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Abstract

Intelligent Anomaly Detection for 5G & Beyond: Securing Service-Based

Architecture Against HTTP/2-Driven Attacks

Nathalie Wehbe, Ph.D.

Concordia University, 2025

The Fifth Generation (5G) networks power diverse applications, from autonomous

vehicles to smart cities, by enabling ultra-reliable low-latency communications, massive

IoT connectivity, and enhanced mobile broadband. At the core of this advancement is the

5G Service-Based Architecture (SBA), which ensures scalability and flexibility through

cloud-native deployment and virtualized Network Functions (NFs). The adoption of the

Hypertext Transfer Protocol version 2 (HTTP/2) in the 5G SBA has become essential for

enabling efficient communication between NFs. However, the adoption of HTTP/2 for NF

communication introduces security risks, including stream multiplexing, slow-rate, and

rapid-reset attacks, which can lead to Denial of Service (DoS) and disrupt critical services.

Addressing these vulnerabilities is essential to maintaining the stability and security of 5G

networks.

This thesis explores the impact of HTTP/2 vulnerabilities on the 5G SBA, identifying

attack vectors that compromise the Quality of Service (QoS) of critical services. While

prior studies largely assessed these threats theoretically, this research demonstrates the

practical vulnerabilities of 5G networks to HTTP/2 attacks, such as stream multiplexing at-

tacks (SMAs). To address these challenges, the thesis introduces 5GShield, an application-

layer anomaly detection solution using autoencoder-based Machine Learning (ML). By

profiling normal NF behavior with application-layer features, 5GShield effectively detects

iii



deviations indicative of SMAs. Building on this, 5GGuardian is proposed as a more ad-

vanced solution to detect nuanced variations of SMAs. Leveraging 5G-Stream features and

a time-series transformer, 5GGuardian captures fine-grained NF behaviors and complex

patterns in HTTP/2 streams, achieving superior accuracy for both stealthy and non-stealthy

anomalies. Recognizing the limitations of single detection approaches, the research intro-

duces an ensemble learning-based solution that leverages and combines the strengths of

multiple ML models trained on different feature sets in order to provide superior detection

performance of HTTP/2 attacks, including slow-rate and rapid-reset attacks. By providing

scalable and advanced anomaly detection, this thesis strengthens 5G SBA security, ensur-

ing reliable service delivery and supporting the secure growth of future communication

networks.
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Chapter 1

Introduction

1.1 Motivation and Problem Statement

The rise of new industries, such as automotive, manufacturing, healthcare, and energy,

has driven demand for stringent Quality of Service (QoS) requirements, including ultra-low

latency and high reliability Christine Jost (2020); ENISA (2021); Security Considerations

for the 5G ERA (2020). In response, mobile network operators have undertaken signifi-

cant transformations of their telecommunications networks Ahmad et al. (2019); TS.23.501

(2024). This evolution led to the development of Fifth Generation (5G) networks, largely

driven by the rapid expansion of Internet of Things (IoT) devices and dynamic changes in

the telecommunications landscape. The mobile network is broadly divided into the Radio

Access Network (RAN) and the core network. The RAN handles wireless communica-

tion between user devices and the network, while the core network manages data rout-

ing, connectivity, and overall network functionality. To support these advancements, the

5G Core (5GC) network has adopted a Service-Based Architecture (SBA) and integrated

cloud-native applications 3GPP TS.29.500 (2024); Ahmad et al. (2019); TS.23.501 (2024).

The 5G SBA follows a cloud-native deployment and leverages virtualization technologies
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for the implementation of its Network Functions (NFs) that provide access to network re-

sources and capabilities via Service Based Interfaces (SBIs) 3GPP TS.29.500 (2024), thus

enabling better scalability, flexibility and service management TS.23.501 (2024). 5G relies

on a standardized set of REpresentational State Transfer (RESTful) Application Program-

ming Interfaces (APIs) combined with web-based technologies including the Transport

Control Protocol (TCP) /Transport Layer Security (TLS) /Hypertext Transfer Protocol ver-

sion 2 (HTTP/2) /JavaScript Object Notation (JSON) protocol suit for the communication

between its NFs Hu, Liu, Liu, You, and Zhao (2018).

With the large-scale deployment of 5G networks and the introduction of 5G Standalone

(SA) networks in late 2020 Report (2022), several incidents in recent years have under-

scored the growing security concerns in the 5G landscape. In Canada, leading mobile

operators have reported multiple outages, such as Rogers, Bell Canada, and TELUS Cana-

dian Radio-television and Telecommunications Commission (2024). A notable example

occurred in July 2022 Xona Partners Inc (2024), Rogers Communications’ 5G network

suffered a major outage, affecting millions of users. The outage, which is linked to a

software update failure, revealed vulnerabilities related to network software management.

Similarly, in February 2023 CNN (2024), a software update glitch in AT&T’s 5G network

in the United States caused at least 70,000 phones to lose connectivity, demonstrating the

potential consequences of improper update management in 5G systems. AT&T attributed

this disruption to an internal error, marking one of several incidents the company has faced

in recent years. On 4 June 2024, another issue prevented customers from completing calls

between carriers. Furthermore, critical 911 services have faced disruptions, including an

April 2024 outage in Nevada, South Dakota, and Nebraska caused by installing a light

pole and a June 2024 incident in Massachusetts resulting from a computer firewall failure.

Moreover, in July 2024, a global tech outage further affected 911 services in Alaska and

Arizona, highlighting the fragility of essential communication systems. These incidents
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underscore the urgent need for hightened security measures, comprehensive testing solu-

tions, and robust system architectures to maintain stability and safeguard the security of

critical communications infrastructure.

The adoption of the HTTP/2 protocol, which facilitates communication among NFs

within the 5G SBA, is instrumental in enabling efficient signaling. With features like stream

multiplexing, header compression, and prioritization IETF (2015), HTTP/2 plays a crucial

role in enabling efficient signaling between NFs, improving resource utilization and service

responsiveness 3GPP TS.29.500 (2024). While HTTP/2 provides performance advantages,

design vulnerabilities can expose critical 5G infrastructure to potential risks, jeopardizing

the network’s security and availability. One of the most alarming incidents was highlighted

in the February 2023 Cloudflare report Cloudflare (2023) on hyper-volumetric HTTP/2

DDoS attacks in the web, where request rates peaked at 70 million per second. These

attacks leveraged HTTP/2’s multiplexing feature to overwhelm servers, causing widespread

service disruptions.

Despite its inherent security-by-design principles, the 5G SBA and its reliance on pro-

tocols like HTTP/2, require enhanced security mechanisms to address emerging vulnera-

bilities TS.33.501 (2025a). Existing literature has touched on some HTTP/2 attacks that

exploit its features in the web Ahmad et al. (2019); Hu et al. (2018), yet the implications

of these attacks on 5G SBA require further exploration. Furthermore, other works have

primarily focused on vulnerabilities arising from virtualization technologies Ahmad et al.

(2019); Christine Jost (2020); ENISA (2021). By addressing these challenges, operators

can ensure that 5G networks remain resilient and reliable, unlocking their full potential to

support transformative applications while maintaining the trust and confidence of users and

industries alike.

This thesis is motivated by the realization that HTTP/2 and APIs are well-known targets

for potential attackers. Recent studies Imperva (2016); National Vulnerability Database
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(NVD) (2023); Praseed and Thilagam (2019); Tripathi and Hubballi (2018); Tripathi and

Shaji (2022) have shown that HTTP/2 is vulnerable to Denial of Service (DoS) attacks,

including slow-rate, stream multiplexing, and rapid reset attacks, which exploit some of

its features. Following these findings, some Machine Learning (ML) based anomaly de-

tection solutions leveraging flow-based and event-based features have been developed for

web-based HTTP/2 security Praseed and Thilagam (2020, 2021); Tripathi (2022); Tripathi

and Shaji (2022). Therefore, the cybersecurity implications of web-based technologies on

5G SBA need more attention. In fact, Hu et al. (2018) presented some HTTP/2 attacks

exploiting its features without a thorough discussion on their implications on 5G SBA.

As a result, our work begins with a thorough analysis of the security implications of

web-based technologies, particularly HTTP/2, within the 5G SBA. We examine the se-

curity controls of 5G SBA, the role of HTTP/2, and its potential as an attack surface.

This includes investigating vulnerabilities in HTTP/2 features and their exploitability in

5G networks. Furthermore, we extend our examination to address the security challenges

of HTTP/2 to 5G networks and propose anomaly detection solutions within the 5G SBA.

In the context of 5G networks, anomaly detection plays a vital role in identifying unusual

activities that could compromise the network’s performance or security. Given the dy-

namic and distributed nature of 5G SBA, the challenge lies in detecting anomalies across

diverse and high-dimensional data sources, such as HTTP/2 protocol traffic and interac-

tions among NFs Karim, Mubasshir, Rahman, and Bertino (2023). ML-based approaches,

particularly deep learning models, have emerged as powerful tools for detecting anomalies

by leveraging their ability to learn intricate patterns and dependencies in data Anderson et

al. (2023); Xu, Wu, Wang, and Long (2021). In this thesis, we explore how anomaly detec-

tion solutions can be tailored to address the unique security challenges posed by HTTP/2

vulnerabilities within the 5G SBA. These solutions are designed to detect sophisticated at-

tacks that exploit the HTTP/2 protocol while ensuring adaptability and scalability for their
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deployment across 5G networks.

1.2 Contributions

This dissertation contributes to advancing the state-of-the-art in securing 5G SBA by

addressing critical cybersecurity challenges associated with the HTTP/2 protocol. The fo-

cus is on assessing HTTP/2-driven attacks in 5G SBA, analyzing the HTTP/2 attack’s im-

pact on 5G SBA, and developing anomaly detection solutions to enhance the security of

5G networks. These contributions are closely related and build upon each other, forming a

cohesive framework for improving 5G SBA security. The research begins with an in-depth

security assessment of HTTP/2 vulnerabilities in the 5G SBA, establishing the groundwork

for understanding attack vectors and their potential impact. This is followed by the de-

velopment of multiple anomaly detection solutions, each progressively refining detection

granularity, scalability, and effectiveness. The contributions transition from application-

layer detection (5GShield) to sequence-based analysis of NF behavior (5GGuardian) and fi-

nally to a robust ensemble learning-based approach (Kraken), which unifies insights across

different feature types to provide a comprehensive defense against HTTP/2 attacks. An

overview of the contributions is provided below, with each contribution detailed in its re-

spective subsection:

1.2.1 A Security Assessment of HTTP/2 Usage in 5G Service Based

Architecture

In Chapter 3, we delve into the security implications of adopting the HTTP/2 protocol

within the 5G SBA, focusing on its features, as well as its standard and custom headers.

HTTP/2 message headers consist of multiple fields, with standard headers employed in

both requests and responses. Requests to the HTTP/2 server include a structured set of
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header fields that identify the client and facilitate communication. Additionally, 3GPP has

introduced HTTP/2 custom headers specifically tailored for 5G SBA, some of which are

critical for load and overload control by enabling the sharing of NFs load information 3GPP

TS.29.500 (2024). Motivated by the fact that HTTP/2, APIs, and JSON are well-known to

attackers, we make the following contributions in this chapter:

• We provide a detailed examination of the HTTP/2 standard and custom headers and

their roles in enhancing or potentially undermining the security of 5G SBA.

• We analyze the applicability of known HTTP/2 attack vectors in the context of stan-

dardized APIs within 5G SBA. This analysis highlights not only the vulnerabilities

introduced by HTTP/2 but also the security opportunities it presents. We identify

promising research directions to address these challenges and explore the potential

of related technologies to fortify the 5G SBA ecosystem.

1.2.2 5GShield: HTTP/2 Anomaly Detection in 5G Service-Based Ar-

chitecture

While many works Praseed and Thilagam (2021); Tripathi and Shaji (2022) developed

anomaly detection solutions to secure the web against HTTP/2 attacks using ML tech-

niques, HTTP/2 attacks on 5G SBA were only assessed theoretically in Hu et al. (2018);

Wehbe, Alameddine, Pourzandi, Bou-Harb, and Assi (2022). To the best of our knowl-

edge, no practical implementation of these attacks in a 5G environment exists. Further,

an evaluation of existing HTTP/2 anomaly detection solutions in a 5G network remains

absent. We argue that 5G networks are vulnerable to HTTP/2 attacks and demonstrate

that HTTP/2 Stream Multiplexing Attacks (SMA) can occur between two 5G NFs. Fur-

thermore, most of the existing anomaly detection solutions rely on flow-based features
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collected at the network layer. We contend that application-layer attacks (e.g., HTTP/2 at-

tacks) that exploit vulnerabilities in application-layer protocols may not appear malicious

when observed from the network or transport layers Xie and Zhang (2012). As a result,

existing anomaly detection methods that rely on flow-based features fail to efficiently de-

tect such application-layer attacks. Our contributions can be summarized in Chapter 4 as

follows:

• We generate a 5G SBA HTTP/2 dataset that captures both normal and abnormal 5G

SBA network behavior under the HTTP/2 SMA in both stealthy and non-stealthy

modes, using the open-source Free5GC Free5GC (2021a) testbed and UERANSIM

aligungr (2021), a User Equipment (UE)/RAN emulator.

• We develop 5GShield, an application-layer anomaly detection solution based on Au-

toencoder (AE) Mirsky, Doitshman, Elovici, and Shabtai (2018). 5GShield acts as

a shield for 5G NFs that provides intelligent attack detection capabilities for in-

creased security. As the rate and statistics of 5G API calls between 5G NFs vary

under an HTTP/2 SMA in comparison to a normal network state, 5Gshield extracts

application-layer features (e.g., numberofAttemptedNetworkInitiatedServiceRequest,

numberofSuccessfulNetworkInitiatedServiceRequest, etc.) to capture these statis-

tics. It then uses them to profile normal NFs behavior. Thus, deviation from the

captured normal profile can then be detected by 5GShield as an attack. Further, we

show that 5GShield can detect HTTP/2 SMA, outperforming a flow-based anomaly

detection solution.
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1.2.3 Empowering 5G SBA Security: Time Series Transformer for

HTTP/2 Anomaly Detection

After a thorough review of the existing literature, existing works are not fine-grained

enough to capture 5G API calls dependencies and sequences for fulfilling 5G procedures

Praseed and Thilagam (2018, 2019, 2020, 2021). The latter can be exploited to perform

HTTP/2 attacks. Many detection solutions Praseed and Thilagam (2019, 2021); Wehbe,

Alameddine, Pourzandi, and Assi (2023) are computationally intensive, which can pose

challenges for real-time applications, particularly in a 5G environment. However, the prac-

ticality of these solutions depends on the specific needs of the operator, as they take advan-

tage of the features of the application layer to address privacy concerns. In Chapter 5, we

make the following contributions.

• We emulate five variations of HTTP/2 SMA that use different 5G procedures and

examine the impact on 5G network performance. Using the pcaps generated by the

aforementioned emulation, we develop a method to extract 5G-specific NF behavior

from HTTP/2 streams (i.e., a stream represents an HTTP/2 request and response),

referred to as 5G-Stream features. These features capture fine-grained details of an

NF behavior through its 3GPP APIs, which allow the detection of any anomalous

behavior that might be hidden by flow-based features or application-layer features.

The used 5G-Stream features are general enough to make our anomaly detection

solution adaptable to any NF of the 5GC.

• We develop an anomaly detection solution, namely 5GGuardian, which leverages a

time series transformer Wen et al. (2022) that introduces an attention-based trans-

former encoder. Transformers have been shown to be highly effective for anomaly

detection, given their ability to capture long-range dependencies, process sequential
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information, and adapt to unique patterns in data which makes them a good candi-

date for HTTP/2 anomaly detection in 5G networks. Furthermore, we demonstrate

the effectiveness of utilizing 5G-Stream features in our anomaly detection model in

identifying HTTP/2 SMA. 5GGuardian showed superior performance when com-

pared to its counterpart, 5Gshield Wehbe et al. (2023), demonstrating the efficiency

of transformers and stream features in comparison to autoencoder and application-

layer features. The results highlight the superiority of applying transformers, even in

the presence of contaminated data, surpassing the performance of previous solutions.

1.2.4 HTTP/2 DoS Attacks in 5G Networks: Impact Analysis and

Anomaly Detection

This work addresses the lack of practical studies and analyses on the impact of HTTP/2

attacks on 5G networks, especially given the absence of a 5G-compliant dataset for anomaly

detection. Notably, Wehbe et al. (2023) studied the impact of HTTP/2 stream multiplexing

attacks on 5G NFs without publishing the data, while Caccavale, Nguyen, Cavalli, Montes

De Oca, and Mallouli (2023) proposed methodologies using 5Greplay without emphasiz-

ing their impact on 5G networks as they did not use a 5G testbed. Motivated by existing

studies Caccavale et al. (2023); Hu et al. (2018); VIII (2022); Wehbe et al. (2022), we make

the following contributions in Chapter 6:

• Using 5G Testbed, we create a 5G SBA HTTP/2 dataset, capturing both normal and

malicious network behavior including a total of six different variations of stream mul-

tiplexing, rapid reset, and slow rate attacks National Vulnerability Database (NVD)

(2023); Praseed and Thilagam (2019); Tripathi and Hubballi (2018); Wehbe et al.

(2023). We show that these attacks cannot only cause a DoS on the targeted NF

but also affect differently the availability of the whole network. To the best of our

knowledge, our 5G SBA HTTP/2 dataset is among the first to capture different 5G
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procedures.

• We pre-process our 5G HTTP/2 dataset to extract flow-based features that are widely

known in the literature for their ability to distinguish between normal and malicious

behaviors. To the best of our knowledge, this dataset will be the first publicly avail-

able resource. The extracted features are used in the training of three renowned ma-

chine learning techniques, mainly; AE, Long Short Term Memory Autoencoder(LSTM-

AE), and Isolation Forest for HTTP/2 anomaly detection. Our results demonstrate

good detection performance, confirming that flow-based features are effective for 5G

traffic characterization by extracting the feature from 5G SBA instead of per NF.

1.2.5 Kraken: Multi-Layer Ensemble Learning Detection of HTTP/2

Attacks in 5G and Beyond

5GShield Wehbe et al. (2023) is an Autoencoder-based anomaly detection solution, that

was proposed for HTTP/2 SMA stealthy and non-stealthy detection in 5G SBA. It achieved

an F1-score of 0.992 when trained on application-layer features, but its F1-score dropped to

0.78 with flow-based features, indicating the shortcomings of flow-based anomaly detection

solution, usually used in the web for detecting HTTP/2 attacks. Building on this, Wehbe,

Alameddine, Pourzandi, and Assi (2025) proposed 5GGuardian, a model leveraging 5G-

stream features to train a time-series transformer per NF, reaching an average F1-score of

0.98 after showing the shortcomings of 5GShield in detecting variations of HTTP/2 SMA.

Wehbe et al. (2023) and Wehbe et al. (2025) demonstrate that the choice of features and ML

model lead to variable detection performance across different variations of SMA. While

both solutions addressed SMA, other HTTP/2 attacks, like slow-rate and rapid reset attacks,

remain unexplored in 5G Cloudflare (2023); Tripathi and Hubballi (2018). Motivated by

the limitations of single-type feature detection, we make the following contributions in

Chapter 7:
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• We develop Kraken, a multi-layer ensemble learning solution designed for 5G SBA

anomaly detection. Kraken leverages ensemble learning at each NF and across the

5G SBA NFs to detect sophisticated attacks exploiting the SBA interconnected na-

ture. We explore the benefits brought by three distinct feature sets combined with

unsupervised ML models in capturing the unique aspects of each NF behavior to

improve HTTP/2 attack detection. Thus, we consider flow-based, 5G-stream, and

HTTP/2 event-frame features to respectively train a time-series transformer, an AE,

and an LSTM-AE.

• We evaluate Kraken across six emulated attack scenarios, and a network surge sce-

nario that stresses the 5GC under high-traffic conditions. We show that Kraken con-

sistently achieves a high F1-score, outperforming a flow-based LSTM-AE, a 5G-

stream time-series transformer, and HTTP/2 event-frame AE attack detection solu-

tion. Kraken also demonstrates accuracy and reliability in differentiating HTTP/2

DoS attacks from a network surge.

1.3 Thesis Organization

The road map of this thesis is as follows. In Chapter 2, we provide an overview of the

5G SBA signaling, security mechanisms, and the adoption of the HTTP/2 protocol, along

with related work on HTTP/2 anomaly detection and 5G security solutions to secure the

network against HTTP/2 attacks. Chapter 3 explores the security features of the 5G SBA,

highlighting HTTP/2 vulnerabilities, attacks, and potential research directions. Chapter

4 introduces 5GShield, an application-layer anomaly detection solution using neural net-

works, evaluated through emulated HTTP/2 attacks. Chapter 5 presents 5GGuardian, a

time-series transformer-based detection solution for HTTP/2 Stream Multiplexing Attacks,

showcasing its robustness against contaminated data and superior performance compared
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to 5GShield. In Chapter 6, we emulate six HTTP/2 attacks to analyze their cascading ef-

fects on NFs and train ML models using extracted flow-based features. Chapter 7 proposes

Kraken, a multi-layer ensemble learning system integrating diverse feature sets across NFs

to detect multi-stage attacks. Finally, Chapter 8 concludes this thesis, summarizes its con-

tributions, and identifies some research gaps for future exploration.
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Chapter 2

Background and Literature Review

The emergence of 5G technologies represents a transformative shift in the telecom-

munications landscape. 5G brings new capabilities that will reshape how we connect and

communicate in the digital age Tang, Ermis, Nguyen, De Oliveira, and Hirtzig (2022).

At the core of 5G lies its exceptional capacity to deliver significantly higher data transfer

speeds, reduced latency, extensive device connectivity, and heightened network reliability.

These innovations aim to offer a diverse spectrum of applications, ranging from ultra-high-

definition streaming and immersive augmented reality experiences to the expansive ecosys-

tem of the IoT and the essential foundation of mission-critical industrial automation. The

proliferation of 5G technology holds the promise of introducing a new era of connectiv-

ity, one that is set to reshape entire industries, transform consumer experiences, and ignite

innovation on a global scale Dutta and Hammad (2020); TS.23.501 (2024). This chapter

explores 5G networks, with an emphasis on the security of 5G SBA in the context of web

technologies like HTTP/2.
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2.1 Background

2.1.1 Overview of 5G Network

The rise of new vertical industries, such as automotive and manufacturing, with strin-

gent QoS requirements like ultra-low latency and high reliability, has driven mobile net-

work operators to revolutionize their telecommunications networks to support these emerg-

ing use cases Ahmad et al. (2019); TS.23.501 (2024). Consequently, 5G networks have

been developed, introducing a new radio access technology and transitioning from tradi-

tional hardware-based systems to fully virtualized SBA 3GPP TS.29.500 (2024).
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Figure 2.1: 5G Service-Based Architecture TS.23.501 (2024)

The 5GC network is a cloud-native design that adopts a SBA as depicted in Figure

2.1, based on Network Function Virtualization (NFV) and Software Defined Networking

(SDN) principles TS.23.501 (2024). Virtual Network Functions (VNFs) is used in 5GC to

decouple network functions from dedicated and proprietary hardware, thus allowing their

instantiation as VNFs on commercial off-the-shelf servers Madi, Alameddine, Pourzandi,

and Boukhtouta (2021). SDN enables the separation of control and user plane functions.

SDN and NFV are designed to support the unique requirements of 5G networks, such as low

latency, high throughput, and a large number of connected devices. The 5G SBA enables a

granular design and delivery of 5G network functionality through a decoupling of the User
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Plane (UP) and Control Plane (CP), as depicted in Figure 2.1. The CP manages the connec-

tion between the UE (i.e., 5G smartphones, 5G cellular devices) and the network, including

tasks such as authentication, policy control, and mobility management. The UP handles the

actual data transmission between the UE and the network using a Packet Data Unit (PDU)

session. 5G SBA is composed of a set of interconnected NFs that allow extended exposure

of network capabilities and resources by offering a multitude of NF services through an

SBI 3GPP TS.29.500 (2024). These services are offered to other NFs using well-defined

RESTful APIs over HTTP/2 3GPP TS.29.500 (2024), thus, enabling a secure, reliable, ef-

ficient, and bidirectional TS.33.501 (2025a). NFs in the control plane communicate with

each other using either a Request-Response or Subscribe-Notify interactions between an NF

consumer (NFc) and an NF producer (NFp) 3GPP TS.29.500 (2024) as depicted in Figure

2.2. Request-Response is used when an NF consumer requests a service and an NF NFp

responds, while Subscribe-Notify is employed when an NF consumer subscribes to an NFp

event that causes an NFc to be called back when the event occurs 3GPP TS.29.500 (2024);

TS.23.501 (2024). Be it a Request-Response or Subscribe-Notify, interactions between 5G

NFs are based on service exchange through 3GPP standardized Restful APIs TS.123.502

(2025).
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Figure 2.2: Request-Response and Subscribe-Notify TS.23.501 (2024)
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5G SBA is a new approach for designing and deploying 5G networks based on SDN

and NFV. The use of NFs abstracted from the underlying hardware and implemented as

software services that can be deployed and orchestrated in a virtualized environment is

intrinsic to 5G SBA. This enables a more flexible and efficient network management, as

well as faster deployment of new services. Each NF has a list of services, for example, the

SMF is the central management entity responsible for creating, managing, and terminating

sessions between users and their desired services in 5G SBA, as depicted in Table 2.1.

Table 2.1: 5GC components Sree Lekshmi (2022)

5G Network Elements Functionalities

Access and Mobility Man-

agement Function (AMF)

Provides access and mobility control, UE Registration.

AMF also ends Non-Access Stratum (NAS) signaling.

Session Management

Function (SMF)

Performs session management and controls user plane

traffic.

User Plane Function (UPF) Handles packet forwarding and routing. It performs

packet inspection and QoS implementation.

Network Slice Selection

Function (NSSF)

Supports network slice selection. Selects network slice

instances to serve a UE.

Network Repository Func-

tion (NRF)

Maintains NF profile and their functions. Discover con-

nections between NFs.

Network Exposure Func-

tion (NEF)

Exposes securely network capabilities and events.

Unified Data Management

(UDM)

Stores the subscriber information to support identifica-

tion, access authorization, and billing.

Authentication Server

Function (AUSF)

Stores authentication keys to authenticate UEs.

Policy Control Function

(PCF)

Maintains network policies to manage network behavior.

Application Function (AF) Fulfills the role of application server. Interacts with 5GC

to provide services.

5G SBA also provides a higher level of network automation, programmability, and

orchestration, allowing operators to more easily manage and optimize the network, and

quickly launch new services and applications TS.33.501 (2025a). It is also designed to be

highly programmable and to support network automation, which enables faster deployment
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of new services and more efficient management of the network. Table 2.1 shows the key

NFs of a 5GC network, in which each NF plays a critical role and has its own services.

The security risks associated with inadequately protected virtualized deployments are

acknowledged, and network equipment vendors must address them through implementation-

specific measures. 5GC security is a complex and evolving field, and new threats and vul-

nerabilities are constantly being discovered due to the adoption of technologies such as

HTTP/2 ENISA (2021); Security Considerations for the 5G ERA (2020).

2.1.2 HTTP/2 as the 5G Signalling Protocol

HTTP/2 is an application-layer protocol used for signaling between 5G NFs in the form

of a request-response or subscribe-notify to enable communications between an NFc and

an NFp 3GPP TS.29.500 (2024), where the former is a 5G NF that can access a service

of the latter. HTTP/2 introduces the notion of a stream, which corresponds to an HTTP

request-response exchange. An HTTP/2 message is represented by either a request or a

response. HTTP/2 messages are composed of HTTP/2 frames. Thus, a stream can be

defined as a bidirectional flow of frames IETF (2015). An HTTP/2 frame represents the

basic HTTP/2 data unit (i.e., smallest unit of communication within an HTTP/2 connection)

with binary encoding. A frame can be of different types from which we mention: (1)

HEADERS frame which is used to open a stream and carries different header fields in the

form of key-value pairs; (2) DATA frame carries HTTP request or response payload; (3)

SETTINGS frame is used by both client and server to convey configuration parameters

that affect their communication IETF (2015). Extending HTTP/2 is possible through the

addition of new frame types, settings, and error-codes IETF (2015). HTTP/2 protocol

provides multiple features such as stream multiplexing, flow control, stream dependency

and prioritization, header compression, and server push.
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A. HTTP/2 Features

Due to the adoption of HTTP/2 in 5G SBA between NFs 3GPP TS.29.500 (2024), in

this section, we describe the HTTP/2 features and their advantage. HTTP/2 is an updated

version of the HTTP that was designed to address some of the limitations of HTTP/1.1.

HTTP/2 features IETF (2015) include:

• Binary protocol: HTTP/2 uses a binary format for its messages, as opposed to the

text-based format used by HTTP/1.1. This makes it more efficient and less error-

prone.

• Stream Multiplexing: HTTP/2 allows multiple requests and responses to be sent and

received over a single TCP connection, eliminating the need for multiple connections

to be established for each resource.

• Prioritization: HTTP/2 allows an HTTP/2 client to assign priorities to different re-

quests so that the HTTP/2 server can prioritize the delivery of resources that are most

important for the current page.

• Flow control: HTTP/2 enables flow control to determine the size of data that the

sender is allowed to send to the receiver by utilizing many parameters such as the

WINDOW UPDATE frame and the SETTINGS frame (e.g., SETTINGS MAX CONC

URRENT STREAMS) (Table 2.2) IETF (2015). The receiver uses the WINDOW UPDAT

E frame to inform the sender how much data it is willing to receive on each stream

IETF (2015).

• Header compression: HTTP/2 uses a compression algorithm called HPACK to com-

press the HEADER frame (Table 2.2) of HTTP requests and responses, reducing the

amount of data that needs to be sent over the network.
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• Server push: HTTP/2 allows a server to push resources to a client before they are

requested thus, reducing the number of round trips needed to load a page/service.

Table 2.2: Frame type IETF (2015)

Frame Type Role

DATA Carries HTTP request or response.

HEADERS Opens a stream and carries a header block.

PRIORITY Specifies the sender-advised priority of a stream.

SETTINGS Contains configuration parameters that affect how the endpoint communicates.

RST STREAM Allows for immediate termination for a stream.

PUSH PROMISE Notifies the peer endpoint in advance of stream the sender intends to push.

PING Is a mechanism for measuring a minimal round trip time from the sender.

GOAWAY Initiates countdown of a TCP connection or to signal a serious error condition.

WINDOW UPDATE Implements a flow-control.

CONTINUATION Continues a sequence of header block fragments.

In addition, HTTP/2 has added security features to defend against typical attacks. Sim-

ilar to HTTP/1.1, a secure connection is established between client and server by utilizing

Secure Sockets Layer (SSL)/TLS encryption, ensuring all information exchanged is confi-

dential and protected from interference or alteration IETF (2015).

2.2 Literature Review

This section lays the groundwork for addressing the security challenges in the 5G SBA.

We begin with a review of HTTP/2, its integration into the 5G SBA, and its associated

security implications, including existing HTTP/2 attacks in web environments and 5G, as

well as related datasets. The discussion then shifts to anomaly detection techniques, since

the thesis focuses on anomaly detection as a solution to HTTP/2-driven attacks, we review

existing works on anomaly detection techniques, emphasizing their application to 5G and

web-based technologies.
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2.2.1 HTTP/2 and 5G SBA Security

The security of HTTP/2 was discussed in Imperva (2016) in which the authors showed

that all web servers are vulnerable to at least one attack vector such as slow-read attack,

stream dependency DoS, and stream abuse attacks. Work in Tripathi and Hubballi (2018)

presented five versions of slow-rate DoS attacks that exploit different frame types of an

HTTP/2 stream. They showed the impact of these attacks on lab-based HTTP/2 web

servers. The work in Praseed and Thilagam (2019) discussed Application Layer DDoS

(AL-DDoS) attacks against web servers, such as the multiplexed asymmetric attack that re-

sults in heavy computational overhead on the server. Only few works Hu et al. (2018); VIII

(2022) assessed HTTP/2 security in 5G SBA. Authors of Hu et al. (2018) investigated 5G

signaling security vulnerabilities exposed by the use of the HTTP/2 protocol. The authors

focused on the features that can be misused to launch DoS attacks in 5G SBA. The work

in VIII (2022) presented a report on security vulnerabilities in HTTP/2 and their impact on

5G networks. The discussion on HTTP/2 attacks in the literature is limited to a qualitative

assessment of their applicability to 5G SBA without any practical demonstration.

2.2.2 HTTP/2 Attacks

Different protocols define the communication between the 5GC and UE/RAN over net-

work communication. However, these standard protocols are not immune to attacks. Fo-

cusing on HTTP/2 as it is the only protocol used in the CP signaling, HTTP/2 is designed to

improve the performance and efficiency of web/NF communications, but like any technol-

ogy, it can also introduce new vulnerabilities Hu et al. (2018). In the context of 5G SBA,

the following are some of the potential attacks exploiting vulnerabilities in the HTTP/2

protocol. HTTP/2 SMA Praseed and Thilagam (2018) is one of the attacks that is caused

by the stream multiplexing feature. An attacker who can establish a TCP connection to a

server and then open multiple streams at the same time can launch this type of attack. The
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attacker can then use these streams to flood the server with requests, causing it to become

overwhelmed and unavailable to legitimate clients. This is a type of DoS attack because it

can cause the targeted server to become unavailable and disrupt the service. An HTTP/2

SMA can also be used to deplete server resources like memory or CPU. Another group of

researchers Praseed and Thilagam (2019) focused on the misuse of HTTP/2 stream mul-

tiplexing feature to launch AL-DDoS attacks against web servers such as the multiplexed

asymmetric attacks. Such attacks are applicable when an attacker sends a high workload of

requests that results in heavy computational overhead on the server. HTTP/2 SMA may not

be detected by any firewall Praseed and Thilagam (2021) and require an efficient anomaly

detection mechanism Praseed and Thilagam (2020).

Another attack, such as a Slow-Read attack, can be launched by an attacker who es-

tablishes a connection to a server and then opens multiple streams simultaneously. The at-

tacker can then send a large number of requests over these streams, the attacker does not al-

low the server to send the response as a whole by setting a small limit to the WINDOW SIZE.

Furthermore, the server needs to wait for WINDOW SIZE update to send the remainder of

the response, which keeps it busy for a long time and causes the attack. There is one thread

per stream that remains open at the server side, which overwhelms the server as all its

threads will be consumed, and hence, it cannot process other incoming requests. This can

overload the server and make it unavailable for legitimate clients. This type of attack can be

particularly effective in HTTP/2 because of the multiplexing feature, which allows multi-

ple requests and responses to be sent and received over a single connection simultaneously.

This can make it difficult for the server to detect and respond to the attack. HTTP/2 security

was discussed in Imperva (2016) where the authors showed that all web servers are vulner-

able to at least one attack vector such as Slow Read attack, HPACK (compression) bomb,

stream dependency DoS, and stream abuse attacks. Work in Tripathi and Hubballi (2018)

presented five versions of Slow-Rate DoS attack that exploit the SETTINGS of an HTTP/2
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stream such as slow-rate DoS Attack using Complete POST Header and slow-rate DoS

Attack using connection preface. Moreover, authors in Tripathi and Shaji (2022) showed

the impact of such attacks on HTTP/2 web servers in a lab setup only. In subsequent work,

the same authors demonstrated in Tripathi (2022) the impact of a slow-rate DoS attack on

a real web server and developed a real-time detection strategy that is based on an event

sequence analysis to detect it in real-time.

One of the latest attacks discovered, called HTTP/2 Rapid Reset Attack, identified as

CVE-2023-44487 National Vulnerability Database (NVD) (2023), exploits the stream mul-

tiplexing feature of HTTP/2. It employs the RST STREAM frame to terminate streams that

are currently processing requests IETF (2015). In this case, the number of streams that were

reset by the RST STREAM frame do not count towards SETTINGS MAX CONCURRENT ST

REAMS IETF (2015). The mitigation for this attack considers counting any request reaching

the server, even if it is a RST STREAM frame, as part of the defined maximum stream limit.

It involves limiting the number of simultaneously executing handler routines (SETTINGS

MAX CONCURRENT STREAMS= 200) and prevents server overload by queuing incoming

requests until a current request is completed. If the queue becomes excessively long, the

server terminates the connection as a safeguard. However, increasing the SETTINGS MAX

CONCURRENT STREAMS slightly could significantly impact network performance. Cloud-

flare highlighted its challenges in mitigating the rapid reset attack as it overwhelms server

resources and disrupts HTTP/2 operations globally Cloudflare (2023).

2.2.3 HTTP/2 Dataset

Previous studies, as highlighted in Hussain, Du, Sun, and Han (2020); Pourahmadi,

Alameddine, Salahuddin, and Boutaba (2022); Praseed and Thilagam (2020, 2021); Salahud-

din, Pourahmadi, Alameddine, Bari, and Boutaba (2021), have extensively utilized various

datasets, including CICIDS2018, CICDDoS2019, 4G-LTE, modified HTTP/1.1 to HTTP/2
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dataset, and HTTP/2 web server dataset to assess HTTP/2 attacks in the web. These stud-

ies have demonstrated the importance of flow-based features in detecting anomalies and

potential threats. These features are crucial for understanding network traffic behavior and

patterns, by providing valuable data on traffic volume and duration, which can help identify

malicious activities such as DoS attacks or unauthorized access attempts. However, these

HTTP/2 datasets are often private and not specifically collected within a 5G context, while

the publicly available datasets are not ideally suited for cutting-edge research within 5G

networks.

Several works on 5G Amponis et al. (2023); Karim et al. (2023); Samarakoon et al.

(2022) that leverage a 5G testbed focus on emulating non HTTP/2 attacks and do not pro-

vide any HTTP/2 based dataset from 5G. Moreover, the work of Caccavale et al. (2023),

proposed testing methodologies using an open-source solution called 5Greplay, allowing

network operators to defend against flooding and fuzzing attacks. However, the authors did

not focus on the impact of these attacks on 5G networks, as their study did not employ a 5G

testbed. Additionally, the HTTP/2 dataset in their research was created using MMT-DPI, a

tool developed to parse and mutate HTTP/2 packets, which is not 5G specific.

2.2.4 Anomaly Detection

In the following, we discuss the literature review on HTTP/2 anomaly detection and the

application of ML as a solution for anomaly detection.

A. HTTP/2 Anomaly Detection

Few works in the literature presenting anomaly detection solutions Hussain et al. (2020);

Lam and Abbas (2020); Praseed and Thilagam (2020); Salahuddin et al. (2021); Xie and

Zhang (2012) focused on DDoS attacks including HTTP/1.1 flooding attack rather than

HTTP/2 attacks. Authors of Praseed and Thilagam (2020) employed statistical methods
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to detect HTTP AL-DDoS attacks. Xie and Zhang (2012) proposed an application-layer

anomaly detection method that utilizes keywords from application-layer protocols such as

HTTP and SMTP, like GET, PUT, and POST to create a hidden semi-Markov model to

detect anomalies. Except the work in Tripathi and Shaji (2022) that focused HTTP/2 slow-

read attack, none of these works used an HTTP/2 dataset. Further, to the best of our knowl-

edge, the work in Praseed and Thilagam (2021) is the only work that addressed HTTP/2

SMA detection. However, the authors used an HTTP/1.1 dataset just like the remaining

works which focused on HTTP/1.1 attacks.

The use of web-based technologies such as HTTP/2, JSON, and RESTful API extends

the 5G SBA attack surface. Only a few work Hu et al. (2018); VIII (2022) assessed HTTP/2

security in 5G SBA. Authors of Hu et al. (2018) investigated 5G signaling security vulnera-

bilities exposed by the use of HTTP/2 protocol. The authors examined four DoS attacks and

two privacy attacks such as MITM and interconnect attacks. They focused on stream reuse,

flow control, dependency and priority attacks along with header compression attacks which

are DoS attacks that are relevant in 5G SBA. Numerous studies examine threats exploiting

the HTTP/2 protocol in web environments, such as HTTP/2 SMA Praseed and Thilagam

(2019), HTTP/2 rapid reset attacks National Vulnerability Database (NVD) (2023); (NVD)

(2023), and HTTP/2 slow-rate attacks Tripathi (2022); Tripathi and Hubballi (2018). These

studies often suggest anomaly detection methods that are generally less effective against

HTTP/2 threats targeting web environments. For example, Praseed and Thilagam (2019)

shows that the HTTP/2 stream multiplexing feature can be exploited to launch multiple

streams over the same connection, overwhelming the server or causing DoS. In HTTP/2

slow-rate DoS attacks, attackers send multiple specially crafted incomplete requests that

occupy the server’s connection queue space, preventing it from processing other requests

Tripathi and Hubballi (2018). They can still exhaust server resources, leading to perfor-

mance degradation and DoS. To detect such attacks, Tripathi and Hubballi (2018) proposes
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using a Chi-square test to identify abnormal intervals of HTTP/2 traffic. However, its

effectiveness varies with the attack rate and the chosen detection interval. The same au-

thors later developed an event sequence analysis method, achieving high accuracy with

minimal computational demands Tripathi (2022), only for this attack. Another method

by Praseed and Thilagam (2021) focuses on identifying HTTP/2 multiplexed asymmetric

DDoS attacks by contrasting the behavior of legitimate users and attackers. While effec-

tive for DDoS attacks, this approach fails to detect HTTP/2 slow-rate DoS attacks due to

the minimal computational overhead and pattern mimicking by attackers. Both slow-rate

and SMAs exploit various HTTP/2 parameters, leading to a DoS. One of the latest at-

tacks related to HTTP/2 is the HTTP/2 rapid reset attack, identified as CVE-2023-44487

National Vulnerability Database (NVD) (2023). The mitigation for this attack involved

bounding the number of simultaneously executing handler routines to a defined limit (SET-

TINGS MAX CONCURRENT STREAMS=200), preventing server overload by queuing

incoming requests until a current request is completed. If the queue becomes excessively

long, the server terminates the connection. Hence, the discussion on HTTP/2 attacks in the

aforementioned work was limited to a qualitative study of their applicability in 5G SBA

without any implementation or test of their impact on 5G SBA.

Flow-based anomaly detection techniques are widely used in the literature. Autoen-

coder with flow-based features Salahuddin et al. (2021) and Convolutional Neural Net-

work Hussain et al. (2020) were employed to detect DDoS attacks including HTTP attacks.

These works do not consider a 5G environment nor account for an HTTP/2 dataset. Similar

to Xie and Zhang (2012), we argue that flow-based features and application-layer features

are inefficient in detecting HTTP/2 attacks as HTTP/2 may not exhibit malicious activities

when their network traffic is observed from the network or transport layers.
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B. Transformer-based Anomaly Detection

Anomaly detection plays a vital role in diverse domains such as image processing,

time series analysis, and network security. In recent years, transformer-based models have

gained high attention due to their remarkable ability to capture intricate dependencies and

extract meaningful representations from data Xu et al. (2021). Several papers have in-

troduced pioneering anomaly detection methods that leverage transformer architectures to

tackle this challenge Wen et al. (2022).

One notable method is HaloAE Mathian et al. (2022), which proposed an autoencoder

architecture combined with transformers for anomaly detection. By reconstructing fea-

tures, HaloAE delivered competitive results, effectively capturing intricate relationships

within the data and enabling accurate identification and localization of anomalies. How-

ever, TransAnomaly Zhang, Xia, Yan, and Liu (2021) took a different approach by com-

bining a Variational AutoEncoder with a transformer for unsupervised anomaly detection

in multivariate time series data. Leveraging the transformer’s ability to capture temporal

dependencies at various scales, TransAnomaly achieved superior performance in anomaly

detection. This approach addressed the limitations of traditional autoregression methods

and enhanced the accuracy of anomaly detection.

In the domain of time series data, AnomalyTrans Xu et al. (2021) emerged as a method

to enhance anomaly detection. This model simultaneously models prior and series associa-

tions by integrating transformers and Gaussian prior-association, resulting in a more distin-

guishable association discrepancy. The developed model was used to detect anomalies on

data associated with service monitoring, space and earth exploration, and water treatment.

Another work, Dilated Convolutional Transformer-based Generative Adversarial Networks

Li, Peng, Zhang, Li, and Wen (2021) presented a novel approach for time series anomaly

detection by fusing transformers with dilated convolutional neural networks. Through a

GAN-based model, DCT-GAN simultaneously accomplished reconstruction and anomaly
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detection, capturing temporal information at different scales. This fusion of transformer

and CNN architectures provided a comprehensive framework for accurate anomaly de-

tection in time series data. The authors of Adformer Zeng et al. (2023), introduced as

a two-stage adversarial transformer model, focus on detecting anomalies in multidimen-

sional time series data within the IoT context. By amplifying reconstruction error, captur-

ing short-term trends, and leveraging prior knowledge, Adformer significantly enhanced

anomaly detection.

Transformer-based anomaly detection techniques have revolutionized anomaly detec-

tion techniques by capturing complex dependencies, enabling accurate detection, and pre-

cise localization of anomalies. The aforementioned works Xu et al. (2021); Zeng et al.

(2023) presented innovative approaches to tackle anomaly detection challenges across var-

ious domains using transformers. Nonetheless, their efficiency for HTTP/2 attack detection

in a 5G environment where time and dependencies between HTTP/2 messages reflect 5G

services and procedures, was not explored.

C. Ensemble Learning

Ensemble learning Rincy and Gupta (2020) is a powerful machine learning technique

that combines multiple models to improve prediction accuracy and robustness. It is particu-

larly suited for network anomaly detection’s complex and dynamic nature. The core princi-

ple behind ensemble learning is to leverage the complementary strengths of diverse models

to achieve better overall performance. Standard ensemble methods include bagging, where

models are trained independently on bootstrapped datasets, and their predictions are ag-

gregated to reduce variance and enhance stability; boosting, which involves sequentially

training models to focus on correcting the errors of their predecessors, as seen in AdaBoost

and Gradient Boosting; and stacking, where predictions from multiple base models are
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combined through a meta-model that learns the optimal way to integrate individual out-

puts for superior accuracy Sagi and Rokach (2018). These techniques have effectively

addressed the complexity and variety of security challenges, particularly in evolving 5G

network environments.

In the context of 5G security, Tian, Patil, Gurusamy, and McCloud (2023) employed

ensemble learning by leveraging bidirectional LSTM networks to model NF sequences,

identifying control plane threats such as reconnaissance and flooding. However, the sen-

sitivity of this method to sequence length variations limited its robustness in the dynamic

5G environment. Complementary approaches such as Haider, Waqas, Hanif, Alasmary,

and Qaisar (2023); Saha, Priyoti, Sharma, and Haque (2022) used ensemble learning with

classifiers like decision trees, random forests, and support vector machines for anomaly

detection and network load prediction, achieving notable accuracy. While effective, these

solutions relied on supervised learning, limiting their ability to detect new and zero-day at-

tacks. In broader network contexts, studies like Liao, Teo, Kundu, and Truong-Huu (2021)

and Aljebreen et al. (2023) applied ensemble frameworks to respectively detect anomalies

launched from IoT devices and others targeting SDN. While these unsupervised methods

exhibited good detection performance, they were less suited to HTTP/2-5G-specific, as

they relied on non-5G datasets. To the best of our knowledge, ensemble learning has not

been explored for HTTP/2 anomaly detection in 5G.

2.3 5G Testbed

In order to emulate normal or attack behavior in the 5G network, we need a 5G testbed

that supports HTTP/2 and allows us to connect multiple UEs to 5GC. To this end, we use

free5GC Free5GC (2021a), an open-source 5G testbed, and UERANSIM aligungr (2021),

which provides a UE/RAN emulator, as shown in Figure 2.3.

We created two versions of the 5G testbed as follows:
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• Version 1 : We deploy free5GC and UERANSIM on a Virtual Machine (VM) running

on top of OpenStack OpenStack (2021) where the VM runs Ubuntu 20.04-Focal with

4 vCPUs and 4GB RAM. We install the docker-compose version of the free5GC

called free5GC-compose, version 3.0.5 Free5GC (2021b), in which the 5G NFs are

deployed on different containers in the same VM.

• Version 2 : We deploy free5GC and UERANSIM on two separate VMs running on

OpenStack OpenStack (2021). The VMs are equipped with Ubuntu 20.04-Focal,

8 virtual Central Processing Units (CPU), and 64 GB of RAM. We use free5GC

docker-compose version 3.4.0 Free5GC (2021b), which runs NFs in separate con-

tainers on the same VM.
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Figure 2.3: Our 5G testbed based free5GC and UERANSIM aligungr (2021); Free5GC

(2021a); TS.23.501 (2024)

The 5G testbed allows us to emulate different 5G procedures such as registering an

UE, deregistering an UE, releasing a PDU session, and service request procedures. To

be able to emulate normal network behavior with a relatively significant number of UEs

and collect HTTP/2 data from the 5G testbed, we performed the following changes to the
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default free5GC implementation:

• HTTP/2 protocol: free5GC initially supported the H2c protocol, the first version of

the HTTP/2 protocol that does not support the HTTP/2 stream multiplexing feature.

We develop an HTTP/2 server code that we deploy over each NF to support the

HTTP/2 stream multiplexing feature.

• Total number of UEs supported by free5GC: We attempted to connect more than

10 UEs to the 5G testbed. However, due to an issue with the free5GC code, we

were unable to register more than 10 UEs. To overcome the free5GC limitation that

allows a emulation of a maximum of 10 simultaneous UE connections, we modify

the free5GC UPF buffer size. This enables us to extend the number of UE running

simultaneously.

We built our 5G testbed to be able to emulate normal and HTTP/2 attacks behavior and

show their impact in a 5G environment.
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Chapter 3

A Security Assessment of HTTP/2 Usage

in 5G Service Based Architecture

In this chapter, we discuss different security features introduced by 5G SBA and explore

these security challenges and their solutions in this new architecture. We carefully examine

HTTP/2 features, standard and custom headers and discuss their security implications in

5G SBA. We comment on the applicability of some known HTTP/2 attacks in 5G SBA in

light of the standardized APIs and discuss the security opportunities and research directions

brought by this protocol and its related technologies.

3.1 5G Service Based Architecture (SBA)

3.1.1 Overview

5G networks revolutionized the telecommunication architecture by adopting a cloud-

native, service-driven deployment promoting enhanced network operational efficiencies.

The 5G SBA (Figure 3.1) enables a granular design and delivery of 5G network function-

ality through a decoupling of UP and CP, hence, providing independent scalability and
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Figure 3.1: Security features implemented in 5G SBA GSMA (2021); TS.23.501 (2024)

flexible deployments Alliance (2018); TS.23.501 (2024). The UP and CP consist of mul-

tiple interconnected NFs, each providing a set of ªservicesº. Examples of such services

include service registration, authorization and discovery Alliance (2018). The 5G CP is

defined by a SBA. The interactions between the CP NFs are enabled by a service-based

representation in which the SBIs can be easily extended without the need to introduce new

reference points.

To enable the communication between the 5G SBA NFs (also referred to as ª5G sig-

nalingº), the 3GPP selected the HTTP/2 protocol with JSON as the application layer se-

rialization protocol, which runs over TCP at the transport layer 3GPP TS.29.500 (2024).

For added security, the NFs shall support TLS 1.2 and TLS 1.3 3GPP TS.29.500 (2024);

Christine Jost (2020). In addition, Restful API is used to invoke 5G services Alliance

(2018).

Signaling through direct communication between 5G NFs is enabled by HTTP/2 while

being facilitated by the NRF (Figure 3.1). Signaling allows NFs to consume services pro-

vided by their peers. In fact, a NFp will first register itself to the NRF. This enables the

NRF to maintain a NF profile that includes the available NF instances and their services.
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A NFc can then discover the available NF instances and services by consulting the NRF.

Once discovered, a NFc can directly consume authorized services through APIs exposed

by a NFp TS.23.501 (2024). These APIs are standardized by 3GPP and can be either

Request-Response or Subscribe-Notify TS.23.501 (2024).

Signaling through indirect communication between the NFs consumers and producers

is also possible through the Service Communication Proxy (SCP) NF (Figure 3.1) 3GPP

TS.29.500 (2024). The SCP can route the requests and responses of service consumers and

producers respectively, and offload the service registration and discovery requests to the

NRF. Note that the SCP also provides load balancing, overload handling, traffic prioriti-

zation and message manipulation functionalities 3GPP TS.29.500 (2024); Shetty, Jangam,

and Simlai (2021).

3.1.2 5G SBA Security

5G SBA leverages cloud-native principles where NFs are created and destroyed dy-

namically and communicate through an SBI message bus using different APIs. These NFs

should be authenticated and their communication needs to be protected to prevent unautho-

rized access to their services. 3GPP identified two main security mechanisms:

A. Mutual authentication and transport security

They are enforced through TLS between SBA NFs and between NF-NRF during service

discovery and registration to mitigate against message spoofing, tampering, repudiation and

information disclosure Christine Jost (2020); TS.33.501 (2025b).

B. Authorization of the requests

Access authorization of NFcs to services provided by NFps prevents privilege escala-

tion. It follows a token-based authorization through the NRF using OAuth 2.0 IETF (2022);
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TS.33.501 (2025b). OAuth 2.0 is an authorization framework that enables a third-party ap-

plication to obtain limited access to an HTTP service on its behalf or on behalf of a resource

owner IETF (2022). In 5G SBA, an access token to a certain service is generated by the

NRF (OAuth 2.0 authorization server) following a request of a NFc (i.e., OAuth 2.0 client)

to access a service of a NFp (i.e., OAuth 2.0 resource server) TS.33.501 (2025b). The to-

ken is granted based on authorization rules which can be provided by the NFp during its

registration at the NRF and after the mutual authentication between the NRF and the NFc

(using TLS) Christine Jost (2020).

Authorization and authentication are applied in non-roaming and in roaming scenarios.

Nonetheless, to better protect the 5G network from unauthorized access and attacks that

can be performed by outsiders (e.g., roaming partners, etc.), a Security Edge Protection

Proxy (SEPP) (Figure 3.1) has been introduced. SEPP acts as a security gateway on the

interconnections between roaming partners. It provides application-layer security between

NFs associated with roaming partners to enable their secure communication. SEPP func-

tionalities include traffic filtering, end-to-end authentication, confidentiality and integrity

protection via signatures and encryption of HTTP/2 messages. SEPP is also responsible of

key management mechanisms used to perform the security capability procedures. Finally,

the SEPP offers topology hiding capability along with prevention of bidding down attacks

TS.33.501 (2025b).

3.2 Implications of HTTP/2 Features on 5G SBA

HTTP/2 introduces multiple features that we explore hereafter and discuss the security

impact of their possible exploitation by attackers in 5G SBA.
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3.2.1 Streams Multiplexing

HTTP/2 streams multiplexing feature allows carrying multiple streams over a single

TCP connection IETF (2015), thus improving services’ latency. In fact, an HTTP/2 client/

server can limit the maximum number of concurrent streams over a single TCP connec-

tion with its peers using the HTTP/2 SETTINGS MAX CONCURRENT STREAMS setting.

While IETF recommends a minimum value of 100 streams for this setting to benefit from

the stream multiplexing feature, it does not provide any recommendations on its upper limit

which can go up to 2,147,483,647 streams IETF (2015). This allows attackers to exploit

the stream multiplexing feature through sending as many as 2,147,483,647 streams of com-

putationally expensive requests (i.e., APIs) towards the NFp and replicate it over multiple

TCP connections to scale the attack and cause a DoS Imperva (2016). Hence, network

operators should carefully configure the SETTINGS MAX CONCURRENT STREA MS for

their 5G NFs to limit such attack.

3.2.2 Flow Control

The flow control feature is introduced to prevent streams on the same TCP connec-

tion from interfering with each others IETF (2015). Flow control determines the size of

the data the sender is permitted to send to the receiver using many parameters such as the

WINDOW UPDATE frame, and the SETTINGS frame IETF (2015). The WINDOW UPDATE

frame is used by the receiver to inform the sender how much data it is willing to receive

on each stream IETF (2015). The flexibility provided by this feature can be misused by

a malicious receiver (i.e., NFc in 5G) to influence the streams processing at the NFp into

intensive resource consumption, thus causing a slow-read DoS attack on the NFp Hu et

al. (2018). In fact, in such attack, a NFc imposes very small data transmission using the

WINDOW UPDATE frame on the NFp, thus keeping the NFp resources busy to complete its

request. However, a possible preventive measure that can be taken in 5G networks, is to set
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a processing timeout limit for requests on each NFp based on the vertical industry the NFp

is serving.

3.2.3 Stream Dependency and Prioritization

HTTP/2 carries a dependency-based prioritization feature that allows a client to assign

a priority for each stream through a PRIORITY frame. Stream priority determines the

order at which the client wants its streams to be processed IETF (2015). A client can

also specify dependency between streams that will be expressed in a dependency tree at

the server. It can assign weights to dependent streams to dictate to the server the relative

proportion of available resources that it has to allocate them IETF (2015). The dependency-

based prioritization feature was introduced with the intention of improving user experience.

However, since no limit was set in RFC 7540 IETF (2015) on the size of the dependency

tree, a NFp which naively trusts a NFc may be deceived to build a dependency tree that will

consume its memory and CPU, thus causing a DoS on the NFp Hu et al. (2018); Imperva

(2016). The exploitation of this feature can be partially limited in 5G SBA by configuring

the size of dependency tree at NFp for each TCP connection.

3.2.4 Header Compression

HTTP/2 introduces header compression through the HPACK protocol to reduce the

request size by eliminating redundant header fields across multiplexed streams, which leads

to lower bandwidth utilization IETF (2015). HTTP/2 request and response header metadata

are compressed using HPACK through: (1) encoding the transmitted header fields to reduce

their individual transfer size; (2) maintaining an HPACK static table that holds a predefined

static list of headers; (3) updating and maintaining an HPACK dynamic table that holds a

dynamic list of headers IETF (2015). It is used as a cache for each connection direction

separately. The sender can signal to the receiver what values to insert in the dynamic table,
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hence, it can refer to their locations in subsequent streams. The size of the dynamic table

is restricted to limit the memory requirement on the decoder side, however, the size of

the header value field inside this table is not constrained IETF (2015); Imperva (2016).

The lack of restriction on the size of the header value creates a vulnerability that can be

exploited to launch an HPACK Bomb attack Imperva (2016). An attacker can generate a

first stream with a large header (i.e., of size equal to the dynamic table of its peer), then open

new streams over the same connection that reference the same header. Decompressing the

large header for each subsequent stream causes memory exhaustion, and hence a DoS on

the server Imperva (2016). Limiting the header value in the dynamic table can potentially

prevent the HPACK Bomb attack.

3.2.5 Server Push

The server push uses the PUSH PROMISE frame to enable the server to send inline

resources to the client without an explicit request for each resource IETF (2015). This

feature improves the client’s experience by reducing the load time and workload, however,

it places the burden on the server. The server push feature, combined with the multiplexing

feature can be misused to launch a DDoS attack against an HTTP/2 server. A malicious

client can force a server to serve a high number of simultaneous requests, each of which

has multiple associated inline resources that the server needs to push Praseed and Thilagam

(2019). This leads to a flooding attack which affects the server egress bandwidth and nearby

routers, thus resulting in a DoS attack at the network layer as well Praseed and Thilagam

(2019). The server push feature may not always be advantageous as it can use an excess

of bandwidth to push unneeded assets. Mobile operators must carefully assess the need to

enable this feature in their 5G networks, as bandwidth and connection stability are crucial

to meet the QoS requirements of their services.
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Table 3.1: HTTP/2 features and their security implications.

HTTP/2

Feature

Threat Model Implications Attack

Type

Possible Counter-

measures

Streams

Multiplex-

ing

Flooding a NFp by exploiting

SETTINGS MAX CONCURR

ENT STREAMS

NFp overloading DoS At-

tack

Limiting

SETTINGS MAX CO

NCURRENT STREA

MS Adding SCP

with 3GPP custom

HTTP header

Flow Con-

trol

Imposing very small data

transmission using the

WINDOW UPDATE frame on

the NFp

Server resources

depletion while com-

pleting the request

processing

Slow-

read DoS

attack

Setting a process-

ing timeout limit

for requests per

HTTP/2 connec-

tion

Stream De-

pendency

and Prioriti-

zation

Building a large dependency

tree through enforcing many

streams dependencies

NFp memory and

CPU consumption

DoS

attack

Limiting the size

of the dependency

tree for each

HTTP/2 connec-

tion

Header

Compres-

sion

Exploiting the lack of restric-

tion on the size of the header

value in the HPACK dynamic

table and reference a header

of large value multiple times

Memory Exhaustion HPACK

Bomb

attack,

DoS

attack

Limiting the

header value in the

HPACK dynamic

table

Server Push Flooding a NFp with re-

quests associated with inline

resources that it needs to push

Egress bandwidth

overconsumption

DoS

attack

Carefully assess the

need for this fea-

ture in 5G networks

3.2.6 Discussion

5G networks implement tighter security than the general web, which reduces the likeli-

hood of HTTP/2 attacks (Table 3.1). Nonetheless, some of these HTTP/2 attacks are likely

to apply to 5G networks as attackers can exploit them through vulnerabilities related to

virtualization technologies ENISA (2021). In fact, the move of mobile network operators

to the public cloud increases the attack surface through virtualization vulnerabilities (e.g.,

CVE-2016-5195, CVE-2019-5736). Similarly, virtualization vulnerabilities and miscon-

figuration can be exploited by attackers to breach the isolation between 5G network slices,

for example, through a shared NF AdaptiveMobile (2021). In such a scenario, HTTP/2

attacks on the shared NF from one slice can impact the functionality of the other slice.
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In addition, HTTP/2 attacks can be initiated from malicious roaming partners and remain

undetected by the filtering techniques at the SEPP GSMA (2021). Although they take a

new form in HTTP/2, HTTP/2 multiplexing and slow-read attacks common in the Internet

may occur now in 5G networks. In contrast, we envision stream dependency and priori-

tization based attacks along with server push and HPACK bomb attacks are less likely to

happen in 5G networks as they are highly related to the mobile operators implementation

and configuration. For instance, an operator may disable server push functionality, thus

preventing its related attack. To the best of our knowledge, the usage of server push has

been left by 3GPP to the mobile operator choice. Finally, with the risk of misconfiguration

of HTTP/2 settings and its related attacks, intelligent anomaly detection solutions that can

detect HTTP/2 attacks to enable automated mitigation measures are needed.

3.3 Implications of HTTP/2 standard and custom headers

on 5G SBA

HTTP/2 message header is composed of multiple standard and custom header fields

that we elucidate and discuss their role in 5G SBA security.

3.3.1 Standard HTTP/2 Headers

The standard HTTP/2 header fields are used in both requests and responses. The request

sent to the HTTP/2 server includes a list of header fields that identify the client. Figure 3.2

includes some of these standard headers: accept-encoding specifies the used data encoding;

accept determines the content type the client is able to handle; authority defines the Fully

Qualified Domain Name (FQDN) or IP address of the target Uniform Resource Identifier

(URI) (i.e., target NF service); path includes the path and query parts of the target URI (i.e.,

API URI); scheme declares the version of HTTP used (e.g., http or https) 3GPP TS.29.500
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(2024); IETF (2015). User-agent header key defines the HTTP/2 client. An HTTP/2 re-

sponse carries HTTP header response fields (Figure 3.2) such as: status which carries the

HTTP status code, content-type specifies the type of the content returned by the server,

content-length determines the length of the content in bytes, and the originating date of the

response presented in the date header 3GPP TS.29.500 (2024); IETF (2015).

Figure 3.2: HTTP/2 request and response headers.

Furthermore, other HTTP standard header fields such as Authorization in the request

and WWW-Authenticate in the response are used to mitigate multiple attacks on 5G NFs

that could originate from a third party connection (e.g., roaming partner). For example,

the Authorization header holds the OAuth 2.0 access token that the NFp should validate

(i.e., validate the token, its expiration date, and access scope) before granting access to the

requested resource 3GPP TS.29.500 (2024). In case the OAuth 2.0 access token is deemed

invalid by the NFp (i.e., expired token, or the required scopes to invoke the requested

service operation are not covered by the token); the NFp rejects the API request. The NFp

will use the WWW-Authenticate header to determine the reason behind the rejection (i.e.,

invalid token, insufficient scope) in its error attribute 3GPP TS.29.500 (2024); IETF (2022).
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3.3.2 Custom HTTP/2 Headers

3GPP introduced HTTP/2 custom headers dedicated to 5G SBA. Some of these custom

headers are defined to enable load and overload control as they allow sharing of NFs load

information 3GPP TS.29.500 (2024). Hereafter, we discuss the importance of these custom

headers on 5G SBA security.

A. 3gpp-Sbi-Lci

3gpp-Sbi-Lci enables a NFp to signal its Load Control Information (LCI) to a NFc ei-

ther directly or through the NRF during service discovery. This enables the NFc to decide

whether or not to select a different NFp, hence, enabling a better load balancing in the net-

work. Figure 3.3 represents a 3gpp-Sbi-Lci custom header, generated on specific date/time

defined in Timestamp, by a NFp, to signal its load level through the Load-Metric to a SCP

instance (i.e., SCP1 specified in SCP-FQDN) 3GPP TS.29.500 (2024).

Figure 3.3: LCI for SCP 3GPP TS.29.500 (2024).

B. 3gpp-Sbi-Oci

A NFp/NFc uses the 3gpp-Sbi-Oci custom header to signal its Overload Control In-

formation (OCI) to its peer. Through this header, the overloaded NF instructs its peer

to throttle the service/notification requests, in an attempt to reduce its signaling load 3GPP

TS.29.500 (2024). Figure 3.4 depicts a 3gpp-Sbi-Oci header sent by a NFp, identified by its

instance ID (i.e., NF-Instance), asking a NFc to throttle 50% of its requests as determined

in Overload-Reduction-Metric. Note that an Overload-Reduction-Metric of ª0º indicates

that the sender is not overloaded. The 3gpp-Sbi-Oci also includes the Timestamp indicating
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the time at which it was generated and its validity period identified by Period-of-Validity

3GPP TS.29.500 (2024).

Figure 3.4: OCI for a NF Instance 3GPP TS.29.500 (2024).

C. 3gpp-Sbi-Message-Priority

In contrast to the PRIORITY frame used to determine stream (i.e., request and re-

sponse) priority at the connection level, 3GPP introduced the 3gpp-Sbi-Message-Priority

to provide the flexibility of assigning a priority for the response that differs of the one as-

signed to its corresponding request 3GPP TS.29.500 (2024); IETF (2015). The primary

usage of SBI Message Priority (SMP) is to assist NFp/NFc/proxies when making throttling

decision related to an overload control or when routing messages through proxies 3GPP

TS.29.500 (2024). For instance, a server may process higher-priority messages first, how-

ever, this may block lower-priority messages from ever being handled. In 5G SBA, this will

result in the messages being retried, and in more traffic than the network usually handles

without the use of the SMP mechanism.

3.3.3 Security Implications

HTTP/2 standard and custom headers play a critical role in security enforcement. HTTP/2

standard headers include API information and handle authentication and service autho-

rization in 5G, thus preventing illegal service access. In contrast, 3GPP custom headers

prevent DoS and DDoS attacks by enabling load balancing on NFs through 3gpp-Sbi-Lci,

and overload handling using 3gpp-Sbi-Oci while staying compliant with the message pri-

ority defined in 3gpp-Sbi-Message-Priority. However, 3gpp-Sbi-Message-Priority can be
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abused and result in starving low-priority messages. This unwanted starving needs to be

correctly handled by following 3GPP recommendations on the usage of this header and

by limiting the number of higher-priority messages in comparison to lower-priority ones

3GPP TS.29.500 (2024). Similarly, 3gpp-Sbi-Lci and 3gpp-Sbi-Oci can be abused by at-

tackers to trick the network into assuming that a certain NF is (over)loaded by forging the

Overload-Reduction-Metric in OCI and Load-Metric in LCI. This may trigger unneeded

scaling of the victim NF, which may lead to over-provisioning and, hence, incur revenue

losses for the operator.

3.4 Security challenges and opportunities

In the following, we discuss existing security challenges and shed light on possible

security opportunities and research directions that can play a critical role in addressing

them Figure 3.5.

3.4.1 Broken Service Access Control

The use of token-based authorization through OAuth 2.0 exposes the 5G network to a

token tampering attack, allowing attackers to access the services of another NF within the

same or different Public Land Mobile Network (PLMN). It also enables them to launch

a DoS attack on the NFc by replacing the granted service (i.e., API) of the NFp in the

request with an unavailable one ENISA (2021). The risk of gaining unauthorized service

access through the NF-NRF interface is also possible and can result in disclosing sensitive

information of a PLMN GSMA (2021). A holistic distributed attack detection and network

monitoring framework is intrinsic to reveal unauthorized access and alert NFs of tampered

tokens that need to be revoked and malicious requests that should be rejected. Further, with

43



Figure 3.5: 5G SBA security challenges and opportunities.

the large number of roaming partners that an operator can have, misconfiguration of autho-

rization rules is possible GSMA (2021). This requires standard contracts and authorization

templates to lighten the configuration burden.

3.4.2 Broken Authentication

The usage of TLS for SBA protection at the network and transport layer and service au-

thorization, respectively, rely on Public-Key Infrastructure (PKI) ( i.e., X.509 certificate,

public/private keys) Christine Jost (2020); TS.33.501 (2025b). In a non-roaming scenario,

there is a risk of fraudulent certificates and compromise of private keys. In contrast, in

a roaming scenario, the roaming database (IR.21) may contain outdated information and

revoked certificates. This can result in broken authentication, which can lead to compro-

mising JSON web token (i.e., used between SEPPs of roaming partners), hence granting

illegal network access GSMA (2021). Thus, automated certificate management and storage

of related keys to cope with the dynamism of a 5G cloud-native environment are research

questions yet to be explored Christine Jost (2020).
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3.4.3 API Exploitation

The reliance of 5G SBA on APIs extends the 5G attack surface to vulnerabilities asso-

ciated with their exploitation. APIs are exposed to all endpoints within the same PLMN or

with roaming partners through the SEPP.

DoS attacks can be launched by exploiting the resources an API can consume if no

limits are imposed on the size or number of those resources GSMA (2021). Attackers

can exploit the HTTP/2 multiplexing feature to overload the NFp with requests that ex-

ploit APIs requiring heavy server resource consumption. The attack can be further inten-

sified by a slow-read attack during which the attacker manipulates the flow-control infor-

mation to keep the NFp resources allocated for those requests for a longer period, hence

facilitating the DoS. Therefore, a proper configuration of HTTP/2 settings such as SET-

TINGS MAX CONCURRENT STREAMS to limit DoS attacks is also needed. For in-

stance, a network operator can limit the number of maximum concurrent streams that a

server allows per connection. This will make a DoS attack costly to the attacker, who will

need to allocate more resources to establish multiple TCP connections with the server to

exhaust it. Further, HTTP/2 with usage of SCP in a 5G network offers many opportunities

for early detection and mitigation of a server overload and DoS attacks through the use of

HTTP/2 custom headers standardized by 3GPP for 5G SBA (Section 3.3.2).

3.4.4 HTTP/2 Attacks and Interconnect Security

HTTP/2 attacks can be left unnoticed by the SEPP at the interconnect network on the

N32 interface (Figure 3.1), if they originated from malicious roaming partners GSMA

(2021); TS.33.501 (2025b). HTTP/2 filtering at the SEPP aims at blocking 5G interconnect

messages based on certain criteria (i.e., URI, specific IEs, etc.) to prevent malicious roam-

ing partners from extending their services beyond the roaming agreement. Nonetheless,

filtering techniques do not prevent attacks such as HTTP/2 multiplexing attacks in which
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malicious roaming partners can request legitimate services from a specific NF.

To counter the above threats, intelligent threat analysis and detection solutions that

overcome the limitations of filtering mechanisms and which leverage ML and Artificial In-

telligence (AI) techniques are needed. They can learn traffic patterns from data collected

at filtering nodes such as the SEPP, 5G NFs, and other monitoring logs collected from

the 5G SBA. Real-time or near-real-time traffic analysis and features extraction at network

and application layers while accounting for API calls, IEs, HTTP/2 standards, and custom

headers are yet to be explored as indicators of compromise that may enhance the detection

accuracy of these ML/AI models that yet to be developed. Further, ML/AI solutions need

to be complemented with effective incident analysis and response and used to automati-

cally update filtering rules at the SEPP and the 5G SBA firewalls. The proposed security

controls should be designed to complement each other in an automated holistic security

orchestration and management framework designed and adapted for 5G networks.
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Chapter 4

5GShield: HTTP/2 Anomaly Detection

in 5G Service-Based Architecture

In this chapter, we propose 5GShield, a novel application-layer anomaly detection so-

lution that uses neural networks, namely, Autoencoder, for anomaly detection. To evaluate

our approach, we deploy a 5G testbed, emulate the HTTP/2 SMA, and collect HTTP/2 data.

Our experimental results show that 5GShield can detect HTTP/2 SMA with an F1-score of

0.992, outperforming a flow-based anomaly detection solution that exhibits an F1-score of

0.78. 5GShield shows the efficiency of 5G-specific application-layer features in exposing

HTTP/2 attacks that can go undetected at the network layer.

4.1 Threat Model

While accounting for the secure design of 5G SBA, we detail herein, the list of assump-

tions that allow launching the HTTP/2 SMA from a compromised NFc towards an NFp in

a 5G network, and describe its threat model.
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4.1.1 Assumptions

(1) Attacker compromises an NFc: Many standardization documents discuss threats brought

by NFV and virtualization technologies (e.g., container, virtual machines, etc.) to

telecommunication networks and 5G in particular ETSI (2020). The adoption of hyper-

scale cloud by mobile operators extends the attack surface of their networks and makes

their virtual NFs vulnerable ETSI (2020). An attacker can compromise 5G NFs de-

ployed on docker containers in the cloud, by exploiting docker vulnerabilities to per-

form container escape (i.e., CVE-2016-5195 (NVD) (2019), and CVE-2019-5736 (NVD)

(2016)) Madi et al. (2021). Attackers can take advantage of a breach of isolation be-

tween 5G network slices that share one or multiple NFs AdaptiveMobile (2021).

(2) NFc successfully authenticates with the NFp: We assume that if TLS is used, the com-

promised NFc can still authenticate with the NFp as the attacker has access to its pub-

lic/private key pairs.

(3) NFc is authorized to access NFp services: We assume that the malicious NFc has

already acquired OAuth 2.0 access tokens to the NFp services. These tokens are cached

and can be reused by the attacker TS.33.501 (2025a). Alternatively, the malicious NFc

can request new access tokens from the NRF given that it can successfully authenticate

with it (i.e., assumption (2)). Vulnerabilities related to network slicing and service

authorization, such as those mentioned in AdaptiveMobile (2021) can also be exploited

to access the NFp services.

(4) Attacker has access to UE information: As some network services require exchanging

UE information (e.g., Subscription Permanent Identifier (SUPI)) TS.123.502 (2025),

we assume that the attacker can gain access to such information by monitoring NFc

communications or even requesting such information from other NFs.
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4.1.2 HTTP/2 Stream Multiplexing Attack in 5G SBA

Given the prior assumptions, we emulate the HTTP/2 SMA between an SMF acting as

the malicious NFc and an AMF representing the targeted NFp. The choice of the AMF

as the attacker target is related to the importance of the role it plays in providing UE au-

thentication, authorization, and mobility management services TS.129.518 (2025). In ad-

dition, the AMF is exposed to external networks, which extend its attack surface and put

it at risk Pell, Moschoyiannis, Panaousis, and Heartfield (2021). A DDoS attack against

the AMF can significantly reduce the availability of 5G services and even cause network

outages Pell et al. (2021). Without loss of generality, we consider the SMF as the compro-

mised NFc by the attacker given that it is one of the major consumers of the AMF services

TS.129.518 (2025). Thus, in this attack, we assume that the attacker, acting as the mali-

cious SMF, requests the Namf Communication N1N2MessageTransfer API from

an AMF. Note that this API is triggered between SMF and AMF in multiple 5G proce-

dures such as UE registration, network-triggered service request, and UE-triggered service

request, etc.TS.129.518 (2025). We leverage this API to perform the HTTP/2 SMA in two

forms:

• Stealthy HTTP/2 SMA: consists of triggering different randomly selected 5G procedures

for randomly selected UEs.

• Non-stealthy HTTP/2 SMA: consists of triggering the same 5G procedure simultaneously

for the same subset of UEs.

In Figure 4.1, we illustrate the HTTP/2 SMA in four steps: (1) The attacker com-

promises an SMF via virtualization vulnerabilities. The SMF may or may not belong

to a malicious roaming partner that has already been authenticated and authorized to ac-

cess the AMF service(s). (2) The attacker (i.e., malicious SMF) establishes the first TCP

49



 

Malicious 

SMF (NFc) AMF( NFp) 
Establish a TCP connection – TCP1 

1 2 

3 

4 

Attacker compromises SMF 

that is authenticated with NRF 

by exploiting trust relationships 

between roaming partners  

Malicious SMF establishes a 

TCP connection to AMF 

Malicious SMF requests Service 

Request procedure from AMF 

(N1N2MessageTransfer API) using 

random legitimate UEs as much as 

allowed per TCP connection 

Malicious SMF floods AMF server by 

repeating the request over multiplex 

TCP connection that leads AMF will 

be under a DoS attack 

Establish a TCP connection – TCP2 

Figure 4.1: HTTP/2 stream multiplexing attack on AMF

connection with the AMF. (3) Then the malicious SMF initiates a service request pro-

cedure using Namf Communication N1N2MessageTransfer API by sending as

many requests as the AMF allows per a single TCP connection using legitimate UEs

information. Note that the number of streams (i.e., request-response) an endpoint (e.g.,

AMF) allows its peer to initiate on their established connection is specified by the HTTP/2

SETTINGS MAX CONCURRENT STREAMS setting. (4) Given a sizable number of com-

putationally expensive requests, the AMF becomes overloaded. The attacker can scale

this attack by repeating it over multiple TCP connections, which causes a DoS attack at the

AMF. Note that the default and maximum value of SETTINGS MAX CONCURRENT STRE

AMS is 2 147 483 647, which makes the scaling of the attack easier IETF (2015). Finally,

as the attacker used a subset of legitimate UEs information and requests, the detection of

this application-layer attack becomes challenging.
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4.2 Methodology - 5GShield Solution

In this section, we introduce the 5GShield solution (Figure 4.2), our novel and intel-

ligent application-layer anomaly detection solution designed to detect HTTP/2 attacks in-

cluding SMA.
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Figure 4.2: An overview of 5GShield solution and its modules

4.2.1 Data Collection and Pre-processing Module

The data collection and pre-processing module aims at collecting application-layer in-

formation and pre-process it for feature engineering and anomaly detection. This module

collects the data provided by the application, that is the monitored NF that we aim at pro-

tecting (e.g., AMF). In 5G networks, application-layer information includes Performance

Measurements (PM) counters that are standardized by 3GPP TS.28.552 (2024) and other

counters that can be available by the NF application. PM counters convey how well an

application is performing and can be used to determine system bottlenecks and fine-tune
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the application performance. For example, AMF PM counters, standardized by 3GPP,

present procedures related measurements such as registration, service request, UE config-

uration update procedures measurements among others such as mobility-related measure-

ments TS.28.552 (2024). Thus, these counters permit profiling an NF normal behavior

as they depict aggregated information pertaining to its provided services. They represent

statistics of the communication patterns between the NF they represent and all the peer NFs

it interacts with.

4.2.2 Feature Engineering Module

The feature engineering module performs feature extraction, normalization, and selec-

tion based on the data it receives from the data collection and pre-processing module. It

extracts application-layer features belonging to two categories, mainly; 3GPP-based fea-

tures depicting 3GPP PM counters for the targeted NF and HTTP/2-based features that re-

flect requests and responses between the targeted NF and its peer NFs. We note that 3GPP

features represent, in majority, measurements related to the APIs (i.e., services) provided

and received by the targeted NF. In contrast, the HTTP/2-based features are more general

and can be accounted for any targeted NF while considering its peers. 3GPP-based and

HTTP/2-based features capture the communication patterns between NFs through API calls

statistics. This enables the successful detection of HTTP/2 attacks, including the SMA, as

Table 4.1: 3GPP and HTTP/2 application-layer features collected at the AMF

3GPP-AMF features HTTP/2-AMF features

numberofAttemptedNetworkInitiatedServiceRequest receivedRequestToAMF, sentRequestFromAMF

numberofSuccessfulNetworkInitiatedServiceRequest receivedRequestToAMFperNRF, sentResponseFromAMFperNRF

numberofAttemptedUEInitiatedServiceRequest receivedRequestToAMFperAUSF, sentResponseFromAMFperAUSF

numberofSuccessfulUEInitiatedServiceRequest receivedRequestToAMFperNSSF, sentResponseFromAMFperNSSF

totalNumberofAttemptedServiceRequests receivedRequestToAMFperPCF, sentResponseFromAMFperPCF

totalNumberofSuccessfulServiceRequests receivedRequestToAMFperSMF, sentResponseFromAMFperSMF

receivedRequestToAMFperUDM, sentResponseFromAMFperUDM

receivedRequestToAMFDiscarded

sentErrorResponseFromAMF, receivedErrorResponseToAMF

totalSuccessfulRequest, totalUnsuccessfulReques
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these attacks exhibit a deviation from the normal communication patterns between NFs.

Given that we consider securing the AMF as a proof of concept of 5GShield, we

present in Table 4.1 the AMF features that we select. We distinguish the 3GPP-AMF

features that are based on 3GPP guidelines TS.28.552 (2024), from which we choose the

PM of AMF pertaining to the Namf Communication N1N2MessageTransfer API

(Section 4.1.2). Note that while other 3GPP-AMF features can be selected and relevant for

the AMF profiling and HTTP/2 attack detection, we limit our selection to those related to

the Namf Communication N1N2MessageTransfer API that we leverage to launch

the attack. Other 3GPP features were disregarded given their absence from our collected

dataset. In addition to 3GPP-AMF features, we account for the HTTP/2-AMF features

consisting of the number of sent/received, successful/unsuccessful requests per peer NF.

Following the extracted features (Table 4.1), we perform feature normalization and then,

we select the most relevant ones.

At the feature selection stage, we use the variance threshold scikit learn (2021) function

to determine the most relevant variance value of the features. We choose this selection

function, as it is well known for its usage in unsupervised models scikit learn (2021). The

purpose of its usage is to help in removing features with minimal variations or those deemed

as noise. As 5GShield is highly dependent on NF behavior patterns, the features selected

to train the model must be accurately represented (i.e., have high variance) and provided to

the anomaly detection module.

4.2.3 Anomaly Detection Module

The anomaly detection module consists of a model training engine and an anomaly de-

tection engine (Figure 4.2). The model training engine trains the anomaly detection model

and selects an appropriate threshold that assists in attack and benign data classification.

The anomaly detection engine consists of the trained model and an attack classification

53



add-on that enables benign and attack data classification based on the output of the trained

model and the selected threshold. Hence, for the anomaly detection model, we choose a

feed-forward neural network, an AE, which is composed of one input layer, one or more

hidden layers, and one output layer. In contrast to conventional methods (i.e., k-nearest

neighbors), AE has been used for anomaly identification and has produced improved re-

sults Mirsky et al. (2018). Due to the limitation of data labeling, we choose unsupervised

learning rather than supervised. We use the selected application-layer features as input to

train an AE to learn the normal traffic behavior of the targeted NF (e.g., AMF). The AE

identifies any malicious traffic that deviates from normal traffic as an attack. It learns a

good lower-order mapping of the input data with the help of a reconstruction error loss

function. The discovered lower-order mapping can then be employed to reconstruct the in-

put data Salahuddin et al. (2021). Thus, when the AE is tested on data similar to that used

to train it, it should provide a low reconstruction error. In contrast, if the test and training

data differ significantly, the AE probably produces a high reconstruction error. As a result,

we train the AE with benign data to efficiently detect any deviations as anomalies.

We choose the Mean Squared Error (MSE) to measure the model reconstruction error.

MSE assesses the average squared difference between the input and the predicted values

Mirsky et al. (2018). As model errors increase, the MSE values increase. The acceptable

margin of difference between the input and the predicted value needs to be specified to

determine if the input is benign or anomalous. Hence, to discriminate between benign and

malicious data, there is a need for an efficient threshold selection α such that an MSE ≤ α

yields the data is benign while an MSE > α determines that the data is malicious. As such,

a high threshold value would result in missing attacks (i.e., high false negatives, low recall),

whereas a low threshold value can cause a lot of mis-classifications of benign data into

malicious one, thus resulting in low precision. Both cases result in degraded performance

of the AE. F1-score represents the harmonic mean between precision and recall and is
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ideally equal to 1. Thus, given that it takes both false negatives and false positives into

consideration, we select the threshold that maximizes the F1-score in this work.

4.3 Environment Setup

In this section, we present details on the 5G network emulation and discussions on the

data pre-processing and the feature engineering that we perform on the data collected from

our testbed.

4.3.1 Emulation Setup

Using Python 3.8, we implement our 5GShield solution, while our anomaly detection

AE model leverages PyOD library 1.0.6 Zhao (2019).

4.3.2 5G Network Emulation

Given the lack of a public 5GC dataset that can be used for anomaly detection, we

leverage our 5G testbed for normal and HTTP/2 SMA emulation. This requires emulating

UE-initiated and network-triggered 5G procedures that can occur in a 5G network. To this

end, we employ the functionalities provided by UERANSIM (Table 4.2).

Table 4.2: Procedures order

Triggered procedure Possible subsequent procedures

UERegister UEReleasePDUSession, RANReleasePDUSession, UEDeregister, Uplink, Downlink

Uplink UEReleasePDUSession, RANReleasePDUSession, UEDeregister, Downlink

Downlink UEReleasePDUSession, RANReleasePDUSession, UEDeregister, Uplink

UEReleasePDUSession UEReleasePDUSession, RANReleasePDUSession, UEDeregister, Uplink, Downlink

RANReleasePDUSession Uplink, Downlink

UEDeregister UERegister

A. Normal network behavior - Benign dataset generation Ð To emulate normal

network traffic behavior, we consider 50 UEs and perform multiple 5G procedures selected

randomly from those provided by the UERANSIM (Table 4.2). As 5G procedures have
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logical dependency and precedence constraints between them, the random choice of a pro-

cedure p+1 for a UE, is performed from a list containing all possible subsequent procedures

that can be triggered following a procedure p. For example, a UE cannot deregister from

the network unless it is already registered. In addition, each 5G procedure initiates vary-

ing communications between NFs based on the UE state (i.e., CONNECTED, IDLE, etc.)

and other conditions (network, RAN resources, etc.) TS.123.502 (2025). This is reflected

through the API calls and/or API information elements initiated/used by the NFs. For

example, if the network-triggered service request procedure (i.e., downlink) TS.123.502

(2025) is initiated while the UE’s state is CONNECTED, the API requests will not trigger

the paging procedure. Note that the procedures listed in Table 4.2 are triggered at different

times for the same UE to replicate 5G communications and can switch the UE to various

states. For example, (1) UE registers to the network1; after a while, (2) RAN releases the

PDU resources allocated to the UE, which switches its state to IDLE; (3) Then, a downlink

procedure is triggered which switches the UE state from IDLE to CONNECTED.

B. Malicious network behavior - Attack dataset generation Ð In our proof of con-

cept, we consider an attack from a malicious SMF towards an AMF. Thus, we select the

procedures that trigger Namf Communication N1N2MessageTransfer API, such

as UE-triggered service request (i.e., uplink), network-triggered service request (i.e., down-

link), and UE release PDU session, given that this API covers most of the service opera-

tions provided by the AMF and consumed by the SMF (Section 4.1.2). Using 15 legitimate

UEs, which information were compromised by the attacker, the malicious SMF requests

these procedures from the AMF by establishing multiple TCP connections. Each HTTP/2

connection running on top of a TCP connection established between SMF and AMF has

SETTINGS MAX CONCURRENT STREAMS=250, which is the default value used in the

1UE PDU session establishment is automatically triggered in Free5GC Free5GC (2021a) after a UE reg-

istration.
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5G testbed version 1 (2.3). We initiate the malicious requests while other legitimate re-

quests are being processed concurrently in the 5G network. We emulate both stealthy and

non-stealthy versions of the HTTP/2 SMA. For stealthy attack emulation, we randomly se-

lect UEs from the 15 compromised UEs that we dedicated for the malicious activities. Each

of the selected UEs randomly triggers one or multiple 5G procedures TS.123.502 (2025)

while respecting their precedence constraints (Table 4.2). In contrast, for the non-stealthy

attack emulation, the 15 compromised UEs are used to perform the same procedure(s) si-

multaneously. That is a combination of (1) Uplink procedure; (2) Downlink procedure; (3)

UE release PDU session procedure2 in which UE requests to release its PDU session and

switches to IDLE state. This combination of procedures is performed in any order. How-

ever, all the compromised UEs will be performing the same chosen order of (1), (2), and

(3) at a time.

C. Data collection and attack impact Ð Using the benign and malicious network

emulations described above, we collect from the 5G testbed version 1 (Subsection 2.3) the

application layer information at the AMF (Section 4.2.1). Further, as we aim to compare

5GShield with flow-based anomaly detection solution, we collect the incoming and out-

going traffic flows (pcaps) to/from the AMF. We use these flows for flow-based features

extraction as it will be described in Section 4.3.3. During the attack emulation, we observe

an increase in the Central Processing Unit (CPU) consumption at the AMF once the attack

starts at 576 seconds (Figure 4.3). Nonetheless, such an increase cannot be used for attack

detection as it can also be observed during normal network conditions following a peak in

network traffic (e.g., scheduled events during particular periods).

2UE PDU session establishment procedure is automatically triggered after the UE release PDU session

procedure in Free5GC Free5GC (2021a).

57



 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

1

1
2

7

2
5

3

3
7

9

5
0

5

6
3

1

7
5

7

8
8

3

1
0

0
9

1
1

3
5

1
2

6
1

1
3

8
7

1
5

1
3

1
6

3
9

1
7

6
5

1
8

9
1

2
0

1
7

2
1

4
3

2
2

6
9

2
3

9
5

2
5

2
1

2
6

4
7

2
7

7
3

2
8

9
9

3
0

2
5

3
1

5
1

3
2

7
7

3
4

0
3

3
5

2
9

3
6

5
5

C
P
U

Seconds

Figure 4.3: AMF CPU consumption during the attack

4.3.3 Data Pre-processing & Feature Engineering

We pre-process the collected data to extract application-layer features to use in 5GShield,

and flow-based features to train a flow-based anomaly detection model that we aim to com-

pare 5GShield against.

• Application-layer features Ð From the PM counters collected at the AMF, we

retain a total of 25 3GPP-AMF and HTTP/2-AMF features (Section 4.2.2), listed

in Table 4.1. From these features, we disregard low-weight features such as re-

ceivedRequestToAMFperAUSF, receivedRequestToAMFperNSSF, receivedRequest-

ToAMFperPCF, sentErrorResponseFromAMF and retain high-weight ones based on

the variance threshold ML method scikit learn (2021) (Section 4.2.2). The retained

features are normalized and depict communications between the AMF and all the

NFs in the network, and not only the SMF. This allows the detection of attacks orig-

inating from any NF(s) towards the AMF.

• Flow-based features Ð We extract flow-based features from the collected network

flow traffic using CICFlowMeter Cybersecurity (2020). This results in 84 features

listed in Appendix A. We clean and normalize the collected features using oneHo-

tEncoder. Then using the same variance threshold ML method scikit learn (2021)
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employed for application-layer features selection, we discard the flow-based features

with low weight such as Bwd IAT Mean, Bwd IAT Max, Bwd PSH Flags, IAT Tot

Cybersecurity (2020), etc., and retain the rest (e.g., flow duration, total Fwd Packet,

total Bwd packets).

In summary, we end up with benign and malicious records associated with the emulated

stealthy and non-stealthy attacks, with a total of 19 application-layer features and 56 flow-

based features. We label our data to evaluate our anomaly detection model performance by

depending on our knowledge of the compromised UEs that we used for attack emulations.

We consider the attack as our positive class. However, we do not use the label as a feature

in our models given that we adopt an unsupervised learning technique.

4.3.4 Dataset for Anomaly Detection

To train and evaluate our 5GShield anomaly detection solution, we divide the application-

layer features dataset into three categories: (1) Training and Validation Dataset: Benign

data used to train and validate the unsupervised model; (2) Optimization Dataset: Benign

and malicious data used to select the threshold; (3) Test Dataset: Benign and malicious data

used to evaluate 5GShield detection performance. These datasets are mutually exclusive

and do not include redundant records. We similarly split the flow-based features dataset

and use it to train and test a flow-based anomaly detection solution.

4.4 Experiments and Results

In this section, we evaluate the performance of 5GShield against a traditional flow-

based anomaly detection solution and test its performance in the presence of contaminated

data.
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Figure 4.4: Training and validation loss of 5GShield AE model

4.4.1 5GShield Application-layer Anomaly Detection Solution

A. AE architecture selection

To determine the architecture of the AE to use in our 5GShield anomaly detection mod-

ule (Section 4.2.3), and which better recognizes the HTTP/2 SMA, we train and validate

the performance of multiple AE architectures. We use 20000 benign records as a training

dataset to train the models and validate their performance using a validation dataset that

yields 10% of the training dataset. Our tests show that a basic AE with one hidden layer

is the most efficient. Thus, we train the selected model with a combination of hyperpa-

rameters for 200 epochs (Table 4.3). We observe the average reconstruction loss across the

different training epochs for the training model using benign unlabelled data. As shown in

Figure 4.4, the training loss and the validation loss start to converge after 30 epochs and the

AE depicts a reasonable convergence within 200 epochs.

Table 4.3: Autoencoder hyperparameters

Hyperparameter Architecture Number of epochs Dropout Batch size Loss Optimizer Hidden activation

AE - 5GShield [19; 3; 19] 200 0.2 32 MSE Adam ReLU

AE Flow-based [56; 8; 3; 8; 56] 200 0.2 32 MSE Adam ReLU
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B. 5GShield performance and threshold selection

To evaluate the detection performance of the AE, we select a threshold α = 4.399

as it maximizes the F1-score. The threshold selection was done by evaluating the AE

performance using an optimization dataset of 1400 benign and 4600 malicious records.

Using the selected threshold α = 4.399 displayed as a green line in Figure 4.5, we evaluate

the model performance using a test dataset of another (other than optimization dataset)

1400 benign and 4600 malicious records. Figure 4.5 shows that the test records between

0 and 4600 are related to stealthy and non-stealthy attacks and depict an anomaly score

(i.e., MSE) greater than the selected threshold. In contrast, only a few of those records, i.e.,

belonging to the stealthy attack, are predicted as benign given that their MSE is under the

threshold. This is expected as a stealthy attack is comparable to a benign behavior which

makes its detection more challenging. In addition, test records starting at record #4600

are benign and are correctly classified. Their anomaly scores drop under the threshold as

depicted in Figure 4.5. As a result, 5GShield with AE using application-layer features

achieves good detection performance with an F1-score of 0.992.
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C. 5GShield performance with contaminated data

In real operational network settings, access to purely benign data is challenging. In

contrast to the previous test in which we trained our model using only benign data, we

evaluate the performance of our 5GShield AE when trained on partially contaminated data

(i.e., a mix of unlabeled benign and significant malicious data) in this experiment. We

consider the training dataset and contaminate it with 0.1%, 0.5%, 1%, 1.5%, and 2% of

malicious data. Then we train the AE with the same hyperparameters (Table 4.3). We use

the optimization and test datasets to select the threshold and test the model respectively.

Figure 4.6 depicts a degradation of 5GShield model’s F1-score with the increase of the

contamination percentage in the training data. When contamination exceeds 1%, the F1-

score falls below 0.85. In the presence of higher contamination, our model needs to be fine

tuned to better detect HTTP/2 attacks. We leave this for future work.
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Figure 4.6: F1-score of 5GShield model with contaminated data

4.4.2 Flow-based Anomaly Detection Solution

We compare the performance of 5GShield against a traditional flow-based anomaly

detection solution that is widely used in the literature. For that, we develop a flow-based
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AE using the same data that we generated and employed for 5GShield AE (Section 6.4).

We pre-process this data to extract flow-based features. We train our flow-based AE using a

training dataset of 1500 benign records. We use an optimization dataset of 232 benign and

268 malicious records to select the threshold that maximizes the F1-score and a test dataset

of 218 benign and 282 malicious records. Similar to 5GShield, we evaluate different model

architectures and select the one that depicts the best performance. The selected flow-based

AE architecture and hyperparameters are depicted in Table 4.3. Our results show that for

a threshold β = 0.2437, the flow-based anomaly detection model achieves a detection

performance with an F1-score of 0.78.

4.4.3 5GShield and Flow-based Anomaly Detection Comparison

To better evaluate 5GShield against the flow-based anomaly detection solution, we re-

sort to the Receiver Operating Characteristic (ROC) curves. An ROC curve summarizes

the trade-off between the False Positive Rate (FPR) and the True Positive Rate (TPR) for

all thresholds Dalianis (2018). The Area Under the ROC Curve (AUC) represents a met-

ric commonly used with ROC to compare multiple ML models. It provides an aggregated

measure of performance across all thresholds. An AUC = 1 depicts a perfect model that

can reach a TPR = 1 and a FPR = 0 with a perfect threshold selection. Figure 4.7 shows

the under performance of flow-based anomaly detection solution with an AUC = 0.7365

in comparison to 5GShield with an AUC = 0.8673. This highlights the advantage of pro-

filing NFs behavior through 5G specific application-layer features in comparison to general

flow-based features.
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4.5 5GShield Deployment Options

The 5GShield solution was designed to complement 5G NFs with additional anomaly

detection capabilities in order to secure the 5G network. The novelty of 5GShield yields in

its usage of standardized 5G specific application data, also known as PM counters. These

PM counters are standardized and defined by 3GPP for each 5G NF. They can be used by

network operators to profile NFs behavior. The use of these PM counters alleviates the

need for telecom operators to deal with line-rate traffic flows that may be hardly collected

and managed when their network is deployed in the cloud where they do not necessarily

own the infrastructure.

3GPP PM counters collected by each NF can also be shared upon request by that NF

with the Operations Administration and Maintenance (OAM) module, which in turn can

share it with the Network Data Analytics Function (NWDAF) Y. Yuan, Gehrmann, Sternby,

and Barriga (2022). NWDAF was introduced in 5G SBA and is responsible for 5G network

data analytics generation and analysis. The generated data can also be used for closed loop

control with the assistance of ML models. Thus, we envision that our 5GShield can be

deployed as a built-in NWDAF at the NF, where data, insights and actions are taken by

that NF. This enables an automated closed loop at the local level. 5GShield can also be
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deployed at a central NWDAF in the form of a NF that collects data from other NFs and

use it for a closed loop at the network level Y. Yuan et al. (2022).

4.6 Discussion

In 5G networks, ensuring security across different layers is crucial to detecting sophisti-

cated attacks. Each layerÐapplication, network, and transportÐprovides unique visibility

into potential threats, making a multi-layered detection approach ideal. However, in scenar-

ios where administrators have access only to the application layer, solutions like 5GShield

remain essential in safeguarding the 5G SBA against advanced threats.

Application-layer detection plays a critical role in identifying sophisticated HTTP/2-

based attacks, such as SMA, which exploit the very protocols that enable efficient com-

munication between NFs. Unlike network-based solutions that rely on traffic flow analy-

sis, 5GShield operates at the application level, leveraging PM counters and API behavior

profiling to detect anomalies that may go unnoticed at lower layers. This makes it par-

ticularly effective in environments where security teams do not have access to network-

layer packet inspection or transport-layer controls, such as in cloud-based or third-party-

managed 5G deployments. Moreover, attackers often use encryption (e.g., TLS) to evade

traditional network-based intrusion detection systems, making application-layer monitor-

ing indispensable for identifying abnormal API behavior even when traffic is encrypted.

Since 5GShield directly analyzes interactions between NFs and the services they consume,

it provides a deeper level of detection than network-layer anomaly detection, which typi-

cally focuses on traffic volume and flow statistics.

Ultimately, 5GShield serves as a critical security layer in scenarios where adminis-

trators only have access to application-level monitoring. However, for a comprehensive

security posture, it should be complemented by network and transport-layer defenses to
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detect and mitigate attacks at all levels of the 5G SBA. By integrating these approaches, se-

curity teams can ensure robust protection against a wide range of threats while maintaining

real-time anomaly detection capabilities in 5G networks.
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Chapter 5

Empowering 5G SBA Security: Time

Series Transformer for HTTP/2

Anomaly Detection

In this chapter, as our previous work Wehbe et al. (2023) on HTTP/2 attack detection

in 5G SBA which presents some limitations in terms of robustness to contaminated data,

existing works Praseed and Thilagam (2018, 2019, 2020, 2021) were limited to a web

environment and are not fine-grained enough to capture 5G API calls dependencies and

sequence for fulfilling 5G procedures. The latter can be exploited to perform HTTP/2 at-

tacks. We propose 5GGuardian, an anomaly detection solution that leverages a time series

transformer trained on 5G-Stream features. The 5G-Stream features capture fine-grained

details of NFs behavior and enable robust anomaly detection of HTTP/2 SMA. Experi-

ments on our 5GC datasets that are collected from 5G testbed version 1 (Subsection 2.3),

reveal that our proposed approach achieves an average F1-score of 0.98 in identifying the

HTTP/2 SMA variations. We evaluate the performance of 5GGuardian and emphasize its

robustness in the presence of contaminated training data, as well as its ability to outperform
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application-layer anomaly detection solutions.

5.1 Threat Model - HTTP/2 SMA Variations

In our previous work Wehbe et al. (2023), We emulate both stealthy and non-stealthy

versions of the HTTP/2 SMA by leveraging Namf Communication N1N2MessageTr

ansfer API to trigger multiple procedures in a different order. However, in this work, we

leverage the Namf Communication N1N2MessageTransfer API’s service opera-

tions to perform the HTTP/2 SMA in five variations exploiting the 5G procedures using the

aforementioned API:

• Random-requests-based HTTP/2 SMA (Random-SMA): consists of sending random re-

quests from the SMF towards the AMF using legitimate UE information and list of

procedures (network triggered service request (Downlink), UE triggered service request

(Uplink), UE release PDU session (UEReleasePDUSession)) selected randomly.

• Down HTTP/2 SMA (Down-SMA): consists of launching the network triggered service

request procedure (Downlink procedure) by sending malicious requests from SMF to

AMF using the same subset of legitimate UEs.

• Up HTTP/2 SMA (Up-SMA): involves launching the UE triggered service request pro-

cedure (Uplink procedure) by sending malicious requests from SMF to AMF using the

same subset of legitimate UEs information.

• Release HTTP/2 SMA (Release-SMA): consists of triggering the UE release PDU session

procedure (UEReleasePDUSession procedure) by sending requests from SMF to AMF

using the same subset of legitimate UEs.

• Uniform-requests-based HTTP/2 SMA (Uniform-SMA): consists of sending the same type

of malicious requests repetitively following the same order from SMF to AMF using the

same subset of legitimate UEs. All UEs will be used by the malicious SMF to trigger
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Figure 5.1: Down-SMA emulation in network triggered service request procedure

TS.129.518 (2025)

Downlink, Uplink, and UEReleasePDUSession procedures in order.

A. HTTP/2 SMA Variations - An Example

The detection of HTTP/2 SMA can be challenging based on the exploited 5G proce-

dures and the impact of the attack on 5G network. To better illustrate this, we explain in

the following how the Down-SMA can be performed by exploiting the Downlink proce-

dure and we theoretically highlight its impact on the AMF. Quantitative evaluation of this

attack along with other HTTP/2 SMA variations (i.e., that can be emulated similarly) are

presented in Section 5.4.1. Figure 5.1 illustrates the normal Downlink procedure triggered

from the DN when the UE is in an IDLE state TS.129.518 (2025). The SMF sends a request

to the AMF using Namf Communication N1N2MessageTransfer API (Figure 5.1

(3a)). The AMF responds to the SMF indicating that the UE is not reachable, and sub-

sequently sends a Paging Request to the RAN/UE (Figure 5.1 (4b)). The Paging Request
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triggers the Uplink procedure in order to activate the UE. In the dashed red box (Fig-

ure 5.1), we highlight a scenario where an attacker compromises the SMF and launches

a malicious Namf Communication N1N2MessageTran sfer request towards the

AMF, triggering a Downlink procedure for a UE in IDLE state without requiring network

signaling. Although the attacker only initiates a single request, it results in a chain of other

messages (Figure 5.1 (3b-8)) related to paging, service request, PDU session update, and

PDU session modification in the 5G network. This depicts the high overhead that an at-

tacker can introduce to the network with a single malicious request. Hence, the attacker can

scale the attack by exploiting the stream multiplexing feature with only few requests. Note

that the overhead on the AMF can also be high based on the triggered procedure. For in-

stance, when starting the Down-SMA, the AMF is called twice by SMF (Figure 5.1 (3a and

6)), while in the Up-SMA involves the AMF three times, and the Release-SMA involves the

AMF five times TS.129.518 (2025). Note that, in our emulations (Section 5.4.1), the UE

release PDU session, once launched, automatically triggers a PDU session establishment

for the UE in question as a default functionality of the used testbed. Thus, when emulating

the Release-SMA, the PDU session establishment is automatically triggered.

Following the above discussion, it is clear that the attacker can utilize requests belong-

ing to different services (e.g., APIs) and involve different NFs to launch an HTTP/2 SMA

that can appear as a stealthy network overload. Hence, to address the existing shortcom-

ings of HTTP/2 anomaly detection models, we define two fundamental criteria to which

any anomaly detection mechanism targeting HTTP/2 attacks within 5G networks should

adhere to:

• Fine-grained: A robust HTTP/2 detection model should possess a fine-grained approach,

allowing it to focus on capturing nuanced features and specific aspects of the input data.

The model should be able to better distinguish between different patterns and anomalies

within the data that contains NFs API calls, the sequence in calls for 5G procedure,
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dependencies between procedures, etc.This level of granularity empowers the model to

gather and analyze particular segments that might indicate NF behaviors or anomalies,

resulting in more precise and accurate identification.

• Adaptive: An effective detection technique must be adaptable to evolving NFs behavior.

This necessitates regular updates to the underlying model including retraining on new

data depicting updated 5G NFs behavior based on various network conditions.

5.2 Methodology - 5GGuardian Solution

In this section, we introduce 5GGuardian (Figure 5.2), our innovative anomaly detec-

tion solution that leverages transformer models trained on 5G-Stream features, extracted

from 5G network traffic data for HTTP/2 anomaly detection. The 5GGuardian solution is

composed of two main modules; (1) the 5G-Stream data collection and extraction module

that extracts network traffic and performs the features engineering; and (2) the transformer

module that trains a transformer model using the collected and pre-processed data, then

uses the trained model for online anomaly detection. Details of this solution are discussed

in the following.

5.2.1 Data Collection and Pre-processing

The process of data collection involves the utilization of a network monitoring tool,

such as Wireshark The Wireshark Team. (2021). This tool enables the monitoring of net-

work traffic and captures raw packets (e.g., HTTP/2 packets) during normal operation of

the 5G network. During the training mode, the collected packets are compiled into a PCAP

file, which serves as the input data for further analysis as shown in Figure 5.2. We employ

TShark The Wireshark Team. tshark (2021), a network protocol analyzer, to process the
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Figure 5.2: 5GGuardian solution

PCAP file. The TShark packet parser reads raw binary data, parses the packets, and ex-

tracts relevant metadata into a CSV file (e.g., source/destination IP, port numbers, frame

length, path, stream Id, etc.). Our 5G-Stream data collection and feature extraction module

(Figure 5.2) utilizes the metadata to derive meaningful 5G-Stream features that we detail

in the following.

5.2.2 5G-Stream Features Extraction

Using the metadata obtained from the collected PCAP file, we extract features that serve

as valuable indicators of typical NF behavior during normal network operations. However,

during HTTP/2 attacks, these features provide insights about the malicious behavior en-

countered by the NF. This malicious behavior can be originated from any neighboring NF.

Given that in this work, we consider an attack on the AMF as a use case (Section 5.1), the

extracted features will reflect the AMF behavior. Nonetheless, as we use generic stream

features to train our anomaly detection model, our approach can be applied to detect anoma-

lies on any NF. To build a stream-level behavioral profile of the 5G NFs, we develop the

5G-Stream features algorithm (Algorithm 1) that aims at extracting stream features from
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the collected PCAP network traffic file.

Algorithm 1 5G-Stream features algorithm

InputInputs OutputOutput data: the data collected in a CSV file features: the 5G-Stream features

1: rawPacket← ReadCSV(data)

2: filteredRaw ← rawpacket.Filter(AMF ip)

3: groupedRaw ← filteredRaw.GroupBy(srcPort, dstPort)

4:

5: for each packets ∈ groupedRaw do

6: streamsRow ← packets.Unique()
7: requestsAndResponses.Append(streamsRow)
8: distinctRaw ← requestsAndResponses.Distinct()

9: requestOonly ← distinctRaw.Select(requests)

10: responseOnly ← distinctRaw.Remove(requests)

11: features← Concat(requestOnly, responseOnly)

12: return features =0

In Algorithm 1, we read and filter the raw packet data to isolate a single request rep-

resenting the header and identify its corresponding response (i.e., success or failure of the

request) (line 1-10). By aggregating the request and response, we obtain a single record

that represents an individual stream (line 11). Each stream presents 10 features (Table 5.1),

and the collection of these streams forms the set of the 5G-Stream dataset.

Table 5.1: 5G-Stream features

5G-Stream Features Latency, http2 protocols, http2 headers method,

http2 headers path, Header request size,

Header response size, ResponseCode, IMSIfromAPI,

Http2 max concurrent stream, HasResponse

The 5G-Stream features provide fine-grained details and specific characteristics of the

input data. For example, the extracted streams highlight essential 5G information, as de-

scribed in Table 5.1, focusing on features that indicate specific aspects of HTTP/2 protocol

in 5G. The http2 protocols feature captures the presence of 5G protocols such as 5G-NAS,

NGAP, or a combination of both, while the IMSIfromAPI feature contains the extracted

International Mobile Subscriber Identity (IMSI) number obtained from the API or JSON

data.
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By incorporating these detailed features, the anomaly detection model can better distin-

guish between different patterns, variations, or anomalies that are present in the data. This

level of granularity enables more precise and accurate detection, as it allows the identifica-

tion of HTTP/2 SMA and potential security threats within the 5G network.

5.2.3 Time Series Transformer Architecture

For anomaly detection, the 5GGuardian solution leverages the time series transformer

ML technique, which has shown promising outcomes in network traffic analysis and in-

trusion detection Xu et al. (2021). Unlike traditional models that rely on recurrence, the

transformer model uses self-attention mechanism to establish global input-output depen-

dencies Vaswani et al. (2017). This mechanism enables a higher level of parallelization

leading to improved efficiency and performance.

A. Time Series Transformer

As our data represents a sequence of data points taken at evenly spaced intervals, we

choose the transformer model specifically designed for analyzing time series data Wen et

al. (2022). Time series transformers have been used for a variety of tasks including time

series forecasting, and anomaly detection, making them suitable for our case study which

involves long-term dependencies in the data Lin, Wang, Liu, and Qiu (2022). The key

difference between a standard transformer and a time series transformer lies in how they

treat input tokens. While the former treats each token independently, the latter takes into

account the order and temporal dependencies of the input sequence. In our proposal, we

employ a network that utilizes the time series transformer model to detect anomalies in

network traffic. The model architecture consists of two essential components; an embed-

ding 5G-Stream layer and a standard transformer encoder/decoder. To process the normal

time series data from NF streams which are structured as a 2D tensor with dimensions of
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sequence length multiplied by the number of features, we initially encode them into se-

quences of embeddings. These embeddings then undergo a series of multi-head-attention

blocks and feed-forward layers alternatively. This stacking structure (Figure 5.2) facilitates

the learning of underlying associations from deep multi-level features.

B. Multi-head Attention

The transformer model consists of a sequence of L multi-head self-attention layers

and point-wise fully connected layers for the encoder. In the transformer architecture, the

attention employs the Query-Key-Value (QKV ) model and the scaled dot-product attention

technique Vaswani et al. (2017), given by Eq.(1).

Attention(Q,K, V ) = softmax(
QKT

√
Dk

)V (1)

where queries Q ∈ R
L∗Dk , keys K ∈ R

M∗Dk , values V ∈ R
M∗Dv where L, M denote the

lengths of queries and keys (or values) respectively, and Dk, Dv denote the dimensions

of keys (or queries) and values. A Transformer uses multi-head attention Vaswani et al.

(2017) with h different sets of learned projections instead of a single attention function as

in Eq.(2)

MultiHead(Q,K, V ) = Concat(head1, ..., headh)W
O (2)

where headi = Attention(QW
Q
i , KWK

i , V W V
i ); WQ

i ∈ R
L∗Dk , WK

i ∈ R
M∗Dk , W V

i ∈

R
M∗Dv , and WO ∈ R

M∗LDv .

C. Feed-forward Network

The feed-forward network is a fully connected module that employs the Gaussian error

Linear Unit (GeLU) activation function (Eq.(3)). The GeLU activation function is utilized

75



to control the output and gradient contribution of the deep neural network neurons. Intro-

duced in Hendrycks and Gimpel (2016), GeLU is a deterministic activation function that

combines stochastic regularization with other techniques or components. Its ability to ef-

fectively control the neuron’s output and gradient contribution contributes to the improved

effectiveness of our solution in anomaly detection.

Gelu(x) = xΦ(x) (3)

where Φ(x) is the cumulative distribution function of Gaussian distribution Vaswani et al.

(2017).

D. Reconstruction Error

The model predicts the original values of the input sequence. In our approach, the loss

function is the Mean-Absolute Error (MAE) Hodson (2022) which measures the absolute

difference between the input stream and the predicted stream as shown in Eq.(4).

D∑

i=1

|xi − yi| (4)

The MAE measures the overall absolute difference between the actual values yi and the

predicted values xi by the model. During the training phase, the model learns about the

various features and variations observed in normal behavior, thereby the prediction error

will be minimal when tested on normal network data. In contrast, the prediction error

will be higher when tested on abnormal data as the model will fail to correctly predict

it. In fact, the transformer model determines whether the predicted loss error exceeds a

predefined threshold in order to identify abnormalities in the testing data.
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E. Threshold selection

The selected threshold plays a crucial role in determining whether a given data sequence

is considered normal or abnormal during the anomaly detection stage. This is accomplished

by comparing the sequence’s reconstruction error to the threshold value. During the testing

phase, the model is provided with a specific input sequence, and its predicted error is com-

pared to the threshold. If the anticipated error exceeds the threshold, the input sequence

will be classified as malicious; otherwise, it will be classified as benign.

Threshold = mean(train loss) (5)

Thus, the model detection performance is highly dependent on the selected threshold. The

latter can be adapted to the test data, upon the need. Many approaches can be used to

select a threshold such selecting the value that maximizes the F1-score as in Salahuddin

et al. (2021) or computing as two standard deviations above the mean loss of the trained

normal data, which serves as a measure of data variability as in Alamr and Artoli (2023).

However, in our work, we set the threshold to the mean loss of the trained normal data

given that our tests using a validation set showed that such threshold selection depicts good

detection performance. The latter was further validated on our test data (Section 5.6).

5.2.4 Online Detection

The trained 5GGuardian transformer model is used for online anomaly detection. In

fact, based on the data dependencies that the model learned during the training phase, it can

successfully identify data that deviates from the normal behavior learned during the training

phase, as anomalous. When inputting new data, the model provides a reconstruction error

that is compared to the selected threshold as explained above to determine if the data is

benign or malicious.
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5.3 Environment Setup - Model Training Setup

To train our 5GGuardian transformer model, we exclusively use normal data in batches

of 16 sequences. We perform all experiments in Python (v3.8) using ML libraries such

as Tensorflow (v2.12.0) and Transformer (v4.27.4). To ensure computational efficiency,

we perform all studies on a separate VM equipped with an NVIDIA GPU and 28GB of

RAM. To fine-tune our model, we run numerous tests with varying numbers of transformer

encoder blocks (consisting of a multi-head attention layer followed by a feedforward layer),

hidden state sizes, and attention heads. For regularization, we only apply dropout on the

first dense layer with a rate of 0.1. To optimize our model, we employ the Adam optimizer

with a 10−12 learning rate and early stopping to prevent overfitting. Although the model

has a maximum training duration of 200 epochs, all experiments converge before reaching

this limit.

5.4 Data Evaluation & Analysis

In this section, we analyze the collected data to extract 5G-Stream features. In addition,

we evaluate the impact of the HTTP/2 SMA on the performance of the 5GC.

5.4.1 Emulation of Normal & Malicious 5G Network Behavior

Due to the absence of publicly available datasets for anomaly detection in the 5GC, we

employ our 5G testbed to emulate both normal network behavior represented by random

UE activities in addition to HTTP/2 SMA. To emulate normal UEs activities in our testbed,

we leverage different 5G procedures that are implemented in UERANSIM. The same pro-

cedures are used to emulate HTTP/2 SMA variations. We provide a detailed explanation of

each procedure below.

• Registration procedure TS.123.502 (2025) (Register): UE registers to the network to gain
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authorization for accessing 5G services such as enabling mobility tracking and becoming

reachable.

• Deregistration procedure TS.123.502 (2025) (Deregister): UE initiates this procedure to

unregister from the 5G network.

• PDU Session Establishment procedure TS.123.502 (2025): UE initiates a PDU session

establishment procedure.

• PDU Session Resource Release procedure TS.38.413 (2024) (RANRelease): RAN re-

leases the PDU session resources that were previously allocated to a UE previously.

• PDU Session Release procedure TS.123.502 (2025) (UEReleasePDUSession): UE re-

quests to release one of its PDU sessions.

• UE Triggered Service Request procedure TS.123.502 (2025) (Uplink): UE sends uplink

signaling messages when it is in an IDLE state.

• Network Triggered Service Request procedure TS.123.502 (2025) (Downlink): The net-

work signals to a UE using this procedure.

By emulating these procedures, we generate a comprehensive dataset that encompasses

both normal network behavior and the specific behaviors associated with HTTP/2 SMA.

A. Normal network behavior - Benign dataset generation

To emulate normal network behavior, we consider 50 UEs which arrival to the network

is modeled using a Poisson process Raaijmakers, Mandelli, and Doll (2021) and engage in

one or multiple 5G procedures randomly selected from those provided by the UERANSIM

(Table 6.1). It is important to note that 5G procedures exhibit logical dependencies and

precedence constraints. Therefore, a subsequent procedure (p + 1) for a UE is randomly

selected from a list that includes all possible procedures that can follow the preceding

procedure (p). The list of subsequent procedures for each 5G procedure available in UER-

ANSIM is presented in Table 6.1. For example, a UE cannot initiate the deregistration
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procedure if it has not been previously registered. Additionally, each 5G procedure triggers

communications between NFs, which can vary depending on the UE’s state (i.e., CON-

NECTED, IDLE, etc.) and other conditions such as network, RAN resource TS.123.502

(2025). Consequently, the API calls and/or the corresponding information elements used

may differ. For instance, if the Downlink procedure starts while the UE is in the CON-

NECTED state, the API requests shown in Figure 5.1 will not trigger the paging procedure

(steps 4b and 6).

In our emulation, each UE starts by registering to the network (register procedure), then

based on the possible subsequent procedures listed in Table 6.1, the following procedure is

randomly chosen from the available options, which include UEReleasePDUSession, RAN-

Release, and Deregister procedures. After the registration, let us assume, for example,

RANRelease procedure was selected by the UE. Following its execution, either Uplink or

Downlink procedures can be initiated. It is essential to note that these procedures are trig-

gered for the same UE at different times to replicate 5G communications and can switch

the UE between different states. For example, (1) UE registers with the network; after a

certain period of time, (2) RAN releases the PDU resources allocated to the UE, switching

its state to IDLE; (3) Subsequently, a Downlink procedure is triggered from the network to

signal to the UE which is in IDLE state. This Downlink procedure switches the UE state

from IDLE to CONNECTED.

B. Malicious network behavior - Attack dataset generation

To execute our HTTP/2 SMA from the SMF to the AMF, we specifically target proce-

dures that trigger the Namf Communication N1N2MessageTransfer API, namely

Uplink, Downlink, and UEReleasePDUSession, given that this API is the most used by the

SMF. Out of 50 legitimate UEs, we assume that the attacker accessed the information of 15
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UEs out of them, through the comprised SMF1. For simplicity, we will refer to these UEs

as compromised UEs. Through the malicious SMF, the attacker initiates requests of the

aforementioned procedures on behalf of each of the compromised UEs towards the AMF

by establishing multiple TCP connections. Each of these established TCP connections is

configured with SETTINGS MAX CONCURRENT STREAMS=250, which represents the

default value used in our 5G testbed.

We launch the attack requests while other legitimate requests are concurrently ongoing

in the 5G network, as discussed in Section 6.2.2. We emulate five distinct forms (Sec-

tion 5.1) of the HTTP/2 SMA. For Random-SMA emulation, we randomly select UE from

the compromised UEs. The SMF randomly triggers one or multiple procedures using the

selected UEs while adhering to their precedence constraints (Table 6.1). For example, us-

ing UE1 information, SMF initiates an Uplink procedure, starts a UEReleasePDUSession

procedure for UE3, and after a certain period, UE1 triggers UEReleasePDUSession, which

switches its state to IDLE. Subsequently, SMF uses UE2 information to signal to UE1,

which is in the IDLE which launches a Downlink procedure for UE1. Similarly, we em-

ploy the compromised UEs to emulate the remaining variants of the HTTP/2 SMA.

5.4.2 Performance Metrics

We consider the following performance metrics to evaluate the impact of the different

HTTP/2 SMA variants on the 5GC.

A. N1N2MessageTransfer Time

We focus on the N1N2MessageTransfer operation of the Namf Communication ser-

vice, as it is included in all the targeted procedures (Table 6.1), which allows us to compare

this API in different emulations. We calculate the N1N2MessageTransfer API time, which

1As the SMF is responsible for session management and UE IP address allocation and management

TS.29.502 (2025), it has access to UEs information such as the SUPI.
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represents the total time of the N1N2MessageTransfer request originating from the SMF

towards the AMF and its response from the AMF towards the SMF.

B. Procedure Completion Time (PCT)

PCT is defined as the time taken for a procedure to be completed Goshi, Jarschel, Pries,

He, and Kellerer (2021). To measure the PCT, we utilize the 5g-tracer-visualizer telekom

(2021) tool which calculates the PCT of any API, focusing on AMF. For example, the

PCT of the Uplink procedure represents the time elapsed from the moment SMF sends

the request to AMF until AMF acknowledges the completion of the procedure using the

corresponding response (i.e., success or failure of the response).

C. Central Processing Unit (CPU) Utilization

We analyze the CPU profile of the AMF during both normal behavior and each HTTP/2

SMA variation emulation. As the AMF plays a central NF role in the 5GC network, en-

suring availability, and it also serves as the target for HTTP/2 SMA. To compute the CPU

usage of each NF in our 5G testbed, we deploy a shell script that collects data every two

seconds.

5.4.3 HTTP/2 SMA Impact on 5G SBA Performance

Using the aforementioned performance metrics, we evaluate the impact of the HTTP/2

SMA variants on our 5G testbed in the following.

A. N1N2MessageTransfer Time

Using 5g-trace-visualizer telekom (2021), we calculate the average (mean), minimum

(min), and maximum (max) times of N1N2MessageTransfer API for both benign and

HTTP/2 SMA variations. As shown in Table 5.2, during the benign emulation, we observe
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the lowest request/response time, while the mean N1N2MessageTransfer time of the rest of

the attack scenario also exhibits high compared to benign emulation. However, when con-

sidering the different attack scenarios, it becomes apparent that the Uniform-SMA exhibits

slower performance. This is indicated by the mean N1N2MessageTransfer time which is

four times higher than the benign emulations, resulting in AMF becoming overloaded due

to the increased number of requests originating from the SMF.

Table 5.2: N1N2MessageTransfer Time

/namf-comm/v1/ue-contexts/n1-n2-messages mean(ms) min(ms) max(ms)

Benign Emulation 1.664 1.664 1.664

Random-SMA 2.597 0.921 9.029e+03

Uniform-SMA 8.193 1.522 1.677e+02

Down-SMA 3.734 1.432 5.160e+03

Up-SMA 2.675 1.975 3.930e+11

Release-SMA 2.19 1.522 5.16e+3

B. Procedure Completion Time

We conduct a comprehensive analysis by comparing the PCT in milliseconds (ms) of

Uplink, Downlink, and UEReleasePDUSession procedures across different emulations, as

these procedures are used in both benign and attack emulations. Looking to Figure 5.3,

we can notice that doing an attack using Uplink (Figure 5.3b) or UEReleasePDUSession

procedure (Figure 5.4) is more computationally expensive on AMF. When applying the

Downlink procedure (Figure 5.3a), Uniform-SMA achieves greater PCT than Down-SMA,

indicating that the Downlink procedure is not computationally expensive on its own. For

example, Figure 5.3b illustrates the findings of the Uplink procedure where it appears in

four distinct scenarios: benign, Random-SMA, Uniform-SMA, and Up-SMA. Figure 5.3b

indicates that the Uplink procedure takes more time during the Up-SMA compared to other

scenarios. This prolonged execution duration implies increased involvement of the AMF

during this procedure.
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Figure 5.3: Procedure completion time of downlink and uplink procedures
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Figure 5.4: PCT UEReleasePDUSession

As discussed in Section 5.1, AMF’s participation in each procedure impacts the overall

performance of the 5GC. Notably, the Uplink procedure involves the AMF three API calls,

contributing to its computationally expensive nature. While it is worth noting that per-

forming Up-SMA solely using the Uplink procedure can lead to DoS due to the extended

processing time and resource-intensive nature of the procedure. Furthermore, the release

procedure involves AMF five times, yet it has lower PCT than the Uplink procedure, con-

tributing to the Uplink procedure’s computationally expensive nature. This highlights the

importance of carefully managing the computational load and resource allocation within

the 5GC to ensure optimal system performance and mitigate the risk of DoS attacks.
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C. CPU Utilization

We conduct a comparison for HTTP/2 SMA variations and monitor the AMF CPU

utilization of each.

During the Down-SMA (Figure 5.5a), we observe an increase in the CPU consumption

at the AMF once the attack starts at 576 seconds. It is worth noting that the increase in

CPU utilization above 100% is not necessarily indicative of malicious activity, such as the

HTTP/2 SMA. Such an increase can also be observed during normal network conditions

but following a peak in network traffic (e.g., scheduled events during particular periods)

which make the HTTP/2 SMA detection more challenging.

In the case of the Up-SMA emulation, the AMF CPU load remains consistently between

80% and 160% (Figure 5.5b). This persistent high CPU load suggests that the AMF is

overwhelmed and struggling to keep up with the demands of the workload. It is evident

that the Up-SMA emulation results in a DoS attack, as shown in Figure 5.5b, where the

AMF server stops functioning after 2745 seconds. The reason behind the increased AMF

CPU load in the Up-SMA emulation can be attributed to examining the PCT and the level of

AMF involvement. The PCT time (1600 (ms)) indicates that the Uplink procedures place a

heavy computational burden on the AMF (Figure 5.5b), leading to a higher CPU load.

During the Release-SMA (Figure 5.6), we observe an increase in AMF CPU utilization,

indicating the reception of unexpected workloads. This surge in CPU utilization can be

attributed to the fact that when the SMF requests the UEReleasePDUsession procedure in

our 5G testbed, it automatically triggers the establishment of the PDU session. As a result,

the AMF is tasked with handling a chain of requests each time, leading to increased CPU

load and potential performance issues.

Comparing AMF CPU utilization during Random-SMA (Figure 5.7a) and Uniform-

SMA (Figure 5.7b), we notice how AMF CPU utilization during Uniform-SMA (Figure 5.7a)

is not stable and keeps increasing and decreasing randomly, whereas, during Random-SMA
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Figure 5.5: AMF CPU consumption during Down-SMA and Up-SMA
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(a) AMF CPU consumption during Down-SMA
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(b) AMF CPU consumption during Up-SMA

emulation, the AMF CPU show recurrent increase all the time, indicating that Random-

SMA is similar to the normal behavior. While Uniform-SMA causes a DoS on the AMF.

We showed through different experiments that the HTTP/2 SMA variations could in-

crease CPU consumption for 5GC or cause DoS on the AMF itself. This analysis highlights

the critical role of efficiently managing AMF resources and workload demands to ensure

the robustness and reliability of the 5GC system.
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Figure 5.6: AMF CPU consumption during Release-SMA

5.4.4 Impact of HTTP/2 SMA on 5G Core Performance

The analysis conducted using the N1N2MessageTransfer time, PCT and CPU, regard-

ing the impact of HTTP/2 SMA on the 5G network performance, reveals the following

critical findings. In emulations such as Up-SMA, Release-SMA, Down-SMA, and Random-

SMA, the average time for n1n2messageTransfer API is notably high (Table 5.2). This

observation indicates that HTTP/2 SMA scenarios introduce delays and inefficiencies on

5G network. Furthermore, the high CPU load on the AMF aligns with the findings derived

from examining the PCT time in the Up-SMA emulation (Figure 5.3b) and assessing the

AMF request involvement. In particular, Up-SMA (Figure 5.5b) and Uniform-SMA (Fig-

ure 5.7b) increase the CPU utilization of the AMF, potentially causing a DoS on the AMF

itself.

It is worth noting that each attack scenario has a distinct impact on the performance of

the 5G network. Some attacks exploit the resources of other NFs, while others specifically

target and overload the AMF, leading to a DoS situation. These findings emphasize the im-

portance of effective anomaly detection methods and robust security measures to safeguard

the performance and reliability of the 5G network in the face of HTTP/2 SMA variations.
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Figure 5.7: AMF CPU consumption during Random-SMA and Uniform-SMA
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(a) AMF CPU consumption during Random-SMA
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(b) AMF CPU consumption during Uniform-SMA

5.5 Data Collection & Pre-Processing

In this section, we delve into the data pre-processing and feature extraction that we

perform on the data collected from our 5G testbed, as depicted in Figure 5.2.
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5.5.1 5G Data Pre-Processing

We leverage our 5G testbed, enabling us to collect normal network traffic and HTTP/2

SMA variations, conducted over TCP through application layer protocols. The dataset

contains raw packet captures in PCAP format The Wireshark Team. (2021), as shown in

Figure 5.2. The benign data is captured over two periods, while the HTTP/2 SMA varia-

tions are performed at different times. To filter the dataset, we specifically focus on packets

related to the HTTP/2 protocol and filter them based on the source/destination IP address,

specifically targeting the AMF IP address as it represents the attack target. We process

the raw packets using TShark The Wireshark Team. tshark (2021). The extracted infor-

mation includes details such as source/destination NF IP addresses, port numbers, frame

length, HTTP/2 protocol, frame time epoch, HTTP/2 type, HTTP/2 stream ID, HTTP/2

header method, HTTP/2 header path, HTTP/2 header status, and more. This information is

then stored in a CSV file. The metadata is supplied into our 5G-Stream feature extraction

module, which extracts 5G-Stream features.

5.5.2 Feature Extraction

A. 5G-Stream Features

We extract 5G-Stream features (Table 5.1) from the aforementioned metadata using Al-

gorithm 1 as explained in Section V.B. The feature extraction process takes approximately

2.3ms per stream, which allow fine-grained modeling of the NFs’ behavior, thus enabling

better anomaly detection performance while satisfying the fine-grained criterion.
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B. Application-layer features

To compare our 5GGuardian solution with our previous work 5GShieldWehbe et al.

(2023), we extract a total of 20 application-layer features from the Performance Measure-

ments (PM) counters collected at the AMF known as 3GPP-AMF and from the HTTP/2-

AMF features, listed in Table 5.3. The extracted features are normalized and depict com-

munications between AMF and all the NFs within the network and are not limited to the

SMF alone.

Table 5.3: 3GPP and HTTP/2 application-layer features collected at the AMF

Type Features

3GPP-AMF

numberofAttemptedNetworkInitiatedServiceRequest

numberofSuccessfulNetworkInitiatedServiceRequest

numberofAttemptedUEInitiatedServiceRequest

numberofSuccessfulUEInitiatedServiceRequest

totalNumberofAttemptedServiceRequests

totalNumberofSuccessfulServiceRequests

HTTP/2-AMF

receivedRequestToAMF, sentRequestFromAMF

receivedRequestToAMFperNRF, sentResponseFromAMFperNRF

receivedRequestToAMFperAUSF

receivedRequestToAMFperNSSF, sentResponseFromAMFperNSSF

receivedRequestToAMFperSMF, sentResponseFromAMFperSMF

sentErrorResponseFromAMF, receivedErrorResponseToAMF

totalSuccessfulRequest, totalUnsuccessfulRequest

receivedRequestToAMFDiscarded

Finally, we obtain the features dataset comprising both benign and malicious records

associated with the emulated HTTP/2 attacks. This dataset consists of 10 5G-Stream fea-

tures (Table 5.1) and 20 application-layer features (Table 5.3). To evaluate the performance

of our anomaly detection model, we label our data as benign and attack data based on our

knowledge of the compromised UEs used for the attack emulations. We consider the attack

as the positive class in our evaluation. Note that we adopt an unsupervised learning tech-

nique in which the model is trained on data assumed to be benign in majority. However,

the labels are only used to evaluate the model performance.
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5.5.3 Dataset for Anomaly Detection

To train and evaluate our 5GGuardian anomaly detection solution, we divide the 5G-

Stream features dataset (Table 5.4) into two distinct categories: (1) Training and Validation

Dataset: consists of benign data specifically used to train and validate the unsupervised

model. It serves as the foundation for the model to learn normal behavior patterns and

establish baselines; (2) Test Dataset: comprises both benign and malicious datasets, which

are utilized to evaluate the performance of the 5GGuardian detection system.

Importantly, these datasets are mutually exclusive, thus, ensuring that there are no over-

lapping or redundant records between them. Furthermore, we employ a similar approach

to split the application-layer features dataset. This dataset is used to train and test our pre-

vious 5Gshield anomaly detection solution. For these datasets, we set the window size as

100, and each segment is compressed and reconstructed by 5GGuardian.

Table 5.4: Train and test dataset

Dataset Attack Type Benign Records Attack Records

5G-Stream Application-layer 5G-Stream Application-layer

Training 100 000 50 000 - -

Testing

Random-SMA 15 000 5 000 8 000 2 000

Uniform-SMA 15 000 5 000 8 000 2 000

Down-SMA 15 000 5 000 8 000 2 000

Up-SMA 15 000 5 000 8 000 2 000

Release-SMA 15 000 5 000 8 000 2 000

5.6 Experiments and Results

We evaluate the performance of the 5GGuardian solution, considering various attack

scenarios and employing different evaluation metrics. Our experiments focus on multiple

aspects, including selecting the 5GGuardian architecture, comparing its performance in the

presence of 5G-Stream and application-layer features, and assessing the detection perfor-

mance when dealing with contaminated data. Throughout our evaluation, we utilize the
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training and test datasets depicted in Table 5.4 for model training and testing, respectively.

We evaluate the performance of our model using the F1-score which serves as an effective

evaluation metric to assess the model’s precision and recall capabilities.

5.6.1 Time Series Transformer Architecture Selection

To determine the optimal architecture for the time series transformer that effectively

recognizes the HTTP/2 SMA variations, we train and validate the performance of multiple

time series transformer architectures and closely examine their performance. To accom-

plish this, we allocate 20% of the training dataset as a validation dataset, and we train the

model using the remaining portion of the training dataset (Table 5.4). We conduct multi-

ple tests on various time series transformer architectures, and after careful evaluation, we

select the architecture with the best performance and convergence and train it using a par-

ticular combination of hyperparameters (outlined in Table 5.5) for a total of 200 epochs.

Our evaluation includes a one-layer encoder with 12 attention heads and a hidden state size

of 12 to capture complex patterns and dependencies in the data, with a decoder that mirrors

this structure. We choose the GeLU activation function for its performance benefits. The

batch size is set to 16 for optimal gradient estimates, and we employ the BERT model type

for its robustness in sequence modeling tasks. To prevent overfitting, we use a dropout

rate of 0.1. Finally, the Adam optimizer with a learning rate of 10−12 is chosen for its

adaptive capabilities, ensuring stable and efficient convergence. This approach allows us to

comprehensively evaluate the effectiveness of each architecture in detecting HTTP/2 SMA

variations.

We perform a series of tests by varying the number of transformer encoder blocks,

hidden state sizes, and attention heads. To prevent overfitting, we implement dropout ex-

clusively on the first dense layer with a rate of 0.1. We utilize an Adam optimizer with a

10−12 learning rate, early stopping, and train our model using just normal data in batches
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Table 5.5: Time series transformer hyperparameters

Hyperparameter Value

Transformer Encoder Blocks 1

Transformer Decoder Blocks 1

Hidden Activation Function GeLU

Hidden State Size 12

Attention Head 12

Dropout 0.1

Adam 10−12

Batch 16

Model Type Bert

of 16 sequences. During the training process, we observe the average reconstruction loss

across different epochs for the model on benign, unlabelled data. As shown in Figure 5.8,

the training loss and the validation loss start to converge after approximately 90 epochs, in-

dicating a reasonable convergence of the time series transformer model within 200 epochs.

Furthermore, by learning the NFs behavior, our training model meets the adaptive crite-

rion, demonstrating the efficiency and effectiveness of our approach, as the model training

completes within a time of 4.7 seconds for the 200 epochs.

 

0

0.03

0.06

0.09

0.12

0.15

0.18

0.21

0.24

1 8

1
5

2
2

2
9

3
6

4
3

5
0

5
7

6
4

7
1

7
8

8
5

9
2

9
9

1
0

6

1
1

3

1
2

0

1
2

7

1
3

4

1
4

1

1
4

8

1
5

5

1
6

2

1
6

9

1
7

6

1
8

3

1
9

0

1
9

7

Lo
ss

epochs

Training_loss validation_loss

Figure 5.8: Training and validation loss for time series transformer using 5G-Stream fea-

tures

93



5.6.2 5GGuardian Performance & Threshold Selection

To assess the detection performance of the time series transformer, we select a threshold

α = 0.0235 which represents the mean loss of the trained normal data (Section 5.2.3) and

which resulted in good detection performance on the validation set.

Using the selected threshold α = 0.0235 (Section 5.2.3), we evaluate the model’s per-

formance using a test dataset for each attack scenario (Table 5.4). The 5GGuardian de-

tection solution demonstrates high efficacy in detecting various HTTP/2 SMA, including

Random-SMA, Uniform-SMA, Down-SMA, Up-SMA, and Release-SMA. As a result, the

5G-Stream-based anomaly detection model achieves exceptional detection performance,

with an average F1-score of 0.98 across HTTP/2 SMA variations (Figure 5.9), underscor-

ing its robustness.

5.6.3 5GGuardian App-Layer Vs. 5GGuardian 5G-Stream

We compare the performance of 5GGuardian against an application-layer-based anomaly

detection solution. For that, we develop an application-layer-based time series transformer

using the same data employed for 5GGuardian (Section 5.5.3) and extract application-layer

features (depicted in Table 5.3 and similar to those used in 5GShield Wehbe et al. (2023))

through data pre-processing. The training dataset consists of 50000 benign records, while

the test dataset is 8000 benign records with 2000 malicious records (Table 5.4). Similar

to 5GGuardian, we evaluate multiple model architectures and select the one that depicts

the best performance. The selected application-layer-based time series transformer archi-

tecture aligns with the hyperparameter utilized by 5GGuardian (Table 5.5). As shown in

Figure 5.9, 5GGuardian demonstrates superior detection performance in the presence of

5G-Stream features. In particular, 5GGuardian 5G-Stream achieves the highest F1-score

of 0.99 for Random-SMA, Down-SMA, and Release-SMA outperforming the application-

layer-based features model (5GGuardian App-layer) with an average F1-score of 0.91. This
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highlights the effectiveness of 5GGuardian in detecting variations of HTTP/2 SMA when

using 5G-Stream features.
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Figure 5.9: F1-score 5GGuardian vs. 5GShield

5.6.4 5GGuardian & 5GShield Comparison

By comparing 5GGuardian and our previous 5GShield model Wehbe et al. (2023),

which is based on Autoencoder using application-layer features, we observe distinct de-

tection performances for different variations of HTTP/2 SMA. As shown in Figure 5.9,

5GShield is robust against Down-SMA and Release-SMA, achieving an F1-score of over

0.95. However, this performance degrades for Up-SMA, with an F1-score of 0.81, pri-

marily due to a higher number of false alarms. Notably, 5GShield underperforms for

Random-SMA and Uniform-SMA, with an F1-score below 0.8. Using the 5G-Stream fea-

tures dataset, we train and test the 5GShield solution, as shown in Figure 5.9. The inclusion

of 5G-Stream features enhances the F1-score for HTTP/2 SMA variations, although it still

under-performs 5GGuardian 5G-Stream.
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With an average F1-score of 0.98, 5GGuardian demonstrates high precision and recall,

effectively identifying HTTP/2 SMA variations with minimal false negatives. While an

F1-score above 0.95 is generally acceptable for security applications, periodic threshold

tuning, adaptive learning, and real-time monitoring are essential to optimize the trade-

off between false positives and false negatives. Additionally, low processing overhead

(2.3ms per stream) reinforces 5GGuardian’s practicality for real-time 5G security, making

its detection rates highly acceptable in its intended application.

5.6.5 Training on Contaminated Data

In contrast to our previous test, where we trained our model exclusively on benign data,

we now evaluate the performance of our 5GGuardian when trained on partially contam-

inated data (i.e., a mix of unlabeled benign and malicious data). In this experiment, we

mix unlabeled benign data with varying percentages of malicious data (0.1%, 0.5%, 1%,

1.5%, and 2%) to compare and assess the effectiveness of 5GGuardian. We train the time

series transformer using the same hyperparameters (Table 5.5) and utilize the test datasets

to evaluate the model.

Figure 5.10 illustrates a slight degradation in the F1-score of the 5GGuardian model

as the contamination percentage in the training data increases. Nonetheless, contamination

exceeds 1%; the F1-score remains consistently above 0.9, which shows its robustness. In

contrast, the F1-score of the 5GShield model, as observed in Wehbe et al. (2023), experi-

ences a degradation with the increase of the contamination percentage in the training data.

Once the contamination exceeds 1%, the F1-score falls below 0.85 (Figure 5.10). Notably,

5GGuardian outperforms 5GShield Wehbe et al. (2023) in the detection of HTTP/2 SMA

variations, particularly in scenarios with higher contaminated data.
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5.7 5GGuardian Deployment

5GGuardian leverages stream data collected from NFs to secure the latter against HTTP/2

attacks. To ensure seamless integration of 5GGuardian within the 5G network, we envision

its deployment as part of the NWDAF TS.23.288 (2024). NWDAF is a 5G NF, devised by

3GPP to collect data from 5G NFs to train and provision ML models, provide analytics and

generate insights to enhance user experience and network functionality. Thus, 5GGuardian

can benefit from the data collected by NWDAF and use it for anomaly detection, thus pre-

venting any additional overhead that can result from extra monitoring and data collection

that might be devised especially for its operation. When trained and provisioned as part of

NWDAF, 5GGuardian can be easily monitored, maintained, retrained, and tested as part of

NWDAF maintenance and update procedures. It can also benefit from NWDAF’s support

of accuracy information and accuracy degradation of ML models to decide on appropriate

maintenance actions (e.g., 5GGuardian re-training) TS.23.288 (2024).
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5.8 Discussion

While 5GGuardian demonstrates strong detection capabilities, it has certain limitations.

Security-wise, it relies on training data quality, and its effectiveness may degrade if adver-

saries manipulate or poison training datasets. Attackers could also attempt evasion tech-

niques, such as crafting HTTP/2 attack traffic to mimic benign behavior, potentially re-

ducing detection accuracy. Performance-wise, the framework achieves real-time detection

with a lightweight time series transformer. Additionally, analyzing 5G-Stream features at

scale may incur memory overhead as data volume grows with network expansion. Oper-

ationally, integrating 5GGuardian into live 5G networks requires close coordination with

NWDAF, demanding engineering efforts for seamless deployment. Model retraining needs

ongoing maintenance, as new 5G protocols, configurations, and attack variations emerge.

Furthermore, while the model is robust against contaminated data, organizations must en-

sure continuous validation to prevent false positives impacting legitimate traffic. Cost-wise,

deploying 5GGuardian at scale requires investment in hardware acceleration (e.g., GPUs)

for high-speed inference and storage solutions for historical data retention.
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Chapter 6

HTTP/2 DoS Attacks in 5G Networks:

Impact Analysis and Anomaly Detection

In this chapter, we address the lack of practical studies and analyses on the impact of

HTTP/2 attacks on 5G networks, especially given the absence of a 5G-compliant dataset

for anomaly detection. Utilizing version 2 of the 5G testbed (Subsection 2.3), we emulate

six different HTTP/2 attacks on various NFs within the 5G SBA. We analyze their impact

on the network and demonstrate that many of them cause cascading effects on other NFs

involved in related jeopardized 5G procedures. Our emulations include both malicious and

normal network behavior, resulting in the first 5G anomaly detection dataset that we are

aware of. Using CICFlowmeter, we extract flow-based features known for their anomaly

detection capabilities and train multiple machine learning models. These models can serve

as benchmarks for detecting HTTP/2 attacks in 5G networks.
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6.1 Threat Model

Although secure by design, the 5G SBA can still experience some attacks resulting

from virtualization exploits, misconfigurations, and its HTTP/2 signaling protocol vulner-

abilities. In the following, we shed light on some HTTP/2 attacks in 5G networks while

detailing the vulnerabilities they exploit and their related threat models.

6.1.1 Assumptions

HTTP/2 attacks in 5G networks can be performed through misconfigured or compro-

mised NFs. We consider the following assumptions for the HTTP/2 attacks, assuming that

attackers compromise the NFc and use it to attack the NFp or vice versa.

(1) Attacker compromises an NFc: Many standardization documents discuss threats

brought by NFV and virtualization technologies (e.g., container, virtual machines,

etc.) to telecommunication networks and 5G ETSI (2020). The adoption of hyper-

scale cloud by mobile operators extends the attack surface of their network and makes

their NFs vulnerable ETSI (2020). An attacker can compromise 5G NFs deployed on

docker containers in the cloud, by exploiting docker vulnerabilities to perform con-

tainer escape (i.e., CVE-2016-5195 (NVD) (2019), CVE-2019-5736 (NVD) (2016),

and CVE-2023-20864 National Vulnerability Database (2023)) Madi et al. (2021).

Breach of isolation between network slices sharing the NF can also be exploited

by attackers AdaptiveMobile (2021); Sattar, Vasoukolaei, Crysdale, and Matrawy

(2021). In such a scenario, we assume that the malicious actor belonging to a roam-

ing partner launches the HTTP/2 attack towards the home network AdaptiveMobile

(2021).

(2) NFc can successfully authenticate with the NFp: We assume that if TLS is used, the

malicious NFc can still authenticate with the NFp as the attacker has access to its
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public/private key pairs.

(3) NFc is authorized to access NFp services: We assume that the malicious NFc has al-

ready acquired OAuth2.0 access tokens to the NFp services. These tokens are cached

and can be reused by the attacker TS.33.501 (2025a); TSG-SA3 (2022). Alterna-

tively, the malicious NFc can request new access tokens from the NRF given that it

can successfully authenticate with it (i.e., assumption (2)). An attacker can exploit

vulnerabilities in network slicing and service authorization, as noted in AdaptiveMo-

bile (2021), to access NFp services.

(4) Attacker has access to UE information: As some network services require exchang-

ing UE information (e.g., SUPI) TS.123.502 (2025), we assume that the attacker

can gain access to such information by monitoring NFc communications or even by

requesting such information from other NFs.

These attacks are not new or novel. Although exploited in the web, exploiting these

attacks in a 5G environment requires attacking a 5G-specific API, making these attacks

more challenging to perform than on the web, where APIs are not necessarily used. Fur-

thermore, their impact on a 5G network can be more disruptive than in a web environment,

given the dependencies and interactions existing between the different 5G NFs, as we show

in Section 6.3.

6.1.2 Attack 1: HTTP/2 Stream Multiplexing Attack (SMA)

To perform an HTTP/2 stream multiplexing attack, attackers send multiple requests, as

much as the NFp allows in the HTTP/2 SETTINGS MAX CONCURRENT STREAMS,

into a single HTTP/2 connection. By default, the NFc can send up to 2, 147, 483, 647 (de-

fault value of SETTINGS MAX CONCURRENT STREAMS) streams per HTTP/2 con-

nection IETF (2015). Attackers can trigger HTTP/2 SMA in two ways within 5G SBA,

either by employing the Request/Response or the Subscribe/Notify.
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Figure 6.1: HTTP/2 attacks in 5G SBA

A. Attack 1.1: SMA Request/Response (A.1.1.SMA-Req/Resp)

In an HTTP/2 SMA using Request/Response (Figure 6.1a), attackers compromise NFc

and send multiple requests over a single HTTP/2 connection towards NFp. Attackers repeat

this behavior over multiple HTTP/2 connections which results in a DoS on the NFp.

102



B. Attack 1.2: SMA Subscribe/Notify (A.1.2.SMA-Sub/Not)

According to 3GPP 3GPP TS.29.500 (2024), the Subscribe/Notify service operations

in HTTP/2 involve two HTTP/2 connections, each handling one direction of traffic. NFc

acts as an HTTP/2 client when subscribing to notifications, while NFp functions as an

HTTP/2 server. Conversely, the roles are reversed when NFp sends notifications to NFc.

As depicted in Figure 6.1b, a compromised NFc establishes an HTTP/2 connection with

NFp and sends a subscription request containing a notify URI to signal to the NFp to notify

it when the occurrence of the API-related event (e.g., N1N2TransferFailureNotification

TS.129.518 (2025) is triggered). Attackers exploit the event conditions (i.e., UE state is

DISCONNECTED TS.129.518 (2025)) to initiate the notification. Attackers repeat the

request with the notification URI to cause an SMA and overwhelm both NFp and NFc.

The NFc will be receiving an excessive number of notifications causing a DoS, while the

NFp struggles with the high number of requests and from managing and forwarding the

notifications to the NFc, eventually leading to resource exhaustion and DoS on the NFp.

6.1.3 Attack 2: HTTP/2 Rapid Reset Attack (A.2.Rapid-Reset)

A.2.Rapid-Reset, identified as CVE-2023-44487 National Vulnerability Database (NVD)

(2023), exploits the stream multiplexing feature of HTTP/2. It employs the RST STREAM

frame to terminate streams that are currently processing requests IETF (2015). In this

case, the number of streams that were reset by the RST STREAM frame do not count to-

wards SETTINGS MAX CONCURRENT STREAMS. The mitigation for this attack consid-

ers counting any request reaching the server, even if it is a RST STREAM frame, as part

of the defined maximum stream limit. It involves limiting the number of simultaneously

executing handler routines (SETTINGS MAX CONCURRENT STREAMS= 200) and pre-

vents server overload by queuing incoming requests until a current request is completed. If

the queue becomes excessively long, the server terminates the connection as a safeguard.
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However, increasing the SETTINGS MAX CONCURRENT STREAMS slightly could signif-

icantly impact network performance.

In this attack (Figure 6.1c), attackers compromise the NFc and establish an HTTP/2

connection with the NFp. In this work, we assume that the reset attack is patched, however,

we assume that the NFp is misconfigured to allow an unusually high number of concurrent

streams (e.g., SETTINGS MAX CONCURRENT STREAMS = 1000 instead of the default

200 set in the golang library). The malicious NFc then rapidly generates requests and

immediately issues RST STREAM frames for each request across multiple HTTP/2 con-

nections, forcing the NFp to terminate the requests. This flood of reset stream requests can

lead to resource exhaustion at the NFp.

6.1.4 Attack 3: HTTP/2 Slow Rate Attacks

Another type of HTTP/2 attack is an HTTP/2 slow rate DoS attack which involves

attackers sending HTTP/2 frames at a deliberately slow rate to exhaust NFp resources

Chatzoglou, Kouliaridis, Kambourakis, Karopoulos, and Gritzalis (2023); Tripathi (2022);

Tripathi and Hubballi (2018). HTTP/2 slow rate attacks require low bandwidth and are

difficult to detect. Attackers exploit the HTTP/2 frame between the NFc and NFp, such

as the exchange of SETTINGS frame, capitalizing on the design of NFp which waits for

certain responses. In this work, we target three variations of HTTP/2 slow rate attacks.

A. Attack 3.1: Slow Rate Setting (A.3.1.SR-Setting)

HTTP/2 slow Rate-Setting is a slow rate attack that is based on un-acknowledging a

SETTINGS frame. In a normal HTTP/2 communication scenario, both endpoints must

exchange SETTINGS frames at the start of a connection and may send them at any other

time during the connection. SETTINGS frame allows each endpoint to acknowledge the

parameters of the connection. When an endpoint receives a SETTINGS frame, it should

104



send an acknowledgment response that tells the sender that the SETTINGS frame was re-

ceived and processed. Thus, the slow Rate-Setting attack mainly takes advantage of the

SETTINGS frame to let the endpoint wait. As depicted in Figure 6.1d, attackers compro-

mise the NFp that has already been authenticated and authorized to access NFc services.

The NFc initiates the first HTTP/2 connection with the compromised NFp, followed by

sending a SETTINGS frame. However, the malicious NFp does not acknowledge the re-

ceived SETTINGS frame. NFc continues to send numerous requests of SETTINGS frame

to NFp. Since the malicious NFp consistently fails to acknowledge the HTTP/2 SETTINGS

frame for all messages received, it can exhaust the available connection pool. This not only

blocks other NFs from communicating with the victim NFc but also keeps the connection

from NFc open for an extended period.

B. Attack 3.1: Slow Rate Connection Preface (A.3.2.SR-Con-Pref)

The connection preface is sent from the NFc to inform the NFp that HTTP/2 will be

used for further communications. In this attack (Figure 6.1e), after establishing an HTTP/2

connection, a compromised NFc sends the connection preface to the NFp, prompting it to

wait for a GET/POST HTTP/2 request. However, the malicious NFc intentionally with-

holds any HTTP/2 requests, forcing the NFp to wait until the NFp drops the connection,

thus wasting its resources and denying its service to other NFs.

C. Attack 3.1: Slow Rate Window Size (A.3.3.SR-Win-Size)

In a standard HTTP/2 connection, both endpoints are required to send an HTTP/2 pay-

load that includes a SETTINGS frame with the SETTINGS INITIAL WINDOW SIZE field,

along with a complete GET request. The SETTINGS INITIAL WINDOW SIZE field spec-

ifies the sender’s capacity to receive data in bytes from its peer. Upon receiving this, the

NFp expects that the NFc can receive data of the indicated size. However, attackers exploit
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this mechanism for a slow rate attack by compromising the NFc (Figure 6.1f). After estab-

lishing the HTTP/2 connection, the malicious NFc sends a SETTINGS frame with the SET-

TINGS INITIAL WINDOW SIZE set to zero, falsely indicating no available window space

for data reception. The NFp, in turn, holds the data until it receives a WINDOW UPDATE

frame that increases the window size. Nonetheless, the malicious NFc intentionally never

sends a WINDOW UPDATE, thus causing the NFp to wait till the connection pool is full,

resulting in dropping the connection. Thus, this attack exhausts the available connection

pool at the NFp and blocks its service for other legitimate UEs.

6.2 Environment Setup

In this section, we present the environment that we use to emulate normal and malicious

network traffic.

6.2.1 Emulation Configuration

Given the lack of publicly accessible datasets for anomaly detection in the 5G SBA, we

employ our emulated 5G testbed (Section 2.3) to emulate normal and malicious network

behaviors. For normal network behavior, we replicate the standard activities of UEs within

our 5G testbed by leveraging different 5G procedures implemented in UERANSIM (Table

6.1). These same procedures are also employed to model HTTP/2 attacks and generate

malicious traffic.

6.2.2 Normal Network Behavior Emulation

To emulate normal network behavior, we consider the arrival of 100 UEs to the net-

work using a Poisson process Navarro-Ortiz et al. (2020); Raaijmakers et al. (2021) over

two hours. The Poisson process is widely recognized as an effective method for modeling
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Table 6.1: Logical dependency between 5G procedures

Triggered procedure Possible subsequent procedures

Registration Uplink, Downlink, UE release PDU session, gNodeB

release PDU session, Deregistration

Uplink Downlink, UE release PDU session, gNodeB release

PDU session, Deregistration

Downlink Uplink, UE release PDU session, gNodeB release

PDU session, Deregistration

UE release PDU session Downlink, Uplink, gNodeB release PDU session,

Deregistration

gNodeB release PDU session Uplink, Downlink, Deregistration

Deregistration Registration

arrival times of events in network traffic due to its ability to capture the randomness of

user behavior and service requests over time. For our implementation, we defined the load

(number of requests) per 10-minute intervals as [1, 2, 3, 5, 6, 7, 8, 9, 7, 5, 3, 0.5], to reflect

the dynamic nature of 5G network traffic. We use 100 UEs in each 10-minute interval,

representing one predefined network load. For each load value, we emulate a number of

5G procedures calculated based on the Poisson process for each of these 100 UEs. This

approach follows the principles outlined in Mehmeti and La Porta (2022), where Poisson

processes are used to model the arrival of UE requests in realistic network scenarios. Each

UE engages in one or more 5G procedures selected from a set provided by UERANSIM

(Table 6.1). To ensure that our emulation of 5G normal network behavior is realistic, we

follow the 3GPP standard definition of the different 5G procedures and their logical de-

pendencies 3GPP 5G Standard (2025); TS.123.502 (2025). We limit these procedures to

those available in UERANSIM and which we can emulate. Table 6.1 defines the possible

subsequent procedure for each triggered procedure by the UE following the 3GPP stan-

dard. Given that 5G procedures have logical dependencies and specific order requirements

defined by the 3GPP standard, in our emulation, we choose a subsequent procedure (p+1)

that follows a procedure p for a UE by randomly selecting it from a predefined list of pro-

cedures that logically follow p. The list of the possible subsequent procedures for each 5G
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Figure 6.2: 5G Testbed with normal and malicious network behaviors

operation in UERANSIM, is outlined in Table 6.1. For instance, a UE cannot proceed to

deregistration if it has not completed its registration. Moreover, each 5G procedure triggers

various communication between NFs. These communications may vary based on the UE

state (e.g., CONNECTED, IDLE, DISCONNECTED) and other factors such as network

conditions and RAN resources TS.123.502 (2025).

In our emulation, each UE starts by first registering to the network and then selects

a subsequent procedure as detailed in Table 6.1. Hence, the following procedure is ran-

domly chosen from the appropriate options, which include Uplink, Downlink, UE release

PDU session, gNodeB release PDU session, and Deregistration procedures. After the reg-

istration, let us assume, for example, that the gNodeB release PDU session procedure was

selected by the UE. Following its execution, either Uplink, Downlink, or Deregistration

procedures can be initiated. Note that these procedures are triggered for the same UE at

different times to replicate 5G communications and can switch the UE between different

states. For example, (1) UE registers to the network; after a certain period of time, (2)

RAN releases the PDU resources allocated to the UE, switching its state to IDLE; (3) Sub-

sequently, a Downlink procedure is triggered from the network to signal to the UE which

is in IDLE state, hence, switching its state to CONNECTED.
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Figure 6.2 highlights the interactions between pairs of NFs observed within our 5G

testbed (i.e., control plane). We extract the total number of messages reflecting these inter-

actions between pairs of NFs during 20 minutes of emulations of different 5G procedures

and present them in Figure 6.4. The latter shows that interactions involving the AMF,

SMF, UDR, and PCF are more frequent, reflecting the intensive activity associated with

Uplink, Downlink, and UDR management procedures during our normal network traffic.

This data is crucial as it represents the peak demands for each interaction, offering insights

into network load during typical operations.

 

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

0 4 8

1
2

1
6

2
0

2
4

2
8

3
2

3
6

4
0

4
4

4
8

5
2

5
6

6
0

6
4

6
8

7
2

7
6

8
0

8
4

8
8

9
2

9
6

1
0

0

1
0

4

1
0

8

1
1

2

1
1

6

1
2

0

C
P

U
 %

Time (min)

AMF AUSF NRF NSSF

PCF SMF UDM UDR

Figure 6.3: Benign network traffic - 5G SBA NFs CPU consumption

Along with observing NFs interactions, we monitor resource utilization during normal

network traffic by tracking CPU consumption across various NFs over two hours, as shown

in Figure 6.3. We observe that although the CPU load of the different NFs remains under

25%, AMF, SMF, and UDR exhibit higher CPU consumption than other NFs which can be

explained by the high number of requests they manage (Figure 6.4).
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6.2.3 Malicious Network Behavior Emulation

In our 5G testbed, we emulate various HTTP/2 attacks to expose potential vulnerabili-

ties within the 5G SBA. Specifically, we target procedures such as Uplink, Downlink, UE

release PDU session, and UDR Management, frequently used in our 5G testbed. We em-

ulate HTTP/2 attacks (Section 6.1) where attackers compromise NFc/NFp, such as a PCF,

UDR, or SMF, as shown in Figure 6.2, in addition to UE information (i.e., SUPI). We as-

sume that attackers exploit 30 legitimate UEs out of 100. Through the compromised NFc,

each attack is launched using the IMSI of the 30 legitimate UEs, where multiple HTTP/2

connections are established toward the NFp. These connections are configured with a de-

fault SETTINGS MAX CONCURRENT STREAMS=200 in our 5G testbed. Thus, in our

attack emulations, the network operates normally for the first 60 minutes, after which the

attack is initiated when the load on the network is designed to be around its peak (load = 8).
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A. Attack 1: HTTP/2 Stream Multiplexing Attack

For instance, Figure 6.1a involves a malicious SMF that randomly triggers various

procedures toward the AMF, adhering to HTTP/2 protocol precedence constraints IETF

(2015); TS.129.518 (2025). For A.1.1.SMA-Req/Resp, we use three different procedures,

that are triggered from the malicious SMF towards the AMF using the same Namf Communi

cation N1N2MessageTransfer API, such as Uplink, downlink, and UE release PDU ses-

sion. Note that this API covers most of the service operations provided by the AMF

and consumed by the SMF TS.129.518 (2025). As attackers, we repeat this attack over

55, 954 HTTP/2 connections, each handling up to 907 requests, resulting in an NFp over-

load and a DoS. The second attack scenario (Figure 6.1b) considers an SMA that in-

volves a malicious SMF exploiting 30 UEs by triggering only the Downlink procedure

using Namf Communication N1N2MessageTransfer API, however, we include a notify

URI for DISCONNECTED UEs. According to 3GPP specifications TS.129.518 (2025),

when the Downlink procedure is initiated while the UE state is DISCONNECTED, the

N1N2TransferFailureNotification API is triggered to notify SMF that the UE is unreach-

able TS.129.518 (2025). Consequently, the AMF sends a notification back to the malicious

SMF. We emulated this attack using 54, 188 HTTP/2 connections, each handling up to 841

requests over 40 minutes before the AMF goes down. This attack effectively exploits the

signaling mechanisms of the network, leading to a DoS on the AMF. The continuous failure

notifications overwhelm the AMF, making it unresponsive and crippling NFs, degrading the

Quality of Service (QoS) for legitimate UEs.

To better illustrate how we perform A.1.2.SMA-Sub/Not, we illustrate in Figure 6.5

the normal Downlink procedure triggered from the DN when the UE is in the DISCON-

NECTED state TS.129.518 (2025), and highlight in red how an attacker can perform the

attack as in our emulation assuming that the SMF was compromised. In a normal scenario,

111



  UE ( R ) AN AMF UPF SMF 

3 a .  Namf _ Communication _ N 1 N 2 MessageTransfer 

6 .  S ervice Request Procedure 

2 b .  Data  N otification A ck 

1 .  D ownlink Data 

2 a .  Data  N otification 

3 b .  Namf _ Communication _ N 1 N 2 MessageTransfer   Response 

3 c .  Failure indication 

4 b .  P aging 

4 b .  P aging 

5 . Namf_Communication_N1N2TransferFailureNotification _ 

8 .  D ownlink Data 

4 a . UP reactivation ( Connected ) 

4 c . NAS Notification 

2 c .  D ownlink Data 

7 .  UE Configuration Update Procedure 

A.1.2.SMA-Sub/Not 

Figure 6.5: A.1.2.SMA-Sub/Not emulation in network triggered service request procedure

TS.129.518 (2025)

the SMF sends a request to the AMF using Namf Communication N1N2Mess ageTrans-

fer API (Figure 6.5 (3a)). The AMF responds to the SMF indicating that the UE is not

reachable, and subsequently sends a Paging Request to the UE/RAN (Figure 6.5 (4b)).

The Paging Request triggers the Uplink procedure to activate the UE. In the dashed red

box, we highlight a scenario where an attacker compromises the SMF and launches a mali-

cious Namf Communication N1N2MessageTransfer (Figure 6.5 (3a)) subscription request

towards the AMF containing a notify URI to signal to the NF producer to notify it when the

occurrence of the API-related event (e.g., Namf Communication N1N2TransferFailureNoti

fication (Figure 6.5 (5)) is triggered). Although the attacker only initiates a single request,

it results in a chain of other messages (Figure 6.5 (3b-8)) related to paging, service request,

PDU session update, and PDU session modification in the 5G network. This depicts the

high overhead that an attacker can introduce to the network with a single malicious request.
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Hence, the attacker can repeat the request with the notification URI to cause an SMA and

overwhelm both AMF and NF SMF. The SMF will be receiving an excessive number of no-

tifications, while the AMF struggles with the high number of requests and from managing

and forwarding the notifications to the SMF, eventually leading to a resource exhaustion

and a DoS on the AMF.

B. Attack 2: HTTP/2 Rapid Reset Attack

In our emulation of A.2.Rapid-Reset, a compromised PCF targets the UDR using a UDR

Management procedure TS.123.502 (2025). We assume that the UDR sets its HTTP/2

connection with SETTINGS MAX CONCURRENT STREAMS= 1000. As depicted in Fig-

ure 6.1c, the PCF sends to the UDR a request using Nudr DataManagement API followed

by a RST STREAM frame to stop the sent request. The malicious PCF establishes around

263, 251 HTTP/2 connection with the UDR over 2 hours, with up to 2306 requests and

RST STREAM frame per connection. This action aims to create a DoS situation, effec-

tively disrupting the network’s operations and impacting its ability to process legitimate

requests.

C. Attack 3: HTTP/2 Slow Rate Attack

We emulate three variations of HTTP/2 slow rate attack from PCF to UDR. As depicted

in Figure 6.1d, to emulate the A.3.1.SR-Setting, the PCF establishes around 3, 947 HTTP/2

connections with the UDR and sends to it on each of them a SETTINGS frame. As the UDR

is malicious, it does not acknowledge the SETTINGS frames sent by the PCF, leading to

a backlog of unacknowledged frames, hence, causing a drop of these connections after a

certain timeout time. We emulate the A.3.2.SR-Con-Pref (Figure 6.1e) by accounting for

a malicious PCF that sends a connection preface to the UDR without following it by any

HTTP/2 GET/POST. This makes the UDR wait endlessly for an HTTP/2 request that never
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arrives. This scenario is repeated over 5, 733 HTTP/2 connections and exhibits similar

behavior to normal network traffic. During A.3.3.SR-Win-Size (Figure 6.1f), the malicious

PCF establishes the first HTTP/2 connection and sends a manipulated HTTP/2 SETTINGS

with SETTINGS INITIAL WINDOW SIZE equal to zero, signaling that the PCF can no

longer receive data. This manipulation forces the UDR to halt all data transmissions until

it receives a WINDOW UPDATE frame, effectively freezing the data flow. The malicious

PCF repeats this attack over 3, 815 HTTP/2 connections severely impacting the 5G network

availability.

6.3 Attacks Impact & Prevention

Using the data collected during the malicious network traffic, we detail the impacts of

observed malicious behaviors on the 5G SBA, as summarized in Table 6.2.

6.3.1 HTTP/2 Attacks Impact

Our emulations of HTTP/2 attacks on 5G SBA present various impacts on NFs resource

utilization that we measure through observing the CPU consumption of the different NFs

in Figure 6.6. Additionally, we measure the total number of messages (i.e., requests and

notifications only) exchanged per each pair of NFs within the 5G SBA during 20 minutes

of the different attacks as shown in Figure 6.7. This metric reflects the volume of control

signaling traffic impacted by the HTTP/2 attacks especially when compared to the benign

traffic captured for the same period during the benign emulation. We analyze in the follow-

ing the impact of the different attacks on 5G networks, suggest prevention and mitigation

measures, and summarize them in Table 6.2.
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Table 6.2: HTTP/2 attacks, impact and protection measures in 5G SBA

Attack

Type

Description Impact on the

network

Protection measures

Attack

1.1-SMA-

Request

/Response

SMF -> AMF: A malicious SMF initiates

multiple 5G requests towards an AMF by ex-

ploiting the stream multiplexing feature over

many HTTP/2 connections.

Overload of attack

NFs (i.e., SMF,

AMF), complete

DoS on the net-

work.

Anomaly detec-

tion systems, limiting

SETTINGS MAX CON

CURRENT STREAMS

on NFp.

A.1.2.SMA-

Sub/Not

SMF -> AMF: A malicious SMF exploits

the stream multiplexing feature by trigger-

ing the Downlink procedure for DISCON-

NECTED UEs towards the AMF with a no-

tification subscription. AMF then informs

the SMF of UE’s unreachability using the

N1N2TransferFailureNotification API.

Overload of attack

NFs (i.e., SMF,

AMF), complete

DoS on the net-

work.

Intelligent ad-

justment of

SETTINGS MAX CON

CURRENT STREAMS

value, anomaly detec-

tion systems.

A.2.Rapid-

Reset

PCF -> UDR: A malicious PCF initiates

the UDR Management procedure towards the

UDR to trigger a registration procedure and

immediately sends a RST STREAM frame.

Overload of attack

NFs (i.e., PCF,

UDR), degrada-

tion of other NFs

QoS.

Limiting the number

of RST STREAM

frames received on

NFp, Anomaly detec-

tion systems.

A.3.1.SR-

Setting

PCF -> UDR: The PCF sends multiple re-

quests to the malicious UDR, starting with a

SETTING frame, but the malicious UDR does

not acknowledge any received messages.

Resource exhaus-

tion at targeted

NF, degradation of

other NFs QoS.

Anomaly detection

systems, intelligent

monitoring systems,

and timer values to

drop or close mali-

cious connections.

A.3.2.SR-

Con-Pref

PCF -> UDR: A malicious PCF sends a con-

nection preface to the UDR but never sends

any HTTP/2 requests, causing the UDR to

wait until its connection pool is full, eventu-

ally dropping the connection.

Similarities to nor-

mal network traf-

fic, a longer pe-

riod of unnoticed

resource depletion

impact.

Anomaly detection

systems.

A.3.3.SR-

Win-Size

PCF -> UDR: A malicious PCF sends

an HTTP/2 SETTINGS frame with SET-

TINGS INITIAL WINDOW SIZE=0 to the

UDR, halting all data transmission. The UDR

waits indefinitely for a WINDOW UPDATE

frame, which the malicious PCF intentionally

never sends.

Resource and

connection pool

exhaustion at

targeted NF,

degradation of

other NFs QoS.

Anomaly detection

systems, intelligent

monitoring systems

and timer values to

drop or close mali-

cious connections.

A. Attack 1: HTTP/2 Stream Multiplexing Attack

Upon the start of A.1.1.SMA-Req/Resp (Figure 6.6a) and A.1.2.SMA-Sub/Not (Figure 6.6b)

at time 60 (i.e., after around an hour of emulations), the CPU usage of the AMF and SMF

increases sharply, while the CPU usage for the rest of the NFs decreases. This is mainly
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(a) A.1.1.SMA-Req/Resp
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(b) A.1.2.SMA-Sub/Not
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(c) A.2.Rapid-Reset
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(d) A.3.1.SR-Setting
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(e) A.3.2.SR-Con-Pref
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Figure 6.6: 5G SBA NFs CPU consumption during malicious network behavior

attributed to the overload at the AMF and SMF, delaying and potentially blocking the

completion of 5G procedures that are stuck at the SMF-AMF interactions. As shown in

Figure 6.6a, at time 104 (i.e., after 44 minutes of the start of the attack), the AMF fails, re-

sulting in a DoS. Further, the regular CPU spikes during A.1.2.SMA-Sub/Not (Figure 6.6b)

highlight intense activity periods that stress the SMF and potentially degrade services of
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other NFs. Notably, we observe the highest number of messages during SMF-AMF in-

teraction due to frequent attack requests from the SMF towards the AMF as illustrated

in Figure 6.7a and Figure 6.7b. Additionally, the number of messages in the AMF-SMF

interactions during A.1.2.SMA-Sub/Not (Figure 6.7b) is higher than during the A.1.1.SMA-

Req/Resp (Figure 6.6a) due to the notifications sent from the AMF to the SMF. In sum-

mary, SMA attacks significantly impact network availability by exhausting its resources,

and causing a DoS on the targeted NF and potentially on the whole 5G network.

B. Attack 2: HTTP/2 Rapid Reset Attack

Although the A.2.Rapid-Reset was emulated while the official patch was deployed in

our network, we notice that the increase in the SETTINGS MAX CONCURRENT STREA

MS (Section 6.1.3) can still disrupt the provided QoS, not only by overloading the attack

target (i.e., UDR) but also the attack source (i.e., PCF). Figure 6.6c shows high CPU con-

sumption at the UDR and PCF that often reaches 80% for an hour. However, after 2 hours

of running the attack, we observe CPU spikes reaching 160% between times 120 and 180,

indicating moments of intense load on the UDR, always accompanied by a high load on

the PCF. This is also reflected by the high number of messages exchanged between PCF

and UDR in Figure 6.7c. However, a lower CPU consumption is observed at the remainder

NFs between times 120 and 180 reflecting a DoS attack on the network and a degradation

of the QoS of those NFs (Figure 6.6c).

C. Attack 3: HTTP/2 Slow Rate Attack

When examining the variations of HTTP/2 slow rate attacks, we notice their distinct

impacts on the NFs within the 5G SBA, starting at attack time 60. Figure 6.6d and Fig-

ure 6.6f reflect a high CPU consumption on the targeted NF, the PCF, with a degradation
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(f) A.3.3.SR-Win-Size

Figure 6.7: Total number of messages between pairs of NFs in 5G SBA during malicious

network behavior
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of the CPU consumption on the other NFs, reflecting a degradation of the network avail-

ability and QoS without observing a total DoS. Although the PCF CPU consumption is

comparable in both, A.3.1.SR-Setting and A.3.3.SR-Win-Size, we notice from Figure 6.7d

and Figure 6.7f that the number of messages exchanged between UDR and PCF is higher in

A.3.3.SR-Win-Size than in A.3.1.SR-Setting. This explains that the high CPU consumption

is not a result of the number of exchanged messages but rather of resources allocated during

the waiting times at the PCF for a SETTINGS acknowledgment in case of A.3.1.SR-Setting

and for a WINDOW UPDATE in case of A.3.3.SR-Win-Size.

A.3.2.SR-Con-Pref does not exhibit a significant impact on the CPU of the different

NFs, as illustrated in Figure 6.6e. In contrast, although the trend is different, the CPU

consumption is comparable to the benign network behavior shown in Figure 6.3. This

indicates that detecting this attack may be more challenging. By observing Figure 6.7d,

Figure 6.7e, and Figure 6.7f, we note that the total number of messages exchanged during

the different HTTP/2 slow rate attacks is lower than that exchanged during normal network

operations (Figure 6.3). This demonstrates that simply counting messages between NFs is

insufficient to detect manipulation in the HTTP/2 flow, particularly in HTTP/2 frames.

6.3.2 Discussion & Protection Measures

The analysis of HTTP/2 attacks on our 5G testbed reveal that HTTP/2 SMA attacks are

the most damaging due to the DoS impact they cause on the targeted NF and on the 5G

network as a whole. More specifically, degradation of the performance of the 5G NFs not

directly involved in the attack is observed and is highly related to the type of the targeted

NFs. For instance, the emulated 5G procedures (Table 6.1) involve many interactions be-

tween the AMF and SMF that cause a bottleneck for the completion of these procedures

which was reflected by a degradation of the CPU consumption of other NFs which were

not receiving as many messages as during the normal network traffic emulations. Similar
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performance degradation was also observed on the NFs not involved in the attack during

the rapid reset and slow rate attacks. However, these attacks exploit the inherent limitations

in timeout and rate-handling mechanisms within the network, pushing the 5G SBA towards

a slow degradation rather than a sudden failure. This subtlety can lead to longer periods of

unnoticed impact, allowing significant damage over time.

It is worth noting that the value assigned to the SETTINGS MAX CONCURRENT ST

REAMS plays an important role in protecting the network against SMA and rapid reset at-

tacks. Here, an intelligent solution for setting the value of this SETTINGS MAX CONCUR

RENT STREAMS is highly important to achieve the trade-off between network security

and network performance. A high value of this setting can maximize the benefits of the

stream multiplexing feature in terms of latency, however, it can increase the SMA impact on

the network. Thus, an intelligent and adaptive SETTINGS MAX CONCURRENT STREA

MS value adjustment solution based on network state can be efficient in protecting the net-

work against SMA attacks. The stealthy nature of slow-rate attacks can make their detec-

tion challenging, requiring intelligent anomaly detection solutions. In contrast, they can be

prevented by intelligent monitoring solutions and timer values to drop or close malicious

connections with long inactivity time at the HTTP/2 client. Although these attacks are

exploited in the web, exploiting these attacks in a 5G environment requires attacking 5G

specific API, making these attacks more challenging to perform than in the web where APIs

are not necessarily used. Furthermore, their impact on 5G network can be more disruptive

than in a web environment given the dependencies and interactions existing between 5G

NFs.

6.4 Datasets

To generate a 5G dataset that mirrors real 5G network traffic, we emulate normal and

attack traffic as noted in Section 6.2 and collect the generated data. Using Wireshark The
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Wireshark Team. (2021), a network monitoring tool, we capture network traffic data within

our 5G testbed. These captures are raw packets stored as PCAP files The Wireshark Team.

(2021), and document raw network interactions between various entities like UE, RAN,

and 5G NFs. We collect benign data and execute HTTP/2 attacks at different times. We

refine our dataset by processing raw network-layer data with CICFlowMeter Cybersecurity

(2020), which generates 84 flow-based features (Appendix A) capable of distinguishing

normal and malicious behaviors Hussain et al. (2020); Pourahmadi et al. (2022); Salahud-

din et al. (2021). Each row in the resulting CSV file represents a single flow, defined as

packets with the same source IP, destination IP, source port, and destination port within a

specified time interval. Separate CSV files were created for benign traffic and each emu-

lated HTTP/2 attack.

Following the extracted features, we perform feature normalization and select the most

relevant ones. At the feature selection stage, we use the variance threshold scikit learn

(2021) function to determine the most relevant variance value of the features. We choose

this selection function, as it is well known for its usage in unsupervised models scikit learn

(2021). The purpose of its usage is to help in removing features with minimal variations or

those deemed as noise. As the model is highly dependent on 5G SBA behavior patterns, the

features selected to train the model must be accurately represented (i.e., have high variance)

and provided to the anomaly detection module, as a result, we consider 54 features that have

high variance, as shown in Table 6.3.

For each emulated scenario, we divide the flow-based dataset (Table 6.4) into two cate-

gories: benign and attack, with the total duration of each emulation. Although emulations

were planned for two hours, A.1.1.SMA-Req/Resp and A.1.2.SMA-Sub/Not lasted for 1 hour

40 minutes and 1 hour 50 minutes, respectively, as the network went down due to the at-

tack. It is worth noting that the reported datasets in Table 6.4 are mutually exclusive and

do not include any redundant records. For the data to be usable for anomaly detection, we
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Selected Flow-based Features

Src Port, Dst Port, Protocol, TotLen Fwd Pkts, TotLen Bwd Pkts, Fwd Pkt Len Max,

Fwd Pkt Len Min, Fwd Pkt Len Mean, Fwd Pkt Len Std, Bwd Pkt Len Max, Bwd Pkt

Len Min, Bwd Pkt Len Mean, Bwd Pkt Len Std, Flow Byts/s, Bwd IAT Std,

Fwd PSH Flags, Bwd PSH Flags, Fwd URG Flags, Bwd URG Flags, Fwd Header Len, Bwd

Header Len, Pkt Len Min, Pkt Len Max, Pkt Len Mean, Pkt Len Std, Pkt Len Var,

FIN Flag Cnt, SYN Flag Cnt, RST Flag Cnt, PSH Flag Cnt, ACK Flag Cnt, URG

Flag Cnt, CWE Flag Count, ECE Flag Cnt, Pkt Size Avg, Fwd Seg Size Avg,

Bwd Seg Size Avg, Fwd Byts/b Avg, Fwd Pkts/b Avg, Fwd Blk Rate Avg, Bwd Byts/b Avg,

Bwd Pkts/b Avg, Bwd Blk Rate Avg, Subflow Fwd Byts, Subflow Bwd Pkts,

Subflow Bwd Byts, Init Fwd Win Byts, Init Bwd Win Byts, Fwd Act Data Pkts,

Fwd Seg Size Min, Active Mean, Active Std, Active Max, Active Min

Table 6.3: Selected flow-based features

label our flows as benign (0) and attack (1) based on our knowledge of the compromised

UEs used and the time of the attack emulations were launched.

Table 6.4: Flow-based dataset in 5G networks

Emulation Type Benign Rows Attack Rows Duration

Benign 129 367 - 2 hours

A.1.1.SMA-Req/Resp 90 163 55 954 1 hour 40 minutes

A.1.2.SMA-Sub/Not 91 010 54 188 1 hour 50 minutes

A.2.Rapid-Reset 135 120 314 866 3 hours

A.3.1.SR-Setting 74 540 11 696 2 hours

A.3.2.SR-Con-Pref 53 722 10 278 2 hours

A.3.3.SR-Win-Size 68 134 16 738 2 hours

6.5 HTTP/2 Anomaly Detection

In this section, we evaluate the performance of three unsupervised models using flow-

based features as an anomaly detection solution in 5G SBA, focusing on their ability to

identify HTTP/2-5G-specific attacks.
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6.5.1 Anomaly Detection Benchmark Models

To detect HTTP/2 attacks and anomalies in 5G networks, we use unsupervised ma-

chine learning models given the difficulties in obtaining labeled data from real network

traffic along with the advantage of unsupervised models in detecting anomalies and zero-

day attacks Li et al. (2023). Deep Neural Networks (DNNs) are known for their capability

to learn the best features that represent the data Hussain et al. (2020). Therefore, we em-

ploy DNNs to classify the flow-based feature records as either legitimate or malicious. AE

are engineered to compress input data into a lower-dimensional representation and recon-

struct it, thereby learning to encapsulate normal data behavior Mirsky et al. (2018). This

ability allows AEs to reconstruct normal network traffic and identify deviations as anoma-

lies. Furthermore, AE can be adapted to capture temporal dependencies by integrating

recurrent layers, such as LSTM Said Elsayed, Le-Khac, Dev, and Jurcut (2020). As 5G

network data will have inherent time-based patterns, choosing a model that can capture

these temporal dependencies is crucial. This is where LSTM-AE can be particularly use-

ful, as it also requires relatively lower memory and processing resources compared to more

complex architectures like transformers Said Elsayed et al. (2020). Furthermore, Isolation

Forest (IF) excels in isolating outliers indicative of malicious behavior, by its ability to par-

tition data points in feature space Laskar et al. (2021). Models must detect subtle anomalies

that do not significantly deviate from normal behavior, requiring detailed data representa-

tion. Thus, we train and compare the performance of LSTM-AE, AE, and IF in detecting

HTTP/2 attacks.

6.5.2 Experimental Results

We evaluate the performance of the three aforementioned models in detecting the six

HTTP/2 attacks that we emulated. We use the F1-score, an effective evaluation metric to

assess the models’ precision and recall capabilities and hence, their detection performance.
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We first train and validate multiple architectures for each of the three models, selecting the

one with the best detection performance. The final chosen architecture and hyperparame-

ters for each model are reported in Table 6.5. To accomplish this, we allocate 20% of the

training dataset of size 100, 000 rows as a validation dataset, and we train the models using

the remaining training dataset. To test the three models and to check their performance

over different HTTP/2 attacks, we select from each attack file (Table 6.4) 30, 000 benign

rows and 10, 000 attack rows.

Table 6.5: Hyperparameters

Hyperparameter Architecture Dropout Batch size Optimizer Hidden activation Estimator

LSTM-Autoencoder [32,16,16,32] 0.1 16 Adam ReLU -

Autoencoder [42,2,42] - 32 Adam ReLU -

Isolation Forest - - - - - 50

Table 6.6: F1-score of LSTM-AE, AE, IF across HTTP/2 attacks

Attack Type LSTM-Autoencoder Autoencoder Isolation Forest

A.1.1.SMA-Req/Resp 93.78% 80.16% 82.63%

A.1.2.SMA-Sub/Not 97.58% 86.08% 88.42%

A.2.Rapid-Reset 96.08% 81.73% 82.32%

A.3.1.SR-Setting 88.21% 84.50% 83.22%

A.3.2.SR-Con-Pref 89.45% 85.09% 85.23%

A.3.3.SR-Win-Size 88.32% 82.11% 84.22%

Average 92.24% 83.28% 84.34%

After training and validating the models, we test each model using the test dataset. As

shown in Table 6.6, LSTM-AE outperforms AE and IF across all HTTP/2 attacks. LSTM-

AE achieves an average F1-score of 92.24% across HTTP/2 attacks, reflecting its robust-

ness in anomaly detection. IF follows with a lower F1-score. AE shows a comparable

average F1-score to IF, but a lower F1-score particularly in more complex attack scenarios

(i.e., A.1.1.SMA-Req/Resp, A.3.3.SR-Win-Size), indicating its relative difficulty in cap-

turing all anomalies compared to other models. Figure 6.8 shows a detailed performance

of LSTM-AE which consistently achieved the highest F1-score across all HTTP/2 attacks,
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highlighting its superior ability to capture temporal dependencies in 5G network data. No-

tably, it has higher precision for A.1.1.SMA-Req/Resp or A.3.1.SR-Setting depicting the

ability of LSTM-AE to detect them. However, a higher recall is obtained for the remain-

ing attacks, showing the model struggles to correctly detect them. The results suggest that

although LSTM-AE is the most robust, further fine-tuning and optimization of all models

are necessary to enhance their performance, especially in complex scenarios.
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Figure 6.8: LSTM-AE performance across HTTP/2 attacks

To better evaluate the LSTM-AE model across six distinct attacks, we rely on the ROC

curves. An ROC curve illustrates the trade-off between the FPR and the TPR across all

thresholds Dalianis (2018). The AUC is a commonly used metric in conjunction with

the ROC curve, providing an aggregated measure of the model’s performance over all

thresholds. An AUC = 1 indicates a perfect model capable of achieving TPR = 1 and

FPR = 0 with an ideal threshold. Figure 6.9 showcases the performance of the LSTM-AE

model tested over six attacks. With AUC values ranging from 0.87 to 0.97 across HTTP/2

attacks, the results highlight the model’s ability to detect anomalies effectively. However,
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the variation in AUC across attacks emphasizes the impact of attack complexity and feature

relevance on detection performance.
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Figure 6.9: AUC-ROC of LSTM-AE across HTTP/2 attacks

6.6 Discussion

While HTTP/2 enhances efficiency in 5G SBA, it introduces security, performance,

and operational limitations. The protocol’s stream multiplexing feature, while reducing

latency, makes 5G networks vulnerable to DoS attacks such as stream multiplexing, rapid

reset, and slow-rate attacks, which exploit HTTP/2’s request handling mechanisms to over-

load NFs. These attacks can cause cascading failures, impacting multiple services and

leading to network-wide outages. Performance-wise, HTTP/2 increases CPU and memory

usage due to its multiplexing, header compression, and flow control mechanisms, which

can strain resource-constrained environments. Adaptive rate-limiting and intelligent mon-

itoring are necessary to balance security with network efficiency, but these solutions add

computational overhead. Operationally, the lack of standardized HTTP/2-specific secu-

rity measures for 5G SBA makes detection and mitigation challenging. Traditional secu-

rity tools are insufficient for 5G-specific signaling interactions, requiring custom anomaly
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detection models, which are costly and require frequent updates. Deploying real-time

AI-driven anomaly detection such as LSTM-AE models improves attack detection. Ad-

ditionally, compliance with 5G security regulations further complicates implementation.

Effective defense requires a multi-layered security strategy, integrating machine learning-

based anomaly detection, dynamic rate control frameworks to mitigate HTTP/2 threats

while maintaining network performance. Future research should explore lightweight, adap-

tive detection mechanisms to enhance security without significantly impacting operational

costs.
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Chapter 7

Kraken: Multi-Layer Ensemble

Learning Detection of HTTP/2 Attacks

in 5G and Beyond

In this chapter, we address the limitations of single-feature detection approaches, such

as 5GShield and 5GGuardian, which are tailored to detect only HTTP/2 SMA at individual

5G SBA NFs. While effective for SMAs, these solutions do not account for other critical

HTTP/2 attacks, such as slow-rate and rapid-reset attacks, leaving significant gaps in 5G se-

curity. To overcome these limitations, we propose Kraken, a multi-layer ensemble learning

solution designed to enhance anomaly detection in 5G SBA. Kraken leverages three feature

sets, namely, flow-based, 5G-stream, and HTTP/2 event-frame to train base models such

as an LSTM-Autoencoder, a time-series transformer, and an Autoencoder, respectively, at

each 5G SBA NF. The outputs of the base models are aggregated within a meta-model at

each NF. Subsequently, feature vectors from the meta-models across all eight NFs are in-

tegrated through another meta-model across 5G SBA, to detect sophisticated multi-stage

attacks. Kraken achieves an average F1-score of 0.98 across six variations of HTTP/2

128



attacks, outperforming existing solutions that rely solely on flow-based, stream-based, or

HTTP/2 event-frame features.

7.1 Motivation

Based on previous studies in the literature Tripathi (2022); Tripathi and Shaji (2022);

Wehbe et al. (2023, 2025), we tested the aforementioned HTTP/2 attacks in a 5G testbed

and evaluated the performance of various unsupervised ML models, each trained using 5GC

dataset on one of the following feature sets, namely flow-based, 5G-stream, and HTTP/2

event-frame features, in detecting them (i.e., details on the testbed and feature sets are pro-

vided in Section 7.3). Figure 7.1 shows that flow-based features used to train an LSTM-AE,

are better suited to detect A.1.2.SMA-Sub/Not and A.2.Rapid-Reset, achieving F1-scores of

0.97 and 0.96 respectively. Flow-based features are widely used for anomaly detection Im-

perva (2016); Praseed and Thilagam (2020); Wehbe et al. (2023) especially for detecting

flooding attacks at the network layer (i.e., TCP syn, UDP flood, etc.) that exhibit anoma-

lies in the flows and packets statistics. In contrast, 5G-stream features capture application

layer information that are specialized for HTTP/2 streams. Thus, when used to train a

5GGuardian Wehbe et al. (2025) (5G-stream time-series transformer in Figure 7.1), they

exhibit a good detection performance for A.1.1.SMA-Req/Resp and A.1.2.SMA-Sub/Not

with an F1-score of 0.96 for each of them. This is because SMA exploits a high num-

ber of streams and related APIs along with the long open HTTP/2 connections that are

very well captured through these HTTP/2 and 5G-specific features. Finally, Figure 7.1

shows that HTTP/2 event-frame features used to train an AE, are the best in detecting

slow-rate attacks, respectively achieving F1-scores of 0.96, 0.93, and 0.98 for A.3.1.SR-

Setting, A.3.2.SR-Con-Pref and A.3.3.SR-Win-Size. These results confirm existing works

Tripathi (2022); Tripathi and Shaji (2022) conclusion detailing that HTTP/2 event-frame

features are effective in detecting HTTP/2 slow-rate attacks as they capture the intricate
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behavior of the HTTP/2 protocol by analyzing its operation at the frame level Tripathi

(2022); Tripathi and Shaji (2022). This is valid as event-frame features include frame types

such as HEADERS, SETTINGS, and WINDOW UPDATE that are exploited to perform

these slow-rate attacks. Nonetheless, in terms of average performance across the different

attacks, we notice that flow-based LSTM-AE outperforms 5G-stream time-series trans-

former which in turn outperforms the HTTP/2 event-frame AE as they respectively exhibit

average F1-scores of 0.92, 0.86 and 0.88.
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Figure 7.1: F1-scores for HTTP/2 attacks across three feature sets using 5GC dataset.

These results indicate that the accuracy of HTTP/2 attack detection depends signifi-

cantly on the attack type, the selected feature set, and the choice of ML model. Moreover,

analyzing the entire 5G NFs data as one dataset is insufficient to detect HTTP/2 attacks

effectively. This is because each NF exhibits distinct behavioral patterns, meaning that

treating all NFs together dilutes important attack indicators and increases misclassification

rates. Building on these results, we address in this work, the shortcomings of the work in

the literature and present Kraken, an ensemble learning based solution, that leverages and

combines the strengths of multiple ML models trained on different feature sets in order to

provide superior detection performance of HTTP/2 attacks in comparison to single-model

anomaly detection solutions leveraging a single feature set.
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7.2 Methodology - Kraken: Multi-Layer Ensemble Learn-

ing

In this section, we introduce Kraken, our novel and intelligent multi-layer ensemble

learning solution designed to detect HTTP/2 attacks via signaling discrepancies between

5G SBA NFs. Kraken maximizes the benefits of ensemble learning within 5G SBA to

create a resilient and adaptable detection system designed for multi-dimensional network

traffic. Kraken integrates specialized ML models for each feature set, enabling it to pre-

cisely, and efficiently detect attacks.

7.2.1 Kraken Architectural Overview

Figure 7.2: Kraken architecture.

Figure 7.2 illustrates the architecture of Kraken that encompasses two modules: 1) The

Inter-Layer Adaptation Module acts at the NF level. It collects raw packet data from the
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network and pre-processes it to extract multiple feature sets that are then used to train three

base ML models. The outputs of these base models are then aggregated as input to the 1st

meta-model which enables a high level of accuracy in detecting attacks at each NF; 2) The

Cross-Function Adaptation Module, aggregates feature vectors from the 1st meta-models

of the inter-layer adaptation module of different NFs and input them to a 2nd meta-model,

allowing Kraken to detect sophisticated attacks exploiting the SBA interconnected nature.

7.2.2 Inter-Layer Adaptation per NF Module

This module operates at the NF level, and accounts for anomaly detection by extracting

three distinct feature sets: flow-based, 5G-stream, and HTTP/2 event-frame features. These

features are independently processed and used to train specialized unsupervised models,

generating feature vectors flattened to one dimension and padded for consistency across

time windows. The standardized feature vectors are then used to train a meta-model for

each NF, enabling accurate detection by capturing temporal dynamics and NF-specific be-

havior. The components composing the inter-layer adaptation module are detailed in the

following.

A. Feature-Sets Extractor

ML models used in Kraken integrate diverse features derived from network traffic, such

as flow-based, 5G-stream, and HTTP/2 event-frame features. We leverage the following

feature sets (Table 7.1) strengths to identify specific attack patterns:

Flow-Based Feature Set: Using CICFlowMeter for Cybersecurity (2020), we ex-

tract a comprehensive set of 83 flow-based features Cybersecurity (2020) including packet

size, flow duration, inter-packet arrival times, byte counts per flow and flow directionality,

among others. These flow-based features represent the underlying behaviors of network

traffic flows, making them invaluable for anomaly detection. They are particularly critical
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for identifying network-layer anomalies, as they provide insights into traffic patterns and

deviations from normal behavior Hussain et al. (2020); Pourahmadi et al. (2022); Salahud-

din et al. (2021); Wehbe et al. (2023). For example, unusual flow duration spikes or ir-

regular packet arrival times can indicate DoS attacks or congestion caused by malicious

activity.

5G-Stream Feature Set: This feature set consists of 11 features derived from NF-to-

NF interactions within the 5G SBA Wehbe et al. (2025). These features, such as HTTP/2

stream IDs, header paths, response code, latency, and response indicators, provide a fine-

grained representation of NF-to-NF interactions, allowing precise modeling of NFs be-

haviors and improving anomaly detection performance. For example, abnormal response

codes, such as excessive 4xx or 5xx errors, can signal service interruptions or malicious

attempts to overload specific NFs. In addition, latency and response indicators are crucial

for detecting anomalies, such as delayed signaling messages or failed communications be-

tween NFs. The fine-grained nature of these features makes them particularly effective in

identifying deviations specific to 5G SBA operations.

Table 7.1: List of feature sets

Feature Type List of Features

Flow-Based 83 features using CICFlowMeter Cybersecurity (2020)

such as Flow Bytes/s, Flow duration, byte counts per flow,

etc.

5G-Stream Latency, http2 protocols, http2 headers method,

http2 headers path, Header request size,

Header response size, ResponseCode, IMSIfromAPI,

Http2 max concurrent stream, Stream time, HasRe-

sponse

HTTP/2 Event-

Frame

Previous Event Type, Previous Event Time, Cur-

rent Event Type, Current Event Time, Latency

HTTP/2 Event-Frame Feature Set: This feature set delves into the intricate behavior

of the HTTP/2 protocol by analyzing its operation at the frame level, making it particularly

effective for detecting protocol-specific attacks Tripathi (2022); Tripathi and Shaji (2022).
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In HTTP/2, endpoints communicate using frames, which serve as the fundamental units of a

stream IETF (2015). Common frame types include HEADERS, which initiate streams and

convey metadata; DATA, which carries the actual content of the stream; and SETTINGS,

which manage connection parameters. Thus, we extract five key event-frame features, in-

cluding Previous Event Type and Current Event Type, which capture specific frame types

within the HTTP/2 protocol. These features are extracted across multiple streams at each

NF, meaning that Previous Event Type does not necessarily refer to the previous frame

within the same stream but rather the most recent frame processed by the NF, regardless of

its stream. Understanding the previous frame makes it possible to assess the sequence of

operations leading up to the current event, which can be critical in identifying anomalies

or unusual patterns. At the same time, the Current Event Type records the type of frame

associated with the current event in the sequence. These features highlight irregularities

that are indicative of protocol-specific attacks such as slow-rate attacks, where incomplete

frame exchanges deliberately slow server responses to exhaust resources.

B. Base Models And Feature Vectors

For each NF in 5G SBA, we train a dedicated model per feature set to generate anomaly

scores, referred to as feature vectors, tailored to the unique features of each set. The se-

lection of modelsÐLSTM Autoencoder, Transformer, and traditional AutoencoderÐwas

driven by the distinct characteristics of each feature set and its role in detecting HTTP/2 at-

tacks across different layers of 5G SBA. 1) LSTM-AE was chosen for flow-based features

due to its ability to capture temporal dependencies within network flows. By reconstruct-

ing normal traffic patterns, the LSTM-AE model identifies anomalies through deviations

in sequential data, making it particularly effective for detecting network-layer threats such

as volumetric anomalies and traffic manipulation. 2) The time-series Transformer model

was selected for 5G-stream features because it excels at handling long-range dependencies
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and complex relationships in NF-to-NF interactions. Unlike traditional sequence mod-

els, transformers utilize self-attention mechanisms to weigh important interactions across

different time steps, making them well-suited for capturing subtle variations in inter-NF

communication patterns. This is crucial for identifying sophisticated anomalies that evolve

over time, such as stealthy SMA variations. 3) A standard AE was applied to HTTP/2

event-frame features, as its ability to learn the normal protocol behavior enables it to detect

low-level deviations indicative of protocol-specific threats like slow-rate attacks and rapid-

reset exploits. The reconstruction loss in the AE serves as an anomaly indicator, ensuring

precise detection of application-layer inconsistencies. By leveraging these three distinct

models, we ensure a multi-perspective anomaly detection framework, where each model

specializes in detecting attacks within its corresponding feature space, thereby providing a

comprehensive and layered security mechanism for 5G SBA. In the following, we refer to

these models as base models.

The training of these three base models results in three distinct feature vectors: X ′ ∈

R
n×83, Y ′ ∈ R

m×11, and Z ′ ∈ R
l×5, where n, m, and l represent the number of samples for

flow-based features, 5G-stream features, and HTTP/2 event-frame features, respectively.

Together, these feature vectors serve as input to a 1st meta-model, forming the basis of a

comprehensive anomaly detection system that effectively addresses diverse attack vectors

across network and application layers.

C. Padding Feature Vectors

The feature vectors generated by the flow-based, 5G-stream, and HTTP/2 event-frame

models need to be combined to input the fixed length to the 1st meta-model per NF. How-

ever, combining them is not a straightforward mechanism as they have time and logical

dependencies. For instance, a flow is composed of multiple streams and a stream encom-

passes multiple frames. The number of streams within a flow and frames within a stream

135



may vary across different HTTP/2 connections. Further, as HTTP/2 connections may re-

main open for a relatively long period of time, waiting for the connection to be closed in

order to process the data, generate the feature sets, and input them to Kraken for anomaly

detection may not be efficient as it will prevent early attack detection. Thus, to concate-

nate feature vectors from different models, each with a distinct shape, we resort to using a

common time window which can be decided by the network operator. Using a time win-

dow seems plausible for 5G anomaly detection as network behavior in systems like the 5G

often demonstrates temporal dependencies, where anomalies emerge as deviations over a

period rather than isolated instances L.-P. Yuan, Choo, Yu, Khalil, and Zhu (2021). Hence,

as an example, in the first time window, we might concatenate the flow-based feature set

for flow1 with two feature sets for two of it 5Gstream exchanged within this time window,

along with 18 event-frame feature sets corresponding to those streams. However, during

the second time window, we might concatenate the flow-based feature set for the same

flow1 with another 4 feature sets of 5G-stream that were exchanged within the second time

window along with 45 event-frame feature sets corresponding to those 4 streams.

To effectively combine the feature vectors generated by the base models within a time

window, we employ a padding technique. Although dimensionality reduction techniques

such as Uniform Manifold Approximation and Projection (UMAP) Mittal et al. (2024)

could be applied, we opted for padding to preserve the original feature vectors and prevent

information loss associated with dimensionality reduction Azab, Khasawneh, Alrabaee,

Choo, and Sarsour (2024); Mousa’B, Hasan, Sulaiman, Islam, and Khan (2023). Padding

standardizes the feature vectors size across three feature sets, aligning them to a fixed length

of 1, 000 dimensions (i.e., we assume this length based on feature vector analysis in our

dataset) for each time window. The choice of 1000 dimensions for the feature vectors was

determined through an in-depth analysis of the dataset, ensuring a standardized represen-

tation across all three feature sets: flow-based records, 5G-stream records, and HTTP/2
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event-frame records. To establish a suitable fixed length, we assessed the maximum num-

ber of records that could be present per time window for each feature set. For instance, if a

typical time window contained 3 flow-based records, 7 5G-stream records, and 38 HTTP/2

event-frame records, the total feature vector size would be calculated as follows: flow-based

features: 3×83 = 249, 5G-stream features: 7×11 = 77, and HTTP/2 event-frame features:

38 × 5 = 190. Summing these values results in 597 feature dimensions for this specific

case. Extending this analysis across different time windows, we found that the maximum

feature vector size observed was approximately 900 dimensions. To ensure robustness and

prevent potential data truncation in cases where the number of records per window slightly

exceeds our observations, we incorporated a buffer margin of 100 dimensions, setting the

final fixed dimension size to 1000. This padding strategy allows for flexibility in handling

edge cases while maintaining computational efficiency in training the detection models. By

standardizing the feature vectors size, the 1st meta-model can process inputs efficiently and

consistently across feature types, enhancing its ability to detect multi-dimensional threats.

D. 1st Meta-Model

The 1st meta-model, an AE, is trained on these concatenated and padded feature vec-

tors. As an unsupervised learning model, the AE learns to reconstruct normal patterns by

encoding the input feature vector into a compressed representation and decoding it back

to its original form Mirsky et al. (2018); Wehbe et al. (2023). By leveraging the holistic,

padded feature vectors, this 1st meta-model provides a robust mechanism for anomaly de-

tection, addressing diverse attack vectors in 5G SBA. Training the 1st meta-model using

these concatenated and padded feature vectors results in new feature vectors, one per NF,

denoted as Q′ ∈ R
t×1000, where t represents the number of time windows. These newly

generated feature vectors are the output of 1st meta-model (i.e., reconstructed input) of the

different NFs. They encapsulate refined anomaly insights captured through high deviation
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of their values in comparison to the model’s input feature vector. In fact, during training,

the AE adjusts its weights to minimize such reconstruction deviation for typical network

behaviors. When exposed to anomalous data, this deviation increases significantly, as the

model struggles to replicate patterns it has not encountered before. Thus, high deviation be-

tween the model’s output and its input allows to effectively identify complex, synchronized

threats across all feature sets.

7.2.3 Cross-Function Adaptation Module

The cross-function adaptation module aggregates the feature vectors Q′ ∈ R
t×1000 from

the 1st meta-model of the different NFs (i.e., 8 NFs in our case), thus, correlating anomalies

over time windows within the 5G SBA. Through a 2nd meta-model, this module detects

system-wide anomalies by capturing cross-NFs interactions that may indicate coordinated

attacks impacting the 5G system.

A. 2nd Meta-Model

Feature vectors obtained from the 1st meta-model of each NF are flattened and concate-

nated into a unified representation to form the input of the 2nd meta-model that yields an

AE. The 2nd meta-model is trained to reconstruct normal behavior across the combined fea-

ture space from all NFs. During inference, the cross-function adaptation module evaluates

the input reconstruction quality performed by the 2nd meta-model in order to depict benign

from attack data point. To this end, it computes the MSE and captures the squared differ-

ences between the input and its reconstruction (i.e., output of the AE) Mirsky et al. (2018).

High MSE values, exceeding a defined threshold α (Section 7.2.2), signal deviations in-

dicative of system-wide anomalies. Unlike other metrics, such as MAE, MSE exhibits high

sensitivity to anomalies, thus better highlighting substantial deviations more prominently,

hence, enabling better detection.
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B. Classification

Given that the 2nd meta-model is trained to learn benign behavior, it is expected to suc-

ceed in reconstructing benign data, which will lead to a low reconstruction error (i.e., MSE).

In contrast, a high reconstruction error is expected in case of an anomaly. If the MSE ≤ α,

the data is classified as benign; otherwise, it is labeled as malicious. By correlating anoma-

lies across all NFs and leveraging MSE as the evaluation metric, this module enhances

the robustness of the detection system, enabling the identification of sophisticated, cross-

NF threats that involve attack vectors that exploit vulnerabilities across multiple NFs that

cannot be detected at a single NF through the inter-layer adaptation module.

7.3 Environment Setup & Data Preparation

This section outlines the environmental setup used for the training environment for

Kraken. Additionally, it discusses the data pre-processing and feature extraction applied to

the data collected from the 5G testbed.

7.3.1 Emulation Setup

To train Kraken, we use data collected over 2 hours during normal network operations.

We perform our experiments using Python (v3.8) ML libraries such as Tensorflow (v2.12.0)

and Transformer (v4.27.4). Kraken training, testing, and experiments were performed on a

separate VM equipped with an NVIDIA GPU and 28GB of RAM to ensure computational

efficiency.

7.3.2 Network Surge Emulation

In a real 5G network deployment, a sudden surge in traffic can occur when a large

number of UEs simultaneously connect and use the network, thus creating a lot of signaling
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and consuming most of the network bandwidth Wei, Shi, and Dhelim (2022). This is known

as Network Surge (NS) which is commonly seen during events such as sports games or

concerts. NS is usually mistaken for a DoS attack. To this end, it is important to test the

efficiency of Kraken in differentiating a normal increase of network signaling following an

NS from a DoS attack.

Thus, we emulate an NS by accounting for the traffic of 50 legitimate UEs that join

the network after an hour of normal network operations during which 100 UEs are served.

This increase in UEs is emulated over an hour, resulting in a higher CPU load across the

5G NFs.

7.3.3 Dataset for Kraken

During our benign and attack emulations, we capture the exchanged signaling across 5G

SBA using Wireshark The Wireshark Team. (2021) and store the captured traffic in PCAP

files. The collected data is used to train and test Kraken after undergoing a pre-processing

to extract and normalize the three feature sets, namely flow-based, 5G-stream, and HTTP/2

event-frame features that we discussed in Section 7.2.2 (Table 7.1). The data and hence, the

extracted feature sets are classified per NF as shown in Table 7.2. The communication and

behavior of each NF in our testbed during benign and attack emulation is represented by

three different datasets, namely 5G-stream, flow-based, and HTTP/2 event-frame datasets.

Each of these datasets is used to train and validate the base models (Section 7.2.2) of

Kraken’s inter-layer adaptation module.

Table 7.2 shows the variable number of records across the different datasets per NF.

For instance, flow-based records are less than 5G stream dataset records, which in turn are

less than those of HTTP/2 event-frame dataset records. This is expected because a flow

encompasses multiple streams, and a stream includes multiple frames. In addition, the

number of records of the different datasets between the NFs is variable as it is dependent
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Table 7.2: Benign and attack datasets per NF across three feature sets

Features 5G Stream Flow-Based HTTP/2 Event-Frame

NF Benign Attack NS Benign Attack NS Benign Attack NS

AMF 93353 342010 64223 31456 168436 16879 472128 10326650 334554

SMF 64563 326926 45092 25938 163898 14208 458484 10513880 392442

NRF 40815 137642 29384 16172 33467 9572 285537 2323040 204770

AUSF 18420 51300 14102 3606 11180 3052 62724 761268 46354

NSSF 9417 25476 5303 1918 4437 1145 33254 336986 17236

PCF 52231 866574 33971 17876 341284 11219 251248 5917160 168686

UDM 64860 145588 45009 15669 29838 9328 258964 2063186 184222

UDR 43561 850730 31236 12672 39211 8174 270260 5790766 178400

on the communication it is involved in during normal network operations and also during

attacks. Finally, tailoring different datasets to the unique nature of each feature set for

each NF, accurately captures the specific operational patterns of the NF and enhances the

accuracy and robustness of anomaly detection across all NFs. It is worth noting that the

number of records under the benign columns in Table 7.2 represent the data captured during

normal network operations. However, those shown under the attack columns depict the data

collected during the different attacks and, hence, contain both benign and attack records.

Finally, the NS columns depict the benign data collected during a NS.

7.3.4 Models Training, Validation and Testing

As the different ML models of Kraken are unsupervised models, they are usually trained

on data collected during normal network operations. Thus, we allocate 1 hour and 20

minutes of data from the benign records (i.e., benign columns in Table 7.2) across the

different datasets for training them and reserve the remaining 40 minutes as a validation

dataset. The validation dataset serves two critical roles: validating the performance of the

base models and providing the feature vectors resulting from the validation dataset to train

both meta-models effectively (Section 7.2). We exclusively use the attack datasets (i.e.,

attack columns in Table 7.2), containing both benign and attack data, as test datasets to

evaluate the performance of Kraken in detecting different attacks and accurately classifying
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normal behavior. Finally, the NS datasets are used to evaluate the performance of Kraken

in accurately classifying it as benign.

7.4 Experiments and Results

In this section, we evaluate the performance Kraken by leveraging the different training,

validation and testing datasets described in Table 7.2.

7.4.1 Kraken Hyperparameter

To ensure the best detection capabilities, we fine-tune each ML model used in Kraken

and its hyperparameters and retain those that maximize the F1-score. Thus, we train and

validate multiple configurations, selecting the best performing architecture for each model.

The final architectures and their corresponding hyperparameters are listed in Table 7.3.

Table 7.3: ML models and hyperparameters

ML Models Model Type Architecture Hidden Activation

Base Models

LSTM-AE [32,16,16,16,32] ReLU

LSTM-AE [16,8,8,8,16] ReLU

AE [5,5,5,5,5] ReLU

Time-Series Transformer [11,1,1,1,11] GeLU

1st Meta-Model AE [1000,10,10,10,1000] ReLU

2nd Meta-Model AE [8000,8,8,8,8000] ReLU

The base models are optimized for their respective feature sets to ensure effective

anomaly detection. All models use a batch size of 16, a dropout rate of 0.1, and the Adam

optimizer, with architecture differences tailored to each feature set. The LSTM-AE, us-

ing flow-based features, employs two distinct architectures with ReLU activation function:

a [32, 16, 16, 16, 32] architecture tailored for AMF, SMF, PCF, UDR, and UDM, and a

[16, 8, 8, 8, 6] architecture optimized for NSSF, AUSF, and NRF. The AE using HTTP/2

event-frame features leverages a compact [5, 5, 5, 5, 5] architecture with ReLU activation
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function; and the time-series transformer for 5G-stream features employs a [11, 1, 1, 1, 11]

architecture with 12 attention heads and GeLU activation function.

The 1st meta-model uses aggregated feature vectors from its predecessors, base models,

in Kraken. As base models may have feature vectors of different shapes with temporal and

logical dependencies (Section 7.2.2), we select a two-seconds time window to determine

the feature vectors that need to be aggregated as input to the 1st meta-model as a single

data point. The 1st meta-model, an AE with a [1000, 10, 10, 10, 1000] architecture, learns

NF-specific patterns, while the 2nd meta-model, an AE with a [8000, 8, 8, 8, 8000] architec-

ture, identifies cross-NF anomalies. Together, they provide a robust solution for detecting

diverse threats in the 5G SBA.

7.4.2 Kraken Threshold

To assess the detection performance of Kraken and classify the data into benign and

attack, there is a need to select a threshold to compare the MSE calculated based on the

input/output of 2nd meta-model against, as explained in Section 7.2.3. Thus, we select

a threshold α = 3.0353 that resulted in a good detection performance on the validation

dataset. Based on the selected threshold α = 3.0353, we evaluate in the following Kraken

performance using test datasets for each attack scenario (Table 7.2).

7.4.3 Kraken Detection Performance

We assess Kraken’s performance in detecting HTTP/2 attacks by: 1) Testing the base

models (i.e., time-series transformer, LSTM-AE, and AE) on each NF, however, due to

space limitation, we present the results only for the AMF; 2) Evaluating the inter-layer

adaptation module per each NF; for this, we choose two attack scenarios, A.1.1.SMA-

Req/Resp and A.3.1.SR-Setting, to showcase the efficiency of this module in capturing
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temporal anomalies specific to each NF; 3) Evaluating the cross-function adaptation mod-

ule that integrates insights from all NFs across attacks and NS.

A. Base Models Performance

Figure 7.3 compares the performance of three base models: 5G-stream time-series

transformer, flow-based LSTM-AE, and HTTP/2 event-frame AE; trained, validated and

tested on data collected at the AMF. Similar to the results in Figure 7.1 (i.e., that ac-

counts for data collected across all the NFs to train, test and validate the base models), Fig-

ure 7.3 depicts that both variations of SMA attacks (A.1.1.SMA-Req/Resp and A.1.2.SMA-

Sub/Not) are well-detected by 5G-stream time-series transformer and flow-based LSTM-

AE with the 5G-stream time-series transformer slightly outperforming the flow-based LSTM-

AE. However, by comparing Figure 7.1 and Figure 7.3, we can deduce that HTTP/2 event-

frame AE can better detect SMA attacks when trained on data collected at the AMF, that

is where the attack is occurring, rather than at data collected across all the NFs of 5G

SBA. This clearly shows the value of fine grained and targeted behavioral training (i.e., NF

profiling) in better detecting attacks.
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Figure 7.3: F1-score for HTTP/2 attacks detection across three feature sets using AMF

dataset.
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Further, the detection performance for rapid-reset and slow-rate attacks (A.2.Rapid-

Reset, A.3.1.SR-Setting, A.3.2.SR-Con-Pref, and A.3.3.SR-Win-Size) are significantly lower

across all feature sets in Figure 7.3 when compared to Figure 7.1. This is expected, as these

attacks primarily exploit interactions between the PCF and UDR and do not directly impact

the AMF. Consequently, the models trained on AMF-specific data struggle to identify pat-

terns associated with these attacks, reflecting the attack’s localized nature and the limited

feature correlation at the AMF level.

These results underscore the necessity of leveraging inter-layer adaptation module for

better fine grained detection at each NF, and also highlight the value of aggregate insights

across the base models and 5G SBA to improve the detection of HTTP/2 attacks across

the NFs. This entails that integrating the learning from multiple NFs within an ensemble

approach through the second meta-model, could provide enhanced detection of attacks

across the 5G SBA.

B. Inter-Layer Adaptation Module Performance

We are only reporting the results on these two attacks because they serve as represen-

tative cases for evaluating the detection capabilities of the inter-layer adaptation module

across different NFs. Attack 1 - SMA variations are emulated between the SMF and AMF,

while Attack 2 - Rapid Reset Attack and variations of Attack 3 - HTTP/2 Slow-Rate At-

tack were triggered between the PCF and UDR. By selecting A.1.1.SMA-Req/Resp and

A.3.1.SR-Setting, we evaluate the detection capabilities of the inter-layer adaptation mod-

ule across the NFs. We assess the detection performance of the 1st meta-model of each NF

in identifying these attacks (Table 7.4).

The evaluation of A.1.1.SMA-Req/Resp, initiated by the SMF against the AMF, high-

lights the ensemble model’s effectiveness in detecting critical vulnerabilities within the 5G

SBA, as presented in Table 7.4. As the primary NFs involved in the attack, AMF and SMF
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Table 7.4: Performance of each NF in detecting A.1.1.SMA-Req/Resp and A.3.1.SR-

Setting using the 1st meta-model

Metrics TP FN FP TN Precision Recall F1-score

NFs A.1.1 A.3.1 A.1.1 A.3.1 A.1.1 A.3.1 A.1.1 A.3.1 A.1.1 A.3.1 A.1.1 A.3.1 A.1.1 A.3.1

AMF 615 232 8 55 29 297 949 1216 0.95 0.43 0.98 0.80 0.97 0.56

SMF 578 297 0 45 14 423 1009 1035 0.97 0.41 1 0.86 0.98 0.55

NRF 7 6 5 3 262 312 1337 1459 0.02 0.01 0.58 0.66 0.049 0.03

NSSF NA NA NA NA 68 114 1532 1686 NA NA NA NA NA NA

AUSF 4 NA 0 NA 158 196 1473 1551 0.02 NA 1 NA 0.04 NA

PCF 44 567 29 61 270 75 1257 1097 0.14 0.88 0.60 0.90 0.22 0.89

UDR 66 893 34 11 382 142 1118 754 0.14 0.86 0.66 0.98 0.24 0.92

UDM 8 49 4 89 162 60 1297 1402 0.04 0.44 0.66 0.35 0.08 0.39

exhibit excellent detection performance of A.1.1.SMA-Req/Resp with high F1-scores of

0.97 and 0.98, respectively. However, other NFs, such as NRF, UDR, PCF, and UDM, ex-

perience high False Positives (FP) and False Negatives (FN). The high FP is because these

NFs process benign messages that are delayed due to the overwhelmed AMF to handle

the attack load. Thus, the 1st meta-model of each of these NFs has mistaken these benign

records by being attacks. Meanwhile, FN increase as requests/responses initiated by the

compromised SMF should be classified as attacks but are misclassified as benign due to the

limitations of the per-NF meta-models. These findings underscore the cascading effects of

such attacks and the challenges in ensuring accurate classification across 5G networks.

With respect to the detection of A.3.1.SR-Setting, we notice that the UDR, as the pri-

mary NF initiating the attack, achieves a high F1-score of 0.92 due to its direct role in gen-

erating malicious traffic (Table 7.4). The PCF, as the targeted NF being attacked, records

a slightly lower F1-score of 0.89, mainly due to a low recall caused by the misclassifica-

tion of attack messages as benign. Additionally, NFs such as NRF, UDM, AMF, and SMF

detection are lower due to two reasons: 1) High FP as benign messages being delayed or

disrupted by the attack, creating patterns that resemble a malicious behavior; 2) Increase

in FN occurs because the attack records, though not part of the targeted attack on the PCF,

represent messages forwarded from the compromised UDR and are considered malicious

as they originate from a compromised NF.
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Finally, NFs like NSSF and AUSF were not involved in A.1.1.SMA-Req/Resp and

A.3.1.SR-Setting, and the data does not involve any communication between them, and the

compromised (i.e., SMF, UDR) and attacked (i.e., AMF, PCF) NFs. Consequently, these

NFs do not exhibit significant anomalies in their detection results.

The results of the inter-layer adaptation module demonstrate the effectiveness of the

ensemble approach in detecting critical NF-specific attacks. In fact, for attacks directly in-

volving specific NFs, such as A.1.1.SMA-Req/Resp (SMF and AMF) and A.3.1.SR-Setting

(UDR and PCF), the 1st meta-model achieves high F1-score, showcasing its ability to iden-

tify malicious behavior accurately in the most impacted NFs. However, the detection re-

sults highlight challenges, particularly for indirectly affected NFs, where increased FP arise

from benign messages delayed by attack traffic, and high FN is due to the propagation of

malicious traffic through compromised NFs, which results in low recall, precision, and

F1-score. These findings emphasize the cascading effects of attacks and the necessity of

accurate classification across both directly and indirectly impacted NFs.

C. Cross-Function Adaptation Module Performance

This module of Kraken aggregates and refines anomaly detection by combining feature

vectors from the 1st meta-model of the different NFs, thus addressing the shortcoming of

the inter-layer adaptation module in detecting cross-NFs attacks. This module achieves

high precision, recall, and F1-score across HTTP/2 attacks, demonstrating Kraken’s ro-

bustness in identifying threats with minimal misclassification.

As shown in Table 7.5, A.1.1.SMA-Req/Resp achieves nearly perfect performance with

a precision of 0.984, recall of 0.996, and an F1-score of 0.990, reflecting the 2nd meta-

model ability to precisely and comprehensively detect instances of this attack. Similarly,

A.3.2.SR-Con-Pref shows excellent detection metrics, with an F1-score of 0.985, suggest-

ing that the ensemble model captures intricate patterns from aggregated NF interactions.
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Table 7.5: Kraken final detection performance

Attacks TP FP FN TN Precision Recall F1-score

A.1.1.SMA-Req/Resp 579 9 2 1210 0.984 0.996 0.990

A.1.2.SMA-Sub/Not 783 6 25 1086 0.992 0.969 0.980

A.2.Rapid-Reset 568 1 2 1229 0.998 0.996 0.997

A.3.1.SR-Setting 1064 35 4 797 0.968 0.996 0.982

A.3.2.SR-Con-Pref 608 8 10 1174 0.987 0.983 0.985

A.3.3.SR-Win-Size 787 24 8 1081 0.970 0.989 0.980

Even in more complex attacks, such as A.3.3.SR-Win-Size, where distinguishing between

normal and anomalous behavior is challenging due to similar traffic patterns, kraken main-

tains an average F1-score of 0.98.

D. Kraken Performance with Network Surge

To demonstrate the robustness of Kraken, we test our solution under NS conditions that

are usually confused as DoS attacks. (Figure 7.4) shows that NS is accurately detected

by the 1st meta-model of the different NFs with F1-score above 0.97 for all them. Simi-

larly, Kraken with its 2nd meta-model shows superior performance in detecting NS with an

F1-score of 0.993, indicating that the model can adapt to high-variance scenarios and ac-

curately differentiate between a NS and a DoS attack. Kraken distinguishes NS from DoS

attack by leveraging key flow-based such as Inter-packet arrival variance and packet size

distribution, and 5G-stream features such as the response time. These features reveal the

dynamic nature of NS and help detect its incurred temporary delays, compared to uniform

traffic patterns and sustained service degradation during a DoS.

7.4.4 Comparison of Kraken against the State-of-the-Art

Kraken outperforms both base models and 1st meta-model at the NF level by integrat-

ing flow-based, 5G-stream, and HTTP/2 event-frame features, addressing the shortcom-

ings of 5GGuardian Wehbe et al. (2025) (5G-stream time-series transformer) and 5GShield
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Figure 7.4: Kraken performance in the presence of network surge.

(flow-based LSTM-AE) Wehbe et al. (2023). While 5GGuardian excels in detecting SMA

attacks, it lacks robustness against slow-rate and rapid-reset attacks, and 5GShield strug-

gles with application-layer threats Figure 7.3. Kraken overcomes these limitations through

multi-feature analysis through ensemble learning, achieving an average F1-score of 0.98,

significantly surpassing 5GGuardian (0.86), 5GShield (0.92), and HTTP/2 event-frame AE

(0.88) (Figure 7.1). By leveraging multi-layer ensemble learning, Kraken reduces FP, cap-

tures cross-NF correlations, and ensures comprehensive detection of localized and cascaded

attacks.

7.4.5 Time Complexity

Kraken’s design effectively balances time complexity and detection accuracy within its

modules. The inter-layer adaptation module, which processes data independently for each

of the eight NFs, achieves efficient analysis with an average training time of 4.5 seconds per

NF for the 1st meta-model. This module uses base models with practical training times. For

instance, time-series transformer (5GGuardian) and AE complete training in 172.82 and
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277.99 seconds, respectively, and the LSTM-AE requires 401.75 seconds to capture flow-

based temporal dependencies. The cross-function adaptation module enhances anomaly

detection by aggregating feature vectors across NFs, optimizing cross-NF correlations with

minimal additional training overhead of just 2.71 seconds.

Despite these training costs, Kraken maintains short detection time. The HTTP/2 event-

frame model achieves a detection time of 0.08 seconds, flow-based model operates signifi-

cantly faster at 0.01 seconds, and the 5G-Stream model is the fastest and detects anomalies

in 0.003 seconds. The 1st meta-model, which aggregates insights from base models per

NF, achieves an average detection time of 0.09 seconds, ensuring real-time performance.

Furthermore, the 2nd meta-model, which consolidates outputs from the 1st meta-models,

demonstrate is faster and can detect attacks in 0.07 seconds.

Compared to single-feature models, Kraken continues to achieve competitive detection

times for real-time deployments as it requires a total of 0.24 seconds for online detection.

While single-feature models train faster, they lack the cross-layer adaptability and tempo-

ral awareness that Kraken achieves. By combining fast, per-NF and parallel processing

of inter-layer adaptation module models with effective aggregation, Kraken ensures high

detection performance with minimal computational overhead, making it an efficient and

reliable 5G anomaly detection solution.

7.5 Deployemnt of Kraken

Kraken can be integrated as a built-in functionality within NWDAF TS.23.288 (2024),

a 5G NF responsible for collecting and analyzing network data to detect anomalies and op-

timize performance. Kraken can be deployed centrally within a single NWDAF instance,

where it processes data from multiple NFs to detect security threats. However, this cen-

tralized approach can introduce data collection and processing overhead, making real-time

anomaly detection challenging.
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To address this, we recommend a hierarchical NWDAF architecture Jeon and Pack

(2024), where leaf NWDAFs are co-located with each NF and run Kraken’s inter-layer

adaptation module locally. This allows each NF to independently detect anomalies based

on local traffic patterns before sharing its extracted feature vectors from the 1st meta-model

with a centralized NWDAF. This allows parallel anomaly detection at different NFs using

an inter-layer adaptation module, thus reducing the Kraken detection time. The central

NWDAF then executes Kraken’s cross-function adaptation module, which aggregates and

correlates data across multiple NFs, enabling more accurate and 5G SBA anomaly detec-

tion. This hierarchical and distributed deployment reduces data pre-processing and collec-

tion overhead. Moreover, it supports continuous protection against HTTP/2 attacks by fa-

cilitating periodic retraining and maintenance, ensuring that Kraken aligns with NWDAF’s

adaptive learning and update routines for enhanced 5G security.

151



Chapter 8

Conclusion and Future Directions

The security landscape of 5G networks, particularly within the SBA, demands a rigor-

ous evaluation of vulnerabilities associated with HTTP/2 protocols. This thesis highlights

the critical role of HTTP/2 as a potential attack vector, emphasizing the successful ex-

ploitation of its vulnerabilities through proof-of-concept demonstrations and the cascading

effects of such exploits on interconnected NFs (Chapter 3). To address these challenges,

we proposed advanced anomaly detection solutions tailored for HTTP/2 attacks in 5G SBA

through this thesis. These include 5GShield (Chapter 4), an application-layer anomaly

detection solution leveraging neural networks to identify HTTP/2 SMA using 5G-specific

features, and 5GGuardian (Chapter 5), a time-series transformer-based solution designed

for robust detection of SMA variations across NFs. Both solutions outperform traditional

approaches, offering scalability and resilience even with contaminated training data. Fur-

ther, recognizing the absence of practical studies and datasets, we contributed with the first

5G-compliant anomaly detection dataset, encompassing diverse HTTP/2 attack scenarios

(Chapter 6). This dataset enabled the development of Kraken, a multi-layer ensemble learn-

ing solution integrating flow-based, 5G-stream, and HTTP/2 event-frame features across all

NFs to detect sophisticated, multi-stage attacks (Chapter 7). By deploying these solutions

within NWDAF, we envisioned a unified defense mechanism for securing 5G SBA.
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Future research will focus on developing an advanced root cause analysis framework

that leverages both network-wide data and historical attack patterns to trace back the origin

of an HTTP/2-based attack. Unlike traditional web environments, where attack impact is

typically localized, 5G networks present a unique challenge due to the interdependent na-

ture of NFs. An attack on one NF can propagate across the network, disrupting multiple

services and degrading overall QoS, making it difficult to pinpoint the origin of an attack.

To address this, the framework will integrate causal inference models to analyze depen-

dencies between NFs and understand how an attack propagates through the system. Addi-

tionally, we will explore graph-based anomaly detection, where each NF is represented as

a node, and their interactions form edges, allowing the system to map and analyze attack

propagation in real-time.

Beyond root cause analysis, intelligent mitigation techniques will be developed to dy-

namically respond to HTTP/2-based threats, such as SMAs, slow-rate attacks, and rapid-

reset attacks. Instead of relying on static thresholds or rule-based filtering, we propose an

adaptive mitigation system that continuously learns from attack attempts and network con-

ditions. This system will adjust HTTP/2 parameters dynamically, such as HTTP/2 SET-

TINGS MAX CONCURRENT STREAMS based on anomaly scores to limit attack im-

pact while ensuring legitimate requests are not disrupted. It will also modify HTTP/2 flow

control settings to prevent slow-rate DoS attacks without affecting normal traffic patterns.

Another approach will be to assess the HTTP/2 custom headers to tag and verify the in-

tegrity of requests, allowing anomaly detection models to differentiate between benign and

malicious traffic more effectively. By addressing these future research directions, we aim to

transition from reactive detection to proactive and autonomous HTTP/2 attack mitigation,

ensuring 5G networks remain resilient against ever-evolving security threats.

The bulk of the dissertation focuses on the work that has been performed by the student
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as part of the Ph.D. program. The different contributions that have already been pub-

lished/submitted for publication in top venues are summarized in Table 8.1.

Table 8.1: Contributions during the Ph.D. program

Title Chapter Citation

A Security Assessment of HTTP/2 Usage in

5G Service Based Architecture

Chapter 3 Wehbe, N., Alameddine, H. A., Pourzandi, M., Bou-Harb, E., & Assi,

C. (2022). A security assessment of HTTP/2 usage in 5G service-

based architecture. IEEE Communications Magazine, 61(1), 48-54.

5GShield: HTTP/2 Anomaly Detection in

5G Service-Based Architecture

Chapter 4 Wehbe, N., Alameddine, H. A., Pourzandi, M., & Assi, C. (2023,

June). 5GShield: HTTP/2 Anomaly Detection in 5G Service-Based

Architecture. In 2023 IFIP Networking Conference (IFIP Network-

ing) (pp. 1-9). IEEE.

Empowering 5G SBA Security: Time Series

Transformer for HTTP/2 Anomaly Detection

Chapter 5 Wehbe, N., Alameddine, H. A., Pourzandi, M.,& Assi, C. (2025).

Empowering 5G SBA security: Time series transformer for HTTP/2

anomaly detection. Computers & Security, 148, 104114.

HTTP/2 DoS Attacks in 5G Networks: Im-

pact Analysis and Anomaly Detection

Chapter 6 Wehbe, N., Alameddine, H. A.,& Assi, C. (2025). HTTP/2 DoS

Attacks in 5G Networks: Impact Analysis and Anomaly Detection.

Submitted to Transaction on Mobile Computing. Under Review.

Kraken: Multi-Layer Ensemble Learning

Detection of HTTP/2 Attacks in 5G and Be-

yond

Chapter 7 Wehbe, N., Alameddine, H. A.,& Assi, C. (2025). Kraken: Multi-

Layer Ensemble Learning Detection of HTTP/2 Attacks in 5G and

Beyond. In 2025 IEEE/IFIP International Conference on Dependable

Systems and Networks.

Other collaborations with different colleagues throughout my Ph.D. are summarized in

Table 8.2.

Table 8.2: Other co-authorships during the Ph.D. program

Title Citation

Inter-Slice Defender: An Anomaly Detection Solution for Dis-

tributed Slice Mobility Attacks

Molina, R. M. A., Wehbe, N., Alameddine, H. A., Pourzandi,

M., & Assi, C. (2024, June). Inter-Slice Defender: An Anomaly

Detection Solution for Distributed Slice Mobility Attacks. In

2024 IFIP Networking Conference (IFIP Networking) (pp. 432-

440).

PUL-Inter-slice Defender: An Anomaly Detection Solution for

Distributed Slice Mobility Attacks

Molina, R. M. A., Wehbe, N., Alameddine, H. A., Pourzandi,

M., & Assi, C. (2025). PUL-Inter-slice Defender: An Anomaly

Detection Solution for Distributed Slice Mobility Attacks. In

2025 Transactions on Information Forensics & Security.

A Reinforcement Learning-based Approach for Scaling the User

Plane in 5G and Beyond Networks

Hurtado, J., Caicedo, O. M., Assi, C., Wehbe, N. & Suarez, L.,

(2025). A Reinforcement Learning-based Approach for Scaling

the User Plane in 5G and Beyond Networks. In 2025 IEEE Open

Journal of the Communications Society.

PEACE: Physics-Enabled Autoencoder Detection of Unknown

Load-Altering Attacks in Smart Grids

M. A. Sayed, Nathalie Wehbe, K. Sarieddine, R. Atallah, C.

Assi, & M. Debbabi. PEACE: Physics-Enabled Autoencoder

Detection of Unknown Load-Altering Attacks in Smart Grids.

IEEE Power & Energy Society General Meeting (PESGM).

GridWatch: Load-Altering Attack Detection and Localization

Mechanism Powered by a Physics-Assisted Feature Fusion Hy-

brid Neural Network

M. A. Sayed, K. Sarieddine, Nathalie Wehbe, M. Arfaoui, R.

Atallah, M. Debbabi, & C. Assi. GridWatch: Load-Altering

Attack Detection and Localization Mechanism Powered by a

Physics-Assisted Feature Fusion Hybrid Neural Network. Sub-

mitted IEEE transactions on Smart Grid.

EV-Shield: A Real-time Monitoring Tool to Detect and Mitigate

Cyber-attacks in the EV Ecosystem

R. Reghunath, M. A. Sayed, N. Wehbe, R. Atallah, D. Jafarigiv,

M. Kassouf, and C. Assi. EV-Shield: A Real-time Monitoring

Tool to Detect and Mitigate Cyber-attacks in the EV Ecosystem.

Submitted IEEE Transactions on Network and Service Manage-

ment.
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List of Abbreviations

3GPP 3rd Generation Partnership Project

5G Fifth Generation

5GC 5G Core

AE Autoencoder

AL-DDoS Application Layer DDoS

AF Application Function

AI Artificial Intelligence

AMF Access and Mobility Management Function

API Application Programming Interface

AUC Area Under the Receiver Operating Characteristic Curve

AUSF Authentication Server Function

CP Control Plane

CPI Central Processing Unit

DN Data Network

DNN Deep Neural Network

DoS Denial of Service

DDoS Distributed Denial of Service

eMBB Enhanced Mobile Broadband

ETSI European Telecommunications Standards Institute

FN False Negative

FP False Positive

FPR False Positive Rate

FQDN Fully Qualified Domain Name

GeLU Gaussian error Linear Unit

HTTP/2 Hypertext Transfer Protocol version 2
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IEs Information Elements

IETF Internet Engineering Task Force

IF Isolation Forest

IMSI International Mobile Subscriber Identity

IoT Internet of Things

JSON JavaScript Object Notation

KPIs Key Performance Indicators

LCI Load Control Information

LSTM-AE Long Short Term Memory Autoencoder

MAE Mean-Absolute Error

MitM Man-in-the-Middle

ML Machine Learning

MSE Mean Squared Error

NAS Non Access Stratum

NEF Network Exposure Function

NF Network Function

NFc NF Service Consumer

NFp NF Service Producer

NFV Network Function Virtualization

NRF Network Repository Function

NS Network Surge

NSSF Network Slice Selection Function

NWDAF Network Data Analytics Function

OAM Operations Administration and Maintenance

OCI Overload Control Information

PCF Policy Control Function
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PCT Procedure Completion Time

PDU Packet Data Unit

PFCP Packet Forwarding Control Protocol

PKI Public-Key Infrastructure

PLMN Public Land Mobile Network

PM Performance Measurements

QoS Quality of Service

RAN Radio Access Network

RESTful REpresentational State Transfer

ROC Receiver Operating Characteristic

SBA Service Based Architecture

SBIs Service Based Interfaces

SCP Service Communication Proxy

SDN Software Defined Network

SEPP Security Edge Protection Proxy

SMA Stream Multiplexing Attack

SMF Session Management Function

SMP SBI Message Priority

SSL Secure Sockets Layer

SUPI Subscription Permanent Identifie

TCP Transmission Control Protocol

TLS Transport Layer Security

TPR True Positive Rate

UE User Equipment

UMAP Uniform Manifold Approximation and Projection

UP Unified Data Management
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UP User Plane

UPF User Plane Function

URI Uniform Resource Identifier

VM Virtual Machine
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Appendix A

Flow-based Features

We utilized CICFlowMeter to extract flow-based features from our dataset. CICFlowMe-

ter, an open-source tool, generates bidirectional flows (Biflows) from PCAP files and ex-

tracts relevant features from these flows. This network traffic flow generator creates bidi-

rectional flows by determining the forward (source to destination) and backward (destina-

tion to source) directions based on the first packet observed. The extracted features are

described in Table A.1.

Table A.1: List of flow-based features and their descriptions.

Feature Name Description

Flow ID Identifier of the flow

SrcIP Source ip of the flow

Src Port Source port of the flow

DstIP Destination ip of the flow

Dst Port Destination port of the flow
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Protocol Protocol of the flow

Timestamp Timestamp of the flow

Flow duration Duration of the flow in Microsecond

total Fwd Packet Total packets in the forward direction

total Bwd packets Total packets in the backward direction

total Length of Fwd Packet Total size of packet in forward direction

total Length of Bwd Packet Total size of packet in backward direction

Fwd Packet Length Min Minimum size of packet in forward direction

Fwd Packet Length Max Maximum size of packet in forward direction

Fwd Packet Length Mean Mean size of packet in forward direction

Fwd Packet Length Std Standard deviation size of packet in forward direction

Bwd Packet Length Min Minimum size of packet in backward direction

Bwd Packet Length Max Maximum size of packet in backward direction

Bwd Packet Length Mean Mean size of packet in backward direction

Bwd Packet Length Std Standard deviation size of packet in backward direction

Flow Bytes/s Number of flow bytes per second

Flow Packets/s Number of flow packets per second

Flow IAT Mean Mean time between two packets sent in the flow

Flow IAT Std Standard deviation time between two packets sent in the

flow

Flow IAT Max Maximum time between two packets sent in the flow

Flow IAT Min Minimum time between two packets sent in the flow
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Fwd IAT Min Minimum time between two packets sent in the forward di-

rection

Fwd IAT Max Maximum time between two packets sent in the forward

direction

Fwd IAT Mean Mean time between two packets sent in the forward direc-

tion

Fwd IAT Std Standard deviation time between two packets sent in the for-

ward direction

Fwd IAT Total Total time between two packets sent in the forward direction

Bwd IAT Min Minimum time between two packets sent in the backward

direction

Bwd IAT Max Maximum time between two packets sent in the backward

direction

Bwd IAT Mean Mean time between two packets sent in the backward direc-

tion

Bwd IAT Std Standard deviation time between two packets sent in the

backward direction

Bwd IAT Total Total time between two packets sent in the backward direc-

tion

Fwd PSH flags Number of times the PSH flag was set in packets travelling

in the forward direction (0 for UDP)

Bwd PSH Flags Number of times the PSH flag was set in packets travelling

in the backward direction (0 for UDP)

Fwd URG Flags Number of times the URG flag was set in packets travelling

in the forward direction (0 for UDP)
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Bwd URG Flags Number of times the URG flag was set in packets travelling

in the backward direction (0 for UDP)

Fwd Header Length Total bytes used for headers in the forward direction

Bwd Header Length Total bytes used for headers in the backward direction

FWD Packets/s Number of forward packets per second

Bwd Packets/s Number of backward packets per second

Packet Length Min Minimum length of a packet

Packet Length Max Maximum length of a packet

Packet Length Mean Mean length of a packet

Packet Length Std Standard deviation length of a packet

Packet Length Variance Variance length of a packet

FIN Flag Count Number of packets with FIN

SYN Flag Count Number of packets with SYN

RST Flag Count Number of packets with RST

PSH Flag Count Number of packets with PUSH

ACK Flag Count Number of packets with ACK

URG Flag Count Number of packets with URG

CWR Flag Count Number of packets with CWR

ECE Flag Count Number of packets with ECE

down/Up Ratio Download and upload ratio

Average Packet Size Average size of packet

Fwd Segment Size Avg Average size observed in the forward direction
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Bwd Segment Size Avg Average size observed in the backward direction

Fwd Bytes/Bulk Avg Average number of bytes bulk rate in the forward direction

Fwd Packet/Bulk Avg Average number of packets bulk rate in the forward direc-

tion

Fwd Bulk Rate Avg Average number of bulk rate in the forward direction

Bwd Bytes/Bulk Avg Average number of bytes bulk rate in the backward direction

Bwd Packet/Bulk Avg Average number of packets bulk rate in the backward direc-

tion

Bwd Bulk Rate Avg Average number of bulk rate in the backward direction

Subflow Fwd Packets The average number of packets in a sub flow in the forward

direction

Subflow Fwd Bytes The average number of bytes in a sub flow in the forward

direction

Subflow Bwd Packets The average number of packets in a sub flow in the back-

ward direction

Subflow Bwd Bytes The average number of bytes in a sub flow in the backward

direction

Fwd Init Win bytes The total number of bytes sent in initial window in the for-

ward direction

Bwd Init Win bytes The total number of bytes sent in initial window in the back-

ward direction

Fwd Act Data Pkts Count of packets with at least 1 byte of TCP data payload

in the forward direction

Fwd Seg Size Min Minimum segment size observed in the forward direction

Active Min Minimum time a flow was active before becoming idle
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Active Mean Mean time a flow was active before becoming idle

Active Max Maximum time a flow was active before becoming idle

Active Std Standard deviation time a flow was active before becoming

idle

Idle Min Minimum time a flow was idle before becoming active

Idle Mean Mean time a flow was idle before becoming active

Idle Max Maximum time a flow was idle before becoming active

Idle Std Standard deviation time a flow was idle before becoming

active
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