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Abstract

Machine Learning-Driven Solutions for Hydrometric and Traffic Prediction

Naghmeh Shafiee Roudbari, Ph.D.

Concordia University, 2024

This thesis explores advanced spatiotemporal machine learning techniques for traffic and hy-

drometric prediction using graph-based neural network models, RNN family, attention mechanism,

and transformer architecture. First, a multilevel GNN-RNN architecture is proposed for traffic

forecasting, effectively capturing complex spatial and temporal dependencies across urban road

networks. This model significantly reduces computation time and improves prediction accuracy

compared to existing methods. In the domain of hydrometric forecasting, a spatiotemporal model

with an attention-augmented Graph Convolution Recurrent Neural Network (GCRN) is introduced.

This model learns the connectivity between water stations adaptively through a graph learning mod-

ule, addressing the dynamic nature of water systems. Additionally, a flood prediction model, Lo-

calFloodNet, combines GNNs with a digital twin simulation tool, enabling interactive flood scenario

analysis and prevention strategies. The model was applied to a case study for the city of Terrebonne.

Finally, a hybrid model integrating Vision Transformers (ViTs) and LiDAR terrain data is developed

for long-term hydrometric prediction, utilizing both static terrain features and dynamic temporal re-

lationships. These models collectively enhance forecasting capabilities across multiple domains,

providing more accurate and efficient solutions for traffic and hydrometric challenges.
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Chapter 1

Introduction

1.1 Forecasting Across Time and Space

Time series forecasting is a well-established field in data science and machine learning, with

applications spanning various domains such as finance, healthcare, environmental science, and en-

gineering. It focuses on predicting future values of a variable or set of variables based on their

historical values over time. Time series models analyze temporal dependencies, enabling predic-

tions about future trends or events by capturing patterns such as seasonality, trends, and short-term

fluctuations. Classic models such as Autoregressive Integrated Moving Average (ARIMA), Expo-

nential Smoothing, and more recently, Recurrent Neural Networks (RNNs) and Long Short-Term

Memory (LSTM) networks, have been widely used to forecast univariate and multivariate time se-

ries data.

However, many real-world systems, particularly in urban infrastructure and environmental mon-

itoring, involve data that evolves not only over time but also across different spatial locations. These

systems are inherently spatiotemporal, where both temporal dynamics and spatial relationships play

a crucial role in understanding the underlying patterns. This brings us to spatiotemporal fore-

casting, an extension of traditional time series forecasting that incorporates spatial dependencies

alongside temporal information. Spatiotemporal forecasting is essential in domains where the inter-

action between spatially distributed entities (such as road segments in a city or water stations in a

river system) has a direct influence on the temporal patterns observed at each location.
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Spatiotemporal forecasting has found applications in various fields, including traffic forecast-

ing and hydrometric forecasting. In traffic management, the goal is to predict vehicle flow, speed,

or congestion levels across a network of roads. Traffic data is inherently spatiotemporal, as vehicle

flow at one location is often influenced by conditions in nearby locations. The interaction between

road segments, combined with temporal patterns (such as rush hour or seasonal changes), makes

traffic forecasting a challenging yet vital task for optimizing transportation systems and reducing

congestion.

On the other hand, hydrometric forecasting focuses on predicting water-related metrics, such as

water levels, flow rates, and flood risks, across interconnected water systems like rivers, lakes, and

reservoirs. Similar to traffic forecasting, hydrometric forecasting involves both spatial and tempo-

ral dependencies. Water systems are influenced by spatial factors like terrain and interconnected

networks of water bodies, while temporal factors include seasonal fluctuations and precipitation

events. Accurate hydrometric forecasting is crucial for effective water resource management, flood

prevention, and environmental conservation.

Both traffic and hydrometric forecasting share the challenge of dealing with complex spatiotem-

poral dependencies, where the dynamic interactions between spatial entities evolve over time. Tra-

ditional time series forecasting methods are often inadequate for these tasks, as they fail to capture

the spatial relationships between the entities. This calls for the development of advanced machine

learning models that can effectively learn both spatial and temporal dependencies in an integrated

manner.

In this thesis, we explore the development and application of such models, focusing on Graph

Neural Networks (GNNs) and Recurrent Neural Networks (RNNs), which are well-suited for

capturing spatiotemporal patterns. These models are applied to real-world datasets in traffic and

hydrometric forecasting, aiming to improve prediction accuracy and computational efficiency in

both domains.

2



1.2 Research Motivation

The motivation for this research lies in the critical role that underlying structures play in the

accuracy of spatiotemporal predictions. In traffic prediction, the road network structure has a sig-

nificant impact on vehicle flow and speed. Urban road networks, characterized by dense connections

and high variability in speed, present different challenges compared to highways, which have sparse

connections and relatively stable speed patterns. Existing models often struggle to efficiently adapt

to both types of networks, leading to inconsistencies in predictions. Therefore, there is a clear need

for a robust traffic prediction model that can work effectively in both sparse and dense road net-

works, handling the variability of traffic conditions while balancing accuracy and computational

complexity.

In hydrometric forecasting, the challenge is further compounded by the implicit connectivity

between water stations. Unlike road networks, where the connections between nodes (road seg-

ments) are explicit and well-defined, the connectivity between water stations is often implicit and

dynamic. This interconnectivity is influenced by environmental factors such as terrain elevation,

precipitation patterns, and seasonal fluctuations. Accurately capturing this hidden connectivity is

crucial for improving the prediction of water levels and streamflow. Additionally, incorporating

satellite data, such as LiDAR, provides another layer of spatial awareness, which can significantly

enhance the predictive capability of these models by offering precise information about terrain and

environmental conditions.

Another crucial aspect of the research motivation is the integration of digital twin technology.

By developing digital twins of physical environments, it is possible to simulate different scenarios,

such as traffic congestion patterns or flood risks, and evaluate the effectiveness of predictive models

in real-world contexts. This approach allows for the testing of various strategies in a simulated envi-

ronment, providing actionable insights for improving decision-making processes in environmental

resource planning.

In summary, this research is driven by the need to develop advanced predictive models that not

only enhance prediction accuracy but also maintain computational efficiency. The aim is to ensure

that these models can be practically applied across a wide range of spatiotemporal forecasting tasks,
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from urban planning to environmental sustainability.

1.3 Research Objective

The objective of this thesis is to address the critical challenge of improving the accuracy and

efficiency of predictive models in both environmental science and urban planning using advanced

machine learning techniques. Specifically, the research aims to develop models capable of effec-

tively integrating diverse data sources, including satellite imagery and sensor data, while adapting

to dynamic conditions in real-time.

A key focus of the research is to enhance sequence-to-sequence models, ensuring they are ca-

pable of maintaining ordering information over long sequences while selectively focusing on the

most relevant parts of the input data. The goal is to improve predictive performance in systems

with inherent variability and complexity, such as urban traffic networks and interconnected water

systems.

Ultimately, this research seeks to create models that provide more accurate, efficient, and ac-

tionable predictions, helping to improve decision-making in complex and dynamic systems.

1.4 Methodology Overview

The following subsections summarize the contributions of each paper, explain the rationale be-

hind the approaches, and outline the specific innovations introduced in each study. Each contribution

was published in peer-reviewed venues, indicating that it was evaluated by experts in the field.

1.4.1 Traffic Prediction Using Multilevel Encoder Architecture

Paper: Simpler is Better: Multilevel Abstraction with Graph Convolutional Recurrent

Neural Network Cells for Traffic Prediction. Published at 2022 IEEE Symposium Series on Com-

putational Intelligence (SSCI) by Naghmeh Shafiee Roudbari, Zachary Patterson, Ursula Eicker,

and Charalambos Poullis.

This paper addresses the challenge of capturing spatial and temporal features in traffic data

by leveraging a combination of Graph Neural Networks (GNNs) and Recurrent Neural Networks
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(RNNs). While previous GNN-RNN methods handle these dependencies, they often rely on com-

plex graph convolution operations, which increase computational complexity. We introduced a

novel multilevel encoder architecture that abstracts and combines dependencies at multiple com-

plexity levels. This architecture is specifically designed to handle both sparse and dense road net-

works, which is crucial for forecasting in urban environments with high variability. Additionally,

our model employs a sparse architecture to reduce computational costs while maintaining accuracy,

particularly on benchmark datasets such as METR-LA and our own street-level dataset, MSLTD.

This paper demonstrates that the proposed model improves accuracy and significantly reduces train-

ing time.

1.4.2 Hydrometric Prediction with Attention-Augmented Transduction

Paper: TransGlow: Attention-augmented Transduction Model Based on Graph Neural

Networks for Water Flow Forecasting. Published at 2023 International Conference on Machine

Learning and Applications (ICMLA) by Naghmeh Shafiee Roudbari, Charalambos Poullis, Zachary

Patterson, and Ursula Eicker.

In hydrometric forecasting, the challenge lies in capturing the implicit connectivity between

water stations. This paper proposes a novel spatiotemporal forecasting model, integrating an effi-

cient attention mechanism to augment the hidden state in a sequence-to-sequence architecture. Our

method focuses on learning the actual correlations between drainage basins using a graph-based

approach, which is critical for accurate water flow prediction. We validated the model across 186

drainage basins in Canada using data from Environment and Natural Resources of Canada. The

results show that our approach significantly outperforms existing state-of-the-art methods in terms

of prediction accuracy across all horizons, further establishing the utility of the attention mechanism

in spatiotemporal forecasting tasks.

1.4.3 Flood Simulation and Prediction Using Digital Twins

Paper: From Data to Action in Flood Forecasting Leveraging Graph Neural Networks and

Digital Twin Visualization. Published at Scientific Reports(2024) by Naghmeh Shafiee Roudbari,

Shubham Rajeev Punekar, Zachary Patterson, Ursula Eicker, and Charalambos Poullis.
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Both first and second authors contributed equally to this work. I was responsible for the compu-

tational modeling, while Shubham Rajeev Punekar contributed to the visualization and digital twin

aspects.

This paper introduces an innovative flood simulation and prediction model that combines GNN-

based forecasting with digital twin visualization. By creating a detailed digital twin of the city of

Terrebonne, Quebec, we simulate flood scenarios, enabling more accurate flood risk assessment

and the design of mitigation strategies. Our approach extends traditional GCRN-based methods by

allowing for local-scale flood predictions. Extensive experimentation demonstrates the accuracy of

our model in predicting flood dynamics using digital twin techniques. This simulation tool offers

a generalizable and reproducible framework for flood prevention and disaster response strategies,

contributing significantly to local-scale flood prediction.

1.4.4 Enhancing Hydrometric Prediction with LiDAR Data

Paper: HydroVision: LiDAR-Guided Hydrometric Prediction with Vision Transformers

and Hybrid Graph Learning. Accepted for publication at 19th International Symposium on Visual

Computing (ISVC) 2024 by Naghmeh Shafiee Roudbari, Ursula Eicker, Charalambos Poullis, and

Zachary Patterson.

In this paper, we integrate terrain elevation data derived from LiDAR into a hydrometric fore-

casting model, enabling more accurate predictions of water flow and connectivity between water

stations. The core contribution lies in the introduction of a hybrid graph learning structure that

combines static graphs, based on terrain data, with dynamic graphs that adapt to temporal changes

in water systems. By using Vision Transformers (ViTs) to encode LiDAR data, the model captures

critical terrain features, while the graph learning structure improves the overall spatial and temporal

representation. Experimental results on water stations in Quebec, using data from the Environment

and Natural Resources of Canada, show that this model outperforms state-of-the-art methods across

all prediction horizons, underscoring the importance of incorporating spatial data into hydrometric

models.
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1.5 Thesis Structure

This thesis follows a manuscript-based format. The next chapter provides a literature review, set-

ting the foundation for the research presented. Each subsequent chapter corresponds to a manuscript

that has been published, detailing the specific methodologies and contributions of the work. Finally,

the thesis concludes with a chapter dedicated to summarizing the key findings, drawing overarching

conclusions, and outlining potential directions for future research.
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Chapter 2

Literature Review

2.1 Introduction

With the rapid development of sensing technologies and data stream processing, large amounts

of data from urban systems are now being efficiently collected and stored. This progress has paved

the way for urban computing, which seeks to analyze urban patterns and dynamics across various

domains like transportation, environment, and climate. Predictive learning, a supervised learning

technique, uses historical data to forecast future trends. According to urban computing theories

Y. Zheng, Capra, Wolfson, and Yang (2014), predictive learning based on extensive urban data plays

a crucial role in supporting intelligent decision-making, scheduling, and management in smart cities.

Furthermore, the ability to predict from urban big data opens the door to innovations like digital twin

cities and the metaverse X. Wang, Li, Yuan, Ye, and Wang (2016).

Most urban data is spatio-temporal, meaning it relates to both spatial locations and changes over

time. In urban systems, this spatio-temporal data is commonly characterized by two key properties:

correlation and heterogeneity S. Wang, Cao, and Philip (2020). Correlation refers to the data being

correlated over time and across different spatial locations. Heterogeneity, on the other hand, indi-

cates that data patterns vary across different temporal or spatial scales. Traditional methods used

in time series forecasting, such as Support Vector Regression (SVR) Drucker, Burges, Kaufman,

Smola, and Vapnik (1996), Random Forest (RF) Breiman (2001), and Gradient Boosting Decision

Tree (GBDT) Natekin and Knoll (2013), are not effective in generating accurate predictions. In the
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past decade, the rapid growth of deep learning has led to the rise of hybrid neural networks com-

bining Convolutional Neural Networks (CNNs) Gu et al. (2018) and Recurrent Neural Networks

(RNNs) Y. Yu, Si, Hu, and Zhang (2019). Hybrid models, such as ConvLSTM Shi et al. (2015) and

PredRNN Y. Wang, Long, Wang, Gao, and Yu (2017), have been applied to predictive learning in

urban spatio-temporal data, demonstrating significant improvements. However, a major limitation

of these models is their inability to directly process non-Euclidean data, which is prevalent in ur-

ban systems, such as traffic flow on road networks, and vehicle movement across routes. Recently,

breakthroughs in representation learning for non-Euclidean data have been achieved through deep

learning techniques, particularly with Graph Neural Networks (GNNs) Kipf and Welling (2016).

These advances have paved the way for predictive learning models capable of handling diverse and

complex urban data.

The purpose of this literature review is to provide an analysis of the existing research in ma-

chine learning (ML) as applied to environmental forecasting. This review will evaluate the key

technological advancements, models, and methodologies that have been developed in recent years.

By synthesizing this body of work, the review will lay the theoretical foundation for the research

presented in this thesis.

2.2 Predictive models

To effectively model environmental changes and manage urban systems, ML models such as

Recurrent Neural Networks (RNNs), Convolutional Neural Networks (CNNs), Graph Neural Net-

works (GNNs), and Transformer architectures have been employed in predictive learning tasks.

These models are capable of capturing complex spatial and temporal dependencies within large

datasets, making them ideal for applications that involve dynamic systems like weather forecast-

ing, traffic management, and disaster prediction. Each architecture has its strengths: RNNs excel

at handling sequential data, CNNs are efficient in extracting spatial features, GNNs can model

non-Euclidean data like road networks and environmental systems, while Transformers leverage

attention mechanisms to model long-range dependencies in both spatial and temporal data. By inte-

grating these technologies, predictive models can more accurately forecast environmental changes,
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providing critical insights for decision-making in smart cities.

2.2.1 Recurrent Neural Networks (RNNs)

Recurrent Neural Networks (RNNs) are a class of deep neural networks designed for sequential

learning tasks, making them particularly well-suited for time series modeling and other temporal

data analysis. RNNs process sequences by maintaining a hidden state that recursively updates as

new input is received at each time step. This recursive computation allows RNNs to capture tem-

poral dependencies in the data. However, the vanilla RNN architecture is known to suffer from

a significant drawback known as the gradient vanishing or explosion problem during the training

process, which can hinder the network’s ability to learn long-term dependencies Fadziso (2020).

To address this issue, two prominent variants of RNNs have been introduced: Long Short-Term

Memory (LSTM) Hochreiter and Schmidhuber (1997) and Gated Recurrent Units (GRU) Dey and

Salem (2017). These variants are designed to mitigate the vanishing gradient problem and improve

the network’s ability to model long-range dependencies. Among these, GRU has gained widespread

adoption due to its balance of performance and computational efficiency.

GRU employs two gated mechanisms: the update gate (ut) and the reset gate (rt). The up-

date gate controls how much of the new information at the current time step should be combined

with the memory from the previous time step. Meanwhile, the reset gate determines how much

of the previous time step’s information should be retained in the current memory. This streamlined

structure makes GRUs less computationally complex than LSTMs, while still providing competitive

performance across various time series and sequential learning tasks. The reduction in learnable pa-

rameters in GRU compared to LSTM has been shown to improve training and inference efficiency.

Despite its simpler architecture, GRU achieves similar, if not better, performance in several appli-

cations while also improving computational efficiency, making it a popular choice for time series

forecasting and other sequence-based modeling tasks.

RNNs, particularly LSTM and GRU variants, have been widely adopted in forecasting appli-

cations. In traffic forecasting, RNNs are leveraged to model the temporal dynamics of traffic flow

Y. Tian and Pan (2015), congestion patterns J. Guo, Liu, Yang, Wang, and Fang (2021), and travel

time prediction Duan, Yisheng, and Wang (2016). By capturing the sequential nature of traffic data,
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RNN-based models such as LSTM networks have demonstrated significant improvements over tra-

ditional statistical methods Siami-Namini, Tavakoli, and Namin (2018). Furthermore, GRUs have

been utilized for real-time traffic prediction, where their computational efficiency allows for quicker

processing of large-scale, high-frequency data Z. Zhao et al. (2023). In environmental forecast-

ing, RNNs are used to predict weather patterns, air quality indices, and hydrological phenomena

by learning from historical time series data. The capability of RNNs to handle multivariate input

makes them suitable for complex environmental systems where various interdependent factors (e.g.,

temperature, humidity, wind speed) influence the predictions Y. Chen, Cheng, Cheng, Yang, and Yu

(2018). Additionally, in urban planning, RNNs have been employed for smart city applications

such as energy consumption prediction, urban mobility analysis, and public transportation schedul-

ing Kong et al. (2019). Their ability to model sequential data efficiently has made RNNs an essential

tool in building adaptive and intelligent forecasting systems for urban environments.

2.2.2 Graph Neural Networks (GNNs)

GNNs are a class of neural networks specifically designed to operate on graph-structured data,

making them well-suited for tasks involving complex relational structures and interconnections.

Unlike traditional neural networks that operate on grid-like data (e.g., images or sequences), GNNs

leverage the graph’s structure to capture relationships between nodes and edges. This capability is

particularly advantageous for problems such as social network analysis, molecular chemistry, and

traffic forecasting, where data is naturally represented as a graph.

The core idea of GNNs is to aggregate and transform information from a node’s neighbors to up-

date its representation iteratively. This process involves passing messages between nodes through

their edges, allowing each node to incorporate information from its local neighborhood, as illus-

trated in Figure 2.1. One of the foundational architectures in GNNs is the Graph Convolutional

Network (GCN) Kipf and Welling (2016), which performs convolution operations on graph data by

aggregating information from a node’s neighbors and applying learned weights to update node em-

beddings. This approach allows GCNs to effectively capture local structural information and node

features.

However, GCNs have limitations in capturing long-range dependencies and handling graphs
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Figure 2.1: The message-passing process in Graph Neural Networks (GNNs): Each node updates its
representation based on its own features and the features of its neighbors, progressively incorporat-
ing higher-order relationships within the graph structure. This iterative process allows information
to flow along the graph edges, enabling nodes to exchange context-specific information.

with varying node degrees. To address these challenges, several advanced variants of GNNs have

been proposed. For example, the Graph Attention Network (GAT) Veličković et al. (2017) intro-

duces attention mechanisms to weigh the importance of different neighbors, allowing the model to

focus on more relevant connections. This attention-based approach helps GATs handle graphs with

varying node degrees and improves the model’s ability to capture long-range dependencies.

2.3 Attention Mechanisms and Transformers

Attention mechanisms have revolutionized deep learning by enabling models to focus selec-

tively on different parts of the input data, improving performance across a range of tasks. Initially

introduced in the context of sequence-to-sequence models, attention mechanisms allow neural net-

works to weigh the importance of different elements in a sequence, enhancing the model’s ability to

capture relevant information and manage long-range dependencies.

The concept of attention was first popularized by the paper Neural Machine Translation by

Jointly Learning to Align and Translate Bahdanau, Cho, and Bengio (2014), where Bahdanau et

al. demonstrated its effectiveness in machine translation tasks. This attention mechanism computes

a context vector by weighing the importance of each input element based on a learned alignment

model, allowing the model to focus on different parts of the input sequence when generating each

part of the output sequence.
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Figure 2.2: Illustration of the attention mechanism showing the interaction between Query (Q), Key
(K), and Value (V) components.

The attention function begins by mapping inputs into three distinct components:

• Query (Q): Represents the element seeking relevant information.

• Key (K): Represents the element containing information to be compared against the query.

• Value (V): Contains the actual information used to compute the output.

The attention scores, which capture the alignment between queries and keys, are computed using

the scaled dot product attention formula:

Attention(Q,K, V ) = softmax
✓
QKT

p
dk

◆
V (1)

where dk is the dimensionality of the keys. This scaling factor,
p
dk, ensures numerical stability

by preventing excessively large gradients when working with high-dimensional data. A mask can

optionally be applied to the scores before the softmax operation. This mask is used to either:

• Ignore irrelevant or padded tokens.

• Prevent the model from attending to future positions in autoregressive tasks (causal masking).

Once the scores are calculated, they are passed through a softmax function, normalizing them into

a probability distribution. These probabilities act as weights, determining the importance of each
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value V in forming the final representation:

Output =
X

i

softmax
✓
QKT

p
dk

◆

i

Vi (2)

The attention operation is illustrated in Figure 2.2, which shows how the Query, Key, and Value

components interact and contribute to the final output.

Building on this foundation, the Transformer architecture Vaswani et al. (2017) introduced a

novel approach that relies entirely on attention mechanisms, eliminating the need for recurrent lay-

ers. The Transformer model is based on self-attention, which allows each position in the input

sequence to attend to every other position, capturing dependencies regardless of their distance. The

self-attention mechanism computes attention scores for each pair of positions in the sequence, cre-

ating weighted representations that incorporate context from the entire sequence. The Transformer

architecture consists of two main components: the encoder and the decoder. The encoder processes

the input sequence into a set of embeddings using multiple layers of self-attention and feed-forward

networks. The decoder then generates the output sequence by attending to the encoder’s output

and previous tokens in the sequence. Key innovations in the Transformer include multi-head atten-

tion, which allows the model to capture different types of relationships in parallel, and positional

encoding, which provides information about the position of each token in the sequence.

Transformers have demonstrated remarkable performance across various tasks, including nat-

ural language processing, computer vision, and time series analysis. Models like BERT Devlin,

Chang, Lee, and Toutanova (2018) and GPT Radford, Narasimhan, Salimans, Sutskever, et al.

(2018) leverage the Transformer architecture to achieve state-of-the-art results in language under-

standing and generation tasks. BERT (Bidirectional Encoder Representations from Transformers)

focuses on understanding context by considering both preceding and following tokens, while GPT

(Generative Pre-trained Transformer) emphasizes autoregressive generation, predicting the next to-

ken based on previous tokens. Despite their success, Transformers can be computationally intensive

and require large amounts of data for training. Techniques such as sparse attention Child, Gray,

Radford, and Sutskever (2019) and efficient Transformer variants Choromanski et al. (2020) aim

to address these challenges by reducing the computational complexity and memory requirements,
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Figure 2.3: Transformer encoder and Vision Transformer (ViT) architecture. The diagram shows
the flow from input patches to patch embeddings through multiple transformer encoder blocks

making Transformers more accessible and scalable.

Vision Transformers (ViTs) Dosovitskiy et al. (2020) is a powerful architecture for image-

based tasks. By applying transformer models to images, ViTs capture global relationships between

patches, making them highly effective for tasks such as image classification and segmentation. One

key advantage of ViTs over traditional convolutional neural networks (CNNs) is their ability to

model long-range dependencies across the entire input without relying on convolutions, leading to

better scalability and performance in many scenarios.

The process in a Vision Transformer begins with the following functions related to the trans-

former encoder:

Patch Embedding: The input image is divided into fixed-size patches, such as 16×16. Each

patch is flattened into a 1D vector and linearly projected into a fixed-dimensional embedding space.

Positional encodings are added to these patch embeddings to retain spatial information, as the trans-

former architecture does not inherently capture positional context.

The sequence of embedded patches is then passed through multiple transformer encoder layers,

each consisting of:
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Multi-Head Self-Attention (MHSA): This mechanism computes pairwise attention scores be-

tween patches, allowing the model to learn relationships across the entire input sequence, thus

capturing both local and global information.

Feed-Forward Network (FFN): This applies two linear transformations with a non-linearity in

between, enabling complex feature transformation and enhancing the representational capacity of

the model.

Layer Normalization and Residual Connections: These components help ensure stable train-

ing and efficient gradient flow, preventing vanishing gradients during the learning process.

Classification Token (Optional): A special learnable token, the [CLS] token, is prepended to

the sequence of patches. This token aggregates global information from all patches, and the final

representation can be used for classification tasks.

ViT Blocks: A Vision Transformer consists of stacked transformer encoder blocks, each con-

taining the multi-head self-attention and feed-forward components. These blocks allow the model to

process increasingly abstract representations of the input image at each layer, ultimately producing

a global feature representation that can be used for tasks such as classification or segmentation.

The architecture of the transformer encoder and Vision Transformer is depicted in Figure 2.3.

This diagram illustrates how the input image is transformed into patch embeddings, processed

through multiple transformer blocks, and how the global representation is obtained through the

[CLS] token.

2.4 Application Domains

Spatiotemporal forecasting has been widely applied in various domains critical to modern urban

systems. These domains include transportation, environmental monitoring, and disaster prediction.

Below are the main applications of spatiotemporal forecasting and how they leverage Graph Neural

Networks.
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2.4.1 Transportation

Modern urban systems are equipped with numerous sensors distributed across road networks

and critical areas to monitor dynamic traffic states, such as flow and speed. The aim of traffic state

prediction is to forecast future traffic conditions based on historical data within a specific spatial

region. Traffic state prediction can be categorized into:

• Network-based prediction: The objective here is to predict traffic flow or speed across a

given road network. Many studies rely on graph structures that can be directly derived from

road networks. A combination of GNN and RNN models have been widely used for this

purpose due to their ability to capture spatial-temporal dependencies S. Guo, Lin, Wan, Li,

and Cong (2021); B. Yu, Yin, and Zhu (2017).

• Region-based prediction: This approach forecasts regional traffic patterns, such as crowd

flow in urban areas. The city is typically divided into regular or irregular regions, and spa-

tiotemporal graphs are constructed based on distances, connectivity, and semantic correlations

between these regions Y. Wang et al. (2021); X. Zhang, Huang, Xu, and Xia (2020).

2.4.2 Meteorological Prediction

Meteorological forecasting is another vital domain closely linked to both environmental sustain-

ability and human activity. Similar to air quality monitoring, meteorological data is gathered from

distributed monitoring stations. However, the correlations between stations can be influenced by a

more significant number of factors, making it a complex forecasting task. GNN-based methods have

demonstrated strong performance in several meteorological applications, including flood forecast-

ing Kazadi, Doss-Gollin, Sebastian, and Silva (2022), temperature prediction Jia et al. (2021), frost

prediction Lira, Martı́, and Sanchez-Pi (2021), and wind prediction Khodayar and Wang (2018).

2.4.3 Disaster Situation Prediction

Natural disasters, such as earthquakes, floods, and fires, present substantial challenges to hu-

man safety. Accurate disaster prediction enables governments and organizations to take proactive
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measures, such as distributing resources, organizing evacuations, and preparing for relief opera-

tions. GNNs have shown considerable success in modeling the correlations and heterogeneity of

data across geographical locations. These models have been applied to a variety of disaster pre-

diction scenarios, such as fire prediction Jin et al. (2020), typhoon forecasting Farahmand, Xu, and

Mostafavi (2023), and earthquake prediction McBrearty and Beroza (2022).

2.4.4 Other Application Domains

In addition to the primary domains mentioned above, spatiotemporal forecasting models have

been extended to other fields, such as energy and economics. For instance:

• Energy: GNNs have been employed for forecasting wind power generation Z. Li et al. (2022)

and photovoltaic power prediction Simeunović, Schubnel, Alet, and Carrillo (2021). These

models assist in balancing energy production and consumption in modern grids.

• Economy and Finance: In the economic domain, GNNs have been used for regional econ-

omy prediction, where researchers explore correlations between different economic regions

and indicators F. Xu, Li, and Xu (2020).

These application domains demonstrate the broad utility of spatiotemporal forecasting tech-

niques, particularly when using GNNs, to predict complex phenomena across multiple sectors.

2.5 Challenges in Spatiotemporal Forecasting

While significant progress has been made in spatiotemporal forecasting using models like RNNs,

GNNs, and CNNs, several challenges remain, particularly when dealing with dynamic and complex

environmental systems. One major challenge lies in the fact that many forecasting applications, such

as hydrological modeling and traffic prediction, involve underlying graphs that are either constantly

changing or not explicitly defined. Traditional GNNs typically rely on fixed, predefined graph struc-

tures, which may not capture the evolving relationships within these systems. This limitation calls

for adaptive graph learning techniques that can dynamically adjust the graph representation based

on changing environmental factors, such as water flow patterns.
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Another challenge is achieving a balance between model accuracy and computational efficiency.

Complex hybrid models that combine RNNs, GNNs, and attention mechanisms can yield high ac-

curacy in forecasting tasks but often suffer from increased computational costs, making real-time

prediction difficult. Therefore, there is a need for models that can maintain a high level of accuracy

while optimizing efficiency, especially in scenarios where large-scale and high-frequency data are

involved.

Furthermore, the integration of additional contextual information, such as terrain data obtained

through LiDAR, remains underexplored. Most existing models either ignore such static environ-

mental features. Terrain elevation and other topographical features can significantly influence envi-

ronmental dynamics, particularly in applications like flood prediction and hydrological forecasting.

Incorporating these features into the forecasting model can enhance its spatial representation, lead-

ing to more accurate and actionable predictions.

Finally, the transition from data to actionable insights presents a crucial but often overlooked

aspect of forecasting models. While many models provide predictions, they fall short in evaluating

the influence of these predictions on the city’s infrastructure and environment. There is a need for

models that predict environmental changes and test different scenarios based on these predictions

to assess their impact on urban systems. This involves exploring various outcomes, such as the

effect of predicted floods on infrastructure, to enable informed decision-making and proactive city

management.

These challenges form the basis for this thesis, which introduces adaptive graph learning tech-

niques for dynamically adjusting to changing environments, optimizes model efficiency without

compromising accuracy, integrates LiDAR data to enrich the spatial context in forecasting models,

and extends from data to action by simulating different scenarios to evaluate the influence of pre-

dicted changes on urban environments. By addressing these key challenges, the proposed methods

aim to advance the state of spatiotemporal forecasting, providing valuable tools for environmental

and urban applications.
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Chapter 3

Traffic Prediction Using Multilevel

Encoder Architecture

This chapter is a copy of the manuscript titled Simpler is Better: Multilevel Abstraction with

Graph Convolutional Recurrent Neural Network Cells for Traffic Prediction, published in the 2022

IEEE Symposium Series on Computational Intelligence (SSCI). The manuscript was co-authored

by Naghmeh Shafiee Roudbari, Zachary Patterson, Ursula Eicker, and Charalambos Poullis.

3.1 Abstract

In recent years, graph neural networks (GNNs) combined with variants of recurrent neural net-

works (RNNs) have reached state-of-the-art performance in spatiotemporal forecasting tasks. This

is particularly the case for traffic forecasting, where GNN models use the graph structure of road

networks to account for spatial correlation between links and nodes. Recent solutions are either

based on complex graph operations or avoiding predefined graphs. This chapter proposes a new

sequence-to-sequence architecture to extract the spatiotemporal correlation at multiple levels of ab-

straction using GNN-RNN cells with sparse architecture to decrease training time compared to more

complex designs. Encoding the same input sequence through multiple encoders, with an incremen-

tal increase in encoder layers, enables the network to learn general and detailed information through

multilevel abstraction. We further present a new benchmark dataset of street-level segment traffic
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data from Montreal, Canada. Unlike highways, urban road segments are cyclic and characterized

by complicated spatial dependencies. Experimental results on the METR-LA benchmark highway

and our MSLTD street-level segment datasets demonstrate that our model improves performance by

more than 7% for one-hour prediction compared to the baseline methods while reducing computing

resource requirements by more than half compared to other competing methods.

3.2 Introduction

Spatiotemporal forecasting is an essential tool for understanding variations in space-time data

and ultimately helps inform resource allocation, risk management, and policy-making decisions. It

has long been a popular field of research in machine learning. Even though many influential machine

learning (ML) approaches have been proposed in this field, there is still a considerable gap between

the state-of-the-art and accurate predictions, particularly when it comes to traffic forecasting.

Traffic behaviour on more granular urban street networks is fundamentally different from high-

ways due to differences in spatial complexity and temporal variability:

Spatial complexity differences Connectivity is the density of connections in a road network On-

line TDM Encyclopedia (n.d.). Urban streets include numerous short links and intersections, so the

density of connections in the urban road network is way higher than those in the highway network

and they are characterized by more complex spatial dependencies than highways.

Temporal variability differences Because of the impact of traffic signals and traffic volume, the

speed variability on an urban road segment is significantly higher compared to a highway Karr,

Graves, Mockus, and Schuster (2002). Fig. 3.1 explores the difference in speed variability between

the two different contexts of traffic. Fig. 3.1c shows the Gaussian distributions for speed in an

urban road (3.1a) and highway (3.1b). In urban road segments, traffic speed is lower than highway

speed. Besides, for urban road segment data, the Gaussian graph is short and wide, proving the

standard deviation is significant compared to highway speed data with a narrow and tall Gaussian

distribution.

In this chapter, we present experiments on urban streets and highway benchmark datasets that
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demonstrate the robustness of our proposed model against substantial temporal variability and the

ability to learn more complex spatial correlations than baseline methods.

Previous research has studied different approaches such as statistical models, machine learning

techniques, and deep learning methods to explore the spatial and temporal features in traffic data.

RNN family Chung, Gulcehre, Cho, and Bengio (2014); Hochreiter and Schmidhuber (1997) com-

bined with GNNs Z. Wu, Pan, Chen, et al. (2020) have shown great potential to learn complexities

in traffic data effectively. Even though the GNN-RNN based methods introduced so far address

both the spatial and temporal dependencies, these methods either do not fully exploit the spatial

information or have an over-complex structure, particularly in graph convolution operation, that af-

fects the training time. This chapter addresses the problem of cyclic graph networks with complex

spatiotemporal inter-dependencies. The main contributions of this chapter include:

(1) Multilevel encoder architecture: We formulate the problem as a sequence-to-sequence mod-

elling task and introduce a novel multilevel encoder architecture that abstracts and combines

dependencies at multiple complexity levels. Uniquely, the proposed technique handles sparse

and dense road networks and enhances the accuracy of the predictions.

(2) Sparse architecture: Furthermore, when compared with state-of-the-art, our method employs

a sparse architecture that improves time efficiency by reducing the computational complexity

of the training.

(3) We present our experiments on the application of traffic forecasting and report the results

on benchmark datasets of highway-level data METR-LA and the newly released street-level

MSLTD dataset presented in this chapter. Detailed descriptions of the datasets are provided

in Section 3.6.1.

The rest of the chapter is organized as follows. Section 3.3 reviews the current state of the

literature in traffic flow forecasting. Section 3.4 formally introduces the model, and Section 3.5

addresses the traffic prediction problem using the proposed model. Finally, Section 3.6 shows nu-

merical experiments on real-world datasets and compares the proposed model’s results with other

state-of-the-art models reported in the literature.
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(a)

(b)

(c)

Figure 3.1: Differences in data variability in two different contexts of traffic. Traffic speed changes
over 24 hours. (a) An urban road segment from our new MSLTD street-level dataset, (b) a highway
sensor from the METR-LA dataset, and (c) Gaussian distribution of the speed in (a) (green) and (b)
(red).
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3.3 Related Work

A wide range of data-driven methods regarding traffic prediction has been proposed in the

past. Traditional approaches for predicting traffic state include Kalman-filter based methods J. Guo,

Huang, and Williams (2014); Xie, Zhang, and Ye (2007), Vector Auto Regressive models Chan-

dra and Al-Deek (2009), Autoregressive Integrated Moving Average (ARIMA) Van Der Voort,

Dougherty, and Watson (1996) and variants such as seasonal ARIMA Kumar and Vanajakshi (2015)

and Space-Time ARIMA Ding, Wang, Zhang, and Sun (2011). These statistical methods assume

that traffic data has a fixed variability pattern. In reality, however, traffic data does not obey station-

ary assumptions, so traditional approaches mostly fail to achieve a good performance. To overcome

this issue, machine learning methods with promising performance compared to linear methods be-

came popular in time-series forecasting. Since then, many machine learning models, including

K-nearest neighbour approaches Cai et al. (2016), Support Vector Machine models Cong, Wang,

and Li (2016); YAO, SHAO, and GAO (2006), and Bayesian Network approaches Sun, Zhang, and

Yu (2006) have been applied to traffic forecasting problem.

Before the emergence of deep learning, various shallow Neural network (NN) models were

proposed to address traffic prediction, such as Multi-Layer Perceptron networks (MLP) Innamaa

(2000) to predict traffic parameters such as speed and flow and study the effect of MLP parameters

on prediction. Similarly, radial basis function (RBF) neural networks have been used for freeway

traffic flow prediction with fuzzy c-means clustering to find the center position of the hidden layer

Xiao and Wang (2004). Although shallow NN models improved traffic prediction compared to

traditional methods, they are still limited in their ability to capture spatial and temporal dependen-

cies in complex traffic data. This inspired researchers to apply deep learning methods. In Y. Lv,

Duan, Kang, Li, and Wang (2014), the authors used Stacked Auto Encoders (SAE) with a standard

logistic regression model to train the network in a supervised manner for traffic flow prediction.

Yang, Dillon, and Chen (2016) proposed another class of autoencoders named stacked autoencoder

Levenberg-Marquardt model to improve forecasting accuracy by learning features through multiple

layers in a “greedy” way. W. Huang, Song, Hong, and Xie (2014) proposed a deep architecture

comprising two main modules, a deep belief network (DBN) to learn the features automatically and
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a multitask regression layer.

A Recurrent Neural Network (RNN) is a type of neural network containing at least one loop

within the structure of network connections, enabling RNNs to have internal memory to remember

a summarization of previous states and understand sequential information. This feature makes RNN

models an excellent building block for a time-series forecasting network. LSTM and GRU are gated

RNNs designed to overcome the vanishing gradient problems. Gated RNNs can also successfully

learn temporal correlation in traffic data by capturing long-term information. Many RNN-based

models such as bidirectional LSTM Cui, Ke, Pu, and Wang (2018), Mixture Deep LSTM R. Yu, Li,

Shahabi, Demiryurek, and Liu (2017), shared hidden LSTM Song, Kanasugi, and Shibasaki (2016)

models and GRU models Agarap (2018) have been applied to traffic forecasting. Y. Tian and Pan

(2015) proposed an LSTM RNN model and demonstrated how it outperforms previously proposed

models, including SVM, single layer feed-forward neural network (FFNN), and stacked autoencoder

(SAE). Liu, Wang, Yang, and Zhang (2017) uses an LSTM model for travel time prediction. Ji

and Hou (2017) has applied GRU models to predict bus trip demand and shown how GRU and

NN models outperform ARIMA models for different prediction horizons. Although RNN-based

methods consider the dynamic variations of traffic conditions, the future traffic state is affected

by spatial dependencies besides the temporal changes. Since these models fail to explore spatial

complexities, they cannot generate accurate predictions.

Recent studies Y. Wu and Tan (2016), Ma et al. (2017) have attempted to model spatial depen-

dencies using the Convolutional Neural Networks (CNN) to address this issue. CNN models are a

class of neural networks used primarily for extracting features from images Oquab, Bottou, Laptev,

and Sivic (2014). To formulate the traffic prediction problem using CNNs, Ma et al. (2017) con-

structed a time-space matrix, where each element in the matrix contains information about the time

interval and the street section associated with that element; H. Yu, Wu, Wang, Wang, and Ma (2017)

also proposed CNN models to investigate the spatial correlation in traffic data; Z. Lv et al. (2018)

proposed a combination of RNN and CNN models to take advantage of both by learning time-series

dependencies and capturing the features related to the road network; and S. Guo, Lin, Li, Chen,

and Wan (2019) introduced 3D convolution to capture spatial correlations and temporal correlations
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from both long-term patterns and local patterns. However, CNN models can only extract spatial de-

pendencies from a rigid grid structure representing the information, and abstract features extracted

by CNN represent the relationship in Euclidean space.

There are numerous applications where Euclidean space cannot perfectly describe spatial depen-

dence such as chemical synthesis, social network analysis, 3D vision and transportation networks.

A graph is a powerful data structure that can express complex relationships in unstructured data

Z. Wu, Pan, Chen, et al. (2020). Graph Neural Networks (GNNs) are deep learning-based meth-

ods that have been widely applied to graph domains in recent years. Neural networks based on

the graph theory Butler and Chung (2006), Bruna, Zaremba, Szlam, and LeCun (2013) process the

graph-structured data. In order to capture spatial dependence in a graph context, different types

of Graph Convolutional Network (GCN) models have been introduced. GCNs are categorized into

two main domains, spectral and spatial. The spectral graph convolution is based on graph Laplacian

to localize a graph signal on the spectral domain, and the spatial graph convolution is the aggrega-

tion of information within a node’s neighbourhood S. Zhang, Tong, Xu, and Maciejewski (2019).

Most recent studies Y. Li, Yu, Shahabi, and Liu (2017), Cui, Henrickson, Ke, and Wang (2019),

L. Bai, Yao, Li, Wang, and Wang (2020) on traffic forecasting focus on using a hybrid architecture

of GCN to extract the spatial dependencies and RNN to explore the temporal changes. Y. Li et

al. (2017) maps traffic state to a diffusion process on a directed graph and uses diffusion convo-

lution integrated with gated recurrent units to capture both spatial and temporal dependencies. A

sequence-to-sequence model is used in this study as a learning structure, in which they employ a

scheduled sampling approach for training. L. Zhao et al. (2019) proposes a temporal graph convolu-

tion for traffic prediction and uses GRU to understand temporal dynamics. Cui et al. (2019) presents

a traffic graph convolution operator and a convolutional LSTM to predict traffic speed. Z. Wu, Pan,

Long, et al. (2020) avoid using a pre-defined graph in their proposed model, which includes a graph

learning layer, a graph convolution component, and a temporal convolution component. L. Bai et

al. (2020) also argues against pre-defined graphs since domain knowledge is necessary to generate

the graph, as such information expressed by the graph might not be directly related to the prediction

task, and may even introduce bias.
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Sequence-to-sequence architecture is an end-to-end approach to processing sequence data. It in-

cludes a wide range of applications like speech modelling Sutskever, Vinyals, and Le (2014), natural

language processing Ma and Hovy (2016), and recently time-series forecasting to enhance captur-

ing long-term dependencies and enabling multistep prediction. Y. Li et al. (2017) used sequence-to-

sequence modelling for traffic speed prediction by applying an encoder-decoder architecture, where

the encoder and decoder blocks consisted of their proposed diffusion convolution recurrent neu-

ral network. C. Zheng, Fan, Wang, and Qi (2020) proposed a sequence-to-sequence architecture

consisting of attention blocks to predict traffic. Z. Wang, Su, and Ding (2020) proposed an encoder-

decoder design with LSTM blocks in addition to a control layer on top of it to cumulatively learn

the data.

The literature indicates the strong potential of RNN models to learn the temporal information in

traffic data. GCN has also achieved satisfactory results in unlocking the spatial relation in the traffic

network. Although these approaches have improved accuracy considerably compared to previous

methods, they either employ a complex network design that increases the number of parameters

and training time or cannot achieve comparable accuracy to other deep learning tasks. This chapter

proposes a novel multilevel sequence-to-sequence architecture to extract discriminative features

effectively. The proposed model is based on a sparse architecture graph convolutional GRU enabling

the network to reduce computational costs.

3.4 Proposed Model

3.4.1 Graph Notation

A graph is a data structure with a solid mathematical basis used to represent complex inter-

actions between a set of objects. A graph denoted by G(V, E) includes a set of n 2 Z nodes

represented as V = {v1, v2, . . . , vn} and a set of edges E = {ei,j |i, j 2 {1, 2, .., n}}, where each

edge eij indicates an interaction between nodes i and j. An adjacency matrix An⇥n is one way to

represent a graph. A is a square matrix, where a non-zero element at Ai,j indicates the existence of

an edge connecting nodes i and j. Every node of a graph can have a set of features/attributes asso-

ciated with it. To this end, a matrix X 2 Rn⇥d denotes an attribute representation of graph G, where
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Figure 3.2: Multilevel Sequence-to-Sequence (MLS2S) Architecture for a 2-level encoder. The
output from the last layer of each encoder is used to initialize the decoder. The number of encoder
levels equals the number of decoder layers.

each row of the matrix is a vector that corresponds to a specific node of the graph representing its d

features Hamilton (2020).

In a spatiotemporal graph, the objects that are the resource of temporal changes are considered

nodes. The feature matrix denoted as Xt 2 Rn⇥d dynamically changes over time t Z. Wu, Pan,

Chen, et al. (2020). To represent a spatiotemporal forecasting problem as a graph, one must first

translate the temporal data sequence to a graph signal. Each node vi is assigned a feature vector

Xt

i
2 R1⇥d where d is the length of the historical time-series of node i at time t needed to predict

the future sequence.

3.4.2 Problem statement

Spatiotemporal forecasting aims to predict the future sequence of a parameter given its historical

time-series. More formally, this is equivalent to finding a function f : Xt, A ! Y t+h which

given an adjacency matrix A representing the graph structure and a sequence of observed data Xt

representing d previous historical states of n nodes,

Xt =

2

66666664

xt�d+1
0 . . . xt�1

0 xt0

xt�d+1
1 . . . xt�1

1 xt1

. . . . . . . . . . . .

xt�d+1
n�1 . . . xt�1

n�1 xt
n�1

3

77777775

n⇤d
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it gives a sequence of values Y at a future time t+ h of up to h steps. Thus, Y t+h is given by,

Y t+h =

2

66666664

xt+1
0 xt+2

0 . . . xt+h

0

xt+1
1 xt+2

1 . . . xt+h

1

. . . . . . . . . . . .

xt+1
n�1 xt+2

n�1 . . . xt+h

n�1

3

77777775

n⇤h

In this context, the graph nodes V represent a set of n objects generating time-series data, and

the existence of an edge eij denotes a dependency between objects i and j. Since the rows of the

matrices above correspond to the graph’s nodes, the prediction is network-wide.

3.4.3 Cell Architecture

Cells are the basic building blocks of the prediction network. A cell consists of two main com-

ponents. First, the spatial module captures the spatial features given the road network graph. The

second component combines the spatial module operation with RNNs to learn temporal dependen-

cies. As explained in the following sections, our work focuses on finding a practical sequence-to-

sequence model solution, which at the same time maintains a simple cell design. As a result, the

computational complexity for training decreases by more than a factor of 2 compared to state-of-

the-art employing more complex architectures.

Spatial Learning Module Graph Convolutional Network (GCN) models aggregate node features

and graph structure information to capture spatial correlation in data. For the spatial module, we

leverage the spectral graph convolution operation based on normalized Laplacian by utilizing the

simplified operation using Chebyshev polynomial approximation Kipf and Welling (2016):

H(k) = �(D̂�1/2ÂD̂�1/2H(k�1)W (k)) + bk (3)

Â = A+ I , D̂ = D + I

where A is the adjacency matrix of graph G, D is the degree matrix, a diagonal matrix n ⇤ n where

Dii represents the number of edges connected to node i. Dii element value can be acquired by
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summing up the row or column elements associated with node i in an undirected graph’s adjacency

matrix. W k and bk are the trainable weight and bias matrices for layer k, and � is the activation

function. Hk�1 and Hk are the input signal and output of GCN operation on layer k, respectively.

Temporal Learning Module RNNs have achieved promising performance for natural language

processing and sequence modelling applications. RNN gated models like Gated Recurrent Units

(GRUs) can account for long-range dependencies based on their built-in architecture. We use GRU

layers in our temporal module design to extract the temporal dynamics.

We integrate the spatial and temporal learning modules by replacing all the fully-connected

layers of the GRU with the GCN layer introduced in the spatial module leading to,

rt = �(Gconv(A, [X
t, ht�1]) + br (4)

ut = �(Gconv(A, [X
t, ht�1]) + bu (5)

ct = tanh(Gconv(A, [X
t, rt ⇤ ht�1]) + bc (6)

ht = (ut ⇤ ht�1)(1.0� ut) ⇤ c (7)

where Gconv is the graph convolution operation from Equation 3, rt and ut are the reset gate and the

update gate, ct is the cell state, Xt is the input signal, �(.) and tanh(.) are activation functions, and

h is the hidden state. We aim at an efficient solution with reduced training time; hence we avoid

adding complexity to the cell design by keeping the architecture simple.

3.4.4 Multilevel Sequence-to-Sequence Architecture (MLS2S)

Generally, Encoder-Decoder architectures include a pair of networks trained in tandem on target

sequences given their input sequences. The encoder transforms the input series with variable size

to a hidden state with a fixed size, and the decoder converts back the hidden state representation to

a variable size prediction series Cho et al. (2014). It is not necessary to keep the input and output

sequences fixed.
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In this chapter, we propose a novel architecture that modifies the original encoder-decoder struc-

ture and uses multilevel encoders. The multilevel encoder integrates simple abstraction from the first

level with the more detailed abstraction of higher levels and constructs a stack of hidden states with

expressive information to initialize the decoder layers. The number of encoder levels matches that

of the decoder layers since the final output state of every level of encoder is used as the input of

the decoder layer at the same level. An example two-level MLS2S is shown in Fig. 3.2. The input

sequence is a fixed-length time-series of historical data that indicates a sequence of inputs. The

same input sequence feeds into the encoders at all levels.

The decoder uses its previous hidden state as input and the encoder output as its initial state to

generate the prediction. For each encoder level, only the final layer hidden state is used as the initial

state of the corresponding decoder layer.

Multilevel Encoder The encoders are the cell blocks introduced in Section 3.4.3. Given each

element of the input sequence, the encoder layer l updates its state as follows:

ht
l
= fl(h

t

l�1, h
t�1
l

, A) (8)

where ht0 equals the input sequence XT . After reaching the end of the sequence, the final hidden

state of the encoder is acquired. The Multilevel Encoder is a network of multiple encoders reading

the same input sequence. The first level is a one-layer encoder, and the subsequent number of

layers increases incrementally for higher levels. Ultimately, the final hidden state of all levels are

concatenated and become the initial hidden state of the decoder. For an L-level encoder, the final

stacked hidden state is given by,

h = Concat[ht1, h
t

2, ..., h
t

L] (9)

Decoder The decoders also follow the cell block architecture; they are trained to produce the

predicted series given the hidden state and the previous output. For multilayer decoder, the hidden
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state of the decoder on layer l at time t is computed by:

Y t

l
= fl(y

t�1
l�1 , h

t�1
l

, A) (10)

where h0
l

equals the corresponding element of the final hidden state from encoder, h[l]. The final

predicted sequence, for an L-layer decoder equals YL.

3.5 Methodology

We investigate the use of the MLS2S model on traffic speed forecasting. We predict traffic

speed parameters given past traffic speed observations and the road network. We represent the road

network’s graph G as an unweighted adjacency matrix A. Graph nodes V represent a set of n road

segments or highway sensors, and a non-zero value for eij denotes that the two road segments i

and j are connected. Every element of the historical and future sequence provides traffic speed at

the specific time range t for all the nodes, {v1, v2, . . . , vn} and the final prediction covers the entire

road network.

At timestamp t, we simultaneously look ahead at the next ⌘ steps {t+ 1, t+ 2, . . . , t+ ⌘}. We

train the network using a Mean Absolute Error (MAE) loss between the predicted sequence and the

ground truth given by,

MAE =
hX

i=1

|Y t+i �Xt+i| (11)

where Xt is a vector providing ground truth speed values for the entire network at time t and Y t is

a vector providing the network-wide predicted speed values at time t.

We use backpropagation with Adam optimizer for the training with a learning rate decay ratio

to decrease the learning rate by a constant factor as a function of time. The general intuition behind

this strategy is to avoid being stuck in local minima, speed up the training process during the initial

steps, and reduce the learning rate to prevent oscillation in the final epochs. We follow this approach

because starting with a larger learning rate prevents the network from learning noisy data while

decaying the learning rate over time enables the network to learn complex patterns You, Long,

Wang, and Jordan (2019).
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Figure 3.3: MSLTD dataset preparation process (a) Travel time records provided for links oredered
by time(b) Speed matrix table covering the whole time range in 5 minute intervals for each link (the
elements labeled in red, point to the group of travel time records in corresponding link table. The
blank elements are to be filled based on the rest of information from links table)

3.6 Experiments

3.6.1 Dataset Description

We present experiments on a highway-scale dataset and our newly introduced street-level dataset

to demonstrate the efficacy of the proposed approach. We quantitatively evaluate the MLS2S model

on two real-world traffic datasets: METR-LA containing the highway data of Los Angeles, USA,

and the proposed MSLTD street-level segment traffic data from Montreal, QC, Canada.

Highway benchmark dataset METR-LA

This benchmark dataset contains the average traffic speed at 5-minute intervals for 207 locations.

The data is collected from sensors located on highways in Los Angeles, USA, over four months from

March 2012 to June 2012 Jagadish et al. (2014). The coverage of sensor points is visualized on a

map in Fig. 3.4b.
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(a) (b)

Figure 3.4: Datasets coverage (a) Montreal Street-level Traffic Dataset covering certain strategic
road segments of Montreal. (b) METR-LA dataset sensor distribution.

Montreal Street-level Traffic Dataset

We present the Montreal street-level traffic dataset (MSLTD), which provides traffic speed over

15-minute intervals 1. The data was collected from street segments in Montreal, QC, Canada, during

the six months from January 2019 to June 2019. The raw data is the historical travel time on

road segments provided by the City of Montreal. The City of Montreal has deployed a network of

sensors using Bluetooth technology on specific strategic road segments to present speed, travel time,

and origin-destination information of journeys Travel time on road segments (historical) (n.d.-a)

together with the information on the road segments where travel times are collected Travel time on

road segments (historical) (n.d.-b). For the first six months of 2019, the data contains more than 14

million travel time records on 252 road segments.

The adjacency matrix corresponding to the pre-defined graph for GNN methods is calculated

based on the road segment information. The variable features are mapped to the nodes, and the

static states are considered as the edges to have a fixed graph structure. The goal is to capture

network structural flow correlation since traffic speeds at one node should be correlated to traffic

speeds at other nodes with which they share links. Each road segment is represented as a node and

contains information including its origin and destination detector IDs. If two roads share the same

start or end points, then a connection is formed in the graph.
1Publicly available at https://github.com/naghm3h/MSLTD
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(a)
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Figure 3.5: Comparison of smoothing effect on data variation (a) before smoothing and (b) after
smoothing operation using Gaussian filter.

8vi, vj |i 6= j, ifOriginIdi == OriginIdjor OriginIdi == DestinationIdj ) eij 2 E

To convert historical travel time data to traffic flow data, first, the travel time records whose

corresponding segment information does not exist are removed. Since the dataset provides the

average speed during a journey, for journeys taking more than 5 minutes, we split them into shorter

time intervals.

Algorithm 1 Breaking up of long trips
Require: trips = [{link id, start time, end time}]

1: while end time� start time > interval do
2: trips.append({trip id, start time, start time+ interval})
3: start time+ = interval
4: end while
5: return trips

Next, a temporal list is created for each link covering January 2019 to June 2019 at 5-minute

intervals as shown in Fig. 3.3b. We fill in the list elements by the aggregated speed information from
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travel time records corresponding to each time interval as shown in Fig. 3.3a, the filled elements

of the table point to the multiple travel time record matching the time interval. The traffic state

data (speed) is set to NAN for the elements whose time interval does not match any travel time

record. Links containing more than ⌧ consecutive NAN elements (⌧ = 1000) are removed because

of excessive missing data.

After removing rejected links, the adjacency matrix is revised to exclude those links. Ultimately,

105 major road segments with the highest number of trips are selected. Link coverage is shown in

Fig. 3.4a. At this step, the speed matrix is generated in 5-minute intervals for the selected segments

and determines the speed through those specific segments. Since we are aggregating trips’ data to

fill in time intervals, for time intervals with multiple trips, we have multiple speed aggregation

options as the representative speed of all trips in that particular timestamp, such as maximum,

average, and minimum speeds of all trips that have occurred in that specific time range. In this

work, for demonstrating MSLTD, we have selected the maximum speed since it better reflects the

road network characteristics compared to other options that might be affected by drivers’ behaviour,

for example, the first element of the speed matrix in Fig. 3.3b is defined as:

1� 1 : max(22.15, 33.17, 2.61, 27.17, 34.01, 33.60, 55.97)

for the element 1� 2 since there is no travel time record in its corresponding time interval, it is

set to NAN . Element 3 � 3 includes only one travel time record that would be the representative

of this time interval itself.

Furthermore, for any remaining links with missing values, we aggregate the trip information in

15-minute time intervals to overcome the sparsity in the data. The rest of the missing temporal data

for X-minute windows are replaced by the Historical Average method, using the weighted average

of previous weeks.

The aggregation of the trip information may lead to noisy data for time intervals containing

fewer trips, as shown in Fig. 3.5a. To address this, we apply a Gaussian filter to smooth the data, as

shown in Fig. 3.5b.

Finally, the adjacency matrix represents road segment connectivity information, and the tempo-

ral matrix encodes the speed changes for all segments.
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Table 3.1: Experimental results of various baseline methods conducted on METR-LA and Montreal
datasets for different values of time steps ahead

Dataset METR-LA MSLTD
Horizon Horizon

Method Metric 30 min 45 min 60 min 30 min 45 min 60 min

HA
RMSE 7.77 7.77 7.77 7.54 7.54 7.54
MAE 4.15 4.15 4.15 5.58 5.58 5.58

MAPE 12.9% 12.9% 12.9% 28.20% 28.20% 28.20%

VAR
RMSE 9.37 10.01 10.68 5.65 6.93 7.28
MAE 5.40 6.07 6.50 4.27 5.25 5.51

MAPE 12.75% 14.5% 15.84% 19.85% 25.46% 27.09%

GC-LSTM
RMSE 7.41 8.96 10.19 5.20 6.39 7.13
MAE 4.16 5.32 6.32 3.99 4.77 5.22

MAPE 11.38% 13.75% 15.68% 19.62% 23.82% 26.55%

DCRNN
RMSE 6.45 7.21 7.59 5.13 5.93 6.59
MAE 3.15 3.42 3.60 3.63 4.59 4.93

MAPE 8.8% 9.91% 10.5% 17.28% 21.42% 23.05%

MTGNN
RMSE 6.17 6.79 7.25 5.19 6.53 6.89
MAE 3.05 3.29 3.50 3.86 4.84 5.10

MAPE 8.21% 8.94% 9.88% 17.46% 23.37% 24.75%

AGCRN
RMSE 9.96 11.52 12.72 5.27 6.66 7.11
MAE 4.31 5.06 5.74 3.93 4.97 5.30

MAPE 10.87% 12.90% 14.75% 18.25% 24.18% 26.18%

MLS2S
RMSE 5.62 6.12 6.51 4.92 5.86 6.28
MAE 2.80 2.96 3.10 3.54 4.27 4.57

MAPE 7.33% 7.96% 8.48% 16.31% 20.38% 22.00%
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3.6.2 Experimental Settings

For both datasets, we use 70% of the data for training, 10% for validation, and 20% for testing.

We use 12 historical time steps information to predict the next horizon steps. For 30-minutes to

1-hour prediction horizon varies between 6 and 12 on METR-LA data since it is provided in 5-

minute time intervals. It varies between 2 to 4 for Montreal Street-level Traffic Dataset that is

presented in 15 minutes intervals. We train the proposed model using the Adam optimizer with a

base learning rate of 0.01 and decay ratio of 0.1. The network is implemented using PyTorch v1.7.1.

All experiments are conducted on NVIDIA GeForce RTX 2080 Ti with 11GB memory.

3.6.3 Baseline Methods

We compare MLS2S with the commonly used baseline methods and the state-of-the-art ap-

proaches: 1) Historical Average model (HA), which uses a weighted average of historical periods to

predict future values; 2) Vector Auto-Regression (VAR), a statistical model of multivariate forecast-

ing; 3) Diffusion Convolutional Recurrent Neural Network (DCRNN) Y. Li et al. (2017), a graph-

based method that applies random walk on graph and uses common encoder-decoder structure, the

spatial information in this method is provided to the network given a graph based on distances be-

tween sensors; 4) An improved version of Traffic Graph Convolutional Recurrent Neural Network

(TGC-LSTM) Cui et al. (2019), which defines the graph based on road network topology. In ad-

dition to the spatial information and temporal changes provided to the network, their model has an

extra dependency on road network characteristics information, which is provided to the network as

a free-flow reachability matrix. Following their network design, we achieved similar performance

while removing this dependency, see experiment results in Appendix. Thus, in the experiments

conducted, we use our modified version (GC-LSTM) of their approach by only providing spatial

and temporal information to the network. 5) Adaptive Graph Convolutional Recurrent Network

(AGCRN) Z. Zhou and Li (2017), which considers temporal information as intra-dependencies and

spatial information as inter-dependencies, then introduces two adaptive modules based on RNNs

and GNNs, finally combines them to capture both dependencies; 6) Connecting the dots (MTGNN)

Z. Wu, Pan, Long, et al. (2020), introduces a graph learning module to avoid using a predefined
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graph for multivariate time-series forecasting.

3.6.4 Performance Comparison

Table 3.1 shows a comparison of the performance for the above-mentioned methods. We employ

three widely used measures in traffic forecasting literature to measure the performance, including

(1) Mean Absolute Error (MAE), (2) Mean Absolute Percentage Error (MAPE), and (3) Root Mean

Squared Error (RMSE).

RMSE =
1

n

hX

i=1

|Y
t+i �Xt+i

Y t+i
| (12)

MAPE =

vuut 1

n

hX

i=1

(Y t+i �Xt+i)2 (13)

The metrics are reported for three different prediction horizons, from 30 minutes to 1 hour.

A comparison of the results performed on METR-LA dataset shows that the Historical Average

method has a constant performance for different horizons since it relies on long-range information.

Moreover, both baseline methods HA and VAR do not perform well compared to the deep neural

network approaches. TGC-LSTM and AGCRN have a comparable performance which can be at-

tributed to the fact that they both use GRU and GCN as their main network components. DCRNN

achieves a better performance than the previously investigated methods, which shows the effective-

ness of diffusion convolution operation in the encoder-decoder architecture. DCRNN and MTGNN

performance results are almost in the same range for highway data. The proposed MLS2S approach

outperforms all other methods on all reported metrics. In particular, the multilevel encoder design

improves the MAE by more than 11% for one-hour prediction.

DCRNN and MTGNN employ different mechanisms to learn spatial and temporal dependen-

cies. While the MTGNN network avoids using predefined graphs, DCRNN initially needs spatial

information to be provided to the network in a graph format. To learn temporal dependencies,

DCRNN makes use of RNN family while MTGNN utilizes dilated convolution. Finally, comparing

their performance on Montreal’s urban road segments dataset clearly shows that DCRNN outper-

forms MTGNN specifically for greater horizon values. In MLS2S network design, we also use

39



Table 3.2: Efficiency comparison of two top performing methods

Training time per epoch(s)
Method MSLTD METR-LA
DCRNN 105 382
MLS2S 26.4 106

RNN for addressing temporal complexities and predefined graphs to provide spatial information to

the network. Given the two top-performing methods on the urban road segments dataset (MLS2S

and DCRNN), we can conclude that using a predefined graph is more effective for urban road con-

nections with a higher density adjacency matrix.

3.6.5 Computation Time

Table 3.2 shows training time per epoch for DCRNN and MLS2S, which are the two top-

performing methods based on forecasting performance that use a predefined graph in their struc-

ture. MSLTD generally runs faster than METR-LA since their dimensions differ. The number of

nodes for the MSLTD dataset is smaller, and although it covers six months, it is provided in 15

minutes intervals. MLS2S method reduces time complexity by more than half on both MSLTD and

METR-LA datasets. The DCRNN graph operation design adds to the number of graph operations

by applying diffusion process and dual random walks, while in our sparse architecture design, we

avoid these complexities, which significantly reduces the training time per epoch.

3.7 Conclusion

In this chapter, we improve the efficiency and accuracy of graph-based deep-learning spatiotem-

poral forecasting with a novel multilevel sequence-to-sequence architecture for understanding cor-

relations at different levels of abstraction. The proposed architecture is based on a sparse cell block

that uses a traditional graph convolution operation combined with gated recurrent units to address

the spatial and temporal dependencies. The cell block is designed in its simplest form to avoid com-

plexities that result in additional computational time during the training of the network. To show

the effectiveness of the proposed model on two different scales of traffic, we further introduced an
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urban street-level segment dataset collected from Montreal, QC, Canada over a 6-month time pe-

riod. Experiments on two real-world datasets show the advantage of the proposed model in terms

of computational time and performance improvement.

Our work can inform decision-making for traffic management by providing improved predic-

tions. On the other hand, the impact of computational time becomes more evident while running

the model on a larger area with a considerable number of parameters in operational stages like

predicting traffic covering all over the city.

As a spatiotemporal forecasting approach, this work has the potential to be applied to different

research areas like meteorological forecasting, infectious disease surveillance, energy consumption,

and economic analysis.

The road segment connections carry out more information than a pairwise relationship since all

the links belong to the road network. For future work, we explore the higher-order relationship of

data instead of the pairwise relationship represented by adjacent nodes information in graph-based

neural network models.
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Chapter 4

Hydrometric Prediction with

Attention-Augmented Transduction

This chapter is a copy of the manuscript titled TransGlow: Attention-augmented Transduc-

tion Model Based on Graph Neural Networks for Water Flow Forecasting, published in the 2023

International Conference on Machine Learning and Applications (ICMLA). The manuscript was

co-authored by Naghmeh Shafiee Roudbari, Charalambos Poullis, Zachary Patterson, and Ursula

Eicker.

4.1 Abstract

The hydrometric prediction of water quantity is useful for a variety of applications, including

water management, flood forecasting, and flood control. However, the task is difficult due to the

dynamic nature and limited data of water systems. Highly interconnected water systems can signif-

icantly affect hydrometric forecasting. Consequently, it is crucial to develop models that represent

the relationships between other system components. In recent years, numerous hydrological ap-

plications have been studied, including streamflow prediction, flood forecasting, and water quality

prediction. Existing methods are unable to model the influence of adjacent regions between pairs of

variables. In this chapter, we propose a spatiotemporal forecasting model that augments the hidden

state in Graph Convolution Recurrent Neural Network (GCRN) encoder-decoder using an efficient
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version of the attention mechanism. The attention layer allows the decoder to access different parts

of the input sequence selectively. Since water systems are interconnected and the connectivity in-

formation between the stations is implicit, the proposed model leverages a graph learning module

to extract a sparse graph adjacency matrix adaptively based on the data. Spatiotemporal forecasting

relies on historical data. In some regions, however, historical data may be limited or incomplete,

making it difficult to accurately predict future water conditions. Further, we present a new bench-

mark dataset of water flow from a network of Canadian stations on rivers, streams, and lakes. Exper-

imental results demonstrate that our proposed model TransGlow significantly outperforms baseline

methods by a wide margin.

4.2 Introduction

Accurate water flow prediction plays a crucial role in flood forecasting and mitigation. By

understanding and predicting the dynamics of water flow, authorities can issue timely warnings

and implement proactive measures to minimize the impact of floods, protecting human lives and

reducing property damage. This proactive approach allows for better emergency response planning

and the implementation of effective flood control strategies. Furthermore, water flow prediction is

essential for optimal water resource management, fair distribution of water, ensuring sustainable

use, and minimizing waste.

Water systems are interconnected with interdependencies, which can significantly impact hy-

drometric prediction. Water levels, flow, and quality changes in one part of the system can have

cascading effects on the other parts. For example, changes in precipitation in one part of a river

basin can affect water levels and flows downstream. These dependencies are challenging to under-

stand, as different components can interact in complex ways that rely on various factors. Hence, it

is essential to develop models that can capture the relationships between other system components.

Spatiotemporal forecasting in water flow prediction involves capturing the complex relationships

and patterns of water flow in a given geographical area over time. It takes into account the inter-

connections of hydrological processes across different locations and time intervals. The concept

of spatiotemporal forecasting recognizes that water flow is not only influenced by local conditions
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but also by the spatial context and interactions within the hydrological system. It considers how

changes in one area can propagate and affect water flow patterns in neighboring or downstream lo-

cations. Additionally, it takes into account the temporal dynamics, such as seasonality, trends, and

short-term variations, that influence water flow.

Previous studies in the field of hydrometric prediction can be categorized into distinct re-

search areas. These categories include streamflow forecasting Kişi (2008), drought prediction Hao,

AghaKouchak, Nakhjiri, and Farahmand (2014); Hao, Singh, and Xia (2018); Hao, Yuan, Xia, Hao,

and Singh (2017), flood forecasting S. K. Jain et al. (2018); Karyotis et al. (2019); Nayak, Sud-

heer, Rangan, and Ramasastri (2005), and water quality prediction Ahmed et al. (2019); Haghiabi,

Nasrolahi, and Parsaie (2018); Mohr, Drainas, and Geist (2021). Previous studies in hydromet-

ric prediction have significantly contributed to the field; however, they are not without limitations.

These studies have often relied on limited and fragmented datasets, which can result in uncertain-

ties and reduced accuracy. Additionally, oversimplified assumptions about hydrological processes

and the disregard of spatial and temporal variability can reduce the accuracy of the predictions.

Furthermore, limited focus on realtime applications poses challenges for the field.

To address the mentioned challenges, we propose TransGlow, a spatiotemporal forecasting so-

lution based on a transductive model with an augmented decoder hidden state using an efficient

attention mechanism. The attention ability to focus on relevant parts of the input allows the model

to reduce the risk of losing context information from the beginning of the sequence. In time series

modeling, it is necessary to preserve the ordering information. However, the permutation-invariant

self-attention mechanism results in temporal information lossZeng, Chen, Zhang, and Xu (2023).

Recurrent neural network (RNN) family Dey and Salem (2017); Graves and Graves (2012); Medsker

and Jain (2001) have been well known as state of the art approaches in sequence modeling and trans-

duction problems such as language modeling and machine translation Datta, David, Mittal, and Jain

(2020); Mikolov and Zweig (2012). We use attention in parallel with a vanilla RNN-based encoder

to maintain ordering information and capture more relevant contextual information simultaneously.

With this approach, the information can be spread throughout the RNN encoder and the attention

layer, then selectively retrieved by the decoder allowing the model to process sequential data ef-

fectively. The main weakness of attention mechanism is the high computational complexity and
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memory usage while computing the dot product. To avoid this, we use ProbSparse self-attention, an

efficient attention mechanism proposed by H. Zhou et al. (2021).

The purpose of Graph Neural Networks (GNNs) Hamilton (2020) is to analyze data repre-

sented as graphs. They can operate on nodes and edges, capturing the graph’s structural information

and relationships. We can leverage the power of GNNs by incorporating Graph Convolution op-

erations Kipf and Welling (2016) into the encoder-decoder design; therefore, we employ Graph

Convolution Recurrent Neural Networks Y. Li et al. (2017) blocks to capture spatial dependencies

and extract high-level representations for each water station. The self-learning graph structure has

numerous benefits. It captures the changing relationships among variables over time, allowing the

model to adapt to shifting patterns and dependencies. This dynamic graph construction is especially

useful when the relationships between variables are ambiguous or change over time intervals. The

model can learn to establish relationships between relevant variables based on their temporal depen-

dencies and the current forecasting task. This adaptability enables TransGlow to capture both local

and global dependencies between variables, resulting in more accurate forecasting. Our principal

contributions are as follows:

(1) An augmented transduction model with an efficient attention mechanism for spatiotemporal

forecasting.

(2) To the best of our knowledge, this is the first study of water flow forecasting from a graph-

based perspective to learn the actual correlation between drainage basins.

(3) We present our experiments on 186 drainage basins across Canada. The raw data is provided

by the Environment and natural resources of Canada of Canada (2018). Experimental results

show that our method outperforms the state-of-the-art methods on all prediction horizons and

performance metrics. Detailed descriptions of the datasets are provided in Section 4.5.

The rest of the chapter is organized as follows. Section 4.3 reviews the current state of the

literature in spatiotemporal forecasting. Section 4.4 formally states the problem and the proposed

methodology. Finally, Section 4.5 includes dataset description, experimental settings, and experi-

ment results on a real-world dataset to show the effectiveness of our proposed approach.
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4.3 Related Work

A plethora of data-driven methods have been proposed for Time series Forecasting (TSF) in

the past. The prevailing focus in the literature is on statistical approaches, with notable methods

like Vector Auto Regressive models Zivot and Wang (2006), Autoregressive Integrated Moving

Average (ARIMA)Lai and Dzombak (2020), and its variants Narasimha Murthy, Saravana, and Vi-

jaya Kumar (2018). While statistical models have gained popularity due to their simplicity and inter-

pretability, they heavily rely on assumptions related to stationary processes, which may not always

hold true in real-world scenarios, especially for multivariate time series data. On the other hand,

machine learning methods demonstrated a solid ability to learn nonlinearity in TSF. Kişi (2008)

developed a wavelet model for stream flow prediction. For water quality prediction, Ahmed et al.

(2019) proposed a Support Vector Machine (SVM) approach, and Haghiabi et al. (2018) proposed a

Multi-Layer Perepcetron (MLP), the results showed that the model has good predictive performance

compared to other baselines. All these studies demonstrate strong capabilities of machine learning

for complex nonlinear feature extraction and improve prediction accuracy. However, limitations in

capturing spatial and temporal dependencies for more complex data prompted the exploration of

deep learning methods.

Recurrent Neural Networks (RNNs) Medsker and Jain (2001) with internal memory became an

excellent choice for time-series forecasting, particularly Long Short-Term Memory (LSTM) Graves

and Graves (2012) and Gated Recurrent Unit (GRU) Dey and Salem (2017) models with the ability

to address vanishing gradient problems and effectively learning longterm temporal dependency.

Numerous RNN-based models, such as bidirectional LSTM Siami-Namini, Tavakoli, and Namin

(2019), Mixture Deep LSTM R. Yu et al. (2017), and GRU models H. Lin et al. (2022), were

applied to TSF problems with impressive results. By introducing attention mechanisms Vaswani et

al. (2017), different Transformer based methods have also been applied to TSF applications such

as traffic M. Xu et al. (2020), air quality Liang et al. (2023), and energy H. Zhou et al. (2021)

forecasting. However, a recent study Zeng et al. (2023) claims that Transformers are not effective for

time series forecasting by comparing the Transformer-based models against simple one-layer linear
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models. To validate this claim, we also conduct experiments to explore the impacts of transformer-

based models in TSF; detailed descriptions are provided in Section 4.5.

To capture spatial dependencies, Convolutional Neural Networks (CNNs) were introduced,

treating TSF data as a time-space matrix Ma et al. (2017). However, CNN models are limited

to grid-like structures and Euclidean space representation. Then, Graph Neural Networks (GNNs)

came into the spotlight, offering a powerful way to express complex relationships in unstructured

data using graph-based data structure. Graph-based methods have been widely used in different

spatiotemporal applications such as solar energy, traffic, and electricity Z. Wu, Pan, Long, et al.

(2020). Still, their application in predicting hydrological-related parameters and water resources

is relatively limited. Recent studies combined GNNs with RNNs to explore spatial and tempo-

ral changes L. Bai et al. (2020), achieving promising results. Encoder-Decoder architectures have

shown great potential for processing sequence data Makin, Moses, and Chang (2020). Researchers

applied this architecture to TSF, using GCRN Y. Li et al. (2017), attention C. Zheng et al. (2020),

and transformer-based architectures M. Xu et al. (2020). Here we propose a novel transduction ar-

chitecture using the attention mechanism to augment the hidden state and enable better information

flow and context preservation. To utilize the strong potential of RNN models in capturing temporal

information and GNN in uncovering spatial relationships, we use GCRN as the building blocks of

our core Encoder-Decoder model. For the graph convolution operation in GCRN, we employ a

self-learning graph module to adaptively understand implicit spatial dependencies.

4.4 Methodology

4.4.1 Problem Statement

The spatiotemporal input dataset containing water flow measurements at different monitoring

stations over time is given as a two-dimensional tensor X 2 Rn⇥d, where n refers to the total

number of water stations generating their own time series, and d refers to the total number of time

intervals covered by the dataset. Xt 2 Rn⇥T denotes a sequence of historical data from time

t� T + 1 to time t over all the n resources.
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Here, the goal is to predict future tensor values up to H steps ahead (Xt+H ) given historical

data from the last T steps (Xt). The methodology involves improving accuracy by taking spatial

dependency between all water stations (n nodes) into account through graph convolution operation.

Since the graph structure is unknown, the graph adjacency matrix An⇥n needs to also be extracted.

So, the objective is to find a function f that learns the graph as A from input sequence Xt:

f : Xt ! A

then find a function g that maps the input Xt and A to the future values:

g : Xt, A ! Xt+H

48



4.4.2 Graph Learning Module

The underlying graph structure for graph convolution operation is either defined based on dis-

tance and similarity functions or needs to be constructed. Having a predefined graph requires spe-

cific prior knowledge of the problem. The spatial relationship between the objects is often implicit,

so even prior information might be biased and misleading for the prediction task. Several existing

studies Z. Wu, Pan, Long, et al. (2020),Jiang et al. (2023),L. Bai et al. (2020) serve this purpose

mostly as a function of the node embedding’s product. Here we adopt the well-established adaptive

graph generation defined in L. Bai et al. (2020):

Â = softmax(relu(E1.E2T )) (14)

where E1 and E2 represent randomly initialized node embeddings, which are subject to learning

during the training process.

4.4.3 Graph Convolution Recurrent Block

The blocks of the encoder-decoder architecture consist of two primary modules: a graph con-

volution operation to capture spatial dependencies and an RNN-based unit to exploit temporal vari-

ability. GCRN has been firmly established as state of the art approach in spatiotemporal forecasting

problems. Building upon the widely used approach of combining graph convolution within an RNN

layer in the literature L. Bai et al. (2020); Jiang et al. (2023); Y. Li et al. (2017), we adopt the orig-

inal GCRN formulation initially proposed by Y. Li et al. (2017), by eliminating the dual random

walk. This modification is aimed at avoiding computational complexities. The graph convolution

operation is a simplified version of normalized Laplacian formulated as:

H(l) = �(ÂH(l�1)W (l)) + bl (15)

where Â denotes the learned graph, W l and bl are the trainable weight and bias matrices for layer l,

and � is the activation function. H l�1 and H l are the input signal and output of graph convolution

on layer l, respectively. Finally, the MLP layers of the Gated Recurrent Unit are replaced by the
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introduced graph convolution operation above to form the block:

rt = �(Gconv(A, [X
t, ht�1]) + br (16)

ut = �(Gconv(A, [X
t, ht�1]) + bu (17)

ct = tanh(Gconv(A, [X
t, rt ⇤ ht�1]) + bc (18)

ht = (ut ⇤ ht�1)(1.0� ut) ⇤ c (19)

where Gconv is the graph convolution operation from Equation 15, rt and ut are the reset gate and

the update gate, ct is the cell state, Xt is the input signal, �(.) and tanh(.) are activation functions,

and h is the hidden state.

4.4.4 Encoder-Decoder Model

The flexibility of the encoder-decoder design and its effectiveness in handling sequence-to-

sequence tasks have made it a popular choice across various domains, such as machine translation

Datta et al. (2020) and time series forecasting H. Zhou et al. (2021), enabling Neural Networks ar-

chitectures to process and generate human-like data sequences. The vanilla encoder-decoder model

works in a sequence-to-sequence manner. The encoder processes the input sequence to create a

fixed-size representation that carries the relevant information. This context vector is then passed to

the decoder, which uses it to generate the output sequence one step at a time. The model building

blocks can be implemented using RNNs, LSTMs, or transformers.

The main problem of the vanilla encoder-decoder architecture is that it may suffer from the

issue of information compression and loss. Since the encoder produces a fixed-size representation

(context vector) to summarize the entire input sequence, it needs to capture all the relevant informa-

tion within this fixed-size vector. However, this process can lead to lossly information compression,

where important details from the input sequence may get lost or diluted in the context vector. Ad-

ditionally, the encoder-decoder architecture may face difficulty in handling long sequences. When

processing long input sequences, the encoder’s fixed-size context vector may not be sufficient to

retain all the essential information, resulting in inadequate generation of the output sequence by
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the decoder. To address these problems, we propose a modification and improvement to the vanilla

encoder-decoder architecture by using attention mechanisms to mitigate information loss, handle

longer sequences more effectively, and improve the model’s overall performance in spatiotemporal

forecasting. The added layer between the input data and the decoder is a way of attending to the

input sequence by an attention distribution mechanism that calculates a weighted sum of the inputs

at all time steps. The final augmented hidden state H passed over to the decoder is:

H = Concat[ht, C] (20)

where ht is the final hidden state of the encoder, and C is the context vector from the attention layer.

The attention vector is then incorporated into the decoder’s decision-making process, allowing it to

focus on relevant information from the source data during decoding. Figure 4.1 visually illustrates

an encoder-decoder model with an augmented attention layer.

4.4.5 Efficient Attention Layer

The bottleneck of the original attention mechanism lies in its quadratic computational com-

plexity with respect to the sequence length. H. Zhou et al. (2021) have been able to alleviate the

bottleneck of canonical attention and make Transformer-based models more scalable for sequence-

to-sequence tasks by proposing ProbSparse Self-attention. Instead of having a full query matrix

with all the queries for every token in the sequence, ProbSparse attention selects only a subset of k

queries based on a certain measure or probability distribution:

Q̂ = M(Q,K) (21)

Attention(Q,K, V ) = Softmax(
Q̂KT

p
d

)V (22)

where Q,K,V denote query, key, and value, respectively, and d is the input dimension. The measure

or probability distribution M determines the importance or relevance of each token in the sequence

with respect to the current token. Tokens with higher importance or relevance are more likely to
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be included in the sparse query matrix, while tokens with lower importance have a lower probabil-

ity of being included. Therefore, we utilize the ProbSparse attention mechanism for the attention

augmented layer in the encoder-decoder design.

4.5 Experiments

4.5.1 Dataset Description

In this work, we present a water flow daily discharge dataset called CWFDD-186, which pro-

vides daily discharge data from 186 stations on rivers, streams, and lakes across Canada. The raw

data is provided by Environment and Climate Change Canada Environment and Canada (2023). The

presented dataset, publicly available on the project repository, covers 40 years from 1981 to 2021.

Figure 4.2a shows the station’s coverage on the map, and 4.2b is the daily discharge of one of the

stations over a year period.

The missing values are replaced using the Historical Average method, with the weighted average

of previous/next years. Occasionally spikes or dips can occur in the data due to sensor malfunctions,

data transmission errors, or calibration issues with the measurement instruments. Environmental

factors such as debris, ice, or sudden changes in water flow conditions can also lead to temporary

fluctuations in the data. We have applied a Gaussian smoothing filter on data to address this without

losing the general pattern and trends of the data. Smoothed data helps the model catch actual

patterns by removing the noise.

4.5.2 Experimental Settings

We use 70% of the data for training, 10% for validation, and 20% for testing with batch size 64.

The historical sequence length and the prediction horizon are both set to 12. The maximum number

of epochs is set to 200, while the training may stop earlier if validation converges for 20 consecutive

epochs. We use the Adam optimizer for training with Mean Absolute Error (MAE) as the loss

function and curriculum learning for better generalization. The base learning rate is 0.01, the decay

ratio is 0.1, and the number of heads for attention is 8. The network is implemented using PyTorch

v1.7.1. All experiments are conducted on NVIDIA GeForce RTX 2080 Ti with 11GB memory.
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(a)

(b)

Figure 4.2: CWFDD-186 dataset (a) 186 station’s distribution on the map. (b) Data variability
pattern for a specific sensor during a year.
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4.5.3 Baselines

We compare our proposed TransGlow method with various baseline models, including graph

neural networks, transformers, attention-based, and statistical methods. The baseline models in-

clude the following:

(1) The Historical Average model (HA) is forecasting method that predicts the future value of a

time series based on the weighted average of historical data points.

(2) Vector Auto-Regression (VAR) is a statistical model used for multivariate time series fore-

casting. It is an extension of the univariate Auto-Regression (AR) model to handle multiple

related time series variables simultaneously. VAR is widely used in econometrics, finance,

and various other fields for analyzing and predicting the interactions between multiple vari-

ables over time.

(3) The Adaptive Graph Convolutional Recurrent Network (AGCRN) Z. Zhou and Li (2017) is

designed to capture both temporal and spatial dependencies within graph-structured data ef-

fectively. AGCRN takes into account temporal information as intra-dependencies and spatial

information as inter-dependencies. To achieve this, it integrates two crucial adaptive modules

based on Recurrent Neural Networks (RNNs) and Graph Neural Networks (GNNs).

(4) The Informer model H. Zhou et al. (2021) is introduced as an enhanced version of the Trans-

former architecture specifically designed for efficient and accurate forecasting of long time-

series sequences. The proposed modifications, including temporal attention and ProbSparse

self-attention mechanisms, enable Informer to achieve state-of-the-art performance while ef-

ficiently handling long-range dependencies in time-series data.

(5) Spatial-Temporal Transformer Networks for Traffic Flow Forecasting (STTransformer) M. Xu

et al. (2020) introduces a novel application of the Transformer architecture by proposing spa-

tial and temporal transformers to capture spatial and temporal dependencies in traffic flow

data. The model achieves state-of-the-art performance in traffic flow forecasting tasks by

treating the traffic network as a graph and utilizing multi-head attention mechanisms.
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(6) MTGNN Z. Wu, Pan, Long, et al. (2020) uncovers the relationships between variables using

a graph learning module. The model also incorporates a unique mix-hop propagation layer

and a dilated inception layer. All three modules are jointly learned within an end-to-end

framework, ensuring optimal integration of the learning process.

(7) Discrete Graph Structure (GTS) Shang, Chen, and Bi (2021) is a scalable spatiotemporal

forecasting method where the number of parameters does not grow quadratically with the

number of time-series. It was originally proposed for traffic forecasting and uses the GCRN

block structure and a graph learning approach they present in the paper.

4.5.4 Performance Comparison

Table 4.1 shows a comparison of the performance for the above-mentioned methods. We report

performance metrics for three different horizons: 3, 6, and 12 days. Widely used measures in TSF

literature are employed to report the performance, including (1) Mean Absolute Error (MAE), (2)

Root Mean Squared Error (RMSE).

RMSE =
1

n

hX

i=1

|Y
t+i �Xt+i

Y t+i
| (23)

The method HA has a constant performance for all prediction horizons since it is based on log

range information. Both HA and VAR fail to represent a good performance. They do not consider

any trends, seasonality, or other factors that may influence the time series, making it less accurate for

long-term forecasting or when dealing with volatile data patterns. Nonetheless, HA provides a sim-

ple and fast solution for simple forecasting tasks. AGCRN improves MAE performance compared

to the previous two baselines but performs poorly on RMSE. The next two methods are transformer-

based approaches. Informer lacks considering spatial dependencies since it only has attention and

no graph convolution operations in its architecture. Whereas STTransformer employs both attention

and graph convolution, so it performs better than Informer. Although transformers perform well on

most sequential data, they are not the best choice for TSF, as it was also shown in the findings from

Zeng et al. (2023). In TSF the primary objective is to capture the temporal relationships between

data points within an ordered sequence. Although positional encoding and token embeddings are
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Table 4.1: Experimental results of various baseline methods conducted on water flow data for dif-
ferent values of time steps ahead

Dataset CWFDD-186
Horizon

Method Metric 3 Days 6 Days 12 Days

HA
MAE 44.82 44.82 44.82

RMSE 61.39 61.39 61.39

VAR
MAE 23.29 30.19 36.39

RMSE 94.17 131.76 173.55

AGCRN
MAE 11.27 13.64 16.40

RMSE 44.57 46.30 49.64

Informer
MAE 17.68 17.93 18.76

RMSE 44.71 45.51 48.19

STTransformer
MAE 9.44 11.03 14.33

RMSE 27.20 30.85 39.27

MTGNN
MAE 7.98 9.47 58.72

RMSE 24.04 27.59 107.34

GTS
MAE 7.33 9.93 12.53

RMSE 22.56 28.97 34.52

TransGlow
MAE 6.83 9.46 12.19

RMSE 21.48 27.71 33.48

utilized in Transformers to retain some level of ordering information for sub-series, the inherent

nature of the permutation-invariant self-attention mechanism still leads to a loss of temporal infor-

mation.

MTGNN performs well on smaller prediction horizons. Its poor performance for 12 days pre-

diction can be attributed to the fact that it employs Convolutional Neural Networks to understand

temporal dependencies, while RNNs have proved to be a better choice for this purpose. GTS is

the second-best-performing method after our proposed TransGlow, which shows the effectiveness

of our Augmented encode-decoder architecture. Finally, our proposed TransGlow outperforms the

other methods over all prediction horizons.

4.5.5 Complexity

Table 4.2 shows the total number of parameters for each method. While larger models may

have the potential to achieve better performance on complex tasks, it is essential to balance model

complexity with efficiency considerations to find the optimal trade-off between model performance
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and resource utilization. The total number of parameters can impact the efficiency of model train-

ing. During the inference phase, models with fewer parameters usually require less memory and

computational power. Smaller models are often faster and more efficient in real-time applications.

Of the two top-performing methods, GTS has the largest number of parameters, while our proposed

TransGlow with the best MAE has third place in the parameters table.

Table 4.2: Efficiency comparison of baseline methods

Method Number of Parameters
STTransformer 292,281

MTGNN 375,548
TransGlow 405,593
AGCRN 747,600
Informer 12,251,850

GTS 16,578,387

4.6 Conclusion

Water flow prediction is crucial for assessing the current water levels and identifying any sudden

changes that could indicate an impending flood. TransGlow is designed to continuously predict

water flow over various monitoring stations along rivers, streams, and other water bodies. It can be

integrated into flood warning systems to trigger alerts when the predicted water flow exceeds certain

critical levels. Our proposed model can also help create flood hazard maps that identify areas at high

risk of flooding based on predicted water flow patterns.

Water flow in a hydrological system is highly dependent on the interactions between different

monitoring stations, such as rivers, streams, and lakes. GNNs can naturally capture these spatial

dependencies by considering the graph structure of the network, which allows the model to incor-

porate the influence of nearby regions. GNNs can also effectively model temporal dynamics using

recurrent units, such as the Graph Convolution Recurrent Neural Network (GCRN). Understanding

the graph structure in the context of water systems can be challenging. It may not be static and can

change over time due to various factors, such as weather conditions or human interventions. Graph

learning methods can adaptively learn the connectivity between stations based on the available data.
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The encoder-decoder design is commonly used in prediction tasks. The benefit of the augmented

attention layer proposed for the encoder-decoder architecture lies in its ability to focus selectively on

relevant parts of the input sequence. The attention mechanism allows the decoder to access different

parts of the encoded input sequence based on their importance for generating the output. Experi-

ments on a real-world dataset show the advantage of our proposed model in terms of complexity

and performance improvement.

Future works can explore integrating additional external factors influencing water flow, such

as rainfall data, temperature, or land-use patterns. These factors can provide valuable context and

improve the accuracy of the predictions. Investigating multi-task learning techniques to jointly pre-

dict other hydrological variables, such as water quality parameters or groundwater levels, alongside

water flow can also lead to a more comprehensive understanding of the water system’s behavior.
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Chapter 5

Flood Forecasting Using Digital Twins

This chapter is a copy of the manuscript titled From Data to Action in Flood Forecasting

Leveraging Graph Neural Networks and Digital Twin Visualization, published in Scientific Re-

ports, 2024. The manuscript was co-authored by Naghmeh Shafiee Roudbari, Shubham Rajeev

Punekar, Zachary Patterson, Ursula Eicker, and Charalambos Poullis. Both first and second authors

contributed equally to this work. I was responsible for the computational modeling, while Shubham

Rajeev Punekar contributed to the visualization and digital twin aspects.

5.1 Abstract

Forecasting floods encompasses significant complexity due to the nonlinear nature of hydrologi-

cal systems, which involve intricate interactions among precipitation, landscapes, river systems, and

hydrological networks. Recent efforts in hydrology have aimed at predicting water flow, floods, and

quality, yet most methodologies overlook the influence of adjacent areas and lack advanced visual-

ization for water level assessment. Our contribution is twofold: firstly, we introduce a graph neural

network model equipped with a graph learning module to capture the interconnections of water sys-

tems and the connectivity between stations to predict future water levels. Secondly, we develop a

simulation prototype offering visual insights for decision-making in disaster prevention and policy-

making. This prototype visualizes predicted water levels and facilitates data analysis using decades

of historical information. Focusing on the Greater Montreal Area (GMA), particularly Terrebonne,
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Quebec, Canada, we apply our model and prototype to demonstrate a comprehensive method for as-

sessing flood impacts. By utilizing a digital twin of Terrebonne, our simulation tool allows users to

interactively modify the landscape and simulate various flood scenarios, thereby providing valuable

insights into preventive strategies. This research aims to enhance water level prediction and evalua-

tion of preventive measures, setting a benchmark for similar applications across different geographic

areas.

5.2 Introduction

Since 2021, North America has been consistently experiencing devastating flood disasters that

leave a trail of destruction in their wake. In a recent event, heavy rainfall and climate change-

induced conditions triggered catastrophic flooding in British Columbia, Canada. It resulted in resi-

dent displacement, critical infrastructure damage, and a significant economic toll B.C. floods caused

at least $450M in damage (n.d.). Communities were inundated, and the cleanup and recovery pro-

cess were arduous and costly. Similarly, in 2021, the Mississippi River experienced severe flooding

There were flash floods, strong winds and at least two deaths in Mississippi (n.d.), impacting sev-

eral states. This inundation led to the destruction of homes, businesses, and agricultural lands. It

disrupted transportation and caused widespread economic losses. The catastrophic floods under-

score the importance of flood forecasting and simulation. Communities require timely and accurate

warnings to prepare, mitigate, and respond effectively to impending flood events. By simulating

potential flood scenarios, we can assess the extent of damage and plan for effective flood control

measures. Simulation of barriers along the river sides where inundation is frequent during flood-

ing helps in decision-making for the best distribution of preventative resources in a timely manner.

This pivotal task not only bolsters public safety but also underpins resilient urban planning, climate

change adaptation, and scientific research, making it an essential component of modern-day disaster

preparedness and response efforts.

One of the fundamental difficulties in flood forecasting arises from the intricate network of in-

terconnected hydrological systems. Rivers, streams, tributaries, and drainage networks collectively

form a dynamic, interdependent web. Predicting how water will traverse this network, especially
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in response to extreme weather events, requires sophisticated modelling. The cascading effect of

changes in one part of the system can have far-reaching consequences downstream, adding layers

of complexity to flood forecasting. Consequently, flood forecasting goes beyond time series fore-

casting, evolving into a spatiotemporal problem. Graph Neural Networks (GNN) are designed to

model complex relationships and spatial dependencies. For flood prediction, using a GNN-based

model is necessary because it can accurately represent how hydrological systems are connected and

changing over time. This gives us a better understanding of how water moves through water system

networks. Their adaptability to changing conditions, reduced need for manual feature engineering,

and capacity to integrate diverse data sources make them indispensable for improving prediction

accuracy.

Another challenge is the spatial variability of flood events. Floods vary significantly across

different regions and are not uniform. The local topography, land use, and geographical features

significantly influence flood dynamics. Therefore, forecasting must account for these site-specific

conditions, demanding meticulous and often site-specific modelling. This spatial variability can

complicate predictions, as what holds true for one area may not apply to another, even within the

same watershed. Our digital twin simulation addresses this challenge by creating a dynamic and

detailed virtual replica of the real-world environment. Simulating flood scenarios within the digital

twin makes it possible to account for these spatial variations and understand how they influence

flood dynamics. Different scenarios can reveal the sensitivity of the system to specific variables. For

instance, we assess how the placement of concrete barriers or the density of tree trunks influences

water flow and how it impacts floods. This sensitivity analysis aids in identifying critical factors

and their associated variability. Moreover, visual representations of potential flood scenarios are

critical in engaging and educating local communities about flood risks and the importance of being

prepared. This visual communication is instrumental in raising awareness and supporting flood

mitigation efforts.

New research in hydrological prediction covers a wide range of topics. It helps us understand

and predict various water-related events, like streamflow patterns Gore and Banning (2017), rainfall-

runoff modeling Jaiswal, Ali, and Bharti (2020), drought onset prediction L. Xu, Chen, Zhang, and

Chen (2018), and flood forecasting Dtissibe, Ari, Titouna, Thiare, and Gueroui (2020). However,

61



many of these works often need to adequately consider spatial complexity, which is the cascading in-

fluence of water system components on each other. The omission of spatial variables, like localized

rainfall variations, terrain differences, and land use changes, can limit the precision and reliability

of predictions. Future research should bridge this gap by ensuring a more holistic understanding of

hydrological processes to improve predictive capabilities.

In addressing the current challenges in flood forecasting, we have employed a cutting-edge spa-

tiotemporal forecasting approach using graph neural networks. This technique, recently introduced

in Roudbari, Poullis, Patterson, and Eicker (2023), outperforms traditional methods in predicting

water flow. The TransGlow model uses Graph Convolution Recurrent Neural Network (GCRN)

blocks to build an encoder-decoder structure. These blocks preserve sequence information and un-

ravel spatial correlations. The transductive model structure is further enhanced with an augmented

encoder layer employing attention mechanisms to focus on important elements of the input data. We

adapt the TransGlow model to the specific context of Quebec, focusing on water level predictions

in Terrebonne. We further compliment the flood forecasting framework with a flood-simulation

prototype comprising Terrebonne’s digital twin. Hence, our approach not only offers accurate flood

forecasting but also improves our understanding of flood variability across different city zones and

provides important insights for effective mitigation strategies. Our key contributions are as follows:

(1) We present an extendable flood simulation and visualization technique, creating a detailed dig-

ital model of the city of Terrebonne, QC for flood simulation. 1 This is a significant advance-

ment, providing a valuable tool for understanding and predicting flood dynamics specific to this

area. Notably, the proposed technique is designed to be reproducible and, more importantly,

generalizable to other geographic locations, leveraging open-source data and standard practices

to ensure its applicability beyond this initial area of focus. Our approach utilizes historical data

and predictions from a graph neural network model to simulate changes in the water levels of

nearby water bodies. Furthermore, our method supports interaction, including the simulation of

concrete barriers for the purposeful redirection of river flow during flood events. By simulating

and visualizing the controlled redirection of floodwaters, our approach facilitates the design of
1To ensure that the images shown in the chapter are consistent, we focus on a 1.25x1.25km2 area encompassing

Terrebonne, with a central focus on Ile St. Jean, adjacent to the Mille-Iles (Riviere Des) Au Barrage De Terrebonne
weather station located at 45°41’35”N 73°38’58”W.
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effective mitigation strategies tailored to diverse scenarios in a timely fashion.

(2) We introduce a state-of-the-art GCRN-based method, originally developed for predicting hy-

drological parameters and now extended to local-scale flood prediction in Terrebonne, QC. Ex-

tensive experimentation has shown that this adaptation leads to better performance compared

to current methods, emphasizing the effectiveness of the approach and its potential to improve

flood prediction accuracy in specific local contexts.

In summary, our work contributes to (i) more precise flood forecasting using state-of-the-art

deep learning frameworks, and (ii) evaluating mitigation strategies using a digital twin for simula-

tion and visualization. By understanding localized flood patterns, stakeholders can make informed

decisions to protect the community and infrastructure, ultimately reducing the impact of floods on

the city. Furthermore, the research lays the foundation for similar applications in various geograph-

ical areas, extending the potential benefits beyond the city of Terrebonne, QC.

5.3 Related Work

In this section, we offer a concise overview of related work in the fields of digital twin creation

and forecasting methodologies.

5.3.1 Digital Twins

Recent years have seen significant improvements in the use of geospatial data generated from

LiDAR scans for landscape modelingGamba and Houshmand (2000). Along with high-resolution

topography data, other geospatial data sources, such as roads, building footprints, have been effec-

tively used to create detailed and accurate representations of urban landscapes. The integration of

deep learning techniques with photogrammetry and satellite imagery has revolutionized the field of

3D reconstruction. However, these works focus primarily on the visual acuity of the reconstructed

models, rather than their physical aspects. For instance, 3D point clouds reconstructed with meth-

ods in photogrammetry such as structure-from-motion and multi-view stereo algorithms Massimil-

iano Pepe and Crocetto (2022); Schönberger and Frahm (2016); Schönberger, Zheng, Pollefeys, and

Frahm (2016) or implicit 3D representations such as neural radiance fields Mildenhall et al. (2020);

Xiangli et al. (2022), while highly useful in visualizing the city do not produce static meshes that
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can test for physics-based collision with fluids, as required by the problem statement at hand. To

model urban features digitally which render with lower visual acuity but provide accurate physical

interactions, techniques such as procedural extrusion of the building footprintsLedoux and Meijers

(2011) or deep learning based reconstructionD. Yu, Ji, Liu, and Wei (2021) have been proposed to

produce models with low level-of-detail.

The simulation of fluids, particularly for applications like flood prediction, has greatly bene-

fited from advances in physics-based computational models. Research in this area has focused on

the development of scalable and accurate simulation algorithms capable of handling the complex

dynamics of water movement. Various physics-based fluid simulation techniques have been ex-

plored in literature, such as Eulerian methodsChentanez and Müller (2011), which track the fluid

properties of fixed points in space, and Lagrangian methodsMüller, Charypar, and Gross (2003),

which track individual particles moving in space and time. Novel methods combining Eulerian and

Lagrangian approachesMacklin and Müller (2013) use particles to carry information about fluid

motion and a Eulerian grid to solve for pressures and velocities. However, these methods are com-

putationally expensive to be used on consumer hardware, which precludes them from being used

in implementations to be accessed by stakeholders at ground zero during flooding, to offer insight

for the decision making process. With this objective in mind, we refer to the work of Chentanez

and MüllerChentanez and Müller (2010) which represents the fluid surface as a two dimensional

heightfield grid, where each cell in the grid stores a height value indicating the height of the fluid

surface at that point. The simulation works by iteratively updating the height values of the grid cells

based on physical principles like conservation of mass and momentum, as well as external forces

like gravity and wind. It offers a good balance between computational efficiency and visual fidelity,

making it suitable for real-time applications as well as high-quality rendering. This approach is

particularly suited for large-scale simulations like rivers where vertical detail -such as formation of

waves and splashing of water- is less important than the overall motion and surface appearance.

Our area of research involves the integration of a detailed 3D city model with appropriate fluid

simulation technique to enhance flood prediction and management. In our proposed work, we im-

plement the simulation and visualization application using the Unreal Engine as the foundational

framework, augmented with supporting libraries for the procedural generation of urban features
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such as roads and buildings, and the fluid height field simulation. This interdisciplinary approach

allows for more accurate simulations of how water interacts with urban infrastructure, aiding in the

development of more effective flood defense and urban planning strategies.

5.3.2 Forecasting

Time series forecasting is a fundamental task in various domains, from economics to meteorol-

ogy, and it has witnessed a continuous evolution in methodology over the years. Traditional time

series forecasting methods, particularly those rooted in statistical techniques, have historically as-

sumed linearity within the data. These methods include Vector Auto Regressive models Zivot and

Wang (2006), Autoregressive Integrated Moving Average (ARIMA) Ho, Xie, and Goh (2002), and

exponential smoothing Taylor (2003). The assumption of linearity simplifies the forecasting pro-

cess but is often at odds with the intricate, nonlinear patterns frequently present in real-world time

series data. However, machine learning has shown remarkable aptitude in uncovering and modeling

non-linearity within time series data, significantly enhancing forecasting accuracy across various

domains. In their work, Makwana and Tiwari (2014) introduced a wavelet-based model for stream

flow prediction. Tan, Yan, Gao, and Yang (2012) explored a Support Vector Machine (SVM) ap-

proach for water quality prediction, while Niroobakhsh, Musavi-Jahromi, Manshouri, and Sedghi

(2012) utilized a Multilayer Perceptron (MLP) and Radial Basis Function (RBF) model for the

same task. Their findings demonstrated that these models exhibited strong predictive performance

compared to conventional baseline methods. While machine learning methods show proficiency in

learning non-linearity in time series data, the ever-increasing complexity of modern datasets neces-

sitates exploring deep learning approaches.

Recurrent Neural Networks (RNNs) with internal memory Medsker and Jain (2001) have emerged

as a compelling choice for time-series forecasting. Specifically, models like Long Short-Term Mem-

ory (LSTM) Graves and Graves (2012) and Gated Recurrent Unit (GRU) models Dey and Salem

(2017) have proven proficiency at mitigating issues such as vanishing gradients while effectively

capturing long-term temporal dependencies. The integration of attention mechanisms Vaswani et

al. (2017) has extended the horizons of time series forecasting. Transformer-based methods have
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made notable progress in Time Series Forecasting (TSF) applications, spanning domains like hydro-

metric forecasting Wei, Wang, Schmalz, Hagan, and Duan (2023), air quality prediction Méndez,

Montero, and Núñez (2022), and energy forecasting C. Wang et al. (2022). These models have

showcased their effectiveness in modeling complex temporal relationships.

In the context of spatiotemporal forecasting, the landscape of TSF has witnessed an evolution

driven by innovative approaches and their intersection with the spatial domain. Initially, to capture

spatial dependencies within time series data, Convolutional Neural Networks (CNNs) emerged as a

solution, treating TSF data as a time-space matrix Ma et al. (2017). However, CNN models exhibit

limitations in their applicability, particularly when dealing with non-grid-like structures and the

representation of data in Euclidean space.

Subsequently, the spotlight turned to GNNs, which offered a robust framework for expressing

intricate relationships within unstructured data via a graph-based data structure. While graph-based

methods found extensive use in various spatiotemporal applications, including renewable energies

Khodayar and Wang (2018), traffic C. Zheng et al. (2020), and electricity forecasting Z. Wu, Pan,

Long, et al. (2020), their utilization in predicting hydrological-related parameters and water re-

sources remained relatively restricted.

Recent studies have bridged this gap by combining GNNs with Recurrent Neural Networks

(RNNs), exploring the interplay of spatial and temporal changes Geng, He, Xu, and Yu (2022)

and achieving promising results. The advent of Encoder-Decoder architectures, renowned for their

efficacy in processing sequential data Makin et al. (2020), has further propelled innovations in TSF.

Researchers have adapted this architecture to TSF, employing models such as GCRN Y. Huang,

Weng, Yu, and Chen (2019), attention-based mechanisms H. Zhou et al. (2019), and Transformer-

based architectures S. Wu et al. (2020).

In this context, we leverage a novel transduction architecture Roudbari et al. (2023) that uses

the attention mechanism to enhance the hidden state, facilitating improved information flow and

context preservation. This method harnesses the strengths of RNN models in capturing temporal

information and GNNs in unveiling spatial relationships. To support the Graph Convolutional op-

eration, the prediction model uses a self-learning graph module that can autonomously discover the

implicit connections within the data. This is invaluable since sometimes the actual network structure
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between different water stations is not known in advance or evolves over time.

5.4 Problem Formulation

The input to the prediction network can be represented as a two-dimensional matrix, denoted

as X . This matrix serves as the fundamental input data structure to capture the spatiotemporal

dynamics of water levels, where each row in the matrix represents a different water station, and

each column corresponds to a specific timestamp covering T time steps (from t�T +1 to t). Thus,

each element of the matrix, represented as X[i][j], signifies the water level at a certain water station

(indexed by i) for a particular time stamp (indexed by j), allowing the prediction network to learn

and model the complex relationships and patterns associated with water levels at different stations

over time.
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The objective is to find a function f that captures the connections between water systems. The

function f maps the spatiotemporal matrix X to a connectivity matrix A, representing the rela-

tionships between different water stations, A = f(X). Given the connectivity matrix A, the current

spatiotemporal matrix X , and a specified number of future time steps h, the goal is to find a function

g that predicts the spatiotemporal matrix Xh for the future h time steps. Hence, function g takes the

current connectivity matrix, the current spatiotemporal matrix, and the number of future time steps

as inputs and produces the predicted spatiotemporal matrix for the future, i.e. Xh = g(C,X, h).

The overall objective is to find functions f and g that enable the network to understand the

connections between water systems from the current spatiotemporal data and use this understanding

to forecast water levels at multiple stations for future time steps.
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Figure 5.1: figure
Network architecture. The model input is a spatiotemporal matrix, the model learns the graph
and makes prediction in a GCRN based encoder-decoder design, an attention layer is added to

augment the decoder input

5.5 Methodology

This section details the theoretical approach utilized in this work for predicting the water level,

and is illustrated in Figure 5.1. An extended explanation can be found in the Supplementary Mate-

rial, Section ”Graph Neural Networks”.

5.5.1 Architectural Enhancement: Attention-Augmented Encoder-Decoder

The encoder-decoder design, inspired by RNNs and their variations, addresses the challenges

of capturing and processing sequential information in a wide array of applications, from natural

language processing, where it excels in language translation tasks Sutskever et al. (2014), to time

series forecasting, where it adeptly handles the intricacies of temporal patterns He, Chow, and Zhang

(2018).

At its core, the encoder-decoder structure is a two-step process strategically tailored to handle

sequences of variable lengths. The encoder, functioning as the initial stage, systematically processes

the input sequence, distilling its salient features into a fixed-size representation known as the context

vector.

This condensed context becomes a comprehensive summary of the input, capturing its essen-

tial characteristics. The vanilla encoder-decoder architecture processes an input sequence X =
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(x1, x2, ..., xT ) with an encoder to create a context vector. The encoder processes each element

of the input sequence sequentially, producing hidden states ht for each time step t, i.e., ht =

Encoder(xt, ht�1), C = hT where C is the context vector and the function Encoder can be any

recurrent or non-recurrent layer, such as an LSTM or GRU. In this chapter, the foundational com-

ponent is GCRN. It captures the information from the input sequence and creates a hidden state for

each time step. Then, the decoder generates an output sequence using this context vector. For each

time step in the output sequence, the decoder generates an output yt and updates its hidden state

st, i.e., st = Decoder(yt�1, st�1), s0 = C where the function Decoder is similar to the encoder’s

function but typically has a different set of parameters.

In order to tackle challenges related to information loss and compression, the model refines the

traditional encoder-decoder architecture by introducing an augmented attention layer. This supple-

mentary attention layer dynamically focuses on elements within the input sequence and calculates

an attention vector that emphasizes the significance of different segments of the input sequence.

The resultant attention vector Attention is subsequently merged with the final hidden state ob-

tained from the encoder, C = Concat[hT , Attention]. This fusion produces an enriched context

vector tailored for the decoder. By incorporating this augmented attention mechanism, the model

adapts more flexibly to varying degrees of importance within the input sequence. This modifica-

tion enhances the model’s capacity to reduce information loss and improves its ability to generate

contextually rich output sequences in sequence-to-sequence tasks.

The attention mechanism plays an important role in sequence-to-sequence tasks by allowing the

model to focus on different parts of the input sequence when generating each element of the output

sequence. However, the standard attention mechanism has a quadratic computational complexity in

terms of sequence length. This is primarily because, for each element in the output sequence, the

model computes an attention score for every component of the input sequence. Our used prediction

model adopts ProbSparse attention, as proposed by H. Zhou et al. (2021). In this version of attention,

a subset of K queries is selectively chosen based on specific measure M :

Q̂ = M(Q,K)

Attention(Q,K, V ) = Softmax( Q̂K
T

p
d
)V

69



where Q,K, and V denote query, key, and value, respectively, and d is the input dimension. The

probability distribution M decides the relevance of each token in the sequence relative to the current

token. Tokens with higher importance have a higher chance of being incorporated into the sparse

query matrix, while tokens with lower significance have a lower probability of inclusion. This

approach ensures that the attention mechanism selectively focuses on relevant tokens, contributing

to the overall efficiency of the model.

5.6 Experiments

The experiments in this work focus on Terrebonne, Quebec, Canada, situated in the North Shore

region of the Greater Montreal Area. Terrebonne’s climate features warm summers and cold winters

with variable weather, including heavy rainfall and rapid snow melt periods. While the research is

rooted in Terrebonne, its proposed approach transcends geographic constraints, offering generaliza-

tion potential for application in other cities. We leverage water level data from 8 monitoring sta-

tions across rivers, streams, and lakes, enhancing the model understanding of interconnected water

bodies. Sourced from Environment and Climate Change Canada Environment and Canada (2023)

spanning 21 years (2000-2021), the spatial distribution of the monitoring stations and water level

fluctuations is visualized in Figures 5.2a and Figure 5.2 demonstrates temporal variability of Ter-

rebonne station for the year 2016. To address missing values, the Historical Average is employed,

supplemented by Gaussian smoothing, to remove anomalies. This filtering technique mitigates sud-

den data fluctuations without compromising underlying patterns. By enhancing data reliability, the

model is better equipped to derive meaningful insights from the water level data.

For a fair comparison, we use the same training, validation, and test sets for all the methods

and allocate 70% of the data for training, 10% for model validation, and the remaining 20% for

final testing. To verify the effectiveness of the prediction model, we ran the experiments on six

baseline and state-of-the-art models explained below. Table 5.1 shows the experiment results for

different examined periods over three evaluation metrics, including mean absolute error (MAE),

mean absolute percentage error (MAPE) and root mean square error (RMSE). The smaller these

errors, the higher the prediction accuracy, and vice versa.
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(a) (b)

Figure 5.2: (a) Location of the stations (b)Water levels for 2016

We compare a number of baseline and state-of-the-art methods for spatiotemporal forecasting.

Baseline methods, such as the Historical Average (HA) method, provide simplistic yet valuable

benchmarks by predicting future values based on historical averages, serving as a foundational

reference point for evaluating more complex techniques. Meanwhile, state-of-the-art methods rep-

resent the forefront of spatiotemporal forecasting research, incorporating advanced algorithms and

architectures to capture intricate spatial and temporal dependencies within the data. These methods

include the Informer model H. Zhou et al. (2021), which is designed for time series prediction,

integrating a novel Transformer-based architecture with a multi-level feature fusion mechanism to

efficiently capture long-term dependencies and spatial-temporal patterns, thereby improving fore-

casting accuracy in diverse time series datasets, GTS method Shang et al. (2021) which is high-

lighted for its scalability, making it well-suited for large datasets, especially in traffic forecasting,

utilizing the GCRN block structure and a graph learning approach, Dynamic Causal Graph Con-

volutional Network (DCGCN) J. Lin et al. (2023) which uses graph convolutional networks based

on generated stepwise dynamic causal graphs to make predictions and Spatial-Temporal Attention

Wavenet (STAWnet) method C. Tian and Chan (2021) which uses temporal convolution to handle

long-time sequences and self-attention networks to capture dynamic spatial dependencies between

different nodes.

In analyzing the performance comparison based on the table of results, several trends emerge
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Table 5.1: Experimental results of baseline methods conducted on water level data for different
future time horizons e.g. 3, 6, 9 days. The smaller the errors, the higher the prediction accuracy.

Horizon
Method Metric 3 Days 6 Days 9 Days

HA MAE 0.28 0.28 0.28
MAPE 9.56 9.56 9.56
RMSE 0.42 0.42 0.42

Informer MAE 0.35 0.35 0.35
MAPE 0.10 0.10 0.10
RMSE 0.53 0.53 0.53

GTS MAE 0.34 0.33 0.33
MAPE 0.12 0.13 0.14
RMSE 0.50 0.49 0.49

DCGCN MAE 0.16 0.25 0.51
MAPE 0.06 0.11 0.83
RMSE 0.22 0.32 1.81

STAWnet MAE 0.08 0.12 0.15
MAPE 0.03 0.04 0.04
RMSE 0.12 0.18 0.23

TransGlow MAE 0.05 0.09 0.13
MAPE 0.01 0.02 0.03
RMSE 0.09 0.16 0.21

across different spatiotemporal

forecasting models. The HA method does not take into account any trends, seasonality, or other

patterns in the data, making it less accurate compared to the rest of the methods. Informer and

GTS exhibit similar performance levels, while DCGCN surpasses both methods in shorter-term

predictions. However, its performance diminishes when forecasting over longer periods, indicat-

ing the advantages of correlation-based spatial dependencies over causality-based ones in this con-

text. STAWnet consistently demonstrates strong performance across all evaluated metrics, show-

casing the effectiveness of its attention mechanism, particularly for longer forecasting horizons.

Notably, TransGlow, which combines graph convolution with an RNN-based encoder-decoder and

augmented attention layer, achieves the most promising results among the analyzed models. This

underscores its capability to effectively capture complex spatiotemporal patterns and surpass other

models in this comparative assessment.
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5.7 Simulation and Visualization

We have developed an immersive, interactive application utilizing Unreal Engine to simulate

and visualize fluvial floods (river floods) and pluvial or flash floods on a digital representation of

the desired geographical region.

We selected Unreal EngineEpic Games (n.d.) as our simulation and visualization platform due

to its robust physics engine, extensive support for asset creation, and comprehensive fluid simula-

tion libraries. Additionally, it has the ability to execute complex simulations on consumer-grade

hardware. The optimization capabilities of Unreal Engine, such as the conversion of dynamic ele-

ments into static meshes to minimize draw calls, significantly improve rendering performance. This

feature is particularly beneficial for rendering large-scale, detailed urban environments. Moreover,

Unreal Engine’s flexibility facilitates the seamless integration of new data, ensuring that our digital

twins accurately mirror the changing urban landscapes and support swift development cycles.

Another point that merits consideration is the purpose which is to be served by the reconstructed

digital twin of an urban landscape. Only certain features of an urban city digital twin pertain to

accurate flood simulation and visualization and the decision-making strategies for mitigating the

adverse effects, namely the buildings, roads, and urban tree canopy. We distill these features and

focus our efforts on reconstructing a representative digital twin of the city, which is qualified in

scope for the purpose of flood simulation. We implement a procedural approach to reconstructing

buildings, roads, and trees in the urban landscape, leveraging the procedural tools provided in Unreal

Engine by utilizing curated geospatial data.

The application facilitates various forms of interaction based on the specific viewing perspective,

aerial and ground. The rise in the level of the water bodies can be specified to simulate flooding to

varying extents. Our application incorporates functionality to add or remove obstructions flexibly at

custom scales and orientations, enabling users to manipulate the water flow and providing valuable

insight for flood mitigation strategies. Furthermore, we introduce the capability to simulate inland

flooding by enabling users to specify water sources within the urban terrain. Our simulation and

visualization technique offers a comprehensive platform for understanding and addressing flood

scenarios, encompassing both natural and human-made factors for effective decision-making in
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flood risk management.

5.7.1 Digital Twin Modeling

In subsequent sections, we provide a detailed account of the methodology employed in the de-

velopment of digital twins, beginning with the establishment of a digital twin for Terrebonne. This

initial digital twin lays the groundwork for subsequent analysis, simulations, and decision-making

processes. Our development process commences with the collection and integration of geospatial

data, encompassing a diverse array of spatial information such as topography, environmental ele-

ments, and infrastructure. Section ”Data-source Pre-visualizations” in the Supplementary Material

depicts renders of the data used. Our primary objective is to formulate a method that is efficient

and adaptable to different geographical contexts with minimal adjustments, thereby affirming the

generalizability, scalability, and broader application of our methods. Furthermore, to ensure the

robustness and generalizability of our approach, we give precedence to utilizing data from open

repositories. These sources are publicly available and typically conform to established standards

and guidelines, facilitating broader accessibility and compatibility.

After data preprocessing in QGIS, we import it into Unreal Engine through a landscaping plu-

gin tool. This transition marked a pivotal phase in our methodology, allowing for the integration

of geospatial data into a dynamic, interactive 3D modeling environment. The use of Unreal Engine

enables the realistic and detailed reconstruction of urban landscapes, significantly enhancing our

ability to simulate and analyze the potential impacts of changing water levels within these environ-

ments. Figure 5.7f shows renders of the various stages during the reconstruction of the digital twin

in Unreal Engine.

Modeling the terrain

For the specific task of acquiring high-quality elevation data, we utilize a High-Resolution Dig-

ital Elevation Surface Model (HRDEM), which provides detailed topographical information. The

HRDEM data utilized in this work is obtained from the Open Data Portal of Canada Canada (2019).

The HRDEM dataset is a comprehensive source of terrain data that encompasses a variety of mod-

els, including both DSM (Digital Surface Model) and DTM (Digital Terrain Model) among other
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terrain-related data types. The DSM is distinct in its approach to elevation data, as it captures ele-

vations that account for both natural and artificial features on the earth’s surface, such as buildings,

vegetation, and infrastructure. Conversely, the DTM focuses exclusively on the ground surface, of-

fering elevation data that considers only the natural undulations and contours of the terrain, absent

of any buildings, vegetation, or man-made structures. This delineation between the DSM and DTM

models within the HRDEM dataset is critical, as we require a terrain model that isolates the natural

ground surface to compute the levels of flooding accurately. The HRDEM uses the Universal Trans-

verse Mercator (UTM) coordinate system based on the North American Datum of 1983 (NAD83),

specifically its Canadian Spatial Reference System (CSRS) variant. Each 1-meter resolution dataset

encompasses a 10 ⇥ 10km2 area, making it highly focused and detailed for localized studies. To

ensure high-precision geo-referencing, all datasets are projected into the EPSG:2959 coordinate

system. EPSG:2959 is a specific implementation of the UTM system optimized for the region, pro-

viding an additional layer of accuracy. By standardizing the coordinate system, it simplifies data

integration and sharing among different GIS applications. Figure 5.6g shows a render of the Digital

Terrain Model (DTM) from the HRDEM dataset for our test area.

Following the preprocessing of the Digital Terrain Model (DTM) to isolate the target area, we

integrated the processed data into Unreal Engine to construct a landscape, utilizing the elevation

data as a heightmap. To achieve a realistic terrain representation, we employed a sophisticated

material strategy that leverages geospatial land use data for the informed distribution of various

terrain materials. This approach enables the accurate depiction of different land covers: grass in

open spaces and parks, mud in areas designated for buildings, and a vegetation template for tree-

rich zones, including urban canopies and forests. Figure 5.7a illustrates the visual accuracy achieved

by aligning land use data with the precise application of materials based on terrain characteristics

derived from elevation data, establishing a foundation for subsequent fluid simulation tasks.

Modeling urban infrastructure

Following the completion of the surface terrain modeling, we focused on the modeling of urban

infrastructure elements, namely buildings and roads.
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Buildings. For the integration of building-specific information, we obtained multi-polygonal geospa-

tial vector data from the municipal urban planning authority. This data, characterized by high spatial

accuracy, delineated the geographical extents of all man-made structures within the jurisdiction of

the city. Figure 5.6b shows a render of this multi-polygon vector data of building footprints in

QGIS. Utilizing this vector data, static 3D representations of buildings were incorporated into the

digital twin environment. To generate the buildings within the digital twin of the city, the data was

imported into Unreal Engine via a landscaping plugin and a standard procedural modeling algorithm

was employed by extending a wall mesh along the spline of the building footprint to construct the

exterior facets of these buildings. This resulted in topologically closed, watertight 3D models that

are representative of their actual physical counterparts in terms of water collision that will be tested

for flood simulation. Given our primary focus on flood simulation scenarios, the vertical elevation

or rooftop height of individual buildings was standardized, as it did not influence the hydrodynamic

computations. This procedural generation algorithm ensured that the buildings adhered to collision

boundaries essential for water simulation, allowing for a meaningful output that accurately reflected

the bounds of the real structures.

After the reconstruction of the 3D models of the buildings themselves, a notable challenge we

encountered involved the accurate placement of these structures on uneven terrain. This issue was

critical, as buildings needed to be positioned in a manner that ensured water would correctly interact

with their walls during simulations. Specifically, it was imperative to avoid scenarios where water

could seep through gaps resulting from the terrain’s irregularities beneath the buildings. To address

this, we programmatically adjusted the buildings’ placement to ensure that their walls extended

sufficiently into the ground, thereby eliminating any potential spaces through which water could

erroneously pass. This alignment was essential for achieving realistic simulation results, particularly

in flood scenarios. Figure 5.8 shows the renders before and after aligning the building structures on

the landscape, in perspective and orthographic views. The line traces shown in the images show the

guiding points used to place the buildings. The line traces are red to indicate no intersection with

the landscape underneath, and they are green after computing the points of intersection. It should

be noted that the figure shows a sub-sampled region of the map for the purpose of illustrating the

method of aligning procedurally generated buildings with the map. Figure 5.7b shows the landscape
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with building structures after their correct placement from a high viewpoint.

Roads. For road infrastructure, multi-line string geospatial vector data was also acquired from the

city’s database. Preliminary steps involved the conversion of these multi-line strings to geospline

entities. These were imported into Unreal Engine using the landscaping plugin as georeferenced

splines. Subsequent adjustments were made to the splines’ elevational attributes to ensure they

were co-planar with the pre-modeled terrain. A procedural algorithm was then applied to transform

these geosplines into three-dimensional road models with proper texture and material attributes, by

procedurally applying a road section mesh constructed to the city proportions along these splines to

reconstruct a representative digital model of the roads. Note that appropriate manual adjustments

were made in cases of roads placed for bridges. Figure 5.6c shows a render of the vector geospatial

data in QGIS and 5.7c shows the landscape with roads in the digital twin model.

Modeling environmental elements

We dedicated the final step to the modelling of environmental components, specifically the tree

canopy and bodies of water.

Trees. The data utilized for canopy mapping was obtained from the Donnees Quebec database

Québec (2023). In this data, the canopy is demarcated by the ground-level projection of arboreal

crowns, encompassing leaves, branches, and trunks, and is observable via aerial imagery. All vege-

tation exceeding a height of 2 meters was included in the data. The canopy mapping was executed

through advanced deep learning techniques, leveraging variables calculated at a 1-meter spatial res-

olution from raw airborne LiDAR data gathered over the period 2010-2020. Figure 5.6f shows

a render of the vector data representing the tree canopy for our test area. Since the data for tree

canopy is represented using multi-polygon geometry and we do not have the locations of the tree

trunks themselves, a procedural foliage spawning method was used to create an digital modeling of

the urban vegetation. The trees were placed at randomly sampled points to ensure they cover the

regions of canopy retrieved from the canopy dataset with appropriate density. We ensured that in

modeling the trees, the resistance offered by the trees to the flood water was accurate rather than

achieving faithful physical placement of trees with respect to the their locations in the real world.

Figure 5.7d shows a render of the placed foliage in the digital twin reconstructed in Unreal Engine.
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Modeling water bodies. This flood simulation model uses geospatial data sourced from Geofabrik

Geofabrik GmbH (n.d.). The dataset comprises two main types of vector geospatial information:

water bounds represented by polygons and waterways represented by strings. The waterways form

the basis for generating waterbodies in the simulation. The model integrates historical or predicted

data to dynamically simulate water volume by specifying the height of water bodies. The simulation

aims to accurately represent the behavior of water systems over time, providing a valuable tool for

applications such as water resource management and flood prediction. Figure 5.6e shows a render

of the two types of vector data representing the water for our test area.

To model the water bodies accurately in our project, we utilized waterways geospatial vector

data represented as multiline strings. In our heightfield fluid simulation (Supplementary Mate-

rial, Section ”Heightfield Fluid Simulation”), we introduce a collection of water sources in the

shape of customizable elliptical cylinders to represent a volume of water within each water body

(river/stream). This cylinder’s dimensions are adjustable along its major and minor axes, allowing

for the precise modeling of water volumes, and the height is computed from the specified water

level, thus closely mirroring the actual water volume present in the geospatially defined water bod-

ies.

To ensure that the water bodies have the correct volume of water, we have implemented the

following series of steps, which produce a close approximation of the actual water volume presented

in the water bodies, given the water level.

(1) We first augmented the geospatial multiline string vector data for waterways by adding any

unrepresented streams, identified visually by dashed lines in Figure 5.6d showing a QGIS

render.

(2) We then imported the geospatial multiline string vectors into Unreal Engine with the land-

scaping plugin so that they are georeferenced in the same coordinate system as the landscape

(and the other features as well), the corresponding objects in Unreal Engine are splines. Fig-

ure 5.10a shows the splines representing water bodies loaded up in Unreal Engine.

(3) Each point in a spline has location coordinates and a vector representing the normal to the

direction along the spline at the point. For each spline point in the water body (rivers/streams)
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splines, we computed the intersection of two line traces projected along the normals to the

spline at the point in clock-wise and anticlockwise directions at a configurable height above

the river bed, which ensures that our model approximates the physical dimensions of the

actual water in the river/stream. Figure 5.10b shows the line traces in red, and the points of

intersections of these traces with the landscape along the contours of the river, marked in red

as well.

(4) For every point in the spline, we used the length of the spline segment from the current point to

the next point halved and the distance between the line trace intersections to compute the scale

of the elliptical surface of the water and placed it at the midpoint of the line trace intersections,

orienting it correctly using the direction along the spline at the point. The height of each water

cylinder is computed so that the actual water surface is aligned with the specified water level.

Figures 5.10c and 5.10d show the spawning of the cylindrical water sources and the eventual

surface of the water body itself.

For inland water flooding, we have implemented the ability for the user to specify cylindrical

sources of water, with configurable height of the water cylinder to simulate flash floods due to rains.

Comparative Visualization

Figure 5.11 presents a comparative analysis of our Unreal Engine reconstructed digital twin of

an urban environment against the representation provided by Google Earth. While the Google Earth

digital twin does present a more aesthetically pleasing representation due to the use of satellite im-

ages for textures, as seen from figures 5.11a and 5.11b, it does reveal a limitation in utility of Google

Earth’s approach, notably its reliance on low-polygon mesh approximations for urban features. This

simplification compromises the accuracy necessary for flood simulation scenarios, as exemplified

by Figures 5.11d and 5.11f, which highlight Google Earth’s inadequacy in measuring the depth of

water bodies with the necessary precision for hydrological analysis.

In contrast, Figures 5.11c and 5.11e illustrate the enhanced detail and dynamic water body

simulation of our digital twin model within Unreal Engine. This model includes accurate terrain

modeling and comprehensive geospatial elements like roads, buildings, and canopies that influence
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water flow, showcasing our model’s superior fidelity and precision. The detailed urban features and

accurately simulated water dynamics of our digital twin are essential for conducting dependable

flood scenario simulations. This precision enables more accurate impact assessments and supports

the formulation of effective mitigation strategies.

5.7.2 Viewing and Interaction

Viewing perspectives. There are two distinct viewing perspectives for observation: the aerial per-

spective, commonly referred to as the birds-eye view, and the terrestrial perspective, commonly

referred to as the ground-view. Utilizing an aerial perspective, the camera is positioned at a sig-

nificant altitude, affording a comprehensive vantage point capable of surveying up to an area of

1.25km2. The camera elevation can be flexibly controlled within the altitude limits of 35 meters up

to 500 meters (with reference to the sea level). From this perspective, given the aim of comprehend-

ing the impact of the flood on a broader region, the digital twin encompasses all intricate geospatial

entities such as vegetation, buildings, roads, and so forth, as described in the previous section.

In contrast, the ground-view perspective employs a third-person camera that tracks a user-

controlled character positioned at the point of interest on the ground. From this perspective, the

primary aim is to examine the impact of water flow at a lower geographical scale. This view allows

the user to gauge the extent of flooding in comparison to the scale of urban landmarks, such as the

roads and buildings in the vicinity. To provide real-world context, both viewing modes feature an

onscreen overlay displaying the user location in WGS84 reference system coordinates and altitude

in meters, thereby enabling users to accurately reference their position in the real world. The aerial

and ground views are depicted in Figures 5.12a and 5.12b, respectively. Note that in Figure 5.12a,

a green marker shows the location of the first person character that will be possessed on switching

to ground view.

Interaction modes. Users can toggle between this navigation mode and an interaction mode, which

allows them to navigate freely in either aerial or ground views or to add obstructions or water sources

and specify the rise of water levels in various bodies. In this interaction mode, users have the ability

to engage with the terrain by strategically positioning concrete water barriers in order to redirect

the movement of water. Users also have the ability to add sources of water inland to simulate flash
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(a) (b)

Figure 5.3: Interaction mode: Adding obstructions and inland sources of water

flood conditions. In Figure 5.3, 5.3a shows how barriers and inland sources of water can be set up,

and 5.3b shows the simulation.

Overview map. We have implemented an orthographic projection of the map without the tree

canopy, which allows real-time tracking of the water level as the simulation occurs. Figure 5.12c

shows the overview map, which resembles a floodplain map.

5.7.3 Simulation experiments

This section outlines the experiments conducted using our simulation and visualization appli-

cation, showcasing its qualitative performance by thoroughly exploring a range of scenarios in a

detailed, comprehensive manner.

Simulation of the rise in water level

In our simulation, we modeled a scenario where the water level was raised by 200cm from the

riverbed’s baseline. Figure 5.4 illustrates the evolution of the water simulation across three different

perspectives (aerial, ground, and overview) captured at successive moments in time.

Simulations with varying rises in water levels

In this experiment, we systematically investigated the impact of different rises in water levels

on our simulation’s performance and outcomes. We initiated the simulation with a water level

set at 100 cm above the riverbed’s baseline and incrementally increased this level by 25 cm for
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Figure 5.4: Simulation of water level = 200 cm over time

each subsequent experiment, continuing up to a maximum of 300 cm. This chosen range, from

100 cm to 300 cm, was designed to span a spectrum of scenarios: the lower threshold of 100

cm closely approximates conditions of regular river flow, where water bodies do not flood (refer

to Figure 5.13a), while the upper limit of 300 cm is representative of extreme flooding situations

(refer to Figure 5.13i). Through this approach, we aimed to comprehensively test the simulation’s
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behavior under varying degrees of water elevation, from normal to critical flooding conditions. The

overview map was utilized to illustrate the floodplain regions for each scenario, providing a visual

representation of the extent and impact of flooding across the different water level simulations.

(refer to Figure 5.13)

Simulation with obstructions

We ran the simulation for a water level of 200 cm (above the base level in the river bed), and

tested two scenarios, viewed from both the perspectives and monitored in the overview map. In

the first scenario, we ran the simulation without creating any barriers obstructing the flooding water

flow, resulting in puddling of water over the streets and close to the houses, as exhibited in figures

5.14a, 5.14c and 5.14e. In the second scenario, barriers were added to the map by carefully consid-

ering the expected flow of the water as observed from the previous scenario. Figures 5.14b, 5.14d

and 5.14f show the migitated circumstances, thereby demonstrating the utility of this platform in

providing insight into the mitigation strategy design for floods.

Simulation with real-world data

Historical & Predicted Data. There are two primary data sources for weather analysis: his-

torical data and predictive data. Historical data refers to data that has been recorded over a period

of time using sensors installed at the weather station. On the other hand, the predictive data is de-

rived from utilizing the model outlined in Section ”Methodology” to conduct weather forecasts for

a specified time frame, such as the subsequent day, the following three days, and so forth. Based

on the aforementioned factors, the application utilizes simulations to replicate the projected water

levels, allowing users to analyze potential flood events and make informed decisions.

In this simulation experiment, using the historical dataset, we retrieved records and accessed

the water level data for well-documented spring flooding events in 2017. Our model predicted the

anticipated water levels by choosing the same time period. Figure 5.5a presents a demarcation

map of the floodplain that occurred during the spring floods of 2017 and 2019 (provided by the

government of QuebecArcGIS Web Application — cehq.gouv.qc.ca (n.d.)). Figure 5.5b illustrates

the simulated water levels based on observed data, while Figure 5.5c displays the simulated water
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levels using predicted data. Both figures represent the same time period and geographical area,

providing a comparative analysis between the observed and predicted water level scenarios.

Our flood simulation and visualization platform performs by considering terrain variations and

incorporating all modeled urban features. This comprehensive approach ensures that simulations

of water inundation generated from both historical 5.5b and predictive 5.5c data offer precise de-

pictions of floodplain extents on par with the demarcated floodplain 5.5a. Moreover, the platform’s

capability to simulate scenarios with obstructions, in conjunction with predicted water level rises,

provides a robust framework for testing and implementing effective flood mitigation strategies.

(a) QC Govt - Spring Floods
2017/2019

(b) Flood simulation based on his-
torical data

(c) Flood simulation based on our
prediction

Figure 5.5: Simulation with real-world data for spring floods of 2017

5.8 Conclusion

In conclusion, our research has demonstrated the substantial potential of advanced simulation

tools in enhancing urban flood management and policy development. Through the innovative inte-

gration of digital twins, dynamic obstruction modeling and predictive analytics, we have unlocked

new avenues for detailed and proactive disaster response planning. The capability to introduce ob-

structions dynamically within the simulation plays a pivotal role in the context of policy formulation,

enabling users to explore various scenarios effectively. Given the constrained timeframe usually as-

sociated with flood warnings, the integration of a graph neural network facilitates precise forecasts

up to nine days ahead. By considering available resources, including workforce, physical materials,

and man hours, this simulation tool significantly enhances decision-making processes at a detailed
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level. The added feature of navigating through the simulation environment offers a tangible sense of

anticipated flood water levels and the potential impact of obstructions. This immersive experience

aids in prioritizing and, if necessary, triaging responses to flood events, thereby optimizing resource

allocation and response strategies.

5.9 Data availability

The datasets generated and analyzed during the current study are available from the correspond-

ing author on reasonable request.
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5.11 Additional Results

In the following, we include the pertinent background theory involved in the Graph Neural

Network and renders of each step of the creation of the digital twin.
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Graph Neural Networks

Graph Notation

A graph is a foundational data structure for representing intricate relationships between objects.

It is denoted as G(V, E) and consists of nodes and edges. Nodes are objects or entities represented

as V , they can be defined as V = {v1, v2, . . . , vn}, where n is an integer representing number

of nodes. Edges denoted as E establish connections between nodes. They can be expressed as

E = {ei,j | i, j 2 {1, 2, .., n}}, where eij indicates an interaction between nodes i and j. This

interaction signifies the presence of a relationship between the connected nodes.

To represent a graph, one common approach is through an adjacency matrix, denoted as An⇥n.

The adjacency matrix is a square matrix, where the entry Ai,j contains information about the exis-

tence of an edge connecting nodes i and j. A non-zero element at Ai,j signifies the presence of an

edge, effectively indicating a relationship between the respective nodes. Conversely, a zero-element

indicates no direct connection. Furthermore, each node within the graph can be associated with a set

of features or attributes. These attributes can be encapsulated in a feature matrix X 2 Rn⇥d. Here,

each row in the matrix corresponds to a specific node, and the columns represent its d features. This

feature matrix provides a means to enrich the representation of nodes in the graph.

The graph structure enables the modelling of intricate relationships between objects. It is a

robust framework for representing complex systems, networks, and data, making it a fundamental

concept in various domains, including network analysis, social sciences, and data science. In this

problem, we employ nodes to represent the hydrological stations. The graph edges represent the re-

lationship between stations, which can be their spatial distribution at different geographic locations

within a water system or the water flow from upstream to downstream stations.

Graph Learning Module

Using a graph learning module to understand the connections between hydrological stations is

beneficial since the connections between hydrological stations in a complex water system are not

always straightforward. Different factors, such as topography, land use, rainfall patterns, and human
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activities, influence station relationships. Furthermore, the connections between hydrological sta-

tions can evolve over time due to various factors. For instance, seasonal variations, changes in land

use, infrastructure development, and climate change can alter the relationships between stations.

Several studies L. Bai et al. (2020); Jiang et al. (2023); Z. Wu, Pan, Long, et al. (2020) employ a

graph learning module so the system can adaptively identify and represent these connections, even

when they are not explicitly defined. It can uncover hidden connections, adapt to changes over time,

and provide a dynamic representation of the network of hydrological stations.

The objective is to model the relationships between nodes, often represented as a function of the

node embeddings, based on the widely recognized adaptive graph generation approach as outlined

in L. Bai et al. (2020) using the following equation:

Â = softmax(relu(E1.ET

2 ))

Here, E1 and E2 represent randomly initialized node embeddings, and it is important to note that

these embeddings are subject to learning and refinement during the training process. This equation

computes an adaptive graph representation, denoted as A, which captures the dynamic relationships

between nodes in the context of the specific problem being addressed.

Foundational Component: Graph Convolutional Recurrent Neural Network

Graph Convolutional Neural networks (GCN) are one of the multiple variants of GNNs used to

extract and process information from graphs representing relationships between entities. In the con-

text of spatiotemporal forecasting, this method becomes valuable as it allows the model to capture

spatial dependencies inherent in the data. GCN involves applying convolutional operations to graph

structures. Unlike traditional convolutions in grid-like data (e.g., images), GCN operates directly on

the graph topology, utilizing node features and their connections to aggregate information. During

convolution, information aggregation occurs by aggregating neighboring node features, consider-

ing their connectivity within the graph. This step allows the model to capture spatial dependen-

cies by weighting the influence of neighboring nodes in the forecast. Our adapted model employs

GCN operation based on normalized Laplacian using Chebyshev polynomial approximationKipf

and Welling (2016), providing a computationally efficient solution:
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H(k) = �(ÂH(k�1)W (k)) + bk (24)

Â = A+ I ,

where A is the adjacency matrix of graph, W k and bk are the trainable weight and bias matrices for

layer k, and � is the activation function. Hk�1 and Hk are the input signal and output of the graph

convolution operation on layer k, respectively.

After establishing the foundation of the spatiotemporal forecasting model with the incorporation

of graph convolution to capture spatial dependencies, the selected model broadens its architectural

scope by incorporating a widely adopted approach in the literature L. Bai et al. (2020); Jiang et al.

(2023); Y. Li et al. (2017), integrating temporal dynamics through the inclusion of gated recurrent

units (GRUs). This approach enables the model to seamlessly navigate both spatial and temporal

dimensions. The GRUs serve as a pivotal addition, enhancing the model’s ability to capture intricate

temporal patterns and dependencies within the data. The introduced graph convolution operation

replaces the Multi-Layer Perceptron (MLP) layers of the Gated Recurrent Unit (GRU):

rt = �(Gconv(A, [Xt, ht�1]) + br

ut = �(Gconv(A, [Xt, ht�1]) + bu

ct = tanh(Gconv(A, [Xt, rt ⇤ ht�1]) + bc

ht = (ut ⇤ ht�1)(1.0� ut) ⇤ c

where Gconv is the graph convolution operation from Equation 24, rt and ut are the reset gate and

the update gate, ct is the cell state, Xt is the input signal, �(.) and tanh(.) are activation functions,

and h is the hidden state.

Data-source Pre-visualizations

In our work, we utilized QGIS, an open-source Geographic Information System (GIS), for ren-

dering and preliminary processing of geospatial data. This software enables detailed examination,
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editing, and composition of spatial information, ensuring data readiness for subsequent project

stages. Figure 5.6 shows renders of the geospatial data captured in QGIS.
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(a) Mille-Iles OSM map (b) Building footprints (c) Roads (d) Waterways

(e) Water bodies (f) Tree canopy (g) Digital Terrain Model (h) Geospatial features

Figure 5.6: Geospatial data sourced from open repositories and visualized in QGIS
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Digital Twin

(a) Landscape generated DTM (b) Procedurally generated buildings

(c) Procedurally generated roads (d) Procedural Foliage

(e) Water simulation (f) Digital twin

Figure 5.7: Digital twin modeled in Unreal Engine using geospatial data

Heightfield Fluid Simulation

The heightfield fluid simulation technique we utilize employs a two-dimensional grid system,

wherein a heightmap is generated through an overhead camera capture. This process records the

height of each point within the grid by considering the objects present in each grid cell. In our im-

plementation, the resolution of the heightfield mesh is set at 4096⇥ 4096 cells, with each cell mea-

suring 30.5cm across. Consequently, the total area covered by the grid is approximately 1.25km2

as shown inFigure 5.9).
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(a) Before (Perspective view) (b) Before (Orthographic view)

(c) After (Perspective view) (d) After (Orthographic view)

Figure 5.8: Aligning the building meshes generated procedurally from the geospatial building foot-
prints with the landscape

Figure 5.9: Heightfield fluid simulation: Grid resolution of 4096⇥ 4096 cells, Cell Size = 0.305m,
Area = 1.2498km2. The translucent mesh depicted within the simulation delineates the collision
boundaries that are assessed for fluid interaction.
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(a) Splines representing the geospatial waterways (b) Determining water body extents using line traces

(c) Cylindrical water sources covering the span of the water body (d) Simulated water level of the water body

Figure 5.10: Modeling rivers in the simulation by procedurally adding water sources along the spline points of the geospatial waterways
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(a) Île Saint-Jean: Overhead view (ours) (b) Île Saint-Jean: Overhead view (Google Earth)

(c) Autoroute 25S (ours) (d) Autoroute 25S (Google Earth)

(e) Parc de Vérone (ours) (f) Parc de Vérone (Google Earth)

Figure 5.11: Comparative visualization of the digital twins: Proposed work (ours) and Google Earth

(a) Aerial view perspective (b) Ground view perspective (c) Overview map

Figure 5.12: Viewing perspectives and overview map
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(a) 100cm (b) 125cm (c) 150cm

(d) 175cm (e) 200cm (f) 225cm

(g) 250cm (h) 275cm (i) 300cm

Figure 5.13: Simulations at varying initial water levels
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(a) No obstructions (aerial view) (b) Added obstructions (aerial view)

(c) No obstructions (ground view) (d) Added obstructions (ground view)

(e) No obstructions (overview) (f) Added obstructions (overview)

Figure 5.14: Simulation of water level = 200 cm with and without obstructions
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Chapter 6

Enhancing Hydrometric Prediction with

LiDAR Data

This chapter is a copy of the manuscript titled HydroVision: LiDAR-Guided Hydrometric Pre-

diction with Vision Transformers and Hybrid Graph Learning, accepted for publication at the 19th

International Symposium on Visual Computing (ISVC 2024). The manuscript was co-authored by

Naghmeh Shafiee Roudbari, Ursula Eicker, Charalambos Poullis, and Zachary Patterson.

6.1 Abstract

Hydrometric forecasting is crucial for managing water resources, flood prediction, and envi-

ronmental protection. Water stations are interconnected, and this connectivity influences the mea-

surements at other stations. However, the dynamic and implicit nature of water flow paths makes

it challenging to extract a priori knowledge of the connectivity structure. We hypothesize that ter-

rain elevation significantly affects flow and connectivity. To incorporate this, we use LiDAR terrain

elevation data encoded through a Vision Transformer (ViT). The ViT, which has demonstrated ex-

cellent performance in image classification by directly applying transformers to sequences of image

patches, efficiently captures spatial features of terrain elevation. To account for both spatial and

temporal features, we employ GRU blocks enhanced with graph convolution, a method widely used

in the literature. We propose a hybrid graph learning structure that combines static and dynamic
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graph learning. A static graph, derived from transformer-encoded LiDAR data, captures terrain

elevation relationships, while a dynamic graph adapts to temporal changes, improving the overall

graph representation. We apply graph convolution in two layers through these static and dynamic

graphs. Our method makes daily predictions up to 12 days ahead. Empirical results from multiple

water stations in Quebec demonstrate that our method significantly reduces prediction error by an

average of 10% across all days, with greater improvements for longer forecasting horizons.

6.2 Introduction

Hydrometric forecasting is a critical component of water resource management, with signif-

icant implications for public safety, economic stability, and environmental conservation. Among

the various aspects of hydrometric forecasting, water level prediction stands out due to its direct

and widespread impact. Accurate forecasts provide early warnings for flood prevention, ensure the

integrity of dams and bridges, and optimize water distribution for agricultural, industrial, and do-

mestic use. Additionally, water level forecasting is essential for maintaining aquatic ecosystems and

biodiversity.

Water systems exhibit temporal variability influenced by seasonal patterns, weather events, and

long-term climate trends. These temporal dynamics shape the flow rates, water levels, and overall

hydrological behavior over different time scales. Simultaneously, understanding spatial interactions

is crucial for predicting how changes in one location propagate throughout the hydrological sys-

tem. Therefore, forecasting water flow in hydrological systems inherently poses a spatiotemporal

forecasting challenge, as it necessitates capturing both the temporal variability and spatial intercon-

nections within the hydrological network to provide accurate predictions and insights into water

system dynamics.

The spatial correlation of water systems is influenced by terrain elevation changes, which de-

termine how water flows through a landscape. This parameter is crucial as it affects the speed and

direction of runoff, with steeper slopes leading to faster runoff and potentially higher water levels

in lower areas. It also affects the accumulation and distribution of water across different regions,

contributing to the overall dynamics of the water system.

98



Most papers in this area focus on historical water level data and primarily consider only the

temporal correlations. Various statistical and machine learning models, such as autoregressive inte-

grated moving average (ARIMA) Bazrafshan, Salajegheh, Bazrafshan, Mahdavi, and Fatehi Maraj

(2015), support vector machine (SVM) Asefa, Kemblowski, McKee, and Khalil (2006), and artifi-

cial neural network (ANN) Aichouri et al. (2015), have been widely used for this purpose. However,

these methods often fall short in capturing the spatial interactions and complex dependencies within

hydrological systems. Some recent work T. Bai and Tahmasebi (2023); Roudbari et al. (2023) have

adopted graph neural network (GNN) based approaches to address these limitations. GNN methods

excel in capturing the spatial relationships among multiple water stations, providing a more com-

prehensive understanding of hydrological dynamics. Despite their advantages, GNN methods still

face challenges in accurately modeling the effects of terrain elevation on water flow patterns. In this

study, we address the influence of terrain elevation on water level and connectivity in hydrometric

forecasting. To incorporate this essential factor, we utilize LiDAR terrain elevation data encoded

through a Vision Transformer (ViT). The use of Vision Transformer (ViT) stems from transform-

ers’ success in natural language processing tasks Kalyan, Rajasekharan, and Sangeetha (2021) and,

more recently, in computer vision by directly applying transformers to image patches Dosovitskiy

et al. (2020). This approach allows us to understand how variations in terrain elevation affect water

flow patterns across different regions, providing a robust foundation for our forecasting model.

To model both temporal dependencies and spatial relationships among water stations, we em-

ploy Gated Recurrent Unit (GRU) blocks enhanced with graph convolution as successfully used in

the recent literatureCui, Ke, Pu, Ma, and Wang (2020); Roudbari et al. (2023); J. Zhang et al. (2018).

GRU blocks are well-suited for capturing sequential dependencies in time-series data, such as water

flow measurements Gharehbaghi, Ghasemlounia, Ahmadi, and Albaji (2022). By integrating graph

convolution, which models spatial dependencies through graph structures where nodes represent

water stations and edges denote relationships, we extend our model’s capability to capture com-

plex interactions in hydrological systems. Furthermore, we propose a novel hybrid graph learning

structure that combines static and dynamic graph learning. Static graphs, derived from transformer-

encoded LiDAR data, capture terrain elevation relationships that remain consistent over time. In
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contrast, dynamic graphs adapt to temporal changes in water flow patterns and connectivity be-

tween stations, thereby improving the overall graph representation and adaptability of the model. In

this chapter, we present the following contributions:

• Incorporating Terrain Elevation for Water Level Forecasting: We integrate LiDAR-derived

terrain elevation data into our hydrometric forecasting model, acknowledging its critical im-

pact on water flow and connectivity.

• Proposing a Hybrid Graph Learning Structure: We introduce a novel hybrid graph learn-

ing structure that combines static and dynamic graph learning. Static graphs, derived from

transformer-encoded LiDAR data, capture terrain elevation relationships, while dynamic graphs

adapt to temporal changes, enhancing the overall graph representation.

• Demonstrating Superior Performance in Experiments: Through experiments conducted on

water stations in Quebec, using the data from Environment and Natural Resources of Canada

Environment and Canada (2024), our method outperforms state-of-the-art methods across all

prediction horizons and performance metrics.

6.3 Related Work

Building a model that considers all the influencing parameters on the water cycle is complex due

to the intricate nature of hydrological systems. Hydrometric parameters forecasting has evolved sig-

nificantly over the years. Initially, statistical models such as ARIMA were the primary tools used

for time series forecasting Irvine and Eberhardt (1992); Montanari, Rosso, and Taqqu (1997); Pa-

pamichail and Georgiou (2001). ARIMA models are relatively easy to implement and interpret,

making them suitable for short-term forecasting. However, ARIMA models have notable limita-

tions, particularly in handling non-linear relationships and complex temporal patterns, which are

often present in hydrometric data. Machine learning models like Support Vector Machines (SVM)

Sapankevych and Sankar (2009), Artificial Neural Networks (ANN) A. Jain and Kumar (2007), and

Radial Basis Function (RBF) networks Moradkhani, Hsu, Gupta, and Sorooshian (2004) emerged as
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alternatives to overcome the limitations of statistical models. SVMs have been used for their robust-

ness in handling non-linear relationships. ANNs, particularly feedforward neural networks, have

been widely applied due to their ability to approximate any continuous function, offering greater

flexibility than ARIMA models. However, ANN models often require large amounts of training data

and are prone to overfitting. RBF networks, a variant of ANNs, provide better generalization capa-

bilities but still face challenges in capturing long-term dependencies in time series data. The advent

of Recurrent Neural Networks (RNNs) J. Zhang and Man (1998) marked a significant advancement

in time series forecasting, particularly for sequential data. RNNs and their variants like Long Short-

Term Memory (LSTM) networks Hochreiter and Schmidhuber (1997) are specifically designed to

capture long-term dependencies and temporal correlations in data, addressing the limitations of tra-

ditional ANN models. However, RNNs and LSTMs struggle with spatial dependencies, prompting

the integration of Convolutional Neural Networks (CNNs) and Graph Neural Networks (GNNs).

CNNs, known for their effectiveness in capturing spatial relationships, have been applied to hy-

drometric forecasting by modeling spatial dependencies among multiple stations Atashi, Kardan,

Gorji, and Lim (2023). GNNs further enhance this capability by operating on graph-structured data,

capturing complex spatial relationships and interactions within the hydrological system C. Chen et

al. (2021).

To address the limitations of both spatial and temporal modeling, recent work Roudbari, Patter-

son, Eicker, and Poullis (2022); Shang et al. (2021); Z. Wu, Pan, Long, et al. (2020) have proposed

hybrid models such as Graph Convolutional Recurrent Networks (GCRNs). GCRNs combine the

strengths of GRU blocks for sequential data processing with graph convolution operations to capture

spatial dependencies, providing a comprehensive approach to spatiotemporal forecasting. These hy-

brid models, inspired by the success of both RNNs and GNNs in their respective domains, offer a

more robust framework for hydrometric forecasting. However, even these advanced models have

shortcomings, particularly in incorporating complex domain information. Therefore, we propose

integrating terrain elevation through Vision Transformers (ViTs) to create static graph structures to

enhance prediction.

Transformers, initially introduced for machine translation tasks Vaswani et al. (2017), have

revolutionized natural language processing (NLP) tasks. These models have been pretrained on vast
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amounts of text and fine-tuned for various applications. Notable examples include BERT Devlin

et al. (2018) and the GPT series Floridi and Chiriatti (2020), which uses language modeling for

pretraining. Drawing inspiration from the success of Transformers in NLP, Vision Transformers

(ViT) have emerged as a powerful tool in computer vision. The original ViT Dosovitskiy et al.

(2020) divides images into patches, applies Multi-Head Attention (MHA) Vaswani et al. (2017) to

these patches, and uses a learnable classification token to capture a global visual representation,

enabling effective image classification.

6.4 Dataset

In this work, we utilize two types of data: LiDAR data and time series water level data, as

outlined below. These datasets provide complementary information that enhances our water level

forecasting model.

6.4.1 LiDAR Data

The LiDAR data, provided by the Ministère des Ressources naturelles et des Forêts (MRNF)

Ministry of Natural Resources and Forests (2016) as part of the provincial LiDAR sensor data ac-

quisition project, includes the Digital Terrain Model (DTM). This DTM is a raster file with a spatial

resolution of 1 meter, providing precise numerical values representing altitudes in meters relative to

mean sea level. Elevation values are derived through linear interpolation across an irregular triangle

network created from ground points. The DTM images are produced by superimposing the Digital

Elevation Model (DEM) with the shaded DEM to accentuate relief, using color gradients and trans-

parency. With its high spatial resolution, it is also extensively used in creating hydrological models,

planning road construction, managing flood risks, and conducting visual landscape analyses. Figure

6.1c visualizes the DTM of the study area.
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(a)

(b)

(c)

Figure 6.1: (a) The geographic distribution of water level monitoring stations around the Sainte-
Agathe-des-Monts. (b) Variation in water levels throughout the year at Lake Papineau in Sainte-
Agathe-des-Monts. (c) Visualization of the Digital Terrain Model (DTM) near Sainte-Agathe-des-
Monts.
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6.4.2 Timeseries data

The time series data consists of daily water level measurements from six stations on bodies

of water in a specific region in Quebec, spanning 40 years from 1981 to 2021. Provided by En-

vironment and Climate Change Canada Environment and Canada (2024), this dataset is crucial

for understanding water level variations over time. Missing values in the data are replaced by a

weighted average of the previous and next year’s data. Figures 6.1a and 6.1b illustrate the station

coverage on the map and the variation of water levels at one station over a year, respectively.

To ensure that computational resources are efficiently utilized and data processing remains man-

ageable, we have selected the closest geographically clustered monitoring stations from all available

stations scattered across a wide region. This selection is due to the necessity of loading the LiDAR

data that covers the entire study area.

6.5 Objective

Given the LiDAR data, our goal is to uncover the underlying spatial relationships. These spatial

relationships will then be used as inputs for another function, combined with 2D time series data

from n stations over m timestamps, to predict future values.

Let L represent the LiDAR data, and T represent the time series data, where T 2 Rn⇥m.We

aim to find a function f that captures the spatial relationships from L:

f : L ! S

where S represents the spatial relationships. Next, we define another function g that takes S and T

as inputs to predict future values T̂ :

g : (S, T ) ! T̂

The overall objective is to find the optimal functions f and g such that the predicted future

values T̂ closely match the actual future values.
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Figure 6.2: Main Architecture of the HydroVision Framework. The architecture integrates LiDAR
data via a Vision Transformer and combines adaptive graph learning with GCRNs to capture both
spatial and temporal dependencies for accurate water level forecasting.

6.6 Methodology

In this section, we introduce the HydroVision framework for water level forecasting, which

integrates two essential components. First, we discuss the foundational approach, GCRN blocks.

Second, we describe the hybrid graph learning layer incorporated in our study. Together, these

elements constitute the HydroVision framework, as illustrated in Figure 6.2.

6.6.1 Foundational Approach

Graph Convolutional Recurrent Network

GCRN combines graph convolution operations and Gated Recurrent Units (GRUs) to tackle

spatiotemporal forecasting challenges. The graph convolution captures spatial dependencies, while

the GRU models temporal variability. Due to the success of previous research Y. Li et al. (2017);

Shang et al. (2021) using this method for forecasting purposes, we adopt the GCRN formulation

expressed as:
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Z(l) = �(ÃZ(l�1)W (l) + bl) (25)

In this equation, Ã is the learned adjacency matrix, W l and bl are the weight and bias matrices,

and � is the activation function. The GRU’s traditional MLP layers are replaced by this graph

convolution, resulting in the following equations for the reset gate (rt), update gate (ut), candidate

cell state (ct), and hidden state (ht):

rt = �(F(Ã, [Xt, ht�1]) + cr) (26)

ut = �(F(Ã, [Xt, ht�1]) + cu) (27)

ct = tanh(F(Ã, [Xt, rt � ht�1]) + cc) (28)

ht = (ut � ht�1) + (1� ut)� ct (29)

Here, F represents the graph convolution operation, Xt is the input at time t, and � denotes

element-wise multiplication. The activation functions � and tanh regulate the network’s internal

state transitions.

Encoder-Decoder with Augmented Attention

The encoder-decoder model is an effective approach for sequence-to-sequence tasks, widely

used in fields like machine translation Cho et al. (2014) and time series forecasting Shang et al.

(2021). The basic encoder-decoder model can struggle with information compression, especially

for longer sequences. To address this, we use the architecture with an augmented attention layer.

The attention mechanism computes a weighted sum of the input sequence elements, creating an

augmented hidden state H:
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H = Concat[ht, C] (30)

Here, ht is the final hidden state of the encoder, and C is the context vector from the attention

layer. This augmented state helps the decoder focus on relevant parts of the input data Roudbari

et al. (2023). The original attention mechanism has a quadratic computational complexity with

respect to the sequence length. To mitigate this, Zhou, Haoyi, et al. H. Zhou et al. (2021) proposed

ProbSparse Self-attention, which selects a subset of k queries based on a probability distribution:

Q̂ = M(Q,K),Attention(Q,K, V ) = Softmax

 
Q̂KT

p
d

!
V (31)

In these equations, Q, K, and V represent query, key, and value matrices, and d is the dimension.

The probability distribution M determines the importance of each token in the sequence, including

more relevant tokens in the sparse query matrix and excluding less relevant ones. This efficient

attention mechanism improves the scalability of the encoder-decoder model.

6.6.2 Vision Transformer

In this study, we encode LiDAR elevation data using the Transformer model, as presented in the

work by Dosovitskiy et al. Dosovitskiy et al. (2020). The Transformer model, originally designed

for natural language processing, has been adapted to handle image data, proving highly effective in

tasks requiring spatial understanding and feature extraction from images.

The core idea behind using Transformers for image recognition involves dividing the input

image into a sequence of patches, which are then processed by the Transformer encoder. To encode

the LiDAR elevation data, we first partition the data into non-overlapping patches of size 16 ⇥ 16.

Each patch is then flattened into a vector and projected to a fixed-dimensional embedding.

The sequence of embedded patches, along with positional encodings Epos, is then fed into the

Transformer encoder. The positional encodings are crucial for retaining spatial information, as the

Transformer architecture does not inherently capture the order of the input sequence. The positional

encoding can be defined as:
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Epos(pos, 2i) = sin
⇣ pos

100002i/d

⌘
, Epos(pos, 2i+ 1) = cos

⇣ pos

100002i/d

⌘
(32)

where pos is the position, i is the dimension, and d is the embedding size.

The embedded patches and positional encodings are combined and processed through the Trans-

former encoder layers, which consist of multi-head self-attention and feed-forward neural networks.

The output from the Transformer encoder provides a rich, context-aware representation of the Li-

DAR elevation data, capturing both local and global spatial features.

The process can be summarized by the following equation for the Transformer encoder layer:

Aelevation = TransformerEncoder(E+Epos) (33)

where E is the sequence of embedded patches, Epos is the positional encoding, and G1 is the

output of the Transformer encoder. By leveraging the Transformer model for encoding LiDAR

elevation data, we can effectively capture complex spatial relationships and provide a robust input

representation for subsequent processing in our HydroVision framework.

6.6.3 Hybrid Graph Learning

To adaptively learn the spatial relationships between objects, we adopt the adaptive graph gen-

eration technique as defined in L. Bai et al. (2020):

Aadaptive = softmax(ReLU(E1 · E2T )) (34)

In this equation, E1 and E2 represent node embeddings that are randomly initialized and sub-

sequently learned during the training process. This method allows the model to dynamically adjust

the spatial relationships between nodes based on the data. To enhance our model’s performance, we

integrate both the adaptively learned graph and the elevation encoded output into a combined graph

representation. This can be expressed as:

Â = ↵Aadaptive + (1� ↵)Aelevation (35)
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where ↵ is a weighting parameter that balances the contribution of each graph. The combined

graph Â encapsulates the comprehensive underlying information used in our graph convolution

operations.

6.7 Experiments

6.7.1 Settings

In our experiments, we allocate 70% of the dataset for training, 10% for validation, and the

remaining 20% for testing. We use a batch size of 64. Both the length of the historical sequences

and the prediction horizon are set to 12 time steps. The maximum number of training epochs is

capped at 300, though early stopping is employed if the validation performance does not improve

for 20 consecutive epochs.

Training is performed using the Adam optimizer with the Mean Absolute Error (MAE) as the

loss function. To enhance generalization, curriculum learning is applied. The initial learning rate

is set to 0.01, with a decay ratio of 0.1. The attention mechanism in the network utilizes 8 heads.

The model is implemented using PyTorch version 1.7.1, and all experiments are conducted on an

NVIDIA GeForce RTX 2080 Ti GPU with 11GB of memory.

6.7.2 Comparative Performance Evaluation

table 6.1 provides a comparative analysis of different models for water level forecasting. The

performance metrics used are Mean Absolute Error (MAE) and Root Mean Square Error (RMSE).

AGCRN L. Bai et al. (2020), designed to capture both temporal and spatial dependencies within

graph-structured data through RNNs and GNNs, demonstrates a pretty stable performance over

different prediction horizons. This reflects its capability to handle both types of dependencies.

The Informer H. Zhou et al. (2021) model is an enhanced version of the Transformer architecture,

indicating some struggle with extended forecasts.

DCGCN J. Lin et al. (2023), employing the GCRN block structure and a graph learning ap-

proach, exhibits a significant increase in errors over time. This suggests that DCGCN faces consid-

erable difficulty with longer-term forecasts. On the other hand, the STtransformer Network M. Xu et
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Table 6.1: Comparative Performance of Various Models for Water Level Forecasting. The table
displays the Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) for different fore-
casting models across various prediction horizons (3, 6, 9, and 12 days).

Method Metric Horizon
3 Days 6 Days 9 Days 12 Days

AGCRN
MAE 0.514 0.526 0.547 0.573

RMSE 0.841 0.857 0.886 0.871

Informer
MAE 0.717 0.733 0.772 0.825

RMSE 0.125 0.141 0.186 0.252

DCGCN
MAE 0.145 0.317 0.553 0.796

RMSE 0.162 0.346 0.611 0.869

STtransformer
MAE 0.055 0.068 0.072 0.085

RMSE 0.074 0.094 0.109 0.128

GTS
MAE 0.053 0.064 0.078 0.099

RMSE 0.080 0.096 0.113 0.130

STAWnet
MAE 0.043 0.048 0.059 0.062

RMSE 0.067 0.079 0.093 0.101

MTGNN
MAE 0.039 0.047 0.059 0.064

RMSE 0.060 0.082 0.093 0.106

Hydrovision
MAE 0.031 0.043 0.050 0.056

RMSE 0.057 0.075 0.088 0.097

al. (2020), which captures spatial and temporal dependencies using transformers, maintains lower

errors compared to many other models, showcasing good performance across all prediction hori-

zons.

The GTS method Shang et al. (2021), a scalable spatiotemporal forecasting approach, demon-

strates strong performance with relatively low error increments over time, indicating its efficiency

compared to AGCRN and Informer. Similarly, STAWnet C. Tian and Chan (2021), known for effec-

tively capturing spatial and temporal information using advanced attention mechanisms, performs

well, maintaining low errors across all horizons.

MTGNN Z. Wu, Pan, Long, et al. (2020), integrating a graph learning module with a mix-hop

propagation layer and a dilated inception layer for optimal learning, shows very low errors, indi-

cating robust performance across all prediction horizons. Finally, Hydrovision, the proposed model

in this study, consistently outperforms the other models in both MAE and RMSE. Hydrovision’s

ability to maintain low error rates over all tested horizons underscores its superior effectiveness for

water level forecasting.
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It is important to note that given the domain of the dataset, which involves small variations

within a meter, higher errors are particularly concerning. For instance, the errors exhibited by

DCGCN, AGCRN, and Informer may not be considered good. Hydrovision, along with MTGNN

and STAWnet, stands out for maintaining errors within an acceptable range, thereby proving more

suitable for the precise nature of this domain.

6.7.3 Ablation Study

To evaluate the impact of incorporating the Vision Transformer (ViT) and LiDAR elevation data

in our hybrid graph learning approach, we conducted an ablation study. We compared the perfor-

mance of the model with the full hybrid graph learning approach, against a variant where the ViT

and LiDAR elevation data were excluded from the main architecture. The results are summarized

in Table 6.2.

Table 6.2: Ablation Study Results Comparing the Effectiveness of the Hybrid Graph Learning Ap-
proach

Metric Hybrid Graph Leanring Adaptive Graph Leanring
3 Days 6 Days 9 Days 12 Days 3 Days 6 Days 9 Days 12 Days

MAE 0.031 0.043 0.050 0.056 0.034 0.047 0.057 0.066
RMSE 0.057 0.075 0.088 0.097 0.061 0.079 0.096 0.108

These results clearly demonstrate that the Hybrid Graph Learning approach enhances forecast-

ing accuracy more effectively than the Adaptive Graph Learning approach, particularly over longer

prediction periods. The improvement in both MAE and RMSE indicates that integrating the hybrid

approach results in a more robust and accurate forecasting model, making it a preferable choice for

applications requiring extended time horizon predictions.

This analysis underscores the value of both the ViT and LiDAR data in enhancing the model’s

accuracy. The detailed terrain information provided by the LiDAR data, combined with the ViT’s

ability to capture complex spatial patterns, contributes to more precise water level forecasting, vali-

dating the effectiveness of our proposed approach.
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6.8 Conclusion

In this chapter, we introduced a novel approach to water level forecasting by leveraging ad-

vanced graph learning techniques and LiDAR elevation data. Our approach integrates a Hybrid

Graph Learning framework with a Vision Transformer (ViT) to enhance the accuracy of water level

predictions across various time horizons.

Our study underscores the importance of high-resolution spatial data in enhancing the predic-

tive performance of graph-based models. The LiDAR data provides detailed elevation information

that enriches the spatial context of the predictions, leading to more accurate and reliable forecasts.

This finding supports the value of integrating rich, domain-specific data into forecasting models to

capture nuanced spatial dependencies.

Overall, the proposed Hybrid Graph Learning approach represents a significant advancement

in the field of water level forecasting. It combines state-of-the-art graph convolution techniques

with cutting-edge transformer models and spatially rich LiDAR data, setting a new benchmark

for accuracy and reliability in this domain. Future work could explore further refinements to the

model and assess its applicability to other environmental forecasting tasks, extending the benefits of

advanced graph learning methods and high-resolution spatial data to a broader range of applications.
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Chapter 7

Conclusion and Future Work

This thesis addresses several challenges inherent in modeling complex systems, including the

dynamic nature of spatial and temporal dependencies, the integration of diverse data sources, and

the need for efficient and scalable models that can support real-world applications.

Accurate forecasting in traffic and environmental systems is crucial for decision-making in ur-

ban planning, resource management, and disaster mitigation. Traditional models have struggled

to handle the intricacies of these systems, especially when faced with dynamic graphs, multilevel

dependencies, sparse data, and high computational demands. In response to these challenges, this

thesis introduces methodologies that significantly enhance prediction accuracy, computational effi-

ciency, and applicability across different domains. By incorporating innovative techniques such as

multilevel encoder architectures, attention-augmented models, hybrid graph learning, and the inte-

gration of data like LiDAR-derived terrain information, this work pushes the boundaries of existing

forecasting methods.

The proposed methods were rigorously evaluated across diverse datasets and real-world sce-

narios, including traffic networks, drainage basins, and flood simulations in specific urban envi-

ronments. These experiments demonstrated the superiority of the developed models over current

state-of-the-art methods and showcased their potential for practical implementation. As such, the

findings contribute to both the theoretical understanding of spatiotemporal forecasting and the de-

velopment of actionable solutions for complex urban and environmental problems.

In this chapter, we provide a summary of the main contributions made in this thesis. We also
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acknowledge the limitations of the current research. Finally, we propose potential directions for

future work, exploring ways to further improve forecasting accuracy, computational efficiency, and

real-world applicability.

7.1 Key Findings

The primary contributions of this thesis are as follows:

1. Multilevel Encoder Architecture for Traffic Forecasting: This research introduces a novel

multilevel encoder architecture that captures dependencies across multiple complexity levels in

both sparse and dense road networks. This approach significantly enhances prediction accuracy

while employing a sparse model to improve computational efficiency. The method was validated

on benchmark datasets, including METR-LA and the newly introduced MSLTD, demonstrating

superior performance over existing models.

2. Augmented Attention-Based Model for Water Flow Forecasting: A new transduction model

with an efficient attention mechanism was developed to address water flow forecasting from a graph-

based perspective. This is the first study of its kind to learn the actual correlations between drainage

basins. Extensive experiments across 186 drainage basins in Canada showed that this model outper-

forms state-of-the-art methods across various prediction horizons and performance metrics.

3. Flood Simulation and Visualization Technique: This thesis presents an extendable flood sim-

ulation and visualization method by creating a detailed digital model of the city of Terrebonne, QC.

Using historical data and predictions from a Graph Convolutional Recurrent Network (GCRN)-

based model, the approach allows for interaction and scenario simulation, such as the controlled

redirection of floodwaters. This tool supports stakeholders in evaluating mitigation strategies, pro-

viding actionable insights for community protection and infrastructure management.

4. Integration of LiDAR Data for Enhanced Hydrometric Forecasting: A novel hybrid graph

learning structure was introduced, combining static and dynamic graph learning to capture terrain

elevation relationships using LiDAR-derived data. This integration of terrain data into the fore-

casting model significantly improves the accuracy of water level predictions. The model’s superior

performance was validated through experiments on water station data from Quebec, outperforming

114



contemporary methods in all evaluation metrics.

Collectively, these contributions advance the field of spatiotemporal forecasting by addressing

challenges related to dynamic graph learning, model efficiency, data integration, and actionable

decision support in urban and environmental contexts.

7.2 Limitations

Despite the contributions presented in this thesis, several limitations remain that provide avenues

for further research and model improvement.

One primary limitation of this work is related to data availability and quality. While the models

presented in this thesis utilize a variety of datasets, including traffic data, water flow measurements,

and LiDAR-derived terrain information, the results are still influenced by the quality, resolution,

and completeness of the data. For example, the water flow forecasting model relies on historical

data from specific drainage basins. Any gaps, inaccuracies, or noise within this data can affect

the accuracy of the model’s predictions. Therefore, the applicability of the proposed models is

somewhat constrained by the quality of the input data, and the generalizability of the models to

regions with different data characteristics may require further investigation.

Another limitation concerns the computational complexity of some of the proposed models.

While efforts have been made to design more efficient architectures, such as the sparse multilevel

encoder, certain components, especially those involving transformer and graph learning, still require

substantial computational resources for training and inference. This can be a limiting factor for real-

time applications and for deployment in resource-constrained environments. Future work could

explore more lightweight models or techniques to optimize the training and inference processes

without compromising the accuracy and robustness of the predictions.

The integration of dynamic and static data is a novel aspect of this research, yet it also in-

troduces challenges. The hybrid graph learning structure that combines static terrain data with

dynamic water flow variables represents a complex modeling task. While the approach has shown

to improve prediction accuracy, it requires careful tuning and handling of various data types. Ad-

ditionally, the current implementation assumes that static features, such as terrain elevation, remain
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unchanged over time. However, environmental changes, such as urban development or natural land-

scape alterations, can affect these features, potentially limiting the model’s long-term accuracy and

adaptability. Future research should investigate methods for dynamically updating the static graph

to reflect environmental changes over time.

Moreover, while the data-to-action simulation provides valuable insights into the potential im-

pacts of forecasted events, the simulations are inherently based on the underlying model assump-

tions and data inputs. Therefore, they may not capture all real-world complexities, especially in

scenarios where human intervention or unforeseen environmental factors play a significant role.

For instance, the simulation of flood mitigation strategies, while useful, might not fully account

for the interaction between different mitigation measures, infrastructure constraints, or changes in

public behavior. As a result, these simulations should be interpreted as guidance tools rather than

definitive predictions, emphasizing the need for further refinement and validation against real-world

events.

In summary, this thesis presents several advancements in spatiotemporal forecasting, but its lim-

itations highlight the complexity of modeling dynamic environmental systems. Addressing these

challenges in future work could involve acquiring more diverse and high-quality datasets, optimiz-

ing model efficiency, dynamically updating static features, and enhancing the simulation process to

incorporate a broader range of real-world variables and interactions.

7.3 Error Metrics Discussion

In this work, we have used Mean Absolute Error (MAE), Mean Absolute Percentage Error

(MAPE), and Root Mean Square Error (RMSE) as evaluation metrics, as they are widely used in

the context of time series forecasting and regression. MAE measures the average absolute error,

understanding deviations in the same unit as the target variable. MAPE expresses errors as a per-

centage, enabling scale-independent comparisons, while RMSE, by emphasizing larger errors due

to squaring, is useful in scenarios where significant deviations need to be accounted.

While these metrics are well-established and effective for performance evaluation, they have

certain limitations that are important to acknowledge. For instance, RMSE can be sensitive to
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outliers, potentially exaggerating the impact of rare extreme values, while MAPE may become

unstable when actual values are close to zero. Additionally, mean-based error metrics summarize

performance as a single value, which may not fully capture the distribution of errors or highlight

potential biases in predictions.

To complement these metrics, alternative approaches could be considered in future work. Meth-

ods such as the symmetric Mean Absolute Percentage Error (sMAPE) address some of the shortcom-

ings of MAPE by adjusting for extreme values. Additionally, probabilistic measures like quantile-

based loss functions can provide deeper insights into uncertainty and error distribution. While

the chosen metrics remain a solid foundation for evaluation, incorporating such alternatives could

further refine the assessment of model performance, particularly in applications where capturing

uncertainty or specific error patterns is critical.

7.4 Future Work

Building on the advancements and limitations identified in this research, there are several direc-

tions for future work that can further enhance spatiotemporal forecasting, optimize computational

efficiency, and explore the integration of new data sources and methodologies.

One promising avenue is to develop hybrid graph learning techniques that can dynamically

update the model’s statistical information in response to environmental changes over time. For

example, in water flow forecasting, the current model assumes that static features, such as terrain

elevation, remain fixed. Future research could explore methods to integrate temporal changes in

these features, such as urban development or natural landscape alterations, into the graph represen-

tation. This would allow the model to adapt to evolving spatial configurations, improving long-term

prediction accuracy. Additionally, incorporating more complex, real-time data, such as satellite im-

agery or drone-acquired terrain data, could further enhance the model’s ability to reflect the current

state critical directions potential improvement involves optimizing computational efficiency. While

the models proposed in this thesis have been designed with efficiency in mind, there is still room to

reduce computational complexity, particularly in the LiDARL-guided hybrid graph structures. Fu-

ture work could explore the development of more lightweight neural network architectures. These
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approaches can reduce the model’s resource requirements, making it more suitable for real-time

applications and deployment in resource-limited settings.

Data integration and enrichment is another critical direction for future work. Although this

thesis has incorporated LiDAR data and hydrometric measurements, additional environmental and

social data sources could be explored to provide a more holistic view of the forecasting system. Inte-

grating real-time weather data, social media activity during disaster events, and urban infrastructure

information could enhance the predictive capabilities of the models. Such data fusion could help

refine the simulations in the data-to-action framework, leading to more accurate scenario analyses

for urban and disaster management.

Furthermore, Using Large Language Models (LLMs) for Spatiotemporal Forecasting represents

an innovative area of exploration. LLMs, such as GPT-4, have shown exceptional ability in learning

patterns from vast amounts of data and generating complex, context-aware responses. Future re-

search could investigate how LLMs can be adapted for spatiotemporal forecasting by training them

to understand temporal sequences, spatial relationships, and domain-specific language descriptions

of environmental changes. Additionally, LLMs could be used to analyze large volumes of unstruc-

tured text data, such as weather reports, emergency updates, or public sentiment, and compare their

performance against traditional neural network models in forecasting tasks. Comparing LLM-based

forecasting to the graph-based models presented in this thesis could yield valuable insights into their

relative strengths, limitations, and potential areas of synergy.

Lastly, generalizability and transfer learning should be explored. The models developed in this

thesis have been tested on specific datasets, such as those from Quebec’s water stations and the

city of Terrebonne. Future research could investigate the use of transfer learning techniques to

adapt these models to new geographical regions and applications. By training on diverse datasets,

the models could become more capable of generalizing their predictive power to a wide range of

spatiotemporal forecasting scenarios.

These directions offer a pathway to more accurate, efficient, and actionable forecasting models

that can better support urban planning, environmental management, and disaster mitigation efforts.
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