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Abstract

An Ontology-Based Model for In-Network Computing Components Description and
Discovery

Zarin Tasnim

In-Network Computing (INC) refers to the process that enables the distribution of comput-

ing tasks across the network instead of computing on servers outside the network. Advances in

programmable hardware allow computations directly within network devices, such as switches and

Smart Network Interface Cards (smart NICs), as data passes through them, and thereby reduces

network congestion, minimizes reliance on distant cloud servers, and improves latency.

The growing demand for ultra-low delays, high bandwidth, and the ability to dynamically syn-

chronize data streams in emerging applications, particularly Holographic-Type Communication ap-

plication, is pushing the limits of current network infrastructures, with INC emerging as a promising

solution as it aims to meet these stringent requirements. In addition, efficient provisioning of INC

requires a comprehensive understanding of INC components, including their specifications, configu-

ration information, and requirements. Nevertheless, an architecture with a description and discovery

model offers a structured and standardized framework to represent INC components, defining their

functionality and characteristics, and retrieving the most pertinent INC components according to

the user requirements.

This thesis proposes a novel architecture for describing and discovering the most relevant INC

components based on user preferences, specifically tailored for holographic-type application. The

contribution of this work is threefold. First, we introduce the In-Network Computing Ontology

(INCO), a domain-independent, ontology-based description model that provides a semantic repre-

sentation of INC components, facilitating their discovery from a centralized repository. The de-

scription model covers both the functional and non-functional specifications of INC components
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and consists of two parts: a generic description for INC components and an extension detailing four

specific INC components (i.e. encoder, decoder, transcoder, and renderer)- essential for our holo-

graphic application use case. Second, we present a semantic matchmaking algorithm that leverages

the INCO model to automatically identify and select the most appropriate INC components based

on user requests and preferences. Lastly, we validate the proposed approach through experimental

simulations, demonstrating the algorithm’s effectiveness in terms of response time and consistency.

Response time was measured based on two criteria: query complexity and the number of retrieved

instances. The simulation results indicate that response time fluctuates with increasing query com-

plexity, while it remains comparatively stable as the number of retrieved instances grows.
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Figure 5.4 INCO Property Cardinality - Protégé. . . . . . . . . . . . . . . . . . . . . . 56

Figure 5.5 Sample Query (Q1−Q3) . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Figure 5.6 Sample Query (Q4−Q5) . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Figure 5.7 Sample Query (Q6−Q7) . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Figure 5.8 Average response time by different query comeplexity. . . . . . . . . . . . 63

Figure 5.9 Average response time by number of retrieved instances. . . . . . . . . . . 64

x



List of Tables

Table 3.1 Semantic Matchmaking over Syntactic for Discovery [10]. . . . . . . . . . . 20

Table 3.2 Summary of related work evaluating VNF description and discovery approaches. 21

Table 3.3 Summary of related work evaluating on ontology-based VNF description and

discovery approaches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Table 4.1 Summary of Relationships for the Descriptor, Cost, and Operation

Classes in INCO. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Table 4.2 Summary of Relationships for the Deployment Unit and Performance

Requirement Classes in INCO. . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Table 4.3 Summary of Relationships for the Encoder Decoder Class in INCO. . . . 39

Table 4.4 Summary of Relationships for the Renderer Class in INCO. . . . . . . . . 39

Table 4.5 Summary of Relationships for all the Subclasses of Renderer Class in INCO. 40

Table 4.6 Properties of INC Operation. . . . . . . . . . . . . . . . . . . . . . . . 40

Table 4.7 Properties of INC Deployment Unit. . . . . . . . . . . . . . . . . . . . 41

Table 4.8 Properties of Performance Requirement. . . . . . . . . . . . . . . . . 41

Table 4.9 Properties of INC Descriptor. . . . . . . . . . . . . . . . . . . . . . . . 42

Table 4.10 Properties of Cost. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Table 4.11 Properties of Encoder Decoder for Holographic Operations. . . . . . . . 44

Table 4.12 Properties of Rendering Input Device. . . . . . . . . . . . . . . . . 44

Table 4.13 Properties of Rendering Technique. . . . . . . . . . . . . . . . . . . . 45

Table 4.14 Properties of Rendering Requirement. . . . . . . . . . . . . . . . . . 45

Table 4.15 Properties of Rendering Display Technology. . . . . . . . . . . . . 45

xi



Table 4.16 Properties of Rendering Data Type. . . . . . . . . . . . . . . . . . . . 45

Table 4.17 Symbols and Their Descriptions for User Request Representation. . . . . . . 47

Table 5.1 Query Category. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

xii



Chapter 1

Introduction

Chapter 1 begins by defining the key terminologies and concepts relevant to the thesis. It then

provides a description of the motivation, problem statement, and the contributions of this work. The

final section offers an overview of how the remaining chapters are organized.

1.1 Definitions

In the following sections, definitions of key terms critical to this thesis are presented. These

terms include the Ontology, Holographic-Type Communication and In-Network Computing. These

terminologies are fundamental to the thesis.

1.1.1 Ontology

Ontology is a formal representation of knowledge that defines a set of concepts and the relation-

ships between them within a specific domain. It allows content and services to be described in a

machine-readable format, enabling the automation of tasks such as annotating, discovering, publish-

ing, advertising, and composing services. Ontologies establish a shared understanding of a domain

that can be conveyed both among people and across diverse, distributed application systems. [11]. It

serves as the backbone for enabling machines to understand and process the meaning of information

by providing a shared vocabulary for entities and their interactions. It facilitates knowledge sharing,
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interoperability, and reasoning by enabling consistent and explicit conceptualization across differ-

ent systems. Furthermore, it supports the representation of conceptualizations using languages like

Resource Description Framework (RDF) and Web Ontology Language (OWL), which formalize

knowledge and enable logical inference [1, 11].

1.1.2 Holographic-type Communication

Holographic-type Communication (HTC) application is widely regarded as a new form of aug-

mented reality media that provides internet users with highly immersive experiences. According

to [12], HTC is an emerging form of immersive media that integrates Augmented and Virtual Re-

ality (AR/VR) technologies to present fully 3D objects captured by RGB depth (RGB-D) sensor

cameras, enabling internet users to experience a level of immersion far beyond that of traditional

video-based applications. Unlike standard 3D content, HTC enables the transmission and inter-

action with holographic data over a network from remote locations. By incorporating parallax,

holograms allow viewers to interact with the image, which dynamically adjusts based on the view-

ing angle. This shift transforms the viewer’s role from passive, as with 2D and 3D content, to active

and interactive with holograms, further increasing the demands on HTC [13]. HTC applications are

considered among the most demanding content types for next-generation communication networks.

In the coming years, new holographic applications are expected to provide fully immersive AR/VR

experiences and enable near-real-time personal communication with holograms [2] [14].

1.1.3 In-Network Computing

INC is an emerging paradigm designed to enable computation within the network itself by

exploiting programmable data plane, providing an alternative to the traditional approach of confin-

ing computation to servers outside the network [15, 16, 4]. Similarly, INC promotes the concept

of leveraging network elements, such as programmable switches, Field-Programmable Gate Array

(FPGAs), and smart NICs, to be programmed for the purpose of computation [17, 18]. According

to the reference [15], in-network computing is defined as the process of offloading certain computa-

tional tasks from end hosts to network elements. Moreover, the authors in reference [16], describe

INC as the execution of application-specific functions on programmable network hardware at line
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rate, achieving significantly higher throughput and lower latency than traditional servers. Addi-

tionally, INC can alleviate the computing load on data centers and offers substantial energy-saving

benefits by processing tasks within the network itself [5]. At its core, INC utilizes network devices

as computational resources, leveraging redundant computing capacity for data processing [5].

1.2 Motivation and Problem Statement

The rapid advancement of cutting-edge applications, such as HTC, VR gaming, and other im-

mersive experiences [19], requires real-time processing capabilities in order to make it well-suited

for immersive experiences, where time constraint is critical [20, 21]. Let’s consider a distributed

concert—a holographic application—where individuals worldwide can fully immerse themselves,

experiencing the event as if they were physically present with the artists [22]. Such a concert re-

lies on the seamless integration of various components, including holographic data encoding and

real-time transmission, provided by different component providers across a heterogeneous network.

To harness the potential of INC, these INC components must be carefully selected, matched, and

orchestrated according to their capabilities and performance.

Furthermore, provisioning INC successfully requires detailed knowledge of its components,

including their functional and non-functional properties, requirements, dependencies, and deploy-

ment specifics. Despite its potential, there is a notable gap: the absence of a comprehensive, well

structured and standardized description model for INC components, making it difficult to fully un-

derstand and integrate them. The lack of a standardization and clear representation complicates the

situation, as no model exists to consistently represent INC components across different environ-

ments. This gap not only limits our understanding of INC but also makes it exceedingly difficult

to automate the discovery, deployment, and management of these components, resulting in ineffi-

ciencies in network operations. A standardized description model would assist network operators

in configuring and provisioning INC-based services, ensuring that network resources are used opti-

mally to meet the performance demands of emerging applications.

Likewise, network providers must implement efficient discovery and matchmaking mechanisms
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to identify the most relevant INC components from dedicated marketplaces or centralized reposi-

tories based on pre-established service-level agreements. While advanced technologies like Virtu-

alized Network Functions (VNFs) benefit from the standardized description and orchestration pro-

vided by the ETSI NFV architectural framework [23], INC components currently lack a similarly

comprehensive framework. Although VNFDs provide a framework for describing and managing

virtual network functions in an NFV-based architecture, they do not adequately address the unique

demands of INC-based services. The most closely related work is by Javid et al. [24], who, to our

knowledge, were the first to address the management and orchestration of INC components. They

proposed extending the 5G NFV MANO architecture to manage a hybrid NFV/INC infrastructure

for holographic applications. However, their work does not address the issue of INC component

description and discovery.

To the best of our knowledge, no existing literature addresses the issue of standardizing INC

component description and discovery. This gap complicates the automation of discovery and de-

ployment processes for INC components, highlighting the need for a description model that defines

both the functional (i.e., what the component does, such as operations/actions) and non-functional

(i.e., how the component performs, such as availability) capabilities of these components. Such a

model is essential for enabling the efficient selection and deployment of INC components across

heterogeneous network environments. Without an INC-specific description model, network opera-

tors face considerable challenges in efficiently deploying and scaling INC resources. Overall, the

absence of a specialized descriptor for INC hinders network operators from fully leveraging INC’s

potential, particularly in highly demanding, low-latency environments.

1.3 Thesis Contributions

The thesis contributions are as follows :

• An architecture for the description and discovery of In-Network Computing components tai-

lored for holographic streaming use cases.

• A unified, ontology-based, domain-independent semantic description model for In-Network

Computing components, encompassing both functional and non-functional properties.
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• A reusable description model for In-Network Computing components that can be adapted or

extended for other applications without needing to be rebuilt from scratch.

• A semantic matchmaking algorithm to effectively pair requested In-Network Computing re-

sources with the most relevant ones available.

• A prototype implementation and performance evaluation.

• A simulation was conducted to demonstrate the efficiency of the semantic matchmaker in

discovering In-Network Computing components.

1.4 Thesis Organization

The rest of the thesis is organized as follows :

• Chapter 2 provides an in-depth discussion and background knowledge of the key concepts

relevant to this research.

• Chapter 3 reviews related literature, design consideration and challenges, introduces the mo-

tivating scenario and emphasizes the need for a comprehensive framework to address the

identified challenges.

• Chapter 4 presents the proposed architectural model and provides a detailed description of

each module.

• Chapter 5 describes the proof-of-concept prototype, including performance evaluation, and

presents the analysis and experimental results.

• Chapter 6 concludes the thesis by summarizing the contributions and identifying potential

future research directions.
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Chapter 2

Background

This chapter provides the foundational concepts relevant to the research domain of this thesis.

It begins with an overview of ontology and its significance in structured knowledge representation

and information sharing. Subsequently, it delves into Holographic-Type Communication, discussing

how the rising demand for high-performance holographic applications is shaping technological ad-

vancements. Finally, the chapter examines the emergence of In-Network Computing, emphasizing

its role in meeting the demands of next-generation applications. The sections are structured to in-

troduce and define each concept, culminating in a conclusion summarizing the chapter’s key points.

2.1 Overview of Ontology

This section 2.1 provides an overview of ontology, explaining its definition and significance in

knowledge-based representation.

2.1.1 Ontology

The modern concept of ontology, defined as ”explicit formal specifications of the terms in the

domain and relations among them” by Gruber in 1993, has become foundational for structuring

and sharing knowledge across various domains, particularly in Artificial Intelligence and the World

Wide Web [25]. Ontologies provide a shared vocabulary for researchers to exchange and interpret

information within a specific domain. They include machine-readable definitions of core concepts

6



Figure 2.1: Semantic Web Layer Cake [1].

and their relationships, enabling both human and machine understanding.

Developing an ontology serves multiple purposes: fostering a common understanding of infor-

mation structure among individuals or software agents, enabling the reuse of domain knowledge,

clarifying domain-specific assumptions, separating domain knowledge from operational knowledge,

and supporting domain knowledge analysis. The Web Ontology Language, endorsed by the W3C, is

widely adopted for defining ontologies due to its XML-based syntax and correspondence with De-

scription Logics. OWL offers significant advantages, including logical reasoning capabilities, data

structuring, and seamless transmission over the web, making it superior to other ontology languages

like Cycl, Loom, and KIF [26].

In the Semantic Web architecture as illustrated in Figure 2.1, semantic functionality is achieved

through a layered hierarchy of evolving languages. The Resource Description Framework [27]

provides a foundational graph-based reference model, while RDF Schema (RDFS) [28] introduces

a basic vocabulary and axioms for object-oriented modeling. Building on this, OWL [29] extends

these capabilities by offering advanced constructs and axioms specifically tailored for knowledge-

based ontology development.
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2.1.2 Significance of Ontology

Ontology is a structured representation of concepts within a specific domain, encompassing

their attributes (or properties) and the constraints on these attributes (referred to as facets or role re-

strictions). When combined with instances of these concepts, an ontology constitutes a knowledge

base, enabling the representation, sharing, and reuse of structured knowledge across various plat-

forms and applications. Ontology-based semantic descriptions provide a comprehensive framework

for defining entities and their interrelationships, facilitating automated and effective service discov-

ery. Ontology bridges the gap between syntactic and semantic understanding, ensuring machine-

processable data exchange between people and machines [30] [25].

Ontology enhances automation, interoperability, and service provisioning, which are critical

for dynamic and personalized INC provisioning. They address interoperability challenges across

diverse INC programs, network devices, and service providers, enabling automated deployment,

dynamic composition, and improved reasoning. Semantic reasoning in ontology simplifies complex

network management tasks, making them cost-effective for network providers. Furthermore, this

approach improves resource utilization, automates decision-making, and accelerates service discov-

ery, ensuring efficient and accurate results [31] [32] [33].

2.2 Holographic Application

This section explores high-demand holographic applications, focusing on Holographic-type

Communication.

2.2.1 Holographic-type Communication

Holographic-Type Communication refers to the capability to transmit, interact with, and ren-

der holographic data in real-time over a network [13]. HTC represents a groundbreaking paradigm

that goes beyond traditional multimedia and virtual/augmented reality by enabling multi-sensory

holographic experiences, including 3D audio, visual parallax, and user-defined sensory inputs like

touch and smell. It facilitates real-time digital presence and immersive interactions, making it es-

sential for applications such as holographic telepresence, remote surgery, intelligent transportation,
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Figure 2.2: Evolution of user experience, from text to multi-sense Holographic Type Communica-

tions [2].

and industrial systems. HTC demands ultra-high bandwidth, reaching terabits per second for full-

parallax scenarios, and ultra-low latency, with delays below a millisecond, to ensure seamless user

experiences [2]. There has been some research works conducted on Holographic-Type Communi-

cation. Proof-of-concept implementations by Aghaaliakbari et al. [22] and Javid et al. [24] have

demonstrated holographic applications as a practical use case in their studies.

Likewise, HTC aims to integrate advanced technologies to deliver immersive, high-precision

services, enabling applications like emergency response and multi-dimensional virtual interactions

[2]. Figure 2.2 illustrates the progression of multimedia experiences, showing the increasing net-

work demands for throughput (from Mbps for video to Tbps for holograms) and reduced latency

(from milliseconds for video to sub-milliseconds for holograms) as applications evolve from text

and video to immersive holograms. Similarly, figure 2.3 highlights the evolution from today’s com-

munication systems to future communication paradigms. Future communications envision integrat-

ing a ”Holographic 5-Sense Matrix” to enable immersive applications using multi-sensory input.

This shift emphasizes holographic communication and enhanced user experiences by leveraging

new attributes and multi-sense integration, showcasing the transformation required for future com-

munication, such as those anticipated in 6G.
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Figure 2.3: New Concepts for Future Communications [2].

2.3 The Emergence of In-Network Computing

This section provides an overview of the emergence of In-Network Computing, highlighting the

pivotal roles of Software-Defined Networking and Programmable Data Planes in its development. It

also explores how INC addresses and fulfill the stringent requirements of Holographic-Type Com-

munications.

2.3.1 Software-Defined Networking

Software-Defined Networking (SDN) is a networking paradigm typically deployed in the core

network that separates the control plane from the data plane, allowing network control to be pro-

grammed directly through software-based controllers [34]. This decoupling enables greater control

over network management by centralizing the control plane in a software-based controller or net-

work operating system, simplifying policy enforcement, configuration, and network updates while

reducing hardware requirements [35]. As illustrated in Figure 2.4, SDN differs from traditional

networks by decoupling control from individual devices and centralizing it in a network operating

system.
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Figure 2.4: (a) Traditional network, (b) Software defined network [3].

Furthermore, SDN’s separation of control and data planes also facilitates programmability in the

data plane, enabling direct programmability of packet-forwarding devices through open interfaces

like OpenFlow and ForCES [36], [17]. This architecture streamlines traffic engineering, supports

remote management, and allows the deployment of new protocols and applications. SDN’s pro-

grammability has also led to the development of programmable data planes (PDPs), which allow

packet processing to be customized using high-level languages [37], [38]. For example, in the

SDN-based network computing model, data processing is implemented using P4 programming and

deployed alongside the flow table on network devices that handle data packets [5]. Unlike tradi-

tional fixed-function switch chips, PDPs give network operators flexibility over packet processing,

enabling faster adoption of new data plane functions and facilitating prototype development [17].

However, SDN provides a clear division between control and data planes, centralizing network

intelligence while maintaining a programmable, standardized data plane [39], [36].

2.3.2 Programmable Dataplane

Programmable data plane built on the SDN principle of separating control and data planes,

programmable data planes utilize a standard API to manage interactions between the two planes

[36]. In this model, the data plane consists of ”dumb” network elements managed by the control

plane, which accesses embedded state information to control network programmability. The data

plane, forming the network’s core infrastructure, processes packets using a combination of hardware

and specialized software distributed across elements such as ASICs, FPGAs, network processors,
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Figure 2.5: Features, traditional, SDN, and P4 programmable devices [4].

and NICs, often with a packet classification engine. Technologies such as SDN, programmable data

planes, edge computing, support In-Network Computing (INC) [3].

Traditionally, the data plane has been limited to fixed functions for packet forwarding with a

limited set of protocols. Recently, however, data plane programmability has gained interest from

researchers and industry, allowing custom packet processing functions. This evolution from SDN

enables rapid design, testing, and deployment of packet processing. The P4 language (Program-

ming Protocol-independent Packet Processors) has emerged as the standard for defining forwarding

behavior [40], allowing P4-programmable switches to bring network design to a broader audience

previously restricted to network vendors. The original P4 specification, known as P414, was re-

leased in 2014, and a more robust version, P416, followed in 2016, expanding P4’s applicability to

include ASICs, FPGAs, Network Interface Cards (NICs), and other targets [39].

As shown in Figure 2.5, P4-programmable devices offer several advantages over traditional and

SDN-based solutions. Key benefits of P4-programmable devices include program-specific APIs,
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enabling the same P4 code to run across different targets without modification in runtime applica-

tions. These devices also use protocol-independent packet processing primitives, feature a more

advanced computation model allowing match-action stages in both series and parallel, and support

in-field reprogrammability at runtime [39].

2.3.3 In-Network Computing

The concept of In-Network Computing traces its origins back to the active networks of the

1990s, which first introduced customized computations on messages passing through network de-

vices. Sapio et al. [15] aptly describe INC as a ’dumb idea whose time has come.’ As illustrated in

Figure 2.7, INC is an emerging computing model that delegates application-layer processing func-

tions to the network data plane, enabling data to be processed during transmission and reducing

overall traffic volume. This approach alleviates computing load and energy consumption on cloud

systems by offloading tasks to network nodes. INC moves data processing tasks from the host di-

rectly to network devices, which can handle traffic processing while forwarding it. By utilizing the

idle resources of network devices, INC reduces data transmission demands and cloud computing

pressure [5].

Based on the survey in [3], figure 2.6 illustrates the computing capabilities enabled by in-

network computing. The in-network computing fabric consists of network elements in the blue

cloud, positioned between end-devices and edge computing servers (e.g., MEC servers, fog nodes,

cloudlets) or between end-devices and cloud data centers (and even between edge and cloud servers).

The green path represents an end-to-end communication route, which can be truncated before reach-

ing cloud servers (e.g., at point 2) by using in-network computing on intermediate network elements

like programmable switches, FPGAs, or smart NICs. Similarly, traffic on the red path may be pro-

cessed by network elements before reaching edge servers (e.g., at point 1), allowing results to be

returned to end-devices from a closer location than the edge server.

Moreover, the authors in [5], note that recent advancements in programmability and process-

ing power allow network devices to handle increasingly complex computing tasks, reducing the

need for numerous cloud servers and decreasing overall energy consumption. This approach allows

networks to dynamically adapt to varying conditions and demands. However, high-performance
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Figure 2.6: Schematic of in-network computing fabric [3].

programmable network processors, along with SDN and the development of the P4 programming

language, have made active, programmable networks feasible and practical [5], [41]. Furthermore,

the resurgence of INC is largely driven by SDN, which enables control plane customization but lim-

its the data plane to protocol-dependent actions and lacks in-field runtime re-programmability. INC

extends SDN by enhancing data plane programmability through domain-specific languages like P4

[39].

As a product of application-network integration, INC aims to improve processing performance

and energy efficiency by merging application systems with communication infrastructure. More-

over, INC offers notable advantages: lower latency through in-transit data processing, high through-

put by gradually reducing data volume during transmission, and enhanced energy efficiency by

reducing data center load [5]. Few proof-of-concept works have explored INC’s potential. For

instance, Sapio et al. [15] developed an INC framework with the BMv2 software switch, demon-

strating significant data reduction (up to 89.3%) and latency improvements.

On the other hand, applications like holographic streaming impose stringent Quality of Ser-

vice (QoS) requirements that current infrastructures often struggle to meet, particularly when these

demands need to be addressed concurrently [13]. In this context, In-Network Computing plays a
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Figure 2.7: In-Network Computing model [5].

crucial role in fulfilling these requirements. For instance, among the few previous studies, Aghaali-

akbari et al. [22] explored INC’s potential for holographic applications, specifically remote holo-

graphic concerts. Their study proposed an architecture and prototype using the BMv2 switch, as-

suming the application operates within a cloud-edge continuum with a transcoder function. Exper-

iments revealed that deploying the transcoder on a network device reduces network load by up to

50% compared to edge server execution. The INC scenario also showed notable latency gains over

the NFV scenario, though these gains were less pronounced than the reductions in network load.

2.4 Conclusion

In this chapter, we provided a comprehensive overview of the foundational concepts essential

to this thesis. We first explored ontology, discussing its role in structured knowledge representa-

tion and its significance in enabling automated and semantic-driven discovery mechanisms. Next,

we examined holographic applications, particularly holographic-type communication, highlight-

ing its growing demand and the stringent network requirements necessary for seamless real-time

interactions. Finally, we delved into the emergence of In-Network Computing as a transforma-

tive approach to handling computational workloads directly within network infrastructure. We an-

alyzed key networking technologies, including Software-Defined Networking and programmable

data planes, which play a crucial role in enabling INC. By integrating these concepts, this chapter

establishes the necessary background for understanding the motivation behind an ontology-based

INC component description and discovery model, which is the focus of this thesis.
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Chapter 3

Use Case and State of the Art

In this chapter 3, we first introduce our holographic streaming use case to outline the require-

ments for the INC Components description and discovery model architecture. Next, we derive the

specific requirements based on this use case. Finally, we summarize the State of the Art in relation

to these requirements and concluded the chapter.

3.1 Use Case

Consider a holographic streaming use case designed for immersive remote events, such as a real-

time holographic concert. In this scenario, users can experience high-quality holographic content,

engaging with the event in real-time as if they were physically present. To initiate a holographic

streaming session, users require specific INC components tailored to their needs. For example,

INC components such as a renderer, encoder, decoder or transcoder may be essential for ensuring a

seamless streaming experience.

To retrieve the most relevant INC components, users (e.g., Network operator) provide their spe-

cific requirements and preferences, enabling a system to match and select the best-fit components for

their request. For the holographic concert use case, the following sequence of actions is envisioned:

(1) To facilitate the retrieval of INC components, they must first be published by the INC provider

in a centralized repository.
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Figure 3.1: Sequence of interaction during Holographic Streaming.

(2) The user submits a request for the desired INC components (e.g., encoder, renderer, decoder,

or transcoder), specifying their requirements and preferences to ensure seamless INC provi-

sioning for an optimal holographic streaming experience.

(3) Upon receiving the user’s request, the Query Processing Agent processes it by translating the

specified requirements and preferences into a structured query and preference list, which is

then forwarded to the Semantic Matchmaking Module.

(4) The Semantic Matchmaking Module receives the query and preference list from the Query

Processing Agent and leverages the INC Component description model (INCO) to search for

the most suitable INC components.

(5) After completing the search, the Semantic Matchmaking Module ranks the matched compo-

nents based on the user’s preferences and returns the results to the user.

Figure 3.1 provides a visual representation of this sequence, detailing the steps involved in INC

Component discovery, ranking, and returning them to the user based on their preferences and request

for successful placement of INC Components to fulfill the holographic streaming request.
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3.2 Requirements

In the context of seamless INC component discovery for holographic streaming, several chal-

lenges arise. As described in the use case, INC providers design and publish components to a cen-

tralized repository, which allows to efficiently retrieve these INC components by semantic match-

maker for service orchestration.

To this end, the first requirement derived from the use case is that the proposed architec-

ture must include a centralized repository that functions as a database to store and access INC

components, allowing seamless publishing by INC providers.

Since this use case involves retrieving specific INC components for holographic streaming, a

detailed description model is essential. This model should encompass a comprehensive ontology

covering both functional and non-functional properties, enabling precise identification and retrieval

of components like encoders, decoders, transcoders, and renderers.

Hence, the second requirement is the need for an ontology-based semantic description model,

which provides a structured and comprehensive description of INC components to facilitate

smooth and automated component discovery.

Nevertheless, for efficient and automatic discovery, the architecture must include a semantic

matchmaker that can identify and rank the most relevant INC components based on each user’s

request and preferences/criteria.

Therefore, the third requirement is that the architecture should incorporate a semantic match-

maker module to retrieve and rank the most suitable INC components based on user-defined

criteria.

To ensure that user requests are interpretable by the semantic matchmaker, these requests, in-

cluding specific requirements and preferences, must be translated into a query format. A query

processing module is needed to convert user requests into a form that the semantic matchmaker can

understand and use for accurate ranking and retrieval.

Finally, the fourth requirement is to provide a query processing module that translates user

requests and preferences into query and preference list, ensuring that the semantic matchmaker

can effectively retrieve the required INC components.
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3.3 State of the Art

In this section 3.3, we review the state of the art in the discovery and description of network

components, aiming to adapt relevant insights for our work. We organize and review the state

of the art in four main subsections: the first subsection discusses the role of semantics in service

discovery, emphasizing its importance in enhancing discovery. Next, in sections 3.3.2 and 3.3.3

reviews prior research on VNF descriptions and discovery methods. Subsequently, we discuss the

design considerations and challenges specific to this thesis. Finally, the chapter concludes with a

synthesis and summary of the reviewed works.

3.3.1 The Role of Semantics in Service Discovery

As the number of web services (WS) grows, efficient service discovery and composition have

become critical challenges for distributed applications. Service discovery methods are generally cat-

egorized into syntactic-based and semantic-based approaches. Syntactic matching relies on string

equivalence of parameter names for a service’s input and output messages, often utilizing graph the-

ory, such as the Resource Description Framework (RDF) and DIANE Service Description [42]. In

contrast, semantic matching leverages ontologies like W3C Web Ontology Language (OWL-S) [43]

and Web Service Modeling Ontology (WSMO) [44] to represent a service’s interface and attributes,

enabling parameter type matching based on XML Schema type hierarchies [45]. For instance, OWL

ontologies were utilized in the FP7 European mOSAIC project to represent heterogeneous multi-

vendor cloud resources and user Service Level Agreements in cloud environments [46].

XML-based specifications provide only syntactic descriptions of Web services, requiring human

involvement during discovery processes. On the other hand, semantic Web service technology aims

to minimize manual intervention by enabling software agents to automatically locate, integrate, and

execute services to meet user objectives. The Semantic Web vision has inspired enhancements to

Web service descriptions with machine-interpretable semantics, creating ”semantic Web services”

to automate core tasks like discovery, composition, selection, and invocation [10].

Moreover, to enable effective service discovery, key steps include adding interpretable meta-

data, documenting services consistently, storing the information in a searchable repository, and
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facilitating efficient searches [47]. Although syntactic-based standards like Universal Description

and Discovery Interface (UDDI), Web Services Description Language (WSDL), and Simple Object

Access Protocol (SOAP) provide a foundation for Web services, they rely on syntactic descriptions,

leading to inefficiencies in service discovery and composition. In contrast, semantic Web technolo-

gies or services are likely to provide better qualitative and scalable solutions to these problems and

facilitate more efficient and flexible service discovery and composition, emphasizing the role of

semantic descriptions in overcoming the limitations of traditional, syntactic-based approaches [45]

[10] [47].

Likewise, the semantic-based approach to Web service discovery also considers both functional

and non-functional parameters, emphasizing interoperability. Nevertheless, numerous studies in

service computing have examined service descriptions and user queries, showing that incorporating

semantics improves precision and recall in service discovery. Research comparing syntactic meth-

ods, typically based on information retrieval metrics, with semantic approaches involving logical

inference has shown that semantic matching outperforms syntactic matching, motivating our focus

on semantic matching for our thesis work [45], [10], [9]. Table 3.1 summarizes the key compar-

isons discussed in this section that guided our decision to choose a semantic-based approach over

syntactic methods.

Table 3.1: Semantic Matchmaking over Syntactic for Discovery [10].

Comparison Features Syntactic-based Semantic-based

Matches Functional Parameters 6 6

Matches Non-Functional Parameters : 6

Automatic Discovery : 6

3.3.2 Related Work on VNF Description and Discovery

In this section 3.3.2, we examine and evaluate several approaches previously used for describ-

ing Virtual Network Functions. As mentioned earlier, to the best of our knowledge, no prior work

has been done on describing and discovering INC components. Therefore, we focused on VNFs

to gain valuable insights that could be adapted to our proposed model. For instance, Cloud4NFV
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[48], architecture is compliant with the ETSI NFV architectural guidelines, Cloud4NFV platform

adheres to major NFV standard guidelines and is built on cloud infrastructure management and SDN

platforms, designed for the provisioning of VNFs, delivering Network Functions as a Service to end

customers. Cloud4NFV offers significant contributions to modeling and orchestration incorporating

a front-end database that stores collections of VNFs with high-level descriptions (e.g., ID, name,

description, location) and a back-end database that contains specific VNF details required for de-

ployment and configuration. However, Cloud4NFV focuses solely on deployment and configuration

and did not mention about the non-functional properties. Moreover, it lacks an automated discovery

mechanism for VNFs.

Table 3.2: Summary of related work evaluating VNF description and discovery approaches.

Virtual Network Function / In-Network Computing Components

Papers Description Publication Discovery

Functional

Properties

Non-

Functional

Properties

Inter-

operability

Semantic

Match-

making

User

Request

Builder

Cloud4NFV [48]
VNF (6)

INC (:)

VNF (:)

INC (:)

VNF (:)

INC (:)

VNF (:)

INC (:)

VNF (:)

INC (:)

OASIS

TOSCA NFV
[49]

VNF (6)

INC (:)

VNF (:)

INC (:)

VNF (6)

INC (:)

VNF (:)

INC (:)

VNF (:)

INC (:)

T-NOVA [50]
VNF (6)

INC (:)

VNF (Partially)

INC (:)

VNF (6)

INC (:)

VNF (:)

INC (:)

VNF (:)

INC (:)

In [49],TOSCA-NFV refers to the TOSCA Simple Profile for NFV, a standard developed by

OASIS. It provides a data model and guidelines using the TOSCA (Topology and Orchestration

Specification for Cloud Applications) language to describe and manage the deployment, connectiv-

ity, and lifecycle of VNFs within an NFV environment. It enables interoperability between NFV

components and simplifies the deployment of network services. It also enables automation of VNF

deployment, scaling, and lifecycle management through orchestration tools. While TOSCA-NFV

promotes interoperability and addresses functional properties of VNFs, it falls short in providing

semantic discovery and does not comprehensively address non-functional properties.

The T-NOVA project [50], presents an innovative framework for delivering Network Functions

as a Service through an integrated NFV marketplace. This framework enables network operators
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to offer VNFs to customers without requiring hardware. The architecture includes a marketplace

where developers can publish VNFs, and customers can select tailored functions, supported by

an advanced orchestrator for automated provision, management, monitoring and optimization of

VNFs. While T-NOVA addresses interoperability, it only partially covers non-functional properties

and lacks a mechanism for the semantic discovery of VNFs.

Table 3.2 summarizes the most relevant studies related to VNF description, publication, and

discovery. The review in this section reveals that while some works (e.g., [48], [49], [50]) have made

strides in functional properties and interoperability, none offer an automated semantic discovery

process, address user requests, or comprehensively cover the non-functional properties of VNFs.

3.3.3 Related Work on Ontology-based VNF Description and Discovery

While various ontology-based methods have been used for describing and discovering VNFs,

none have specifically targeted INC components. To address this gap, we reviewed existing ontology-

based VNF description and discovery methods to adapt relevant insights to our INC model.

For example, Bonfim et al. [51] developed NSChecker, a semantic verification system designed

to detect and diagnose policy conflicts in NFV environments. Conflicting policies often arise when

different restrictions are applied to shared resources. NSChecker uses the Onto-NFV ontology to

describe NFV infrastructure, network services, and associated policies, employing description logic

(DL) for comprehensive conflict detection. A Java-based prototype demonstrated NSChecker’s

effectiveness in identifying conflicts related to network function precedence, resource usage, and

location in scenarios involving up to 50,000 nodes. However, this approach does not address non-

functional properties.

Additionally, Hoyos et al. [6] addressed the challenges of standardization and common under-

standing among stakeholders, which lead to portability and interoperability issues. They proposed

an NFV Ontology (NOn) that enables Semantic NFV Services (SnS) to reduce manual intervention

in integrating heterogeneous NFV domains. NOn standardizes NFV component descriptions, facil-

itating seamless integration across platforms. In this work, two VNFD descriptors from different

NFV implementations were parsed into NOn VNFD instances creating a semantic VNFD template
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Figure 3.2: NOn Model [6].

following ETSI specification. Figure 3.2 illustrates the final design of NOn, using the entity relation-

ship diagram annotation, containing all the abstracted elements, slots (properties) and cardinality.

Moreover, user requests were created using the proposed Generic Client in their work. A proof of

concept using a Generic Client within an OpenStack and OpenBaton-based testbed demonstrated

how this approach enhances automation and reduces cross-domain integration complexity, thereby

mitigating costly rework in current NFV implementations.

Similarly, Anser et al. [7] introduced TRAILS, an extension to TOSCA NFV figure 3.3 profiles

that addresses the convergence of IoT, NFV, 5G, and Fog and Edge computing. This complex Cloud-

to-IoT continuum presents challenges in assigning responsibility, accountability, and liability. Tra-

ditional TOSCA NFV profiles focus on deployment but overlook these critical issues. TRAILS

integrates responsibility and accountability descriptors into a unified profile, enabling consistent,

liability aware service management across IoT devices, fog, edge, and cloud nodes.
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Figure 3.3: Extension of the TOSCA NFV metamodel [7].

Kim et al. [8] utilized Network Service Description (NSD) data and ontology to automate VNF

management and enable the automatic generation of network services. By employing ontology

reasoning and semantic annotations, they developed an ontology that captures semantic relation-

ships between parameters. This was achieved through an annotation process that enriched NSD

parameters with semantic information, allowing for the discovery of similar services and facilitat-

ing automated network service composition. Their descriptor includes functional information such

as, details about VNFs and their dependencies, non-functional information such as vendor details,

and optional information blocks for features like scaling and monitoring. Figure 3.4 shows the three

blocks and the relationships between classes. However, their work lacks a discovery algorithm

specifically for VNFs. Likewise, Oliver et al. [52], propose an ontology for NFV that formally de-

scribes the whole network resources, VNF properties, and relationships. While it covered functional

aspects of VNFs, like Kim et al. [8], it lacked a discovery algorithm and non-functional property

coverage.

Few studies focus on both functional and non-functional properties. Notably, Nouar et al. [9]
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Figure 3.4: NFVO Ontology [8].

observed that existing discovery approaches are provider-specific, using unique methods for parsing

VNF descriptors and relying on manual selection. Current VNF description models often lack com-

prehensive coverage of both functional and non-functional properties. To address these gaps, Nouar

et al. introduced the VIKING ontology, which provides detailed VNF descriptions and incorporates

a semantic matchmaking algorithm for more efficient discovery and selection. Their model supports

building user requests by considering user requirements and preferences, which are clustered into

three distinct categories, providing a more advanced and automated approach compared to previous

methods.

Table 3.3 sums up the most relevant studied work on ontology-based VNF description, pub-

lication, and discovery. In addition, Nouar et al. [9] VIKING ontology, succeeded in covering

both the functional and non-functional properties of the VNFs in their proposed description models,

separately highlighted in figure 3.5 and also addressed semantic discovery.

Building on these studies and addressing identified gaps, we developed an ontology-based

semantic description model that comprehensively covers both the functional and non-functional

aspects of INC components. In our conference paper [53], accepted at the 20th International
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Figure 3.5: Core concepts in the VIKING framework, categorized into functional and non-

functional properties [9].

Conference on Network and Service Management, we proposed a model that extends semantic

matchmaking-based discovery for INC components—a core idea of this thesis. This thesis further

expands on the work presented in our conference paper, as discussed in the following chapter.

Table 3.3: Summary of related work evaluating on ontology-based VNF description and discovery

approaches.

Virtual Network Function / In-Network Computing Components

Papers Description Publication Discovery

Functional

Properties

Non-

Functional

Properties

Inter-

operability

Semantic

Match-

making

User

Request

Builder

Bonfim et al. [51]
VNF (6)

INC (:)

VNF (:)

INC (:)

VNF (:)

INC (:)

VNF (:)

INC (:)

VNF (:)

INC (:)

Hoyos et al. [6]
VNF (6)

INC (:)

VNF (:)

INC (:)

VNF (:)

INC (:)

VNF (:)

INC (:)

VNF (6)

INC (:)

Anser et al. [7]
VNF (6)

INC (:)

VNF (6)

INC (:)

VNF (:)

INC (:)

VNF (:)

INC (:)

VNF (:)

INC (:)

Kim et al. [8]
VNF (6)

INC (:)

VNF (6)

INC (:)

VNF (:)

INC (:)

VNF (:)

INC (:)

VNF (:)

INC (:)

Oliver et al. [52]
VNF (6)

INC (:)

VNF (:)

INC (:)

VNF (:)

INC (:)

VNF (:)

INC (:)

VNF (:)

INC (:)

Nouar et al. [9]
VNF (6)

INC (:)

VNF (6)

INC (:)

VNF (6)

INC (:)

VNF (6)

INC (:)

VNF (6)

INC (:)
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3.4 Design Considerations

In VNF architecture, virtualization techniques are used to manage network functions, with the

VNF Descriptor (VNFD) playing a critical role in defining and specifying the characteristics, con-

figuration details, and performance requirements of VNFs [54]. The VNFD serves as a standardized

template that includes essential properties such as version, name, and vendor, providing an overview

of each function and its role in the network. In contrast, there is no standardized descriptor for INC

components to define their specific characteristics and properties.

Constructing an optimal INC ontology to support an efficient discovery mechanism was partic-

ularly challenging. An ideal ontology should be well-structured, clearly defining concepts, relation-

ships, and rules governing interactions. To build a coherent and comprehensive INC ontology, INC

providers must supply a descriptor that contains essential information related to INC operations and

deployment. In some studies (e.g., [9], [6]), the VNFD has been used as a blueprint to build an on-

tology defining the functional and non-functional properties of VNFs. However, INC components

lack a similar descriptor, making the task of description and discovery significantly challenging in

this thesis.

Deployment related information of INC components including bandwidth, latency, and sup-

ported compilers, is critical and must be given by the INC provider. Without such details in the

INC descriptor, developing a comprehensive ontology would be challenging. For example, spec-

ifying the supported compiler, such as the requirement for P4-enabled switches, is essential for

the correct deployment of INC components. The VNFD specifies how VNFs should be deployed

and managed; for instance, it incorporates Virtual Deployment Units (VDUs) that support specific

deployment resources essential for hosting VNF components. Likewise, a similar descriptor for

INC components should exits, incorporating essential deployment-related information. Moreover,

to build a comprehensive ontology, INC descriptors should also include details about INC opera-

tions. These parameters are essential for constructing an optimal ontology and enabling efficient

INC component discovery.

Considering these factors, we designed an ontology model that encapsulates all necessary in-

formation to describe each INC component, including functional and non-functional properties. In
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this thesis, we assume that INC providers will provide an INC descriptor for each component, con-

taining essential information to construct our ontology model and facilitate an effective discovery

mechanism.

3.5 Conclusion

In this chapter, we explored the foundation and context for our thesis by presenting a detailed

use case for holographic streaming, which highlights the challenges and requirements for the de-

scription and discovery of In-Network Computing components. Through this use case, we derived

key requirements, including the necessity for a centralized repository, an ontology-based seman-

tic description model, a semantic matchmaking module, and a query processing module, to enable

efficient and accurate INC component discovery. We then reviewed the state of the art in service

discovery and network function virtualization description and discovery, focusing on the role of

semantics and ontology-based approaches. The review underscored the gaps in INC component

descriptions, further emphasizing the need for a tailored ontology-based solution. Finally, we dis-

cussed the design considerations and challenges associated with developing a comprehensive INC

ontology and efficient discovery mechanism. The groundwork laid in this chapter sets the stage for

the subsequent chapters.
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Chapter 4

Proposed Architecture

In the previous chapter, we identified the requirements for an In-Network Computing Compo-

nent Description and Discovery Model tailored to the holographic streaming use case. This chap-

ter introduces a proposed architecture designed to address these requirements. It begins with an

overview of the architecture and its main functional entities. Subsequently, detailed descriptions

of the key modules are provided, including the Centralized Repository, INC Ontology Module, Se-

mantic Matchmaking Module, and Query Processing Agent. The chapter further elaborates on the

design and development process of the INC component description model. Additionally, it high-

lights the INC discovery process, detailing the steps involved in building user requests, query and

explaining how the architecture fulfills the predefined requirements for efficient INC component

discovery. Finally, the flow of INC component discovery and the interactions between the various

modules are outlined.

4.1 General Overview of the Architecture

This section 4.1 describes our proposed architecture, as depicted in Figure 4.1. The architecture

enables the ontology-based description of INC Components and their discovery through a seman-

tic matchmaking algorithm. It is designed to support advanced applications like holographic-type

communication by leveraging a structured and modular approach.

As shown in Figure 4.1, the architecture comprises several key modules, each playing a critical
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Figure 4.1: Proposed Architecture for INC Components Description and Discovery.

role in ensuring efficient INC discovery. These modules include the following entities: Centralized

Repository, Semantic Matchmaking Module, Query Processing Agent, the ontology-

based semantic description model INCO, and the Network Operator/User.

At the core of the architecture lies the Centralized Repository, which serves as a

database for storing INC components. Each component is described using an ontology-based ap-

proach called the In-Network Computing Ontology (INCO) model, which provides

detailed and structured description of both functional and non-functional properties ensuring in-

teroperability and reusability. The Semantic Matchmaking Module plays a pivotal role in

enabling efficient component discovery by leveraging the structured descriptions in the ontology.

Acting as a bridge between users (e.g., Network operator) and the Semantic Matchmaking

Module, the Query Processing Agent processes user-submitted requirements and pref-

erences, translating them into actionable inputs for the matchmaking process. User/Network

Operator interacts with the Query Processing Agent to specify their requirements and
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preferences. The architecture is designed to meet the stringent demands of next-generation applica-

tions, such as holographic-type communication, by providing a semantic solution for INC compo-

nent description and discovery. In the following subsections, we provide a detailed explanation of

each module within the proposed system.

4.2 Module Description

This section discusses the modules within the proposed architecture. As mentioned earlier, the

architecture comprises the following key entities: Centralized Repository, INCO, Semantic

Matchmaking Module, Query Processing Agent, and User/Network Operator.

The subsequent sections provide a detailed description of each module.

4.2.1 Centralized repository

The Centralized Repository serves as a database for storing and accessing INC components,

functioning as a marketplace. It enables INC providers to publish INC components seamlessly

and ensures efficient access to the retrieval and discovery of these components. Each INC Com-

ponent (e.g, INC Component1....INC ComponentN ) includes a INC Descriptor—a structured

template defining the component’s functional and non-functional properties, computational require-

ments, and deployment parameters. The INC Descriptor outlines essential details, such as the oper-

ation name, ID, and deployment information.

4.2.2 INC Ontology / INCO Module

The INC Ontology Module (INCO) serves as the semantic description model for INC compo-

nents. It employs an ontology-based approach to provide comprehensive semantic descriptions for

both generic and specific INC components tailored to holographic streaming. INCO semantically

represents INC components using INC descriptors, defining the domain scope, managing queries,

and facilitating the description, publication, and discovery of INC components.
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4.2.3 Semantic Matchmaking Module

The Semantic Matchmaking Module (SMA) serves as a semantic matchmaker for retrieving the

best-matched INC components. Utilizing the algorithm outlined in Algorithm 1, this module iden-

tifies and returns a ranked list of relevant INC URIs. By leveraging the INCO model, the algorithm

aligns with user preferences and requirements, discarding irrelevant components and ranking the

relevant ones. The module relies on the ontology-based description model to ensure efficient and

accurate component discovery.

4.2.4 Query Processing Agent

The Query Processing Agent (QPA) acts as a bridge between users and the SMA, translating

user requests into a system-processable format. It converts user requests into SQWRL (Seman-

tic Query-Enhanced Web Rule Language) queries and generates a preference list categorized into

mandatory, high, and optional preferences (to be discussed in the following section). The QPA is

also responsible for forwarding the query and preference list to the Semantic Matchmaking Module

for processing.

4.3 Ontology-based approach for INC Component Description

This section details the INCO model. It explains how the INCO model is designed and con-

structed, covering aspects such as class definitions, class hierarchies, relationships, property defi-

nitions (slots) of classes, facets of slots, instance creation, and determining the domain and scope

of INCO. Then it discusses the functional and non-functional properties of INC components, along

with their key concepts. Additionally, we further elaborates INCO for holographic-type communi-

cation specific INC components.

4.3.1 INCO Model Design and Description

INCO is an OWL-based ontology designed to describe INC Components. This model was

developed following the principles outlined in Ontology Development 101: A Guide to Creating
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Your First Ontology [25]. The development adhered to a structured approach, ensuring a com-

prehensive design that captures both functional and non-functional properties of INC components.

Additionally, to enhance the model’s relevance, insights from existing references were incorporated.

Technologies related to encoding, decoding, and transcoding, such as H.265/HEVC and H.264/AVC

[55, 56, 57], along with rendering techniques like OpenGL [58, 59, 60, 61, 62, 63, 64], were studied

and adapted for our work. Additional references consulted include [6, 9].

The following steps summarize the key actions undertaken during the INCO design process:

(1) Determine the domain and scope of the ontology: To design INCO, we first defined the

specific domain and scope of the ontology. The domain and scope of INCO were defined to

focus on In-Network Computing.

(2) Define the intended purposes of INCO: The goals of the ontology were defined to encom-

pass the description and discovery of INC components specifically designed for Holographic-

Type Communication.

(3) Define the classes and the class hierarchy: Core concepts were organized into classes, and

a hierarchy was established to represent their relationships. A top-down strategy was adopted,

starting with general concepts and refining them into specialized subclasses.

(4) Define the properties of classes (slots): Properties (slots) were defined to align with the

characteristics of each class, such as bandwidth, latency.

(5) Define the cardinality of the slots: Cardinality restriction and type values were defined

for each property to ensure that concept instances are correctly related to the appropriate in-

stance(s) and belong to the right concepts. For example, the property descriptor version

has a cardinality of “1” and a value of type String.

(6) Specify the types of queries INCO should address: The ontology was designed to handle

queries focused on similarity, ensuring efficient discovery processes.

(7) Create instances: Specific examples (instances) were created to validate and demonstrate

the ontology’s functionality.
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Figure 4.2: INCO’s core concepts.

Concepts in INCO are organized hierarchically, where subclasses represent more specific con-

cepts while inheriting properties from their superclasses. Properties connect these concepts through

semantic relationships. INCO leverages OWL’s reasoning capabilities to enhance discovery and

classification.

Figure 4.2 illustrates INCO’s core concepts. In OWL, the owl:Thing class serves as the uni-

versal superclass, encompassing all individuals by default. Key classes, such as INC Descriptor,

Cost, Performance Requirement, INC Deployment Unit, and INC Operation are

distinguished by their functional or non-functional properties, highlighted in blue or purple. The

class hierarchy represents an “is-a” relationship, indicating that subclasses inherit the properties

(slots) of their parent class. For example, Encoder Decoder and Renderer are specific sub-

classes of the INC Operation class. Although these subclasses share a common superclass, they

each have unique attributes and functionalities. Overall, Figure 4.2 provides a hierarchical overview

of the INCO model.

The following Tables 4.1, 4.2, 4.3, 4.4, and 4.5 summarize the INCO relationships, detailing the

concepts, properties (slots), cardinality, and slot values. Each column is described as follows:

• Concepts: Represented in the first column, these are the core elements of the ontology.

• Properties/Slots: Listed in the second column, they describe the attributes or relationships
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Figure 4.3: Modeling INCO.

Figure 4.4: INCO Model Representation.
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associated with each concept.

• Cardinality: Indicated in the third column, it specifies slot facets such as “one to many

(1...*)”, “exactly one (1)”, or “optional (0...1)”. For example, the property has deployment unit

in INC Descriptor has a cardinality of “1...*”, meaning one to many INC Deployment Unit

instances can be associated (see Table Table 4.1).

• Values: Shown in the fourth column, these represent the slot values, which can be either a data

type (e.g., String, Integer) or an object type (e.g., another concept). For example, the vendor

field in INC Descriptor is a data property with a “String” value and a cardinality of “1”

(see Table 4.1). Similarly, the property has cost links an INC Descriptor instance to

a Cost instance with a cardinality of “1”.

Table 4.1 details the relationships of the INC Descriptor, Cost, and INC Operation

concepts. Figure 4.3 illustrates the modeling of the concepts and their associated properties, es-

tablishing the relationships detailed in Table 4.1. Table 4.2 describes the relationships of the

INC Deployment Unit and Performance Requirement concepts. For instance, INC Dep

loyment Unit and Performance Requirement are semantically connected through the re-

lation has requirement (see Table 4.2). Table 4.3 focuses on the relationships of the Encoder

Decoder concept, while Table 4.4 addresses the Renderer concept. Lastly, Table 4.5 captures

the relationships of all subclasses of the Renderer concept, including Rendering Input Device,

Rendering Requirement, Rendering Technique, Rendering Display Technology,

and Rendering Data Type. These tables collectively describe the semantic relationships within

the INCO ontology-based model, highlighting its structure and connections.

INCO, as illustrated in Figure 4.4, serves as our ontology-based model for the semantic rep-

resentation of INC components. It is structured into two primary segments: functional properties

(blue boxes) and non-functional properties (purple boxes). This figure provides a comprehensive

overview of how the INCO model is designed, highlighting the concepts, their associated properties,

and the semantic relationships that connect them.

The organization of these concepts facilitates detailed descriptions, effective query construc-

tion, and efficient retrieval of INC components. Figure 4.4 employs an entity-relationship diagram
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Table 4.1: Summary of Relationships for the Descriptor, Cost, and Operation Classes in

INCO.

Concepts Properties/Slots Cardinality Values

INC Descriptor descriptor version 1 String

descriptor id 1 String

vendor 1 String

availability 1 Decimal

has cost 1 Cost

has deployment unit 1...* INC Deployment Unit

has supported operation 1...* INC Operation

Cost operational cost 1 Decimal

licensing cost 1 Decimal

INC Operation operation name 1 String

operation version 1 String

operation description 0...1 String

operation id 1 String

has holographic renderer 0...1 Renderer

has holographic encoder decoder 0...1 Encoder Decoder

annotation, showcasing all concepts, properties (slots), slot facets, and their relationships. The fi-

nal design of INCO is based on this conceptual framework, which forms the foundation for its

implementation. These elements and their relationships are discussed in detail in the following

subsections, emphasizing their roles in achieving precise semantic representation and supporting

query-building mechanisms.

4.3.2 Functional Properties of INCO

As mentioned earlier, functional properties define the capabilities and semantic relationships

of an INC component. They refer to the formal attributes specifying what an INC component can

perform. These functional properties include ten key concepts, three of which are discussed in this

section. Detailed explanations of all the properties associated with these concepts are presented in
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Table 4.2: Summary of Relationships for the Deployment Unit and Performance

Requirement Classes in INCO.

Concepts Properties/Slots Cardinality Values

INC Deployment Unit number of instances 1 Integer

deployment unit id 1 String

deployment description 0..1 String

deployment constraint 0..1 String

inc program 1 URI

supported compiler 1 String

has requirement 1 Performance Requirement

Performance Requirement bandwidth 1 Decimal

latency 1 Decimal

min ram 1 Integer

min cpu 1 Integer

reliability 1 Decimal

min storage 1 Integer

Tables 4.6, 4.7, and 4.8. The following section elaborates on this three selected concepts in detail.

• INC Operation: Describes the supported operations, detailing their purpose and specific

functionalities. This includes operation names, descriptions, versions, and associated identi-

fiers.

• INC Deployment Unit: Provides essential deployment information for INCO components,

such as the required compiler (e.g., P4) for executing an INCO program, the program’s URI,

and other relevant details.

• Performance Requirement: Specifies the conditions necessary for an INCO component to

operate efficiently, including computational and storage needs, such as minimum RAM and

CPU requirements.

In Tables 4.6, 4.7 and 4.8 the Properties/Slots column lists the data type properties associated

with the concepts INC Operation, INC Deployment Unit, Performance Requirement
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Table 4.3: Summary of Relationships for the Encoder Decoder Class in INCO.

Concepts Properties/Slots Cardinality Values

Encoder Decoder holographic operation type 1 String

bitrate 1 Decimal

holographic operation description 0..1 String

formats 1 String

channels 1 String

partion value 1 String

frame rate 1 Integer

speed 1 String

resolution 1 String

transform coeffient 1 String

quality metric 1 String

prediction mode 1 String

error resilience 1 String

compression ratio 0...1 String

decompression ratio 0...1 String

Table 4.4: Summary of Relationships for the Renderer Class in INCO.

Concepts Properties/Slots Cardinality Values

Renderer rendering description 0...1 String

has input device 1 Rendering Input Device

has rendering requirement 1 Rendering Requirement

has rendering technique 1 Rendering Technique

has display technology 1 Rendering Display Technology

has data type 1 Rendering Data Type

in the ontology. The Description column provides definitions for each of these data type properties.
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Table 4.5: Summary of Relationships for all the Subclasses of Renderer Class in INCO.

Concepts Properties/Slots Cardinality Values

Rendering Input Device input device type 1 String

interaction type 1 String

Rendering Requirement speckle noise reduction 1 String

rendering latency 1 Decimal

reconstruction quality 1 Integer

rendering frame rate 1 Integer

rendering quality 1 Integer

Rendering Technique shader type 1 String

rendering algorithm 1 String

Rendering Display Technology diplay resolution 1 String

display type 1 String

display refresh rate 1 String

Rendering Data Type colour information 1 Boolean

rendering resolution 1 Boolean

parallax support 1 Boolean

density information 1 Boolean

Table 4.6: Properties of INC Operation.

Properties/Slots Description

operation name Name of the INC operation, e.g., ”Compression”, ”Decompres-

sion”.

operation version Version of the INC operation.

operation description Any textual description of the INC operation.

operation id Unique identifier for the INC operation.

4.3.3 Non-Functional Properties of INCO

Non-functional properties focus on the requirements essential for the proper functioning of INC

components. These properties define what an INC component needs or requires to function ef-

fectively. They encompass two primary concepts, which are explained in detail along with their
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Table 4.7: Properties of INC Deployment Unit.

Properties/Slots Description

number of instances Number of INC Component instances to be deployed, e.g., 5 in-

stances.

deployment unit id Unique identifier for the deployment unit, e.g., ”DU-101”.

deployment description Any textual description of the deployment unit’s purpose.

deployment constraint Any textual descriptions of restrictions or limits on deploying a

component.

inc program URI of the INC component in the centralized repository, e.g.,

”http://inc-programs/holographic-streaming”.

supported compiler Supported compiler for deploying the INC component, e.g., ”P4

compiler”.

Table 4.8: Properties of Performance Requirement.

Properties/Slots Description

bandwidth Required network bandwidth for processing and streaming holographic

data, e.g., 500 Mbps.

latency Maximum acceptable delay for processing and streaming holographic

data, e.g., 150 ms.

min ram Minimum RAM required for holographic data storage and processing,

e.g., 8 GB.

min cpu Minimum CPU cores needed for task execution, e.g., 4 cores.

reliability Consistency of operation over time, e.g., 90% reliable for 100 continu-

ous hours.

min storage Minimum storage capacity required, e.g., 200 GB.

associated properties in Tables 4.9 and 4.10. These two concepts are defined and discussed in detail

as follows:

• INC Descriptor: Defines the general characteristics of INCO components and serves as the

central element of the INCO model. The INC Descriptor is categorized into four specialized

subclasses: INC Operation, INC Deployment Unit, Performance Requirement, Cost. It con-

nects directly or indirectly to every other concept, encompassing details such as component

availability, descriptor versions, and vendor information.
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• Cost: Addresses the financial aspects of an INCO component, including operational and

licensing expenses.

Table 4.9: Properties of INC Descriptor.

Properties/Slots Description

descriptor version Specifies the version of the INC Descriptor, e.g., ”Descrip-

tor 1.0”.

descriptor id A unique identifier of INC Descriptor, e.g., ”Descriptor-

001”.

vendor Provides information about the INC vendor.

availability Percentage of time the INC component instance is opera-

tional and accessible, e.g., 99.9%.

Table 4.10: Properties of Cost.

Properties/Slots Description

operational cost The ongoing cost to run or maintain an INC Component,

calculated based on resource usage, e.g., $0.05 per GB pro-

cessed.

licensing cost The licensing fee for using an INC component instance

over a specific period, e.g., $500 per month.

4.3.4 INCO-Holographic-Type Communication

As discussed in Section 4.3.3, both the Functional and Non-functional properties of INCO en-

compass core concepts essential for INC components, irrespective of the application domain. For

this work, we focus on Holographic-Type Communication as the illustrative application domain.

The previously discussed INC Operation of INCO has been extended to include Holographic-

Type Communication-specific classes and properties, such as Encoder Decoder and Renderer.

All related properties and concepts are treated as functional in this context. For the HTP use case,

we have identified four critical INC components: Encoder, Decoder, Transcoder, and Renderer.

• Encoder Decoder: This class encompasses all aspects of encoding and decoding holographic
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data. It is associated with the concept that includes details related to compression and de-

compression for efficient holographic data transmission and processing, such as supported

resolution, compression ratio, and decompression ratio, among others.

• Renderer: This class encompasses all aspects of rendering holographic data into visual out-

put. It includes one optional property that provides a textual description of the holographic

data rendering process. To ensure a detailed and precise representation, this class is further di-

vided into five specialized subclasses: Rendering Input Device, Rendering Requi

rement, Rendering Technique, Rendering Display Technology and Rende

ring Data Type.

• Rendering Input Device: Represents information related to rendering input devices, includ-

ing device type and interaction methods.

• Rendering Requirement: Defines essential requirements for rendering, such as rendering

quality, reconstruction quality, speckle noise reduction etc.

• Rendering Technique: Specifies the rendering methods used for holographic content, such

as the shader type and rendering algorithm used for rendering.

• Rendering Display Technology: Refers to the display technologies used to project holo-

graphic content, including properties like display type, display resolution etc.

• Rendering Data Type: Indicates whether specific attributes are supported for rendering

holographic data, such as colour information, density information etc.

4.4 INC Component Discovery

This section discusses the discovery process of INC components. A novel discovery process

based on INCO is proposed in this thesis. The INC component discovery process consists of three

main steps: user request formulation, query building, and semantic matchmaker. The process be-

gins with the user (e.g., a network operator) formulating their INC component requests in terms of
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Table 4.11: Properties of Encoder Decoder for Holographic Operations.

Properties/Slots Description

holographic operation type Type of operation, can be any encoding or decoding stan-

dard such as ”Encoder” or ”Decoder”.

holographic operation description Refers to any textual description of a holographic operation

such as ”HEVC” or ”AV1”.

formats Data format used, e.g., ”PLY”.

bitrate Encoding/decoding rate, e.g., ”10 Mbps”.

channels Number of input and output holographic data streams, e.g.,

Input: 3, Output: 2.

partition value Holographic data partitioning method, e.g., ”16x16 block”.

frame rate Frames processed per second, e.g., ”60 FPS”.

speed Speed of the operation, e.g., ”Real-time encoding”.

resolution Supported resolution, e.g., ”1920x1080 pixels”.

transform coefficient Contribution of transform coefficients to frequency com-

ponents, e.g., ”0.85”.

quality metric Measure of output quality, often compared to the original.

prediction mode Technique for predicting holographic data to reduce redun-

dancy, e.g., inter-frame prediction.

error resilience Level of error resilience supported during encod-

ing/decoding, e.g., ”Error Concealment”.

compression ratio Holographic data compression ratio, e.g., ”4:1”.

decompression ratio Holographic data decompression ratio, e.g., ”4:1”.

Table 4.12: Properties of Rendering Input Device.

Properties/Slots Description

input device type Type of input device used for rendering. Specifies the type

of input device for rendering.

interaction type Refers to the method of interaction.

requirements and preferences. Next, the query building process and the semantic matchmaking al-

gorithm are discussed. Lastly, we talked about the discovery flow process of the most relevant INC

components based on the user preferences. Each step in this process is detailed in the following
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Table 4.13: Properties of Rendering Technique.

Properties/Slots Description

shader type Type of shader used in rendering, example: ”Vertex

Shader”.

rendering algorithm Algorithm used to generate the rendered hologram, exam-

ple: ”Angular Spectrum Method”.

Table 4.14: Properties of Rendering Requirement.

Properties/Slots Description

speckle noise reduction Refers to the technique used for speckle noise reduction

during rendering.

rendering latency Refers to the maximum allowable delay during the render-

ing process.

reconstruction quality Refers to the quality of the reconstructed hologram.

rendering frame rate Refers to the frames per second needed for rendering.

rendering quality Refers to the quality of the rendering process.

Table 4.15: Properties of Rendering Display Technology.

Properties/Slots Description

display resolution Refers to the resolution of the display.

display type Refers to the type of display used.

display refresh rate Refers to the display refresh rate.

Table 4.16: Properties of Rendering Data Type.

Properties/Slots Description

colour information Indicates if the data includes color details for accurate object ren-

dering.

rendering resolution Specifies the resolution details included in the holographic data.

parallax support Indicates if the holographic data supports parallax effects.

density information Specifies if the data includes density details for realistic volume-

based rendering.

sections.
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4.4.1 User Request

The user’s request for the required INC component is built by the Query Processing Agent.

Users can define their preferences among functional and/or non-functional requirements to identify

the most appropriate INC components. These preferences are classified into three levels: mandatory,

high, and optional. Users specify requirement fields and values based on their preferences, which

are then used to rank and filter INC components.

• Mandatory preferences (non-negotiable) : All mandatory preferences must be fulfilled.

INC components that do not satisfy these preferences are discarded.

• High preference (important but flexible) : These preferences are optional but are given a

higher priority when ranking components. They represent highly preferred specifications.

• Optional preferences (desirable but not essential) : These preferences are considered less

important and have lower priority compared to high preferences.

Equation 1 formally represents a user request, which includes all relevant functional and non-

functional properties for the desired INC component, clearly distinguishing between the levels of

user preferences: mandatory (non-negotiable), high (important but flexible), and optional (desirable

but not essential).

The request from user i received by the QPA is formally defined as URi such that:

URi = {(Pri,j , Req fi,j , Reqi,j , Conditioni,j , V ali,j)}j=1..n
(1)

URi is a set of tuples, each representing a user specification for either functional or non-functional

properties. The variable j indexes each user specification, and n is the total number of specifications

in the request. Pri,j indicates the user preference level (mandatory, high, optional), Req fi,j cor-

responds to an INCO concept (e.g., INC Operation, Cost), Reqi,j maps to an INCO data property

(e.g., bandwidth, latency), Condition specifies the operator (e.g., maximum, minimum, exactly),

and V ali,j represents the value of the data property (e.g., ’Encoder’, 110). Table 4.17 provides a

summary of the symbols used in the user request equation and their corresponding descriptions.
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An example of an user request, is as follows :

URi = {(M, INC Operation, operation name, exactly, Firewall),(H, Performance Requirement, la-

tency, max, 110),(O, Cost, licensing cost, max, 500)};

Table 4.17: Symbols and Their Descriptions for User Request Representation.

Symbol Description

URi User i

Pri,j User i’s Mandatory (M), High (H), or Optional (O) Preferences

Req fi,j Requirement fields representing all classes of INCO

Reqi,j Requirements corresponding to all data type properties of INCO

Conditioni,j Conditions such as max, min, or exactly associated with V ali,j

V ali,j Value specified by User i for their requirement

4.4.2 Building Query

The Query Processing Agent is responsible for converting the user request into a query and a

preference list. The user submits their request based on preferences, which the QPA processes to

generate the corresponding SQWRL query and preference list. This process can be expressed as:

User Request → SQWRL Query + Preference List.

For clarity in the SQWRL formalism, the key symbols are as follows: ' (logical AND) con-

nects multiple true conditions,→ denotes implication, mapping conditions to selected variables, (

(logical OR) requires at least one condition to be true, and ? serves as a placeholder for variables

(e.g., ?p, ?f, ?v) within the query.

The SQWRL query (QRi) / Qi and a preference list (pref listi) are formally represented in
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Equation 2 and 4, respectively.

QRi = Rel '
[

Req fi,{j,Req f = INC Operation ∧ num of INC Operation >1}(?f)

' Reqi,j(?f, ?v) ' (Condition, Val)i,{j, Pr = mandatory}

]

→ sqwrl:select(?inc, ?vi,{j, Pr = high ∨ Pr = optional})

(2)

It is important to note that the Requirement Field (e.g., Req f ) may appear multiple times if the

user selects more than one INC operation (see Equation 2). Mandatory preferences are used to keep

relevant INC components, discarding those that do not meet the specified mandatory conditions.

Retrieved INC components are ranked based on high and optional preferences. Here, in Equation 2

Rel defines the structure of the ontology, helping build the query for each user request such that:

Rel = INC Descriptor(?d) ' has cost(?d, ?c) ' Cost(?c) ' supported operation(?d, ?o)

' INC Operation(?o) ' has deployment unit(?d, ?du) ' INC Deployment Unit(?du)

' has requirement(?du, ?p) ' Performance Requirement(?p) ' has holographic enco

der decoder(?o, ?ed) ' Encoder Decoder(?ed) ' has holographic renderer(?o, ?r) 'Ren

derer(?r) ' has input device(?r, ?id) 'Rendering Input Device(?id) ' has rendering r

equirement(?r, ?rr) 'Rendering Requirement(?rr) ' has rendering technique(?r, ?rt)

' rendering technique(?rt) ' has display technology(?r, ?rdt) 'Rendering Display T

echnology(?rdt) ' has data type(?r, ?dt) 'Rendering Data Type(?dt) ' inc program(?du,

?inc)

(3)

Pref listi = {(Pri,j , Reqi,j , Conditioni,j , V ali,j)}{j, Pr = high ∨ Pr = optional} (4)

The reader should note that only high and optional preferences are considered for the preference

list (see Equation 4).

An example of a query and pref list are as follows :

QRi = INC Descriptor(?d)'has cost(?d,?c)'Cost(c)'supported operation(?d,?o)'INC Operatio

n(?o)'has deployment unit(?d,?du)'INC Deployment Unit(?du)'has requirement(?du,?p)'Perform
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ance Requirement(?p)'inc program(?du,?inc)'operation name(?o,”Firewall”ˆˆrdf:PlainLiteral)'late

ncy(?p,?l)'licensing cost(?c,?lc)→ sqwrl:select(?inc,?l,?lc);

pref listi = (H, latency, max, 110), (O, licensing cost, max, 500).

4.4.3 INC Component Matchmaking

Algorithm Algorithm 1 outlines the semantic matchmaking process used to retrieve a relevant

set of INC components, Retrieved inc list. It utilizes INCO to match INC components

in the repository Repo with user requests and their preferences. To ensure proper matching and

ranking of relevant INC components, both QRi and pref listi must not be null (Line 2).

The algorithm first applies the MatchAll function to each INC component in Repo (Line 4).

This function validates all mandatory preferences. Mandatory preferences are strictly enforced, en-

suring that only components that meet all such preferences are included in Retrieved inc list.

The MatchAll function checks for exact matches to all mandatory preferences (Lines 5 and 6). If

no matches are found, Retrieved inc list remains null.

Once the mandatory preferences are enforced, the algorithm ranks the retrieved components

based on high and optional preferences using the MatchSome Put Priority Value func-

tion (Lines 10-12). This function assigns priority values to the retrieved INC components, allow-

ing them to be ranked accordingly. Finally, the RankByPriorityValue function orders the

Retrieved inc list based on the assigned priority values (Line 13). This ensures that the

most relevant INC components appear first considering user requested preferences.

4.4.4 Functional Entities Interactions

This section outlines the flow of the INC component discovery process for holographic stream-

ing requests within the proposed architecture, as illustrated in Figure 4.5.

This section illustrates the interaction among the functional entities in INC component discov-

ery, using the holographic streaming use case. The proposed system operates in an environment

where INC providers design and develop INC components, which are subsequently published in a

centralized repository. This repository enables network operator to leverage these components in
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Algorithm 1 Semantic Matchmaking

1: procedure INC MATCHMAKER(QRi, pref listi,Repo)

2: if QRi ̸= null and pref listi ̸= null then

3: Retrieved inc list← []
4: for each INC in Repo do

5: if MATCHALL(INC,QRi) then

6: APPEND(INC,Retrieved inc list)

7: end if

8: end for

9: if Retrieved inc list ̸= null then

10: for each INC in Retrieved inc list do

11: MATCHSOME PUT PRIORITY VALUE(INC, pref listi)

12: end for

13: RANKBYPRIORITYVALUE(Retrieved inc list)

14: end if

15: return Retrieved inc list

16: end if

17: end procedure

INC-based Service Function Chains (SFCs). Upon publication, the INC descriptor is submitted to

the INCO module for parsing and semantic enrichment. When a user, such as a network operator,

initiates a holographic streaming request and seeks to compose an INC-based SFC for seamless

hologram streaming, the system attempts to match the user’s requirements with suitable INC com-

ponents from the centralized repository, based on their specified preferences.

Relevant INC Components discovery for holographic streaming request, we envision the fol-

lowing sequence of actions:

The process begins when INC components are published in a centralized repository and sub-

mitted to the INCO module for parsing and semantic enrichment (Step 1). The user initiates a

holographic streaming session request. Once the session is started, it submits a request to the

orchestrator (Step 2). Acting as a centralized manager, the orchestrator receives the request and

ensures the session runs smoothly. It sends a request (for INC components, e.g, encoder, decoder,

transcoder and rendere) to the Query Processing Agent including all user preferences and require-

ments (Step 3). The Query Processing Agent then converts the request into a SQWRL query, and

a preference list, and forwards it to the Semantic Matchmaking Module (Step 4). The Semantic

Matchmaking Module acknowledges receipt of the query (Step 5). Using the ontology model in

the INCO Module, the Semantic Matchmaking Module searches for and ranks the INC components
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Figure 4.5: Sequence of Interactions among the Functional Entities for INC Components discovery.

in the centralized repository based on the user’s requirements and preferences (Steps 6, 7, and 8).

Next, the Semantic Matchmaking Module returns the Uniform Resource Identifiers (URIs) of the

most relevant INC component(s) to the orchestrator (Step 9). The orchestrator proceeds to instan-

tiate the selected INC components (Step 10). Upon successful instantiation, an acknowledgment is

sent back to the orchestrator (Step 11). Finally, the orchestrator manages the placement of these

components, initiates the flow through them, and monitors Quality of Service (QoS) to ensure an

optimal holographic streaming experience for the user (Step 12). Figure 4.5 provides a visual rep-

resentation of this sequence, detailing the steps involved in INC component discovery, ranking, and

orchestration to fulfill the holographic streaming request.

4.5 Conclusion

In this chapter, we presented the proposed architecture for an ontology-based INC Component

Description and Discovery Model, focusing on the holographic streaming use case. A detailed
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overview of the architecture’s design was provided, emphasizing its modular structure. We also de-

scribed the ontology-based approach for INC component description, highlighting the definition of

classes, properties, and relationships to semantically represent both functional and non-functional

requirements. Additionally, the INC discovery process was detailed, encompassing user requests,

query generation, and the semantic matchmaking algorithm to retrieve and rank INC components

effectively. Finally, we introduced the flow of interactions among functional entities, demonstrating

how the architecture seamlessly supports the discovery of INC components for holographic stream-

ing. This architecture was evaluated against the predefined requirements derived from the use case,

proving its ability to fulfill all those requirements. In the next chapter, we will discuss the imple-

mentation of the proposed architecture, including a proof-of-concept validation. Furthermore, we

will analyze the experimental results and the insights gained from the evaluation.
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Chapter 5

Proof-Of-Concept Validation

This section presents the proof-of-concept developed to validate the effectiveness of the pro-

posed semantic description model and matchmaking algorithm. We outline the implementation de-

tails, experiments conducted to evaluate our approach, providing details on the experimental setup,

metrics used for comparative analysis, and the performance measurements obtained.

5.1 System Implementation

In this section we will talk about the implementation details of the INC component description

and discovery model. Then we talked detailed about how INCO’s classes, subclasses, data and

object properties of the ontology were implemented. Then,we describe the experiment setup and

the performance metrics considered to evaluate it. Finally, we discuss the results and analysis of the

experiments. A concluding section summarizes this chapter at the end.

5.1.1 Implementation

INCO was implemented using Protégé 5.6.3 modeling tool, with the semantic matchmaking

algorithm developed in Python. The implementation was executed on a system running Windows

10 Enterprise, equipped with an Intel Xeon E5645 processor (2.40 GHz, 6 cores), 16 GB RAM, and

a 64-bit architecture. The Pellet reasoner ensured logical consistency, validated the ontology, and

handled complex SQWRL queries, which were essential for the matchmaking algorithm to retrieve
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Figure 5.1: INCO Classes and Subclasses - Protégé.

relevant INC components based on user requirements and preferences.

5.1.2 INCO Classes and Sub-classes

The implementation process of INCO began with the creation of its classes and subclasses.

Figure 5.1 illustrates the resulting hierarchical tree implemented using Protégé. A top-down de-

velopment approach was adopted, starting with the definition of the most general concepts in the

domain and progressively specializing them. For instance, the implementation began with creating

broad classes, such as INC Descriptor etc. Then we further specialized with the INC Operation

class branching into specific subclasses, such as Encoder Decoder and Renderer. We can further

created the rest of the classes and subclasses. Additional classes and subclasses were developed fol-

lowing a similar methodology (see Figure 5.1). Once the class hierarchy was completed in Protégé,

the focus shifted to defining the data and object properties of INCO. Each class and subclass in the

ontology uses capitalized class names for clarity and consistency. For concept names comprising

multiple words (e.g., INC Deployment Unit), underscores were used to delimit the words, resulting

in naming conventions such as, INC Deployment Unit.
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Figure 5.2: INCO Data and Object Properties - Protégé.

5.1.3 INCO Data and Object Properties

After implementing the ontology classes and subclasses, the next step was defining the data and

object properties of INCO. Each class and subclass was enriched with its corresponding properties.

Figure 5.2 illustrates the implemented data and object properties. For consistency, lower case was

used for property names. Object properties were prefixed with has , while data properties were

named directly without any prefixes. The left side of the figure represents the object properties, and

the right side displays the data properties.

In addition to the property definitions, relationships between ontology concepts were estab-

lished by specifying domain and range for each property. The domain specifies the classes that

can use the property, while the range defines the data type or class associated with the property.

Figure 5.3 shows the process for defining domains and ranges. For example, the data property

compression ratio is shown with a range of String (slot type) and a domain of Encoder D

ecoder (see Figure 5.3).

Once all properties and relationships were defined, cardinality facets were added to the slots.

Cardinality defines constraints on the number of values a property can have. Figure 5.4 illustrates
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Figure 5.3: INCO Properties Range and Domain - Protégé.

Figure 5.4: INCO Property Cardinality - Protégé.

the cardinality settings applied to the elements (objects and slots) of the relevant class. Cardinality

was implemented using minimum (>=), maximum (<=), and exactly (=) restrictions as needed.

With all properties, relationships, and cardinality facets finalized, the INCO ontology was com-

pleted. This resulted in a semantic, ontology-based description model ready for instance creation

and experimental simulations.

5.2 Performance Measurement

In this section, we begin with a description of the experiment setup. Then, we present the con-

sidered performance metrics. Afterwards, the obtained results are presented and analysed. Finally,

we conclude the section with a discussion and summary of the gained analysis from the obtained

results.
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5.2.1 Experiment Setup

In the experiment setup, we utilized sample queries to evaluate the performance of our Semantic

Matchmaker in retrieving relevant INC components. These queries were categorized based on two

parameters: query complexity (determined by the number of properties involved) and number of

retrieved instances (the total count of instances returned by a query). The primary performance

metric was the response time, measured in milliseconds.

The sample queries were designed to challenge the Semantic Matchmaker, as described in Sec-

tion 4.4.3. For this purpose, SQWRL queries (Q) were created to evaluate the matchmaker’s ca-

pability to handle multiple requirement effectively. These queries were run through the Semantic

Matchmaking module to retrieve the relevant INC components, and the average response time was

calculated for evaluation purposes.

As shown in Table 5.1, the two types of queries were designed to assess distinct aspects of the

matchmaker’s performance. The first type evaluated the matchmaker’s ability to handle increasing

query complexity, while the second type tested its ability to manage varying numbers of retrieved in-

stances. By combining these two dimensions, we aimed to comprehensively evaluate the efficiency

of the Semantic Matchmaker.

Table 5.1: Query Category.

Query (Q) Query Type

Q1 −Q6 Different Query Complexity.

Q7 Different Number of Retrieved

Instances.

5.2.2 Performance Metrics

As previously mentioned, response time (measured in milliseconds) served as the primary per-

formance metric in this evaluation. The measurement was conducted using two distinct approaches

to assess the efficiency of the Semantic Matchmaker.

The first approach involved varying the query complexity while keeping the number of retrieved

instances constant. Six queries (Q1 to Q6) were executed, with complexity increasing incrementally
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by adding more properties to each subsequent query (see Figures 5.5, 5.6, 5.7). For example, Q1

represents the least complex query, retrieving all INC components that support encoder operations.

This query involves only one property and serves as the baseline for our complexity analysis.

Q1 = INC Descriptor(?d) ' has cost(?d, ?c) ' Cost(?c)

' supported operation(?d, ?o) ' INC Operation(?o)

' has deployment unit(?d, ?du) ' INC Deployment Unit(?du)

' has requirement(?du, ?p) ' Performance Requirement(?p)

' inc program(?du, ?inc)

' operation name(?o,"Encoder"ˆrdf:PlainLiteral)

→ sqwrl:select(?inc)

In Q2, three additional properties—availability, licensing cost, and operational cost—were ap-

pended to Q1, with complexity increasing incrementally up to Q6.

In contrast, the second approach maintained constant query complexity while varying the num-

ber of retrieved instances by incrementally adding instances to the ontology. For this scenario, the

query structure remained unchanged (see Q7 in Figure 5.7). Q7 exemplifies the second approach,

where the query structure remains unchanged, but the number of retrieved instances varies as new

instances are added.
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Q7 = INC Descriptor(?d) ' has cost(?d, ?c) ' Cost(?c)

' supported operation(?d, ?o) ' INC Operation(?o)

' has deployment unit(?d, ?du)

' INC Deployment Unit(?du)

' has requirement(?du, ?p)

' Performance Requirement(?p)'

inc program(?du, ?inc)

' operation name(?o,"Balancer"ˆrdf:PlainLiteral)

→ sqwrl:select(?inc)

Together, these two approaches enabled a comprehensive evaluation of the system’s response time

under varying conditions, offering valuable insights into its performance when handling increased

query complexity and larger instance retrievals. This dual assessment effectively demonstrated how

response time scales with both query complexity and the number of retrieved instances.

5.2.3 Results and Analysis

The experimental results in Fig. 5.8, show a clear increase in response time as query complexity

escalates from Q1 to Q6, with the number of properties rising from 1 to 15. This trend reflects

the additional computational overhead needed to evaluate more conditions and properties as the

query complexity increases. The broader error bars at higher complexity levels indicate variability

in response times, likely due to the increased computational burden of processing more complex

logic or larger data sets, which causes certain property combinations to impose varying demands on

the system.

Conversely, Fig. 5.9 demonstrates the efficiency of our approach in handling varying numbers

of retrieved instances. Even as the number of instances increases from 3 to 16, the response time

remains stable. This consistency, along with smaller and more uniform error bars compared to the
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Figure 5.5: Sample Query (Q1−Q3)
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Figure 5.6: Sample Query (Q4−Q5)
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Figure 5.7: Sample Query (Q6−Q7)
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Figure 5.8: Average response time by different query comeplexity.

query complexity results, indicates that the system is well-optimized for scalable data retrieval.

5.3 Conclusion

In this chapter, we presented the proof-of-concept and the technologies used for its implemen-

tation. The process included developing the INCO ontology using Protégé, defining classes, sub-

classes, data and object properties, and incorporating cardinality facets to establish a comprehensive

semantic framework. The semantic matchmaking algorithm was implemented in Python, utilizing

SQWRL queries for the effective retrieval of INC components based on user requirements and pref-

erences. We detailed the experimental setup and described the performance metrics used to evaluate

the model. The performance was assessed using two categories of sample queries, focusing on

varying query complexities and the number of retrieved instances. Finally, the obtained results were

presented, discussed, and analyzed to demonstrate the model’s effectiveness. In the next chapter,

the thesis concludes with a summary of the work and an outline of potential directions for future

research.
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Figure 5.9: Average response time by number of retrieved instances.
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Chapter 6

Conclusion

In this chapter, we provide a comprehensive overview of the key contributions of this thesis.

Following that, we explore potential directions for future research.

6.1 Contributions Summary

Over the last few decades, the rise of advanced applications has significantly increased the de-

mand for high-performance networking solutions. To meet these growing demands, technologies

like In-Network Computing have emerged as vital enablers. However, enabling truly immersive

holographic streaming applications such as, Holographic-Type Communication presents significant

challenges to current networking infrastructures, including the need for innovative data compression

techniques, optimized streaming methods, and better synchronization of concurrent data streams.

Seamless holographic streaming sessions require network operators to obtain specific INC compo-

nents, such as encoders, decoders, transcoders and renderers, tailored to their unique requirements.

This necessity underscores the critical need for a comprehensive INC component description and

discovery model. Despite its importance, no prior work has addressed the description and discovery

of INC components, and the challenge of identifying relevant components based on user preferences

remains largely unresolved.

To address these challenges, this thesis began by comprehensively analyzing the holographic
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streaming use case. This analysis informed the development of four key requirements for publish-

ing, describing, building user requests and discovering INC components. After identifying these

requirements, the thesis reviewed the state of the art, including semantic approaches to web service

discovery and analised the significance of semantic based approach for automated and efficient ser-

vice discovery. Then we studies existing methodologies for Virtual Network Function description

and discovery. It was determined that none of the reviewed solutions fully satisfied the requirements

derived from the holographic streaming use case.

Subsequently, the proposed architecture for an ontology-based semantic description and discov-

ery model for INC components was presented. The architecture was evaluated to determine whether

it fulfilled the predetermined requirements. The architectural modules were introduced, followed by

an in-depth discussion of the INCO semantic description model and its role in facilitating accurate

discovery.

In terms of meeting the requirements, the proposed architecture achieved all four objectives.

To address the first requirement, a centralized repository was developed for publishing INC com-

ponents by providers. For the second requirement, INCO, a comprehensive semantic description

model, was designed to describe both functional and non-functional properties of INC compo-

nents. The design process was detailed, including the principles and considerations that guided

its development. The final two requirements—building user requests and discovering relevant INC

components—were addressed through the Query Processing Agent and the Semantic Matchmaking

Module. The Query Processing Agent translates user requests into SQWRL queries and prefer-

ence lists, enabling precise communication with the Semantic Matchmaking Module. Users can

define their requirements and preferences, such as mandatory, high, or optional criteria, to tailor the

discovery and ranking process. The Semantic Matchmaking Module relies on the INCO model to

retrieve and rank the most relevant INC components based on these preferences, ensuring accurate

and efficient discovery.

To validate the proposed architecture, an exhaustive implementation process was carried out.

This included designing and implementing the INCO ontology using Protégé, creating classes, sub-

classes, object and data properties, and establishing cardinality facets. The implementation of the

semantic matchmaking algorithm was done in Python, with SQWRL queries facilitating effective
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retrieval of components. The performance evaluation utilized two categories of sample queries to

analyze the system’s response time and consistency. The results demonstrated that response time

increased with query complexity but remained stable as the number of retrieved instances grew.

This consistency underscores the scalability of the proposed framework for real-world applications.

This thesis presents a novel ontology-based model for the semantic description and discovery of

INC components, addressing a critical gap in the literature. By leveraging ontologies, the proposed

framework facilitates automated discovery of INC components, enhancing interoperability across

diverse networks operator and INC providers. The incorporation of functional and non-functional

properties into the semantic descriptions ensures a comprehensive and effective discovery process

tailored to network operators’ specific needs. The proof-of-concept implementation validates the

efficacy of this approach, demonstrating its potential to streamline the discovery and deployment of

INC components for advanced applications like holographic streaming.

6.2 Future Research Direction

While promising, future work should focus on scaling the ontology-based framework to ac-

commodate the increasing complexity of INC components in large-scale network environments.

Additionally, integrating advanced machine learning techniques could enhance the semantic match-

making process, leading to more precise and context-aware recommendations. Additionally, real-

world deployments must handle significantly higher query volumes and dynamic changes in the

provisioning of INC components. A critical challenge in practical scenarios is that INC descriptors

provided by INC providers may not be comprehensive enough or often be incomplete, making it

difficult to construct a comprehensive ontology. To address this issue, further exploration of rele-

vant literature and methodologies will be necessary. Furthermore, extending the ontology model to

support real-time updates and dynamic adaptations will ensure responsiveness to evolving demands.

Finally, collaborating with industry stakeholders to develop a standardized INC description frame-

work could facilitate broader adoption and interoperability across various platforms and networks.
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