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Abstract
Magnetoactive soft continuum robots (MSCRs), capable of controllable steering and navigation,
hold substantial promise for healthcare applications. However, advancements in MSCRs have
been hindered by a limited understanding of MSCR dynamics and a lack of effective control
methods. Addressing these gaps, this study presents a novel, time-dependent, and
computationally efficient analytical model of MSCR, alongside a new optimal closed-loop
control strategy for precise high-frequency trajectory tracking. A finite element (FE) model of
the MSCR is initially developed, with its validity confirmed through rigorous laboratory
measurements. Using the formulated FE model, a new and computationally efficient analytical
model is subsequently developed to accurately predict the highly nonlinear response of MSCR.
This model operates as a system of switched linear models, each of which is a reduced-order
version of its corresponding high-order linear model extracted from the FE analysis. This
innovative approach not only maintains the predictive accuracy of the FE model but also
significantly reduces computational demands, operating in just a few seconds. The results
highlight that the developed model can accurately predict the dynamic responses of the MSCR
while significantly reducing the computational load by almost 80 orders of magnitude compared
with the FE model on the same simulation platform. The proposed model has been effectively
utilized to develop a novel optimal control strategy using the feedforward interval type-2
fractional-order fuzzy-PID method. A hardware-in-the-loop experimental test has been finally
designed to demonstrate the superior performance of the MSCR under the proposed controller.

Supplementary material for this article is available online
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1. Introduction

In recent years, designs of soft continuum robots (SCRs) have
emerged to achieve enhanced steering and navigation capabil-
ities in constrained, confined and complex environments [1–
3]. These offer promising potentials for minimally invasive
therapies (figure 1(a)), such as endovascular treatment of car-
diovascular diseases. A number of SCR designs have evolved
during the past decade particularly for a range of minimally
invasive cardiovascular therapies [4–6]. In such treatments,
a thin tube or a passive guidewire, known as a catheter, is
manually guided by radioscopic imaging into the heart cham-
ber up to the targeted locations, e.g. in front of blood vessel
branches or lesions tissues, to ablate the lesion [2]. Although
the commercially developed SCRs have proven to be effective
in reducing the associated risks and the side effects compared
to the conventional methods, the current designs are known to
impose notable operational challenges. These are mostly asso-
ciated with their actuation mechanisms, such as pulling mech-
anical wires, inflating pneumatic or hydraulic chambers, and
embedding rigid magnets for manipulation, apart from diffi-
culties in accessing small branches [7]. These, together with
relatively longer operation times, make the current designs
unfavorable for numerous biomedical tasks [1].

In recent years, magnetoactive soft continuum robots
(MSCRs) with multimodal locomotion designs have been pro-
posed as alternatives for the distal portions of the SCRs, while
circumventing some of their performance limitations [7–11].
This class of soft robots generally comprises magnetoactive
elastomers, in which magnetized hard micron-sized particles
such as neodymium-iron–boron (NdFeB) are impregnated into
a soft elastomeric matrix such as silicone rubber or polydi-
methylsiloxane (PDMS) [12–14]. Figure 1(b) illustrates an
elastomeric cantileverMSCRwith embedded NdFeB particles
representing the distal portion of the SCR. The MSCRs offer
the superior potential for wireless active navigation and steer-
ing in unstructured and confined environments under a relat-
ively low-level magnetic field stimulus. Moreover, these soft
robots exhibit superior bending flexibility allowing access to
very small branches, as seen in (figure 1(c)) [1]. Figure 1(c)
shows a MSCR consisting of a magnetoactive distal portion
that undergoes large bending deformation under the applied
magnetic field, while a non-magnetic segment controls the
advancement and retraction of the MSCR. Moreover, using
ferromagneticmicroparticles as an actuation source can permit
miniaturization of the MSCRs to sub-millimeter scales, which
would be favorable for more precise, complex, and repeat-
able delicate biomedical tasks in vivo/vitro settings, especially
for minimally invasive therapies [7, 8, 13, 15]. The mag-
netic body force and torque developed by the embedded hard
microparticles under an external magnetic field also enable the
MSCR to operate wirelessly within enclosed environments,
e.g. the human body.

The rapid advances in 3D and 4D printing technologies [16,
17] together with developments in novel magnetic circuits and

solutions [18–20] have contributed to developments in the fab-
rication process and actuation mechanisms for MSCRs [19].
The formulations of effective dynamical models and prac-
tical closed-loop control algorithms, however, are still in their
infancy, which are vital for developments and real-life prac-
tical applications of MSCR for minimally invasive surgical
tasks. Only limited efforts have been reported for dynamic
modeling and closed-loop control of MSCR [21–25]. Zhao
et al [24] proposed an analytical model employing linear the-
ory to estimate the bending angle of an MSCR in the static
state. The MSCR considered in the study comprised a soft
beam with hard-magnetic particles, while the developed ana-
lytical model was limited only to a small deformation regime.
The study also developed a finite element (FE) model of the
MSCR beam using ABAQUS considering large magnitude
bending deformations, the validation of which was examined
via laboratory measurements. Chen et al [25, 26] formu-
lated a mathematical model for estimating the static deforma-
tion of a hard-magnetic soft beam considering large deforma-
tions. The predicted responses revealed good agreements with
experimental data under high magnetic field intensities, while
considerable deviations between the model-predicted and the
measured responses were noted under lower magnitudes of
the magnetic field. Dadgar-Rad and Hossain [27] conducted
a time-dependent finite deformation analysis of a soft beam
with hard-magnetic particles subject to a magnetic loading.
In a recent study, Kadapa and Hossain [28] developed a con-
stitutive model of an iron-filled magneto-active polymer using
a unified numerical approach.

The modeling efforts reported in the aforementioned stud-
ies have been either limited to static analyses or involve com-
putationally demanding numerical analyses. Such models are
not thus suited for developments in control algorithms, which
are vital for realizing closed-loop navigation and tracking per-
formance. The tracking performance characteristics of soft
magnetic robots have been mostly studied using open-loop
control strategies or simple closed-loop methods, such as P,
PI, and proportional–integral–derivative (PID) [22, 23, 29].
Apart from their poor accuracy, suchmethods yield poor track-
ing performance in the presence of disturbances and uncer-
tainties. Kim et al [18] developed an open-loop strategy via
telerobotic for minimally invasive therapies to steer a mag-
netic SCR into narrow pathways of neurovascular phantoms.
Zhang et al [30] developed a small-scale SCR with a large-
angle steering capacity. In order to steer the robot into desired
sites, an open-loop control strategy was formulated to adjust
the external magnetic field. Liu et al [31] developed a remotely
controlled MSCR comprising NdFeB particles dispersed in a
PDMS matrix to steer the robot in a bifurcated environment.
The study employed a number of predefined magnetic field
stimuli of different magnitudes and directions to control the
steering of the MSCR.

Motivated by the limitations of conventional SCRs, design
challenges, and superior potential of the MSCRs, this study
presents a computationally efficient time-dependent model
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Figure 1. (a) Minimally invasive treatments, (b) schematic of the distal portion of an MSCR consisting of a soft texture polymer and NdFeB
hard magnetic particles, and (c) navigation of an MSCR in blood vessels illustrating bending of the distal portion under an applied magnetic
field.

of an MSCR together with a high-performance closed-loop
control algorithm to achieve accurate tracking of predefined
trajectories even at relatively high-frequencies. A high-fidelity
FE model of an MSCR, fabricated in the laboratory, is ini-
tially developed and analyzed under a perpendicular uniform
magnetic field using COMSOL Multiphysics® software. The
validity of the proposed FE simulation is investigated using the
measured deformation responses of the MSCR under differ-
ent magnetic excitations. Subsequently, using the developed
FE model, a computationally efficient time-dependent nonlin-
ear model is formulated by combing a number of weighted
linear models, each of which is a reduced-order version of
its corresponding high-order linear model extracted from the
FE analysis. The validity of the reduced model is examined
by comparing predicted deformation responses with those
obtained from the FE model. A novel feedforward interval
type-2 fractional-order fuzzy-PID (FFIT2FOF-PID) control
algorithm is finally designed and implemented to achieve
improved tracking performance and robustness against uncer-
tainties by taking advantage of an interval type-2 fuzzy logic
(IT2FL) network and fractional operators. The parameters of
the developed control algorithm are optimally tuned using the
general modified Cuckoo optimization algorithm (GMCOA)
considering a set of predefined trajectories. The effectiveness
of the proposed algorithm is demonstrated in terms of steer-
ing and tracking performance of the MSCR. The developed
model and control strategy may provide essential guidance for
the future development and practical implementation of this
emerging technology in real-life applications. The remaining
manuscript is organized as follows:

The governing equations of the MSCR are initially presen-
ted in section 2. Section 3 describes the formulation of

the MSCR using the weighted reduced-order linear models
extracted from the developed FE model. The proposed con-
trol strategy is subsequently formulated in section 4, while the
materials and methods are presented in section 5. Simulation
and experimental results are finally discussed in section 6,
and the conclusion of the current study is provided in the last
section.

2. Model formulation

The MSCR, shown in figure 1(b), is made of a non-magnetic
silicone-based elastomeric substrate impregnated with hard
micron-sized magnetic particles (NdFeB). This MSCR is
modeled as a magneto-rheological (MR) elastomeric canti-
lever beam subject to a uniform magnetic field normal to the
robot’s length. The residual magnetic flux density induced in
MSCR is assumed to be aligned along the x-axis in the static
equilibrium configuration.

The magneto-sensitive composite structure of the MSCR
together with the applied magnetic field constitutes a coupled
magneto-mechanical problem. The governing equations of
motion of the coupled system can be described by combining
elasticity andMaxwell equations in the presence of an external
magnetic load [32]:

∇.B= 0 (1)

∇×H= ID (2)

∇×E=−∂B
∂t

(3)

ρs
∂2us
∂t2

=∇.σs +FB (4)
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where E, FB, ID, B, H, ρs, us and σs are the electric field,
body force, current density, magnetic flux density, magnetic
field intensity, mass density, displacement of the robot struc-
ture, and Cauchy stress tensor of the solid medium, respect-
ively. The magnetic flux density ‘B’ and the current density
‘ID’ are related to magnetic field intensity ‘H’ and electric
field ‘E’, respectively, considering the following constitutive
relationships:

B= µ0 (H+M) (5)

ID = σE (6)

where µ0 denotes the vacuum permeability, M and σ are
the remanent magnetization and conductivity of the medium,
respectively.

The elastomeric structure is modeled using the widely
used Neo–Hookean hyperelastic material model to describe its
mechanical behavior. Assuming incompressibility of the elast-
omeric material of the MSCR’s substrate, the strain energy
function ‘W’ for incompressible Neo–Hookean material in the
three-dimensional space can be expressed as [33]:

W= C01 (I1 − 3) (7)

where C01 and I1 are the material constant and the first strain
invariant or trace of the left Cauchy-Green deformation tensor
‘G’, respectively. In a continuum medium, strain invariants
(I1, I2, and I3) can be obtained from the left Cauchy-Green
deformation tensor ‘G’, which is directly related to the finite
deformation gradient tensor ‘F’, such that [34]:

G= FFT (8)

I1 = tr(G) = λ2
1 +λ2

2 +λ2
3, I2 =

1
2

[
(tr(G))2 − tr

(
G2)]

= λ2
1λ

2
2 +λ2

2λ
2
3 +λ2

1λ
2
3, I3 = det(G) = J2 = λ2

1λ
2
2λ

2
3. (9)

In the above relations, J denotes the Jacobian matrix or the
determinant of the finite deformation gradient tensor ‘F’ and
λ1, λ2, and λ3 are, respectively, the stretch ratios in the length,
width, and thickness directions, which are evaluated from:

λ1 =
l
l0
, λ2 =

w
w0

, λ3 =
h
h0

(10)

where w, l, and h are the length, width, and height of the
rubber-like substrate in which notations with the subscript
‘0′ denote their initial state. For the incompressible mater-
ial subjected to uniaxial tension, the stretch ratios are related
as [33]:

λ1λ2λ3 = 1, λ2 = λ3 =
1√
λ1

. (11)

Equations (7) and (11) yield following expression for strain
energy density as a function of λ1:

W= C01

(
λ2
1 +

2
λ1

− 3

)
. (12)

Considering the Cauchy stress for the incompressible Neo–
Hookean hyperelastic material model and uniaxial stretch, the
stress in the pulling direction is subsequently obtained as:

σS1 = λ1
∂W
∂λ1

= 2C01

(
λ2
1 −

1
λ1

)
, C01 =

k
2

(13)

where k is the shear modulus or the second lame parameter.
In this study, the material constant ‘C01’ is identified from
the measured uniaxial loading test data, which is subsequently
used to estimate the elastic modulus of the elastomer ‘Em’ as:

Em = 2k(1+ νp) (14)

where νp denotes the Poisson’s ratio of the incompressible
elastomeric substrate.

The magneto-elastic and magnetic behaviors of the MSCR
are coupled by the Maxwell surface stress developed at the
boundary between the magnetic and elastic domains, can be
described by the following relations [32]: n(σ2 −σ1) = 0

σ1 = σs+σH1
σ2 = σH2

(15)

where n is outwards normal to the surface bounding the mag-
netic and non-magnetic domains, and σ1 and σ2 denote the
stress tensors at the interface attributed to magneto-elastic
behavior of the MSCR body (subscript 1) and the magnetic
domain (subscript 2), respectively. The subscript ‘H’ in the
above relations denotes the full Maxwell stress tensor on the
boundary of theMSCR body due to the applied magnetic field,
given by [32]:

σH =
1
µ0

(
BiBj−

1
2
δijB

2

)
, i = 1, . . . , 3 and j = 1, . . . , 3

(16)

where δij is Kronecker’s delta. The above formulations can be
solved to determine the deformation response of the MSCR
body under the application of an external magnetic field. In
this study, a FE model of the MSCR is developed in the
COMSOLMultiphysics platform to study the magneto-elastic
responses of the MSCR subject to a magnetic flux density ‘B’,
as described in section 6. The flux density input also relates
to the electromagnet coil current ‘I’, which can also be related
to voltage output of the controller considering a simple R-L
circuit for the coil.

3. Reduced-order linearized model

The magneto-elastic analysis of the MSCR is a complex non-
linear dynamic problem. A magneto-elastic FE model can be
effectively formulated to accurately predict the response beha-
vior of MSCR under varied applied magnetic fields. Such a
high-fidelity model is, however, computationally very heavy
and thus not suitable for the design of the controller. In this
study a novel reduced-order model of the MSCR is derived.
The developed model practically enables the design of the
controller for enhancing the tracking performance using the
trajectory piecewise linear (TPWL) approach [35]. The TPWL
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technique seeks to estimate the nonlinear magneto-elastic
behavior of the MSCR over a broad range of input, consid-
ering a combination of weighted linearized models relying
on multiple linearization points evaluated using the full FE
model. The nonlinear dynamic responses of the MSCR may
be expressed in the general form, as:{

ẋ= f(x,u)
y= g(x)

(17)

where xϵRn and yϵRn describe the states and outputs, respect-
ively, and uϵRpdenotes the control inputs. Moreover, f : Rn →
Rn and g : Rn → Rq are nonlinear functions. Assuming neg-
ligible contributions due to high-order terms, the linear-
ized model corresponding to a given state (x(i), u(i)) can be
expressed as:{

ẋ= f
(
x(i), u(i)

)
+Ai

(
x− x(i)

)
+Bi

(
u− u(i)

)
y= g

(
x(i)

)
+Ci

(
x− x(i)

) (18)

where, Ai and Ci, respectively, denote the Jacobian matrices of
f(·) and g(·) estimated at (x(i), u(i)), and Bi =

∂f
∂u evaluated at

(x(i), u(i)). Assuming the steady-state condition, f
(
x(i), u(i)

)
is considered to be zero in the above relations. Letting x̃= x−
x(i), ũ= u− u(i) and ỹ= y− g

(
x(i)

)
, the linearizedmodel can

be expressed as: {
˙̃x= Aix̃+Biũ
ỹ= Cix̃

(19)

The above linear model is considered valid in the vicinity of
the chosen operating state x(i). The effectiveness of the linear-
ized model can be, however, enhanced by considering a set of
linear equivalent models corresponding to different operating
points along a defined trajectory. This will permit an accur-
ate estimation of the nonlinear system’s response over a broad
range of inputs. Since the current state ‘x’ of the designed
linear model lies near the defined trajectory, the closest lin-
ear model (Ai, Bi, Ci) approximately mimics the nonlinear
response around the current state. The distance di between the
current state of the linearized model and the linearization point
is estimated by the Euclidean norm, x− x(i)2. The response
of the nonlinear system is then captured through appropriate
switching among different linearized models.

Consider a two-dimensional (2D) trained trajectory, shown
in figure 2, with various linearization points x(i). A weighted
linearized model is formulated considering a combination of
linear models corresponding to different linearization points{
x(i), u(i); i = 1, 2, . . . , m

}
, where m denotes the number of

linear models or operating points considered. The weighted
equivalent model can thus provide an accurate estimate of the
nonlinear responses, and is given by:

ẋ=
m∑
i=1

ωi [Aix̃+Biũ]

y=
m∑
i=1

ωi
[
Cix̃+ g

(
x(i)

)] (20)

Figure 2. A trained trajectory in the 2D state-space with different
operating points.

where, ωi (i = 1, 2, . . . , m) are the normalized weighting
factors (

∑m
i=1ωi = 1) associated with the linearized mod-

els corresponding to points (x(i), u(i)). The weighting factors
are then identified at each time step by evaluating the dis-
tance error between the current state and linearization points
‘di =

∥∥x− x(i)
∥∥
2
’, using the following algorithm, leading to

the identification of the dominant linearized model associated
with the linearization points x(i) at each time step [35].

Algorithm 1: Weight Calculation.

For i = 1, 2, . . . , m calculate di = ∥x− x(i)∥2
η :=min{di : i = 1, 2, . . . , m}
For i = 1, 2, . . . , m calculate Ai = e−βdi/η

γ =
m∑
i=1

Ai

For i = 1, 2, . . . , m calculate ωi =Ai/γ.

In the algorithm, β is a positive control parameter, which
affects the selection rate of dominant linear models. As it can
be realized, the linear model with higher di has a lower weight-
ing factor, thus less dominant.

The linear model derived on the basis of the res-
ults obtained from the FE model generally comprises a
large number of degrees-of-freedom (DOF). The model-
based simulations, and the controller design process thus
becomes computationally demanding, and generally infeas-
ible for real-time tracking control. Development of a reduced-
order model is highly desirable not only for reducing
the computational demand but also for facilitating the
controller design. It is, however, vital that the reduced-
order model (ROM) yields the system’s responses with
reasonable accuracy. In this study, the modal truncation
algorithm, sssMOR [36], is employed to reduce the order
of the extracted linear system. Considering equation (19),
the reduced-order linear model may be expressed in the
following form:

ż= Arz+Bru (21)
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where zϵRv denote the states of the reduced model, ArϵR
v×v

and BrϵR
v×r. Here, a transformation matrix ‘V’ exists that

maps the states of the original linear model to those of the
ROM. Using equations (20) and (21), the ROM is formulated
as follows, where w ∈ Rr denote the outputs:

ż=
m∑
i=1

ωi
[
Ari

(
z−VTx(i)

)
+Bri

(
u− u(i)

)]
w=

m∑
i=1

ωi
[
Cri

(
z−VTx(i)

)
+ g

(
x(i)

)] (22)

Owing to its relatively lower dimensionality, the ROM
can provide accurate predictions of the nonlinear system’s
responses in a computationally efficient manner. Moreover,
the reduced-order model can facilitate the development of
advanced control strategies.

4. Controller design

4.1. Feedforward interval type-2 fractional-order fuzzy-PID
controller

A high-performance closed-loop control strategy based on
IT2FL is designed. The objective is to minimize the tracking
error of the proposed MSCR in real-time. The tracking error
‘e’ is defined as the deviation of the tip angle ‘θ’ of the MSCR
with respect to the desired angle ‘θd’. The tracking error and
its fractional time derivative ‘Dαe’ can be expressed as:

e= θd− θ (23)

Dαe=
dα

dtα
(e) (24)

Remark 1. In this study, the Grunwald–Letnikov definition
is used for fractional-order derivative and integral operators
[37]. The proposed IT2FL network is designed considering
two inputs (xf1 , xf2) based on the tracking error and its frac-
tional time derivative as:

xf1 = KPe (25)

xf2 = KDD
αe (26)

where KP and KD are constant coefficients, which are determ-
ined using the GMCOA [38, 39]. The inputs xf1 and xf2 are par-
titioned byN type-2 fuzzy sets, labeled as, F̃i1 (i = 1, 2, . . . , N)
and F̃j2 (j = 1, 2, . . . , N), respectively. Since there exists a rule
for each possible combination of N sets of the two input
domains (xf1 and xf2), the rule-base network comprisesM= N2

rules. The kth
{
k= N(i − 1)+ j, k ∈

[
1 M

]}
rule ‘Rk’ of

the IT2FL network is assumed to be of the form:

Rk : IFxf1 is F̃
i
1 andxf2 is F̃

j
2 ; theny isZ

k (27)

where Zk = [ z−
k z̄k ] denotes the consequent membership

functions (MFs), and z
−
k and z̄k are crisp numbers that are loc-

ated at a distance ν away from either side of the center of sym-
metry. The firing set associated with the kth rule, F k, is defined

considering the interval set given in equation (28). Each input
in the aforementioned rules takes seven IT2FL MFs, includ-
ing two Sigmoid and five Gaussian type functions, which are
defined in the following relations:

F k (xf1 ,xf2) =
[
f
−

k (xf1 ,xf2) f̄k (xf1 ,xf2)
]

(28)

where,

fk (xf1 ,xf2) = µ
F̃i1
(xf1)×µ

F̃j2
(xf2) (29)

f̄ k (xf1 ,xf2) = µ̄F̃i1
(xf1)× µ̄F̃j2

(xf2) (30)

µ̄F̃i1
(xf1) =

1

1+ e
(
σuAi (xf1+cAi)

) , i = 1and7 (31)

µ̄F̃i1
(xf1) = e−σuAi (xf1+cAi)

2

, i = 2, . . . , 5 (32)

µ
F̃i1
(xf1) =

ηlA

1+ e
(
σlAi (xf1+cAi)

) , i = 1and 7 (33)

µ
F̃i1
(xf1) = ηle

−σlAi (xf1+cAi)
2

, i = 2, . . . , 5 (34)

µ̄F̃j2
(xf2) =

1

1+ e

(
σuBj (xf2+cBj)

) , j = 1and 7 (35)

µ̄F̃j2
(xf2) = e

−σuBj (xf2+cBj)
2

, j = 2, . . . , 5 (36)

µ
F̃j2
(xf2) =

ηlB

1+ e

(
σlBj (xf2+cBj)

) , j = 1and 7 (37)

µ
F̃j2
(xf2) = ηle

−σlBj (xf2+cBj)
2

, j = 2, . . . , 5. (38)

In the above relations, cA and cB are theMFs centers associ-
atedwith the first and second inputs of the designed IT2FL net-
work, respectively. σuA, σlA , σuB , σlB , ηlA , and ηlB are the coef-
ficients of the Gaussian and Sigmoid functions, whose values
are determined using the optimization process. µF1 and µF2

denote the membership functions of the transverse angle error
and its fractional rate, respectively, in which µ̄F1and µ̄F2 are
upper MFs, and µ

F1
and µ

F2
are lower MFs. Since returned

values are type-2 fuzzy, the type of returned membership val-
ues is reduced to type-1 fuzzy using the center-of-sets type-
reducer method defined in equation (39) [40, 41], such that:

Ycos (xf1 ,xf2) =
⋃

f k ∈ F k

Zk ∈ Zk

∑M
k=1Z

kf k∑M
k=1 f

k
=
[
yl yr

]
(39)

where the defuzzified outputs yl and yr are obtained from:

yl =

∑L
k=1 f̄

k z
−
k+

∑M
i=L+1 f−

k z
−
k∑L

i=1 f̄
k+

∑M
i=L+1 f−

k
(40)
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Figure 3. The schematic diagram of the interval type-2 fuzzy logic network.

Table 1. IT2FL rules for the MSCR’s system.

Error rate (xf2)

Error (xf1) F1
2 F2

2 F3
2 F4

2 F5
2 F6

2 F7
2

F1
1 Z1 Z1 Z2 Z3 Z3 Z4 Z4
F2
1 Z1 Z2 Z2 Z3 Z4 Z4 Z5
F3
1 Z1 Z2 Z3 Z4 Z4 Z5 Z6
F4
1 Z1 Z2 Z3 Z4 Z5 Z6 Z7
F5
1 Z3 Z3 Z4 Z4 Z5 Z6 Z7
F6
1 Z3 Z4 Z4 Z5 Z6 Z6 Z7
F7
1 Z4 Z4 Z5 Z5 Z6 Z7 Z7

Figure 4. Schematic of the feedforward interval type-2 fractional-order fuzzy-PID algorithm.

yr =

R∑
k=1

f
−

kz̄k+
M∑

k=R+1
f̄kz̄k

R∑
k=1

f
−

k+
M∑

k=R+1
f̄k

. (41)

In the above relations, R and L are the switching points,
which are estimated via the iterative Karnik–Mendel (KM)
algorithm [42]. The mean of the outputs yl and yr is sub-
sequently taken as the crisp output of the IT2FL network.
The structure of the designed IT2FL network is depicted in
figure 3, while the corresponding rules are summarized in
table 1.

A novel FFIT2FOF-PID control algorithm is subsequently
designed, as shown in figure 4, to achieve improved track-
ing performance and robustness against uncertainties. The
algorithm employs velocity and acceleration feedforward
compensations to further mitigate tracking errors [43]. The
overall control law U(t) of the FFIT2FOF-PID control
algorithm is expressed as:

U(t) = δy(t)+KI
d−β

dt−β
y(t)+K1

dθd
dt

+K2
d2θd
dt2

(42)

where y(t), the IT2FL component of the control algorithm, is
a nonlinear function of the error and its fractional-derivative,
given by:

7
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y(t) = fIT2FL

(
KPe(t)+KD

dαe(t)
dtα

)
(43)

where δ, K1 andK2 are constant parameters, which are estim-
ated using the GMCOA.

4.2. Calibration of control algorithm’s parameters

The parameters of the designed FFIT2FOF-PID control
algorithm are tuned using GMCOA with the aim of minim-
izing an objective function (OF), defined as a weighted sum
of some well-known indicators. These include integral abso-
lute error (IAE), integral time absolute error (ITAE), and con-
trol energy factor (CE). The OF, together with the considered
indicators, are expressed below:

OF= w1IAE+w2ITAE+w3CE (44)

IAE:

teˆ

0

|θd (t)− θ (t)|dt (45)

ITAE :

teˆ

0

t× |θd (t)− θ (t)|dt (46)

CE:

teˆ

0

U(t)2dt (47)

where t and te denote the current instant and the entire test
time, respectively. The time variable t in the considered OF
above minimizes the oscillation chance in the system output
and effectively reduces the closed-loop system’s settling time
[44]. The optimization function, defined in equation (44), is
subject to a number of limit and equality constraints in order to
limit the number of design variables and achieve rapid conver-
gence of the solutions, as defined in equation (48). Moreover,
the IT2FLmembership functions, F4

1 and F
4
2, are placed at zero

positions, while the remainingMFs are positioned on two sides
of these two membership functions.

Z1 < Z2 < Z3 < Z4 = 0< Z5 < Z6 < Z7
|Z1|= |Z7| , |Z2|= |Z6| , |Z3|= |Z5| , Z4 = 0

Z̄j = Zj+ ν, Z−
j
= Zj− ν, j = 1, 2, 3, 5, 6, 7

. (48)

5. Material and methods

5.1. Sample preparation and characterizations

The MSCR was fabricated by dispersing hard magnetic
particles NdFeB (MQFP-B+, Neo-Magnequench) with a dia-
meter of 5 µm in a silicone-based matrix. The SE1700 (base-
to-curing agentmass ratio 10:1, DowCorning) wasmixedwith
Ecoflex 0030—Part A (Smooth-On, Inc) with a mass ratio
of 1:1 to achieve desirable modulus of elasticity, while the
volume of iron particles was kept at 17%. It is important to

Table 2. Geometrical and mechanical specifications of the MSCR
sample.

Parameter Value Parameter Value

Length (m) 18.2× 10−3 Poisson’s ratio 0.499
Width (m) 5× 10−3 Young’s

modulus (KPa)
748.69

Thickness (m) 0.84× 10−3 Shear modulus
(KPa)

249.73

Density (Kg m−3) 2172 Remanent
magnetization
(KA m−1)

52

mention that a volume fraction range of 15%–20% is com-
monly used in the literature for magnetoactive soft actuat-
ors to achieve large deformation at low-intensity magnetic
fields [7]. Initially, the NdFeB particles were manually mixed
into the resin using a spatula. Subsequently, this mixture was
thoroughly blended with the particles in a Thinky ARV-200
vacuum mixer. The process was conducted under a vacuum
pressure of 27 in Hg (91.4 kPa) and at an angular speed
of 2000 rpm for a duration of 3 min to ensure homogen-
ous mixing. Given the high viscosity of the resin mixture,
which presents a challenge in removing air bubbles, mul-
tiple short-duration vacuum mixing sessions were employed
instead of a single, prolonged session. This approach was
strategically chosen to effectively eliminate air pockets from
the mixture, while also mitigating the risk of partial curing
that could arise from excessive heat generated during a long-
duration mixing process. An exact rectangular mold, measur-
ing 67× 65× 10 mm3 and designed in SOLIDWORKS 2021
to accommodate ten MSCR samples, was subsequently fab-
ricated using an SLA 3D printer (Formlabs Form 3+) with
an adjustable accuracy of 25 µms. Following fabrication, this
mold was impregnated with a release agent (Ease Release 200,
Smooth-On Inc) to facilitate sample removal. The prepared
mixture was subsequently poured into the mold and permitted
to cure in an oven at a temperature of 93 ◦C (200 ◦F) for about
four hours. The cured sample, with desired dimensions of the
MSCR (table 2), was removed from the mold using a razor
cutter. Figure 5 presents the designed and fabricated mold and
the fabricated MSCR sample. The prepared MSCR sample
was subsequently magnetized in the direction of the robot’s
length using a strong magnetic field (1.6 T), provided by a
variable airgap electromagnet (DXSBV-100, Dexing Magnet
Tech. Co., Limited) equipped with 4 cm poles. The reman-
ent magnetization of the sample was computed using the data-
sheets provided by Neo-Magnequench [45], which included
the hysteresis demagnetization loop and the saturation level
data. The fabrication process is illustrated in figure 6. It is
noted that the distribution of iron particles was examined via
a scanning electron microscope (Hitachi S-3400N), which
is shown in figure 7(a). The micrograph reveals NdFeB
particles’ homogenous and random distribution within the
matrix.

8



Smart Mater. Struct. 33 (2024) 045025 S A Moezi et al

Figure 5. Illustration of (a) the mold designed in SOLIDWORKS software, (b) the mold fabricated using an SLA 3D printer, and (c) the
fabricated MSCR sample.

Figure 6. Fabrication process.

Laboratory experiments were performed to identify mech-
anical property of the fabricated sample. The magnetized
sample was subjected to tensile loading at a rate of
30 mm min−1 until failure via a uniaxial loading test sys-
tem (F1505-IM, Mark–10). To ensure reliability, these tensile
loading tests were conducted multiple times. The measured
data were used to obtain stress-stretch characteristics of the
sample, as shown in figure 7(b). The experimental data were
subsequently fitted to the Neo-Hookean hyperelastic model,
described in equation (13), to identify model parameters,
as seen in figure 7(b). It is important to mention that for
each tensile test, the modulus of elasticity was calculated as
described above, and the value reported in the paper represents
the median of all these measurements. The mechanical and
magnetic properties of theMSCR sample are also summarized
in table 2.

5.2. Measurements of magneto-elastic responses

An experiment was designed to characterize magneto-elastic
responses of the MSCR subject to various magnetic field stim-
uli. The measured responses were used to examine the valid-
ity of the developed FE as well as ROM and also to assess
the effectiveness of the proposed FFIT2FOF-PID control
algorithm. The experiments were performed under a uniform
magnetic field ranging from 0.5–32 mT, which was gener-
ated by a variable airgap electromagnet (DXSBV-100, Dexing
Magnet Tech. Co., Limited) powered by a linear amplifier
(LVC2016, AE Techron). The generatedmagnetic field around
the MSCR was measured using a portable gauss meter (Parker
5180, F.W. BELL) and acquired in a data acquisition card
(M Series–NI PCI-6251, National Instruments). The magneto-
elastic response of the tip of the MSCR (angular deflection)

9



Smart Mater. Struct. 33 (2024) 045025 S A Moezi et al

Figure 7. (a) Scanning electron microscope image of the sample with 17% volume fraction of NdFeB particles, and (b) mechanical tensile
test results and Neo-Hookean fitting model.

Figure 8. Hardware-in-the-loop experiment design for real-time actuation of the MSCR.

was captured by a high frame rate camera (Blackfly BFS-U3-
17S7C-C, FLIR) together with the image processing algorithm
programmed in Python language. A hardware-in-the-loop
(HiL) was subsequently designed to measure the real-time
actuation of the MSCR with the proposed FFIT2FOF-PID
control algorithm implemented on the target computer using
MATLAB-Simulink Real-Time (R2017a) with a sample time

of 0.01 s. The experiment design for real-time actuation and
control is illustrated in figure 8.

6. Results and discussions

The magneto-elastic responses of the MSCR, depicted in
figure 1(b), are initially evaluated via a 2D FE model

10
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Figure 9. (a) FE model of the MSCR and its surrounding airbox, and (b) The transverse angular deformation of the MSCR’s tip under
different magnitudes of uniform magnetic flux density (peak angular deformation is also shown in the legend).

Figure 10. The images of the steady-state transverse angle response of the MSCR’s tip (uniform magnetic flux density = 2−25mT).

developed in COMSOL Multiphysics (5.6) software. The
model is formulated using the geometrical and material para-
meters presented in table 2. Finite deformation kinematics
is implemented to account for large deformations using the
Eulerian–Lagrangian formulation. The Neo–Hookean hyper-
elastic material model, described in section 2, is used, whose
parameters were identified from the uniaxial tension test data
(figure 7(b)). The MSCR is modeled within a sufficiently
large airbox to ensure uniformity of the applied magnetic
field surrounding the MSCR. The triangular elements of quad-
ratic order are used to model the airbox, and the MSCR’s
body is modeled using the mapped mesh of quadratic order,
which benefits from a uniform distribution pattern, as shown
in figure 9(a). It should be noted that the considered mesh pro-
file comprises 183 400 DOF. The validity of the chosen mesh
profile was ensured through convergence tests under a uniform
magnetic flux density of 15 mT until the reaction force at the
lower fixed node boundary of the MSCR converged to less
than five percent in subsequent simulations.

Figure 9(b) illustrates the steady-state deformation
responses of the simulated MSCR under different magnetic
field intensities ranging from 0.5mT to 30mT. Moreover, the
experimentally measured deflection responses under differ-
ent magnetic loadings (2mT–25mT) are shown in figure 10.

The results suggest nearly linear behavior of the MSCR at
low magnetic field intensities and highly nonlinear behavior
as well as saturation tendency under magnetic field intensity
in excess of 15 mT. The validity of the model is examined
by comparing the transverse angle of the tip of the MSCR
with the measured data under different magnitudes of mag-
netic flux density, as seen in figure 11. The peak tip deflec-
tion responses obtained from the experiments and the model
are also compared in table 3. Comparisons show reasonably
good agreements between the FE model-predicted and meas-
ured responses. The peak error was observed as 2.7%, which
occurred at very low magnetic field intensities, while the peak
error under medium to high magnetic flux densities was less
than 1%.

6.1. Reduced-order model simulations and verifications

The effectiveness of the developed reduced-order model of
the MSCR is investigated by comparing its response beha-
vior with that of the FE model for a defined trajectory. As
mentioned before, the accuracy of the reduced model strongly
relies on the number of operating linearized points (NOLP)
or linear system models considered, as it is evidenced in
equation (22). The model accuracy also depends on the order
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Figure 11. Comparison of the peak tip deflection response predicted
from the model with the measured data under different magnitudes
of magnetic flux density.

Table 3. Comparison of transverse tip deflection response of the FE
model with the measured data under different magnitudes of
magnetic flux density.

Tip deflection (rad)

Magnetic flux density (mT) Model Measured % Difference

2 0.38 0.37 2.72
5 0.79 0.78 1.28
10 1.15 1.15 0.00
15 1.32 1.31 0.76
20 1.40 1.40 0.00
25 1.45 1.45 0.00
30 1.49 1.50 0.67

Table 4. Reported RSME and STD indicators for developed FE and
TPWL models.

Indicators

Case ORLS NOLP RMSE STD Run time (s)

A.1 2
12

0.0240 0.0239 1.57
A.2 4 0.0208 0.0205 1.88
A.3 6 0.0194 0.0191 2.27

B.1 2
18

0.0198 0.0196 2.15
B.2 4 0.0135 0.0132 2.72
B.3 6 0.0122 0.0119 3.51

C.1 2
36

0.0112 0.0110 2.99
C.2 4 0.0101 0.0099 4.08
C.3 6 0.0093 0.0090 6.44

FE Model — — — — 5100

of the reduced-order linear system (ORLS). It is, however,
desirable to derive an effective ROM on the basis of the least
number of linearization or operating points and least order. In
this study, the reduced-order models are formulated consid-
ering 12, 18, and 36 operating points extracted from the FE
model responses. Moreover, each reduced-order linear system
model is designed with three different orders, namely, 2, 4, and
6. A total of 9 ROMs of the MSCR are thus formulated, which
are labeled as (A.j, B.j, and C.j; j = 1,2,3) in table 4. The rel-
ative response prediction accuracy of the models is assessed
considering a trajectory governed by 5 mT harmonic magnetic
flux density stimulus at a frequency of 0.5 Hz.

Figures 12(a)–(c) compare tip deflection responses of the
reduced-order models with those of the FE model. The com-
parisons suggest that the reduced-order models yield reason-
ably good estimations of the nonlinear responses, irrespective
of NOLP and ORLS combinations considered. The deflection
response of the reduced-order model with NOLP = 36 and
ORLS = 6 exhibits very close agreement with that obtained
from the FE model. The relative effectiveness of the reduced-
order models is further assessed in terms of root mean square
error (RMSE) and standard deviation (STD), which are repor-
ted in table 4. The results show that the ROMwith NOLP= 12
and ORLS = 2 (A.1) yields RSME of 0.0240, which reduces
to 0.0194 when ORLS is increased to 6 (A.3). The RMSE of
the model with NOLP = 36 and ORLS = 6 (C.3) is observed
to be substantially lower (0.0093). The STD of the error also
shows a pattern similar to the RMSE. The computational effi-
ciency of the reduced-order models is substantially superior
to that of the FE model. The simulations of the ROMs were
conducted using MATLAB-Simulink software (R2020b) on a
dual-CPU computer system. Each Intel Xeon Silver 4210 R
CPU features ten cores and twenty threads. The system is fur-
ther equipped with 64 GB of RAM. The simulation of the
FE model was also performed using COMSOL Multiphysics
(5.6) installed on the same computer. Total simulation time
was limited to 5 s for both the reduced-order and FE mod-
els. The run time associated with all the models, summarized
in table 4, clearly shows a substantially lower computational
demand for the linear models. For instance, for ROM with
NOLP = 36 and ORLS = 6, the run time is nearly 6 s com-
pared with 5100 s (85 min) required for the FE model. Owing
to its ability to predict the MSCR responses accurately with
superior computational efficiency, the ROM with NOLP= 36
and ORLS = 4 is used for the design and assessments of the
developed FFIT2FOF-PID controller.

6.2. Calibration of the FFIT2FOF-PID controller

The parameters of the proposed FFIT2FOF-PID controller
were optimally tuned using GMCOA due to its easy imple-
mentation, fast convergence, and capability to capture global
optimum [38] in order to enhance the tracking performance
of the MSCR with the reduced control effort. The developed
ROM (case: C.2 in table 4) was effectively utilized to design
the controller for a predefined trajectory. The control voltage
obtained from the control algorithm (figure 4) serves as the
input of the cascaded system considering the R–L model of
the electromagnet. The resistance (R) and inductance (L) of
the electromagnetic system were measured in the laboratory
as 8.9Ω and 3H, respectively.

The parameters of GMCOA are summarized in table 5.
These parameters, including the initial number of cuckoos
(NICuckoo), the number of cuckoos in infinite iteration
(NICuckooinf), the maximum number of allocated eggs to each
cuckoo (EggMax), motion coefficient (MC), the impact factor
of cuckoo fitness (CR), the distribution angle (θC), and the pos-
itive constants λC,Ω, and tC were determined by trial and error
considering the best obtained solution in the least number of
iterations with a high convergence rate. Due to the random
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Figure 12. The response of the nonlinear FE and TPWL models for
(a) NOLP = 12, (b) NOLP = 18, (c) NOLP = 36.

Table 5. Defined parameters for GMCOA.

Parameters Value

Numberof Iterations 100
NICuckoo 5
NCuckooinf 8
EggMax 4
λC 2.5
MC 2
tC 2
CR 4
Ω 0.75
θC 0

nature of GMCOA, the designed optimization problem was
solved five times in an attempt to report the best pseudo-
global solution as FFIT2FOF-PID’s parameters. The conver-
gence graph of the GMCOA for the best solution and the nor-
malized IT2FL surface rule after the optimization process are
depicted in figures 13(a) and (b), respectively. The optimized
IT2FL membership functions are also shown in figure 14.

Figure 13. (a) The best cost value among the five times running the
GMCOA algorithm, and (b) IT2FL surface rule after optimization
with GMCOA.

6.3. Performance assessment of the FFIT2FOF-PID
controller

The tracking performance of the optimally tuned FFIT2FOF-
PID controller is assessed through HiL, as described in
section 5. A total of 6 different target trajectories are con-
sidered for evaluating the control performance, which are
given in equation (49). These include the harmonic trajectories
in the 0.5–3 Hz frequency range with amplitude of an π

6 and a
complex harmonic trajectory (combination of several harmon-
ics). A trajectory with a relatively higher tip angle amplitude
of π

4 is also considered to assess the control performance for
dynamic trajectories of different amplitudes and frequencies.
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Figure 14. IT2FL network characteristics after optimization with GMCOA: (a) MFs for first input, (b) MFs for second input.

D.1 :
π

6
Sin(π t)

D.2 :
π

6
Sin(2π t)

D.3 :
π

6
Sin(4π t)

D.4 :
π

6
Sin(6π t)

D.5 :
π

6
Sin(2t)+

π

9
Sin(6t) +

π

18
Sin(8t)

D.6 :
π

4
Sin

(
5π
2
t

)
. (49)

All cases are experimentally captured for a duration of 30 s
using the Simulink Real-Time (R2017a). The proposed con-
troller performance is also compared with those of the Fuzzy-
PID (FPID) and PID methods, and its relative merits are dis-
cussed below.

Figure 15 illustrates the tracking performance of the pro-
posed controller for the six desired trajectories defined in
equation (49). The control effort in each case is also presented
in figure 16 in terms of the required control voltage. Figures
also show the tracking as well as control effort performances
of the FPID and PID control methods for the sake of compas-
sion. As demonstrated in figure 15, the tracking error of the

FFIT2FOF-PID algorithm is considerably smaller than those
of the FPID or PID methods for all of the considered cases
(D.1 to D.6). The tracking performance of the FFIT2FOF-
PID algorithm is also shown in supplementary information
for cases D.1 to D.5. The conventional PID method tracks
the desired tip angle with a more significant margin of error
than the FPID algorithm. Moreover, it is observed that track-
ing relatively higher frequency trajectories is challenging for
both FPID and PID methods. In contrast, the FFIT2FOF-PID
algorithm tracks the higher frequency trajectories accurately,
which is primary attributed to its IT2FLmembership functions
and feedforward compensator.

Moreover, the control efforts of the FFIT2FOF-PIDmethod
are notably smaller than those of the FPID and PID methods
for all trajectories considered. Both the FPID and PID control-
lers exhibit noticeable chattering in the control voltage, while
the FFIT2FOF-PIDmethod yields smooth variation in the con-
trol effort for all considered cases. This is mainly attributed to
the fractional operators integrated within the FFIT2FIT-PID
controller that help significantly alleviate the chattering caused
by the noise in the image sensor signal.

The relative tracking performance of the FPID, PID,
and FFIT2FIT-PID control methods are further quantified in
table 6 in terms of IAE, IATE, and CE indicators. All of the
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Figure 15. Comparisons of the tip deflection tracking performance of the proposed FFIT2FOF-PID with those of the PID and FPID
controllers for different target trajectory cases presented in equation (49): (a) D.1, (b) D.2, (c) D.3, (d) D.4, (e) D.5, and (f) D.6.
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Figure 16. Comparisons of the control effort performance of the proposed FFIT2FOF-PID with those of the PID and FPID controllers for
different target trajectory cases presented in equation (49): (a) D.1, (b) D.2, (c) D.3, (d) D.4, (e) D.5, and (f) D.6.
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Table 6. Relative performance indicators for the PID, FPID and
FFIT2FOF-PID closed-loop system of the MSCR, evaluated from
the experiments.

Indicator

Case Control method IAE×103 ITAE×103 CE

D.1

PID

84 1251 501
D.2 231 3480 1837
D.3 883 13 160 11 305
D.4 1475 22 418 20 433
D.5 679 10 206 5460
D.6 197 2924 1286

D.1

FPID

70 1039 385
D.2 89 1317 1374
D.3 509 7487 9556
D.4 1217 18 164 12 623
D.5 514 8892 5279
D.6 136 2000 1166

D.1

FFIT2FOF-PID

60 881 381
D.2 79 1178 1283
D.3 104 1586 5370
D.4 170 2449 11 047
D.5 177 2630 5004
D.6 106 1563 1120

performance indicators were evaluated over the entire 30 s test
duration. The results also confirm the performance superior-
ity of FFIT2FIT-PID method over the FPID and PID methods
for all trajectory cases considered. For instance, for the D.1
case, the IAE indicator for the FFIT2FIT-PIDmethod is 15.2%
and 28.7% lower than those of the FPID and PID methods,
respectively. The FFIT2FIT-PID method, in-particular, yields
considerably better performance for higher frequency traject-
ory variations. For instance, in the case of trajectory variation
at 2 Hz (case D.3), the ITAE index of the FFIT2FIT-PID shows
tracking enhancements of about 78.8% and 87.9% when com-
pared to the FPID and PID control methods, respectively. The
results summarized in table 6 also show similar trends in the
CE index for all the cases considered.

7. Conclusion

This paper aimed at developing a time-dependent model with
a low computational effort and high simulation speed capable
of capturing the nonlinear behavior of an MSCR, in addi-
tion to designing a robust control strategy that is favorable
for tracking relatively high-frequencies trajectories with sig-
nificant accuracy. In this regard, an accurate FE model was
initially developed to estimate the nonlinear behavior of an
MSCR under a uniform magnetic field perpendicular to the
robot’s length ranging from 0.5− 32 mT. The comparison
study between simulation results and experimental findings
revealed a maximum deviation of 2.7%. An equivalent model,
which benefited from a combination of weighted reduced-
order linear models, was subsequently formulated to estim-
ate the robot’s nonlinear behavior efficiently. The developed

model at the worst-case scenario consisting of 36 linear mod-
els with the order of six, which estimated theMSCR’s behavior
with high accuracy, was implemented in about 6.4 s which was
792 times faster than the FE simulation with a similar simu-
lation time. This favorable advantage was used to design the
FFIT2FOF-PID control algorithm, whose control parameters
are tuned by GMCOA. The HiL experimental study on pre-
defined trajectories revealed the superiority of the designed
control algorithm over the FPID and PID methods, particu-
larly at relatively high-frequencies where those control meth-
ods exhibited poor control performance. The developed model
and control methodology can provide essential guidance for
practical navigation of MCSR in a confined and unstructured
environment with uncertainty. The development of a model-
based control strategy based on the developed time-dependent
model in environments with uncertainties and disturbances
may be considered as a future research study.
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