed models over the

Schizophrenic dataset. We chose the COBRE data which includes 140 subjects, 70 healthy con-

trols, and 70 Schizophrenic patients. We used the adaptive constrained IVA-MGGMM components

to localize the affected brain regions for Schizophrenic patients. To further validate our models, we

apply them to predict subjects with Seizures and those without Seizures using EEG data. Addition-

ally, we expand the application of our models to identify individuals with ADHD in comparison to

healthy controls. To compare the performance of the proposed models and the base models, we used

joint inter-symbol interference (Joint-ISI) and spatial correlation. ISI finds the average performance

over several runs and is given by:

ISI(G) =
1

2N(N − 1)

[︄
N∑︂

n=1

(︃ M∑︂
j=1

|gnj |
maxj |gnj |

− 1

)︃
+

M∑︂
j=1

(︃ N∑︂
n=1

|gnj |
maxj |gnj |

− 1

)︃]︄
(4.17)

Here, G = WA represents the correlation matrix between the original signals and the separated

signals, where gnj denotes the correlation coefficient between the nth source and the mth separated

signals. The ISI index is utilized to assess the quality of a decomposition by quantifying the devia-

tion of G from the identity matrix. In the context of decomposing multiple datasets, the ISI can be

extended to a joint ISI (Joint-ISI) for IVA as:

Joint-ISI(G) = ISI

(︃ M∑︂
m=1

|G[m]|
)︃

(4.18)

4.5.1 Simulation results

To assess the robustness of our proposed models, we evaluate their performance on simulated

data generated from the multivariate generalized Gaussian distribution. Here, we generated two

different datasets with 2 and 3 clusters respectively. Initially, we employ the K-means algorithm

to set the mixture parameters, encompassing mean, covariance, and shape parameters. The mixing
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Figure 4.1: ICA and IVA models for Alzheimer’s and Schizophrenia detection based on resting state
fMRI data.

parameter is initialized at 1/M , ensuring a sum of 1. Subsequently, we utilize the EM algorithm to

compute the posterior probability in the E-step and update the mixture parameters in the M-step. To

gauge model convergence, a small tolerance value is specified. We iterate, updating the mixture pa-

rameters until our proposed model achieves convergence, utilizing the optimal parameters for source

separation. Tables 4.1 and 4.2 present the mixture parameters along with their corresponding es-

timated values. In this context, we utilize the acIVA-MGGMM to derive estimations for mixing,

mean, shape, and covariance parameters. Tables 4.1 and 4.2 indicate that our proposed model ac-

curately estimates the mixture parameters. We set a maximum of 1020 iterations for each model,

with a convergence condition defined by a small tolerance of 0.001. This iterative process yields a

new de-mixing matrix denoted as W, which is employed to estimate the sources. The convergence

process is visualized in Figs. 4.2 and 4.3. Notably, our proposed models, acICA-MGGMM and

acIVA-MGGMM, exhibit significantly improved convergence compared to the base models ICA

and IVA. Specifically, our proposed models converge at 250 iterations, whereas the base models re-

quire more than 500 iterations to converge. We evaluated the effectiveness of the acICA-MGGMM

and acIVA-MGGMM methods across a range of γl values spanning from 1 to 1000. No significant

variation in their performance was observed. Consequently, we opted for a small positive value,

setting γl to 3. Regarding the cICA-MGGMM and cIVA-MGGMM methods with fixed constraint
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Table 4.1: Mixture parameters estimation using proposed acIVA-MGGMM for generated data with
2 clusters.

Generated data
Mixture parameters

π µ β Σ

nj = 300 0.5 2 [0.01, 0.02, 0.02]

⎡⎣ 1 0.5 0.2
0.5 1 0.5
0.2 0.5 1

⎤⎦
nj = 300 0.5 1.5 [0.04, 0.01, 0.3]

⎡⎣ 1 0.4 0.25
0.4 1 0.4
0.25 0.4 1

⎤⎦
Generated data

Estimated parameters
π̂ β̂ µ̂ Σ̂

nj = 300 0.49 1.8 [0.02, 0.04, 0.03]

⎡⎣0.98 0.49 0.19
0.49 0.92 0.48
0.19 0.48 0.99

⎤⎦
nj = 300 0.51 1.3 [0.03, 0.02, 0.27]

⎡⎣1.12 0.35 0.22
0.43 0.97 0.43
0.23 0.38 0.93

⎤⎦
parameters, we varied the values of ρl within the range of 0.001 to 0.9. A ρl value of 0.001 repre-

sents weaker constraints, while a value of 0.9 indicates stronger constraints. In Figs. 4.4 (a) and (b),

we assessed the performance of acICA-MGGMM against cICA-MGGMM and acIVA-MGGMM

against cICA-MGGMM concerning the dissimilarity factor. Each box in the figures displays the

median as a horizontal orange line, with the upper and lower edges corresponding to the 75th and

25th percentiles, respectively. A higher dissimilarity factor suggests poorer source estimation. With

the cICA-MGGMM method, employing a higher constraint parameter leads to a deterioration in the

estimation quality of the constrained component, while the acICA-MGGMM method maintains a

low dissimilarity factor. A similar pattern is observed with cIVA-MGGMM and acIVA-MGGMM

when using a higher constraint parameter; the dissimilarity factor of the constrained vector remains

low with acIVA-MGGMM but increases with the regular cIVA-MGGMM.
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Table 4.2: Mixture parameters estimation using proposed acIVA-MGGMM for generated data with
3 clusters.

Generated data
Mixture parameters

π µ β Σ

nj = 300 0.33 2 [0.01, 0.02, 0.02]

⎡⎣ 1 0.5 0.2
0.5 1 0.5
0.2 0.5 1

⎤⎦
nj = 300 0.33 1.5 [0.04, 0.01, 0.3]

⎡⎣ 1 0.4 0.25
0.4 1 0.4
0.25 0.4 1

⎤⎦
nj = 300 0.33 1 [1.34, 2.12, 1.22]

⎡⎣ 1 0.8 0.7
0.8 1 0.8
0.7 0.8 1

⎤⎦
Generated data

Estimated parameters
π̂ β̂ µ̂ Σ̂

nj = 300 0.42 1.7 [0.03, 0.04, 0.01]

⎡⎣0.96 0.44 0.23
0.45 1.1 0.45
0.23 0.52 1.2

⎤⎦
nj = 300 0.30 1.2 [0.05, 0.03, 0.25]

⎡⎣ 1.1 0.43 0.26
0.34 1.2 0.42
0.26 0.42 0.95

⎤⎦
nj = 300 0.28 0.75 [0.93, 2.25, 1.45]

⎡⎣ 1.3 0.73 0.62
0.83 0.93 0.72
0.65 0.82 1.1

⎤⎦
4.5.2 Alzheimer’s detection using cICA-MGGMM and acICA-MGGMM

Alzheimer’s disease is the most common neurodegenerative disease in the elderly [173]. There

is a significant delay between the start of AD pathology and the clinical diagnosis of AD dementia,

which can only be confirmed by autopsy [173, 174]. As a result, it is extremely difficult to detect

AD early and accurately [174] and there is a need for intelligent methods to assist clinicians in

the personalized diagnosis of this disease [175]. Early and accurate detection of Alzheimer’s dis-

ease is beneficial for disease management [176]. Magnetic resonance imaging (MRI) is an imaging
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Figure 4.2: Number of iterations needed for acICA-MGGMM to converge.
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Figure 4.3: Number of acIVA-MGGMM iterations.

technique that produces high-quality images of the anatomical structures of the human body, par-

ticularly the brain and provides valuable information for clinical diagnosis and biomedical research
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Figure 4.4: Dissimilarity factor for (a) acICA-MGGMM vs cICA-MGGMM, (b) acIVA-MGGMM
vs cIVA-MGGMM.

[177]. The automated and accurate classification of MR images improves the diagnostic value of

MRI [178, 179].

Dataset

The data used in this study the ADNI database. All ADNI studies adhere to the Helsinki Dec-

laration and U.S. regulations including 21 CFR Part 50 (Protection of Human Subjects), and Part

56 (Institutional Review Boards), as well as good clinical practice guidelines. The ADNI proto-

col received approval from the Institutional Review Boards of all participating institutions. In this

study, 120 subjects from ADNI were used with 60 female and 60 male subjects divided into normal

controls (NC) and AD patients. The rs-fMRI images were collected using Philips Achieva scanners

operating at 3.0 Tesla. The scan protocol employed echo planner imaging (EPI) with the following

parameters: Echo time (TE) of 30 ms, repetition time (TR) of 3000 ms, flip angle of 80 degrees,

pixel size of 3.3× 3.3 mm, acquisition matrix size of 64× 64, and slice thickness of 3.3 mm. The

scanning process included the acquisition of 48 slices and 140 volumes. A complete description of

ADNI is available publicly 1. Moreover, the data access requests are to be sent to the ADNI website

2.
1https://adni.loni.usc.edu/
2http://adni.loni.usc.edu/data-samples/access-data/
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Data prepossessing

The rs-fMRI data underwent standard preprocessing using the statistical parametric mapping

(SPM12) software package [180]. The preprocessing steps included discarding the first ten time-

point volumes to achieve magnetization equilibrium, performing slice time correction for inter-

leaved acquisition, correcting subject motion using realignment, and co-registering functional and

structural images. The images were then normalized to the SPM12 EPI template and subsequently

smoothed using a Gaussian kernel with a full-width half-maximum of 4 mm. Then, based on the

AAL atlas, each volume was parcellated into 116 ROIs [181]. Finally, for each ROI, the average

intensity time series was extracted and then subjected to a band-pass filter ranging from 0.01 Hz to

0.08 Hz. This filtering process aims to diminish non-neuronal influences on the fluctuations of the

blood-oxygen-level-dependent (BOLD) signal.

Experimental Results for cICA-MGGMM and acICA-MGGMM

We employ the proposed cICA-MGGMM and acICA-MGGMM on Alzheimer’s resting state

fMRI data to differentiate Alzheimer’s patients from healthy subjects. In this experiment, we use 55

uncorrelated components for each subject. These components are the most informative, resulting

from applying PCA on the parcellated data. We apply the cICA-MGGMM and acICA-MGGMM

to the reduced data to distinguish between healthy subjects and Alzheimer’s patients. For cICA-

MGGMM, we use the following values for the inequality constraint threshold and the fixed con-

strained learning parameter: we vary ρl from 0.001 to 0.9, where the constraint parameter with the

smallest distance ϵ is chosen as the optimal parameter for the separation process, and γl to 3. The

acICA-MGGMM method uses the range of constraints parameter ρl from the sets P and γl. The

set P is defined as 0.001, ..., 0.9, and we set γl to 3. We randomly initialize the parameters for this

model and run it five times with different initializations. The Joint-ISI metric is used to select the

best of these five runs. The demixing matrix for the best run is used to estimate the sources. To

validate the separation quality, we use the Joint-ISI to measure the difference between the reference

signal and the estimated one. All these steps are shown in Fig. 4.1. Table 4.3 compares ICA,

cICA, Non-linear ICA (Non-ICA), acICA, cICA-MGGMM, and acICA-MGGMM performance in
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Table 4.3: Performance of the proposed cICA-MGGMM and acICA-MGGMM in terms of Joint-ISI
with respect to the number of sources.

# of combinations acICA-MGGMM cICA-MGGMM acICA cICA Non-ICA ICA
2 0.0356 0.0476 0.0452 0.0423 0.0441 0.0421
5 0.0369 0.0561 0.0582 0.0462 0.0487 0.0521

10 0.0352 0.0650 0.0692 0.0673 0.0690 0.0533
20 0.0327 0.0672 0.0745 0.0748 0.0774 0.0622
40 0.0347 0.0701 0.0761 0.0842 0.0896 0.0634
60 0.0701 0.0728 0.0783 0.0881 0.0793 0.2351
80 0.2756 0.3021 0.3180 0.3291 0.3195 0.3428
100 0.3052 0.3322 0.3492 0.3653 0.3524 0.3941
120 0.3442 0.3792 0.3816 0.3973 0.3912 0.4336
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Figure 4.5: Spatial correlation for the proposed cICA-MGGMM and acICA-MGGMM concerning
the number of subjects.

terms of Joint-ISI. This Table displays that our proposed models exhibit slightly better performance

compared to the basic models across a variety of lower combinations, which vary from 2 to 60. It

is clear that as the number of subjects increases, the ICA-compared models’ performance degrades.

We see significant improvements in performance for cICA-MGGMM and acICA-MGGMM start-

ing with 80 subjects when compared to ICA base models. It is also clear that the performance of
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cICA-MGGMM is slightly less than that of acICA-MGGMM, depending on the constraint parame-

ters used. The acICA-MGGMM model addresses this limitation in high-dimensional data using the

prior information.

We use the spatial correlation metric to assess the robustness of our proposed model as shown in

Fig. 4.5. The cICA-MGGMM and acICA-MGGMM clearly outperform the base models in terms

of preserving the correlation between the reference signal and estimated sources, especially when a

large number of subjects is used. The spatial correlation between the estimated constrained sources

and the corresponding reference sources demonstrates a similar pattern to the findings observed

in the Joint-ISI analysis. The performance degradation for ICA, Non-ICA, cICA, and acICA in

high-dimensional data is shown for data with 80, 100, and 120 combinations of subjects.

4.5.3 Alzheimer’s detection using cIVA-MGGMM and acIVA-MGGMM

After completing the preprocessing step of the fMRI data, the AAL atlas is employed for the

parcellation procedure to create 116 brain regions. The mean fMRI signal for each region is then

calculated. We employ acIVA-MGGMM on both patients and healthy groups, using the group ICA

components of these classes as reference signals. To select the most informative components, we

use PCA to reduce the dimensions of each subject’s data. From this, we obtain a dimension-reduced

dataset, x[m] ∈ R55∗58600, consisting of N=55 uncorrelated components per subject.

To implement cIVA-MGGMM and acIVA-MGGMM models, we divide the data of each subject

into T = 15 windows with a length of L = 14 and a 50% overlap. This resulted in a total of

TK = 1800 windows. By employing cIVA-MGGMM and acIVA-MGGMM on the data of each

subject, we reduce the dimensionality of the SCV from 1800 to 15. The first SCV is required to

be correlated with one of the 15 group components. We apply cIVA and acIVA methods, which

use the IVA-MGGMM algorithm, to the windowed datasets of each subject. In the case of cIVA-

MGGMM, we set P and γl to (0.001− 0.9) and 3 respectively. The set P and γ[m]
l were defined as

in subsection 4.5.2 for acIVA-MGGMM. We run both cIVA-MGGMM and acIVA-MGGMM five

times with different initializations. We then choose the best run using the Joint-ISI index, which

extends the ISI approach to multiple subjects. The estimated demixing matrices of the chosen run

are used to compute the estimated sources. We denote the estimated source corresponding to the lth
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constraint for the mth subject at the tth window from the consistent run as y[t,m]
l .

According to Fig. 4.6, the efficiency of IVA increases as the number of subjects increases but

only up to a particular limit for various numbers of sources. This range can be regarded as the op-

timal range where IVA exhibits reliable estimation of the underlying parameters. Within this range,

the application of cIVA-MGGMM and acIVA-MGGMM does not yield a significant performance

improvement compared to IVA. This suggests that the performance achieved by IVA in this range

is the best that can be obtained. However, when dealing with high-dimensional data, employing

cIVA-MGGMM and acIVA-MGGMM demonstrates a remarkable enhancement in performance.

This indicates that incorporating prior information serves as a valuable reference for finding supe-

rior solutions in such scenarios.
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Figure 4.6: Performance of the proposed cIVA-MGGMM and acIVA-MGGMM compared to IVA,
IVA-G, cIVA, and acIVA in terms of the number of subjects using the Joint-ISI metric.

The spatial correlation between the estimated constrained sources and the corresponding ground

truth exhibits a comparable pattern to the findings depicted in Fig. 4.7. A high spatial correlation

indicates that the acIVA-MGGMM method does not impose excessive constraints on the decom-

position process, thereby successfully estimating spatial components consistently across subjects.
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Figure 4.7: Spatial correlation for IVA, IVA-G, cIVA, acIVA, cIVA-MGGMM, and acIVA-
MGGMM in terms of number of subjects.

0 20 40 60 80 100 120
Number of subjects

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Jo
in

t-
IS

I

ICA
IVA
cICA
cIVA
acICA
acIVA
cICA-MGGMM
Non-ICA
IVA-G
cIVA-MGGMM
acICA-MGGMM
acIVA-MGGMM

Figure 4.8: The joint-ISI for the four proposed models; cICA-MMGGMM, acICA-MMGGMM,
cIVA-MGGMM, and acIVA-MGGMM in terms of the number of subjects.
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Consequently, in high-dimensional scenarios, the acIVA-MGGMM method surpasses the standard

IVA approach by accurately estimating the underlying sources. It is also clear that cIVA-MGGMM

outperforms IVA, cIVA, IVA-G, and acIVA, particularly for high-dimensional data with 80, 100 and

120 subjects’ combinations.

Finally, we use the Joint-ISI metric with the same setup for all experiments to validate the

four proposed models cICA-MGGMM, acICA-MGGMM, cIVA-MGGMM and acIVA-MGGMM

with the base models ICA, Non-ICA, cICA, acICA, IVA, IVA-G, cIVA and acIVA on Alzheimer’s

fMRI data. Fig. 4.8 shows that the proposed models outperform the base models when the number

of subjects is large. These findings demonstrate the ICA and IVA limitation in high-dimensional

data. Based on the findings presented in the figure, it is evident that our models exhibit superior

capability in recovering the constrained sources in high-dimensional scenarios compared to the

compared models, which performed poorly. This observation highlights the valuable role of prior

information as a reference for seeking improved solutions in high-dimensional scenarios.

Brain networks identification

The acIVA-MGGMM model improves functional network detection by using reference signals.

This is due to its adaptive nature which allows for more flexible interaction among functionally

connected regions. The DMN is a complex network in the brain consisting of interconnected re-

gions that act as both hubs and subsystems. It is frequently associated with activation during rest

when an individual is contemplating their own thoughts, other people, and events from both the

past and future. As a result, DMN has been extensively studied in a variety of disorders. The

highly activated regions using the acIVA-MGGMM method: frontal superior medial left and right

(SFGmed), anterior cingulate and paracingulate gyri (ACG), parahippocampal gyrus (PHG), and

precentral gyrus (PreCG). The significant regions that are shown in Fig. 4.9 are in agreement with

the previous findings. Several studies have found that patients with Alzheimer’s disease have a

significant reduction in the volume of grey and white matter in the superior temporal gyrus (STG)

[182, 183, 184]. Consistent with these findings, we observe that the functional connectivity of the

STG in the early stages of AD was disrupted. The volume of the PHG is found to be significantly

smaller in Alzheimer’s disease patients than in healthy control subjects and atrophy of this region in
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Figure 4.9: Localization of the areas in the AAL atlas. The areas exhibiting higher discriminability
between the healthy and Alzheimer’s groups are depicted by blue circles, while unaffected areas are
represented by green circles.

Alzheimer’s disease was linked to specific aspects of the patient’s memory impairments [184]. Our

findings are consistent with previous research studies which found that the PHG is lower in both the

left and right brains of Alzheimer’s patients. Several previous studies have shown inferior frontal

gyrus (IFG) and middle temporal gyrus (MTG) involvement in AD [185], though the role of these

regions in the early stages of AD remains unknown. Our findings revealed that the opercular part

of IFG (IFG-operc) in the right hemisphere differed significantly between AD and healthy controls.

The MTG has been shown to be involved in accessing lexical and semantic information [186]. Our

findings indicate that this region is involved in the disruption of these functions in the early stages of

AD. We identified another brain region that differed significantly between AD and healthy subjects.

Middle frontal gyrus (MFG), left and right insula (INS), Left calcarine fissure and surrounding cor-

tex (CAL) and lingual gyrus (LING) [184] are among these regions. These brain regions previously

have been found to be highly discriminative for separating patients with AD from healthy controls
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[187]. These brain regions are also found to be significantly different in AD and healthy subjects:

middle occipital gyrus (MOG), Postcentral (PoCG), and right thalamus (THA).

4.5.4 Schizophrenia detection using cICA-MGGMM and acICA-MGGMM

Schizophrenia is a serious mental disorder that affects approximately 1% of the general popula-

tion and is characterized by abnormal sensory perceptions, cognitive impairments, concrete think-

ing, and limited emotional range [188]. The use of functional MRI (fMRI) and structural MRI

(sMRI) is becoming more widespread as these techniques show promise in diagnosing neurological

disorders including Schizophrenia. Additionally, machine learning can analyze images to extract

relevant information and create models that accurately predict the likelihood of disease onset, out-

performing traditional methods. This technique has been used successfully in the diagnosis of

Schizophrenia, as evidenced by research studies.

Dataset

The dataset used in this study is sourced from the COBRE database. The dataset comprises

functional and anatomical MR data samples obtained from a total of 70 healthy subjects and 70 pa-

tients diagnosed with Schizophrenia. The following parameters were used for anatomical imaging:

TR/TE/TI =2530/[1.64, 3.5, 5.36, 7.22, 9.08]/900 ms, flip angle = 7 degrees, slab thickness = 176

mm, FOV = 256 × 256 mm, data matrix = 256 × 256 × 176, number of echoes = 5, voxel size =

1 × 1 × 1 mm, pixel bandwidth = 650 Hz, and a total scan time of 6 minutes. The TR, TI, and

time to encode partitions for the multi-echo magnetization prepared rapid acquisition gradient echo

(MEMPR) with 5 echoes are similar to those of a conventional MPRAGE, thereby resulting in a

comparable contrast between gray matter, white matter, and cerebrospinal fluid. For rs-fMRI data

collection, a single-shot full k-space EPI sequence was employed with ramp sampling correction,

using the inter-commissural line (AC-PC) as a reference. The acquisition parameters for rs-fMRI

were as follows: TR = 2 seconds, TE = 29 ms, matrix size = 64 × 64, 32 slices, and voxel size =

3 × 3 × 4 mm3. In addition to rs-fMRI and anatomical MRI data, phenotypic data including age,

handedness, gender, and diagnostic information were recorded for each subject.
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Data preprocessing

The preprocessing steps are discussed in subsection 2.6.4.

Experimental Results for cICA-MGGMM and acICA-MGGMM

After the preprocessing steps, we parcellate the brain regions into 90 brain regions using the

AAL atlas. The PCA reduction is then used to extract the most informative uncorrelated compo-

nents x[m] ∈ R20∗52420. The data for each subject is partitioned and then subjected to a window-

ing process based on the criteria specified in the subsection 4.5.3. Our proposed models, namely

acICA-MGGMM, cICA-MGGMM, and the base models are utilized to analyze the reduced data

and distinguish between the components associated with Schizophrenia and those belonging to the

healthy control group. To establish the experimental setup, for cICA-MGGMM, we set Pl and γl

to (0.001− 0.9) and 3 respectively. For acICA-MGGMM, we configure P and γl according to the

Alzheimer’s experimental setting described in subsection 4.5.2. After running our models five times

with different initializations, we utilize the Joint-ISI metric to select the optimal run. Subsequently,

we employ the demixing matrix obtained from the best run to differentiate between the sources

associated with Schizophrenia and those related to the healthy control class.

Table 4.4 presents a comparison of the performance between our proposed models and the base

models. On one hand, the Joint-ISI metric shows similar results across all models for combinations

ranging from 2 to 60 subjects’ combinations. This period is considered the optimal performance

range for base models such as ICA and cICA. On the other hand, we observe a noticeable decline

in the performance of ICA, Non-ICA, cICA, and acICA when applied to high-dimensional data.

As the number of subjects increases, particularly in combinations between 80 and 140, we notice a

significant improvement in the performance of our cICA-MGGMM and acICA-MGGMM models

compared to the base models. This improvement can be attributed to the utilization of prior in-

formation incorporated in our proposed models which addresses the limitations of base models in

high-dimensional scenarios. Fig. 4.10 illustrates the spatial correlation among all ICA-based mod-

els. We observe a consistent trend in the performance of these models, similar to what was observed

with the Joint-ISI metric. Specifically, cICA-MGGMM and acICA-MGGMM exhibit higher spatial
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Table 4.4: Performance of the proposed cICA-MGGMM and acICA-MGGMM in terms of Joint-ISI
with respect to the number of sources for Schizophrenic data.

# of combinations acICA-MGGMM cICA-MGGMM acICA cICA Non-ICA ICA
2 0.035 0.036 0.034 0.036 0.035 0.036
5 0.034 0.035 0.035 0.034 0.033 0.035

10 0.035 0.035 0.036 0.035 0.036 0.034
20 0.036 0.036 0.036 0.034 0.037 0.036
40 0.035 0.036 0.034 0.035 0.036 0.039
60 0.034 0.034 0.033 0.034 0.033 0.042
80 0.351 0.361 0.378 0.385 0.375 0.463
100 0.366 0.372 0.383 0.432 0.443 0.485
120 0.369 0.377 0.389 0.432 0.429 0.521
140 0.374 0.384 0.421 0.450 0.463 0.537
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Figure 4.10: Spatial correlation for ICA, Non-ICA, cICA, acICA, cICA-MGGMM, and acICA-
MGGMM in terms of number of subjects for Schizophrenic patients detection.

correlation in high-dimensional data compared to the base models. This indicates the enhanced ca-

pability of these proposed models in accurately estimating the sources, surpassing the performance

of the base models.
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4.5.5 Schizophrenia detection using cIVA-MGGMM and acIVA-MGGMM

After preprocessing and partitioning the COBRE data, we utilize our models to discriminate

between Schizophrenic patients and healthy subjects. Initially, we employ PCA to reduce the di-

mensionality of the subject data and extract the most significant components. Subsequently, we

configure all parameters for our proposed models following the approach described in the previous

subsections. We apply IVA, IVA-G, cIVA, acIVA, cIVA-MGGMM, and acIVA-MGGMM on the

reduced data to distinguish Schizophrenic patients from healthy controls.

Table 4.5: Performance of the proposed cIVA-MGGMM and acIVA-MGGMM in terms of Joint-ISI
with respect to the number of sources for Schizophrenic data.

# of combinations acIVA-MGGMM cIVA-MGGMM IVA-G acIVA cIVA IVA
2 0.0241 0.0325 0.0344 0.0374 0.0466 0.0425
5 0.0430 0.0241 0.0563 0.0579 0.0567 0.0560

10 0.0354 0.0320 0.0678 0.0654 0.0642 0.0658
20 0.0421 0.0451 0.0765 0.0718 0.0708 0.0726
40 0.0532 0.0582 0.0793 0.0779 0.0764 0.0779
60 0.0517 0.0572 0.0815 0.0797 0.0780 0.0803
80 0.2322 0.3212 0.4936 0.4848 0.4902 0.4875
100 0.2435 0.3464 0.4967 0.4873 0.4915 0.4837
120 0.2653 0.3785 0.4987 0.4932 0.4952 0.4853
140 0.2757 0.3950 0.4989 0.4940 0.4891 0.4908

Table 4.5 presents the Joint-ISI index of several models including IVA, IVA-G, cIVA, acIVA,

cIVA-MGGMM, and acIVA-MGGMM. The basic models show unsatisfactory performance in han-

dling high-dimensional data. On the other hand, our proposed models perform better, particularly

when dealing with a large number of subjects. During the period when lower combinations were

used, our models demonstrate a slight superiority over the base models, which is regarded as the op-

timal phase for IVA models. In terms of high-dimensional data, there is a considerable enhancement

in the performance of our models compared to the base models.

The acIVA-MGGMM is the best-performing model compared to other implemented models.

This model can effectively separate the sources of Schizophrenic and healthy individuals. This im-

provement is attributed to the constrained parameters that we incorporate into our proposed models.

Fig. 4.11 presents a comparison of the performance of our models in terms of spatial correlation.

It is evident that the base models exhibit lower performance in high-dimensional data while our
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Figure 4.11: Spatial correlation for IVA, IVA-G, cIVA, acIVA, cIVA-MGGMM and acIVA-
MGGMM in terms of number of subjects for Schizophrenia detection.
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Figure 4.12: The joint-ISI for the four proposed and base models in terms of number of subjects.
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models demonstrate superior performance. In particular, the acIVA-MGGMM preserves the high

correlation between the reference signal and the estimated sources. This can be attributed to the

capability of our models to accurately estimate the underlying sources by leveraging the constraints

parameters and prior information.

In summary, we evaluate the effectiveness of our four proposed models in detecting patients with

Schizophrenia and the performance results are presented in Fig. 4.12. It is evident that our models

exhibit superior performance compared to the base models as demonstrated by the Joint-ISI index.

The degradation curve of the base models is also noticeable for high-dimensional data. Among

all the implemented models, the acIVA-MGGMM model demonstrated the best performance. This

improvement can be attributed to the constraints parameters that were incorporated adaptively into

the cost function for this model.

Brain networks identification

The acIVA-MGGMM model enhances the identification of functional networks by incorporating

reference signals. Its adaptive characteristics enable more versatile communication between regions

that are functionally linked, leading to improved performance. The acIVA-MGGMM components

are used to extract the brain regions that are most indicative of the presence of Schizophrenia.

Fig. 4.13 demonstrates the localization of AAL areas in both Schizophrenic and healthy subjects.

The red areas show the discriminant regions between the two classes whereas the yellow areas

represent unaffected brain regions. These regions are consistent with the findings of several stud-

ies. For instance, PHG, MTG, amygdala, ITG, thalamus, and hippocampus show lower volume in

Schizophrenic brains than in healthy brains. These findings are consistent with previous MRI stud-

ies demonstrating atrophy in these regions in patients with Schizophrenia [189, 190, 191]. Research

investigating the functional and structural brain networks of individuals with Schizophrenia disease

has revealed that cognitive impairments in these patients could be linked to irregularities in the

connectivity between various brain regions within the temporal lobe [192, 193]. Previous studies

reported that the ITG is affected during the early stage of Schizophrenia [194, 195]. The ITG has a

significant impact on verbal fluency, which is a cognitive function that is affected during the early
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Figure 4.13: Localization of the areas in the AAL atlas. The areas with higher discriminability
between healthy and Schizophrenic groups are marked by red circles, while the unaffected areas are
represented by yellow circles.

stages of Schizophrenia. Dysfunction in this particular brain region may contribute to certain clini-

cal dysfunctions associated with early-stage Schizophrenia. Our findings indicate that the left ITG

is significantly reduced in individuals with Schizophrenia compared to healthy individuals. MFG,

fusiform gyrus (FFG), and SFG demonstrate disruption in brain functions for Schizophrenic sub-

jects. These results are in agreement with the defective regions identified in the study conducted by

Shi et al. [196], which indicates the involvement of these brain regions in Schizophrenia. Consistent

with these studies, our findings suggest that the left lingual gyrus could potentially be impacted dur-

ing the initial phase of Schizophrenia. Several research studies have indicated notable abnormalities

in the LING, the PHG, the PreCG, and the Precuneus (PCUN) among individuals with Schizophre-

nia [190, 191]. In our work, the right LING, PreCG, the right PCUN, and the right PHG were found

to be significantly smaller in Schizophrenia patients than in healthy control subjects.
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4.5.6 Functional connectivity in resting state networks of ADHD patients revealed

by acICA-MGGMM and acIVA-MGGMM

ADHD is increasingly recognized as a prevalent factor in neurodevelopmental conditions, along

with common psychological and behavioral issues experienced by children [197]. Globally, ADHD

affects approximately 5.29% of the population, with a substantial number of adolescents affected,

making the management and treatment of ADHD a crucial concern. This condition is frequently

linked to learning challenges and behavioral problems [198], which can significantly impact the

social and academic performance of those affected. Numerous studies have highlighted the dif-

ficulties in distinguishing between normal behavior and the level of ADHD symptoms requiring

intervention due to the subjective nature of diagnosis [199]. Therefore, research on the objective

diagnosis of ADHD has gained significant importance, making ADHD a prominent focus in the

fields of medicine and psychology in recent years.

Prior research extensively employed rs-fMRI to investigate the brains of individuals with ADHD

[200]. rs-fMRI has emerged as a prominent research tool, demonstrating significant utility in various

domains, including neuroscience, cognitive science, life sciences, and statistical analysis. It has

proven to be beneficial in the context of diagnosing and treating ADHD [201]. ICA is a widely used

method for statistical analysis of fMRI data [202].

We obtained publicly available fMRI data from the ADHD-200 global competition website 3.

The data were exclusively selected from the New York university (NYU) child study center. Fol-

lowing the guidelines of the health insurance portability and accountability act (HIPAA) and the

protocols of the 1000 Functional Connectomes Project, all datasets were anonymized, ensuring

the absence of any protected health information. The inclusion criteria were applied to both sub-

jects with ADHD and typically developing (TD) subjects. The original fMRI dataset underwent

preprocessing using a publicly available toolbox called DPABI [72]. The preprocessing steps in-

cluded: (1) discarding the initial 10 volumes to ensure the stability of the BOLD signal; (2) address-

ing differences in acquisition times between slices through slice timing correction; (3) correcting

head motion; (4) normalization, involving registration of the data to the EPI standard template and
3http://fcon1000.projects.nitrc.org/indi/adhd200/index.html

110



L R

y=-26 x=0

L R

z=65 -0.019

-0.0096

0

0.0096

0.019

L R

y=-26 x=0

L R

z=65 -0.029

-0.015

0

0.015

0.029

Figure 4.14: The activation regions in the motor area for the non-ADHD subject using acICA-
MGGMM and acIVA-MGGMM. The first row depicts the activation areas using acIVA-MGGMM,
whereas the second row illustrates the activation regions using acICA-MGGMM.

resampling to 3.0 × 3.0 × 3.0 mm3; and (5) applying spatial smoothing with a 6-mm FWHM

Gaussian kernel. Individuals with head movement exceeding 2.0 mm were excluded from the anal-

ysis. We applied the proposed acICA-MGGMM and acIVA-MGGMM models to the preprocessed

ADHD data to capture functional connectivity in both ADHD patients and control subjects. Initially,

we highlight the performance distinction between the two proposed models, acICA-MGGMM and

acIVA-MGGMM, in extracting functional connections within the motor region. Fig. 4.14 illustrates

this performance difference specifically in terms of extracting activation regions in the motor area

of non-ADHD subjects. In this figure, the first row depicts the activation regions obtained using

acIVA-MGGMM, while the second row shows the extracted regions using acICA-MGGMM.

We employ the acIVA-MGGMM method to identify activation regions and predict the affected

areas in individuals with ADHD, as illustrated in Fig. 4.15. acIVA-MGGMM components exhibit
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Figure 4.15: Activation regions using acIVA-MGGMM in both control and ADHD. The activation
regions in control and ADHD subjects are represented by the first and second rows, respectively.

diminished functional connectivity in the motor area of the ADHD brain, contrasting with the higher

functional connectivity observed in normal subjects. We additionally assess the components of

acIVA-MGGMM in the visual area for both control subjects and individuals with ADHD. Illustrated

in Fig. 4.17, we observe reduced activation intensity in ADHD patients (the bottom row) in contrast

to the heightened activation intensity in normal brain regions (the top row).

We evaluate the robustness of our proposed models by constructing a correlation matrix to

illustrate the connectivity strength among different brain regions. Fig. 4.16 presents the correlation

matrix for both healthy subjects and those with ADHD. In the case of healthy controls, depicted in

Fig. 4.16 (a), there is a high correlation strength between the brain regions. In contrast, for ADHD

patients, as depicted in Fig. 4.16 (b), the correlation among brain regions is notably lower. Fig. 4.18

depicts the increased connectivity among edges in the healthy brain in contrast to the reduced edge
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Figure 4.16: Correlation matrix using acIVA-MGGMM for both healthy and ADHD subjects. (a)
Control correlation. (b) Patient correlation.

connectivity observed in the ADHD brain.

4.5.7 Epileptic Seizure prediction

Epilepsy is a persistent neurological condition affecting the human brain, marked by Seizures

caused by sudden and temporary electrical disruptions in the brain. The study of human brain ac-

tivity relies significantly on EEG, a crucial tool that furnishes essential information. This study

utilizes the Freiburg EEG database 2007 [203] to assess the effectiveness of the proposed method.

The database comprises invasive EEG recordings from 21 patients with medically intractable fo-

cal Epilepsy. These recordings were obtained at the Epilepsy center of the university hospital of

Freiburg and consist of EEG data collected on six channels at a sampling rate of 256 Hz. Each

patient’s data includes two datasets: ”ictal” and ”interictal.” The ”ictal” dataset contains files with

epileptic Seizures, along with a minimum of 54 min of pre-ictal data. On the other hand, the ”inter-

ictal” dataset encompasses approximately 24 hours of EEG recordings without any Seizure activity.

Therefore, in this study, we consider the EEG signal smaller than 54 min.

After the preprocessing stage, we employed a 64-point Hamming window for smoothing in both

the time and frequency domains. During the feature extraction phase, we derived 13 cepstral coeffi-

cients for each window within the EEG dataset. Initially, the input EEG signal was transformed into
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Figure 4.17: The activation regions in the visual area for healthy controls and ADHD patients using
the proposed acIVA-MGGMM. The activation regions in control and ADHD subjects are illustrated
by the top and bottom rows, respectively.

the frequency domain using the fast Fourier transform. Subsequently, the signal was subjected to a

bank of triangular filters to calculate a weighted sum of filter spectral components, approximating

a Mel scale as described in [139]. The resulting Mel frequency cepstral coefficients (MFCCs) were

obtained by converting the logarithm of the Mel spectrum into the time domain through the discrete

cosine transform. We applied the BSS framework to the extracted MFCCs features using mod-

els based on ICA and IVA. We utilized the acICA-MGGMM and acIVA-MGGMM to distinguish

between Seizure and non-Seizure classes. In Fig. 4.19, the left side illustrates the performance

of acICA-MGGMM compared to other ICA-based models in terms of Joint-ISI, while the right

side shows the Joint-ISI for acIVA-MGGMM and other IVA-based models. Both acICA-MGGMM

and acIVA-MGGMM outperform other models, demonstrating lower Joint-ISI values, indicating

reduced overlap between the estimated signal and the reference signal. This enhancement can be
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Figure 4.18: ADHD and control subjects connectomes. The first row represents control subject
connectomes while the second row indicates ADHD patient connectomes.
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Figure 4.19: Joint-ISI for both acICA-MGGMM and acIVA-MGGMM for the EEG data.

attributed to the incorporation of prior knowledge in an adaptive manner and the consideration of

correlated features using the full covariance matrix.
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4.5.8 Comparison to similar BSS approaches in Schizophrenic detection

Experiment setup

Using the COBRE dataset, which comprises 70 Schizophrenic patients and 70 healthy controls,

we conducted this experiment following the pipeline illustrated in Fig. 4.20. The preprocessed brain

volumes were parcellated into 116 regions based on the AAL atlas, and we then extracted the crucial

features associated with Schizophrenia, specifically the fractional amplitude of low-frequency fluc-

tuations (fALFF) and regional homogeneity (ReHo). After fusing the fALFF and ReHo features, we

applied our BSS methods with the same parameter settings detailed in subsection 4.5.2. The fALFF

method, as introduced by Zou et al. [204], analyzes resting-state fMRI data by calculating the power

of low-frequency components (0.01-0.08 Hz) in BOLD signals on a voxel-by-voxel basis. Similarly,

the ReHo method, described by Zang et al. [205], calculates Kendall’s coefficient of concordance

among neighboring voxels to assess the similarity of BOLD signals, thereby identifying patterns

of local synchronization and variations across different brain regions. We then applied recent BSS

techniques to the fused features to extract the most informative ICA and IVA components. Finally,

a two-sample t-test was conducted on the extracted ICA and IVA components to identify significant

differences between the Schizophrenic patients and healthy controls.

Figure 4.20: Schizophrenia detection using the recent BSS approaches.
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Figure 4.21: Comparison of Schizophrenia detection performance using recent BSS models, evalu-
ated with the Joint-ISI metric. The left figure illustrates results from ICA-based models, while the
right figure presents those from IVA-based models.

Experimental results

To evaluate the robustness and stability of our proposed acICA-MGGMM and acIVA-MGGMM

models, we applied them to distinguish Schizophrenic patients from healthy subjects. In this ex-

periment, we compared the performance of our approaches with recent BSS methods, including

ICA-BMGGMM [2], IVA-BMGGMM [2], ICABMGGMM-HMM [3], IVABMGGMM-HMM [3],

orthogonal acICAMGGMM [206], and orthogonal acIVABMGGMM [5]. We assessed the models’

performance using metrics such as Joint-ISI, spatial correlation, and their effectiveness in identify-

ing brain regions affected by Schizophrenia.

We applied both proposed and comparative methods to the fused fALFF and ReHo feature ma-

trix. The extracted ICA and IVA components were then evaluated using Joint-ISI metric and spatial

correlation. Fig. 4.21 presents a comparison of the performance of the proposed acICA-MGGMM

and acIVA-MGGMM models against other BSS methods, utilizing the Joint-ISI metric to assess

the effectiveness in separating Schizophrenic time-courses from those of healthy subjects. Lower

Joint-ISI values indicate reduced interference in the estimated IVA components, as demonstrated

by the acIVA-MGGMM and orthogonal acIVABMGGMM models in the right panel of Fig. 4.21.

While the IVA-BMGGMM and IVABMGGMM-HMM models perform well with a smaller sample

size (5 to 60 subjects), their performance deteriorates as the number of subjects increases, partic-

ularly between 60 and 140, highlighting their limitations in handling large-scale data. Although
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the orthogonal acIVABMGGMM model maintains relatively strong performance even with a larger

number of subjects, it slightly under-performs compared to our proposed acIVA-MGGMM. This

difference can be attributed to the orthogonal mixing matrix assumption in the orthogonal acIV-

ABMGGMM method, which limits its ability to handle more complex scenarios when separating

fMRI sources. We attribute this notable improvement to the constrained parameters of our proposed

models, acIVA-MGGMM. By leveraging prior knowledge, these constraints effectively guide the

models towards more accurate and robust solutions, ensuring better performance and reliability in

complex scenarios.

Notably, the proposed acICA-MGGMM outperforms other BSS methods in the quality of sep-

arating Schizophrenic signals, as illustrated in the left panel of Fig. 4.21. A similar trend is ob-

served in the ICA-based versions of ICA-BMGGMM, ICABMGGMM-HMM, and orthogonal acI-

CAMGGMM, which also experience a decline in performance when applied to large-scale datasets.

This decline can be attributed to several factors. The lack of constrained parameters in ICA-

BMGGMM and ICABMGGMM-HMM limits their ability to effectively capture the complex re-

lationships within high-dimensional data, leading to suboptimal performance. Without these con-

straints, the models struggle to differentiate between Schizophrenic and normal time-courses, re-

sulting in less accurate predictions. Additionally, the orthogonal components in orthogonal acI-

CAMGGMM, while simplifying the model and reducing computational complexity, impose rigid

constraints that may not align with the data’s intrinsic structure. This misalignment limits the

model’s ability to fully exploit underlying patterns and correlations, further contributing to per-

formance degradation. In contrast, our proposed acICA-MGGMM models address these issues by

incorporating constrained parameters and leveraging prior knowledge. These enhancements enable

acICA-MGGMM to manage high-dimensional data effectively, improving both accuracy and ro-

bustness. The constraints guide the model towards more meaningful solutions, while the integration

of prior knowledge helps discern relevant features from noise, thereby overcoming the limitations

faced by the ICA-based models.

Fig. 4.22 illustrates the spatial correlation performance of various BSS approaches in diag-

nosing Schizophrenia. The left panel compares the performance of ICA-based methods, while the

right panel highlights IVA-based models. Across both panels, it is evident that acICA-MGGMM
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and acIVA-MGGMM consistently achieve higher spatial correlation as the number of subjects in-

creases, indicating superior ability in preserving spatial structures within the data. In contrast, ICA-

BMGGMM, ICABMGGMM-HMM, orthogonal acICAMGGMM and their IVA versions, display

lower spatial correlation, especially when the number of subjects exceeds 60, reflecting a poten-

tial limitation in capturing the complex spatial relationships in large-scale fMRI data. This can

be attributed to the absence of constrained parameters in ICA-BMGGMM and ICABMGGMM-

HMM, as well as the orthogonal assumption in both orthogonal acICAMGGMM and orthogonal

acIVABMGGMM. The acICA-MGGMM and acIVA-MGGMM models, in particular, demonstrate

robust performance across all subject numbers, with spatial correlation nearing 1.0 as the number

of subjects approaches 140.

The performance of acICA-MGGMM and acIVA-MGGMM improve steadily as the number of

subjects increases, highlighting their scalability. This ability to scale effectively with larger datasets

enhances the robustness and generalizability of acICA-MGGMM and acIVA-MGGMM, making

them valuable tools in neuroimaging research and clinical applications. The consistent performance

improvement with additional subjects demonstrates that acICA-MGGMM and acIVA-MGGMM

can leverage extensive datasets to provide precise and meaningful insights. Furthermore, acICA-

MGGMM and acIVA-MGGMM offer significant advantages for researchers and clinicians, enabling

the extraction of reliable patterns and information from large-scale studies, thereby advancing our

understanding and treatment of neurological conditions.
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Figure 4.22: Spatial correlation performance of BSS approaches in diagnosing Schizophrenia. The
left figure shows the performance of ICA-based approaches, while the right figure highlights results
from IVA-based models.
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Brain network identification and statistical analysis

In our previous analysis, we demonstrated that acICA-MGGMM and acIVA-MGGMM are the

most effective models among the evaluated BSS methods, as indicated by their superior perfor-

mance on Joint-ISI and spatial correlation measures. These findings establish the utility of acICA-

MGGMM and acIVA-MGGMM components in distinguishing Schizophrenic patients from healthy

controls. Fig. 4.23 specifically highlights the most discriminating acIVA-MGGMM components,

which effectively differentiate between Schizophrenic and control subjects. Here, a two-sample

t-test was employed to create discriminative connectivity maps, which confirmed the differences

between healthy controls and individuals with Schizophrenia. To account for multiple comparisons,

the FDR correction was applied, resulting in a significance threshold of p < 0.05 ( a minimum

z > 3.2 and cluster significance set at p < 0.05). This rigorous statistical approach ensures the

reliability of the identified neural distinctions between the two groups. The most informative IVA

Figure 4.23: The most discriminating IVA components for Schizophrenic patients using proposed
acIVA-MGGMM. The number in parentheses demonstrates the number of IVA components for each
brain network.

Figure 4.24: The most discriminative ICA components for Schizophrenic patients using acICA-
MGGMM.
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Table 4.6: Brain networks with their corresponding IVA Components using proposed acIVA-
MGGMM model.

Brain network IVA Anatomical description Abbreviation Hemisphere Coordinates Peak
component (X, Y, Z) (X, Y, Z)

Default mode network 3 Middle cingulate & paracingulate gyri MCC R 8, -48, 36 6, -42, 36
12 Superior frontal gyrus, medial SFGmedial R 8, 69, 14 -12, 72, 14

L -9, 69, 14
13 Posterior cingulate gyrus PCC L -1, -36, 32 -16, -36, 30
21 Superior frontal gyrus, medial orbital PFCventmed L -5, 69, -4 -4, 66, -4

R 8, 70, -4
50 Superior frontal gyrus, medial orbital PFCventmed R 20, 66, -10 20, 66, -10
63 Calcarine fissure and surrounding cortex CAL L -22, -66, 9 -22, -66, 6

R 21, -66, 9
Auditory network 11 Postcentral gyrus PoCG R 66, -12, 16 66, -18, 18

15 Superior temporal gyrus STG R 43, -23, 7 42, -18, 8
32 Postcentral gyrus PoCG L -61, -12, 19 58, -12, 20

Visual network 16 Lingual gyrus LING L -17, -96, -16 -12, -102, -16
R 22, -95, -16

30 Calcarine fissure and surrounding cortex CAL R 5, -58, 12 6, -54, 6
L -5, -58, 12

35 Calcarine fissure and surrounding cortex CAL L -24, -68, 6 -24, -76, 12
R 29, -65, 6

39 Inferior temporal gyrus ITG R 54, -65, -9 54, -72, -16
L -65,-45, -17

55 Precuneus PCUN L -4, -78, 50 -4, -78, 50
R 7, -78, 50

57 Cuneus CUN R 10, -88, 22 8, -88, 36
Cerebellum 17 Lobule IV, V of cerebellar hemisphere CER4 5 L -6, -54, -5 -4 ,-54, -6

R 10, -54, -13
Lobule IV, V of vermis VER4 5 - -2, -54, -3

47 Lobule IX of vermis VER9 - 0, -53, -28 -10, -46, -28
Lobule VIII of vermis VER8 - 1, -57, -28
Lobule VIII of cerebellar hemisphere CER8 R 7, -58, -31

L -10, -46, -28
Sensorimotor network 22 Precuneus PCUN L -16, -40, 57 -22, -40, 68

R 12, -40, 59
Working memory network 45 Superior frontal gyrus, dorsolateral SFG L -17, 54, 38 -18, 54, 38

R 6, 54, 38
Middle frontal gyrus MFG L -7, 59, 38

R 8, 57, 38
54 Superior frontal gyrus, medial orbital PFCventmed R 42, 54, -4 44, 54, -4

Salience processing network 51 Superior frontal gyrus, dorsolateral SFG R 18, 6, 68 18, 6, 68
L -22, -6, 72

Supplementary motor area SMA R 10, 6, 70
L -9, 3, 72

Basal Ganglia 67 Thalamus THA R 10, -18, 20 -10, -22, 14
L -12, -15, 20

Caudate nucleus CAU L -10, -3, 19
R 12, -3, 20

components include DMN, Auditory network (AN), Visual network (VN), Cerebellum, Sensori-

motor network (SN), Working memory network (WMN), Salience processing network (SPN), and

Basal Ganglia (BG). The DMN is widely recognized for its activation during rest, when individuals

engage in self-referential thoughts, contemplation of others, or reflections on the past and future.

Due to its involvement in such introspective and cognitive processes, the DMN has been extensively

studied across various neurological and psychiatric disorders. The network’s primary functional

hubs include the medial prefrontal cortex (mPFC), posterior cingulate cortex (PCC), precuneus, and
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angular gyrus (AG), all of which play critical roles in maintaining the DMN’s core functions. Un-

derstanding the alterations in these regions can provide valuable insights into the pathophysiology

of disorders like Schizophrenia, where disruptions in self-referential processing are common.

As shown in Fig. 4.24 and Table 4.6, the DMN exhibits a significant number of IVA com-

ponents (six), highlighting regions such as the middle cingulate and paracingulate gyri, posterior

cingulate gyrus, and superior frontal gyrus. Studies have reported the involvement of these brain

regions in self-referential thought and cognitive control, functions often disrupted in Schizophrenia

[196, 191, 207]. Similarly, the Visual network also shows a high number of discriminative compo-

nents (16, 30, 35, 39, 55, 57), particularly in regions such as the calcarine fissure and surrounding

cortex, inferior temporal gyrus, lingual gyrus, and precuneus, indicating potential alterations in vi-

sual processing pathways in patients. These findings align with the defective regions identified by

several studies [194, 189, 191]. In addition to the DMN and visual network, other networks such

as the Auditory network, Cerebellum, Sensorimotor network, Working memory network, Salience

processing network, and Basal Ganglia display the critical IVA components that further delineate

the neural underpinnings of Schizophrenia. For instance, the Salience processing network, which

includes the superior frontal gyrus and supplementary motor area, reflects disrupted salience attri-

bution, an indicator of the disorder. The cerebellar regions, specifically the lobules of vermis and

cerebellar hemispheres, also play a crucial role in the coordination of motor and cognitive functions,

which are frequently impaired in Schizophrenia. These brain regions are in agreement with finding

in previous studies [194, 190, 189, 207].

Previous researches [207, 208, 209] have shown that the lingual gyrus, calcarine fissure and

surrounding cortex, inferior temporal gyrus, precuneus, and cuneus are the main affected areas of

Schizophrenia. These findings are consistent with the findings of this study as shown in Visual

network. The Auditory network, which includes regions such as the postcentral gyrus and su-

perior temporal gyrus, reflects auditory processing and perception disorders that are common in

Schizophrenia patients. The Working memory network, which contains substantial components in

the superior and middle frontal gyrus, demonstrates the impairments in working memory and exec-

utive function that are frequent in Schizophrenia. Numerous studies have reported significant ab-

normalities in postcentral gyrus, superior temporal gyrus, superior frontal gyrus, and middle frontal
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gyrus [190, 194, 189, 208]. The Sensorimotor network, represented by components in the pre-

cuneus, shows potential issues with motor coordination and sensory processing. Such deficits can

limit a patient’s ability to successfully interact with their surroundings. The Basal Ganglia, which

contains the thalamus and caudate nucleus, stresses the significance of these subcortical structures

in motor control and cognitive abilities that are typically impaired in Schizophrenia. Recent studies

[191, 194, 189, 207, 210] have similarly identified the thalamus and caudate regions as popular re-

gions affected in Schizophrenia. For further analysis, we utilized the acICA-MGGMM components
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Figure 4.25: Correlation matrix for healthy subjects (a) and Schizophrenic patients (b) using the
acIVA-MGGMM components.

to extract the brain networks affected by Schizophrenia, as illustrated in Fig. 4.24. The identified

networks include DMN, AN, VN, SN, WMN, and Basal Ganglia. These networks align with those

extracted using the proposed acIVA-MGGMM method. Notably, our analysis revealed lower ac-

tivation levels in the DMN and VN when using the acICA-MGGMM method compared to those

extracted using the acIVA-MGGMM method. This difference can be attributed to the lower number

of ICA components used in the acICA-MGGMM method for network extraction. Consequently, this

underscores the enhanced capability of the acIVA-MGGMM method to detect variability in the data,

demonstrating its superior sensitivity in identifying the affected brain networks in Schizophrenic pa-

tients compared to the acICA-MGGMM method. Additionally, Fig. 4.23 identifies components in

the Cerebellum and Salience processing network, which are absent in Fig. 4.24. This suggests
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that the acIVA-MGGMM method may capture a more comprehensive set of discriminating features

across a wider range of brain networks compared to the acICA-MGGMM method.

These differences highlight the variability in the sensitivity of the two proposed methods in iden-

tifying critical brain network components associated with Schizophrenia. The identification of spe-

cific IVA components across multiple networks underscores the robustness of the acIVA-MGGMM

model in capturing the complex and multifaceted nature of Schizophrenia. This provides valuable

insights for potential diagnostic markers and therapeutic targets. By detailing the specific brain

regions and networks involved, this approach offers a comprehensive understanding of the neural

disruptions associated with Schizophrenia, paving the way for improved diagnostic and therapeutic

strategies.

Using the acIVA-MGGMM components, we illustrate the differences in brain connectivity be-

tween Schizophrenic patients and healthy subjects by examining the correlation matrices of brain

regions. Fig. 4.25 highlights significant differences in brain connectivity between the two groups.

The correlation matrix for healthy individuals demonstrates a well-organized and efficient network,

characterized by strong intra-regional connectivity along the diagonal and diverse inter-regional in-

teractions. In contrast, the correlation matrix for Schizophrenic patients shows more dispersed and

less structured connectivity patterns. This indicates potential disruptions in Schizophrenic patients

brain network organization.

4.6 More Experiments for cICA-MGGMM and acICA-MGGMM

To evaluate the robustness and scalability of our proposed models, we extend the application of

cICA-MGGMM and acICA-MGGMM to additional domains, including EEG and speech datasets.

These extensions allow us to test the models under varying conditions and data structures, providing

valuable insights into their adaptability and performance across diverse types of data.

In this section, we consider two different datasets, speech and EEG databases to validate the

proposed model. For the speech experiment, the Romanian read-speech corpus (RoDigit) is used to

validate the model. The proposed model and the base models are employed to separate the mixed

speech signals. For the EEG experiment, the proposed model is executed to distinguish Seizure
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patients from healthy subjects. The conducted models are evaluated using variations of separation

metrics, including SDR, SIR, SAR, PESQ, and ISI.

4.6.1 Speech signal separation

We introduce an efficient BSS method called acICA-MGGMM to separate the mixed speech

signals. The proposed technique is evaluated using random signals obtained from the RoDigits

dataset which is discussed in detail in subsection 2.6.3.

Within the BSS framework, we conducted four experiments aimed at estimating two, three,

four, and five speech sources. We obtained a linear combination of these speech sources from the

database and applied three models (ICA, ICAMGGMM, and acICA-MGGMM) to retrieve them.

After successfully recovering the sources, we conducted an objective analysis including SDR, SIR,

SAR, SNR, and PESQ to evaluate the quality of the separated speech signals and assess the suit-

ability of ICA mixture models in the context of BSS. The experiments were repeated ten times, and

objective metrics were averaged across ten separate runs using various linear mixtures of 2, 3, 4,

and 5 original speech signals. Table 4.7 illustrates the separation indices obtained after recovering

Table 4.7: Objective metrics for separation of 2 and 3 speech sources using acICA-MGGMM and
compared models

Model
BSS of 2 speech sources BSS of 3 speech sources
SDR SIR SAR SDR SIR SAR

acICA-MGGMM 25.32 25.43 55.97 19.43 19.32 52.18
ICAMGGMM 21.31 22.43 49.53 8.42 8.65 46.74

ICA 11.52 13.32 36.33 8.13 8.15 40.19

Table 4.8: Objective metrics for separation of 4 and 5 speech sources using acICA-MGGMM and
compared models.

Model
BSS of 4 speech sources BSS of 5 speech sources
SDR SIR SAR SDR SIR SAR

acICA-MGGMM 17.32 17.52 49.34 17.54 17.65 49.32
ICAMGGMM 7.35 6.37 45.03 6.31 6.48 44.58

ICA 6.62 6.34 41.21 6.43 6.32 42.55

speech source signals for the proposed model and other models. We use these models to separate
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mixture speech signals into their corresponding speech sources using different mixtures of 2, 3, 4,

and 5. For 2 and 3 mixtures, acICA-MGGMM slightly outperforms the other compared models for

most of the separation metrics. However, as the number of mixtures increased, the performance of

the base models degraded. In this range with 4 mixture, our proposed model significantly outper-

forms ICA and ICAMGGMM models using SDR (17.32 dB), SIR (17.52 dB), and SAR (49.34 dB),

as shown in Table 4.8. As the complexity of the mixture increases, our model maintains a consistent

level of performance. This trend is evident across 5 different mixtures, with a notable improve-

ment in our model’s separation efficiency, as indicated by the SDR of acICA-MGGMM (17.65 dB)

compared to the SDR of ICA (6.32 dB). This indicates the effectiveness of acICA-MGGMM in

separating speech-mixed signals into their original sources. It is worth noting that the adaptive sep-

aration approach and the consideration of prior information in the acICA-MGGMM cost function

make this model more flexible in separating this level of mixtures.

To confirm the efficacy of our proposed model, we evaluate its separation performance using the

ISI metric, a measure applied consistently across all models employed in this experiment. As illus-

trated in Fig. 4.26, it’s evident that the performance curve of acICA-MGGMM demonstrates greater

stability when compared to the other models. This enhancement becomes notably pronounced when

dealing with mixtures of more than 3 speech mixtures signals. This demonstrates the valuable role

of incorporating prior information as a valuable reference for achieving superior solutions in such

complex scenarios.

To evaluate the effectiveness of our proposed model, we use the PESQ index to highlight the

quality of separation. Fig. 4.27 shows that the separation quality of our proposed model is sig-

nificantly better than the compared models. In cases where the number of mixtures is low, our

model slightly outperforms ICA and ICAMGGMM in terms of separation quality. However, when

the number of mixtures increases to 3, 4, and 5 the separation quality of the base models is poor

compared to the high separation quality of our acICA-MGGMM. This improvement in terms of esti-

mated quality can be attributed to the consideration of prior knowledge and second and higher-order

statistics in the acICA-MGGMM cost function. Moreover, the acICA-MGGMM model takes into

account the inter-correlated features in the data by incorporating the complete covariance matrix.

To highlight the effectiveness of our proposed model, we employ subjective metrics as performance
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Figure 4.26: Performance of acICA-MGGMM and base models using ISI metric with a variation of
mixtures.

indicators to assess the quality of speech separation. The subjective evaluation encompasses both

the speech signals before and after the source separation. Fig. 4.28 visually presents the speech sig-

nals in their original state, after mixing, and subsequent to separation using acICA-MGGMM. It is

evident that our proposed model achieves a high-quality separation in the case of two mixed signals.

This accomplishment expands the potential of applying acICA-MGGMM in diverse applications,

including tasks like fetal ECG separation.

4.6.2 EEG signal separation

The proposed model’s validation uses the EEG dataset detailed in [138] and in subsection 3.3.4.

Table 4.9 demonstrates the separation metrics of Seizure EEG signals from healthy ones using

various models (acICA-MGGMM, ICAMGGMM, and ICA). These models are evaluated across

different subject combinations to assess their performance with high-dimensional data. These find-

ings indicate that acICA-MGGMM outperforms the other models in terms of SDR and SIR metrics.
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Figure 4.27: PESQ measure for acICA-MGGMM and other models with different mixtures.

Table 4.9: SDR and SIR measures for separation of EEG signals using acICA-MGGMM and com-
pared models.

Model
SDR with different combination SIR with different combination

2 5 10 20 40 2 5 10 20 40
acICA-MGGMM 41.30 40.61 38.62 35.28 33.25 38.71 37.42 35.65 32.58 30.41

ICAMGGMM 40.31 34.76 25.54 20.23 17.53 38.64 31.41 24.04 20.09 15.91
ICA 29.34 23.53 20.54 18.63 15.83 28.68 22.83 18.53 15.60 12.72

While this improvement is most prominent in smaller combinations, such as 2, it is not statistically

significant. This implies that ICA’s performance is at its peak within this range. However, when

dealing with high-dimensional data involving subject combinations ranging from 5 to 40, employ-

ing acICA-MGGMM leads to a substantial improvement in performance compared to the relatively

poor performance of the base models. To emphasize these results, as described in Table 4.9, it is

shown that the acICA-MGGMM outperforms other models. Specifically, for the 40 mixtures, our

model demonstrates its effectiveness with a high SDR metric of 33.25, while ICAMGGMM and

ICA exhibit poorer performance with SDR values of 17.53 and 15.83, respectively. We also observe
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Figure 4.28: Speech signal separation using acICA-MGGMM. The first row represents the original
speech signal. The second row illustrates the the mixed speech signals. The third row demonstrates
the speech signal estimation via acICA-MGGMM.

a similar pattern in our model’s performance when separating more complex cases, as indicated by

the SIR index. This suggests that incorporating prior information and utilizing an adaptive approach

for EEG signal separation is advantageous in such scenarios. To evaluate the performance of the

models, we used the ISI metric to assess their effectiveness in separating the sources. Fig. 4.29 il-

lustrates how the three models (acICA-MGGMM, ICAMGGMM, and ICA) perform in terms of ISI

as the number of subjects increases, thereby evaluating their efficacy in handling high-dimensional

data. These results indicate that the acICA-MGGMM model demonstrates greater performance

stability compared to other models. When utilizing the acICA-MGGMM model, the level of inter-

ference in the separated EEG signal is noticeably reduced compared to the ICA and ICAMGGMM

models. This superior quality of separation is particularly notable in high-dimensional scenarios

involving 20 and 40 subjects. This improvement can be attributed to the enhanced cost function of

the acICA-MGGMM model, which can effectively account for correlated features within the mul-

tivariate data. Furthermore, the acICA-MGGMM approach ensures that the solution is guided by

appropriate prior knowledge, instead of imposing incorrect constraints. Spatial correlation serves as
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Figure 4.29: Comparison of the performance of acICA-MGGMM and the basic models in relation
to the ISI metric as a function of the number of subjects.

a key indicator for assessing the performance of the applied models. The variations in the separation

performance of the three BSS algorithms applied in the EEG separation experiment are depicted in

Fig. 4.30. The outcomes reveal that, especially in cases involving 2 and 5 subjects, the spatial

correlation results for the conducted models are quite similar, notably for acICA-MGGMM and

ICAMGGMM. This similarity arises because the base models can effectively account for feature

correlations in scenarios where there are fewer mixed EEG sources. However, when dealing with

high-dimensional data comprising 10, 20, and 40 subjects, acICA-MGGMM demonstrates its supe-

rior ability to distinguish Seizure patients from healthy subjects compared to other models. This is

because the proposed model takes into consideration correlated features within the multivariate data

by utilizing the full covariance matrix. This experiment highlights acICA-MGGMM’s capability to

separate EEG signals at high-dimensional levels, leveraging its enhanced cost function to select the

most appropriate prior information during the estimation process.

To emphasize the effectiveness of Seizure EEG separation, we subject our model to a visual
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Figure 4.30: Evaluation of acICA-MGGMM’s performance in relation to spatial correlation as it
varies with the number of subjects.

assessment. Fig. 4.31 presents the separated Seizure and non-Seizure EEG signals achieved with

acICA-MGGMM. This visual representation highlights the proficiency of acICA-MGGMM in sep-

arating EEG signals. This accomplishment can be attributed to the incorporation of prior informa-

tion and the use of the full covariance matrix, which accounts for correlated features, especially in

multivariate data like the EEG Seizure database.

4.7 Conclusion

In this work, we proposed the cICA-MGGMM to separate the mixing sources. This model

was able to separate the sources using the full covariance matrix. We also proposed the acICA-

MGGMM to relax the ICA independence assumption by detecting the correlated features within the

data. Moreover, we introduced the constrained IVA-MGGMM to be applied over the multivariate

data. We also proposed the acIVA-MGGMM to improve IVA performance in the high-dimensional
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Figure 4.31: The estimated EEG signals using acICA-MGGMM. The first row represents the normal
estimated EEG signal and the second row indicates the Seizure one.

data using the prior information. We validated the proposed model using simulation data, resting

state fMRI data, EEG data, and ADHD data. For that, we used the ADNI Alzheimer’s data to test

our models’ capability to distinguish Alzheimer’s patients from healthy subjects. We also employed

our models on the Schizophrenic data to differentiate the Schizophrenic patients from the healthy

controls. Using the adaptive constrained IVA-MGGMM, we additionally identified the affected

brain regions associated with both Alzheimer’s disease and Schizophrenia. By employing Joint-

ISI and spatial correlation metrics, the conducted experiment demonstrated the effectiveness of our

proposed models in distinguishing between the various classes in comparison to the base models.

Notably, the acIVA-MGGMM model exhibited its capability in identifying the classes within the

given experiment, outperforming both the other proposed models and the base models.
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Chapter 5

Novel Approach for ECG Separation

Using Adaptive Constrained

ICABMGGMM and IVABMGGMM

An electrocardiogram records the heart’s electrical activity, providing essential insights into

cardiac health. Traditional visual analysis of ECGs is time-consuming and limits continuous moni-

toring, highlighting the need for automated signal processing. This Chapter introduces a new blind

source separation method, cICABMGGMM, combining a bounded multivariate generalized Gaus-

sian mixture model with constrained independent component analysis, addressing the typical inde-

pendence assumption of ICA. We further propose the adaptive version, acICABMGGMM, which

dynamically adjusts the association between estimated and reference sources using prior informa-

tion without enforcing incorrect constraints. Moreover, we introduce the constrained independent

vector analysis integrated with the bounded multivariate generalized Gaussian mixture model (cIV-

ABMGGMM) to tackle the limitations of ICA when applied to multivariate data, accompanied by its

adaptive version, the acIVABMGGMM, aimed at alleviating associated constraints. The acIVAB-

MGGMM employs a full covariance matrix that considers feature correlations, effectively address-

ing the challenges posed by ICA and IVA models when analyzing multivariate data. The innovative
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acIVABMGGMM framework merges the adaptability inherent in data-driven methods with the ca-

pability to manage noise and other artifacts often encountered in model-based approaches. This

technique effectively employs prior knowledge to guide the solution, avoiding the imposition of

inaccurate constraints. To overcome these challenges, our set of four constrained methods incorpo-

rates prior source information into the ICA and IVA model, effectively mitigating its limitations in

data with a high number of sources. We assess the efficacy of our proposed models through three

distinct ECG separation experiments, which include heartbeat separation, fetal ECG extraction, and

arrhythmia detection. Notably, the performance metrics demonstrate the superiority of our models

over the baseline approaches in the conducted experiments.

5.1 Introduction

Constrained independent component analysis (cICA) [150, 211, 212] is a variation of ICA that

adds additional constraints to the separation process. The cICA imposes specific constraints that

guide the separation process, in contrast to the classic ICA, which tries to blindly separate source

signals based on the assumption of statistical independence. These constraints can be generated

from a variety of sources, such as prior knowledge of the properties of the source signals or the

application area. The cICA aims to increase the accuracy and reliability of the separation findings

by integrating these constraints. In recent years, the cICA method has been successfully applied to

a variety of applications [213, 206].

In order to address the challenges associated with unbounded mixture models, a previous study

introduced the ICA bounded generalized Gaussian mixture model. The ICABGGMM has demon-

strated its effectiveness in various applications due to its ability to adapt to different data distribu-

tions [37, 22, 38, 214, 3]. However, the ICABGGMM has limitations in handling correlated features

because it assumes a diagonal covariance matrix. In a previous works [2], the investigation of sta-

tistical independence and sparsity was conducted to integrate the bounded multivariate generalized

Gaussian mixture model (BMGGMM) into the ICA model. The BMGGMM was chosen due to

its ability to effectively capture the inherent boundaries of real-world data, which often exhibits

natural constraints. By imposing these bounds within the mixture model, the BMGGMM offers
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a more accurate and flexible representation of the data, enhancing the separation performance in

ICA applications. This integration allows for improved modeling of sparse sources under statisti-

cal independence, which is crucial in scenarios where traditional Gaussian assumptions may fail to

adequately describe the observed data distributions.

To improve the clustering capability of the ICABMGGMM, we introduce new approaches to

address the issues related to unbounded models and constraint parameters. For that, we introduce

a method called constrained ICABMGGMM (cICABMGGMM), which combines ICABMGGMM

with a constrained model. The goal of cICABMGGMM is to provide a structured and flexible

approach for incorporating additional assumptions and prior information into the cost function,

whenever available.

The cICABMGGMM method relies on user-defined parameters, but selecting the appropriate

constraint parameter can be challenging due to the frequent lack of accurate prior information.

To address this issue, we propose an adaptive version of cICABMGGMM (acICABMGGMM),

which enables us to control the association between estimated and reference sources adaptively.

The acICBMGGMM method ensures that prior information is utilized to guide the solution without

imposing inaccurate constraints. Overall, our approach offers a way to enhance the performance

and applicability of ICA by incorporating additional assumptions and prior information. The new

acICABMGGMM model further improves the flexibility and adaptability of the method by allowing

for dynamic control of the association between estimated and reference sources.

The new framework called constrained IVA (cIVA) is capable of integrating any type of previ-

ous knowledge regarding the sources or the mixing vectors [215, 216, 217, 218]. Unlike traditional

methods that rely on orthogonal demixing matrices, cIVA does not have this requirement. It com-

bines the advantages of data-driven techniques, such as flexibility, with the strengths of model-based

methods, such as resilience to noise and other imperfections. Additionally, it effectively utilizes de-

pendencies among datasets, thus making it a valuable tool for separating sources. To address the

challenges associated with applying unbounded mixture models to bounded data, we propose a

new extension to the multivariate generalized Gaussian mixture (MGGMM) called the constrained

bounded MGGMM model based on IVA (cIVABMGGMM). The cIVABMGGMM takes into con-

sideration correlated features by incorporating a full covariance matrix and offering the flexibility
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to accurately model a wide range of non-Gaussian bounded support data shapes.

cIVABMGGMM relies on a user-defined constraint parameter to regulate the level of agree-

ment between the reference signal and the estimated component. The effective performance of

cIVABMGGMM depends heavily on the accurate selection of prior information and the appropri-

ate constraint parameter set by the user. When the prior information is inaccurate, a lower con-

straint parameter should be employed to avoid enforcing the inaccurate prior on the decomposition

[101, 219, 159]. Conversely, when the prior information is accurate, a higher constraint parameter

should be used to prevent the components from being influenced by noise and artifacts. However, in

practical scenarios, determining the optimal constraint parameter poses challenges, as it is difficult

to ascertain the accuracy of the prior information. This difficulty is further compounded when deal-

ing with multiple signals and their respective prior information that needs to be incorporated into

the process.

To address these limitations, we also introduce adaptive cIVABMGGMM (acIVABMGGMM)

to enable adaptive control over the association between estimation patterns and reference signals. It

is a method that makes it easier to incorporate multiple reference signals into the IVA framework.

This formulation allows for the incorporation of various types of prior information related to the

sources or mixing vectors. The new acIVABMGGMM framework combines the flexibility of data-

driven methods with the ability to handle noise and other artifacts commonly found in model-based

methods. The acIVABMGGMM technique uses prior knowledge to guide the solution effectively

instead of imposing inaccurate constraints. Additionally, it leverages the interdependence between

datasets, making it a powerful tool for separating sources effectively. Furthermore, the acIVAB-

MGGMM assumes second-order correlation within bounded support component vectors, which

provides more flexibility for extracting knowledge from the data.

To detect abnormal ECG signals, the proposed models will be applied to several clustering appli-

cations, including heartbeat separation, arrhythmia detection, and fetal ECG separation databases,

to gain insight into the analysis of these models. We employ our proposed models to distinguish

between the normal ECG signals and the abnormal ones. The performance of our proposed model

is evaluated using the same applications such as heartbeat signal separation, fetal separation, and

arrhythmia detection. Overall, our models have demonstrated potential usefulness in diagnosing
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various ECG applications. The contributions of this study are summarized as follows:

• We propose the cICABMGGMM model to improve the estimation of underlying sources.

This model has some limitations with the user-defined constraint parameters.

• We propose acICABMGGMM as a solution to overcome these limitations. The acICAB-

MGGMM model can adaptively control the relationship between the reference signal and the

estimated one without imposing inaccurate constraints. This approach allows for the model-

ing of classes with non-Gaussian structures and the identification of statistically significant

structures in the data.

• We introduce the cIVABMGGMM to be more adaptable in terms of separating the underlying

sources in bounded multivariate data.

• We also propose the acIVABMGGMM which provides more flexibility in controlling the

relationship between the reference signal and the estimated signal. It also enables the integra-

tion of multiple reference signals into the IVA framework. The acIVABMGGMM assumes a

second-order correlation within bounded support component vectors, which allows for greater

flexibility in extracting knowledge from the data.

• We tested our proposed models on various ECG applications, including heartbeat separation,

fetal ECG extraction, and arrhythmia detection. We used acICABMGGMM and acIVABMG-

GMM components to identify the estimated ECG signal and compared them with the original

ECG sources.

• We incorporate our models into the Pan-Tompkins QRS detection algorithm for the purpose

of identifying the R-peak within QRS signals.

The Chapter is organized as follows: In Sections 5.2 and 5.3, we introduce the general frame-

work for incorporating adaptive constrained parameters into the ICA and IVA bounded multivariate

objective functions. Section 5.4 describes our experimental results, followed by the conclusion in

Section 5.6.
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5.2 ICA-based approaches for blind source separation

5.2.1 Bounded multivariate generalized Gaussian mixture model using ICA

In the ICA mixture model, the observed data is assumed to originate from a combination of

different components, each belonging to distinct and non-overlapping categories. The bounded ICA

mixture Equations are discussed in detail in Chapter 2.

5.2.2 Constrained bounded ICAMGGMM (cICABMGGMM)

To estimate independent components, it is essential to use a suitable measure of independence

in the calculation of the demixing matrix. Maximum likelihood offers an inherent objective function

for ICA, as follows:

JICA(W) = E

[︄
N∑︂

n=1

log p (yn)

]︄
+ log |det(W)| (5.1)

The choice of distribution for p (yn) distinguishes between different ICA algorithms. In our case,

p (yn) is modeled as a bounded multivariate generalized Gaussian distribution as in Equation (2.4).

Incorporating reference signals presents a valuable approach that relaxes the assumption of inde-

pendence and improves the optimization process. To accomplish this, we combine Equations (5.1),

(2.4), and (2.7), and then apply constraint parameters to this combination formulation. Then, the

gradient of cICABMGGMM is given by:

∂JcICABMGGMM

∂Wl
=

∂JICABMGGMM

∂Wl
− h′

l(yl, rl)λlrl (5.2)

where h′
l(yl, rl) denotes the derivative of hl(yl, rl). Within the cICABMGGMM framework, the

objective function is optimized while adhering to the constraint imposed by the inequality constraint

function hl(yl, rl), which helps in guiding the learning process and ensuring the model adheres to

certain properties.

hl(yl, rl) = ρl − ϵ(yl, rl) ≤ 0 (5.3)
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This distance measure ϵ is compared against a reference value rl associated with bounded source yl,

and the inequality constraint threshold labeled as ρl. In this Chapter, we utilize the absolute value

of Pearson’s correlation coefficient to define the distance measure, such as ϵ(ŷl, rl)= |corr(yl, rl)|.

The condition 0 ≤ ϵ(ŷl, rl) ≤ 1 is met. So, increasing the ρl value ensures that the estimated

source closely matches the reference signal, preventing any variation in the reference component

across datasets. Conversely, reducing ρl causes the estimated component to diverge from the ref-

erence signal, making it susceptible to noise and other imperfections. Therefore, the choice of ρl

significantly impacts the performance of the cICABMGGMM algorithm. In this work, we introduce

an adaptive approach for selecting the constraint parameter called acICABMGGMM, which will be

discussed in the next subsection.

5.2.3 Adaptive constrained bounded ICAMGGMM (acICABMGGMM)

In this section, we introduce the acICABMGGMM, an enhanced version of ICABMGGMM. By

introducing a constraint term, the cost function for the acICABMGGMM approach can be expressed

as:

JacICABMGGMM = E

[︃
log p(yl)

]︃
+ log

⃓⃓⃓⃓
hT
l yl

⃓⃓⃓⃓
+

1

2γl

(︄(︃
max

{︃
0, γlhl(yl, rl) + λl

}︃)︃2

− λ2l

)︄
(5.4)

where p(yl) represents the ICABMGGMM cost function, derived from the combination of Equa-

tions (2.4) and (5.1), λl is a Lagrange multiplier, and γl is the penalty parameter.

In the acICABMGGMM approach, we use L to represent the total number of constraints, where

each constraint is associated with a constraint parameter ρl. To determine the appropriate constraint

parameter, the acICABMGGMM method selects a value for ρl from a predefined set of possible

values denoted as P . For acICABMGGMM learning steps, we initiate the demixing matrices,

denoted as W, with random values and set λl to 0, along with assigning a positive scalar value to

γl. We also initialize the mean and covariance using the K-means algorithm. The shape parameter is

set to 2. In each iteration, we calculate the posterior probability using the EM method. In the E-step,

we calculate the posterior probability of each data point belonging to each cluster. In the M-step,
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we update the mixing, mean, covariance, and shape parameters using the posterior probabilities

calculated in the E-step. We calculate an estimate for the sources, denoted as yl. We then update

the Lagrange multiplier λl. The gradient update function for this algorithm is as follows:

∆wl = E

[︃
∂

∂wl
log p(yl)

]︃
+

hT
l

hT
l yl

+ h
′
l(yl, rl)λlr

T
l (5.5)

where h
′
l represents the derivative of hl w.r.t (yl, rl). In each iteration of the algorithm, we employ

gradient ascent to update the Lagrange multiplier:

λ̂l ← max

{︃
0, γlhl(yl, rl) + λl

}︃
(5.6)

The constraint parameter is given as:

ρl̂ = arg min
ρl∈P

{︄
min

(︃⃓⃓⃓⃓
ρl−
⃓⃓⃓⃓
corr(yl, rl)

⃓⃓⃓⃓⃓⃓⃓⃓)︃}︄
(5.7)

5.3 IVA-based approaches for BSS

5.3.1 Bounded multivariate generalized Gaussian mixture model using IVA

In IVA mixture, components within a source are independent, while corresponding components

extracted from different mixture sources are maximally dependent. This means that corresponding

component dependence across multiple sources and component independence within a single source

are maximized simultaneously. The indicator function (5.8) is used to develop the IVA mixture as

described in Chapter 2. The indicator function is defined as:

H(x|j) =

⎧⎪⎪⎨⎪⎪⎩
1 if x ∈ Ωj

0 otherwise
(5.8)
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where the bounded support region is denoted by Ωj . By utilizing the indicator function, we describe

the bounded distribution as follows:

p(x|ξj) =
f(x|ξj)H(x|j)∫︁
Ωj
f(u|ξj)du

(5.9)

The derivative of the cost function in IVA is expressed as:

∂JIV A

∂W
[m]
n

= −
N∑︂

n=1

E

⎧⎪⎪⎨⎪⎪⎩
∂ log

(︃
p(yn)

)︃
∂y

[m]
n

∂y
[m]
n

∂w
[m]
n

⎫⎪⎪⎬⎪⎪⎭−
(︃
w[m]

n

)︃−T

(5.10)

5.3.2 Constrained IVABMGGMM (cIVABMGGMM)

cIVA successfully captures the distinct variations found in the features extracted from a set of

subjects. This approach integrates prior information about the sources into the IVA model, which

limits the potential solutions and effectively handles the difficulties posed by high dimensionality.

By introducing the constraint term, the cost function for the constrained IVABMGGMM can be

formulated as:

JcIV ABMGGMM (W
[m]
l ) = JIV ABMGGMM −

1

2γ
[m]
l

{︃[︂
max

{︁
0, λ

[m]
l + γ

[m]
l hl(y

[m]
l , r

[m]
l )
}︁]︂2

− (λ
[m]
l )2

}︃
(5.11)

Here, λ[m]
l represents the Lagrangian multiplier and γ[m]

l (where γ[m]
l > 0) is a learning parameter.

By employing the vector gradient descent method, we can express the gradient update function of

Equation (5.11) as:

∂JcIV ABMGGMM (W
[m]
l )

∂W
[m]
l

=
∂JIV ABMGGMM

∂W[m]
− h′

l(y
[m]
l , r

[m]
l )λ̂

[m]

l (r
[m]
l )T (5.12)
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where h′
l denotes the derivative of hl with respect to (y

[m]
l , r

[m]
l ), and ϕ[m](yl)=−∂ log p1(y1)/∂y

[m]
1 .

In our case, ϕ[m](yl) represent by the BMGGMM Equation (2.4). The Lagrange multiplier is up-

dated in each iteration using the gradient ascent method:

λ̂
[m]

l ← max
[︂
0, γ

[m]
l hl(y

[m]
l , r

[m]
l ) + λ

[m]
l

]︂
(5.13)

Within this framework, the mutual information objective function is optimized while adhering to

the constraint imposed by the inequality constraint function hl.

hl(y
[m]
l , r

[m]
l ) = ρl − ϵ(y

[m]
l , r

[m]
l ) ≤ 0 (5.14)

where r
[m]
l represents the reference vector for y[m]

l . The cIVABMGGMM framework introduced

in this study offers the ability to define the distance measure ϵ in a flexible manner. In this work,

Pearson correlation is employed as the chosen distance measure:

ϵ(y
[m]
l , r

[m]
l ) =

⃓⃓⃓⃓
corr

(︂
y
[m]
l , r

[m]
l

)︂⃓⃓⃓⃓
(5.15)

By employing Pearson correlation as the distance measure, we impose a constraint on ϵ(y[m]
l , r

[m]
l )

to fall within the range of 0 and 1, effectively limiting the value of ρ[m]
l to be less than or equal

to 1. As a result, a higher value of ρ[m]
l imposes a more stringent constraint on the decomposition

process, while a lower value of ρ[m]
l weakens the influence of the constraint on the decomposition.

The performance of the cIVABMGGMM algorithm is highly dependent on the selection of the

constraint parameter ρ[m]
l . For that, an adaptive technique called acIVABMGGMM is proposed to

select the constraint parameter. The details of this technique are explained in the next subsection.

5.3.3 Adaptive constrained bounded IVAMGGMM (acIVABMGGMM)

The use of reference signals is an effective way to improve the performance of optimization

searches and leverage the benefits of both model-driven and data-driven techniques. However, us-

ing a fixed value for the constraint parameter may not allow the model to efficiently estimate the

local patterns for each dataset. To address this issue, we introduce the acIVABMGGMM method,
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which allows for controlling the degree of similarity between the estimated source and the reference

signal. This technique automatically adjusts the constraint parameter during the algorithm’s exe-

cution to optimize its performance. By doing so, it is expected to improve the performance of the

cIVABMGGMM algorithm.

In the acIVABMGGMM approach, we choose a value ρl from a set of potential values repre-

sented byP . The demixing matrices, denoted as W[m], are initialized randomly, and we set λ[m]
l =0

and γ[m]
l to a positive scalar value. The parameter estimation process is given in Subsection 5.2.3.

During each iteration, we estimate the sources, denoted as y[m]
l , where m varies from 1 to M , and l

varies from 1 to L. The first SCV is selected as the constrained component. The acIVABMGGMM

gradient is computed as:
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=
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l )2

}︄
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To update this parameter, we conduct a search to find the highest value of ρ[m]
l from the set P that

satisfies the condition specified in Equation (5.14) for all M subjects. Afterward, we calculate the

distance ϵ(., .) of the estimated correlation for all possible values of ρ[m]
l from the set P across all

subjects. Subsequently, we estimate λ[m]
l and ρ[m]

l using the following Equations, respectively:

λ̂
[m]

l = max

{︃
0, γ

[m]
l hl(y

[m]
l , r

[m]
l ) + λ

[m]
l

}︃
(5.17)

ρ̂
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l , r
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(5.18)

The value of ρ[m]
l that results in the smallest distance is selected. This new value of the constraint

parameter is then used to compute the gradient and update the demixing matrix. The process is

iterated until convergence is achieved. As a result, the constraint parameter gradually approaches the

actual correlation between the source and the reference signal with each iteration, without imposing
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the reference signal directly onto the decomposition process.

5.4 Experimental Results for cICABMGGMM and acICABMGGMM

We propose to validate the effectiveness of our proposed models, cICABMGGMM and acI-

CABMGGMM, through the process of ECG signal separation. To achieve this, we conducted a

simulation experiment and two real applications: fetal ECG extraction and arrhythmia identifica-

tion. In the first ECG experiment, our models are utilized to predict the fetal ECG signal from the

maternal signal. In the second ECG experiment, our proposed models are used to differentiate be-

tween a normal ECG signal and one exhibiting arrhythmia. We incorporate state-of-the-art models

for comparison with our proposed models in both experiments. In terms of evaluating performance,

both subjective and objective metrics are employed to assess the proposed models. The subjective

evaluation involves examining ECG signals obtained both before and after source separation, while

the objective assessment encompasses metrics such as SDR, SIR, SAR, SNR, and Joint-ISI. We also

propose the incorporation of our models into the Pan-Tompkins algorithm to enhance the detection

of R-peaks. The Pan-Tompkins method is one of the most popular and commonly used algorithms

for QRS detection [220]. It has been widely explored and has demonstrated good performance in

identifying QRS complexes in ECG data. The Pan-Tompkins algorithm uses a series of filters to em-

phasize the frequency content of the QRS complex and reduce background noise. It then squares the

signal to magnify the QRS contribution, making it simpler to recognize the QRS complex. Finally,

adaptive thresholds are used to detect the peaks in the filtered estimated ECG signal.

5.4.1 Simulation experiment

To evaluate the reliability of our proposed models, we examine their performance using simu-

lated data generated from the multivariate generalized Gaussian distribution. We generate a mul-

tivariate dataset, denoted as x ∈ RN , such that x = As. The elements of the mixing matrix A

are drawn randomly from a uniform distribution. The N source components are produced using a

multivariate generalized Gaussian distribution. To control the correlation within an IC component,

we generate the corresponding matrix with elements randomly sampled from a normal distribution
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N(0, 1). Once the ICs components are obtained, the sources for this dataset are s= [s1, . . . , sN ].

These ICs are formed from V =1000 samples. The acICABMGGMM is performed on these ICs,

with 100 runs. The performance is evaluated using the Joint-ISI metric, which quantifies the ability

of the methods to separate the sources. This approach is particularly suitable for multichannel ECG

analysis, where the sources typically exhibit Gaussian distributions and correlation across subjects.

The average Joint-ISI across all converged runs for all models is depicted in Fig. 5.1.

Initially, we utilize the K-means algorithm to establish the mixture parameters, which include

mean, covariance, and shape parameters. The mixing parameter is initialized at 1/M to ensure a

total sum of 1. Subsequently, we employ the EM algorithm to calculate the posterior probability

in the E-step and update the mixture parameters in the M-step. To determine model convergence,

we specify a small tolerance value. We iterate through updating the mixture parameters until our

proposed model achieves convergence, utilizing the optimal parameters for source separation. We

set a maximum of 1020 iterations for each model, with a convergence threshold set at 0.001. This

results in the derivation of a new de-mixing matrix, denoted as W, which we use to estimate the

sources yn = W × xn. The convergence process is illustrated in Fig. 5.1 (a). It shows that our

proposed model, acICABMGGMM, demonstrates significantly improved convergence compared to

the base models, ICA, Adaptive cICA, and Fixed-point cICA. Our proposed model converges within

250 iterations, whereas the base models require more than 500 iterations to converge.

We evaluated the efficacy of the acICABMGGMM method across a range of γl values from 1 to

1000, observing no significant change in performance. Consequently, we opted for a small positive

value, setting γl to 3. For the cICABMGGMM method with fixed constraint parameters, we varied

the values of ρl from 0.001 to 0.9. A ρl value of 0.001 indicates weaker constraints, while a value

of 0.9 signifies stronger constraints. In order to verify if the proposed method accurately estimates

the constrained source, we measure the dissimilarity factor, α, between the constrained estimated

source, yl, and corresponding ground truth, rl, computed as α = 1 − |corr(yl, rl)|. Fig. 5.1 (b)

assesses the performance of acICABMGGMM versus cICABMGGMM in terms of the dissimilarity

factor. In each box plot, the median is represented by a horizontal orange line, with the upper and

lower edges corresponding to the 75th and 25th percentiles, respectively. A higher value of this

metric indicates a weaker influence of the constraints on the source. With the cICABMGGMM
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method, the estimation quality of the constrained component deteriorates when a higher constraint

parameter is employed, while the acICABMGGMM method maintains a low dissimilarity factor.

The proposed acICABMGGMM demonstrates better performance than regular cICABMGGMM

for lower values ρl=0.001, which is equivalent to performing unconstrained ICA.
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Figure 5.1: The convergence process and robustness of our model where (a) illustrates the iterations
number required for convergence of acICABMGGMM, while (b) represents dissimilarity factor for
acICABMGGMM vs cICABMGGMM.

5.4.2 Fetal ECG signal extraction

Obtaining fetal ECG signals from the ECG signals of the mother’s abdomen poses a challenge

due to the interference from artifacts caused by muscle contraction, breathing, and noise. Recently,

reference-based methods are employed for fetal ECG extraction, but their efficacy is not consistently

high. In response to this challenge, researchers are investigating the application of BSS to extract

fetal ECG. The experiment utilized real electrode recordings retrieved from the DAISY database

[221]. These recordings were acquired from a pregnant woman’s body using eight skin electrodes

at a sampling frequency of 500 Hz. In our investigation, we utilized the first abdominal recording

in conjunction with three thoracic recordings (as illustrated in Fig. 5.2). The first recording depicts

a mixture of fetal electrocardiogram (FECG), maternal electrocardiogram (MECG), and noise. The

second signal was collected from the maternal thoracic region, with each sensor signal consisting

of 2500 measurements.
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Figure 5.2: Real ECG recordings. The first row represents the abdominal recording, whereas the
second to fourth rows represent thoracic recordings.

Following the filtration of the original ECG signals, our models were applied to estimate 2× 2

basis functions, resulting in the derivation of 2 estimated sources. In the cICABMGGMM approach,

we utilized specific values for the threshold of the inequality constraint (ρl=0.001 to 0.9) where the

constraint parameter with the smallest distance ϵ is chosen as the optimal parameter. We evaluated

the effectiveness of the cICABMGGMM and acICABMGGMM methods across a range of γl values

spanning from 1 to 1000. No significant variation in their performance was observed. Consequently,

we opted for a small positive value, setting γl to 3. Conversely, for the acICABMGGMM method,

a range of constraint parameters ρl was employed from the set P=0.001, ..., 0.9 while maintaining

a constant value of γl = 3 for the constrained learning. To ensure robustness, we initialized the

model’s parameters randomly and executed the process with varying initial setups. The optimal run

was determined through evaluation using the Joint-ISI metric. Here, the implicit objective is to opt

for the most suitable initialization parameters, while the stability of each model is confirmed by

subjecting it to 1020 iterations against a low threshold, ensuring convergence is examined for each

model.
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In Table 5.1, we present objective evaluations conducted on recovered ECG signals. Our analy-

sis reveals that acICABMGGMM outperforms ICA, Non-orthogonal cICA, Adaptive ICA, ICAMG-

GMM, Fixed-point cICA, acICAMGGMM, and ICABMGGMM models across various measures,

including SAR with a value of (229.43) and SNR with a value of (21.57). Notably, both the acI-

CABMGGMM and cICABMGGMM models demonstrate superior performance compared to other

ICA-based models. The metric Joint-ISI clearly shows the effectiveness of our proposed models

in separating the FECG signal from the MECG signal. It is worth mentioning that the cICABMG-

GMM model shows a slight performance lag compared to the acICABMGGMM model, and this

difference might be attributed to the selection of constraint parameters. Fig. 5.3 illustrates the fetal

Table 5.1: Performance of the proposed cICABMGGMM and acICABMGGMM in terms of pre-
sented performance metrics.

Models SDR SIR SAR SNR Joint-ISI
acICABMGGMM 18.25 18.78 229.43 21.57 0.074
cICABMGGMM 14.61 15.75 226.82 17.52 0.125
ICABMGGMM 10.52 13.14 224.98 13.04 0.185
acICAMGGMM 10.09 12.69 224.45 12.52 0.186
Fixed-point cICA 9.20 12.08 214.88 11.15 0.216

ICAMGGMM 9.64 11.64 225.53 13.95 0.289
Adaptive cICA 9.23 11.11 220.07 13.54 0.292

Non-orthogonal cICA 8.95 10.96 119.89 12.61 0.391
ICA 9.01 11.42 224.56 14.91 0.365

extracted ECG signals from the maternal ECG signals. This illustration showcases the capability of

acICABMGGMM to extract fetal and maternal ECG signals from a mixture ECG signal, particu-

larly when the fetal ECG signal exhibits a higher frequency than the maternal ECG signal. More-

over, we utilized the Pan-Tompkins algorithm on the estimated FECG to detect the R-peaks related

to complex QRS patterns. This method effectively identifies these R-peaks within our estimated

FECG signals, as indicated by the orange colour. These experiments show that our models exhibit

superior performance compared to commonly used models like cICAMGGMM, ICAMGGMM,

Adaptive cICA, Fixed-point cICA, and ICA. The degradation performance of the base models is

also noticeable. Among all the implemented models, the acICABMGGMM model demonstrated

the best performance. This improvement can be attributed to the constraints parameters that were

incorporated adaptively into the cost function for this model. Furthermore, this approach considers
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Figure 5.3: FECG signal estimation employing acICABMGGMM, coupled with R-peak identifica-
tion using orange color.

correlated features by integrating a full covariance matrix, thus providing the flexibility required for

precise extraction of the FECG signals from the MECG signals. Overall, this marked enhancement

in the quality of FECG extraction can be attributed to the incorporation of prior information in our

proposed models.

5.4.3 Arrhythmia detection

This study utilizes the publicly accessible MIT-BIH dataset, accessible through PhysioNet [222].

The dataset consists of 48 records of 2-channel ECG signals digitized at a rate of 360 Hz, with a

database bandwidth ranging from 0.1 Hz to 40 Hz. It includes 25 male subjects aged between 32

and 89 years and 22 female subjects aged between 23 and 89 years. Among the subjects, 60% were

healthy. Each ECG signal underwent several preprocessing steps, including high-pass filtering (0.5

Hz, 5th-order Butterworth), low-pass filtering (40 Hz, 5th-order Butterworth), subsequent normal-

ization (subtracting the mean and dividing by the standard deviation), and a sign-change to ensure

consistent positive peaks for heartbeats.

We have employed the proposed cICABMGGMM and acICABMGGMM techniques on the

preprocessed MIT-BIH data to differentiate between normal subjects and those with arrhythmia

disease. The configuration settings for the cICABMGGMM and acICABMGGMM approaches are

derived directly from those utilized in the previous experiment. To ensure robustness, we initiated

the model’s parameters randomly and conducted separate runs with different initializations. The

best run was determined using the Joint-ISI metric.
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The performance of various methods, including ICA, Non-orthogonal cICA, Adaptive ICA,

ICAMGGMM, Fixed-point cICA, acICAMGGMM, ICABMGGMM, and acICABMGGMM was

evaluated in terms of Joint-ISI, SDR, SIR, SAR, and SNR. Tables 5.2 and 5.3 demonstrate that

our proposed models consistently show better performance compared to the basic models across a

range of lower component combinations, spanning from 2 to 6. Notably, as the number of subjects

increases, the performance of ICA-based models declines. With more than 24 subjects, both cI-

CABMGGMM and acICABMGGMM exhibit significant performance improvements over the ICA-

based models. The performance of cICABMGGMM is marginally inferior to acICABMGGMM,

depending on the specific constraint parameters used. The acICABMGGMM model addresses the

issue in data with high number of mixtures by incorporating prior information and dynamically

managing the correlation between the reference signal and the estimated signal. As shown in Ta-

Table 5.2: SDR and SIR separation metrics for cICABMGGMM and acICABMGGMM over source
combinations ranging from 2 to 48.

Model
SDR SIR
# subject combinations # subject combinations
2 6 12 24 48 2 6 12 24 48

acICABMGGMM 33.72 9.86 8.19 7.19 5.03 34.54 12.25 8.89 5.28 4.54
cICABMGGMM 24.10 7.15 6.06 6.05 4.69 25.11 8.06 5.92 4.37 3.85
ICABMGGMM 22.77 5.00 4.97 3.39 2.47 24.71 6.65 4.90 2.87 2.40
acICAMGGMM 14.42 4.88 4.40 3.69 2.76 18.30 6.28 4.64 2.95 2.49
Fixed-point cICA 15.43 4.01 3.64 2.91 2.72 13.21 5.84 4.16 3.66 2.02
ICAMGGMM 12.48 4.72 4.91 3.88 2.48 15.63 6.04 4.39 2.96 2.58
Adaptive cICA 10.26 4.29 4.03 3.36 2.31 14.86 4.83 4.52 3.73 2.92
Non-orthogonal cICA 10.25 3.98 3.82 3.29 2.58 13.73 5.09 4.65 3.05 2.67
ICA 11.16 4.35 4.04 4.15 2.98 14.02 5.28 4.25 2.68 2.21

bles 5.2 and 5.3, acICABMGGMM and cICABMGGMM models show strong SDR, SIR, SAR, and

SNR performance with lower subject combinations (2, 6, 12, 24). However, performance signifi-

cantly declines as the number of subjects increases to 48, with acICABMGGMM’s SDR dropping

from 33.72 to 7.19 and SIR from 34.54 to 4.54 dB. A similar trend is observed for SAR and SNR,

as shown in Table 5.3. This reduction in performance is likely due to the increased complexity and

signal overlap with more subjects, reducing the models’ separation effectiveness. Despite this, both

proposed models still outperform other methods for all subject combinations.
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Fig. 5.4 illustrates the improved separation performance of our models in comparison to con-

ventional methods. For Joint-ISI (depicted in the left graph), the proposed ICA models (cICABMG-

GMM and acICABMGGMM) demonstrate slightly superior performance compared to traditional

methods, particularly in the case of lower mixtures ranging from 2 to 12. A significant enhancement

becomes evident with a higher number of mixtures, such as 24 and 48, where our models outperform

traditional methods based on Joint-ISI metrics. Similar trends are observed in the spatial correla-

Table 5.3: The evaluation of cICABMGGMM and acICABMGGMM performance over source
combinations from 2 to 48, assessed using SAR and SNR separation measurements.

Model
SAR SNR
# subject combinations # subject combinations
2 6 12 24 48 2 6 12 24 48

acICABMGGMM 254.30 136.08 94.38 61.52 52.09 36.40 24.66 14.23 8.45 5.75
cICABMGGMM 244.68 125.94 83.94 52.00 42.16 25.89 14.69 8.11 6.88 4.53
ICABMGGMM 242.06 116.37 73.64 42.20 32.05 24.15 9.81 6.58 4.92 3.32
acICAMGGMM 241.77 115.94 68.79 39.07 22.07 18.64 8.65 6.28 4.13 2.97
IVA 241.75 115.43 67.05 35.74 24.83 13.73 6.16 5.67 3.88 2.98
Fixed-point cICA 240.07 116.60 65.33 32.53 21.65 12.96 6.05 5.42 3.06 2.93
ICAMGGMM 241.79 115.71 66.36 37.77 22.01 15.09 6.43 4.49 3.90 2.78
Adaptive cICA 240.35 116.72 63.91 32.67 21.42 13.52 4.90 4.29 3.72 2.53
Non-orthogonal cICA 239.41 117.63 64.05 34.37 23.80 13.04 5.36 4.91 3.82 2.61
ICA 241.16 119.05 64.79 32.91 22.73 14.06 4.94 4.34 3.92 2.39
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Figure 5.4: Our proposed model performance in terms of Joint-ISI and spatial correlation where (a)
illustrates the model’s performance based on Joint-ISI, while (b) assesses its effectiveness in terms
of spatial correlation.

tion analysis, as seen in the Joint-ISI evaluation. For lower mixture numbers, the spatial correlation
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for our proposed models is slightly superior to that of the base models. However, as the number

of mixtures increases, the performance of ICA traditional methods declines. Notably, we observe

substantial performance improvements in our models, starting at 24 mixtures when compared to the

base models. Additionally, the performance of cICABMGGMM is slightly below that of acICAB-

MGGMM, depending on the constraint parameters used. The results shown in this figure make it

clear that our models demonstrate a superior ability to recover constrained sources in scenarios with

a high number of mixtures compared to traditional models, which displayed poor performance. This

can be attributed to the effectiveness of our models in accurately estimating the underlying sources,

leveraging the constraint parameters, and utilizing prior information.

5.4.4 Robustness to noise

We conducted additional experiments to evaluate the robustness of the proposed method under

varying noise conditions. Specifically, rician noise was introduced at six distinct noise levels to

assess the performance of our models on both fetal and arrhythmia applications. The results depicted

in Fig. 5.5, highlight the impact of noise on the proposed methods. For the most effective separation

model, acICABMGGMM, a performance reduction of 0.19 and 0.13 was observed at the highest

noise levels (-6 dB and 0 dB, respectively). Similarly, for the arrhythmia dataset, acICABMGGMM

exhibited a performance decrease of 0.18 and 0.13 under the same high noise conditions. Reducing

the noise level leads to a noticeable increase in the spatial correlation of our models, demonstrating

their robustness under noisy conditions. This resilience is particularly evident in scenarios with 6

dB and 12 dB noise levels. Despite the challenging conditions, acICABMGGMM demonstrated

superior robustness, achieving the highest spatial correlation in noise-free scenarios (18 dB and 24

dB) and exhibiting the smallest performance declines (0.19 for fetal data and 0.18 for arrhythmia

data) under high noise conditions at -6 dB. This highlights acICABMGGMM’s exceptional ability to

maintain performance stability across varying noise levels in both fetal and arrhythmia experiments.
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Figure 5.5: Our proposed model performance in terms of different noise conditions and spatial
correlation where (a) illustrates the model’s performance based on the fetal ECG signal extraction
experiment, while (b) assesses its performance based on the arrhythmia detection experiment.

5.5 Experiments and Results for cIVABMGGMM and acIVABMG-

GMM

We propose validating the efficacy of our proposed models cIVABMGGMM, and acIVABMG-

GMM through ECG signal separation. To achieve this, we conduct three distinct experiments:

heartbeat separation, fetal ECG extraction, and arrhythmia detection. In the heartbeat separation

experiment, our models are employed to distinguish between four different classes, namely normal,

murmur, extrahls, and extrasystoles. In the second experiment, we utilized our models to estimate

the fetal ECG signal from the maternal signal. In the third experiment, we apply our proposed

models to differentiate between a normal ECG signal and an ECG signal with arrhythmia.

5.5.1 Heartbeat separation

The dataset used for the classification of heartbeats was originally created for a machine learn-

ing challenge by Peter Bentley [223]. The dataset contains four classes of heartbeats: normal,

murmur, extrahls, and extrasystoles. Normal represents healthy heartbeats; murmur represents ex-

tra sounds that occur when there is turbulence in blood flow that causes extra vibrations that can be

heard; extrahls represent heartbeats with an additional sound; and extrasystoles represent additional
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heartbeats that occur outside the physiological heart rhythm and can cause unpleasant symptoms

[224, 225, 226]. Samples of this data are given in Fig. 5.6. Here, we show the two classes of

heartbeat signals and their corresponding spectrograms, and the MFCCs features. Following the

0 2 4 6 8
Time (s)

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00
Normal waveplot

0 1 2 3 4 5 6 7 8
Time (s)

Normal Mel Spectogram

0 1 2 3 4 5 6 7 8
Time (s)

Normal MFCCs

0 1 2 3 4 5 6 7 8
Time (s)

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

Abnormal waveplot

0 1 2 3 4 5 6 7
Time (s)

Abnormal Mel Spectogram

0 1 2 3 4 5 6 7
Time (s)

Abnormal MFCCs

Figure 5.6: Heartbeat source signals. The first row indicates the normal heartbeat alongside its cor-
responding spectrograms and MFCCs features. The second row represents the abnormal heartbeat
and its corresponding spectrogram and MFCCs features.

initial dataset processing, we extracted the MFCCs. During the feature extraction process, we com-

puted the 13th-order MFCCs features and then combined their delta and acceleration characteristics

to create 39-dimensional feature vectors. Then, the IVA mixture models were utilized to estimate

basis functions, which were then used to separate mixed signals in different experiments. In this

experiment, the basis functions of 2× 2, 3× 3, 4× 4, and 5× 5 in separate experiments to compute

2, 3, 4, and 5 heartbeat sources. Linear mixtures of 2 sources were used to recover the heartbeat

sources, and BSS was executed by employing cIVABMGGMM and acIVABMGGMM. The config-

urations for both cIVABMGGMM and acIVABMGGMM are given in Subsection 5.4.2. To ensure

robustness, we initialized the model’s parameters randomly and executed the process five times

with varying initial setups. The optimal run was determined through evaluation using the Joint-ISI

metric. Here, this step is implied to choose the best initialization parameters whereas the stability

of each model is validated using 1020 iterations against the small value of the threshold to check

the convergence for each model. To assess the quality of the recovered heartbeat signals and the
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viability of the IVA mixture model in BSS, subjective and objective measures were performed on

the recovered sources.

Table 5.4: Objective measures for separation of 2 and 3 heartbeat signals using our proposed models
acIVABMGGMM and cIVABMGGMM.

Model
BSS of 2 heartbeat signals BSS of 3 heartbeat signals
SDR (dB) SIR (dB) SAR (dB) SNR (dB) Joint-ISI SDR (dB) SIR (dB) SAR (dB) SNR (dB) Joint-ISI

acIVABMGGMM 35.32 25.21 200.21 332.20 0.031 32.51 23.65 190.28 330.03 0.042
cIVABMGGMM 30.91 21.35 198.32 330.68 0.034 30.31 20.65 186.74 328.86 0.048
IVABMGGMM 29.87 19.35 196.82 329.96 0.035 29.01 18.43 183.30 322.44 0.052
acIVAMGGMM 23.87 19.01 193.50 327.04 0.039 21.07 17.95 182.06 323.56 0.063
CIVAMGGMM 25.71 18.19 191.81 324.59 0.056 22.35 14.15 181.21 322.54 0.138
IVAMGGMM 23.58 19.88 190.59 325.89 0.152 20.84 17.77 179.75 317.81 0.168

cIVA 24.23 19.53 192.61 320.67 0.248 23.41 16.92 178.31 316.61 0.157
IVA-G 20.68 17.30 180.84 315.09 0.055 22.02 12.89 171.95 314.28 0.158

IVA 21.54 19.47 189.25 320.24 0.055 20.66 16.93 171.79 315.05 0.168

Table 5.5: Objective measure for separation of 4 and 5 heartbeat signals using acIVABMGGMM
and cIVABMGGMM proposed models.

Model
BSS of 4 heartbeat signals BSS of 5 heartbeat signals
SDR (dB) SIR (dB) SAR (dB) SNR (dB) Joint-ISI SDR (dB) SIR (dB) SAR (dB) SNR (dB) Joint-ISI

acIVABMGGMM 30.21 20.31 182.33 325.53 0.152 20.34 18.24 171.42 318.21 0.231
cIVABMGGMM 28.75 18.52 179.05 320.02 0.157 18.15 16.93 166.83 312.64 0.265
IVABMGGMM 26.38 16.81 176.13 315.92 0.162 15.01 14.33 161.35 295.98 0.345
acIVAMGGMM 24.54 15.03 174.71 312.84 0.174 14.30 13.70 154.24 286.18 0.421
CIVAMGGMM 19.56 15.03 174.68 312.05 0.539 9.76 14.14 146.89 285.15 0.692
IVAMGGMM 17.04 15.57 171.91 304.78 0.454 9.13 12.98 152.51 280.33 0.645

cIVA 19.23 14.22 170.48 302.71 0.732 8.35 10.93 152.21 280.11 0.820
IVA-G 18.73 13.33 165.24 299.60 0.729 5.03 8.08 136.73 272.33 0.922

IVA 17.89 14.86 164.24 304.44 0.739 6.97 10.41 149.86 279.81 0.942

Table 5.4 presents a comparison of the performance of IVA, IVA-G, cIVA, IVAMGGMM,

cIVAMGGMM, acIVAMGGMM, IVABMGGMM, cIVABMGGMM, and acIVABMGGMM us-

ing various performance metrics such as SDR, SIR, SAR, SNR, and Joint-ISI. The results clearly

demonstrate that acIVABMGGMM outperforms the other models in all four measures: SDR (35.32

dB), SIR (25.21 dB), SAR (200.21 dB), and SNR (332.20 dB) for the case of 2 mixtures. Addi-

tionally, the Joint-ISI value (0.031) for acIVABMGGMM is lower compared to the other conducted

models. As the number of mixtures increased, a decline in model performance was observed, es-

pecially for the base models IVA and cIVA as shown in Table 5.5. Also, it clearly shows that the

proposed models perform better than the base model for all performance metrics, indicating their

ability to separate the mixing ECG signals. The ability of acIVABMGGMM to separate mixing

heartbeats is observed, as shown in Fig. 5.7. This demonstrates that the proposed acIVABMG-

GMM algorithm effectively categorizes mixed ECG signals into their respective classes. The top
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row corresponds to a normal heartbeat, while the bottom row represents an abnormal one. In sum-

mary, the experiments demonstrate that acIVABMGGMM performs better than cIVABMGGMM

and other compared models. As the number of linear mixtures in source separation increases, the

rate of improvement decreases. However, a notable enhancement is observable in the effectiveness

of both our cIVABMGGMM and acIVABMGGMM models when compared with the base mod-

els. This enhancement can be ascribed to the integration of prior information within our proposed

models, effectively mitigating the constraints of the base models in these scenarios. To empha-
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Figure 5.7: The estimated heartbeats using acIVABMGGMM, along with their corresponding spec-
trogram. The first row represents the normal estimated heartbeats, and the second row indicates the
abnormal one.

size the superior performance of our proposed models in contrast to the traditional approaches, we

assess their effectiveness using the Joint-ISI metric. As depicted in Fig. 5.8, our proposed models

consistently outperform the basic models, particularly when dealing with more than two mixtures.

Notably, both cIVABMGGMM and acIVABMGGMM exhibit substantial improvements compared

to both the basic models including IVA, IVA-G, and cIVAMGGMM. This measure signifies dimin-

ished interference in the estimated ECG signals when considering our proposed models. In total,

our proposed models demonstrate their effectiveness in separating the normal heartbeat signal from

the abnormal ones accurately. These models illustrate enhanced flexibility in efficiently modeling
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Figure 5.8: The effectiveness of our proposed models in terms of Joint-ISI when compared with
conventional methods.

the data, attributed to their cost function, which is constructed using the full covariance matrix and

incorporates prior information.

5.5.2 Fetal ECG signal separation

The experiment utilized real electrode recordings obtained from the DAISY database [221] as

dicussed in subsection 5.4.2. There is no a priori knowledge of the basis functions utilized during

the source separation process. A linear combination of 2 ECG sources from the dataset was mixed,

and BSS was performed using our proposed models cIVABMGGMM and acIVABMGGMM to

recover the 2 ECG sources. We established the constraint parameters for these models following the

configuration used in the previous heartbeat experiment. The resultant extracted sources underwent

objective and subjective analysis to validate the quality of the recovered ECG signals and assess

the effectiveness of the IVA mixture models within the BSS framework. This entire process was

repeated ten times using distinct linear mixtures of 2 sources from the original dataset, with the
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Table 5.6: Performance of the proposed cIVABMGGMM and acIVABMGGMM in terms of pre-
sented performance metrics.

Models SDR SIR SAR SNR Joint-ISI
acIVABMGGMM 28.96 39.39 284.51 63.67 0.032
cIVABMGGMM 19.41 34.73 280.22 59.51 0.062
IVABMGGMM 16.97 29.19 276.83 56.18 0.092
acIVAMGGMM 15.68 27.41 275.28 49.88 0.160
CIVAMGGMM 15.72 27.51 269.77 48.02 0.320
IVAMGGMM 15.54 25.34 272.98 49.03 0.260

cIVA 13.12 26.26 272.60 45.29 0.480
IVA-G 13.62 12.74 267.23 41.59 0.391

IVA 13.14 10.60 270.59 41.58 0.416

objective metrics averaged across these ten separate experimental runs.

Table 5.6 illustrates the objective measures obtained after recovering ECG source signals. The

acIVABMGGMM model outperforms other models such as cIVABMGGMM, IVABMGGMM, acI-

VAMGGMM, cIVAMGGMM, IVAMGGMM, cIVA, IVA-G, and IVA for the case of 2 mixture

sources. In this experiment, both acIVABMGGMM and cIVABMGGMM show a significant im-

provement compared to other models. The performance metrics SDR (28.96), SIR (39.39), SAR

(284.51), and SNR (63.67) indicate that acIVABMGGMM performs the best. Fig. 5.9 illustrates

the fetal extracted ECG signals from the maternal ECG signals. This figure demonstrates the ability

of acIVABMGGMM to recover fetal and mother ECG signals from the mixed ECG signal, where

the fetal ECG signal has a higher frequency than the mother’s ECG signal. We additionally em-

ployed the Pan-Tompkins algorithm on the estimated FECG for identifying the R-peaks associated

with complex QRS patterns. This approach possesses the capability to successfully identify these

R-peaks within our estimated FECG signals.

To validate the effectiveness of our proposed models, cIVABMGGMM, and acIVABMGGMM,

we used the Joint-ISI metric with the same experimental setup for all tests. Fig. 5.10 demonstrates

that the proposed models outperform the base models for the mixture of two ECG signals. This

finding highlights the limitations of the IVA basic model in this type of separation. The proposed

models exhibit superior capability in recovering the constrained sources in fetal ECG separation
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Figure 5.9: FECG signal estimation employing acIVABMGGMM, coupled with R-peak identifica-
tion.
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Figure 5.10: Joint-ISI for both base and proposed models.

compared to the base models, which performed poorly. This observation emphasizes the valuable

role of prior information as a reference for seeking improved solutions in ECG signal separation.

These experiments show that our models exhibit superior performance compared to commonly
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used models like IVABMGGMM, acIVAMGGMM, cIVAMGGMM, IVAMGGMM, cIVA, IVA-

G, and IVA. The degradation performance of the base models is also noticeable. Among all the

implemented models, the acIVABMGGMM model demonstrated the best performance. This im-

provement can be attributed to the constraints parameters that were incorporated adaptively into the

cost function for this model. Furthermore, this approach considers correlated features by integrating

a full covariance matrix, thus providing the flexibility required for precise extraction of the FECG

signals from the MECG signals.

5.5.3 Arrhythmia detection

The MIT-BIH dataset, which is publicly accessible through PhysioNet [222], is utilized in this

study. This dataset was described in subsection 5.4.3. As shown in Fig. 5.11 each ECG signal

underwent a series of preprocessing steps, including high-pass filtering (0.5 Hz, 5th-order Butter-

worth), low-pass filtering (40 Hz, 5th-order Butterworth), subsequent normalization (subtracting the

mean and dividing by the standard deviation), and, a sign-change to ensure uniform positive peaks

for heartbeats.
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Figure 5.11: ECG data processing steps: The first row represents the original ECG signals. The
second row indicates the filtered ECG signal (BPF). The third and fourth rows illustrate its derivative
(DES) and moving window-integrated version (MOV).
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We employ the cIVA and acIVA techniques, utilizing the IVABMGGMM approach, on the pre-

processed MIT-BIH ECG data. The constraint parameters for these models were established based

on the configuration employed in the previous experiments. To ensure robustness, we initiated the

model’s parameters randomly and conducted five separate runs with different initializations. The

best run was determined using the Joint-ISI metric. To validate the quality of separation, we com-

pared the estimated signal with the reference signal using the Joint-ISI metric, SDR, SIR, SAR, and

SDR. The demixing matrices from the chosen run are used to compute the estimated ECG sources.

Tables 5.7 and 5.8 present a comparison of the performance between our proposed models and the

Table 5.7: SDR and SIR separation measurements for cIVABMGGMM and acIVABMGGMM
across source combinations spanning from 2 to 48.

Model
SDR SIR
# subject combinations # subject combinations

2 6 12 24 48 2 6 12 24 48
acIVABMGGMM 41.30 14.45 11.39 8.20 6.63 46.72 33.54 23.25 13.19 9.53
cIVABMGGMM 29.84 9.91 8.65 6.26 5.21 34.32 23.41 12.43 7.89 6.63
IVABMGGMM 28.15 8.27 6.89 5.00 3.94 22.72 10.10 8.10 5.38 4.21
acIVAMGGMM 17.90 7.94 6.98 4.98 3.67 22.61 8.91 6.97 4.68 3.79
cIVAMGGMM 16.32 7.85 5.73 4.61 3.70 20.53 8.51 5.05 4.41 3.06
IVAMGGMM 17.87 7.66 6.53 4.25 3.56 19.42 8.23 6.61 4.57 3.82

cIVA 17.70 7.46 5.49 4.33 3.42 19.02 7.98 6.64 4.12 3.75
IVA-G 15.39 5.61 4.74 4.53 3.26 14.74 6.23 5.28 4.49 3.11

IVA 16.36 7.51 5.15 4.84 3.54 17.32 7.23 6.09 4.31 3.42

Table 5.8: The effectiveness of cIVABMGGMM and acIVABMGGMM across source combinations
from 2 to 48 evaluated through SAR and SNR separation criteria.

Model
SAR SNR
# subject combinations # subject combinations

2 6 12 24 48 2 6 12 24 48
acIVABMGGMM 282.23 210.22 133.32 92.72 62.82 42.03 35.59 32.85 22.22 11.73
cIVABMGGMM 277.97 195.85 125.80 82.32 54.10 39.90 25.48 22.77 12.06 9.32
IVABMGGMM 271.92 187.78 112.30 77.72 44.36 31.37 15.79 13.19 8.03 6.33
acIVAMGGMM 267.81 186.99 95.94 74.65 41.53 21.78 15.58 13.08 7.02 5.95
cIVAMGGMM 263.31 183.09 93.43 72.56 39.04 21.08 13.18 12.38 7.42 4.85
IVAMGGMM 264.80 173.69 92.81 63.11 39.64 21.18 15.58 13.59 7.39 5.89

cIVA 261.98 164.41 82.58 53.65 36.85 19.88 15.61 13.53 7.06 5.74
IVA-G 256.16 153.13 81.75 42.20 32.83 16.21 12.06 10.26 8.94 4.10

IVA 262.50 154.46 82.92 52.58 36.43 19.15 15.05 13.16 7.22 5.53

base models. Our proposed models demonstrate a better enhancement in performance for combi-

nations spanning from 2 to 6 combinations of subjects. When applied to a high number of ECG
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sources, we observe a noticeable decline in the performance of IVA, IVA-G cIVA, and cIVAMG-

GMM. As the number of subjects increases, particularly in combinations between 12 and 48, we

notice a significant improvement in the performance of our cIVABMGGMM and acIVABMGGMM

models compared to the base models. This improvement can be attributed to the utilization of prior

information incorporated in our proposed models, which addresses the limitations of base models

in scenarios with a high number of subjects. Fig. 5.12 presents a comparison of the performance of

0 10 20 30 40 50
Number of subjects

0.20

0.25

0.30

0.35

0.40

0.45

Jo
in
t-
IS
I

IVA
IVA-G
cIVA
IVAMGGMM
cIVAMGGMM
IVABMGGMM
cIVABMGGMM
acIVABMGGMM

Figure 5.12: The joint-ISI for the four proposed models; cIVABMGGMM, acIVABMGGMM, and
other compared models in terms of the number of subjects.

our models in terms of Joint-ISI. It is evident that the effectiveness of basic IVA improves with an

increase in the number of subjects, but only up to a specific threshold for varying source numbers.

This particular range can be considered the optimal zone where IVA reliably estimates the under-

lying parameters. Within this interval, the use of cIVABMGGMM and acIVABMGGMM does not

yield a significant performance boost compared to IVA. This implies that the performance achieved

by IVA within this range represents the highest attainable. However, it demonstrates that the base

models show reduced effectiveness when dealing with a high number of ECG sources, whereas our
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Figure 5.13: ECG signal estimate using acIVABMGGMM, along with the detection of R-peaks.

models display enhanced performance. Notably, acIVABMGGMM is the best-performing model

compared to other implemented models. This model can effectively separate the sources of arrhyth-

mias and healthy individuals. This outcome can be attributed to the competence of our models in

precisely estimating the underlying sources by utilizing constraint parameters and prior information.

Fig. 5.13 demonstrates that our proposed model acIVABMGGMM can accurately extract the

arrhythmia ECG signals. The Pan-Topkins algorithm is utilized to identify the R-peaks of the QRS

complex in the estimated ECG signal. The effectiveness of the Pan-Topkins model in detecting the

R-peaks values of the QRS complex is demonstrated. These R-peaks are marked as orange crosses.
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Figure 5.14: Our proposed model performance in terms of Joint-ISI and spatial correlation. The
left graph illustrates the model’s performance based on Joint-ISI, while the right graph assesses its
effectiveness in terms of spatial correlation.
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Figs. 5.14 highlight the enhanced separation performance of our models compared to traditional

methods. In terms of Joint-ISI (depicted in the left graph), the proposed IVA models (cIVABMG-

GMM and acIVABMGGMM) exhibit slightly better performance than traditional methods in the

case of lower mixtures, ranging from 2 to 12. The substantial improvement becomes evident when

dealing with a higher number of mixtures, such as 24 and 48, where our models outperform tra-

ditional methods in terms of Joint-ISI metrics, indicating lower interference in the estimated ECG

signals. Similar trends are observed in the spatial correlation analysis as in the Joint-ISI assessment.

For lower numbers of mixtures, the spatial correlation for our proposed models is slightly better

than the base models. However, as the number of mixtures increases, the performance of tradi-

tional IVA methods deteriorates. Notably, we observe significant performance enhancements in our

models, starting at 24 mixtures when compared to the base models. Furthermore, the performance

of cIVABMGGMM is slightly inferior to that of acIVABMGGMM, depending on the constraint

parameters employed. Based on the findings presented in this figure, it is evident that our models

exhibit superior capability in recovering the constrained sources in a high number of mixtures com-

pared to the traditional models, which performed poorly. This can be attributed to the capability of

our models to accurately estimate the underlying sources by leveraging constraint parameters and

prior information.

5.6 Conclusion

In this Chapter, we introduced the cICABMGGMM for the purpose of source separation. This

model effectively separated the sources by utilizing the full covariance matrix. However, its perfor-

mance relies heavily on the choice of constraint parameters, as demonstrated in our experiments.

To address these limitations, we presented acICABMGGMM, designed to relax the independence

assumption inherent in ICA and leverage the full covariance matrix to identify correlated features

in the data. Furthermore, we introduced the cIVABMGGMM for the purpose of source separation.

This model effectively separated the sources by utilizing the full covariance matrix. However, its

performance relies heavily on the choice of constraint parameters, as demonstrated in our exper-

iments. To address these limitations, we presented the acIVABMGGMM, designed to relax the
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limitations inherent in IVA and leverage the full covariance matrix to identify correlated features in

the data. In this model, constraint parameters adaptively control the relationship between reference

signals and estimated ones. We additionally presented the integration of our proposed models with

the Pan-Tompkins algorithm, aimed at identifying the R-peaks within the estimated ECG signals.

We validated our models using heartbeat separation, fetal ECG extraction, and arrhythmia detection.

The conducted experiment demonstrated the ability of our proposed models to accurately estimate

the ECG signal.
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Chapter 6

Identifying the common subspaces

regions using independent component

analysis and graph-theoretical analysis

Blind source separation presents a promising approach for early detection of mental disorders.

However, traditional BSS techniques struggle with computational efficiency when processing high-

dimensional data, thereby limiting the number of datasets that can be effectively analyzed. This

Chapter proposes ICAMGGMM-CS, an advanced common subspace independent component anal-

ysis model built on the multivariate generalized Gaussian mixture distribution. Leveraging this dis-

tribution enables the model to capture intricate relationships between source signals and estimated

components, facilitating the identification of shared component patterns. This approach enhances

diagnostic accuracy and scalability, making the model more effective across varied applications. To

enhance the resilience and accuracy of source separation, this model integrates a bounded indicator

function, establishing the ICABMGGMM-CS framework. This approach combines the adaptability

of data-driven methods with the robustness of model-based techniques to effectively manage noise

and artifacts. Furthermore, we integrate a multivariate graph-theoretical framework with our pro-

posed models, enabling the summarization of components into meaningful features. Our results

highlight the model’s capability to consistently identify frequent patterns in resting-state functional
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magnetic resonance imaging data, accurately localizing affected brain regions. These findings un-

derscore the model’s potential as a powerful tool for early mental disorder detection and improved

diagnosis.

6.1 Introduction

Identifying components as common or distinct across the datasets allows for a more compre-

hensive and realistic representation of the underlying relationships among them [227, 228]. Several

fusion methods based on ICA have specifically addressed this aspect, either utilizing only the com-

mon components or incorporating both distinct and common components to describe the underlying

relationships across multiple datasets. An example of such a method is joint ICA (jICA), which was

presented by Calhoun et al. [229]. This approach has been applied in the fusion of various medical

imaging modalities, including EEG and fMRI [230, 231], as well as in the integration of fMRI,

structural MRI (sMRI), and EEG [232]. Furthermore, it has been employed in the fusion of fMRI

data from multiple tasks [233], among other applications. The jICA approach interprets all esti-

mated components as common and aligned across datasets, assuming a globally common mixing

matrix between datasets.

Another approach, known as MCCA-jICA [234, 235], expands on canonical correlation analysis

(CCA) for multiple datasets by incorporating a prior step known as multiset canonical correlation

analysis (MCCA). MCCA aims to maximize the linear correlation between datasets before the jICA

step. For the subsequent jICA stage, MCCA-jICA provides a better model match by aligning com-

ponents that are more likely to be common across datasets. MCCA-jICA has demonstrated success

in fusing fMRI, diffusion tensor imaging, and sMRI [236], as well as in the fusion of fMRI, EEG,

and sMRI data [237], and the fusion of MRI data [238]. Conversely, both jICA and MCCA-jICA

operate under the fundamental assumption that the majority of underlying sources in the decompo-

sitions are common across all datasets. Consequently, these methods perform poorly when certain

components are not common to all datasets. To that end, a flexible method is required to consider

these challenges.

In this work, we introduce the ICA multivariate generalized Gaussian mixture for common
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subspace (ICAMGGMM-CS) model, designed to effectively capture and recover the correlation

structure of latent variables across a large number of datasets. Unlike traditional approaches,

ICAMGGMM-CS explicitly accounts for inter-dataset correlations, providing robust identifica-

tion guarantees that ensure accurate estimation of these correlations. Leveraging the strengths

of ICAMGGMM-CS as a framework for subgroup identification, this model excels at identifying

common components that reveal the underlying structure of the datasets. Specifically, to identify

this optimal number for a single ICA decomposition, the model order is fixed, and the number of

datasets (subjects) is explored. The data is then divided into subsets of subjects, and ICAMGGMM-

CS is performed on each subset to identify a common subspace. This forms the first stage of

ICAMGGMM-CS, known as subset analysis. The common components from each subset are fur-

ther compared to identify consistent components across all subjects and within subgroups, which

constitutes the second stage of ICAMGGMM-CS: common subspace identification.

To overcome the limitations of unbounded BSS methods, particularly in estimating data shapes

constrained within bounded support regions, we also propose a bounded version of the model:

ICABMGGMM-CS. This algorithm addresses critical challenges associated with ICA, particu-

larly in terms of computational complexity and performance within common subspace separa-

tion. ICABMGGMM-CS allows for the precise identification of common subgroups based on in-

dividual components, enabling a deeper analysis of each component’s contribution to define the

subgroups, thereby improving interpretability. After identifying common components within the

covariance matrices, the model separates these common elements from the non-common ones.

The ICABMGGMM-CS algorithm then independently processes the common and non-common

subspaces, enhancing the accuracy of common subspace estimation while significantly reducing

data dimensionality at the ICA stage. Furthermore, the ICABMGGMM-CS framework retains the

strengths of data-driven methods, particularly their ability to handle noise and artifacts typically en-

countered in model-based approaches, and it efficiently leverages inter-dataset dependencies to en-

hance source separation performance. By incorporating second-order correlations within bounded

components, this method enhances flexibility in extracting meaningful insights, providing a robust

tool for identifying and analyzing complex patterns within the data.

Finally, graph theory has been applied to brain networks to examine topographical differences
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between healthy individuals and patients, using features such as clustering and centrality. These

features rely on similarity measures between components to assess overall efficiency and the im-

portance of components in facilitating information transfer within functional brain networks. Since

these features are calculated for each subject, variability in graph theory (GT) features reflects the

variability captured in individual subject results. To this end, we integrate a multivariate GT frame-

work into our proposed models that summarizes components into features, allowing for effective

comparison of the performance of JBSS methods in capturing subject variability for group analysis

of real fMRI data.

The rest of this Chapter is organized as: Section 7.3 provides the mathematical foundation and

details of the proposed method. In Section 7.5, we validate our model through different experiments.

Section 7.6 summarizes our findings and concludes Chapter.

6.2 Background

6.2.1 Independent component analysis for the bounded multivariate generalized Gaus-

sian mixture model

The complete discussion for the ICABMGGMM is given in Chapter 2.

6.3 Proposed model: ICABMGGMM with the common subspaces

framework

We assume that the source space underlying the observed data consists of three sets of source

components. We express the ICA function as:

x = Ajsj

= AjCsjC +AjGsjG +AjDsjD

=

[︃
AjC AjG sjD

]︃⎡⎢⎢⎢⎢⎣
sjC

sjG

sjD

⎤⎥⎥⎥⎥⎦
(6.1)
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where AjC , AjG , and AjC denote the respective mixing matrices for common sources, group-

specific sources, and distinct sources. To develop the (ICABMGGMM-CS), we adopt Equation (2.4)

in Equation (6.1). This advanced method comprises two main steps: subset analysis and common

subspace identification. To address the challenge of high dimensionality, the subset analysis step

involves performing multiple independent ICABMGGMM decompositions on randomly selected

subsets of subjects from the overall population. During the common subspace identification step,

both group-specific and distinct source components are identified, along with a common subspace

that remains consistent across the entire population. These steps are illustrated in Fig. 6.1. Further

details on the ICABMGGMM-CS method are provided in the following subsections.

6.3.1 ICABMGGMM-CS: subset analysis

The general schematic illustrating the ICABMGGMM-CS process is shown in Fig. 6.1. During

the subset analysis phase, groups of M subjects are randomly sampled from the entire population,

and a M ×M correlation matrix is computed for each source component, yielding M(M − 1)/2

unique correlation values. These values are used to evaluate the similarity of components, allowing

us to identify whether a source component is common across the M datasets. For source compo-

nents representing a common component, we anticipate consistently high correlation values. The

degree of ”commonality” for an source component is quantified by the ratio of correlation values

exceeding an empirically determined threshold, γ, to the total number of correlation values for that

source component.

Q =
Nγ

M(M − 1)/2
(6.2)

whereNγ denotes the number of correlation values in the source component’s correlation matrix that

exceed the threshold γ. An source component corresponding to a common component is expected to

exhibit high commonality, withQ values approaching 1. Within each subset, source components are

sorted in descending order based on their mean correlation values, ensuring that source components

with high source correlations are prioritized at the top, while those with lower correlations are

positioned at the bottom.
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Figure 6.1: ICABMGGMM-CS framework. The first step is to apply the ICABMGGMM on the
multi-subjects data. Then, the identification for the common subgroups is conducted.

6.3.2 ICABMGGMM-CS: common subspace identification

The second phase aims to identify a consistent common subspace, denoted as YC , shared by all

subjects within a group. To enable consistent comparison across S subsets, we normalize the num-

ber of components in each subspace Ysl to a common value, C, across all subsets. These C source

components are then considered as potential candidates for constructing the common subspace,

where the specific value of C is set as the maximum among the Cs values to ensure the inclusion

of the highest number of candidates. For each subset s, the M components are averaged to obtain

a mean component ycs. The cross-correlation for each mean component is subsequently calculated

by taking the average correlation between that component and its corresponding components across

the remaining S − 1 subsets.

pcs =
1

S − 1

∑︂
l ̸=s

|pcsl| (6.3)
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The Pearson correlation coefficient between the mean components ycs and ycl is represented as

pcsl, where 1 ≤ l ≤ S and l ̸= s. The cross-correlation of each subset is obtained by averaging the

correlations of its C mean components.

ps =
1

C

∑︂
c

pcs (6.4)

Subset s0, which exhibits the highest cross-correlation ps and thus the most consistent components,

is selected to define the common subspace across all subjects. The complete learning procedure for

the ICABMGGMM-CS model is detailed in Algorithm 6.

Algorithm 6 The common subspace ICABMGGMM algorithm
1: Input: Dataset X
2: Apply K-means clustering to initialize the means and covariances for each component.
3: Set initial value of βj = 0.5 for each component.
4: Randomly initialize de-mixing matrix W
5: Repeat until convergence:
6: for n=1, . . . , N do
7: Compute: yn=Wxn

8: Expectation Maximization: Repeat until the change in likelihood > threshold
9: E-step: Compute posterior probabilities using Equation (2.8)

10: M-step:
11: Update the mixing parameter pj using Equation (2.10)
12: Update mean µj using Equation (2.14)
13: Update covariance Σj using Equation (2.17)
14: Update shape parameter βj using Equations (2.18), (2.19)
15: Update the basis functions Aj using Equation (2.36)
16: Update the bias vector bj using Equation (2.38)
17: Compute: yn=Wxn

18: if Q > γ then
19: Assign yn to the common subspace
20: else
21: Assign yn to a distinct subspace
22: end if
23: end for
24: Return: The model parameters µ̂j , β̂j , Σ̂j , and common components YC

6.4 Results and discussion

In this work, we apply our proposed models into two distinct neuroscience applications. Firstly,

we utilize the COBRE Schizophrenia dataset to assess the effectiveness of our model in identifying
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Figure 6.2: The general block diagram for the ICA common subspaces approaches.

brain regions impacted by Schizophrenia compared to healthy controls. Then, to evaluate the gen-

eralizability of our model, we further test it on the ADNI dataset, distinguishing between healthy

subjects and those with Alzheimer’s disease.

6.4.1 Schizophrenia detection using the common subspaces ICABMGGMM

Data acquisition and preprocessing

The dataset utilized in this study is the COBRE dataset, which is comprehensively detailed in

Subsection 4.5.4. The corresponding data processing steps are thoroughly outlined in Subsection

2.6.4.

Evaluation analysis for the common subspace ICABMGGMM

Following the preprocessing stage, the brain was parcellated into 116 regions using the AAL

atlas. Then, we applied our models to extract components, time courses, and connectivity matrices
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from the data. The average intensity time series for each ROI was then computed and subjected to a

band-pass filter with a frequency range of 0.01 Hz to 0.08 Hz. The resulting connectivity matrices

were used to identify components influenced by Schizophrenia. These steps for our processing

pipeline are illustrated in Fig. 6.2.

After the parcellation step, we apply our proposed ICAMGGMM-CS and ICABMGGMM-CS

methods to different subgroups of the large-scale resting-state fMRI dataset. To initialize the model

parameters, including the means (µj), covariances (Σj), and shape parameters (βj), we first employ

a K-means clustering approach. Subsequently, the EM algorithm is utilized to compute the posterior

probabilities of the common subspace and iteratively update the model parameters. This process is

repeated until convergence, at which point the resulting demixing matrix is used to differentiate

Schizophrenia patients from healthy controls. The time courses extracted from the ICA common

subspace are then used to generate connectivity matrices, allowing us to identify homogeneous

subgroups of brain regions affected by Schizophrenia.
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Figure 6.3: The proposed ICABMGGMM-CS and comparing models performance based on the
Joint-ISI measure.
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To assess the effectiveness of the proposed methods, we utilize BSS performance metrics, in-

cluding Joint-ISI and spatial correlation, as shown in Figs. 6.3 and 6.4, respectively. In terms of

Joint-ISI, our proposed ICAMGGMM-CS and ICABMGGMM-CS frameworks consistently out-

perform other BSS methods. Joint-ISI evaluates the quality of the separated components for both

Schizophrenic and healthy subjects, with lower values indicating reduced interference between the

separated components.

The significant improvement of our proposed methods is particularly evident in complex sce-

narios, such as when separating data from more than 80 subjects, where they exhibit lower Joint-ISI

values compared to existing BSS approaches, as illustrated in Fig. 6.3. Similarly, in terms of spa-
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Figure 6.4: The performance of proposed ICABMGGMM-CS and comparing models based on
Spatial correlation.

tial correlation, our proposed methods demonstrate superior performance across all evaluated cases,

maintaining higher accuracy in capturing spatial patterns. This improvement is especially pro-

nounced in high-dimensional situations, such as when analyzing data from more than 80 subjects,

where our models exhibit significant advantages over the compared approaches.

175



Functional network identification for Schizophrenia individuals

To evaluate the robustness of our proposed algorithms, we identify brain regions affected by

Schizophrenia using the most discriminative ICA components with high correlation coefficients.

Specifically, we select the top 100 ICA components, characterized as intrinsic connectivity net-

works, and divide each class into seven random subgroups of 70 subjects. For each subgroup, there

are 70 × (70−1)
2 = 2415 unique correlation values. The extracted components are then ranked by

their mean correlation values, from highest to lowest. A two-sample t-test is used to produce the

discriminative connection maps, which statistically validated the differences between healthy con-

trols and those with Schizophrenia. The FDR technique is used for multiple comparisons, with

a corrected significance level of p < 0.05 (minimum z > 3.2, cluster significance: p < 0.05).

Table 6.1 presents a comprehensive summary of brain networks, detailing ICA components and

their corresponding coordinates. Each network is associated with specific brain regions that align

with their recognized functional roles. These networks include the Default Mode network, Basal

Ganglia network, Auditory network, Sensorimotor network, and Working Memory network. The

DMN spans multiple brain regions, reflecting its broad involvement in various cognitive processes,

while networks such as the SMN and WMN demonstrate more localized coordinates, emphasizing

their specialized functions. Figs. 6.5 and 6.6 illustrate the results of the ICABMGGMM-CS com-

ponent group comparison for Schizophrenia patients, highlighting the distinct network activation

patterns observed in these Schizophrenic patients. As illustrated in Fig. 6.5, the ICABMGGMM-

CS approach reveals significant brain network structures displayed in the right column in compar-

ison to the ICAMGGMM-CS components shown in the left column. This difference highlights

the effectiveness of the ICABMGGMM-CS method in separating the components associated with

Schizophrenia. Compared to the healthy control group, the Schizophrenia group exhibit increased

connectivity across interesting common networks. Notably, regions such as the thalamus, superior

frontal gyrus, inferior parietal gyrus, insula, superior temporal gyrus, caudate, and postcentral gyrus

show stronger functional connectivity within a common subspace. These regions are particularly

relevant to the most discriminative ICA components within networks such as the DMN, BGN, AN,
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Figure 6.5: The spatial maps of the common subspace ICA components for Schizophrenic patients.
The ICAMGGMM-CS components are displayed in the left column, while the ICABMGGMM-CS
components are illustrated in the right column.

SMN, and WMN. Previous studies [196, 190] have also implicated abnormalities in these brain re-

gions as contributors to the pathophysiology of Schizophrenia. Our findings align with these studies,

reinforcing the role of disrupted connectivity in these areas in the manifestation of Schizophrenia.

Our findings also indicate that the precuneus, supplementary motor region, superior parietal gyrus,

and middle temporal gyrus may be impacted in the early stages of Schizophrenia. Numerous inves-

tigations have found significant abnormalities in these brain regions in subjects with Schizophrenia
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Figure 6.6: The connectogram map of the common subspace ICA components for Schizophrenic
patients.

[191, 190, 239, 240].

The two-sample t-test conducted on the functional network connectivity validation reveals that

the differences in clustering between healthy controls (HC) and Schizophrenic (SZ) components

were statistically significant, confirming the robustness of our proposed BSS framework in improv-

ing clustering performance. We conduct a comprehensive graphical analysis using graph-theoretic

features such as clustering coefficient, local efficiency, centrality, and small-worldness to assess

structural differences. Fig. 6.7 highlights major distinctions in graph elements between SZ and HC

subjects. In brain networks, SZ individuals consistently show lower clustering coefficients com-

pared to HC subjects across a threshold range of 0.1 to 0.4. This trend extends to other graph met-

rics, underscoring significant network alterations associated with SZ. These findings underscore the

effectiveness of ICABMGGMM-CS in emphasizing meaningful distinctions, making it a promising

method for classification analysis. Its capacity to detect changes in graph-theoretical characteristics

further strengthens its potential in distinguishing between HC and SZ components, offering valuable
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Table 6.1: ICA components and their coordinates for different brain networks.

Brain Network ICs Brain Regions Abbreviation Hemisphere Coordinates Peak Coordinates

Basal Ganglia network

4 Thalamus THA L -9, -6, 13 12, -10, 16
R 8, -6, 12

11 Caudate CAU R 6, 14, 2 0, 8, 0
15 Thalamus THA R 6, -27, 3 -4, -30, 4
16 Thalamus THA L -5, -9, 13 -18, -36, 12

R 10, -7, 13
36 Caudate CAU R 10, 2, 18 6, -4, 18

L -8, 2, 16
92 Caudate CAU L -14, 16, 5 -6, 0, 6
93 Thalamus THA R 7, -7, 16 -6, 0, 16

Sensorimotor network

6 Postcentral gyrus PoCG L -30, -30, 64 -30, -30, 68
8 Inferior parietal gyrus excluding supramarginal and angular gyri IPG R 42, -50, 56 42, -50, 56

Superior parietal gyrus SPG R 40, -56, 56
17 Postcentral gyrus PoCG R 26, -35, 74 26, -48, 72

L -27, -35, 72
37 Postcentral gyrus PoCG R 37, -36, 54 42, -36, 60

Inferior parietal gyrus, excluding supramarginal and angular gyri IPG L -46, -36, 50
43 Superior parietal gyrus SPG L -22, -48, 72 -22, -48, 72

Postcentral gyrus PoCG L -31, -36, 72
R 24, -38, 72

50 Precuneus PCUN R 6, -44, 68 6, -44, 68
L -9, -46, 68

Default mode network

9 Supplementary motor area SMA L 0, -6, 66 0, -6, 66
R 7, -8, 67

Superior frontal gyrus dorsolateral SFG L -20, -6, 67
Precentral gyrus PreCG L -22, -11, 67

13 Superior frontal gyrus medial SFGmedial L 0, 48, 30 0, 48, 30
Anterior cingulate & paracingulate gyri ACC R 0, 52, 14

19 Supplementary motor area SMA L -12, 4, 72 -12, 4, 72
28 Superior frontal gyrus, dorsolateral SFG R 24, 40, 54 22, 32, 54
76 Superior frontal gyrus, medial SFGmedial R 12, 40, 54 12, 40, 54

Superior frontal gyrus, dorsolateral SFG L -14, 37, 54

Auditory network

21 Middle temporal gyrus MTG R 56, -44, 6 56, -44, 6
Superior temporal gyrus STG R 67, -44, 24

100 Temporal pole: superior temporal gyrus TPOsup L -42, 12, -18 -42, 12, -18
R 43, 15, -18

Working memory network
42 Superior parietal gyrus SPG L -26, -64, 60 -26, -64, 60
96 Insula INS L -54, -72, 24 -54, -72, 24

Temporal pole: superior temporal gyrus TPOsup L -47, 8, 12
84 Postcentral gyrus PoCG R 44, -38, 60 44, -38, 60

insights into the neurobiological underpinnings of Schizophrenia.

Our findings demonstrate that the ICABMGGMM-CS approach identifies a greater number

of significant components in global nodal graph metrics, particularly in characteristic path length

(PL) and betweenness centrality. This higher consistency in significant findings indicates that

ICABMGGMM-CS offers enhanced sensitivity in capturing network properties that differentiate

patient groups from control ones. Fig. 6.8 provides a visual representation of the number of signifi-

cant components identified across a range of link densities for both PL and betweenness centrality.

As seen in the left panel (PL), ICABMGGMM-CS consistently identifies more significant nodes as

link density increases, surpassing other models, including ICA and GICA. This pattern is also evi-

dent in the right panel (betweenness centrality), where ICABMGGMM-CS maintains a high number

of significant nodes even as link density varies. The stability of these findings across multiple link

densities underscores the robustness of ICABMGGMM-CS in identifying meaningful differences
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Figure 6.7: The graph analysis for the separated ICABMGGMM-CS components.
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Figure 6.8: Graph analysis for the ICABMGGMM approach conducted on COBRE data using path
length and betweenness centrality.

To quantify the effectiveness of each model in identifying relevant brain regions, we use the
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two-sample t-test to ROC curves and AUC for each network component. The ROC curves allow

us to examine the trade-off between detection power and false alarm probability at various thresh-

olds. For each ROC curve, seven subgroups are randomly chosen from patient components, and the

average z-maps are calculated for each group. We then apply a mask to these averaged z-maps at

varying z-value thresholds, constructing ROC curves based on the response of active voxels within

each threshold range. It is observed that some ICA components, like the major motor component,

exhibited higher voxel intensities at lower z-value thresholds, suggesting that even small thresholds

yield significant voxel activity. This finding highlights that the location and density of active voxels

may play a more crucial role in ROC analysis than merely focusing on high voxel values alone.

Our findings, as shown in Fig. 6.9 reveal that the ICABMGGMM-CS model consistently pro-

duced components with superior alignment to the specified anatomical regions described by the

AAL atlas, as demonstrated by higher AUC values. Moreover, statistical analysis confirmed that

the AUC differences between ICABMGGMM-CS and other models are significant, underscoring

the robustness and reliability of ICABMGGMM-CS in capturing meaningful brain network activity.

This analysis indicates that ICABMGGMM-CS outperforms other methods in accurately identify-

ing brain regions across multiple network components, making it a promising tool for applications

that require precise region-specific analysis, such as in mental health diagnostics and brain function

studies.

6.4.2 Alzheimer diagnosis using the common subspaces ICABMGGMM

Dataset and preprocessing

This study employs the ADNI dataset, with a detailed description provided in subsection 4.5.2.

The data preprocessing steps are outlined in subsection 4.5.2.

Evaluation analysis for the common subspace ICABMGGMM

To assess the generalizability of our proposed approaches, we apply them to Alzheimer’s di-

agnosis tasks using data from ADNI, which comprises 120 participants, including individuals with

AD and HC. As illustrated in Figs. 6.10 and 6.11, our methods consistently outperform the baseline
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Figure 6.9: ROC curves for ICABMGGMM-CS and compared models based on the resultant from
two-sample t-test.

BSS models across various combinations of subjects. The proposed BSS frameworks demonstrate

superior performance, particularly in terms of Joint-ISI and spatial correlation metrics. Notably, this

improvement is more pronounced when dealing with larger-scale data, involving over 80 subjects.

This highlights the limitations of traditional models with simpler distribution assumptions, whereas

our approaches offer enhanced flexibility in handling the complex structures inherent in the data.

Functional network identification for Alzheimer individuals

To evaluate the robustness of our proposed models, we identify brain regions affected by Alzheimer

using the most discriminative ICA components with high correlation coefficients. Specifically, we

select the top 100 ICA components, and divide each class into six random subgroups of 60 subjects.
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Figure 6.10: Joint ISI metric for proposed and compared models.

For each subgroup, there are 60 × (60−1)
2 = 1770 unique correlation values. The extracted com-

ponents are ranked by their mean correlation values, from highest to lowest. A two-sample t-test

conduct on functional network connectivity validation reveals statistically significant differences

in clustering between HC and AD components, underscoring the robustness of our proposed BSS

framework for enhanced clustering performance. Figs. 6.12 and 6.13 illustrate the most discrim-

inative ICA components along with their corresponding brain networks. These networks include

the Visual network, Frontal network, SMN, ADN, BGN, and Cerebellum. The ICABMGGMM-CS

components effectively highlight brain regions impacted by Alzheimer’s disease, providing insight

into the neural underpinnings of the condition. The most discriminative ICA components identified

are IC6, IC27, IC14, IC18, IC58, and IC91. Our findings indicate disruptions in the middle occipital

gyrus, superior frontal gyrus (dorsolateral), and superior frontal gyrus (medial). These results align

with previous research, which has consistently reported significant reductions in grey and white

matter volume within the superior frontal gyrus in Alzheimer’s disease patients [241, 242, 243].
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Figure 6.11: Spatial correlation measure for proposed and compared models.

Previous studies have identified abnormalities in the inferior frontal gyrus, superior parietal gyrus,

and precuneus in AD [244, 242, 245]; however, the involvement of these regions in early-stage AD

remains unclear. Our findings reveal significant differences in these areas between AD patients and

healthy controls, supporting their potential relevance in AD pathology. Additionally, we observed

significant distinctions in other brain regions between AD and HC subjects, including the middle oc-

cipital gyrus [242, 246], postcentral gyrus [243, 242], calcarine cortex [246, 243], and left thalamus

[247, 241]. These regions are shown in detail in Table 6.2.

Following the two-sample t-test conducted on the retrieved ICA common components, we per-

form a comprehensive graphical analysis, including clustering coefficient, local efficiency, central-

ity, and small-worldness, to assess structural differences. Fig. 6.14 presents the primary distinctions

in graph features between AD and HC participants. Notably, the local efficiency for AD partici-

pants is consistently lower than that of HC subjects across a threshold range of 0.1 to 0.4 in brain

networks. This pattern is similarly reflected across the other graph metrics, indicating pronounced

network alterations associated with AD.
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Table 6.2: Brain network components and associated anatomical regions.

Brain Network IC Component Anatomical Regions Abbreviation Hemisphere Coordinates (X, Y, Z)
Visual network 6 Middle occipital gyrus MOG R 30, -86, 6

Frontal network
27

Superior frontal gyrus, dorsolateral SFG L -12, 58, 38
Superior frontal gyrus, medial SFGmedial R 9, 61, 38
Superior frontal gyrus, medial SFGmedial L -6, 61, 38

Sensorimotor network 14
Superior parietal gyrus SPG L -24, -46, 66
Postcentral gyrus PoCG L -32, -41, 66
Precuneus PCUN R 9, -55, 66

Auditory network 18
Inferior frontal gyrus, opercular part IFGoperc R 50, 18, 30
Middle occipital gyrus MOG R 47, -67, 30

Basal Ganglia network 58 Thalamus THA L -8, -14, 20
Cerebellum network 91 Calcarine CAL R 8, -70, 12

Figure 6.12: The spatial maps of the common subspace ICA components for Alzheimer patients.

Fig. 6.15 demonstrates the performance of the ICABMGGMM-CS model in identifying signif-

icant differences between HC and AD patients through the analysis of graph metrics. The results

indicate a statistically significant distinction at each tested edge density level, with all FDR-adjusted

p-values for the ICABMGGMM-CS model falling below 0.05. The left panel of Fig. 6.15, which

shows the significance of nodes based on characteristic path length, highlights that ICABMGGMM-

CS consistently identifies a greater number of significant nodes compared to other models, partic-

ularly as link density increases. This indicates that ICABMGGMM-CS is more effective at captur-

ing variations in network connectivity that may be associated with cognitive decline in AD. Sim-

ilarly, the right panel, which examines betweenness centrality, indicates that ICABMGGMM-CS

achieves higher node significance across link densities, further supporting its capacity to detect cen-

tral nodes that could signify important information flow disruptions in AD. These findings position

ICABMGGMM-CS as a highly effective tool for classification analysis in clinical research.

To assess the robustness of our proposed models, we conduct a comprehensive ROC curve anal-

ysis, as shown in Fig. 6.16, using data from four major brain networks: the BGN, SMN, DMN, and
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Figure 6.13: Brain regions localization. The blue color represents the affected regions due to
Alzheimer whereas the green color indicates the normal regions.

AN. The results highlight that our ICABMGGMM-CS model consistently achieves higher detec-

tion power across all examined networks. Specifically, the AUC values for the ICABMGGMM-CS

model are significantly greater than those of the other models, indicating an enhanced ability to cap-

ture meaningful differences within these brain networks. This increased detection power shows that

ICABMGGMM-CS is particularly effective at identifying minor variations in functional connec-

tivity patterns, which are often essential for diagnosing and understanding brain-related disorders.

This robustness makes the ICABMGGMM-CS model a valuable tool for large-scale neuroimaging

studies.

6.5 Conclusion

In this Chapter, we presented the common subspaces ICAMGGMM model, designed to capture

shared components within resting-state data. Building on this approach, we further introduced the

186



0.10 0.15 0.20 0.25 0.30 0.35 0.40
���	�����

1

2

3

4

5

6

��
��
��
��
��
	�
�

HC
AD

0.10 0.15 0.20 0.25 0.30 0.35 0.40
���	�����

0

1

2

3

4

5

6

7

8

��
��
��	



�
	�
��

HC
AD

0.10 0.15 0.20 0.25 0.30 0.35 0.40
���	�����

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

�
��
��
	�
�
��
��
	


�
	
��

HC
AD

0.10 0.15 0.20 0.25 0.30 0.35 0.40
���	�����

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

�
�	
��
	�
��
���
	�
��
��
��

HC
AD

Figure 6.14: Graph analysis for our proposed ICABMGGMM-CS.
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Figure 6.15: Graph analysis for the ICABMGGMM approach conducted on ADNI data using path
length and betweenness centrality.

bounded common subspaces ICAMGGMM, optimized for enhanced performance in data confined

to bounded support regions, such as fMRI data. This refined model better adapts to the unique struc-

tural properties of such datasets, ensuring improved accuracy and robustness in component analysis.
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Figure 6.16: ROC curves for ICABMGGMM-CS and compared models based on the resultant from
two-sample t-test using the ADNI data.

Validation on neuroscience datasets showcased the efficiency of these models in distinguishing var-

ious mental disorders. Leveraging the ICABMGGMM-CS components, we identified significant

differences between mental disorder classes and a healthy control group. To assess the robustness

of our models, we conducted two-sample t-tests alongside graphical analyses, demonstrating the

model’s resilience and its potential for precise classification in mental health diagnostics.
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Chapter 7

Homogeneous Subgroup Identification

in Resting State fMRI using Common

Subspace Independent Vectors Analysis

In this Chapter, we introduce a novel common subspace independent vector analysis model

based on the bounded multivariate generalized Gaussian mixture distribution, termed IVAMGGMM-

CSS to solve the JBSS complexity in the high-dimensional data. The common subspace refers to

latent sources present in all datasets, forming a low-rank structure. The IVAMGGMM-CSS model

is designed to capture subject-specific variability within the data and estimate the common sources.

By incorporating correlated features, the IVAMGGMM-CSS can adeptly handle complex, high-

dimensional datasets. To enhance robustness and improve the accuracy of source separation, we uti-

lize a bounded indicator function within the model. The IVABMGGMM-CSS framework integrates

the flexibility of data-driven methods with the ability to manage noise and artifacts commonly asso-

ciated with model-based approaches. Moreover, it leverages the interdependence between datasets,

significantly enhancing its effectiveness for source separation tasks. To validate the stability and ap-

plicability of our proposed model, we conducted extensive simulations and real-world experiments.

In practical applications, we applied the IVABMGGMM-CSS model to distinguish subjects with

mental diseases from healthy controls, focusing on Schizophrenia and Autism datasets. Our results
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highlight the model’s efficacy in identifying these common patterns in rs-fMRI data and pinpoint-

ing affected brain regions, thereby showcasing its potential as a powerful tool for mental disease

diagnosis.

7.1 Introduction

Identifying homogeneous subspaces of patients is a crucial step in precision medicine, which

seeks to customize medical treatments for individual patients categorized into specific subgroups.

In clinical practice, the heterogeneity of patients presents a significant challenge for mental dis-

eases like bipolar disorder, Schizophrenia, and Autism [248]. Various methods have been em-

ployed to cluster behavioural variations, clinical and cognitive scores, or other related metrics to

identify subspaces. However, there is limited research that fully considers the multivariate nature

of the medical imaging data [249]. Another study demonstrates that individual diversity in brain

functional networks identified in fMRI data is consistent and relevant for subject identification via

shared and subject-specific dictionary learning (ShSSDL) [250]. This makes the use of fMRI data

highly promising for the problem of subgroup identification. However, ShSSDL presumes that time

courses are consistent across datasets and cannot detect components shared among subgroups of

subjects.

Subjects can be categorized by examining the correlation patterns in their functional network

activity, enabling subgroup analysis using fMRI data. The functional connectivity patterns that are

obtained from ICA, which is done separately for each subject, are clustered to produce the final

subgroups, which is one drawback of the ICA method. This approach does not fully incorporate

the multivariate information across all subject datasets. Another recent study introduces the IVA

method, which identifies brain areas through the joint analysis of multi-subject data. By consid-

ering the dependencies across multiple datasets, IVA extends ICA to enable the joint analysis of

multiple datasets. IVA effectively captures inter-subject variability compared to other multi-subject

ICA algorithms, such as group ICA. IVA effectively reveals the correlation patterns of latent vari-

ables within multi-subject data by leveraging a sophisticated multivariate Gaussian density model.
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However, the IVA performance can be inferior in the presence of common source component vec-

tors when there is significant diversity between datasets, such as variability among sources within

each source component vectors (SCVs). One reason for this is that many IVA algorithms employ a

K-dimensional multivariate distribution to parameterize each SCV. However, common SCVs often

lie in a low-dimensional subspace, which can lead to overparameterization. As a result, the pres-

ence of common SCVs can significantly degrade IVA’s separation performance and increase running

time. Moreover, IVA algorithms experience heightened computational complexity when applied to

large-scale fMRI data. Given that IVA is considered one of the most powerful tool for BSS, there is

a need for more efficient IVA algorithms that can also perform well with the common SCVs.

In this Chapter, we introduce the IVA multivariate generalized Gaussian mixture for common

subspace separation (IVAMGGMM-CSS) model to reliably recover the correlation structure of

latent variables across a large number of datasets. By defining the source component vectors,

IVAMGGMM-CSS considers the correlation across datasets. Furthermore, strong identification

assurances provided by IVAMGGMM-CSS ensure accurate estimation of the correlation structure.

IVAMGGMM-CSS utilizes the benefits of IVA as a framework for identifying subgroups. This is

achieved by capturing the correlation structure of the underlying datasets through common compo-

nent vectors.

We also propose a bounded version of IVAMGGMM-CSS to address the limitations of un-

bounded BSS methods in estimating data shapes within bounded support regions. The IVABMGGMM-

CSS algorithm is developed to address major challenges associated with IVA, specifically in terms

of computational complexity and performance within common subspace. The IVABMGGMM-CSS

method identifies the common subgroups based on each individual SCV, enabling us to assess the

contribution of each component that defines the subgroups and enhancing interpretability. After

identifying common SCVs using a measure of ”correlatedness” among the covariance matrices, the

common SCVs are separated from the non-common SCVs. Subsequently, IVABMGGMM-CSS

is performed independently on the common and non-common subspaces. This approach enhances

the estimation of these common subspaces and significantly reduces the data dimensionality in the

IVA stage, thereby lowering the computational complexity. The IVABMGGMM-CSS framework

inherits the capability of data-driven methods to manage noise and artifacts typically present in
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model-based approaches. It also exploits the interdependence between datasets, making it highly ef-

fective for source separation. Additionally, IVABMGGMM-CSS assumes second-order correlation

within bounded SCVs, enhancing its flexibility in extracting valuable insights from the multivariate

non-Gaussian data. We can summarize the contributions of this Chapter as follows:

• We propose IVAMGGMM for common subspaces (IVAMGGMM-CSS) to effectively capture

common subspaces in multivariate data, thereby facilitating the separation of diverse sources

in complex scenarios. This model is designed to account for the interdependencies among

sources within the multivariate dataset, offering flexibility and robustness in the separation

process.

• We introduce bounded IVABMGGMM-CSS to overcome the limitations of unbounded mod-

els when applied to data within bounded support regions. This model assumes a second-order

correlation within bounded support component vectors, which allows for greater flexibility in

extracting knowledge from the data.

• We test the generalization of our proposed models by applying them to various neuroscience

applications, including Schizophrenia and Autism.

• We use IVABMGGMM-CSS components to identify brain regions affected by Schizophrenia

and Autism.

• To validate the robustness of our models, we employ a two-sample t-test to generate spatial

statistical maps for both Schizophrenia and Autism brain volumes.

The observed fMRI signals can be perceived as a linear combination of spatial maps of activation

and time courses. Thus, identifying fMRI activation can be considered a BSS problem [251]. We as-

sess the proposed method’s performance using both simulated and real-world applications. The sim-

ulation results demonstrate that IVABMGGMM-CSS outperforms existing approaches, accurately

estimating the number of common SCVs. For real-world applications, we applied the proposed

models to two rs-fMRI datasets: one for Schizophrenia and one for Autism. For the Schizophrenia

dataset, we used 120 subjects from the CNP data to distinguish between Schizophrenic patients and

healthy controls. For the Autism dataset, we used 100 subjects to differentiate between individuals
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with Autism and those without. We demonstrate the interpretability and significance of the common

subgroups found by IVABMGGMM-CSS using real fMRI data.

The rest of the Chapter is organized as follows: Section 7.2 introduces the literature. In Sec-

tions 7.3 and 7.4, we describe the IVA background and proposed algorithms, respectively. The

experimental results are discussed in Section 7.5, followed by the conclusion in Section 7.6.

7.2 Related Work

Data fusion aims to optimize the exploitation of shared information present in datasets, whether

they are multimodal or multiset. This is achieved by enabling full interaction among these datasets,

leading to a more informative and comprehensive perspective on the relevant problem [252, 253].

On an intuitive level, these datasets possess shared information while also accommodating individ-

ual variations. Therefore, it is preferable to extract both common and distinct information from the

datasets and subsequently analyze them separately. Processing this diverse information separately

should lead to a more effective data analysis [228, 254, 227].

Due to the significant role of analyzing distinct and common subspaces in the analysis of med-

ical images, several recent studies have specifically concentrated on this aspect. This focus is par-

ticularly evident in the fusion of various modalities, such as structural MRI, fMRI, and electroen-

cephalography, or in combining data from different fMRI tasks [255, 256, 232, 257]. Nevertheless,

these situations have only been illustrated in the joint decomposition of a limited number of datasets.

As previously mentioned, the attractiveness of analyzing distinct and common subspaces extends

to multi-subject analyses. The models employed to identify shared and distinct subspaces in fusion

studies have not undergone thorough exploration in the context of jointly analyzing more than a few

datasets.

Multi-subject data analysis entails the simultaneous examination of at least tens, and more com-

monly, hundreds, of subjects. The hierarchical ICA algorithm, as proposed by Guo and Tang [258],

concurrently determines sources at both the population level and for individual subjects. Neverthe-

less, as the number of datasets increases, the density model complexity employed in hierarchical
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ICA expands, and it neglects consideration of the dependence structure among these sources. A re-

cently introduced ShSSDL technique, presented by Iqbal et al. [250], is designed for multi-subject

task fMRI analysis. This method aims to recognize common components across subjects while

also identifying subject-specific components. However, ShSSDL operates under the assumption

of common time courses across datasets and lacks the capability to pinpoint components that are

shared specifically among subgroups of subjects. These investigations highlight the need for a more

efficient IVA version that works well with common SCVs.

7.3 Background

7.3.1 Independent vector analysis for the bounded multivariate generalized Gaus-

sian mixture model

In the context of the IVA mixture model, the assumption is made that the observed data arises

from a mixture model and is categorized into distinct, non-overlapping classes. The mathematical

background for IVA and IVA mixture are introduced in Chapter 2.

7.4 Proposed IVA mixture for common subspace analysis

Analyzing common and individual subspace has proven valuable in detecting distinct biomedi-

cal patterns within various populations, aiding in the comprehension of the distinctive characteristics

associated with different brain disorders. Most medical imaging data, like fMRI data, involves the

collection of information from tens or hundreds of subjects. Analyzing the combined multi-set data

enables the exploitation of its rich information, especially when considering diverse datasets. This

prompts the exploration of an algorithm capable of identifying both common and distinct subspace

within the data.
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The dataset observed for the mth subject is a mixture of three distinct sources:
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(7.1)

where A
[m]
jC

, A[m]
jG

, and A
[m]
jD

are the corresponding mixing matrices of common sources, group-

specific sources, and distinct sources, respectively. The first set of SCVs outlines the common

sources, where the sources within each SCV display a significant level of correlation. The sec-

ond set describes subspace with a moderate correlation between sources in each SCV. The third set

identifies the distinct sources, where sources within each SCV show a low level of correlation. To

construct the IVABMGGMM-CSS, we utilize Equations (2.4) and (7.1). Our IVABMGGMM-CSS

method consists of two primary steps: (i) subset analysis and (ii) common subspace identification.

To tackle the issue of dimensionality, the subset analysis stage involves performing numerous indi-

vidual IVABMGGMM decompositions on subsets of randomly chosen subjects from the population.

A collection of group-specific and distinct SCVs are established during the common subspace iden-

tification stage, in addition to a common subspace that is consistent for the entire population. These

steps are elaborated in Fig. 7.1. The specifics of the IVABMGGMM-CSS method will be elaborated

on in the following subsections.

7.4.1 IVABMGGMM-CSS: subset analysis

The subset analysis process for IVABMGGMM-CSS, illustrated in Fig. 7.1, involves randomly

selecting groups ofM subjects from the entire dataset. For each SCV, anM×M correlation matrix

is generated, producing M(M−1)
2 distinct correlation values. These correlation values are used to

evaluate the similarity of components and to determine whether a source component is consistently

present across the M datasets. SCVs that correspond to common components are expected to yield

consistently high correlation values.

195



Figure 7.1: IVABMGGMM-CSS framework. The first step is to apply the IVABMGGMM on the
multi-subjects data. Then, the identification for the common subgroups is conducted.

To measure the “commonality” of an SCV, the ratio Q is introduced. This value is computed as

the fraction of correlation values exceeding an empirically chosen threshold γ, relative to the total

number of correlation values for the SCV:

Q =
Nγ

M(M − 1)/2
(7.2)

In this equation, Nγ represents the correlation values greater than γ within the correlation matrix of

the SCV. A higher Q value, approaching 1, signifies a stronger association with a common compo-

nent.

Within each subset, SCVs are ordered based on their average correlation values, starting with

the highest. This ranking system ensures that SCVs with stronger correlations are listed at the top,

while those with weaker correlations appear lower in the order.
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7.4.2 IVABMGGMM-CSS: common subspace identification

The goal of the second phase is to determine a unified common subspace, YC , that is consistent

across all subjects within the group. To ensure uniformity across S subsets, the number of compo-

nents in each subspace, Ysl, is adjusted to a common value, C. This value is chosen as the maximum

of the subset-specific Cs values, maximizing the pool of potential candidates for constructing the

common subspace. The C SCVs from each subset then serve as candidates for this identification

process.

For each subset s, the mean component, ycs, is calculated by averaging the M components of

the cth SCV. The consistency of each mean component is evaluated using cross-correlation, which

measures the average correlation between the mean component of a subset s and its corresponding

components from the remaining S − 1 subsets as: pcs = 1
S−1

∑︁
l ̸=s |pcsl|. Here, pcsl denotes the

Pearson correlation coefficient between the mean components ycs and ycl for subsets s and l, where

1 ≤ l ≤ S and l ̸= s. To assess the overall consistency of a subset, the average cross-correlation

across its C mean components is computed as: ps= 1
C

∑︁
c pcs.

The subset with the highest average cross-correlation ps is identified as containing the most

consistent components. This subset is subsequently used to define the common subspace shared

by all subjects. The complete learning procedure for the IVABMGGMM-CSS model is detailed in

Algorithm 7.

7.5 Results and discussion

7.5.1 Application to simulated data

To test the stability and robustness of our proposed models, we conduct them over multivariate

data generated randomly from a multivariate generalized Gaussian distribution. To ensure a com-

prehensive initialization, we start by employing the K-means algorithm to determine the mixture

parameters, which include the mean, covariance, and shape parameters. For robust modelling, the

mixing parameter is set to 1/M , thereby normalizing the sum to 1. Subsequently, we apply the EM

algorithm, a powerful iterative technique, to meticulously compute the posterior probability in the
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Algorithm 7 The common subspace IVABMGGMM algorithm
1: Input: Dataset X
2: Apply K-means to obtain mean and covariance for each component.
3: Set βj=0.5

4: Randomly initialize M de-mixing matrices W[m]

5: for m=1, . . . ,M do
6: for n=1, . . . , N do
7: Compute y

[m]
n =W[m]x

[m]
n , m=1, . . . ,M

8: Expectation Maximization:
9: if change in likelihood > threshold then

10: E-step
11: Use Equation (2.8) to compute posterior probabilities
12: else
13: M-step
14: Use Equation (2.10) to update the mixing parameter pj

15: Using EM algorithm: Equation (2.14) to update µj

16: Apply Equation (2.17) to update Σj

17: Apply Equations (2.19) and (2.20) to update βj

18: end if
19: Compute y

[m]
n =W[m]x

[m]
n , m=1, . . . ,M

20: if Q > γ then
21: y

[m]
n → Common subspace

22: else
23: y

[m]
n → distinct subspace

24: end if
25: end for
26: end for
27: Repeat steps 5 to 26 until convergence.
28: Return the model’s parameters µ̂j , β̂j , Σ̂j , and common components YC

E-step and refine the mixture parameters in the M-step.

To ensure the integrity of our model, we define a small tolerance value, enabling precise conver-

gence assessment. This iterative process persists until our model achieves convergence, guided by

the pursuit of optimal parameters for effective source separation. We set a maximum limit of 1000

iterations for each model with a stringent convergence threshold of 0.001, ensuring computational

efficiency without compromising accuracy. As a result, we derive a de-mixing matrix, represented as

W[m], facilitating the accurate estimation of sources through the transformation y
[m]
n =W[m]×x[m]

n .

Fig. 7.2 shows the effectiveness of our models IVAMGGMM-CSS and IVABMGGMM-CSS in sep-

arating the common mixing sources in terms of the joint-ISI. Lower joint-ISI values depicted in the

figure correspond to reduced interference within the separated signals, exemplifying the superior

performance of our models in mitigating interference. However, the base models overparameterize
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Figure 7.2: The joint-ISI metric for proposed IVAMGGMM-CSS and IVABMGGMM-CSS algo-
rithms in terms of sample number.

the common SCVs, leading to poor performance.

To rigorously evaluate the performance of our algorithms, we employ the normalized interference-

to-signal ratio (ISR). This metric is derived by averaging results from 100 independent runs, ensur-

ing a robust and comprehensive assessment. The flexible underlying density models of IVAMGGMM-

CSS and IVABMGGMM-CSS demonstrate superior performance as the sample size increases, as

illustrated in Fig. 7.3. In contrast, other models, constrained by their basic density structures, do

not perform well. Among the six algorithms evaluated, IVABMGGMM-CSS notably achieves the

best overall performance.

To validate the robustness of our models, we assess their performance in terms of normalized

ISR as a function of shape parameter βj . In Fig. 7.4, we observe that for the small values of

βj , i.e, high sparsity, the proposed IVAMGGMM-CSS and IVABMGGMM-CSS exhibit better per-

formance. In the case of low sparsity, i.e, high values for β, we notice the poor performance for

base models due to their simple distribution function. In total, among the different values of βj ,

all conducted models perform well in the case where βj =0.5. The IVABMGGMM-CSS exhibits
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the best performance among all models due to the flexibility in its underlying density function.
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Figure 7.3: Normalized ISR for our proposed models and base models as a function of number of
samples.

We further assess our algorithms’ efficacy by evaluating the absolute correlation between true and

estimated sources. In Fig. 7.5, we observe that IVAMGGMM-CSS perform significantly better than

other base models in terms of spatial correlation. However, IVABMGGMM-CSS provide the best

performance among all conducted models due to its flexibility in estimating the sources. In this

experiment, results are averaged over 200 independent runs.

7.5.2 Schizophrenic diagnosis using the common subspace IVAMGGMM and IVAB-

MGGMM

Dataset

The UCLA consortium provides the consortium for neuropsychiatric phenomics (CNP) dataset,

which includes data from 50 Schizophrenia patients and 121 healthy individuals. Resting-state fMRI

data for the CNP were acquired using a T2*-weighted EPI sequence with the following parameters:

TE = 30 ms, TR = 2 s, matrix size = 64, and 34 slices. For this investigation, we used a subset of

200



0.0 0.2 0.4 0.6 0.8 1.0
λ

10−5

10−4

10−3

10−2
N
or
m
al
iz
ed

 IS
R

IVA
IVA-G
IVAMGGMM
IVABMGGMM
IVAMGGMM-CSS
IVABMGGMM-CSS

Figure 7.4: The performance of IVA methods based on the normalized average ISR as a function of
shape parameter βj . Each point represents the result of 100 separate runs.
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Figure 7.5: Common discriminative components correlation.
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120 participants, comprising 50 individuals with Schizophrenia and 70 healthy controls. Fig. 7.6

presents a statistical summary of these data.
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Figure 7.6: Participant demographics in CNP data.

CNP data preprocessing

The data preprocessing was conducted using the DPABI software tool. The primary steps in-

cluded removing initial time points, performing slice timing correction, correcting for head move-

ments, co-registering images, applying spatial normalization, and smoothing the data. Initially, we

removed the first ten time points for each subject. For the slice time correction, we chose the 34th

slice as a reference slice. We aligned the high-resolution structural images with the BOLD space to

synchronize the structural and functional images. Then, the fMRI data were aligned with the MNI

template by mapping the brains with varying sizes and shapes into a standardized space, thereby

minimizing individual brain differences. Finally, spatial smoothing was applied to reduce subtle

variations in brain structures among different subjects and enhance the signal-to-noise ratio. This

was achieved using a Gaussian kernel with a full width at FWHM of 4 mm.
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Figure 7.7: The general framework illustrates the comprehensive proposed pipeline for fMRI data
analysis. Our approach is conduct over the SCVs to identify the common and non-common sub-
groups.

Experimental setup

After the preprocessing stage, the brain was parcelled into 116 regions using the AAL atlas.

Then, we applied our IVA models to the data to extract the IVA components, time courses, and

connectivity matrices. The average intensity time series for each ROI was then extracted, and it was

subsequently passed through a band-pass filter with a frequency range of 0.01 Hz to 0.08 Hz. The

connectivity matrices were used to identify the components affected by Schizophrenia. We masked

each volume to exclude non-brain voxels and flattened the result, yielding an observation vector of

V = 56, 230 voxels (samples). These steps of our pipeline are illustrated in Fig. 7.7.

Experimental results for the common subspace IVABMGGMM

After the parcellation of brain into 116 brain regions, we conducted our proposed IVAMGGMM

and IVABMGGMM for the common subspace to this parcelled large-scale rs-fMRI data. Initially,

we used the k-means algorithm to initialize the parameters of our model, including the mean µj ,
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covariance Σj , and shape parameters βj . Subsequently, we employed the EM algorithm to compute

the posterior probability of the common subspace and iteratively update the model’s parameters.

This iterative process continued until convergence, at which point the resulting demixing matrix

was utilized to differentiate Schizophrenic patients from healthy controls. The time courses of the

IVA common subspace were then used to extract connectivity matrices, ultimately identifying the

homogeneous subgroups of the brain regions affected by Schizophrenia. We employed various

BSS metrics to evaluate the performance of the proposed models including SDR, SAR, SIR, and

Joint-ISI.

Table 7.1 displays the performance comparison of IVAMGGMM, IVABMGGMM for the com-

mon subspace, and other models, such as IVA and IVA-G, across various subject combinations. The

findings clearly indicate that our proposed models outperform the basic models, especially in cases

with lower subject combinations. This superior performance is even more evident as the number of

subject combinations increases. The IVAMGGMM-CSS model achieves SDR values ranging from

8.73 for 2 subjects to 5.36 for 120 subjects, illustrating enhanced performance stability in identify-

ing homogeneous subgroup structures. The IVABMGGMM-CSS model achieves the highest SDR

value of 9.63 at a combination of 2 subjects and maintains relatively high SDR values at larger com-

binations, such as 6.32 at 120 subjects. All models exhibit a decrease in SDR as the combination

increases. This trend indicates that increased combination complexity makes it harder for the mod-

els to obtains high SDR values. Models that incorporate common subspace (IVAMGGMM-CSS

and IVABMGGMM-CSS) demonstrate the greatest resilience to higher combinations, maintaining

superior SDR values compared to traditional models. The improved effectiveness of our models in

handling high-dimensional data highlights their flexibility and stability, making them particularly

effective at distinguishing between Schizophrenic patients and control subjects. In contrast, the base

models exhibit poor performance due to their simplistic probability density function distribution and

susceptibility to overparameterization of the common SCVs.

The heat map in Fig. 7.8 displays the SIR values for various models across different combina-

tions. The models evaluated include IVA, IVA-G, IVAMGGMM, IVABMGGMM, IVAMGGMM-

CSS, and IVABMGGMM-CS, with combinations ranging from 2 to 120 individuals. The IVA

model exhibits the lowest overall SIR values, starting at 6.83 for a combination of 2 and decreasing
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Table 7.1: Performance of IVAMGGMM-CSS and IVABMGGMM-CSS using SDR separation
measure.

Combinations/Models
SDR

IVA IVA-G IVAMGGMM IVABMGGMM IVAMGGMM-CSS IVABMGGMM-CSS
2 5.39 6.89 7.64 7.94 8.73 9.63
10 4.72 6.05 7.05 7.14 8.53 8.93
20 3.59 5.66 6.56 6.95 7.63 8.63
40 2.88 5.71 6.07 6.25 7.33 7.43
60 2.85 4.73 5.87 5.89 6.76 7.13
80 2.81 4.07 5.17 5.29 6.28 6.86

100 1.85 3.92 4.34 4.65 5.34 6.93
120 1.87 2.39 3.38 4.37 5.36 6.32

to 3.78 at a combination of 120 subjects. In contrast, the IVAMGGMM-CSS model outperforms

other models, maintaining high SIR values between 8.94 and 5.96. The IVABMGGMM-CSS model

achieves the highest SIR values, ranging from 10.63 at a combination of 2 to 7.25 at a combination

of 120 subjects. The IVABMGGMM-CSS model demonstrates the highest robustness and best per-

formance across all combinations, indicating that integrating the full covariance matrix and common

subspace methods significantly enhances the model’s ability to identify the homogeneous common

patterns. Similarly, the IVAMGGMM-CSS model also performs well, although slightly below the

IVABMGGMM-CSS, highlighting the effectiveness of the common subspace technique.

In terms of SAR, we evaluated the proposed models to differentiate between healthy and Schizophrenic

subjects. Fig. 7.9 illustrates the performance of these models on the CNP dataset. We tested various

subject combinations to validate the robustness of our models in high-dimensional scenarios and

analyzed the common SCVs. As shown in the figure, our models are highly effective in distinguish-

ing between individuals with Schizophrenia and those without. This improvement demonstrates the

stability and capability of our models in analyzing rs-fMRI common structures.

Fig. 7.10 illustrates the comparison of Joint-ISI performance across different numbers of sub-

jects for six algorithms: IVA, IVA-G, IVAMGGMM, IVABMGGMM, IVAMGGMM-CSS, and

IVABMGGMM-CSS. As the number of subjects increases from 2 to 120, the Joint-ISI values gen-

erally increase, indicating a degradation in the performance of the algorithms with complex data.

IVAMGGMM-CSS and IVABMGGMM-CSS show the smallest Joint-ISI values, suggesting they

are more effective for large-scale fMRI datasets and extracting the common patterns. In contrast,

IVA and IVA-G exhibit a high increase in Joint-ISI values, indicating they might be less efficient
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Figure 7.8: Heatmap for the IVA conducted models across a range of combination settings. Each
cell represents the performance score, with low performance (cool colors) and high performance
(warm colors).
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Figure 7.9: The performance of conducted models using SAR measure.
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Figure 7.10: The IVABMGGMM-CSS performance based on the Joint-ISI metric.

in handling larger numbers of subjects and analyzing the common SCVs. The figure highlights the

importance of selecting appropriate algorithms based on the dataset size to achieve optimal perfor-

mance in terms of Joint-ISI.

Brain network identification and statistical analysis for Schizophrenic patients

To assess the robustness of our proposed algorithms, we extracted the affected brain regions due

to Schizophrenia using the most discriminant IVA components with high correlation coefficients.

Here, we selected the top 100 IVA components, which characterized as intrinsic connectivity net-

works. Each class is divided into six random subgroups of 60 subjects. For each SCV, there are

60 × (60−1)
2 = 1770 unique correlation values. The SCVs are ranked by their mean correlation

values, ranging from high to low. In the Schizophrenic subsets, over 85% of the first 35 SCVs have

Q ≥ 0.96, indicating that these SCVs are prevalent across individuals in these subgroups. The num-

ber of common SCVs (C) among the six Schizophrenic group subsets are 33, 26, 20, 24, 25, and 38,

respectively. For the healthy subjects class, the numbers are 21, 22, 27, 29, 25, and 30, respectively.

Among the twelve values, the number of candidates, C, in the subspace Ysl is determined to be 38,
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the highest observed. The 25th percentile of the cross-correlation values of these C candidates is

used as the threshold γ[m] for identifying associated components. We use the MNI template for grey

matter (GM) and cerebrospinal fluid (CSF) to distinguish these components. Based on the median

value of CGM − CCSF , the components are divided into two distinct groups. Components with

CGM − CCSF values above the median are more likely to be associated with higher probabilities

of resting-state networks, while components with values below the median are more likely to repre-

sent ventricle effects. Table 7.2 introduces a comprehensive summary of the brain networks along

with their IVA components and coordinates. Each network is associated with specific brain areas

that align with their known functional roles. These networks include the DMN, Executive function

network, Visual network, Salience network, Auditory network, Sensorimotor network, Frontal net-

work, and Working memory network. The DMN network is broadly engaged across various brain

regions, whereas networks like the executive function and visual networks have more localized co-

ordinates indicative of their specialized functions. Results of the IVABMGGMM-CSS component

group comparison for Schizophrenic patients are shown in Fig. 7.11.

The discriminative connectivity maps were created using a two-sample t-test to statistically val-

idate the differences between healthy controls and individuals with Schizophrenia. Using the FDR

method for multiple comparisons, the significance level was set at a corrected p < 0.05 (mini-

mum z > 1.9, cluster significance: p < 0.05). Table 7.2 presents the most discriminative IVA

common components. Compared to the healthy control group, the Schizophrenic group exhibited

increased connectivity across interesting common networks. Specifically, the common subspace

with higher functional connectivity is observed in brain networks such as the DMN, dorsal DMN,

Executive function network, Visual network, Salience network, Auditory network, and sensorimo-

tor network. These regions are localized to the superior frontal gyrus, lingual gyrus (LING), FFG,

supplementary motor area, superior temporal gyrus (STG), and postcentral gyrus (PoCG). Addi-

tionally, regions with increased FC in the frontal network are found in the superior frontal gyrus,

dorsolateral (SFG). STG, FFG and SFG show disruptions in brain functions in Schizophrenic sub-

jects. These findings align with the defective regions identified by several studies [196, 190], which

highlight the involvement of these brain areas in Schizophrenia. Our results further suggest that the

LING gyrus may be affected in the early stages of Schizophrenia. Numerous studies have reported
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Figure 7.11: The spatial maps of the IVABMGGMM-CSS components for Schizophrenia.

significant abnormalities in the LING and PoCG in individuals with Schizophrenia [191, 190]. In

our study, the LING and PoCG were significantly smaller in Schizophrenic patients compared to

healthy controls.

These findings provide a comprehensive mapping of the brain networks affected in Schizophre-

nia, underscoring the heterogeneity and complexity of the Schizophrenia disorder. The identified

components and their associated regions offer valuable insights for the proposed IVABMGGMM-

CSS to preserve more subject variability and providing more detailed identification of these common

brain networks.

7.5.3 Autism detection using the common subspace IVAMGGMM and IVABMG-

GMM

Autism spectrum disorder (ASD) is a developmental syndrome characterized by impairments in

social communication and interaction, leading to restricted and repetitive behaviours and interests.

It manifests in a wide range of symptoms and severity levels, with its underlying causes not yet
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Table 7.2: The most discriminate IVA components and peak activation in the t-maps of the resting-
state networks.

Anatomical description IVA Components T value Coordinates
(X, Y, Z)

Default mode network 13 2.3 13, 65, 6
Superior frontal gyrus, medial

Dorsal Default mode network 15 1.96 -8, -36, -5
Lingual gyrus

Executive function network 22 2.2 26, 60, 14
Superior frontal gyrus

Visual network 25 2.5 23, -78, -18
Fusiform gyrus

Salience network 28 2.3 0, 20, 50
Supplementary motor area

Auditory network 29 1.98 66, -24, 6
Superior temporal gyrus

Sensorimotor network 40 2.4 12, -54, 74
Postcentral gyrus

Frontal network 66 2.3 -24, 38, 48
Superior frontal gyrus, dorsolateral

fully understood. Advances in neuroimaging techniques, including EEG and fMRI, have provided

researchers with valuable insights into the neural mechanisms underlying ASD. Studies using fMRI

have identified various brain networks with typical functioning in individuals with ASD, such as the

social brain network and default mode network [259, 260]. Researchers also explored the functional

connectivity between various brain regions and how it might be altered in individuals with ASD.

Focusing on tasks and resting states, Rafiee et al.’s recent review [261] summarized the most recent

developments in ASD research.
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Dataset

In this work, the publicly available fMRI Autism brain imaging data exchange (ABIDE) database

was used [262]. For analysis and prediction, we selected 70 individuals with ASD and 50 normal

controls, aged 9 − 13 years, who were scanned at Georgetown University and Children’s National

Medical Centre Institutional Review Boards. Children with ASD were recruited through the Cen-

tre for ASD at Children’s National Medical Centre, while control children were collected from the

Washington, DC, area community via advertisements in public venues and pediatrician offices. The

3T Siemens Allegra scanner was used to collect the data. The primary parameters for the resting-

state functional images were: TR/TE = 2000/30 ms, flip angle = 90◦, number of slices = 43, slice

thickness = 2.5 mm, FOV = 192 × 192 mm, and voxel size = 3.0 × 3.0 × 2.5 mm3. T1-weighted

images were collected using the following parameters: TR/TE = 2530/3.25 ms, flip angle = 7◦,

slice thickness = 1.33 mm, and voxel size = 1.3× 1.0× 1.3mm3.

ASD data preprocessing

The rs-fMRI data were processed using SPM12 [180] and DPABI [72] software tools. The

preprocessing involved several crucial steps: the initial 10 time-point volumes were discarded to

establish magnetization equilibrium, slice timing correction was applied for interleaved acquisition,

and subject motion was corrected through realignment. Functional and structural images were then

co-registered. After normalizing the images to the EPI template, they were smoothed using a Gaus-

sian kernel with a FWHM of 4 mm. Using the AAL atlas, each volume was divided into 116 ROIs.

The average intensity time series was extracted for each ROI, and to minimize non-neuronal influ-

ences on the BOLD signal fluctuations, a band-pass filter ranging from 0.01 Hz to 0.08 Hz was

applied.

Experimental results

After the preprocessing step, we apply PCA to retrieve the most informative components (V =

76, 950). The reduced data is then used as input for our BSS framework. We tested our proposed

models on the extracted time-course fMRI data to distinguish between Autism patients and healthy
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subjects. Starting with the K-means algorithm to initialize the IVABMGGMM-CSS parameters,

we evaluated the convergence of our model using these parameters with a small threshold value.

This process was repeated for up to 1000 iterations to ensure the stability of our models. We used

demixing metrics to separate the Autism time courses from the healthy ones for the best run. The

complexity of the experiment was gradually increased, starting with two subjects and progressing

to the full dataset of 100 subjects, validating the performance of our models against the complexity

of the fMRI data.

Table 7.3: Performance of IVAMGGMM-CSS and IVABMGGMM-CSS using SDR separation
measure.

Combinations/Models
SDR

IVA IVA-G IVAMGGMM IVABMGGMM IVAMGGMM-CSS IVABMGGMM-CSS
2 15.39 14.87 14.53 15.02 18.78 25.72
5 14.72 15.15 14.54 14.72 16.70 23.47
10 13.59 13.70 13.92 14.30 14.89 20.63
20 12.88 12.85 12.73 12.95 13.12 17.53
40 10.85 10.61 11.03 11.58 12.44 16.03
60 6.81 7.79 8.14 8.63 11.46 14.61
80 4.85 6.09 7.63 7.84 9.65 12.75

100 3.87 2.08 3.71 4.62 7.84 10.66

IVA IVA-G IVAMGGMM IVABMGGMM IVAMGGMM-CSS IVABMGGMM-CSS
Model

5
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20
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R

Figure 7.12: The IVABMGGMM-CSS performance in separating the Autism subjects using SIR
measurement.
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Table 7.3 details the performance of various models, including IVA, IVA-G, IVAMGGMM, IV-

ABMGGMM, IVAMGGMM-CSS, and IVABMGGMM-CSS. As illustrated, the proposed models

consistently outperform the baseline models across all combinations. This is particularly evident

in high-dimensional combinations, where our models demonstrate superior performance in distin-

guishing Autism patients from healthy controls. Specifically, for the combination of 100 subjects,

the IVABMGGMM-CSS model achieves the highest SDR value (SDR = 10.66), indicating it as

the best-performing model among those evaluated models. In contrast, the baseline models show a

decline in performance as the number of subjects increases. This reflects that the base models over-

parameterize the common SCVs, leading to the poor performance to separate the common patterns

in the ASD patients. The results clearly demonstrate that the IVABMGGMM-CSS model achieves

the highest SDR values across all combinations, reflecting its superior performance in minimizing

distortion and considering the common ASD structures. This model’s ability to maintain higher

SDR values, especially in more complex scenarios, highlights its robustness and effectiveness in

managing intricate data challenges.
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Figure 7.13: SAR measurements for our proposed models compared to base models.

Fig. 7.12 exhibits the boxplot comparing SIR for our proposed models and the baseline models.
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This comparison is made across both low and high levels of subject combinations. The boxplot

clearly illustrates the superior performance of the IVABMGGMM-CSS model, which achieves the

highest median SIR values among all the models evaluated. This model’s ability to maintain higher

SIR values, despite exhibiting some variability, highlights its robustness and effectiveness in han-

dling complex data scenarios. The IVAMGGMM-CSS model also shows significant performance

improvements, reinforcing the benefits of incorporating additional constraints and methodologies in

enhancing model efficacy to consider the common SCVs in ASD. In contrast, the baseline models

(IVA and IVA-G) exhibit the lowest median SIR values, reflecting their limitations in minimizing

interference. The modest improvements observed in IVAMGGMM and IVABMGGMM suggest

incremental gains over the baseline models. The superiority of our models becomes particularly ev-

ident in high-dimensional scenarios. Notably, for combinations of 80 and 100 subjects, our proposed

IVABMGGMM-CSS model achieves SIR values of 14.04 and 13.29, respectively, demonstrating

significant improvement over the traditional methods.

Fig. 7.13 presents the SAR metrics comparison across various models IVA, IVA-G, IVAMG-

GMM, IVABMGGMM, IVAMGGMM-CSS, and IVABMGGMM-CSS for different subject com-

binations. The chart provides a clear visualization of the SAR performance as the number of sub-

ject combinations increases from 2 to 100. Notably, the IVABMGGMM-CSS model consistently

achieves the highest SAR values across all combinations, demonstrating its superior performance

in separating signals from interference and analyzing the common ASD patterns. This is particu-

larly evident in high-dimensional scenarios, such as the 80 and 100 subject combinations, where

IVABMGGMM-CSS reaches SAR values of approximately 85 and 74, respectively. The base-

line models, IVA and IVA-G, exhibit lower SAR values, indicating less effectiveness in managing

interference as the complexity of the data increases. The intermediate performance of IVAMG-

GMM and IVABMGGMM models, compared to their common subgroup versions, highlights the

significant improvements gained through the advanced configurations of IVAMGGMM-CSS and

IVABMGGMM-CSS. Overall, this figure underscores the robustness and efficacy of the proposed

models to separate Autism patients from normal controls, particularly the IVABMGGMM-CSS, in

handling high-dimensional data, the common SCVs, and achieving superior signal reconstruction

quality.
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Figure 7.14: The performance of IVABMGGMM-CSS in terms of Joint-ISI.

To validate the separation quality, we use the Joint-ISI to measure the interference in the esti-

mated time-courses. Fig. 7.14 illustrates the performance of various models IVA, IVA-G, IVAMG-

GMM, IVABMGGMM, IVAMGGMM-CSS, and IVABMGGMM-CSS in terms of Joint-ISI across

different combinations of subjects. The graph demonstrates a clear distinction in performance as

the number of combinations increases from 2 to 100. Notably, the IVABMGGMM-CSS model

consistently achieves the lowest Joint-ISI values, indicating its superior ability to minimize interfer-

ence and enhance the time-courses separation. Specifically, at combinations of 80 and 100 subjects,

the IVABMGGMM-CSS model maintains a low Joint-ISI, demonstrating its robustness and effec-

tiveness in handling high-dimensional data scenarios and extracting the common ASD structures.

In contrast, baseline models such as IVA and IVA-G show a significant increase in Joint-ISI with

more combinations, reflecting their diminished performance in more complex scenarios. Also, this

indicates that the PDF of these base models overparameterizes the common SCVs in the ASD

data. Intermediate models like IVAMGGMM and IVABMGGMM perform better than the baseline

models but are outperformed by their common subspace versions. Overall, the figure underscores
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Figure 7.15: The most discriminating IVA components for Autism patients.

the enhanced performance of IVABMGGMM-CSS, showcasing its capability to maintain low in-

terference levels and high signal integrity across varying combinations of subjects. This superior

performance highlights the potential of IVABMGGMM-CSS in applications requiring high fidelity

and precision in signal separation. It also underscores the advantage of incorporating the common

subgroup analysis into the cost function of the proposed IVABMGGMM-CSS method.

Brain network identification and statistical analysis for Autism patients

We validated our proposed model using a two-sample t-test to identify the most significant

brain regions affected by Autism. For this analysis, we applied the FDR correction method with
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Table 7.4: Peak activation in the t-maps of the resting-state networks that show group differences.

Brain network IVA Components Anatomical description Abbreviation Hemisphere T value Coordinates
(X, Y, Z)

Working memory network (left) 7 Superior frontal gyrus, medial orbital PFCventmed L 1.96 -28, 42, -16
Inferior frontal gyrus, triangular part IFGtriang L -42, 42, 1

Basal Ganglia 18 Lobule I, II of vermis VER1 2 L 2, -35, -17
87 Lingual gyrus LING R 2.3 5, -34, 0

Executive function network 23 Superior frontal gyrus, dorsolateral SFG L 2.4 -28, 63, 13
Superior frontal gyrus, dorsolateral SFG R 28, 63, 18

Visual network 30 Calcarine fissure and surrounding cortex CAL R 13, -94, 0
Calcarine fissure and surrounding cortex CAL L 1.98 0, -82, 0

Lingual gyrus LING L -8, -72, 0
Middle occipital gyrus MOG L -8, -102, 2

Salience network 47 Supplementary motor area SMA R 2.0 2, 6, 72

Working memory network (right) 59 Superior parietal gyrus SPG R 2.3 43, -42, 61

Default mode network 65 Supplementary motor area SMA L 2.5 0, 8, 71
Precuneus PCUN R 0, -51, 70

Sensorimotor network 74 Precentral gyrus PreCG R 2.7 26, -16, 72
Precentral gyrus PreCG L -29, -16, 71

Cerebellum 99 Parahippocampal gyrus PHG R 3.2 21, 8, -31

p < 0.05 and a threshold greater than 1.96. Fig. 7.15 illustrates the IVABMGGMM-CSS compo-

nents and their corresponding brain networks, demonstrating our model’s capability to extract the

brain regions impacted by Autism. The most affected common brain networks include the Working

memory network left and right, Basal ganglia (BG), Executive function network, Visual network,

Salience network, Default mode network, Sensorimotor network, and Cerebellum. As shown in

Fig. 7.15 and Table 7.4 these brain networks are linked to specific brain regions. IV7 and IV59

include the superior frontal gyrus (medial orbital) and inferior frontal gyrus (triangular portion) for

the left WMN, and the superior parietal gyrus for the right WMN. These regions are critical for

preserving and manipulating information over short periods of time, reflecting the working memory

problems commonly reported in Autism, implying that the IVABMGGMM-CSS maintained more

subject variability. Recent neuroimaging research [263] found similar abnormalities in the supe-

rior and inferior frontal gyruses, highlighting their crucial role in ASD-related cognitive difficulties.

IV18 and IV87 highlight the vermis’ lobules I and II, and the lingual gyrus. The basal ganglia have

a role in both motor control and cognitive functions such as learning and memory. These findings

are consistent with a recent study [264], which found a reduction in the lingual gyrus of ASD pa-

tients relative to healthy people. Alterations in these regions may lead to the repetitive behaviours

217



and motor impairments that are commonly observed in Autism, underscoring the Basal ganglia’s

significance in Autism’s neurobiology.

IVA23 is associated with the dorsolateral superior frontal gyrus in both hemispheres. Executive

processes such as planning, decision-making, and cognitive flexibility are frequently compromised

in people with Autism. The involvement of the dorsolateral prefrontal cortex indicates potential

therapies to improve executive functioning. This aligns with the study [263], which reports unusual

activity patterns in the superior frontal gyrus in ASD patients. The calcarine fissure, surrounding

cortex, lingual gyrus, and middle occipital gyrus are all part of the IV30, which is crucial for visual

perception and processing. Variations in these domains underscore the need for measures to improve

visual processing and raise the possibility that people with Autism may interpret visual information

differently. The IV47 is concerned with the supplemental motor area. The salience network is

responsible for identifying and responding to important stimuli. Alterations here may contribute to

social and sensory processing impairments in Autism, indicating a target for therapy. Our findings

indicate that IV65, which is activated in the supplementary motor region and precuneus, has a role

in self-referential thinking and mind wandering. Disruptions in the DMN are associated with social

and communication impairments in Autism, underscoring their importance in understanding the

illness. A recent study [265] also found the precuneus as a major region impacted in ASD, relating

its dysfunction to the introspective and self-related cognitive difficulties reported in the disorder.

The IV74 highlights the precentral gyrus, which is responsible for processing sensory input and

motor output. Variations in this network may be related to sensory sensitivities and motor deficits

observed in Autism, highlighting the importance of focused sensorimotor integration treatments.

The IV99 involves the parahippocampal gyrus, highlighting the cerebellum’s role in motor control,

coordination, and cognitive functioning. Our findings show that the parahippocampal gyrus, which

is known for its function in memory encoding and retrieval, has abnormal activity patterns in ASD

patients. This corresponds with current literature demonstrating problems in memory and spatial

navigation in ASD patients [266, 264]. The cerebellum’s role in Autism suggests that it is an

important target for future research and therapies.
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7.6 Conclusion

In this Chapter, we introduced the IVAMGGMM-CSS and IVABMGGMM-CSS as powerful

tools to identify mental disorders from the healthy controls. In the IVAMGGMM-CSS method, we

used the full covariance matrix to extract the correlated features in the multivariate data, like resting

state fMRI datasets. For the complex scenarios, we proposed the IVABMGGMM-CSS algorithm

to consider the high-dimensional data fall in the bounded support regions and analyze the common

components in these mental diseases. We validated our proposed methods using simulated and real-

world applications. For that, we conducted our models to distinguish between the Schizophrenic

patients and the normal controls. Then, we used the IVABMGGMM-CSS components to identify

the affected brain regions due to the Schizophrenia disease. Our proposed models demonstrated

a strong ability to distinguish Schizophrenic subjects from healthy controls. Furthermore, we em-

ployed our methods on the Autism data to differentiate between the Autism time-courses and the

normal ones. We also applied the two sample t-tests on the IVABMGGMM-CSS components to

extract the abnormal brain regions affected by Autism disease. Using these experiments, we high-

light the effectiveness of our model in separating the abnormal time-courses from the normal ones.

Additionally, we emphasized that incorporating the analysis of common subspaces in our models

significantly enhances the detection of these structures in the brain. Through various experiments,

our models demonstrated their ability to generalize across different data types and scales.
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Chapter 8

Conclusion and future work

In this chapter, we summarize the main contributions of this dissertation and highlight future

research directions.

8.1 Conclusions

In this dissertation, we introduced the bounded generalized Gaussian mixture model to address

the limitations of unbounded models in representing data confined within bounded support regions.

Building upon this foundation, we proposed the ICABMGGMM and IVABMGGMM frameworks to

overcome the respective shortcomings of standard ICA and IVA. The proposed models demonstrated

significant performance improvements across a diverse range of applications, as validated through

comprehensive experimental evaluations. To enhance their clustering capabilities, we integrated

these models into a hidden Markov model framework. This integration led to the development

of the ICABMGGMM-HMM and IVABMGGMM-HMM, which serve as robust BSS methods.

These advanced methods have proven to be highly effective in applications such as human action

recognition and speech recognition, showcasing their versatility and superior performance.

Our experiments revealed a notable limitation of the proposed ICABMGGMM and IVABMG-

GMM models when applied to large-scale datasets. To address this issue, we developed the adaptive

constrained ICAMGGMM and IVAMGGMM, which have shown promising performance in identi-

fying mentally challenged subjects. Experimental results demonstrate a significant improvement in
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distinguishing brain volumes associated with mental diseases from those of healthy individuals. To

evaluate the generalization capability of our models, we further introduced bounded versions of the

adaptive constrained ICAMGGMM and IVAMGGMM. These enhanced models were successfully

applied to ECG separation tasks, further demonstrating their adaptability and effectiveness across

diverse applications.

Finally, to enhance the scalability of our methods, we incorporated the ICABMGGMM and

IVABMGGMM into a common subspaces analysis framework. This integration allows the models

to effectively account for common and non-common components in large-scale datasets, which

are often overparameterized by other BSS methods. These models are particularly well-suited for

applications that require the identification of common components, such as rs-fMRI data. This

capability is crucial for capturing similar patterns, which play a significant role in the analysis

and diagnosis of mental diseases. By leveraging this framework, our refined models are better

equipped to adapt to the unique structural properties of such datasets, ensuring improved accuracy

and robustness in component analysis. To evaluate the robustness of our models, we conducted two-

sample t-tests and performed graphical analyses. These assessments confirmed the resilience of our

models and their potential for precise classification in mental health diagnostics. Specifically, our

experiments demonstrated the models’ effectiveness in distinguishing abnormal time courses from

normal ones. Furthermore, the models exhibited a remarkable ability to generalize across different

data types and scales, solidifying their versatility and applicability in diverse scenarios.

8.2 Future Directions

The success achieved by the proposed methods opens several promising avenues for future re-

search. One research area of interest involves the study of dynamic functional network connectivity

(dFNC) for the rs-fMRI datasets. The dFNC analysis has become increasingly important, revealing

that FNC evolves throughout scanning sessions. Traditional stationary FNC analysis assumes con-

stant connectivity patterns, offering only an average measure and limiting insights into the brain’s

dynamic behavior. In contrast, studies have shown multiple FNC states in both task-related and

resting-state fMRI data, helping identify biomarkers for disorders such as Schizophrenia, Autism,
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Alzheimer, and mild cognitive impairment. However, most dFNC methods assume the spatial

structure of networks remains stationary, overlooking spatial variability. To overcome the afore-

mentioned limitations in identifying dynamic brain activity, a model that captures both spatial and

temporal changes would provide a more detailed understanding of the brain’s dynamic processes.

Another promising direction is to explore the explainability and interpretability of our models.

By integrating explainable artificial intelligence (XAI) methodologies, we aim to enhance the us-

ability and transparency of our proposed models, particularly for mental health disease detection.

XAI tools provide valuable insights for both researchers and clinicians, enabling a deeper under-

standing of the underlying processes and improving the accuracy and interpretability of the models

used in mental health diagnostics. By translating complex algorithmic operations into accessible

and actionable insights, these tools bridge the gap between computational models and human com-

prehension. This integration not only empowers clinicians with more informed decision-making

capabilities but also drives significant advancements in precision diatranslating complex algorith-

mic operations into accessible and actionable insights, these tools bridge the gap between compu-

tational models and human comprehensiongnostics, ultimately contributing to better outcomes in

mental health care.
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Appendix A

Proof of BMGGMM parameters

estimation (Chapter 2)
The complete log-likelihood function for MGGMM is given by:

L(Θ, Z,X ) =

N∑︂
n=1

Znj

{︃
log(βj)− log Γ

(︃
D

2βj

)︃
− D

2βj

log(2)− D

2
log(cj)

− 1

2
Σj −

1

2(cj)
βj

(︃
(xn − µj)

TΣ−1
j (xn − µj)

)︃βj

}︄
(A.1)

A.1 Mean estimation

To estimate the mean, the process of maximizing (A.1) with respect to µj is detailed in Equa-

tions (A.2) to (A.3).

∂L(Θ, Z,X )
∂µj

=
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−
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y
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j

(︃
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)︃]︄}︄
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⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (A.2)
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∂2L(Θ, Z,X )
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where y=(xn − µj)Σ
−1
j + (xn − µj) and yu=(u− µj)

TΣ−1
j (u− µj).
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where y=(xn−µj)
TΣ−1

j (xn − µj) & yu=(u− µj)
TΣ−1

j (u− µj). Taking into account the ap-

proximations for estimating the mean parameter as discussed in Section 2.2, |F (µj)| can be written

as:
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(A.5)

where the term ys is represented as: ys = (sjv − µj)
TΣ−1

j (sjv − µj).

A.2 Covariance estimation

To estimate the covariance matrix, we derived Equation (A.1) with respect to Σj as in Equations

(A.7) and (A.7).
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where U = (xn − µj)
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where the terms U and Uu are represented as: U = (xn − µj)
TΣ−2

j (xn − µj) and Uu = (u −

µj)
TΣ−2

j (u − µj) respectively. Considering approximations for the covariance matrix estimation

as described in Section 2.2, |F (Σj)| is given as:

|F (Σj)| = −
N∑︂

n=1
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where Us = (sjv − µj)
TΣ−2

j (sjv − µj).

A.3 Shape parameter estimation

Similarly, we derived Equation (A.1) with respect to βj to estimate the shape parameter: Equa-

tions (A.11) and (A.11) explain steps to get the shape parameter.
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parameter estimation as explained in Section 2.2, |F (βj)| can be written as:
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Appendix B

ICABMGGMM-HMM and

IVABMGGMM-HMM parameter

estimation procedures (Chapter 3)

B.1 Estimation of Λ

To update the parameters of our proposed models, we maximize the final term in Equation (3.7)

with respect to Λk. Here, Λk is a set of parameters of the kth state emission probability distribution,

where Λk = [p, µ,Σ, β, A, b]. Starting from Gaussian mixture model, the complete log-likelihood

function at state k is given by:

L(X , Z,Θ) =
N∑︂

n=1

M∑︂
j=1

Znkj log

(︃
p(xn|ξkj)pkj

)︃
(B.1)

By substituting each Znkj with its expectation, defined as the posterior probability that the nth

observation corresponds to the mth component of the mixture model at state k, we obtain:

Ẑnkj =
p(xn|ξkj)pkj

M∑︁
j=1

p(xn|ξkj)pkj

(B.2)
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By considering the gradient of the log-likelihood with respect to pkj , µkj , Σkj and βkj at state k for

the jth component of the bounded multivariate generalized Gaussian mixture (BMGGM), Equation

(3.7) can be maximized and provides a closed form solution for all mixture model parameters as

follows:
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H(skjv |kj)

⎞⎟⎟⎟⎠

β̂k+1 = β̂kj −
α(β̂kj)

α̂(β̂kj)
(B.6)

α(β̂kj) =
N∑︂

n=1

Ẑnkj

{︄
Q− yβkj

2cjβkj

[︃
log(y)− log(cj)

]︃

−

V∑︁
v=1

{︄
Q− y

βkj
s

2cjβkj

[︃
log(ys)− log(cj)

]︃}︄
H(skjv |kj)

V∑︁
v=1

H(skjv |kj)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

(B.8)
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where skjv represents the random variable that is derived from the generalized Gaussian distribution

for the mth component of the mixture model. V is the number of random variables skjv , c is the

scale parameter, y = (xn−µkj)
TΣ−1

kj (xn−µkj), ys = (skjv − µkj)
TΣ−1

kj (skjv − µkj), Q =

1
βkj

+ d
2βkj

ψ( d
2βkj

)+ d
2β2

kj
log(2), yu = (u−µkj)

TΣ−1
kj (u−µkj) and ψ is the digamma function.

The computation of derivative of log-likelihood with respect to pkj , µkj , Σkj and βkj is given in

A. For the ICA parameter estimation, the complete computation to estimate basis functionsAkj and

bias vector bkj is given in Chapter 2.
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