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Abstract

An Empirical Study on Learning Models and Data Augmentation for IoT Anomaly
Detection

Alireza Toghiani Khorasgani

This thesis studies the application and impact of deep learning methods in anomaly detection, a

critical area within security applications. While deep learning’s popularity is driven by its perceived

ability to manage complex patterns in large datasets and perform feature engineering inherently,

this thesis questions these assumptions. By revisiting feature selection and data augmentation tech-

niques, this research evaluates their effectiveness in improving the performance of deep-learning-

based anomaly detection methods. Furthermore, it examines the impact of other essential factors

such as model choice (both traditional machine learning and deep learning), data balancing, and

hyperparameter tuning on anomaly detection performance.

From these investigations, the thesis reports that the common beliefs surrounding deep learning

are not universally valid, highlighting the need for a framework to evaluate the usefulness of fea-

tures and data for specific cases. To address this gap, a new framework is proposed, guiding data

users and anomaly detection tools toward optimal configurations, including feature selection, model

selection, hyperparameters, and data augmentation techniques. The effectiveness of this framework

is demonstrated using two major IoT datasets, offering insights into improving anomaly detection

systems through strategic and evidence-based approaches.
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Chapter 1

Introduction

This chapter describes the context, motivations, problem statements, and contributions of this

thesis, providing a comprehensive overview of this thesis in IoT anomaly detection.

1.1 Context and Motivation

Deep Learning (DL) techniques have become increasingly prevalent in anomaly detection ap-

plications (e.g., [1–5]). This widespread adoption is primarily driven by two common beliefs in the

field: (i) deep learning’s capability to manage complicated patterns within large datasets, and (ii) its

perceived ability to eliminate the need for separate feature engineering since it is inherently handled

within the model learning process. However, obtaining large-scale training datasets, which are tra-

ditionally considered essential for achieving better-performing anomaly detection models, remains

one of the most significant challenges [6, 7].

Among many security applications, anomaly detection stands out as one of the biggest users

of deep learning methods. The field has witnessed varied approaches to feature selection and data

augmentation, with some studies advocating for deep learning without explicit feature selection

[2, 4, 8, 9], while others incorporate it [10, 11]. This divergence in approaches raises important

questions about the fundamental assumptions driving the field.

The primary motivation for this research stems from the increasing deployment of IoT devices
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in critical infrastructure and everyday applications, where security breaches can have severe conse-

quences. IoT is becoming ubiquitous, with its integration into various sectors, including healthcare,

smart homes, and urban infrastructures. This includes diverse populations, such as infants and se-

niors, who are increasingly reliant on IoT devices for safety, monitoring, and healthcare. As these

devices become more embedded in daily life, the need for robust security solutions becomes even

more urgent to protect vulnerable citizens and smart societies. Recent studies have shown that IoT-

based attacks have increased exponentially in recent years [12], with anomaly detection serving as

a crucial defense mechanism. While deep learning approaches show promise, their application in

IoT environments faces unique challenges due to resource constraints and diverse device charac-

teristics [13]. Additionally, anomaly detection often encounters the problem of overfitting, which

occurs when models capture irrelevant patterns or noise from the training data rather than learn-

ing generalizable relationships. This issue arises due to redundant or unnecessary features, as well

as significant data imbalance—normal (benign) data typically far outweighs attack (anomalous)

data. Consequently, models might achieve high accuracy on the majority class (normal data) while

failing to reliably detect anomalies in new, unseen data. Addressing these challenges requires sys-

tematic feature selection and effective data balancing strategies to ensure robust anomaly detection

performance across diverse applications. Several other factors contribute to overfitting in anomaly

detection models. Insufficient training data, especially in IoT environments, limits model general-

ization, as rare attack instances may not be well-represented. Noisy data can mislead the model by

introducing irrelevant or erroneous patterns, while overly complex models may memorize specific

details of the training data rather than learning generalizable features. Additionally, data leakage,

where information from outside the training set affects the model, can inflate performance during

training but reduce its effectiveness on unseen data. Proper handling of these factors is crucial for

improving model robustness and preventing overfitting.

Current approaches often apply deep learning techniques without systematic evaluation of fea-

ture selection and data augmentation strategies, potentially leading to suboptimal performance or

unnecessary computational overhead. This research aims to bridge this critical gap by providing

empirical evidence and practical guidelines for implementing effective anomaly detection in IoT

environments.
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1.2 Problem Statement

The proliferation of Internet of Things (IoT) devices has led to an exponential increase in net-

work traffic and, consequently, security threats. This rapid expansion presents unique challenges

for anomaly detection systems, particularly in the context of deep learning applications. This thesis

identifies several critical challenges in the current landscape of IoT anomaly detection:

(1) Feature Selection Complexity:

• Current deep learning approaches often bypass explicit feature selection, assuming the

neural networks will automatically learn relevant features

• This assumption remains untested across different IoT scenarios and data characteristics

• The lack of systematic feature selection may lead to:

◦ Increased computational overhead

◦ Reduced model interpretability

◦ Potential degradation in detection accuracy

◦ Difficulty in handling diverse IoT device characteristics

(2) Data Augmentation Challenges:

• The prevailing belief that larger datasets invariably improve model performance over-

looks crucial factors:

◦ Data quality and relevance

◦ Computational costs of processing enlarged datasets

◦ Potential introduction of noise or bias

◦ Impact on model generalization

• Current approaches lack systematic methods to evaluate when and how data augmenta-

tion should be applied

• The relationship between data quantity and model performance remains poorly under-

stood in IoT contexts

3



(3) Configuration Optimization Difficulties:

• Existing systems often treat feature selection, data augmentation, and model hyperpa-

rameters as independent concerns

• The interdependencies between these elements are not well understood or addressed

• Current approaches lack:

◦ Systematic methods for joint optimization

◦ Clear guidelines for practitioners

◦ Adaptability to different IoT scenarios

◦ Efficient ways to balance accuracy and computational resources

These challenges lead us to two fundamental research questions:

• Is avoiding feature selection always useful?: While avoiding feature selection brings more

automation and convenience to the anomaly detection process, it may not always result in op-

timal model performance. The relationship between feature selection and model effectiveness

needs systematic investigation.

• Is augmenting data always useful?: Although adding more data can enhance model perfor-

mance in some cases, the impact of data augmentation isn’t uniformly positive. There are

scenarios where augmented data might negatively affect model performance, necessitating a

more nuanced approach.

1.3 Research Objectives

To address these challenges, we establish the following research objectives:

(1) Conduct a systematic investigation of feature selection’s impact on deep learning and machine

learning based anomaly detection models

(2) Evaluate the relationship between data augmentation and model performance across different

scenarios
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(3) Develop a framework that can optimize the configuration of anomaly detection systems

(4) Validate the effectiveness of our approach using real-world IoT datasets

1.4 Thesis Contributions

This thesis considers a security context and address the above-mentioned two questions to pro-

vide a guideline for existing anomaly detection tools on how to decide on feature selection and data

augmentation along with several other critical configurations (e.g., hyperparameters, balanced data,

models) that impact their performance (both in accuracy and efficiency). Specifically, this thesis

first examines the impact of different combinations of feature selections, data balancing, and other

factors on various models’ performance. Next, it selects the best combinations, analyze the impact

of data augmentation on the performance of the selected models, and suggest whether to augment

the data through the use of data complexity measurements. Then, it builds a framework, namely,

AMETIS (named after Athena and Metis, the symbols of deep and strategic decision-making), that

can suggest the best scenarios for a given dataset. Finally, using two public IoT datasets (CI-

CIoT2023 [14] and IoT-23 [15]), it evaluates the effectiveness of the proposed framework in assist-

ing the existing anomaly detection tools.

The main contributions of this thesis are as follows:

• As per our knowledge, we are the first to study the wide applicability of two common be-

liefs (i.e., big need of augmented data and no need of feature engineering) on deep learning

methods for anomaly detection and show that those beliefs are not always applicable for the

performance of existing anomaly detection approaches.

• Based on the key findings of our study, we propose a framework that aims to assist existing

anomaly detection approaches in choosing on features and data. The proposed framework

provides several DL/ML models along with different feature selection methods in a flexible

manner, where a user can simply choose any combinations to train and test their desired

models on their own dataset and examines different accuracy metrics to decide whether a

given dataset is helpful for data augmentation.
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• We evaluate our proposed framework using two large IoT datasets (i.e., CICIoT2023 with

over 100 million network flow records and IoT-23 with approximately 20 million captured

packets), six deep/machine learning techniques (including BERT and autoencoder), three

major feature selection methods (i.e., filter, wrapper, and embedded) along with ten different

evaluation setups depicting various combinations of techniques applied on anomaly detection

to demonstrate its effectiveness in choosing the best combination of features and augmented

data.

• The source code of our framework, along with evaluation setups and documentation, is pub-

licly available1.

These contributions collectively address the challenges identified in our problem statement by

providing both theoretical insights and practical tools for improving IoT anomaly detection systems.

This thesis bridges the gap between theoretical understanding and practical implementation, offering

concrete solutions for practitioners while advancing the academic state-of-the-art.

1.5 Impact and Societal Benefits

This research provides several key benefits to both the academic community and industry prac-

titioners:

• Resource Optimization: By challenging the conventional belief that more data and features

always lead to better performance, this work helps organizations optimize their computational

resources and reduce energy consumption in IoT deployments [16].

• Enhanced Security: The AMETIS framework provides practitioners with evidence-based

guidelines for implementing more effective anomaly detection systems, potentially reducing

the risk of security breaches in critical IoT infrastructure [17].

• Accessibility: Through the public release of our framework and comprehensive documen-

tation, we enable smaller organizations and researchers to implement sophisticated anomaly

detection systems without extensive trial and error [18].
1https://github.com/OCyberLab/Ametis
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The insights and tools developed through this research directly contribute to more efficient and

effective security measures for IoT ecosystems, which are increasingly integral to critical infras-

tructure, healthcare systems, and smart city initiatives [12].

1.6 Prior Publications

Our work [18] about studying feature selections and data augmentation techniques for anomaly

detection published in the IEEE Conference on Communications and Network Security Conference.

A. Toghiani Khorasgani, P. Shirani and S. Majumdar, “An Empirical Study on Learn-

ing Models and Data Augmentation for IoT Anomaly Detection” in IEEE Conference on

Communications and Network Security Conference,

1.7 Organization of the Thesis

The rest of the thesis is organized as follows:

Chapter 2 provides background concepts and reviews related work in anomaly detection, feature

selection, and data augmentation.

Chapter 3 outlines our methodology and findings related to feature selection optimization. It

also introduces the AMETIS framework, detailing its architecture, core components, and its role in

improving anomaly detection.

Chapter 4 focuses on our methodology for data augmentation and complexity analysis, provid-

ing a detailed exploration of their impact on anomaly detection and the factors influencing their

effectiveness.

Chapter 5 presents comprehensive experimental results and analysis.

Chapter 6 discusses various aspects of our approach, including limitations, practical implica-

tions, and concludes the thesis while outlining future research directions.
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Chapter 2

Background and Related Work

This chapter provides a comprehensive examination of both the fundamental concepts and the

current state of research in IoT anomaly detection, with particular emphasis on feature selection

and data augmentation techniques. We begin by establishing the technical foundation through an

exploration of core concepts, followed by a critical analysis of existing research approaches and

their limitations. This systematic review enables us to identify research gaps and position our con-

tributions within the broader context of IoT security research.

2.1 Background

The effectiveness of machine learning and deep learning models in IoT security heavily depends

on the quality and preprocessing of input data. This section examines two fundamental aspects that

can impact model performance: feature selection methods and data complexity metrics. Under-

standing these concepts is helpful for appreciating the challenges and opportunities in developing

robust anomaly detection systems.

2.1.1 Feature Extraction

Feature extraction transforms raw data into meaningful representations through mathematical

or statistical operations [19]. In IoT security contexts, this process converts raw network traffic data

into higher-level features that capture important behavioral patterns. The key approaches to feature

8



extraction include:

Statistical Feature Extraction

Statistical feature extraction derives numerical measurements that characterize data distribu-

tions and patterns [20]. In network security, this involves computing basic statistics like mean,

variance, and standard deviation of packet sizes, flow durations, and inter-arrival times. More ad-

vanced distribution metrics, such as skewness and kurtosis, provide insights into traffic variations,

while time-window statistics capture rolling averages and variances over different time intervals.

Additionally, entropy-based features measure the randomness or predictability of network traffic,

helping to detect anomalies.

Signal Processing Based Extraction

Signal processing techniques transform time-domain data into alternative representations to re-

veal hidden traffic patterns [21]. Fourier transforms convert time-series data into the frequency

domain, uncovering periodic traffic behaviors. Wavelet transforms enable multi-resolution analysis,

allowing simultaneous examination of short-term and long-term patterns. Spectral analysis identi-

fies key frequency components in network activity, while time-frequency analysis combines both

temporal and frequency domain insights to detect anomalous behaviors.

Domain-Specific Feature Extraction

Domain-specific feature extraction leverages expert knowledge of network protocols and IoT

behavior patterns [22]. Protocol-based features are derived from specific protocol headers and pay-

loads, providing insight into communication structures. Flow-level features capture characteristics

of network flows, such as session duration and byte distribution, while connection-based features

focus on the relationships between devices, identifying peer-to-peer or hierarchical network struc-

tures. Lastly, behavioral features model device-specific operational patterns to detect deviations that

may indicate cyber threats.
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Dimensionality Reduction Based Feature Extraction

These methods create lower-dimensional representations of data while preserving key infor-

mation [23]. t-Distributed Stochastic Neighbor Embedding (t-SNE) [24] and Uniform Manifold

Approximation and Projection (UMAP) [25] perform non-linear dimensionality reduction, pre-

serving local structures and relationships in high-dimensional data. Linear Discriminant Analysis

(LDA) [26] is another linear technique that not only reduces dimensionality but also enhances class

separability. LDA projects the data onto a lower-dimensional space by maximizing the ratio of

between-class variance to within-class variance, making it useful for supervised anomaly detection

when class labels are available. Matrix factorization techniques, such as Singular Value Decompo-

sition (SVD) [27], decompose data into latent components, enabling efficient feature extraction for

anomaly detection. Principal Component Analysis (PCA) is another powerful linear technique used

for dimensionality reduction. PCA transforms correlated features into a set of linearly uncorrelated

principal components[28]. By focusing on the first few components, which usually contain most of

the variance in the data, PCA reduces the feature space while retaining significant information. This

method helps eliminate less informative features, often considered as noise or redundancy, thus sim-

plifying the data without substantial loss of information. PCA is widely used in anomaly detection

as it improves model efficiency by reducing dimensionality and enhancing model interpretability.

2.1.2 Feature Selection

In the field of machine learning and deep learning, the quality and relevance of input data have

a major effect on model performance. This requires us to discuss the subject of feature selection

and its role in improving the efficiency of deep learning models, particularly in anomaly detection

applications.

Feature selection enables models to focus on the most important data, and thus improve their

performance. Its procedure effectively reduces the feature set by removing unnecessary or duplicate

features that could negatively affect learning or even confuse the model. From basic statistical

tests to more advanced procedures, We select a variety of methodologies that have been used in the

literature. In this thesis we categorized them into three groups filter methods [29], wrapper methods
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[30], and embedded methods [31], each offering distinct advantages and trade-offs.

Filter Methods

Filter methods assess the relevance of features independent of any prediction model using intrin-

sic data properties and statistical relationships with the target variable. This allows quick screening

of irrelevant inputs before costly model training. The following are some notable filter methods:

• Mutual Information (MI): MI quantifies the mutual dependence between variables based on

entropy reduction. High MI score signifies that a feature substantially decreases the uncer-

tainty regarding the value of the target variable. This is particularly effective in identifying

nonlinear statistical associations that are often overlooked by linear correlation metrics [32].

• Trank (T-test Ranking): Trank is a statistical test that evaluates the difference between the

means of two groups. In feature selection, features are ranked by the t-statistic between

class distributions. Features with means significantly differing across classes are considered

informative [33].

• Chi-Square Test (χ2): This method tests if the distribution of categorical feature values is

significantly associated with classes. High χ2 implies dependence between that feature and a

target variable [34].

• Correlation Coefficient: A correlation coefficient [35] measures the linear relationship be-

tween two variables, quantified by statistics like the Pearson correlation which assesses co-

variance normalized by variance. Features with a high correlation with the target variable

are considered valuable, while those highly correlated with other features might be redundant

[36].

• SelectKBest (SKB): SKB reduces dimensionality by retaining the top k features with the

highest scores. Features are ranked based on ANOVA F-values, and those with the strongest

classification power are selected while redundant or noisy features are removed [37].
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Wrapper Methods

Wrapper methods assess subsets of features based on the combined performance of the group

within a specific machine learning model [30]. Unlike filter methods that score features indepen-

dently, wrappers directly search for an optimal subset catered to the intricacies of the model via

cross-validation. This model-dependent approach often leads to superior feature selection and accu-

racy compared to filter methods at the expense of a higher computational load [38]. The customized

selections help reduce overfitting and improve predictions but require an efficient search of the ex-

ponential feature space, using techniques like sequential selection or evolutionary algorithms [39].

In essence, wrapper methods find feature interactions tailored to individual models by evaluating

performance directly within the model, not just by static properties. The following are some notable

wrapper methods:

• Support Vector Machines - Recursive Feature Elimination (SVM-RFE): SVM-RFE em-

ploys a backward elimination procedure. It ranks features based on their weight magnitudes

in the SVM, iteratively removing the least important feature and retraining the model [40].

The reason for specifically using SVM in this context is twofold. First, SVMs are effective

in high-dimensional spaces, making them suitable for datasets with a large number of fea-

tures. Second, SVMs inherently provide a ranking of features based on their contribution to

the decision boundary, with the weight vector in the SVM model serving as a direct indicator

of the importance of the feature. This inherent ability of SVMs to quantify feature impor-

tance makes them particularly suited for recursive feature elimination, where such rankings

are crucial.

• Random Forest (RF): Random Forest is an ensemble technique built on decision trees. Fea-

tures are ranked based on the average reduction in impurity they cause across all trees within

the forest [41].

• Sequential Forward Search (SFS): SFS starts with an empty set of features and adds features

one by one until an optimal set is obtained. This method is particularly useful when dealing

with large feature spaces [42].
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• Sequential Backward Search (SBS): SBS [43] begins with the full set of features and re-

moves them one by one. It is effective in reducing the dimensionality of the feature space

while maintaining the performance of the model [44].

• Plus L Minus R Selection (LRS): LRS [45] is a variant of SFS and SBS, adding the ’L’ best

features and removing the ’R’ worst features in each iteration. For example, with L = 2 and

R = 1, it adds the two best features and removes one worst feature per iteration, offering a

balanced approach to feature selection.

• Particle Swarm Optimization (PSO): PSO [46] is an evolutionary computation technique

used as a wrapper method for feature selection. It optimizes a predefined objective function

(such as classification accuracy) by iteratively updating the positions (feature subsets) of a

swarm of particles (candidate solutions) [47].

Embedded Methods

Embedded methods combine elements of filter and wrapper approaches for efficient feature se-

lection during model training. Rather than preprocessing, embedded methods account for feature

interactions within the learning phase itself [31]. This avoids the generalized rankings of filters

and the high computational expense of wrappers by integrating selection directly into optimiza-

tion. For example, regularization methods such as L1 (lasso) regularization explicitly drive coef-

ficient weights to zero, effectively eliminating weak features [48]. Other techniques such as ridge

regression control the magnitude rather than the number of features, shrinking the excessive cor-

relation while retaining predictors [31]. The key benefit of embedded feature selection is finding

model-specific subsets without the extreme cost of exhaustive searches, enabling generalization and

stability. The key examples of embedded methods are:

• Lasso Regularization (L1). L1 regularization, introduces a penalty on the absolute mag-

nitudes of the model coefficients. This method is distinct for its capacity to reduce certain

coefficients to zero, thereby inherently integrating feature selection within the model training

itself. Instead of treating feature selection as an isolated process, L1 regularization seamlessly

blends it into model optimization, effectively striking a balance between model complexity

and performance [48].
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• Ridge Regularization (L2). L2 regularization [49] imposes a penalty on the square of the

model coefficients. Contrary to L1 regularization, L2 does not encourage coefficients to

shrink to zero but rather to become smaller. It is effective in dealing with multicollinearity,

where several predictors are correlated. By penalizing the square of coefficients, L2 regular-

ization aims to distribute the importance more evenly across features, which helps in reducing

overfitting.

• Elastic Net. Elastic Net [50] combines L1 and L2 regularization to select features like lasso

while retaining groups of correlated predictors like ridge. This helps prevent exclusion of

potentially valuable redundant variables.

• Automatic Relevance Determination (ARD). ARD [51] places independent prior distribu-

tions on each weight to determine relevance. Features with heavier priors are more likely to

have weights driven to zero.

2.1.3 Feature Selection vs. Feature Extraction

While both feature extraction and selection aim to improve model performance, this thesis fo-

cuses primarily on feature selection for several reasons. Both feature selection and feature extrac-

tion aim to enhance model performance by improving the quality of input data. Feature selection

reduces dimensionality by selecting the most relevant features, maintaining their original meaning,

while feature extraction transforms existing features into new representations that capture underly-

ing patterns.

First, IoT network traffic data already contains rich, domain-specific features derived from net-

work flows and protocol behaviors, making additional feature extraction potentially redundant or

computationally expensive. In our case, extracting new features could introduce unnecessary com-

plexity to the anomaly detection process.

Second, feature selection offers greater interpretability, which is crucial in security applica-

tions where understanding the basis for detection decisions is essential. By selecting only the most

relevant features, the model’s decisions become more transparent and understandable, which is im-

portant for practical security systems.

Third, our goal of optimizing computational efficiency aligns better with feature selection, as it
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reduces dimensionality without the overhead of computing new features. Feature extraction requires

the creation of additional features, which could increase the computational cost of training and

inference in IoT security systems.

Fourth, in the context of deep learning models, which inherently perform their own feature ex-

traction through hidden layers, explicit feature extraction could introduce unnecessary complexity.

Deep learning models are capable of learning hierarchical representations from raw data, making

explicit feature extraction methods less relevant and potentially detrimental to model simplicity and

performance.

Thus, feature selection is a more practical and effective approach for our research objectives.

However, it is important to note that Principal Component Analysis (PCA), although a feature ex-

traction method, was still utilized in this study. We showed that PCA can yield good results in

certain scenarios, particularly in reducing dimensionality without significant loss of information.

Nonetheless, the majority of the methods we employed focused on feature selection, which aligns

more closely with our goals of maintaining interpretability and optimizing computational efficiency.

2.1.4 Data Complexity

Data complexity refers to the intrinsic characteristics of datasets, such as class ambiguity, data

sparsity, high dimensionality, and intricate decision boundaries, that pose challenges for machine

learning algorithms beyond mere variations in class distribution [52]. These factors collectively

influence the efficacy of anomaly detection methods and their ability to learn and generalize effec-

tively [52]. Such attributes can challenge the learning process, rendering some datasets particularly

difficult for machine learning models to interpret and learn from effectively. Several metrics have

been chosen as tools for evaluating the subtle aspects of data complexity that affect these outcomes

[53]. The following are key examples of data complexity metrics:

• Entropy of Class Proportions (C1). The C1 captures the imbalance in the dataset by com-

puting the entropy of the class proportions [52]. It achieves lower values for balanced class

distributions which are considered simpler problems.

• Maximum Fisher’s Discriminant Ratio (F1). The F1 measures the overlap between fea-

ture values across classes, with higher values indicating more complex problems where no
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individual feature can discriminate the classes [54]. It computes the ratio of inter-class to

intra-class scatter for each feature [55].

• Misclassification Complexity Measure (CM). The CM provides insights into the complexity

surrounding instances prone to misclassification, indicating areas where models may require

refinement or tailored approaches to improve prediction accuracy [56].

• Error Rate of Linear Classifier (L2). The L2 computes the fraction of instances misclas-

sified by a linear model like SVM, with higher values suggesting the data cannot be linearly

separated [57]. It quantifies the complexity in terms of linear inseparability of the classes.

2.1.5 Data Imbalance Techniques

Data imbalance in IoT security presents unique challenges where malicious activities typically

represent a small fraction of the overall network traffic [58]. The following techniques address these

challenges, each suited to different scenarios and requirements:

• Oversampling Techniques: These techniques balance class distributions by generating syn-

thetic minority class samples. Synthetic Minority Over-sampling Technique (SMOTE) [59]

enhances intrusion detection by generating synthetic minority class instances through inter-

polation between real samples, effectively balancing class distribution. This method improves

model generalization, reduces bias, and enhances detection accuracy for various cyber threats,

including DDoS, malware, and anomaly-based attacks. By preserving the statistical proper-

ties of the dataset, SMOTE ensures a more representative and diverse training set, making

machine learning models more robust in identifying security threats. Random Over-Sampling

(ROS) [59] is another commonly used technique that generates synthetic examples by repli-

cating minority class samples. ADASYN [60] adapts sample generation based on data den-

sity, making it effective for zero-day attack detection where anomalies are subtle. Borderline-

SMOTE [61] refines this by focusing on decision boundaries, improving detection of complex

attacks. Generative Adversarial Networks (GANs) [62] utilize adversarial training between

two neural networks, a generator and a discriminator, to produce realistic synthetic minor-

ity samples, capturing complex non-linear patterns in the data. Variational Autoencoders
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(VAEs) [63] use probabilistic encoding to learn latent data distributions, generating smooth,

diverse synthetic samples that effectively represent minority classes.

• Undersampling Techniques: These techniques reduce the majority class to prevent model

bias. Random Under-Sampling (RUS) [64] removes normal traffic instances, reducing com-

putational costs while preserving detection accuracy. Tomek Links [65] eliminates overlap-

ping majority samples, refining decision boundaries in intrusion detection. Near Miss [66]

prioritizes majority samples close to minority instances, useful for analyzing IoT device be-

havior in cyber threat detection. SMOTE [59] can also be considered in undersampling ap-

proaches when a balanced sample size is required for model training. The Edited Nearest

Neighbor (ENN) [67] algorithm identifies and removes noisy majority class instances that

are misclassified by their nearest neighbors, clarifying class boundaries for improved model

performance.

• Hybrid Approaches: These methods combine oversampling and undersampling for opti-

mal balance. For example, SMOTETomek [68] applies SMOTE followed by Tomek Links

removal, effective in noisy network environments.

• Algorithm-Level Methods: These techniques adjust model learning instead of altering data

distribution. Cost-Sensitive Learning [69] assigns higher penalties for misclassifying attacks,

reducing false negatives in security applications. One-Class Learning [70] models only nor-

mal behavior, treating deviations as anomalies, making it ideal for detecting zero-day threats.

Ensemble Methods like EasyEnsemble [71] train multiple models on various subsets of data,

improving detection performance on imbalanced datasets exhibiting complex attack patterns.

2.2 Related Work

This chapter presents a comprehensive review of the current state of research in anomaly de-

tection for IoT network security, with a particular focus on the application of feature selection and

data augmentation techniques. This thesis explores how these methodologies have been applied in

both traditional machine learning and deep learning contexts, highlighting their potential to enhance
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model performance. The chapter begins by examining anomaly detection approaches specific to IoT

environments, then delves into feature selection methods in traditional and deep learning models,

and concludes with an overview of data augmentation techniques. Through this exploration, this

thesis aims to identify gaps in the existing literature and position our research within the broader

context of the field.

2.2.1 Deep Learning-based Anomaly Detection

Recent advancements in deep learning have led to significant improvements in anomaly de-

tection for IoT network security. The authors of [8] proposed Co-analyzed Malware Detection

(CMD), an IoT malware detection and forensics system that integrates network and hardware data.

CMD combines network and hardware data using neural networks to better detect IoT malware.

This approach is notable for its holistic view of IoT devices, considering both network traffic and

hardware-level data to improve detection accuracy. By integrating multiple data sources, CMD

can potentially identify complex attack patterns that might be missed by traditional single-source

detection methods.

Minh et al. [9] employ a Convolutional Neural Network (CNN)-based [72] interpretable en-

semble system with anomaly detection to spot unknown network attacks on real datasets like CSE-

CIC-IDS2018 [73], helping analysts make security decisions. Their work is particularly significant

for its focus on interpretability, addressing the common criticism of deep learning models as “black

boxes.” This approach not only improves detection accuracy but also provides insights into the

decision-making process, which is crucial for security analysts to understand and trust the system’s

outputs.

Wang et al. [2] focus on certifying the robustness of deep learning traffic analysis systems

against attacks, indirectly emphasizing anomaly detection in network traffic. This research is crucial

as it addresses the vulnerability of deep learning models to adversarial attacks, a critical concern in

security applications. By developing methods to certify model robustness, this work contributes to

the reliability and trustworthiness of deep learning-based anomaly detection systems in real-world

deployments.

Several other studies shown in Table 2.1 utilize various anomaly detection models as the core
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methodology for threat detection on real and simulated network datasets, like [1, 4, 10, 11, 74, 75].

These diverse approaches showcase the versatility of deep learning in addressing different aspects

of IoT security, from real-time detection to handling complex, high-dimensional data.

Some of these studies employ feature selection [1, 10, 11] and data balancing [11] supplemen-

tary to anomaly detection models. For instance, Dong et al. [10] use feature selection to improve

the efficiency of their real-time IoT malicious traffic detection framework. This approach not only

enhances detection accuracy but also reduces computational overhead, which is crucial for real-

time applications in resource-constrained IoT environments. Fu et al. [11] incorporate both feature

selection and data balancing to enhance the robustness of their malicious traffic detection system,

addressing the common challenge of imbalanced datasets in cybersecurity applications. A Addi-

tionally, Mirsky et al. [76] proposed Kitsune, which uses autoencoders [77] for finding network in-

trusions in real-time, showcasing the applicability of anomaly detection in live scenarios. This work

demonstrates the potential of unsupervised learning techniques in identifying novel attack patterns

without relying on predefined signatures, a critical capability in the rapidly evolving landscape of

IoT security threats.

These diverse approaches highlight the growing importance and complexity of anomaly detec-

tion in IoT network security. They also underscore the need for more comprehensive studies that

evaluate the effectiveness of various techniques across different models and datasets, considering

factors such as computational efficiency, scalability, and adaptability to new types of attacks.

2.2.2 Data Augmentation

Data augmentation techniques have been widely adopted across various domains to enhance

model performance and address data scarcity issues. In image classification, works like [78] and [7]

have demonstrated significant improvements in model accuracy through augmentation techniques

such as rotation, flipping, and color jittering. These methods effectively increase the diversity of

training data, helping models learn more robust and generalizable features.

Text classification has significantly benefited from data augmentation techniques. For instance,

studies such as [79], demonstrate how methods like synonym replacement, random insertion, ran-

dom swapping, and random deletion enhance model robustness. These approaches are especially
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valuable in natural language processing (NLP) tasks [80], where acquiring large and diverse datasets

often poses a challenge.

In the context of network security and intrusion detection, data augmentation has been applied

to address class imbalance and improve detection rates. Wang et al. [81] explored the combina-

tion of data augmentation methods with gated convolution models for building effective and robust

intrusion detection systems. Their work demonstrated how augmentation could help models better

learn the characteristics of rare attack types, a common challenge in cybersecurity where malicious

activities are often underrepresented in datasets.

Researchers have explored various innovative data augmentation techniques specifically in the

field of intrusion detection. Lim et al. [82] introduced a generative data augmentation technique

called “doping” using Generative Adversarial Networks (GANs) [83] to generate synthetic samples

for anomaly detection. This approach leverages the power of adversarial learning [84] to create re-

alistic, diverse examples of anomalous behavior, potentially improving the model’s ability to detect

novel attacks.

Yuan et al. [85] proposed a data augmentation-based intrusion detection method for smart home

security, demonstrating improvements in classification accuracy. They converted network traffic

data into images and used an Auxiliary Classifier Generative Adversarial Network (AC-GAN) [86]

to generate synthetic samples, effectively addressing the issue of imbalanced data. This innovative

approach of transforming network data into visual representations opens up new possibilities for

applying image-based augmentation techniques to network security problems.

However, these works often do not critically examine the universal applicability of data augmen-

tation or explore scenarios where it might introduce noise or be unnecessary. This gap is particularly

relevant in IoT security, where the diversity of devices and attack vectors makes the effectiveness of

augmentation techniques less predictable. The effectiveness of data augmentation techniques can

differ based on the specific task, model, and dataset. This variability underscores the importance

of meticulously choosing which data to augment and how to implement augmentation strategies

in a way that is most beneficial for the specific analytical needs of IoT anomaly detection. It also

highlights the need for research that systematically evaluates the impact of different augmentation

techniques across various IoT security scenarios, considering factors such as data complexity, attack
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diversity, and model architecture.
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Hu et al. (2024) [74] Network Traffic • • •

Dong et al. (2023) [10] Network Traffic • • • • •

Wang et al. (2023) [2] Network Traffic • • •

Yuan et al. (2023) [75] Network Traffic • • • •

Wei et al. (2023) [4] Network Traffic • • • • •

Araya et al. (2023) [87] Smart Home • • • • • •

Jayaraman et al. (2023) [88] Network Traffic • • • • • • •

Vitorino et al. (2022) [89] Network Traffic • • • • •

Jeelani et al. (2022) [90] Smart Home • • • •

Austin et al. (2021) [91] Network Traffic • • • • •

Fu et al. (2021) [11] Network Traffic • • • • •

Nanni et al., (2021) [78] Detect Malware • • •

Catak et al., (2021) [92] Detect Malware • • • • • •

Tang et al. (2020) [1] Web Traffic • • • • •

Yuan et al., (2020) [85] Intrusion Detection • • • • •

Al Olaimat et al., (2020) [6] Network Traffic • • • • •

Perez et al., (2017) [93] Image Classification • • • •

AMETIS [18]⋆ Network Traffic • • • • • • • • • • •

Table 2.1: Comparison of related works for anomaly detection.

2.2.3 Comparative Study

Table 2.1 summarizes the findings of the comparative study on supplementary techniques across

different model configurations. While several of these approaches focus on IoT-based networks—

using datasets such as CICIoT2023[14] and IoT-23[15]—not all of them are strictly IoT-oriented, as

some works address general anomaly detection in other domains. This evaluation provides insights

into the optimal combination of feature selection and data augmentation with anomaly detection

models, and distinguishes this thesis from existing works in the field of IoT security.

Several notable works in IoT security incorporate feature selection and data augmentation tech-

niques to enhance their anomaly detection systems. For instance, Dong et al. [10] and Fu et al. [11]

employ feature selection to improve the efficiency and robustness of their detection frameworks.

Similarly, studies like [74] and [4] explore various deep learning models for anomaly detection,

implicitly relying on the models’ ability to learn relevant features. While these approaches shows
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promising results, this thesis takes a step further by critically evaluating the effectiveness of these

techniques across a wide range of scenarios.

Unlike previous studies that incorporate feature selection or data augmentation as part of their

methodology, this thesis systematically evaluates the impact of these techniques on model perfor-

mance. It examines how different feature selection methods interact with various model architec-

tures, offering insights into which combinations yield optimal results for specific types of IoT net-

work data. Furthermore, this thesis adopts a comprehensive approach to data augmentation within

the context of IoT security, analyzing the conditions under which it should be applied in anomaly

detection scenarios. By evaluating a diverse set of models and utilizing multiple datasets, this thesis

provides insights that are potentially more generalizable across various IoT network environments,

contributing to the development of more effective and efficient security solutions.

2.2.4 Comparison with Existing IoT Anomaly Detection Approaches

Recent studies extensively explore anomaly detection in IoT networks, leveraging various ma-

chine learning and deep learning models. Hu et al. [74] proposes an FPGA-based frequency trans-

formation combined with machine learning for detecting malicious network traffic in IoT environ-

ments. Their approach enhances real-time detection capabilities by reducing computational over-

head. However, their work primarily focuses on frequency domain transformation, whereas our

research evaluates the impact of feature selection and data augmentation, offering a broader frame-

work for optimizing anomaly detection.

Wei et al. [4] introduced XNIDS, an explainable deep learning-based intrusion detection system.

Their approach emphasizes interpretability by providing insights into neural network decisions.

While explainability is crucial, their work does not explore the impact of feature selection and data

augmentation on deep learning models. Our study fills this gap by systematically analyzing how

feature selection techniques improve detection accuracy while reducing computational complexity.

Yuan et al. [75] investigates boundary augmentation to improve malicious traffic detection in

IoT networks. Their study demonstrates that augmenting data can improve classifier performance.

However, they do not examine cases where data augmentation might introduce noise or degrade per-

formance. In contrast, our research systematically evaluates data complexity metrics to determine
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when data augmentation is beneficial, ensuring its application does not lead to overfitting.

Unlike prior work, our research provides a holistic evaluation of anomaly detection in IoT by

considering feature selection strategies and their impact on deep learning and machine learning

models. Additionally, we assess data augmentation effectiveness rather than applying it indiscrim-

inately. Our study introduces a structured framework that allows users to systematically configure

and optimize their anomaly detection pipelines. These contributions differentiate our work by pro-

viding a structured and data-driven methodology for optimizing IoT anomaly detection systems.

2.2.5 Comparison with Existing Works on the IoT-23 Dataset

The IoT-23 dataset [15] was chosen for its comprehensive representation of IoT network traffic,

featuring detailed flow-level features, a diverse range of attack types (e.g., botnets, DDoS, MITM,

reconnaissance), and inherent class imbalance. These characteristics not only make IoT-23 a real-

istic benchmark for evaluating anomaly detection methods but also facilitate in-depth feature engi-

neering and the assessment of data augmentation and balancing strategies. Its widespread adoption

in recent studies further validates its suitability as a benchmark for IoT security research.

Several studies leverages the IoT-23 dataset to evaluate machine learning and deep learning ap-

proaches for IoT anomaly detection. For example, Jeelani et al. [90] evaluates multiple algorithms

and reported that conventional methods such as Naive Bayes and SVM achieved relatively low ac-

curacies (around 30% and 69%, respectively), while a Decision Tree classifier obtained the highest

accuracy of 73% with minimal computational cost (approximately 3 seconds). Similarly, in another

work [88], four classifiers are comparing on key performance metrics. Their results indicate that

Random Forest achieved an F1-Score of 0.9936, closely followed by Decision Trees (F1-Score of

0.9894), whereas SVM lagged significantly (F1-Score of 0.7888). In addition, related studies by

Austin et al. [91] reports near-perfect performance—F1 scores of 100% and 97.3% (with 92.35%

for Linear SVM), respectively—when employing advanced feature selection and ensemble methods

on subsets of IoT-23.

In comparison, the experimental results present in this thesis demonstrate highly competitive

performance. For instance, our BERT model integrates with the trank feature selection method

(scenario S8, mentioned in subsection 5.3.4) achieves an F1-Score of 99.7%, while models such as
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CNN, NN, and AE consistently reports F1-Scores above 99% across different dataset subsets. These

outcomes not only compare favorably with the high-performance metrics reports in [88] but also

outperform traditional approaches highlights in [90] in terms of detection accuracy and efficiency.

Although variations in experimental settings and dataset configurations (e.g., the use of dif-

ferent IoT-23 subsets or additional pre-processing steps) may lead to differences in absolute per-

formance numbers, the consistency of high performance across these works underscores the ro-

bustness of the IoT-23 dataset as a benchmark. Our results further confirm that a well-designed

pipeline—incorporating targeted feature selection, strategic data augmentation, and hyperparame-

ter optimization—can achieve state-of-the-art performance in IoT anomaly detection. It is important

to note that the studies cited here represent only a few examples among the many works that have

successfully employed IoT-23, such as those by Alharbi et al.[94], Htwe et al.[95], Iturbe-Araya

et al.[96], Sun et al.[97], Araya et al. [87], and Vitorino et al.[89]. Numerous other studies have

also leveraged this dataset to validate their approaches, further demonstrating its versatility and

reliability as a benchmark for IoT security research.

2.3 Conclusion

This chapter has provided a comprehensive examination of current research in IoT anomaly

detection, identifying crucial gaps in existing approaches and positioning our contributions within

the broader context of the field.

The identified gaps in existing research clearly demonstrate the need for more adaptive and

efficient approaches to IoT anomaly detection. Our proposed solutions, particularly in the areas

of dynamic feature selection and context-aware data augmentation, address these limitations while

advancing the state of the art in the field.

The following chapters will detail our methodology and demonstrate how our approach con-

cretely addresses these challenges.
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Chapter 3

Feature Selection Optimization

This chapter presents a comprehensive approach for optimizing feature selection within the

anomaly detection pipeline for Internet of Things (IoT) network traffic logs. Our goal is to identify

the most effective combinations of preprocessing techniques, feature selection strategies, hyperpa-

rameter tuning methods, and machine learning or deep learning models. By systematically compar-

ing a variety of configurations, this thesis aims to determine which sequences of pipeline steps yield

improved efficiency and accuracy in anomaly detection tasks.

3.1 Approach Overview

Feature selection plays a critical but often underappreciated role in building accurate and effi-

cient anomaly detection models, particularly in complex IoT environments. Traditional practices

may underestimate its value, especially when dealing with deep learning models, which are some-

times thought capable of learning optimal representations directly from raw data. In this study, this

thesis challenges that assumption by explicitly incorporating different feature selection methods and

comparing how they interact with data preparation, data balancing, and hyperparameter tuning.

Our method involves assembling multiple scenarios that vary the order and combination of key

steps:

• Data Preparation (D)

• Feature Selection (F)
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• Data Balancing (B)

• Anomaly Detection (A)

This thesis begins with a fixed starting point—data preparation—and then construct ten scenar-

ios (denoted S0–S9) by altering the presence and order of the other components. This systematic

approach allows us to isolate the individual contributions of each step and to understand the inter-

play among them.

Figure 3.1 illustrates these pipeline configurations. Each scenario is evaluated on multiple IoT

datasets and applied to several machine learning and deep learning models. This comprehensive

experimental design ensures that our conclusions are robust and generalizable across different data

sources and modeling techniques. Ultimately, by comparing the results from all scenarios, this

thesis aims to provide a principled guide for optimizing anomaly detection pipelines in IoT contexts,

improving both performance metrics and computational efficiency.

Figure 3.1: Orderings of anomaly detection pipeline modules across scenarios (S0–S9).

By systematically evaluating these diverse scenarios, this thesis aims to provide a comprehen-

sive understanding of how each step in the anomaly detection pipeline contributes to overall per-

formance. This approach allows for the identification of optimal configurations tailored to spe-

cific datasets and anomaly detection requirements, potentially leading to more robust and efficient

anomaly detection systems in various applications.
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3.1.1 Data Preparation

This thesis utilizes two popular IoT datasets: (i) IoT Aposement 23 (IoT-23) [15] and (ii) CI-

CIoT2023 [14].

• IoT-23 Dataset. The IoT-23 dataset [15] captures network traffic from various IoT devices,

including smart locks, Amazon Echo, and Philips HUE lamps. It consists of over 760 million

packets and 325 million labeled flows, offering a comprehensive range of IoT-related activi-

ties. The dataset includes 20 malware captures and three benign traffic captures, providing a

representative balance of malicious and normal activities. The malware captures encompass

attacks from well-known malware families, such as Mirai, Torii, Trojan, Gagfyt, Kenjiro, and

Okiru, making it particularly valuable for studying various IoT attack vectors. This dataset

was generated in the controlled environment of the Stratosphere Laboratory, part of the Avast

AIC laboratory, ensuring realistic and accurate network conditions. Detailed features in-

cluded in the dataset are source and destination IPs, packet sizes, protocol distributions, and

application-layer protocol predictions, allowing comprehensive analysis and robust testing of

anomaly detection methods.

• CICIoT2023 Dataset. The CICIoT2023 dataset [14] simulates network traffic involving 33

distinct attack across a network of 105 IoT devices, such as IP cameras, smart thermostats, and

home assistants. These attacks are categorized into seven major types, including Distributed

Denial of Service (DDoS), Denial of Service (DoS), Reconnaissance (Recon), Web-based At-

tacks, Spoofing, and Mirai. The dataset was generated in a controlled lab environment, ensur-

ing the accuracy of labels while maintaining realistic conditions for IoT network operations.

This dataset is particularly valuable for its scale and diversity, with millions of records cov-

ering both attack and benign traffic patterns. The inclusion of a wide range of attack types

and device behaviors provides a comprehensive testbed for evaluating anomaly detection sys-

tems. Furthermore, its realistic attack scenarios and detailed traffic features, such as source

and destination IPs, packet sizes, and protocol distributions, enable robust testing of feature

selection, data augmentation, and detection methodologies.

27



Both datasets undergo extensive preprocessing to prepare them for use in anomaly detection

models. This includes handling missing values by replacing or removing incomplete entries to

maintain dataset integrity. Categorical variables, such as protocol types and connection states, are

transformed into numeric formats using techniques like one-hot encoding, ensuring compatibility

with machine learning models. Additionally, numerical features are standardized to a common scale

using methods such as min-max normalization, ensuring consistency across features and mitigating

biases caused by varying feature ranges.

These preprocessing steps are essential for maintaining data quality and consistency, enabling

fair and reliable comparisons across different models and scenarios. By ensuring the datasets are

clean and properly formatted, this thesis lays a strong foundation for evaluating anomaly detection

techniques in diverse IoT network environments.

3.1.2 Feature Selection

This thesis employs various feature selection methods, including χ2, L1, L2, MI, PCA, PSO

[98], RF, SKB, and Trank, as discussed in Section 2.1.2. For filter methods, feature importance is

ranked independently, and features with scores higher than the average are retained for both ML

and DL models, effectively removing noisy and less relevant candidates. This approach provides

an efficient initial screening of features based on their intrinsic properties, without requiring model

training.

The wrapper methods return a subset of features by evaluating feature subsets using the machine

learning algorithm intended for classification. These methods have the potential to capture feature

interactions that filter methods might overlook. However, they can be computationally intensive,

particularly when dealing with large feature sets.

The embedded methods are integrated into the DL models, performing feature selection as part

of the model training process. These methods strike a balance between the computational efficiency

of filter methods and the model-specific optimization provided by wrapper methods.

In addition to employing individual methods, this thesis proposes merging the results of multiple

feature selection techniques, with a focus on wrapper and filter methods, as embedded methods do

not generate an explicit list of selected features. This approach aims to leverage the complementary
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strengths of different selection methods, potentially resulting in more robust and comprehensive

feature sets. The proposed combined feature selection strategies include:

• All Selected Features. It merges all features identified by any selection method, ensuring no

potentially significant feature is overlooked. This approach maximizes feature retention but

may include some less relevant features, requiring careful consideration of potential underfit-

ting risks.

• Common Features. It selects those features chosen by all methods, identifying the core set of

important features. This conservative approach ensures only the most consistently important

features are retained, potentially reducing noise but risking the exclusion of relevant features

identified by only some methods.

• Majority Voting. It leverages collective decisions, selecting features chosen by at least half

of the employed methods. This balanced approach aims to find a middle ground between

inclusivity and selectivity, potentially capturing a broader range of relevant features while

still filtering out less important ones.

• Separate Wrapper and Filter Common Features. It combines commonly selected features

from wrapper and filter methods into two distinct subsets. This approach allows for the com-

parison of features deemed important by different selection paradigms, potentially providing

insights into the strengths and biases of each method type.

• Wrapper and Filter Majority Voting. It applies majority voting separately to wrapper and

filter methods, then combines selected subsets. This method allows for method-specific con-

sensus before combining results, potentially preserving the unique insights of each method

type while still achieving a level of agreement within each category.

These approaches are designed to harness the strengths of various feature selection techniques

while addressing their individual biases and limitations. Combining methods enables the creation of

more robust feature sets, capable of capturing a diverse range of relevant information for anomaly

detection tasks. This has the potential to enhance model performance and improve generalizability

across different datasets and attack types in IoT environments.
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3.1.3 Anomaly Detection

Various deep learning and machine learning models enable robust anomaly identification. This

study uses popular models like AutoEncoder (AE) [99], BERT [100], Isolation Forest (IF) [101],

Neural Network (NN) [99], Convolutional Neural Networks (CNN) [72], and XGBoost [102], each

suited for specific data or anomaly detection tasks. AutoEncoders excel in unsupervised anomaly

detection by learning to reconstruct normal patterns, while BERT captures complex temporal pat-

terns in sequence data. Isolation Forest efficiently detects outliers in high-dimensional spaces, and

Neural Networks, including CNNs, offer flexibility in learning non-linear relationships and spatial-

temporal patterns in network traffic. XGBoost provides a powerful ensemble method, adept at

handling imbalanced datasets and capturing complex feature interactions.

Feature selection techniques are applied to enhance performance by retaining relevant inputs,

potentially improving accuracy and efficiency. This crucial step helps reduce noise, mitigate the

curse of dimensionality, and improve model interpretability. By focusing on the most informative

features, these techniques can reduce computational requirements and potentially improve the mod-

els’ generalization capabilities across different IoT network environments and attack types. The

combination of advanced machine learning models and effective feature selection aims to create a

robust framework for detecting anomalies in the complex and dynamic landscape of IoT network

traffic.

3.1.4 HyperParameter Tuning

This thesis uses a greedy approach for hyperparameter tuning in ML and DL models. It employs

KerasTuner 1 with its Hyperband algorithm [103] to efficiently navigate complex hyperparameter

spaces and identify optimal configurations for the models. This method efficiently explores hyper-

parameter configurations by evaluating many candidates briefly with small epochs and extending

training for promising ones. It uses decision trees to optimize selection, focusing computational

resources on configurations that improve validation metrics for anomaly detection.

The Hyperband algorithm is particularly well-suited for this task as it combines random search
1https://github.com/keras-team/keras-tuner
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with an early-stopping mechanism. This approach allows for a more thorough exploration of the

hyperparameter space compared to traditional grid search methods, while also being more compu-

tationally efficient. By adaptively allocating resources to promising configurations, Hyperband can

quickly identify high-performing hyperparameter sets, even in scenarios with limited computational

resources. This is especially valuable in the context of anomaly detection in IoT networks, where

model performance can be highly sensitive to hyperparameter choices, and the large volume of data

makes exhaustive search methods impractical. The use of this advanced tuning strategy aims to en-

hance the overall performance and generalizability of the anomaly detection models across various

IoT network scenarios and attack types.

3.1.5 Data Balancing

To address class imbalance in anomaly detection datasets, this thesis employs the Synthetic

Minority Oversampling Technique (SMOTE) [104] for up-sampling minority classes. This method

generates synthetic data to enhance diversity and improve model generalization, as recommended

in imbalanced learning for anomaly detection [3].

SMOTE works by creating synthetic examples in the feature space, rather than simply duplicat-

ing existing minority class samples. It operates by selecting a minority class instance and finding its

k-nearest neighbors. New synthetic instances are then created by interpolating between the selected

instance and its neighbors. This approach helps to increase the representation of minority classes

without simply replicating existing data points, which can lead to underfitting. In the context of

IoT network anomaly detection, where attack instances are often far less frequent than normal traf-

fic, SMOTE can help create a more balanced dataset. This balanced representation allows machine

learning models to learn more effectively from both normal and anomalous patterns, potentially

improving their ability to detect rare but critical security events in IoT networks.

3.1.6 Methodology Scenarios

This section presents scenarios used to study the impact of feature selection and data balancing

on anomaly detection performance using machine learning and deep learning models. Figure 3.1

shows evaluation of ten scenarios to find the optimal ordering of key components in the anomaly
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detection pipeline.

(1) Data Flow Baselines (Scenarios S0-S2) These scenarios appraise the inherent capabilities of

the models (S0) prior to incorporating feature selection (S1) or class balancing (S2), evalu-

ated independently to discern their individual contributions. These baseline scenarios provide

a foundation for understanding the performance of raw models and the isolated effects of

feature selection and class balancing.

(2) Feature Selection vs. Balancing Order (Scenarios S3-S4) These scenarios inspect the effi-

cacy of applying data balancing techniques either before (S3) or after (S4) feature selection,

to find the most effective procedural order. This comparison is crucial as the order of these

operations can significantly impact the final feature set and the model’s ability to learn from

balanced data.

(3) Hyperparameter Tuning Integration (Scenarios S5-S7) These scenarios investigates op-

timal tuning placement within the pipeline: with only anomaly detection (S5), after feature

selection (S6), or following data balancing (S7). These scenarios explore how the timing of

hyperparameter optimization affects model performance, considering the interplay between

tuned parameters and the characteristics of the processed data.

(4) End-to-End Integration (Scenarios S8-S9) These scenarios constructs and evaluates com-

prehensive pipelines integrating all components in a sequential order, specifically, data bal-

ancing followed by feature selection and then tuning (S8) versus feature selection succeeded

by data balancing and tuning (S9), to examine their holistic impact. These scenarios repre-

sent full-fledged anomaly detection pipelines, allowing for the assessment of how different

orderings of all components affect overall system performance.

Examining these scenarios facilitates independent and comparative analyses of key factors af-

fecting anomaly detection efficacy in IoT environments. This includes the isolated effects of feature

selection, data balancing, and hyperparameter tuning, as well as their interactions and integration

points. This thesis investigates how these techniques can optimize anomaly detection systems in

cybersecurity contexts. The investigation assesses full end-to-end pipeline ordering to establish best
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practices for configuring high-performance anomaly detection systems tailored to IoT frameworks,

aiming to improve both efficacy and efficiency in identifying anomalies while maintaining accu-

rate normal data characterization. To understand the trade-offs between computational costs and

accuracy benefits, runtime metrics are recorded and analyzed across all scenarios. It is important

to note that all model architectures and all feature selection methods are applied across all scenar-

ios (S0-S9). This comprehensive approach allows for a thorough evaluation of each combination’s

effectiveness in various configurations, providing a robust framework for identifying optimal strate-

gies in IoT anomaly detection.

3.2 Conclusion

This chapter systematically outlines our approach to optimizing feature selection within IoT

anomaly detection pipelines. By evaluating multiple scenarios across datasets and models, we clar-

ify the individual and combined effects of feature selection, data balancing, and hyperparameter

tuning. The comprehensive analysis presented here serves as a practical guide for constructing

effective anomaly detection systems, ultimately contributing to improved IoT security practices.
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Chapter 4

Data Augmentation and Complexity

Analysis

This chapter explores the role of data augmentation in enhancing anomaly detection systems,

particularly in the context of IoT networks. Data augmentation is a technique used to expand and

diversify datasets, with the aim of improving model performance. However, its effectiveness is

closely tied to the characteristics of the dataset being augmented. This chapter focuses on analyzing

the complexity of augmented datasets and investigating their impact on model performance.

4.1 Approach Overview

This thesis aims to identify datasets that can enhance anomaly detection performance when

combined with the original data. A step-by-step process, as illustrated in Figure 4.1, is followed.

Initially, datasets are combined, and the best settings from previous experiments are applied. Sub-

sequently, the complexity of the combined data is calculated, and the selected ML or DL model is

trained on this data. By analyzing the relationship between data complexity and model performance,

this thesis provides recommendations for incorporating new data into the current dataset.
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Figure 4.1: Process flow of the data augmentation.

4.1.1 Combine Datasets and Complexity Metrics Calculation

This thesis begins the experiment by combining various datasets into a single dataset, with the

objective of creating a comprehensive pool of data that encapsulates diverse characteristics and

patterns. The combined dataset undergoes an assessment using data complexity approaches as de-

scribed in Section 2.1.4, such as Misclassification Complexity Measure (CM), Entropy of Class

Proportions (C1), Maximum Fisher’s Discriminant Ratio (F1), and Error Rate of Linear Classifier

(L2). Following the evaluation of data complexity, the selected ML or DL model from the experi-

ments is trained to identify the best-performing model and scenario.

4.1.2 Correlation Measurement

Determining the correlation between the performance indicators of the anomaly detection model

and the complexity of the data is a critical phase in the process. To establish this link, statistical

correlation approaches such as Pearson [105], Kendall’s Tau [106], Spearman’s Rank [107], Point

Biserial [108], and (MIC) [109]methods are employed, which are explained as follows:

• Pearson Correlation. Measures the linear relationship between two continuous variables by

evaluating how changes in one variable are associated with changes in another. It assumes a

linear relationship and is sensitive to outliers [105].

• Kendall’s Tau. A non-parametric method that assesses the strength and direction of the
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relationship between two variables by comparing the concordant and discordant pairs of data

points. It is particularly effective for ordinal data [106].

• Spearman’s Rank Correlation. A non-parametric technique that evaluates the monotonic

relationship between two variables by ranking the data. It is robust to outliers and useful when

variables do not meet the assumptions of linearity [107].

• Point Biserial Correlation. A method that assesses the relationship between a binary vari-

able (e.g., categorical data) and a continuous variable. It is commonly used when analyzing

datasets with mixed data types [108].

• Maximal Information Coefficient (MIC). A versatile method that identifies both linear and

non-linear associations between variables. It is particularly effective for detecting complex

and non-linear relationships that other methods may miss [109].

Each of the selected methods is tailored to capture specific types of relationships, providing a

comprehensive understanding of how data complexity correlates with model performance in IoT

anomaly detection scenarios. This multi-faceted analysis ensures a robust interpretation of the data,

enabling deeper insights into the factors that influence detection outcomes.

Several performance metrics are used in this analysis, such as g-mean, F1-Score, F1-macro,

F1-micro, recall, and precision. These metrics are specifically chosen to evaluate the effectiveness

of anomaly detection systems, particularly for imbalanced datasets, where a balanced performance

across classes is helpful. The details of how these metrics are computed and their relevance to IoT

anomaly detection are presented in Section 5.1.2.

In conclusion, the developed methodology offers a structured framework for tailoring anomaly

detection systems to the specific requirements of IoT network traffic logs. By incorporating com-

prehensive correlation analyses between data complexity and diverse performance metrics, this ap-

proach enables the development of more robust and adaptable anomaly detection systems. Under-

standing these relationships allows practitioners to make informed decisions regarding data pre-

processing, feature selection, and model configuration, ultimately enhancing the effectiveness of

security measures in IoT environments.
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4.2 Conclusion

This chapter has outlined the role of data augmentation in anomaly detection and introduced the

methodological framework for assessing its impact. By combining datasets, analyzing complexity,

and exploring the relationship between complexity metrics and performance outcomes, AMETIS

[18] provides the foundation for evaluating the effectiveness of augmentation strategies. The in-

sights gained from this analysis will be presented in the evaluation chapter.
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Chapter 5

Experimental Result

In this chapter, a detailed evaluation of the proposed solution is presented. The effects of data

augmentation, feature selection, data imbalance, and hyperparameter tuning on various evaluation

metrics are analyzed.

5.1 Experimental Setup

To ensure robustness and reliability of our results, we implement a rigorous validation process.

All experiments were run three times, and the average results were used in our analysis.

5.1.1 Hardware and Software

Our experimental setup was orchestrated on a server running Linux version 7.9 (Nitrogen) with

kernel version 3.10.0-1160.95.1.el7.x86_64, powered by an AMD Opteron (tm) Processor 6180 SE.

This thesis integrated a comprehensive suite of specialized libraries to tackle the complexity of

the experiments and ensure thoroughness in the analyses. This ensemble included:

• imbalanced-learn (v0.10.1)[110] to address class imbalance issues,

• keras (v2.13.1)[111] alongside tensorflow (v2.13.0)[112] for the development of deep learn-

ing architectures,

• pandas[113] for data manipulation and preprocessing,
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• numpy[114] for numerical computations and array processing,

• scikit-learn (v1.2.0)[115] for machine learning algorithms and preprocessing utilities,

• matplotlib[116] for creating visualizations,

• BorutaPy[117] for feature selection using the Boruta method,

• mlxtend[118] for sequential forward and backward feature selection methods,

• ReliefF[119] for feature scoring based on instance-based learning,

• XGBoost[102] for feature selection and classification using gradient boosting,

• SMOTE (Synthetic Minority Over-sampling Technique)[104] for handling class imbalance by

generating synthetic samples.

By integrating these libraries and methods, this thesis enabled robust feature selection, data

augmentation, model optimization, and evaluation, ensuring a thorough and accurate analysis of the

proposed anomaly detection systems.

5.1.2 Evaluation Metrics

This thesis employs multiple evaluation metrics to provide a comprehensive view of model

effectiveness, specifically for imbalanced data. The metrics used are as follows:

Precision

Precision measures the proportion of true positives among predicted positives, providing insight

into the accuracy of positive predictions [120]:

Precision =
TP

TP + FP

Recall

Recall measures the proportion of actual positives correctly identified by the model, highlighting

its ability to detect all positive instances:

39



Recall =
TP

TP + FN

F1-Score

The F1-Score provides a harmonic mean of precision and recall, capturing the balance between

avoiding false positives and detecting true positives [121]:

F1-Score = 2 · Precision · Recall
Precision + Recall

F1-Macro

The F1-Macro metric represents the unweighted average of the F1-Scores across all classes,

giving equal importance to each class, regardless of its frequency:

F1-macro =
1

C

C∑︂
i=1

F1i

F1-Micro

The F1-Micro aggregates contributions from all classes to compute the global F1-Score, offering

a holistic measure of model performance [122]:

F1-micro =
2 ·

∑︁C
i=1 TPi

2 ·
∑︁C

i=1 TPi +
∑︁C

i=1 FPi +
∑︁C

i=1 FNi

G-Mean

The G-Mean assesses the balance between the model’s performance on positive and negative

classes, making it crucial for imbalanced datasets [123]:

g-mean =
√

TPR · TNR

Where:

TPR =
TP

TP + FN
, TNR =

TN

TN + FP
.
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Importance of Metrics

These metrics are particularly important in the context of anomaly detection, where false pos-

itives can trigger unnecessary alerts, and false negatives can allow critical security breaches to go

undetected. By utilizing this diverse set of metrics, this thesis provides a nuanced understanding

of model performance, going beyond simple accuracy measures. This approach enables a thorough

evaluation of the proposed anomaly detection system’s effectiveness, particularly in addressing the

challenges posed by class imbalance and detecting rare but critical events.

5.2 Dataset

For the experimental evaluation of the proposed anomaly detection framework, two widely rec-

ognized IoT network datasets, IoT-23 [15] and CICIoT2023 [14], are utilized. To ensure a structured

and consistent approach, selected dataset subsets are assigned standardized identifiers (DS1 – DS5),

allowing for clear reference throughout the results analysis.

The IoT-23 dataset was selected due to its comprehensive coverage of various IoT malware fam-

ilies and benign traffic, making it highly relevant for evaluating anomaly detection models. Given its

detailed network flow-level data, it enables fine-grained feature engineering and facilitates the appli-

cation of feature selection and anomaly detection techniques. The dataset also presents significant

class imbalance, making it suitable for testing data augmentation and balancing strategies.

IoT-23 Dataset Subsets

The IoT-23 dataset [15], developed by the Stratosphere Laboratory, is a comprehensive bench-

mark dataset for IoT security research. It contains labeled network traffic flows collected from a

wide range of IoT devices, including smart cameras, intelligent lighting systems, smart speakers,

home automation hubs, and more. The dataset includes 20 malware captures executed on different

IoT devices, as well as 3 benign captures of real IoT device traffic, such as from a Philips HUE

smart LED lamp, an Amazon Echo personal assistant, and a Somfy smart door lock. This provides

a detailed representation of both benign and malicious network activities, offering valuable insights

for anomaly detection model evaluation.
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The dataset comprises approximately 325 million labeled network flows, covering a wide range

of IoT-related activities. The total dataset size exceeds 20 million packets, captured across 23 dif-

ferent scenarios. Each scenario represents a specific combination of IoT devices and cyberattacks,

ensuring a diverse evaluation framework. The network traffic is recorded in packet capture (PCAP)

format, accompanied by extracted flow-based features in CSV format, facilitating its integration

into machine learning pipelines.

IoT-23 encompasses a broad spectrum of attack types, including botnet activity, distributed

denial-of-service (DDoS) attacks, and malware propagation. The dataset contains traces of Mirai,

Torii, and Okiru botnet infections, which target IoT vulnerabilities to compromise devices and estab-

lish large-scale attack infrastructures. Additionally, it includes denial-of-service attacks designed to

exhaust device resources and render them inoperable. The dataset also captures man-in-the-middle

(MITM) attacks, where adversaries intercept communications between IoT devices to manipulate

or eavesdrop on data transmission. Other attack vectors include reconnaissance activities, where

adversaries probe IoT networks for exploitable weaknesses, and data exfiltration attempts, which

focus on unauthorized access and information theft.

The dataset is structured with detailed features, including packet size distributions, TCP flag

counts, entropy measures, and inter-arrival times. It also includes flow-level metadata, such as con-

nection durations and byte-per-second rates. Given the dataset’s diverse attack vectors and device

types, specific subsets are selected to provide representative test scenarios.

The selection of subsets from the IoT-23 dataset was based on the need to ensure diversity in

attack types, traffic distributions, and dataset sizes for a comprehensive evaluation of the anomaly

detection framework. DS1 (Subset 8-1) was chosen for its mix of benign and attack traffic, making

it a representative sample of real-world IoT environments. DS2 (Subset 20-1) was selected due

to its higher proportion of benign traffic (21%), providing a more balanced scenario for assessing

detection performance. DS3 (Subset 3-1) was included primarily for its larger size, ensuring that

the model is tested on a dataset with a greater volume of traffic, which is essential for evaluating

scalability and robustness.

For consistent evaluation across all experiments, Subset 34-1 serves as the static test dataset,

allowing for a fair assessment of model generalization on unseen data. Additionally, in the data
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augmentation experiments, Subset 42-1 and Subset 1-1 were incorporated to introduce additional

network traffic variability and attack scenarios. Their inclusion allows for an analysis of how ex-

panding the training data influences model performance and enhances anomaly detection capabili-

ties. These subsets were chosen to provide a structured yet diverse experimental setup, ensuring a

thorough assessment of the proposed framework.

The Subsets of CICIoT2023 Dataset

The CICIoT2023 dataset [14], developed by the Canadian Institute for Cybersecurity (CIC), is

one of the most extensive datasets designed for IoT anomaly detection. It captures network traffic

from 105 different IoT devices, encompassing various categories such as consumer electronics,

industrial IoT systems, medical devices, and smart home assistants. The dataset is structured to

simulate real-world cybersecurity incidents by including both benign and malicious traffic, allowing

for a rigorous evaluation of intrusion detection frameworks.

The CICIoT2023 dataset contains over 100 million network flow records and it includes traffic

logs collected over multiple weeks, ensuring that temporal variations and evolving attack strategies

are captured. The recorded network flows provide a balanced mix of normal device communications

and malicious activities, enabling a thorough assessment of anomaly detection models.

A distinguishing feature of the CICIoT2023 dataset is its extensive coverage of attack types,

which are categorized into seven major groups. The dataset includes distributed denial-of-service

(DDoS) attacks, where large volumes of traffic are directed at IoT devices to disrupt their avail-

ability. It also contains traditional denial-of-service (DoS) attacks that exploit vulnerabilities in

communication protocols to degrade device performance. Another significant attack category is re-

connaissance, which involves network scanning and fingerprinting techniques used by adversaries

to identify vulnerable IoT devices. Web-based attacks, such as SQL injection and cross-site script-

ing (XSS), are also present, simulating real-world threats targeting IoT web interfaces. Brute-force

attacks are included, representing scenarios where automated tools attempt unauthorized logins us-

ing credential stuffing or dictionary attacks. The dataset further incorporates spoofing and evasion

attacks, where adversaries manipulate source addresses and communication patterns to bypass secu-

rity defenses. Additionally, botnet infections such as Mirai and Gafgyt are recorded, demonstrating
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how IoT devices can be co-opted for large-scale coordinated cyberattacks.

The dataset is structured using flow-based traffic analysis, leveraging the CICFlowMeter tool

to extract statistical attributes from network packets. It provides a wide range of features, includ-

ing flow duration, packet inter-arrival times, byte-per-second transmission rates, and entropy-based

measures for assessing randomness in traffic patterns. Furthermore, it includes TCP/IP header at-

tributes such as flag counts, protocol distributions, and source-destination correlations. The dataset

is available in pre-processed CSV files, making it suitable for direct integration into machine learn-

ing and deep learning models.

By incorporating the CICIoT2023 dataset into the evaluation framework, this study ensures

that the proposed anomaly detection models are tested against a diverse set of real-world attack

scenarios. The dataset’s inclusion allows for a comparative assessment of detection performance

under different network conditions, providing valuable insights into the adaptability and scalability

of the developed framework.

To evaluate model performance under different network conditions, two subsets of CICIoT2023

dataset is included in the experiments to complement IoT-23 by providing additional diversity in

attack scenarios and network conditions. To ensure a balanced evaluation, two subsets were se-

lected based on their size and representational value. DS4 (Smallest Subset) was chosen to assess

model performance in low-data environments, which is essential for understanding how well the

framework operates with limited training samples—a scenario often encountered in real-world IoT

deployments. In contrast, DS5 (Largest Subset) was selected due to its extensive traffic volume, al-

lowing for an evaluation of scalability and the model’s ability to handle high-volume network data.

These subsets were strategically included to examine how dataset size impacts detection accuracy,

training efficiency, and the framework’s adaptability across different data availability scenarios.

Justification for Dataset Naming

The standardized naming convention (DS1 – DS5) is introduced to:

• Ensure clarity and consistency in experimental result discussions.

• Provide a structured reference for subset comparisons across different models.
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• Facilitate reproducibility by allowing precise identification of dataset configurations.

By using this naming scheme, experimental evaluations remain organized, ensuring that dataset

selection and its impact on anomaly detection results are effectively analyzed.

5.3 Finding the Best Model and Scenario

Analyzing the impact of feature selection, data balancing and hyperparameter tuning across dif-

ferent scenarios reveals some consistent patterns in the effects on model performance. By comparing

scenarios, we observe both positive and negative impacts of modules on models.

Feature selection methods significantly enhanced the performance of deep learning models

across various datasets. This improvement demonstrates the critical role of feature selection in

optimizing model performance, particularly in the complex domain of IoT network traffic analysis.

The dramatic improvements observed suggest that many features in the original datasets may be

redundant or irrelevant for anomaly detection tasks, and their removal allows models to focus on

the most informative aspects of the data.

CNNs exhibited remarkable improvements, with F1-scores increasing from 16% to 99% using

χ2 and PCA in DS1, and from 61.33% to 98% using Random Forest (RF) in DS5. These substantial

gains highlight the effectiveness of feature selection in enhancing CNN performance, particularly

when combined with methods that can capture both linear (PCA) and non-linear (RF) relationships

in the data.

NN models also demonstrated substantial enhancements, particularly with the Trank method

boosting F1-scores from 43% to 99.39% in DS1, and RF improving from 1% to 99.47% in DS3.

The dramatic improvement in DS3 suggests that the original feature set may have been particularly

noisy or irrelevant for this dataset, and feature selection was crucial for enabling the NN to learn

meaningful patterns.

BERT models performed consistently well across all datasets, with F1-scores in DS1 rising

from 94.81% to 98-99% using various methods. The high initial performance of BERT models sug-

gests their robustness in handling complex, high-dimensional data, with feature selection providing

incremental but consistent improvements.
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Autoencoder (AE) models, while already performing well in DS1, DS2, and DS3, showed im-

provements with PCA and Mutual Information (MI) in DS4 and DS5. This indicates that even for

models designed to learn efficient representations of the data, explicit feature selection can still

provide benefits, especially on more complex datasets.

In summary, this thesis’ findings underscore the importance of tailoring feature selection tech-

niques to specific learning algorithms and datasets for optimal performance. The most effective fea-

ture selection approach can vary across different model architectures and datasets, highlighting the

need for a flexible, adaptive approach to feature selection in IoT anomaly detection systems. This

variability also suggests that ensemble methods combining multiple feature selection techniques

might be a promising direction for future research, potentially offering more robust and consistent

performance across diverse IoT network scenarios.

5.3.1 Impacts of Individual Feature Selection Methods

This set of experiments is to evaluate the effects of different feature selection methods on our

models. Examining scenarios S0 and S1 across different datasets Figures(5.1, 5.2, 5.3, 5.4, 5.5)

reveals significant positive effects of feature selection on DL models. For instance, CNN models

show significant improvements, with F1-scores increasing from 16% to 99% using χ2 and PCA in

DS1, and from 61.33% to 98% using RF in DS5. NN models also face big changes, particularly

with the trank method boosting F1-scores from 43% to 99.39% in DS1, and RF improving from

1% to 99.47% in DS3. BERT models perform consistently across all datasets, with F1-scores rising

from 94.81% to 98-99% in DS1 using various methods, often coupled with reduced training times of

more than 50% (e.g., from over 200 minutes to 50 minutes). AE models, while already performing

well in DS1, DS2, and DS3, show improvements with PCA and MI in DS4 and DS5. These results

underscore the potential of feature selection to enhance DL model performance in anomaly detection

tasks.

Among machine learning models, XGBoost shows a significant improvement on the DS1, DS3

and DS4 datasets, where the F1-Score increased from 38.15% to 93.41% using the χ2 feature selec-

tion method.
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Figure 5.1: F1-score vs. total training time for dataset DS1 across scenarios S0 and S1.

Figure 5.2: F1-score vs. total training time for dataset DS2 across scenarios S0 and S1.

Figure 5.3: F1-score vs. total training time for dataset DS3 across scenarios S0 and S1.
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Figure 5.4: F1-score vs. total training time for dataset DS4 across scenarios S0 and S1.

Figure 5.5: F1-score vs. total training time for dataset DS5 across scenarios S0 and S1.

5.3.2 Impacts of Feature Selection and Data Balancing

The interplay between feature selection and data balancing significantly impacts the perfor-

mance of anomaly detection models. Comparing scenarios S0 (baseline), S3 (balancing before

feature selection), and S4 (balancing after feature selection) reveals notable insights. The results

for S0 vs. S3 are shown in Figures 5.6, 5.7, 5.8, 5.9, and 5.10, while the results for S0 vs. S4 are

presented in Figures 5.11, 5.12, 5.13, 5.14, and 5.15.

Comparing scenarios where feature selection is applied before (S3) and after (S4) data balancing

revealed further insights. In DS4, the CNN model improved from 60% to 98% when feature selec-

tion (using MI, PSO, SKB, and RF) was applied after balancing. Similarly, in DS1, the AE model
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increased from 50% to 95% with PCA applied after balancing. These results highlight that the

optimal approach depends on dataset characteristics and computational constraints. Notably, PCA

emerged as a consistently effective method across various scenarios and datasets, underscoring its

robustness in enhancing model performance for anomaly detection tasks.

Across various datasets, CNN models showed substantial improvements, with F1-scores in-

creasing from 16% to 70% using PCA in DS1, and from 37.21% to 98.24% using MI, RF, and SKB

in DS2. NN models demonstrated even more dramatic enhancements, particularly in DS3, where

the F1-score rose from 1% to 99% using RF. AE models also benefited, with F1-scores in DS4

improving from 50% to 95% using PCA.

Figure 5.6: F1-score vs. total training time for dataset DS1 across scenarios S0 and S3.

Figure 5.7: F1-score vs. total training time for dataset DS2 across scenarios S0 and S3.
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Figure 5.8: F1-score vs. total training time for dataset DS3 across scenarios S0 and S3.

Figure 5.9: F1-score vs. total training time for dataset DS4 across scenarios S0 and S3.

Figure 5.10: F1-score vs. total training time for dataset DS5 across scenarios S0 and S3.
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Figure 5.11: F1-score vs. total training time for dataset DS1 across scenarios S0 and S4.

Figure 5.12: F1-score vs. total training time for dataset DS2 across scenarios S0 and S4.

Figure 5.13: F1-score vs. total training time for dataset DS3 across scenarios S0 and S4.
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Figure 5.14: F1-score vs. total training time for dataset DS4 across scenarios S0 and S4.

Figure 5.15: F1-score vs. total training time for dataset DS5 across scenarios S0 and S4.

5.3.3 Impact of Hyperparameters

As shown in Figures 5.16–5.20, the effects of hyperparameter tuning on feature selection are

analyzed by comparing scenarios S5 and S6. The results demonstrate varying impacts on model

performance, emphasizing the intricate relationship between hyperparameter tuning and feature se-

lection in IoT anomaly detection.

In DS1, the CNN model experiences a dramatic increase in F1-Score with various feature selec-

tion methods in S6 (e.g., from 13.33% to 98.33% with χ2). This substantial improvement suggests

that the combination of appropriate feature selection and optimized hyperparameters can unlock

the full potential of CNNs for anomaly detection in this dataset. The effectiveness of χ2 in this
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case indicates that linear relationships between features and target variables play a crucial role in

distinguishing anomalies in DS1.

In DS2, the AE model demonstrates a positive impact of combined hyperparameter tuning and

feature selection, with the F1-score increasing to 99.51% using PSO, SKB, and RF feature selection

in S6. This result underscores the synergistic effect of these techniques, where the autoencoder’s

ability to learn efficient data representations is enhanced by both careful feature selection and op-

timized model parameters. The combination of PSO, SKB, and RF suggests that a multi-faceted

approach to feature selection, incorporating both wrapper and filter methods, can be particularly

effective for complex datasets.

In DS3, the CNN model with PSO and RF faces a substantial increase in F1-Score from 42.40%

to 99.56% in S6. This improvement highlights the potential of evolutionary algorithms (PSO) and

ensemble methods (RF) in identifying relevant features for CNNs, especially when combined with

hyperparameter optimization. The significant performance gain suggests that DS3 may contain

complex, non-linear relationships that are best captured by this combination of techniques.

For ML models, IF with χ2 feature selection shows improvement, with the F1-score increasing

from 38.15% to 93.41% in S6 for DS1. This result demonstrates that even for inherently robust

models like Isolation Forest, the combination of appropriate feature selection and hyperparameter

tuning can lead to substantial performance gains. The effectiveness of χ2 in this case suggests that

linear feature relevance is important for anomaly detection in DS1, even for tree-based models.

These results suggest that the combination of hyperparameter tuning and feature selection can

significantly enhance model performance, but the effectiveness varies across different models and

datasets. This variability underscores the importance of a flexible, adaptive approach to anomaly

detection in IoT networks.
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Figure 5.16: F1-score vs. total training time for dataset DS1 across scenarios S5 and S6.

Figure 5.17: F1-score vs. total training time for dataset DS2 across scenarios S5 and S6.

Figure 5.18: F1-score vs. total training time for dataset DS3 across scenarios S5 and S6.
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Figure 5.19: F1-score vs. total training time for dataset DS4 across scenarios S5 and S6.

Figure 5.20: F1-score vs. total training time for dataset DS5 across scenarios S5 and S6.

5.3.4 Best Model and Scenario Selection

The evaluation reveals that optimal strategies for anomaly detection systems vary significantly

based on data and model characteristics. The BERT model with trank feature selection (scenario S8)

achieves 99.70% F1-Score in 60 seconds for DS1, while the AE model using Mutual Information

(scenario S4) attains 99.50% F1-Score in 1,727 seconds for DS2. The CNN model with MI feature

selection (scenario S1) performs well on the largest dataset (DS3), achieving 99.50% F1-Score.

MI and RF feature selection methods consistently enhance performance across multiple models

and datasets. The order of applying feature selection and data balancing significantly impacts per-

formance, with post-balancing feature selection often yielding better results. Table 5.1 presents the
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top five combinations, balancing performance and computational efficiency across diverse datasets.

These findings quantify the differences in model-feature-data interactions, providing practitioners

with valuable insights for optimizing anomaly detection systems in specific use cases.

Dataset Model
Feature

Selection
Scenario F1-Score F1-Macro Total Time (s)

DS1 BERT trank S8 0.997 0.989 60.138

DS2 AE MI S4 0.995 0.984 1727.421

DS4 XGBoost MI S3 0.996 0.996 184.534

DS2 IF RF S1 0.996 0.985 1.923

DS3 CNN MI S1 0.995 0.984 1727.421

Table 5.1: Top-5 model and scenarios.

5.4 Impact of Data Augmentation

We analyze the impact of data augmentation on model performance using various dataset com-

binations from the IoT-23 collection. As shown in Figure 5.21, the G-Mean metric fluctuates as

more datasets are incrementally added, indicating that the effects of augmentation can vary sig-

nificantly. This variability underscores the complex nature of data augmentation in IoT anomaly

detection, where the introduction of additional data does not always lead to uniform improvements

in model performance.

While augmentation helps balance sensitivity and specificity, its benefits are not universal across

all scenarios. This observation highlights the need for careful consideration when applying data

augmentation techniques in IoT security contexts. The fluctuations in G-Mean suggest that aug-

mentation can sometimes improve the model’s ability to detect anomalies without compromising

its performance on normal traffic, but this balance is not consistently achieved across all dataset
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combinations.

Correlation
Function Metric Complexity

Measure Correlation Model Scenario
(Si)

Feature
Selection

Pearson G-Mean F1 -0.66 CNN S1 Chi2

Spearman G-Mean F1 -0.67 CNN S1 Chi2

Spearman F1-Score F1 -0.69 CNN S1 Chi2

Pearson F1-Score C1 -0.70 CNN S1 Chi2

Spearman F1-Macro F1 -0.69 CNN S1 Chi2

Pearson F1-Macro C1 -0.75 CNN S1 Chi2

Spearman G-Mean F1 -0.53 AE S4 PCA

MIC F1-Score F1 0.79 NN S1 trank

MIC G-Mean C1 0.80 CNN S1 Chi2

MIC G-Mean F1 0.93 NN S4 MI

MIC F1-Score L2 0.63 XGBoost S1 -

Table 5.2: Metrics and complexity measures correlations.

Table 5.2 highlights strong positive correlations, particularly for NN and CNN models, be-

tween MIC and performance metrics, suggesting that MIC could be a useful indicator of model

performance under data augmentation. The Maximal Information Coefficient (MIC) appears to cap-

ture non-linear relationships between data complexity and model performance that other correlation

measures might miss. This finding could be particularly valuable for developing automated systems

to assess the potential effectiveness of data augmentation strategies in IoT anomaly detection.

However, other correlation measures, such as Pearson and Spearman, show that increased data

complexity might negatively affect metrics like F1-Macro and G-Mean, especially in CNN models.

This discrepancy between correlation measures reveals the multifaceted nature of the relationship

between data complexity and model performance. The negative correlations observed with Pear-

son and Spearman suggest that simple linear relationships do not fully capture the impact of data

augmentation on model performance.
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This indicates that while data augmentation can enhance model performance, it may also in-

troduce complexity that hinders results under certain conditions. The potential for augmentation to

introduce complexity that negatively impacts performance is a crucial consideration in IoT anomaly

detection, where the ability to quickly and accurately identify threats is paramount. This finding un-

derscores the need for careful evaluation of augmentation strategies to ensure they enhance, rather

than hinder, model performance.

Figure 5.21: Correlation between data complexity and G-Mean.

Future research should focus on understanding these dynamics more clearly and identifying the

optimal conditions for using data augmentation effectively. This could involve developing more

sophisticated metrics for assessing data complexity in the context of IoT network traffic, as well

as exploring adaptive augmentation techniques that can adjust based on the characteristics of the

existing dataset and the specific requirements of the anomaly detection task. Additionally, investi-

gating the relationship between data complexity measures and specific types of IoT attacks could

provide valuable insights for tailoring augmentation strategies to improve detection of particular

threat categories.

5.5 Impacts of Combined Feature Selection Methods

The results of this thesis reveal that combined feature selection methods do not exhibit a consis-

tent impact when applied across models, scenarios, and datasets. In some cases, they significantly

enhance performance (e.g., majority voting in DS2 improved F1-score from 30% to over 95%).

However, effectiveness varies widely, with some combinations yielding substantial improvements
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while others show negligible or negative impacts. This variability highlights the dataset-specific

nature of feature selection effectiveness and suggests that the optimal combination of feature selec-

tion methods may depend on the underlying characteristics of the data, the specific anomalies being

detected, and the chosen model architecture.

Computational cost emerges as a critical factor, sometimes outweighing performance gains.

For example, BERT on DS5 achieved 99% F1-Score with RF feature selection in 39 minutes, but

performance decreased when applying all feature selections, taking 134 minutes. This variability

emphasizes the need for case-by-case evaluation, considering both performance and computational

efficiency for specific datasets and models. It suggests that an adaptive approach, potentially in-

corporating automated feature selection method choice based on dataset characteristics and model

performance, could be more effective in IoT anomaly detection systems. Future research could

focus on developing frameworks for automatically selecting the most appropriate combination of

feature selection methods and exploring techniques to reduce the computational cost of combined

approaches.

5.6 AMETIS Framework

Based on our methodological approach, we develop AMETIS [18] (named after Athena and

Metis, the symbols of deep and strategic decision-making), a framework that implements our

methodology for evaluating and optimizing IoT anomaly detection systems. AMETIS provides

a systematic way to assess different combinations of features, models, and configurations.

The term framework is used to describe AMETIS because it provides a structured, modular, and

adaptable approach for evaluating and optimizing anomaly detection models for IoT security. A

framework, in the context of machine learning and cybersecurity, is defined as a set of systematic

procedures, tools, and methodologies that guide the development and evaluation of solutions in a

specific domain [124, 125].

AMETIS qualifies as a framework due to the following characteristics:

• Modular Design. AMETIS is built with distinct components for data preprocessing, feature

selection, data balancing, model evaluation, and hyperparameter tuning. Each component can
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be customized or replaced, allowing flexibility in anomaly detection experiments.

• Adaptability and Extensibility. The framework is designed to be easily applied to different

datasets without requiring fundamental changes to its architecture. Users can input their own

datasets by adapting the provided interfaces and scripts. The modular nature of AMETIS

ensures that adapting it to various data distributions or new datasets do not require major

code alterations or architectural changes. It evaluates multiple machine learning and deep

learning models, making it suitable for diverse security environments. New feature selection

methods or anomaly detection algorithms can be integrated without major modifications to

the core structure.

• Automated Empirical Recommendations. AMETIS evaluates different models and sce-

narios through various combinations of feature selection, data augmentation, hyperparameter

tuning, and data balancing. Based on these empirical experiments, AMETIS can suggest

which modules should be applied and in what order to optimize performance. This capabil-

ity helps users optimize anomaly detection configurations through systematic, scenario-based

evaluations rather than purely dataset-driven predefined assumptions.

• Systematic Evaluation Process. AMETIS implements a structured pipeline for comparing

different anomaly detection models under multiple experimental scenarios. This ensures that

feature selection methods and data augmentation strategies can be objectively assessed across

datasets.

• Reproducibility and Open-source Availability. The framework is implemented with well-

documented configurations, allowing other researchers to replicate experiments or extend its

functionality [126].

Given these characteristics, AMETIS functions as more than a small-scale test or individual

model evaluation tool—it provides a structured methodology for optimizing IoT anomaly detec-

tion, making the term framework appropriate. However, if further expansion is needed to include

additional automation or real-time integration, future iterations could refine its scope to better align

with industrial frameworks used in production environments.
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5.6.1 Extensibility

AMETIS is designed to be extensible, allowing:

• Integration of new models

• Addition of custom evaluation metrics

• Support for different dataset formats

• Custom experimental scenarios

The source code and documentation for AMETIS are available in our public repository1, en-

abling reproducibility and extension of our work.

5.7 Automated Machine Learning (AutoML)

AutoML has gained significant attention as a methodology for automating various aspects of

machine learning model development, including hyperparameter optimization, feature engineering,

model selection, and pipeline configuration [127–129]. By systematically exploring a wide range

of configurations, AutoML frameworks such as Google AutoML [130], AutoKeras [131], H2O Au-

toML [132], and TPOT [133] aim to minimize the need for manual intervention, thus making ma-

chine learning more accessible to non-experts while optimizing model performance.

Despite its advantages, AutoML was not incorporated into this study for several reasons. First,

AutoML solutions tend to operate as black-box systems, offering limited interpretability of the

decision-making process [134]. Given the importance of explainability in IoT anomaly detection,

particularly for security applications where transparency is crucial, a more structured and inter-

pretable approach was preferred. Unlike AutoML, our proposed framework allows researchers to

explicitly analyze the impact of different feature selection methods, hyperparameter settings, and

data augmentation strategies on model performance.

Second, AutoML frameworks typically prioritize model accuracy over computational efficiency,
1https://github.com/OCyberLab/Ametis
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often requiring substantial computational resources and prolonged execution times [135]. In con-

trast, our study systematically optimizes feature selection and hyperparameter tuning while main-

taining computational feasibility, ensuring that models remain practical for IoT anomaly detection.

Moreover, AutoML does not inherently evaluate the impact of data augmentation and data com-

plexity metrics, which are central to our research. While some frameworks offer feature selection

capabilities, they do not explicitly assess whether data augmentation enhances or degrades model

performance. Our study provides a systematic investigation of when and how data augmentation

should be applied, ensuring that it does not introduce unnecessary noise or computational overhead.

By explicitly designing a framework that evaluates feature selection, data balancing, and aug-

mentation strategies within a structured pipeline, our approach provides deeper insights into the

effectiveness of various machine learning techniques. This level of customization and interpretabil-

ity is not readily available in existing AutoML solutions, making our framework a more suitable

choice for IoT anomaly detection.
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Chapter 6

Discussion and Conclusion

In this chapter, we analyze the proposed approach’s applicability, strengths, limitations, and

broader implications in the context of anomaly detection. The widespread adoption of deep learn-

ing techniques for anomaly detection frequently relies on assumptions, such as deep learning mod-

els’ inherent capability to bypass explicit feature selection and the belief that more augmented data

consistently improves model performance. However, this research systematically revisits and chal-

lenges these assumptions, providing empirical evidence that blind reliance on these principles may

not always yield optimal outcomes.

This research fundamentally advances our understanding of IoT security optimization through

a systematic investigation of the interplay between feature selection, data augmentation, and model

architecture. To address the complexity of optimizing anomaly detection systems, we developed

the AMETIS framework. AMETIS offers practitioners a flexible, adaptive solution for customizing

anomaly detection systems according to specific IoT network traffic log requirements. By selec-

tively configuring features, models, hyperparameters, balanced data, and augmented data, AMETIS

effectively addresses the observed variability across different IoT scenarios.

Evaluations conducts on two large real-world IoT datasets—CICIoT2023 and IoT-23, demon-

strate the framework’s efficacy in enhancing anomaly detection performance across various deep

learning and machine learning models. For example, applying appropriate feature selection tech-

niques significantly improves CNN performance, with F1-scores increasing up to 99% using χ2
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and PCA methods on certain datasets. These outcomes underscore the importance of tailoring fea-

ture selection strategies to specific model architectures and datasets, rather than applying a generic

solution.

Moreover, the sequence of feature selection and data balancing emerges as a critical determi-

nant of performance. Specifically, performing feature selection after data balancing consistently

produces superior results, highlighting the necessity for an integrated, holistic approach to prepro-

cessing rather than treating these processes independently.

Computational efficiency was another significant factor. Notably, BERT models demonstrates

substantial efficiency improvements, reducing training time by over 50% while simultaneously en-

hancing F1-scores. This underscores the importance of balancing performance gains with compu-

tational resource considerations.

Despite these encouraging results, certain limitations remain. The current research primarily

evaluates performance using two specific datasets, potentially limiting the generalizability of the

findings. Furthermore, generative models, which have shown promise in related domains, have not

yet been integrated into AMETIS.

Future research efforts will aim to overcome these limitations by incorporating generative mod-

els into the framework, conducting real-world validations, and extending evaluations across diverse

datasets. These enhancements are expected to strengthen AMETIS’s applicability and provide more

precise metrics for data augmentation decisions, further bolstering its utility for anomaly detections.

In conclusion, this study highlights the inherent complexities involves in optimizing anomaly

detection systems and challenges prevalent assumptions within the field. By providing a robust,

data-driven, and flexible approach to model configuration, the AMETIS framework represents a

significant step forward, offering practical and theoretical contributions to the effective and efficient

implementation of anomaly detection systems.

6.1 Broader Impact

The implications of our findings extend far beyond immediate technical improvements. Our re-

search challenges fundamental assumptions about deep learning applications, suggesting a need to
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reevaluate current approaches to system design. The demonstrated importance of feature selection

timing and data complexity measurement provides new frameworks for security system optimiza-

tion.

For practitioners, our findings offer immediate practical benefits through improved resource uti-

lization and detection accuracy. The computational efficiency gains achieved through optimal fea-

ture selection and model configuration provide a pathway for enhancing security operations within

existing resource constraints.

In the broader context of cybersecurity, our research suggests new approaches to system design

that consider the complex interplay between data characteristics, model architecture, and security

objectives. This holistic approach to security system optimization offers valuable insights for other

domains facing similar challenges in threat detection and response.

6.2 Final Reflections

This research has shown that building effective anomaly detection systems is more complex

than it might seem. Success depends on carefully choosing features, balancing data, selecting the

right model, and tuning the settings. We found that simply applying deep learning methods without

a clear strategy is not enough to handle the challenges of real-world data.

The AMETIS framework created in this thesis is a step forward in anomaly detection. It helps

evaluate different combinations of features, data, and models to find the best setup for specific needs.

This work challenges some common ideas, like the belief that deep learning always works without

feature selection or that adding more data always improves results. Instead, we learned that these

steps need to be carefully planned and adjusted based on the situation.

As anomaly detection becomes more important in many areas, the methods and tools from this

research can help improve systems. AMETIS is both a practical tool and a guide for designing better

anomaly detection approaches, making it easier to tackle the challenges of working with complex

data.
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