
XFEM based Multiscale Approach for the Analysis of
Masonry Walls

Khaled Abdelhalim

A Thesis

in

The Department

of

Building, Civil and Environmental Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of

Master of Applied Science (Civil Engineering) at

Concordia University
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Abstract

XFEM based Multiscale Approach for the Analysis of Masonry Walls

Khaled Abdelhalim

The increasing global emphasis on sustainable development has underscored the importance of

understanding the mechanical behaviour of masonry materials in the context of modern construction

practices. This thesis presents an X-FEM-based computational homogenization framework tailored

for analysing heterogeneous masonry structures. The methodology leverages the advantages of the

eXtended Finite Element Method (X-FEM) in introducing phased changes and capture interface

behaviour within the representative volume element (RVEs) to represent the material behaviour of

masonry structures.

The proposed framework introduces techniques for calculating effective material properties,

incorporating periodicity of the masonry wall structure, and addressing interface damage effects. A

detailed derivation of the governing equations is presented, along with rigorous validation against

benchmark studies and experimental results from the literature. The analysis encompasses multiple

case studies, including parametric studies on RVE size, assumed boundary condition effects, and the

impact of interface damage on homogenized properties. Results reveal the accuracy and robustness

of the X-FEM based approach in capturing the homogenized behaviour masonry walls.

This study not only bridges gaps in existing computational techniques but also provides insights

into optimizing modelling strategies for masonry homogenization. The developed framework holds

significant potential for applications in structural analysis and the sustainable design of masonry

structures, offering a reliable tool for engineers and researchers in the field of computational me-

chanics.
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Chapter 1

Introduction

1.1 Background and Motivation

Masonry structures have been an integral part of human civilization for thousands of years, serv-

ing as fundamental components in buildings, bridges, and monuments. From the ancient pyramids

of Egypt to modern urban architecture, masonry’s enduring presence highlights its significance in

construction. This widespread use is attributed to masonry’s durability, aesthetic appeal, and the

abundance of raw materials like stone, brick, and mortar. As societies continue to rely on masonry

for both historical preservation and new construction, understanding its mechanical behaviour be-

comes increasingly important.

Despite its long-standing prominence, masonry remains a complex material to analyse due to

its heterogeneous composition. Unlike monolithic materials, masonry consists of discrete units

(bricks or stones) bonded together by mortar joints. This composite nature introduces variability

in material properties and creates discontinuities at the interfaces between units and mortar. These

discontinuities can significantly influence the structural performance of masonry, particularly un-

der mechanical loading conditions. Accurately predicting the behaviour of masonry structures is

essential for ensuring their safety, longevity, and resilience.

Advancements in computational mechanics have provided powerful tools for simulating and

analysing complex materials such as masonry. The Finite Element Method (FEM), in particular, has
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been widely adopted for structural analysis due to its versatility and robustness. FEM allows engi-

neers to model structures at various scales, providing insights into stress distributions, deformation

patterns, and potential failure mechanisms. However, traditional FEM approaches face challenges

when applied to masonry structures, as the inherent discontinuities and heterogeneities in masonry

require highly refined meshes to capture the local interactions accurately, leading to increased com-

putational costs and complexity.

In response to these challenges, researchers have explored enhanced computational methods that

can more effectively model discontinuities without the need for excessive mesh refinement. The Ex-

tended Finite Element Method (XFEM) has emerged as a promising technique in this regard. XFEM

extends the capabilities of FEM by incorporating enrichment functions that represent discontinuities

such as cracks and material interfaces within the elements themselves. This allows for the modelling

of complex behaviours without altering the underlying mesh, improving computational efficiency

while maintaining accuracy.

Furthermore, computational homogenization techniques offer a means to bridge the gap be-

tween the micro-level behaviour of individual masonry components and the macro-level structural

response. By averaging the mechanical properties over a representative volume element (RVE), ho-

mogenization provides effective material properties that account for the heterogeneity of masonry.

Combining XFEM with computational homogenization presents an opportunity to develop a robust

framework for analysing masonry structures, capturing both the local discontinuities and the global

structural behaviour.

Recent advancements have extended these approaches to nonlinear analysis, which is crucial

for understanding the mechanical response of masonry under higher loads and progressive damage.

A nonlinear computational framework enables the accurate modelling of traction-separation laws

at interfaces, the evolution of stress and traction fields, and the iterative solution of equilibrium

equations. This capability significantly enhances the predictive power of computational models,

facilitating more reliable assessments of masonry structures under complex loading conditions.
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1.2 Problem Statement

Despite the potential of XFEM and computational homogenization, their application to ma-

sonry structures remains limited. Traditional modelling approaches either oversimplify the material

by treating it as homogeneous or become computationally impractical when attempting to model

every discontinuity explicitly. The lack of a comprehensive framework that integrates XFEM with

homogenization techniques for masonry analysis leads to gaps in accurately predicting structural

responses, particularly in both linear and nonlinear regimes.

Masonry structures are susceptible to stress concentrations and crack formations due to their

discontinuous nature. These phenomena are critical in the early stages of loading and evolve further

under increased stress, affecting the structural integrity over time. Existing methods struggle to

capture the initiation and propagation of cracks within masonry without resorting to fine meshes

or complex remeshing algorithms. Moreover, the absence of robust iterative solution procedures

for nonlinear problems limits the ability to simulate damage evolution, cohesive interactions, and

progressive failure mechanisms.

Therefore, there is a need for a computational framework that can effectively model the me-

chanical behaviour of masonry structures by accounting for their heterogeneous composition and

discontinuities. Such a framework should leverage the strengths of XFEM in handling discontinu-

ities, employ homogenization techniques to represent the effective material properties at the macro

scale, and incorporate nonlinear solution strategies to capture the progressive response of masonry

under complex loading conditions. Addressing this need will enhance the predictive capabilities of

computational models for masonry structures, leading to better-informed engineering decisions.

1.3 Research Objectives

The primary objective of this thesis is to develop a computational homogenization framework

based on the Extended Finite Element Method (XFEM) for the analysis of masonry structures within

both the linear elastic and nonlinear regimes. The specific goals are:
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• To formulate a theoretical framework that integrates XFEM with computational homoge-

nization techniques to model the mechanical behaviour of masonry structures, capturing both

the micro-level discontinuities and macro-level responses.

• To implement the framework numerically, developing algorithms and computational pro-

cedures that efficiently handle discontinuities without the need for remeshing or excessive

mesh refinement.

• To extend the framework to nonlinear analysis, incorporating iterative solution methods

such as the Newton-Raphson procedure, traction-separation laws, and cohesive interaction

models to simulate the progressive response of masonry structures.

• To validate the framework through numerical experiments and comparisons with existing

analytical solutions and traditional FEM models, assessing its accuracy and computational

efficiency.

• To analyse the influence of microstructural features on the effective material properties

of masonry, investigating how variations in brick and mortar configurations affect the overall

structural response.

1.4 Scope of the Study

This thesis focuses on both the linear elastic and nonlinear analysis of masonry structures, em-

phasizing the response under mechanical loading conditions. The scope is defined as follows:

• Linear and Nonlinear Regimes: The study extends beyond the linear elastic assumption

to incorporate nonlinear traction-separation laws, residual update procedures, and iterative

correction techniques.

• Two-Dimensional modelling: The analysis is conducted in a two-dimensional context, which

is appropriate for masonry wall structural components where one dimension is significantly

smaller than the others, or where plane stress conditions apply.
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• Representative Volume Elements (RVEs): The microstructural analysis utilizes RVEs to

capture the heterogeneity of masonry. The size and configuration of RVEs are selected to be

representative of the overall material behaviour.

• Computational Implementation: The numerical implementation is developed within the

framework of XFEM, focusing on the integration with homogenization and nonlinear solution

techniques.

• Validation: The framework is validated through comparisons with alternative modelling ap-

proaches, analytical solutions and existing results from literature. Experimental validation is

beyond the scope of this thesis but is acknowledged as an important aspect for future research.

1.5 Significance of the Study

The development of an XFEM-based computational homogenization framework for masonry

structures offers several significant contributions:

• Enhanced modelling Accuracy: By accurately capturing the discontinuities inherent in ma-

sonry, the framework improves the precision of simulations, leading to better predictions of

structural behaviour under various loading conditions.

• Computational Efficiency: The use of XFEM eliminates the need for mesh refinement

around discontinuities, reducing computational resources and time required for simulations.

This efficiency is crucial for practical engineering applications and large-scale analyses.

• Insight into Micro-Macro Relationships: The homogenization approach provides a deeper

understanding of how microstructural features influence the macro-level properties of ma-

sonry. This insight can inform material selection, design strategies, and preservation tech-

niques.

• Contribution to Structural Engineering Practices: The findings and methodologies pre-

sented in this thesis have the potential to enhance structural assessment and design practices

for masonry structures, contributing to safer and more reliable constructions.
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1.6 Thesis Outline

The thesis is organized into six sections, each building upon the previous to develop and validate

the proposed computational framework.

• Chapter 1: Introduction provides an overview of the research background, identifies the

problem, outlines the research objectives, defines the scope, and highlights the significance

of the study.

• Chapter 2: Literature Review surveys existing research on masonry modelling, the Finite

Element Method, the Extended Finite Element Method, and computational homogenization

techniques, including nonlinear approaches. The chapter identifies gaps in the current knowl-

edge and positions the thesis within the broader context of structural engineering research.

• Chapter 3: Theoretical Framework and Numerical Implementation presents the math-

ematical formulations underlying the XFEM and homogenization methods. It details the

derivation of governing equations, the treatment of discontinuities, and the principles of scale

separation essential for homogenization. It discusses the practical aspects of implementing

the theoretical framework. It covers the discretization strategies, interpolation functions, en-

richment schemes for XFEM, and the handling of boundary conditions in the context of RVEs,

including the developed nonlinear iterative solution procedures and traction-separation mod-

els.

• Chapter 4: Results and Validation showcases the application of the developed framework to

various numerical examples. The results are analysed and compared with analytical solutions

and traditional FEM models to validate the accuracy and efficiency of the approach.

• Chapter 5: Conclusions and Future Work summarizes the key findings, reflects on the

implications of the research, and suggests directions for future studies, including potential

extensions to nonlinear analysis and experimental validation.
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Chapter 2

Literature Review

Masonry, as a composite material consisting of bricks bonded by mortar, exhibits complex me-

chanical behaviour due to its heterogeneous nature. The response of masonry structures is inherently

governed by the properties of these components and the interactions at their interfaces. Over the

years, various methodologies have been proposed to model and predict the mechanical properties

of masonry, both at the material and structural levels. The evolution of these methodologies reflects

the ongoing effort to achieve greater accuracy in the analysis and design of masonry structures.

As research on masonry modelling evolved, homogenization techniques emerged as a practical

approach to representing its mechanical behaviour at the structural level. These methods approxi-

mate masonry’s elastic response by treating it as a continuum, enabling efficient structural analysis

while preserving essential material characteristics. Calderini et al. [1], Beyer and Mangalathu [2],

and Messali et al. [3] introduced equivalent material formulations that estimate masonry’s over-

all stiffness and strength based on experimental calibration. While these approaches facilitated

engineering applications, they relied on idealized assumptions that simplified the inherent hetero-

geneities of masonry. In seismic design, masonry walls are frequently modelled as shear walls,

where flexural failure mechanisms are preferable for ensuring ductility and mitigating damage under

lateral loading [4]. The refinement of homogenization models remains a central focus in masonry

research, as the accuracy of these models directly impacts the reliability of seismic performance

assessments and structural safety evaluations.
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The initial attempts to model masonry’s mechanical behaviour focused on simplifying assump-

tions to make the problem more tractable. Pande et al. [5] introduced an equivalent elastic modulus

for brick masonry by modelling the material as a system of parallel layers. This method was among

the earliest to provide a practical approach for estimating masonry’s mechanical properties. How-

ever, it relied heavily on the assumption of perfect bonding between the brick and mortar, which

oversimplified the complex interactions that actually occur within masonry structures.

As homogenization techniques advanced, researchers sought to enhance the accuracy of equiva-

lent formulations by incorporating more detailed representations of masonry’s heterogeneous struc-

ture. Briccoli Bati et al. [6] introduced a micromechanical approach by applying Eshelby’s ana-

lytical solution for elliptical inclusions to derive homogenized elastic properties, offering a more

rigorous perspective on material behaviour. This approach provided greater accuracy than earlier

models, particularly in capturing the geometric aspects of masonry constituents. However, it relied

on the assumption of perfect bonding between the components, which limited its ability to model

debonding and other interface-related failures. Around the same time, Anthoine [7] developed peri-

odic homogenization principles, leveraging the concept of a repeating unit cell to estimate effective

stiffness, while Pietruszczak and Niu [8] proposed a three-dimensional averaging approach to im-

prove the prediction of macroscopic properties by incorporating geometric and material variations.

More recently, Drougkas et al. [9] extended Eshelby’s solution to assess the mechanical response of

damaged masonry, validating its effectiveness through experimental comparisons. The progression

of these studies illustrates the shift from early simplified models to more advanced formulations ca-

pable of capturing masonry’s anisotropic and damage-dependent behaviour, reflecting the ongoing

effort to achieve greater accuracy in computational modelling.

Luciano and Sacco [10] advanced the field by incorporating damage mechanics into the ho-

mogenization framework. Their work allowed for the evaluation of the mechanical properties of

damaged masonry, marking a significant step forward in capturing the degradation effects within

masonry materials. Despite this progress, the model struggled to accurately represent the discon-

tinuities and weak interfaces that are characteristic of masonry, particularly under conditions that

lead to cracking.
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As researchers sought to improve the realism of these models, Guedes and Kikuchi [11] intro-

duced adaptive finite element methods (AFEM). Their approach allowed for mesh refinement based

on error estimates, which enhanced the accuracy of simulations for complex microstructures like

those found in masonry. However, this method also highlighted the significant computational chal-

lenges associated with such detailed modelling, particularly when dealing with discontinuities like

cracks, which required complex remeshing strategies.

Fish and Wagiman [12] further extended the capabilities of finite element modelling by develop-

ing a multiscale finite element method (MSFEM) capable of analysing nonperiodic microstructures.

This was particularly relevant for masonry, where the arrangement of bricks and mortar does not

always follow a regular pattern. Their method expanded the mathematical homogenization theory

to accommodate nonperiodic structures, though it still faced difficulties in accurately modelling the

discontinuities that are prevalent in masonry, such as cracks and voids.

The limitations of traditional finite element methods in handling discontinuities were further ad-

dressed by Melenk and Babuška [13], who introduced the Partition of Unity Finite Element Method

(PUFEM). This method was designed to address problems with rough or highly oscillatory solu-

tions, where classical polynomial-based FEM failed unless the mesh size was very small or the

polynomial degree was very high. PUFEM allowed for the inclusion of local behaviour into the

global approximation space, thereby improving the robustness of simulations. However, the diffi-

culty in efficiently integrating shape functions against each other complicated the construction of

the stiffness matrix, which remained a challenge in its practical implementation.

To address mesh dependency issues in fracture modelling, researchers introduced Cohesive

Zone Models (CZM) as a viable alternative, providing a more localized approach to crack evo-

lution. These models localize softening effects within an interface region, where damage progres-

sion is governed by traction-separation laws rather than distributed strain softening. Potential-based

cohesive models [14]–[18] introduced a thermodynamically consistent framework, deriving inter-

face tractions from an energy potential to ensure robust predictions under mixed-mode loading. In

contrast, plasticity-based cohesive models [19]–[22] incorporated yield or interaction surfaces to

regulate softening, providing greater control over failure evolution. These formulations have been

widely implemented in masonry modelling, offering a more accurate representation of progressive
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bond degradation and interface cohesion loss under mechanical loading. However, CZM approaches

typically require predefined crack paths or cohesive interfaces, limiting their adaptability in cases

where cracks develop in arbitrary directions. To overcome this limitation, the Extended Finite Ele-

ment Method (X-FEM) was introduced, allowing discontinuities to be incorporated independently

of the finite element mesh, thereby enhancing computational efficiency and flexibility in fracture

modelling.

In the next phase of development, Belytschko and Black [23] introduced the Extended Finite El-

ement Method (X-FEM) to overcome the limitations of traditional FEM in handling discontinuities

such as cracks. The X-FEM method enriched the solution space with discontinuous functions, al-

lowing for the modelling of cracks and inclusions without requiring remeshing. This approach was

particularly beneficial for masonry structures, where the presence of cracks and heterogeneous ma-

terials significantly affects mechanical behaviour. The motivation behind X-FEM was to address the

computational challenges posed by remeshing in traditional FEM, although issues with numerical

integration near discontinuities persisted.

Following the introduction of X-FEM by Belytschko and Black [23], significant advancements

were made to enhance the method’s applicability and accuracy, particularly for complex materials

like masonry. Moës et al. [24] extended the X-FEM framework to handle crack growth without

the need for remeshing. This was a critical development for dynamic scenarios typical in masonry

structures, where cracks can propagate in unpredictable patterns. While this method addressed

some geometric challenges, issues related to numerical stability and mesh refinement remained,

particularly in cases involving complex crack paths.

Building on this, Sukumar et al. [25] integrated level set methods into X-FEM, which allowed

for the accurate modelling of internal boundaries such as holes and inclusions within materials.

This was particularly relevant for masonry, where voids and inclusions can significantly influence

mechanical behaviour. The level set method provided a robust numerical technique for tracking

interfaces and shapes, making it a powerful tool for representing the internal complexities of ma-

sonry. However, the method’s high computational demands limited its practicality for large-scale

applications, especially in engineering contexts where computational efficiency is paramount.

Miehe and Koch [26] proposed a computational micro-to-macro transition method, which was
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essential for linking detailed microstructural characteristics to macroscopic behaviour. This ap-

proach provided a means to predict the overall mechanical properties of materials like masonry,

which are influenced by their heterogeneous microstructures. The method focused on deriving

macroscopic stress-strain responses from microstructural analyses, ensuring that the influence of

microstructural heterogeneities was accurately captured. While homogenization techniques provide

efficient estimates of effective material properties, they inherently assume a continuous medium,

making them inadequate for capturing localized failure mechanisms such as interface debonding

and crack propagation. This limitation is particularly significant in masonry, where weak mortar

joints and interfacial discontinuities dictate structural behaviour. To address these challenges, ad-

vanced numerical techniques such as the Extended Finite Element Method (X-FEM) have been

developed, offering an enriched formulation capable of incorporating discontinuities independently

of the mesh.

Stroeven et al. [27] addressed the challenge of determining the appropriate size for Representa-

tive Volume Elements (RVEs) in heterogeneous materials. They introduced a statistical approach to

quantify RVE size, ensuring that the simulations reflected the material’s behaviour on a larger scale.

This was particularly important for masonry, where material properties can vary significantly due

to its heterogeneous nature. The method relied on generating various random particle distributions

and conducting finite element simulations to evaluate how material properties varied with changes

in particle configuration. Despite its effectiveness, handling complex geometries and material het-

erogeneities remained a challenge, particularly in accurately capturing localized phenomena such

as stress concentrations and crack propagation.

In an effort to improve the micro-macro modelling of heterogeneous materials, Kouznetsova

et al. [28] introduced a strategy that derived macroscopic behaviour from detailed microstructural

modelling without relying on predefined constitutive models. This method was particularly effective

for materials undergoing large deformations and exhibiting history-dependent material behaviour,

such as masonry. By coupling micro-level (RVE) analysis with macro-level (structural) analysis,

this approach ensured that the influence of microstructural heterogeneities was accurately accounted

for in the overall structural response. However, simplifying the analysis to two-dimensional RVEs
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sometimes led to inaccuracies for materials with complex three-dimensional microstructures, a lim-

itation that needed to be addressed in further developments.

The work of Fernandes et al. [29] used the boundary element method (BEM) to model phase

debonding and interface behaviours in heterogeneous materials. This approach was highly relevant

to masonry, where phase interactions between bricks and mortar significantly influence mechanical

behaviour. The BEM formulation efficiently handled the computational cost and complexity asso-

ciated with analysing phase debonding, particularly in large-scale problems. However, BEM can

be computationally intensive and may not fully capture discontinuities without mesh modifications,

indicating a need for more efficient methods like X-FEM to address these challenges.

Zhou et al. [30] explored the impact of crack density and connectivity on the permeability of mi-

crocracked solids, modelling cracks as isolated or connected inclusions. Their work was critical in

understanding the durability and serviceability of materials like masonry, where crack networks sig-

nificantly affect permeability. The study extended the Interaction Direct Derivative (IDD) method to

account for cracks with finite connectivity, recognizing that cracks in real materials are not isolated

but tend to cluster and interconnect. While this method provided valuable insights into how crack

connectivity impacts material properties, it may not fully capture the complexities of real-world

crack networks, which are often more intricate than the simplified models used in the study.

As the development of numerical methods continued, researchers began to address specific chal-

lenges in the modelling of masonry structures, particularly those related to the accurate representa-

tion of complex geometries and material interfaces. The Extended Finite Element Method (X-FEM)

played a crucial role in these advancements, offering a framework that could handle discontinuities

more effectively than traditional finite element methods.

One significant contribution to the advancement of X-FEM was made by Zi and Belytschko

[31], who introduced new crack-tip elements specifically designed to model cohesive cracks. This

development allowed for the simulation of arbitrary crack paths, including complex geometries such

as curved and intersecting cracks, which are common in masonry structures. By enriching the fi-

nite element space with special functions, their method provided a robust framework for accurately

simulating crack growth without the need for remeshing. However, the method was primarily fo-

cused on homogeneous materials and did not fully address the multi-scale nature of materials like
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masonry, where different phases interact at various scales.

Song et al. [32] further extended the capabilities of X-FEM by developing a method for dynamic

crack and shear band propagation using phantom nodes. This approach allowed for the representa-

tion of discontinuities within elements without requiring mesh alignment, reducing computational

costs and improving accuracy in dynamic simulations. The phantom node method was particu-

larly useful for modelling cracks and shear bands in dynamic environments, which are relevant to

masonry structures subjected to seismic loading. However, the method’s assumptions of material

homogeneity limited its applicability to heterogeneous materials like masonry, where the interaction

between different phases is critical.

Laborde et al. [33] introduced a high-order X-FEM that incorporated polynomial basis func-

tions and tailored enrichment functions to improve the accuracy of simulations in cracked domains.

Their method addressed some of the convergence issues observed in earlier X-FEM approaches,

particularly near crack tips where singularities can lead to suboptimal convergence rates. By en-

riching the finite element space with higher-order polynomial functions, their method provided a

more accurate representation of displacement fields around crack tips. Despite these advancements,

the method still faced challenges in handling complex microstructures like those found in masonry,

particularly in maintaining accuracy and computational efficiency in large-scale problems.

Moës et al. [34] tackled the challenge of handling complex microstructure geometries by decou-

pling the mesh from the physical geometry of the problem. Their approach used level set functions

to represent material interfaces, allowing for the accurate modelling of non-conforming meshes,

which are often necessary in masonry structures. This method significantly reduced the compu-

tational burden associated with meshing complex geometries, making it more feasible to analyse

masonry structures with intricate internal boundaries. However, while the method improved the

handling of complex geometries, issues related to mesh conformity and convergence rates remained,

particularly in non-conforming meshes.

As researchers sought to overcome the limitations of rigid interface assumptions, three-phase

modelling approaches emerged to explicitly capture the interactions between bricks, mortar, and
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their interfaces. These models introduced zero-thickness interface elements, enabling the simula-

tion of bond degradation and progressive cracking under mechanical loading [35]–[39]. By incor-

porating an independent interface phase, these approaches offered a more refined representation

of masonry’s nonlinear response, particularly in modelling failure mechanisms driven by interface

debonding. However, their accuracy came at the cost of increased computational demand, as fine

discretization within mortar joints was often required to ensure numerical stability. A detailed

review by D’Altri et al. [40] provides a comprehensive assessment of three-phase modelling strate-

gies, discussing the balance between predictive accuracy and computational efficiency in masonry

analysis.

The need for accurate modelling of crack propagation in materials with frictional forces was

addressed by Liu and Borja [41], who introduced a robust contact algorithm within the X-FEM

framework. Their method incorporated special enrichment functions to simulate discontinuities

such as cracks within the material, allowing for the decoupling of crack growth from the underlying

mesh. This approach was particularly advantageous for simulating frictional cracks in materials like

masonry, where internal discontinuities significantly influence mechanical behaviour. The method

proved useful in accurately modelling contact mechanics, but its focus on homogeneous materials

limited its application to more complex, heterogeneous structures like masonry.

Fries and Baydoun [42] introduced a hybrid explicit-implicit crack description method within X-

FEM, which combined the geometric accuracy of explicit crack descriptions with the computational

efficiency of implicit methods. This approach was designed to handle complex crack geometries,

making it particularly relevant for masonry structures with arbitrary crack growth directions. While

the hybrid method offered a robust solution for crack propagation in brittle materials, it did not

incorporate the multi-scale nature of masonry, where interactions between different phases must be

accurately modelled to predict the material’s overall behaviour.

Chessa et al. [43] made significant advancements in the construction of blending elements

within the Partition of Unity Finite Element Method (PUFEM), which was essential for ensuring

smooth transitions between enriched and unenriched regions in finite element meshes. Their method

addressed the errors and convergence issues that often arose in traditional blending elements, partic-

ularly in regions where the mesh transitioned between different levels of enrichment. By proposing
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an enhanced strain formulation based on the Hu-Washizu variational principle, they improved the

accuracy and convergence of enriched finite element solutions. However, their approach was gen-

eral and not specifically tailored to the unique challenges posed by heterogeneous materials like

masonry, where phase interactions play a critical role in determining overall behaviour.

As the modelling of masonry structures continued to evolve, attention shifted towards improving

the accuracy and efficiency of computational methods, particularly for materials with complex mi-

crostructures like masonry. The developments in X-FEM and related techniques were instrumental

in addressing the challenges posed by the heterogeneity and discontinuities inherent in masonry.

One of the key challenges in the homogenization of masonry was accurately determining the

Representative Volume Element (RVE) size, which is crucial for capturing the material’s effective

properties. Kanit et al. [44] conducted a study to establish a method for determining the appropriate

RVE size for random heterogeneous materials. Their approach combined statistical analysis with

numerical simulations to estimate the effective properties of materials like masonry, where vari-

ability in microstructure can significantly influence overall behaviour. This study was particularly

relevant to computational homogenization, as it provided a framework for ensuring that the selected

RVE is representative of the material’s macroscopic properties. However, their methodology faced

challenges in fully capturing the anisotropic behaviour typical of masonry structures.

Geers et al. [45] advanced the field of computational homogenization by developing methods

that incorporated higher-order terms to account for microstructural characteristics in the macro-

scopic response. Their work was particularly relevant to the analysis of nonlinear solids, where

traditional first-order homogenization approaches often failed to capture critical behaviours like lo-

calization and failure processes. This approach was essential for modelling masonry, where the

interaction between different phases—such as bricks and mortar—can significantly affect the ma-

terial’s response under stress. However, the complexity of implementing these higher-order terms,

especially in large-scale simulations, remained a significant challenge.

The application of computational homogenization to masonry was further explored by Hollis-

ter and Kikuchi [46], who compared homogenization theory with standard mechanics analyses for

periodic porous composites. Their study highlighted the limitations of traditional mechanics ap-

proaches in capturing the local strain energy distributions and effective stiffness in materials like
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masonry, where the microstructure plays a critical role. By emphasizing the need for accurate

boundary conditions and RVE configurations, this work laid the groundwork for the application of

homogenization techniques in materials with complex microstructures, such as masonry.

Wriggers and Moftah [47] introduced mesoscale models that aimed to bridge the gap between

microscale and macroscale analyses by incorporating damage behaviour into the homogenization

process. Their work was particularly significant for masonry, where the damage typically initiates

at the microstructural level before propagating to the macroscopic scale. The mesoscale approach

allowed for a more detailed analysis of how microstructural damage influences the overall mechan-

ical properties of masonry. However, their models tended to overestimate the material’s behaviour

due to the exclusion of the Interfacial Transition Zone (ITZ), highlighting the need for more com-

prehensive models that account for this critical aspect of masonry.

Larsson et al. [48] proposed a computational homogenization method based on a weak format

of micro-periodicity, which offered greater flexibility in handling unstructured meshes and complex

microstructures. This approach was particularly advantageous for masonry, where the microstruc-

ture often lacks the periodicity assumed in traditional homogenization techniques. By allowing for

independent finite element discretization of boundary tractions, their method improved the robust-

ness and accuracy of homogenization analyses. However, the method’s effectiveness was somewhat

limited by its reliance on the Ladyzhenskaya–Babuška–Brezzi (LBB) condition, which could com-

plicate the analysis of materials with highly irregular microstructures, such as masonry.

As the field of computational mechanics advanced, the focus increasingly shifted toward inte-

grating these methods into a cohesive framework that could accurately model the complex behaviour

of masonry structures. The development of the Extended Finite Element Method (X-FEM) provided

the necessary tools to handle the discontinuities and heterogeneities inherent in masonry, while com-

putational homogenization offered a way to link microstructural characteristics with macroscopic

behaviour.

The study by Sukumar et al. [49] marked a significant step forward in the application of X-

FEM to quasi-static crack growth, providing a robust computational implementation that could han-

dle complex crack paths without requiring frequent remeshing. This was particularly relevant for

masonry, where the interaction between cracks and the microstructure can significantly influence
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the material’s overall behaviour. However, while the method effectively captured the behaviour

of cracks in homogeneous materials, it was not specifically tailored for the multi-phase nature of

masonry, where different materials (e.g., bricks and mortar) exhibit distinct mechanical properties.

Rethore et al. [50] introduced a stable numerical scheme for dynamic crack propagation with

remeshing, addressing the challenges of maintaining numerical stability and energy balance during

the simulation of evolving crack paths. Their method was particularly important for modelling ma-

sonry structures under dynamic loading conditions, such as earthquakes, where cracks can propagate

unpredictably. The balance recovery method they developed ensured that energy conservation laws

were upheld, improving the physical accuracy of the simulations. However, the method’s reliance

on remeshing could be computationally expensive, particularly for large-scale masonry structures

where multiple cracks may need to be simulated simultaneously.

This study presents a novel X-FEM-based computational homogenization framework for ma-

sonry, overcoming the limitations of traditional FEM-based approaches by incorporating phase tran-

sitions and interface discontinuities within a structured finite element mesh. Unlike standard com-

putational homogenization methods, which rely on predefined interface conditions, the proposed

approach seamlessly integrates a Coulomb-based traction-separation law to model progressive bond

degradation.

To ensure robustness, the framework systematically evaluates the impact of alternative RVE

boundary conditions on homogenized properties. Validation against literature benchmarks and

parametric studies confirms its ability to capture masonry’s nonlinear response accurately. Un-

like conventional finite element techniques, X-FEM eliminates the need for complex remeshing

strategies, enabling a more flexible and computationally efficient representation of heterogeneous

materials. By leveraging advanced crack propagation models and improved interface characteriza-

tion, this framework provides a powerful tool for bridging the gap between microstructural details

and macroscopic performance in masonry structures.
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Chapter 3

Theoretical Framework and Numerical

Implementation

3.1 Introduction to Homogenization Techniques

Homogenization is a mathematical method used to derive effective macroscopic properties of a

heterogeneous material by averaging its microscale behaviour. It simplifies complex microstructures

into an equivalent homogeneous medium, facilitating analysis and computation.

In materials like masonry, which consist of units (bricks or stones) and mortar joints, directly

modelling every microstructural detail is computationally expensive and often impractical. Homog-

enization allows engineers to capture the essential mechanical behaviour of such materials without

resolving every micro-feature, enabling efficient analysis of large-scale structures.

Consider a composite material with alternating layers of two different materials. Homogeniza-

tion techniques can compute an effective stiffness that represents the combined response of these

layers under load. This effective property can then be used in structural analyses without explicitly

modelling each layer.
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3.2 Displacement and Stress Fields in Heterogeneous Media

In heterogeneous materials, such as masonry structures, the presence of different materials and

interfaces leads to complexities in displacement and stress fields. This section introduces the essen-

tial equations governing these fields and discusses how discontinuities are handled.

3.2.1 Nature of Displacement Discontinuities

Displacement discontinuities occur in heterogeneous media due to the presence of material in-

terfaces, cracks, or other discontinuities. In masonry structures, the interfaces between masonry

units and mortar joints can cause abrupt changes in displacement. These discontinuities arise for

several physical reasons.

Firstly, material interfaces between different constituents, such as bricks and mortar, may have

different mechanical properties, leading to variations in deformation responses under the same load.

The mismatch in stiffness or thermal expansion coefficients can cause discontinuities at the inter-

faces.

Secondly, the presence of cracks and defects within the material introduces displacement jumps

across the faces of the cracks. These defects can be due to manufacturing imperfections, environ-

mental degradation, or mechanical loading beyond the material’s strength.

Lastly, geometric irregularities in the structure, such as voids or inclusions, can result in non-

uniform deformation. Variations in the geometry can concentrate stresses and strains in certain

regions, causing localized displacement discontinuities.

Handling Discontinuities with XFEM

The Extended Finite Element Method (XFEM) extends the classical FEM by enriching the dis-

placement approximation to capture discontinuities within elements. XFEM introduces additional

functions, known as enrichment functions, to model the discontinuous behaviour without the need

to remesh around discontinuities.

By incorporating these enrichment functions, XFEM can accurately represent discontinuities
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within elements, enhancing the capability of FEM in modelling heterogeneous materials with dis-

placement discontinuities.

3.3 Derivation of Governing Equations

This section provides a detailed derivation of the governing equations for elastic and nonlinear

materials, starting from first principles and leading to the weak formulation suitable for numerical

methods.

3.3.1 Equilibrium Equations

Basic Principles

The equilibrium of forces in a deformable body requires that the sum of internal and external

forces be zero. Considering an infinitesimal volume element within the material, the balance of

linear momentum in the absence of inertial effects is expressed as:

∂σij
∂xj

+ pi = 0 (1)

In this equation, σij is the Cauchy stress tensor, representing internal stresses, and pi is the body

force per unit volume acting in the i-th direction, representing external forces such as gravity.

At any internal surface within the material, stress continuity must be maintained to ensure equi-

librium. This condition is mathematically expressed by:

σijnj = ti (2)

Here, nj is the outward unit normal to the surface, and ti is the traction vector acting on the

surface. This equation ensures that the internal stresses result in tractions that balance any applied

forces across internal surfaces.
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3.3.2 Boundary Conditions

To solve the equilibrium equations, appropriate boundary conditions must be specified. These

conditions define how the material interacts with its surroundings and are essential for obtaining a

unique solution.

Dirichlet boundary conditions, also known as displacement boundary conditions, prescribe the

displacement on a portion of the boundary ΓD of the domain Ω. They are expressed as:

u = r on ΓD (3)

In this expression, u is the displacement vector, and r is the specified displacement function on

the boundary ΓD. These conditions are applied to boundaries where the displacement is controlled,

such as fixed supports.

Neumann boundary conditions, also known as traction boundary conditions, prescribe the trac-

tion on a portion of the boundary ΓN . They are given by:

σijnj = −si on ΓN (4)

Here, si is the specified traction vector on the boundary ΓN . These conditions are applied to

boundaries where forces or stresses are applied, such as external loads.

The boundary of the domain ∂Ω is partitioned such that:

∂Ω = Γ = ΓD ∪ ΓN and ΓD ∩ ΓN = ∅ (5)

This ensures that the entire boundary is covered by either Dirichlet or Neumann conditions

without overlap.

3.3.3 Conversion to Weak Formulation

The weak form of the equilibrium equations is derived to facilitate numerical solution methods

like the finite element method (FEM). The process involves multiplying the equilibrium equations

by a virtual displacement δui and integrating over the domain Ω.
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Starting from the equilibrium equation:

∂σij
∂xj

+ pi = 0 (6)

Multiplying both sides by the virtual displacement δui yields:

δui

(
∂σij
∂xj

+ pi

)
= 0 (7)

Integrating over the domain Ω, we have:

∫
Ω
δui

∂σij
∂xj

dΩ+

∫
Ω
δuipidΩ = 0 (8)

Applying the divergence theorem (also known as integration by parts) to the first term:

∫
Ω
δui

∂σij
∂xj

dΩ = −
∫
Ω
σij

∂δui
∂xj

dΩ+

∫
Γ
δuiσijnjdΓ (9)

Substituting back into Equation (8), we obtain:

−
∫
Ω
σij

∂δui
∂xj

dΩ+

∫
Γ
δuiσijnjdΓ +

∫
Ω
δuipidΩ = 0 (10)

The boundary integral involves the traction, which is specified on ΓN . Since the virtual dis-

placement δui is zero on ΓD (due to the prescribed displacement), from Eq (4) we have:

∫
Γ
δuiσijnjdΓ = −

∫
ΓN

δuisidΓ (11)

Substituting this into the equation, the weak form becomes:

∫
Ω
σij

∂δui
∂xj

dΩ+

∫
ΓN

δuisidΓ +

∫
Ω
δuipidΩ = 0 (12)
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3.4 Multiscale modelling and Scale Separation

Multiscale modelling addresses the behaviour of materials with features at multiple length

scales. This section explains the concepts of scale separation and the methods used to link micro-

scale phenomena to macro-scale responses in the context of computational homogenization.

3.4.1 Concept of Scale Separation

In heterogeneous materials, two distinct spatial scales are considered. The macro-scale, de-

noted by coordinates xi, represents the overall structure where the material is treated as effectively

homogeneous. At this scale, the detailed microstructural features are not individually resolved.

The micro-scale, denoted by coordinates yi, represents the fine-scale structure where the hetero-

geneities, such as inclusions, voids, or grains, are explicitly considered. The micro-scale coordi-

nates are related to the macro-scale coordinates by a small parameter η representing the ratio of the

microstructural length scale to the macrostructural length scale [51] (see Figure. 3.1):

yi =
xi
η

(13)

Scale separation is crucial because it allows us to model complex materials by decoupling the

analysis at different scales. This separation is based on the assumption that the microstructural

features are small compared to the dimensions of the structure (η ≪ 1), enabling the use of homog-

enization techniques to compute effective properties that capture the influence of the microstructure

on the macro-scale behaviour.

3.4.2 Asymptotic Expansion Techniques

To link the micro and macro scales, asymptotic expansions are employed for the displacement

field and other quantities of interest.

The displacement field ui(xi, yi) is expanded as a series in terms of the small parameter η:

ui(xi, yi) = ūi(xi) + η ¯̄ui(xi, yi) + η2 ¯̄̄ui(xi, yi) + . . . (14)
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Figure 3.1: Homogenized material as a special case when inclusions are infinitesimally small,
i.e.,η → 0

In this expansion, ūi(xi) represents the macro-scale displacement field, which characterizes the

average behaviour of the material over the microstructure. The term ¯̄ui(xi, yi) accounts for the first-

order micro-scale fluctuations arising from material heterogeneity, capturing local deviations from

the homogenized response. Higher-order terms, which describe finer-scale effects, are typically

neglected in first-order homogenization due to their relatively minor contribution to the overall

displacement field.

The leading term ūi(xi) represents the smooth, slowly varying displacement field at the macro-

scale, unaffected by microstructural variations. However, to accurately capture the effects of hetero-

geneity, the term η ¯̄ui(xi, yi) introduces corrections that account for the influence of the microstruc-

ture, effectively capturing the rapid variations in displacement at the micro-scale.

When dealing with functions of both xi and yi, derivatives must account for variations at both

scales. Using the chain rule, the derivative with respect to xi transforms as (see [51]):

∂

∂xi
=

∂

∂xi
+
∂yj
∂xi

∂

∂yj
(15)

Since yj = xj/η, the derivative of yj with respect to xi is:
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∂yj
∂xi

=
1

η
δij (16)

Thus, the total derivative becomes:

∂

∂xi
=

∂

∂xi
+

1

η

∂

∂yi
(17)

This expression reflects the contributions of both macro-scale and micro-scale variations to the

total derivative.

3.4.3 First-Order Homogenization

Computation of the Displacement Gradient

Using the transformed derivative from Equation (17), the gradient of the displacement field is

computed as:

∂uk
∂xl

=

(
∂

∂xl
+

1

η

∂

∂yl

)(
ūk + η ¯̄uk + η2 ¯̄̄uk + . . .

)
=
∂ūk
∂xl

+
1

η

∂ ¯̄uk
∂yl

+
∂ ¯̄uk
∂yl

+ η

(
∂ ¯̄uk
∂xl

+
∂ ¯̄̄uk
∂yl

)
+ . . . . (18)

In deriving this expression, we have used the fact that ūk depends only on the macro-scale coordi-

nates xj , so
∂ūk
∂yl

= 0.

Expansion of the Strain Tensor

The strain tensor ϵkl is defined by:

ϵkl =
1

2

(
∂uk
∂xl

+
∂ul
∂xk

)
. (19)

Substituting the expanded displacement gradients from Equation (18), we obtain:
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ϵkl =
1

2

(
1

η

(
∂ ¯̄uk
∂yl

+
∂ ¯̄ul
∂yk

)
+

(
∂ūk
∂xl

+
∂ūl
∂xk

)
+

(
∂ ¯̄uk
∂yl

+
∂ ¯̄ul
∂yk

)
+ . . .

)
. (20)

Grouping terms according to their order in η, the strain tensor can be expressed as:

ϵkl =
1

η
ϵ
(−1)
kl + ϵ

(0)
kl + ηϵ

(1)
kl + . . . , (21)

where:

ϵ
(−1)
kl =

1

2

(
∂ ¯̄uk
∂yl

+
∂ ¯̄ul
∂yk

)
, (22)

ϵ
(0)
kl =

1

2

(
∂ūk
∂xl

+
∂ūl
∂xk

)
+

1

2

(
∂ ¯̄uk
∂yl

+
∂ ¯̄ul
∂yk

)
. (23)

Expansion of the Stress Tensor

Using the constitutive relation for linear elasticity:

σij = Dijklϵkl, (24)

where Dijkl is the stiffness tensor, which may vary with the micro-scale coordinates yj in hetero-

geneous materials. Substituting the expanded strain tensor from Equation (21) into the constitutive

relation, we obtain:

σij = Dijkl

(
1

η
ϵ
(−1)
kl + ϵ

(0)
kl + ηϵ

(1)
kl + . . .

)
. (25)

This expansion leads to:

σij =
1

η
σ
(−1)
ij + σ

(0)
ij + ησ

(1)
ij + . . . , (26)

where:
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σ
(−1)
ij = Dijklϵ

(−1)
kl , (27)

σ
(0)
ij = Dijklϵ

(0)
kl . (28)

Substitution into the Equilibrium Equation

The equilibrium equation in the absence of body forces is:

∂σij
∂xj

= 0. (29)

Substituting the transformed derivative from Equation (17) and the expanded stress tensor from

Equation (26), we have:

(
∂

∂xj
+

1

η

∂

∂yj

)(
1

η
σ
(−1)
ij + σ

(0)
ij + ησ

(1)
ij + . . .

)
= 0. (30)

Expanding the derivatives, we obtain:

1

η2
∂σ

(−1)
ij

∂yj
+

1

η

(
∂σ

(−1)
ij

∂xj
+
∂σ

(0)
ij

∂yj

)
+

(
∂σ

(0)
ij

∂xj
+
∂σ

(1)
ij

∂yj

)
+ · · · = 0. (31)

Equating Terms of the Same Order

To satisfy the equilibrium equation at all scales, the coefficients of each power of η must indi-

vidually equal zero.

At order η−2:

∂σ
(−1)
ij

∂yj
= 0. (32)

This equation represents the micro-scale equilibrium equation within the representative volume

element (RVE).

At order η−1:
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∂σ
(−1)
ij

∂xj
+
∂σ

(0)
ij

∂yj
= 0. (33)

However, since σ(−1)
ij depends only on the micro-scale coordinates yj , its derivative with respect to

xj is zero, i.e.,
∂σ

(−1)
ij

∂xj
= 0. Therefore, Equation (33) simplifies to:

∂σ
(0)
ij

∂yj
= 0. (34)

This equation implies that the macro-scale stress σ(0)ij is in equilibrium with respect to the micro-

scale coordinates, which is consistent with the assumption that macro-scale stresses vary slowly and

are independent of yj .

Micro-Scale Equilibrium Equation

Returning to the micro-scale equilibrium equation at order η−2 given by Equation (37), and

substituting σ(−1)
ij from Equation (27), we have:

∂

∂yj

[
Dijklϵ

(−1)
kl

]
= 0. (35)

Substituting ϵ(−1)
kl from Equation (22), the micro-scale equilibrium equation becomes:

∂

∂yj

[
Dijkl

1

2

(
∂ ¯̄uk
∂yl

+
∂ ¯̄ul
∂yk

)]
= 0. (36)

This equation governs the equilibrium of the micro-scale displacement fluctuations ¯̄ui within the

RVE. It is essential for determining the microstructural response and computing the effective mate-

rial properties in the homogenization process.

By substituting the asymptotic expansions into the governing equations and systematically col-

lecting terms of the same order in η, we have derived the micro-scale equilibrium equation at order

η−2. This equation is fundamental in first-order homogenization, as it allows us to solve for the

micro-scale fluctuations and, consequently, to determine the effective behaviour of the heteroge-

neous material at the macro-scale.

For the equilibrium equation, after substituting the expanded displacement field and applying
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Equation (17), the terms of order η−1 lead to the micro-scale equilibrium equation:

∂σ̃ij
∂yj

= 0 (37)

Here, σ̃ij is the stress tensor associated with the first-order micro-scale displacement ¯̄ui. This

equation represents the equilibrium at the micro-scale within the representative volume element

(RVE).

At order η0, the macro-scale equilibrium equation coupled with micro-scale fluctuations is ob-

tained:

∂σ̄ij
∂xj

+
∂σ̃ij
∂yj

+ pi = 0 (38)

Here, σ̄ij is the macro-scale stress tensor related to the macro-scale displacement ūi.

Equation (37) governs the equilibrium at the micro-scale and must be satisfied within the RVE

for any point yj . Equation (38) couples the macro and micro scales, indicating that the divergence of

the macro-scale stress and the micro-scale stress fluctuations, along with body forces, must balance.

By solving the micro-scale problem defined by Equation (37), we can determine the microstruc-

tural response and compute effective material properties. These properties are then used in the

macro-scale equations to predict the overall behaviour of the heterogeneous material.

3.5 Variational Principles in Homogenization

Variational principles provide a powerful framework for deriving governing equations and un-

derstanding the behaviour of materials. In homogenization, the Hill-Mandel macro-homogeneity

condition is fundamental for ensuring energy consistency between scales.

3.5.1 Formulation of the Micro-Scale Problem

The formulation of the micro-scale problem involves deriving the equilibrium equations within

the representative volume element (RVE) and establishing the constitutive relations that govern the

micro-scale material behaviour.
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To ensure equilibrium within the RVE, we start by considering the divergence of the micro-scale

stress tensor. The equilibrium equation, which must hold at all points within the RVE domain Y , is

expressed as follows:

∂σij
∂yj

= 0 in Y (39)

This equation ensures that the internal stresses are balanced at the micro-scale, aligning with the

overall equilibrium requirements of the heterogeneous material.

Next, the local constitutive relations at the micro-scale are defined to describe the material’s

response. The stress-strain relationship at this scale is given by:

σij = Dijkl(yk)

(
∂ūk
∂xl

+
∂ ¯̄uk
∂yl

)
(40)

Here, Dijkl(yk) represents the position-dependent stiffness tensor at the micro-scale, capturing

the material’s heterogeneity. The total strain is decomposed into two components: the macro-scale

strain ∂ūk
∂xl

, representing the average deformation over the RVE, and the micro-scale fluctuation strain

∂ ¯̄uk
∂yl

, which accounts for local variations within the microstructure. This decomposition allows for a

more accurate representation of the material response by separating global deformation effects from

microstructural fluctuations.

3.5.2 Representative Volume Element (RVE) Analysis

The Representative Volume Element (RVE) is a critical component in homogenization analysis.

It serves as a statistical sample of the material’s microstructure, embodying all essential features

required to derive effective properties that represent the larger material body. To ensure accurate

results, the RVE must be large enough to capture the material’s heterogeneity adequately, including

features like inclusions, voids, and grains, while remaining small relative to the macrostructural

dimensions. This balance allows the RVE to satisfy the scale separation assumption, which is

fundamental to homogenization.

Choosing an appropriate RVE is pivotal, as it directly affects the reliability of the homogenized
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properties. An RVE that accurately reflects the microstructural characteristics ensures that the de-

rived properties are representative of the material as a whole, thus enhancing the applicability of the

homogenized model in macro-scale simulations.

3.5.3 Boundary Value Problems for the Representative Volume Element (RVE)

In the context of first-order homogenization, the solution of the micro-scale equilibrium equa-

tions requires the introduction of a Representative Volume Element (RVE). The RVE serves as

a fundamental building block that captures the essential features of the material’s microstructure.

This section discusses the significance of boundary conditions applied to the RVE and derives the

corresponding equations necessary for computational homogenization.

The choice of boundary conditions imposed on the RVE significantly affects the calculated

effective material properties [44]. Since the RVE is of finite size due to a non-zero scale parameter

η, homogenization becomes approximate unless exact boundary conditions are applied. However,

the exact boundary conditions are generally unknown a priori. Therefore, suitable assumptions

must be made to render the problem tractable.

Three common types of boundary conditions are considered in homogenization:

Periodic Boundary Conditions Periodic boundary conditions assume that the displacement and

traction fields are periodic across opposite faces of the RVE. This approach is suitable for materials

with a periodic microstructure, where the RVE is representative of the repeating unit cell. Mathe-

matically, the periodicity conditions can be expressed as:

ui(ψi + Lj) = ui(ψi), (41)

σij(ψi + Lj)nj = σij(ψi)nj , (42)

where Lj is the length of the RVE in the j-th direction, and nj is the outward normal vector on

the boundary surface Ψ of the RVE.
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Dirichlet Boundary Conditions Dirichlet boundary conditions prescribe the displacement on the

boundary of the RVE, corresponding to the application of a macroscopic strain. The displacement

field on the boundary Ψ is specified as:

ui(ψi) = gi,jψj , (43)

where gi,j =
∂ūi
∂xj

is the specified average displacement gradient field obtained from the macro-

scale problem.

Neumann Boundary Conditions Neumann boundary conditions prescribe the traction on the

boundary of the RVE, corresponding to the application of a macroscopic stress. The traction vector

on the boundary is given by:

σij(ψi)nj = σ̄ijnj , (44)

where σ̄ij is the macroscopic stress tensor.

The selection of boundary conditions influences the micro-scale fluctuations and, consequently,

the effective properties obtained from the homogenization process. As shown by [44], both the

choice of boundary conditions and the size of the RVE affect the homogenized mechanical proper-

ties. Therefore, it is critical to predict and implement appropriate boundary conditions to accurately

capture the material behaviour.

To solve the micro-scale equilibrium problem within the RVE, we consider the equilibrium

equation derived from the first-order homogenization process:

∂

∂yj

[
Dijkl(yk)

(
gk,j +

∂ ¯̄uk
∂yj

)]
= 0 in VRV E , (45)

where:

• Dijkl(yk) is the local stiffness tensor that varies with the micro-scale coordinates yk.

• gk,j =
∂ūk
∂xj

is the macroscopic displacement gradient.

• ¯̄uk represents the micro-scale displacement fluctuation.
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Since the exact boundary conditions are not known, we express the displacement field on the

RVE boundary Ψ by incorporating the micro-scale fluctuations. The displacement at a boundary

point ψi ∈ Ψ is given by:

ui(ψi) = ūi(ȳi) + (ψj − ȳj)gi,j + η ¯̄ui(ψi), (46)

where:

• ȳi =
1

|VRV E |
∫
VRV E

yi dY refers to the centroid of the RVE.

• η ¯̄ui(ψi) is the contribution of the micro-fluctuations at the boundary, which is generally un-

known.

For convenience and without loss of generality, we can choose the origin of the RVE coordinates

at the centroid, i.e., ȳi = 0, and assume that the average displacement at the centroid is zero,

ūi(ȳi) = 0. This simplifies Equation (46) to:

ui(ψi) = ψjgi,j + η ¯̄ui(ψi). (47)

The micro-fluctuations η ¯̄ui(ψi) are influenced by the microstructural heterogeneities and the

finite size of the RVE. Since these fluctuations are generally unknown, their effect on the effective

properties must be carefully considered.

To enforce the macroscopic deformation on the RVE, we consider that the forcing term for the

deformation of the RVE is the constant average displacement gradient. The following relation must

be satisfied:

1

2

∫
SRV E

(uinj + ujni) dΨ = gi,j

∫
VRV E

dY, (48)

where ni is the outward normal vector on the RVE boundary SRV E , and dΨ is the differential

surface area element.

By introducing λi = njσij as the Lagrange multiplier vector to enforce the constraint in Equa-

tion (48) [52], As [26] formulated the weak form of the boundary value problem. The virtual work
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principle leads to:

∫
VRV E

δ
∂ ¯̄ui
∂yj

ḡi,jdY −
∫
SRV E

δ ¯̄uiλidΨ−
∫
SRV E

δλi (ui − ψj ḡij) dΨ = 0 (49)

In this formulation, the first term represents the internal virtual work within the RVE due to

micro-scale fluctuations. The second term enforces the boundary conditions through the Lagrange

multiplier λi, which serves as the traction vector on the boundary. Finally, the third term ensures the

compatibility of displacements along the RVE boundary, maintaining continuity and consistency in

the homogenization framework.

By solving Equation (49), subject to the appropriate boundary conditions, the micro-scale dis-

placement fluctuations ¯̄ui can be determined. The Lagrange multipliers λi provide the necessary

tractions to satisfy equilibrium and compatibility conditions.

The choice of boundary conditions directly affects the micro-scale stress and strain fields within

the RVE. For instance, imposing uniform displacement boundary conditions (Dirichlet type) may

underestimate the stiffness, while uniform traction boundary conditions (Neumann type) may over-

estimate it. Periodic boundary conditions often provide a balance by allowing the microstructure to

deform more naturally.

As the size of the RVE increases, the influence of the boundary conditions diminishes, and the

effective properties converge to intrinsic material properties. However, computational limitations

often restrict the size of the RVE, making the appropriate selection of boundary conditions even

more critical.

Importance of RVE Size and Boundary Conditions

The RVE must be sufficiently large to be statistically representative of the material’s microstruc-

ture. A too-small RVE may not capture the variability and interactions of the microstructural fea-

tures, leading to inaccurate effective properties. On the other hand, a larger RVE increases compu-

tational cost.

Moreover, due to the finite size of the RVE (i.e., η ̸= 0), the homogenization is approximate

unless exact boundary conditions are imposed. The Hill-Mandel macro-homogeneity condition
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assumes scale separation, which may not hold precisely for finite RVEs. Consequently, the boundary

conditions influence the effective modulus by affecting the stress and strain distributions within the

RVE.

Studies such as [44] have demonstrated the effects of both the chosen boundary conditions and

the RVE size on the homogenized mechanical properties. They showed that periodic boundary

conditions often yield the best approximation of the effective properties for materials with periodic

or statistically homogeneous microstructures.

Implementation in Computational Homogenization

In computational homogenization, the RVE problem is solved numerically using finite ele-

ment methods. The implementation involves discretizing the RVE domain and applying the chosen

boundary conditions to the finite element model.

For periodic boundary conditions, special care is taken to ensure that nodes on opposite faces

of the RVE are coupled to enforce displacement continuity and traction periodicity. Dirichlet and

Neumann boundary conditions are applied by specifying displacements or tractions on the boundary

nodes, respectively.

The computed micro-scale fields are then used to calculate the effective material properties. The

homogenized stress σ̄ij and strain ϵ̄ij tensors are obtained by averaging the micro-scale quantities

over the RVE:

σ̄ij =
1

|VRV E |

∫
VRV E

σij dY, (50)

ϵ̄ij =
1

|VRV E |

∫
VRV E

ϵij dY. (51)

These homogenized quantities are then used in the macro-scale analysis to predict the overall

behaviour of the heterogeneous material.

The boundary value problem for the RVE is a critical component in computational homogeniza-

tion. The selection of appropriate boundary conditions and the consideration of the RVE size are

essential for accurately determining the effective material properties. By thoroughly understanding
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and correctly implementing these aspects, the multiscale modelling approach provides a powerful

tool for analysing and designing complex heterogeneous materials such as masonry structures.

3.6 Numerical Methods for Homogenization

This section introduces the numerical methods employed to solve the homogenization prob-

lem for heterogeneous materials, focusing on the Finite Element Method (FEM) and the Extended

Finite Element Method (XFEM). These methods are essential for implementing computational ho-

mogenization, particularly when dealing with materials that exhibit discontinuities, such as cracks

or material interfaces in masonry structures. The framework is extended to account for nonlinear

behaviours, including nonlinear traction-separation laws and nonlinear constitutive models.

3.6.1 Finite Element Method Overview

The Finite Element Method (FEM) is a numerical technique for finding approximate solutions

to boundary value problems for partial differential equations (PDEs). It subdivides a large problem

into smaller, simpler parts called finite elements. In the context of elasticity, FEM discretizes the

domain Ω into smaller elements over which the unknown displacement field u is approximated

using interpolation functions.

Discretization and Interpolation Functions

The domain Ω is divided into Ne finite elements. Within each element e, the displacement field

u is approximated in terms of nodal displacement parameters a using shape functions A:

u = Aa, (52)

where:

• A is the matrix of shape functions for the element.

• a is the vector of nodal displacement parameters after discretization.
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Additionally, the Lagrange multiplier field λ is approximated as:

λ = Gh, (53)

where:

• G is the vector of selected approximation functions for λ.

• h is the vector of unknown parameters after discretization.

The shape functions are chosen such that they interpolate the displacements at the nodes of the

element.

Enrichment Functions and Displacement Field Approximation

In computational mechanics, particularly when modelling materials with discontinuities (like

cracks), it is essential to represent the displacement field accurately. The Extended Finite Element

Method (XFEM) allows us to model such discontinuities within finite elements by enriching the

standard displacement approximation.

The displacement field within an element, denoted by u, can be described by combining both

continuous and discontinuous components. Following [13], it is expressed as:

u = Nd+H
∣∣
ΓI
Nβ (54)

In this equation, u represents the displacement vector at any point within the element. The

matrix N contains the standard bilinear finite element shape functions,

N =

 N1 0 N2 0 N3 0 N4 0

0 N1 0 N2 0 N3 0 N4

 (55)

and d is the column vector of nodal displacement values, also referred to as degrees of freedom

(DOFs). The term H
∣∣
ΓI

represents the Heaviside function evaluated at the discontinuity interface

ΓI , while β is the vector of enriched degrees of freedom, which accounts for the displacement

jump at the discontinuity. Essentially, the displacement field consists of two parts: a continuous
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component, represented by Nd, and a discontinuous component, captured by H
∣∣
ΓI
Nβ, which

addresses the jump in displacement across the discontinuity interface.

The nodal displacement vector d is defined for a 2D quadrilateral element with four nodes, each

having two displacement components (one for each direction, x and y), resulting in eight degrees of

freedom (DOFs), as follows:

d =

[
d11 d12 d21 d22 d31 d32 d41 d42

]T
(56)

Here, dij refers to the displacement component at node i in direction j.

Similarly, the enriched degrees of freedom β associated with the displacement jump at the

discontinuity interface are defined as:

β =

[
β11 β12 β21 β22 β31 β32 β41 β42

]T
(57)

These enriched DOFs allow for the representation of the displacement discontinuity at each

node, effectively capturing the behaviour of materials with cracks or other types of discontinuities.

The combined shape function matrix A and the combined DOF vector a are expressed as:

A =

[
N H

∣∣
ΓI
N

]
(58)

aT =

[
dT βT

]
(59)

It is important to note that boundary conditions are applied only to the standard nodal displace-

ments d, while the enriched DOFs β, which represent the discontinuity, are not subjected to the

same boundary constraints.

At the discontinuity interface, the displacement jump [[u]] is defined as:

[[u]] = N
∣∣
ΓI
β (60)

This jump is derived from the displacement field, where the Heaviside function H
∣∣
ΓI

changes

sign at the interface ΓI , introducing the discontinuity. The displacement jump depends solely on

38



the enriched DOFs β and the shape functions evaluated at the discontinuity interface.

The stress field σ in the bulk material is computed as:

σ = D
(
Bd+H

∣∣
ΓI
Bβ
)

(61)

The traction vector t at the discontinuity interface is related to the displacement jump via the

interface stiffness matrix T as follows:

t = Tδ
∣∣
ΓI
Nβ (62)

where δ
∣∣
ΓI

is the Dirac delta function localized at the discontinuity interface ΓI . The interface

stiffness matrix T is defined as:

T = kI (63)

In this equation, k is the interface stiffness coefficient, and I represents the 2×2 identity matrix.

The traction vector t is energetically conjugate to the displacement jump [[u]] and consists of two

components corresponding to the normal and tangential directions along the interface in 2D space.

Additionally, the Lagrange multiplier field is interpolated using the following matrix of shape

functions:

G =

 L1 0 L2 0

0 L1 0 L2

 (64)

where L1 and L2 are linear interpolation functions along the element edge. These functions are

defined as:

L1 =
0.5l − zb

l
, L2 =

0.5l + zb
l

(65)

Through this methodology, we have developed a displacement interpolation scheme that ac-

counts for discontinuities within finite elements using enrichment functions. We have defined both

the standard and enriched degrees of freedom, organized into the vectors d and β, respectively.
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Expressions for the displacement jump across the discontinuity interface ΓI and the stress field in

terms of the displacement field have been derived, incorporating both continuous and discontinuous

components. Additionally, the traction vector at the discontinuity interface has been related to the

displacement jump via the interface stiffness matrix T. Finally, we have interpolated the Lagrange

multiplier field along the element edges using linear shape functions to enforce constraints effec-

tively. This approach allows us to model complex material behaviour, such as crack initiation and

propagation, within the finite element framework.

3.7 Advanced Iterative Framework for Nonlinear RVE Analysis

Nonlinear analysis of Representative Volume Elements (RVEs) demands a robust computational

framework capable of addressing the coupling between macroscopic and microscopic responses

under complex boundary conditions. This section introduces an iterative solution approach based on

the Newton-Raphson method, designed to solve the nonlinear equilibrium equations governing RVE

behaviour. The procedure incorporates residual corrections, incremental updates, and a detailed

handling of boundary conditions.

3.7.1 Newton-Raphson Procedure for the Nonlinear Solution of the RVE Problem

The Newton-Raphson method is a widely used iterative technique for solving nonlinear systems

of equations. In the context of the RVE problem, this method is employed to solve the nonlinear

equilibrium equations involving displacements and Lagrange multipliers under complex boundary

conditions. The nonlinearities arise primarily from cohesive traction-separation laws at the inter-

faces.

The governing system of equations at each iteration (j) can be expressed by substituting Eqs.

(52) and (53) into Eq. (49) as:

K(j) ST

S 0


δa

(j)

δh(j)

 =

 −r
(j)
a

Θ∆ḡ − r
(j)
h

 , (66)

where:
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• K(j): the tangent stiffness matrix at iteration (j),

• S: the constraint matrix derived as S =
∫
SRV E

GTA dΨ,

• Θ: a coupling matrix defined as Θ =
∫
SRV E

GTΨT dΨ,

• δa(j): the iterative nodal displacement increment, including standard and enriched DOFs,

• δh(j): the iterative increment of Lagrange multipliers,

• r
(j)
a : the residual of the equilibrium condition at the end of iteration (j), given as:

r
(j)
a =

∫
VRV E

∂AT

∂y
σ(j) dY +

∫
ΓDI

BTHT
ΓDI

t(j) dΓ, (67)

• r
(j)
h : the residual associated with the boundary constraints, given as:

r
(j)
h =

∫
SRV E

GTλ(j) dΨ. (68)

The iterative solution proceeds as follows. First, the incremental displacements and Lagrange

multipliers are updated at each iteration using:

∆a(j) = ∆a(j−1) + δa(j), ∆h(j) = ∆h(j−1) + δh(j). (69)

The displacements are decomposed into:

δa(j) = δa
(j)
p + δa

(j)
r , (70)

where:

δa
(j)
r = −K−1r

(j)
a , δa

(j)
p = −K−1STδh(j). (71)

The increment of Lagrange multipliers, δh(j), is determined from the second row of Eq. (66)

as:

δh(j) = −
[
SK−1ST

]−1
[
Θ∆ḡ − r

(j)
h − Sδa

(j)
r

]
. (72)
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Finally, the nonlinear traction-separation law governing the cohesive interfaces introduces the

primary source of nonlinearity in the system. The traction, t(j), depends on the displacement jump,

β(j), as:

t(j) = t(β(j)), (73)

and the detailed procedure for updating the traction is provided in Section 3.8.

The iterative procedure continues until the residuals satisfy the convergence criteria:

∥r(j)a ∥ ≤ ϵ, ∥r(j)h ∥ ≤ ϵ, (74)

where ϵ is the prescribed tolerance for convergence.

This procedure ensures an accurate and systematic solution to the nonlinear RVE problem, ac-

counting for the coupling between macroscopic strain and microscopic response.

3.7.2 Partitioning into Interior and Boundary Nodes

The partitioning of the global matrices and vectors into interior and boundary components is a

critical step in the solution procedure. This decomposition simplifies the application of boundary

conditions and allows for the efficient computation of the system’s response.

The global stiffness matrix K(j), constraint matrix S, and residual vector r(j)a are partitioned as

follows:

K(j) =

KII KIB

KT
IB KBB

 , S =

[
SI SB

]
, r

(j)
a =

r
(j)
aI

r
(j)
aB

 , (75)

So:

K(j)δa(j) =

 KII KIB

KIB
T KBB


 δaI

(j)

δaB
(j)

 (76)

and

Sδa(j) =

[
SI SB

] δaI
(j)

δaB
(j)

 (77)
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ra
(j) =

〈
raI

(j) raB
(j)

〉T

(78)

where:

• Subscript I denotes the components associated with the interior nodes, which are entirely

within the RVE domain.

• Subscript B denotes the components associated with the boundary nodes, where the con-

straints are imposed.

Boundary Integral Contributions: The matrix S, which enforces the boundary constraints, is

defined solely through boundary integrals:

S =

∫
SRV E

GTA dΨ. (79)

As a result, SI = 0, since G vanishes at interior nodes (y ∈ V̄RV E \ SRV E). This simplifies the

application of boundary conditions, as interior nodes are not directly affected by S.

Residual Partitioning: The residual vector r(j)a is partitioned into:

r
(j)
a =

r
(j)
aI

r
(j)
aB

 , (80)

where:

• r
(j)
aI : Residual at the interior nodes, determined by equilibrium equations.

• r
(j)
aB : Residual at the boundary nodes, influenced by boundary constraints.

Physical Significance: The partitioning distinguishes the roles of the interior and boundary nodes:

• Interior nodes respond to the equilibrium conditions within the RVE domain. Their displace-

ments are updated based on the residual correction δa(j)r .
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• Boundary nodes enforce the prescribed boundary conditions (e.g., displacement, traction,

or periodic constraints) using Lagrange multipliers λ. The constraint corrections δa(j)p are

applied to these nodes.

Simplification through Partitioning: By isolating the boundary contributions, the second row

of the global system of equations explicitly handles the Lagrange multiplier increments, while the

first row governs the equilibrium conditions at the interior nodes. This structured approach enables

efficient computation and simplifies the iterative solution procedure.

In summary, the partitioning into interior and boundary nodes is a fundamental step in the

Newton-Raphson framework, ensuring that equilibrium and boundary constraints are treated sys-

tematically. The distinction between KII , KIB , KBB , and SB allows for the efficient imposition

of boundary conditions while maintaining consistency within the RVE formulation.

3.7.3 Displacement Boundary Condition

In the case of uniform displacement gradient boundary conditions are applied to the RVE. The

displacement gradient (strain) is uniform across the RVE boundaries. No micro-scale displacement

fluctuations are assumed at the boundaries. Mathematically, this is expressed as:

u′(Ψ) = 0 (81)

Where u′(Ψ) denotes the micro-scale displacement fluctuations at the boundary points Ψ. The dis-

placement at any point on the RVE boundary is determined solely by the macroscopic displacement

gradient. There are no additional micro-scale variations at the boundary.

The original displacement expression is:

u(Ψ) = u∗(ȳ) + (Ψ− ȳ)ḡ + u′(Ψ) (82)

Where:

• u(Ψ): Displacement at point Ψ on the boundary SRVE.
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• u∗(ȳ): Average displacement at the center ȳ of the RVE.

• Ψ− ȳ: Position vector from the RVE center to the boundary point.

• ḡ = ∂u∗

∂x : Specified average displacement gradient field (macroscopic strain).

• u′(Ψ): Contribution from micro-fluctuations at the boundary.

Making some assumptions for simplification: Set the RVE center at the origin: ȳ = 0. Assume

zero average displacement at the RVE center: u∗(ȳ) = 0. No micro-fluctuations at the boundary:

u′(Ψ) = 0.

With these assumptions, the displacement simplifies to:

u(Ψ) = Ψḡ (83)

The displacement at each boundary point is given by the product of its position vector Ψ and the

macroscopic displacement gradient ḡ.

For determining the Nodal Displacements at the Boundary, the equation for boundary displace-

ments is:

ΛB = ΨT ḡ (84)

Where:

• ΛB: Vector of nodal displacements at the boundary nodes B.

• ΨT : Transpose of the matrix of boundary node position vectors.

• ḡ: Macroscopic displacement gradient tensor.

For each boundary node k, the displacement is:

ΛBk
= ΨT

k g (85)

Where Ψk is the position vector of the k-th boundary node, and ΛBk
is the displacement vector at

the k-th boundary node.
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The vector of approximation functions A for the displacement field is assumed to have the

interpolatory property.

Interpolatory Property:

uk = Aka (86)

Where:

• uk: Displacement at node k.

• Ak: Shape function evaluated at node k.

• a: Vector of nodal displacement parameters.

Nodal Displacement Vector at Boundary Node k:

aBk
= ΛT

Bk
=

uB1(Ψk)

uB2(Ψk)

 (87)

Where aBk
is the nodal displacement vector at boundary node k, and uB1(Ψk), uB2(Ψk) are the

displacement components in the horizontal and vertical directions at boundary node k, respectively.

The total boundary displacement vector is:

aB =

[
aB1 aB2 · · · aBk · · · aBm

]
(88)

Where m is the number of boundary nodes and aBk is the nodal displacement vector at the k-th

boundary node.

The application of a uniform displacement gradient to the boundary of the RVE is a common ap-

proach in computational homogenization, simulating the material’s response under macroscopically

uniform deformation. This boundary condition simplifies the global system by directly prescribing

the displacements at the boundary nodes.

By substituting Eq. (85) into Eq. (77), the equilibrium equations governing the displacement
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field will be given by:

 KII SI
T

SI 0


 δaI

(j)

δh(j)

 =

 −KIBψ
T∆ḡ − raI

(j)(
Θ− SBψ

T
)
∆ḡ − r

(j)
h

 . (89)

This system couples the displacement increments δa(j)I with the Lagrange multiplier updates δh(j),

ensuring compatibility of internal and boundary constraints.

Prescribed Boundary Displacements: For uniform displacement boundary conditions, the dis-

placement increments at the boundary nodes are directly imposed as:

∆aB = ψT∆ḡ, (90)

where:

• ∆ḡ is the macroscopic strain increment,

• ψT is the operator mapping the macroscopic strain increment to the boundary displacements,

• ∆aB represents the total displacement increment at the boundary nodes.

By directly prescribing ∆aB , the boundary displacements are no longer unknowns, simplifying

the system of equations.

Internal Node Displacements: Since SI = 0, the system in Eq. (89) simplifies, and the equilib-

rium equations for the interior nodes reduce to:

KIIδa
(j)
I = −KIBψ

T∆ḡ − r
(j)
aI , (91)

where:

• δa(j)I is the incremental displacement correction for the interior nodes,

• KII and KIB are the partitioned stiffness matrix components,
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• r
(j)
aI is the residual at the interior nodes.

The displacement increment at the interior nodes is decomposed into two components:

δa
(j)
I = δa

(j)
I,r + δa

(j)
I,p, (92)

where:

• δa(j)I,r = −K−1
II r

(j)
aI : residual correction, addressing the imbalance at iteration (j),

• δa(j)I,p = −K−1
II KIBψ

T∆ḡ: constraint correction, enforcing the prescribed boundary dis-

placements.

Residual Simplifications: Since SI = 0, the second row of Eq. (89) is identically satisfied, elimi-

nating the need for updating the Lagrange multiplier field h. This simplification further streamlines

the solution process.

Iterative Updates: The total displacement increments at the interior nodes are updated iteratively

as:

∆aI = ∆aI,r +∆aI,p. (93)

These updates continue until the residuals at the interior nodes satisfy the convergence criterion:

∥r(j)aI ∥ ≤ ϵ. (94)

By directly prescribing the boundary node displacements via Eq. (90), the computational com-

plexity is reduced by removing the Lagrange multiplier updates. This approach ensures numerical

efficiency while maintaining the accuracy of the solution.

3.7.4 Traction Boundary Condition

The objective is to implement uniform traction boundary conditions on a RVE under the assump-

tion of uniform stress. However, a challenge arises because the point-wise boundary displacements
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cannot be directly prescribed, as micro-scale displacement fluctuations at the boundary are gener-

ally non-zero, expressed as u′(ψ) ̸= 0. To maintain uniform boundary stress, the goal is to impose

the same value for the boundary stress (traction) at every boundary node.

To impose uniform traction, we express the Lagrange multiplier vector h in terms of a reduced

set of unknowns:

h =HTr (95)

Where:

• h: Vector of Lagrange multiplier parameters associated with the boundary nodes.

• H: A mapping matrix that distributes the unknowns uniformly across the boundary nodes.

• r: A vector containing two unknowns, one for each spatial direction (e.g., x and y).

r =

r1
r2

 (96)

Where:

• r1: Unknown representing the uniform traction in the x-direction.

• r2: Unknown representing the uniform traction in the y-direction.

H =

1 0 1 0 · · · −1 0 −1 0

0 1 0 1 · · · 0 −1 0 −1

 (97)

Each column in the matrix corresponds to a degree of freedom (DOF) at a boundary node,

representing either the x or y displacement component, with positive and negative signs indicating

nodes that are mirrored on opposite boundaries of the RVE. The purpose of the matrix H is to

ensure that uniform traction is applied across all boundary nodes while maintaining equilibrium,

ensuring that the net force aligns with the macroscopic stress.

The application of uniform traction boundary conditions enables the simulation of material be-

haviour under prescribed boundary forces, providing a realistic representation of external loading
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on the Representative Volume Element (RVE). This approach directly enforces boundary tractions,

allowing the internal displacements and Lagrange multipliers to be solved iteratively.

By substituting Eq. (95) into Eq. (66) and using Eqs. (76) and (77), the global system of

equations in the Newton-Raphson framework will be expressed as:


KII KIB 0

KT
IB KBB ST

BH
T

0 HSB 0



δa

(j)
I

δa
(j)
B

δq(j)

 =


−r

(j)
aI

−r
(j)
aB

HΘ∆ḡ − r
(j)
h

 , (98)

where:

• K(·)(·) are the components of the stiffness matrix partitioned into internal (I) and boundary

(B) nodes,

• SB enforces boundary constraints through Lagrange multipliers,

• H maps the Lagrange multipliers to the boundary tractions,

• δq(j) is the auxiliary variable used to enforce the traction boundary conditions,

• r
(j)
aI and r

(j)
aB are the residuals at the interior and boundary nodes, respectively.

Auxiliary Variable δq(j): The auxiliary variable δq(j) is introduced to enforce the traction bound-

ary conditions. It is computed iteratively as:

δq(j) = −
[
HSBK

−1
BBS

T
BH

T
]−1

[
HΘ∆ḡ − r

(j)
h −HSBδa

(j)
B,r

]
, (99)

where:

• δa(j)B,r is the residual-based correction for boundary displacements, computed as part of the

displacement decomposition.

Iterative Steps: The solution procedure under traction boundary conditions follows a systematic

sequence:

50



(1) Compute the residual-based displacement corrections:

δa
(j)
I,r

δa
(j)
B,r

 = −

KII KIB

KT
IB KBB


−1r

(j)
aI

r
(j)
aB

 . (100)

(2) Solve for the auxiliary variable δq(j) using Eq. (99).

(3) Compute the constraint correction for boundary displacements:

δa(j)p = −K−1ST
BH

Tδq(j). (101)

(4) Update the total displacement increment:

∆a(j) = ∆a(j−1) + δa(j), δa(j) = δa(j)r + δa(j)p . (102)

(5) Recompute the residuals r(j+1)
a and r

(j+1)
h , and verify convergence.

Convergence Criteria: The iterative process is terminated when the residual norms satisfy the

prescribed tolerances:

∥r(j)a ∥ ≤ ϵ, ∥r(j)h ∥ ≤ ϵ. (103)

The traction boundary condition allows for the direct enforcement of uniform boundary tractions

while iteratively solving for the corresponding nodal displacements. The inclusion of the auxiliary

variable δq(j) ensures the accurate imposition of traction constraints, while the decomposition of

displacements simplifies the solution procedure. This approach provides a robust framework for

simulating the response of RVEs under prescribed traction boundary conditions.

3.7.5 Periodic Boundary Condition

In computational homogenization using Representative Volume Elements (RVEs), periodic bound-

ary conditions are crucial for accurately representing materials with periodic microstructures. The

primary objective is to derive the algebraic equations governing the RVE under these conditions,
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with a focus on the key equations, particularly the integral involving Lagrange multipliers and the

periodicity constraints. One key assumption is that micro-scale displacement fluctuations at the

boundary are non-zero, expressed as:

u′(ψ) ̸= 0 (104)

where u′(ψ) represents the micro-scale displacement fluctuation at a boundary point ψ. Due to the

periodic nature of the boundary, these fluctuations are identical at corresponding points on opposite

boundaries, which is given by:

u′(ψ+) = u′(ψ−) (105)

where ψ+ and ψ− denote corresponding points on opposite boundaries of the RVE. Consequently,

the difference in micro-scale fluctuations between these corresponding boundary points is zero, as

shown by:

u′(ψ+)− u′(ψ−) = 0 (106)

The total displacement at a boundary point is given by:

u(ψ) = ū(ȳ) + (ψ − ȳ)T ḡ + u′(ψ) (107)

Assuming that the RVE center is at the origin (ȳ = 0) and the average displacement at the center is

zero (ū(ȳ) = 0), this simplifies to:

u(ψ) = ψT ḡ + u′(ψ) (108)

The displacement difference across the boundary is expressed as:

u(ψ+)− u(ψ−) = (ψ+)T ḡ + u′(ψ+)−
[
(ψ−)T ḡ + u′(ψ−)

]
(109)

= (ψ+ − ψ−)T ḡ +
(
u′(ψ+)− u′(ψ−)

)
(110)

Since the micro-scale fluctuation difference is zero (u′(ψ+)− u′(ψ−) = 0), this reduces to:

u(ψ+)− u(ψ−) = (ψ+ − ψ−)T ḡ (111)
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This expresses the periodic displacement condition:

u
(
ψ+

k

)
− u

(
ψ−

k

)
=
(
ψ+

k −ψ−
k

)T
ḡ, (112)

where k refers to the node number on the boundary. The tractions (Lagrange multipliers) on the

boundary are anti-periodic, as shown by:

λ+ = −λ− (113)

where λ+ and λ− are the tractions at points ψ+ and ψ−, respectively. To reduce the number of

degrees of freedom and enforce anti-periodicity, we express h as:

h = P Tw (114)

where h is the vector of Lagrange multiplier parameters at boundary nodes, P is a mapping matrix,

and w is the vector of reduced Lagrange multiplier unknowns. The matrix P has the form:

P =



1 0 · · · 0 −1 0 · · · 0

0 1 · · · 0 0 −1 · · · 0

...
...

. . .
...

...
...

. . .
...

0 0 · · · 1 0 0 · · · −1


(115)

where each row has only two non-zero entries, +1 and −1, corresponding to nodes that are images

of each other on opposite boundaries.

The application of periodic boundary conditions ensures continuity of displacements and trac-

tions across opposing boundaries of the Representative Volume Element (RVE). This approach is

essential for simulating materials with periodic microstructures, as it enforces both displacement

compatibility and stress equilibrium, providing a realistic representation of the material’s response

under periodic loading.
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Physical Significance: Periodic boundary conditions establish a seamless transfer of displace-

ments and tractions between opposite boundaries of the RVE. This is achieved by ensuring:

• Displacement Compatibility: The relative displacements between corresponding points on

opposing boundaries are consistent with the macroscopic deformation.

• Traction Continuity: The tractions on opposing boundaries remain balanced, maintaining

equilibrium across the RVE.

By substituting Eqs. (112) and (114) into Eq. (66) and using Eqs. (76) and (77), the global

system of equations in the Newton-Raphson framework is expressed as:


KII KIB 0

KT
IB KBB ST

BP
T

0 PSB 0



δa

(j)
I

δa
(j)
B

δw(j)

 =


−r

(j)
aI

−r
(j)
aB

PΘ∆ḡ − r
(j)
h

 , (116)

where:

• P is the periodicity constraint matrix, enforcing displacement compatibility between oppos-

ing boundaries,

• δw(j) is the auxiliary variable associated with the periodicity constraints,

• r
(j)
aI and r

(j)
aB are the residuals at the interior and boundary nodes, respectively.

Periodic Displacement Compatibility: The displacement compatibility condition for periodic

boundaries is given by:

∆u(x+)−∆u(x−) = P∆aB, (117)

where:

• x+ and x− represent corresponding points on opposing boundaries,

• P maps the nodal displacements at the boundary to enforce periodicity.
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Iterative Solution Procedure: The solution under periodic boundary conditions proceeds itera-

tively with the following steps:

(1) Compute the residual-based displacement corrections:

δa
(j)
I,r

δa
(j)
B,r

 = −

KII KIB

KT
IB KBB


−1r

(j)
aI

r
(j)
aB

 . (118)

(2) Solve for the auxiliary variable δw(j):

δw(j) = −
[
PSBK

−1
BBS

T
BP

T
]−1

[
PΘ∆ḡ − r

(j)
h −PSBδa

(j)
B,r

]
. (119)

(3) Compute the constraint correction for boundary displacements:

δa(j)p = −K−1ST
BP

Tδw(j). (120)

(4) Update the total displacement increment:

∆a(j) = ∆a(j−1) + δa(j), δa(j) = δa(j)r + δa(j)p . (121)

(5) Recompute the residuals r(j+1)
a and r

(j+1)
h , and verify convergence.

Convergence Criteria: The iterative process continues until the residuals satisfy the convergence

criteria:

∥r(j)a ∥ ≤ ϵ, ∥r(j)h ∥ ≤ ϵ, (122)

where ϵ is the prescribed tolerance for convergence.

Periodic boundary conditions enforce displacement and traction continuity across opposing

boundaries of the RVE. The auxiliary variable δw(j) ensures the accurate imposition of period-

icity constraints, while the iterative procedure guarantees convergence. This approach provides

a robust framework for simulating the response of materials with periodic microstructures under
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macroscopic loading.

3.7.6 Effect of Boundary Conditions on Homogenization Results

Boundary conditions significantly influence the results of the homogenization process:

• Displacement Boundary Conditions: Tend to over-constrain the RVE, possibly leading to

stiffer effective properties due to restricted micro-fluctuations.

• Traction Boundary Conditions: Allow for boundary displacements to adjust, which may

result in softer effective properties due to localized deformations.

• Periodic Boundary Conditions: Provide a balance by minimizing artificial boundary effects,

often yielding effective properties that are more representative of the infinite medium.

Choosing appropriate boundary conditions depends on:

• The nature of the material and its microstructure.

• The scale separation between the RVE and the macroscopic structure.

• The specific loading conditions and constraints in the application.

By implementing displacement, traction, and periodic boundary conditions appropriately, we

can ensure that the RVE response accurately reflects the macroscopic behaviour of heterogeneous

materials. Each boundary condition type has its implications on the homogenization results, and

careful consideration is required to select the most suitable one for a given problem. This sec-

tion highlights the mathematical formulations and implementations of these boundary conditions,

emphasizing their effects on the effective material properties obtained from computational homog-

enization.

3.7.7 Summary of Boundary Condition Implementations

The implementation of boundary conditions significantly influences the RVE’s response and the

homogenized material properties. Table 3.1 summarizes the key aspects of each boundary condition

type.
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Table 3.1: Summary of Boundary Condition Implementations

Boundary Condition Displacement Fluctuations Tractions Applicability

Displacement BC ũ = 0 on SRVE N/A Constrained boundaries
Traction BC ũ ̸= 0 on SRVE Uniform Free boundaries
Periodic BC ũ+ = ũ− λ+ = −λ− Periodic materials

3.8 Traction Update Procedure at Integration Points of the Matrix-

Inclusion Interfaces

3.8.1 Introduction to Traction Update Procedure

The accurate modelling of interfacial behaviour in matrix-inclusion systems is fundamental to

computational mechanics, particularly when addressing heterogeneous materials under complex

loading conditions. Interfaces between the matrix and inclusion exhibit distinct mechanical be-

haviours that significantly influence the overall response of the material system. Capturing these

behaviours requires a robust computational framework capable of addressing the intricate interplay

between displacement jumps, traction-separation laws, and evolving damage mechanisms.

Traction update procedures at integration points are a pivotal component in simulating the in-

teraction at matrix-inclusion interfaces. These procedures enforce the constitutive relationships

governing interface mechanics while maintaining consistency with thermodynamic principles, as

established in [53], [54]. The cohesive zone model (CZM) provides a versatile framework for rep-

resenting the nonlinear relationship between traction and displacement discontinuities, governed by

strain energy potentials and damage evolution laws [53], [54]. This relationship evolves iteratively

during simulations to reflect the changing damage state.

A comprehensive traction update procedure integrates fundamental concepts, including the in-

ternal strain energy potential, complementary energy potential, and constrained optimization frame-

works [54]. The internal strain energy potential captures the stored energy at the interface due to

displacement jumps and damage evolution, as described in Eq. (123). The complementary en-

ergy potential, introduced through a Legendre transformation, reformulates the problem to provide

a robust mathematical foundation for nonlinear behaviour, as shown in Eq. (126). Additionally,

constrained optimization techniques, such as the Kuhn-Tucker optimality conditions, ensure that

57



damage evolution is thermodynamically admissible and consistent with the damage control func-

tion [14].

The numerical implementation of the traction update procedure involves iterative algorithms,

such as the closest-point projection method, to project trial traction states onto the admissible dam-

age surface [21], [55]. These algorithms address the nonlinearities introduced by damage evolution,

ensuring convergence within prescribed tolerances. The compliance matrix, Φd, plays a central role

in this process, dynamically evolving with the damage state to govern the relationship between trac-

tions and displacement jumps [54]. Its accurate representation is critical for maintaining numerical

stability and physical realism.

In summary, the traction update procedure provides a systematic approach to capturing the non-

linear behaviour of matrix-inclusion interfaces. By integrating rigorous theoretical foundations,

thermodynamic principles, and robust numerical strategies, this procedure enables precise simula-

tion of interfacial mechanics. The subsequent subsections explore these key components in detail,

elucidating the thermodynamic, mathematical, and computational principles underpinning their for-

mulation and implementation.

3.8.2 Thermodynamic Considerations and Complementary Energy Framework for

Interface Damage

The evolution of damage at matrix-inclusion interfaces is governed by thermodynamic princi-

ples and an optimization framework that together ensure energy conservation, dissipation consis-

tency, and numerical stability. Following [53] and [54], the traction update problem in cohesive

zone models (CZMs) is formulated as a constrained optimization problem analogous to plasticity.

Stress states yielding a positive damage control function are inadmissible, while negative values cor-

respond to the elastic domain. Damage initiates and evolves thermodynamically when the damage

control function reaches zero.
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Thermodynamic Foundations

The internal strain energy potential Ψ, representing stored energy due to displacement jumps

JuK and damage variable κd, is defined as:

Ψ(JuK, κd) =
1

2
JuKTΦd

−1JuK +
1

2
Hdκ

2
d, (123)

where Φd is the compliance matrix reflecting the current damage state, and Hd is the hardening

modulus. The traction vector t is derived as:

t =
∂Ψ

∂JuK
. (124)

To transition to tractions as primary variables, the complementary energy potential χd is intro-

duced via Legendre transformation:

χd(t, κd) = tTJuK −Ψ(JuK, κd). (125)

Substituting Eqs. (124), and (123) into Eq. (125) yields:

χd(t, κd) =
1

2
tTΦdt−

1

2
Hdκ

2
d. (126)

The displacement jump is then obtained as:

JuK =
∂χd

∂t
= Φdt. (127)

Damage Dissipation and Optimization

The second law of thermodynamics enforces non-negativity of the damage dissipation rate:

dΩd =
1

2
tTdΦdt−Hdκddκd ≥ 0. (128)
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A damage control function Fd constrains the traction state:

Fd(t, κd) = ∥t∥ −
(
tlim −

∫
Hddκd

)
≤ 0, (129)

where tlim is the traction limit. The Kuhn-Tucker conditions ensure consistency:

dΛd ≥ 0, Fd ≤ 0, dΛdFd = 0, (130)

with dΛd as the Lagrange multiplier.

To enforce these constraints, the Lagrangian functional is defined:

dL = dΩd − dΛdFd. (131)

Variations of dL with respect to t and κd yield the governing equations:

dΦdt = dΛdmd, (132)

dΛd = dκd. (133)

Framework Integration

This unified framework rigorously links thermodynamics with optimization principles. The

strain energy potential and complementary energy formulation establish a bidirectional relationship

between tractions and displacement jumps. The dissipation inequality and damage control function

ensure thermodynamic admissibility, while the Lagrangian approach provides numerical stability.

By satisfying the Kuhn-Tucker conditions, the model prevents damage evolution in the elastic do-

main (Fd < 0) and enforces progression only at the admissible boundary (Fd = 0).

The integration of these components enables accurate simulation of matrix-inclusion interface

behaviour under evolving damage, balancing physical realism with computational robustness. The

derivations form the cornerstone of the traction update procedure, essential for predicting interface

debonding and composite failure.
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3.8.3 Consistency and Kuhn-Tucker Conditions

The consistency condition and Kuhn-Tucker optimality framework are fundamental to enforcing

the admissibility of damage evolution in matrix-inclusion interface behaviour. These conditions

ensure that the tractions remain on the boundary of the admissible domain defined by the damage

control function, thereby preventing violations of physical or numerical constraints. Following the

works of [53] and [54], the evolution of damage is governed by the damage control function Fd,

which is expressed as:

Fd(t, κd) = ∥t∥ −
(
tlim −

∫
Hddκd

)
≤ 0, (134)

During damage evolution, the consistency condition requires that the value of the damage con-

trol function remains zero. The incremental form of this condition is expressed as:

dFd =
∂Fd

∂t

T

dt+
∂Fd

∂κd
dκd = 0, (135)

where ∂Fd
∂t is the gradient of the damage control function with respect to the traction vector, and ∂Fd

∂κd

represents the sensitivity of the damage surface to the hardening variable κd. This condition ensures

that the tractions remain on the damage surface throughout the damage evolution process. The first

term in Eq. (135) ensures that the traction state is consistent with the damage surface, while the

second term governs the evolution of the damage variable.

The proportionality factor dΛd plays a critical role in this framework, dictating the rate of dam-

age progression. It is updated iteratively during the simulation and is always non-negative, ensuring

the irreversibility of damage evolution. When Fd < 0, dΛd = 0, indicating that no damage incre-

ment occurs in the elastic domain.

The consistency condition is integral to the numerical implementation of the traction update

procedure, particularly in iterative algorithms such as the closest-point projection method. By

maintaining dFd = 0 during damage evolution, the consistency condition ensures convergence

and numerical stability. This iterative process involves projecting the trial traction vector onto the

admissible damage surface, ensuring that the updated traction state adheres to the thermodynamic

principles and the damage control function.
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In summary, the consistency condition and Kuhn-Tucker framework provide a rigorous mathe-

matical foundation for enforcing the admissibility of damage evolution. By ensuring that the trac-

tions remain on the damage surface and that damage progression is thermodynamically consistent,

these principles enable the accurate simulation of matrix-inclusion interface behaviour under com-

plex loading conditions.

3.8.4 Numerical Algorithm for Traction Update and Compliance Evolution

The numerical implementation of the traction update procedure and compliance evolution forms

the cornerstone for modelling matrix-inclusion interface behaviour under damage evolution. This al-

gorithm ensures thermodynamic consistency while maintaining numerical stability through closest-

point projection of trial tractions onto the admissible damage surface. The coupled framework in-

tegrates traction updates with dynamic compliance matrix adjustments to reflect evolving interface

stiffness.

Traction Update Procedure

The procedure begins with the trial traction vector computed from the displacement jump at

global iteration (j):

ttrial = Φdtr
−1JuK(j), (136)

where Φdtr denotes the compliance matrix from the previous iteration. The displacement jump

update at global iteration (j) follows:

JuK(j) = JuK(j−1) +∆JuK(j). (137)

The damage control function Fd(t
trial, κd) determines admissibility: if Fd ≤ 0, the trial traction

is accepted. Otherwise, a local iterative correction projects ttrial onto the damage surface through:

t(k) = t(k−1) − δt(k), (138)
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with the traction correction increment:

δt(k) = δΛ
(k)
d Φdtr

−1m
(k)
d . (139)

The flow direction vector md for non-associative laws derives from:

md =
∂Gd

∂t
, (140)

where Gd represents the damage potential surface. This generalization accommodates complex

interface behaviours documented in [20], [21], [55].

The proportionality factor δΛ(k)
d follows from linearisation of the damage consistency condition:

δΛ
(k)
d =

F
(k)
d − n

(k)T
d R

(k)
d Φdtrr

(k)
d

n
(k)T
d R

(k)
d m

(k)
d +Hd

, (141)

where the residual vector components are:

r
(k)
d = t(k) − ttrial +∆t(k), (142)

∆t(k) = ∆Λ
(k)
d Φdtr

−1Tm
(k)
d . (143)

Convergence requires simultaneous satisfaction of:

|F (k)
d | ≤ ϵtol and ∥r(k)d ∥ ≤ ϵtol, (144)

with the hardening variable updating post-convergence as:

κ
(k)
d = κ

(k−1)
d + δΛ

(k)
d . (145)
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Compliance Matrix Formulation and Damage Coupling

The compliance matrix Φd mediates traction-displacement jump relationships and evolves with

damage. For anisotropic damage, following [54]:

Φd
−1 = (I−Pd)T, T =

ks 0

0 kn

 , (146)

where Pd captures directional stiffness reduction:

Pd =
Φdtr

−1mdnd
T

nd
TΦdtr

−1md + ∥t∥/δΛ(k)
d

. (147)

Algorithmic Tangential Stiffness and Consistency

Post-convergence, the compliance matrix updates globally as:

Φd = Φdtr + δΛ
(k)
d

mdnd
T

∥t∥
, (148)

while the algorithmic tangent stiffness matrix ensures consistent linearisation:

C̄d = Rd

[
I− mdnd

TRd

nd
TRdmd +Hd

]
, Rd = (ΦdQd)

−1 . (149)

Here, Qd = I + ∆ΛdΦd
−1md,t accounts for damage gradient effects. This operator reduces

to the elastic compliance relation t = Φd
−1JuK when Qd = I, maintaining consistency between

incremental and total traction-displacement relationships.

Physical Admissibility and Unloading

Thermodynamic consistency requires Φd updates to satisfy ∥F (k)
d ∥ ≤ ϵtol and ∥r(k)d ∥ ≤ ϵtol.

During unloading (δΛd = 0), Φd remains constant, and C̄d ≡ Φd
−1, preventing spurious energy

dissipation. This distinguishes damage from plasticity, with reversible compliance changes upon

unloading.
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The coupled algorithm provides a unified framework for modelling interface degradation, ac-

commodating both anisotropic and isotropic damage evolution through consistent matrix updates.

Numerical stability arises from the closest-point projection’s contractive properties, while thermo-

dynamic admissibility follows from enforcing Fd ≤ 0 and associative compliance evolution [21],

[55].

3.8.5 Traction-Separation Laws, Damage Surfaces, and Algorithmic Tangent Stiff-

ness

Traction-separation laws establish the constitutive relationship between interface tractions and

displacement jumps, capturing nonlinear behaviour during damage evolution. When integrated with

damage surfaces and the algorithmic tangent stiffness matrix, they form a complete framework for

modelling anisotropic/orthotropic interface behaviour while ensuring numerical stability.

Damage Surface Formulations

The primary damage surface govern interface failure:

Fd(t, κd) =

 t2s − t2smax
≤ 0 if tn ≤ 0

t2s
t2smax

+ t2n
t2nmax

− 1 ≤ 0 if tn > 0
(150)

where ts = sTt and tn = nTt are tangential/normal tractions, tnmax is the maximum normal

traction. Eq. (150) enables, with Gd ≡ Fd, for associative flow [55].

Algorithmic Tangent Stiffness Derivation

The tangent stiffness matrix C̄d links traction and displacement increments:

∆t = C̄d∆JuK, (151)

derived through consistent linearisation of the traction update of Eq. (149).
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Numerical Implementation Aspects

Key implementation features ensure robustness:

• Stability: Convergence requires:

|Fd| ≤ tol, ∥rd∥ ≤ tol, (152)

with residual rd = t− ttrial +∆t.

• Unloading Consistency: When dΛd = 0,

C̄d = Φd
−1, (153)

preventing permanent deformations.

• Compliance Coupling: C̄d updates synchronously with Φd to maintain physical consistency

during damage evolution.

Computational Framework Synergy

The unified damage framework provides:

• Physical Accuracy: Mohr-Coulomb captures anisotropic friction effects, while the elliptical

surface efficiently models orthotropic interactions.

• Numerical Efficiency: C̄d enables quadratic convergence in Newton-Raphson iterations

through exact linearisation.

• Model Flexibility: Modular implementation allows switching between damage surfaces with-

out altering core algorithms.

This integrated approach, validated in [54], [55], successfully handles complex loading scenar-

ios in matrix-inclusion systems while maintaining computational tractability.
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3.9 Computation of Effective Material Properties

The computation of effective material properties from micro-scale simulations is a fundamen-

tal aspect of computational homogenization. This section explains the process of determining the

homogenized constitutive relations by averaging the stress and strain fields over the Representa-

tive Volume Element (RVE) and identifies specific elastic constants. Additionally, the impact of

micro-scale fluctuations on macro-scale properties is discussed.

3.9.1 Averaging Techniques for Stress and Strain

The effective (homogenized) material properties are obtained by averaging the local stress and

strain fields over a specified domain within the RVE, often referred to as the Window of Interest

(WOI). This averaging process is based on the assumption that the WOI is representative of the

material’s microstructure.

Averaging the Local Stress Field

The average stress tensor σ̂ over the WOI YW is defined as:

σ̂ =
1

|YW |

∫
YW

σ dY, (154)

where:

• σ is the local stress tensor at each point within the WOI, obtained from the constitutive rela-

tion.

• |YW | is the volume (or area in 2D) of the WOI as shown in Figure 3.2, given by:

|YW | =
∫
YW

dY. (155)

This integral effectively sums the local stress contributions over the WOI and normalizes them

by the WOI’s volume, providing an average stress that reflects the overall response of the mi-

crostructure within that region.
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Averaging the Local Strain Field

Similarly, the average strain tensor ϵ̂ over the WOI is calculated as:

ϵ̂ =
1

|YW |

∫
YW

ϵ dY =
1

|YW |

∫
YW

∂u

∂y
dY, (156)

where:

• ϵ is the local strain tensor, obtained from the gradient of the displacement field u within the

RVE.

• ∂u
∂y represents the displacement gradient with respect to the spatial coordinates y.

The averaging of the strain field accounts for the deformation behaviour of the material’s mi-

crostructure and provides an effective strain measure over the WOI.

Definition of the Window of Interest (WOI)

The WOI is a subdomain within the RVE, defined to focus on a specific region of interest,

possibly to capture localized effects or to exclude boundary influences. Figure 3.2 illustrates the

WOI within the RVE.

Figure 3.2: Schematic representation of the Window of Interest (WOI) within the RVE. Margins
from the bottom-left corner are y1b and y2b, and from the top-right corner are y1e and y2e.

The margins of the WOI are defined by distances from the RVE boundaries:

• y1b and y2b: Distances from the bottom-left corner along the y1 and y2 axes, respectively.
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• y1e and y2e: Distances from the top-right corner along the y1 and y2 axes, respectively.

By selecting an appropriate WOI, the averaging process can be tailored to specific regions,

enhancing the accuracy of the effective property calculations.

3.9.2 Determination of Homogenized Constitutive Relations

The relationship between the averaged stress and strain tensors defines the effective (homoge-

nized) constitutive behaviour of the material within the WOI.

Effective Constitutive Relationship

The homogenized stress-strain relationship is expressed as:

σ̂ = D̂ ϵ̂, (157)

where D̂ is the effective stiffness tensor (constitutive matrix) representing the material’s re-

sponse.

Calculating the Local Stress Tensor

The local stress tensor σ at each point within the RVE is obtained from the constitutive relation:

σ = D ϵ, (158)

where D is the material stiffness matrix at the micro-scale, and ϵ is the local strain tensor

computed from the displacement field.

3.9.3 Identification of Elastic Constants

To extract specific elastic constants from the effective stiffness tensor, we apply particular load-

ing scenarios that simplify the calculations.
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Applying Specific Displacement Gradients

We consider three independent loading cases corresponding to uniaxial and shear deformations:

• Case 1: Apply a displacement gradient g1 corresponding to uniaxial strain in the y1-direction.

g1 =


1

0

0

 (159)

• Case 2: Apply a displacement gradient g2 corresponding to uniaxial strain in the y2-direction.

g2 =


0

1

0

 (160)

• Case 3: Apply a displacement gradient g3 corresponding to pure shear strain.

g3 =


0

0

1

 (161)

Extracting Elastic Constants

Using the averaged values, we can express the components of the effective stiffness tensor D̂ in

matrix form:


σ̂111 σ̂211 σ̂311

σ̂122 σ̂222 σ̂322

σ̂112 σ̂212 σ̂312

 =


D̂1111 D̂1122 D̂1112

D̂1122 D̂2222 D̂2212

D̂1112 D̂2212 D̂1212



ϵ̂111 ϵ̂211 ϵ̂311

ϵ̂122 ϵ̂222 ϵ̂322

γ̂112 γ̂212 γ̂312

 (162)

In this equation, γ̂12 = 2ϵ̂12, according to Voigt’s notation for shear strain. By solving this

system for each loading case, we can identify the individual components of D̂, thereby extracting

specific elastic constants such as Young’s modulus, Poisson’s ratio, and shear modulus. When the
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window of interest covers the entire RVE (YW = VRVE), the average strain tensor for each loading

case equals the applied displacement gradient:

ϵ̂i = gi, i = 1, 2, 3 (163)

This simplifies the determination of the effective stiffness matrix components, as the off-diagonal

strain terms become negligible. Thus, we can determine the components of D̂ column by column.

To extract elastic moduli for comparison purposes, we assume the material behaves as a plane-

stress orthotropic material. Under this assumption, the effective stiffness matrix D̂ takes the follow-

ing form:

D̂ =


Q̂11 Q̂12 0

Q̂21 Q̂22 0

0 0 Ĝ

 (164)

where Q̂11, Q̂22 are the effective stiffness components in the y1 and y2 directions, respectively,

and Ĝ is the effective shear modulus. The elastic moduli and Poisson’s ratios can be extracted from

the following relationships:

Q̂11 =
Ê1

1− ν̂12ν̂21
(165)

Q̂12 =
ν̂12Ê2

1− ν̂12ν̂21
= Q̂21 =

ν̂21Ê1

1− ν̂12ν̂21
(166)

Q̂22 =
Ê2

1− ν̂12ν̂21
(167)

Here, Ê1, Ê2 are the Young’s moduli in the y1 and y2 directions, respectively, and ν̂12 and

ν̂21 are the Poisson ratios. In total, there are five material constants to be identified in Eq. (164),

with four of them being independent due to the symmetry condition in Eq. (166). Due to material

symmetry in orthotropic materials:

Q̂12 = Q̂21 (168)
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There are five material constants in total: Ê1, Ê2, ν̂12, ν̂21, and Ĝ. However, considering the

symmetry condition (Q̂12 = Q̂21), there are only four independent constants to determine.

In Loading Case 1 (g1), the dominant strain is ϵ̂111, while the negligible strains are ϵ̂122 ≈ 0 and

γ̂112 ≈ 0. The effective stress components are given by the following relations:

σ̂111 = Q̂11ϵ̂
1
11 (169)

σ̂122 = Q̂12ϵ̂
1
11 (170)

From these expressions, we can solve for Q̂11 and Q̂12. Similarly, in Loading Case 2 (g2), the

dominant strain is ϵ̂222, with negligible strains ϵ̂211 ≈ 0 and γ̂212 ≈ 0. The effective stress components

are:

σ̂222 = Q̂22ϵ̂
2
22 (171)

σ̂211 = Q̂21ϵ̂
2
22 (172)

From these, we can solve for Q̂22 and Q̂21. Finally, in Loading Case 3 (g3), the dominant strain is

γ̂312, while the negligible strains are ϵ̂311 ≈ 0 and ϵ̂322 ≈ 0. The effective stress component is:

σ̂312 = Ĝγ̂312 (173)

From this, we can solve for Ĝ.
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Chapter 4

Validation Case Studies

In this section, we validate the developed X-FEM-based computational homogenization strategy

by comparing its results with established literature values for material matrix constants, specifically

E1, ν1, E2, ν2, and G, as reported in [6], [5], and [10]. The comparisons are based on approximate

average constants calculated from the RVE using our approach, detailed below.

4.1 Calculation of Average Material Constants

The determination of the average material constants is based on the application of different unit

displacement gradient vectors to the RVE. A crucial refinement in this process is the incorporation

of the window of interest (WOI), which allows for a more precise calculation of the macro-strain

within the selected domain. This computed macro-strain is then systematically integrated into the

effective modulus evaluation, ensuring a more accurate representation of the material behaviour.

The following sections provide a detailed explanation of each calculation method.

1. Average Elastic Modulus E1

To calculate E1, we apply a unit displacement gradient vector g = ⟨1, 0, 0⟩T to the RVE. The

Poisson’s ratio within the region of interest is computed as:

ν1 =
σ̂122
σ̂111

(174)
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Using this value, we estimate the average elasticity modulus in the horizontal direction as:

E1 =
σ̂111
ϵ̂111

(1− ν1ν1) (175)

This calculation adopts the assumptions ϵ̂122/ϵ̂111 ≈ γ̂112/ϵ̂
1
11 ≈ 0 and (1− ν1ν1) ≈

(1− ν12ν21) for simplification.

2. Average Elastic Modulus E2

ForE2, we apply a unit displacement gradient vector g = ⟨0, 1, 0⟩T to the RVE. The Poisson’s

ratio in this orientation is calculated as:

ν2 =
σ̂211
σ̂222

(176)

The vertical elasticity modulus is then given by:

E2 =
σ̂222
ϵ̂222

(1− ν2ν2) (177)

The assumptions used here are ϵ̂211/ϵ̂222 ≈ γ̂212/ϵ̂
2
22 ≈ 0 and (1− ν2ν2) ≈ (1− ν12ν21).

3. Average Shear Modulus G

The average shear modulus is determined by applying the unit displacement gradient vector

g = ⟨0, 0, 1⟩T. The shear modulus G within the region of interest is calculated as:

G =
σ̂312
γ̂312

(178)

This calculation assumes that ϵ̂311/γ̂312 ≈ ϵ̂322/γ̂
3
12 ≈ 0.

4.2 Boundary Conditions and Assumptions

To impose a perfect bond in all cases, we use k = 10 × 106 N/mm3 in Eq. (63). This value

is chosen as it ensures that any increase in interface stiffness beyond this level does not impact the

homogenized properties. Unless otherwise specified, periodic boundary conditions are applied to
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the RVE.

4.3 Window of Interest and Margins

Due to the inability to place inclusions on the edges of the RVE, a window of interest is defined

within the RVE, excluding boundary margins, as shown in Fig. 3.2. This setup ensures that the

average stresses and strains are calculated only within this defined window, following Eqs. (154)

and (156). For consistency across all analyses, the margins defining the window of interest, YW,

are set identically as y1b = y2b = y1e = y2e = 2.5 mm (see Fig. 3.2). This margin selection aligns

with the windowed regions used in the analyses of [6], [5], and [10], facilitating direct comparisons.

4.4 Case 1: Validation Against [6] Results

In this validation case, we compare the results of the developed X-FEM-based computational

homogenization approach with the values reported by [6]. The goal is to assess the accuracy of our

model in capturing the effective elastic properties of a masonry RVE. The RVE is composed of brick

units (96 mm × 22 mm) embedded within 10 mm thick mortar layers, forming a total dimension of

111 mm × 69 mm. The specific material properties for brick and mortar are detailed in Table 4.1.

Mechanical Properties Brick Lime Mortar
Elasticity Modulus E1 (MPa) 1545.35 309.12

Poisson’s Ratio ν1 0.117 0.10

Table 4.1: Material Properties of the Masonry Constituents [6]

(a) (b)

Figure 4.1: RVE dimensions and finite element mesh for the validation study
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To validate the model, the homogenized elastic constants E1 and G were calculated under dif-

ferent boundary conditions: displacement, periodic, and traction. This comparison focuses on the

periodic boundary conditions, as they most closely represent the average response of the RVE and

are thus ideal for comparative analysis. Table 4.2 shows the results obtained from our X-FEM

model, alongside the values reported in [6].

E1 (MPa)
X-FEM Model 935.34

Reference Model [6] 887.47
Experimental Values [6] 807.62

G (MPa)
X-FEM Model 299.23

Reference Model [6] 474.80

Table 4.2: Comparison of Homogenized Elastic Moduli under Periodic Boundary Conditions

The values in Table 4.2 show a strong alignment between our X-FEM model and the reference

and experimental values for E1, confirming that our model accurately captures the elastic modulus

in the horizontal direction. Specifically, the elasticity moduli obtained based on the displacement

and traction boundary conditions are E1 = 954.56 MPa and E1 = 916.12 MPa, respectively, pro-

viding upper and lower bounds to E1 = 935.34 MPa reported in Table 4.2, which was obtained

based on the periodic boundary conditions. Similarly, the shear moduli G obtained based on the

displacement and traction boundary conditions are G = 307.52 MPa and G = 296.56 MPa, respec-

tively, again providing upper and lower bounds to G = 299.23 MPa reported in Table 4.2, which

was obtained based on the periodic boundary conditions.

However, the shear modulusG calculated by the X-FEM model (299.23 MPa) is lower than that

reported in the reference model (474.80 MPa). This discrepancy may be attributed to differences

in modelling assumptions, boundary conditions, and micromechanical approaches, as discussed in

detail below. It should be noted that we have used the suggested elasticity and shear moduli values

from the reference [6], which suggest a negative Poisson’s ratio. However, alternative shear modulus

calculations can be found in [6], where the lowest value for the shear modulus is G = 352.12 MPa

and the corresponding elasticity modulus is E = 953.53 MPa. These values are in closer agreement

with our results.
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4.4.1 Conclusion on Periodic Boundary Condition Suitability

The results for E1 indicate that our model performs well in predicting elasticity modulus under

various boundary conditions, with periodic boundary conditions offering a representative average

that closely matches the reference model.

To match Bati et al. (1999) as closely as possible, using periodic boundary conditions would

likely yield the most comparable results. Bati et al.’s work involves a periodic microstructure,

where such boundary conditions ensure the RVE’s response aligns well with the repeating unit’s

characteristics. Here’s why periodic boundary conditions are ideal for this comparison:

• Consistency with Periodicity in Microstructure: Bati et al. modelled materials with inher-

ent periodicity. By enforcing periodic boundary conditions, displacement fields on opposite

boundaries are matched, mimicking the infinite repeat of the microstructure and minimizing

artificial boundary effects.

• Balanced Micro-Scale Fluctuations: Unlike displacement or traction boundary conditions,

periodic boundary conditions account for both micro- and macro-scale interactions effec-

tively, which is essential for capturing accurate effective properties that match those from

periodic microstructures.

• Accurate Stiffness Representation: Periodic boundary conditions provide a realistic repre-

sentation of material stiffness without over- or under-constraining the system. This balance

often leads to effective properties that closely match experimental or published values, such

as those by Bati et al.

In summary, periodic boundary conditions are selected for validation because they provide a

balanced response, minimize artificial boundary effects, and are more representative of the RVE’s

periodic microstructure, which is essential for capturing the true macroscopic behaviour of masonry

materials as studied in [6].
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4.4.2 The Influence of the RVE Size on the Homogenization

Understanding the impact of RVE size on the homogenized properties is crucial for ensuring the

reliability of computational models in representing masonry materials. To investigate this, we anal-

ysed three different RVE sizes: 111×69mm, 217×133mm, and 323×197mm, while maintaining

a uniform mesh size of 3× 3mm. The configurations of these RVEs are illustrated in Figure 4.2.

Figure 4.2: Configurations of the three RVE models with varying dimensions.

For each RVE size, the deformation gradient g = ⟨1, 0, 0⟩T was applied to compute the ho-

mogenized elasticity modulus E1. The corresponding deformed shapes are shown in Figure 4.3,

highlighting the response of the RVE models under the imposed boundary conditions.

The homogenized elasticity modulus E1 and associated accuracy metrics for each RVE size

are presented in Table 4.3. The results reveal a slight decrease in E1 with increasing RVE size,

indicating the influence of heterogeneities captured within larger RVEs.

Case RVE Dimensions (mm × mm) Number of Elements Mesh Size (mm × mm) E1 (MPa) Accuracy (%)
1 111× 69 37× 23 3× 3 935.34 105.39

2 217× 133 72× 44 3× 3 925.58 104.29

3 323× 197 108× 66 3× 3 912.97 102.39

Table 4.3: Effect of RVE size on homogenized elasticity modulus E1.
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(a) RVE size: 111× 69mm. (b) RVE size: 217× 133mm.

(c) RVE size: 323× 197mm.

Figure 4.3: Deformed shapes of the three RVE models under g = 〈1, 0, 0〉T.

Discussion

The observed trend, where E1 decreases slightly with increasing RVE size, suggests that larger

RVEs encompass more heterogeneities within the masonry microstructure. This leads to a reduction

in the averaged stiffness values. The smallest RVE (111 × 69mm) exhibits a slightly higher E1,

likely due to the limited representation of material heterogeneities within its smaller domain.

These findings emphasize the importance of selecting an RVE size that adequately represents

the material’s microstructure for accurate homogenization. While smaller RVEs may provide com-

putational efficiency, larger RVEs are more representative of the actual masonry material, capturing

its inherent variability and leading to more reliable predictions of macroscopic properties.

4.4.3 Factors Influencing Discrepancies with [6]

The difference between our results and those obtained by Bati et al. (1999) can likely be at-

tributed to several factors related to modelling assumptions, material representations, and method-

ological choices:

• modelling Assumptions and Simplifications: Bati et al. used a micromechanical model
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originally intended for long-fiber composites, approximating the brick shape as elliptic cylin-

ders within a mortar matrix. This shape approximation, combined with Eshelby’s solution and

the Mori-Tanaka extension, was used to model the strain and stress within an inhomogeneous,

two-phase system (brick and mortar). Differences in shape approximations or boundary con-

ditions could lead to discrepancies, especially in the shear modulus (G), which is sensitive to

stress distribution and interface assumptions.

• Shape and Orientation Effects: Bati et al.’s model assumes bricks as elliptic cylinders to

apply Eshelby’s tensor solutions, which work for ellipsoidal inclusions of specific orienta-

tions and aspect ratios. Any difference in shape representation, such as modelling bricks as

rectangular elements, could introduce differences.

• Experimental Variability: Bati et al. validated their model using uniaxial compression tests

on small masonry panels with lime and cement mortars. Inherent heterogeneity in masonry

and potential variances in boundary conditions during testing could lead to slight deviations

between model predictions and experimental results. Differences in testing methods, scale,

or material quality could also affect values for properties like E1 and G.

• Phase Volume Ratios and Material Properties: Bati et al. calculated macroscopic elastic

constants based on the mechanical properties of bricks and mortar as well as phase volume

ratios.

• Micromechanical Model Approach: Bati et al. employed Eshelby’s solution and Mori-

Tanaka theory to account for high inclusion concentrations typical of masonry.

In summary, the discrepancies between our results and those in [6] likely arise from variations

in shape approximations, micromechanical modelling approaches, and testing methods.
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4.5 Case 2: Influence of Mortar Properties on Masonry Homogeniza-

tion

This case study investigates the role of mortar thickness and elasticity modulus on the homog-

enized properties of masonry, as analysed in [5]. The primary goal is to evaluate how variations

in these parameters influence the elastic behaviour of the masonry structure. The brick properties,

dimensions, and mortar Poisson’s ratio used in this study are summarized in Table 4.4.

4.5.1 Variation in Mortar Thickness and Elasticity Modulus

To explore the impact of mortar thickness, five alternative RVE configurations were created by

varying the mortar thickness from 5 mm to 25 mm, as illustrated in Fig. 4.4. Additionally, the

elasticity modulus of the mortar (Em) was varied between 1000 MPa and 10,000 MPa, generating

a range of brick-to-mortar elasticity ratios, Eb/Em, as follows: 11, 4.4, 2.2, 1.47, and 1.1. This

parametric setup enabled the analysis of a comprehensive range of material configurations.

For each RVE configuration, the homogenized elasticity modulus (E1) was calculated under a

unit displacement gradient vector, g = ⟨1, 0, 0⟩T. The results, compared with those reported in [5],

are presented in Fig. 4.5.

Table 4.4: Material Properties and Dimensions of the RVE

Elasticity Modulus of Brick (Eb) 11,000 MPa
Poisson’s Ratio of Brick 0.25

Poisson’s Ratio of Mortar 0.20
Brick Height 75 mm
Brick Width 225 mm
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(a) RVE 1: Mortar thickness 5 mm. (b) RVE 2: Mortar thickness 10 mm.

(c) RVE 3: Mortar thickness 15 mm. (d) RVE 4: Mortar thickness 20 mm.

(e) RVE 5: Mortar thickness 25 mm.

Figure 4.4: Dimensions of the RVE Models with varying mortar thickness.

4.5.2 Results and Observations

The results in Fig. 4.5 indicate that the homogenized elasticity modulus (E1) shows stronger

agreement with the reference study [5] for configurations where Eb/Em = 1.1 and the mortar

thickness is minimized (5 mm). In contrast, cases with higher elasticity ratios (Eb/Em = 11)

and larger mortar thickness (25 mm) exhibit greater deviation. Despite these variations, the overall

agreement between the X-FEM framework and the reference results is excellent, validating the

proposed methodology’s robustness.
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Figure 4.5: Ratio of Homogenized Modulus to Brick Modulus vs. Mortar Properties.

4.5.3 Parametric Study on Interface Stiffness

To further investigate the influence of interface stiffness on the homogenized elasticity modulus

(E1), parametric studies were conducted for the configuration where Eb/Em = 11. Three mortar

thickness values were considered, and the interface stiffness coefficient (k) was varied. Figure

4.6 illustrates that at lower interface stiffness values, the homogenized properties are significantly

reduced due to imperfect bonding between the mortar and bricks. As k increases, the homogenized

modulus stabilizes, reaching a plateau beyond which further increases in stiffness have negligible

influence.

This stabilization behaviour highlights the framework’s capacity to effectively capture bonding

effects and provides practical insights into optimizing interface properties in masonry materials.
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Figure 4.6: Average elasticity modulus E1 vs. interface stiffness coefficient k.

4.6 Case 3: Evaluating the Influence of Boundary Conditions

In this case study, we explore the impact of different RVE boundary conditions on the ho-

mogenized elastic properties of masonry. Our objective is to validate the developed X-FEM-based

computational homogenization technique by comparing our results with those reported by Luciano

et al. in [10].

4.6.1 Model Configuration and Parameters

To ensure a meaningful comparison, we constructed an RVE that mirrors the one used in Lu-

ciano’s study. The RVE consists of mortar serving as the matrix material and bricks as inclusions.

The detailed properties and dimensions of the materials are provided in Table 4.5. The RVE dimen-

sions are illustrated in Figure 4.7, and a regular finite element mesh of 49×37 elements was utilized

for the analysis.

Table 4.5: Properties and Dimensions of the RVE Model

Macro Width X 245 mm
Macro Width Y 185 mm

Brick Width 225 mm
Brick Height 75 mm

Mortar Thickness 15 mm
EBrick 15000 MPa
νBrick 0.25
EMortar 1000 MPa
νMortar 0.3
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Figure 4.7: RVE Dimensions and Mesh

To enhance the accuracy of our homogenization process, we applied the area of interest method,

incorporating a 2.5 mm offset to define the region of interest within the RVE. The homogenized

elasticity modulus was calculated under the displacement gradient g = 〈1, 0, 0〉T.

4.6.2 Results and Comparative Analysis

The computed homogenized elasticity moduli for different boundary conditions are presented in

Table 4.6. Our results show very good agreement with those obtained by Luciano et al., particularly

under displacement and periodic boundary conditions.

Table 4.6: Homogenized Elasticity Moduli for Alternative RVE Boundary Conditions

Boundary Condition
Elasticity Modulus E1 (MPa)

X-FEM Model Reference [10]
Periodic Boundary Conditions 10032.53 8942

Displacement Boundary Conditions 10261.04 10029
Traction Boundary Conditions 9863.43 -

Our findings corroborate the observations made in the literature, notably by Hashin [56], that

displacement and traction boundary conditions provide upper and lower bounds, respectively, for

solutions based on periodic boundary conditions. The X-FEM-based results presented in Table 4.6

align with this theory, reinforcing the validity of our computational approach.

4.6.3 Investigating the Influence of Interface Damage

To further assess the robustness of our model, we explored the effect of interface damage be-

tween the mortar and the bricks on the overall stiffness of the masonry. By systematically varying
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the location and extent of interface damage, we aimed to understand how such imperfections influ-

ence the homogenized elastic properties.

We introduced interface damage using two alternative approaches:

(A) Cracks Through the Elements (CTE)

In this approach, damage is represented as lines of discontinuity within the mortar beds. To

model open cracks, we utilized the XFEM by assigning an interface stiffness k = 0 in Eq.

(63) specifically at the damage locations. Figure 4.8 shows the crack patterns introduced,

drawn as red lines within the mesh.

(a) (b)

(c) (d)

(e) (f)
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(g) (h)

Figure 4.8: Crack Patterns Introduced Using the XFEM Method

For each damage case depicted in Figure 4.8, we obtained the deformed shapes of the RVE

under the deformation gradient g = ⟨1, 0, 0⟩T, as shown in Figure 4.9.

(a) S1 (b) S2

(c) S3 (d) S4

(e) S5 (f) S6

(g) S7 (h) S8

Figure 4.9: Deformed Shapes of the RVE Using the CTE Method
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(B) Zero Stiffness Elements (ZSE)

In the ZSE approach, damage is introduced by assigning zero stiffness to mortar elements

along the damage path. The zero stiffness elements are highlighted in red in Figure 4.10.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.10: Damage Patterns for Masonry RVEs Using Zero Stiffness Elements
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Similar to the CTE method, we obtained the deformed shapes under the same deformation

gradient, presented in Figure 4.11.

(a) S1 (b) S2

(c) S3 (d) S4

(e) S5 (f) S6

(g) S7 (h) S8

Figure 4.11: Deformed Shapes of the RVE Using the ZSE Method

4.6.4 Comparative Results and Discussion

Table 4.8 presents the elasticity moduli corresponding to different damage scenarios for both

CTE and ZSE methods, alongside the reference results from Luciano et al. The comparison indicates

that our model accurately captures the influence of interface damage on the homogenized moduli.

By comparing our results with the reference data, it becomes evident that both damage mod-

elling techniques effectively simulate the reduction in stiffness due to interface damage. The slight

discrepancies can be attributed to differences in modelling nuances and numerical implementations.
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Table 4.7: Elasticity Moduli Corresponding to Different Damage Scenarios

Elasticity Moduli S1 S2 S3 S4 S5 S6 S7 S8

E1 (MPa)
Reference [10] 8942.00 2761.00 1203.00 1203.00 8398.00 7967.00 8398.00 0.00

CTE 10032.53 2907.69 1486.45 1486.45 7721.54 7578.45 7721.54 2392.48
ZSE 10032.53 2495.81 1341.90 1341.90 7629.76 7418.38 7629.76 0.00

E2 (MPa)
Reference [10] 5595.00 5329.00 381.00 381.00 1343.00 0.00 1343.00 0.00

CTE 5881.90 5230.46 216.09 216.09 1155.35 17.77 1155.35 -1257.37
ZSE 5881.90 5136.12 -18.13 -18.13 1079.98 -14.10 1079.98 28.11

This comprehensive analysis demonstrates that the developed X-FEM-based computational ho-

mogenization technique is capable of accurately predicting the influence of boundary conditions

and interface damage on the homogenized elastic properties of masonry. The close agreement with

established results not only validates our approach but also underscores its potential applicability in

the analysis and design of masonry structures subject to various damage scenarios.

4.7 Case 4: Validation of the Interface Cohesive Zone Model

To evaluate the performance of the Cohesive Zone Model (CZM) within the developed X-FEM-

based framework, a validation study is conducted using the methodology outlined in Section 3.8.

The results are compared against the extension and shear tests presented in [21], which characterize

interface failure mechanisms. Model parameters are calibrated to align with those in [21], where

a cohesive element was placed between two standard membrane finite elements, each measuring

10× 10 mm. In contrast, the X-FEM model employs a single bulk element with a width of 20 mm

and a height of 10 mm, incorporating a vertical cohesive interface at the mid-span. The left boundary

is fully constrained, while the right boundary remains free to displace in both horizontal and vertical

directions. The material properties assigned to the cohesive zone are summarized in Table 4.8. To

minimize bulk deformations relative to interface separation, a high modulus of elasticity, E =

1× 1010 MPa, is used for the bulk material.

4.7.1 Tension Test

A uniform tensile load is incrementally applied at the right boundary through two equal nodal

forces, as illustrated in Fig. 4.12. The displacement at the tip increases up to u = 0.2 mm, ensuring

that bulk deformations remain minimal relative to interface separation. Due to the high cohesive
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Table 4.8: Material Properties for the Cohesive Zone Model

Property Value Unit
Tangential Stiffness 20.0 GPa

Normal Stiffness 20.0 GPa
Shear Strength 2.4 MPa

Tensile Strength 2.4 MPa
Softening Modulus 0.01 MPa

stiffness, the stress-displacement curve initially exhibits a steep elastic response until the damage

threshold is reached. Elastic deformations are negligible compared to the overall separation.

Figure 4.12: Extension test on a single element with an interface.

The stress-displacement response obtained from the X-FEM model is compared with the results

from [21] in Fig. 4.13, demonstrating agreement in capturing interface failure characteristics. The

results indicate that as the elastic cohesive stiffness is relatively high, the normal stress-displacement

curve exhibits an initially steep elastic response until the damage threshold is reached, after which

the interface begins to degrade.

4.7.2 Shear Test

The shear test follows the same material and geometric setup, with the applied load direction

shifted to vertical (Fig. 4.14). The right boundary undergoes a displacement of u = 0.2 mm, with

negligible end rotations, indicating that bulk deformations are minimal and vertical slip occurs pri-

marily due to cohesive interface separation. The resulting stress-displacement behaviour, shown

in Fig. 4.15, highlights the nonlinear degradation of stress transfer, attributed to the softening re-

sponse of the cohesive zone. This behaviour aligns with the results of [21], where similar nonlinear

characteristics were observed.
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Figure 4.13: Comparison of stress-displacement curves for the extension test [21].

Figure 4.14: Shear test on a single element with an interface.

Figure 4.15: Comparison of stress-displacement curves for the shear test [21].
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4.8 Case 5: Nonlinear Masonry Wall Analysis and Validation Against

[9]

To fully leverage the capabilities of the proposed modelling framework, we employ an advanced

approach to predict the structural behaviour of masonry walls by integrating a refined RVE-based

homogenization scheme. This methodology captures the intricate geometrical and mechanical char-

acteristics of masonry constituents, enabling the derivation of macro-scale stress-strain responses.

The developed computational scheme ensures efficient computation by utilizing an RVE signifi-

cantly smaller than the full-scale masonry wall. The obtained homogenized stress-strain curves

are subsequently approximated using bilinear fits for tensile, compressive, and shear load condi-

tions. These material models are then incorporated into structural-level simulations, facilitating the

analysis of the masonry shear wall configuration illustrated in Fig. 4.16.

The structural wall is subjected to combined axial and lateral loading. A uniformly distributed

pre-stress of q = 68kN/m is applied to introduce a constant compressive load, while lateral forces

are incrementally increased. The wall, modelled as a cantilever, has a thickness of 35 mm, a width

of 298 mm, and a height of 238 mm. Finite element discretization is carried out using four-node

quadrilateral membrane elements with a 25 × 25 mesh resolution. The mortar joints are modelled

with a thickness of 10 mm, while the relevant material parameters for bricks, mortar, and their

interface properties are summarized in Table 4.9. The adopted RVE dimensions are set at 155 mm

× 35 mm, ensuring an accurate representation of masonry heterogeneity within a localized domain.

The cohesive zone properties assigned to the model are based on the parameter set provided

in Table 4.9, replacing the values previously used in Table 4.8 to specifically account for the brick-

mortar interface characteristics. Under compressive loading, the material is assumed to remain elas-

tic, maintaining the initial stiffness observed in tension. The RVE analysis is conducted under the

three alternative boundary conditions discussed in Section 3.7, with the bilinear approximation of

the stress-strain response presented in Fig. 4.17. Homogenized material behaviour is subsequently

validated using a single-element representation, as depicted in Fig. 4.18. The material parameters

governing the bilinear constitutive model utilized in the structural-level analysis are documented in

Table 4.10.
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Figure 4.16: Geometric configuration, loading conditions, and selected RVE for the masonry shear
wall analysis

Table 4.9: Material properties of bricks, mortar, and brick-mortar interfaces

Component Parameter Value Units

Brick

Length 72.5 mm
Height 12.5 mm
Width 35.0 mm
Elasticity modulus 4080 MPa
Poisson’s ratio 0.15 –

Mortar

Head joint thickness 2.5 mm
Bed joint thickness 2.5 mm
Elasticity modulus 3500 MPa
Poisson’s ratio 0.20 –

Brick-Mortar Interface

Tangential stiffness 20.0 GPa
Normal stiffness 20.0 GPa
Shear strength 0.25 MPa
Tensile strength 0.18 MPa
Softening Modulus 0.1 MPa

The bilinear model is parametrized based on the effective stress measure defined as σeff =√
(σ2x + σ2y + τ2). During structural-level simulations, the updated plane-stress elasticity matrix

D̂up is employed to compute stress increments as ∆σ̂ = D̂up∆ϵ̂, where:

D̂up =
Êup

1− ν̂2up


1 ν̂up 0

ν̂up 1 0

0 0
1−ν̂up

2

 . (179)

Here, Êup and ν̂up are adaptively selected from Table 4.10, corresponding to the prevailing stress

state. Unbalanced forces arising from stiffness changes are iteratively corrected. Further details on
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(a) Tensile response from RVE simulation
(b) Shear response from RVE simula-
tion

Figure 4.17: Bilinear curve fits to homogenized RVE stress-strain data

(a) Tensile test (b) Shear test

Figure 4.18: Single element verification using homogenized bilinear material properties

incremental solution techniques can be found in classical finite element references such as [54].

The structural-level force-displacement responses, shown in Fig. 4.19, closely follow experimental

observations.

The numerical results show good agreement with [9], although exhibiting a slightly reduced

load-bearing capacity due to premature crack localization and reduced ductility.
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Table 4.10: Bilinear Material Model Parameters

Parameter Value Unit

Initial Elasticity Modulus (Compression) 3912.83 MPa

Second Elasticity Modulus (Compression) 3912.83 MPa

Third Elasticity Modulus (Compression) 3912.83 MPa

Initial Poisson Ratio (Compression) 0.20 -

Second Poisson Ratio (Compression) 0.10 -

Third Poisson Ratio (Compression) 0.05 -

First Threshold Effective Stress (Compression) −8.00 MPa

Second Threshold Effective Stress (Compression) −25.00 MPa

Initial Elasticity Modulus (Tension) 3912.83 MPa

Second Elasticity Modulus (Tension) 10.00 MPa

Third Elasticity Modulus (Tension) 5.00 MPa

Initial Poisson Ratio (Tension) 0.20 -

Second Poisson Ratio (Tension) 0.10 -

Third Poisson Ratio (Tension) 0.05 -

First Threshold Effective Stress (Tension) 1.00 MPa

Second Threshold Effective Stress (Tension) 0.70 MPa

Figure 4.19: Load-deflection curve
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Chapter 5

Conclusion

This thesis has presented a comprehensive investigation into the application of an X-FEM-based

computational homogenization framework for masonry materials. The research was motivated by

the need for an accurate and computationally efficient method to capture the macroscopic behavior

of heterogeneous masonry structures. Through detailed methodological development and valida-

tion against established literature, the proposed framework demonstrated its capability in accurately

predicting the effective elastic properties of masonry.

5.1 Summary of Contributions

The main contributions of this work are summarized as follows:

1. Development of an X-FEM-based Computational Homogenization Framework: A ro-

bust methodology was formulated to compute the effective elastic properties of masonry ma-

terials. The framework incorporated advanced numerical techniques to handle discontinuities

at the interfaces between bricks and mortar while ensuring computational efficiency.

2. Comprehensive Validation Studies: The developed approach was validated against results

from established studies, including [6], [5], and [10]. These comparisons confirmed the accu-

racy of the proposed methodology in capturing elastic constants such asE1,E2, ν1, ν2, andG,

under varying boundary conditions. Furthermore, additional validation was conducted using
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a Cohesive Zone Model (CZM) in Case 4, which demonstrated the accuracy of the framework

in modeling interface failure mechanisms. The nonlinear response of masonry walls was also

investigated in Case 5, where the homogenized stress-strain relations were validated against

results from [9].

3. Parametric Studies on RVE Characteristics: The influence of RVE size, mortar thickness,

and interface stiffness on the homogenized properties was systematically analyzed. These

studies provided critical insights into the role of microstructural parameters in determining

the effective mechanical behavior of masonry.

4. Evaluation of Damage Scenarios: Interface damage was modeled using the Cracks Through

the Elements (CTE) and Zero Stiffness Elements (ZSE) approaches. The results demonstrated

the framework’s ability to accurately capture the impact of interface imperfections on the

homogenized elastic properties. Additional studies on cohesive interfaces in Case 4 further

validated the traction-separation behavior of the masonry joints, reinforcing the framework’s

predictive capabilities for interface failure.

5. Nonlinear Structural Analysis: The framework was extended to predict the nonlinear re-

sponse of masonry walls in Case 5 by integrating homogenized stress-strain relations into

macro-scale finite element simulations. The force-displacement curves obtained from the

structural simulations exhibited close agreement with reference results, validating the accu-

racy of the proposed homogenization approach for large-scale masonry structures.

5.2 Key Findings

The key findings of this research are:

• Periodic Boundary Conditions: Among the boundary conditions studied, periodic boundary

conditions were shown to provide the most representative average response for homogeniza-

tion, aligning closely with the periodicity of the masonry microstructure.
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• Impact of RVE Size: Larger RVEs captured more heterogeneities, leading to a slight reduc-

tion in homogenized stiffness values. This finding highlights the trade-off between computa-

tional efficiency and representativeness in RVE selection.

• Interface Stiffness and Damage: The parametric studies on interface stiffness revealed a

stabilization of homogenized properties beyond a certain stiffness threshold. Moreover, the

damage analysis confirmed the sensitivity of the homogenized properties to interface imper-

fections, emphasizing the importance of accurately modeling such effects in masonry struc-

tures. The cohesive zone validation in Case 4 provided further confirmation of the frame-

work’s ability to capture interface failure under both normal and shear loading conditions.

• Nonlinear Behavior of Masonry: The inclusion of nonlinear masonry wall simulations

in Case 5 demonstrated that the homogenized constitutive model successfully predicted the

structural response of masonry under combined axial and lateral loads. The observed force-

displacement curves closely matched those from [9], affirming the validity of the multiscale

modeling approach.

• Comparison with Literature: The proposed framework showed excellent agreement with

established models and experimental data, validating its robustness and accuracy for masonry

homogenization.

5.3 Concluding Remarks

This thesis has demonstrated the potential of the X-FEM-based computational homogeniza-

tion framework as a powerful tool for analyzing masonry materials. By bridging the gap between

microstructural details and macroscopic behavior, the proposed methodology offers a promising

avenue for the design and analysis of masonry structures. The findings and insights gained from

this research provide a solid foundation for future studies aimed at advancing the understanding and

modeling of heterogeneous materials.
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