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Abstract 

Indoor Object Localization for Tracking and Progress Reporting in Construction 

Hassan Bardareh, Ph.D. 

Concordia University, 2025 

This research investigates the application of indoor object localization to enhance tracking and 

progress reporting in construction projects by automating the generation of onsite inspection 

reports and location identification of project  components. In this study, “inspection reports” refers 

to the documents used to monitor and record the progress of installed project components and track 

their target locations. Indoor object tracking is challenging due to the complex nature of 

construction environments, which typically are congested and contain many obstacles. Moreover, 

translating object-tracking information into meaningful progress reports is inherently 

challenging. To address these challenges, this study explores the integrated use of advanced 

technologies, such as RTLS and LiDAR, for location identification of the target objects. The study 

includes four main streams: (1) developing an object localization method based on integrated 

RTLS technologies and using trilateration techniques for 2D and 3D localization in indoor spaces, 

(2) integrating the object tracking with the progress tracking introducing MSI and QSI indices, and 

employing a cloud-based BIM platform for data collection and visualization, (3) integrating RTLS 

with point cloud data to refine the 3D object detection and localization functions, and (4) 

developing a digital-twin platform for automated generation of onsite inspection reports and 

visualization of the location and status of the objects associated with indoor construction 

operations. These reports are visualized through a bi-directional construction twin dashboard, 

facilitating ready access to progress-related information for site managers. The methods developed 

are validated through laboratory experiments and a case study conducted at a job site. In the 

laboratory experiments, the RTLS demonstrates an accuracy of approximately 0.52 m and 1.15 m, 

respectively, for 2D and 3D object localization. The 3D localization accuracy for the integrated 

RTLS and point cloud data, meanwhile, is found to be 27 cm. The case study also validates the 

effectiveness of the introduced indices in reporting the progress of the installation of components 

in mechanical rooms as part of a swimming pool construction project. 
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CHAPTER 1: INTRODUCTION 

Real-time visualization of material availability allows construction managers to improve their 

decision-making, reduce wait times, and improve labour productivity. Li et al. (2017) reported 

poor data interoperability and lack of capacity to visualize and trace information in real time 

as key issues in prefabricated house construction. To overcome these challenges, job sites must 

be well planned, and resources (e.g., workforce, equipment, consumables) must be monitored 

continuously (Ziahou et al. 2018). This real-time visualization can be achieved through 

digitalization of material tracking and management. Moreover, comprehensive inventory 

tracking can be implemented to identify the material delivery deficiencies and verify material 

locations and quantities (Azarm 2013). Geo-contextual refers to the use of technology to 

automate material status and location throughout the project lifecycle. The problem of finding 

materials on site requires near-real-time tracking to identify the most recent location and status 

of materials. Depending on the type of activity, information about the location and status of 

onsite materials can be updated regularly. This allows for the work status on site to be tracked 

and reports related to material planning, physical progress, and safety on site issued 

accordingly. 

Automated material locating and tracking methods have been widely applied in the 

construction industry, including but not limited to progress reporting, inventory planning and 

management, and onsite safety. Automated methods help to overcome the limitations of 

traditional approaches, which rely primarily on manual data acquisition for material 

localization and tracking. Automated approaches can efficiently localize and track a large 

number of objects related to various activities. They also enable activity tracking within a 

desired timespan, thereby enhancing project control on site (Montaser and Moselhi 2014, 

Moselhi et al. 2020). Moreover, indoor object localization can be useful in the operation and 

maintenance phase since it provides highly accurate as-built information for 3D modelling of 

the indoor environment (Li et al. 2013, Moselhi et al. 2020). Object localization has also been 

applied for tracking workers and equipment as a way of improving safety on construction sites 

(Huang et al. 2021). 

The dynamic nature of construction sites makes monitoring the building's operations 

challenging. Nevertheless, tracking a project's progress and the quality of activity execution 

are critical tasks in project control, as these tracking activities provide a large amount of as-

built information related to various activities on site. Such reporting, however, is highly 
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complex, given the challenges associated with real-time data acquisition and processing large 

amounts of information for various functions, such as scheduling and cost management. Onsite 

object tracking is an integral part of a progress reporting system that entails identifying and 

localizing the installed objects. Sacks et al. (2020) identified two main drawbacks in 

conventional project progress monitoring: (1) reactive correction, where actual performance is 

found to deviate from planned performance after it is too late to correct the project's direction; 

and (2) a focus on monitoring construction activities while overlooking the flow of materials, 

labour, equipment information, and locations. As an alternative to the conventional approach, 

they proposed a progress tracking system (see Figure 1.1) in which activities are monitored to 

capture the as-built state of the building under construction. Such a model can be used to 

compare the as-designed and as-planned information in order to determine discrepancies, 

which would, in turn, inform the next round of control. 

Digital Twin is another innovation that has found applications across the project life cycle. Its 

application in the operation and maintenance phase has been widely investigated in many 

studies. Moreover, it has been used in the early project stages for planning and scheduling. 

“Construction twin” is a new term for applying digital twin in the construction phase and 

tracking the project's progress and execution capitalizing on the digital twin's capabilities. 

Technologies such as the Internet of Things (IoT), Real-Time Location system (RTLS) 

technologies, 3D imaging and computer vision, optimization, and simulation techniques have 

been integrated with digital twin to bring to bear significant innovations within the domain of 

construction project control (Sacks et al. 2020). 
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Figure 1.1: A progress tracking system in the construction phase (Sacks et al. 2020). 

1.1 Background and Motivation 

Having timely access to accurate and reliable onsite information is vital for efficient 

management of construction operations. Late detection of onsite operations’ issues, on the 

other hand, can be problematic, leaving insufficient time for the project team to react, and 

thereby adversely affecting the project cost and schedule. Near-real-time information facilitates 

tracking of project operations and enhances project safety and productivity (Moselhi et al. 

2020). Based on the project type and the associated activities, various technologies and data 

collection tools can be used to ensure sufficient information is captured to represent the 

performance and progress of the activities on site. Automated data acquisition aids in this 

regard, providing accurate and timely information. The captured data can be compared to the 

equivalent as-planned data to automatically generate progress reports and create as-built 

models (Moselhi et al. 2020). 

In this regard, object localization has been widely applied in the operation and maintenance 

phase to obtain accurate as-built information for 3D modelling of the built environment 
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(Montaser and Moselhi 2014, Li et al. 2017). Indoor localization in particular warrants further 

study to overcome the limitations of using GPS-based solutions in indoor spaces. For indoor 

settings, various Remote Sensing (RS) technologies, such as Radio Frequency Identification 

Device (RFID), Ultra-WideBand (UWB), Bluetooth Low Energy (BLE), and Wi-Fi, have been 

investigated as cost-effective and practical solutions. These efforts have been mainly focused 

on using these technologies for indoor inventory management to avoid loss and damage of 

materials and tools (Bardareh and Moselhi 2022). Localization and accessing of onsite 

information can be challenging due to the dynamic nature of onsite operations, including 

material delivery and utilization. Furthermore, there are challenges associated with timely data 

acquisition and handling of large amounts of information for various operations onsite (Sacks 

et al.2020). An object localization system's feasibility and cost are other notable concerns. 

Overall, indoor material management and localization on project sites have been identified as 

areas with great potential for improvement (Li et al. 2013, Moselhi et al. 2020, Montaser and 

Moselhi 2014).  

1.2 Problem Statement 

Indoor object identification and localization using RS technologies have had various 

applications in project control. These includes near-real-time tracking of objects in indoor 

spaces and automated construction progress reporting. However, the following gaps are 

identified with respect to existing solutions: 

I. Many tasks associated with sensory data collection are still manual, inefficient, and 

expensive, especially in environments with high complexity and interconnectivity. 

Moreover, existing solutions require extensive infrastructure to be installed on site, 

while the presence of obstacles hinders their performance (Bardareh and Moselhi 2022, 

Moselhi et al. 2020). There is thus a need for a less costly and more practical indoor 

positioning system. 

II. Tracking onsite operations with RS technologies is inherently challenging. Researchers 

have introduced the integration of material tracking with progress tracking as a solution 

to track a project’s progress by monitoring the consumed materials on site (Moselhi and 

Azarm 2013). However, a solution that supports various activities on the job site that 

are not necessarily connected to a moving object, and that enables tracking of the status 

and location of the consumed materials, needs further investigation. 
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III. Tracking of onsite operations with objects in elevation, such as MEP activities, 

necessitates accurate 3D coordinates (i.e., within a range of a few centimetres) of the 

tracked objects. Some researchers have provided solutions for the 3D localization of 

objects in indoor spaces using technologies such as RFID and UWB. Moreover, the use 

of Light Detection and Ranging (LiDAR) devices to generate Point Cloud Data (PCD), 

and in integration with Building Information Modeling (BIM), Scan-To-BIM, has been 

investigated in many studies. However, these technologies have limitations associated 

with their range, accuracy and application for various construction activites and 

environment, besides their implementation’s cost and effort (Bardareh and Moselhi 

2023). A solution is needed to integrate these technologies and more fully leverage their 

capabilities to provide accurate as-built 3D coordinates. Furthermore, the use of 

computer-vision algorithms for 3D object detection and segmentation using PCD needs 

further study. 

IV. Applications of digital twin have been carried out in various phases of project life cycle. 

However, few studies have explored its application in the construction phase and for 

project control in particular (Sacks et al. 2020). Besides the application of IoT solutions 

through a digital twin to monitor the site environment, a digital twin that brings together 

AI and computer-vision capabilities to generate onsite inspection reports, and that 

provides information required for decision support during project execution, warrants 

further investigation. 

1.3 Research Objectives and Methodology 

In light of the challenges identified in the problem statement, the primary objective of this 

research is to develop a progress monitoring framework—comprising indoor object 

identification and localization—for automated inspection reporting in the construction phase. 

This objective is pursued through the following sub-objectives: 

I. Develop an Indoor Positioning System (IPS) for location identification of objects in 

indoor spaces: The integrated use of the two RS technologies—RFID and UWB—

capitalizes on the benefits of each technology, providing a cost-effective and practical 

solution for acquiring accurate 2D and 3D coordinates of objects labelled with RFID 

tags.  

II. Achieve semi-automated progress reporting through the joint use of RTLS technologies 

and a cloud-based BIM platform: Under this sub-objective, leveraging Material Status 
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Index (MSI) and Quality Status Index (QSI), onsite information on object quantity, 

status, and location is used to generate progress reports.  

III. Integrate Real-Time Location System (RTLS) data and PCD, capitalizing on computer-

vision algorithms to refine 3D localization in the scene. This integration is achieved by 

acquiring ID, status and 3D coordinates of the objects scanned on site with RTLS and 

LiDAR technologies. RTLS coordinates are refined through using accurate 3D 

coordinates of the detected objects using segmentation capability of a computer vision 

algorithm. 

IV. Developing a construction twin platform and a related dashboard to update 3D models 

and generate progress reports: The dashboard provides a direct line between the 

physical objects and the digital environment by creating a bi-directional connection 

between the BIM model and the objects on site. 

Corresponding to the above-mentioned sub-objectives, the research method consists of four 

main streams, as depicted in Figure 1.2. The first stream involves the use of RTLS technologies, 

RFID, and UWB to develop an IPS for object identification and localization in 2D and 3D 

format. In the second stream, information about the location and status of the tagged objects is 

then visualized in a cloud-based BIM platform in Geograpic Information System (GIS) cloud 

packages. Moreover, two indices, MSI and QSI, are introduced to track the overall and detailed 

progress of project activities by monitoring material consumption and quality. The third stream 

involves the use of a computer-vision method to refine the 3D localization information obtained 

using the RTLS technologies. For this purpose, the accurate PCD (i.e., coordinates) obtained 

using computer-vision algorithms is exchanged with the 3D coordinates of the objects 

identified by the RTLS. In the fourth stream, the RTLS and PCD is mapped to a cloud-based 

BIM platform in order to visualize the tagged objects and generate the onsite inspection reports 

via a digital-twin platform. The onsite inspection reports contain the progress information and 

the object locations (obtained using the quantity and status of the identified and localized 

objects).  
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Figure 1.2: Overview of the reserach method. 

1.4 Thesis Organization 

This research is presented in five chapters. Chapter 1 introduces the research problem and 

motivation, outlines the objectives, and provides an overview of the method developed to 

achieve the defined objectives. Chapter 2 presents a review of the scientific literature in this 

domain, highlighting the identified gaps in the body of knowledge. The review focuses on RS 

technologies, computer-vision applications for PCD analysis, digital twin in construction, and 

automated progress reporting. Chapter 3 presents the methods developed in this study, focusing 

on the integrated use of RFID–UWB for indoor localization, integration of RS technologies 

with a cloud-based BIM platform, the integration of RTLS–PCD data to enhance 3D 

localization in indoor spaces, and the developed digital-twin platform for automated generation 

of the onsite inspection reports. Chapter 4 describes the experimental and case studies carried 

out to validate the developed methods, noting the limitations of each method. Finally, Chapter 

5 outlines the conclusions drawn, the contributions of this research study, and opportunities for 

future work.   
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CHAPTER 2: LITERATURE REVIEW 

2.1 Overview 

A review of the relevant literature reveals that there is a range of different technologies for 

automating and enhancing onsite inspection and reporting. In the present study, the main focus 

is on the use of Real-Time Location system (RTLS) technologies, such as Radio Frequency 

Identification Device (RFID) and Ultra-WideBand (UWB) sensors, for indoor object 

localization. Moreover, the use of computer-vision techniques for the detection of 3D objects 

in Point Cloud Data (PCD) obtained using Light Detection and Ranging (LiDAR) technology 

is reviewed. The incorporation of Building Information Modeling (BIM) data is also reviewed 

in order to identify challenges related to progress reporting in construction. Despite the recent 

progress in this domain, there are still obstacles hindering the realization of a practical and 

comprehensive automated solution for onsite progress tracking. The integration of the above-

noted technologies with a cloud-based BIM platform and digital-twin to enhance 

communication between sensors and physical assets is also reviewed. Finally, the application 

of these technologies for automated tracking and progress reporting in construction is 

investigated.  

2.2 RS and Integrated RTLS Technologies in Construction 

There is a wide range of Remote Sensing (RS) technologies for data acquisition on site. Each 

of these technologies has capabilities and drawbacks based on the domain of applications. The 

selection of one particular technology can vary depending on the type and accuracy of the 

information, and the environment in which the data will be acquired. Most previous attempts 

in this field were focused on single-sensor models, which are not usually applicable for the 

entire duration of a project. Table 2.1 provides a brief overview of these technologies, their 

capabilities, limitations, and accuracy.  

Table 2.1: Capabilities and limitations of standalone RS technologies (Moselhi et 

al. 2020). 

RS Technology Capabilities Limitations Accuracy 

GPS, RTKGPS 1, and 

GNSS 2 

(1) Global access 

in an outdoor 

environment 

(2) RTK GPS 

provides 

centimetre-

level 

positioning 

accuracy in 

(1) The acquired 

data are limited 

to position and 

time of objects, 

and not the 

identity or type 

of activities 

(2) Delays in data 

processing and 

Almost 1 m 

for GPS and a 

few 

centimetres 

for RTKGPS  
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real time over 

long distances 

(3) Flexibly and 

reacting 

quickly based 

on the needs in 

a construction 

site 

transferring (an 

important issue 

specially for 

real-time 

operations such 

as equipment 

tracking or 

kinematic 

surveying) 

(3) Multipath errors 

in the congested 

environment 

(4) Signal blockage 

and building 

obstructiveness 

in an indoor 

environment 

Robotic Total Station 

(RTS) 

(1) Enhanced 

tracking and 

automation 

capabilities in 

the positioning 

of objects 

(2) High 

positioning 

update rate 

(3) Higher vertical 

positioning 

(elevation) 

accuracy than 

unaided GNSS 

and GPS-based 

technology 

(1) The high 

investment 

(2) Limited 

capability to 

track only one 

point at a 

particular time 

(3) Positioning 

errors will occur 

if the angles and 

distances are not 

captured 

simultaneously 

Down to a few 

millimetres 

and arc 

seconds  

Barcode 

(1) Reasonable 

price  

(2) Straightforwar

d usage with 

standard 

implementatio

n protocols  

(3) Speeding up 

the computer 

data entry  

(4) Portability 

(1) Very limited 

reading range 

(2) Sensitivity to the 

harsh 

environment 3 

(e.g., tags are 

not readable if 

covered by 

snow)  

(3) Low data 

storage capacity 

N.A 

RFID 

(1) Longer range 

than barcodes 

(up to 100 m 

for Ultra-high 

frequencies) 

(1) Lack of 

accuracy and 

difficulties for 

3D positioning 

Down to a few 

metres for 2D 

localization  
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(2) Non-line-of-

sight 

(3) Providing cost 

efficient 

location 

information 

(4) Tags are light 

and easy to 

attach 

(5) Unlike 

barcodes, 

RFID tags are 

durable in 

construction 

environments 

(6) Batch 

readability of 

tags making 

identification 

process much 

more efficient 

(2) Calibration 

difficulties (e.g., 

the need for a 

path loss model) 

(3) Affected by 

multipath effect 

(4) Problems 

associated with 

simultaneous 

identification of 

many tags  

(5) Active tags are 

fairly expensive.  

(6) Plus, relatively 

wide range may 

cause 

obstruction 

object detection 

(7) The need for 

battery 

replacement in 

active tags 

(8) Influenced by 

metal and high 

humidity 

specially in high 

frequencies 

UWB 

(1) A longer range 

(up to 1000 m), 

higher 

measurement 

rate and 

positioning 

accuracy (less 

than 1 m) than 

typical RFID 

systems 

(2) Less 

influenced by 

metal and high 

humidity 

(3) Suitable for 

both indoor 

and outdoor 

environment 

(4) Not affected 

easily by other 

RF systems 

(1) Violation of 

line-of-sight can 

lead to the 

performance 

degradation 

specially in 

congested areas 

(2) Limited update 

rate 

(3) Multipath and 

radio noise 

effect in the case 

of metal 

occlusion 

(4) Some 

calibration 

difficulties (e.g., 

geometry and 

number of 

sensors) 

Down to a few 

decimetres 
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(5) Relatively 

immunity to 

multipath 

fading 

(6) Reliable 3D 

localization 

even in harsh 

environment 

(5) Tagging issues 

(e.g., battery 

replacement) 

(6) High cost 

(7) High missing 

data 

(8) Degraded range 

measurement as 

distance 

increases 

Infrared  

(1) High noise 

immunity  

(2) Low power 

requirement 

(3) Low circuitry 

costs  

(4) Higher security  

(5) Portability 

(1) Dependency on 

line-of-sight due 

to its inability to 

penetrate 

materials 

(2) Sensitive to light 

and weather 

condition 

(3) Low data 

transmission 

rate 

(4) Short range 

(5) Not passing 

walls unlike 

other RF 

wireless links 

(6) Limitation 

associated with 

scalability 

Down to a few 

centimetres  

Photo/Videogrammetr

y 

(1) Straightforwar

d configuration  

(2) Cost-effective 

field data 

collection 

(3) Portability 

(4) Provides 

information 

about the 

material, 

texture, and 

colour of the 

target object 

(5) High update 

rate 

(6) Well known 

internal 

geometry 

(7) Good 

interpretability 

(1) Calibration 

difficulties (e.g., 

sensitive to the 

surrounding 

light condition, 

visual 

occlusions, and 

moving 

background) 

(2) Mirror effect 

caused by 

reflective 

surfaces 

(3) Less accurate 

than laser 

scanners in 

generating PCD 

(4) Problems 

associated with 

computing 

Approximatel

y 1% error in 

volumetric 

measurement 
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depth in 3D 

modelling 

(5) Difficulty in 

identification of 

objects with 

unclear 

geometric 

configurations 

(6) Computational 

complexity of 

photogrammetri

c surveying  

(7) The need for 

another 

technology (e.g., 

RTKGPS or 

RTS) to provide 

the geo-

referenced 

inputs for photo-

based 3D 

modelling 

Laser scanning 

(1) High accuracy 

in generating 

PCD 

(2) Simple and 

well-defined 

internal 

coordinate 

system  

(3) Homogeneous 

spatial 

distribution of 

range points 

(4) Ability to scan 

actively in 

darkness and 

shaded areas 

(5) Ability to 

measure areas 

without texture 

(6) Ability to scan 

a large area  

(1) High cost of 

laser scanners 

(2) Scanning is a 

time-consuming 

process 

(3) Occlusion 

problem and the 

need for a clear 

line-of-sight 

(4) More post-

processing 

effort is required 

if the device 

moves 

(5) Limitations 

associated with 

modelling of 

edges and linear 

features 

(6) High storage 

capacity is 

needed 

(7) Not suitable for 

modelling 

moving objects  

(8) Not providing 

information 

Approximatel

y 2% error in 

volumetric 

measurement 

and a few 

centimetres in 

ranging 

measurement 



13 

 

about material 

type, texture, 

and colour of the 

scanned objects 

(9) Eye-safety 

distance 

concerns 
1 Real-time kinematic GPS, 2 global navigation satellite system, 3 extreme cold or hot weather in an outdoor environment. 

RFID technology has been used in this respect with great capabilities for automatic 

identification and tracking of tagged objects on site. It applies to both built facilities and during 

construction activities due to its Non-Line-of-Sight (NLoS) capability, wireless 

communication, and on-board data storage capacities (Li et al. 2011). Besides identification-

based applications, RFID technology is also used for localization of the tagged objects (Cai et 

al. 2014, Maneesilp and Wang 2012, Montaser and Moselhi 2014, Su et al. 2014). The main 

methods to localize an object using RFID sensors are trilateration, triangulation, proximity, and 

scene analysis. According to the literature, the former two techniques have been used primarily 

for tag localization. The proximity technique is conducted by using some reference points, 

where localization is based on a tag's closeness to each of these reference points. Scene analysis 

uses some algorithms, such as k-Nearest Neighbours (KNN) or probabilistic methods, to 

localize tagged objects based on the similarity of the received signal with a prior location 

fingerprint collected from the environment. In the range-based techniques mentioned above, 

the distance between a hand-held RFID reader and a tagged object is measured by converting 

Received Signal Strength (RSS) values to an experimental range value. Montaser and Moselhi 

(2014) investigated the application of the RFID technology for indoor location identification 

of the materials through a set of experiments. In this study, the roving RFID reader and tags' 

locations were achieved using a path–loss model and trilateration technique (Bardareh and 

Moselhi 2022, Moselhi et al. 2020). Wu et al. (2019) experimented using the RFID system for 

construction equipment tracking. They developed a positioning algorithm based on differential 

RSS while investigating the effect of environment and orientation between RFID tags and 

receivers on localization accuracy. Yoo and Park (2019) investigated RFID-based processes in 

a production plant of precast walls and beams. They found that the time required for locating 

materials was reduced from 25.23 min to 0.57 min compared with traditional manual methods. 

Besides identification-based applications, RFID technology is used to localize construction 

components to enrich the tracking of the materials (Cai and Andoh 2014, Maneesilp and Wang 

2012, Moselhi and Azarm 2013, Su et al. 2014, Ta et al. 2017). Montaser and Moselhi (2014) 

experimented the application of RFID technology for indoor location identification of the 
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materials to track indoor materials. Yoo and Park (2019) evaluated an RFID-based solution for 

construction equipment tracking. They developed a positioning algorithm based on differential 

RSS while investigating the effect of environment and orientation between RFID tags and 

receivers on localization accuracy. 

UWB technology is an RTLS that has a performance almost similar to an active RFID system. 

It uses very narrow pulses of radio frequency waves which are occupied in a wide bandwidth 

for communication between tags and receivers. Due to the advanced technology available in 

the UWB sensors for accurate time measurement in range of nanoseconds, different positioning 

techniques such as Time of Arrival (ToA) or Time of Flight (ToF), Angle of Arrival (AoA), 

Time Difference of Arrival (TDoA), and RSS-based techniques are used to localize objects by 

using this technology. Several researchers have investigated the use of this technology for 

location identification of the resources in the construction projects. Most of their efforts are 

focused on evaluating real-time tracking of workers, equipment and materials in an indoor and 

outdoor environment to improve productivity and safety on construction sites (Cheng and 

Venugopal 2011, Moselhi et al. 2020, Park and Cho 2016, Siddiqui et al. 2014), Masiero and 

Fissore 2017). Shahi et al. (2014) used UWB tags to localize and track the activities associated 

with the pipeline and plumbing system of a building in order to improve progress reporting of 

these operations. Other studies have investigated the effect of the UWB sensors' distribution 

geometry, employment of filters (i.e., Kalman Filter, particle filters and etc.), as well as the use 

of static reference tags to enhance the localization accuracy of these sensors (Almeida et al. 

2005, Cheng and Venugopal 2011, Jimenez and Seco 2016, Nurminen and Ardeshiri 2015, 

Razavi et al. 2012, Siddiqui et al. 2014, Song and Tanvir 2015, Sun and Wang 2020, Xu and 

Shmaliy 2018, Zhue and Ren 2016). 

The literature reveals that using a single source of sensory data does not provide sufficient 

information about the status of onsite construction operations. For example, the PCD captured 

by laser scanners require a direct line-of-sight, and they will become less effective as the project 

progresses and the site becomes obstructed due to increased congestion. In this way, the usage 

of another data acquisition technology could alleviate the drawbacks associated with individual 

usage of each RS technology in each of the project execution phases. That integration provides 

more timely and accurate information due to the complementarity and possible fusion of the 

captured data (Moselhi et al. 2020). Table 2.2 illustrates the integrated use of these RS 

technologies, capabilities, and limitations. 
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Table 2.2: Capabilities and limitations of the integrated RS technologies. 

Type 
Integrated 

RS System 
Capabilities Limitations 

Positioning 

systems 

integration 

with other 

sensory data 

GPS + 

Barcode 

(1) Relatively low cost 

(mainly goes for GPS 

receiver); barcode: Label ~ 

$0.1, Reader ~ $100–500 

and GPS: Receiver ~ $200 

Satellite signal free 

(2) High level of 

standardization and 

reliability 

(3) More scalable for projects 

of varying sizes 

(4) Straightforward 

implementation 

(1) Need for free access to 

space for GPS system 

which makes it 

unsuitable for interior 

environment  

(2) Limitation of barcode 

tags in differentiating 

between items of the 

same kind 

(3) Not fully automated 

approach 

GPS + 

RFID 

(1) Easier material 

identification due to non-

line-of sight capability of 

the RFID tags 

(2) Providing both 

identification and 

localization data 

simultaneously 

(1) The need for free 

access to space for 

GPS system  

(2) A large number of 

RFID readers are 

required which 

increases the cost; 

RFID Tag ~ $1–50 and 

RFID Reader ~ $1k–5k  

(3) Boundary constraint 

limitations in cluttered 

environments 

Sensor-

aided GPS 

(SA-GPS) 

(1) Stability to be used in 

various construction 

operations 

(2) Real-time tracking and 

reporting capabilities 

(3) Not sensitive to the 

ambient environment 

(4) Having both 

location/action recognition 

capabilities 

(5) Providing continuous 

update of the location 

estimates 

(1) Obstacles associated 

with data fusion, 

coordination, 

processing, and 

reduction of data to 

produce meaningful 

conclusions 

(2) Requiring relatively 

more time for post 

processing 

(3) Drift inherent to 

sensors  

(4) Initialization and 

calibration difficulties 

RFID 

integration 

with other 

sensory data 

RFID + 

Wireless 

Sensor 

Network 

(WSN) 

(1) Make it possible for tags to 

communicate with each 

other 

(2) Facilitating the negotiation 

of RFID readers together 

(3) Increased positioning 

accuracy 

(1) Sensor does not 

provide any power 

until tag is not in the 

radio frequency field to 

communicate with 

reader 
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(4) Decreased energy 

consumption in 

comparison with an 

individual WSN 1 system 

(2) Reading range 

decreases as the system 

starts using energy 

RFID + LS 

(1) Faster and more robust 

recognition and 

positioning of objects in 

3D modelling 

(2) Alleviating the difficulties 

associated with the laser 

scanners object 

recognition specially in a 

crowded and full of 

furniture environment 

(1) Poor positioning 

performance when the 

objects are in the 

corner of a room 

(2) Laser scanners are 

relatively expensive (a 

terrestrial laser scanner 

could cost more than 

$60k) 

(3) Need for a facility 

management database 

of the available objects 

in advance 

Integration 

of vision-

based 

technologies 

together and 

with other 

RTLS 

Photogram

metry + 

laser 

scanning 

(1) Less number and time for 

scanning are required  

(2) Less number of digital 

photos are required which 

results in less 

computational effort 

(3) Better object recognition 

capabilities by adding 

depth information from 

laser data to the available 

digital photo planes 

(4) Convenient for modelling 

objects with unclear 

geometrical properties 

(e.g., excavation activities)  

(5) More accuracy in the 

localization of edge points 

(6) Providing more details 

about material, colour, and 

texture of the objects 

which improves the 

geometry and visual 

quality of the 3D 

modelling 

(7) Self-calibrating 

capabilities for cameras 

(1) Expensive laser 

scanners 

(2) Problems associated 

with calibration and 

orientation of data 

acquired from two 

sensory sources, e.g., 

geo-referencing issues 

(3) Less effective when the 

site is crowded or 

covered by enclosures 

Photogram

metry + 

RTS 

(robotic 

total 

station) 

(1) Enhanced scaling and 3D 

modelling capabilities  

(2) Better measurement 

accuracy (down to a few 

decimetres) rather than 

using individual 

(1) High cost of RTS 

devices 

(2) Synchronization of 

digital cameras with 

RTS devices 
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photogrammetry 

techniques 

(3) Limited capability for 

tacking multiple 

moving objects 

Photo/video

grammetry 

+ UWB 

(1) More reliability in 

positioning in comparison 

with individual use of each 

technology by replacing 

the data of one sensor with 

another in case of any 

failure in each sensor 

(2) More accurate and timely 

information are provided 

by proving more 

automation and decreasing 

computational effort in 

photogrammetry 

(3) Portability 

(1) Calibration difficulties 

specially for large scale 

sites 

(2) Error propagation 

phenomenon due to the 

intrinsic inaccuracy in 

each technology 

(3) Less accuracy in 

comparison with other 

geo-referenced 

photogrammetry 

techniques (e.g., using 

a RTS or GNSS 

system) 

Laser 

scanning + 

UWB 

(1) Overcoming challenges 

associated with the 

presence of multipath, 

NLOS 2 propagations and 

low visibility (e.g., 

occlusion, dust, fog, etc.) 

(2) Less accumulated error in 

comparison with an 

individual usage of laser 

scanning technology 

(3) Ease of need for prior 

knowledge or control 

inputs 

(1) Discrepancy between 

the accuracy of the 

UWB mapping and 

that of LiDAR 

mapping 

(2) High implementation 

cost 

1 Wireless sensor network, 2 non-line-of-sight. 

One group of these RS technologies includes RTLSs such as GPS, RFID and UWB. Most of 

the technologies mentioned in the literature function based on signal measurement techniques 

such as the ToA principle, where a signal's propagation speed and propagation time directly 

lead to a corresponding distance. For instance, range-based localization is usually based on 

trilateration and triangulation techniques in which the Received Signal Strength Index (RSSI), 

phase-based indicator and ToA are used to measure the range distance from a tagged object 

(Moselhi et al. 2020, Montaser and Moselhi 2014). Moselhi et al. (2020) investigated the 

accuracy of the proximity and triangulation techniques for 2D localization of the RFID tags 

attached to a number of objects. They concluded the triangulation technique has better 

localization accuracy than other range-based measurement techniques. Su et al. (2014) 

developed a boundary condition trilateration technique for RFID tags' localization. It is based 

on selecting combinations of RFID reader locations from a boundary condition scenario. In 
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that scenario, a tag was localized if it appeared on the boundary circle, which has a radius equal 

to the maximum reading range of the RFID device. The combinations with location distribution 

that were more than a standard spatial dilution factor were selected to achieve better 

localization accuracy. Li et al. (2019) evaluated the use of range-free techniques, such as 

fingerprinting, in order to localize RFID tags. In this technique, the position of the target tag is 

obtained based on the coordinates of the dense reference tags, which in turn are selected via 

database matching. Researchers have also considered the use of optimization and machine-

learning algorithms to improve the localization information acquired from the RS technologies. 

For instance, Ibrahim (2015) used the Particle Swarm Optimization (PSO) algorithm to 

enhance the path–loss model achieved from a WSN system for indoor object localization. 

Valero et al. (2016) investigated using a machine-learning algorithm to estimate the distance 

of the tagged objects by translating the signal strength received from the receivers. They used 

a BLE system in which a combined Convolution Neural Network (CNN) and Artificial Neural 

Network (ANN) was employed to localize the BLE tags. 

Recently, there have been some efforts to localize and track people and objects using Wi-Fi, 

Bluetooth, and Bluetooth Low Energy (BLE) technologies for occupancy measurement. In fact, 

by installing some receivers in a target area, the location and number of detected items are 

estimated using smartphones, Bluetooth headsets, and smartwatches. It is done by tracking the 

changes in the received electromagnetic wave patterns, comparing them with calibrated models 

to count the number of workers or vehicles on site, and providing rough information about their 

location and behavioural algorithms. However, due to some legal restrictions for using 

smartphones on site and not entirely accurate results of this technology, its use in the 

construction industry is not common yet. In a different context, barcode and RFID are valuable 

technologies for material identification with applications in tracking resources for a supply 

chain management system. Vision-based technologies such as photo/videogrammetry and laser 

scanning have also found applications in the construction industry for making 3D as-built 

models of the site, providing sufficient information for automated progress reporting (Moselhi 

et al. 2020). Integrating GPS with RFID would provide a reasonable solution that benefits the 

localization and identification capability of both technologies. There are various scenarios for 

implementing such a system in order to have better outdoor resource tracking and management. 

In one scenario, the GPS receiver is attached to a roving RFID reader to provide information 

about the position of the RFID reader. By knowing the real-time location of the roving RFID 

reader, the 2D location of the tagged items is identified using the trilateration technique. Having 
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said that, this technology is not accurate enough for the localization of objects in elevation 

since GPS-based technologies cannot provide accurate information about height. As stated, 

accuracy is an important factor when deploying a system for data acquisition in a construction 

site. Therefore, integrating RFID with other positioning technologies like GPS-based systems 

is a solution to have higher accuracy in tracking tagged items. Having said that, GPS solutions 

present some drawbacks in specific environments, especially when it comes to building 

interiors. To avoid the limitations of RFID and GPS-based systems, the combination of 

ultrasound technologies and RFID can improve the positioning system (Moselhi et al. 2020). 

The RTLS has many applications in construction for localization and tracking of the assets and 

equipment on site (Bardareh and Moselhi 2020, Montaser and Moselhi 2014). These 

technologies include RFID, UWB, BLE, GPS, and Wi-Fi sensors. The integrated use of these 

technologies to enhance the localization and tracking of objects on construction sites has been 

widely studied (Bardareh and Moselhi 2020, Moselhi et al. 2020). The localization information 

provided by the RTLS is used for 3D modelling and mapping of the materials on site. Knowing 

the location of the objects on site makes it much easier to manage the storage yard and 

construction site and have a more accurate and timely supply chain management system. These 

technologies usually use tags and receivers to communicate together. In this regard, a tag is 

identified by a specific ID written on it, and then objects are labelled with each tag. The 

receivers constantly communicate with the tags to acquire information about the site and to 

transfer the information to the server. In this way, the information about the objects' location 

and the object's presence in each zone is gathered automatically and in real-time for the 

associated applications. Many studies have investigated the use of various RS technologies to 

automate localization and tracking of the objects on site (Akhavian and Behzadan 2015, Andoh 

et al. 2012, Bardareh and Moselhi 2020, Ibrahim and Moselhi 2014, Jo et al. 2015, Kalikova 

and Krcal 2017, Labant et al. 2017, Li et al. 2013, Moselhi et al. 2020, Seo et al. 2013, Su et 

al. 2014, Ta 2017, Yoo and Park 2019). Chen et al. (2020) introduced a new method in which 

an integrated use of the Ultra-Wideband (UWB) and RFID helps to efficiently localize the 

objects in an indoor environment. This integration is aimed to overcome the high cost of 

sensors such as UWB and GPS for localization and tracking of large numbers of objects on 

construction sites. Moreover, the integrated use of the two technologies provides more accurate 

localization information not only in 2D but also in 3D object localization, which is essential 

for improving the BIM of the site. For this purpose, a sample number of objects labelled using 

inexpensive passive RFID tags are localized at the experimental level. The novelty of this 
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integrated system causes a more economical and accurate method for indoor material 

localization than the methods in the literature. In a set of experiments on these technologies, 

the performance of the developed method for object localization is validated. Table 2.3 

provides a brief review on the capabilities, limitations and localization accuracy of the RFID, 

UWB and the developed method in this study, along with comparing approximate cost of each 

system with the developed method (Moselhi et al. 2020). The cost of operating each of these 

systems is based on the current price of the sensors and devices available in the market that are 

used in this experimental study (DecaWave 2016). The UWB used in the experiment is an off-

the-shelf evaluation kit that is open source and not a final product. The cost of commercial 

UWB systems available in the market is much higher, making the developed method a rational 

choice to economically localize indoor objects. 

Table 2.3: RS technologies for indoor material localization. 

Technology 
Advantages and 

Capabilities 
Limitations Cost* 

Localization 

Accuracy 

RFID 

1) Inexpensive 

2) Non-line-of-sight 

3) Availability in 

market 

4) Batch readability of 

tags 

5) Straightforward 

usage  

1) Low localization 

accuracy 

2) Calibration difficulties  

3) Affected by multipath 

effect 

4) Need for a roving 

surveyor 

$800 
Down to a 

few metres 

UWB 

1) Long reading range 

(up to 100 m) of the 

sensors 

2) Less influenced by 

metal and high 

humidity 

3) Relatively immunity 

to multipath fading 

4) Reliable 3D 

localization even in 

harsh environment 

1) High cost 

2) Multipath and radio 

noise effect in the case 

of metal occlusion 

3) Degraded range 

measurement accuracy 

as distance increases 

$50k 

Down to a 

few 

centimetres 

Integrated 

RFID–

UWB 

1) Inexpensive with 

acceptable 

localization accuracy 

2) Straightforward 

usage 

1) Data synchronization 

2) Need for a roving 

surveyor $2.8k Approx 1 m 

* Assuming the need for localization of 100 objects on site (the values are in Canadian currency). 

2.3 Integrated Sensory Data and Cloud-based BIM Platform for Progress Monitoring 

Joint use of tracking technologies with cloud-based construction platforms provides 

capabilities for digital transformation by facilitating access to onsite information. In case of a 



21 

 

Request for Information (RFI), updating the site status is possible through this integration. 

Furthermore, cloud-based platforms help to centralize information and enhance 

communication between parties to access the required information. A couple of cloud-based 

packages with BIM-based capabilities are available on the market. While they benefit from 

great capabilities for digitalizing the data acquisition and visualization on site, they still need 

to improve on limitations such as manual data entry and RFI options. Integrating the RTLS 

with cloud-based BIM platforms to address this issue has been widely studied and implemented 

in construction projects. In this integration, rather than using digital tools such as 4D BIM to 

improve the accuracy of material estimation or the visibility of material status, the integration 

distinguishes itself by adding capabilities to synchronize actual site progress with the material 

delivery status (Chen et al. 2020). An example of this integration is the use of RFID, which has 

many applications in construction for automated tracking and localization of objects. 

Integrating RFID technology and BIM creates a more systematic, automated, and intelligent 

job site. The application of the integrated use of BIM and RFID includes but is not limited to 

improving material tracking, automating and providing better visualization for site inspection, 

and a more effective workforce (Chen et al. 2020, Costin et al. 2015, Montaser and Moselhi 

2014, Moselhi et al. 2020).  

The integrated use of RFID technology and BIM has been studied to create a more intelligent 

and automated job site. This integration provides a digital link between the virtual models and 

the physical components in the construction process, which improves information exchange 

for construction and building management applications (Costin et al. 2015). Chen et al. (2020) 

investigated the joint use of RFID and BIM for look-ahead planning to improve material flow 

processes. In their research, the RFID tags were assigned to the materials from the supplier 

side, while the information about those materials was updated in the RFID-BIM platform and 

exchanged with the construction contractor through a central database. Li et al. (2017) showed 

that the integrated use of BIM and RFID technology decreases the lead time of the construction 

elements by approximately 15% due to the enhanced tracking of the delivery status. Wang et 

al. (2017) developed a BIM–RFID framework to ensure the location coordinates of the 

prefabricated concrete elements were read and compared with the expected location in BIM. 

Yin et al. (2009) developed a BIM cloud system based on the received RFID timestamps and 

the material geolocation. It was found that 15.23% of lead time was reduced given the increased 

efficiency of tracking the delivery status of individual prefabricated elements and sharing the 

information quickly among associated project participants. Xu et al. (2018) showed that using 
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the cloud-based BIM and RFID system facilitates real-time information sharing to reduce 

project time. Li et al. (2017) developed an RFID-enabled multidimensional BIM platform to 

alleviate schedule delay problems encountered in the construction of prefabrication housing. 

For this purpose, they developed a platform for real-time progress monitoring of a project and 

better progress visualization to identify any delay in precast fabrication and delivery. They also 

generated real-time data to produce leading indicators for safety and building protocol control 

and to enhance quality control by reducing rework or damage of the finished work. 

Surveillance is a must to ensure that projects are progressing as planned and to plan for future 

actions during the execution period. In project control, it is essential to constantly track the 

project's schedule, cost, and quality. Earned Value Management (EVM) is a technique that 

addresses part of these needs by bringing cost and schedule variance analysis together to 

provide managers with more accurate project status and predict future project performance. 

Besides the outstanding capabilities of the EVM in project control, it has limitations, such as 

dependency on the project baseline and inaccurate schedule forecasts to estimate the end of a 

project. Some of these drawbacks are addressed by frequently reporting the number of 

consumed materials associated with various activities on site. Since the accuracy of EVM 

indices significantly depends on the frequency of actual data acquisition from the site, the use 

of innovative technologies helps to increase the data collection rate (Azarm 2013). Some 

researchers have argued that schedule measures of the EVM need to be revised since they 

deliver schedule variance and index in terms of monetary value (Khamooshi and Golafshani 

2014, Moselhi and Azarm 2013). Moselhi and Azarm (2013) proposed focusing on critical 

activities rather than all activities, as non-critical ones may mask the project's actual 

performance. Balali et al. (2020), Khamooshi and Golafshani (2014), and Roghabadi and 

Moselhi (2020) introduced other versions of the EVM focusing on enhancing schedule 

measurements, such as Earned Schedule Management (ESM) and Earned Duration 

Management (EDM). Roghabadi and Moselhi (2020) developed a method to distinguish 

critical activities from non-critical ones while considering the effect of future risks to predict 

the project duration. A field study was conducted by Balali et al. (2020) to list various factors 

affecting the EVM cost estimations for road projects using a CNN, and the results were 

compared with those of conventional EVM and the regression method. Moselhi and Azarm 

(2013) insisted on the importance of onsite material management and how it affects schedule 

performance. Their work considered the interconnectivity between the material consumption 

and the schedule performance index to enhance project control. They developed a material-



23 

 

based index to enhance the project control by improving the existing EVM and its indices by 

focusing on the critical activities to inhibit the effect of the non-critical activities on the project 

forecasting accuracy. Based on the literature, tracking consumed materials provides benefits 

over tracking the cost and schedule of the project. However, the quantity-based tracking of the 

materials does not indicate the progress in construction operations which are based on activities' 

status. Furthermore, having to tag all of the materials consumed in a project increases the 

technology cost and data collection effort, an issue that requires further investigation. 

Quality is an essential aspect of a project, which is reported besides the project's performance 

in terms of schedule and cost. Two fundamental quality measures are considered in 

construction, including prevention and resultant measures. The quality of the project is reported 

in different ways. However, unlike other industries, in construction, the quality is affected by 

factors such as shortages of materials, design changes, lack of budget, and errors in cost 

estimation. Furthermore, it is possible to report the quality of the project through a regular 

quality assurance report (Rahman et al. 2017). Tracking the material soundness consumed in a 

project is essential to report the material waste and to highlight its effect on the project's 

progress, which needs further investigation.  

2.4 3D Object Detection Using Computer Vision 

There are advanced techniques in computer vision to detect objects with high accuracy from 

2D data, such as images and video-frames in real time. However, using commercial cameras 

for photogrammetry may not provide adequate information about the location and distance 

between various objects on site. Moreover, concatenating the acquired image together increases 

the computational effort for extracting depth information about the scene. To address this issue, 

technologies that provide information about the scene's depth rather than 2D information are 

studied. These technologies include depth cameras and LiDAR devices. Depth cameras provide 

depth information about the scene, in addition to the RGB information. However, building 

scanning on a large scale has new challenges and opportunities that differ from the semantic 

parsing and segmentation of small-scale RGB-D images (Armeni et al. 2016, Armeni et al. 

2018). LiDAR has been investigated in some studies as a prominent sensor that provides 3D 

information of the object, PCD, which has application in characterizing the shapes and 

localization of the objects on site (Adusumilli 2020). However, due to effects such as 

occlusions, noisy scans, discrete sampling, and cluttered scenes, point cloud-based object 

detection can be challenging, particularly in the case of large-scale data (Pang and Neumann 
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2016). Moreover, some characteristics of the PCD, such as being sparsely distributed in the 3D 

space and with unstructured storage, challenge its application for effective 3D object detection 

(Zhou and Tuzel 2018). 

Using vision-based technologies such as photogrammetry, laser scanning, and their integration 

are appropriate choices to provide enough PCD to create 3D models of a site. More specifically, 

their integration enhances the PCD required for 3D reconstruction of the objects present on 

site. However, all these approaches have their limitations associated with their employment in 

a congested area and their drawbacks in modelling non-stationary and small objects such as 

furniture and project components. In this way, by integrating these vision-based technologies 

with RTLS technology, such as Robotic Total Station (RTS) and UWB, it is possible to 

overcome some of these problems. Table 2.4 compares these integrated systems over individual 

photogrammetry or laser scanning usage. They are different in terms of the level of automation 

in data acquisition, cost, reliability, and scalability to be used in various projects (Adusumilli 

2020, Armeni et al. 2018, Bardareh and Moselhi 2022, Moselhi et al. 2020, Pang and Neumann 

2016, Zhou and Tuzel 2018).  

Table 2.4: Capabilities of individual and integrated vision-based technologies. 

Method 

Data 

Acquisition 

Effort 

Processing 

Time 
Affordability 

Data 

Accuracy 

and 

Reliability 

Scalability 

Photogrammetry √ √√ √√√ √ √ 

Laser scanning √√√ √√√ √ √√ √√ 

Photogrammetry + 

laser scanning 
√√ √√ √√ √√√ √√ 

Photogrammetry + 

RTS 
√√ √ √√ √√ √√ 

Photogrammetry + 

UWB 
√ √ √√ √ √√√ 

Laser scanning + 

RFID 
√√ √√ √ √√ √√ 
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Laser scanning + 

UWB 
√√ √√ √ √√√ √√√ 

√: Low; √√: Medium; √√√: High. 

Due to the computational complexity of photogrammetric surveying, construction management 

researchers have attempted to decrease the number of required photos by imposing geometric 

constraints and automating the modelling process based on pattern recognition and feature 

detection. Moreover, a solution based on integrating the photogrammetry data with the data 

acquired by a 3D laser scanner is also investigated to reduce the effort required for 3D 

modelling. In fact, due to the geometric stability of digital images, they are very suitable 

references for the inspection of the data acquired by laser scanners for 3D modelling. There are 

two approaches to integrating these two technologies. In one approach, the photos and scanned 

data are taken from the same positions, for example, the camera is installed on the laser scanner. 

In this approach, the additional process for coordinating different photos with scanned PCD is 

not needed. However, the photos are taken from the same distance and angle of view as 

scanning data, which would decrease the details in the photos. In another approach, photos are 

taken separately from scanned data but in a closer range and from different angles. This 

configuration requires an additional step to orient the digital images with the scanned data. This 

orientation can be done by choosing some common points or features in both data formats and 

then trying to merge them or by measuring the coordinates of several common points (tie-

points) available in both data formats in different positions. According to the literature, the new 

capabilities provided by this integration have brought new applications in construction 

management. For instance, through a case study done by Ta (2017), the quantity of excavation 

work accomplished was rapidly tracked for automated progress reporting. By using this 

integration, they proposed a more robust and timely data acquisition procedure in which fewer 

images and less scanning time is required to produce acceptable results during the 3D 

modelling process. They could also overcome limitations in the photogrammetry technique 

associated with modelling objects with unclear geometrical shapes (e.g., excavation work). 

Another application for this integration is crack detection in an object or structure. In fact, this 

integration helps to improve the geometry and visual quality of the final 3D model. During the 

data collection phase, the information about the edges and linear features in the surface such as 

cracks are achieved based on analysis of the images, while the information about the object 

geometry is provided by scanning data. In this way, a more complete 3D model of the scene 

can be generated with sufficient and clear details about the colour, texture, and material of 
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various objects. Integrating a laser scanning system with photogrammetry would provide a 

timely, cost-effective, and accurate 3D model of a structure, which can decrease the human 

exposure costs and risk exposures caused by the lack of information during construction 

(Azarm 2013). More accurate visual information results in less rework and change orders, 

thereby improving productivity. Moreover, these 3D models are used to make accurate 

rehabilitation, maintenance, and renovation plans during the structure operation. However, the 

registration and alignment of these two sensory data matters. On one hand, both digital images 

and scanning PCD have internal errors that affect the registration process. On the other hand, 

factors such as the required accuracy, resolution and accessibility of the object may affect the 

chosen of the optimal method (Moselhi et al. 2020). 

The LiDAR device and depth camera can create high-quality PCD (Nasrollahi et al. 2019). 

Various techniques have been studied to locate and segment building elements from the 3D 

PCD, such as slices comparing, region growing, p-linkage, Hough transform, Random 

Sampling and Consensus (RANSAC), and deep-learning techniques. These techniques are 

categorized as feature-based, geometry-based, and point cloud-based. Examples of feature-

based techniques include but are not limited to region-growing techniques and P-linkage 

algorithms. Geometry-based methods such as RANSAC and Hough transform work based on 

segmentation and feature extraction to translate objects into shapes such as lines and circles 

(Amer 2020). In these techniques, the PCD is segmented into intrinsic object categories 

existing on the scene. Then, the classification algorithms are used to label each segment 

semantically. Bardareh and Moselhi (2022) and Armeni et al. (2018) argued that indoor space 

object identification by point cloud data is a detection problem rather than a segmentation task. 

They adopted a detection-based approach for element parsing in this regard.  

CNN is a computer-vision technique for object-detection tasks. This network includes various 

stages to automatically translate the input data, including images and PCD, to the meaningful 

objects in the output. Feature extraction is an essential step in object recognition out of PCD, 

which includes extracting elementary geometric features, such as boundaries, edges, and 

corners, using local filters (Nasrollahi et al. 2019). In this regard, the significant changes in the 

distance of the surrounding PCD help to detect borders. However, it may be possible to identify 

borders by the impact angles of the sensor beam or changes in the normals (Munaro et al. 2016). 

The annotation, which is part of CNN for segmentation tasks, is usually manual and done by 

related software (i.e., Cloud Compare software package). During annotation, the number of 
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points in each part should not exceed a minimum and maximum value. The minimum value is 

important, especially for areas with a high density of PCD. Sometimes, the available PCD is 

augmented (i.e., flipped and rotated) in the pre-processing step to enlarge the training dataset. 

However, the augmented datasets are not used in the evaluation and testing. The evaluation 

and testing data are selected from the areas where the data are not used for training the model. 

An optimizer is also used to train the model (e.g., Adam optimizer). The CNN model's dropout 

layers are also used to improve the model's generalization. 

Deep Neural Network (DNN), a kind of CNN with a deep forward network and many layers, 

has been recently used in this context for detecting 3D objects out of 3D PCD (Zhou and Tuzel 

2018). However, many of these techniques must be revised to avoid the limitation associated 

with imbalance classes for object recognition out of PCD. Besides the generalizability of the 

deep-learning model on other datasets should be addressed, providing adequate annotated 

datasets for training the model could be challenging in case of changing the environment (Amer 

2020, Nasrollahi et al. (2019). Furthermore, getting annotated data to train the classification 

algorithm for each new class of object is difficult. High computational time and processing 

effort are other issues of these techniques for object recognition (Nasrollahi et al. 2019). 

Many advanced 3D object recognition techniques, such as VeloFCN, 3DOP, 3D YOLO, 

PointNet, PointNet++, VoxelNet, etc., have been proposed for 3D object recognition. They can 

be categorized as volumetric CNNs, multi-view CNNs, Spectral CNNs, and feature-based 

DNNs. Volumetric CNN is based on applying CNNs on voxelized shapes; however, data 

sparsity and computation cost of 3D convolution limits its resolution, especially for large-scale 

PCD. Multiview CNNs, in this respect, are based on rendering 3D PCD or shapes into 2D 

images and then applying 2D convolution nets to classify them. This technique applies to shape 

classification, not scene understanding or shape completion. Recently, spectral CNNs have 

been investigated using spectral CNNs on meshes. However, these methods are mainly used 

for organic objects rather than furniture meshes. Feature-based DNNs techniques are also used 

in this context in which the 3D data are converted into a vector by extracting standard shape 

features and then using a fully connected net to classify the shape (Adusumilli 2020, Qi et al. 

2017). Most attempts in deep learning-based methods have been focused on regular input 

representations such as sequences, images, and volumes, while less attention has been on using 

point sets as inputs for the deep-learning algorithm. The main challenge of working with points 

is based on the sparsity of the points and the irregular set of inputs for DNN. A set of studies 
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have been done to address the issue associated with irregular inputs for DNN algorithms. 

However, most of these efforts are focused on generic sets and Natural Language Processing 

(NLP) applications, and they neglect the effect of geometry on the sets (Qi et al. 2017). 

Based on data representation, CNN approaches can be classified into three main categories: 

voxel-based, pixel-based, and 3D point-based. These categories are further explained in the 

following sub-sections. In pixel-based approaches, 3D data are converted to 2D projections, 

such as images, while voxels are generated from the 3D points. Point-based approaches use 3D 

CNN to process PCD and implement 3D recognition tasks, including object classification, part 

and semantic segmentation (Nasrollahi et al. 2019, Qi et al. 2017). Table 2.5 illustrates these 

three groups, highlighting their capabilities, limitations, and overall accuracy. There are other 

metrics to evaluate the performance of the DNN algorithms, i.e., Intersection-over-Union 

(IoU), precision, and F1-score. However, the accuracy has been selected here for simplicity 

and to show the algorithms' overall performance. 

Table 2.5: Deep-learning techniques for object recognition (Deng et al. 2021, 

Nasrollahi et al. 2019, Pang and Neumann 2016, Qi et al. 2017). 

Algorithm 

type 
Input 

Algorithms 

used 
Capabilities Limitations 

Overall 

accurac

y 

Volumetric 

CNN 

algorithms 

(Adusumill

i (2020), 

Zhou and 

Tuzel 2018, 

Qi et al. 

2017) 

Volum

e 

1) VoxNet 

2)3DShapeNet

s 

3) Subvolume 

• Replacing 

manual 

feature 

extraction 

 

• Computation 

cost 

• Low 

resolution 

due to data 

sparsity 

1) 83.0 

2) 77.3 

3) 89.2 

Multiview 

CNN 

algorithms 

(Pang and 

Neumann 

2016, Deng 

et al. 2021) 

 

Image 

1) LFD 

2) MVCNN 

• Good 

performance 

for shape 

classification 

• Not 

applicable for 

scene 

understandin

g 

• Many views 

of the 

environment 

are required 

• Limited 

performance 

1) 75.5 

2) 90.1 
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and 

complexity 

of 2D 

detection 

algorithms 

Point 

cloud-

based 

algorithms 

(Nasrollahi 

et al. 2019), 

Qi et al. 

2017) 

Points 

1) PointNet 

2) PointNet++ 

3) DGCNN 

4) PointNeXt 

• Less 

computationa

l cost 

• Space 

efficiency 

• Scalability 

• Potential for 

real-time 

applications 

• Robust 

algorithm to 

missing and 

corrupted 

data 

• Avoid falling 

in extremes 

(minimums) 

• Missing some 

details of an 

object due to 

globally 

assigning 

features to 

local 

neighbouring 

points 

1) 89.2 

2) 90.7 

3) 92.9 

4) 94.0 

2.4.1 Volumetric CNN Algorithms 

The VoxelNet is a volumetric CNN algorithm for 3D object detection, outperforming some of 

the techniques mentioned above. The VoxelNet architecture has three modules: feature 

learning network, convolutional middle layers, and region proposal network (RPN). To extract 

descriptive features from a PCD voxel grid, a feature learning network is used in which the 

individual points in the voxel are processed to obtain point-wise features for the voxels 

containing more than a defined number of points. The point-wise features are then aggregated 

with locally aggregated features. Moreover, an element-wise max pooling is applied to obtain 

the locally aggregated features from the point-wise input features. The convolutional middle 

layer also reduces the feature map size, in which the voxel features are converted to dense 4D 

feature maps using convolution, batch normalization, and Rectified Linear Unit (ReLU). A 

modified RPN, a fully convolutional layer, includes three blocks. The output of every block is 

up-sampled to a fixed size and concatenated to construct a feature map with high resolution, 

while the feature map are further mapped to desired learning targets, including the probability 
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score map and regression map. The modified RPN provides the detection result by intaking the 

volumetric representation (Li et al. 2017). 

This network has advantages such as: (1) avoiding the manual feature extraction, which is a 

typical workflow in using the PCD in pixel-based techniques. In the pixel-based techniques, 

the objects are detected by projecting the 3D PCD to the top view and then applying the image-

based feature extraction methods. This workflow causes an information bottleneck, which 

affects the object detection out of the 3D information, (2) limiting the number of points 

available in a voxel to a defined value helps to enhance the computation and to address the 

memory constraints in the processing step, (3) the architecture of this technique helps to use 

the raw PCD for learning the feature representation simultaneously, meanwhile predicting 

accurate 3D bounding boxes (Li et al. 2017). 

2.4.2 Multiview CNN Algorithms 

Due to challenges associated with using 3D descriptor matching for object recognition of PCD, 

there is a need for a technique to avoid the complexity and time-consuming process of directly 

processing 3D data. One solution is to transform a 3D point cloud into 2D images by projecting 

the 3D PCD into depth information at multiple viewpoints and rotations (Bardareh and Moselhi 

2022). This approach enhances the efficiency of object detection since it only relies on 2D 

CNNs for feature extraction. However, the reduced information in every view usually results 

in unsatisfied performance for distinguishing and localizing objects in 3D space (Yin et al. 

2009). Moreover, producing many 2D detection tasks limits the appropriate 2D detection 

algorithm's choice and performance, and the increased processing time is another concern, 

especially for applications related to near-real-time object recognition (Bardareh and Moselhi 

2022). 

To reduce the amount of 2D detection tasks, Bardareh and Moselhi (2022) used a CNN in 

which multiple viewpoints and rotations were used for the same object class with a single pass 

through the network. Furthermore, they improved the detection efficiency by reducing the 

image sizes while using early rejection networks in a simplified architecture before starting the 

network of final multi-class detection. Yin et al. (2009) concluded that since LiDAR PCD is 

hollow-3D data, it can efficiently maintain the 3D representation by concatenating features 

from projected views and from the 3D spatial context. This could also result in a trade-off 

between precision and runtime latency. In this study, the PCD was sequentially projected into 

the perspective and bird’s-eye views to extract the multi-view features. The perspective view 
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included features with rich information about the semantic context. On the other hand, the 

bird’s-eye view addressed the highly sparse projected points, which are difficult to distinguish 

by semantic components. The features extracted from the bird’s-eye view are used to predict 

the scales and locations of objects. 

2.4.3 Point-Based CNN Algorithms 

Due to certain characteristics of PCD, including its simple and unified structures, it is easier to 

train models with this data compared to the difficulties in dealing with other techniques using 

irregular and complex meshes. In a typical point cloud dataset, each point is represented by its 

three coordinates while additional dimensions may be added, such as normalized values and 

local or global features (Qi et al. 2017). As mentioned, due to the irregular format of PCD, 

most researchers prefer to transform the points data into regular 3D voxels and multiple images. 

This data transformation results in unnecessarily voluminous data, affecting the data's natural 

invariance (Nasrollahi et al. 2019, Qi et al. 2017). Working directly on the 3D point cloud 

datasets makes it possible to overcome the limitations associated with the techniques in which 

the PCD is transformed into pixel or 3D voxel grids (Nasrollahi et al. 2019). 

PointNet is a novel type of CNN that provides a unified approach for 3D recognition tasks, 

including object classification, part segmentation, and semantic segmentation, by directly using 

n-dimensional tensors such as PCD (Nasrollahi et al. 2019). It was developed in 2017 to address 

the limitations of voxelization and rendering PCD. The Stanford 3D Indoor Scene (S3DIS) was 

used to validate the algorithm, including the scene semantic segmentation module for the scene 

analysis. This network has three parts, including classification, part segmentation, and semantic 

segmentation. The points in each part are sub-sampled by splitting the PCD into various areas, 

then divided into several parts inside. In the object classification part, the input point cloud 

results in outputs with k scores for all the k classes of objects. The segmentation network is an 

extension of the classification part. The semantic segmentation of PointNet is typically used to 

detect indoor building elements. In such cases, PointNet architecture concatenates both global 

and local point features and outputs per point score for object classification and semantic 

segmentation problems (Deng et al. 2021, Ma et al. 2022, Qi et al. 2017).  

The PointNet algorithm has a pretty simple architecture, as each point is processed 

independently in the initial stages. Networks such as PointNet are more efficient in terms of 

computational cost, much more space efficient than multi-view-based methods in terms of 

parameters in the network, and much more scalable, showing great potential for applications 
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that need real-time object detection (Qi et al. 2017). PointNet is a robust deep-learning 

algorithm for addressing missing and corrupted data that normalizes the number of points in 

each block to a unique number (given that the surface point cloud density varies). This process 

requires down-sampling or up-sampling in which the block’s density of the actual dataset is 

decreased and increased. This network is also invariant to input data permutations by using 

symmetry functions, such as max-pooling. It also considers neighbouring points' behaviour and 

does not isolate each point by using local and global features transformation. This network is 

invariant to data transformation or rotation by using a joint alignment network called T-Net. 

Imposing a regularization law prevents the situation of falling into extremes (minimums). 

Furthermore, data augmentation helps to increase the training dataset. Two commonly used 

methods for data augmentation of PCD are random rotations and random Jittering (i.e., adding 

noise). In a case study by Qi et al. (2017), randomly deleting 50% of data resulted in a 2% drop 

in accuracy which shows how robust this algorithm is in case of perturbation (i.e., missing or 

outlier data). This is because of the PointNet algorithm's capability to verify which set of input 

points has more contributions to achieve the final global features. These points, referred to as 

critical PCD, can be used to identify key features of each object. The Autoencoders are also 

used for shape completion and tasks associated with up-sampling of the PCD. This is useful 

since sometimes the quality of the acquired PCD is not high enough, or some data is missing. 

Researchers have applied PointNet to classify PCD of various building elements. They also 

used PointNet for semantic segmentation purposes. For instance, PointNet was used in a study 

to semantically segment observed scenes in a robotic teleoperation system in a virtual reality 

environment. In another study, algorithms with architecture similar to PointNet, such as C-

shapes and L-shapes networks, were used to segment PCD for industrial oil facilities. There 

are various variants of PointNet, which has improved the performance of its initial version by 

having an overall accuracy of 90.7%. Researchers have also investigated Dynamic Graph CNN 

(DGCNN), a modified PointNet version that uses edge rather than point features. DGCNN has 

relatively outperformed PointNet for object classification and semantic segmentation (Ma et 

al. 2022). The experiments by Ma et al. (2022) showed that the segment-based classification 

using PointNet performs better over DGCNN for furniture and other objects. However, for 

point-wise classification, the DGCNN showed better performance.  
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2.4.4 Dataset Benchmarks for Point Cloud Data 

There are a couple of well-known benchmark datasets for PCD, such as ModelNet40, 

ShapeNet, Semantic3D, Stanford Large-Scale S3DIS Dataset, and 3DFacilities (Ma et al. 2022, 

Qi et al. 2017). ModelNet40 is used for classification tasks, while ShapeNet is used for part 

and semantic segmentation. The S3DIS is a large-scale point cloud dataset that includes 

information about the coordinates and colour features. The S3DIS is also annotated for 13 

semantic classes of objects in an indoor scene. 3DFacilities, on the other hand, have been 

collected in an institutional environment and for 18 classes of objects (Ma et al. 2022). Figure 

2.1 shows the defined class of objects in the S3DIS and 3DFacilities, along with the proportion 

of the objects in each class. 

 

Figure 2.1: S3DIS and 3DFacilities point cloud-based benchmark (Ma et al. 2022).  

2.5 Digital Twin in Construction for Automated Progress Reporting 

There is no widely accepted conceptualization or definition of the term digital twins; however, 

numerous organizations have defined digital twins in terms of their functions and 

characteristics. The twin concept dates back to the NASA Apollo program in the 1960s, in 

which twins of some modules were replicated for a project's maintenance, support, and 

troubleshooting. According to the definition provided by the Centre for Digital Built Britain, a 

digital twin is "a realistic digital representation of assets, processes or systems in the built or 

natural environment" (Sacks et al. 2020). Digital twin refers to a virtual model or digital replica 

of living or non-living physical entities focusing on automation, connection, Internet of Things 
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(IoT), BIM, and big data analytics, which are closely linked to the same terms used in Industry 

4.0 and smart manufacturing. A digital twin is not only the digital replica of an actual site but 

also includes the data and information about a physical asset or its environment. It also provides 

project teams with insights, scenarios, and representations associated with the asset or 

environment. Examples are using the IoT to track and monitor the assets in a target environment 

using sensors and data-sharing platforms. Sacks et al. (2020) argued that digital twin in 

construction should be viewed as a comprehensive mode of construction that prioritizes closing 

the control loops rather than an extension of BIM tools integrated with sensing and monitoring 

technologies. They proposed a digital-twin information system workflow—including 

information stores, information processing functions, and tracking technologies. They insisted 

on a digital-twin platform that comprises both product and process modelling rather than 

relying on BIM models.  

The insights about the site condition, such as the assets' location, status, and other information 

about the temperature and humidity, can be transferred and updated through a cloud-based BIM 

platform. Furthermore, information about the scheduling of the activities and the objects 

assigned to each activity can be added to the BIM model to enrich the information about the 

onsite objects. Transferring all these raw data to a BIM-based model and updating the data in 

a defined time resolution, depending on the type of activities on site, perfectly fulfill the 

concept of a digital-twin project. Every change in the assets' location and environmental 

condition of the site is sensed and updated in the BIM model. This information is then 

processed, and the required actions are decided accordingly and reflected again on the BIM 

model Tran et al. 2021, Huang et al. 2021). The constant communication between the physical 

environment and the digital model through the sensory data communication and the 3D 

representation of the site help to enhance the site inspection and progress reporting through a 

digital-twin platform. For this purpose, various RS technologies are used to obtain different 

types of information. For example, information about the location of the assets is acquired by 

the RTLS sensors attached to objects on site, including the equipment and materials, while the 

humidity and temperature sensors provide information about the site environment. Sensory 

data obtained by 3D imaging technologies such as laser scanners and depth cameras can also 

be used to enhance the project's Level of Development (LoD) through a digital-twin platform. 

Lean 4.0 and Industry 4.0 are two new concepts that can be implemented through a digital twin. 

The RTLS-based digital twin was investigated by Ruppert et al. (2016) to facilitate the practice 

of Lean 4.0 for asset tracking. In that study, three levels of digitalization and communication 
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between the physical and digital twins were introduced. In level 1, only a 3D representation 

model of the physical object or site is available. In level 2, a one-way data flow from the 

physical object (s) to the digital object (s) in the model is initialized. In level 3, an integrated 

and bi-directional connection between the physical object (s) in the field and digital object (s) 

in the model is fully automated. Sacks et al. (2020) identified a lack of a cohesive and integrated 

approach to production control in which multiple monitoring systems inform a project 

database, which can then support various management functions. 

A digital twin can be used in the different life cycles of a project. Efficiencies identified using 

digital twin to compare as-designed with as-built conditions can benefit the entire facility 

lifecycle, from early capital planning to engineering and construction. The planning phase of a 

project is an area in the 4D simulation of a project, including the 3D model and schedule, which 

has been widely used. Planning must be proactive and requires increasingly detailed iterative 

planning actions to identify and remove constraints to prepare tasks for assignment to crews 

and execution. Planning depends on the availability of increasingly detailed process status 

information, which well-designed monitoring technologies can provide if they are embedded 

in a suitable digital-twin information system framework. Digital twins could also include the 

operation and maintenance phase after the project turnover. Some studies have widely 

investigated the application of the digital twin for sustainable construction and operation of 

projects. Because operation and maintenance are the longest phases of a facility's lifecycle, 

developing an accurate 3D BIM that reflects the asset's as-built condition is crucial. During the 

operating phase, it lights up the users and operators of the project with the data and information 

that are used to optimize the performance of the projects and for better decision-making. During 

the construction phase, digital twins would also enable the project user to better monitor and 

control the project, send and receive the data associated with assets in a project, and inform the 

users about the actual status of the assets. However, using a digital twin in the construction 

phase of a project for asset tracking and progress reporting has not been widely used and needs 

more consideration. Both industry and academia have widely adopted Scan-to-BIM to develop 

an as-built 3D BIM. The process begins with capturing the physical realities of the building 

environments in the digital form of imagery or 3D PCD (Shahi et al. 2014). However, using a 

digital twin in the construction phase of a project for asset tracking and progress reporting has 

not been widely used and needs more consideration. Sacks et al. (2020) identified three 

generations in development of the digital twin in construction. The first generation is described 

as an enhanced version of BIM on construction sites to date; the second generation introduces 
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semantics to enhance monitoring platforms with limited intelligence where a common web 

language framework is deployed to represent the digital twin with all its integrated IoT devices; 

the third generation, the apex of the digital implementation possible to date represents a fully 

semantic digital twin, leveraging acquired knowledge with the use of AI-enabled agents. 

Machine learning, deep learning, data mining, and analysis capabilities are required to 

construct a self-reliant, self-updatable, and self-learning digital twin. They argued that the term 

Project Information Model (PIM), as defined in ISO 19650 (ISO/DIS 19650, 2018), can and 

should include both product and process. Whereas most BIM tools only provide product 

modelling. The product information is stored in the design BIM model's objects, their 

properties, and their relationships. The process information is stored in the construction plans, 

including construction methods, schedules (tasks, activities, resources), budgets, and so forth. 

As-built BIM models or Facility Management BIM (FM-BIM) models are generally compiled 

reactively following execution, and their purpose is to provide owners with models for the 

operation and maintenance phase, called the asset information model (AIM) in ISO 19650. 

They are not intended to provide the short cycle time feedback needed for project control. 

Moreover, while critical path tools for master planning have been used in conjunction with 

BIM models to perform 4D CAD analysis of project schedules, these tools are not suitable for 

project control (Sacks et al. 2020).  

A digital-twin platform can provide more integrated and accurate information, as well as a 3D 

representation of the project for the site managers or inspectors. In this way, by creating a more 

accurate as-built digital status of a project and comparing it with as-planned information, the 

project decision-makers can use it for applications such as automated clash detection, 

congestion management, problem diagnosis, and progress reporting. Cai et al. (2014) 

developed a risk twin to integrate risk with the cost and schedule of a project. The risk twin 

developed in their study was used for planning, construction, and operation phases. Modular 

construction, which gains increased market share, can benefit from this framework. Ruppert et 

al. (2021) developed an integrated RTLS and Monte Carlo simulation into digital twins to 

monitor production performance and predict the production status of a factory. In their work, 

a digitalized assembly progress report was generated in which the assembly components are 

tagged, identified, and tracked in the twin provides information about the progress of various 

activities in the modular or assembly projects while reporting the project's overall progress. In 

their digital-twin solution, the tagged components can be tracked over the project's life cycle 
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for maintenance of the building equipment in the operation phase, facilitating energy-efficiency 

planning. 

Many studies have focused on the interface between laser-scanned data and a 3D model, such 

as BIM models, through a Scan-To-BIM workflow to automate progress reporting. For 

instance, Bosché and Ahmed (2015) used a 3D model as a prior source of information for 

detecting objects from the PCD. However, these approaches are unable to identify objects that 

are not in their exact locations pre-described by the as-designed model or located at a distance 

greater than a tolerance value specified in the object recognition software. Furthermore, they 

are incapable of providing sufficient information about non-structural activities such as the 

welding, inspection, piping system, etc.; however, BIM systems may help to facilitate these 

operations in future (Shahi et al. 2014). In another approach, Ibrahim (2015) designed a system 

based on SA-GPS for tracking and progress assessment of the earthmoving operations. They 

concluded a considerable decrease in average absolute percentage error in the project progress 

estimation compared to a system working only based on GPS from 12% to almost 3%. In a 

similar study by Akhavian and Behzadan (2015), a smartphone with sensor technologies such 

as GPS, accelerometer, and gyroscope were put inside construction equipment. Then, the time-

stamped data for the equipment position, acceleration, and angular velocities were collected 

using commercial data logger applications available on the smartphone device. After a feature 

extraction process in which some features were defined based on the level of details required 

for an activity recognition process, a subset of originally extracted features were employed to 

train the supervised machine-learning algorithms (i.e., ANN, KNN and etc.) for activity 

classification. Finally, through an activity recognition step, the classified actions were defined 

as real actions on the site, and these data were used as input for a simulation model. El-Omari 

(2008) did a case study to rapidly track the quantity of excavation work accomplished for 

automated progress reporting. By using this integration, they proposed a more robust and 

timely data acquisition procedure in which fewer images and less scanning time is required to 

produce acceptable results during the 3D modelling process. 

2.6 Summary 

The literature review presented above examined the current state of RS technologies such as 

RTLS, 3D imaging, and their integration with BIM in construction applications, highlighting 

gaps in the body of knowledge. The use of RTLS technologies was investigated, and the 

integrated use of these technologies as a solution to compensate for the limitations of each 
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individual technology for applications on job sites, such as material tracking and progress 

reporting was identified. The use of RTLS technologies for indoor object identification, 

specifically for 3D object localization and for objects in elevation, warrants further study. 

Moreover, regarding indoor object localization and tracking of information for progress 

tracking, the mechanism and the requisite tools to ensure visibility is another gap that needs 

further investigation. The use of 3D imaging technologies such as LiDAR in applications such 

as automated Scan-to-BIM process and quality control was also investigated. Furthermore, the 

use of AI-based computer-vision techniques (i.e., DNN algorithms) for automated detection of 

objects on job sites was explored. The imbalance size of the datasets for various class of objects, 

especially in the PCD collected by the LiDAR devices, was identified as the main source of 

error in the studied algorithms for object detection. The imbalance arises from the inherent 

characteristics of point cloud data. The majority of the data collected by the LiDAR device 

pertains to elements such as slabs, walls, floors, and ceilings. In contrast, other categories of 

objects, including furniture and Mechanical, Electrical, and Plumbing (MEP), are represented 

by a significantly smaller portion of the point cloud data.  Moreover, the use of PCD and DNN 

segmentation algorithms for indoor object localization in 3D format requires further 

investigation, particularly with respect to MEP equipment, which is highly complex and 

extensively linked with other components on site. Finally, the literature on digital-twin 

applications for project control in construction underscores the need for a digital-twin platform 

that can facilitate data acquisition on job sites through a bi-directional construction twin 

dashboard and that can automate the generation of onsite inspection reports.  
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CHAPTER 3: Research Methodology 

3.1 Overview 

The present study explores the use of Real-Time Location system (RTLS) and Light Detection 

and Ranging (LiDAR) technologies for 2D and 3D localization of objects in indoor spaces, as 

well as for automated generation of onsite inspection reports (see Figure 3.1). The RTLS used 

in this study is an integrated Radio Frequency Identification Device (RFID)–Ultra-WideBand 

(UWB) technology for indoor object identification and localization (Section 3.2). The 

integrated RFID–UWB is then combined with a cloud-based Building Information Modeling 

(BIM) platform to enhance asset tracking, inspection, and site reporting (Section 3.3). For this 

purpose, the RTLS data collected from the objects furnished with the RFID tags is used as input 

for the indices in the Earned Value Management (EVM), i.e., Material Status Index (MSI) and 

Quality Status Index (QSI). 

In addition to using the RTLS for indoor object identification and localization, the 3D Point 

Cloud Data (PCD) collected using a TLS is used for automated object detection and 

localization. In this step, a few objects in a lab environment are selected as the target class of 

objects to be detected by a computer-vision Deep Neural Network (DNN) called PointNet. This 

network's classification and segmentation modules help to detect and localize objects. Further 

integration of the PCD with the RTLS data results in more accurate indoor localization for the 

tagged objects, as well as the capability to assign IDs to the detected objects via the point cloud 

and DNN algorithms (Section 3.4). 

Section 3.5, finally, describes  a digital-twin platform in which the integrated RTLS–PCD is 

transferred to a cloud-based BIM for the purpose of automated generation of the onsite 

inspection report using the 3D coordinates of the target objects. Figure 3.1 provides an 

overview of the methods developed in this study. 
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Figure 3.1: Overview of the developed method. 

3.2 Integrated RFID–UWB for Indoor Object Localization 

Indoor progress tracking has also been investigated recently by some researchers. However, in 

indoor tracking of resources and activities, there are notable challenges encountered if there is 

a wide range of materials and structural objects that need to be recognized. Moreover, available 

RS technologies with applications in indoor progress reporting (e.g., RFID, UWB, laser 

scanning, photogrammetry, etc.) have some limitations that may affect their performance in a 

confined area. In fact, vision-based technologies such as laser scanning and photogrammetry 

and their integration are good choices for generating PCD. However, they need post-processing 

steps for 3D modelling, which is manual and time-consuming. Georeferencing the system 
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during data collection is also important for more accurate data registration. In this way, using 

tracking technologies such as RTS and UWB with good localization accuracy can help 

facilitate these problems and create a more automated system for 3D modelling (Moselhi et al. 

2020). 

The fusion of the data acquired from various RS technologies and with other technologies has 

also been investigated as a solution to overcome the limitations of each technology. The 

activity-based approach for progress reporting is another area of interest in recent studies, 

which enables us to track activities related to moving objects and activities that do not have 

such traceable objects. Finally, registering the data acquired by various RS technologies with 

available building models (e.g., 3D CAD, BIM, etc.) also needs more investigation in the future 

(Moselhi et al. 2020). 

Many studies have investigated the use of various RS technologies to automate localization 

and tracking of the objects on site (Tran et al. 2021, Wang et al. 2017, Xu et al. 2018). This 

section introduces a new method in which an integrated use of the UWB and RFID helps 

efficiently localize the objects in an indoor environment. This integration is aimed at 

overcoming the limitation of expensive sensors such as UWB and GPS for localization and 

tracking of a large number of objects on construction sites. Moreover, the integrated use of the 

two technologies provides more accurate localization information not only in 2D but for 3D 

object localization. In this regard, a sample number of objects labelled using inexpensive 

passive RFID tags are localized at the experimental level. This integrated system provides a 

more economical and accurate method for indoor material localization compared to the 

methods in the literature (Bardareh and Moselhi 2022). 

The method is based on experimental work carried out in two phases, encompasses a set of 

experiments on the UWB and RFID separately in phase 1, followed by another set of 

experiments conducted on their integrated use for 2D and 3D localization of objects in phase 

2. A schematic diagram of the developed method is illustrated in Figure 3.2. The novelty of 

this research lies in the integrated use of RFID and UWB to efficiently localize objects in an 

indoor environment and develop an improved trilateration technique. Using only UWB sensors 

to localize objects on site is not economically practical. To address this issue, the use of an 

inexpensive RFID system to facilitate object localization is investigated. However, the main 

problem of the RFID system is that the RSSI varies over time and is highly dependent on the 

site environment, especially for indoor sensory localization. Furthermore, there is no 



42 

 

conventional formula applicable for all use cases in different environments to accurately 

translate the RSS value to a range value, which results in low positioning accuracy. Moreover, 

using only RFID tags for localization of the objects in an indoor environment requires a large 

number of RFID reference tags to localize roving RFID reader and tags. In this regard, the 

integrated use of these two technologies is developed to benefit from the capabilities of each 

technology in localizing objects (Bardareh and Moselhi 2022).  

Despite the use of GPS for outdoor applications, in an indoor environment, the performance of 

the GPS sensors is highly degraded since they need direct access to the sky to receive signals 

from satellites. To address this issue, the UWB sensors are used in lieu of GPS to localize the 

RFID reader. For localization of the RFID tags, there are various techniques which are mainly 

based on signal processing. Since, in this experiment, a roving RFID reader with a known 

location is used, the application of a range-based technique is investigated to localize stationary 

tagged objects. For applications associated with the localization of moving targets, such as 

workers and equipment, the UWB sensors are used to provide real-time location information. 

However, this experiment focuses on localizing indoor materials rather than workers (Bardareh 

and Moselhi 2022). 

 

Figure 3.2: Schematic diagram of the developed method for indoor object localization 

(Moselhi et al. 2020). 
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In phase 1, the experiments on RFID and UWB are carried out to evaluate localization and 

range measurement accuracy of the UWB sensors used in this study and to search for optimal 

output power for a hand-held RFID reader to improve range measurement information 

provided by the RFID system used in this study. The UWB tests and the identified error 

histogram are provided in Section 4.1. With respect to the experiment on the RFID system, a 

path–loss model for four output powers of the hand-held RFID reader are developed and 

compared to identify the optimal output power, which are illustrated in Section 4.1 of this 

thesis. This value is identified by respecting maximum reading range of the hand-held reader 

and accuracy of the corresponding model. This optimal value is useful for applications 

associated with range measurement and proximity on construction sites (Bardareh and Moselhi 

2022). To translate the distance between the hand-held RFID reader and the RFID tags various 

techniques are used; these techniques mainly capitalize on signal attenuation, although they are 

also governed by characteristics of the RFID system, such as the maximum reading range of 

the device (Cai et al. 2014, Montaser and Moselhi 2014, Su et al. 2014). In this experiment, an 

RSS-based method is used for range measurement which works based on a path–loss model. 

However, there are some factors that may affect the accuracy of the measurements; this 

includes factors associated with the RFID device such as operating frequency, the hand-held 

RFID reader output power and distance between the tags and the reader. The results of an 

experiment showed that if the distance of the reference tags from each other is half of the device 

reading range (0.5RR), then a better detection rate results (Shahi and Safa 2015). The factors 

associated with indoor environment, such as free space loss factor, multipath reflection, and 

interference effects also affect the RSSI signal (Omer et al. 2019, Tzeng et al. 2008). Some of 

these factors are addressed and evaluated in this experiment. Figure 3.3 illustrates various steps 

to achieve the path–loss models. 
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Figure 3.3: Various steps to achieve path–loss models. 

In phase 2, inexpensive passive RFID tags are used together with the UWB sensors to provide 

localization information about a group of objects. To this end, a UWB sensor is attached to the 

roving hand-held RFID reader for its localization. Then, by knowing the location of the mobile 

RFID reader, the RFID tags attached to a set of identified objects are localized using the path–

loss model and a trilateration technique, as explained later. The experiments conducted in the 

lab. validate the developed method in providing 2D and 3D information of the tagged objects 

(Bardareh and Moselhi 2022). 
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The integration of the acquired data, along with the mathematical concept, which is developed 

to improve the range-based trilateration technique, is described. Based on the location of the 

RFID reader, the RFID tags are localized using signal processing and a localization technique. 

Among various RSS-based techniques to estimate the tag's location, in this experiment, the 

DRVs are calculated using the path–loss models through Equation 3.1. In this equation, the 

constant values α and β are achieved for the RFID reader's three output powers, including o20, 

o22 and o25 dBm. In this study, the RFID tags' 2D and 3D localization are investigated. The 

RFID tag is localized by replacing these range values in the trilateration equations as provided 

in Equation 3.2 (Bardareh and Moselhi 2022). 

DRV = α RSSI + β (3.1) 

DRV = [(xi − Xr_uwb)2  +  (yi −  Yr_uwb)2 +  (𝑧i −  Zr_uwb)2]1/2 (3.2) 

where (𝑋𝑟_𝑢𝑤𝑏,𝑌𝑟_𝑢𝑤𝑏,𝑍𝑟_𝑢𝑤𝑏) is the location of the hand-held RFID reader, which is measured 

by the UWB sensor attached to it; and (𝑥𝑖,𝑦𝑖,𝑧𝑖) is the coordinates of the target RFID tag (i = 

0, 1, 2, 3 for four different RFID reader locations in 3D localization) (Bardareh and Moselhi 

2022). 

Given that, in this experiment, the tagged objects are static, a small number of readers is 

sufficient for the localization of the tagged objects. However, in the case of localizing moving 

objects, a large number of RFID readers are required. To localize a tag in 2D and 3D, the data 

achieved for each tag are derived. Then, combinations of the three (four) from these data are 

selected to use the trilateration equations for 2D (3D) localization. Since the selection of these 

combinations affects the localization accuracy, the combinations with the highest value of 

Spatial of Distribution (SoD) are preferred. It is worth mentioning that the increase in the 

number of selected data for each tag greatly increases the processing time of the localization 

module, while the localization accuracy was not much improved. That is why in this 

experiment the number of the selected data is two times the required data for 2D and 3D 

localization (six and eight data with the highest SoD values, respectively) (Bardareh and 

Moselhi 2022). 

The SoD value has a very close concept to a value called Dilution of Precision (DoP) which 

the GPS uses to enhance its localization. In fact, localization accuracy will increase when 

visible satellites are far apart, resulting in a higher DoP value with a stronger geometry (Xu 

and Shmaliy 2018). Saying that, unlike GPS, the RFID system does not work based on clock 

offset (using the time difference to measure distance). In this way, a new approach is needed 
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to consider the effect of RFID reader locations on localization accuracy. In this way, similar to 

the DoP factor in GPS, by calculating the mathematical variance of the various three (four) 

combinations of the reader locations, the best combinations are selected for the localization 

step. Equations 3.3 show the details of the SoD calculations which are used to select the initial 

data for the localization module (Bardareh and Moselhi 2022). 

 

(3.3-a) 

µi = 
 (Xi1 + Xi2 + Xi3 + Xi4 ) 

4
; i = x,y,z (3.3-b) 

𝑆2 = 𝑆𝑥
2 + 𝑆𝑦

2 + 𝑆𝑧
2 (𝑚2) (3.3-c) 

where (𝑋, 𝑌, 𝑍) is the RFID reader coordinates obtained by the UWB sensor, (𝑆𝑥,𝑆𝑦,𝑆𝑧) is the 

variances, and µi is the mean value of the coordinates of the reader locations in each 

combination (Bardareh and Moselhi 2022). 

As mentioned, for locating the RFID reader the UWB tag provides the information about the 

reader location in a desired time span. However, the UWB data are recorded in millisecond 

accuracy (𝑇𝑢𝑤𝑏), while the time resolution of the RFID system is in second (𝑇𝑟𝑒𝑓). In this case, 

first the location of the hand-held RFID reader in each time span is achieved from the UWB 

tag attached to it for a half-second before and after the time of the RFID tag reading time. Then, 

by using the path–loss models achieved for the RFID, the range of the tagged object from the 

hand-held RFID is calculated (Bardareh and Moselhi 2022).  

Figure 3.4 shows the diagram of the localization module in which an improved trilateration 

technique is developed to enhance the localization accuracy. In each second, the information 

about the reference time, RFID tag ID, average RSSI for each tag, equivalent distance achieved 

from the path–loss models, and RFID reader coordinates are recorded 

(𝑇𝑟𝑒𝑓,ID,𝑅𝑆𝑆𝐼𝑎𝑣𝑒,𝑑𝑒𝑞,x,y,z). Then, the data is re-arranged based on the identified tag ID. The 

novelty of the developed trilateration module is behind defining an adoptive radius for the 

trilateration equations and considering the spatial distribution of the RFID reader locations in 

the localization module. These improvements help to compensate for the errors in RFID reader 

range measurements obtained from path–loss models and to select the best combinations of 

RFID reader locations for the localization of each RFID tag. Additionally, using distributed 



47 

 

points in the trilateration circles helps to avoid solving non-linear and coupled trilateration 

equations (Bardareh and Moselhi 2022). 

 

Figure 3.4: System localization diagram. 

As mentioned, in order to use trilateration equations to localize a specific tag in 2D and 3D, at 

least three and four readings of that tag is required respectively. Each set of these readings 

makes a combination with a specific SoD value for the RFID reader locations. In the initial 

step of the module and for data selection, the set of data in the combinations with higher values 
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of SoD are selected to be used in the trilateration equations. In 2D localization, combinations 

of three out of six data, and in 3D localization combinations of four out of eight data are 

selected.  

For each combination, the three (four) circles (spheres) by the centers in (x,y,z) coordinates 

and a radius of deq are drawn and a uniform distribution of points are assigned for each circle 

(sphere). Here a threshold value, Ratio, is defined which is the number of common points (n) 

in the intersection of the selected circles (spheres) to the total points (m) for each combination. 

If, by solving the trilateration equations (Equation 3.2), an intersected area with an acceptable 

number of points is achieved (e.g., ratio < 0.1), then the combination is accepted for the next 

step. But if there is no intersection between the selected combination (ratio = 0), or the 

intersection area is too large (ratio > 0.1) then an incremental increase and decrease for the 

circles (spheres) radius is implemented to achieve the desired number of common points. In 

fact, this incremental increase and decrease in the radius of the circles (spheres) is defined in 

the extent of the ranging error of the path–loss model for the identified optimal output power 

(o25 dBm), which is approximately 1 m. As such, 50 cm inside and outside of the initial radius 

(𝑑𝑒𝑞) of the circles (spheres) is considered, as this represents the extent of the error tolerance 

of the ranging measurement. Figure 3.5-a illustrates more details about this varying radius in 

2D localization. 

In the final step of the module, those combinations with higher values of the SoD are selected 

(Figure 3.5-b). As mentioned in the previous step, in this experiment the variance of the RFID 

reader location distribution in the Lab. is considered as an equivalent factor to calculate the 

effect of the geometry in localizing each RFID tag. Finally, the estimated location for each tag 

is calculated by averaging the coordinates of points available in the intersection area. 

 
a 

 
b 
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Figure 3.5: Improved Trilateration technique for 2D localization. (a) Radius variation 

in extent of the RFID system range measurement error (b) Combination with the 

highest SoD value (yellow dash-line). 

3.3 Integrated RTLS and Cloud-based BIM for Tracking and Progress Reporting  

The developed method in this section aims to improve progress reporting by providing more 

accurate and timely information about the materials used in a project and visualizing the 

information about the location and status of the materials through cloud-based 3D models. The 

materials in this study include the project components, such as HVAC, mechanical and 

electrical devices installed in the mechanical rooms of a project. The developed method 

distinguishes itself from previous efforts in this area by integrating material tracking with 

progress reporting by tracking the quality, status, and location of the materials consumed in a 

project. Moreover, in the present study, the control points for progress reporting are on 

materials which completes the interpretation of the scheduled-based indices. Despite the efforts 

in the literature that the Schedule Performance Index (SPI) and Cost Performance Index (CPI) 

are calculated at the activity level, the introduced MSI helps to overcome the limitations of the 

schedule and cost-based indices by taking critical materials into account in generating progress 

reports. MSI is augmented SPI and CPI, and BIM is used as a supplementary tool. For this 

purpose, a digitalized reporting method is developed to regularly monitor the material 

consumption in various construction activities broken down into the activities' zones. The 

quantity and status-based data collected are used to generate progress reports using the two 

introduced indices. The indices highlight the overall project status and the associated activities 

while reporting the quality of the consumed components. Customized terms, such as inspected 

and damaged, are also defined for both the prefabricated and the completed-in-place project 

components to report on their quality status. This quality status reporting provides more in-

depth information about the project's performance beyond quantity-based reporting. The 

tracking and progress reporting method uses RFID-based technologies integrated with cloud-

based Geographic Information System (GIS) platforms.  

The developed method addresses the needs of the construction industry for two main 

applications: (1) Digitalizing material identification and localization, and (2) Site progress 

reporting. Integrated RTLS technologies and a cloud-based BIM platform are used for the first 

application to enhance the workflow for tracking construction materials in an indoor space 
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environment. For the second application, the developed method is used to digitalize site 

progress reporting and translate the data collected on site to prepare progress reports. Figure 

3.6 provides an overview of the developed method for digitalized progress reporting on site, 

along with the technologies employed for this purpose. QR codes embedded on the RFID tags 

are used to collect the status of tagged components during site inspections, highlighting the 

predefined status of activities and identifying any damaged or broken components. 

Additionally, the integrated RFID–UWB method described in Section 3.2 is used for the 

location identification of components tagged with RFID tags. The PCD collected by the LiDAR 

device is used to calibrate the UWB system and to identify the coordinates of the UWB 

receivers on site. The project's planned documents are also used to identify near-critical 

activities and the critical components to be tagged. For data collection, two cloud-based 

platforms, Survey123 and OfficeEquip, are used to gather information using the QR codes and 

RFID tags. 

 

Figure 3.6: Overview of the developed method for digitalized site inspection and 

progress reporting. 

The developed method comprises three main modules: surveying, material retrieval, and site 

inspection and progress reporting, validated through laboratory experiment and fieldwork. The 

site inspection includes reporting the materials with damaged or broken status, while progress 

reports capture the progress percentage based on quantities and the status of the materials 

consumed in the field. The experimented materials include automated tracking tools such as 

spot robots, drones, and depth cameras, which are available in the innovation group of a general 

contractor. The experiment focuses on indoor material surveying and retrieval and evaluates 

the performance of a cloud-based data collection and visualization platform for tracking. The 
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effectiveness of an RFID-enabled BIM platform in GIS cloud packages for tracking the 

experimented materials labelled with RFID tags has been evaluated. The materials tested in the 

fieldwork include the project components available in the mechanical rooms of a pool project. 

The fieldwork focuses on digitalizing progress reporting by validating two developed indices 

for reporting the progress and quality of onsite operations.  

Figure 3.7 illustrates the developed method overview, and the three modules developed for 

enhanced tracking and digitalized progress reporting. As depicted in the figure, the first two 

modules are focused on object tracking and retrieval, while the third module insists on 

digitalizing progress reporting. 

 

Figure 3.7: Overview of the developed method for tracking and site reporting. 

The first module starts with data collection during site surveying using embedded QR code-

RFID tags and cloud-based GIS platforms for data collection, including survey123 and ArcGIS 

Field Maps. The UWB system includes four UWB receivers, and one tag is embedded with an 

RFID system to shape the Indoor Positioning System (IPS) (Bardareh and Moselhi 2022). 
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ArcGIS Survey123 is used to design a customized survey for data collection and to transfer the 

collected data to the ArcGIS Pro. The collected data are then sent to the server for processing, 

in which the raw data are structured and clustered and used by a trilateration technique for 

indoor localization of the tagged objects. 

The second module includes adding and updating the information required to facilitate object 

retrieval. In this regard, the object’s localization information and the initial status are plugged 

into the GIS cloud platform. The object localization information and other associated attributes 

are automatically added to the ArcGIS. The attributes assigned to each RFID tag for each line 

of information including the tag ID, time of the data collection, the last status of the object, 3D 

coordinates of the objects, and an average localization error. The average localization error is 

calculated through Root Mean Square Error (RMSE) which is the actual versus estimated 

coordinates of the objects as provided in Equation 3.4. This information is used to help the site 

coordinator or site manager to retrieve the objects more efficiently. In this way, it is possible 

to find the tagged objects by selecting or searching items already created in the database with 

the associated attributes (i.e., querying based on RFID tag ID, status, object name, and 

location). Moreover, providing 3D visualization of the site and the objects associated with each 

zone is beneficial in retrieving the objects in the elevation or finding the hidden objects (i.e., in 

the ceiling, behind a wall, or inside a box).  

RMSE = √
∑ (𝑥𝑖

𝑎− 𝑥𝑖
𝑒)𝑁

𝑖=1

𝑁
 

(3.4) 

where N is the total number of target objects, 𝑥𝑖
𝑎 is the actual coordinates of object i, and 𝑥𝑖

𝑒 is 

the estimated coordinates of object i which is obtained using the developed method. 

In the third module, the information associated with the tagged objects (i.e., components such 

as mechanical equipment in the field), is updated by scanning the QR code embedded on the 

RFID tag and overwriting the tag’s information. By accumulating the information collected 

from the tagged objects, it is possible to report the overall status. For generating onsite 

inspection reports, two indices, MSI and QSI, are generated and used to report the progress of 

the site activities and the quality of the components used in each activity zone. The progress 

reporting information and the information associated with the components used are then 

visualized and reported in Excel software and the ArcGIS 3D platform. 

Sections 3.3.1 and 3.3.2 elaborate on the first and second modules, respectively, while Section 

3.3.3 explains the third module. 
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3.3.1 Indoor Material Tracking 

To enhance the tracking of the materials by digitalizing the data entry and automating the 

information visualization, the QR code-RFID technology is experimented, and the localization 

and status information are mapped to the 3D model. The tagged materials' approximate 

location, status, and scanned time are updated and used to track the innovation group’s tracking 

tools. The cloud-based ArcGIS packages for field data collection, Survey123 and Field Maps, 

facilitate the data acquisition process through digitalized surveys designed for data entry and 

transferring the acquired data to the cloud during data collection. At the same time, the 3D 

visualization of the tagged materials in the ArcGIS cloud facilitates material retrieval.  

The experiments were conducted to track the materials available in the indoor space. During 

site surveying, inexpensive QR code–RFID tags are used in conjunction with the UWB sensors 

to provide localization information about a group of materials. An improved trilateration 

technique developed by Bardareh and Moselhi (2022) is used to localize the RFID tags with 

decimetre accuracy for 3D localization of the RFID tags attached to the target materials. For 

this purpose, a roving RFID reader equipped with a UWB sensor is used, while the UWB sensor 

captures the information about the real-time location of the RFID reader, and the hand-held 

RFID reader reads the tags. The raw data collected during the surveying phase is transferred to 

the server for further processing. Figure 12 shows the details of the data acquired through the 

QR code and RFID tags during data acquisition. As depicted in the figure, the QR code collects 

data about the time, zone and status of the components. The RFID is used to collect the time-

stamped data about the time, ID, RSS of the tagged component. These data are used to estimate 

the tagged component’s location and status in the site. During material retrieval, the updated 

information about the tracked material's last scanned time, status, and location are visualized 

in the BIM-based 3D model to retrieve the required materials. These information are then 

imported into the 3D model through ArcGIS cloud packages, in which the information are 

structured in compliance with the standard format defined in the ArcGIS Pro. The visualized 

information also facilitates site inspection and RFIs since the materials are annotated in the 

cloud-based BIM model, and the surveyor or the quality team instantly updates their 

information, whether by using the ArcGIS’s field data collection applications on the phone or 

directly advising the 3D BIM models. 

Figure 3.8 shows the 3D visualization of the scanned tags in ArcGIS Pro, along with geo-

referenced coordinates and the status of the tagged components. These data are then used to 
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retrieve and trace the tagged components. To ensure accurate mapping of located components 

and associated information within the ArcGIS environment, it is necessary to georeference 

coordinates from the local system (using RTLS) to the global system (in ArcGIS). This process 

involves selecting tie-points from the project site that are visible in both interior and exterior 

spaces (e.g., entrance doors and window frames) and collecting their geocoordinates. 

Subsequently, components localized using the integrated RFID-UWB method are transferred 

to the global system by adjusting their coordinates based on the geocoordinates of the selected 

tie-points. For this study, this georeferencing process was performed manually using an Excel 

file. Appendix I provides more details of how RTLS data is mapped into ArcGIS. 

 

Figure 3.8: 3D visualization of the RTLS data. 

3.3.2 Site Inspection and Progress Reporting 

In the second part of this study, various activities on site are tracked to report the project's 

progress and quality. This includes reporting the quantity and status of the components and 

sub-components of near-critical activities. The criticality of the activity is defined based on the 

activity float time to its duration and by consulting with the site manager. For each activity, 

critical components are selected to be labelled by the QR code-RFID tags. The critical 

components are representative of all the components available in the project. Moreover, various 
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statuses, such as delivered, installed, and inspected, are defined through a survey to fill out for 

each activity during the site inspection. The quality of the components used in each activity is 

another area addressed in this study, as well as the progress in each activity. "Damaged or 

Broken" status reports the consumed components that need attention for maintenance or 

replacement. 

Figure 3.9 illustrates the details of the developed method for generating onsite inspection 

reports. The project progress is represented by the introduced MSI and the percentage of 

progress in the activities' status collected during the site inspection. The QSI highlights the 

quality of the components (i.e., mechanical equipment) used for each activity and reports the 

project's physical progress. 

 

(a) 
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(b) 

Figure 3.9: The developed method to generate onsite inspection reports: (a) progress 

reports: MSI (quantity-based report) and status-based reports, and (b) QSI to highlight 

the quality of the components used, and their targetted location. 

To generate the onsite inspection reports, various statuses are defined for each activity type, 

which includes the materials’ tracking in different phases of the project, starting with material 

delivery to the installation and the quality inspections. For each status, a customized percentage 

was defined, representing the activity's progress by advancing in the phase-based status. The 

progress in each activity, including status-based progress and MSI, and the QSI are generated 

by accumulating the quantities and percentages for the materials consumed in each activity at 

the end of each reporting day. The MSI is calculated comprising the planned and actual 

schedules of the activities, accumulated for all activities to show the project's overall status on 

each reporting day. The actual quantity and quality status of the components on site are 

collected by QR code-RFID technology. Saying that, in obtaining the conventional SPI, 

calculations are on activity levels. However, in the developed method and in calculating MSI, 

control points are materials that augment the SPI and CPI indices (Chen et al. 2020, Moselhi 
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et al. 2020). The MSI calculation includes: (1) Critical components associated with near-critical 

activities are selected. The critical components are labelled with RFID tags’ IDs, which are the 

same IDs defined in a planned model. The criticality of the components is implicit in the 

criticality of their associated activities. Two factors, including the total float time and the ratio 

of the total float time to the activity duration, are considered to assess the criticality of an 

activity. The latter one was considered since there is a higher chance for activities with longer 

duration to face delays, although they may have the same total float time. This ratio is quite 

project-specific. However, a default of 15% is suggested by Azarm (2013). This process helps 

to prevent tracking of unnecessary activities (and corresponding components), thereby 

decreasing the number of the tags required as well as the data collection effort required. 

Moreover, careful selection of the critical components helps to prevent overlaying of the 

project progress due to tracking of unnecessary components.  

(2) Calculating individual MSI values for each component type. Equation 3.5 shows the MSI 

value calculated for each component type, where n is the total number of the near-critical 

activities that consumed component type m. The MSI value for each component type is the 

ratio of the actual quantity to the planned quantity of the components consumed or installed. 

𝑀𝑆𝐼𝑚 = 
∑ 𝑄𝑎𝑖

𝑛
𝑖=1

∑ 𝑄𝑝𝑖
𝑛
𝑖=1

 (3.5) 

Here the 𝑄𝑎 is the actual quantity of the components used, while 𝑄𝑝 is the quantity of the 

components that are planned to be consumed by the reporting day. 

(3) Calculating the total MSI involves summing the weighted 𝑀𝑆𝐼𝑚 for each class of 

component. The weighted factor relates the criticality of various component classes to the 

associated activities. It also considers the interconnectivity between component types and their 

associated activities in highlighting the project's progress status. Equations 3.6 illustrate the 

formulas in this regard. 

𝑀𝑆𝐼𝑡 = ∑ 𝑀𝑊𝑚 𝑀𝑆𝐼𝑚
𝑘
𝑚=1  

K = Total number of the class 

of components 

MWm= Material weight for 

class of component, m 

(3.6-a) 

𝑀𝑊𝑚 = 
[

𝐹𝑆𝑚
∑ 𝐹𝑆𝑚

𝑛
𝑚=1

] + [
𝐹𝐷𝑆𝑚

∑ 𝐹𝐷𝑆𝑚
𝑛
𝑚=1

]  

2
 

n = Number of activities  

𝐹𝑆𝑚= Float score for material, 

m 

(3.6-b) 
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𝐹𝐷𝑆𝑚= Float duration score 

for material, m 

𝐹𝑆𝑚 = ∑
𝐹𝑆𝑖,𝑚

𝑛

𝑛
𝑖=1  

𝐹𝑆𝑖,𝑚= Float score for activity 

i using component m 

 

(3.6-c) 

𝐹𝐷𝑆𝑚 = ∑
𝐹𝐷𝑆𝑖,𝑚

𝑛

𝑛
𝑖=1  

𝐹𝐷𝑆𝑖,𝑚= Float duration score 

for activity i using component 

m 

(3.6-d) 

𝐹𝑆𝑖,𝑚 = 𝑀𝑎𝑥𝑓 - 𝐹𝑖 
𝑀𝑎𝑥𝑓 = The activity with 

maximum float 
(3.6-e) 

𝐹𝐷𝑆𝑖,𝑚 = 𝑀𝑎𝑥𝑓𝑑 - 
𝐹𝑖

𝐷𝑖
 

𝑀𝑎𝑥𝑓𝑑 = The activity with 

maximum ratio of the float 

time to the duration 

(3.6-f) 

The QSI is calculated by accumulating the number of components with the “Damaged or 

Broken” status in each activity during the site inspection. This can also compensate for the 

limitation of the MSI, in which the wasted components are not considered in the index, since 

they are omitted from the calculation of the 𝑄𝑎. 

3.4 Integrated RTLS and Point Cloud Data for Refined Indoor Object Localization 

This section describes a newly developed method for the recognition and localization of objects 

on site, utilizing RTLS technologies such as RFID, UWB, and LiDAR device. The LiDAR 

device used in this study is a terrestrial laser scanner (TLS) which generates PCD for the 

experimented environment. In the developed method, the localization information obtained by 

the RTLS devices is refined by the localization information achieved from the PCD acquired, 

leveraging the object detection and segmentation capabilities of a computer-vision algorithm. 

For this purpose, the information obtained is merged to enrich the recognition and localization 

of the identified objects on the scene. In this thesis, the main emphasis is on the integration of 

computer vision with RTLS to refine 3D object localization. The improvement of the computer 

vision algorithm used for semantic segmentation of the collected PCD is not the primary focus 

of this study.Figure 3.10 illustrates the schematic overview of this integration, and how the 

RTLs data are exchanged with the detected PCD. 
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Figure 3.10: Schematic diagram of the developed method for indoor object 

recognition and localization (Bardareh and Moselhi 2023). 

This study uses a point cloud-based algorithm, PointNet, to detect and localize objects. 

PointNet, which is a point-based algorithm, is used to alleviate the limitations associated with 

voxel-based and pixel-based algorithms. As depicted in Figure 3.11, the algorithm comprises 

two main modules, classification and segmentation. The semantic segmentation module of the 

algorithm makes it possible to label each point cloud with the defined class of object. The 

developed method mainly focuses on using the segmentation information achieved from the 

PointNet algorithm and integrating it with the RTLS information. This helps to localize the 

recognized objects on site while enhancing the localization information of the tagged object 

obtained by the RTLS sensors. The hyperparameters are set based on the suggestions of the 

algorithm's founders (Qi et al. 2017). The Adam optimizer is used to adjust the learning rate, 

which is set to 0.001. In this study, a certain class of objects, including furniture and slabs, is 

used to train the algorithm. The number of epochs is set to 25. Additionally, the batch size is 

set to 32, and the dropout rate is 0.3. 
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Figure 3.11: PointNet algorithm (Qi et al. 2017). 

The main focus of this research study is on using PCD to recognize and localize objects. The 

identified gaps in the literature limit the performance of the DNN techniques for onsite object 

recognition and localization. One of these gaps is the generalizability of the developed models 

for various object recognition tasks in different environments. In this regard, this study 

investigates the performance of the available PointNet algorithm to recognize one class of the 

object, chairs, available in the experimental environment's scene point cloud. This class of 

object is already available in the benchmark datasets used in this experiment to train the DNN 

model. However, the model's capability to recognize the objects available in the experimental 

environment and the information about the objects' location are evaluated in the first phase of 

the experiment. In the second phase of the experiment, an integrated RFID–UWB system is 

used to identify and localize the RFID tags attached to the objects in the experimental 

environment. Some of the chairs are tagged with RFID tags, while the information about their 

identification and location are obtained using a trilateration technique. In the last phase of the 

experiment, the possibility of using these tagged objects as the ground-truth information for 

enhancing the information obtained using the PCD is investigated. The information exchange 

between these two groups of information helps enhance the recognition of the information 

obtained using the PCD. Meanwhile, the accurate localization of the PCD helps improve the 

RFID-based system's localization accuracy. 

The information exchange between RTLS and PCD helps enhance object recognition through 

computer vision. Meanwhile, the accurate localization information of the point cloud data helps 

improve the RFID-based system's localization accuracy. Three scenarios are experimented 

with through the developed method to validate the results. The first scenario includes the 
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application of the PCD acquired by a laser scanner to do object recognition and localization 

using a DNN technique. The second scenario involves experimentation with the use of RTLS 

for object identification and localization. Here, some objects are tagged with RFID tags, while 

the information about the object is assigned to it using an ID. The third scenario involves the 

integrated use of these technologies to enhance both the recognition and localization of the 

identified objects. The information achieved in each scenario is used for various purposes. For 

instance, the objects and assets with RFID tags can be localized and tracked using the ID 

assigned to each tag. However, the PCD provides information about the number of objects 

available in each room for each class of object, along with information about the accurate 

location of each object. The integrated approach developed in this study helps to enhance the 

information provided by each type of technology by exchanging the information between the 

first two scenarios. The developed method in this section helps to enhance object localization 

on site, which has applications for improving site inspection, asset retrieval, and automated 3D 

modelling of the site. In the following sections of this paper, the techniques for implementing 

these technologies are elaborated on, focusing on the CNN for using PCD for indoor object 

recognition and localization. Then, the method developed in this study is validated through 

various experimental scenarios. 

The point cloud coordinates—as well as its additional feature channels, such as intensity, 

colour, and normals—represent specific statistical properties of the points and are designed to 

be invariant to certain transformations (Qi et al. 2017). Despite the excellent information 

provided by the point cloud instead of images, including coordinates and features, some 

intrinsic limitations related to using the PCD should be addressed. These limitations include 

the degraded quality of the PCD in case of having unorganized, noisy, and missing data that 

may be caused by occlusion, reflective or transparent surfaces in the building elements. 

Furthermore, the large volumes of point cloud files demand a larger storage area in the server 

while requiring high computation processing performance for applications associated with 3D 

model reconstruction and automated object recognition. Moreover, the PCD acquired by laser 

scanners does not include material type and texture information, which is needed for some 

applications in building engineering. 

The developed method is coded in Python, using the TensorFlow library for the object 

recognition of the PCD. Three experimental scenarios are tested in a laboratory environment 

to validate the developed method, including RTLS, LiDAR and their integrated use. The results 
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for the individual use of the RTLS sensors and LiDAR device (first and second scenarios) are 

confirmed with the object localization and recognition proposed in the literature studies. In the 

third scenario (i.e., the integrated scenario), 90% accuracy is achieved for object detection, 

while localization is found to be accurate to within a few centimetres (this is further explained 

in Section 4.3). 

In the present study, Stanford 3D Indoor Scene (S3DIS) is used to train and test the PointNet 

algorithm (Tran et al. 2021, Qi et al. 2017). However, the PCD collected by the LiDAR device 

in the laboratory environment is used to evaluate the trained algorithm in detection of the 

selected class of object (i.e., chairs in the laboratory). The algorithm used has an acceptable 

classification accuracy. However, the results for 3D scene object segmentation and detection, 

which is required for detecting the target objects in the scene, are unsatisfactory. Only four out 

of ten target objects are correctly detected by the network. However, the localization accuracy 

of the detected objects increased to a few centimetres in 3D format. This problem was reported 

by Qi et al. (2017) and is compensated for by integrating the RFID technology in this study. 

Moreover, for comparison purposes, object segmentation and detection are carried out using a 

ready-to-use platform in the market, Vercator Cloud, thereby improving the 3D scene object 

segmentation and detection (Vercator 2024). 

3.4.1 Evaluation Metrics 

Intersection Over Union (IoU), Equation 3.7, is applied to the results as an evaluation metric 

to assess the performance of the point cloud-based classification algorithm. It is used to 

evaluate the performance of the PointNet, by quantifying the overlap percentage between the 

target mask and our prediction output (Qi et al. 2017). 

𝐼𝑜𝑈𝑐 = 
|𝑃𝑐 ∩ 𝐺𝑐| 

|𝑃𝑐 ∪ 𝐺𝑐| 
 (3.7) 

𝑃𝑐 refers to the set of points the trained model predicted to be of the class-c, 𝐺𝑐 denotes the 

ground truth set of points that belongs to class-c. Accuracy is also used to evaluate the detection 

accuracy of the PointNet scene semantic segmentation based on the number of correct 

predictions to the overall number of objects. 

Moreover, to evaluate the localization accuracy of the RFID–UWB, the RMSE is used as 

suggested by Bardareh and Moselhi (2022). The same metric is used to evaluate the localization 

accuracy of the coordinates assigned to each object through sematic segmentation of the PCD. 
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3.4.2 Integrated PCD and RTLS Data 

Figure 3.12 shows the overview of the research methodology and how these two groups of 

sensory data can communicate together to enhance object recognition and localization on site. 

As depicted in the Figure, the identification assigned to each object labelled with the RFID tag 

is used to localize and identify each object. While the PCD contains information about the 

number of objects in the scene, along with the exact location of each object. For objects 

identified by both the RFID system and the PCD, more accurate information about the ID and 

location of the object is achieved through this information exchange. 

Integrating the identification and positioning data acquired by a tracking system, such as RFID 

or UWB, with the PCD acquired by a laser scanner could provide additional capabilities in the 

3D reconstruction of various elements in a job site. As such, not only structural elements (e.g., 

floor, ceiling, wall, windows) but also small objects and equipment in a job site can be 

recognized, localized, and modelled using the integrated RTLS data and PCD. This helps to 

create a more accurate as-built 3D model of construction projects, which can be used for 

inspection, progress reporting, and productivity analysis of various activities varying from 

structural to equipment and facility installations (Cai et al. 2014, El-Omari 2008, Munaro et al. 

2016, Roghabadi and Moselhi 2020, Shahi et al. 2014).  

 

Figure 3.12: Joint RFID-based and point cloud data (Bardareh and Moselhi 2023). 
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3.5 Digital-twin Platform for Automated Generation of Onsite Inspection Reports 

This section introduces an innovative framework for the automated generation of onsite 

inspection reports, leveraging the integrated use of Real-Time Location System (RTLS), 3D 

digital imaging, and web-enabled computer-vision technologies. The aim underlying the 

framework is to enhance the efficiency of construction project delivery by boosting 

productivity and facilitating timely decision-making through an improved inspection process. 

A sensory-based framework is developed to identify and localize onsite installations as the 

basis for generating onsite inspection reports that contain both installation progress information 

and targeted coordinates. Figure 3.13 illustrates the framework, including the data collection 

technologies employed, data processing algorithms, and the resulting onsite inspection reports. 

The framework comprises three methods: (1) an RTLS-based tracking method that utilizes a 

joint application of RFID and UWB technologies to improve the localization of tagged objects, 

(2) a 3D object detection and localization point cloud-based method that utilizes a computer-

vision algorithm, PointNet, and a user-friendly cloud platform (i.e., Vercator Cloud), and (3) 

an integrated method that combines the outputs of the first two methods comprising the use of 

RTLS and analyzed PCD through computer vision algorithms.  

The first method, described above in Section 3.2, provides information about indoor objects' 

locations. The second method, described above in Section 3.4, detects and localizes objects 

using a computer-vision algorithm and 3D PCD (Xu et al. 2018). These two types of data are 

then integrated to improve the 3D localization of the RTLS while assigning IDs to the objects 

detected by the computer-vision algorithms. As illustrated in Figure 3.13, the integration is 

achieved by mapping the coordinates of the objects realized by these two technologies, 

comprisng RTLS and LiDAR technologies. For this purpose, each of the objects identified by 

the RTLS is assigned an ID and coordinates. Each type of object detected and localized by the 

computer-vision algorithm is also assigned to a dedicated class of objects, which is chair here, 

and assigned 3D coordinates. To obtain the coordinates of a detected object, the PCD labelled 

by the algorithm’s segmentation module is averaged for each detected object. To refine the 3D 

coordinates of the identified objects with RTLS, the accurate 3D coordinates (obtained from 

the averaged PCD) are replaced with the RTLS coordinates. The selection of the detected PCD 

in the vicinity of the identified object is explained in Section 3.5.3, along with various scenarios 

related to this integration. Since the RTLS has a 3D localization accuracy of approximately 1 
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m, the vicinity threshold for assigning the detected objects and their labelled PCD to the 

identified objects via RTLS is selected within this range.  

 

Figure 3.13: Developed framework for data collection and integration using RTLS 

and LiDAR data.  

Integrated technologies are used in the framework to enhance the accuracy of the identified 

object (i.e., chair) coordinates, as well as the accuracy of the information about the quantity of 

the objects. Onsite inspection reports are then generated using the collected data mapped to the 

digital environment, considering the quantities and locations of the objects,  where deviations 

in the coordinates represent differences between as-built and as-planned locations of 

installations, including the ± localization error of the integrated RTLS and 3D imaging 

technologies. The as-planned coordinates are derived from the tie-points on the floor in the 

laboratory. 

The RTLS module is based on the RFID–UWB system, developed in an earlier work to provide 

location identification information about indoor objects' locations accurate to within a few 

decimetres (Bardareh and Moselhi 2022). The AI-based computer-vision module employed is 
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also drawn from an earlier work, the module having been developed to detect and localize 

objects and provide information about the number of objects using a deep neural network 

algorithm and 3D point cloud (Bardareh and Moselhi 2023). The last module is progress 

reporting, in which the integrated use of the RTLS and point cloud-based computer vision is 

used to automate object detection and localization. This integration is achieved by mapping the 

coordinates of the objects obtained by these two technologies. The objects tagged using the 

inexpensive RFID system are more accurately localized using the PCD, as depicted in Figure 

3.13.  

In the experiment, a few activities are selected to represent the project's progress, with these 

activities being monitored by tracking objects present in the two mechanical rooms of a project. 

It should be noted that, while other studies have used the same concept for activity recognition 

of related tasks on site (Huang et al. 2021), the present study focuses on object recognition and 

localization, integrated within the digital-twin platform to enhance onsite inspection and 

progress reporting.  

Integrated technologies are used in the framework to enhance the quality of the data collected 

and to achieve more accurate location identification information on project components, along 

with information about the status, quantity, and availability of these components. These 

technologies include a terrestrial laser scanner and a Real-time Location System (RTLS) 

enabling automated recognition and localization of tracked objects. This recognition and 

localization information, together with BIM, are embedded in a digital-twin platform. 

Progress reports are then generated using the collected data mapped to the digital environment 

that contain the quantities and locations of the identified objects. These reports are also 

visualized a construction twin dashboard to provide project managers with accessible and 

timely information. As shown in Figure 3.14, the front end of the dashboard includes 

information about the project’s overall status, represented by the MSI. The localization error, 

moreover, reflects the accuracy of the integrated RTLS in providing as-built visuals of the 

localized objects on site. The activity overall progress in each report day is presented in the 

form of a graph, while the pie charts provide detailed resolution on each activity’s progress for 

the defined statuses (i.e., the percentage of objects delivered, installed, inspected, and damaged 

or broken). 

 



67 

 

 

Figure 3.14: A construction twin dashboard to visualize progress reporting. 

3.5.1 RTLS in a Digital Twin 

While the reasonable cost of RFID technology makes it a good choice for indoor object 

localization, when it is employed as the sole technology for localization of objects in an indoor 

environment, a large number of RFID reference tags is required to ensure localization accuracy 

(Cai et al. 2014). In outdoor applications, RFID has been integrated with GPS-based sensors  

to eliminate the need for RFID reference tags (Cai et al. 2014, Su et al. 2014). These methods 

essentially find the location of the RFID reader(s) using a GPS receiver and then determine tag 

locations through a trilateration technique. However, in an indoor environment, the 

performance of GPS sensors is degraded since they rely on signals from satellites. In this 

regard, the UWB system can replace GPS as the means of localizing the RFID reader in each 

time span.  

Accordingly, in the present study, a system integrating RFID with UWB sensors is employed. 

This integration helps to avoid the high cost of full-scale UWB implementation for object 

tracking while taking advantage of the medium-range capability of low-cost RFID technology 

(Ruiz and Granja 2017). This integrated module, which provides near-real-time IPS data on 

the project components present on site, benefits from the accurate positioning capability of 

UWB sensors for localizing the hand-held RFID reader in an indoor environment (Bardareh 

and Moselhi 2022, Bardareh and Moselhi 2020), as noted above. As such, it is capable of 
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localizing the tagged objects using inexpensive passive RFID tags while updating the status of 

project components using cloud-based data collection tools.  

3.5.2 PCD and Computer Vision in a Digital Twin 

There are a number of different Scan-To-BIM approaches for implementing PCD to facilitate 

3D modelling of the components available in a scanned scene. There are also various levels of 

automation for generating the models from the PCD. In a manual approach, PCD is used to 

manually model the objects based on visual inspection. In this approach, supplementary tools 

for 3D modelling (i.e., as-built modeller) are used to facilitate the modelling of objects. In semi-

automated approaches, AI-based supervised modelling is implemented in which the as-planned 

3D model of the project on site corresponds to the acquired PCD. In these techniques, the 

supervised classifiers or AI techniques are used to relate every object in the generated model 

to a corresponding element in the planned model. The planned model, in turn, is used as a 

reference to help identify the objects in the PCD. Although semi-automated are more advanced 

than purely manual approaches, they still rely on manual inspection of the generated models, 

and they errantly assume that the as-planned 3D model is sufficiently accurate (Bardareh and 

Moselhi 2023). 

AI-based and DNN techniques have been used to model the objects represented in PCD. These 

techniques directly use the PCD and are capable of detecting and segmenting various classes 

of objects present in the tracked scene based on just one round of training. While these 

techniques are fully automated, they can be lacking in terms of accuracy (Bardareh and Moselhi 

2023, Ma et al. 2022).  

In this study, a point cloud-based network is used to detect and localize objects. For this 

purpose, an available benchmark is used to train and test the model (Bardareh and Moselhi 

2023, Qi et al. 2017). 

3.5.3 Integrated RTLS and PCD for Automated Generation of Onsite Inspection 

Reports 

Integrating RTLS data with PCD enhances object localization and identification by leveraging 

the capabilities of both types of data (Tran et al. 2021). The RTLS component ensures accurate 

identification by assigning IDs to identical objects, a function computer-vision algorithms are 

not capable of due to their limitations in differentiating between identical objects from the same 

class. RTLS is also beneficial in NLoS scenarios, where the LiDAR device is not able to collect 
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PCD (i.e., if an area is covered or objects are hidden behind a panel). The point cloud-based 

computer-vision component, meanwhile, provides highly accurate (within 1 cm) localization 

information, which is crucial in many applications on job sites, such as automated inspection 

of Mechanical, Electrical, and Plumbing (MEP) installations. 

To achieve the integration, all objects recognized and localized by the RTLS and PCD are first 

derived. Then, for any object with an RFID tag, the objects detected by the PCD in the vicinity 

of the tagged object that belong to the same class of object are selected. For example, if an 

object (i.e., a chair, in the case of this study) is tagged and identified with the RFID tag, the 

PCD identified by the DNN algorithms as representing a chair is then assigned to that chair. 

The coordinates of the objects detected in the PCD are then replaced with the location 

information of the RTLS. Figure 3.15 shows the flowchart of the steps for the individual 

deployment of these technologies and their integration for generating onsite inspection reports. 

 

Figure 3.15: Flowchart of the developed method for integrating RTLS and point cloud 

data. 

The integration enhances the localization accuracy of the RTLS as well as the accuracy of the 

coordinates in the PCD. However, the experimental results show that the occurrence rate for 

this improvement is only 30–40% of the tagged objects when using the PointNet algorithm and 

available datasets as a benchmark (Tran et al. 2021). For the other 60–70% of the tagged 

objects, it is the raw identification and localization information obtained by the RTLS that is 
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used to generate the onsite inspection reports. In the present study, the computer-vision results 

obtained using PointNet are compared with those obtained by the Vercator cloud platform. It 

should be noted that Vector Cloud uses optimized computer-vision algorithms to detect objects 

from PCD and for various classes of objects. It also allows the labelled PCD to be exported for 

further analysis and integration with RTLS data (Vercator 2024). 

Figure 3.16 illustrates various scenarios for integrating RTLS and PCD to detect chairs in the 

laboratory. The integration of the RTLS data with computer-vision data ensures higher 

accuracy of the objects’ 3D coordinates while also providing a means of assigning IDs to the 

detected objects for the purpose of generating onsite inspection reports. As depicted in the 

figure, the predominant scenario, the false negative (FN), is the situation in which a chair is 

labelled and identified by an RFID tag but not detected by the PCD. True positive (TP) is when 

the PCD detects the tagged chair. Finally, in false positive (FP), the RFID tag correctly 

identifies the chair, but the chair is not assigned to the correct class of object in the PCD. In the 

FP scenario, the object's location as detected by the RFID tag is errantly replaced with the 

location of another object(s) in the vicinity. This is a rare scenario, and the information about 

the object's ID is still valid in such cases. Although further experiments with other types of 

objects would be required to fully validate the results, RFID information can still be used as 

the primary source of information for object recognition, resulting in a robust identification 

rate for objects labelled with RFID tags and improved localization information in TP situations. 
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𝑅𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 : In Range of the RTLS Localization Error 

Score: The score of DNN for a specific Class of Object 

Figure 3.16: Various scenarios in integrating RTLS and point cloud data.  

ArcGIS packages are used for data collection and for mapping the information in the BIM 

model for visualization purposes. The objects identified using the RTLS, PCD, and integrated 

RTLS–PCD data are counted and added as inputs to the material status index developed by 

Moselhi and Azarm (2013) in order to achieve automated generation of progress reports. 

3.6 Summary 

This chapter described the methods developed for indoor object identification and localization 

and their application in generating progress reports and visualizing the tagged objects in an 

indoor environment. The first method is a cost-effective and practical RTLS based on 

integrated RFID–UWB technologies. The method provides 2D and 3D localization of the 

objects on the floor and at elevation, as well as the ID and status of the tagged objects, and is 

capable of handling even the most challenging objects to track on job sites, such as mechanical 

equipment and other MEP installations. This information is then mapped to the cloud-based 

BIM platform (i.e., GIS packages) to facilitate data collection and visualization of component 

installation progress and status. The object ID, location, and status are used to generate two 

developed indices, MSI and QSI, which capture the progress of the installations and identify 

any damaged or broken objects.  

Computer-vision data is integrated with the RTLS data to refine the 3D coordinates of the target 

objects identified by the RTLS and by the DNN algorithms. This is achieved by capitalizing 

on the detection and segmentation capabilities of the DNN algorithm, PointNet, as well as those 

of a commercial platform on the market, Vercator Cloud, in detecting and localizing the PCD 
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assigned to the target objects. The highly accurate 3D coordinate information acquired using 

the integrated RTLS–computer-vision data, in turn, is used to automate the generation of onsite 

inspection reports through a digital-twin platform. The onsite inspection reports in this study, 

it should be noted, are documents that monitor and record the progress of component 

installations and their targeted locations. A bi-directional construction twin dashboard is also 

developed to visualize the reports, and to facilitate data collection on site. 
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CHAPTER 4: Method Implementation and Results 

4.1 Overview 

This section describes three case studies carried out in both laboratory and site environments 

to evaluate the methods developed in this study. The laboratory case studies validate the 

methods described in Sections 3.2 and 3.4, comprising: (1) an experimental study on the 

integrated Radio Frequency Identification Device (RFID) and Ultra-Wideband (UWB) to 

develop a Real Time Location system (RTLS) for indoor identification and localization of 

objects in 2D and 3D formats, and (2) an experimental study on integrating the RTLS data with 

point cloud data, leveraging computer vision capabilities to refine the 3D localization of 

objects. The case study on site validates the method described in Section 3.2 to generate 

progress reports by integrating the RTLS data with cloud-based Building Information 

Modeling (BIM) packages. The mechanical rooms of a pool project are selected for the study, 

and the results are visualized through a dashboard. 

To localize the objects with the RTLS devices, the hand-held RFID reader equipped with the 

UWB attached acquires data associated with the RFID tags attached to the objects. The UWB 

tag attached to the RFID reader provides the reader's real-time location, while the RFID tags' 

location is identified using the trilateration technique and the distance of the tags from the RFID 

reader. Figure 4.1 shows the technologies used for data collection in this study. 

The device used for 3D Point Cloud data (PCD) acquisition is Faro Focus 3D X 130. This 

device has a maximum reading range of 130 m. It covers the entire horizontal angle. 

However, the vertical angle's field of view (FOV) is 300°. The ranging error of the laser 

scanner is ±2 mm. This device scans stationary stations. The final PCD is generated by 

registering the various stations and aligning the axis and origin. In this experiment, the laser 

scanner is set to resolution = 1/4, quality = 4×, vertical angle of view −60° to 90°, horizontal 

angle of view of 360°, scan size 10,240×4,276, scanning rate = 43.7 Mpts, and number of 

scans = 5. The approximate time for each scan is 11.5 min.  

 

  

QR code-RFID Tags UWB Sensors Hand-held RFID Reader 
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Light Detection and Ranging 

(LiDAR) 
 Mobile Phone 

Figure 4.1: Technologies used for data collection: RTLS and LiDAR. 

4.2 Experimental Study for Testing RFID and UWB Devices 

4.2.1 Laboratory Layout  

The experimental work was carried out over an area of 13 m × 8 m in a laboratory environment. 

The area was divided into a 90 cm × 90 cm grid marked as shown in Figure 4.2. The grid 

defines 65 ground-truth tie-points, including Line-of-Sight (LoS) and NLoS situations. 

Extending the tie-points to the NLoS situation helps to evaluate the UWB system accuracy for 

situations in which obstacles such as walls and furniture may affect localization accuracy. Four 

UWB sensors are located at the four corners of the area used for the experiments, and 10 RFID 

tags are located, as shown in Figures 4.3 and 4.4. A fifth UWB sensor was located on the 

mobile RFID reader. The receivers are located at a height of 1.65 m, except one at a height of 

2.15 m. Putting one of the receivers at a different height allows the UWB system to localize 

the roving tag (mounted on the mobile RFID receiver) even for elevations above the surface of 

the other three receivers. However, in this experiment, the roving UWB tag is at a height of 

1.35 m. Three experiments were carried out on the UWB, RFID, and integrated use of both 

technologies. These experiments are subsequently described in sections 3.3, 3.4 and 4.1, 

respectively (Bardareh and Moselhi 2022). 

The objects are located at tie-points already marked on the ground to validate the localization 

information obtained from the experiment. For data acquisition, a laser scanner is used to 

collect PCD from five different stations in the lab. Meanwhile, the surveyor roves around the 

lab with a hand-held RFID reader to capture RFID data. To enhance localization information, 

the surveyor stops moving when triggering the RFID reader. However, the UWB tag attached 

to the RFID reader can capture real-time localization information at a frequency of 

approximately 4–5 Hz, or every 200–250 ms, even when the surveyor is moving. 
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Figure 4.2: Layout of the tie-points in the lab. 

 

Figure 4.3: Experiment environment in the lab. 



76 

 

 

(a) 

 

(b) 

(c) 
 

Figure 4.4: Experiment environment: (a) UWB sensors (b) UWB receiver (c) Layout 

of the UWB sensors placement, RFID reference tags and tie-points. 

As outlined in Chapter 3, the experiments consist of two phases. Phase 1 focuses on testing the 

UWB and RFID systems. Phase 2 focuses on the integrated use of RFID and UWB for object 

localization in both 2D and 3D formats.  

4.2.2 Experimental Study on UWB  

The experiment consists of moving the mobile UWB tag along the movement path shown in 

Figure 23, to the 65 different ground-truth locations. For each tie-point, a time interval of 30 s 

is considered, so each test lasts 32.5 min. The data rate of the system is set on 110 kbps and 

Channel 2 (3.993 GHz) which is the recommended configuration defined by the manufacturer 

for longer range measurement. Ten (10) seconds before and after each displacement is removed 
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in order to guarantee a good ground-truth data. With this configuration, in each second between 

three to four localization data are recorded which is still suitable for real-time data acquisition. 

However, to increase the rate of data acquisition applicable for moving tags with higher speed, 

the data rate of 6.8 Mbps is available. The impact of a moving sensor on the localization 

accuracy of the UWB sensor has been evaluated in the integrated RFID–UWB experiment, 

following the data acquisition workflow outlined in Section 4.2.1. More details about the 

experiment are found in (Jimenez and Seco 2016, Ruiz and Granja 2017).  

The UWB sensors used in this study utilize an atomic timer embedded in their PCB board that 

provides a high positioning accuracy in the range of a few decimetres. These are open-source 

sensors that are just an eighth of the cost of commercial sensors, but do not have a protected 

enclosure (DecaWave 2016). The experimental work aimed to study: (1) the range 

measurement accuracy of the UWB System, and (2) its localization accuracy. 

With respect to range measurement, the real-time ranging distance of the UWB tag from the 

stationary UWB receivers are measured. One way to improve ranging measurement is to 

remove outlier data from our estimation. In this experiment, first any outlier ranging values in 

NLoS situation with the absolute error value more than 0.8 m from the mean range error in 

each stop are removed from the initial data. Then, the ranging data are split into three 5-m 

intervals (0–5 m, 5–10 m, 10–15 m). After removing the ranging data in the first and last 10 

seconds of each stop, the distance of the roving tag from each receiver is obtained by averaging 

the remaining ranging data in the middle 10-s for each tie-point.  

Figure 4.5 shows the good performance of the experimenting UWB in which the measured 

ranging values against real ranging values are depicted. As expected, all data points are above 

diagonal line which indicates the positive aspect of error due to the NLoS dispersion. In other 

words, the measured range values are larger than the real values due to the factors such as 

multipath effect and signal deviation.  

Figure 4.6 and Figure 4.7 illustrate error histogram, and mean ranging error and standard 

deviation (SD) values in each ranging interval with and without omitting initial outliers in 

NLOS situation. Figure 4.7 shows how removing outliers improves the mean ranging error, 

especially for longer range intervals. However, it results in missing the data for 4 out of 65 tie-

points. For instance, in the third range interval (10–15 m), removing outliers shows the 

improvement of approximately 10 cm, while this value for the first range interval (0–5 m) is 

approximately 1 cm. 
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Figure 4.5: Real versus measured ranges. 

 

Figure 4.6: Error histogram in NLoS scenario. 
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Figure 4.7: Mean and SD error values with outliers (left), and without outliers (right). 

As to localization accuracy, the 3D localization information provided by the UWB are used to 

localize the hand-held RFID reader. A comparison of the methods to mitigate localization error 

associated with NLoS scenario and the situations in which they are employed were discussed 

in (Jimenez and Seco 2016, Ruiz and Granja 2017).  

The final results in the Lab show an Root Mean Square Error (RMSE) of approximately 20 cm 

for 3D localization, while the results without removing the outliers and for all 65 tie-points 

show the error of approximately 30 cm in 3D localization. 

4.2.3 Experimental Study on RFID  

To achieve the model for range measurement, 10 reference tags with known locations are 

located in some of the tie-points at the height of 1 m from the floor level (Figure 4.4). The 

model is developed for the RFID system based on a dataset of approximately 1,200 readings 

in each set of the experiment. Each dataset consists of the information about the tags reading 

time, ID and signal strength which are acquired while moving on 35 tie-points in LoS situation. 

The RFID device is experimented for four RFID reader output powers including o20, o22, o25 

and o29 decibel-milliwatts (dBm), which are equivalent to minimum, conventional, proposed 

and maximum outputs equal to Effective Radiated Power (ERP) of 0.1, 0.16, 0.32 and 0.8 

watts. Saying that, the maximum reading range of the RFID reader is increased by rising the 

output power of the reader. For each of these scenarios, after removing the data acquired in the 

first and last 5 s in each tie-point, the data in the range less than maximum reading range of the 

RFID reader are selected (e.g., below 3 m for o20 dBm or 6 m for o25 dBm). By achieving the 
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initial regression line for each set of data, the outliers (error exceeding 1 m) are removed. 

Finally, the data are averaged for increment of 2 cm and the final regression model is achieved. 

Figure 4.8 illustrates the path–loss models for the four RFID reader outputs. The figure depicts 

the RSSI value versus, the distance between the reference tags and the reader in each tie-point. 

In this experiment, the linear regression models are selected; however, more details about the 

best regression models and their accuracy are available in (Montaser and Moselhi 2014, Razavi 

et al. 2012).  

 

 

Figure 4.8: RFID system path–loss models. 

Table 4.1 illustrates the results for these scenarios detailing the linear path–loss equations to 

achieve the distance range value (DRV), R2-value for each regression model, RFID reader 

maximum range and absolute error in range measurement. Based on the results achieved, the 

best performance of the RFID system is for the output of o25 dBm in terms of the device 

maximum reading range and ranging accuracy parameters. This output is proposed for 

applications associated with range measurement (i.e., proximity warning system) that were 

mentioned in the literature. More investigation is needed to optimize the RFID output power 
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by considering the two parameters. Other factors such as the environment and multi-path effect 

can bias the accuracy of the achieved path–loss models. 

Table 4.1: Results for path–loss models. 

Scenario Distance Equation R2 Range (m) Error (m) 

o20dBm −0.4616 × RSSI − 32.5333 0.77 3.0 0.79 

o22dBm −0.5429 × RSSI − 38.6667 0.86 3.5 0.94 

o25dBm −0.5276 × RSSI − 38.0135 0.86 6.0 0.91 

o29dBm −0.6543 × RSSI − 45.4089 0.38 6.5 2.17 

4.2.4 Experimental Study on Integrated RFID and UWB  

For the integrated RFID and UWB, the data acquisition is based on the experimental work 

described above, and considering the characteristics of each technology in order to enhance the 

localization accuracy. The data acquisition for evaluating the developed system is similar to 

the steps used in developing the path–loss models of the RFID system. However, this time the 

location of the hand-held RFID reader is measured by a UWB tag. Figure 4.9 shows the 

developed device for this purpose in which the UWB tag attached on top of the RFID reader 

provides real-time location of the reader during data acquisition. Ten sample RFID tags are 

labelled and placed at the height of 1 m on the optional tie-points. One tag is labelled as the 

time reference tag (A1_01 in Figure 4.9) for data synchronization in which the start of the data 

acquisition for RFID and UWB data is set in the Python code as this tag is read. A surveyor is 

requested to start roving in the lab; however, to enhance the accuracy of the UWB system in 

localizing the RFID reader, the surveyor stops moving when triggering the hand-held reader. 

In each stop, the RFID reader acquire the data from the RFID tags in the vicinity, depending 

on the maximum reading range of the reader (varying from 3 m to approximately 6 m). Since 

the surveyor moves arbitrarily in the lab, a time-step of one second is considered for matching 

the RFID and UWB data; which is in extent of the time resolution provided by the RFID reader. 

In this set of experiments a total of approximately 3,500 lines of data are acquired for the 

integrated RFID–UWB. This includes the data acquired for three different output power of the 

RFID reader, and for 2D and 3D localization. 
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Figure 4.9: Integrated RFID–UWB device. 

The results for various scenarios in which the RFID reader output is set to o20, o22 and o25 

dBm, and its effect on the localization accuracy of the integrated method are shown in Table 

4.2. Error1 illustrates the localization error before SoD analysis, while Error2 shows improved 

accuracy after considering the reader spatial distribution in which the data with the highest 

values of SoD are selected and averaged.  

Based on the results, an increase in the RFID reader output power decreases the localization 

accuracy; however, the maximum reading range of the device increases. While in the 

experiments on the sole RFID device, the o25 dBm was identified as the optimal output power 

for applications associated with range measurement, but the 2D-localization error with this 

output power is almost two times more than the error for the conventional RFID reader output 

(o22 dBm). This is due to the fact that the developed 2D (3D) localization algorithm depends 

on the intersection of the circles (spheres). As the RFID output power increases, a larger area 

of plane (space) is occupied by the circles (spheres), and the localization algorithm's capability 

to adjust the radius and control the Ratio value decreases. Moreover, the processing time of the 

algorithm greatly increases the RFID optimal output power, particularly for 3D localization. 

Table 4.2: Results of the various techniques for onsite material localization. 

Techniqu

e 

RFID–UWB 2D  

Localization 

RFID–UWB  

3D 

Localization 

RFID  

(Montaser 

et al. 2014) 

RFID + GPS  

(Hubo et al. 2014) 

RFID 

(Wu et al. 

2019) 

Scenario Erro Erro Confidenc Error 2  2D  2D 3D 2D  
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r 1 

(m) 

r 2 

(m) 

e 95% 

for Error 2 

(m) Localizatio

n  

Error (m) 

Localizati

on  

Error (m) 

Localizatio

n  

Error (m) 

Localizatio

n Error (m) 

o20dBm 0.48 0.47 0.38−0.56 1.04 
1.9 

(+1.38) *  

2.48 

(+1.95) * 

2.59 

(+1.44) * 

1.25 

(+50.75) * 
o22dBm 0.65 0.52 0.34−0.7 1.15 

025dBm 1.25 1.01 0.32−1.7 1.8 

* Improvement of the localization error in the developed method as compared to the previous studies. 

The results also show that the idea of using varying radius and SoD analysis improves the 

localization accuracy more for the longer maximum reading range of the RFID reader or with 

the higher output power. The longer maximum range of RFID reader is valuable since less 

surveying time and effort is needed for data acquisition. In this way, the absolute 2D 

localization error improves for approximately 24 cm in o25 dBm, while this number for o22 

dBm and o20 dBm are only thirteen and 1 cm (Bardareh and Moselhi 2022). 

The developed method also shows good performance in 3D localization of the tagged objects 

on site. For instance, in the conventional output power of the RFID reader, the results show an 

RMSE of approximately 1.15 m, while this value for the methods based on RFID alone and 

integrated RFID and GPS technologies, investigated in the literature, are, respectively, 1.9 m 

and 2.59 m. As shown in the table, by projecting the 3D localization information on the plane, 

the RMSE is approximately 0.52 cm for 2D localization, which illustrates a localization error 

of approximately 1 m in the elevation. Comparing the localization error with the available 

UWB system, the error value of the developed method is over two times more than the 

standalone UWB system. However, the cost of the developed method for object localization is 

much less costly than the individual UWB system (Bardareh and Moselhi 2022). 

It should be mentioned that the localization errors in Table 4.2 are the cumulative error of the 

UWB system localization, RFID system path–loss model, and the localization module, which 

affect the localization of the objects labelled by RFID tags. The use of particle filters and 

removing more outliers from UWB localization data could be the topic of future studies which 

enhance the localization data required for the RFID reader location. Furthermore, a sensitivity 

analysis on the threshold values defined in the localization module, such as Ratio and the 

number of acceptable data with higher SoD values, may also improve the localization accuracy, 

which needs more investigation. The main constraint for such an analysis would be the high 

processing time of the algorithm and the mathematical effort required to solve the non-linear 

trilateration equations, particularly in the case of 3D localization (Bardareh and Moselhi 2022). 
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The developed method provides objects localization in the indoor environment by using low-

cost RFID tags. In this way, a larger number of objects are localized, while the individual use 

of expensive sensors such as the UWB and GPS is identified as the main limit for object 

localization. Moreover, the integrated use of the UWB and RFID solves the problem of using 

a large number of RFID reference tags for localization of the roving hand-held RFID reader, 

mentioned in previous studies. The integration method developed in this study for indoor 

material localization can be easily extended for outdoor applications, while the long-range 

UWB or accurate GPS-based technologies are used to localize the equipment and workers on 

site (Bardareh and Moselhi 2022). 

The thorough investigation of the RFID system results in identifying the optimal output power 

for the hand-held RFID reader, which results in a better performance for range measurement 

applications in terms of accuracy and higher reading range of the reader. The developed 

trilateration technique also improved the 2D and 3D localization accuracy of the RFID tags 

over the accuracy reported in the previous studies (Bardareh and Moselhi 2022). 

4.3 Onsite Case Study for Progress Reporting using MSI and QSI 

This section describes the fieldwork conducted to validate the method in Section 3.3. The 

mechanical rooms of a site are selected to validate the progress reporting module in this study 

since components are installed in these spaces. Components in this study includes the 

mechanical equipment required in the mechanical room of a pool project. The data collection 

rate depends on the type of activities, but for the sake of this study, the data are collected and 

reported weekly. In this regard, a coordination meeting with the site coordinator is needed to 

identify the various activities and to define customized statuses for each activity. Information 

about the quantity of the components planned to be installed up to the report date is also needed 

to calculate the Material Status Index (MSI) and compare as-planned with as-built status. The 

planned schedule for the activities also helps to identify near-critical activities defined in this 

study and to tag the critical components associated with near-critical activities. Near-critical 

activities are identified by defining a threshold ratio of each activity’s float to duration time. 

This ratio is defined as 10% for this study, which the site manager confirms. Appendix II 

provides a guideline for applying this method on job sites, along with a detailed, step-by-step 

process for implementing this digitalized progress tracking. 

The fieldwork has three main operations: (1) localization of the tagged components with hand-

held RFID reader and the attached UWB sensor, and to transfer them to the cloud-based 
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Geograpic Information System (GIS) platform along with a 3D representation of the site as 

done for material tracking, (2) site surveying and assigning status to the tagged components, 

and report any issue for damaged or broken component during site inspection, and (3) 

generating the progress reports on the status of the overall project (using MSI) and that of each 

activity. 

The four UWB receivers are installed on the side of the room, while 40 critical project 

components associated with near-critical activities are labelled with RFID tags. Tagging the 

critical components helps avoid tagging all components with RFID tags, which reduces the 

tagging effort and cost while reducing the data collection time. 

Figure 4.10 shows a 3D model of the mechanical rooms in the fieldwork. For data collection, 

the site surveyor starts roving on site and updates the components' status. Moreover, the 

surveyor reports any issue automatically through the GIS cloud-based platform. By knowing 

the updated status of the components associated with each activity, it is possible to report the 

progress of each activity automatically. The 3D visualization of the information also allows for 

a tagged material to be quickly retrieve using the latest localization information updated in 

ArcGIS’s database. Furthermore, the information about the components' location, time, and 

status is automatically updated in the database during surveying. At the same time, any issues 

are reported or marked for further action during the site inspection and RFI. Figure 4.11 

illustrates a sample component tagged with the RFID tag and the associated information 

embedded in each tag. 

  

(a) (b) 

Figure 4.10: Site layout for digitalized progress reporting: (a) Filtration room, (b) 

Boiler room. 
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Figure 4.11: Sample tagged component on site for progress reporting. 

The infrastructure provided for material tracking is used for site reporting and progress tracking 

of the installations in the mechanical room. Two indices are developed to highlight the 

installation's progress and quality. The developed MSI and Quality Status Index (QSI) are used 

to report the progress and quality of the activities. The quality of the activities is defined based 

on the number of damaged or broken materials in each activity. 

Table 4.3 shows the tagged components of 13 near-critical activities in 13 classes of 

components associated with the activities. These components are tagged with QR code-RFID 

tags to track their quantity, status, and location from delivery to completion. Figure 4.12 

illustrates the reporting hierarchy in this fieldwork and the relation between the components, 

activities, and the data collected for each reporting information. As depicted in Figure 4.12.a, 

the mechanical rooms have been broken down into two zones, and the near-critical activities 

in each zone are identified to be tracked. For each activity, a set of consumed components with 

tagged IDs is tracked through defined statuses. Figure 4.12.b shows how the progress reports 

and visualized models are generated automatically from the collected data (i.e., ID, status, and 

location of the tagged components). In this study, data collection to identify the status of the 

tagged components is conducted manually. However, the identification of the tagged 

components, their IDs, and their locations on each reporting day is automatically achieved 

through the developed method in Stream I. 

Table 4.3: Near-critical activities and tagged components for site progress 

reporting. 
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Zone # 
Activity 

Type 

Component 

Name (code) 
RFID ID 

Duration 

(days) 

Float 

(days

) 

Float/Duratio

n 

SS-TEC-

101-

Filtratio

n room 

Activity01-

Sand filter 

system's 

installation 

FAS-PLG-SS-

01 
ID00038 

90 5 0.06 

FAS-PLG-SS-

02 
ID00039 

FAS-PLG-SS-

03 
ID00037 

FAS-PLG-SS-

04 
ID00036 

FAS-50M-SS-

01 
ID00060 

FAS-50M-SS-

02 
ID00059 

FAS-50M-SS-

03 
ID00058 

FAS-50M-SS-

04 
ID00057 

FAS-50M-SS-

05 
ID00056 

FAS-REC-SS-

01 
ID00011 

FAS-REC-SS-

02 
ID00012 

Activity02-

UV 

treatment's 

installation 

UV-PLG-SS ID00211 

90 10 0.11 UV-50M-SS ID00206 

UV-REC-SS ID00110 

Activity03-

CO2 dosing 

device's 

installation 

CO2-PLG-SS ID00111 

90 10 0.11 CO2-50M-SS ID00112 

CO2-REC-SS ID00113 

Activity04-

Chloring 

dosing 

pumps' 

installation 

PO-CHL-PLG-

SS 
ID00114 

90 10 0.11 
PO-CHL-50M-

SS 
ID00115 

PO-CHL-REC-

SS 
ID00116 

Activity05-

Clarifier 

dosing 

pump's 

installation 

PO-CLA-PLG-

SS 
ID00117 

90 15 0.17 
PO-CLA-50M-

SS 
ID00118 

PO-CLA-REC-

SS 
ID00119 

Activity06-

Water 

CTR-PLG-SS ID00120 
90 15 0.17 

CTR-50M-SS ID00121 
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treatment 

panel's 

installation 

CTR-REC-SS ID00122 

SS-TEC-

110-

Boiler 

room 

Activity07-

Electrical 

boiler's 

installation 

CHEL-1 ID00183 

88 5 0.06 
CHEL-2 ID00184 

Activity08-

Gas boiler's 

installation 

CHGA-01 ID00182 
88 5 0.06 

CHGA-02 ID00194 

Activity09-

Heat 

exchanger's 

installation 

EEE-PIS-1 ID00208 

88 10 0.11 EEE-PIS-2 ID00189 

EEE-PIS-3 ID00195 

Activity10-

Heat pump's 

installation 

POEC-CH1 ID00188 
88 10 0.11 

POEC-CH2 ID00207 

Activity11-

Heat pump 

for mixed 

water's 

installation 

POCT-CH3 ID00123 

88 10 0.11 
POCT-CH4 ID00124 

Activity12-

Pump for the 

pool 

heating's 

installation 

POEC-CP-1 ID00193 

88 10 0.11 
POEC-CP2 ID00196 

Activity13-

Tank's 

installation 

RENP1 ID00013 88 5 0.06 

 

 

(a) 
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(b) 

Figure 4.12: Overview of the site reporting hierarchy: (a) reporting hierarchy, and (b) 

data collected for each typr of reporting information. 

Once the tags attached to the components on site have been read, their status is updated via 

cloud-based GIS platforms. For this purpose, the surveyor updates the status of each component 

by selecting the predefined statuses defined in the Survey123 application on the phone. The 

MSI is calculated for progress reporting based on the number of tags identified for each activity 

type, representing the actual number of installed components. The activity-based reports 

include the progress of each activity, obtained by adding up the progress percentages 

corresponding to the status assigned to each activity type. The quality of the components used 

in each activity is determined by calculating the ratio of damaged or broken components to the 

total number of components used for that activity. 

Table 4.4 provides the results for the generated site progress report for five reporting days in 

two months. The reason that MSI does not show the project progress on the first day of data 

collection lies behind the fact that MSI depends on the interconnectivity of the components 

used in various activities. The index cannot show the overall project status since each 

component is used in only one activity on the first report day. However, the activity level 
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progress reporting based on the assigned status still shows the progress of the activities on that 

day.  

 

Table 4.4: Material-based and activity-based reporting. 

Parameter 

Project Timeline 

Report 

Day01 

(September 

27, 2023) 

Report 

Day02 

(October 

12, 2023) 

Report 

Day03 

(October 

18, 2023) 

Report 

Day04 

(November 

7, 2023) 

Report 

Day05 

(November 

15, 2023) 

MSI 0.30 0.40 0.40 1.08 1.01 

Overall Project 

Status 

Behind 

Schedule 

(MSI<1) 

Behind 

Schedule 

(MSI<1) 

Behind 

Schedule 

(MSI<1) 

Ahead of 

Schedule 

(MSI>1) 

Ahead of 

Schedule 

(MSI>1) 

QSI (%) 100.00 100.00 100.00 100.00 100.00 

Activity Status Reporting 

Main component 

delivered (%) 
100.00 100.00 100.00 100.00 100.00 

Component 

Installed (%) 
32.50 37.50 42.50 55.00 62.50 

Sub-Components 

Installed (%) 
0.00 10.00 15.00 45.00 57.00 

Electricity 

Completed (%) 
0.00 0.00 0.00 0.00 5.00 

Piping Completed 

(%) 
0.00 0.00 0.00 22.50 22.50 

Pipe Insulation (%) 0.00 0.00 0.00 0.00 0.00 

Static Inspection 

(%) 
0.00 0.00 0.00 0.00 0.00 

Dynamic 

Inspection (%) 
0.00 0.00 0.00 0.00 0.00 

Overall Activities 

Progress (%) 
14.42 15.73 18.3 24.97 28.62 

 

4.4 Experimental Study on Integrated RTLS and PCD Data 

This section describes the validation of the developed framework for integrating RTLS data 

with PCD to refine 3D object localization through an experimental study conducted in a 

laboratory environment, in which identical chairs are used as the sample class of objects to be 

identified and localized. The chairs are labelled with passive RFID tags (placed at the top of 

the chair-back at a height of 1 m) and positioned on the targeted tie-points on the floor (Figures 

4.13 and 4.14). The laboratory is also scanned with a LiDAR device to calibrate the RTLS and 

collect the PCD required for the Deep Neural Network (DNN) algorithms. For a total of five 
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scan stations, 22.5 Mpts are collected. Table 4.5 shows the as-planned coordinates of the chairs 

on the designated tie-points on the floor, along with the ID assigned to each chair. Ten tie-

points are selected from a total of 65, and each of chairs is located on a tie-point.  

 

Figure 4.13: Layout of the tie-points in the laboratory with scanned stations. 

 
Figure 4.14: Registered point cloud data of the laboratory. 
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Table 4.5: Targeted coordinates in the tie-points (as-planned status). 

No. Tie-point ID 𝑋𝑝(m) 𝑌𝑝(m) 𝑍𝑝(m) 

1 10 A001 4.8 1.2 1 

2 12 A002 3.0 1.2 1 

3 23 A003 5.7 3.0 1 

4 27 A004 2.1 3.0 1 

5 38 A005 6.6 6.6 1 

6 42 A005 9.3 5.7 1 

7 45 A007 9.3 3.0 1 

8 51 A008 12.0 2.1 1 

9 53 A009 12.0 3.9 1 

10 55 A010 12.0 5.7 1 

Table 4.6 provides a summary of the initial results for three experimental scenarios defined in 

this study for object recognition and localization using RTLS data, PCD-based object detection 

using PointNet, and the integration of these two technologies. The locations of the objects 

detected in the PCD are obtained by averaging the coordinates assigned to each object class 

through the PointNet semantic segmentation process. Meanwhile, the RTLS provides details 

about each tagged object's ID and location. The assumption in the integrated RTLS–PCD 

scenario of the experiment is that, while the RFID tags have the primary role in identifying the 

objects, the information provided by the PCD helps to enhance the localization accuracy of the 

identified tags. To achieve this, the averaged coordinates of points labeled as chairs within the 

radius of the RTLS error in 3D localization are assigned to the tagged chair. As shown in Table 

4.6, since the point cloud data provides accurate coordinates of the segmented components, 

replacing their coordinates with those acquired by the RTLS will enhance 3D localization 

accuracy. 

Table 4.6: Preliminary results of the integrated RTLS and point cloud data using 

PointNet algorithm for object detection. 

Parameter  PCD RTLS PCD+RTLS 

PCD Detection (IoU) 

RTLS Identification (%) 
41.00 90.00 36.90 

3D Localization (RMSE in metres) 0.45 1.54 0.45 
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Tables 4.7 shows the estimated coordinates of the chairs as determined by the integrated 

method using the Vercator cloud platform for object detection and localization in comparison 

to the results achieved using the PointNet algorithm to refine RTLS coordinates. The deviation 

in coordinates is calculated by obtaining the RMSE between the as-built coordinates and the 

as-planned coordinates of the chair in each tie-point. In a real scenario on the job site, this value 

would be a sum of the deviations from the as-planned coordinates and the integrated method’s 

error in estimating the chairs’ coordinates. However, in the experiment, all chairs are precisely 

located on the as-planned coordinates in order to identify the integrated method’s error in 

estimating the as-built coordinates (see the right-most column of Table 4.7).  

Additionally, to calculate the progress of the chair installations, the number of identified chairs 

is divided by the total number of planned tie-points. There is found to be only one instance of 

the integrated method failing to identify and localize a chair. Since all the chairs are present at 

the targeted tie-points, the integrated method achieves a 10% error. 

Table 4.7: Tagged chairs’ estimated coordinates and their deviations from as-

planned status using Vercator Cloud for object detection. 

No. 
Tie-

point 
𝑋𝑒(m) 

 
𝑌𝑒(m) 𝑍𝑒(m) 

Coordinates’ 

deviation (RMSE) 

 Using PointNet Algorithm 

1 10 3.5  1.9 1.8 0.97 

2 12* 3.2  1.4 1.5 0.33 

3 23* 5.9  3.3 1.2 0.24 

4 27 3.5  3.2 2.6 1.23 

5 38 6.1  7.4 1.9 0.75 

6 42 8.5  6.9 1.7 0.46 

7 45* 9.1  3.1 1.2 0.17 

8 51 -  - - - 

9 53* 11.7  3.6 1.5 0.38 

10 55 13.4  4.8 1.7 1.04 

 Average Deviation (m) 0.62 

 Estimated Progress 90% 

 Using Vercator Cloud Platform 

1 10* 4.6  1.1 1.2 0.17 

2 12* 3.1  1.2 0.9 0.08 

3 23* 5.5  3.2 1.0 0.16 

4 27* 2.2  3.1 1.2 0.14 

5 38* 6.7  6.5 0.8 0.14 

6 42 8.5  6.9 1.7 0.46 

7 45* 9.2  3 1.1 0.14 

8 51 -  - - - 

9 53* 11.8  3.9 0.9 0.13 

10 55 13.4  4.8 1.7 1.04 

 Average Deviation (m) 0.27 
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 Estimated Progress 90% 
* The refined RTLS locations by integrated method using DNN algorithm. 

As illustrated in Table 4.7, the use of Vercator Cloud enhances the detection rate of the chairs 

due to the optimized algorithms and its larger dataset compared to the PointNet algorithm. 

These characteristics result in more accurate coordinates for the chairs identified through the 

integrated method. However, one of the chairs is still not identified through the integrated 

method (i.e., chair number 8 in Table 4.5). 

4.5 Summary 

The methods developed in this study are validated through experimental and fieldwork. A 

laboratory environment is selected for the experimental work, and 65 tie-points with known 

coordinates are mapped on the floor. Some objects, including the chairs that are the target 

objects in the experiment, are placed on the selected tie-points. The chairs are labelled with 

passive RFID tags (placed at the top of the chair-back at a height of 1 m) and positioned on the 

targeted tie-points on the floor. The laboratory is also scanned with a LiDAR device to calibrate 

the RTLS and collect the PCD required for the DNN algorithms. 

The fieldwork involves tracking and reporting the progress of component installations in two 

mechanical rooms (the filtration room and the boiler room) as part of an actual pool 

construction project, the target objects (i.e., mechanical components) being furnished with 

passive RFID tags. The RTLS data for the integrated RFID–UWB method is collected using 

cloud-based GIS packages. A reporting hierarchy is also developed to track the components 

assigned to various activities in these rooms. The identification and localization information of 

the tagged objects, along with the status information collected, is mapped to the GIS packages 

with BIM capabilities for the purpose of generating reports via MSI and QSI indices. 

The digital-twin platform is also tested through experimental work in the laboratory. The 

refined coordinates of tagged objects obtained via RTLS–PCD integration, detected and 

localized by the DNN algorithm, PointNet, and Vercator Cloud platform, are used for 

generation of the onsite inspection report. 
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CHAPTER 5: Conclusion 

5.1 Summary and Concluding Remarks 

This aim underlying this research is to improve construction operations by automating tracking 

and progress reporting using integrated technologies such as Real-time Location System 

(RTLS) and Point Cloud Data (PCD) for indoor object localization in 2D and 3D formats. The 

integrated use of these technologies, leveraging the capabilities of a cloud-based Building 

Information Modeling (BIM) platform and computer vision, improves indoor object 

localization and facilitates automated generation of onsite inspection reports. To achieve this, 

four main methods are developed: (1) an Indoor Positioning System (IPS) based on integrated 

RTLS technologies, Radio Frequency Identification Device (RFID), and Ultra-WideBand 

(UWB) for location identification of tagged objects in an indoor environment; (2) the joint use 

of the IPS and cloud-based BIM tools to enhance data collection and visualization, visualizing 

the information associated with tracking and automated progress reporting through two 

developed indices, Material Status Index (MSI) and Quality Status Index (QSI) (where 

identification of the quantity, status, and location of the components present on site aids in 

estimating project progress and facilitates retrieval of the tagged components for inspection 

purposes); (3) computer-vision and deep-learning algorithms are used for object recognition 

and refined 3D localization, implemented on integrated RTLS–PCD data; and (4) a digital-twin 

platform comprising RTLS, PCD, and cloud-based BIM tools is developed that enables the 

automated generation of onsite inspection reports containing information on installation 

progress and targeted locations. A construction twin dashboard is developed to ensure bi-

directional communication between the physical and digital environments via BIM plug-ins. 

The developed methods are validated through laboratory experiments and a case study.  

5.2 Research Contributions 

The main contributions of this research are:  

I. Developing of an improved localization method for automted 2D and 3D localization 

of objects in an indoor space using integrated RFID and UWB technologies; 

II. Integration of material tracking with progress tracking via the developed indices for the 

purpose of monitoring the quantity and status of materials used in a project and 

generating progress reports; 

III. Enhanced 3D localization accuracy of objects in an indoor space using computer vision 

and leveraging the accurate 3D coordinates in PCD collected by the Light Detection 
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and Ranging (LiDAR) device in integration with the RTLS technologies (i.e., RFID 

data); and 

IV. Development of a digital-twin platform for the automated generation of onsite 

inspection reports (achieved by identifying the 3D coordinates of objects using RTLS 

and computer-vision capabilities).  

The minor contributions of this research are: 

I. Enhancing current trilateration techniques for localization by considering the geospatial 

distribution of the roving receiver (reader) to improve localization accuracy. 

Additionally, the integrated RFID-UWB error has been calibrated by incorporating the 

error into the trilateration technique, which increases the chance of object identification 

through the integrated method. 

II. Considering the quality alongside the physical progress of construction operations. This 

is achieved by introducing the QSI, which accounts for the quality of installed materials 

such as pipes, tanks and HVAC ducts on the job site and extends its application to 

quality assurance and quality control of installations on the job site. 

III. Enabling the use of actual data collected on site for generating onsite inspection reports, 

rather than relying on data provided through updated BIM models with a high Level of 

Development (LoD), which are not timely available during the construction phase of a 

project. 

5.3 Research Limitations 

The main limitations of this research are as follows: 

I. The 3D localization of the developed IPS is not as precise as the 2D localization. 

II. In integrating the RTLS with the cloud-based BIM, the MSI needs to be compared with 

available indices such as SPI and CPI in the EVM technique for project control and 

tracking of construction operations. Additionally, the QSI is limited to showcasing 

damaged or broken components in each activity. The quality aspect could be more 

integrated with the onsite inspection reports in order to capture the quality of the work 

performed. 

III. The mapping of the RTLS data to the cloud-based BIM platform is not automated. The 

objects' coordinates need to be geo-referenced manually, and the BIM platform is 

updated manually with the information about the status and coordinates of the target 
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objects.  Additionally, field data collection is conducted manually to ensure that the 

updated status of the tagged components is recorded on each reporting day.  

IV. Available dataset benchmarks are used to train and test computer-vision algorithm, 

PointNet, to refine the 3D coordinates of the target objects (i.e., chairs, in this study). 

This affects the evaluation accuracy of the algorithm’s segmentation of the PCD 

collected. 

V. The bi-directional communication of the construction twin dashboard requires 

debugging. Additionally, the computer-vision and RTLS information were manually 

fed into the cloud-based BIM platform. 

5.4 Opportunities for Future Work  

Based on the research outcomes and limitations as outlined above, the following avenues for 

future work are identified. 

I. The 3D localization capability of the developed IPS could be improved by employing 

innovative techniques such as machine learning and optimization to better calibrate the 

RFID and UWB devices, and by using filters to improve the localization information 

obtained by the UWB system. Additionally, the thresholds used in the trilateration 

technique need to be further investigated and (potentially) adjusted. 

II. The application of the computer-vision algorithm used in this study could be extended 

to other construction components, such as MEP components, which are among the most 

challenging components to track and report on job sites. 

III. Available PCD benchmarks assist in detecting some objects (i.e., chairs, in this study) 

without the need to manually prepare annotated datasets. However, segmentation 

accuracy is not acceptable for classes of objects with small datasets due to the 

imbalance in the training dataset size for these objects compared to others. Future 

investigations are needed to improve the object detection and segmentation 

performance of computer-vision algorithms using PCD. 

IV. The integration of the RTLS and PCD can be further automated. In the future, the PCD 

detected and labelled by the computer-vision algorithms could be mapped to the RTLS 

data via clustering techniques as a way of boosting the efficiency of the integration. 

Additionally, the object detection capability of Deep Neural Network (DNN) 

algorithms could be leveraged to improve the object identification of the RTLS (bearing 
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in mind that DNN algorithms still lack the ability to distinguish between identical 

objects). 

V. Further integration with BIM platforms is required in order to refine the construction 

twin dashboard and to ensure bi-directional communication regarding objects in the 

physical and digital environments. 

  



99 

 

REFERENCES 

Akhavian, R., and Behzadan, A. H. (2015). “Construction equipment activity recognition 

for simulation input modeling using mobile sensors and machine learning classifiers.” 

Advanced Engineering Informatics, 29(4), 867–877. 

Almeida, A., and Almeida, J. (2005). “Real-time tracking of moving objects using particle 

filters.” Proceedings of the IEEE International Symposium on Industrial Electronics, 

Dubrovnik, Croatia, pp. 1327–1332.  

Amer, A. (2020). “Automated segmentation and reconstruction of structural elements for 

indoor multi-level room environment.” Master’s dissertation, Concordia University, 

Montréal, QC, Canada.  

Andoh, A. R., Su, X., and Cai, H. (2012). “A framework of RFID and GPS for tracking 

construction site dynamics.” Proceedings of the 2012 Construction Research Congress: 

Construction Challenges in a Flat World, pp. 818–827. 

Armeni, I., Sener, O., Zamir, A. R., Jiang, H., Brilakis, I., Fischer, M., and Savarese, S. 

(2018). “3D semantic parsing of large-scale indoor spaces supplementary material.” 

Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, 

pp. 1534–1543.  

Azarm, R. (2013). “Material status index for tracking and progress reporting of construction 

projects.” Master’s dissertation, Concordia University, Montréal, QC, Canada. 

Available online (2024): https://paperswithcode.com/sota/3d-point-cloud-classification-

on-modelnet40 

Available online (2024): https://vercator.com/ 

Balali, A., Valipour, A., Antucheviciene, J., and Šaparauskas, J. (2020). “Improving the 

results of the earned value management technique using artificial neural networks in 

construction projects.” Symmetry, MDPI, 12(10), 1745.  

Bardareh, H., and Moselhi, O. (2020). “Automated data acquisition for indoor localization 

and tracking of materials onsite.” Proceedings of the International Symposium on 

Automation and Robotics in Construction (ISARC), 37, pp. 765–772. 

Bardareh, H., and Moselhi, O. (2022). “An integrated RFID-UWB method for indoor 

localization of materials in construction.” Journal of Information Technology in 

Construction, 27, 642–661.  

Bardareh, H., and Moselhi, O. (2023). “Integrated real-time location system information 

and 3D point clouds for object localization onsite using deep neural networks.” AACE 

International Conference & Expo 2023, Chicago, IL, USA, DSAA-4094.  

Bosché, F., and Ahmed, M. (2015). “The value of integrating Scan-to-BIM and Scan-vs-

BIM techniques for construction monitoring using laser scanning and BIM: The case of 

cylindrical MEP components.” Automation in Construction, 49(B), 201–213.  

Cai, H., and Andoh, A. (2014). “A boundary condition based algorithm for locating 

construction site components using RFID and GPS.” Advanced Engineering Informatics, 

28(4), 455–468.  

https://paperswithcode.com/sota/3d-point-cloud-classification-on-modelnet40
https://paperswithcode.com/sota/3d-point-cloud-classification-on-modelnet40
https://vercator.com/


100 

 

Chen, Q., Adey, B. T., Haas, C., and Hall, D. M. (2020). “Using look-ahead plans to 

improve material flow processes on construction projects when using BIM and RFID 

technologies.” Construction Innovation, 20(3), 471–508.  

Cheng, T., and Venugopal, M. (2011). “Performance evaluation of ultra wideband 

technology for construction resource location tracking in harsh environments.” Automation 

in Construction, 20(8), 1173–1184. 

Costin, A. M., Teizer, J., and Schoner, B. (2015). “RFID and BIM-enabled worker location 

tracking to support real-time building protocol and data visualization.” Journal of 

Information Technology in Construction, 20(29), 495–517.  

DecaWave Ltd. (2016). “EVK1000 user manual, how to use, configure and interface to the 

dw1000 evaluation kit.” Version 1.13.  

Deng, J., Zhou, W., Zhang, Y., and Li, H. (2021). From multi-view to hollow-3D: 

Hallucinated hollow-3D R-CNN for 3D object detection.” IEEE Transactions on Circuits 

and Systems for Video Technology, 31(12),  4722–4734.  

El-Omari, S. (2008). “Automated data acquisition for tracking and control of construction 

projects.” Doctoral dissertation, Concordia University, Montréal, QC, Canada. 

Feng, Y., and Golparvar-Fard, M. (2019). “Image-based localization for facilitating 

construction field reporting on mobile devices.” Advances in Informatics and Computing 

in Civil and Construction Engineering, pp. 585–592. 

Gopalakrishna Adusumilli, (2020): https://towardsdatascience.com/lidar-point-cloud-

based-3d-object-detection-implementation-with-colab-part-1-of-2-e3999ea8fdd4.  

Huang, Y., Hammad, A., Torabi, G., Ghelmani, A., and Guevremont, M. (2021). “Towards 

near real-time digital twins of construction sites: Developing high LOD 4D simulation 

based on computer vision and RTLS.” Proceedings of the International Symposium on 

Automation and Robotics in Construction (ISARC), pp. 248–255.  

Ibrahim, M. (2015). “Models for efficient automated site data acquisition.” Doctoral 

dissertation, Concordia University, Montréal, QC, Canada.  

Ibrahim, M., and Moselhi, O. (2014). “Automated productivity assessment of earthmoving 

operations.” Journal of Information Technology in Construction, 19(9), 169–184. 

Jimenez, A., and Seco, F. (2016). “Comparing DecaWave and BeSpoon UWB location 

systems: Indoor/outdoor performance analysis.” Proceedings of the 6th International 

Conference of Indoor Positioning Indoor Navigation (IPIN), Alcal´a de Henares, Spain, 

Oct. 4–7, 2016.  

Jo, K., Lee, M., and Sunwoo, M. (2015). “Road slope aided vehicle position estimation 

system based on sensor fusion of GPS and automotive onboard sensors.” IEEE 

Transactions on Intelligent Transportation Systems,  17(1), 250–263.  

Kalikova, J., and Krcal, J. (2017). “People counting by means of wi-fi.” Proceedings of the 

Smart City Symposium (SCSP), Prague, Czech Republic, 25–26.  

Khamooshi, H., and Golafshani, H. (2014). “EDM: Earned Duration Management, a new 

approach to schedule performance management and measurement.” International Journal 

of Project Management, 32(6), 1019–1041.  

https://towardsdatascience.com/lidar-point-cloud-based-3d-object-detection-implementation-with-colab-part-1-of-2-e3999ea8fdd4
https://towardsdatascience.com/lidar-point-cloud-based-3d-object-detection-implementation-with-colab-part-1-of-2-e3999ea8fdd4


101 

 

Kropp, C., and Koch, C. (2018). “Interior construction state recognition with 4D BIM 

registered image sequences.” Automation in Construction, 86, 11–32.  

Labant, S., Gergeľová, M., Weiss, G., and Gašinec, J. (2017). “Analysis of the use of GNSS 

systems in road construction.” Proceedings of the IEEE Baltic Geodetic Congress (BGC 

Geomatics), pp. 72–76.  

Li C., Mo, L., and Zhang, D. (2019). “Review on UHF RFID localization methods.” IEEE 

Journal of Radio Frequency Identification, 3(4), 205–215.  

Li, C. Z., Zhong, R. Y., Xue, F., Xu, G., Chen, K., Huang, G. G., and Shen, G. Q. (2017). 

“Integrating RFID and BIM technologies for mitigating risks and improving schedule 

performance of prefabricated house construction.” Journal of Cleaner Production, 165, 

1048–1062. 

Li, H., and Chan, G. (2013). “Integrating real time positioning systems to improve blind 

lifting and loading crane operations.” Journal of Construction Management and 

Economics, 31, 596–605. 

Li, N., and Becerik-Gerber, B. (2011). ‘Performance-based evaluation of RFID-based 

indoor location sensing solutions for the built environment.” Advanced Engineering 

Informatics, 25(3), 535–546. 

Ma, J. W., and Leite, F. (2022). “Performance boosting of conventional deep learning-

based semantic segmentation leveraging unsupervised clustering.” Automation in 

Construction, 136, 104167.  

Maneesilp, J., and Wang, C. (2012). “RFID support for accurate 3D localization.” IEEE 

Transactions on Computers, 62(7), 1447–1459.  

Masiero, A., and Fissore, F. (2017). “A low cost UWB based solution for direct 

georeferencing UAV photogrammetry.” Remote Sensing, 9(5), 414. 

Montaser, A., and Moselhi, O. (2014). “RFID indoor location identification for 

construction projects.” Automation in Construction, 39, 167–179.  

Moselhi, O., and Azarm, R. (2013). “Material status index in support of EVM.” 

Proceedings of the International Symposium on Automation and Robotics in Construction 

(ISARC), pp. 488–496. 

Moselhi, O., Bardareh, H., and Zhu, Z. (2020). “Automated data acquisition in construction 

with remote sensing technologies.” Applied Sciences, 10(8), 2846. 

Munaro, M., Radu, B., and Emanuele, M. (2016). “3D robot perception with Point Cloud 

Library.” Robotics and Autonomous Systems, 78, 97–99. 

Nasrollahi, M., Bolourian, N., and Hammad, A. (2019). “Concrete surface defect detection 

using deep neural network based on LiDAR scanning.” Proceedings of the CSCE Annual 

Conference, Montréal, QC, Canada, pp. 12–15. 

Nurminen, H., and Ardeshiri, T. (2015). “A NLoS-robust TOA positioning filter based on 

a skew-t measurement noise model.” Proceedings of the International Conference on 

Indoor Positioning and Indoor Navigation (IPIN), Banff, Alberta, Canada, 7 pages. 

Omar, T., and Moncef, L. N. (2016). “Data acquisition technologies for construction 

progress tracking.” Automation in Construction, 70, 143–155. 



102 

 

Pang, G., and Neumann, U. (2016). “3D point cloud object detection with multi-view 

convolutional neural network.” Proceedings of the 23rd International Conference on 

Pattern Recognition (ICPR), pp. 585–590.  

Park, J., and Cho, Y. K. (2016). “A BIM and UWB integrated mobile robot navigation 

system for indoor position tracking applications.” Journal of Construction Engineering and 

Project Management, 6(2), 30–39. 

Qi, C. R., Su, H., Mo, K., and Guibas, L. J. (2017). “PointNet: Deep learning on point sets 

for 3d classification and segmentation.” Proceedings of the IEEE Conference on Computer 

Vision and Pattern Recognition, pp. 652–660.  

Rahman, M. M., Yap, Y. H., Ramli, N. R., Dullah, M. A., and Shamsuddin, M. S. W. 

(2017). “Causes of shortage and delay in material supply: a preliminary study.” Conference 

Series: Materials Science and Engineering, 271(1), 012037. 

Razavi, S. R., Montaser, A., and Moselhi, O. (2012). “RFID deployment protocols for 

indoor construction.” Construction Innovation, 12(2), 239–258.  

Roghabadi, M. A., and Moselhi, O. (2020). “Forecasting project duration using risk-based 

earned duration management.” International Journal of Construction Management, 22(16), 

3077–3087.  

Ruppert, T., and Abonyi, J. (2016). “Integration of real-time locating systems into digital 

twins.” Journal of Industrial Information Integration, 20, 100174. 

Ruiz, A. R. J., and Granja, F. S. (2017). “Comparing Ubisense, BeSpoon, and DecaWave 

UWB location systems: Indoor performance analysis.” IEEE Transactions on 

Instrumentation and Measurement, 66(8), 2106–2117.  

Sacks, R., Brilakis, I., Pikas, E., Xie, H. S., and Girolami, M. (2020). “Construction with 

digital twin information systems.” Data-Centric Engineering, 1, e14. 

Sander, P., Spiegl, M., Burns, T., and Reilly, J. (2022). “Digital project twin for quantitative 

cost, risk and schedule assessment of capital projects.” Australian Journal of Multi-

Disciplinary Engineering, 18(1), 34–46.  

Seo, W., Hwang, S., Park, J., and Lee, J. M. (2013). “Precise outdoor localization with a 

GPS–INS integration system.” Robotica,  31(3), 371–379.  

Shahi, A., Safa, M., Haas, C. T., and West, J. S. (2014). “Data fusion process management 

for automated construction progress estimation.” Journal of Computing in Civil 

Engineering, 29(6), 04014098.  

Siddiqui, H. (2014). ‘UWB RTLS for construction equipment localization: Experimental 

performance analysis and fusion with video data.” Master’s dissertation, Concordia 

University, Montréal, QC, Canada. 

Song, L., and Tanvir, M. (2015). “A cost effective material tracking and locating solution 

for material laydown yard.” Procedia Engineering, 123, 538–545. 

Su, X., Li, S., Yuan, C., Cai, H., and Kamat, V. R. (2014). “Enhanced boundary condition–

based approach for construction location sensing using RFID and RTK GPS.” Journal of 

Construction Engineering and Management, 140(10), 04014048. 



103 

 

Sun, M., and Wang, Y. (2020). “Indoor positioning integrating PDR/geomagnetic 

positioning based on the genetic-particle filter.” Applied Sciences, 10(2), 668.  

Ta, V. C. (2017). “Smartphone-based indoor positioning using Wi-Fi, inertial sensors and 

Bluetooth in machine learning.” Doctoral dissertation, Université Grenoble, Alpes, France, 

2017.  

Tran, T. A., Ruppert, T., Eigner, G., and Abonyi, J. (2021). “Real-time locating system and 

digital twin in Lean 4.0.” Proceedings of the IEEE 15th International Symposium on 

Applied Computational Intelligence and Informatics (SACI), pp. 369–374.  

Valero, E., Adán, A., and Bosché, F. (2016). “Semantic 3D reconstruction of furnished 

interiors using laser scanning and RFID technology.” Journal of Computing in Civil 

Engineering, 30(4), 04015053.  

Wang, Z., Hu, H., and Zhou, W. (2017). “RFID enabled knowledge‐based precast 

construction supply chain.” Journal of Computer‐Aided Civil and Infrastructure 

Engineering, 32(6), 499–514. 

Wu, C., Wang, X., Chen, M., and Kim, M. J. (2019). “Differential received signal strength 

based RFID positioning for construction equipment tracking.” Advanced Engineering 

Informatics, 42, 100960. 

Xiahou, X., Li, Q., Yuan, J., and Tang, Y. (2018). “Integrating RFID and BIM to design a 

real-time position tracking system for subway projects lifecycle safety management.” 

Proceedings of the Joint CIB W099 & TG59 International Safety, Health, and People in 

Construction Conference.  

Xu, L. D., Xu, E. L., and Li, L. (2018). “Industry 4.0: state of the art and future trends.” 

Journal of Production Research, 56(8), 2941–2962.  

Xu, Y., and Shmaliy, Y. S. (2018). “Robust and accurate UWB-based indoor robot 

localization using integrated EKF/EFIR filtering.” IET Radar Sonar Navigation, 12, 750–

756.  

Yin, S. Y., Tserng, H. P., Wang, J. C., and Tsai, S. C. (2009). “Developing a precast 

production management system using RFID technology.” Automation in Construction, 

18(5), 677–691.  

Yoo, J., and Park, J. (2019). “Indoor localization based on Wi-Fi received signal strength 

indicators: Feature extraction, mobile fingerprinting, and trajectory learning.” Applied 

Sciences, 9(18), 3930.  

Zhou, Y., and Tuzel, O. (2018). “Voxelnet: End-to-end learning for point cloud based 3d 

object detection.” Proceedings of the IEEE Conference on Computer Vision and Pattern 

Recognition, pp. 4490–4499.  

Zhu, Z., and Ren, X. (2016). “Visual tracking of construction jobsite workforce and 

equipment with particle filtering.” Journal of Computing in Civil Engineering, 30(6), 

04016023.  

 

 



104 

 

Appendix I:  

Mapping of the RTLS Data into ArcGIS 

 

In this study, Real-Time Location System (RTLS) data collected by the integrated RFID-UWB 

system are mapped into ArcGIS. This mapping offers several benefits, including the 

centralization of data collection, processing, and visualization through ArcGIS cloud packages. 

Additionally, the local coordinates of objects tagged with passive RFID tags are converted into 

geocoordinates within ArcGIS. The detailed steps for this mapping process are provided below: 

Step I. Data is collected using a hand-held RFID reader equipped with a UWB tag. This 

device scans the RFID tags attached to the target objects. 

Step II. Raw RFID and UWB .txt files are directly uploaded into server using ArcGIS 

Survey123 and Field Maps for further processing, as oulined in Figure I.1 and Figure 

I.2. A digital survey form within ArcGIS Survey123 mobile app. is used to collect the 

acquied data and upload the files into the server as depicted in Figure I. 2 (b). 

 

(a)  

 

(b)  

Figure I.1: Sample raw files of the collected RFID and UWB data: (a) RFID .txt file, and 

(2) UWB .txt file. 
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(a) 

 

(b) 

Figure I.2: The ArcGIS tools used for data collection and transfer into server: (a) 

Survey123 and Field Maps, and (2) sample survey for field data collection and transfer. 

The raw .txt files are processed on the server to generate 2D and 3D coordinates (local 

coordinates) of the tagged objects using the improved trilateration method developed 

in this study. Appendix III provides details on the Python code developed for the 

integration of RFID and UWB files for the localization.  The code highlights lines for 

reading the collected .txt files, their integration, and exporting the Excel file of the 

localization information.  

Step III. To transition the collected coordinates from the local to the global system, five 

georeferenced points of the project site with visibility to both interior and exterior 

spaces are selected. These points, known as tie points, help establish a transformation 

matrix that accurately converts local coordinates to global coordinates. In this study, 

this process was performed manually. However, in the future, ArcGIS georeferencing 

tools (e.g., move, rotate, flip, scale, etc.) could be used to automate this step. 

Additionally, ArcGIS GeoEvent Server could be utilized to ensure real-time connection 

between tracking technologies and the ArcGIS server. The detailed procedure is 

outlined in Figure I.3 and Figure I.4. 
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Figure I.3: Exported local coordinates achieved for the tagged objects. 

 

Figure I.4: Sample of the five tie-points used for coordinates’ transition from local to 

global. 

Step IV. The georeferenced coordinates are mapped to visualize the associated tagged 

objects in ArcGIS Pro, either through the BIM model or point cloud data. The 

developed framework in the study eliminates the need for an accurate BIM model with 

a high Level of Development (LoD), which is not available at the time of the method’s 

application to track the objects in a timely manner. This is because the tagged objects 

are identified and localized through field data collection, rather than relying on a pre-

existing model to derive the coordinates. Furthermore, ArcGIS provides an efficient 

computational platform, executed within the ArcGIS environment, and offers 

visualization tools for the localized objects. Figure I.5 illustrates the visualized 

information within the 3D environment. 
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Figure I.5: Mapped information in ArcGIS Pro. 
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Appendix II:  

Guideline on the Application of the Developed Framwork on Job Site 

To apply the developed method in the study for digitalizing progress reporting on a job site, 

the following steps are followed: 

Step I. Review the project's planned document with a site manager or superintendent 

to identify tracking needs and select near-critical activities and important components. 

Figure II.1 illustrates a sample of the planned document used in the study to identify 

near-critical activities and sub-activities. The criticality can be determined either by 

defining a customized ratio value of the activities' float time divided by their duration, 

or through expert judgment for progress reporting. 

 

Figure II.1: The planned document of the selected project encompasses the activities in 

two mechanical rooms. 

Step II. Design the reporting hierarchy to identify project zones, activities, sub-

activities, and their associated components based on technology usage and the level of 

automation required. In the study investigated in the research, tracking began from the 

site inventory or stock rooms by labeling the received components (e.g., mechanical 

equipment). However, in the future, depending on project needs, tracking can start from 

the supplier side by monitoring the delivery of components from manufacturing to the 

site, or from the time the components are installed on the job site. This largely depends 
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on the end user of the digitalized progress reporting method and the level of visibility 

they require for tracking the project. It is also possible to design the hierarchy for a 

more automated or semi-automated data acquisition workflow. Tagging can be 

performed either at the factory before the arrival of important components to the site, 

or by the person in charge at the job site. Additionally, it is essential to define the 

required technologies to track whether the materials are delivered, shipped, received, 

etc. Figure II.2 illustrates how the developed framework can be utilized for semi-

automated tracking of assemblies using the RTLS technologies in this study. 

 

Figure II.2: Conceptual framework for a semi-automated tracking of assemblies from 

manufacturing to the site. 

Step III.  Tag the selected components on the job site with QR code-RFID tags. Since 

the progress of activities associated with these components will represent the overall 

project's progress, it is crucial to ensure the highest visibility of activities by tracking 

these tagged components. Additionally, tagging only the critical components, rather 

than all components, will significantly reduce the data acquisition effort and the cost of 

technology usage on the job site. However, this might result in losing some details on 

tracking activities but will not affect the overall project progress tracking. 
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Step IV. Install the UWB receivers at the end corners of the targeted zones on the job 

site. Additionally, scan the site area with a LiDar device to provide accurate coordinates 

of the UWB receivers, calibrating the RTLS for enhanced localization purposes. 

Step V. On each reporting day, data about the tagged components and their associated 

activities are manually collected through a digital survey prepared in ArcGIS 

Survey123, by scanning the QR code-RFID tag. The component status data are 

manually collected by scanning the QR code with a mobile phone camera or the RFID 

tag (embedded in the QR code) using a hand-held RFID gun. This process is conducted 

during site inspections by the site coordinators or superintendents, who then transmit 

the collected data to the server via a mobile phone or a tablet. Manual inspection also 

offers the advantage of expert judgment for on-site quality control. Since the occurrence 

of damaged or broken components is infrequent, manual data collection is more 

practical than an automated approach for these close inspections using QR codes. 

The advantage of using RFID over QR codes is the ability to scan tagged components 

that are not visible or are covered by obstacles as the project progresses. Additionally, 

RFID data are used to automatically localize the tagged components each reporting day 

through the integrated RFID-UWB method. In the future, point cloud data collected 

with a LiDAR device, leveraging computer vision, could be used to refine the 3D 

localization of the tagged components. The accurate 3D coordinates acquired from 

labeled point cloud data can be used to precisely measure the installed components' 

coordinates and automatically identify deviations from planned models. Figure II.3 

illustrates a sample of the information collected in each reporting day. 

 

Figure II.3: The sample information of the selected activities and components in a 

reporting day. 

Step VI. The data collected each reporting day, encompassing time, ID, status, and 

location of the identified tagged components, were aggregated and processed through 

the progress tracking method. This process generates reports on the Material Status 
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Index (MSI), Quality Status Index (QSI), and detailed progress of each activity and its 

status. These reports are visualized using dashboards designed in ArcGIS or other 

platforms like PowerBI, utilizing appropriate plug-ins. 
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Appendix III:  

Python Code for 3D Localization using Integrated RFID-UWB 

# RFID-UWB 3D Localization  
""" 

Created on Mon Nov 16 15:32:37 2020 

@author: Hassan.B 

This script is for RFID Tags localization with UWB data 

""" 

 

# Reading RFID and UWB .txt files in the server or in 

Google Drive 

 

file_1 = open('/content/Test01- RFID calibration with o20 with UWB tag 

attached moving randomly.TXT', 'r') 

f1= file_1.readlines() 

file_2 = open('/content/- CAL Experiment Real Values with 

A4=2.15m.txt', 'r') 

f2= file_2.readlines() 

file_3 = open('/content/- CAL RFID Reference Tags Experimental Real 

values.txt', 'r') 

f3= file_3.readlines() 

file_4 = open('/content/Test01- UWB calibration with o20 dbm and UWB 

tag attached moving randomly.txt', 'r') 

f4= file_4.readlines() 

n1= int (len(f1)) 

n2= int (len(f4)) 

TagNo = 10 

n=0 

n3=0 

k=0 

k1=0 

q1=0.0001 

q2=0.0001 

q3=0.0001 

q4=0.0001 

q5=0.0001 

q6=0.0001 

q7=0.0001 

q8=0.0001 

q9=0.0001 

q10=0.0001 

Q=1 

Qn=0 

l=0 

p=0 
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p1=0 

D0=0  

h1=0.0001 

p2=0  

p3=0  

RSSIdistancecumulative=0 

RSSIcumulative=0 

Row=0 

SumX  = 0 

SumY  = 0 

SumZ  = 0 

SumR1 = 0 

SumR2 = 0 

SumR3 = 0 

SumR4 = 0 

p4=0 

quwb=0.0001 

RSSIA001 = 0 

RSSIA002 = 0 

RSSIA003 = 0 

RSSIA004 = 0 

RSSIA005 = 0 

RSSIA006 = 0 

RSSIA007 = 0 

RSSIA008 = 0 

RSSIA009 = 0 

RSSIA010 = 0 

p1_1 = 0 

p1_2 = 0 

p1_3 = 0 

p1_4 = 0 

p1_5 = 0 

p1_6 = 0 

p1_7 = 0 

p1_8 = 0 

p1_9 = 0 

p1_10 = 0 

 

# Defining the reading range of the RFID reader based 

on its output power of the hand-held RFID gun 

# Defining the Ratio for the points in intersected 

area of the circles (here we set it to 0.1) for 

trilateration 

 

IdentificationNo= 8 

RR=300 

Ratiolimit = 0.1 

for e1 in range (0,n1): 
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    newlist = f1[e1] # RSSI value 

    m1 =int (len(newlist)) 

    for g1 in range (0,m1): 

        if ( (newlist [g1] == 'R') and (newlist [g1+1] == 'I') ): 

            n= n+1 

 

# Data structuring of the raw RFID file, and put them in a dataframe 

 

LEmatrix = [ [0 for x in range (3)] for y in range (n)] 

LEmatrix_real = [ [0 for x in range (1)] for y in range (35)] 

LEmatrix_real_Reftags = [ [0 for x in range (1)] for y in range 

(TagNo)] 

RSSIave =[ [0 for x in range (TagNo+1)] for y in range (n)] 

distanceeq =[ [0 for x in range (TagNo+1)] for y in range (n)] 

 

import re        

for e in range (2,n1): 

    newlist1 = f1[e] # RSSI value 

    newlist2 = f1[e-1] # Tag ID 

    newlist3 = f1[e-2] # Time & date 

    m =int (len(newlist1)) 

    for g in range (0,m): 

        if ( (newlist1 [g] == 'R') and (newlist1 [g+1] == 'I') and 

(newlist3 [g] == 'D') and (newlist3 [g+1] == 'T') and newlist2 

[4:25]=='FFFFEEEEDDDDCCCCBBBBA' ): 

            RSSI = re.findall(r"[-+]?\d*\.\d+|\d+", newlist1) 

            TagID = newlist2 [4:28] 

            Time = re.findall(r"[-+]?\d*\.\d+|\d+", newlist3) 

            LEmatrix [k] = [int(Time[3])*3600 + int(Time[4])*60+ 

int(Time[5]), TagID, - int (RSSI [0]) ] 

            k = k +1 

            #for Repetative RSSI values in each second 

        elif ((newlist1 [g] == 'R') and (newlist1 [g+1] == 'I') and 

(newlist3 [g] == 'R') and (newlist3 [g+1] == 'I') and newlist2 

[4:25]=='FFFFEEEEDDDDCCCCBBBBA'): 

            RSSI = re.findall(r"[-+]?\d*\.\d+|\d+", newlist1) 

            TagID = newlist2 [4:28] 

            Time = LEmatrix [k-1][0] 

            LEmatrix [k] = [Time, TagID, - int (RSSI [0]) ] 

            k = k +1        

 

#Finding range and location of Tag and put it in a 

matrix    

 

import re 

for l1 in range (0,35): 

    LEmatrix_real [l1] = re.findall(r"[-+]?\d*\.\d+|\d+", f2[l1]) 
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for l2 in range (0,TagNo): 

    LEmatrix_real_Reftags [l2] = re.findall(r"[-+]?\d*\.\d+|\d+", 

f3[l2]) 

    

for z1 in range (0,n): 

    if (LEmatrix [z1][1] == 'FFFFEEEEDDDDCCCCBBBBA101' and (Qn==0) ): 

        T0 = LEmatrix [z1][0] 

        T1 = LEmatrix [z1+1][0] 

        T0ref= T0 

        Qn= 1 

while (l < n):     

    if ( LEmatrix [l][0] <= T0 ): 

        RSSIA001 = 0 

        RSSIA002 = 0 

        RSSIA003 = 0 

        RSSIA004 = 0 

        RSSIA005 = 0 

        RSSIA006 = 0 

        RSSIA007 = 0 

        RSSIA008 = 0 

        RSSIA009 = 0 

        RSSIA010 = 0 

    if ( (LEmatrix[l][0] <= (T1)) and (LEmatrix[l][1] 

=='FFFFEEEEDDDDCCCCBBBBA001') ): 

        RSSIA001= RSSIA001 + float(LEmatrix[l][2]) 

        q1=q1+1 

        Q=1 

        #print (l, 'Second line read', q1) 

    if ( (LEmatrix[l][0] <= (T1)) and (LEmatrix[l][1] 

=='FFFFEEEEDDDDCCCCBBBBA002') ): 

        RSSIA002= RSSIA002 + float(LEmatrix[l][2]) 

        q2=q2+1 

        Q=1 

        #print (l, 'third line read') 

    if ( (LEmatrix[l][0] <= (T1)) and (LEmatrix[l][1] 

=='FFFFEEEEDDDDCCCCBBBBA003') ): 

        RSSIA003= RSSIA003 + float(LEmatrix[l][2]) 

        q3=q3+1 

        Q=1 

    if ( (LEmatrix[l][0] <= (T1)) and (LEmatrix[l][1] 

=='FFFFEEEEDDDDCCCCBBBBA004') ): 

        RSSIA004= RSSIA004 + float(LEmatrix[l][2]) 

        q4=q4+1 

        Q=1 

    if ( (LEmatrix[l][0] <= (T1)) and (LEmatrix[l][1] 

=='FFFFEEEEDDDDCCCCBBBBA005') ): 

        RSSIA005= RSSIA005 + float(LEmatrix[l][2]) 

        q5=q5+1 
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        Q=1 

    if ( (LEmatrix[l][0] <= (T1)) and (LEmatrix[l][1] 

=='FFFFEEEEDDDDCCCCBBBBA006') ): 

        RSSIA006= RSSIA006 + float(LEmatrix[l][2]) 

        q6=q6+1 

        Q=1 

    if ( (LEmatrix[l][0] <= (T1)) and (LEmatrix[l][1] 

=='FFFFEEEEDDDDCCCCBBBBA007') ): 

        RSSIA007= RSSIA007 + float(LEmatrix[l][2]) 

        q7=q7+1 

        Q=1 

    if ( (LEmatrix[l][0] <= (T1)) and (LEmatrix[l][1] 

=='FFFFEEEEDDDDCCCCBBBBA008') ): 

        RSSIA008= RSSIA008 + float(LEmatrix[l][2]) 

        q8=q8+1 

        Q=1 

    if ( (LEmatrix[l][0] <= (T1)) and (LEmatrix[l][1] 

=='FFFFEEEEDDDDCCCCBBBBA009') ): 

        RSSIA009= RSSIA009 + float(LEmatrix[l][2]) 

        q9=q9+1 

        Q=1 

    if ( (LEmatrix[l][0] <= (T1)) and (LEmatrix[l][1] 

=='FFFFEEEEDDDDCCCCBBBBA010') ): 

        RSSIA010= RSSIA010 + float(LEmatrix[l][2]) 

        q10=q10+1 

        Q=1 

    if (Q!=0 or ((LEmatrix[l][1] !='FFFFEEEEDDDDCCCCBBBBA001') and 

(LEmatrix[l][1] !='FFFFEEEEDDDDCCCCBBBBA002') and (LEmatrix[l][1] 

!='FFFFEEEEDDDDCCCCBBBBA003') and (LEmatrix[l][1] 

!='FFFFEEEEDDDDCCCCBBBBA004') and (LEmatrix[l][1] 

!='FFFFEEEEDDDDCCCCBBBBA005') and (LEmatrix[l][1] 

!='FFFFEEEEDDDDCCCCBBBBA006') and (LEmatrix[l][1] 

!='FFFFEEEEDDDDCCCCBBBBA007') and (LEmatrix[l][1] 

!='FFFFEEEEDDDDCCCCBBBBA008') and (LEmatrix[l][1] 

!='FFFFEEEEDDDDCCCCBBBBA009') and (LEmatrix[l][1] 

!='FFFFEEEEDDDDCCCCBBBBA010'))): 

        l=l+1 

        Q=0 

    else:  

       

        RSSIave[p][0:TagNo] = [LEmatrix[l-1][0], RSSIA001/q1, 

RSSIA002/q2, RSSIA003/q3, RSSIA004/q4, RSSIA005/q5, RSSIA006/q6, 

RSSIA007/q7, RSSIA008/q8, RSSIA009/q9, RSSIA010/q10] 

        T1 = T1 + (LEmatrix[l][0] - LEmatrix[l-1][0]) 

     

        q1=q2=q3=q4=q5=q6=q7=q8=q9=q10=0.0001 

        p = p+1 

        RSSIA001 = 0 
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        RSSIA002 = 0 

        RSSIA003 = 0 

        RSSIA004 = 0 

        RSSIA005 = 0 

        RSSIA006 = 0 

        RSSIA007 = 0 

        RSSIA008 = 0 

        RSSIA009 = 0 

        RSSIA010 = 0  

 

# Equivalent distance for average RSSI value based on 

the Calibration Module for RFID tags 

 

for x1 in range (0,p): 

    for x2 in range (1,TagNo+1): 

        if (RSSIave[x1][x2]==0): 

            distanceeq [x1][x2] = 0.0 

        else: 

            #distanceeq [x1][x2] = 2.718281828459045 ** (-

(RSSIave[x1][x2]+72.483)/3.914) 

            distanceeq [x1][x2] = -0.4616 *  RSSIave[x1][x2]- 32.5333 

             

# Data structuring of the raw UWB file, and put them 

in a dataframe 

 

for e2 in range (0,n2): 

    newlist = f4[e2]  

    m2 =int (len(newlist)) 

    for g2 in range (0,m2): 

        if ( newlist [g2] == '[' and newlist [g2+1] != 'n'): 

            Row= Row+1 

             

LEmatrix_uwb = [ [0 for x in range (1)] for y in range (Row)] 

LEmatrix_real_uwb = [ [0 for x in range (1)] for y in range (35)] 

T =[ [0 for x in range (1)] for y in range (Row)] 

T_equal =[ [0 for x in range (8)] for y in range (Row)] 

b =[ [0 for x in range (8+TagNo)] for y in range (p)] 

c =[ [0 for x in range (1)] for y in range (10)] 

Locationmatrix = [ [0 for x in range (1)] for y in range (40000)] 

Locationmatrixfinal = [ [0 for x in range (1)] for y in range (TagNo)] 

Locationmatrix_DoP =  [ [0 for x in range (1)] for y in range (TagNo)]  

 

for e in range (0,n2): 

    newlist = f4[e] 

    m =int (len(newlist)) 

    for g in range (0,m): 

        if (newlist [g] == '[' and newlist [g+1] != 'n'): 
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            LEmatrix_uwb [k1] = re.findall(r"[-+]?\d*\.\d+|\d+", 

newlist) 

            TimeinS =(int (newlist [2])*10+ int (newlist [3]) )*3600+ 

(int (newlist [4])*10+ int( newlist [5]))*60+ (int( newlist [6])*10+ 

int (newlist [7])) + (int (newlist [8])*100+ int (newlist [9])*10+ int 

(newlist [10]) )/1000 

            T [k1][0:1] = [TimeinS] 

            #print (k1, 'Out of : ', Row-1, '  ','Toal: ', n2,'  time = 

', float (T[k1][0]), '   ',LEmatrix_uwb [k1][0] ) 

            k1 = k1 +1 

 

# Time synchronization of the RFID and UWB sensors   

 

dt0 = T0ref - T[0][0] 

T0uwb = T0ref 

for w in range (0,Row): 

    T_equal [w] = [T [w][0] + dt0, LEmatrix_uwb[w][4], 

LEmatrix_uwb[w][5], LEmatrix_uwb[w][6], LEmatrix_uwb[w][7], 

LEmatrix_uwb[w][8], LEmatrix_uwb[w][9], LEmatrix_uwb[w][10]] 

 

# Forming the Fusion matrix of integrated RFID and 

UWB data to shape Radius and Center of circles 

(sphers) to shape trilateration circles (sphers) 

# Matrix b = [Time (s), corresponding distance based 

on path-loss model, UWB (x,y,z, R1, R2, R3, R4)] 

 

for r in range (0,p): 

    for l in range (0,Row): 

        if ( (T_equal[l][0]) >= (RSSIave[r][0]-0.5) and (T_equal[l][0]) 

<= (RSSIave[r][0] + 0.5) ): 

            SumX= SumX + float (T_equal [l][1]) 

            SumY= SumY + float (T_equal [l][2]) 

            SumZ= SumZ + float (T_equal [l][3]) 

            SumR1= SumR1 + float (T_equal [l][4]) 

            SumR2= SumR2 + float (T_equal [l][5]) 

            SumR3= SumR3 + float (T_equal [l][6]) 

            SumR4= SumR4 + float (T_equal [l][7]) 

            quwb =quwb+1 

             

    b[r][0:18] = [RSSIave[r][0], distanceeq [r][1], distanceeq [r][2], 

distanceeq [r][3], distanceeq [r][4], distanceeq [r][5], distanceeq 

[r][6], distanceeq [r][7], distanceeq [r][8], distanceeq [r][9], 

distanceeq [r][10], (SumX/quwb), (SumY/quwb), (SumZ/quwb), 

(SumR1/quwb)/1000, (SumR2/quwb)/1000, (SumR3/quwb)/1000, 

(SumR4/quwb)/1000] 

    quwb=0.0001 

    SumX  = 0 
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    SumY  = 0 

    SumZ  = 0 

    SumR1 = 0 

    SumR2 = 0 

    SumR3 = 0 

    SumR4 = 0         

 

for r1 in range (0,TagNo): 

    c[r1].remove(0) 

    for l1 in range (0,p): 

        if (b[l1][r1+1] > 0 and len(c[r1]) < IdentificationNo): 

            c[r1].append ([r1+1, b[l1][0], b[l1][r1+1], b[l1][TagNo+1], 

b[l1][TagNo+2], b[l1][TagNo+3],     b[l1][TagNo+4], b[l1][TagNo+5], 

b[l1][TagNo+6], b[l1][TagNo+7]]) 

      

Pmatrix = [len(c[0]),len(c[1]), len(c[2]), len(c[3]), len(c[4]), 

len(c[5]), len(c[6]), len(c[7]), len(c[8]), len(c[9])] 

print (Pmatrix) 

import math 

 

# Generating manipulated point cloud data with 

distance increments of 10 cm  

# Factorial seletion of the scenarios for RFID-UWB 

integration, calculating Spatial of Distribution 

(SoD) and varying the radius 

 

for L in range (0,TagNo): 

    count = 0  

    nprim = 1  

    mprim = 1 

    xcm=0 

    ycm=0 

    zcm=0 

 

    xmin = [min(i) for i in zip(*c[L])][3] *100 

    xmax = [max(i) for i in zip(*c[L])][3] *100 

    ymin = [min(i) for i in zip(*c[L])][4] *100 

    ymax = [max(i) for i in zip(*c[L])][4] *100 

    zmin = [min(i) for i in zip(*c[L])][5] *100 

    zmax = [max(i) for i in zip(*c[L])][5] *100 

    print ('X ',xmin,'--',xmax) 

    print ('Z ',zmin,'--',zmax) 

    for l1 in range (0,len(c[L])): 

        for l2 in range (l1+1,len(c[L])): 

            for l3 in range (l2+1,len(c[L])): 

                for l4 in range (l3+1, len(c[L])): 

                    Cmatrixeq = c[L] 
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                    if (Cmatrixeq[l1][0] !=0 and Cmatrixeq[l2][0] !=0 

and Cmatrixeq[l3][0] !=0 and Cmatrixeq[l4][0] !=0 ): 

                        print ('Tag',L+1, 'l1:',l1,'l2:', l2, 'l3:',l3, 

'l4:',l4) 

                        ncounter1=0 

                        ncounter2=0 

                        for x in range (int(xmin)-RR,int(xmax)+RR): 

                            for y in range (int(ymin)-RR,int(ymax)+RR): 

                                for z in range 

(int(zmin),int(zmax)+RR): 

                                    #print ('x:',x,'y:',y,'z:',z) 

                                    if ( ((x/100-Cmatrixeq[l1][3])**2 + 

(y/100-Cmatrixeq[l1][4])**2 + (z/100-Cmatrixeq[l1][5])**2 <= 

(Cmatrixeq[l1][2])**2) and  ((x/100-Cmatrixeq[l2][3])**2 + (y/100-

Cmatrixeq[l2][4])**2 + (z/100-Cmatrixeq[l2][5])**2 <= 

(Cmatrixeq[l2][2])**2) and ((x/100-Cmatrixeq[l3][3])**2 + (y/100-

Cmatrixeq[l3][4])**2 + (z/100-Cmatrixeq[l3][5])**2 <= 

(Cmatrixeq[l3][2])**2) and ((x/100-Cmatrixeq[l4][3])**2 + (y/100-

Cmatrixeq[l4][4])**2 + (z/100-Cmatrixeq[l4][5])**2 <= 

(Cmatrixeq[l4][2])**2)): 

                                        nprim = nprim + 1 

                                        xcm = xcm + x 

                                        ycm = ycm + y 

                                        zcm = zcm + z 

                                    if ( ((x/100-Cmatrixeq[l1][3])**2 + 

(y/100-Cmatrixeq[l1][4])**2 + (z/100-Cmatrixeq[l1][5])**2 <= 

(Cmatrixeq[l1][2])**2) or  ((x/100-Cmatrixeq[l2][3])**2 + (y/100-

Cmatrixeq[l2][4])**2 + (z/100-Cmatrixeq[l2][5])**2 <= 

(Cmatrixeq[l2][2])**2) or ((x/100-Cmatrixeq[l3][3])**2 + (y/100-

Cmatrixeq[l3][4])**2 + (z/100-Cmatrixeq[l3][5])**2 <= 

(Cmatrixeq[l3][2])**2) or ((x/100-Cmatrixeq[l4][3])**2 + (y/100-

Cmatrixeq[l4][4])**2 + (z/100-Cmatrixeq[l4][5])**2 <= 

(Cmatrixeq[l4][2])**2)): 

                                        mprim = mprim + 1        

                        if ( (nprim/mprim)<=Ratiolimit and nprim!=1): 

                            count = count +1 

                            ratio = nprim/mprim 

                            XCM = xcm/((nprim-1)*100) 

                            YCM = ycm/((nprim-1)*100) 

                            ZCM = zcm/((nprim-1)*100) 

                            error = math.sqrt ((XCM- 

float(LEmatrix_real_Reftags[L][2]) )**2 + (YCM- 

float(LEmatrix_real_Reftags[L][3]) )**2 + (ZCM- 

float(LEmatrix_real_Reftags[L][4]) )**2) 

                            #DoP calculation 

                            ux= 

(Cmatrixeq[l1][3]+Cmatrixeq[l2][3]+Cmatrixeq[l3][3]+Cmatrixeq[l4][3])/4 
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                            uy= 

(Cmatrixeq[l1][4]+Cmatrixeq[l2][4]+Cmatrixeq[l3][4]+Cmatrixeq[l4][4])/4 

                            uz= 

(Cmatrixeq[l1][5]+Cmatrixeq[l2][5]+Cmatrixeq[l3][5]+Cmatrixeq[l4][5])/4 

                            sx2= ((Cmatrixeq[l1][3]-

ux)**2+(Cmatrixeq[l2][3]-ux)**2+(Cmatrixeq[l3][3]-

ux)**2+(Cmatrixeq[l4][3]-ux)**2)/3  

                            sy2= ((Cmatrixeq[l1][4]-

uy)**2+(Cmatrixeq[l2][4]-uy)**2+(Cmatrixeq[l3][4]-

uy)**2+(Cmatrixeq[l4][4]-ux)**2)/3 

                            sz2= ((Cmatrixeq[l1][5]-

uz)**2+(Cmatrixeq[l2][5]-uz)**2+(Cmatrixeq[l3][5]-

uz)**2+(Cmatrixeq[l4][5]-ux)**2)/3 

                            s2= sx2+sy2+sz2 

 

                            Locationmatrix [n3] = [count, L+1, nprim, 

mprim, ratio, XCM, YCM, ZCM, s2, error] 

                            n3 = n3+1 

                            print (count,'-', 'Tag ID:', L+1, 'n:', 

nprim, 'divided by m:', mprim, '= ratio:', ratio, 'The CM is: 

(',XCM,',',YCM,',',ZCM, ')', 'The SoD is:', s2,' The error is:', error) 

                            nprim=1 

                            mprim=1 

                            xcm=0 

                            ycm=0 

                            zcm=0 

                        elif (nprim==1): 

                            while (nprim==1 and ncounter1 <=5): 

                                Cmatrixeq[l1][2] = Cmatrixeq[l1][2] + 

0.1 

                                Cmatrixeq[l2][2] = Cmatrixeq[l2][2] + 

0.1 

                                Cmatrixeq[l3][2] = Cmatrixeq[l3][2] + 

0.1 

                                Cmatrixeq[l4][2] = Cmatrixeq[l4][2] + 

0.1 

                                ncounter1 = ncounter1 +1 

                                print ('ncounter 1=', ncounter1) 

                                for x in range (int(xmin)-

RR,int(xmax)+RR):  

                                    for y in range (int(ymin)-

RR,int(ymax)+RR): 

                                        for z in range (int(zmin)-

RR,int(zmax)+RR): 

                                            if ( ((x/100-

Cmatrixeq[l1][3])**2 + (y/100-Cmatrixeq[l1][4])**2 + (z/100-

Cmatrixeq[l1][5])**2 <= (Cmatrixeq[l1][2])**2) and  ((x/100-

Cmatrixeq[l2][3])**2 + (y/100-Cmatrixeq[l2][4])**2 + (z/100-
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Cmatrixeq[l2][5])**2 <= (Cmatrixeq[l2][2])**2) and ((x/100-

Cmatrixeq[l3][3])**2 + (y/100-Cmatrixeq[l3][4])**2 + (z/100-

Cmatrixeq[l3][5])**2 <= (Cmatrixeq[l3][2])**2) and ((x/100-

Cmatrixeq[l4][3])**2 + (y/100-Cmatrixeq[l4][4])**2 + (z/100-

Cmatrixeq[l4][5])**2 <= (Cmatrixeq[l4][2])**2)): 

                                                nprim = nprim + 1 

                                                xcm = xcm + x 

                                                ycm = ycm + y 

                                                zcm = zcm + z 

                                            if ( ((x/100-

Cmatrixeq[l1][3])**2 + (y/100-Cmatrixeq[l1][4])**2 + (z/100-

Cmatrixeq[l1][5])**2 <= (Cmatrixeq[l1][2])**2) or  ((x/100-

Cmatrixeq[l2][3])**2 + (y/100-Cmatrixeq[l2][4])**2 + (z/100-

Cmatrixeq[l2][5])**2 <= (Cmatrixeq[l2][2])**2) or ((x/100-

Cmatrixeq[l3][3])**2 + (y/100-Cmatrixeq[l3][4])**2 + (z/100-

Cmatrixeq[l3][5])**2 <= (Cmatrixeq[l3][2])**2) or ((x/100-

Cmatrixeq[l4][3])**2 + (y/100-Cmatrixeq[l4][4])**2 + (z/100-

Cmatrixeq[l4][5])**2 <= (Cmatrixeq[l4][2])**2)): 

                                                mprim = mprim + 1  

                            if (nprim!=1):                 

                                count = count +1   

                                ratio = nprim/mprim 

                                XCM = xcm/((nprim-1)*100) 

                                YCM = ycm/((nprim-1)*100) 

                                ZCM = zcm/((nprim-1)*100) 

                                error = math.sqrt ((XCM- 

float(LEmatrix_real_Reftags[L][2]) )**2 + (YCM- 

float(LEmatrix_real_Reftags[L][3]) )**2 + (ZCM- 

float(LEmatrix_real_Reftags[L][4]) )**2) 

                                #DoP calculation 

                                ux= 

(Cmatrixeq[l1][3]+Cmatrixeq[l2][3]+Cmatrixeq[l3][3]+Cmatrixeq[l4][3])/4 

                                uy= 

(Cmatrixeq[l1][4]+Cmatrixeq[l2][4]+Cmatrixeq[l3][4]+Cmatrixeq[l4][4])/4 

                                uz= 

(Cmatrixeq[l1][5]+Cmatrixeq[l2][5]+Cmatrixeq[l3][5]+Cmatrixeq[l4][5])/4 

                                sx2= ((Cmatrixeq[l1][3]-

ux)**2+(Cmatrixeq[l2][3]-ux)**2+(Cmatrixeq[l3][3]-

ux)**2+(Cmatrixeq[l4][3]-ux)**2)/3  

                                sy2= ((Cmatrixeq[l1][4]-

uy)**2+(Cmatrixeq[l2][4]-uy)**2+(Cmatrixeq[l3][4]-

uy)**2+(Cmatrixeq[l4][4]-uy)**2)/3 

                                sz2= ((Cmatrixeq[l1][5]-

uz)**2+(Cmatrixeq[l2][5]-uz)**2+(Cmatrixeq[l3][5]-

uz)**2+(Cmatrixeq[l4][5]-uz)**2)/3 

                                s2= sx2+sy2+sz2 
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                                Locationmatrix [n3] = [count, L+1, 

nprim, mprim, ratio, XCM, YCM, ZCM, s2, error] 

                                n3 = n3+1 

                                print (count,'R1-', 'Tag ID:', L+1, 

'n:', nprim, 'divided by m:', mprim, '= ratio:', ratio, 'The CM is: 

(',XCM,',',YCM,') The SoD is:', s2,' The error is:', error) 

                                nprim=1 

                                mprim=1 

                                xcm=0 

                                ycm=0              

                        elif ((nprim/mprim)> Ratiolimit and nprim!=1): 

                            while ((nprim/mprim)> Ratiolimit and 

ncounter2 <=5): 

                                Cmatrixeq[l1][2] = Cmatrixeq[l1][2] - 

0.1 

                                Cmatrixeq[l2][2] = Cmatrixeq[l2][2] - 

0.1 

                                Cmatrixeq[l3][2] = Cmatrixeq[l3][2] - 

0.1 

                                Cmatrixeq[l4][2] = Cmatrixeq[l4][2] - 

0.1 

                                ncounter2 = ncounter2 +1 

                                print ('ncounter 2=', ncounter2) 

                                for x in range (int(xmin)-

RR,int(xmax)+RR):  

                                    for y in range (int(ymin)-

RR,int(ymax)+RR): 

                                        for z in range (int(zmin)-

RR,int(zmax)+RR): 

                                            if ( ((x/100-

Cmatrixeq[l1][3])**2 + (y/100-Cmatrixeq[l1][4])**2 + (z/100-

Cmatrixeq[l1][5])**2 <= (Cmatrixeq[l1][2])**2) and  ((x/100-

Cmatrixeq[l2][3])**2 + (y/100-Cmatrixeq[l2][4])**2 + (z/100-

Cmatrixeq[l2][5])**2 <= (Cmatrixeq[l2][2])**2) and ((x/100-

Cmatrixeq[l3][3])**2 + (y/100-Cmatrixeq[l3][4])**2 + (z/100-

Cmatrixeq[l3][5])**2 <= (Cmatrixeq[l3][2])**2) and ((x/100-

Cmatrixeq[l4][3])**2 + (y/100-Cmatrixeq[l4][4])**2 + (z/100-

Cmatrixeq[l4][5])**2 <= (Cmatrixeq[l4][2])**2)): 

                                                nprim = nprim + 1 

                                                xcm = xcm + x 

                                                ycm = ycm + y 

                                                zcm = zcm + z 

                                            if ( ((x/100-

Cmatrixeq[l1][3])**2 + (y/100-Cmatrixeq[l1][4])**2 + (z/100-

Cmatrixeq[l1][5])**2 <= (Cmatrixeq[l1][2])**2) or  ((x/100-

Cmatrixeq[l2][3])**2 + (y/100-Cmatrixeq[l2][4])**2 + (z/100-

Cmatrixeq[l2][5])**2 <= (Cmatrixeq[l2][2])**2) or ((x/100-

Cmatrixeq[l3][3])**2 + (y/100-Cmatrixeq[l3][4])**2 + (z/100-
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Cmatrixeq[l3][5])**2 <= (Cmatrixeq[l3][2])**2) or ((x/100-

Cmatrixeq[l4][3])**2 + (y/100-Cmatrixeq[l4][4])**2 + (z/100-

Cmatrixeq[l4][5])**2 <= (Cmatrixeq[l4][2])**2)): 

                                                mprim = mprim + 1  

                            if ((nprim/mprim)< 

Ratiolimit):                 

                                count = count +1   

                                ratio = nprim/mprim 

                                XCM = xcm/((nprim-1)*100) 

                                YCM = ycm/((nprim-1)*100) 

                                ZCM = zcm/((nprim-1)*100) 

                                error = math.sqrt ((XCM- 

float(LEmatrix_real_Reftags[L][2]) )**2 + (YCM- 

float(LEmatrix_real_Reftags[L][3]) )**2 + (ZCM- 

float(LEmatrix_real_Reftags[L][4]) )**2) 

                                #DoP calculation 

                                ux= 

(Cmatrixeq[l1][3]+Cmatrixeq[l2][3]+Cmatrixeq[l3][3]+Cmatrixeq[l4][3])/4 

                                uy= 

(Cmatrixeq[l1][4]+Cmatrixeq[l2][4]+Cmatrixeq[l3][4]+Cmatrixeq[l4][4])/4 

                                uz= 

(Cmatrixeq[l1][5]+Cmatrixeq[l2][5]+Cmatrixeq[l3][5]+Cmatrixeq[l4][5])/4 

                                sx2= ((Cmatrixeq[l1][3]-

ux)**2+(Cmatrixeq[l2][3]-ux)**2+(Cmatrixeq[l3][3]-

ux)**2+(Cmatrixeq[l4][3]-ux)**2)/3 

                                sy2= ((Cmatrixeq[l1][4]-

uy)**2+(Cmatrixeq[l2][4]-uy)**2+(Cmatrixeq[l3][4]-

uy)**2+(Cmatrixeq[l4][4]-uy)**2)/3 

                                sz2= ((Cmatrixeq[l1][5]-

uz)**2+(Cmatrixeq[l2][5]-uz)**2+(Cmatrixeq[l3][5]-

uz)**2+(Cmatrixeq[l4][5]-uz)**2)/3 

                                s2= sx2+sy2+sz2                       

                                Locationmatrix [n3] = [count, L+1, 

nprim, mprim, ratio, XCM, YCM, ZCM, s2, error] 

                                n3 = n3+1 

                                print (count,'R2-', 'Tag ID:', L+1, 

'n:', nprim, 'divided by m:', mprim, '= ratio:', ratio, 'The CM is: 

(',XCM,',',YCM,',',ZCM,') The SoD is:', s2,' The error is:', error) 

                                nprim=1 

                                mprim=1 

                                xcm=0 

                                ycm=0  

                                zcm=0 

 

for m in range (0, TagNo): 

    Locationmatrixfinal[m].remove (0) 

    kn=0 

    for u in range (0,n3): 
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        if (Locationmatrix[u][1]== (m+1)): 

            Locationmatrixfinal[m].append (Locationmatrix[u]) 

            kn=kn+1 

    if (kn==0): 

        Locationmatrixfinal[m].append([0,0,0,0,0,0,0,0,0]) 

         

import numpy as np 

for i in range (0,TagNo): 

    mat = np.array(Locationmatrixfinal [i]) 

    mat_sort = mat[mat[:,7].argsort()] 

    if (len(mat_sort)==1): 

        Locationmatrix_DoP [i] = [i+1,mat_sort[len(mat_sort)-

1][5],mat_sort[len(mat_sort)-1][6],mat_sort[len(mat_sort)-

1][7],mat_sort[len(mat_sort)-1][8] ,mat_sort[len(mat_sort)-1][9]]     

    if (len(mat_sort)==2): 

        Locationmatrix_DoP [i] = [i+1,(mat_sort[len(mat_sort)-

1][5]+mat_sort[len(mat_sort)-2][5])/2,(mat_sort[len(mat_sort)-

1][6]+mat_sort[len(mat_sort)-2][6])/2,(mat_sort[len(mat_sort)-

1][7]+mat_sort[len(mat_sort)-2][7])/2,(mat_sort[len(mat_sort)-

1][8]+mat_sort[len(mat_sort)-2][8])/2, (mat_sort[len(mat_sort)-

1][9]+mat_sort[len(mat_sort)-2][9])/2] 

    if (len(mat_sort)==3): 

        Locationmatrix_DoP [i] = [i+1,(mat_sort[len(mat_sort)-

1][5]+mat_sort[len(mat_sort)-2][5]+mat_sort[len(mat_sort)-

3][5])/3,(mat_sort[len(mat_sort)-1][6]+mat_sort[len(mat_sort)-

2][6]+mat_sort[len(mat_sort)-3][6])/3,(mat_sort[len(mat_sort)-

1][7]+mat_sort[len(mat_sort)-2][7]+mat_sort[len(mat_sort)-

3][7])/3,(mat_sort[len(mat_sort)-1][8]+mat_sort[len(mat_sort)-

2][8]+mat_sort[len(mat_sort)-3][8])/3, (mat_sort[len(mat_sort)-

1][9]+mat_sort[len(mat_sort)-2][9]+mat_sort[len(mat_sort)-3][9])/3] 

    if (len(mat_sort)==4): 

        Locationmatrix_DoP [i] = [i+1,(mat_sort[len(mat_sort)-

1][5]+mat_sort[len(mat_sort)-2][5]+mat_sort[len(mat_sort)-

3][5]+mat_sort[len(mat_sort)-4][5])/4,(mat_sort[len(mat_sort)-

1][6]+mat_sort[len(mat_sort)-2][6]+mat_sort[len(mat_sort)-

3][6]+mat_sort[len(mat_sort)-4][6])/4,(mat_sort[len(mat_sort)-

1][7]+mat_sort[len(mat_sort)-2][7]+mat_sort[len(mat_sort)-

3][7]+mat_sort[len(mat_sort)-4][7])/4,(mat_sort[len(mat_sort)-

1][8]+mat_sort[len(mat_sort)-2][8]+mat_sort[len(mat_sort)-

3][8]+mat_sort[len(mat_sort)-4][8])/4 ,(mat_sort[len(mat_sort)-

1][9]+mat_sort[len(mat_sort)-2][9]+mat_sort[len(mat_sort)-

3][9]+mat_sort[len(mat_sort)-4][9])/4] 

    if (len(mat_sort)>=5): 

        Locationmatrix_DoP [i] = [i+1,(mat_sort[len(mat_sort)-

1][5]+mat_sort[len(mat_sort)-2][5]+mat_sort[len(mat_sort)-

3][5]+mat_sort[len(mat_sort)-4][5]+mat_sort[len(mat_sort)-

5][5])/5,(mat_sort[len(mat_sort)-1][6]+mat_sort[len(mat_sort)-

2][6]+mat_sort[len(mat_sort)-3][6]+mat_sort[len(mat_sort)-
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4][6]+mat_sort[len(mat_sort)-5][6])/5,(mat_sort[len(mat_sort)-

1][7]+mat_sort[len(mat_sort)-2][7]+mat_sort[len(mat_sort)-

3][7]+mat_sort[len(mat_sort)-4][7]+mat_sort[len(mat_sort)-

5][7])/5,(mat_sort[len(mat_sort)-1][8]+mat_sort[len(mat_sort)-

2][8]+mat_sort[len(mat_sort)-3][8]+mat_sort[len(mat_sort)-

4][8]+mat_sort[len(mat_sort)-5][8])/5 ,(mat_sort[len(mat_sort)-

1][9]+mat_sort[len(mat_sort)-2][9]+mat_sort[len(mat_sort)-

3][9]+mat_sort[len(mat_sort)-4][9]+mat_sort[len(mat_sort)-5][9])/5] 

 

# Export the loclization information in Excel format 

 

import pandas as pd 

df1 = pd.DataFrame(Locationmatrix) 

df1.to_excel('Tags 3D location o20 before DoP analysis_5 highest no 

initial SoD IdentificationNo=8.xlsx') 

 

df2 = pd.DataFrame(Locationmatrix_DoP) 

df2.to_excel('Tags 3D location o20 after DoP analysis_5 highest no 

initial SoD IdentificationNo=8.xlsx') 

 


