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Abstract

Nonreciprocal Vibration Transmission in Discrete Periodic Systems

with Spatiotemporal Modulations

Jiuda Wu, Ph.D.

Concordia University, 2025

Materials with time-varying properties enable direction-dependent vibration transmission,

meaning that interchanging the source and receiver changes transmission characteristics such

as amplitude, phase, or wave speed, resulting in nonreciprocal behavior. While unidirectional

transmission in long, weakly modulated systems has been widely studied, the transmission

characteristics of short, strongly modulated systems remain underexplored. This thesis ad-

dresses this gap, aiming to expand the application of materials and devices with time-varying

mechanical properties. The focus is on discrete models of spatiotemporally modulated sys-

tems, where effective elasticity changes harmonically in time and space.

A methodology is developed to accurately predict the steady-state response of spatiotempo-

rally modulated systems in response to external harmonic drive. The formulation is valid

for strongly modulated systems of an arbitrary number of units. Using this methodology,

vibration transmission characteristics of both weakly and strongly modulated systems are

investigated. Contributions of primary and sideband resonances, and their overlaps, to

nonreciprocity are clarified. The effects of modulation amplitude and wavenumber on the

resonance frequencies are discussed.

The contribution of phase to nonreciprocity is highlighted, a feature that is often overlooked

in the literature. It is shown that the difference between the transmitted phases is the pri-

mary contributor to nonreciprocity in short systems. To further emphasize the significant

role of phase, a nonreciprocal response regime is introduced which is characterized by equal

transmitted amplitudes in opposite directions. A nonreciprocal phase shift is the sole contrib-

utor to nonreciprocity in this case. A methodology is developed for achieving nonreciprocal

phase shifts in short, weakly modulated systems based on the envelope of the response. A

formulation is also presented that ensures the shapes of the transmitted response envelopes

have the same shape but different phases.

Parametric stability is analyzed using Floquet theory, revealing the influence of key system

parameters, including modulation phase, wavenumber, amplitude, frequency, damping, and
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system size. Perturbation theory shows that parametric instability occurs at specific fre-

quency combinations of the unmodulated system. Instability is more likely at higher mod-

ulation frequencies, whereas lower modulation frequencies provide wide stable amplitude

ranges. These insights enhance the design and safe operation of spatiotemporally modulated

systems, potentially broadening their applications.
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Chapter 1

Introduction and Literature Review

1.1. Background

In time-invariant structures and materials, transmission of small-amplitude (linear) vibra-

tions between two points remains unchanged when the locations of the source and the receiver

are interchanged. This invariance property is called reciprocity. Reciprocity has led to de-

velopment of various wave processing techniques and industrial applications, for instance,

calibration of hydrophones and crack identification [1–3]. However, vibration transmission

properties (speed, amplitude, phase, etc.) that are dependent on the direction of trans-

mission cannot be realized in reciprocal systems. Many researchers have recently focused

on developing methods to break the reciprocity invariance and realize direction-dependent

vibration transmission [4, 5].

Nonreciprocal vibration transmission can occur in a structure that has one or more of its

properties (e.g. effective mass or stiffness) change in both time and space [6]. We refer to

a structure or material with such properties as a system subject to spatiotemporal modula-

tions, or more simply as a (spatiotemporally) modulated system. In this context, modulation

refers to a time-periodic (typically harmonic) variation in an effective property of the sys-

tem, most commonly the stiffness of the material. Discrete and continuous models of periodic

modulated materials are commonly used in the studies on nonreciprocal vibration transmis-

sion. The smallest repetitive substructure with modulation in a periodic system is called

its modulated unit. The characteristics in each modulated unit determine how vibrations

transmit differently in opposite directions within the modulated system.

1.2. Theoretical studies on nonreciprocal vibration transmission in modulated

materials

1.2.1. Various systems with spatiotemporal modulations

Nonreciprocal wave propagation has been extensively studied using various theoretical mod-

els of spatiotemporally modulated materials. Examples include one-dimensional (1-D) uni-

form media with spatiotemporal modulations in their elastic modulus [7–13], density [14]

or both density and elasticity [15–18]. Other examples include membrane systems with

spatiotemporally modulated density [19], time-invariant media featuring local modulated

patches [20], or local modulated resonators [21–23]. Additionally, discrete spring-mass chains
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with modulations in their spring stiffness [24, 25], masses [26] or both [27, 28] have been ex-

plored, as well as metamaterials with modulated resonant springs [29] or modulated resonant

and coupling springs [30]. A periodic material featuring modulations in all its springs and

dampers, including both coupling and grounding connections, has also been proposed [31].

In some theoretical studies, innovative designs have been introduced to realize spatiotem-

poral modulations. For instance, magnetoelastic materials, whose elastic modulus can be

modulated spatiotemporally by an external magnetic field varying in both time and space,

have been proposed for achieving nonreciprocal vibration transmission [8]. Fully mechanical

structures have also been designed as modulated units in discrete waveguides. One such

design uses a rigid rotating element attached to each mass in the main structure, enabling

temporal modulation of the effective mass [26]. Similar designs utilizing rotary mechanisms

have demonstrated modulations in both mass and coupling stiffness [27] or in both mass and

grounding stiffness [28].

Another approach involves attaching each mass in the primary structure to a local resonator

and a levered mass that slides freely along an axis perpendicular to the transverse axis,

achieving modulations in both equivalent mass and coupling stiffness [20, 31]. A simpler

design for modulating coupling stiffness employs a triangular arrangement of three linear

springs, where one spring acts as the coupling spring between two masses, and the hinged

node of the other two springs slides freely along a fixed axis perpendicular to the transverse

axis [32]. Finally, time-modulated inerters featuring a levered mass connected to a modu-

lated base have been proposed as periodic attachments to achieve nonreciprocal vibration

transmission [23].

1.2.2. Research methodologies

If one of the effective material properties of a system, denoted by parameter G, is spatiotem-

porally modulated, then we have G(s+ λ, t+ T ) = G(s, t), where s is the spatial coordinate

system, t is time, and λ and T represent the periodicity in space and time, respectively.

In developing a mathematical framework for studying wave propagation in modulated ma-

terials, it is common to express the spatiotemporal modulations in terms of a plane-wave

(Fourier) expansion. In 1-D systems, these expansions are:

Gcon (s, t) =
∞∑

q=−∞

[G̊con;qe
iq(ωmt−kms) + c.c.], (1.1)

and

Gdsc;p (t) =
∞∑

q=−∞

[G̊dsc;p;qe
i(qωmt−ϕp) + c.c.], (1.2)
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for continuous and discrete systems, respectively. Parameter p denotes the ordinal number of

a modulated unit in a discrete system (to replace a continuous spatial coordinate). The term

c.c. indicates the complex conjugate terms. The parameters ωm and km are the modulation

frequency and wavenumber, respectively, while ϕ represents a constant phase shift between

modulations in adjacent units, equivalent to spatial modulation. In continuous systems, Gcon

can represent Young’s modulus [7, 10, 12], density [14], or both [15, 16, 18]. For discrete

systems, Gdsc may correspond to the stiffness coefficient [24, 25], mass [26], or a combination

of stiffness and mass [27, 28].

When the spatiotemporal modulation is harmonic, Eqs. 1.1 and 1.2 simplify to:

Gcon (s, t) = Gcon,DC +Gcon,AC cos (ωmt− kms), (1.3)

and

Gdsc;p (t) = Gdsc,DC;p +Gdsc,AC;p cos (ωmt− ϕp), (1.4)

respectively [8, 29]. In these equations, Gcon,DC , Gcon,AC , Gdsc,DC;p and Gdsc,AC;p are con-

stants. The spatial modulation terms in Eqs. (1.3) and (1.4) are related by kml = ϕ, where l

is the distance between adjacent modulated units in a discrete system. This relation is crucial

for transforming waveguide models of continuous and discrete systems when the wavelength

is much larger than l [29].

The motion of a uniform medium with modulation is governed by a second-order linear

partial differential equation. Solutions to this equation, because of the imposed periodic

modulations in Eq. (1.1), take the form of Bloch waves [10, 24]:

u (s, t) =
∞∑

q=−∞

[̊uqe
i[(ω+qωm)t−(k+qkm)s] + c.c.], (1.5)

where u (s, t) represents the displacement of the modulated medium. Eq. (1.5) is also re-

ferred to as the generalized Floquet wave [33] or Floquet-Bloch wave [25, 29]. Substitution

of Eq. (1.5) into the governing equations leads to the derivation of dispersion relations

as a compatibility condition. Several methodologies exist for this calculation such as the

plane-wave expansion method [33–35], multiple scattering method [22], or scattering matrix

method [10].

For discrete modulated systems, the equations of motion are coupled second-order differential

equations with time-varying coefficients. Exact closed-form solutions are unavailable for this

type of equations. Instead, a Bloch-based approach is employed, seeking solutions in the

Fourier series form [22, 26, 28, 30, 32, 36, 37]:

u (t) =
∞∑

q=−∞

[̊uqe
i(ω+qωm)t + c.c.], (1.6)
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which is supported by the fact that sideband resonance appears at ωn±κωm in the frequency

spectrum of a modulated oscillator, with ωn representing the natural frequency of the un-

modulated system and κ ∈ N [38]. Typically, the infinite summation in Eq. (1.6) is truncated

to a finite range for q, usually −1 ≤ q ≤ 1 [26, 28, 29, 36, 37]. Substitution of Eq. (1.6)

into the equations of motion, along with the application of the harmonic-balance or aver-

aging methods, yields a set of linear algebraic equations, from which the complex-valued

amplitudes ůq are determined [26, 28, 36, 37].

Other methodologies have also been utilized to obtain the response of modulated systems

in the literature. Examples include direct numerical simulations using the finite difference

method [15, 25, 29, 31], the method of multiple scales [24], a method based on coupled-

mode theory [29], plane-wave expansion [16, 31, 39], finite-element method [18] and the

transfer-matrix method [8, 27].

1.2.3. Demonstration of nonreciprocity

Figure 1.1: Illustration of nonreciprocal wave propagation in a 1-D modulated medium.1

(a) A dispersion curve with directional bandgaps, where Ω and µ represent frequency and

wavenumber, respectively. (b) A waterfall plot representing the transient response when the

excitation frequency falls within a directional bandgap [7].

Wave propagation through materials is characterized by properties such as amplitude, phase,

wavelength, group velocity, and phase velocity. Nonreciprocity in wave propagation can be

1These two figures are taken from G. Trainiti & M. Ruzzene, Non-reciprocal elastic wave propagation

in spatiotemporal periodic structures, New Journal of Physics 18 083047, (2016). © 2025. This work is

openly licensed via CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/).
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established by demonstrating that any of these properties depends on the direction of propa-

gation. Probably the most obvious indicator of nonreciprocity is the difference in transmitted

amplitudes between opposite directions, known as amplitude bias. A notable manifestation

of amplitude bias is unidirectional wave propagation in one-dimensional (1-D) continuously

modulated media, which is identified by directional bandgaps in their dispersion curves. In

a 1-D modulated system, spatiotemporal modulation introduces scattered waves into the

waveguide, with frequencies and wavenumbers that are direction-dependent. This results

in dispersion curves for the scattered waves being asymmetric about the line ‘wavenumber

= 0’ [29]. Consequently, the interaction between an incident wave and a scattered wave with

opposite group velocities leads to a directional bandgap. Fig. 1.1(a) shows a dispersion curve

with directional bandgaps. Fig. 1.1(b) displays a waterfall plot showing the response of a

2L-long bar following excitation at its midpoint, where the excitation frequency falls within

a directional bandgap.

Additionally, other methods have been employed to graphically represent amplitude bias, and

to demonstrate nonreciprocity. The frequency spectra of transmitted vibrations in opposite

directions can reveal the amplitude bias of each harmonic component within the transmit-

ted vibrations [9, 37]. When vibrations pass through a modulated system in two opposite

directions, comparing the amplitudes of temporal responses in different scenarios makes it

straightforward to identify nonreciprocity [7, 23].

1.3. Experimental studies on nonreciprocal vibration transmission in modulated

materials

Unlike the early theoretical studies, experimental demonstrations of nonreciprocal vibration

transmission caused in modulated materials are necessarily conducted on systems with a

finite length. In these systems, modulations (parametric excitation) are typically applied at

discrete points along the structure, with each modulated unit exhibiting temporal modu-

lation. Collectively, these modulated units can represent spatial modulation provided that

there is a phase shift (ϕ) between modulations in adjacent units.

1.3.1. Realization of spatiotemporal modulations

A variety of techniques, including electromagnetism, piezoelectricity, and mechanical meth-

ods, have been used in experimental setups to introduce spatiotemporal modulations within

waveguides. Fig. 1.2 shows some illustrative examples.

The experimental setups in Figs. 1.2(a) and 1.2(b) used piezoelectricity to realize nonrecip-

rocal wave propagation. Fig. 1.2(a) shows a uniform thin-beam waveguide equipped with
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Figure 1.2: Experimental setups to study nonreciprocal vibration transmission realized by

spatiotemporal modulations. (a) A thin beam with piezoelectric patches [40].1 (b) A periodic

material consisting of piezoelectric cells [41].2 (c) A thin beam with electromagnetically mod-

ulated resonators [42].3 (d) A ring-magnet chain with electromagnetically modulated ground-

ing stiffness [43].4 (e) A periodic system with geometrically modulated resonators [44].5

piezoelectric patches periodically adhered along its length, utilized for transmitting trans-

verse waves nonreciprocally [40, 45–47]. The local elasticity of the waveguide was tuned by

1This figure is taken from G. Trainiti et al, Time-Periodic Stiffness Modulation in Elastic Metamate-

rials for Selective Wave Filtering: Theory and Experiment, Physical Review Letters 122 124301, (2019).

Copyright (2025) by American Physical Society.
2This figure is taken from S. Tessier Brothelande et al, Experimental evidence of nonreciprocal propaga-

tion in space-time modulated piezoelectric phononic crystals, Applied Physics Letters 123 no. 20, (2023).

Copyright (2025) by AIP Publishing.
3This figure is taken from Y. Chen et al, Nonreciprocal wave propagation in a continuum-based metama-

terial with space-time modulated resonators, Physical Review Applied 11 064052, (2019). Copyright (2025)

by American Physical Society.
4This figure is taken from Y. Wang et al, Observation of nonreciprocal wave propagation in a dynamic

phononic lattice, Physical Review Letters 121 194301, (2018). Copyright (2025) by American Physical

Society.
5This figure is taken from M. Attarzadeh et al, Experimental observation of nonreciprocal waves in a

resonant metamaterial beam, Physical Review Applied 13 021001, (2020). Copyright (2025) by American

Physical Society.
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changing the voltage applied to each patch, thereby realizing spatiotemporal modulations in

the equivalent elastic modulus through pre-programmed periodic voltages. Fig. 1.2(b) shows

a periodic material made of cylindrical piezoelectric cells with thin electrodes in-between,

it was used as a modulated waveguide [41, 48]. By tuning the voltage difference between

the two boundaries of each piezoelectric cell, directional elastic waves were generated, which

resulted in nonreciprocal propagation of incident waves.

The setups in Figs. 1.2(c) and 1.2(d) utilized electromagnetism. Fig. 1.2(c) shows a thin

beam with magnets equidistantly fixed on it. The electrical coils which are coaxial with the

magnets are connected to the thin beam by elastic rods, they function as local modulated

resonators [42, 49]. Periodic change of current in an electrical coil brings a magnetic field

which changes accordingly at the same frequency, and a time-varying magnetic force is

generated between the coil and the coaxial magnet. The time-varying magnetic force is

equivalent to an elastic force of a spring with modulated stiffness coefficient. Fig. 1.2(d)

shows another design that used magnets and electrical coils to construct a waveguide, where

modulations were introduced to the equivalent stiffness of the grounding springs [43, 50].

A purely mechanical method was employed in the setup shown in Fig. 1.2(e). It is a peri-

odic system with beam-like rotary resonators in which modulations were introduced to the

effective stiffness [44]. The resonators have the same rectangular cross-section but different

preset orientation angles. By rotating the resonators at the same speed, the second moment

of area of every arm cross-section which is calculated perpendicular to the vibration direction

changes periodically. Thus, the rotation leads to modulation added to the effective stiffness

of each resonator.

1.3.2. Observation of nonreciprocity

The amplitude bias (the difference between the transmitted amplitudes in opposite direc-

tions) remains the main indicator of nonreciprocity in the literature. This is also the most

straightforward measure to use in experiments. Fig. 1.3 shows examples of amplitude bias

used to demonstrate nonreciprocity. Similar to the theoretical studies, observations of the

differences in frequency spectra, results from space-time Fourier transforms, and plots of the

transient response are widely used as other pieces of evidence to demonstrate nonreciprocity.
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Figure 1.3: Observations of nonreciprocity in experiments on vibration transmission in spa-

tiotemporally modulated systems in opposite directions. (a) Space-time Fourier transform

of the response of the modulated system [41].1 (b) Frequency spectrum of transmitted vibra-

tions [42].2 (c) Frequency spectrum and measured steady-state response [43].3 (d) Frequency

spectrum and space-time Fourier transform of the measured response of the system [44].4

1.4. Contributions of phase to nonreciprocity

The difference between transmitted phases in opposite directions can also be a contributor to

nonreciprocity as well. Under certain conditions, phase can even be the only contributor to

nonreciprocity [51, 52]. Phase difference as a measure of nonreciprocity is often used in the

literature on electromagnetic waves [53–56]. However, in studies on acoustic and mechanical

1This figure is taken from S. Tessier Brothelande et al, Experimental evidence of nonreciprocal propaga-

tion in space-time modulated piezoelectric phononic crystals, Applied Physics Letters 123 no. 20, (2023).

Copyright (2025) by AIP Publishing.
2This figure is taken from Y. Chen et al, Nonreciprocal wave propagation in a continuum-based metama-

terial with space-time modulated resonators, Physical Review Applied 11 064052, (2019). Copyright (2025)

by American Physical Society.
3This figure is taken from Y. Wang et al, Observation of nonreciprocal wave propagation in a dynamic

phononic lattice, Physical Review Letters 121 194301, (2018). Copyright (2025) by American Physical

Society.
4This figure is taken from M. Attarzadeh et al, Experimental observation of nonreciprocal waves in a

resonant metamaterial beam, Physical Review Applied 13 021001, (2020). Copyright (2025) by American

Physical Society.
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systems, contributions of phase to nonreciprocity have been rarely investigated.

In short modulated systems (only a few modulated units), preliminary results indicate that

the norm bias is typically very small because nonreciprocity is primarily caused by the

difference between the transmitted phases (not energies) in opposite directions [57]. The role

of phase in nonreciprocal vibration transmission in systems with spatiotemporal modulations

remains unexplored, to the best of our knowledge.

1.5. Parametric instability and strong modulations

Figure 1.4: Stability diagram of Mathieu’s equation.1 White and shaded regions indicate

the combinations of δ and ϵ that result in stable and unstable motion, respectively [58].

Modulations (usually harmonic) in stiffness bring parametric excitations, which are forces

dependent on displacements. Such forces may lead to parametric instability to the modulated

system, i.e. the amplitude of response grows exponentially in time. Studies on bounded-

ness of the solutions for Mathieu’s equations have demonstrated this phenomenon. Fig. 1.4

shows a stability diagram, a graphical illustration of stability results, for an oscillator with a

modulation in the stiffness coefficient of the spring. Its equation of motion can be expressed

by the classical Mathieu’s equation [58]:

d2

dt2
u+ (δ + ϵ cos 2t) u = 0. (1.7)

Parametric instability can occur even when the modulation amplitude is very low. This

instability also extends to coupled Mathieu’s equations, which are equations of motion for a

modulated system with multiple degrees of freedom (DoF). Figure 1.5 displays the stability

diagrams for a modulated system governed by a set of two coupled Mathieu’s equations [59]:
1This figure is taken from A. H. Nayfeh & D. T. Mook Nonlinear Oscillations (John Wiley & Sons, 1979),

p. 21. Copyright (2025) by John Wiley & Sons, Inc.
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Figure 1.5: Stability diagrams of Eq. (1.8).1 White and red regions indicate the combinations

of δ and ϵ that result in stable and unstable motion, respectively [59]. (a) c = 0; (b) c = 0.1.
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where all harmonic coefficients that represent modulations are in-phase with the same fre-

quency ω. The shapes of the unstable regions in Figure 1.5(a) are more complex than those

depicted in Figure 1.4. Despite the presence of damping, parametric instability can still

occur, as seen in Figure 1.5(b). Therefore, determining the stability of modulated systems

is critical for analyzing their response and investigating the nonreciprocal dynamics. A sys-

tematic analysis on the effects of system parameters, especially modulation parameters, is

essential for understanding their roles on parametric instability.

There are two established methods to increase the amplitude bias in a finite modulated

system: one is to increase the number of modulated units; the other one is to increase

the amplitudes of modulation. The transmission characteristics of long systems with low-

amplitude (weak) modulations have been well investigated and stated in the literature. High-

amplitude (strong) modulations lead to more complex spectral contents of the response, and

tend to result in unstable response.

The existing formulations in the literature, such as those based on various perturbation

1These two figures are taken from J. Deng, Numerical simulation of stability and responses of dynamic

systems under parametric excitation, Applied Mathematical Modelling 119, 648-676 (2023). Copyright

(2025) by Elsevier.
2This equation is taken from J. Deng, Numerical simulation of stability and responses of dynamic systems

under parametric excitation, Applied Mathematical Modelling 119, 648-676 (2023). Copyright (2025) by

Elsevier.
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methods [24, 25, 29], have primarily been developed for weakly modulated systems. Strong

modulations are rarely explored in the literature, despite their ability to significantly in-

crease the amplitude bias in short systems. In strongly modulated systems, however, the

existing methodologies fail to accurately capture the response of the system. In addition,

the natural frequencies of the unmodulated system are no longer helpful in describing the

resonance frequencies of strongly modulated systems. As a result, the analysis of strongly

modulated systems typically involves direct numerical computations, which are particularly

inefficient for a parametric study of the response. In addition, a formulation is needed that

can accurately predict the steady-state response of strongly modulated systems.

1.6. Thesis objectives

The ability to accurately predict the response of modulated systems with arbitrary number

of units and arbitrary modulation amplitude is critical for development of practical imple-

mentation of devices that operate based on spatiotemporal modulations. The analysis of

parametric stability is a critical factor for the safe operation of such devices. Moreover,

understanding the role of phase in transmitted vibrations will bring a complete analysis

of nonreciprocal vibration transmission. With these factors in mind, the three overarching

objectives of this thesis are:

1. Development of a semi-analytical methodology for accurately predicting the steady-

state response of spatiotemporally modulated systems that is valid for any strength of

modulation. This is addressed in Chapter 2.

2. Investigating the role of transmitted phase in nonreciprocal vibration transmission.

This is addressed in Chapter 3.

3. Analyzing the stability of spatiotemporally modulated systems. This is addressed in

Chapter 4.

Inspired by the experimental studies on nonreciprocal vibration transmission in modulated

systems, specifically the corresponding mathematical models used in their analysis, this

thesis will exclusively focus on a discrete model of spatiotemporally modulated systems.

Fig. 1.6 shows a schematic representation of the discrete model used in this thesis. The

research methodologies developed herein are applicable to discrete modulated systems in

various designs.
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Figure 1.6: Scheme of the modulated system. It is composed of n identical masses which are

connected by the same linear springs. Each mass is connected to the ground by a viscous

damper and a modulated spring with stiffness coefficient kp = kg,DC + kg,AC cos (ωmt− ϕp),

ϕp = (p− 1)ϕ, (p = 1, 2, · · · , n). Two harmonic forces are f1 = F1 cosωf t and fn =

Fn cosωf t. The only degree of freedom considered is the longitudinal rectilinear motion

of each mass.

1.7. Thesis layout

This thesis is organized in five chapters and is written according to the manuscript-based

thesis regulations stated in the Thesis Preparation Guide.

The purpose of Chapter 1 is to present the basic background information on nonreciprocal

vibration transmission in systems subject to spatiotemporal modulations, and to present the

main objectives of the thesis.

In Chapter 2, nonreciprocal vibration transmission in a modulated system with only 2-DoF

is analyzed. Nonreciprocity is quantified using a measure that can account for contributions

from both amplitude and phase. The averaging method, introduced in detail, is employed to

approximate the steady-state response. The methodology is applicable to systems with any

number of modulated units. The spectral contents of the non-periodic response and their

contributions to nonreciprocity are analyzed. Additionally, the influence of increasing the

modulation amplitude on the steady-state response, nonreciprocity, and resonant frequencies

are investigated.

Chapter 3 presents phase nonreciprocity, a regime where transmitted amplitudes are the same

in opposite directions. This analysis provides a systematic examination of this scenario, in

which nonreciprocal phase shifts are highlighted as the sole contributors to nonreciprocity.

To realize nonreciprocal phase shifts, a numerical methodology is developed based on the

envelope of the output displacement. A formulation is also introduced to enforce identical

shapes for the envelopes of the transmitted waves in opposite directions. Two special cases

of nonreciprocal phase shift are introduced, and the limitations of the methodology are
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discussed as well.

Chapter 4 focuses on investigating the parametric instability of the response of the modulated

system in Fig. 1.6, whose motion is governed by coupled Mathieu’s equations. A perturbation

method is used to identify unstable modulation frequencies (UMFs). Stability diagrams

in different parameter planes are computed numerically based on the Floquet theory. By

analyzing the stability diagrams, the effects of various system parameters on stability are

investigated, with a particular focus on the effects of modulation phase and the number of

modulated units.

The appendices consist of four conference proceeding papers that provide additional infor-

mation to make this thesis coherent.

Appendix A complements Chapter 2, demonstrating that amplitude bias increases with the

number of modulated units while keeping all other system parameters unchanged. Unidirec-

tional vibration transmission, the extreme case of transmission with amplitude bias, can be

realized in very long modulated systems.

Appendix B complements Chapter 3 by presenting a study on nonreciprocal vibration trans-

mission cases where equal energy is transmitted in opposite directions. These cases are

categorized into two types based on the properties of the response envelopes in the oppo-

site configurations. Notably, the cases exhibiting nonreciprocal phase shifts, as discussed in

Chapter 3, form a subset of those with equal transmitted energies in opposite directions.

Appendix C serves as supplementary material for Chapter 4, presenting the design of a

short system with strong modulations targeted at achieving unidirectional vibration trans-

mission. During this design process, because of the strong modulation amplitudes required,

it was necessary to conduct a stability analysis to identify stable regions from which system

parameters favorable for unidirectional transmission were selected.

Appendix D serves as a pilot study in two coupled modulated oscillators to indicate the

potential role of nonlinearity on nonreciprocity in spatiotemporally modulated systems. It

complements the discussions in Chapters 2 and 5.
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Chapter 2

Linear Nonreciprocal Dynamics of Coupled Modulated Systems

2.1. Introduction

The principle of reciprocity states that propagation of elastic or acoustic waves in a medium

remains invariant upon interchanging the positions of the source and receiver [1]. The

reciprocity invariance generally holds in time-invariant materials functioning in the linear

(small-amplitude) operating regime. This property has led to the development of various

wave processing techniques and industrial applications, such as calibration of hydrophones

and crack identification [2, 3].

In situations where reciprocity holds, the wave propagation properties (speed, amplitude,

phase, etc.) cannot be controlled or tuned by changing the direction of propagation. There-

fore, one way to enable direction-dependent vibration transmission is to circumvent reci-

procity. Understanding the underlying mechanism for nonreciprocal propagation can enable

the design and development of novel devices for energy harvesting, vibration isolation and

signal processing. The theories and applications of nonreciprocal wave propagation have

drawn the attention of many researcher in recent years [4].

Nonlinearity can break the reciprocity invariance in systems with broken mirror symme-

try [60–63]. In linear systems, changing one or more of the effective properties of the system

as a function of time and space is an effective approach to break the time-reversal symme-

try and enable nonreciprocal transmission [6]. The time- and space-varying term within an

effective property of the system is called spatiotemporal modulation.

Continuous media with wavelike spatiotemporal modulations in elasticity were used to study

nonreciprocal wave propagation [7, 11, 16, 18, 64]. Here, nonreciprocity manifests as di-

rectional bandgaps in the dispersion curves, which indicates unidirectional transmission of

energy through the system [25]. Inerters mounted on a vibrating base have been demon-

strated to enable nonreciprocal transmission in a fully mechanical waveguide [23]. Nonre-

ciprocal transmission of bending and longitudinal vibrations were analyzed for beams with

local modulated attachments [9, 44, 47]. Nonreciprocal wave propagation also occurs in a

medium with two-phase modulation; i.e. when both elastic modulus and density change

spatiotemporally [15]. Moving media exhibit asymmetric dispersion characteristics too, in-

cluding directional bandgaps [11, 13].
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Nonreciprocity has been explored in discrete models of modulated materials as well. Uni-

directional wave propagation can happen in metamaterials in which modulations are intro-

duced to the stiffness of resonant springs [29], grounding springs [65], or springs of surface

oscillators [22, 37]. Unidirectional wave propagation also occurs in a piezoelectric phononic

lattice in which incident waves couple with directional elastic waves generated by applying

spatiotemporally modulated voltages on the boundaries of piezoelectric cells [41, 48]. A

study on a modulated system with only two degrees of freedom highlighted the role of phase

as a contributor to nonreciprocity [57]. Experimental studies on nonreciprocal vibration

transmission due to spatiotemporal modulations were performed on setups that are discrete

and finite in length, for example by using piezoelectric materials to change stiffness [66, 67]

and tuning electromagnet forces on magnetic masses [42, 43, 49, 68].

In this work, our objective is to systematically investigate the influence of different system

parameters on steady-state vibration transmission in very short modulated systems under

weak or strong modulation amplitudes. We focus exclusively on a system with two degrees

of freedom (2-DoF). This is the smallest possible system for investigating nonreciprocity, and

has the advantage of possessing well separated modes. Within this framework, we aim to un-

derstand the role of different parameters, particularly the modulation amplitude and phase,

on nonreciprocal vibration transmission characteristics. The evaluation of (non)reciprocity

in vibration transmission involves comparing both transmitted amplitudes (energies) and

transmitted phases. Notably, the impact of strong modulations on the steady-state response

of discrete systems is explored here for the first time.

Section 2.2 provides an analysis of a 2-DoF modulated system, along with an introduction

to the solution methodology utilized throughout the paper. In Section 2.3, we delve into the

characteristics of weakly modulated systems with a specific focus on nonreciprocity. Sec-

tion 2.4 presents the study of vibration transmission in strongly modulated systems. Phase

nonreciprocity, identified in both weakly and strongly modulated systems, is introduced in

Section 2.5. Section 2.6 summarizes our findings.

2.2. Analysis of a 2-DoF modulated system

2.2.1. Formulation of the problem

Fig. 2.1 shows the schematic of the 2-DoF model of the coupled modulated systems stud-

ied in this work. The model consists of two identical masses, m, that are connected by a

linear spring of stiffness kc. u(t) and v(t) denote the rectilinear displacement of each mass

from its static equilibrium position. Each mass is grounded by a spring with a temporally

modulated stiffness, as well as a linear viscous damper. The modulated stiffness coefficients
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are k1(t) = kg,DC + kg,AC cos(ωmt) and k
′
1(t) = kg,DC + kg,AC cos(ωmt− ϕ), each with a con-

stant component kg,DC and a time-dependent modulation of amplitude kg,AC and frequency

ωm. The parameter ϕ represents the phase difference between the modulations of the two

grounding springs. This is equivalent to the modulation wavenumber in a spatiotempo-

rally modulated lattice. External harmonic forces are applied on each mass, expressed by

f1(t) = F1 cos(ωf t) and f2(t) = F2 cos(ωf t).

We start by nondimensionalizing the governing equations, as detailed in Appendix 2A. In

terms of nondimensional parameters, the equations of motion for the 2-DoF modulated

system are:

ẍ1 + 2ζẋ1 + [1 +Km cos(Ωmτ)]x1 +Kc(x1 − x2) = P1 cos(Ωfτ), (2.1a)

ẍ2 + 2ζẋ2 + [1 +Km cos(Ωmτ − ϕ)]x2 +Kc(x2 − x1) = P2 cos(Ωfτ). (2.1b)

Note that Eqs. (2.1a) and (2.1b) are identical when ϕ = 0.

To investigate reciprocity, we need two configurations: (i) the forward configuration (or left-

to-right, L2R) with P1 = P and P2 = 0, where the output is the steady-state response of the

second mass, xF2 (τ); (ii) the backward configuration (or right-to-left, R2L) with P1 = 0 and

P2 = P , where the output is the steady-state response of the first mass, xB1 (τ). A reciprocal

response is then characterized by xF2 (τ)/P1 = xB1 (τ)/P2 in this case, or simply xF2 (τ) = xB1 (τ)

because we use the same forcing amplitude for the forward and backward configurations.

The response of the modulated system is characterized by two frequencies Ωf and Ωm. Be-

cause these frequencies are independent from each other (incommensurate), the steady-state

response of the system is neither harmonic nor periodic; it is quasi-periodic. To characterize

the quasi-periodic response in the forward and backward configurations, we use the output

Figure 2.1: Schematic of the 2-DoF model of coupled modulated systems.
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norms NF and NB, respectively, which are defined as:

NF,B = limT→∞

√
1
T

∫ T

0
[xF,B2,1 (τ)]2dτ , (2.2a)

R =limT→∞

√
1
T

∫ T

0
[xF2 (τ)−xB1 (τ)]2dτ . (2.2b)

R is called the reciprocity bias, which quantifies the degree of (non)reciprocity of the system.

By definition, R = 0 if and only if vibration transmission through the system is reciprocal.

2.2.2. Solution methodology

In the absence of a tractable exact analytical solution to Eq. (2.1), we use approximate meth-

ods to obtain analytical expressions for the steady-state response of the system. Informed

by the numerical observations made in Appendix 2B, we write the steady-state response of

the system in the forward and backward configurations as follows:

xF,Bj (τ) =
∞∑

q=−∞

[yF,Bj,q e
i(Ωf+qΩm)τ + c.c.] =

∞∑
q=−∞

2|yF,Bj,q | cos[(Ωf + qΩm)τ +ΨF,B
j,q ] (2.3)

where j ∈ {1, 2} indicates the 1st mass or the 2nd mass, c.c. denotes the complex conjugate

terms, and i is the imaginary unit. yFj,q and yBj,q are the complex-valued amplitudes of the

harmonic components in the steady-state response in the two configurations. The phase

angles are ΨF
j,q =atan2 (imag (yFj,q), real (y

F
j,q)) and ΨB

j,q =atan2 (imag (yBj,q), real (y
B
j,q)). The

modal expansion in Eq. (2.3), in addition to satisfying the numerical observations in Ap-

pendix 2B, is the correct asymptotic solution for either weak or strong modulations, and it

has been used extensively in the literature on modulated materials [17, 23, 32, 40, 64, 69,

70].

To calculate the complex-valued amplitudes yF2,q and y
B
1,q, we use the method of averaging [58].

The full details of this procedure are provided in Appendix 2C. The outcome is a linear

system of algebraic equations for the unknown amplitudes in Eq. (2.3); see Eq. (2C.3) in

Appendix 2C. Subsequently, the expressions for the output norms and reciprocity bias in

Eq. (2.2) can be rewritten in terms of the complex-valued amplitudes as:

NF,B =

√√√√2
∞∑

q=−∞

|yF,B2,1,q|2, (2.4a)

R =

√√√√2
∞∑

q=−∞

|yF2,q − yB1,q|2. (2.4b)

In practice, the infinite summation in Eq. (2.4) needs to be truncated at a finite value of

q, for example q ∈ [−F ,F ] with F ∈ N, to approximate the response of the system and
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the output norms in Eq. (2.4). In general, the magnitude |yj,q| of a harmonic component

(its participation in the steady-state response xj) becomes smaller as q increases, and the

accuracy of the overall approximation improves by increasing the value of F . We choose

higher values of F for systems with strong modulations than systems with weak modulations.

Appendix 2C provides examples of the comparison between the results obtained from this

approximation and direct numerical integration of the equations of motion.

The approximate solution developed here provides the convenience that the non-periodic

steady-state response of a modulated system can be obtained by solving a linear algebraic

system. We expect a similar methodology to apply to systems that have local resonators

attached to them through springs of spatiotemporally modulated constants. Moreover,

nonreciprocity can be investigated and understood by focusing on the differences between

each pair of harmonic components in the two outputs: 2|yF2,q| cos[(Ωf + qΩm)τ − ΨF
2,q] and

2|yB1,q| cos[(Ωf + qΩm)τ − ΨB
1,q]. We refer to such pair as a component-pair for ease of refer-

ence. For a given q, the frequencies of a component-pair are the same. Either |yF2,q| ̸= |yB1,q|
or ΨF

2,q ̸= ΨB
1,q can indicate a nonreciprocal response.

2.3. Vibration transmission in weakly modulated systems

In this section, we provide a parametric study of the steady-state nonreciprocal dynamics

for weak modulations, characterized by Km ≤ 0.1. In the absence of a universal definition

of weak modulation, we consider weakly modulated systems to be those for which including

one sideband resonance is sufficient for accurately capturing the steady-state response of the

system; i.e. F = 1 in Eq. (2.3). This allows us to distinguish between weak and strong

modulations based on the influence of Km on the resonance frequencies and the steady-state

frequency response of the system. We discuss this in more detail in Section 2.4.

We start with investigating the effects of Kc and Ωm, followed by the role of the symmetry-

breaking parameter ϕ in breaking reciprocity.

2.3.1. Primary bands and sidebands

Fig. 2.2(a) shows the response of the system in the forward and backward configurations as

a function of the forcing frequency, Ωf . The response of the unmodulated system (Km = 0)

is included for comparison. The natural frequencies of the unmodulated system are Ωn1 = 1

and Ωn2 =
√
1 + 2Kc. We observe primary resonances of the modulated system occurring at

Ωn1,2, accompanied by sideband (secondary) resonances at Ωn1 ±Ωm and Ωn2 ±Ωm. Except

at the sideband resonances, the response curves of the modulated and unmodulated systems

are the same. Within a sideband, the significant difference between the modulated response
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Figure 2.2: Variations of (a) output norms, (b) difference between output norms and (c)

reciprocity bias as functions of Ωf . System parameters: Kc = 0.6, ζ = 0.005, Km = 0.1,

Ωm = 0.2, ϕ = π/2 and P = 1. The black curve with circles in Panel (a) represents the

output norm of the unmodulated system, which is denoted by Num.

and the unmodulated response is due to the spatiotemporal modulations. The values of Kc

and Ωm are chosen such that there is no overlap between sideband resonances; we consider

overlap in Section 2.3.3. The sidebands further from the primary resonances (Ωn1 ± 2Ωm,

Ωn2 ± 2Ωm, etc.) have a negligible influence on the response in weakly modulated systems

and have been ignored.

We emphasize that parametric amplification does not occur in the response regime that we

investigate in this work. Parametric amplification occurs when the modulation frequency

is locked to the forcing frequency (typically Ωm = 2Ωf ), and is often characterized by

unbounded response even in the presence of damping [71]. In this work, however, Ωm and

Ωf are independent of each other. If we had fixed the frequencies such that Ωm = 2Ωf , we

would have observed parametric amplification (unbounded response) at Ωf = Ωn1,Ωn2 and

(Ωn1 + Ωn1)/2 for both configurations.

Although we do not expect the response to be reciprocal (because ϕ ̸= 0), the output norms

in Fig. 2.2(a) seem to indicate a reciprocal response. Fig. 2.2(b) shows the difference between

the two output norms (transmitted energies),

Ndf = NF −NB. (2.5)

We see that the transmitted energies are almost equal in the two directions, with a small
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difference that occurs predominantly at the sideband resonances.

Fig. 2.2(c) shows the reciprocity bias, R. It shows that despite equal energies transmitted in

the opposite directions (small Ndf ), the transmission of vibrations is nonreciprocal (R > 0)

throughout the entire range of forcing frequencies considered. Notably, the value of R is

much larger than the value of Ndf . Furthermore, the reciprocity bias is large not only at

sideband resonances, but also at the primary resonances.

This difference between the values of R and Ndf indicates that the phase difference between

output displacements is the main contributor to breaking reciprocity in this system. In other

words, the phase difference between the two outputs makes a much greater contribution to

nonreciprocity than the amplitude difference between them.

To better understand the contribution of phase to breaking reciprocity, we consider the

amplitudes and phases of the main three harmonic components of the response; q ∈ {−1, 0, 1}
in Eq. (2.3). Recall that because Km is small (weak modulation), the magnitudes of the outer

sidebands (|q| > 1) are increasingly small and their contribution to the overall response is

negligible.
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Figure 2.3: Plots of the amplitudes of three components (q ∈ {−1, 0, 1}) of (a) forward

output and (b) backward output. The black curves with circles show the amplitude of the

unmodulated system.

Fig. 2.3 shows the amplitudes of the three harmonic components of the response for the

forward and backward configurations; i.e. the component-pairs. The black curves with

circles represent the amplitude of the harmonic response of the unmodulated system for

comparison. The amplitude of the component q = 0 (primary resonance), which almost

coincides with the unmodulated response, has the highest amplitudes at Ωn1 and Ωn2, as

expected, and shows negligible amplification near the sideband resonances. At the upper
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Figure 2.4: Plots of (a) the amplitude difference, (b) the contribution of each component-pair

to the reciprocity bias and (c) the phase difference.

sideband resonances, Ωn1 +Ωm and Ωn2 +Ωm, the largest component is q = −1 for both the

forward and backward configurations. Similarly, the largest component is q = 1 at the lower

sideband resonances, Ωf = Ωn1,2 − Ωm.

Fig. 2.4(a) shows the difference in the amplitudes of the component-pairs; cf. Fig. 2.3. As

expected, the differences in the amplitudes are too small to account for the reciprocity bias

observed in Fig. 2.2(c).

Fig. 2.4(b) shows the magnitude of the amplitude difference, |yF2,q−yB1,q|, which accounts

for contributions from phase. We see that the component-pairs q = ±1 make the biggest

contributions to reciprocity bias. Consistent with Fig. 2.3, the component-pair with q = 1

contributes most strongly at the lower sideband resonances, while the component-pair with

q = −1 contributes most strongly at the upper sidebands. Notably, this is in contrast to

Fig. 2.4(a), in which the contributions from phase were ignored.

The role of phase is also observed in the primary component-pair q = 0: although the differ-

ence between the amplitudes is relatively large near the sideband resonances in Fig. 2.4(a),

their contribution to reciprocity bias is relatively small in Fig. 2.4(b) where the phase effect

is taken into account.

To complete the picture, Fig. 2.4(c) shows the phase difference for each component-pair. The

phase difference in the component-pair q = 0 agrees with the contrasting behavior observed
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in panels (a) and (b). The component-pairs q ± 1 undergo significant phase changes, which

contributes to the reciprocity bias. Note, also, that the three curves in Fig. 2.4(c) never

intersect with the horizontal line (ΨF
2,q − ΨB

1,q = 0) at the same Ωf . This implies that the

difference between transmitted phases always contributes to the reciprocity bias.

In summary, we found the transmitted phase to be the main contributor to nonreciprocity

in short system with weak modulation. The largest contribution to phase was associated to

component-pairs q = ±1.

2.3.2. The Role of ϕ

The parameter ϕ represents a relative phase shift between the modulations of the two ground-

ing springs in Fig. 2.1. This phase shift represents a spatial modulation in the grounding

stiffness coefficient of the system. It is the same as the modulation wavenumber in a spa-

tiotemporally modulated system. However, we do not refer to ϕ as the modulation wavenum-

ber because the system we study has only two units. Note that the modulation phase, ϕ, is

the only difference between the two oscillators. Thus, it takes on the role of breaking the

mirror-symmetry of the system: if ϕ = 0, the response of the system remain reciprocal by

virtue of mirror symmetry.

Fig. 2.5 shows the surface plots of Ndf and R as functions of Ωf and ϕ for the same parameters

used in Fig. 2.2. We observe that Ndf changes sign along ϕ = π. This is also a line of

symmetry for R, implying that R has a local maximum when ϕ = π. We will discuss this

behavior in more detail in Section 2.5.

To explain the symmetries observed in Fig. 2.5, we consider the complex-valued amplitudes

yF2,q and yB1,q. It can be obtained from Eqs. (2C.6) and (2C.7), that:

yF2,0(ϕ) = yB1,0(2π − ϕ), |yF2,q(ϕ)| = |yB1,q(2π − ϕ)|, (2.6)

where q ∈ [−F ,F ]. The plot of Ndf is therefore odd-symmetric about the line (ϕ,Ndf ) =

(π, 0), as seen in Fig. 2.5(a). Furthermore, NF = NB when ϕ = π, regardless of the value of

Ωf . For the corresponding phases, we have:

ΨF
2,q(ϕ)−ΨB

1,q(ϕ) = ΨB
1,q(2π − ϕ)−ΨF

2,q(2π − ϕ). (2.7)

The plot of R is therefore symmetric about the plane ϕ = π, as shown in Fig. 2.5(b).

The relations in Eq. (2.6) and Eq. (2.7) are valid regardless of the values of all other system

parameters; they hold even in systems with more units [72]. Thus, the odd-symmetry of Ndf

and the symmetry of R persist with the change of system parameters.
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Figure 2.5: Plots of (a) Ndf and (b) R as functions of Ωf and ϕ.

The six resonant frequencies of a weakly modulated system correspond to the zeros of the

determinant of matrix D in Eq. (2C.3) with ζ = 0 and F = 1. This determinant can be

expanded as:

|D| = D0 + ϵ2D2 +O(ϵ4) (2.8)

where

D0 =A
2
−1A

2
0A

2
1 −K2

c (A
2
−1A

2
0 + A2

−1A
2
1 + A2

0A
2
1)

+K4
c (A

2
−1 + A2

0 + A2
1)−K6

c ,

D2 =2A0(K
2
c − A−1A1)(A−1 + A1)

− 2K2
c (A

2
−1 + A2

1 − 2K2
c ) cosϕ,

ϵ =Km/2,

and A−1, A0 and A1 can be obtained from Eq. (2C.4). For the weakly modulated system

studied in this section, we have ϵ ≤ 0.05. Therefore, |D| ≈ D0 throughout the frequency

range considered, 0.5 ≤ Ωf ≤ 2. The six resonant frequencies can be approximated by

solving D0(Ωf ) = 0, which gives Ωn1,2 and Ωn1,2 ± Ωm. These six frequencies do not depend

on the modulation phase, ϕ. This is why the regions of high amplitude in Fig. 2.5 appear
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as vertical stripes. We will see in Section 2.4 that this is not true in strongly modulated

systems.

2.3.3. Overlap of two resonant frequencies

The primary (Ωn1,2) and sideband (Ωn1,2 ± Ωm) frequencies can be tuned by changing the

values of coupling stiffness, Kc, and modulation frequency, Ωm. In this section, we keep

Kc = 0.6 and change Ωm to investigate the influence of frequency overlaps.

Figure 2.6: Plots of |yF2,q − yB1,q| for q ∈ {−1, 0, 1} as functions of Ωf and ϕ for three systems

with different values of Ωm: (a,d,g) Case A with Ωm = (Ωn2 − Ωn1)/2; (b,e,h) Case B with

Ωm = Ωn2 − Ωn1; (c,f,i) Case C with Ωm = 0.2.

Fig. 2.6 shows the variation of |yF2,q − yB1,q| as functions of Ωf and ϕ for component-pairs with

q = 0 (first row), q = 1 (second row) and q = −1 (third row). We consider two scenarios

with resonant frequency overlaps: (i) Case A: a system with Ωm = (Ωn2 − Ωn1)/2, where

two sidebands overlap (left column in Fig. 2.6); (ii) Case B : a system with Ωm = Ωn2 −Ωn1,

where each primary band overlaps with a sideband (middle column in Fig. 2.6). A third

scenario, Case C, is shown in the right column of Fig. 2.6, where there is no frequency

overlap (the same as Fig. 2.5). Except for Ωm, all system parameters are the same in these

three scenarios. The same logarithmic scale is used in each row.
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We observe in Fig. 2.6 that the magnitude of |yF2,q − yB1,q| in Case B is significantly higher

than those in Case A and Case C for all component pairs, q = −1, 0, 1. Accordingly, the

magnitude of reciprocity bias in Case B is the highest among the three (not shown). We also

observe that the component-pairs q = ±1 have a more significant contribution to reciprocity

bias than the component-pair q = 0. We observe in the top row of Fig. 2.6 that |yF2,0−yB1,0| = 0

when ϕ = π, as predited by Eq. (2.6).

In Case B (middle column in Fig. 2.6), we observe that the regions of high amplitude no

longer appear as vertical stripes, as they do in Case A and Case C. This means that the

resonant frequencies have a weak dependence on the modulation phase, ϕ. This happens

because D0 and ϵ2D2 in Eq. (2.8) have the same order of magnitude when a primary band

and a sideband overlap (Ωm = Ωn2 − Ωn1).

2.4. Vibration transmission in strongly modulated systems

Strong modulations (Km > 0.1) bring about different vibration characteristics in spatiotem-

porally modulated systems. We investigate some of these characteristics in this section.

Note that increasing the modulation amplitude can result in parametric instabilities, which

lead to unbounded response [73]. We have computed the stability bounds for our system,

and further ensured that all the results presented in this work are stable and remain bounded

by direct numerical integration of the governing equations. However, a detailed analysis of

parametric instabilities falls outside the scope of the current work and will be presented

separately elsewhere.

2.4.1. Steady-state response

Fig. 2.7 shows the response of a strongly modulated system with Km = 0.8 in the forward

and backward configurations; cf. Fig. 2.2. All other system parameters are the same as those

used in Section 2.3.1.

The number and frequencies of resonance peaks in Fig. 2.7(a) are very different from what we

observed in weakly modulated systems. The peaks no longer appear at Ωn1, Ωn2, Ωn1 ± Ωm

and Ωn2 ± Ωm. Sideband resonances are no longer limited to q ∈ {−1, 0, 1} because the

amplitudes of higher-order sidebands (q > 1) do not diminish as significantly. And it is

difficult to distinguish primary and sideband resonances by their relative peak amplitudes.

Even though the values of the peak amplitudes are similar to those in the weakly modulated

system, there is clearly more energy in the strongly modulated system; compare the areas

under the frequency response functions in Figs. 2.7(a) and 2.2(a).
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Figure 2.7: Plots of (a) output norms, (b) difference between output norms and (c) reci-

procity bias as functions of forcing frequency.

Despite these key differences between weakly and strongly modulated systems, the transmit-

ted phase remains a signficant contributor to the reciprocity bias. Figs. 2.7(b) and 2.7(c)

show the difference between transmitted energies, Ndf , and reciprocity bias, R, respectively.

We observe that although the difference in transmitted energies is relatively small, reciprocity

bias is very large in comparison. This indicates the important role of phase in breaking reci-

procity.

Fig. 2.8 shows the variation of Ndf and R as functions of Ωf and ϕ. The symmetry properties

discussed in Section 2.3.2 still hold because they do not depend on the strength of modulation.

Most notably, we observe that the peak frequencies depend on the modulation phase, ϕ, in

stark contrast to weakly modulated systems; cf. Fig. 2.5. We explore this phenomenon in

the next section.

2.4.2. Resonant frequencies

We calculate the resonant frequencies of the modulated system based on the formulation

developed in Appendix 2C. The resonant frequencies of the systems are the zeros of the

determinant of the matrix D in Eq. (2C.3) when ζ = 0; i.e., |D| = 0. The response

amplitude in this case becomes infinite, as expected.

In weakly modulated systems (small Km), the first superdiagonal and the first subdiagonal

of D are negligible compared to its main diagonal. Because the modulation parameters
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Figure 2.8: Plots of (a) Ndf and (b) R as functions of Ωf and ϕ.

Km and ϕ do not appear on the main diagonal, they have little influence on the solutions

of |D(Ωf )| = 0. Therefore, the resonant frequencies of the weakly modulated system are

mainly determined by Kc and Ωm; see Eq. (2.8). In strongly modulated systems, the entries

on the first super diagonal and the first subdiagonal of D are no longer negligible. Therefore,

the resonant frequencies of the system depend on the values of Km and ϕ too.

Fig. 2.9 shows the natural frequencies of the strongly modulated systems as a function of ϕ for

Km ∈ {0.3, 0.5, 0.8}, Kc = 0.6 and Ωm = 0.2. The horizontal dashed lines denote Ωn1 ± qΩm

and Ωn2± qΩm with q = 0, · · · , 4. We observe that all the loci in Fig. 2.9 have local maxima

at ϕ ∈ {0, π, 2π}, a property that stems from the symmetries of the cosine function in the

modulation term. As Km increases to 0.3 and 0.5, the deviations in natural frequencies are

largest near ϕ = π, and decrease monotonically away from this point. The variations in the

natural frequencies are no longer monotonic for higher strengths of modulation, as observed

for Km = 0.8. We also observe avoided crossing between adjacent branches; see the loci of

Ωn2 to Ωn1+3Ωm for an example of this.

Fig. 2.10 shows the variation of the primary natural frequencies, Ωn1 and Ωn2, as a function

of modulation phase for Ωm ∈ {0.2, 0.33, 0.4}. We observe that at larger values of the
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Figure 2.9: Resonant frequencies of a strongly modulated system as functions of ϕ.

modulation frequency, the range of variation in Ωn1 and Ωn2 is larger as well.

2.5. Phase nonreciprocity

Looking back at Eq. (2.2), if R = 0 then it is obvious that NF = NB; i.e., if the response is

reciprocal then the transmitted energies in the forward and backward directions are identical.

However, NF = NB cannot guarantee a reciprocal response. This means that it is possible

to have nonreciprocal response (R ̸= 0) that is accompanied by equal energies transmitted

in opposite directions (NF = NB). We refer to this scenario as phase nonreciprocity because

a difference in the transmitted phases is the sole contributor to nonreciprocity. Phase nonre-

ciprocity in vibration transmission has been reported in time-invariant nonlinear systems [51,

52].

Due to the odd-symmetry of Ndf about the line (ϕ,Ndf ) = (π, 0), a trivial case of phase

nonreciprocity occurs when ϕ = π, regardless of the values of other system parameters.

This is because the matrix D in Eq. (2C.3) becomes symmetric for ϕ = π. Therefore,

the amplitudes of each pair of harmonic components, |yF2,q| and |yB1,q|, become equal for

q = 0,±1,±2, · · · . Meanwhile, ΨF
2,q −ΨB

1,q = π if q is an odd number; ΨF
2,q −ΨB

1,q = 0 if q is
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Figure 2.10: resonant frequencies nearby (a) Ωn1 and (b) Ωn2 as functions of ϕ.

an even number.

If ϕ ̸= π, there exist combinations of Ωf and ϕ which can lead to Ndf = 0. Because R > 0

throughout the ranges of Ωf and ϕ considered, the response at these combinations of Ωf

and ϕ is therefore phase nonreciprocal. Fig. 2.11 shows the outputs in the time domain

for two examples of phase nonreciprocity with ϕ = π and ϕ ̸= π. While it is obvious that

xF2 (τ) ̸= xB1 (τ), the transmitted vibrations have the same amount of energy, NF = NB.

For the non-trivial case of ϕ ̸= π, a more stringent requirement than equal transmitted

energies (NF = NB) is to have nonreciprocal transmission with the same waveform. We

were only able to find parameters that lead to this scenario in systems with more than two

degrees of freedom. The methodology involved for these calculations falls beyond the scope

of this paper and is presented elsewhere [74].

2.6. Conclusions

We investigated nonreciprocal vibration transmission in a system of coupled mechanical oscil-

lators subject to spatiotemporal stiffness modulations. The temporal modulation appeared

as harmonic modulation of the grounding stiffness of each oscillator. The phase difference

between the two temporal modulations (ϕ) acts as the spatial modulation, equivalent to the

modulation wavenumber in a longer system. The modulation phase, ϕ, acts as the symmetry-

breaking parameter that is necessary to break reciprocity. We used the averaging method

to develop an analytical framework to obtain the steady-state quasi-periodic response of

the system to harmonic external excitation. These results were validated against direct

numerical simulation of the response of the system for both weak and strong modulations.
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Figure 2.11: Plots of forward and backward outputs. Common parameters in these two

examples: Kc = 0.6, ζ = 0.005, Ωm = 0.2 and P = 1. (a,b) ϕ = π, Ωf = 0.79 and Km = 0.1;

(c,d) ϕ = 0.75π, Ωf = 0.93 and Km = 0.8.

We found the response to be nonreciprocal when ϕ ̸= 0, as expected. However, the transmit-

ted energies in the forward and backward configurations were similar in most cases, meaning

that the difference between the transmitted phases is the main contributor to breaking reci-

procity in short systems. This was the case for both weak and strong modulations.

In weakly modulated systems, we found only one pair of sideband resonances to be sufficient

to capture the response of the system accurately. The pairs of harmonic components of the

response (primary and sideband) contribute differently to the reciprocity bias. We found

that an overlap of a primary and sideband resonance results in stronger nonreciprocity than

an overlap of two sideband frequencies.

Increasing the strength of modulations significantly increases the reciprocity bias because

there is more energy provided to the system. Increasing the modulation amplitude also makes
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the resonance frequencies dependent on the modulation phase and amplitude. The frequency

contents of the response of strongly modulated systems are richer due to contributions from

additional (higher-order) sideband frequencies.

The exclusive focus on modulated systems with two units was motivated by the system

having well separated modes. This enabled us to elucidate the roles of the primary and

side-band resonances of the system, and their overlaps, in breaking reciprocity. We provided

a detailed analysis of the primary and sideband resonances, and component-pairs, in how

they contribute to nonreciprocity for both weakly and strongly modulated systems. An

equally technical discussion of the influence of the number of units falls outside the scope

of this work. However, the methodology we presented holds for modulated systems of any

number of units. For example, one can increase the reciprocity bias by including more units

in the system. This is accompanied by an increasing difference between the transmitted

amplitudes, and can ultimately lead to unidirectional transmission. This intuitive attribute

of nonreciprocity is demonstrated numerically elsewhere [75].

We found two types of nonreciprocal response in which equal amounts of energy is transmit-

ted in the forward and backward configurations. In one case, the two output displacements

are distinguished by just a phase shift, whereas in the other the two waveforms are different

while maintaining the same energy. This feature will be addressed in detail in the near fu-

ture, along with an analysis of parametric instabilities for strongly modulated systems. The

analytical framework developed here paves the way for these studies.

Appendices

2A. Non-dimensionalization

The equations of motion which govern the 2-DoF modulated system in Fig. 2.1 read:

m
d2u

dt2
+c

du

dt
+k1u+kc(u−v)=F1 cos(ωf t), (2A.1a)

m
d2v

dt2
+c

dv

dt
+k′1v+kc(v−u)=F2 cos(ωf t), (2A.1b)

where k1 = kg,DC + kg,AC cos(ωmt) and k
′
1 = kg,DC + kg,AC cos(ωmt− ϕ). We define τ = ω0t,

where ω0 =
√
kg,DC/m. Therefore, d/dt = ω0d/dτ , d

2/dt2 = ω2
0d

2/dτ 2.

To non-dimensionalize, we define ζ = c/(2mω0), Ωm = ωm/ω0, Ωf = ωf/ω0, Kc = kc/kg,DC ,

Km = kg,AC/kg,DC , P1 = F1/(akg,DC), P2 = F2/(akg,DC), x1 = u/a and x2 = v/a, where a is
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a representative length. After substituting them into Eq. (2A.1), we obtain:

maω2
0ẍ1+2ζmaω2

0ẋ1+kg,DCax1 [1+Km cos(Ωmτ)]

+Kckg,DCa(x1−x2)=P1akg,DC cos(Ωfτ), (2A.2a)

maω2
0ẍ2+2ζmaω2

0ẋ2+kg,DCax2 [1+Km cos(Ωmτ−ϕ)]
+Kckg,DCa(x2−x1)=P2akg,DC cos(Ωfτ), (2A.2b)

where ẍ and ẋ represent d2x
dτ2

and dx
dτ
, respectively. Eq. (2A.2) can be further simplified as:

ẍ1 + 2ζẋ1 + [1 +Km cos(Ωmτ)]x1 +Kc(x1 − x2) = P1 cos(Ωfτ), (2A.3a)

ẍ2 + 2ζẋ2 + [1 +Km cos(Ωmτ − ϕ)]x2 +Kc(x2 − x1) = P2 cos(Ωfτ). (2A.3b)

In this paper, calculations and analysis of the response of the 2-DoF modulated system are

all based on Eq. (2A.3), which is the same as Eq. (2.1).

2B. Frequency contents of the outputs

Due to the simultaneous presence of external and parametric excitations of incommensurate

frequencies, it is not straightforward to guess the frequency spectrum of the steady-state

output of modulated systems. Here, we use the Runge-Kutta method to obtain the transient

response of the modulated system numerically. The output displacement of the system is

then recorded after the steady state is reached. We do this for the forward configuration

with weak modulation and the backward configuration with strong modulation. We then

obtain the Fast Fourier Transform (FFT) of the steady-state outputs, shown in Fig. 2B.1.

We observe in Fig. 2B.1 that all the response is dominated by the frequencies Ωf + qΩm

where q ∈ {· · · ,−2,−1, 0, 1, 2, · · · }. In the case of weak modulations, Fig. 2B.1(a), the

magnitudes (heights) of the peaks decrease rapidly as the frequency moves away from Ωf

(notice the logarithmic scale for the amplitude). For a strongly modulated system, however,

the height of a peak is not directly related to its distance to Ωf , as shown in Fig. 2B.1(b).

We conclude for both weakly and strongly modulated systems, that the output can be

reasonably approximated using a truncated harmonic expansion with a set of frequencies

determined by Ωf and Ωm. This leads to the expressions used in Eq. (2.3).

2C. Application of the averaging method

We use the system in the forward configuration to show the application of the averaging

method to approximate the steady-state response of the 2-DoF modulated system. The

same procedure can be used for the backward configuration.
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Figure 2B.1: Frequency spectrum of the steady-state response. Parameters in these exam-

ples: (a) Kc = 0.6, Km = 0.1, ζ = 0.005, Ωm = 0.2, ϕ = 0.5π, P = 1 and Ωf = 1, in

forward configuration; (b) Kc = 0.7, Km = 0.6, ζ = 0.005, Ωm = 0.1, ϕ = 0.3π, P = 1 and

Ωf = 1.33, in backward configuration.

We start by substituting Eq. (2.3), the complex Fourier series of the steady-state response,

into Eq. (2.1), the equations of motion of the system. We use Euler’s formula to rewrite

the harmonic modulation terms within Eq. (2.1) in the complex exponential form. After

algebraic simplifications, we arrive at the following equations:

∞∑
q=−∞

[
1+Kc−(Ωf+qΩm)

2+i2ζ(Ωf+qΩm)
]
yF1,qe

iqΩmτ−Kc

∞∑
q=−∞

yF2,qe
iqΩmτ

+
Km

2

∞∑
q=−∞

yF1,qe
i(q+1)Ωmτ+

Km

2

∞∑
q=−∞

yF1,qe
i(q−1)Ωmτ =

P

2
, (2C.1a)

∞∑
q=−∞

[
1+Kc−(Ωf+qΩm)

2+i2ζ(Ωf+qΩm)
]
yF2,qe

iqΩmτ−Kc

∞∑
q=−∞

yF1,qe
iqΩmτ

+
Km

2
e−iϕ

∞∑
q=−∞

yF2,qe
i(q+1)Ωmτ+

Km

2
eiϕ

∞∑
q=−∞

yF2,qe
i(q−1)Ωmτ =0 . (2C.1b)

We then multiply each term in Eq. (2C.1) by e−ikΩmτΩm/(2π), where k ∈ [−F ,F ], and

integrate them over one modulation period, from −π/Ωm to π/Ωm. After integration, only

one non-zero term remains in each equation. Thus, a set of complex-valued linear equations

can be obtained:

[
1+Kc−(Ωf+kΩm)

2+i2ζ(Ωf + kΩm)
]
xF1,k−Kcx

F
2,k+

Km

2
xF1,k−1+

Km

2
xF1,k+1=

P

2
δk,0 , (2C.2a)[

1+Kc−(Ωf+kΩm)
2+i2ζ(Ωf+kΩm)

]
xF2,k−Kcx

F
1,k+

Km

2
e−iϕxF2,k−1+

Km

2
eiϕxF2,k+1=0 . (2C.2b)
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Here, δk,0, the Kronecker delta, is non-zero (with value 1) if and only if k = 0; this term

determines the location where the external force is applied in the forward configuration. We

can write Eq. (2C.2) in matrix form as follows:



...
...

...
...

...
...

...
...

...
...

· · · A−1 Km/2 0 · · · · · · −Kc 0 0 · · ·
· · · Km/2 A0 Km/2 · · · · · · 0 −Kc 0 · · ·
· · · 0 Km/2 A1 · · · · · · 0 0 −Kc · · ·
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

· · · −Kc 0 0 · · · · · · A−1 Kme
iϕ/2 0 · · ·

· · · 0 −Kc 0 · · · · · · Kme
−iϕ/2 A0 Kme

iϕ/2 · · ·
· · · 0 0 −Kc · · · · · · 0 Kme

−iϕ/2 A1 · · ·
...

...
...

...
...

...
...

...
...

...





...

yF1,−1

yF1,0
yF1,1
...
...

yF2,−1

yF2,0
yF2,1
...



=



...

0

P/2

0
...
...

0

0

0
...



,(2C.3)

where

Aj = 1 +Kc − (Ωf + jΩm)
2 + i2ζ(Ωf + jΩm) (2C.4)

for j = 0,±1,±2, · · · . Eq. (2C.3) can be written in a compact notation as:

D yF = pF (2C.5)

Thus, the complex-valued amplitudes of the harmonic terms in the output xF2 (τ) can be

formally calculated as yF = D−1 pF .

The size of matrix D is 4F + 2 by 4F + 2. With the exception of the elements in its main

diagonal, first super diagonal, first subdiagonal, (2F + 1)th super diagonal and (2F + 1)th

subdiagonal, all the elements in matrix D are zero.

The only difference between the forward and backward configurations is the location where

the external force is applied. The matrix D is therefore the same for the two configurations.

The force vector pF has only one non-zero element, which is in the (F+1)th row. This greatly

simplifies the matrix inversion: yF2,p, an arbitrary complex-valued amplitude of a harmonic

term in xF2 (τ), can be calculated from:

yF2,p = (−1)p+1MF+1,3F+2+p
P

2 |D|
(2C.6)

where Mj1,j2 is the minor of matrix D for the element in jth1 row and jth2 column.
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Figure 2C.1: Comparison of steady-state response calculated using the averaging method

(red and blue solid curves) and the Runge-Kutta method (cyan dashed curves). (a) Kc = 0.6,

Km = 0.1, ζ = 0.005, Ωm = 0.2, ϕ = 0.5π, P = 1, Ωf = 1 and F = 2, in forward

configuration; (b) Kc = 0.7, Km = 0.6, ζ = 0.005, Ωm = 0.1, ϕ = 0.3π, P = 1, Ωf = 1.33

and F = 6, in backward configuration.

Similarly, for the 2-DoF modulated system in the backward configuration, the complex-valued

amplitudes of all harmonic components in the output xB1 (τ) can be formally calculated from

yB = D−1 pB. The force vector pB has only one nonzero element, which lies in the (3F+2)th

row. yB1,p, an element in yB, can then be written as:

yB1,p = (−1)p+1M3F+2,F+1+p
P

2 |D|
. (2C.7)

Fig. 2C.1 shows the steady-state output displacements calculated for Eq. (2.1) for the fol-

lowing parameters: Kc = 0.6, ζ = 0.005, Ωm = 0.2, ϕ = π/2 and P = 1. To validate the

predictions made with the averaging method, the outputs of Eq. 2.1a is computed using the

Runge-Kutta method. The predictions made from the averaging method match very well

the results obtained from direct numerical integration.

The same methodology based on the averaging method can be used to obtain the steady-state

response of longer discrete modulated systems [70, 72].
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Chapter 3

Nonreciprocal Phase Shifts in Spatiotemporally Modulated

Systems

3.1. Introduction

Reciprocity theorems state that wave propagation in a material is independent of the di-

rection of transmission: the transmitted wave remains unchanged if the locations of the

source and receiver are interchanged [1]. In analysis of the steady-state response, reciprocity

manifests as the symmetry of the transfer matrix between the input and output [76]. This

property has laid the foundation for several measurement techniques and industrial appli-

cations [2, 3, 77–79]. Recently, however, there has been a surge of interest in realizing

direction-dependent transmission properties in acoustic and mechanical systems, a feat that

is impossible within the framework of reciprocity [4, 80].

In linear systems, one way to realize nonreciprocal wave transmission is through spatiotem-

poral modulations: periodic changes in the effective properties of the medium in both space

and time [6]. To enable nonreciprocity, spatiotemporal modulations are usually introduced

to the effective elasticity (stiffness) in various models of waveguides. Examples include a

uniform bar with wavelike spatiotemporal modulation in its elastic modulus [7, 11, 16] or

with local modulated attachments [9, 20, 23], discrete periodic materials with spatiotempo-

rally modulated coupling springs [24] or grounding springs [31, 43], and metamaterials with

spatiotemporal modulations in the stiffness of the local resonant springs [29, 42] or springs of

surface oscillators [22, 37]. Nonreciprocal vibration transmission can also occur in systems

with spatiotemporal modulations in the effective inertia (masses) [26] or in systems with

two-phase modulations, i.e. in both masses and springs [28] or in both density and elastic

modulus [15, 18]. By introducing spatiotemporal modulations to the electrical boundary

conditions of each cells in piezoelectric media, directional elastic waves can be generated and

result in direction-dependent propagation of incident waves [41, 81].

Successful realization of nonreciprocal dynamics leads to the dependence of at least one of

the transmission characteristics (amplitude, phase, phase or group velocity, etc.) on the

direction of transmission. The difference between the transmitted amplitudes or energies in

the opposite directions is almost universally used as the indicator of nonreciprocity. Typical

ways to illustrate this effect are directional bandgaps [7, 16, 26, 31, 46], frequency spectra

of transmitted vibrations [9, 37, 42–44] or the temporal response of the system [7, 43, 67].
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The difference between the transmitted phases can also contribute to nonreciprocity. Phase

has played an important role in nonreciprocal propagation of electromagnetic waves [53, 82].

When the propagation direction is reversed, significant phase difference can be observed in

electromagnetic waves that propagate through a time-invariant waveguide inside a magnetic

field [54–56, 83] or a spatiotemporally modulated waveguide [84]. Several techniques have

been developed to realize direction-dependent phases of electromagnetic waves, with current

or potential applications in industries such as telecommunications [85–87], radar systems [88]

and medical magnetic resonance imaging [89]. In acoustic and mechanical systems, however,

this attribute of nonreciprocity (contributions of phase) remains unexplored in comparison.

One way to highlight the role of phase in breaking reciprocity is to identify nonreciprocal

response regimes that are characterized by equal energies transmitted in opposite directions.

In this case, because the transmitted energies are the same, the difference between the phases

of the transmitted waves is the only contributor to nonreciprocity. We refer to this scenario

as phase nonreciprocity, and to the corresponding difference between the transmitted phases

as the nonreciprocal phase shift. Phase nonreciprocity has been reported in the steady-state

response of nonlinear systems to harmonic excitation [51, 52], where the nonreciprocal phase

shift can be controlled by varying system parameters. In spatiotemporally modulated materi-

als, nonreciprocal phase shifts have been identified as the main contributor to nonreciprocity

in systems with a small number of modulated units [90]. A detailed analysis of nonreciprocal

phase shifts for modulated systems, however, remains to be presented.

In this work, our goal is to systematically characterize nonreciprocal phase shifts in dis-

crete, spatiotemporally modulated systems. We focus on the steady-state response of a one-

dimensional (1-D) systems subject to simultaneous spatiotemporal modulation and external

harmonic drive. Due to the scattering effects of the modulations, the response of a modu-

lated system is not periodic in nature (characterized by two incommensurate frequencies).

Therefore, the analysis of the response, and thereby the direction-dependent propagation of

phase, is not straightforward and the methodology used for nonlinear systems [51] is not

directly applicable here. We therefore develop a methodology based on the envelopes of the

transmitted vibrations in order to enable a systematic search for and realization of non-

reciprocal phase shifts in spatiotemporally modulated systems. This includes a near-zero

nonreciprocal phase shift and retrieval of reciprocal response. While the primary focus of

the work is on weakly modulated systems with a small number of units, we also present a

special case of the phenomenon for systems of arbitrary length and strength of modulation.

Section 3.2 provides a derivation of response envelopes for the steady-state response of the

system, along with a short overview of nonreciprocity. In Section 3.3, we present our method-
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ology for obtaining response that exhibits nonreciprocal phase shifts, followed by a constraint

that ensures the same shapes for the two response envelopes. Section 3.4 provides two special

cases of nonreciprocal phase shifts: systems with arbitrary length and strength of modula-

tion, and near-reciprocal transmission. We discuss the limitations of our methodology for

obtaining nonreciprocal phase shifts in Section 3.5. Section 3.6 summarizes our findings.

3.2. Steady-state response of the modulated systems

3.2.1. Equations of motion

Fig. 3.1 shows the schematic of the discrete model of the spatiotemporally modulated mate-

rial that we study in this work. The model consists of n identical masses, viscous dampers,

coupling springs and modulated grounding springs. The longitudinal rectilinear movement

of each mass is considered as its only degree of freedom (DoF). External harmonic forces are

applied on the first mass and the last mass, f1(t) = F1 cos (ωf t) and fn(t) = Fn cos (ωf t).

The stiffness coefficient of each grounding spring is composed of a constant term and a time-

periodic term, expressed as kp(t) = kg,DC + kg,AC cos (ωmt− ϕp), where ϕp = (p − 1)ϕ and

p = 1, 2, · · · , n. Parameter ωm is the modulation frequency and ϕ is the phase shift between

the modulations in two adjacent units.

Parameter ϕ represents the spatial variation of the grounding stiffness along the length of

the system. This is the same as the modulation wavenumber in long systems. Nevertheless,

we continue referring to ϕ as the modulation phase in this work (instead of modulation

wavenumber) because we consider systems that can often be too short to even contain one

full modulation wavelength within them. The modulation phase is the only parameter that

breaks the mirror symmetry of the model and enables nonreciprocity; i.e., the end-to-end

transmission is always reciprocal for ϕ = 0 by virtue of mirror symmetry.

We start by nondimensionalizing the governing equations, as detailed in Appendix 3A. The

Figure 3.1: Schematic of the modulated system with n DoF.
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nondimensional equation of motion for the p -th mass of the system shown in Fig. 3.1 is:

ẍp + 2ζẋp + [1 +Km cos(Ωmτ − ϕp)]xp +Kc∆
2
p = Pp cos(Ωfτ) (3.1)

where the overdot represents differentiation with respect to nondimensional time τ . The

difference term ∆2
p = 2xp−xp−1−xp+1 everywhere except at the two ends where ∆

2
1 = x1−x2

and ∆2
n = xn − xn−1. The external forces are only applied at the two ends: Pp = P for

p ∈ {1, n} and zero everywhere else. Only one of the two ends is subject to an external force

at a time, as explained in Section 3.2.3.

3.2.2. Response envelopes

The response of the modulated system is characterized by two independent frequencies Ωf

and Ωm. The steady-state displacement is therefore not periodic in time (called quasi-

periodic), except for the rare cases when the ratio of the two frequencies is a rational number.

However, the envelope of the response is in fact periodic in time [72]. In this section,

we develop an expression for the response envelope to simplify the ensuing analysis and

computation.

The steady-state response of the system can be expressed in general as a combination of

harmonic components in complex or real notation as:

xp(τ) =
∑∞

q=−∞[yp;qe
i(Ωf+qΩm)τ + c.c.]

=
∑∞

q=−∞ 2|yp;q| cos [(Ωf + qΩm) τ + ψp;q].
(3.2)

where yp;q is the complex amplitude of each harmonic component and c.c. represents the

corresponding complex conjugate terms. The phase in the real representation, ψp;q, can be

expressed as:

ψp;q = atan2 (Im (yp;q) ,Re (yp;q)) , (3.3)

where Re( ) and Im( ) indicate the real part and imaginary parts of the complex amplitudes,

respectively. For a given Ωf and a set of system parameters, the complex amplitudes yp;q

can be calculated using the averaging method. This results in a linear system of algebraic

equations in the complex amplitudes

[D]{Y } = {F} (3.4)

where the matrix [D] contains the system parameters, {Y } is the vector of unknown complex

amplitudes and {F} contains information about the location and amplitude of the external

force. The details of this well established methodology are discussed elsewhere [36, 70,

90] and are not repeated here. Instead, we directly proceed with obtaining the envelope

equations.
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The steady-state displacements can alternatively be rewritten as:

xp(τ) = Ep(τ) Cp(τ), (3.5)

where Ep(τ) represents the response envelope and Cp(τ) represents the corresponding carrier

wave of unit amplitude. Ep(τ) is expressed as:

Ep(τ) = 2
∣∣∑∞

q=−∞ yp;qe
iqΩmτ

∣∣. (3.6)

When Ωm < Ωf and Km ≤ 0.1, Cp(τ) can be approximated by a harmonic wave of the same

frequency as the external excitation:

Cp(τ) = cos (Ωfτ + ψp;0), (3.7)

where ψp;0 = atan2 (Im (yp;0) ,Re (yp;0)). Otherwise, Cp(τ) is not periodic but its amplitude

remains equal to 1.

We emphasize that although the steady-state displacements xp(τ) are not periodic in time,

their envelopes, Ep(τ), remain periodic with period TE = 2π/Ωm. Regardless, the displace-

ment function xp(τ) remains bounded by its envelopes ±Ep(τ).

The infinite summations in Eqs. (3.2) and (3.6) need to be truncated at a finite value of

q. We take an expansion with q ∈ [−F ,F ] and F ∈ N. We restrict our attention to short

systems with weak modulations, i.e. n ≤ 5 and Km ≤ 0.1. Under these assumptions, the

response envelope is nearly harmonic. Thus, we use F = 1 to approximate the steady-state

response of the system.

To validate the solution predicted by Eq. (3.2) with q ∈ [−1, 1], the response of Eq. (3.1) is

computed using the Runge-Kutta method until the steady state is reached. We arbitrarily

choose two sets of system parameters, then calculate the displacements of two masses using

both the averaging and Runge-Kutta methods, as shown in Fig. 3.2. We observe that the

averaging method predicts the steady-state response well, ±E5(τ) and ±E1(τ) following the

response envelopes of the outputs accurately in both cases. The response envelope for a sys-

tem with stronger modulation amplitude remains periodic but it is no longer harmonic [72].

The formulation in Eq. (3.6) can still accurately predict the response envelopes provided that

more terms are included in the expansion (F > 1). In contrast, more conventional methods

of computing the response envelopes based on the method of multiple scales or rotating wave

approximation are typically limited to harmonic envelopes [91].

3.2.3. Nonreciprocity

Before presenting the special case of nonreciprocal phase shifts, we briefly review the typical

scenario for nonreciprocal vibration transmission in our system. The response of an exter-
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Figure 3.2: Comparison between the output displacements computed using the averaging

method (solid curves) and the Runge-Kutta method (dashed curves). Dash-dotted curves

are plots of ±E5(τ) and ±E1(τ) in panels (a) and (b), respectively. (a) n = 5, Ωm = 0.2,

ϕ = 0.42π, Ωf = 0.88, Kc = 0.6, Km = 0.1, ζ = 0.02, P1 = 1 and P5 = 0; (b) n = 4,

Ωm = 0.3, ϕ = 0.95π, Ωf = 1.1, Kc = 0.8, Km = 0.1, ζ = 0.02, P1 = 0 and P4 = 1.

nally forced system is reciprocal if it remains invariant upon interchanging the locations of

the input (source) and output (receiver). To test for reciprocity, therefore, we define two

configurations to distinguish between the two directions of vibration transmission: (i) the

forward (from left to right) configuration with P1 = P and Pn = 0, where the output is

the steady-state displacement of the rightmost (last) mass, xFn (τ); (ii) the backward (from

right to left) configuration with P1 = 0 and Pn = P , where the output is the steady-state

displacement of the leftmost (first) mass, xB1 (τ). The superscripts F and B denote the re-

sponse in the forward and backward configurations, respectively. Vibration transmission is

then reciprocal if and only if xFn (τ) = xB1 (τ).

We introduce the reciprocity bias, R, to quantify the degree of nonreciprocity of the response:

R = lim
T→∞

√√√√ ∫ T

0
[xFn (τ)− xB1 (τ)]

2
dτ

2
∫ T

0
[xFn (τ)]2 + [xB1 (τ)]

2
dτ

=

√√√√ ∑F
q=−F

∣∣yFn;q − yB1;q
∣∣2

2
∑F

q=−F

∣∣yFn;q∣∣2 + ∣∣yB1;q∣∣2 . (3.8)

By definition, 0 ≤ R ≤ 1, and R = 0 if and only if vibration transmission through the

system is reciprocal. The case of R = 1 corresponds to unilateral transmission, which is not
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relevant in this work. The denominator in Eq. (3.8) is introduced to remove the apparent

increase in the degree of nonreciprocity due to P . Because we study a linear system in this

work, the reported value of R hold for any choice of P .

To demonstrate the influence of ϕ on nonreciprocity, we compute R as a function of ϕ and Ωf

for two sets of system parameters; see Fig. 3.3. In general, the response remains nonreciprocal

(R > 0) over the entire range 0 < ϕ < 2π. A prominent exception is for systems with an odd

number of units, for which the response is reciprocal (R = 0) for ϕ = π; see Fig. 3.3(a). This

is because the time-reversal symmetry is retained when ϕ = π and n is an odd number. The

role of phase on nonreciprocity in coupled spatiotemporally modulated systems is explored

in detail elsewhere [90].

0.5 1 1.5 2

f

0

0.5

1

1.5

2

/

O

.0001

.001

.01

.1

R(a)

0.5 1 1.5 2

f

0

0.5

1

1.5

2

/

.0001

.001

.01

.1
R

(b)

Figure 3.3: Surface plots of reciprocity bias as a function of Ωf and ϕ for Km = 0.1, ζ = 0.02

and P = 1. Red dashed lines indicate the combinations of Ωf and ϕ that lead to R = 0. (a)

n = 5, Ωm = 0.1 and Kc = 0.8; (b) n = 4, Ωm = 0.2 and Kc = 0.6.

Fig. 3.4 shows the response of the system at point O of Fig. 3.3(a) with Ωf = 0.94 and

ϕ = 0.11π. Vibration transmission is clearly nonreciprocal, as seen in panels (a) and (b).

The difference in the transmitted amplitudes is also evident in the response envelopes in

panel (c). Panel (d) shows that, in addition to the response envelopes, the two carrier waves
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are also different between the two configurations, thus contributing to nonreciprocity. The

carrier waves are harmonic in weakly modulated systems; recall Eq. (3.7).
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Figure 3.4: Plots of (a,b) output displacements, (c) response envelopes and (d) carrier waves

for point O. Dash-dotted curves are plots of ±EF
5 (τ) and ±EB

1 (τ) in panels (a) and (b),

respectively. System parameters: n = 5, Ωm = 0.1, ϕ = 0.11π, Ωf = 0.94, Kc = 0.8,

Km = 0.1, ζ = 0.02 and P = 1.

The primary focus of this work is to investigate nonreciprocal response with equal amplitudes

transmitted in the opposite directions. Because the amplitudes are the same, nonreciprocity

is caused merely by the phase difference between the transmitted vibrations: nonreciprocal

phase shift. In time-invariant nonlinear systems, it is possible to realize nonreciprocal phase

shifts in the steady-state response to external harmonic excitation [51, 52]. Nonreciprocal

phase shifts occur when the two outputs have the same amplitudes but different phases, where

the amount of the nonreciprocal phase shift can be controlled using a system parameter.

In spatiotemporally modulated systems, however, a similarly systematic investigation of

nonreciprocal phase shifts is more challenging due to the non-periodic nature of the response.

We will take advantage of the periodicity of the response envelopes to obtain a vibration

transmission scenario that exhibits nonreciprocal phase shifts.
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3.3. Nonreciprocal phase shifts

Because the steady-state response of an externally driven modulated system is quasi-periodic,

the definition of its phase is not as straightforward as in systems without modulation. This

further complicates the search for parameters that lead to nonreciprocal phase shifts in

the response of the system. Given that the envelope of the response remains periodic,

it is much more feasible to investigate nonreciprocal phase shifts based on the response

envelopes. We expect that the steady-state displacements exhibit a nonreciprocal phase

shift if the corresponding response envelopes exhibit a nonreciprocal phase shift. We discuss

this approach here.

3.3.1. Formulation

The displacement response of the system oscillates in time with two incommensurate fre-

quencies around the static equilibrium point; i.e., there is no bias (DC shift with respect

to xp = 0) in the response. As a result, the envelope equations appear as a pair located

symmetrically with respect to xp = 0; see the envelopes in Fig. 3.2. We can therefore express

the envelope equation as

Ep(τ) =
√

Sdc;p + Sac;p(τ), (3.9)

where Sdc;p represent time-independent bias portions (DC shifts) and Sac;p represent the

time-varying portions of the amplitude equation. The square root is included in Eq. (3.9)

because we will be working with the square of envelope, E2
p(τ). With F = 1, the envelope

bias terms are defined as:

Sdc;p =
1

TE

∫ TE

0

(Ep (τ))
2 dτ = 4

(∣∣yp;−1

∣∣2 + ∣∣yp;0∣∣2 + ∣∣yp;1∣∣2) . (3.10)

And the time-varying portion of the envelopes are defined as:

Sac;p(τ) = Ap cos (Ωmτ − θa;p) + Bp cos (2Ωmτ − θb;p), (3.11)

See Appendix 3B for the expressions for the envelope amplitudes, Ap and Bp, and envelope

phases, θa;p and θb;p, in terms of the response amplitudes.

In terms of the envelope parameters SF,B
dc;n,1, A

F,B
n,1 and BF,B

n,1 , nonreciprocal phase shift between

response envelopes is characterized by the following three constraints:

SF
dc;n = SB

dc;1, (3.12a)

AF
n = AB

1 , (3.12b)

BF
n = BB

1 . (3.12c)
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If the three constraints in Eq. (3.12) are satisfied, it is still possible that the two envelopes are

not the same, EF
n (τ) ̸= EB

1 (τ). This can happen because of the phase terms in Eq. (3.11); i.e.,

θFa,n ̸= θBa,1 or θ
F
b,n ̸= θBb,1. The envelopes E

F
n (τ) and E

B
1 (τ) would exhibit a nonreciprocal phase

shift in this case, which corresponds to a nonreciprocal phase shift in the displacement as well.

Therefore, we use Eq. (3.12) as the constraints that need to be satisfied for nonreciprocal

phase shifts.

We note that satisfying Eq. (3.12) provides a necessary but insufficient condition for the

occurrence of nonreciprocal phase shifts. Having equal forward and backward response en-

velopes, EF
n (τ) = EB

1 (τ), may not necessarily be equivalent to xFn (τ) = xB1 (τ) due to the

possible phase difference between two carrier waves. We have not encountered this particular

scenario in our simulations, however. See Section 3.5.2 for the extension of the formulation

to F ≥ 1.

3.3.2. Solution methodology and results

To find system parameters that lead to nonreciprocal phase shifts, we first need to calcu-

late the steady-state response amplitudes of the system, yp;q. Truncating the expansion in

Eq. (3.1) at F sideband frequencies, q ∈ [−F ,F ], there will be 2F + 1 amplitudes for each

degree of freedom. For a system with n masses, considering both the forward and backward

configurations, the solution process involves calculating 2n(2F+1) complex amplitudes. The

averaging method outlined in Section 3.2.2 provides the required linear system of 2n(2F+1)

algebraic equations in the complex amplitudes.

In addition, the three constraints in Eq. (3.12) need to be satisfied in order to ensure the

envelope equations exhibit nonreciprocal phase shifts. This requires three of the system

parameters to vary independently (free parameters). Not all the system parameters are

suitable for this purpose, however. For example, n does not change continuously, P scales

the amplitudes linearly and has no effect on the nature of the response (because of linearity),

Km is limited to the range of weak modulations (Km ≤ 0.1) to ensure F = 1 provides

sufficient accuracy, and ζ is limited to small values to ensure light damping. We choose ϕ,

Ωf and Kc as the free parameters. The modulation frequency, Ωm, has a smaller permissible

range of variation in comparison and is therefore left unchanged in this section – we use

Ωm in Section 3.3.3 to control the shape of the envelopes after nonreciprocal phase shift is

achieved.

This procedure results in a system of 6n nonlinear algebraic equations for F = 1. Solving

this system of equations results in sets of the free system parameters ϕ, Ωf and Kc that

lead to nonreciprocal phase shifts. To demonstrate the methodology, we fix the other system
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Figure 3.5: The curves in each panel show the locus of system parameters that satisfy one

of the three constraints in Eq. (3.12). (a) n = 2, (b) n = 3 and (c) n = 4.

parameter to Ωm = 0.2, Km = 0.1, ζ = 0.02 and P = 1. We focus on short systems with

n ∈ {2, 3, 4} in this section – we discuss longer systems in Sections 3.4.1 and 3.5.2.

To satisfy the three constraints in Eq. (3.12), we first fix Kc = 0.7 and perform an exhaustive

search to find combinations of ϕ and Ωf that satisfy each pair of the constraint equations

over the range 0 < ϕ < π and 0.5 < Ωf < 2. Because of the symmetries of trigonometric

functions, the interval from 0 to π covers the entire range of variation for ϕ. We also note that

the interval chosen for the forcing frequency covers the primary resonances and sidebands;

the frequency range beyond this interval is off-resonance and therefore of limited practical

interest.

Fig. 3.5 shows the combinations of ϕ and Ωf that satisfy different constraints in Eq. (3.12).

For the system with n = 2, panel (a), there are no intersections between the loci of SF
dc;2 =

SB
dc;1 and AF

2 = AB
1 , and no parameter values that result in BF

2 = BB
1 . Thus, a system with

n = 2 cannot exhibit nonreciprocal phase shifts.
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Figure 3.6: Locus of the intersection points from Fig. 3.5 as a function of Kc. (a,c) n = 3,

(b,d-f) n = 4. Panels (c-f) are zoomed-in views of the intersections points between loci of

circles and crosses. The color along each locus indicates the corresponding value of Kc, using

the same color scale as in (a,b). The intersection points indicated by red diamonds satisfy

Eq. (3.12).

In systems with more modulated units, the loci of the constraint equations are more complex

and several intersection points are possible. Figs. 3.5(b) and 3.5(c) show these intersection

points for systems with n = 3 and n = 4, respectively. The circle markers indicate inter-

sections points that satisfy both Eq. (3.12a) and Eq. (3.12b), and cross markers indicate

intersection points that satisfy both Eq. (3.12a) and Eq. (3.12c).

Having found pairs of (Ωf ,ϕ) that satisfy two of the three constraints (circles and crosses

in Fig. 3.5), we allow Kc to vary and track how the intersection points (circles and crosses)

evolve. Figs. 3.6(a,b) show the results of this search for systems with n = 3 and n = 4,

respectively. For better clarity, we have used a colormap in Kc instead of showing the

three-dimensional plots. There are several intersection points between the loci of circles and
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Figure 3.7: Displacement outputs and response envelopes exhibiting nonreciprocal phase

shift for (a,b) point Q, (c,d) point U . (e-h) Response envelopes for points Q, R, U and V ,

respectively.

crosses. Figs. 3.6(c-f) show closeup views of four of these intersection points, labeled Q, R,

U and V . These points represent parameters that satisfy the three constraints in Eq. (3.12)

and lead to nonreciprocal phase shifts.

Figs. 3.7(a-d) show the output displacements and the corresponding response envelopes in

the time domain for intersection points Q and U . As expected, the nonreciprocal phase

shift in the response envelopes corresponds to nonreciprocal phase shifts in the displacement

outputs. Figs. 3.7(e-h) show the response envelopes, EF
n (τ) and EB

1 (τ), for all the four

intersections points identified in Fig. 3.6(c-f). None of the four response envelopes in these

examples is harmonic, a feature that is particularly visible for point U, Fig. 3.7(g). These

points were chosen because they result in significant phase difference between the forward

and backward configurations. The nonrecipocal phase shift can sometimes be small for other

intersection points.
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3.3.3. Enforcing the same envelope shapes

The constraints for nonreciprocal phase shift, Eq. (3.12), do not impose any restrictions on

the shape of the response envelopes. The corresponding response envelopes can therefore

satisfy the constraints while having different shapes; this is particularly obvious for point

U , shown in Fig. 3.7(g). To enforce the same shape for the forward and backward response

envelopes, we can introduce the following constraint:

Rem = rem
(
2
(
θFa;n − θBa;1

)
−
(
θFb;n − θBb;1

)
+ 2ẑπ, 2π

)
= 0, (3.13)

where rem (α, β) is the remainder of dividing α by β, and ẑ is an integer introduced to ensure

the continuity of Rem.

0.1 0.2 0.3 0.4 0.5 0.6

m

0

0.1

0.2

Q
s

Q

R
em

(a)

0.1 0.15 0.2 0.25

m

0

0.5

1

1.5

R
s

R

R
em

(b)

0.1 0.3 0.5 0.7 0.9 1.1 1.3

m

4.4

4.7

5

5.3

U

R
em

(c)

0.1 0.15 0.2 0.25

m

0

0.5

1

V
s

V

R
em

(d)

Figure 3.8: Variation of Rem as a function of Ωm for points Q (a), R (b), U (c) and V (d),

all exhibiting nonreciprocal phase shifts. Qs, Rs and Vs represent points at which E
F
n (τ) and

EB
1 (τ) have the same shape.

To satisfy the additional constraint in Eq. (3.13), we allow the modulation frequency Ωm to

vary as a free parameter and monitor Rem for zero crossings. The other system parameters

need to vary during this computation to ensure the constraints in Eq. (3.12) remain satis-

fied. We note that it may not necessarily be possible to satisfy the additional constraint in

Eq. (3.13) within a reasonable range of Ωm.

Fig. 3.8 shows the variation of Rem as a function of Ωm for points Q, R, U and V . A set of

system parameters exist for which Rem = 0 for points Q, R and V , but not for point U . We

have therefore identified three points, named Qs, Rs and Vs, that satisfy all the constraints

in Eqs. (3.6) and (3.13). Fig. 3.9 shows the displacement outputs and the corresponding
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Figure 3.9: Displacement outputs for points Qs (a,b) and Vs (c,d) that exhibit nonreciprocal

phase shift with the same envelope shapes. The corresponding response envelopes are shown

in (e) and (f) respectively.

response envelopes for points Qs and Vs. As expected, the response envelopes have the same

shape and exhibit nonreciprocal phase shift in both cases.

The results presented in this section were obtained for a fixed set of parameters n, Km and ζ.

It is, of course, possible to use the same methodology to find many other sets of parameters

at which the response of the system exhibits nonreciprocal phase shifts, potentially with the

same envelope shape.

3.4. Special cases

3.4.1. Systems with ϕ = π and even n

A trivial case of nonreciprocity with equal transmitted amplitudes in the opposite directions

occurs when ϕ = π and n is an even number [90]. In this scenario, |yFn;q| = |yB1;q| for any
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integer q, regardless of the values of other system parameters. Moreover, ψF
n;q = ψB

1;q when q

is an even number and ψF
n;q = ψB

1;q ± π when q is an odd number. This leads to the following

relation between the two response envelopes: EF
n (τ) = EB

1 (τ ± TE/2). In other words, the

two response envelopes have the same shape with a temporal shift equal to half a period.

Therefore, we can obtain response that is characterized by nonreciprocal phase shifts with

the same envelope shapes without applying the methodology described in Section 3.3. More

importantly, this special case of nonreciprocal phase shifts can be realized at any strength

of modulation and for a system of arbitrary length.
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Figure 3.10: Displacement outputs (a,b), shifted response envelopes (c) and carrier waves

(d) calculated with parameters: n = 10, Ωm = 0.2, ϕ = π, Ωf = 0.89, Kc = 0.7, Km = 0.8,

ζ = 0.02, P = 1 and F = 7.

Fig. 3.10 shows the displacement outputs x(τ), the response envelopes E(τ) and the carrier

waves C(τ) for a strongly modulated system (Km = 0.8) with ϕ = π and n = 10; recall

Eq. (3.5). We use F = 7 in Eq. (3.2) to approximate the response accurately. Panels (a,b)

show that the anharmonic envelopes of the output displacements are captured well. Panel

(c) shows that the plots of EF (τ) and EB(τ ± TE/2) coincide, confirming the half-period

phase shift between the two envelopes. As shown in panel (d), the carrier waves are no
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longer periodic in strongly modulated systems, in contrast to the harmonic carrier waves of

weakly modulated systems; cf. Fig. 3.4. Thus, nonreciprocity in strongly modulated systems

manifests in both the envelopes and carrier waves.

3.4.2. Near-reciprocal transmission

The constraints in Eq. (3.13) are applied to the response envelopes and do not directly

control the properties of the carrier waves. Interestingly, we have observed that enforcing

the constraint for the same envelope shapes can occasionally result in a near-reciprocal

response.

m

-4

-2

0

2

R
e
m

W
R

W

0.1 0.2 0.3 0.4 0.5

10
-3

10
-2

10
-1

R

W
R

W

(a)

(b)

0 30 60 90 120 150

 - 2000

-0.2

-0.1

0

0.1

0.2 x
4

F
( )

x
1

B
( )

0 5 10 T
E

0

0.1

0.2

E
4

F
( )

E
1

B
( )

(c) (d)

Figure 3.11: Variation of Rem (a) and R (b) as functions of Ωm for point W that exhibits

nonreciprocal phase shift. Displacement outputs (c) and response envelopes (d) for point

WR.

Fig. 3.11(a) shows the variation of Rem as a function of Ωm for point W , representing a

set of system parameters that satisfy the constraints in Eq. (3.12) for nonreciprocal phase

shifts: Ωm = 0.3, Ωf = 0.753, ϕ = 0.703π, Kc = 0.415, Km = 0.1, n = 4, ζ = 0.02 and

P = 1. In Fig. 3.11(a), Rem ≈ 0 over a large portion of the curve, especially starting from

the portion leading to the turning point near Ωm ≈ 0.48 and extending to Ωm ≈ 0.2. The
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forward and backward response envelopes have very similar shapes throughout this range of

Ωm. Fig. 3.11(b) shows the variation of the reciprocity bias, R, along the same locus. We

have R < 0.04 throughout the range of Ωm where Rem ≃ 0, implying that the degree of

nonrecpirocity is small. The minimum value of R, indicated by point WR, occurs near a

zero crossing of Rem for Ωm = 0.454, Ωf = 0.638, ϕ = 0.715π and Kc = 0.713. We have

R = 5.52×10−4 at this point, which means that the two response envelopes almost coincide.

Figs. 3.11(c,d) show the output displacements and response envelopes at point WR. Neither

the two output displacements nor the two response envelopes can be visibly distinguished.

Vibration transmission is therefore nearly reciprocal for this set of system parameters.

The near-reciprocal response reported here is reminiscent of the restoring of reciprocity in

nonlinear systems with broken mirror symmetry [52, 92]. While restoring reciprocity in non-

linear systems, the reciprocity bias can be made arbitrarily small to ensure reciprocity [92].

We do not expect the same property to hold in the present work because there is only one

symmetry-breaking parameter in our system. Nevertheless, given the small value of R for

the example in Fig. 3.11, it is unlikely that the output displacements could be distinguished

in an experimental realization of the system in this case.

3.5. Limitations of the methodology

3.5.1. Systems with Ωf < Ωm

In analogy to audio communication systems [93, Ch. 3], the response envelopes can be

viewed as the message signals in the amplitude modulation (AM) technique and the output

displacement as the resultant waves after AM. A successful AM process requires that the

carrier wave has a much higher frequency than the message signal. Upon receiving the signal,

the frequency contents of the signal (peaks at equally distanced frequencies) are used during

the demodulation process to retrieve the original message signal. When the frequency of the

carrier waves is high enough, the receiver can obtain sufficient peaks within every period

of the message signal to reconstruct the original message with high quality. Similarly, if

Ωf < Ωm in our system, there will be less than one intersection point of output displacement

and its response envelope within a period TE = 2π/ωm. Thus, the response envelope fails to

capture the profile of the output displacement.

In Section 3.3.2, we used parameter sets with 0.5 ≤ Ωf ≤ 2 and Ωm = 0.2. The frequency

of the response envelopes was therefore lower than the frequencies of the carrier waves, and

Eq. (3.6) captured the response envelopes well, as a result; recall Fig. 3.7. In Section 3.3.3,

Ωm was allowed to vary as a free parameter to satisfy the additional constraint on envelope

shapes, Rem = 0 in Eq. (3.13). It is possible that the additional constraint is sometimes
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satisfied with Ωm > Ωf . Here, we present an example of this scenario that leads to inaccurate

prediction of nonreciprocal phase shifts.

Fig. 3.12(a) shows the variation of Rem as a function of Ωm for a set of parameters that

satisfies the constraints in Eq. (3.12) for nonreciprocal phase shifts: Ωm = 0.2, Ωf = 0.753,

ϕ = 0.458π, Kc = 0.969, Km = 0.1, n = 4, ζ = 0.02 and P = 1. We refer to this initial point

as H. As Ωm varies, Rem has three zero crossings, indicated by the empty diamond markers.

Fig. 3.12(b) shows that Ωm < Ωf for the first two zero crossings; they fall above the oblique

dashed line that indicates Ωm = Ωf . As expected, the response at these two points exhibits

nonreciprocal phase shift with the same envelope shape (not shown). However, Ωm > Ωf at

the third zero crossing, indicated by point Hs where Ωm = 0.901, Ωf = 0.177, ϕ = 0.473π and

Kc = 4.747. Figs. 3.12(c,d) show the output displacements and response envelopes for point

Hs. The predicted response envelopes have low-amplitude fluctuations of high frequency

with large DC shifts (SF
dc;4, SB

dc;1) while the displacements have high-amplitude fluctuations

of low frequency. The predicted envelopes do not capture the actual envelope of the response

because Ωf < Ωm.

3.5.2. Long systems with strong modulation

Except for the special case presented in Section 3.4.1, all the calculations for nonreciprocal

phase shifts in this work are conducted with F = 1. We have the same number of free system

parameters in this case as the constraint equations, which makes the search for nonreciprocal

phase shifts feasible. Nevertheless, the assumption of F = 1 restricts the analysis to short,

weakly modulated systems [90].

A higher value of F is required to accurately capture the steady-state response envelopes

in systems with Km > 0.1 or n > 5. To update the formulation of response envelopes from

Section 3.2.2 to a general value of F , we need to use:

EF,B
n,1 (τ) =

√
SF,B
dc;n,1 + SF,B

ac;n,1(τ),

SF,B
dc;n,1 = 4

∑F
q=−F

∣∣yF,Bn,1;q

∣∣2,
SF,B
ac;n,1(τ) =

∑2F
j=1 E

F,B
j;n,1 cos (jΩmτ − ϑF,B

j;n,1),

(3.14)

which replaces Eqs. (3.9-3.11). The following constraints replace Eq. (3.12) to enforce a

nonreciprocal phase shift between the response envelopes:

SF
dc;n = SB

dc;1,

EF
1;n = EB

1;1,
...

EF
2F ;n = EB

2F ;1.

(3.15)
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Figure 3.12: Variation of Rem (a) and Ωf (b) as functions of Ωm for point H that exhibits

nonreciprocal phase shift. The black dashed line in panel (b) represent Ωf = Ωm. (c,d)

Displacement outputs and response envelopes for point Hs.

There are 2F + 1 constraints in Eq. (3.15). A larger value of F increases the number of

constraints, but it does not change the number of available system parameters that can

be used to satisfy the additional constraints. As discussed in Section 3.3, only 4 system

parameters can be changed as free (control) parameters: Ωf , ϕ, Kc and Ωm. If F > 1,

the number of equations exceed the number of unknowns (overdetermined system) and it

becomes no longer possible to satisfy all the constraints in Eq. (3.15). Thus, the methodology

introduced in Section 3.3, in its current form, is limited to F = 1, which corresponds to short

systems (n < 5) subject to weak modulations (Km ≤ 0.1).

This is not an insurmountable limitation, however. Within the framework of the present

work, one potential way to overcome this limitation is to allow more system parameters to

vary (increasing the number of free parameters). Currently, parameter ϕ makes the only

difference between the units. It is possible to allow for variation in the system parameters

across units (mass, stiffness, etc.) to make up for the required number of control parameters.

Alternatively, it may be possible to develop an alternative formulation to find nonreciprocal
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phase shifts in strongly modulated systems with more number of units.

3.6. Conclusions

We reported on the existence of response regimes in spatiotemporally modulated systems

that are characterized by nonreciprocal phase shifts. This is a special case of nonrecipro-

cal dynamics in which the transmitted vibrations have the same amplitude and the only

contributor to nonreciprocity is the difference between the transmitted phases in opposite

directions. This attribute of nonreciprocity is rarely discussed in the context of spatiotem-

porally modulated systems.

We presented a methodology for obtaining nonreciprocal phase shifts that takes advantage

of the time-periodic nature of the envelopes of the response in the steady state. This cir-

cumvents the complexities of the non-periodic nature of the response caused by the presence

of two incommensurate frequencies (modulation and external drive). While we primarily fo-

cused on weakly modulated systems with a small number of units, we also presented a special

case of nonreciprocal phase shifts in a system of arbitrary length and strength of modulation.

In addition, we provided a formulation that ensures the same transmitted waveforms in op-

posite directions, which also helped us obtain a special case of near-reciprocal transmission

of vibrations.

In summary, we extended the phenomenon of phase nonreciprocity from nonlinear systems

(passive) to spatiotemporally modulated systems (active). We discussed the main limitations

of our methodology in its current form: systems with modulation that is faster than the

external drive, and long systems subject to strong modulation. We point out a potential

way to overcome the second limitation to motivate further research on the topic. We hope

that our findings can enable new developments in wave processing techniques such as phase

shift keying and communication devices.
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Appendices

3A. Non-dimensionalization

The equations of motion which govern the n-DoF modulated system in Fig. 3.1 are:

m
d2u1
dt2

+ c
du1
dt

+ k1u1 + kcδ
2
1 = F1 cos (ωf t),

...

m
d2up
dt2

+ c
dup
dt

+ kpup + kcδ
2
p = 0,

...

m
d2un
dt2

+ c
dun
dt

+ knun + kcδ
2
n = Fn cos (ωf t),

(3A.1)

where kp = kg,DC + kg,AC cos(ωmt− ϕp) and ϕp = (p− 1)ϕ (p = 1, 2, · · · , n). The difference

term δ2p = 2up − up−1 − up+1 everywhere, except at the two ends where δ21 = u1 − u2 and

δ2n = un − un−1. We use τ = ω0t as the nondimensional time with ω0 =
√
kg,DC/m. We

define ζ = c/(2mω0), Ωm = ωm/ω0, Ωf = ωf/ω0, Kc = kc/kg,DC , Km = kg,AC/kg,DC ,

P1 = F1/(akg,DC), Pn = Fn/(akg,DC) and xp = up/a, where a is a representative length.

After substituting these parameters into Eq. (3A.1), we obtain:

maω2
0ẍ1 + 2ζmaω2

0ẋ1 + kg,DCax1 [1 +Km cos (Ωmτ)]

+Kckg,DCa (x1 − x2) = P1akg,DC cos (Ωfτ),
...

maω2
0ẍp + 2ζmaω2

0ẋp + kg,DCaxp [1 +Km cos (Ωmτ − ϕp)]

+Kckg,DCa (2xp − xp+1 − xp−1) = 0,
...

maω2
0ẍn+2ζmaω2

0ẋn+kg,DCaxn [1+Km cos (Ωmτ−ϕn)]

+Kckg,DCa (xn−xn−1)=Pnakg,DC cos (Ωfτ),

(3A.2)

where ẍp and ẋp represent d2xp / d
2τ and dxp / dτ respectively. Eq. (3A.2) can be further

simplified as:

ẍ1 + 2ζẋ1 + x1 [1 +Km cos (Ωmτ)] +Kc (x1 − x2) = P1 cos (Ωfτ),
...

ẍp + 2ζẋp + xp [1 +Km cos (Ωmτ − ϕp)] +Kc (2xp − xp+1 − xp−1) = 0,
...

ẍn + 2ζẋn + xn [1 +Km cos (Ωmτ − ϕn)] +Kc (xn − xn−1) = Pn cos (Ωfτ),

(3A.3)

In this paper, calculations and analysis of the response of the n-DoF modulated system are

all based on Eq. (3A.3), which is the same as Eq. (3.1).
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3B. Response envelope: Amplitude terms

The envelope amplitudes (Ap and Bp) and envelope phases (θa;p and θb;p) in Eq. (3.11) can

be calculated from:

Ap =8

√
(Qc;a;p)

2 + (Qs;a;p)
2, θa;p = atan2 (Qs;a;p, Qc;a;p) ,

Bp =8

√
(Qc;b;p)

2 + (Qs;b;p)
2, θb;p = atan2 (Qs;b;p, Qc;b;p) ,

where Qc,s;a,b;p are defined as:

Qc;a;p =Re(yp,0) (Re(yp,−1) + Re(yp,1))

+ Im(yp,0) (Im(yp,−1) + Im(yp,1)) ,

Qs;a;p =Re(yp,0) (Im(yp,−1)− Im(yp,1))

− Im(yp,0) (Re(yp,−1)− Re(yp,1)) ,

Qc;b;p =Re(yp,−1) Re(yp,1) + Im(yp,−1) Im(yp,1),

Qs;b;p =Re(yp,1) Im(yp,−1)− Re(yp,−1) Im(yp,1).
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Chapter 4

Parametric Instability in Discrete Models of Spatiotemporally

Modulated Materials

4.1. Introduction

Spatiotemporal modulation of the effective material properties of a system is one established

way to realize nonreciprocal transmission of mechanical or acoustic waves [4, 6]. In this con-

text, spatiotemporal modulation refers to periodic changes (often harmonic) in the material

properties of a waveguide, material or device in both space and time. The nonreciprocal

transmission characteristics of spatiotemporally modulated materials have been a key factor

in the great attention they have received in recent years.

The underlying mechanisms that lead to nonreciprocal propagation in spatiotemporally mod-

ulated materials are relatively well understood by now [7, 17, 25, 94]. A widely featured

dynamic characteristic of these systems is the appearance of direction-dependent frequency

gaps in the dispersion diagram, which leads to unidirectional propagation of waves through

the system. In finite systems, this leads to a large difference between the energies transmitted

in opposite directions: a large energy bias.

In systems with very few spatiotemporally modulated units, the energy bias is often very

small and nonreciprocity manifests primarily as a difference in the transmitted phases in-

stead [90]. To increase the energy bias in short systems, one can increase the number of

modulated units or the modulation amplitude. The influence of adding more modulated

units on the transmission characteristics can be investigated using the theoretical frame-

works that already exist in the literature. This is no longer the case for strongly modulated

systems.

Increasing the strength of modulations can change the spectral contents of the response,

specifically by making the contributions from sidebands more significant and by shifting

the resonance frequencies; a detailed analysis of these effects is available elsewhere [90].

More importantly, strong modulations can result in parametric instability, which leads to

unbounded growth of the response amplitude in time [73, 95]. This is a critical feature of

strongly modulated systems because it can compromise safe operation of modulated devices

or cause device failure.

The objective of this work is to investigate the phenomenon of parametric instability in
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spatiotemporally modulated systems. We focus exclusively on discrete models of spatiotem-

porally modulated materials. To a great extent, this choice is motivated by the models

associated with experimental realization of spatiotemporal modulations. Spatiotemporal

modulation, a type of parametric excitation, is often achieved at discrete points through-

out the structure, for example by piezoelectric patches [40, 47] or magnetic forces [43, 49].

Discrete models are therefore developed for their analysis, especially in the case of finite

systems.

Parametric excitation occurs in numerous mechanical systems when a displacement-dependent

forcing is present, perhaps most famously in a pendulum with a moving base [58, Ch. 5]

or used to explain how to get a swing in motion [96]. The study of parametrically ex-

cited systems dates back to the nineteenth century [97], with the works of Mathieu [98]

and Rayleigh [99] among the early contributions in mechanical vibrations. In the present

century, parametric excitation and the associated amplification effect are widely utilized in

the operation of MEMS sensors and actuators [71, 100].

Parametric instabilities occur when the system can no longer maintain a bounded response

amplitude above a threshold of modulation amplitude – this threshold can be infinitesimally

small under certain conditions. The ensuing exponential growth of the response amplitude

is detrimental to a system’s ability to carry out its intended operation and often leads to

failure. Understanding of parametric stability is therefore crucial in applications ranging

from aerospace rotors [101, 102] and wind turbines [103] to machining chatter [104, 105] and

control systems [106].

Spatiotemporally modulated materials can be modeled as coupled oscillators subject to para-

metric excitation. The corresponding mathematical model is a system of coupled Mathieu

equations, with a phase term that corresponds to spatial modulation. Despite the vast

literature on the Mathieu equation, there are relatively fewer studies on coupled Mathieu

equations, and we have found that parametric stability is rarely discussed in the context

of spatiotemporally modulated systems [107, 108]. In particular, the influence of spatial

modulations (modulation wavenumber) on parametric stability remains to be investigated.

Our goal in this work is to contribute to filling this gap in the literature.

We refer to the modulation frequencies that can lead to unstable response for infinitesi-

mally small modulation amplitudes as the unstable modulation frequencies (UMFs) – this

only occurs in the absence of energy dissipation. One of the early studies on parametric

stability in a system of n undamped Mathieu equations found that the response remains

stable for sufficiently small modulation amplitudes unless the modulation frequency is equal

to a combination of any two natural frequencies of the system in the absence of modula-
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tions [109, Ch. 4]. Specifically, |Ωn,j1 ± Ωn,j2 |/β > 0 are identified as potential UMFs ,

where j1,2 ∈ {1, 2, · · · , n}, β ∈ N, and Ωn,j1,2 denotes an unmodulated natural frequency. An

independent study based on perturbation analysis reported the same result [110].

It has been long established to use stability diagrams (stability charts) to graphically present

the dependence of parametric stability on modulation amplitude and frequency [111]. Despite

the extensive research on parametric stability of Mathieu’s equation and its various extended

forms, systems with more degrees of freedom (DoF) have received much less attention in

comparison. For example, the UMFs have been studied in coupled modulated systems (2-

DoF) [59, 112], for which the presence of a phase shift between the two modulations influences

the stability but not the UMFs [112]. When the parametric excitation terms are uncoupled

in the equations of motion, only Ω2,j1 + Ω2,j2 are identified as UMFs [113]. In a study on a

3-DoF system, the stability diagram shows an increase in the number of unstable regions,

with the UMFs located at (Ω3,j1 +Ω3,j2)/β [59]. Nevertheless, we could not find a systematic

study of parametric instability that can be readily applied in the context of spatiotemporally

modulated systems. In particular, the influence of spatial modulations and the number of

modulated units on parametric stability remains unexplored for the most part.

In this work, we present a detailed computational analysis of parametric instability in spa-

tiotemporally modulated systems. We use Floquet theory to determine the stability of

response of the system. We also perform a perturbation analysis of the UMFs that incor-

porates the influence of modulation phase (wavenumber). The stability of long modulated

systems is investigated and discussed in more detail than we could find in the literature.

Additionally, we highlight the wide continuous stable ranges of modulation amplitude that

appear at low values of modulation frequency in stability diagrams for both short and long

systems. These wide ranges of modulation amplitude support the design of slowly modulated

systems with high modulation amplitudes.

Finally, it is important to note that when a vibrating system is subject to simultaneous exter-

nal and parametric excitation with the modulation frequency locked at twice the frequency

of the external drive, we can observe unbounded amplitude in the steady-state response of

the system even in the presence of damping. This phenomenon is called parametric ampli-

fication [71], and is distinct from the scenario we explore in this work. We also note that

wavenumber bandgaps may appear in dispersion curves, indicating the appearance of stand-

ing waves with exponentially growing amplitudes, especially when the modulation frequency

is high [40, 50, 114].

We present the discrete model of a one-dimensional spatiotemporally modulated system in

Section 4.2. Section 4.3 introduces the approaches used to determine the stability of the
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response: Floquet theory and perturbation analysis. Stability diagrams for short systems

are presented in Section 4.4. In Section 4.5, we investigate the influence of spatial modulation

on parametric stability. Stability of long modulated systems is explored in Section 4.6. The

influence of damping on stability is analyzed in Section 4.7. Section 4.8 summarizes our

findings.

4.2. Problem formulation

Figure 4.1: Schematic representation of the modulated system with n DoFs.

We consider a discrete model of one-dimensional spatiotemporally modulated materials in

this work. Fig. 4.1 shows the schematic of this model. The system is composed of identical

masses, linear coupling springs, viscous dampers, and modulated grounding springs. For each

mass, only the longitudinal rectilinear motion is considered as a degree of freedom (DoF).

The stiffness coefficient of the grounding spring in the p -th modulated unit is expressed as

kp(t) = kg,DC+kg,AC cos (ωmt− ϕp), where ϕp = (p− 1)ϕ for p = 1, 2, · · · , n. Parameters ωm

and kg,AC are the modulation frequency and amplitude, respectively. Parameter ϕ represents

the spatial modulation along the system. This is the same as the modulation wavenumber.

We refer to ϕ as the modulation phase in this work because of our emphasis on short systems.

The equations of motion for the modulated system in Fig. 4.1 are first nondimensionalized;

see 4A. The nondimensional equations of motion for the p -th mass of the system are:

ẍp + 2ζẋp + xp [1 +Km cos (Ωmτ − ϕp)] +Kc∆
2
p = 0, (4.1)

where the overdot represents differentiation with respect to nondimentional time τ . The

difference terms representing coupling are ∆2
1 = x1 − x2 and ∆2

n = xn − xn−1 at two ends of

the system; ∆2
p = 2xp − xp+1 − xp−1 elsewhere. We will continue with the nondimensional

equations.

Fig. 4.2 shows the time-domain response of Eq.(4.1) for two different sets of system param-

eters. Panel (a) shows a typical stable response, characterized by its quasiperiodic nature

and constant amplitude (energy). Panel (b) shows a typical unstable response, which is

characterized by an exponentially growing amplitude.
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Figure 4.2: Displacements of the first masses in two modulated systems with Kc = 0.6,

ϕ = 0.5π and ζ = 0. (a) n = 3, Ωm = 2.6 and Km = 0.2; this scenario falls inside a stable

region in Fig. 4.3(b). (b) n = 5, Ωm = 2.6 and Km = 0.1; this scenario falls inside an

unstable region in Fig. 4.3(b). The initial conditions for both examples are: ẋn (0) = 0.1,

xn (0) = xp (0) = ẋp (0) = 0 for 1 ≤ p ≤ n− 1.

4.3. Approaches to determine parametric stability

4.3.1. Floquet theory: Direct computation

Eq.(4.1) can be recast as a system of linear ordinary differential equations:

d

dτ
X (τ) = A (τ) X (τ) , (4.2)

where X = {ẋ, x}T and x = {x1, x2, · · · , xn}T . The matrix of coefficients is periodic in

time, A (τ) = A (τ + TE), with TE = 2π/Ωm in this case. Vector and matrix variables

are indicated with single and double underlines. Floquet theory describes the conditions

for stability (boundedness) of the solutions, X(τ), based on the principal matrix of the

system [115].

The principal matrix of Eq.(4.1), denoted by Ψ, satisfies X (TE) = ΨX (0), where X (0)

contains an independent set of initial conditions (the identity matrix is the most common

choice). The eigenvalues of the principal matrix are crucial to determine the stability of

the response of the system. Because there is no explicit analytical solution for Eq. (4.2),

or for Mathieu’s equation, the stability of the solutions are typically computed numerically.

Several approximation methods have also been developed to obtain the principal matrix [58,

116, 117]. In addition to approaches that focus on the principal matrix, the stability of

Mathieu’s equation can be determined by the harmonic-balance method and the method of

multiple scales [73, 118].
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The 2n× 2n matrix of coefficients in Eq. (4.2) is:

A(τ) =

[
D C(τ)

I O

]
(4.3)

where D, C(τ), I and O are all n × n matrices. O is a zero matrix, I is an identity matrix

and D = −2ζI. Matrix C(τ) can be written as:

C(τ) =


B1(τ) Kc 0 · · · 0

Kc B2(τ) Kc · · · 0

0 Kc B3(τ) · · · 0
...

...
...

. . .
...

0 0 0 · · · Bn(τ)

 (4.4)

where the diagonal terms Bp(τ) = −2Kc − [1 + Km cos(Ωmτ − ϕp)] for any value of p, ex-

cept at the two ends where B1(τ) = −Kc − [1 + Km cos(Ωmτ)] and Bn(τ) = −Kc − [1 +

Km cos(Ωmτ − ϕn)]. The elements in the first super diagonal and the first subdiagonal of

C(τ) are equal to Kc. The remaining elements of C(τ) are zero.

We define 2n vectors of initial conditions that can form an identity matrix:[
X 1(0) X 2(0) · · · X 2n(0)

]
= I. (4.5)

The response of the modulated system at τ = TE, computed for each set of initial conditions,

forms a matrix called the principal matrix:

E =
[
X 1(TE) X 2(TE) · · · X 2n(TE)

]
. (4.6)

Floquet theory states that the response of the system becomes unstable (unbounded) if any

eigenvalue of E has its modulus larger than unity. In this work, we compute the principal

matrices using the fourth-order Runge-Kutta method with Gill coefficients [119, 120]. All

the stability diagrams reported in subsequent sections are computed in this way.

4.3.2. Perturbation method: Predicting unstable modulation frequencies

Our goal in this section is to obtain analytical expressions for modulation frequencies that

lead to unbounded response in the presence of (infinitesimally) small modulation amplitude.

We refer to these frequencies as the unstable modulation frequencies, UMFs. We decompose

the steady-state response of the system into its constituent modes to facilitate the analysis

based on the method of multiple scales.
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In the absence of energy loss (ζ = 0), the response of the modulated system governed

by Eq. (4.1) can be expressed as a Fourier series:

xp (τ) =
n∑

q=1

∞∑
κ=−∞

Xp;q;κ (τ) e
i(Ωn,q+κΩm)τ , (4.7)

where Ωn,q is the q -th natural frequency of the unmodulated system. To keep track of the

parametric instabilities that occur at lower modulation frequencies more easily, we introduce

the parameter β and rewrite xp (τ) as:

xp (τ) =
∞∑
β=1

wp;β (τ) , (4.8)

wp;β (τ) =
n∑

q=1

∞∑
κ=−∞

Wp;β;q;κ (τ) e
i(Ωn,q+κβΩm)τ , (4.9)

where β ∈ N. If any wp;β (τ) is unbounded, then xp (τ) becomes unbounded too. Therefore,

we check the boundedness of wp;β (τ) to determine the parametric stability of xp (τ). wp;β (τ)

satisfies the equation:

ẅp;β + wp;β [1 + ϵ cos (βΩmτ − ϕp)] +Kcδ
2
p = 0, (4.10)

where δ21 = w1;β−w2;β and δ2n = wn;β−wn−1;β at the two ends, and δ2p = 2wp;β−wp−1;β−wp+1;β

elsewhere. Parameter ϵ = Km is used here to indicate a small value of Km. We note that

the unmodulated natural frequencies of Eq. (4.10) are the same as those of Eq. (4.1).

We first decouple the unmodulated terms in Eq. (4.10). The mode shape for Ωn,q is de-

noted by the vector Wq;β = {wq;β;1,wq;β;2, · · · ,wq;β;n}T , where q = 1, 2, · · · , n. In the

decoupled (modal) space, the displacement is expressed as zp;β = WT
p;βwβ, where wβ =

{w1;β, w2;β, · · · , wn;β}T . The p-th decoupled (modal) equation of motion to replace Eq. (4.10)

is:

z̈p;β + Ω2
n,pzp;β + ϵ

n∑
q=1

wp;β;qwq;β cos (βΩmτ − ϕq) = 0. (4.11)

Here, wq;β can be written out using the inverse transformation wβ = W−1

β
Zβ, where Zβ =

{z1;β, z2;β, · · · , zn;β}T and W
β
=
[
WT

1;β;W
T
2;β; · · · ;WT

n;β

]
.

The stability of the response of the system is determined by whether the amplitude of zp;β

becomes unbounded. We present this analysis in detail for the 2-DoF system. Hereafter, we

will drop the subscript β in zp;β for simplicity.
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4.3.2.1. 2-DoF modulated systems

The decoupled equations of motion for the 2-DoF system are:

z̈1 + Ω2
2,1z1 +

ϵ

2
(z1 + z2) cos βΩmτ +

ϵ

2
(z1 − z2) cos (βΩmτ − ϕ) = 0, (4.12a)

z̈2 + Ω2
2,2z2 +

ϵ

2
(z1 + z2) cos βΩmτ −

ϵ

2
(z1 − z2) cos (βΩmτ − ϕ) = 0, (4.12b)

where Ω2,1 = 1 and Ω2,2 =
√
1 + 2Kc. To employ the method of multiple scales, we define

two (slow and fast) time variables, µ = Ωmτ and ν = ϵΩmτ . Eq. (4.12) is therefore rewritten

in the new time variables as:

Ω2
m

∂2z1
∂µ2

+ 2ϵΩ2
m

∂2z1
∂µ∂ν

+ ϵ2Ω2
m

∂2z1
∂ν2

+ Ω2
2,1z1

+
ϵ

2
(z1 + z2) cos βµ+

ϵ

2
(z1 − z2) cos (βµ− ϕ) = 0, (4.13a)

Ω2
m

∂2z2
∂µ2

+ 2ϵΩ2
m

∂2z2
∂µ∂ν

+ ϵ2Ω2
m

∂2z2
∂ν2

+ Ω2
2,2z2

+
ϵ

2
(z1 + z2) cos βµ− ϵ

2
(z1 − z2) cos (βµ− ϕ) = 0. (4.13b)

zp is expanded into a power series of ϵ:

zp (µ, ν) = zp,0 (µ, ν) + ϵzp,1 (µ, ν) +O
(
ϵ2
)
. (4.14)

We substitute Eq. (4.14) into Eq. (4.13) and neglect the terms of O (ϵ2). Equating the

coefficients of ϵ0 and ϵ1 gives two sets of equations:

∂2zj,0
∂µ2

+

(
Ω2,j

Ωm

)2

zj,0 = 0, (4.15)

where j ∈ {1, 2}, and

∂2z1,1
∂µ2

+

(
Ω2,1

Ωm

)2

z1,1 =− 2
∂2z1,0
∂µ∂ν

− 1

2Ω2
m

(z1,0 + z2,0) cos βµ

− 1

2Ω2
m

(z1,0 − z2,0) cos (βµ− ϕ), (4.16a)

∂2z2,1
∂µ2

+

(
Ω2,2

Ωm

)2

z2,1 =− 2
∂2z2,0
∂µ∂ν

− 1

2Ω2
m

(z1,0 + z2,0) cos βµ

+
1

2Ω2
m

(z1,0 − z2,0) cos (βµ− ϕ). (4.16b)

The general solution for Eq. (4.15) is:

zj,0 (µ, ν) = Aj (ν) cos
Ω2,j

Ωm

µ+Bj (ν) sin
Ω2,j

Ωm

µ. (4.17)
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Substituting Eq. (4.17) into Eq. (4.16) gives:

∂2zj,1
∂µ2

+

(
Ω2,j

Ωm

)2

zj,1 =Tj

[
Ω2,j

Ωm

]
+ Tj

[
β +

Ω2,1

Ωm

]
+ Tj

[
β − Ω2,1

Ωm

]
+ Tj

[
β +

Ω2,2

Ωm

]
+ Tj

[
β − Ω2,2

Ωm

]
, (4.18)

where Tj [ω] represents the sum of all harmonic terms at frequency ω in the j-th equation.

See 4B for the expressions of each Tj [ω].

The forcing terms in Eq. (4.18) can result in unbounded growth of zi,1, which leads to unstable

response of the system. Therefore, stability is determined by considering the resonance

condition of these terms. In perturbation theory, this process is known as removing the

secular terms.

If neither |β ± Ω2,1/Ωm| nor |β ± Ω2,2/Ωm| is equal to Ω2,j/Ωm for both j = 1 and j = 2,

then Tj [Ω2,j/Ωm] is the only secular term in Eq. (4.18). Removing this term results in:

dAj

dν
=

dBj

dν
= 0. (4.19)

Both zj,0 and zj,1 are bounded when Aj(ν) and Bj(ν) are constant. Thus, parametric insta-

bility may occur when one of |β ± Ω2,j1/Ωm| is equal to Ω2,j2/Ωm, where j1,2 ∈ {1, 2}.

When Ωm = 2Ω2,j/β, both Tj [Ω2,j/Ωm] and Tj [β − Ω2,j/Ωm] include secular terms in the

j-th equation of Eq. (4.18). The removal of these two sets of resonance terms gives:

dAj

dν
= −1 + cosϕ

8Ω2,jΩm

Bj +
sinϕ

8Ω2,jΩm

Aj,
dBj

dν
= −1 + cosϕ

8Ω2,jΩm

Aj −
sinϕ

8Ω2,jΩm

Bj,

and
d2Aj

dν2
=

1 + cosϕ

32Ω2
2,jΩ

2
m

Aj,
d2Bj

dν2
=

1 + cosϕ

32Ω2
2,jΩ

2
m

Bj. (4.20)

When cosϕ > −1, both Aj(ν) and Bj(ν) grow exponentially, making Ωm = 2Ω2,j/β a UMF.

Otherwise, both Aj(ν) and Bj(ν) are constant when cosϕ = −1 and the response remains

stable.

When Ωm = (Ω2,1 + Ω2,2)/β, we have Ω2,1/Ωm = β − Ω2,2/Ωm and Ω2,2/Ωm = β − Ω2,1/Ωm.

Thus, both T1 [Ω2,1/Ωm] and T1 [β − Ω2,2/Ωm] include resonant terms in Eq. (4.18) with j = 1.

In addition, both T2 [Ω2,2/Ωm] and T2 [β − Ω2,1/Ωm] include resonance terms in Eq. (4.18)

with j = 2. The removal of these four sets of resonance terms gives:

dA1

dν
= −1− cosϕ

8Ω2,1Ωm

B2 −
sinϕ

8Ω2,1Ωm

A2,
dB1

dν
= −1− cosϕ

8Ω2,1Ωm

A2 +
sinϕ

8Ω2,1Ωm

B2,
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dA2

dν
=

−1 + cosϕ

8Ω2,2Ωm

B1 −
sinϕ

8Ω2,2Ωm

A1,
dB2

dν
=

−1 + cosϕ

8Ω2,2Ωm

A1 +
sinϕ

8Ω2,2Ωm

B1,

and
d2Aj

dν2
=

1− cosϕ

32Ω2,1Ω2,2Ω2
m

Aj,
d2Bj

dν2
=

1− cosϕ

32Ω2,1Ω2,2Ω2
m

Bj. (4.21)

When −1 ≤ cosϕ < 1, both Aj(ν) and Bj(ν) grow exponentially, making Ωm = (Ω2,1 +

Ω2,2)/β a UMF. Otherwise, both Aj(ν) and Bj(ν) are constant when cos ϕ = 1 and the

response remains stable.

When Ωm = (Ω2,2 − Ω2,1)/β, we have Ω2,1/Ωm = Ω2,2/Ωm − β and Ω2,2/Ωm = β + Ω2,1/Ωm.

Thus, both T1 [Ω2,1/Ωm] and T1 [β − Ω2,2/Ωm] include resonance terms in Eq. (4.18) with j =

1. Meanwhile, both T2 [Ω2,2/Ωm] and T2 [β + Ω2,1/Ωm] include resonance terms in Eq. (4.18)

with j = 2. The removal of these four sets of resonance terms gives:

dA1

dν
=

1− cosϕ

8Ω2,1Ωm

B2 +
sinϕ

8Ω2,1Ωm

A2,
dB1

dν
= −1− cosϕ

8Ω2,1Ωm

A2 +
sinϕ

8Ω2,1Ωm

B2,

dA2

dν
=

1− cosϕ

8Ω2,2Ωm

B1 −
sinϕ

8Ω2,2Ωm

A1,
dB2

dν
=

−1 + cosϕ

8Ω2,2Ωm

A1 −
sinϕ

8Ω2,2Ωm

B1,

and
d2Aj

dν2
=

cosϕ− 1

32Ω2,1Ω2,2Ω2
m

Aj,
d2Bj

dν2
=

cosϕ− 1

32Ω2,1Ω2,2Ω2
m

Bj. (4.22)

Modulation frequency Ωm = (Ω2,2−Ω2,1)/β is not a UMF in this case because cos ϕ−1 ≤ 0.

The results of the perturbation analysis of UMFs for the 2-DoF system are summarized in

Table 4.1.

Table 4.1: Summary of the perturbation analysis of UMF for the 2-DoF system.

Ωm
d2Aj

dν2

/
Aj =

d2Bj

dν2

/
Bj When is Ωm a UMF?

2Ω2,1/β
1 + cosϕ

32Ω2
2,1Ω

2
m

cosϕ ̸= −1

2Ω2,2/β
1 + cosϕ

32Ω2
2,2Ω

2
m

cosϕ ̸= −1

(Ω2,1 + Ω2,2)/β
1− cosϕ

32Ω2,1Ω2,2Ω2
m

cosϕ ̸= 1

(Ω2,2 − Ω2,1)/β
cosϕ− 1

32Ω2,1Ω2,2Ω2
m

Never.
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4.3.2.2. 3-DoF modulated systems

The natural frequencies of the unmodulated 3-DoF system are Ω3,1 = 1, Ω3,2 =
√
1 +Kc

and Ω3,3 =
√
1 + 3Kc. Using the same procedure outlined in Section 4.3.2, we can obtain

expressions for the UMFs of the system by removing the terms that lead to exponential

growth of the response. The results of this analysis are summarized in Table 4.2. We note

that the 3-DoF system has a significantly larger number of UMFs than the 2-DoF system.

Table 4.2: Summary of the perturbation analysis of UMF for the 3-DoF system.

Ωm
d2Aj

dν2

/
Aj =

d2Bj

dν2

/
Bj When is Ωm a UMF?

2Ω3,1/β
(1 + 2 cosϕ)2

144Ω2
3,1Ω

2
m

cosϕ ̸= −0.5

2Ω3,2/β
cos2 ϕ

16Ω2
3,2Ω

2
m

cosϕ ̸= 0

2Ω3,3/β
(2 + cosϕ)2

144Ω2
3,3Ω

2
m

Always.

(Ω3,1 + Ω3,2)/β
sin2 ϕ

24Ω3,1Ω3,2Ω2
m

sinϕ ̸= 0

(Ω3,2 − Ω3,1)/β
− sin2 ϕ

24Ω3,1Ω3,2Ω2
m

Never.

(Ω3,1 + Ω3,3)/β
(1− cosϕ)2

72Ω3,1Ω3,3Ω2
m

cosϕ ̸= 1

(Ω3,3 − Ω3,1)/β
−(1− cosϕ)2

72Ω3,1Ω3,3Ω2
m

Never.

(Ω3,2 + Ω3,3)/β
sin2 ϕ

48Ω3,2Ω3,3Ω2
m

sinϕ ̸= 0

(Ω3,3 − Ω3,2)/β
− sin2 ϕ

48Ω3,2Ω3,3Ω2
m

Never.

4.3.2.3. n-DoF modulated systems with n ≥ 4

Using the same procedure for modulated systems with n ≥ 4, we can obtain a general

expression for the UMFs as (Ωn,j1 + Ωn,j2) /β, where j1,2 ∈ {1, 2, · · · , n}.

The natural frequencies of the unmodulated system are bounded within 1 ≤ Ωn,j1,2 <
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√
1 + 4Kc for any value of n because of the periodicity of the system. Because the general

expression for UMFs in our perturbation analysis involves a combination of two unmodulated

frequencies, we can conclude that the UMFs are bounded within 0 < Ωm < 2
√
1 + 4Kc.

4.4. Stability diagrams for short systems

We investigate the parametric instability of short systems that have well separated modes

(Kc = 0.6). We explore the influence of modulation amplitude, Km, on stability in the range

of modulation frequency, 0.1 ≤ Ωm ≤ 4. This frequency range is chosen to include all the

UMFs for Kc = 0.6 and β ≤ 20, as discussed in Section 4.3.2. To present the stability

diagrams clearly, this frequency range is split at Ωm = 1.8 and presented separately. The

parametric instabilities occurring within 1.8 ≤ Ωm ≤ 4 correspond to β = 1, while those

occurring within 0.1 ≤ Ωm ≤ 1.8 correspond to β ≥ 2. We present the latter in logarithmic

scale to improve clarity. In this study, all stability diagrams are presented at a resolution

of 300 dots per inch (dpi). Consequently, the limitations associated with this resolution

preclude the representation of certain minute features of stability diagrams in undamped

systems.

4.4.1. 1.8 ≤ Ωm ≤ 4

Figure 4.3: Stability diagrams for Kc = 0.6, ϕ = 0.5π, ζ = 0 and different numbers of

modulated units: (a) n = 2, (b) n = 3 and (c) n = 5. Grey regions represent unstable

response, white regions represent stable response. Red dashed lines indicate UMFs obtained

from perturbation analysis.

Fig. 4.3 shows the stability diagrams in the (Ωm, Km) plane for 1.8 ≤ Ωm ≤ 4. The grey

regions represent the combinations of Ωm and Km that result in unstable response, while

the white regions represent stable response. The unstable regions originate from the UMFs

along Km = 0. The widths of these unstable regions increase as Km increases, giving the
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unstable regions an inverted triangular shape known as a tongue. The vertical dashed lines

indicate the UMFs obtained from the perturbation analysis in Section 4.3.2. We observe an

excellent match between the predicted and computed UMFs.

Many of the unstable regions have a triangular shape for small values of Km. In the vicinity

of the UMFs (near Km = 0), the slopes of the transition curves are generally symmetric

with respect to the vertical line. In some cases, however, the transition curves become very

close to each other and appear to touch the Km-axis almost vertically; e.g. near Ωm = 2.53

in Fig. 4.3(b) and near Ωm = 2.46 in Fig. 4.3(c). These points correspond to the special

values of ϕ at which the expression for the UMFs did not hold in the perturbation analysis;

recall the exclusion points in the right-most column in Tables 1 and 2. At higher values of

modulation amplitude, typically Km > 0.2, the transition curves bend and some adjacent

unstable regions merge.

We note that it is possible to obtain the slopes (and higher-order approximations) of the

transition curves using the perturbation method outlined in Section 4.3.2. This analysis

yields good approximation of the transition curves [73], but is tractable only for β = 1 and

very small values of n. We did not pursue this analysis in this work.

4.4.2. 0.1 ≤ Ωm ≤ 1.8

Figs. 4.4 and 4.5 show the stability diagrams of the modulated systems over 0.5 ≤ Ωm ≤ 1.8

and 0.1 ≤ Ωm ≤ 0.5, respectively. All other parameters remain the same as those in Fig. 4.3.

Within 0.1 ≤ Ωm ≤ 1.8 (β > 1), the lowest point of each unstable region is generally found

above Km = 0.05. Moreover, the lowest point tends to appear at a higher value of Km as Ωm

decreases. While the UMFs with β > 1 cannot predict an unstable response for very small

modulation amplitudes, they still provide accurate approximations for the lowest points of

unstable regions when 0.8 ≤ Ωm ≤ 1.8. However, their accuracy diminishes for Ωm < 0.8, as

shown in Fig. 4.4.

We observe that certain unstable regions narrow as Km increases, leading to points where

these regions converge or pinch off. This phenomenon is shown in Fig.4.4(a) near Ωm = 0.54

and in Fig.4.4(b) near Ωm ∈ 0.58, 0.68. At these points, the unstable regions taper and may

eventually separate, forming distinct upper and lower segments.

In Fig. 4.5, numerous unstable regions are observed as isolated individuals, having separated

from the unstable regions above them and appearing as detached unstable islands. The

stability diagram for a longer system has more unstable islands. Within the range of 0.1 ≤
Ωm ≤ 0.2, the vertices of some unstable regions become rounded. Moreover, we observe

that large continuous stable regions emerge when Ωm is small. For instance, no unstable
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Figure 4.4: Stability diagrams for Kc = 0.6 and ϕ = 0.5π. (a) n = 2, (b) n = 3 and (c)

n = 5. Red dashed lines indicate UMFs with β ≥ 2, predicted by perturbation analysis.

Figure 4.5: Stability diagrams for Kc = 0.6 and ϕ = 0.5π. (a) n = 2, (b) n = 3 and (c)

n = 5. Red dashed lines indicate the UMFs predicted by perturbation analysis.

regions appear within the domains {(Ωm, Km) ∈ R2 | 0.1 ≤ Ωm ≤ 0.35, Km ≤ 0.5} and

{(Ωm, Km) ∈ R2 | 0.1 ≤ Ωm ≤ 0.17, Km ≤ 1} in all the examples shown in Fig. 4.5. These

stable regions provide broad safe ranges of modulation amplitudes, offering a basis for the

design of modulated systems with slow modulations.

4.5. The role of spatial modulation

4.5.1. Stability diagrams in the (Ωm, ϕ) plane

Fig. 4.6 shows the stability diagrams in the (Ωm, ϕ) plane for weakly modulated systems

(Km = 0.05) and 1.8 ≤ Ωm ≤ 3.6. This frequency range corresponds to resonance tongues

with β = 1. Most of the unstable regions do not overlap with each other, a feature that makes

it easier to distinguish different features of the stability diagrams. All the stability diagrams
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Figure 4.6: Stability diagrams for Kc = 0.6 and Km = 0.05. (a) n = 2, (b) n = 3 and (c)

n = 5. Red dashed lines indicate UMFs predicted by perturbation analysis.

are symmetry with respect to ϕ = π because the modulation term remains unchanged under

the transformation ϕ 7→ 2π−ϕ. Moreover, we have ∂λ/∂ϕ = 0 at ϕ = π, where λ represents

the eigenvalue of E with the largest modulus.

The unstable regions are organized around the UMFs predicted by the perturbation analysis,

with their widths undulating symmetrically about the UMFs. The modulation phase at

which the width of an unstable region is zero agrees well with the analysis in Section 4.3.2.

An example can be seen in panel (a) for the 2-DoF system: 2Ω2,j is an UMF except when

cosϕ = −1. These properties of unstable regions may not hold, however, when two adjacent

regions overlap. See the overlapping regions near Ωm = 2.7 in panel (c) for an example.

Figure 4.7: Stability diagrams for Kc = 0.6, Km = 0.4 and n = 3. (a) 0.7 ≤ Ωm ≤ 1.8

for β = 1, (b) 1.8 ≤ Ωm ≤ 3.6 for β > 1. Red dashed lines indicate UMFs predicted by

perturbation analysis.

Fig. 4.7 shows the stability diagrams in the (Ωm, ϕ) plane for a system withKm = 0.4 (strong

modulation) and n = 3. Even though the regions of stability are still organized around the
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UMFs, they are no longer symmetric about the UMFs; cf. Fig. 4.6(b). The unstable regions

become wider with increasing the modulation amplitude, as expected. The unstable regions

that correspond to 2Ω3,1, Ω3,1 + Ω3,2 and 2Ω3,3 show these features clearly. The same trend

is observed for β > 1 in panel (a). We also observe that the widths of the unstable regions

in Fig. 4.7(a) for β ≥ 2 alternate more frequently than those in Fig. 4.6(b) for β = 1.

4.5.2. Stability diagrams in the (Km, ϕ) plane

Fig. 4.8 shows the stability diagrams for three short systems with Kc = 0.6 and Ωm = 0.2.

For all values of ϕ, the response remains stable when Km ≤ 0.7 and unstable when Km ≥ 1.7.

Thus, all the transition curves are confined within the range 0.7 < Km < 1.7.

The transition curves exhibit more complicated shapes when projected onto the (Km, ϕ)

plane. We observe for n = 2, panel (a), the reappearance of stable regions that are sur-

rounded by regions of instability. These islands of stable (unstable) response become more

numerous, fragmented and elaborate as the number of units increases; see panels (b) and

(c). Despite these intricacies, the range of modulation amplitude over which the response

remains stable becomes wider as the modulation phase approaches π.

Figure 4.8: Stability diagrams for Kc = 0.6 and Ωm = 0.2. (a) n = 2, (b) n = 3 and

(c) n = 5. For all values of ϕ, the response remains stable for Km ≤ 0.7 and unstable for

Km ≥ 1.71.

4.6. Stability of long systems

For short systems (n ≤ 5), Fig. 4.3 suggests that as the number of modulated units increases,

there is a larger set of system parameters that leads to parametric instability: longer systems

exhibit more unstable modulation frequencies for β = 1, and the widths of the unstable

regions increase with Km. A similar trend cannot be seen easily for β > 1: the stability

diagrams in Figs. 4.4, 4.5 and 4.8 have an increasingly more complicated shape as n increases,
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but it is no longer clear how the total areas covered by the unstable regions in these figures

change. To further investigate the impact of n on stability, we calculate the stability diagrams

for long systems.

Figure 4.9: Stability diagrams of the modulated systems with Kc = 0.6 and ϕ = 0.5π. (a)

n = 12, (b) n = 25 and (c) n = 50. The regions bounded by the pink curves are cloudy

regions.

Fig. 4.9 shows the stability diagrams in the (Ωm, Km) plane for three long systems with

Kc = 0.6 and ϕ = 0.5π. The unstable regions nearly cover the entire range of 2 ≤ Ωm ≤
3.688, within which the UMFs with β = 1 are present. At lower modulation frequencies

(β > 1), where UMFs appear very densely, the unstable regions become fragmented and

there is barely any clear transition curve in the range 0.1 ≤ Ωm ≤ 1.5. For ease of reference,

we refer to these regions as the cloudy regions of the stability diagrams.

A main consistent trend in the cloudy regions is that as Ωm decreases from 1.5, the onset

of instability occurs at a higher value of Km. Many of the other features of the cloudy

region do not seem to follow a clear pattern. There are several very small islands of stability

that appear sporadically within the unstable regions at higher values of Km. For n = 12,

Fig. 4.9(a), two such stable regions appear above Km = 1.5 near Ωm = 0.4. In contrast, the

response remains unstable for Km ≥ 1.5 for n = 25. We have not explored these features in
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detail because they disappear in the presence of damping; see Section 4.7.

Another prominent feature of the stability diagrams in Fig. 4.9 is the presence of a semi-

triangular region within 1.5 ≤ Ωm ≤ 2, the majority of which corresponds to stable response.

This frequency range falls immediately below the lowest UMF with β = 1. In these triangular

regions, the system can exhibit stable response at very high values of Km. Fragmented

unstable regions are present within each triangular region, with greater density on the left

side. For 0.1 ≤ Ωm ≤
√
1 + 4Kc, the largest value of Km in a stable region occurs within

the triangular region.

To explore this phenomenon in greater detail, we calculate the stability diagrams in the

(Ωm, ϕ) plane for 1.4 ≤ Ωm ≤ 2. Fig. 4.10 shows the stability diagrams for three long systems

with Kc = 0.6 and Km = 1. A horizontal U-shaped region of predominantly stable response

appears in each diagram within the range 0.35π ≤ ϕ ≤ 1.65π and 1.55 ≤ Ωm ≤ 1.81. Several

narrow bands of unstable response appear within the stable U-shaped regions. These bands

become increasingly more fragmented, narrow and dense as n increases. For Ωm ≥ 1.81, no

unstable regions are found within the U-shaped regions. We conjecture that the stability of

this portion of the U-shaped region persists as the number of modulated units increases. We

highlight the role of ϕ in the existence of such a persistence region of stable response in a

strongly modulated system: the response at ϕ = 0 remains unstable.

Figure 4.10: Stability diagrams for Kc = 0.6 and Km = 1. (a) n = 12, (b) n = 25 and (c)

n = 50.

Fig. 4.11 shows the stability diagrams in the (Ωm, Km) plane for three long systems with

Kc = 0.6 and Ωm = 0.2. For these parameters, all transition curves are confined to the

range 0.6 < Km < 1.5. In general, the range of modulation amplitudes over which the

response remains stable becomes wider as the modulation phase increases from 0 to π. The

fragmentation of the small regions of instability continues as n increases, though it remains
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Figure 4.11: Stability diagrams for Kc = 0.6 and Ωm = 0.2. (a) n = 12, (b) n = 25 and

(c) n = 50. For all values of ϕ, the response remains stable for Km ≤ 0.6 and unstable for

Km ≥ 1.5.

unclear whether the total area covered by the unstable regions increases or not. These are

the same trends that we observed for shorter systems in Fig. 4.8. The investigation fo the

fine details of the fragmented transition between stable and unstable regions falls beyond

the scope of this work.

4.7. Influence of damping

It is intuitively understood that damping enhances the stability of the response. To demon-

strate this effect, Fig. 4.12 shows the stability diagrams for n = 3, Kc = 0.6 and different

damping ratios. The darker grey zones indicate unstable regions corresponding to higher

values of ζ. Note that Fig. 4.12(a) is plotted over the range 0 ≤ Km ≤ 2, while Fig. 4.12(c)

is plotted over 0 ≤ Km ≤ 1 for better clarity.

As expected, the regions of unstable response become smaller as the damping ratio increases,

with many of the smaller regions of instability disappearing; see Fig. 4.12(a). The vertices

of the tongues detach from the Km axis and become rounded, as seen in Fig. 4.12(b). Thus,

a minimum modulation amplitude is now required for parametric instability to occur. The

transition curves for β > 1 appear to be influenced by damping to a greater extent than

those for β = 1.

The same trends are observed in the stability diagrams of a longer system (n = 25) in

Fig. 4.13. In addition, panel (a) shows that the cloudy region of the stability diagrams has

almost completely disappeared (become stable) in the damped system. The semi-triangular

region of stable response in panel (a) becomes wider and extends to higher values of Km as

ζ increases, with almost all the fragmented unstable regions within it disappearing.
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Figure 4.12: Stability diagrams of the modulated systems with n = 3, Kc = 0.6 and ϕ = 0.5π.

(a) 0.1 ≤ Ωm ≤ 1.8; (b) 1.8 ≤ Ωm ≤ 3.6. The darker grey zones indicate unstable regions

corresponding to higher values of ζ.

Figure 4.13: Stability diagrams of the modulated systems with n = 25, Kc = 0.6 and

ϕ = 0.5π. (a) 0.1 ≤ Ωm ≤ 1.8; (b) 1.8 ≤ Ωm ≤ 3.6. The darker grey zones indicate unstable

regions corresponding to higher values of ζ.

As a quantitative indication of the overall influence of damping on parametric instability,

we calculate the percentage of the total area of the unstable regions in Figs. 4.12 and 4.13;

see Table 4.3. Although some of the stability diagrams use a logarithmic scale for Ωm, the

areas are calculated using a linear scale. The introduction of damping results in a significant

decrease in the unstable regions. The influence of damping is greater for β > 1 than for

β = 1, as previously observed. In general, increasing ζ from 0 to 0.01 results in a greater

change in the area than increasing it from 0.01 to 0.02. Moreover, the influence of damping

is greater on the longer system. Thus, in damped systems with slow modulations, longer

systems tend to provide greater stability compared to shorter ones.
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Table 4.3: Percentage of the unstable regions in the stability diagrams in Figs. 4.12 and 4.13.

0 ≤ Km ≤ 2 0 ≤ Km ≤ 1

0.1 ≤ Ωm ≤ 1.8 1.8 ≤ Ωm ≤ 3.6

n = 3

ζ = 0 46% 55%

ζ = 0.01 41% 53%

ζ = 0.02 38% 50%

n = 25

ζ = 0 65% 91%

ζ = 0.01 40% 80%

ζ = 0.02 34% 72%

4.8. Conclusions

We presented a detailed computational investigation of parametric instability in a discrete

model of a 1-D spatiotemporally modulated system. We assessed the stability of the response

using direct computation based on Floquet theory. We explored the roles of several key

parameters on parametric instability such as modulation parameters (modulation phase or

wavenumber, amplitude, and frequency), damping and the number of units.

We used perturbation theory to show that unstable modulation frequencies (UMFs) occur

at combinations of two natural frequencies of the underlying unmodulated system divided

by a natural number, β. UMFs are modulation frequencies at which the response of the

undamped system grows exponentially over time. Stability analysis based on Floquet theory

confirmed that UMFs with β = 1 induce parametric instability in the undamped system

regardless of how small the modulation amplitude is. In contrast, Floquet theory revealed

that UMFs with β ≥ 2 may not always lead to instability, provided that the modulation

amplitude is sufficiently small. As the modulation frequency decreases, parametric instability

occurs at increasingly higher modulation amplitudes. There are therefore significant regions

of stable response within the stability diagram, offering a broad safe range of modulation

amplitudes for designing stable modulated systems.

As a function of the modulation phase (wavenumber), the unstable regions are symmetric

with response to ϕ = π. At low modulation amplitudes, the unstable regions appear sym-

metrically about the UMFs with β = 1. The perturbation analysis accurately predicts the

values of modulation phase at which the width of an unstable region is zero (typically occurs

multiple times). As the modulation amplitude increases, the unstable regions become wider,

are no longer symmetric with respect to the UMFs, and overlap with each other. Overall,

the range of modulation amplitudes over which the response remains stable becomes wider

as the modulation phase approaches π.
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As the number of modulated units increases, the number of UMFs increases and the unstable

region nearly covers the entire range of modulation frequencies corresponding to β = 1; i.e.

2 ≤ Ωm < 2
√
1 + 4Kc. A semi-triangular region of stable response also forms in the frequency

gap between UMFs with β = 1 and β = 2. Typically, the largest value of modulation

amplitude at which the response remains stable occurs within this range of modulation

frequencies. At lower modulation frequencies (β > 1), several very small regions of stability

appear sporadically within the unstable regions and the transition between unstable and

stable regions becomes fragmented, narrow and dense. A main consistent trend within this

parameter range is that the onset of instability occurs at higher modulation amplitudes as

the modulation frequency decreases.

Damping has an overall stabilizing effect by increasing the threshold of modulation amplitude

that leads to parametric instability. This threshold is finite even at UMFs, in contrast

to undamped systems. Damping has a stronger influence on stability diagram at lower

modulation frequencies (β > 1) and for longer systems. As a result, a damped system with

several modulated units can remain stable at relatively high-amplitude modulations of low

frequency.

We hope that our findings on the stability of spatiotemporally modulated systems encourage

further stability analyses of modulated systems and inspire future research on systems with

high-amplitude modulations.

Appendices

4A. Non-dimensionalization

The equations of motion which govern the system of n modulated units in Fig. 4.1 are:

m
d2u1
dt2

+ c
du1
dt

+ k1u1 + kc (u1 − u2) = 0,

...

m
d2up
dt2

+ c
dup
dt

+ kpup + kc (2up − up−1 − up+1) = 0,

...

m
d2un
dt2

+ c
dun
dt

+ knun + kc (un − un−1) = 0,

(4A.1)

where kp(t) = kg,DC + kg,AC cos(ωmt− ϕp) and ϕp = (p − 1)ϕ for p = 1, 2, · · · , n. We use

τ = ω0t as the nondimensional time with ω0 =
√
kg,DC/m. We define ζ = c/(2mω0),

Ωm = ωm/ω0, Ωf = ωf/ω0, Kc = kc/kg,DC and Km = kg,AC/kg,DC . The variable xp = up/a is

used as nondimensional displacement where a is a representative length. After substituting

these parameters into Eq. (4A.1), we obtain:
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maω2
0ẍp + 2ζmaω2

0ẋp + akg,DCxp [1 +Km cos (Ωmτ − ϕp)] + aKckg,DC∆
2
p = 0, (4A.2)

where ẍp and ẋp represent d2xp / d
2τ and dxp / dτ respectively. The difference terms are

defined as ∆2
1 = x1 − x2 and ∆2

n = xn − xn−1 at two ends of the system, and ∆2
p =

2xp − xp+1 − xp−1 elsewhere. Dividing the two sides of Eq. (4A.2) by akg,DC yields Eq. (4.1)

in the main text. In this paper, calculations and analysis of the n-DoF modulated system

are all based on the nondimensional form of the equations.

4B. Sets of harmonic terms at different frequencies

The sets of harmonic terms in Eq. (4.18) are:

T1

[
Ω2,1

Ωm

]
= 2

Ω2,1

Ωm

dA1

dν
sin

Ω2,1

Ωm

µ− 2
Ω2,1

Ωm

dB1

dν
cos

Ω2,1

Ωm

µ,

T1

[
β +

Ω2,1

Ωm

]
=

[
−(1 + cosϕ)A1

4Ω2
m

+
sinϕB1

4Ω2
m

]
cos

(
β +

Ω2,1

Ωm

)
µ

−
[
(1 + cosϕ)B1

4Ω2
m

+
sinϕA1

4Ω2
m

]
sin

(
β +

Ω2,1

Ωm

)
µ,

T1

[
β − Ω2,1

Ωm

]
= −

[
(1 + cosϕ)A1

4Ω2
m

+
sinϕB1

4Ω2
m

]
cos

(
β − Ω2,1

Ωm

)
µ

+

[
(1 + cosϕ)B1

4Ω2
m

− sinϕA1

4Ω2
m

]
sin

(
β − Ω2,1

Ωm

)
µ,

T1

[
β +

Ω2,2

Ωm

]
= −

[
(1− cosϕ)A2

4Ω2
m

+
sinϕB2

4Ω2
m

]
cos

(
β +

Ω2,2

Ωm

)
µ

+

[
−(1− cosϕ)B2

4Ω2
m

+
sinϕA2

4Ω2
m

]
sin

(
β +

Ω2,2

Ωm

)
µ,

T1

[
β − Ω2,2

Ωm

]
= −

[
(1− cosϕ)A2

4Ω2
m

− sinϕB2

4Ω2
m

]
cos

(
β − Ω2,2

Ωm

)
µ

+

[
(1− cosϕ)B2

4Ω2
m

+
sinϕA2

4Ω2
m

]
sin

(
β − Ω2,2

Ωm

)
µ,
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and

T2

[
Ω2,2

Ωm

]
= 2

Ω2,2

Ωm

dA2

dν
sin

Ω2,2
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dB2

dν
cos
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4Ω2
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4Ω2
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]
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)
µ

+
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4Ω2
m
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]
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(
β +

Ω2,1
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Chapter 5

Conclusions and Recommendations

5.1. Conclusions

This thesis provided a detailed investigation of the steady-state vibration transmission char-

acteristics of spatiotemporally modulated materials. The primary focus was on the following

three aspects:

• Developing a theoretical framework for predicting the steady-state output of spatiotem-

porally modulated systems in response to external harmonic drive, specifically valid in

the presence of strong modulation amplitude and for arbitrary number of units.

• Investigating the contribution of transmitted phase to nonreciprocity, and the possi-

bility of realizing transmission regimes that are characterized by a nonreciprocal phase

shift.

• Investigating the phenomenon of parametric stability in spatiotemporally modulated

systems, with a focus on understanding the influence of modulation phase (wavenum-

ber) and the number of units.

Firstly, we studied nonreciprocal vibration transmission in a spatiotemporally modulated

system with two units. The focus on modulated systems with two units was motivated

by the system having well separated modes. This enabled us to elucidate the roles of the

primary and side-band resonances of the system, and their overlaps, in breaking reciprocity.

Temporal modulation was introduced as harmonic variations in the grounding stiffness of

each oscillator, while the phase difference between the two modulations (ϕ) served as the

spatial modulation. The phase difference broken the mirror symmetry of the system, which is

essential for breaking the reciprocity invariance. Using the averaging method, we developed

an analytical framework to predict the steady-state quasi-periodic response of the system

under harmonic external excitation, for both weak and strong modulation regimes.

For weakly modulated systems, we demonstrated that a single pair of sideband resonances is

able to accurately capture the system’s response. The harmonic components of the response

(both primary and sideband) contribute differently to the reciprocity bias, with stronger non-

reciprocity observed when a primary resonance overlaps with a sideband resonance compared

to overlaps between two sideband resonances. In systems with stronger modulations, the

frequency spectrum of the response becomes richer and the reciprocity bias increases signifi-
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cantly due to the greater energy introduced into the system. Higher modulation amplitudes

also influence the resonance frequencies, making them dependent on both the modulation

phase and amplitude.

We found that in short systems, even though the response is nonreciprocal when ϕ ̸= 0,

the transmitted energies in the opposite directions are comparable. This indicated that

the difference in the transmitted phase was the primary contributor to nonreciprocity. The

amplitude bias can be amplified by increasing the number of modulated units, ultimately

leading to unidirectional vibration transmission in sufficiently long modulated systems.

Secondly, we explored the steady-state response regimes characterized by nonreciprocal phase

shifts: equal transmitted amplitudes (energies) but different phases. The only contributor to

nonreciprocity was therefore the nonreciprocal phase shift, the difference between the trans-

mitted phases in the opposite directions. Due to the non-periodic nature of the steady-state

response, a methodology was developed based on the envelope of the output displacements

to identify system parameters that exhibit nonreciprocal phase shifts. While our primary

focus was on weakly modulated systems with a small number of units, we also demonstrated

a special case of nonreciprocal phase shifts in systems of arbitrary length and modulation

strength. Additionally, we developed a formulation that ensures identical transmitted wave-

forms in opposite directions, enabling us to identify a special case of near-reciprocal vibration

transmission.

Finally, we conducted a comprehensive analysis of parametric instability for a 1-D spa-

tiotemporally modulated system. Stability was determined using direct computations based

on Floquet theory. We investigated the effects of several critical parameters on paramet-

ric instability, including all three modulation parameters (amplitude, frequency and phase

shift), damping, and the number of modulated units.

Using perturbation theory, we obtained that unstable modulation frequencies (UMFs) are

combinations of two natural frequencies of the corresponding unmodulated system, divided

by a natural number, β. UMFs with β = 1 represent the modulation frequencies at which

the amplitude of response of an undamped system exponentially increases over time, regard-

less of how small the modulation amplitudes are. At lower modulation amplitudes, unstable

regions appear symmetrically about the UMFs with β = 1. As the modulation amplitude

increases, the unstable regions widen, lose symmetry about the UMFs, and begin to over-

lap. Conversely, UMFs with β ≥ 2 do not necessarily cause instability if the modulation

amplitudes are low enough. In general, as the modulation frequency decreases, paramet-

ric instability requires higher modulation amplitudes. Thus, substantial regions within the

stability diagram remain stable, providing a large safe range of modulation amplitudes for
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designing stable systems with slow modulations.

With an increasing number of modulated units, the number of UMFs increases significantly,

and nearly the entire frequency range corresponding to β = 1 becomes unstable. A semi-

triangular region of stable response also emerges between the frequency gaps from UMFs

with β = 1 to β = 2. Typically, the highest modulation amplitude that maintains stability

is found within this frequency range. At lower modulation frequencies (β > 1), transitions

between unstable and stable areas become fragmented, narrow, and dense. A consistent

observation is that the occurrence of instability at higher modulation amplitudes occurs as

the modulation frequency decreases.

Stability can be improved by increasing the damping ratio, especially at lower modulation

frequencies. Notably, in the low modulation frequency range, increased damping has a

stronger effect to enlarge stable regions for longer systems. Consequently, a longer damped

system can exhibit greater tolerance of modulation amplitudes than a shorter system.

In summary, the main contributions of this thesis to the current research field are as follows:

1. Introduction of a theoretical framework to predict the steady-state response of discrete

modulated systems subjected to external harmonic forces that is valid for strongly

modulated systems of arbitrary number of units.

2. Detailed investigation of the role of transmitted phase in nonreciprocity, including the

introduction of response regimes in which phase is the only contributor to nonreciproc-

ity.

3. Systematic analysis of the influence of various system parameters, particularly modu-

lation phase and system length, on parametric stability.

5.2. Recommendations for future work

The present research provides gateways for further exploration on nonreciprocal vibration

transmission in discrete periodic systems with spatiotemporal modulations. Potential direc-

tions for future investigations are outlined below:

1. The current analytical framework enables the determination of steady-state transmit-

ted vibrations for a given set of system parameters and external excitation. However,

the inverse problem — designing system parameters and external excitations to achieve

a desired response waveform or envelope — is rarely unexplored. Developing novel

methodologies to address this challenge will open new avenues in system design and

control.
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2. When the system operates beyond the small-amplitude regime, nonlinear effects be-

come significant. Additionally, nonlinear forces can induce nonreciprocity in systems

that do not possess mirror symmetry. Investigating the interplay between nonlinearity

and spatiotemporal modulation offers a promising direction for advancing our under-

standing of nonreciprocal dynamics and exploring potentially new applications.

3. Our analysis of nonreciprocal phase shifts was limited to response regimes in which the

output displacement has a harmonic envelope. Long modulated systems and systems

with high-amplitude modulations fall beyond the reach of this analysis. Developing

new methodologies to address this limitation will be a critical step toward extending

the concept of nonreciprocal phase shifts to strongly or long modulated system.

4. This study is entirely theoretical, emphasizing the need for experimental validation.

Experimental demonstrations of these effects will provide valuable insights for designing

innovative devices with potential industrial applications.
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82. Dötsch, H. et al. Applications of magneto-optical waveguides in integrated optics:

review. Journal of the Optical Society of America B 22, 240–253 (2005).

83. Remer, L., Mohler, E., Grill, W. & Lüthi, B. Nonreciprocity in the optical reflection

of magnetoplasmas. Physical Review B 30, 3277 (1984).

84. Taravati, S. & Eleftheriades, G. V. Magnet-Free Nonreciprocal Phase-Shifter Based

on Time Modulation. arXiv preprint arXiv:2210.13243 (2022).

92



85. Palomba, M., Palombini, D., Colangeli, S., Ciccognani, W. & Limiti, E. Broadband

nonreciprocal phase shifter design technique. IEEE Transactions on Microwave Theory

and Techniques 66, 1964–1972 (2018).

86. Karimian, R., Taravati, S., Ardakani, M. D., Ahmadi, S. & Zaghloul, M. E. Nonreciprocal-

beam phased-array antennas based on transistor-loaded phase shifters. IEEE Trans-

actions on Antennas and Propagation 69, 7572–7581 (2021).

87. Dutta, P., Kumar, G. A. & Ram, G. Numerical design of non-reciprocal bandpass filters

with the aid of 3D coupling matrix for 5G bands. IEEE Transactions on Circuits and

Systems II: Express Briefs 69, 3334–3338 (2022).

88. Zang, J., Alvarez-Melcon, A. & Gomez-Diaz, J. Nonreciprocal phased-array antennas.

Physical review applied 12, 054008 (2019).

89. Kord, A., Sounas, D. L. & Alu, A. Microwave nonreciprocity. Proceedings of the IEEE

108, 1728–1758 (2020).

90. Wu, J. & Yousefzadeh, B. Linear nonreciprocal dynamics of coupled modulated sys-

tems. arXiv:2410.08533 (2024).

91. Yang, F. et al. Mechanically Modulated Sideband and Squeezing Effects of Membrane

Resonators. Physical Review Letters 127 (2021).

92. Giraldo, A. & Yousefzadeh, B. Restoring the reciprocity invariance in nonlinear sys-

tems with broken mirror symmetry. Extreme Mechanics Letters 61, 102008 (2023).

93. Haykin, S. S. & Moher, M. Communication Systems 5th ed. (Wiley, 2009).

94. Hasan, M. A., Calderin, L., Lucas, P., Runge, K. & Deymier, P. A. Geometric phase in-

variance in spatiotemporal modulated elastic system. Journal of Sound and Vibration

459, 114843 (2019).

95. Champneys, A. in Mathematics of Complexity and Dynamical Systems (ed Meyers,

R. A.) 183–204 (Springer, New York, 2011).

96. Curry, S. M. How children swing. American Journal of Physics 44, 924–926 (1976).

97. Brimacombe, C., Corless, R. M. & Zamir, M. Computation and Applications of Math-

ieu Functions: A Historical Perspective. SIAM Review 63, 653–720 (2021).
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Appendices

A. Computation of response envelopes in a lattice material with spatiotemporal

modulations

A.1. Introduction

Reciprocity invariance is a property of regular materials with constant density and elastic

modulus, functioning in the linear operating regime. When the reciprocity invariance holds,

the wave propagation between two arbitrary points in the material remains unchanged af-

ter interchanging the locations of the vibration source and receiver in a material. There

exist many established applications of the principle of reciprocity, for instance, calibration

of hydrophones and crack identification [1-2]. Despite its usefulness, this invariance is ac-

companied by limitations: for example, it is impossible to send waves along a reciprocal

transmission channel such that transmission properties (speed, amplitude, phase, etc.) de-

pend on the direction of travel. In order to realize direction-dependent wave propagation,

the reciprocity invariance needs to be broken. The physics and applications of nonreciprocal

propagation of mechanical waves have drawn the attention of many researchers in recent

decades [3].

One strategy to realize nonreciprocal wave propagation is to use a medium in which one

or more of the effective properties change with time [4]. In this context, periodic materi-

als have been often used for investigating nonreciprocal wave propagation, in the form of

discrete or continuous models with modulation. The smallest repetitive sub-structure in a

periodic material, known as the unit cell, determines the properties of the periodic material

acting as a waveguide. Modulation is a time- varying term within an effective property of

the material, usually the stiffness coefficient or elastic modulus. Unidirectional propagation

was studied in an infinite-long modulated metamaterial, in which there is a wave-like spa-

tiotemporal modulation in the elastic coefficient of the resonant spring in every discrete unit

cell [5]. Nonreciprocal wave propagation can also appear in uniform continuous media af-

ter introducing spatiotemporal modulation to the elastic modulus only [6-8], or both elastic

modulus and density which is known as two-phase modulation [9]. Spatiotemporal modu-

lations are often realized in experiments with controllable external magnetic forces [10-13].

A well-established method is to generate time-varying magnetic field by tuning the current

flowing through a coil, in the center of which a magnet can move along the axis of the coil.

The magnet is seen as a mass in a discrete modulated system.

In contrast to the initial theoretical studies, experimental demonstrations of nonreciprocal
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vibration transmission due to spatiotemporal modulation were performed on setups that

are necessarily finite in length [10-13]. The influence of the finite length of the system is

a relevant factor when considering device implementation. At the limit of finite length,

nonreciprocal vibration transmission was investigated numerically in a system with just two

degrees of freedom [14]. Nonreciprocity was attributed in that system to the phase difference

between the modulation properties of the two units. In this work, we investigate the influ-

ence of the length of the system (number of modulated cells) on the vibration transmission

properties. Furthermore, we present a methodology for identifying nonreciprocal phase shifts

in the transmitted waves. These are response regimes in which only the phase (and not the

amplitude) of the transmitted wave depends on the direction of travel.

We introduce the problem formulation and solution methodology in Section A.2. In Sec-

tion A.3, we perform a parametric study to identify the influence of system parameters on

the nonreciprocal response of the system. We highlight phase nonreciprocity in Section A.4.

Our findings are summarized in Section A.5.

A.2. Analysis of a coupled system with modulation

We consider a system with n degrees of freedom (n DoF) which is composed of n iden-

tical masses, dampers, coupling springs and modulated grounding springs whose stiffness

coefficients are time-dependent. Only the longitudinal rectilinear movement of each mass is

considered as a degree of freedom. See Fig. A.1.

Figure A.1: Scheme of the n DoF system. Stiffness coefficient of each grounding spring has

two components: a constant term and a periodic term.

A.2.1. Formulation of the problem

In the modulated system shown in Fig. A.1, each coupling spring is linear and each damper

is a linear viscous damper. Two external harmonic forces of the same frequency are applied

on the first mass and the last mass: f1(t) = F1 cos(ωf t) and fn(t) = Fn cos(ωf t). Stiffness

coefficient of the grounding spring connected to the pth (p = 1, 2, · · · , n) mass is: kp(t) =
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kg,DC + kg,AC cos(ωmt− ϕp), where ϕp = (p − 1)ϕ, kg,DC , kg,DC and ϕ are constant. and

ωm represents the modulation frequency. The phase shift between the modulation in kp

and kp+1, ϕ, represents a spatial modulation along the length of the system. A non-zero

ϕ in the modulated system is the key factor in breaking the reciprocity invariance [14].

We define the following dimensionless variables to replace the dimensional terms in the

governing equations: τ = tω0, ω
2
0 = kg,DC/m, Ωm = ωm/ω0, Ωf = ωf/ω0, ζ = c/(2mω0),

Kc = kc/kg,DC , Km = kg,AC/kg,DC , P1 = F1/(kg,DCa), Pn = Fn/(kg,DCa) and xp = up/a,

where a is a representative length. The non-dimensionalized equations of motion for the

system in Fig. A.1 are:

d2

dτ 2
x1 + 2ζ

d

dτ
x1 + [1 +Km cos(Ωmτ)]x1 +Kc(x1 − x2) = P1 cos(Ωfτ),

...
d2

dτ 2
xp + 2ζ

d

dτ
xp + [1 +Km cos(Ωmτ − ϕp)]xp +Kc(2xp − xp−1 − xp+1) = 0,

...
d2

dτ 2
xn + 2ζ

d

dτ
xn + [1 +Km cos(Ωmτ − ϕn)]xn +Kc(xn − xn−1) = Pn cos(Ωfτ).

(A.1)

In this study, we focus on investigating nonreciprocity in the steady-state response of the

system. In order to distinguish two opposite directions of vibration transmission, two config-

urations are defined: (i) the forward (left to right) configuration with P1 = P , Pn = 0 where

the output is the steady-state response of the last mass xFn (τ); (ii) the backward (right to

left) configuration with P1 = 0, Pn = P where the output is the steady-state displacement

of the first mass xB1 (τ). If and only if xFn (τ) = xB1 (τ), the reciprocity invariance holds in

vibration transmission through the system.

A.2.2. Solution methodology and envelopes for outputs

Using the averaging method, we can obtain the approximated solution for the steady-state

response of a modulated system [14]. The approximated solutions for outputs in forward

and backward configurations read:

xFn (τ) = yF
n (τ)e

iΩf τ + c.c. ,

xB1 (τ) = yB
1 (τ)e

iΩf τ + c.c. ,
(A.2)

where c.c. represents the corresponding complex conjugate. yF
n and yB

1 are both functions

of τ :

yF
n (τ) =

∞∑
q=−∞

ηeiqΩmτ ,yB
1 (τ) =

∞∑
q=−∞

ξeiqΩmτ ,
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where η and ξ are complex amplitudes for a given Ωf , which need to be calculated. Because

of the quasi-periodic form of the approximated solution in Eq. (A.2), xFn (τ) and x
B
1 (τ) can

be rewritten as:
xFn (τ) = 2

∣∣yF
n (τ)

∣∣ cos (Ωfτ − φF
n

)
,

xB1 (τ) = 2
∣∣yB

1 (τ)
∣∣ cos (Ωfτ − φB

1

)
.

(A.3)

The cosine parts in equations of Eq. (A.3) have same frequency as the external excitation.

These terms can be viewed as carrier waves; their amplitudes are both equal to unity but their

phases can be different. Therefore, ± 2
∣∣yF

n (τ)
∣∣ and ± 2

∣∣yB
1 (τ)

∣∣ are the envelopes of xFn (τ)

and xB1 (τ), respectively. The expressions for ± 2
∣∣yF

n (τ)
∣∣ and ± 2

∣∣yB
1 (τ)

∣∣ can be written as:

2
∣∣yF

n (τ)
∣∣ =√∑∞

r=0 YF
n,r cos

(
rΩmτ − θFn,r

)
,

2
∣∣yB

1 (τ)
∣∣ =√∑∞

r=0 YB
1,r cos

(
rΩmτ − θB1,r

)
,

where r is an integer. YF
n,r ,YB

1,r ,θFn,r and θB1,r are all real numbers, which can be calculated

from η and ξ. While xFn (τ) and x
B
1 (τ) are not periodic, 2

∣∣yF
n (τ)

∣∣ and 2
∣∣yB

1 (τ)
∣∣ are periodic

with the same dimensionless period Tev = 2π/Ωm. This periodicity of envelope equations

brings convenience for analyzing xFn (τ) and x
B
1 (τ). The necessary and sufficient condition for

reciprocity can be written in the following two equations:
∣∣yF

n (τ)
∣∣ = ∣∣yB

1 (τ)
∣∣ and φF

n = φB
1 .

Figure A.2: Comparison between the results of averaging method and direct numerical

simulation. (a): n = 5, Ωf = 0.97 in forward configuration; (b): n = 8, Ωf = 1.18 in

backward configuration. Outputs calculated with the averaging method and the Runge-

Kutta method are indicated by red curves and cyan dashed curves, respectively. The green

curves are the plots of ± 2
∣∣yF

n (τ)
∣∣ and ± 2

∣∣yB
1 (τ)

∣∣.
Fig. A.2 shows the displacements and envelopes calculated for (1) for the following parame-

ters: Kc = 0.6, ζ = 0.01, Km = 0.1, Ωm = 0.2, ϕ = 0.5π and P = 1, in the steady-state with

respect to time τ . In order to validate the predictions made by the averaging method, the
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response of Eq. (A.1) is computed using the Runge-Kutta method until the steady state is

reached. The predictions of the steady-state response from analytical and numerical methods

match with each other very well. Plots of ± 2
∣∣yF

n (τ)
∣∣ and ± 2

∣∣yB
1 (τ)

∣∣ follow the envelopes of

outputs in forward and backward configurations, respectively. Having validated the accuracy

of the envelope equations, results from the averaging method are used hereafter to analyze

the steady-state response and nonreciprocity of the system.

Because xFn (τ) and x
B
1 (τ) are non-periodic, it is very difficult to obtain their maximum dis-

placements. The maximum displacements of 2
∣∣yF

n (τ)
∣∣ and 2

∣∣yB
1 (τ)

∣∣ over a period, denoted

as AF
ev,n and AB

ev,1 respectively, can be seen as approximations of the maximum steady-state

displacements of xFn (τ) and x
B
1 (τ). A

F
ev,n and AB

ev,1 can be approximated by:

AF
ev,n = AF

ev,n,DC + AF
ev,n,AC , A

B
ev,1 = AB

ev,1,DC + AB
ev,1,AC ,

where,

AF
ev,n,DC =

2

Tev

∫ Tev

0

∣∣yF
n (τ)

∣∣ dτ,
AB

ev,1,DC =
2

Tev

∫ Tev

0

∣∣yB
1 (τ)

∣∣ dτ,
AF

ev,n,AC =

√
2

Tev

∫ Tev

0

[
2 |yF

n (τ)| − AF
ev,n,DC

]2
dτ ,

AB
ev,1,AC =

√
2

Tev

∫ Tev

0

[
2 |yB

1 (τ)| − AB
ev,1,DC

]2
dτ .

The amplitude bias RA is defined to quantify the degree of nonreciprocity in terms of am-

plitude, without considering the difference in phases:

RA =
AF

ev,n − AB
ev,1

AF
ev,n + AB

ev,1

. (A.4)

A zero amplitude bias, RA = 0, corresponds to equal amplitudes for the forward and back-

ward configurations and the upper limit of RA = ±1 indicates that the amplitude in one of

the configurations is much larger than the other one. Furthermore, we can use RA = 0 to

identify response regimes where the forward and backward configurations have equal ampli-

tudes but (possibly) different phases – see Section A.4.

A.3. Nonreciprocal vibration transmission in modulated n DoF systems

We first investigate nonreciprocity by exploring the effects of ϕ and Ωf on maximum dis-

placements of the outputs in the forward and backward configurations. In this section, we
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Figure A.3: Plots of RA with respect to ϕ and Ωf . (a): n = 2, (b): n = 3, (c): n = 5, (d):

n = 8.

use Kc = 0.6, ζ = 0.01, Km = 0.1, Ωm = 0.2 and P = 1 and calculate RA as a function of ϕ

and Ωf . The n natural frequencies of the unmodulated system (kg,AC = 0) are denoted by

Ωn,κ, κ = 1, 2, · · · , n.

Fig. A.3 shows the amplitude bias, RA, for systems with different degrees of freedom. In all

four panels, regions where the magnitude of RA is largest occur where Ωf is nearly centered

at Ωn,κ ± Ωm, Ωn,κ ± 2Ωm, Ωn,κ ± 3Ωm, · · · ; these are called sideband resonances. As n

increases, the number of sideband frequencies increases and the plot of RA becomes more

and more complex.

Generally, when Ωf is fixed at a value where RA changes significantly with ϕ, there are

2(n − 1) convex and concave regions in the plot of RA over the range ϕ ∈ [0, 2π]. But this

finding is not valid for a large n, for example, n = 8 as shown by Fig. A.3(d). Interestingly,

all the three-dimensional (3-D) plots of RA in Fig. A.3 are odd-symmetric about the line

(ϕ,RA) = (π, 0).

In Figs. A.3 and A.4, we observe that the magnitude of RA increases with the number of
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Figure A.4: Plots of RA with respect to ϕ and Ωf . (a): n = 40, (b): n = 60, (c): n = 100.

units in the system. Larger difference between the amplitudes of outputs can be therefore

realized by adding more units into the modulated system.

Fig. A.4 also shows the limiting behavior of RA for large values of n in the frequency range

0.7 ≤ Ωf ≤ 2.1. Regardless of the number of units, however, we have −1 ≤ RA ≤ 1

by constructions, where the limiting values indicate unidirectional vibration transmission.

It implies that there exist two extreme cases: RA = 1 when AF
ev,n ≫ AB

ev,1, which means

vibrations can be transmitted in the forward direction only; RA = −1 when AF
ev,n ≪ AB

ev,1,

which means vibrations can be transmitted in the backward direction only.

The magnitude of amplitude bias, |RA|, can nearly reach 1, as shown in Fig. A.4. Unidirec-

tional vibration transmission can therefore occur in large modulated systems. This agrees

with the literature on infinitely-long spatiotemporal modulated materials [5,6]. In contrast,

the magnitude of RA is not very large in short modulated systems (Fig. A.3). This prevents

unidirectional vibration transmission from occurring in short systems. Fig. A.4 suggests two

ranges of values for the phase difference ϕ where unidirectional transmission may occur: near

0.3π and 1.7π.
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A.4. Phase nonreciprocity

For all plots in Fig. A.3, RA is equal to zero when ϕ = π, regardless of the values of Ωf and

n. However, because RA is defined based on the envelope equations, it is blind to the phase

difference between xFn (τ) and x
B
1 (τ). Therefore, RA = 0 may not correspond to a reciprocal

response in the original system. To quantify the degree of nonreciprocity in the response of

the original system, we use reciprocity bias R to evaluate nonreciprocity between xFn (τ) and

xB1 (τ):

R = lim
T→∞

√
1

T

∫ T

0

[xFn (τ)− xB1 (τ)]
2dτ , (A.5)

which is evaluated after the response reaches its steady-state [14]. If R = 0, then xFn (τ) =

xB1 (τ) and the response is reciprocal; otherwise, the response is not reciprocal. R is calculated

using the averaging method with the same parameters as the examples in Fig. A.3.

Figure A.5: Plots of R with respect to ϕ and Ωf . (a): n = 2, (b): n = 3, (c): n = 5, (d):

n = 8.

Fig. A.5 shows 3-D plots of the reciprocity bias, R, as a function of ϕ and Ωf for systems

of different length. We observe that the 3-D plot of R is symmetric about the plane ϕ = π.
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Interestingly, if n is an odd number, regardless of the value of Ωf , reciprocity invariance

holds when ϕ = π, as shown by Figs. A.5(b) and A.5(c). In contrast, if n is an even number,

the reciprocity invariance does not hold when ϕ = π, as shown by Figs. A.5(a) and A.5(d).

The results in Figs. A.3 and A.5 indicate the possibility of choosing system parameters

such that RA = 0 and R > 0. In this state, RA = 0 means that the amplitudes of the

output in the forward and backward configurations are the same. Therefore, nonreciprocity

(R > 0) manifests as different phases in the output displacements. The existence of such

regimes of nonreciprocal phase shifts was previously reported in time- independent nonlinear

systems [15], but not in modulated systems of the type considered in this work.

Figure A.6: Plots of outputs and their envelopes, (a) and (b): n = 4, Ωf = 1.17, (c)and(d):

n = 8, Ωf = 1.51.

Fig. A.6 shows two examples of phase nonreciprocity obtained at ϕ = π. It is clear from

the time-domain response that the response is nonreciprocal. Notice, however, that the

difference between the displacements is only in a phase shift. This can be seen more clearly

in the response envelopes. For any arbitrary value of Ωf , when ϕ = π and n is equal to an

even number, besides RA = 0 and R > 0, we have
∣∣yF

n (τ)
∣∣ = ∣∣yB

1 (τ ± Tev/2)
∣∣. The envelopes

in different configurations have the same shape with a temporal shift of τ by half period.

However, xFn (τ) is not equal to x
B
1 (τ + Tev/2) or x

B
1 (τ − Tev/2) due to the phase difference

between two carrier waves. Here, outputs in forward and backward configurations follow the

same envelope profile but at different phases.

A.5. Conclusions

By investigating the envelopes of outputs in forward and backward configurations, we studied

nonreciprocal vibration transmission in discrete models of modulated materials. Specifically,

we developed equations for the envelopes of the output displacements for this purpose. While
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the response of modulated systems is quasi-periodic in general, the envelope equations are

periodic in time. Thus, studying the envelopes of the nonperiodic response brings conve-

nience in approximating the maximum displacements in the steady-state. We provided a

measure for quantifying the degree of nonreciprocity based on the envelope of the response,

the amplitude bias. We used the amplitude bias to identify two response regimes in the

system. First, we showed that the maximum magnitudes of the amplitude bias correspond

to unidirectional vibration transmission in the modulated system. These maximum val-

ues were obtained only in systems with many modulated units (long systems). Second, we

demonstrated that zero amplitude bias can be used to identify phase nonreciprocity in the

system; i.e. response regimes where the difference between the forward and backward out-

put displacements is in their relative phase only. Our results demonstrate that the envelope

equations can provide information about nonreciprocity in modulated materials that would

be difficult to obtain otherwise. We observed that amplitude bias is not significant in shorter

models (with fewer degrees of freedom), and it can become more significant with increasing

the number of degrees of freedom. Unidirectional transmission and bandgaps were high-

lighted in the scenarios with very long models, which agree with the findings of directional

bandgaps in infinite-long spatiotemporal modulated systems. Comparing the results of am-

plitude bias and reciprocity bias for different examples, we identified nonreciprocal response

regimes in which the amplitude bias is zero. Furthermore, the envelopes of forward output

and backward output can have the same shape and a half-period offset from each other. We

presented the conditions leading to this specific form of nonreciprocity.

The analysis based on the envelope of nonperiodic steady-state response provides a new

strategy for studying nonreciprocal vibration transmission in linear modulated materials.

The methodology presented in this work facilitates parametric studies in the future.
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Huang, M. R. Haberman, “Nonreciprocity in Acoustic and Elastic Materials,” Nature

Reviews Materials, vol. 5, pp. 667-685, 2020.

[4] K. A. Lurie, An Introduction to the Mathematical Theory of Dynamic Materials, Second

Edition, Springer Cham, 2017.

105



[5] H. Nassar, H. Chen, A. N. Norris, M. R. Haberman, “Non-reciprocal Wave Propagation

in Modulated Elastic Metamaterials,” Proc. R. Soc. A, vol. 473, no. 2202, 2017.

[6] G. Trainiti, M. Ruzzene, “Non-reciprocal Elastic Wave Propagation in Spatiotemporal

Periodic Structures,” New Journal of Physics, vol. 18, p. 083047, 2016.

[7] E. Riva, J. Marconi, G. Cazzulani, F. Braghin, “Generalized Plane Wave Expansion

Method for Non-reciprocal Discretely Modulated Waveguides,” Journal of Sound and

Vibration, vol. 449, pp. 172-181, 2019.

[8] M. A. Attarzadeh, M. Nouh, “Elastic Wave Propagation in Moving Phononic Crystals

and Correlations with Stationary Spatiotemporally Modulated Systems,” AIP Advances,

vol. 8, p. 105302, 2018.

[9] H. Nassar, X. C. Xu, A. N. Norris, G. L. Huang, “Modulated Phononic Crystals:

Non-reciprocal Wave Propagation and Willis Materials,” Journal of the Mechanics and

Physics of Solids, vol. 101, pp. 10-29, 2017.

[10] Y. Wang, B. Yousefzadeh, H. Chen, H. Nassar, G. Huang, C. Daraio, “Observation

of Nonreciprocal Wave Propagation in a Dynamic Phononic Lattice,” Physical Review

Letters, vol. 121, no. 19, p. 194301, 2018.

[11] S. Wan, L. Cao, Y. Zeng, T. Guo, M. Oudich, B. Assouar, “Low-Frequency Nonrecip-

rocal Flexural Wave Propagation via Compact Cascaded Time-Modulated Resonators,”

Applied Physics Letters, vol. 120, no. 23, p. 231701, 2022.

[12] Y. Chen, X. Li, H. Nassar, A.N. Norris, C. Daraio, G. Huang, “Nonreciprocal wave

propagation in a continuum-based metamaterial with space-time modulated resonators,”

Physical Review Applied, vol. 11, no. 6, p. 064052, 2019.

[13] B. L. Kim, C. Daraio, C. Chong, S. Hajarolasvadi, Y. Wang, “Dynamics of time-

modulated, nonlinear phononic lattices,” Physical Review E, vol. 107, p. 034211, 2023.

[14] J. Wu, B. Yousefzadeh, “On Vibration Transmission Reciprocity In Modulated Materi-

als,” in Canadian Society for Mechanical Engineering International Congress, Edmonton,

2022.

[15] B. Yousefzadeh, “Computation of Nonreciprocal Dynamics in Nonlinear Materials,”

Journal of Computational Dynamics, vol. 9, no. 3, pp. 451-464, 2022.

106



B. Numerical analysis of phase nonreciprocity in a linear spatiotemporally mod-

ulated system

B.1. Introduction

The principle of reciprocity states that vibration transmission between two points in a ma-

terial remains invariant upon interchanging the locations of the source and receiver. This

invariance condition holds for materials with time-independent properties when they oper-

ate in the linear response regime. Based on this property, some wave processing techniques

are invented and several industrial applications are developed [1-3].However, in reciprocal

systems, it is not possible to realize transmission properties that depend on the direction of

wave propagation. Recently, in order to realize direction-dependent vibration transmission,

theories on breaking reciprocity have drawn the attention of many researchers [4].

Nonreciprocal wave propagation can be realized in a medium that has one or more of its effec-

tive properties (e.g. effective mass or stiffness) change as a function of time and space [5].The

time-varying term in an effective property, which is usually the stiffness of the material, is

known as modulation. In such systems, the studies on nonreciprocal wave propagation of-

ten use models of discrete and continuous periodic modulated materials. The modulation

characteristics such as frequency and wavenumber determine how incident waves disperse as

they travel in the periodic materials.

Nonreciprocity in wave propagation can be recognized by the dependence of at least one of

the transmission characteristics (amplitude, phase, phase or group velocity, etc.) on the di-

rection of propagation. Unidirectional propagation, in which propagation is prohibited along

one direction, was studied in various infinite-long 1-D models with wave-like spatiotemporal

modulation in the stiffness coefficient or elastic modulus [5-10].Direction-dependent propa-

gation speed can be identified from the dispersion curve of a two-phase modulated uniform

medium, where spatiotemporal modulation is introduced in both the Young’s modulus and

density [10].

Conversely, experimental studies on nonreciprocal vibration transmission in systems with

spatiotemporal modulation were performed on discrete finite setups, where nonreciproc-

ity is identified by differences between the left-to-right and right-to-left transmitted ampli-

tudes [11-14].Nonreciprocity demonstrated by differences in phase was studied in a medium

with a synthetic antiferromagnet layer, where the coupling of surface acoustic waves and non-

reciprocal spin waves resulted in nonreciprocal phase shifts [15,16].In short periodic systems

with spatiotemporal modulations, difference in phase was recognized as the main contributor

to nonreciprocity in the steady-state vibration transmission [17].Consequently, it is possible
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that the left-to-right and right-to-left amplitudes are equal and the difference in the trans-

mitted phase is the only contributor to nonreciprocity. We refer to this transmission scenario

as phase nonreciprocity. Phase nonreciprocity was previously shown in a nonlinear passive

system [18,19].In this work, we investigate nonreciprocity (in amplitude and phase) in a

spatiotemporally modulated system, and study the influence of the modulation strength and

the length of the system (number of modulated unit cells) on the vibration transmission

properties in the steady-state. A methodology for identifying phase nonreciprocity in the

steady-state response is presented. Using the envelope equations of the response, we observe

two different types of phase nonreciprocity: one represents that the response envelopes of

transmission cases in opposite directions having the same shape; the other one represents

the response envelopes with different shapes.

Formulation of the system and solution methodology are introduced in Section B.2. In

Sections B.3 and B.4, we investigate the phase nonreciprocity in short modulated systems

and long systems, respectively. We summarize our findings in Section B.5.

B.2. Spatiotemporally modulated system

Fig. B.1 shows the schematic of the system we study in this work. The system consists of n

identical masses, linear viscous dampers, linear coupling springs and modulated grounding

springs. The stiffness coefficient of each grounding spring is composed of two parts: a

constant term and a periodic term. For each mass, only the longitudinal rectilinear movement

is considered as a degree of freedom (DoF).

Figure B.1: Schematic of the n DoF system.

In the modulated system shown in Fig. B.1, two external harmonic forces, f1(t) = F1 cos(ωf t)

and fn(t) = Fn cos(ωf t), are applied on the first mass and the last mass, respectively. The

stiffness coefficient of the pth (p = 1, 2, · · · , n) grounding spring is expressed as kp(t) =

kg,DC+kg,AC cos(ωmt− ϕp), where ϕp = (p−1)ϕ and ωm represents the modulation frequency.

kg,DC , kg,DC , ωm and ϕ are constant. ϕ is the phase shift between modulation in two adjacent

units, which is equivalent to the wavenumber in a system with many DoF. The spatial
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modulation of the grounding stiffness along the length of the system is represented by a

non-zero ϕ, which is the key factor in breaking the reciprocity invariance.

B.2.1. Mathematical modeling

Dimensionless variables are defined to replace the dimensional terms in the equations of

motion: τ = tω0, Ωm = ωm/ω0, Ωf = ωf/ω0, ζ = c/(2mω0), Kc = kc/kg,DC , Km =

kg,AC/kg,DC , P1 = F1/(kg,DCa), Pn = Fn/(kg,DCa) and xp = up/a, where ω0 =
√
kg,DC/m

and a is a representative length. The dimensionless governing equations for the system in

Fig. B.1 can be written as:

ẍ1 + 2ζẋ1 + [1 +Km cos(Ωmτ)]x1 +Kc(x1 − x2) = P1 cos(Ωfτ),
...

ẍp + 2ζẋp + [1 +Km cos(Ωmτ − ϕp)]xp +Kc(2xp − xp−1 − xp+1) = 0,
...

ẍn + 2ζẋn + [1 +Km cos(Ωmτ − ϕn)]xn +Kc(xn − xn−1) = Pn cos(Ωfτ),

(B.1)

where ẍp and ẋp represent d2xp/dτ
2 and dxp/dτ , respectively.

For this study, we investigate nonreciprocal response in the steady-state, with a focus on

phase nonreciprocity: we seek response regimes that are characterized by the same trans-

mitted amplitudes but different (nonreciprocal) phase shifts along opposite directions. Two

configurations are defined to distinguish between the two directions of vibration propagation

in the 1-D system: (i) the forward (from left to right) configuration with P1 = P , Pn = 0

where the output is the steady-state response of the nth mass, xFn (τ); (ii) the backward

(from right to left) configuration with P1 = 0, Pn = P where the output is the steady-state

response of the first mass, xB1 (τ). Vibration propagation through the system is reciprocal if

and only if xFn (τ) = xB1 (τ) for any τ in the steady-state.

We use reciprocity bias R and output norms NF and NB to quantify the degree of nonre-

ciprocity and strength of outputs in the steady-state response of the system [17]. They are

defined as:

R = lim
T→∞

√
1

T

∫ T

0

[xFn (τ)− xB1 (τ)]
2dτ (B.2)

NF = lim
T→∞

√
1

T

∫ T

0

[xFn (τ)]
2dτ (B.3)

NB = lim
T→∞

√
1

T

∫ T

0

[xB1 (τ)]
2dτ (B.4)
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The norm bias is introduced to quantify the degree of nonreciprocity in terms of the norms

only (transmitted vibration energies), without considering the possible difference in phases:

RN =
NF −NB

NF +NB
. (B.5)

RN = 0 corresponds to equal norms for the forward and backward configurations. We

use RN = 0 and R > 0 to identify the response regimes where the forward and backward

configurations have equal norms but different phases. Such scenarios are recognized as

examples of phase nonreciprocity.

B.2.2. Solution methodology

An approximated solution for both outputs can be obtained by using the averaging method,

which is based on the quasi- periodic form of the steady-state response:

xFn (τ) =
∞∑

q=−∞

[ηqe
i(Ωf+qΩm)τ + c.c.] (B.6)

xB1 (τ) =
∞∑

q=−∞

[ξqe
i(Ωf+qΩm)τ + c.c.] (B.7)

where ηq and ξq are complex amplitudes and c.c. represents the corresponding complex

conjugate. Using the averaging method, ηq and ξq can be calculated for a given Ωf and other

parameters of the modulated system [17].

The approximate solution for each output can be rewritten as a response envelope and a

harmonic carrier wave of unit amplitude and the same frequency as the external excitation:

xFn (τ) = 2

∣∣∣∣∣
∞∑

q=−∞

ηqe
iqΩmτ

∣∣∣∣∣ cos (Ωfτ − φF
n ) = EF

n (τ) cos (Ωfτ − φF
n ), (B.8)

xB1 (τ) = 2

∣∣∣∣∣
∞∑

q=−∞

ξqe
iqΩmτ

∣∣∣∣∣ cos (Ωfτ − φB
1 ) = EB

1 (τ) cos (Ωfτ − φB
1 ), (B.9)

EF
n (τ) and E

B
1 (τ) are response envelopes for x

F
n (τ) and x

B
1 (τ), respectively. x

F
n (τ) and x

B
1 (τ)

are not periodic, however, EF
n (τ) and E

B
1 (τ) are periodic with the same period TE = 2π/Ωm.

This periodicity of response envelopes brings convenience for investigating nonreciprocity.

The steady-state displacements and response envelopes are calculated for Equation (1) for the

following parameters: Kc = 0.55, Ωm = 0.3, ϕ = 0.6π, ζ = 0.02 and P = 1. For validating

the solution predicted by the averaging method, the response of Eq. (B.1) is computed using

the Runge-Kutta method until the steady-state is reached.
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Figure B.2: Comparison between the output displacements computed using the averaging

method (red solid curves) and the Runge-Kutta method (cyan dashed curves). (a) n = 5,

Ωf = 1.06, Km = 0.1 in backward configuration; (b) n = 2, Ωf = 1.27, Km = 0.6 in

forward configuration. Blue curves in panels (a) and (b) are plots of ±EF
n (τ) and ±EB

1 (τ),

respectively.

Figs. B.2(a) and B.2(b) show that the averaging method predicts the response of the system

accurately for these sets of system parameters; this was found to be the case for other

parameters used in this work. We further observe that the plots of ±EF
n (τ) and ±EB

1 (τ)

follow the response envelopes of the outputs in the forward and backward configurations

very well. In particular, we note in Fig. B.2(b) that the response envelope is not harmonic.

This is an advantage of our formulation over the more conventional methods of computing

the response envelope, such as the classical rotating wave approximation that is limited to

harmonic envelopes. Thus, results from the averaging method are used hereafter to analyze

the steady-state response and nonreciprocity of the system.

B.3. Short modulated systems

B.3.1. Weak modulation

We first investigate phase nonreciprocity (RN = 0) in weakly modulated systems with a

small number of degrees of freedom. Specifically, we explore how Ωf (forcing frequency)

and ϕ (phase difference between modulation in two adjacent units, equivalent to modulation

wavenumber) influence the difference between the outputs in the forward and backward

configurations. In this section, we use Kc = 0.55, Km = 0.1, Ωm = 0.3, ζ = 0.02 and P = 1,

and compute R and RN as functions of Ωf and ϕ.

Fig. B.3 shows the reciprocity bias R and norm bias RN for systems with 2 DoF and 5 DoF.

ϕ = 0 and ϕ = 2π represent no spatial modulation in the system, which correspond to a
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Figure B.3: RN and R as functions of Ωf and ϕ. Red curves indicate combinations of Ωf

and ϕ where RN = 0 or R = 0 in corresponding plots. (a) Norm bias, RN , for n = 2 and

Km = 0.1; (b) norm bias, RN , for n = 5 and Km = 0.1; (c) reciprocity bias, R, for n = 2

and Km = 0.1; (d) reciprocity bias, R, for n = 5 and Km = 0.1.

reciprocal response (R = 0). We observe that the 3-D plot of RN is odd-symmetric about

the red straight line (ϕ,RN) = (π, 0), as shown in Figs. B.3(a) and B.3(b); the 3-D plot of

R is symmetric about the plane ϕ = π, as shown in Figs. B.3(c) and B.3(d). It means that,

regardless of the values of Ωf and n, RN = 0 if ϕ = π. Interestingly, if n is an odd number,

the reciprocity invariance holds only if ϕ = π, regardless of the value of Ωf , as shown in

Fig. B.3(d). However, if n is an even number, reciprocity bias is consistently positive over

the range 0 < ϕ < 2π, regardless of the value of Ωf , as shown in Fig. B.3(c). Consequently,

phase nonreciprocity occurs when n is an even number and ϕ = π. We refer to this scenario

as Type I phase nonreciprocity.

Furthermore, if ϕ ̸= π, there exist combinations of Ωf and ϕ which can lead to RN =

0 too. These combinations of Ωf and ϕ are indicated by the red curves in Figs. B.3(a)

and B.3(b) where ϕ ̸= π. In contrast to the red straight line (ϕ,RN) = (π, 0) which represents
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Type I phase nonreciprocity, these curves are determined by Kc, Km, ζ, Ωm, Ωf , ϕ and

n. Despite having equal transmitted amplitudes (RN = 0), the response along these red

curves are nonreciprocal because R > 0, regardless of whether n is even or odd. The

response at these points is therefore phase nonreciprocal. We refer to this scenario as Type

II phase nonreciprocity. The locus of RN(Ωf , ϕ) = 0 for Type II phase nonreciprocity has

a complicated shape if n is large; we will see in Section B.4 that this shape becomes even

more complicated as n increases.

To better illustrate the difference between Type I and Type II phase nonreciprocity, we

choose two points which are labeled as ‘A’ (Type I phase nonreciprocity) and ‘B’ (Type II

phase nonreciprocity) in Figs. B.3(a) and B.3(b). Their coordinates in the (Ωf , ϕ) plane

are: (0.96, π) and (1.209, 0.831π), respectively. The outputs and envelopes in forward and

backward configurations for points A and B are shown in Fig. B.4.

Figure B.4: Displacements and envelopes as functions of time. Red and blue curves indicate

plots of xFn (τ) and xB1 (τ), respectively. Green and yellow dashed curves indicate plots of

±EF
n (τ) and ±EB

1 (τ) respectively. (a) Time-domain response at point ‘A’; (b) time-domain

response at point ‘a’ with a temporal shift; (c) time-domain response at point ‘B’.
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We observe that, the response envelopes in different configurations at point A have the same

shape with a temporal shift equal to half a period: EF
n (τ) = EB

1 (τ ± TE/2), as shown in

Figs. B.4(a) and B.4(b). However, xFn (τ) is not equal to x
B
1 (τ + TE/2) or x

B
1 (τ − TE/2) due

to the phase different between the two carrier waves, as shown in Fig. B.4(b). At point B,

shapes of the envelopes in different configurations are not the same, as shown in Fig. B.4(c).

B.3.2. Strong modulation

We now turn our attention to the case of strong modulations. A critical feature of strong

modulations is the appearance of parametric instabilities [20].The response of the system we

study here becomes unbounded when this instability occurs. While we postpone a formal

stability analysis to future work, we have checked by direct numerical integration that all

the results we present here are stable.

Figure B.5: RN and R as functions of Ωf and ϕ. Red curves indicate combinations of Ωf

and ϕ where RN = 0 or R = 0 in corresponding plots. (a) Norm bias, RN , for n = 2 and

Km = 0.4; (b) norm bias, RN , for n = 2 and Km = 0.7; (c) reciprocity bias, R, for n = 2

and Km = 0.4; (d) reciprocity bias, R, for n = 2 and Km = 0.7.
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Fig. B.5 shows the reciprocity bias R and norm bias RN for the 2 DoF system with Km = 0.4

and Km = 0.7; the remaining system parameters are the same as the examples in Fig. B.3.

We observe in Fig. B.5(a) that the locus of phase nonreciprocity (RN = 0), when compared

to Fig. B.3(a), has a higher curvature (looks bent). This is caused by the relatively higher

modulation amplitude. Despite the difference between the locus of RN = 0 in Figs. B.3(a)

and B.5(a), in both cases the (Ωf , ϕ) plane is divided into six regions by the contour of

RN = 0. If Km is large enough, the contour of RN = 0 for Type II phase nonreciprocity

becomes more complex and the (Ωf , ϕ) plane is divided into more regions, as shown in

Fig. B.5(b).

Figs. B.5(c) and B.5(d) show the variation of the reciprocity bias corresponding to Figs. B.5(a)

and B.5(b), respectively. Non zero values of the reciprocity norm indicate that the response is

indeed nonreciprocal along the locus of RN = 0. We do not expect to encounter R = 0 along

Figure B.6: Displacements and envelopes as functions of time. Red and blue curves indicate

plots of xFn (τ) and xB1 (τ), respectively. Green and yellow dashed curves indicate plots of

±EF
n (τ) and ±EB

1 (τ) respectively. (a) Time-domain response at point ‘C’; (b) time-domain

response at point ‘C’ with a temporal shift; (c) time-domain response at point ‘D’.
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the locus of RN = 0 in this problem because ϕ is the only symmetry-breaking parameter in

this problem [19].

We choose two combinations of Ωf and ϕ in Fig. B.5 to show Type I (point C) and Type II

(point D) phase nonreciprocal response in the time domain. Their coordinates in the (Ωf , ϕ)

plane are: (1.25, π) for C and (1.21, 0.584π) for D. The corresponding outputs and response

envelopes in forward and backward configurations are plotted in Fig. B.6.

Figs. B.6(a) and B.6(b) show that EF
n (τ) = EB

1 (τ ± TE/2) and x
F
n (τ) is not equal to x

B
1 (τ +

TE/2) or x
B
1 (τ − TE/2) at point C. For Type I phase nonreciprocity, the response envelopes

in different configurations having the same shape is valid not only in weakly modulated

systems, but also in strongly modulated systems. For the Type II phase nonreciprocal case

at point D, the shapes of the envelopes in different configurations are not the same, as shown

in Fig. B.6(c).

B.3.3. More on the two types of phase nonreciprocity

Table B.1: Complex amplitudes for points ‘A’, ‘B’, ‘C’ and ‘D’.

Type I phase nonreciprocity Type II phase nonreciprocity

Point ‘A’ Point ‘B’ Point ‘C’ Point ‘D’

η−2 0.004− 0.003i −0.024 + 0.237i 0.002− 0.003i −0.242 + 0.134i

ξ−2 0.004− 0.003i −0.024 + 0.237i −0.004− 0.001i −0.586 + 0.641i

η−1 0.061− 0.043i −0.046 + 1.947i −0.055− 0.077i −0.398− 1.094i

ξ−1 −0.061 + 0.043i 0.046− 1.947i 0.094 + 0.025i 0.583− 1.207i

η0 2.474− 1.443i −0.881 + 0.634i −1.983− 0.315i 2.109− 0.276i

ξ0 2.474− 1.443i −0.881 + 0.634i −2.030− 0.358i −2.142− 0.436i

η1 0.263− 0.164i 0.393 + 0.034i 0.543 + 0.367i 1.354− 0.210i

ξ1 −0.263 + 0.164i −0.393− 0.034i −0.393− 0.239i −0.138− 1.476i

η2 −0.011 + 0.005i −0.037 + 0.003i −0.038 + 0.034i −1.328− 0.091i

ξ2 −0.011 + 0.005i −0.037 + 0.003i −0.023− 0.047i −0.133− 0.407i

To show the outputs of Type I and Type II phase nonreciprocal cases in more detail, some

complex amplitudes (ηq and ξq, q ∈ [−2, 2]) of outputs in forward and backward configura-

tions are calculated for points ‘A’, ‘B’, ‘C’ and ‘D’, listed in Table B.1.

For the outputs of Type I phase nonreciprocal cases, we find that: ηq = (−1)qξq for any

integer q, which means |ηq| = |ξq| and the difference between the arguments of ηq and ξq is

qπ. This leads to the interesting relation between two envelopes: EF
n (τ) = EB

1 (τ ± TE/2).

This relation is valid for every case of Type I phase nonreciprocity. In contrast, we could not

116



find such a straightforward mathematical relation between ηq and ξq for the outputs of Type

II phase nonreciprocal cases.

B.4. Long modulated systems

In this section, we compute the locus of phase nonreciprocity for weakly modulated systems

with many DoF (40, 60 and 100). All the system parameters, except the number of units,

are the same as those used in Fig. B.3. Fig. B.7 shows that the regions of RN > 0 and

RN < 0 on the (Ωf , ϕ) plane tend to be somewhat independent from n. Therefore, the red

curves indicating RN = 0 do not change significantly with n in the examples in Fig. B.7.

The zig-zags in the red curves, however, reduce in amplitudes as n increases.

Comparing the magnitudes of RN in the examples in Figs. B.3 and B.7, we observe that

the differences in transmitted amplitudes are very small in short systems compared to long

systems; e.g. compare the scales of the color bars in Fig. B.3(b) to Fig. B.7(a). In long

Figure B.7: RN as a function of Ωf and ϕ. Red curves indicate combinations of Ωf and ϕ

where RN = 0. (a) Norm bias, RN , for a 40 DoF system; (b) norm bias, RN , for a 60 DoF

system; (c) norm bias, RN , for a 100 DoF system.
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systems, unidirectional vibration transmission can occur in some regions on the (Ωf , ϕ)

plane, indicated by |RN | ≈ 1. Further numerical studies convergence of the patterns in

Fig. B.7 are ongoing.

B.5. Conclusions

We presented the application of the response envelopes for analyzing the non-periodic steady-

state response of a discrete system with spatiotemporal modulation. Phase nonreciprocity

was identified in the numerical analysis of short and long systems. Furthermore, two types

of phase nonreciprocity were introduced: Type I phase nonreciprocity represents the phase

nonreciprocal cases that always happen if the system has an even number of DoF and the

phase shift between every two adjacent modulations is ±π; Type II phase nonreciprocity

represents the cases in which nonreciprocal phase shift occur for specific combinations of

system parameters and forcing frequencies, when the phase shift between every two adjacent

modulations is not ±π.
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Huang, M. R. Haberman, “Nonreciprocity in Acoustic and Elastic Materials,” Nature

Reviews Materials, vol. 5, pp. 667-685, 2020.

[5] K. A. Lurie, An Introduction to the Mathematical Theory of Dynamic Materials, Second

Edition, Springer Cham, 2017.

[6] H. Nassar, H. Chen, A. N. Norris, M. R. Haberman, “Non-reciprocal Wave Propagation

in Modulated Elastic Metamaterials,” Proc. R. Soc. A, vol. 473, no. 2202, 2017.

[7] G. Trainiti, M. Ruzzene, “Non-reciprocal Elastic Wave Propagation in Spatiotemporal

Periodic Structures,” New Journal of Physics, vol. 18, p. 083047, 2016.

[8] E. Riva, J. Marconi, G. Cazzulani, F. Braghin, “Generalized Plane Wave Expansion

Method for Non-reciprocal Discretely Modulated Waveguides,” Journal of Sound and

Vibration, vol. 449, pp. 172-181, 2019.

118



[9] M. A. Attarzadeh, M. Nouh, “Elastic Wave Propagation in Moving Phononic Crystals

and Correlations with Stationary Spatiotemporally Modulated Systems,” AIP Advances,

vol. 8, p. 105302, 2018.

[10] H. Nassar, X. C. Xu, A. N. Norris, G. L. Huang, “Modulated Phononic Crystals:

Non-reciprocal Wave Propagation and Willis Materials,” Journal of the Mechanics and

Physics of Solids, vol. 101, pp. 10-29, 2017.

[11] Y. Wang, B. Yousefzadeh, H. Chen, H. Nassar, G. Huang, C. Daraio, “Observation

of Nonreciprocal Wave Propagation in a Dynamic Phononic Lattice,” Physical Review

Letters, vol. 121, no. 19, p. 194301, 2018.

[12] S. Wan, L. Cao, Y. Zeng, T. Guo, M. Oudich, B. Assouar, “Low-Frequency Nonrecip-

rocal Flexural Wave Propagation via Compact Cascaded Time-Modulated Resonators,”

Applied Physics Letters, vol. 120, no. 23, p. 231701, 2022.

[13] Y. Chen, X. Li, H. Nassar, A.N. Norris, C. Daraio, G. Huang, “Nonreciprocal wave

propagation in a continuum-based metamaterial with space-time modulated resonators,”

Physical Review Applied, vol. 11, no. 6, p. 064052, 2019.

[14] B. L. Kim, C. Daraio, C. Chong, S. Hajarolasvadi, Y. Wang, “Dynamics of time-

modulated, nonlinear phononic lattices,” Physical Review E, vol. 107, p. 034211, 2023.

[15] R. Verba, E. N. Bankowski, T. J. Meitzler, V. Tiberkevich, A. Slavin, “Phase Nonre-

ciprocity of Microwave-Frequency Surface Acoustic Waves in Hybrid Heterostructures

with Magnetoelastic Coupling,” Advanced Electronic Materials, vol. 7, no. 8, p.

2100263, 2021.

[16] D. A. Bas, R. Verba, P. J. Sah, S. Leontsev, A. Matyushov, M. J. Newburger, N. X.

Sun, V. Tiberkevich, A. Slavin, M. R. Page, “Nonreciprocity of Phase Accumulation and

Propagation Losses of Surface Acoustic Waves in Hybrid Magnetoelastic Heterostruc-

tures,” Physical Review Applied, vol. 18, no. 4, p. 044003, 2022.

[17] J. Wu, B. Yousefzadeh, “On Vibration Transmission Reciprocity In Modulated Materi-

als,” in Canadian Society for Mechanical Engineering International Congress, Edmonton,

2022.

[18] B. Yousefzadeh, “Computation of Nonreciprocal Dynamics in Nonlinear Materials,”

Journal of Computational Dynamics, vol. 9, no. 3, pp. 451-464, 2022.

[19] A. Giraldo, B. Yousefzadeh “Restoring the Reciprocity Invariance in Nonlinear Systems

with Broken Mirror Symmetry,” Extreme Mechanics Letters, p.102008, 2023.

[20] I. Kovacic, R. Rand, S. M. Sah, “Mathieu’s Equation and Its Generalizations: Overview

of Stability Charts and Their Features,” Applied Mechanics Reviews, vol. 70, no. 2, p.

020802, 2018.

119



C. Nonreciprocal dynamics of spatiotemporally varying materials: strong mod-

ulations

C.1. Introduction

For a material with time-independent properties, transmission of low-amplitude (linear) vi-

brations between two points remains unchanged when the locations of the source and the re-

ceiver are interchanged. This invariance property is called reciprocity. Reciprocity has led to

development of various wave processing techniques and industrial applications, for instance,

calibration of hydrophones and crack identification [1-3]. However, vibration transmission

properties (speed, amplitude, phase, etc.) that are dependent on the direction of transmis-

sion cannot be realized in reciprocal systems. Many researchers have recently focused on

developing methods to break reciprocity invariance and realize direction-dependent vibration

transmission [4].

Nonreciprocal vibration transmission can occur in a material that has one or more effective

properties (e.g. effective mass or stiffness) change in both time and space [5]. We refer

to a material with such properties as a modulated material. Modulation refers to a time-

dependent term (normally periodic) in an effective property, typically the stiffness of the

material. Models of discrete and continuous periodic modulated materials are commonly used

in the studies on nonreciprocal vibration transmission. The smallest repetitive substructure

in a periodic material is a unit cell. The modulation characteristics in each unit cell determine

how vibrations transmit differently towards opposite directions in the modulated material.

The difference between transmitted amplitudes in opposite directions (amplitude bias) is

an effective way to identify nonreciprocity. As the extreme case of different transmitted

amplitudes, unidirectional wave propagation in one-dimensional (1-D) continuous modulated

media was recognized by directional bandgaps in their dispersion curves. Such studies were

carried out in multiple spatially periodic models with wave-like spatiotemporal modulation

in elasticity [5-11]. In contrast, systems of finite length were used to perform experimental

studies on nonreciprocal vibration transmission in 1-D spatiotemporally modulated systems,

where nonreciprocity is identified by the differences between the left-to-right and right-to-left

transmitted amplitudes in the steady state [12-15].

The amplitude bias can be increased by adding more modulated units to the system. For

the steady-state vibration transmission in short discrete systems with weak modulations, it

is very difficult to observe the difference between the transmitted amplitudes because non-

reciprocity is mostly caused by the difference between the transmitted phases [16]. Without

changing the length of a discrete system, the difference between the transmitted amplitudes
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can get higher by increasing the strength of the spatiotemporal modulations [17]. But strong

modulations may lead to the system being unstable and result in unbounded response [18].

In this work, we investigate nonreciprocal vibration transmission in the steady state with a

focus on the difference between transmitted energies. Based on Floquet theory, we develop a

numerical approach to determine the stability of the modulated system and obtain the stabil-

ity chart. We thus identify modulation parameters that correspond to stable response of the

system. This is important for safe and reliable operation of devices with spatiotemporally

modulated properties.

We present the problem formulation and solution methodology in Section C.2. In Section C.3,

the approach used to determine stability of the modulated system is introduced and a sam-

ple stability chart is presented. Nonreciprocal energy transmission in different systems is

discussed in Section C.4. The findings of this work are summarized in Section C.5.

C.2. Spatiotemporally modulated systems

C.2.1. Problem setup

Fig. C.1 shows schematically the modulated system we study in this work. Two forces,

f1(τ) = P1 cos(Ωfτ) and fn(τ) = Pn cos(Ωfτ), are applied on the first mass and the last mass,

respectively. The modulations in this system are represented by the time-varying terms in

Figure C.1: Scheme of the nDoF system.

stiffness of grounding springs: Kg,p = 1+Km cos(Ωmτ − ϕp), where p = 1, 2, · · · , n and ϕp =

(p − 1)ϕ. The constant representing a spatial modulation along the 1-D system, ϕ, breaks

the mirror symmetry of the system, thus enabling nonreciprocal vibration transmission [16].
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The equations of motion for this system are:

ẍ1 + 2ζẋ1 + [1 +Km cos(Ωmτ)]x1 +Kc(x1 − x2) = P1 cos(Ωfτ)
...

ẍp + 2ζẋp + [1 +Km cos(Ωmτ − ϕp)]xp +Kc(2xp − xp−1 − xp+1) = 0
...

ẍn + 2ζẋn + [1 +Km cos(Ωmτ − ϕn)]xn +Kc(xn − xn−1) = Pn cos(Ωfτ)

(C.1)

where ẍp and ẋp represent d2xp/dτ
2 and dxp/dτ respectively. All parameters used in this

work are dimensionless.

In this study, we investigate nonreciprocal transmission of steady-state vibrations. Two con-

figurations are defined to distinguish between the opposite transmission directions through

the 1-D system: (i) the forward (from left to right) configuration with P1 = P and Pn = 0

where the output is the steady-state response of the nth mass, xFn (τ); (ii) the backward (from

right to left) configuration with P1 = 0 and Pn = P where the output is the steady-state

response of the 1st mass, xB1 (τ).

Output norms NF and NB are used to quantify the strength of outputs, which is the trans-

mitted energy in different configurations. NF and NB are defined as:

NF = lim
T→∞

√
1

T

∫ T

0

[xFn (τ)]
2dτ (C.2a)

NB = lim
T→∞

√
1

T

∫ T

0

[xB1 (τ)]
2dτ (C.2b)

Norm bias RN is introduced to quantify the degree of nonreciprocity in terms of the output

norms (transmitted vibration energies) only:

RN =
NF −NB

NF +NB
(C.3)

A zero norm bias, RN = 0, corresponds to equal output norms (transmitted energies) for the

forward and backward configurations. RN = 0 is not equivalent to reciprocal vibration trans-

mission because RN is unable to identify different transmitted phases in two configurations.

By constructions, we have −1 ≤ RN ≤ 1, where the limit values indicate that the output

norm in one of the configurations is much larger than the other one, that is, unidirectional

vibration transmission.
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C.2.2. Solution methodology

Approximate analytical expressions for outputs in forward and backward configurations can

be obtained by using the averaging method, which is based on the quasi-periodic form of the

steady-state response:

xFn (τ)=
F∑

q=−F

[yFn,qe
i(Ωf+qΩm)τ + c.c.] (C.4a)

xB1 (τ)=
F∑

q=−F

[yB1,qe
i(Ωf+qΩm)τ + c.c.] (C.4b)

where yFn,q and y
B
1,q are complex amplitudes of each harmonic component, and c.c. represents

the corresponding complex conjugate. For a given Ωf and other system parameters, yFn,q and

yB1,q can be calculated by using the averaging method as outlined in [16]. F determines the

number of harmonic components in each output. Increasing F can improve the accuracy of

the approximated solution, particularly when Km or n is large.

0 60 120 180 240
 - 10000

-10

-5

0

5

10

x
4F
(

)

(a)

0 60 120 180 240
 - 10000

-3

-2

-1

0

1

2

3

x
1B
(

)

(b)

Figure C.2: Comparison between the output displacements computed using the averaging

method (solid curves) and the Runge-Kutta method (cyan dashed curves). (a): n = 4,

ϕ = 0.94π, Km = 1.46, Ωf = 0.96 and F = 25, in forward configuration; (b): n = 8,

ϕ = 0.41π, Km = 0.91, Ωf = 0.73 and F = 14, in backward configuration.

Displacements in the steady state are calculated for (C.1) for the following parameters:

Kc = 0.6, Ωm = 0.2, ζ = 0.01 and P = 1, as shown in Fig C.2. To validate the predictions

made by the averaging method, the response of (C.1) is computed using the Runge-Kutta

method until the steady state is reached. Fig. C.2 shows that the averaging method predicts

the steady-state response of the system accurately for these sets of system parameters; the

123



accuracy was also confirmed for other sets of system parameters that lead to the steady-state

response in this work.

C.3. Stability analysis

In this work, our investigations on nonreciprocal energy transmission are performed for

the steady-state response of the modulated system. However, the response of the modulated

system may become unstable and grow without a bound (diverge). Equation (C.1) is a set of

coupled Mathieu’s equations with external forces. When Km ̸= 0, (C.1) contains parametric

excitations each of which is the product of a periodic (cosine) function and displacement of

a mass. As the result, regardless of f1(τ) and fn(τ), the response of the modulated system

can stay bounded (stable) or the response can become unbounded (unstable). Unbounded

response does not reach a steady state in a linear system. Thus, stability analysis for the

modulated system is necessary, and unstable scenarios have to be avoided.

C.3.1. Solution methodology

If P1 = Pn = 0, (C.1) can be transformed into a first order differential equation:

d

dτ
X = A(τ) X (C.5)

where X = [ẋ1, · · · , ẋn, x1, · · · , xn]T is a 2n× 1 vector. A(τ) is a 2n× 2n matrix, it can be

rewritten as:

A(τ) =

[
D C(τ)

I O

]
(C.6)

where D, C(τ), I and O are all n × n matrices. O is a zero matrix, I is an identity matrix

and D = −2ζI. C(τ) can be expressed as:

C(τ) =


B1(τ) Kc 0 · · · 0

Kc B2(τ) Kc · · · 0

0 Kc B3(τ) · · · 0
...

...
...

. . .
...

0 0 0 · · · Bn(τ)

 (C.7)

where Bp(τ) = −Kc − [1 +Km cos(Ωmτ−ϕp)] for p ∈ {1, n}, and Bp(τ) = −2Kc − [1 +

Km cos(Ωmτ−ϕp)] for p ∈ {2, · · · , n − 1} when n ≥A ppxC .3. In matrix C(τ), the ele-

ments in first super diagonal and first subdiagonal are all Kc; with the exception of the

elements in its main diagonal, first super diagonal and first subdiagonal, all the elements are

zero. Matrices C(τ) and A(τ) are therefore periodic and their period is T = 2π/Ωm.
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Next, Floquet theory, the general theory of linear differential equations with periodic co-

efficients, is applied to determine the stability of the response [18,19]. For a given initial

condition Xr(0), the transient response at τ = T is calculated from direct numerical inte-

gration of (C.5), denoted by Xr(T ). The initial condition Xr(0) has its rth element equal

to 1 and all its other elements equal to zero. By changing r from 1 to 2n, we obtain a set

of solution vectors: X1(T ), X2(T ), · · · , X2n(T ). A square matrix is then constructed from

these solution vectors:

E =
[
X1(T ) X2(T ) · · · X2n(T )

]
(C.8)

If every eigenvalue of E has absolute value less than 1, then the response of (C.5) is stable; if

any one eigenvalue of E has absolute value greater than 1, the response of (C.5) is unstable.

Any external force can be seen as a sum of impulses at various infinitesimal time intervals.

An arbitrary impulse on a still system at τ = τi brings a nonzero motion X i(τi), which is

equal to a linear combination of X1(0), X2(0), · · · , X2n(0). X i(τi) can be seen as an initial

condition starting from τ = τi. All equations in (C.1) are linear equations. According to the

principle of superposition, if (C.5) has been proven stable by the approach based on Floquet

theory, the initial condition X i(τi) will not lead to unstable motion. Therefore, P1, Pn and

Ωf have no effect on the stability of (C.1), and the stability of the modulated system shown

in Fig. C.1 can be determined by this numerical approach based on Floquet theory.

C.3.2. Stability of n DoF modulated systems

We focus on investigating the effects of the modulation parameters, Km and ϕ, on the

stability of the modulated system shown in Fig. C.1. In this section, we use n = 4, Kc = 0.6,

ζ = 0.01 and Ωm = 0.2 and determine stability for different combinations of Km and ϕ.

Fig.C.3 shows the stability chart for the modulated system with 4DoF. In Fig. C.3, white

regions represent the combinations of Km and ϕ that result in stable response; grey regions

represent the combinations of Km and ϕ that result in unstable response.

We choose two points which are labelled as ‘A’ (stable) and ‘B’ (unstable) in Fig. C.3.

Their coordinates in the (Km,ϕ) plane are (1.42, 0.9π) and (1.1, 0.1π), respectively. Their

displacements in time domain are computed using the Runge-Kutta method, as shown in

Fig. C.4. Inside the stable regions of a stability chart, the response of the modulated system

is a quasi-periodic function of τ , and it stays bounded, as shown in Fig. C.4(a). In contrast,

inside the unstable regions, the response of the modulated system grows exponentially in

time, as shown in Fig. C.4(b).

The stability chart is symmetric about the plane ϕ = π. Both Km and ϕ influence the

stability of the response. In general, a larger Km is more likely to bring instability than a
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Figure C.3: Stability chart of a 4DoF modulated system with Kc = 0.6.
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Figure C.4: Time-domain response. (a): xF4 (τ) with Ωf = 1.27 and P = 1, at point A; (b):

xB1 (τ) with Ωf = 1.13 and P = 1, at point B.

smaller Km, and a modulated system with ϕ closer to π is more tolerant of strong modula-

tions. However, in some scenarios, a larger Km results in stable response but a smaller Km

does not, although ϕ and other parameters remain unchanged; the horizontal dashed line

(ϕ = 0.655π) in Fig. C.3 indicates an example of this scenario: Km = 1.37 is in an unstable

region while Km = 1.47 is in a stable region.

In order to ensure the stability of the steady-state response of various modulated systems

in forward and backward configurations, the values of ϕ and Km should be chosen from the

white (stable) regions of corresponding stability charts. Using the approach introduced in

this section, we have checked that all the results we present in this work are stable, unless

otherwise stated.
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C.4. Nonreciprocal energy transmission in modulated systems

In this section, we first investigate nonreciprocal energy transmission by exploring the effects

of Km and n on the magnitude of RN . We use Kc = 0.6, ζ = 0.01, Ωm = 0.2 and P = 1

throughout this section, and calculate RN as a function of Ωf and ϕ by using the averaging

method.

Fig C.5 shows surface plots of RN for the modulated systems with different combinations of

Km and n. The values of Km and n are chosen such that they result in the same range of

Figure C.5: RN as a function of Ωf and ϕ. (a): n = 12, Km = 0.1, (b): n = 7, Km = 0.22,

(c): n = 4, Km = 0.9.

values for RN . These results indicate that to keep the magnitude of RN unchanged, we can

increase the modulation amplitude and reduce the number of unit cells in the system.

Next, we keep increasing the modulation amplitude for the short system with 4DoF. Fig. C.6(a)

shows RN for the short system with Km = 1.32. It is shown in Fig. C.3 that, when Km =
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Figure C.6: RN as a function of Ωf and ϕ. (a): n = 4, Km = 1.32, (b): n = 55, Km = 0.1.

1.32, the following parameter ranges of ϕ correspond to an unstable response: (0, 0.287π),

(0.299π, 0.333π), (1.667π, 1.701π) and (1.713π, 2π); these ranges of unstable response are

indicated by the shaded rectangular zones in Fig. C.6(a). In these shaded zones, the results

of RN are invalid, and we must not choose the value of ϕ from them.

Fig. C.6(b) shows RN for a long system, with Km = 0.1 and n = 55 chosen such that

RN varies in the same range as in Fig. C.6(a). Nearly unidirectional vibration transmis-

sion (|RN | ≥ 0.9) can happen in both modulated systems. The regions of |RN | ≥ 0.9 in

Fig. C.6(b) are larger and more ‘organized’ than those in Fig. C.6(a).

To better illustrate the nearly unidirectional vibration transmission cases in these two sys-

tems, we choose two points which are labelled as ‘C’ and ‘D’ in Fig. C.6(a) and Fig. C.6(b).

Their coordinates in the (Ωf ,ϕ) plane are (0.84,0.403π) and (0.994,1.667π), respectively.

Point C lies in the stable region of Fig. C.6(a). At both points, RN = 0.93. Outputs in

forward and backward configurations at points C and D are computed, shown in Fig. C.7.

At point C, output norms are NF
C = 40.917 and NB

C = 1.515; at point D, output norms are

NF
D = 0.7051 and NB

D = 0.0255. If both systems are time-invariant, i.e. Km = 0, vibration

transmission in each of them is reciprocal. In this case, output norms at points C and D are

NC = 0.2279 and ND = 9.843 × 10−4, respectively. Both NF
C and NB

C are greater than NC ,

and both NF
D and NB

D are greater than ND. Therefore, at points C and D, modulations in

both systems acting as inner excitations amplify the transmitted energies in both forward

and backward configurations. Specifically, this amplifying effect is dependent on the direction

of transmission, which leads to nonreciprocal energy transmission.
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Figure C.7: Time-domain response. (a) and (b): Outputs at point C, (c) and (d): outputs

at point D.

C.5. Conclusions

Based on Floquet theory, we developed an approach to determine the stability of motion in

discrete models of spatiotemporally modulated materials. We highlighted the effect of the

modulation amplitude and modulation phase (wavenumber) on stability, presented graphi-

cally by the stability chart. We provided a measure to quantify the degree of nonreciprocity

in terms of transmitted energy in the steady state, the norm bias. We used the norm bias

to investigate nonreciprocal energy transmission in modulated systems with different length

and modulation strength. We showed that a long system with weak modulations and a

short system with strong modulations can provide similar values of norm bias. Furthermore,

nearly unidirectional vibration transmission can happen not only in very long modulated

systems, but also in short systems with very strong modulations. We used the stability

chart to identify unstable ranges of modulation phase for a strong modulation amplitude;

unstable response must be avoided in operation of devices with spatiotemporally modulated

properties.

Stability analysis based on Floquet theory is critical in investigating nonreciprocal vibration

transmission in systems with strong modulation because unbounded response is often en-

countered at higher amplitudes of modulation. It complements the results of the averaging

method, which is commonly used to analyze the response of modulated systems. The ap-

proach presented in this work motivates further parametric studies on materials with strong

modulations.
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D. Nonreciprocal dynamics of spatiotemporally varying materials: strong mod-

ulations

D.1. Introduction

Propagation of mechanical waves in elastic materials has been studied for about three cen-

turies, dating back to Sir Newton’s study of sound propagation in air [1]. For a regular

material with constant density and Young’s modulus, wave propagation characteristics be-

tween two arbitrary points remain invariant after interchanging the locations of the vibration

source and receiver. This symmetry property, known as the principle of reciprocity, remains

valid for propagation of small-amplitude waves in materials with properties that do not

change with time; i.e. linear time-invariant systems. Within this context, it is not possible

for waves to have different transmission characteristics (e.g. changes in amplitude and phase)

depending on the direction of travel between two points. Such asymmetric wave transmission

can be utilized for development of novel vibration mitigation devices and energy harvesting

mechanisms, for example. Accordingly, there the physics and engineering of nonreciprocal

propagation of elastic waves has recently drawn the attention of many researchers [2].

Nonreciprocal wave propagation has recently been investigated in the context of periodic

materials, both for discrete and continuous models. Periodic materials provide an amenable

context for this study because their wave propagation characteristics are dictated by the

properties of their repeating sub-structure, also known as the unit cell. Nonreciprocal and

directional propagation was analyzed in a discrete infinite-long modulated metamaterial,

in which a wave-like temporal-spatial modulation was added to stiffness coefficient of the

resonant spring in every unit cell [3]. Within the one-dimensional structure, directional scat-

tered waves are generated because of the modulation. The scattered waves are coupled to the

incident wave at certain frequencies, resulting in nonreciprocal propagation. For uniform con-

tinuous media, researchers found the appearance of nonreciprocity due to temporal-spatial

modulation in Young’s modulus of the media [4-6], as well as both Young’s modulus and

density (two-phase modulation) [7]. A similar nonreciprocal wave propagation phenomenon

can be realized in elastic metasurfaces by means of temporal-spatial modulation of resonant

springs at the surface [8,9].

In experimental demonstration of nonreciprocity due to temporal-spatial modulations, peri-

odic systems naturally comprise only a few units. For example, the temporal-spatial modu-

lations have been realized by means of magnetic forces [10,11]. The spatial modulation, in

particular, corresponds to a constant phase shift between the modulated elasticity of adja-

cent units. This spatial phase shift is as essential in breaking reciprocity as the temporal

modulation. To investigate this in more detail, we focus in this work on the special case
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of a system with two degrees of freedom (2DoF). Our goal is to systematically study the

influence of system parameters on the reciprocity of vibration transmission in this system,

highlighting the significance of modulation phase shift and nonlinear elasticity. This will be

the first building block for investigating the combined effects of modulation and nonlinearity

in modulated materials.

In Section D.2, the problem formulation and methodology are introduced. In Section D.3,

the effects of system parameters on nonreciprocity are presented in the linear operating

range. The influence of nonlinear elasticity on nonreciprocity is described in Section D.4.

We conclude in Section D.5 by summarizing our findings and pointing out directions for

future work.

D.2. Analysis of a 2DoF system with modulation

We consider a 2DoF system composed of two identical masses, viscous dampers, coupling

springs and weakly modulated grounding springs with nonlinearity. On each of the two

masses, there is an external force applied. The two external forces have the same frequency.

See Fig. D.1.

Figure D.1: Scheme of the 2DoF system. Each grounding spring has three components: a

constant term, a time-dependent term and a nonlinear (amplitude-dependent) term.

D.2.1. A. Formulation of the problem

The equations of motion for the system in Fig. D.1 are:

mü+ cu̇+ (2kc + k1) u− kcv = F1 cos (ωf t) ,

mv̈ + cv̇ + (2kc + k′1) v − kcu = F2 cos (ωf t) ,
(D.1)

where k1 = kL + km cos (ωmt) + kNu
2 and k′1 = kL + km cos (ωmt− ϕ) + kNv

2. The phase

shift ϕ represents a spatial modulation in the grounding stiffness of each mass. We introduce

the following parameters to non-dimensionalize the governing equations: t = τ/ω0, ω
2
0 =

(2kc + kL)/m, ωm = Ωmω0, ωf = Ωfω0, c = 2ζmω0, kc = Kc(2kc + kL), km = Km(2kc + kL),
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kN = KN(2kc + kL)/a
2, F1 = a(2kc + kL)P1, F2 = a(2kc + kL)P2, u(t) = ax1(τ) and

v(t) = ax2(τ), where a is a representative length, The governing equations (D.1) are therefore

rewritten as:

d2

dτ 2
x1 + 2ζ

d

dτ
x1 + [1 +Km cos (Ωmτ)] x1 +KNx

3
1 −Kcx2 = P1 cos (Ωfτ) ,

d2

dτ 2
x2 + 2ζ

d

dτ
x2 + [1 +Km cos (Ωmτ − ϕ)] x2 +KNx

3
2 −Kcx1 = P2 cos (Ωfτ) .

(D.2)

Our focus is on investigating the steady-state response of the system. In order to distinguish

the two directions of wave propagation (left to right versus right to left), two configurations

are defined: (i) the forward configuration with P1 = P and Pn = 0 where the output is

the steady-state response of the second mass xF2 (τ); (ii) the backward configuration with

P1 = 0 and Pn = P where the output is the steady-state response of the first mass xB1 (τ).

If and only if xF2 (τ) = xB1 (τ), vibration transmission through the system is reciprocal. The

reciprocity bias R is introduced to quantify the degree of nonreciprocity between the outputs

of forward and backward configurations:

R = lim
T→∞

√
1

T

∫ T

0

[xF2 (τ)− xB1 (τ)]
2dτ (D.3)

If R = 0, the vibration transmission is reciprocal; otherwise, the transmission is nonrecipro-

cal [12]. Output norms NF and NB are introduced to represent the response in the forward

and backward configurations respectively:

NF = lim
T→∞

√
1

T

∫ T

0

[xF2 (τ)]
2dτ ,

NB = lim
T→∞

√
1

T

∫ T

0

[xB1 (τ)]
2dτ .

(D.4)

In direct numerical simulations, the norms in (D.3) & (D.4) are evaluated after the steady

state is reached.

D.2.2. Solution methodology

Approximating the solutions of (D.2) is the key strategy to estimate the displacement output

in the steady-state. The steady-state displacement output of the 2DoF system in different

configurations is expressed by the expansion in Fourier series:

xF2 (τ)=
∞∑

n=−∞

[(
ξ̂n
2
einΩmτ

)
eiΩf τ + c.c.

]
,

xB1 (τ)=
∞∑

n=−∞

[(
η̂n
2
einΩmτ

)
eiΩf τ + c.c.

]
,

(D.5)
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where c.c. represents the corresponding complex conjugate, ξ̂n and η̂n are complex-valued

amplitudes for a given Ωf . The representation of the displacement in (D.5) points out an

important characteristic of the steady-state response of the systems subject to simultaneous

external and parametric excitation: the response contains spectral components not only at

the frequency of the external force, Ωf , but also at Ωf ± Ωm, Ωf ± 2Ωm, and so on. To find

the amplitudes, ξ̂n and η̂n, we substitute (D.5) into (D.2) and integrate the result over one

modulation period. This procedure yields a system of nonlinear algebraic equations for the

amplitudes ξ̂n and η̂n, which can be solved numerically. We refer to this procedure as the

averaging method.

The transient response is computed by using the Runge-Kutta method [13]. We use the re-

sults from direct numerical integration of the governing equations to validate the predictions

made by the averaging method.

Fig. D.2 shows the output norms calculated for (D.2) for the following parameters: Ωm =

0.15, Km = 0.1, Kc = 0.44, ζ = 0.02 and P = 0.1. There is very good agreement between

the analytical and numerical prediction of the steady-state response. Thus, we will use the

analytical approach in the remainder of this work. Unless otherwise stated, these parameters

are used in examples in other sections as well.

Figure D.2: Comparison between the results of averaging method and numerical simulation.

(a): forward configuration with KN = −0.05, ϕ = 0.5π; (b): backward configuration with

KN = 0.1, ϕ = 0.5π.

D.3. Nonreciprocal vibration transmission in linear modulated systems

We first investigate nonreciprocity in the linear modulated system; i.e. KN = 0 in (D.2).

This will establish the importance of linear system parameters on breaking reciprocity. In this
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work, we only discuss the case of weakly modulated systems (Km ≤ 0.1). The methodology

presented in Section D.3.2, however, remains valid even for strong modulations.

D.3.1. Effects of Kc and Ωm in the modulated linear systems

We start by considering the system with temporal modulations only; i.e. ϕ = 0. In this

case, the parameter Kc determines the two natural frequencies (dimensionless) of an unmod-

ulated linear system:
√
1±Kc, which are approximately the primary resonant frequencies

of a weakly modulated linear system (indicated by the green solid arrows in Fig. D.3). The

secondary resonant frequencies of a weakly modulated linear system occur near frequencies√
1±Kc±Ωm (indicated by the green hollow arrows in Fig. D.3), with each pair correspond-

ing to one of the natural frequencies of the unmodulated system. Due to the mirror-symmetry

of the system, response is reciprocal.

Figure D.3: Effect of Kc and Ωm on the response of the system with temporal modulation

(ϕ = 0). (a) and (c) are plots of the output norms for forward and backward configurations

with respect to forcing frequency. (b) and (d) are plots of reciprocity bias of the systems

represent by (a) and (c) respectively. The green solid arrows indicate primary resonances,

the green hollow arrows indicate secondary resonances. In both 2DoF systems: KN = 0, (a)

and (b): Ωm = 0.15, (c) and (d): Ωm = 0.05. In (b) and (d), reciprocity bias is equal to zero

over the frequency range, responses of both systems are reciprocal.

D.3.2. Effect of ϕ in the modulated linear system

When ϕ ̸= 0, the modulated system is no longer mirror-symmetric. Thus, the transmission

is no longer reciprocal. Fig. D.4 shows the output norms and reciprocity bias of the system

at two different values of ϕ. As expected, the degree of nonreciprocity can be controlled by

ϕ, the difference in the modulation phases of the two degrees of freedom.
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Notice that the output norms in panels (a) and (e) are very similar, but the corresponding

reciprocity bias in panels (b) and (f) remain non-zero. This implies that a significant con-

tribution to non-reciprocity is possibly due to the phase difference between the response in

the forward and backward configurations. It can be verified in panels (d) and (h). A similar

phenomenon may occur when Km = 0 and KN ̸= 0 [12].

Figure D.4: Effect of ϕ on reciprocity for the linear system, KN = 0. Panels (a)-(d):

ϕ = 0.5π, (e)-(h): ϕ = −0.25π. Panels (c), (d), (g) and (h): output displacement at different

values of forcing frequency, Ωf , (c) and (g) Ωf = 0.748, (d) and (h) Ωf = 1.05. Tf = 2π/Ωf

.

D.4. Nonreciprocal vibration transmission in nonlinear modulated systems

Although the operation of mechanical systems is traditionally based on their linear response,

it is sometimes beneficial or necessary to consider the influence of nonlinear forces, particu-

larly in experiments [10]. Therefore, we investigate the influence of nonlinear elasticity on

the nonreciprocity of vibration transmission in our 2DoF system.
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We consider both the hardening (KN = 0.1 > 0) and softening (KN = −0.05 < 0) types of

nonlinearity. Fig. D.5 shows the output norms of the nonlinear system as a function of forcing

amplitude, P . Given that the coupling force is linear, the influence of nonlinearity is larger

on the response near the in-phase modes (near 0.75). The steady-state response of (D.2)

with KN ∈ {−0.05, 0.1} and P ∈ {0.06, 0.08, 0.1} is calculated using the averaging method,

and the output norms for forward and backward configurations are shown in Fig. D.5. As

expected, the primary and secondary resonant frequencies are all amplitude-dependent.

Figure D.5: Steady-state responses of 2DoF nonlinear systems in forward and backward

configurations with different excitations, (a)-(c): KN = 0.1, ϕ = 0.5π; (d)-(f): KN = −0.05,

ϕ = 0.5π. Panels (b), (c), (e) and (f): output displacement at different values of forcing

frequency, Ωf , (b) Ωf = 0.8, (c) and (f) Ωf = 1.05, (e) Ωf = 0.7.

We use the normalized reciprocity bias, R/P , to study the effect of the forcing amplitude

on the degree of nonreciprocity. For the linear system, the degree of nonreciprocity does not

depend on the amplitude of motion; this can be inferred by the three overlapping curves in

Fig. D.6(a). For the nonlinear system, panels (b) and (c) in Fig. D.6 show that the degree
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of nonreciprocity depends on the forcing amplitude, as expected. Interestingly, increasing

the forcing amplitude increases the normalized reciprocity bias for the system with harden-

ing nonlinearity, while it has the opposite effect in the system with softening nonlinearity.

Note that the most significant effect of nonlinearity is observed near the primary in-phase

resonance peak in both cases.

Figure D.6: Plots of normalized reciprocity bias, R/P . (a): a 2DoF linear modulated system,

KN = 0 and ϕ = 0.5π. (b): a 2DoF nonlinear modulated system, KN = 0.1 and ϕ = 0.5π.

(c): a 2DoF nonlinear modulated system, KN = −0.05 and ϕ = 0.5π.

D.5. Conclusions

We studied the reciprocity of vibration transmission in a discrete model of modulated ma-

terials. Temporal-spatial modulation in the stiffness coefficient is the key factor in breaking

the reciprocity invariance in coupled systems, within which the phase shift between two ad-

jacent modulations presents the modulation in space. Nonreciprocity in coupled modulated

systems can be quantified using the reciprocity bias. We observed that having equal output
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norms for the forward and backward configurations is not a sufficient test for reciprocity. We

presented scenarios in which it is the phase difference that plays a major role in increasing

the reciprocity bias. In weakly modulated linear systems, the locus of the primary and sec-

ondary resonance can be adjusted by manipulating the coupling stiffness and frequency of

modulation. We emphasized the role of the difference in modulation phases of the two units

on controlling the reciprocity bias in the linear operating regime. We then reported the in-

fluence of cubic (on-site) nonlinearity on the reciprocity bias and highlighted the significance

of the type of nonlinearity on how reciprocity depends on the forcing amplitude.

The analysis of coupled modulated systems provides a new perspective on nonreciprocal

wave propagation in nonlinear materials. The methodology described in this work facilitates

further parametric studies in this context.
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