
Securing Control of Clustered DC Microgrids with

Multiple Interlinking Converters

Ramin Babazadeh Dizaji

A Thesis

in

The Department

of

Concordia Institute for Information Systems Engineering (CIISE)

Presented in Partial Fulfillment of the Requirements

for the Degree of

Master of Applied Science (Information Systems Security) at

Concordia University

MontrÂeal, QuÂebec, Canada

March 2025

© Ramin Babazadeh Dizaji, 2025



CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Ramin Babazadeh Dizaji

Entitled: Securing Control of Clustered DC Microgrids with Multiple Interlink-

ing Converters

and submitted in partial fulfillment of the requirements for the degree of

Master of Applied Science (Information Systems Security)

complies with the regulations of this University and meets the accepted standards with respect to

originality and quality.

Signed by the Final Examining Committee:

Chair
Dr. Jun Yan

Examiner
Dr. Jun Yan

Examiner
Dr. Dr. Nizar Bouguila

Thesis Supervisor
Dr. Mohsen Ghafouri

Approved by
Chun Wang, Chair

Department of Concordia Institute for Information Systems Engi-

neering (CIISE)

2025
Mourad Debbabi, Dean

Faculty of Engineering and Computer Science



Abstract

Securing Control of Clustered DC Microgrids with Multiple Interlinking Converters

Ramin Babazadeh Dizaji

The integration of multiple direct current (DC) microgrids offers a resilient and efficient solu-

tion for modern energy demands, particularly with the increasing adoption of intermittent renewable

energy sources. However, the reliance on communication networks for coordinating multiple inter-

linking converters (MICs) introduces vulnerabilities, particularly to False Data Injection Attacks

(FDIAs), which can significantly disrupt system stability and operation.

This thesis presents AI-driven cyber-defense strategies to protect clustered DC microgrids in-

terconnected via MICs against FDIAs.

At the primary control level, a Support Vector Machine (SVM)-based anomaly detection frame-

work is developed to identify FDIAs in real time. Once an attack is detected, the system au-

tonomously transitions to a localized power-balancing control to maintain operational stability.

At the secondary control level, an Adaptive Neuro-Fuzzy Inference System (ANFIS)-based sig-

nal estimation strategy is proposed to detect injected FDIAs and subsequently reconstruct compro-

mised control signals, thereby maintaining MIC coordination.

Extensive simulation studies validate the effectiveness of the proposed methods, demonstrating

their ability to enhance microgrid resilience against various FDIA scenarios, including time-varying

and unbounded attacks. The results confirm the efficacy of both the SVM and ANFIS frameworks in

safeguarding clustered DC microgrids interconnected via Multiple Interlinking Converters against

cyber threats, ensuring stable and secure operation.
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Chapter 1

Introduction

1.1 Introduction and Related Work

A microgrid is a localized power network that consists of multiple distributed generators (DGs),

energy storage systems, and various types of loads [7]. Typically, microgrids are categorized into

two main types: AC and DC [16]. Given the DC nature of most renewable energy sources and the

absence of challenges such as reactive power, power quality, and frequency regulation, DC micro-

grids have gained significant traction globally and are increasingly regarded as a viable approach for

realizing smart grid systems [2, 12]. Nevertheless, DC microgrids face power imbalances between

generation and consumption, primarily caused by 1) the intermittent nature of power generation

from photovoltaic (PV) and wind systems, and 2) uncertainties in load demand [7]. It is impor-

tant to note that such power imbalances can result in voltage drops, compromising reliability and

stability. Therefore, mitigating these imbalances is crucial [35].

To address these challenges, the concept of multiple DC microgrids has been introduced. This

approach aims to maximize the utilization of renewable energy sources, reduce the dependency on

energy storage systems [27], and enhance reliability and stability, particularly during emergencies

[21]. In this configuration, each microgrid can act as an energy backup for neighboring microgrids,

ensuring a continuous and reliable power supply [18, 40]. In the domain of DC microgrid clusters,

two DC microgrids operating at the same nominal voltage level can be directly interconnected using

a cable [45, 28] while the interconnection of DC microgrids operating at different voltage levels is
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achieved through the deployment of interlinking converters [26, 38, 11, 31]. In the context of

DC microgrids with multiple voltage levels, two critical aspects must be addressed. The first is

the selection of a suitable overlay interconnection topology to improve stability, reliability, and

power availability. The second is the development of a secure control scheme to ensure reliable

power sharing among interconnected microgrids and to optimize the utilization of distributed energy

resources [6].

Regarding the first challenge, an isolated bi-directional DC±DC converter has been introduced

in [4, 34] to enable flexible coupling between DC microgrids, while [20, 13] propose a non-isolated

bi-directional DC±DC converter for connecting two DC microgrids. It is worth mentioning that

MICs are usually employed in parallel to interconnect subgrids, rather than relying on a single in-

terlinking converters (ICs) [23]. This topology is advantageous since employing a single interlink-

ing converter might not have the capability to effectively transfer a significant power load between

two DC microgrids, given the constrained current/voltage capacity of the switching devices and the

inherent limitations of its associated controller [29, 22]. Moreover, the use of MICs connections

provides inherent redundancy, offering increased capacity and providing the system’s ride-through

ability in case one of the ICs fails [41].

When it comes to the second challenge, developing a secure control scheme for MICs is crucial

for the smooth operation of coupled DC microgrids, as power exchange relies entirely on MICs. To

this end, a hierarchical control strategy, which employs either a centralized or distributed method,

is typically used to achieve load-sharing between interconnected DC microgrids and to facilitate

coordination among MICs [5, 6]. Centralized control systems, while simplifying management by

centralizing data processing and decision-making, face significant challenges including high compu-

tational loads, susceptibility to single-point failures, and increased vulnerability due to their reliance

on extensive communication networks [8]. In response to these limitations, distributed secondary

control strategy, which only require local data exchanges between adjacent nodes, eliminating the

need for a central controller and a complex communication network [19, 44, 46], has been pro-

posed for DC microgrids connected through multiple converters to enhance system flexibility and

robustness [5].

due to the extensive information exchanges and computational processes involved [10, 2].

2



However, the dependence on communication networks and the computational processes in-

volved in distributed strategies significantly heightens the risk of cyber threats [10, 2]. Such threats

could disrupt MIC coordination, cause substantial economic losses, and even render the entire mi-

crogrid inoperable.

Potential cyber attacks that undermine the distributed control of DC microgrids mainly include

false data injection (FDI) attacks [36], replay attacks [14], denial of service (DoS) attacks [48, 9, 24],

hijacking [32], and man-in-the-middle (MITM) attacks [33]. FDIA aims to maliciously disrupt con-

trol operations by injecting false data into sensors, actuators, or communication links, altering the

system state and compromising stability [33, 42, 3]. Replay attacks compromise the integrity of

communication by capturing and storing sensor readings over a period of time, then retransmitting

the recorded data as current information, leading to incorrect system responses and long commu-

nication delays [15]. DoS attacks interfere with communication channels by delaying or blocking

information transmission, which disrupts coordination between sensors, controllers, and actuators,

leading to instability in microgrids and reduced system responsiveness [17, 43]. Hijacking attacks

completely replace existing control signals within the communication network, causing compro-

mised agents to deviate from their intended operation and disrupting the iterative consensus pro-

cess, leading to power imbalances and instability in DC microgrids [37]. MITM attacks infiltrate

communication between two nodes, allowing a third party to manipulate transmitted data, which

can lead to inconsistent microgrid performance and operational disruptions [1].

Given that FDIAs are prevalent and critical cyber intrusions in the communication networks of

distributed control systems [2, 36, 25, 8], this thesis focuses on FDIAs in clustered DC microgrids

interconnected via MICs. These attacks can maliciously falsify communication signals, disrupting

the power balance between microgrids, compromising MIC coordination, and potentially rendering

the entire microgrid inoperable. This thesis will focus on cyber-threats in the context of conven-

tional distributed hierarchical control strategies for MIC-connected DC microgrids and will present

defense mechanisms to deal with FDIA in its control strategy.

3



1.2 Objectives

The main objectives of this thesis are as follows:

• To analyze the impact of FDIAs on the distributed hierarchical control of MICs in DC micro-

grid clusters.

• To develop a SVM model for detecting FDIA at the primary control level and transitioning to

localized power balancing control between microgrids.

• To propose an ANFIS-based strategy for mitigating FDIAs at the primary control level in

MICs within clustered DC microgrids, leveraging its capability to address complex, uncertain,

and non-linear behaviors.

1.3 Methodology

The methodology employed in this thesis is structured into the following steps:

• System Modeling: A model of a DC microgrid cluster interconnected via MICs, incorporat-

ing the dynamics of the conventional distributed hierarchical control strategies and the cyber

vulnerabilities posed by FDIAs, is developed.

• Cyber Threat Mitigation with ANFIS: The proposed strategy utilizes an ANFIS as a signal

estimator to mitigate the effects of FDIAs. During offline training, the ANFIS is developed

using local time-series voltage measurements and communicated signals to predict the sum

of signals entering each converter. In the online phase, a reference tracking approach is em-

ployed to recover attacked signals based on these estimations, ensuring robust cyber-attack

mitigation with reduced computational overhead.

• FDIA Detection with SVM: A linear SVM model is introduced to detect FDIAs at the primary

control level. Trained offline with historical time-series data, including normalized voltage

readings and interlinking converter measurements, the SVM establishes decision boundaries
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to differentiate between normal and attack scenarios. In the online phase, it serves as a real-

time monitoring tool, transitioning to localized power balancing control between microgrids

upon detecting intrusions.

• Validation and Testing: Both ANFIS and SVM-based strategies are tested under various sim-

ulated attack scenarios to assess their effectiveness. Performance metrics such as detection

accuracy, system reliability, and voltage stability are analyzed.

1.4 Contributions

The main contributions of this thesis are as follows:

• Developing an ANFIS-based strategy to mitigate FDIAs in MICs within clustered DC micro-

grids, combining fuzzy reasoning with neural network learning for robust control under cyber

threats.

• Introducing a linear SVM model for real-time FDIA detection and transitioning to localized

power balancing control, leveraging SVM’s strengths in high-dimensional, noisy datasets.

• Demonstrating the effectiveness of these proposed strategies through extensive simulation-

based validation, showcasing improvements in system reliability, and cyber-attack resilience.

1.5 Thesis Structure

This thesis is structured into six chapters, each focusing on a different aspect of the research.

• Chapter 2 provides a comprehensive cyber-physical model of DC microgrids interconnected

via MICs. It establishes the foundation for analyzing cyber-attack vulnerabilities and presents

a conventional distributed control strategy.

• Chapter 3 discusses cyber-attack modeling on MIC controllers in DC microgrid clusters. It

specifically addresses FDIAs at both the primary and secondary control levels.
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• Chapter 4 presents defense mechanisms against FDIAs on MIC controllers. It proposes a

SVM-based anomaly detection framework for real-time detection at the primary control level

and an ANFIS-based approach for mitigating FDIAs at the secondary control level.

• Chapter 5 contains the results of simulation studies that validate the proposed methods un-

der different cyber-attack scenarios. The effectiveness of the SVM-based and ANFIS-based

strategies is evaluated in terms of detection accuracy, system reliability, and microgrid stabil-

ity.

• Chapter 6 concludes the thesis by summarizing the key findings and contributions.

1.6 Publications

This thesis is based on two manuscripts, both of which have been accepted as conference papers.

• R. Babazadeh-Dizaji, M. B. Vavdareh and M. Ghafouri, ºSupport Vector Machine-Based

False Data Injection Attacks Detection in Interconnected DC Microgridsº, 2024 IEEE 3nd

Industrial Electronics Society Annual On-Line Conference (ONCON), 2024

• R. Babazadeh-Dizaji and M. Ghafouri, ºMitigating False Data Injection Attacks in DC Mi-

crogrids with Multiple Interlinking Convertersº, IECON 2024- 50th Annual Conference of

the IEEE Industrial Electronics Society, 2024
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Chapter 2

Cyber-Physical Model of DC Microgrids

Interconnected via MICs

This chapter presents a comprehensive cyber-physical model of DC microgrids interconnected

via MICs and the developed conventional distributed control strategy Fig. 2.1 [6], establishing the

basis for analyzing cyber-attack vulnerabilities.

The system consists of two DC microgrids connected through MICs, as shown in Fig. 2.2. The

control structure includes inner voltage control, local droop control, and two hierarchical levels: the

primary controller for power balancing and the secondary controller for current coordination across

ICs. The primary controller sets a reference current iref based on microgrid data, which leader

ICs use to adjust their outputs. The secondary controller facilitates consensus among other ICs via

communication with the leaders.

2.1 Primary-Level Controller for Power Balancing Between Micro-

grids

The primary-level distributed controller is responsible for determining both the direction and

magnitude of the reference current iref for the leader ICs to achieve power balance between the

two microgrids. As illustrated in Fig. 2.2, this controller processes voltage readings from the slack
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Figure 2.1: Cyber-physical model of DC microgrids interconnected via MICs.

terminals of both microgrids. These slack terminals, which include voltage source converters, con-

tribute to voltage support and load sharing to achieve power balance between supply and demand.

In the primary-level controller, the voltages of the slack terminals of both microgrids are normalized

using the DC voltage normalization process, expressed as:

Vpu =
Vdc − 0.5(Vmax + Vmin)

0.5(Vmax − Vmin)
(1)

where Vmin and Vmax represent the minimum and maximum allowable DC voltages, respectively.

The normalized voltages of both microgrids are then compared, generating an error term ∆vpu, as

shown in Fig. 2.2. The error term is processed by a PI controller, which is tasked with eliminating

the steady-state error, ∆vpu, to ensure that Vpu,i = Vpu,j . A magnitude of ∆vpu signifies that the

normalized power is balanced on both sides of the IC. Mathematically, this can be expressed as:

lim
t→∞

[Vpu,i − Vpu,j ] = lim
t→∞

∆vpu = 0 (2)
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Figure 2.2: The conventional two-level distributed control strategy for MICs [6].

The output of the PI controller generates the reference current iref , which aligns with the current

that must be transferred between the two microgrids through the IC to balance power. This reference

is then communicated to the leader ICs, while the remaining ICs adjust their operations by following

the leader IC through secondary-level distributed control communication.

9



2.2 Secondary-Level Distributed Controller for Coordinated Opera-

tion of MICs

In this subsection, a brief review of the distributed secondary control for DC microgrids inter-

connected via multiple converters is provided.

2.2.1 Basic Notion of Graph Theory and Distributed Cooperative Control

The under-study system is a dual-layer system, integrating both a physical and a cyber layer.

Within this architecture, each interlinking converter system functions as an entity of the cyber-

physical network, where interactions among converters are represented through a directed graph

G = (V,E) with nodes V= {1, 2, ..., N} and edges E ⊆ V × V . In this digraph, the ICs are

represented as nodes, while edges signify communication links. The edge (i, j) (pointing from j

to i) mplies that node i receives information from node j with an associated weight aij . The set of

neighboring nodes for a given node i is denoted as Ni, comprising all nodes that transmit data to

node i such that j ∈ Ni if (j, i) ∈E. The data exchange structure among nodes is represented using

an adjacency matrix A= [aij ] ∈ RN×N , where aij = 1 if node i acquires data from node j, and

aij = 0 otherwise. The Laplacian matrix of the graph is determined as L = D − A, where D is

the in-degree matrix, defined as a diagonal matrix D = diag(di) ∈ R
N×N , with di representing the

in-degree of node i, formulated as di =
∑

j∈Ni
aij . In other words, di is the cumulative weights of

all incoming edges directed toward node i.

In this framework, each node is characterized as a single-state component, denoted by xi. Each

node requires its own data as well as the data from its neighbors j(j ∈ Ni) on the directed graph to

regulate its state xi. Within the consensus control framework with a predefined reference value xref ,

the system states must converge to this reference value. To achieve this, an external synchronization

controller is employed, generating a control signal that enforces convergence toward xref for a

selected subset of nodes, termed as leader nodes. The pinning gain gi is assigned such that it holds

a positive value for leader nodes and is set to zero for non-leader nodes. Consequently, the tracking

synchronization framework can be expressed as:

10



ẋi = −gi(xi − xref )−

n
∑

j=1

aij(xi − xj) (3)

If the communication graph includes at least one spanning tree, the states of all nodes xi will con-

verge to a global consensus, matching the reference value xref.

2.2.2 Distributed Cooperative Control for Coordinate Operation of MICs

The primary role of traditional distributed secondary control is to manage the current of MICs,

which must be shared between two microgrids. Additionally, the circulating current will be inher-

ently suppressed. The reference current iref is exclusively obtained by the leader ICs, which must

adjust their current to match this reference value. With an embedded control loop incorporated into

the leader ICs, they are tasked with ensuring power balance between the two microgrids. Mean-

while, the remaining ICs regulate their current based on the leader ICs’ current. The conventional

distributed secondary control for the MICs is shown in Fig. 2.2.

The conventional approach to distributed secondary control adjusts the current of IC#i to match

the reference value iref . As a result, the total current required to be transferred between microgrids

is proportionally allocated among the MICs. Accordingly, the cooperative tracking error function is

defined as:

ui = −gi(ii − iref )−
n
∑

j=1

aij(ii − ij) (4)

where aij represents the adjacency matrix and gi is non-zero for the leader ICs, which are respon-

sible for receiving the reference current iref . Additionally, ii and ij indicate the exchanged current

through the ith and jth ICs, respectively. This error term ui is processed through the PI controller

to produce the voltage correction term δv. Finally, the PI forces ei to zero at steady-state. Conse-

quently, the current of all ICs with identical capacity ratios converges to a uniform value, ensuring

proportional current sharing between the microgrids and among the MICs. The resulting correction

term δv is added with the global reference voltage V ∗
MGi

to establish the voltage reference for the

inner control loops as:
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Vref = V ∗
MGB

−Kdiii + δv (5)

where Vref denotes the designated voltage reference for the inner control loop, ii represents the

current transmitted via the ith IC, andKdi corresponds to the droop gain of the IC. By implementing

the protocol presented in (4), the current transferred by the ICs, namely i1, i2, . . . , in, will align

proportionally with their respective capacity ratios. This means that k1i1 = k2i2 = · · · = knin.
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Chapter 3

Cyber Attack Modeling on MIC

Controllers in DC Microgrid Clusters

The conventional two-level distributed control strategy for MICs [6] ensures balanced power

sharing between DC microgrids and proportional current sharing among ICs. However, integrat-

ing communication links increases their vulnerability to cyber-attacks. This chapter examines

FDIAsÐcommon and critical cyber intrusions into communication networksÐthat target both the

primary and secondary controllers.

3.0.1 FDIA Modeling in Primary Control Level

This section examines FDI attacks targeting the primary controller, which can destabilize power

balance between two microgrids, leading to overloads and system instability. We focus on advanced

FDIAs where the attacker, with detailed system knowledge, manipulates communication signals

using step, sinusoidal, and ramp functions generated by linear dynamic systems [47].

The objective of the distributed control system at the primary level is to maintain power balance

between interconnected DC microgrids. This paper demonstrates how FDIAs can compromise the

effectiveness of the primary-level distributed controller, resulting in power imbalances across the

DC microgrids. Such imbalances may overload one of the microgrids, potentially leading to a

shutdown of multiple DC microgrids interconnected by MICs. FDIAs aim to introduce malicious

13



data into the primary-level distributed controller input data, i.e., Vpu,i and Vpu,j . In this work, the

focus is on attacks targeting Vpu,i. Consequently, if λ represents the false data being injected, the

mathematical formulation of the FDIA model is as follows:

V a
pu,i = Vpu,i + λ (6)

In (6), λ denotes the false data injected by the attacker into the system. Meanwhile, V a
pu,i represents

the altered value of the normalized voltage of the ith microgrid, which is subsequently transmitted to

the primary-level distributed controller for processing. Consequently, at the primary level, equation

(2) is revised as follows:

lim
t→∞

[

V a
pu,i − Vpu,j

]

= 0 (7)

If the normalized voltage of the ith microgrid is not subjected to an FDIA (i.e., λ = 0), we have:

V a
pu,i = Vpu,i (8)

Consequently, based on (7) and (8), the normalized voltages of both microgrids will converge to the

same value as:

lim
t→∞

Vpu,i = lim
t→∞

Vpu,j (9)

Thus, power balance between the two microgrids is achieved.

However, under a FDIA on the normalized voltage of the ith microgrid (where λ ̸= 0 is a

constant), we have:

V a
pu,i = Vpu,i + λ (10)

Thus, considering the attack as indicated in (10), equation (7) can be rewritten as:

lim
t→∞

[(Vpu,i + λ)− Vpu,j ] = 0 (11)
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Consequently, we arrive at:

lim
t→∞

Vpu,i + λ = lim
t→∞

Vpu,j (12)

This implies that power balance between the two microgrids is not achieved. In other words, we

have:

lim
t→∞

Vpu,i ̸= lim
t→∞

Vpu,j (13)

Thus, by tuning the value of λ in (12), the power of one of the microgrids can exceed its maximum

generation capacity, potentially leading to overloading and system shutdown in the worst-case FDIA

scenario.

3.1 FDIA Modeling in Secondary Control Level

This section examines FDI attacks targeting the secondary controller, which could deviate pro-

portional active power sharing and potentially result in violations of IC power rating limits, leading

to subsequent instability within the entire system.

In a clustered DC microgrid interconnected through MICs, the involved ICs communicate with

neighboring ICs through a distributed control system. As mentioned in (4), the power-sharing infor-

mation of each participating IC is shared through a sparse communication network, influencing the

current set point adjustment as stated in (5). However, data exchanges also increase the vulnerabil-

ity to cyberattacks on communication links during the data transmission process. In the following

two subsections, we will explore FDIA on communication links between ICs, denoted as ij , and on

the reference signal, denoted as iref, examining its impact on microgrid performance, particularly

concerning proportional active power sharing. We explore an advanced type of FDI attack where

the attacker has insight into the system and the capability to manipulate communicated informa-

tion. The attack signal can either be a varying signal or a fixed signal. These attack signals can

be represented as step signals, sinusoidal signals, ramp signals, or a finite combination of them to

manipulate the control variables [47].
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3.1.1 FDIAs on Communication Links Among ICs

If the communication link between two ICs is compromised with false data injection, the con-

troller receives inaccurate current information. The FDIA on communication links can be repre-

sented and modeled as follows:

iFj = ij + η µij (14)

where iFj is the falsified current of jth IC which is received by ith IC. η = 1 if a FDIA is present,

and η = 0 otherwise. The µij is the malicious signals injected into the communication link by

the attackers and can be in the form of µij = λij + ψ, with λ ∈ [α−, α+] representing a nonzero

bounded change in the gain coefficient, and ω ∈ [ψ−, ψ+] is a bounded signal injected by attackers.

Let’s assume that the communication link from the jth IC to the ith IC is subjected to an attack,

and a malicious communication signal is imposed on the current information. As a result, the

received current in the ith IC from jth IC will be iFj as stated in (14); and consequently, the current

sharing control input in (4) is altered in the following manner:

ui = −gi(ii − iref )−
n
∑

j=1

aij(ii − (ij + µij)) (15)

where the first term −gi(ii − iref ) indicates the reference control signal sent from the upper con-

trol level, while the subsequent term −
∑n

j=1 aij(ii − (ij + µij)) relates to the data received from

neighboring ICs.

Define the state error as the discrepancy between the current of ith IC and the reference value,

expressed as ei = (ii − iref ). To maintain generality, we assume that the ith IC is chosen to be

pinned. The evolution of state errors in the presence of communication link attacks is outlined as

follows:

ė(t) = −(L+G)e(t) +Bµ(t) (16)

where L signifies the Laplacian matrix associated with the communication network. G = diag(g1, . . . , gN )

is the pinning matrix, where gi = 1 for leader nodes and, and gi = 0 otherwise. Also, let
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µ = (µ1, µ2, . . . , µn), where µi ̸= 0 only if the communication link from the jth node to the

ith node is compromised. Furthermore, B is defined as the matrix (B)mn = |(M)mn|, where M

stands for the incidence matrix of the communication network. Accordingly, the dynamics of state

errors can be obtained as follows:

e(t) = e−(L+G)t
e(t0) +

∫ t

t0

e−(L+G)(t−τ)
Bµ(τ)dτ (17)

Given the negative-definite and invertible nature of the matrix −(L+G), the initial term of (17),

e−(L+G)t
e(t0), is driven to approach zero [30]. Without compromising generality, it is assumed that

the false signals (i.e., µ(τ)) are positive, denoted as (µi > µ0 > 0), ∀(i, j) ∈ E . As all components

of matrix B are non-negative, we can conclude:

lim
t→∞

e(t) = lim
t→∞

∫ t

t0

e−(L+G)(t−τ)
Bµ(τ)dτ

> lim
t→∞

e−(L+G)t (e−(L+G)t − e−(L+G)t0) (L+G)−1
Bµ0

= (L+G)−1
Bµ0 > 0

(18)

The state errors described in (18) do not reach a convergence towards zero, indicating that cyber-

attacks on communication links would hinder the coordination of proportional current sharing

among ICs. This proves that if an IC receives corrupted links from neighboring ICs, the tracking

error for that IC is non-zero.

3.1.2 Cyber-Attacks Targeting Leader IC

Imagine a scenario where the reference signal directed to the leader IC is compromised due to

a FDIA, and a malicious signal represented by γi is injected into iref. The current sharing control

inputs for these leader ICs are subsequently adjusted as:

uδi = −
N
∑

j=1

aij(ii − ij)− gi(ii − (iref + γi)) (19)

The dynamic response of the state errors due to cyberattacks on the leader IC can be described
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by:

ė(t) = −(L+G)e(t) +Gγ(t) (20)

Here, γ = (γ1, γ2, . . . , γN )T with γ1 = 0 specifically when the communication pathway to the

leader IC has been compromised.

Furthermore, it is hypothesized that the attack vectors imposed on the leader IC are positive,

expressed as γi > γ0 > 0. Given that every component of the matrix G is non-negative, the state

errors will not stabilize at zero, indicated by the following analysis:

lim
t→∞

e(t) = lim
t→∞

∫ t

t0

e−(L+G)(t−s)
Gγ(s) ds

> lim
t→∞

e−(L+G)t
(

e(L+G)t − e(L+G)t0
)

(L+G)−1
Gγ0

= (L+G)−1
Gγ0 ≥ 0

(21)

From this, it can be deduced that the disruptions induced by cyber-attacks on the reference signal

obstruct the proportional current sharing among the ICs.
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Chapter 4

Cyber Attack Defense Methods Against

FDIAs on MIC Controllers in DC

Microgrid Clusters

In this chapter, we propose AI-based methods to defend against FDIAs in the primary and sec-

ondary controllers of the conventional two-level distributed control strategy for MICs, as discussed

in the previous chapter.

4.1 Proposed Defence Approach for FDIA Occurrence in the Primary

Control Level

In this section, we propose an AI-based Linear SVM model to detect FDIA at the primary

control level and subsequently transition to a localized power balancing control operation between

the two microgrids.

4.1.1 Linear Support Vector Machine (SVM) for FDIA Detection

The Linear SVM is a powerful method for binary classification, effectively distinguishing be-

tween attack scenarios and normal operations by analyzing key input features. In multiple DC
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microgrids, where the system size is larger compared to a single DC microgrid, the high penetra-

tion of power converters and renewable energy sources introduces high-frequency switching noise

and significant uncertainties, increasing the complexity of system dynamics. Consequently, SVM is

particularly well-suited for such a system, as it excels in handling complex datasets, allowing it to

capture subtle variations in power converter behavior and detect anomalies within noisy operational

data. Additionally, the resilience of SVM in scenarios where attack samples are scarce is crucial

for reducing both false positives (misclassifying normal operations as attacks) and false negatives

(failing to detect attacks). Compared to other AI-based classification methods, which may struggle

with overfitting in large and complex power systems with a high penetration of renewable energy

resources or require extensive labeled training datasets, SVM offers a computationally efficient and

scalable solution for real-time cyberattack detection.

The core principle of Linear SVM is to identify the optimal hyperplane that maximally separates

data points from different classes. In the context of attack detection, the SVM seeks to establish a

decision boundary that distinguishes between data points representing attacks and those reflecting

normal operations. The hyperplane is constructed to maximize the margin between the two classes,

thereby ensuring that the classification model is not only accurate but also generalizes effectively to

unseen data.

The Linear SVM model operates by solving an optimization problem that maximizes the margin

between the support vectors, which are the data points nearest to the hyperplane from both classes.

This optimization seeks to minimize the following objective function:

min
1

2
∥W∥2 s.t. yi(W

Txi + b) ≥ 1 (22)

where, W denotes the weight vectors, xi represents the feature vectors of the data points, b is bias

term. The margin is inversely proportional to 1
∥W∥ indicating that minimizing the norm of ∥W∥ will

maximize the margin. The classifier employs this hyperplane to predict whether new data points

belong to the normal operation class or suggest the presence of an attack by calculating the sign of

W Txi + b.

20



 ICi

 I
C

jN

VMGi

*  

Voltage 

Controller

PWM

Kd

D
ro

o
p
 l

o
o
p

PI
 I

C
j1

ii

δv 

Vref
*  

Vref 

Vdc, i

ui 

ij iref
f

 

D[gi iref
f  -ii ]+  ij - ii 

j∈Ni

 

Secondary Control Level

Vdc, j

Vdc, j Vdc, i

Vpu, j 

D 

SVM

Vpu, i 

Microgrid #i

vdc, i 

LPF

Vdc, i 

1

sT+1
 

V
p

u
, i

=
V

d
c,

 i
+

0
.5

(V
m

a
x
+

V
m

in
)

0
.5

(V
m

a
x
-V

m
in

)
 

Vpu, i 

Vpu, j Vpu, i 

PI△Vpu 

Primary Control Level

Microgrid #j

LPF

vdc, j 
Vdc, j 

V
p

u
, j

=
V

d
c,

 j
+

0
.5

(V
m

a
x
+

V
m

in
)

0
.5

(V
m

a
x
-V

m
in

)
 

1

sT+1
 

Vpu, j 

N
o
rm

al
iz

at
io

n

N
o
rm

al
iz

at
io

n

Figure 4.1: The overall structure of MICs in DC microgrids cluster with the proposed SVM-based

FDIA detection strategy.

4.1.2 Offline Training Phase

The proposed SVM framework includes two stages: offline training and online implementation.

During the offline training phase, the SVM classifier is trained on time-series data of normalized

voltages from both microgrids, which serve as inputs to the primary level controller, as well as

local voltage measurements taken from each bidirectional interlinking converter. A comprehensive

dataset, generated by simulating various operational scenarios in DC microgrids interlinked via

multiple ICs, includes both genuine and attack data across conditions such as load and generation

fluctuations. This dataset enables the SVM model to effectively distinguish between normal and

compromised states.
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4.1.3 Online Detection Phase

In the online phase, as shown in Fig. 4.1, the SVM classifier analyzes real-time normalized volt-

age data from both microgrids, along with local voltage measurements from each bidirectional in-

terlinking converter. This real-time assessment enables the SVM model to identify potential FDIAs

by distinguishing between normal operations and attack scenarios. If an intrusion is detected, as

illustrated in Fig. 5, the SVM output, denoted as D, will be set to zero. Consequently, under de-

tected intrusion conditions, the reference current iref generated by the primary control level will be

decoupled from the secondary control layer, effectively rendering the primary control output non-

contributory to the secondary control layer. As a result, the leader ICs will no longer receive the

reference current iref from the primary-level controller. In this situation, the cooperative tracking

error function in (4) is modified as (23), meaning that the secondary-level controller will coordi-

nate current sharing only among the ICs, without attempting to balance power between the two

microgrids:

ui =
n
∑

j=1

aij(ij − ii) (23)

In this isolated, leaderless state, power balance between the two microgrids remains stable as

long as load and generation do not change. This stability is maintained because the system had

already reached a steady state before the FDIA. However, if any fluctuations in load or power

generation occur, the system’s reliance on local droop control will lead to a loss of precise power

balance between the microgrids, as local droop control cannot achieve exact balance between the

interconnected microgrids.

Once the FDIA is suspended by the attacker, the SVM model will identify the system as secure,

setting D = 1. At this point, the primary control level resumes its role, and the reference signal

iref is communicated to the leader ICs, thereby establishing precise power balance between the two

microgrids. The leader ICs set the target current, while the remaining ICs adjust their current based

on the output of the leader ICs, ensuring coordinated control across the microgrids.
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4.2 Proposed Defence Approach for FDIA Occurrence in the Secondary

Control Level

In this section, we propose a novel AI-based control scheme is designed to mitigate FDIAs in

MICs within clustered DC microgrids. It consists of two phases: offline training and online imple-

mentation. During offline training, an ANFIS-based estimator, trained on time-series local voltage

measurements from each bidirectional interlinking converter, estimates the sum of communicated

signals (including data from adjacent ICs and the reference value). In the online phase, the esti-

mator uses real-time data to estimate the sum of signals, which then serves as the reference for a

PI-based approach that adjusts the actual signals to counteract FDIA impacts on communication

links. Implementation details of the ANFIS estimator and PI controller are provided in subsequent

subsections.

4.2.1 Adaptive Network Fuzzy Inference System (ANFIS)

The ANFIS represents a sophisticated amalgamation of the principles of fuzzy logic with the

adaptive capabilities inherent in neural networks. This integration is particularly advantageous for

modeling complex systems where the relationships between variables are nonlinear and data sets

exhibit variability and imprecision. In multiple DC microgrids, where the system size is larger

compared to a single DC microgrid, the high penetration of power converters and renewable energy

sources introduces high-frequency switching noise, significant uncertainties, increased complexity,

and higher dimensionality to the system dynamics. Consequently, ANFIS is particularly well-suited

for such a system, as it combines fuzzy inference with adaptive learning to estimate and reconstruct

control signals. ANFIS utilizes a Sugeno-type fuzzy system enhanced with a neural learning frame-

work, enabling the system to refine its parameters through iterative learning and adaptation. The

system architecture is built around a series of if-then rules that form the foundation of the fuzzy logic

inference process, supplemented by the learning algorithms of artificial neural networks (ANN) for

effective training and supervision.

In this work, a signal estimator based on ANFIS is developed. The goal of the estimation is

the sum of communicated signals received by the IC from its neighboring ICs and the reference
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Figure 4.2: ANFIS architecture with two inputs and nine rules.

controller for distributed control, as given in (4), i.e.,

Isum = giiref +
n
∑

j=1

aijij (24)

Therefore, each IC has only one localized ANFIS-based estimator, which estimates Isum and is

denoted by Îsum. The structure of the proposed ANFIS structure includes two inputs, each associ-

ated with three membership functions, and a total of nine rules, as shown in Fig. 4.2. The rule base

consists of three fuzzy (if-then) rules of the Takagi-Sugeno type:

(1) If x is A1 and y is B1, then z1 = p1x+ q1y + r1,

(2) If x is A2 and y is B2, then z2 = p2x+ q2y + r2,

(3) If x is A3 and y is B3, then z3 = p3x+ q3y + r3.

Thus, the ANFIS structure can be organized into five layers, aligning with the configuration shown

in Fig. 4.2, explained as follows:

24



Layer 1 - Fuzzification: Each input variable is converted into fuzzy membership values using

Gaussian membership functions. These functions are defined as follows:

µAi
(x) = exp

(

−
(x− ci)

2

2σ2i

)

(25)

where ci and σi are the center and width of the Gaussian curve, respectively. This process trans-

forms crisp inputs into degrees of membership ranging across linguistic variables such as ’Low’,

’Medium’, and ’High’.

Layer 2 - Rule Base: This layer combines the fuzzy inputs from the previous layer to compute

the firing strength of each rule, typically using a t-norm operator like the product:

wi = µAi
(x)× µBi

(y) (26)

Each rule’s firing strength represents the degree to which the conditions of the rule are satisfied.

Layer 3 - Normalization: The firing strengths calculated in Layer 2 are normalized to ensure

that their sum is unity, which supports an equitable contribution to the model’s output:

wi =
wi

∑

j wj
(27)

Layer 4 - Defuzzification: Outputs for each rule are computed by weighting the inputs with

the normalized firing strengths:

fi = pix+ qiy + ri (28)

where pi, qi, and ri are parameters learned through training.

Layer 5 - Output Synthesis: The final model output is an aggregation of all rule outputs,

computed as:

f =

9
∑

i=1

wifi (29)

In our work, the output is the estimation of the sum of communicated signals received by the IC from
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Figure 4.3: The overall structure of MICs in DC microgrids cluster with the proposed ANFIS-based

FDIA detection and mitigation strategy.

its neighboring ICs and the reference value, i.e., Îsum, representing a crisp value that reflects the

inferred system response based on the fuzzy rules applied. The training of ANFIS involves adjusting

the parameters of the model to reduce the difference between the actual outputs and the desired

outputs. This learning process is facilitated by algorithms typical of ANN, such as backpropagation

combined with least-squares methods, ensuring effective parameter optimization over time.

4.2.2 PI-based Reference Tracking Approach

This work develops a localized PI-based reference tracking approach tailored for online appli-

cations within the framework of our proposed method, as depicted in Fig. 4.3. The core concept

revolves around utilizing the estimated sum of communicated signals as the reference to compensate
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for any signal corruption induced by cyberattacks.

During scenarios where an attack compromises communication links, including both the ref-

erence signal and the link between interlinking converters, the sum of the communicated signals

received by the IC based on (15) and (19) is given by:

IFsum = gi(iref + γi) +

n
∑

j=1

aij(ij + µij) (30)

This value is crucial as it directly affect the current sharing and coordination of MICs. In the

presence of the proposed attack mitigation stategy in the i-th IC as seen in Fig. 4.3, the sum of

communicated signals will be adjusted as follows:

I∗sum = IFsum + βi (31)

In this equation, βi is the output of the PI controller in the i-th IC, designed to to add into the sum

of the under attack signal IFsum for mitigation. The collected signal will approach the reference Îsum

as follows:

lim
t→∞

[

IFsum + βi
]

= Îsum (32)

Hence, if the estimator operates ideally with negligible error (Îsum ≈ Isum), then this collected

signal will tend towards the standard signal Isum. This convergence helps mitigate the impact of

cyberattacks and ensures the safety of the system.
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Chapter 5

Simulation Results and Analysis

In this chapter, simulations of the system under FDIAs, using the developed control strategies,

are studied with MATLAB Simulink and the PLECS Blockset. The control strategy’s effectiveness

is validated with the system in Fig. 5.1, developed using MATLAB Simulink and the PLECS Block-

set. This configuration connects two DC microgrids via three ICs, where IC#3 has a power rating

twice that of IC#1 and IC#2, which are rated equally. Fig. 5.1 also illustrates the communication

network, with IC#1 and IC#2 receiving reference signals from the primary control level, while the

primary control level collects data from both microgrids.

5.1 Simulation Results of FDIAs on Primary Control Level

In this section, simulation validation comprises two case studies: the first scenario examines

FDIA at the primary control level using the conventional two-level distributed control strategy for

MICs, whereas the second scenario evaluates FDIA at the primary control level utilizing the pro-

posed SVM-based FDIA detection strategy. To train the support vector machine (SVM) classifier,

simulation data was collected over a total duration of 60 seconds. The sampling interval was set to

2 ms, resulting in a dataset comprising 30,000 samples. The dataset includes four input features.

The SVM classifier is trained on time-series data of normalized voltages from both microgrids,

which serve as inputs to the primary-level controller, as well as local voltage measurements taken

from each bidirectional interlinking converter. The data reflects different system conditions and
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Figure 5.1: Structure of the test system.

includes a labeled output that identifies whether an attack is present (0) or absent (1). Among the

collected samples, 20% are labeled as attack scenarios, while 80% correspond to normal operat-

ing conditions. Various operational scenarios were considered during data collection to ensure the

classifier effectively captures both normal and attack conditions. The dataset was split into 85% for

training and 15% for testing.

5.1.1 FDIAs at the Primary Control Level of the Conventional Two-Level Distributed

Control Strategy for MICs

In this study, the conventional two-level distributed control strategy for MICs [6] is tested

through several scenarios. At t = 0 s, the system begins under the distributed cooperative con-

trol strategy, achieving power balance between microgrids and proportional current sharing among

ICs, as shown in Fig. 5.5 (a) and (b). At t = 1.5 s, the load changes from 4Ω to 2.5Ω, while pro-

portional current sharing and power balance between the microgrids are maintained, as illustrated in
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Figure 5.2: Performance of the conventional two-level distributed control strategy for MICs under

FDIA:(a) Powers of microgrids , (b) Current transferred by ICs.

Fig. 5.5 (a) and (b). At t = 2.5 s, a bounded FDIA signal with λ = 0.4 is introduced to the commu-

nication link from the i-th microgrid to the primary controller, , i.e., Attack 1 in Fig. 5.1, disrupting

power balance between the microgrids, as seen in Fig. 5.5 (a). At t = 4 s, the attack signal is re-

moved, returning the system to its normal state. Finally, at t = 5.5 s, the communication link from

the i-th microgrid to the primary controller is targeted with a time-varying FDIA λ = 0.6t, leading

to overload in one microgrid and eventual system collapse, as shown in Fig. 5.5 (a) and (b). These

results indicate that the conventional two-level distributed control strategy for MICs is vulnerable

to FDIAs at the primary level, with potential system collapse in severe cases.

5.1.2 Evaluation of the Proposed SVM-Based Control Strategy

In this study, the proposed SVM-based control strategy is evaluated under the same load changes

and FDIA scenarios applied in the conventional two-level control strategy. For offline SVM train-

ing and testing, data collected under varied load conditions include both normal and attack data,
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Figure 5.3: Performance of the proposed SVM-Based control strategy under FDIA:(a) Powers of

microgrids , (b) Current transferred by ICs.

featuring normalized voltage readings from the microgrids and local voltage measurements from

each converter. At t = 0 s, the system operates under the distributed cooperative control, achieving

power balance between microgrids and proportional current sharing among ICs, as shown in Fig.

5.8 (a) and (b). At t = 1.5 s, the load changes from 4Ω to 2.5Ω, with the system maintaining

both power balance and current sharing, illustrating the SVM-based strategy’s effectiveness to load

disturbances, as depicted in Fig. 5.8 (a) and (b).

At t = 2.5 s, a bounded FDIA with λ = 0.4 is introduced to the communication link from

the i-th microgrid to the primary controller, i.e., Attack 1 in Fig. 5.1. Unlike the conventional

control approach, the SVM model quickly detects the FDIA, prompting an immediate transition to

a localized control mode. This adaptive response isolates the primary control layer, ensuring that

proportional current sharing and power balance between microgrids remain intact despite the FDIA.

Fig. 5.8 (a) and (b) confirm this continuity in operation. Once the FDIA is lifted at t = 4 s, the
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system reverts to normal operation, with minor oscillations indicating the primary control’s reac-

tivation and re-establishment of reference currents. A second FDIA is launched at t = 5.5 s, this

time with a time-varying amplitude λ = 0.6t. The SVM model again detects the intrusion, tran-

sitioning the system to localized control and effectively isolating the FDIA’s impact. Proportional

current sharing and power balance are preserved throughout the attack, as seen in Fig. 5.8 (a) and

(b). Upon termination of the FDIA at t = 7 s, the system re-engages the primary control, with slight

oscillations indicating the primary control’s reactivation and re-establishment of reference currents.

These results highlight the effectiveness of the SVM-based control strategy in enabling real-time

detection of FDIAs. By transitioning to localized control upon detection, the SVM-based approach

preserves stability in current sharing and power balance, thereby preventing overload conditions and

potential system collapse, even under severe FDIA scenarios.

5.1.3 Result of Attack Detection System

As shown in Fig. 5.4, we evaluated the performance of our proposed attack detection system

with two different machine learning models, i.e. decision tree (D-tree), and artificial neural net-

work (ANN), using standard performance metrics including accuracy, precision, and recall [39].

The SVM model demonstrated superior performance across all metrics, achieving 99.90% accu-

racy, 99.94% precision, and 99.90% recall. The D-Tree classifier also showed acceptable perfor-

mance with 99.72% accuracy, 99.76% precision, and 99.77% recall. While, the ANN model showed

slightly lower metrics with 99.37% accuracy, 98.91% precision, and 99.51% recall. The consistently

high performance across all three models, particularly above 99% for most metrics, suggests robust

classification capabilities, with SVM exhibiting marginally better results in this particular applica-

tion. Additionally, the minimal variation between accuracy, precision, and recall for SVM indicates

well-balanced classification performance with low false positive and false negative rates. On this

basis, SVM has been selected as the detection method to distinguish between attack scenarios and

the normal operation of the grid.
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Figure 5.4: Comparison of the proposed model with D-Tree and ANN based on accuracy, recall,

and precision.

5.2 Simulation Results of FDIAs on Secondary Control Level

In this section, the simulation validation comprises two case studies. The first scenario examines

FDIA in the communication links between ICs at the secondary control level (i.e., Attack 2 in Fig.

5.1), whereas the second scenario evaluates FDIA in the reference signal of ICs at the secondary

control level (i.e., Attack 3 in Fig. 5.1). In both cases, the system performance with and without the

proposed ANFIS-based control strategy is evaluated. It is worth mentioning that for offline train-

ing and testing of the ANFIS model with the structure shown in Fig. 4.2, a dataset was collected,

consisting of voltage measurements from each bidirectional interlinking converter as inputs and

the sum of communicated signals from other converters as the output. To ensure comprehensive

data collection, the simulation time interval was set to 50 seconds. Simulations were conducted

for 50 seconds with a sampling time of 50ms, resulting in 1000 collected samples of input-output

data. The training dataset was obtained under normal operating conditions (without attacks), incor-

porating 15 load change scenarios in both microgrids and fluctuations in power generation within

each microgrid. This diverse dataset ensures that the trained model can generalize effectively under

varying operational conditions.

Using the MATLAB ANFIS toolbox, the input and training data were uploaded to train the

ANFIS model. A Sugeno-type inference system was implemented, consisting of two input variables,

each with three membership functions, and a single output variable with a constant membership

function. The model was trained using the hybrid optimization method for 10 epochs. A total of

33



IC
s 

C
u

rr
en

ts
 (

A
)

0.2 1 2 3 4 5 6 7

Time (s)

-5

0

5

10

15

20

25
IC#1
IC#2
IC#3

Figure 5.5: Current of ICs with the conventional distributed secondary control under communication

links attacks

nine fuzzy rules were generated to define the input-output relationships, ensuring accurate system

modeling and response.

5.2.1 FDIAs between Communication Links of ICs
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Figure 5.6: Performance of the proposed control strategy for attacks on communication links: (a)

Current of ICs; (b) βi (Output of the PI controller)

In this case, the communication link from IC#3 to IC#1 is attacked, and the comparison of the
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simulation with and without the proposed control strategy is carried out. Assume that the commu-

nication link from IC#3 to IC#1 under attack is presented as iFj = ij + (αij + ψ). The following

scenarios occur:

(1) At t = 0s, the system operates with conventional distributed cooperative control strategy and

iF3 = i3.

(2) At t = 2s, the FDIA as iF3 = i3 + 5 is engaged.

(3) At t = 3s, the FDIA as iF3 = i3 + 5 + 3 i3 is engaged.

(4) At t = 4s, the FDIA as iF3 = i3 + 5 + 3 i3 + 2 t+ 10 sin(6t) is engaged.

(5) At t = 5s, load 3 Ω changes to 2.5 Ω.

Fig. 5.5 shows the performance of the test system without the proposed method under FDIAs on

communication links, and as seen, the current of ICs without the proposed method diverges under

these attacks, and proportional current sharing among ICs is not established. In contrast, as seen

in Fig. 5.6, proportional current sharing is always maintained using the proposed control strategy.

According to Fig. 5.6 (a), the attack is consistently mitigated in the compromised IC. Additionally,

as indicated in (32), Fig. 5.6 (b) shows βi, which denotes the output of the PI controller, used to

mitigate the effect of FDIA in IC#1. In summary, the proposed method accurately estimates the

false data values, effectively neutralizing the FDIA with outstanding performance.

5.2.2 FDIAs on the reference signal

In this case, the reference signal to IC#1 is attacked, and the comparison of the simulation with

and without the proposed control strategy is carried out. Assume that the reference signal to IC#1

is presented as iFref = iref + γi. The following scenarios occur:

(1) At t = 0s, the system operates with conventional distributed cooperative control strategy and

iFref = iref.

(2) At t = 1s, the proposed control strategy is activated.

(3) At t = 2s, the FDIA as iFref = iref + 5 is engaged.
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reference signal.

(4) At t = 3s, the FDIA as iFref = iref + 5 + 3 iref is engaged.

Fig. 5.7 shows the performance of the test system without the proposed method under FDIAs

on the reference signal. As illustrated in Fig. 5.7, the current of ICs without the proposed method

diverges under these attacks, and proportional current sharing among ICs is not established. Further-

more, at t = 3s, by applying the second FDIA, an oscillatory behavior occurs, causing the system

to become unstable. In contrast, as seen in Fig. 5.8(a), proportional current sharing is always

maintained using the proposed control strategy. According to Fig. 5.8(a), the attack is consistently

mitigated in the compromised IC. In summary, the proposed method accurately mitigate the FDIA

with outstanding performance.
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Chapter 6

Conclusion

This thesis has presented an AI-driven cyber-defense framework to enhance the security of

interconnected DC microgrids against FDIAs. Two independent strategies were proposed: an SVM-

based anomaly detection system for real-time FDIA detection at the primary control level and an

ANFIS-based signal estimation method for FDIA mitigation at the secondary control level. These

methods provide distinct solutions for securing MICs coordination in clustered DC microgrids.

At the primary control level, a SVM model was developed to detect FDIAs in real time. The

proposed SVM-based approach was trained on time-series data from interconnected DC microgrids,

effectively distinguishing between normal and compromised system states. Upon detection of an

FDIA, the system transitions to a localized power control mode, isolating the primary control and

ensuring continued operation. Simulation results confirm that the SVM model achieves high clas-

sification accuracy across various FDIA scenarios, maintaining proportional current sharing and

power balance between microgrids.

At the secondary control level, an ANFIS-based approach was implemented to estimate and

mitigate injected FDIAs in the communication network of the secondary control level for MICs

coordination. The ANFIS model, trained on local voltage measurements, enables real-time estima-

tion of the sum of communicated signals entering each interlinking converter. A PI-based reference

tracking mechanism then corrects compromised signals, ensuring proper MICs coordination. Ex-

tensive simulation studies validate the robustness of this method against different FDIA scenarios,

including time-varying and unbounded attacks.
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Each of these two strategies effectively enhances the resilience of clustered DC microgrids by

addressing cyber threats at different control levels. The results demonstrate that the proposed SVM-

based detection method successfully isolates FDIAs at the primary control level, while the ANFIS-

based mitigation strategy provides accurate correction for compromised signals at the secondary

control level. This research contributes to the advancement of secure and intelligent microgrid

systems, paving the way for more cyber-resilient power networks.
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