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Montréal, Québec, Canada

April 2025

© Marzieh Adeli Shamsabad, 2025



CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Marzieh Adeli Shamsabad

Entitled: Automatic Handwriting Analysis for Classifying Multi-Label Personal-

ity Traits using Transformer OCR

and submitted in partial fulfillment of the requirements for the degree of

Master of Applied Science (Computer Science)

complies with the regulations of this University and meets the accepted standards with respect to

originality and quality.

Signed by the Final Examining Committee:

Chair
Dr. Adam Krzyzak

Examiner
Dr. Adam Krzyzak

Examiner
Dr. Muna Khayyat

Thesis Supervisor
Dr. Ching Yee Suen

Approved by
Dr. Charalambos Poullis, Chair
Department of Computer Science & Software Engineering

2025
Dr. Mourad Debbabi, Dean
Faculty of Engineering and Computer Science



Abstract

Automatic Handwriting Analysis for Classifying Multi-Label Personality Traits using
Transformer OCR

Marzieh Adeli Shamsabad

Handwriting analysis, or graphology, studies an individual’s psychological traits through hand-

writing patterns and features. It is used in forensic science, criminology, and disease diagnosis.

Previous studies have evaluated the correlation between psychological questionnaires and man-

ual handwriting analysis, but results were inconsistent due to its limitations and human error. This

research addresses these challenges by developing an automated handwriting analysis system using

deep learning to predict multi-label personality traits based on the Big Five Factor Model (BFFM).

The proposed model is built on the Transformer OCR (TrOCR) architecture, pre-trained on

diverse datasets, including handwritten texts like IAM. In this study, the text generation function

is replaced with a classification approach to predict levels (Low, Average, High) of BFFM traits

from handwriting samples. The model uses Focal Loss to handle class imbalance and Binary Cross-

Entropy with Logits for accurate classification.

The dataset includes 873 French and 181 English handwriting samples from CENPARMI, orig-

inally labeled for Extraversion and Conscientiousness. It has been expanded to cover all five BFFM

traits: Extraversion, Neuroticism, Agreeableness, Conscientiousness, and Openness to Experience,

totaling 1,054 samples. Each sample is segmented into individual lines to improve generalization.

The model’s performance is compared with ResNet50 and Vision Transformers (ViT Base 16 -

224 and 384). Results show that TrOCR outperforms them in accuracy and overall performance. For

two personality traits, it achieves 90.05% accuracy, AUROC of 0.97, and F-Score of 89%. For all

five traits, it reaches 89.01% accuracy, AUROC of 0.95, and F-Score of 87%. Extraversion shows the

weakest performance (AUROC of 91), while Agreeableness performs best (AUROC of 97). These

results highlight the model’s effectiveness in classifying BFFM traits despite class imbalance.
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Chapter 1

Study Overview

1.1 Introduction

Handwriting is a unique form of personal expression, often considered as distinctive as a finger-

print. Graphology, the study of handwriting analysis, examines various handwriting features such

as slant, margin width, size, specific letter shapes, and strokes to predict personality traits. These

features can reveal numerous aspects of an individual’s personality, including emotional state, self-

esteem, and creativity. Unlike aptitude tests, psychometric evaluations, or lengthy questionnaires,

handwriting analysis offers a faster and more accessible approach. By analyzing a simple written

sample, valuable information about an individual’s character can be obtained efficiently and effec-

tively [1].

Handwriting analysis has traditionally relied on manual interpretation to assess personality traits

using predefined guidelines. Although this approach provided meaningful assessments, it was often

time-consuming, prone to personal bias, and lacked consistency, leading to varying outcomes among

graphologists. To address these challenges, computerized handwriting analysis was developed. By

using advanced algorithms, these systems process handwriting samples with enhanced speed and

accuracy, ensuring consistent and dependable results while increasing efficiency [2].

Today, handwriting analysis finds applications in areas such as recruitment, personal develop-

ment, forensic investigations, and healthcare, providing information about behavior, identity, and
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potential medical conditions [3]. Although questions about its scientific credibility remain, tech-

nological progress has enhanced its accuracy, establishing it as a practical method for exploring

personality and behavioral traits.

1.2 Problem Statement

Understanding personality traits has an important role in decision-making across various fields.

In psychology, it helps design therapy plans; in recruitment, it connects candidates to suitable roles.

Forensic science uses it for profiling, and healthcare applies it to customize treatments and enhance

patient care. Traditional methods, such as questionnaires and psychometric tests, are commonly

used but have their limitations. These methods can be slow, costly, and require specialized expertise,

making them less practical for large-scale or rapid evaluations. Furthermore, self-reported data is

often subject to biases, such as social desirability bias, where individuals may respond in ways they

believe are more socially acceptable rather than reflecting their true thoughts or behaviors, reducing

the reliability of the results [4].

Handwriting analysis provides a practical way to understand personality traits using just a writ-

ing sample. It is based on the idea that handwriting reflects a person’s psychological state and

character. This connection comes from the fact that handwriting is guided by the brain, which con-

trols the hand’s movements, creating unique patterns in letter shapes, slant, pressure, and spacing.

These patterns are shaped by a mix of physical factors, cultural influences, and personal experiences,

making handwriting a reflection of an individual’s personality [2].

However, manual handwriting analysis is subjective and depends on the graphologist’s exper-

tise, leading to errors like inconsistent interpretations or misjudging handwriting features such as

slant or pressure [5]. Automated handwriting analysis offers a more objective and efficient solution

by using algorithms to improve accuracy and consistency. However, it still faces challenges, such

as handling diverse handwriting styles, managing imbalanced datasets, and interpreting complex

patterns, which emphasize the need for further advancements in this field.
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1.3 Motivation

Automated handwriting analysis provides a more efficient and objective way to assess person-

ality traits compared to traditional methods. Recent advancements in machine learning and deep

learning allow for precise analysis of handwriting patterns, enabling the extraction of subtle features

such as stroke pressure, slant, and spacing that are linked to personality traits. These algorithms help

to address challenges such as the variability in handwriting styles and imbalances in the data, using

techniques like data augmentation and custom loss functions to enhance accuracy and reliability.

By removing the subjectivity of manual analysis, automated systems ensure consistent results and

can handle large datasets effectively.

1.4 Objectives

This study aims to develop an advance deep learning model for handwriting analysis to assess

personality traits based on the Big Five Personality Traits: Extraversion, Agreeableness, Consci-

entiousness, Neuroticism, and Openness to Experience. The dataset is labeled using graphological

rules, and the validity of the labels is confirmed through the Big Five Factor Markers Test (BFFMT),

a widely recognized self-report questionnaire from the International Personality Item Pool.

The study addresses the following challenges in automated handwriting-based personality as-

sessment:

1. Multi-Label Classification: This approach is used to predict multiple personality traits si-

multaneously at different levels, by evaluating Binary Cross Entropy with Logits Loss (BCE-

WithLogitsLoss) and Cross Entropy with Softmax to identify the best method.

2. Imbalanced Dataset: Significant class imbalances in the dataset are addressed using Focal

Loss, which helps focus learning on underrepresented classes.

3. Limited Handwriting Samples: To overcome the limited number of handwriting samples,

the Line segmentation technique is applied to expand the dataset and enhance better general-

ization to unseen data.
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4. Feature Extraction: TrOCR model is used for automated feature extraction as a new ap-

proach in the classification task, employing a transformer-based encoder to analyze handwrit-

ing patterns. A classification head is added to predict personality traits at different levels.

The performance of TrOCR is compared with other models, such as ResNet50 (a CNN-based

model) and Vision Transformer (ViT) base 16 with input sizes of 224 and 384, to assess its

effectiveness in capturing handwriting patterns and accurately predicting personality traits.

To enhance model performance, state-of-the-art optimizers, including Adam, AdaBelief, and

SGD with momentum, are evaluated. This combination of multi-label classification, advanced loss

functions, segmentation, augmentation, and robust feature extraction aims to develop a reliable and

scalable automated handwriting analysis model for personality assessment.

1.5 Limitations

During the implementation of this study, we encountered several challenges that impacted the

development and evaluation process:

1. Dataset

• Data Insufficiency: The number of handwriting samples was insufficient for deep learning

models, which require large datasets to achieve reliable generalization. The limited data

made it difficult to train the model effectively and ensure that it performs well on unseen

handwriting samples. This issue also restricted the diversity of handwriting styles included in

the dataset, potentially affecting the model’s ability to handle variations.

• Imbalanced Dataset: The dataset had an uneven distribution of samples across different

personality trait levels, with some traits being significantly underrepresented. This imbalance

led to challenges in model training, as it became more difficult for the model to learn patterns

for minority classes, ultimately impacting the classification accuracy for those traits.

• Labeling Consistency: The labeling process involved assigning personality traits based on

graphological rules and validating them through psychological questionnaires. Ensuring that

4



these two methods aligned required significant effort and introduced complexity. Discrepan-

cies in the interpretation of graphological features sometimes created additional challenges in

maintaining consistent labels.

2. Model Training

• Computational Resources: Training deep learning models requires a lot of computing power

and memory. To meet these needs, a powerful graphical processing unit (GPU) was used to

handle time and memory limits.

• Optimization Complexity: Selecting and fine-tuning the most effective optimization strate-

gies for the model required significant effort. Different optimizers performed variably with

the dataset, and the need to experiment extensively with learning rates and other hyperparam-

eters added complexity to the training process. This process consumed considerable time and

required careful evaluation to ensure the model achieved its best possible performance.

3. Preprocessing

• Segmentation: To increase the dataset size, a segmentation method was implemented to

extract meaningful sections from the handwriting samples. Developing and applying this

technique required significant effort to ensure the segments are consistent and suitable for

analysis. This step was essential for improving data quality but presented considerable chal-

lenges during preprocessing.

4. Validation and Evaluation

• Comparative Model Analysis: Multiple deep learning models were implemented to ensure

the robustness and generalizability of the proposed method. The performance of different

architectures was compared to highlight the strengths and limitations of each model in recog-

nizing handwriting patterns for personality trait classification based on the BFFM. Through

this approach, the effectiveness of the proposed method was validated, and valuable insights

were gained into the suitability of various models for handwriting-based personality analysis.
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1.6 Thesis Outline

This thesis is organized as follows: Chapter 2 provides a review of handwriting analysis, the

Big Five factor measurement, and the application of computerized handwriting analysis, along with

related work on these topics. Chapter 3 describes the dataset, data preprocessing, and feature extrac-

tion methods. Chapter 4 outlines the materials and methods used in the study. Chapter 5 presents

the experimental results, and Chapter 6 concludes with a discussion, summarizing the findings and

suggesting directions for future work.
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Chapter 2

Literature Review

2.1 Handwriting Analysis and Graphology

2.1.1 Definition and Concept

Graphology, the study of handwriting to determine personality traits, has been used to analyze

and understand an individual’s character, emotional state, and behavior. It evaluates specific hand-

writing features, such as letter size, slant, spacing, pressure, and overall structure, to analyze traits

like emotional stability, honesty, fears, and defenses. Unlike methods focused on demographic in-

formation such as age or nationality, graphology aims to reveal psychological characteristics unique

to the individual [6].

2.1.2 Historical Development

The origins of graphology can be traced back to ancient times, with figures like Aristotle observ-

ing links between handwriting and behavior [7]. However, the field gained structure and recognition

in the 19th century when Jean-Hippolyte Michon formalized it by introducing the term ”graphol-

ogy” and developing systematic techniques to analyze handwriting [8]. This basis was expanded by

Jules Crépieux-Jamin, who integrated psychological principles into handwriting analysis, elevating

its potential as a tool for personality assessment [9].

Over time, graphology evolved into two main schools of thought: Graphoanalysis and Gestalt
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Graphology [10]. Graphoanalysis, primarily used in the United States, focuses on analyzing individ-

ual symbols in handwriting independently. Each symbol is treated as a separate entity to determine

its specific meaning [11]. On the other hand, Gestalt Graphology, prominent in Europe, particularly

in Germany, adopts a holistic approach. This method considers handwriting as a unified whole,

analyzing the interplay of form, movement, and space to uncover patterns, or ”gestalts,” that re-

flect various aspects of the writer’s personality [12]. Gestalt Graphology analyzes handwriting by

looking at its overall visual impression, or ”Gestalt,” to capture the general style and flow. It then

evaluates the handwriting’s clarity, consistency, and structure, determining whether it is of high

or low quality. Key features, including dominant, secondary, and contrasting traits, are identified

to understand the unique characteristics of handwriting. Finally, these elements are combined to

form a detailed interpretation of the writer’s personality [13]. In this study, the principles of Gestalt

Graphology are applied to analyze and label handwriting samples, which is the first step in training

our models.

2.1.3 Handwriting Features

Handwriting features are fundamental to graphology, offering an understanding of an individ-

ual’s personality, emotional tendencies, and cognitive patterns. These features are typically cate-

gorized into three main types: general measurements, fundamental measurements, and accessory

measurements. Together, they form a comprehensive structure that graphologists use to assess per-

sonality traits and behavioral characteristics [14].

General Measurements

General measurements provide an overall impression of the handwriting, focusing on stroke

quality, consistency, and visual appearance. Graphologists often associate the general style of hand-

writing with the writer’s psychological state. For instance, small, precise strokes in clear handwrit-

ing are interpreted as a sign of attention to detail and good concentration. Conversely, small strokes

in poorly executed handwriting may indicate traits such as pettiness or rigidity.

The overall impression also captures the balance and flow of the handwriting. A balanced and
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harmonious style suggests a well-organized and adaptable personality, while irregular or inconsis-

tent handwriting may reflect emotional instability or disorganization.

Fundamental Measurements

Fundamental measurements explore deeper into specific handwriting characteristics that form

the basis of personality analysis. These features include:

• Slant: The direction of the slant reflects emotional tendencies. A rightward slant suggests

openness, expressiveness, and sociability, while a leftward slant may indicate caution, reserve,

or emotional withdrawal. Neutral or upright slants are often associated with objectivity and

emotional balance.

• Baseline Direction: The alignment of handwriting on the page signifies mood and outlook.

Upward baselines indicate optimism and enthusiasm, whereas downward baselines suggest

negativity, fatigue, or a lack of motivation.

• Letter Size: Letter size is linked to self-image and confidence. Larger letters are associated

with extroversion, confidence, and assertiveness, while smaller letters suggest introversion,

humility, or focus on detail.

• Continuity: The connection between letters reflects thinking styles. Continuous strokes in-

dicate logical, organized thought processes, while disconnected strokes reveal spontaneity,

creativity, or even impulsiveness.

• Handwriting Form (Shape): The overall shape of handwriting, whether rounded or angular,

provides information in natural impulses and decision-making tendencies. Rounded forms

suggest flexibility and adaptability, while angular forms denote determination and a strong-

willed personality.

• Spacing and Alignment: The arrangement of words, lines, and letters highlights organi-

zational skills and adaptability. Wide spacing between words suggests independence, while

narrow spacing indicates a need for closeness or sociability.

• Pen Pressure: The intensity of pen pressure reflects the writer’s energy and strength. Heavy
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pressure is often linked to boldness, determination, and emotional intensity, while light pres-

sure indicates sensitivity, delicacy, or passivity.

• Writing Speed: Speed is a marker of mental and physical activity. Fast handwriting is as-

sociated with dynamism, decisiveness, and a quick thought process, while slow handwriting

suggests caution, deliberation, and attention to detail.

Accessory Measurements

Accessory measurements analyze specific graphic symbols and unique features within hand-

writing. These elements provide additional depth to personality assessments:

• Crossbars on ‘t’: The height, alignment, and firmness of the crossbar on the letter ‘t’ indi-

cates the writer’s ambition and self-control. High crossbars signify high aspirations, while

low crossbars may reflect modesty or low self-esteem (Table 2.1).

• Dots on ‘i’: The placement and size of the dot above the letter ‘i’ give information in focus

and imagination (Table 2.1). Precisely placed dots suggest attention to detail and ambition,

while scattered dots indicate creativity and spontaneity.

• Capital Letters: The size and style of capital letters show self-esteem and a desire to impress.

Large, ornate capitals suggest confidence and a need for recognition, while smaller capitals

reflect modesty or humility.

• Loops and Extensions: Loops in letters like ‘g’ and ‘y’ provide clues about creativity and

aspirations. Large loops may signify idealism and ambition, while small loops suggest prac-

ticality and realism (Table 2.1).

• Initial and Terminal Strokes: The way letters begin and end offers clues about the writer’s

mindset. Strong initial strokes suggest determination and proactivity, while faint terminal

strokes may indicate timidity or hesitation.

For a concise overview, Table 2.2 summarizes these features, their interpretations, and their

associated personality traits.
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Table 2.1: Examples of Handwriting Features for the Letters ’a’, ’y’, ’t’, ’i’, and ’g’ [15]

2.1.4 Validity of Graphology and Related Works

The validity of graphology, or handwriting analysis, has long been a controversial subject.

While graphology believes that handwriting can reveal personality traits through features like slant,

size, and pressure, scientific research has often questioned its reliability.

Studies have shown that handwriting analysis is prone to errors and inconsistencies. For ex-

ample, in research conducted in 2000, King and Koehler found that people often see connections
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Table 2.2: Handwriting Features and Associated Personality Traits [14]

Handwriting Feature Interpretation Associated Personality Traits
Slant The direction of the hand-

writing’s tilt.
Rightward: Sociable, expressive.
Leftward: Reserved, cautious.
Upright: Balanced, objective.

Baseline Direction The alignment of handwrit-
ing across the page.

Upward: Optimistic, enthusiastic.
Downward: Pessimistic, fatigued.
Wavy: Emotional instability.

Letter Size The height and width of let-
ters.

Large: Confident, extroverted.
Small: Introverted, humble.
Medium: Balanced self-image.

Spacing Between Words The distance between words. Wide: Independent, distant.
Narrow: Sociable, seeks closeness.

Pen Pressure The amount of pressure ap-
plied to the writing instru-
ment.

Heavy: Determined, intense.
Light: Sensitive, gentle.

Writing Speed The tempo of the handwrit-
ing.

Fast: Dynamic, decisive. Slow:
Cautious, deliberate.

Crossbar on ‘t’ The height, length, and firm-
ness of the cross stroke on the
letter ’t’.

High: Ambitious, goal-oriented.
Low: Lacks confidence. Firm:
Strong willpower. Weak:
Indecisive.

Dots on ‘i’ The position, size, and shape
of the dots above lowercase
’i’.

Precise: Focused, attentive to
detail. Scattered: Carefree,
imaginative. Round: Idealistic.
Slash-like: Impatient.

Loops in Letters The size and shape of loops
in letters like ‘g’, ‘y’, or ‘d’.

Large: Creative, idealistic,
ambitious. Small: Practical,
realistic. Closed: Reserved. Open:
Expressive, imaginative.

Initial Strokes The way letters begin (e.g.,
bold, faint, curved).

Strong: Determined, proactive.
Weak: Hesitant, cautious.

Terminal Strokes The way letters end (e.g., up-
ward, downward, straight).

Upward: Ambitious, aspiring.
Downward: Practical, grounded.
Firm: Resolute, courageous.

Capital Letters The size and embellishment
of uppercase letters.

Large: Confident, self-important,
seeks attention. Small: Modest,
humble, reserved.

Alignment of Lines The straightness or curvature
of lines on the page.

Straight: Organized, disciplined.
Wavy: Creative, unconventional,
emotional.

between handwriting and personality traits that are not real. These false connections happen be-

cause of personal biases, making handwriting analysis less trustworthy. They also pointed out that
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factors like mood and environment can change handwriting, adding to its unreliability [16].

In a study conducted in 2003, Adrian et al. found no strong link between handwriting and

traits like intelligence or personality. This raised serious questions about whether graphology could

truly measure these traits [17]. Similarly, Thiry and Rohmer examined handwriting analysis in

2007 by comparing it to psychological tools like the Rorschach test. While they found some small

connections between handwriting and certain psychological traits, they concluded that these were

not strong enough to make graphology a reliable tool for evaluating personality [18].

In 2009, Dazzi and Pedrabissi tested whether graphology could predict the Big Five personality

traits. They found no reliable connection between handwriting features and traits like openness or

neuroticism, further weakening the claims of graphology [19].

Gawda’s research in 2014 identified specific handwriting features tied to personality traits but

found no consistent patterns. Similarly, Harne et al., in 2018, demonstrated that cultural and indi-

vidual differences greatly influence handwriting. These variations make it very difficult to create

standardized methods for analyzing handwriting [20, 21].

More recent research conducted in 2021 by Garoot et al. highlighted how handwriting interpre-

tations often vary between graphologists, underlining the need for clear and standardized methods.

They concluded that, while there may be statistically significant correlations between handwriting-

based evaluations and personality assessments like the Big Five Factors, the inconsistency in cor-

relation strength across traits indicates that handwriting analysis is not yet a reliable standalone

method for assessing personality. Current evidence supports its use as a complementary tool rather

than a substitute for validated psychological instruments [22].

2.2 The Big Five Factor Model of Personality Traits (BFFM)

2.2.1 Historical Development

The concept of the Big Five Personality Traits came out from research aimed at identifying

universal dimensions that describe human personality. The origins of this approach can be traced

back to Allport and Odbert in 1936, who compiled a list of words from the English language used

to describe personality. By analyzing and reducing this list, they laid the basis for a widely accepted
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model of personality.

In the 1940s, Cattell refined this approach by grouping these traits into 16 personality factors

using factor analysis. Later, in the 1960s, Tupes and Christal re-examined earlier studies and con-

sistently identified five core dimensions. Their findings became a significant moment in the devel-

opment of the Big Five. However, it wasn’t until the 1980s, through the influential work of Costa

and McCrae in 1985 and Goldberg in 1990, that the Big Five gained importance. These researchers

demonstrated its reliability and validity across cultures and contexts, making it one of the most

robust models for understanding personality [23, 24].

2.2.2 Definition and Explanation

BFFM is a well-known model for describing an individual’s personality. It is based on five basic

personality traits which are grouped into sub-factors, as follows [1]:

1. Extraversion (EX): Extraversion measures sociability, energy levels, and the tendency to

seek stimulation from the external environment. Extroverts are typically outgoing, assertive,

and thrive in social interactions, while introverts prefer solitude and self-reflection.

2. Neuroticism (NE): Neuroticism is often discussed about emotional stability and reflects a

tendency to experience negative emotions, such as anxiety and stress. Individuals with high

neuroticism are more prone to mood swings and emotional instability, while those with low

neuroticism exhibit greater emotional stability and resilience.

3. Agreeableness (AG): Agreeableness reflects interpersonal traits such as empathy, kindness,

and cooperation. Highly agreeable individuals are trusting and generous, whereas those with

low agreeableness may exhibit competitiveness or skepticism.

4. Conscientiousness (CO): This trait is associated with self-discipline, organization, and a

strong sense of duty. Highly conscientious individuals are reliable, goal-oriented, and careful

in their work. In contrast, those with low conscientiousness may exhibit impulsiveness and a

lack of reliability.
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5. Openness to Experience (OE): Openness reflects curiosity, imagination, and a preference for

novelty. Individuals scoring high on openness are often creative, adventurous, and reasonably

curious, while those with low openness are more practical, routine-oriented, and traditional.

Self-report tests are widely used to measure each of the Big Five personality traits. These tests

consist of questionnaires that include sets of markers representing each trait. The number of items

in these questionnaires can vary depending on the specific version of the test. Each item is rated on

a 5-point scale, ranging from 1 (Strongly Disagree or Very False for Me) to 5 (Strongly Agree or

Very True for Me). Participants evaluate how accurately each statement describes their personality,

providing a structured and standardized method to assess openness, conscientiousness, extraversion,

agreeableness, and neuroticism.

2.2.3 Related Works on Automated BFFM

In 2018, Gavrilescu and Vizireanu developed a neural network-based system to predict the

Big Five personality traits using handwriting samples. Their model achieved with notable perfor-

mance exceeding 84% for Openness, Extraversion, and Neuroticism, and slightly lower accuracies

of around 77% for Conscientiousness and Agreeableness [1].

In 2020, Salminen et al. introduced a deep learning model combining a one-dimensional con-

volutional neural network and a long short-term memory network to predict personality traits from

textual data. Using a dataset of 2,467 essays, their model achieved F1 scores ranging from 0.484

for Emotional Stability to 0.553 for Agreeableness, demonstrating the potential of combining text

analysis with advanced neural networks [25].

In 2022, Ramezani et al. proposed KGrAt-Net, a Knowledge Graph Attention Network designed

to improve personality prediction from text. Incorporating knowledge graph embeddings, their

model achieved an average accuracy of 70.26%, which increased to 72.41% when graph features

were added [26]. Around the same time, Kerz et al. explored the integration of psycholinguistic

features with transformer-based models, such as BERT. Their approach enhanced the detection of

personality traits from verbal behavior by leveraging psycholinguistic feature analysis alongside

pre-trained transformer embeddings [27].
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By 2023, Sirasapalli and Malla introduced a deep learning model that used convolutional and

recurrent neural networks to map Myers-Briggs Type Indicator profiles to the Big Five traits. Their

methodology, which combined datasets for improved generalization, achieved an impressive accu-

racy of 87.89% and an F1 score of 0.924 [28].

In 2024, Yan et al. examined the performance of large language models in predicting person-

ality traits from Chinese counseling dialogues. Their fine-tuned model significantly outperformed

earlier methods, achieving a 36.94% improvement over the state-of-the-art in personality prediction

accuracy [29]. That same year, Sze et al. demonstrated the feasibility of using mobile phone sen-

sor data to assess personality traits. Their machine learning model achieved an F1 score of 0.78

in a two-class classification problem, showcasing the potential of behavioral data for personality

prediction [30].

Peters et al. explored the use of GPT-4-powered chatbots for inferring the Big Five personality

traits. Their chatbot inferred personality traits with moderate accuracy, outperforming earlier static-

text-based methods [31].

In a recent study, Ouarka et al. proposed a multimodal fusion approach to predict personality

traits using visual, audio, and text data. Their model employed pre-trained architectures such as

ViT-B16 and VGG16 for visual features, VGGish for audio features, and GloVe embeddings for

text. Long Short-Term Memory networks were used to capture temporal dependencies, while atten-

tion mechanisms enhanced performance. The method achieved a prediction accuracy of 91.70%,

demonstrating the potential of combining multiple modalities for personality prediction [32].

2.3 Automated Handwriting Analysis System

2.3.1 Concepts, Advantages, and Real-World Applications

Automated handwriting analysis involves using computational methods to evaluate and interpret

handwriting samples. Unlike traditional manual techniques, which rely on expert judgment, auto-

mated systems employ algorithms to analyze handwriting features such as shape, size, slant, and

spacing. These models are designed to extract patterns and correlations, offering information about

the writer’s identity, cognitive abilities, or personality traits. By applying machine learning and
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artificial intelligence, automated handwriting analysis has transformed into a scalable and efficient

tool. The shift from manual to automated handwriting analysis brings several distinct advantages:

1. Precision and Objectivity: Automated systems eliminate human bias, ensuring consistent

results across diverse datasets [25].

2. Speed and Efficiency: Large-scale handwriting datasets can be processed within minutes,

enabling faster decision-making in areas like forensics and education [33].

3. Scalability: With minimal additional resources, automated methods can scale to analyze

extensive collections of handwriting samples [34].

4. Integration with Advanced Technologies: Combining handwriting analysis with neural net-

works and deep learning models significantly enhances prediction accuracy [35].

Automated handwriting analysis finds applications across various domains:

• Forensic Science: Identifying forgeries, verifying signatures, and authenticating documents

are common use cases [36].

• Healthcare: Handwriting analysis aids in diagnosing motor-related disorders such as Parkin-

son’s disease and in monitoring rehabilitation progress [37].

• Educational Assessment: Automated systems evaluate handwriting to assess students’ cog-

nitive and motor skills, offering valuable feedback for educators [38].

• Psychological Profiling: In psychology, handwriting features are correlated with personality

traits, emotions, and mental states, contributing to studies on human behavior [1].

2.3.2 The Core Process

Automated handwriting analysis typically involves five main stages:

1. Data Collection: The first step in automated handwriting analysis is collecting samples, ei-

ther by scanning documents with high-resolution scanners for clarity or capturing handwriting

directly using digital devices like tablets, which also record dynamic features such as speed

17



and pressure. Mobile applications further simplify the process, enabling scalable and remote

data collection [38]. High-quality data is important, as noise or distortion can affect analysis

accuracy.

2. Image Preprocessing: In handwriting analysis for personality trait assessment, pen pressure

is considered one of the features. However, this information is often lost during the digiti-

zation of handwriting samples. Therefore, enhancing the quality of scanned images through

preprocessing becomes a critical step to preserve and highlight all meaningful features. This

process includes techniques such as noise removal, binarization, and normalization. Meth-

ods like median filtering and adaptive thresholding are commonly applied to improve image

clarity and ensure the handwriting is suitable for further analysis.[39].

3. Feature Extraction: Feature extraction identifies the specific characteristics of handwriting

that can be analyzed further. Commonly extracted features include:

• Structural Features: Letter shapes, loops, alignment, and spacing between letters and

words. The steadiness and direction of handwriting along a baseline.

• Dynamic Features: Pressure, speed, and rhythm. Algorithms like Histogram of Oriented

Gradients (HOG) and Scale-Invariant Feature Transform (SIFT) are employed for robust

feature extraction [40].

4. Pattern Classification: The extracted features are fed into classifiers to identify handwrit-

ing patterns and predict personality traits. Machine learning models such as Support Vector

Machines (SVMs) and Random Forests, as well as deep learning architectures like Convolu-

tional Neural Networks (CNNs), are frequently used for personality trait classification from

handwriting [33].

5. Results Interpretation: The system analyzes handwriting features to assess personality

traits, using models like the BFFM. The results are validated against established benchmarks

or expert evaluations to ensure accuracy and are presented in clear, user-friendly formats for

easy interpretation.
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2.3.3 Related Work

Gahmousse et al., in 2021 used Edge Hinge (EH) for feature extraction and AdaBoost for trait

classification based on the Five Factor Model. A majority voting technique with three AdaBoost

models (C1, C2, C4) achieved 83.02% accuracy, outperforming previous works [41].

In 2022, Alamsyah et al. used a simple CNN with two layers to classify handwriting features

such as entry strokes, slantness, and size on the AND dataset, achieving 80.88% accuracy. However,

since the dataset was imbalanced, accuracy alone may not fully reflect the model’s performance [42].

Mukherjee et al., also in 2022, proposed a method for predicting Big Five personality traits

using handwriting features. Their study extracted specific characters (’a’, ’g’, ’n’, ’t’) and the word

’of’ to identify features like slants, loops, and connectivity. They utilized multi-label classification

techniques such as Classifier Chains (CC), Binary Relevance (BR), and Label Powerset (LP) with

KSTAR, KNN, and MLP as base classifiers. The CC-KNN combination achieved the best accuracy

of 98.1% on a custom dataset of 50 participants [38].

In the same year, Yusof et al. analyzed graphological features such as slant, spacing, and

baselines using Agglomerative Hierarchical Clustering (AHC) with Principal Component Analysis

(PCA) for feature extraction and dimensionality reduction. They used a dataset of 70 Malaysian

handwriting samples labeled according to the BFFM, and reported moderate clustering perfor-

mance, achieving a silhouette score of 0.054 [43].

Durga and Deepu, in 2022, introduced a handwriting-based personality classification model that

combined document and character-level handwriting features. They employed a novel Directional

Movement (DM) kernel in CNNs, designed to capture the directional flow of handwriting strokes

for fine-grained feature extraction, and used Hinge loss for optimization. Their model achieved an

average accuracy of 86% on a private dataset of 200 samples [44].

In another study from 2022, Shree and Siddaraju developed a deep learning pipeline for handwriting-

based personality analysis using a custom dataset of 3,000 images. Their approach involved two key

stages: handwriting detection and personality trait classification. YOLO v5 was used to accurately

detect and localize handwriting regions within the images, achieving a high F1 score of 0.95. These

detected regions were then classified using ResNet-34, which achieved an F1 score of 0.91 for
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predicting personality traits [35].

In 2022, Garoot and Suen introduced the AvgMlSC ensemble learning model, which combines

Multi-label SVM and CNN classifiers to predict the Big Five personality traits from handwriting. To

address class imbalance, they applied the Synthetic Minority Over-sampling Technique (SMOTE),

which generates synthetic examples of minority classes by interpolating between existing samples.

Their approach achieved 93% accuracy, an AUC of 0.94, and a 90% F-score on the dataset, which

contains 1,108 handwriting samples in five languages [45].

In the same year, Samsuryadi et al. proposed a handwriting analysis model aimed at predict-

ing the Big Five personality traits. They extracted a range of handcrafted features from the IAM

Handwriting Database, including baselines, letter size, slant, spacing, and pen pressure, using image

processing techniques implemented in OpenCV. These features were then used to train traditional

machine learning classifiers, including Decision Trees, Support Vector Machines (SVM), and K-

Nearest Neighbors (KNN). The model demonstrated high predictive performance, achieving over

99% accuracy in personality trait classification [46].

In 2023, Peralta-Rodrı́guez et al. conducted a study to classify personality traits based on the Big

Five Factor Model using handwritten images. Their approach involved a two-stage deep learning

pipeline: first, a U-Net architecture was employed for image preprocessing to enhance handwriting

regions and reduce noise. Then, a Convolutional Neural Network with five convolutional layers

was used for personality trait classification. The model was evaluated on the HWxPI dataset, which

consists of 418 handwritten essays. While the overall performance was modest, with an average

AUC of 0.56, the model achieved its highest AUC score of 0.62 for the Extraversion trait [47].

Later in 2023, Dhumal et al. introduced a hybrid deep learning model that combined CNNs and

Long Short-Term Memory (LSTM) networks for handwriting-based personality trait prediction.

In this architecture, CNNs were used to extract spatial features from handwriting images, while

LSTMs captured temporal dependencies and sequential patterns present in the handwritten strokes.

The model was trained and evaluated on a custom offline handwriting dataset, achieving a high

classification accuracy of 96% [48].

In 2024, Ahmed et al. utilized models like VGG16, ResNet, DenseNet201, and InceptionV3

for handwriting-based personality prediction. They extracted features such as letter size, slant,
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and pressure from the IAM Database and a proprietary dataset. Their VGG16 model achieved a

maximum accuracy of 73.8% [33].

Yan Xu et al., in 2024, focused on handwriting-based personality prediction, emphasizing pre-

processing methods like binarization and noise removal. Using the CENPARMI dataset of 234 sam-

ples, they achieved 82.90% accuracy for conscientiousness and extraversion with the ConvNeXt-

Tiny model [29].

Nair et al. explored handwriting analysis in 2024 using algorithms: KNN, SVM, Naive Bayes,

Decision Trees, and Random Forest. Extracting features like stroke pressure, letter size, slant, and

spacing from a personal handwriting dataset, SVM achieved the highest accuracy of over 95% [49].

Chethan et al., also in 2024, combined CNNs, ANNs, and ResNets for handwriting-based per-

sonality prediction. Their dataset of 1000 samples categorized traits such as Anxious and Coopera-

tive, achieving individual accuracy rates of up to 85% [50].

In 2024, Safar and Suen integrated traditional graphology with machine learning to predict

personality traits from handwriting. They used VGG16 for feature extraction and applied machine

learning algorithms like k-NN, Random Forest, and Logistic Regression, alongside SMOTE for

data balancing. Ensemble methods, including Stacking and Majority Voting, were also employed,

achieving over 90% accuracy for traits like Agreeableness and Openness to Experience [51].

In a recent 2025 study, Puttaswamy and Thillaiarasu employed Fine DenseNet for feature ex-

traction and an Attention-Mechanism-based Deep LSTM with CTC loss (AMDLSTM-CTC) for

classification. Their model achieved 97.6% accuracy on the Kaggle handwriting dataset [52].

See Table 2.3 for a summary of the related works on Automated Handwriting analysis systems.

The reviewed studies show progress in using handwriting to analyze personality traits, with

methods ranging from traditional machine learning to deep learning models. These approaches have

demonstrated the potential to extract features from handwriting and predict traits with reasonable

accuracy. However, there are still challenges and limitations that need to be addressed to improve

the effectiveness of these methods.

Many studies depend on small or custom datasets, such as Mukherjee et al.’s work with 50 par-

ticipants or Alamsyah et al.’s dataset containing 15 handwriting feature categories. Limited datasets

reduce the ability of the models to generalize across different handwriting styles and populations.
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Study & Year Features Methodology Dataset Results
Gahmousse et al.,
2021

Edge Hinge (EH)
distributions

AdaBoost with
majority voting

Custom dataset (285
samples)

Avg. Accuracy:
83.02%

Alamsyah et al., 2022 Entry stroke ’A,’
size, slantness

Convolutional Neural
Network (CNN)

AND dataset Accuracy: 80.88%

Mukherjee et al.,
2022

Characters (’a’, ’g’,
’n’, ’t’), word ’of’;
slant, ellipticity,
loops, connectivity

Multi-label
classification: CC,
BR, LP with KSTAR,
KNN, MLP

Custom dataset (50
participants)

Best Accuracy:
98.1% (CC-KNN)

Yusof et al., 2022 Slanting, spacing,
baselines

Agglomerative
Hierarchical
Clustering with PCA

70 handwriting
samples with Big
Five labels

Silhouette score:
0.054

Durga and Deepu,
2022

Document- and
character-level:
baselines, margins,
spacing, ’t’, ’i’

CNN (DM kernel),
self-adaptive ANN

Custom dataset (200
samples)

Avg. accuracy: 86%
(Big Five traits)

Navya Shree K S &
Siddaraju, 2022

Handwriting features
(e.g., slant, margin)

YOLO v5 for
detection, ResNet-34
for classification

Custom dataset
(3000 images)

F1 scores: YOLO v5:
0.95, ResNet-34:
0.91

Afnan Garoot &
Ching Y. Suen, 2022

Handwriting
features: slant, size,
spacing, baseline,
letter curvature,
pressure

AvgMlSC
(MLSVM+MLCNN
with SMOTE)

HWBFF dataset
(1066 samples)

Predictive accuracy:
93%, AUC: 0.94,
F-Score: 90%

Dhumal et al., 2023
(First Paper)

Signature strokes,
structural patterns

Transformer + LSTM Custom dataset Accuracy: 96%
(outperformed
LSTM: 93%)

Samsuryadi et al.,
2023

Baselines, margins,
spacing, size, slant,
pressure

Decision Tree, SVM,
KNN (OpenCV)

IAM Handwriting
Database

Accuracy: ¿99% (Big
Five traits)

Peralta-Rodrı́guez et
al., 2023

Image-based features
(no explicit
extraction)

U-Net for
preprocessing, CNN
for classification

HWxPI dataset (418
essays)

Avg. AUC: 0.56,
Max: 0.62
(Extraversion)

Dhumal et al., 2023
(Second Paper)

Handwriting patterns
and strokes

Hybrid CNN-LSTM,
multi-task learning

Custom offline
handwriting dataset

Accuracy: 96%

Ahmed et al., 2024 Letter size, slant,
pressure, spacing

CNNs (VGG16,
DenseNet201,
ResNet,
InceptionV3)

IAM Database,
proprietary dataset

VGG16 accuracy:
73.8%

Xu et al., 2024 Automatic extraction
(CNNs)

ConvNeXtTiny,
binary cross-entropy
loss, Adam optimizer

234 handwriting
samples

Best accuracy:
82.90%

Nair et al., 2024 Stroke pressure,
letter size, slant,
spacing

KNN, SVM, Naive
Bayes, Decision
Trees, Random
Forest

Personal handwriting
dataset

SVM: 95% accuracy

Dr. H.K. Chethan et
al., 2024

Handwriting
attributes: slant, size,
pressure

CNNs, ANNs,
ResNets, ensemble
methods

Kaggle, student
samples (1000)

Prediction: Anxious:
85%, Cooperative:
80%, etc.

Maedeh Safar &
Ching Y. Suen, 2024

Automatic extraction
(VGG16)

k-NN, Random
Forest, Logistic
Regression, SMOTE,
Stacking

1,108 samples
(CENPARMI)

Over 90% accuracy
for Agreeableness
and Openness

Puttaswamy &
Thillaiarasu, 2025

Handwriting traits:
slants, spacing, font
tilting

Fine DenseNet,
AMDLSTM-CTC

Kaggle handwriting
dataset

Accuracy: 97.6%, F1
Score: 92.67%

Table 2.3: Summary of Automated Handwriting Analysis Studies
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Another common issue is class imbalance, where certain personality traits are underrepresented,

leading to less accurate predictions for those traits. For example, Afnan Garoot and Ching Y. Suen

addressed this problem using SMOTE; however, SMOTE has limitations when applied to high-

dimensional data like images, as it may not effectively capture the complex patterns present in such

data [53].

Many studies also depend on manual feature extraction, which requires researchers to identify

and analyze specific handwriting features such as slants, spacing, or letter characteristics like Yusof

et al. and Mukherjee et al. While this approach provides detailed analysis, it is time-consuming and

not scalable for large datasets or real-world applications. Automated feature extraction methods are

necessary to address these limitations and enhance the efficiency of handwriting analysis models.

Another key limitation is the focus on single-label classification, where traits are treated inde-

pendently. This simplification misses the complexity of personality analysis, as a single handwriting

sample can reflect multiple traits simultaneously at different levels. While studies like Afnan Garoot

and Ching Y. Suen have explored multi-label classification, their approach relied on specific grapho-

logical feature extraction, which may not fully capture the nuanced variations present in handwriting

features that represent all five traits of the BFFM within a single sample.

These challenges emphasize the need for more reliable, automated, and scalable models that

can effectively address class imbalance and handle multi-label classification. Developing models

that can predict multiple personality traits simultaneously, each with varying levels, would be a

significant step forward in this field. This study aims to fill these gaps by offering a more thorough

and effective approach to analyzing personality traits from handwriting.
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Chapter 3

Data Collection and Analysis

This chapter provides an overview of the dataset used in this study, detailing its structure, the

process of collecting handwriting samples and personality scores, and the preprocessing steps ap-

plied to prepare the data for analysis. The dataset, initially labeled for two personality traits, is

expanded in this thesis to include all five traits of BFFM: Extraversion, Agreeableness, Conscien-

tiousness, Neuroticism, and Openness to Experience. This expansion was achieved by combining

handwriting samples with graphology rules and their corresponding BFFM test scores.

3.1 Dataset Overview

The dataset consists of handwriting samples and personality trait scores collected from 1,110

participants. It includes data gathered through a structured survey conducted at Concordia Univer-

sity and additional samples provided by a professional graphologist. Below, we detail the dataset’s

structure, the participant demographics, and the collection methodology [22].

• Survey Participants: A total of 234 individuals participated in the survey.

• Graphologist’s Dataset: An additional 876 handwriting samples were collected from 672

individuals by a professional graphologist. These samples maintain the same collection stan-

dards and conditions as the survey data.
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3.1.1 Data Collection

Survey Design and Structure: The survey was designed to collect handwriting samples and cor-

responding personality trait scores. It consisted of three main sections:

(1) Demographics: This section collected information about participants’ age, gender, educa-

tion, occupation, and nationality. The participants ranged from 18 to 35 years old, with

a nearly equal gender distribution (48.69% male, 50.79% female). Regarding education,

39.28% had graduate-level qualifications, 27.23% held a bachelor’s degree, 19.37% were in

or had completed high school, and 2.09% held a diploma. Most participants were students

(72.77%), while 23.04% were employed. The group was internationally diverse, with 30.37%

Canadian, 16.23% Iranian, 14.66% Indian, 8.38% Korean, 7.85% Chinese, and 21.99% from

23 other nationalities.

(2) BFFM Test: The International Personality Item Pool-Big Five Factor Markers Test (IPIP-

BFFMT) was used to measure personality traits.

• The test comprised 50 self-report items rated on a 5-point Likert scale from 1 (Very

Inaccurate) to 5 (Very Accurate).

• Participants were instructed to answer honestly based on their current state, with a com-

pletion time of 10–20 minutes.

(3) Graphology Test: Participants were required to write at least one page of text on unlined

letter-sized paper.

• Instructions emphasized natural handwriting without modification or enhancement.

• Writing was completed in a calm and patient manner to minimize external influences.

• Participants could use any writing tool (e.g., pencil, ballpoint pen, or fountain pen) and

any language they preferred.

Recruitment and Rewards: Participants were recruited through posters on Concordia University

campuses (approved by Concordia Student Union) and email invitations via the Computer Science

department. They received $10 as a reward and a chance to win a $20 Amazon gift card.
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Controlled Environment: Data collection occurred in a dedicated laboratory at the Centre for

Pattern Recognition and Machine Intelligence (CENPARMI). This controlled environment ensured

consistency in handwriting samples by minimizing external factors.

Graphologist’s Dataset: To enhance the dataset, a professional graphologist contributed 876

handwriting samples. These samples were collected during her professional practice, where her

clients agreed to allow their samples to be used for research and teaching purposes. These sam-

ples followed similar conditions and standards as the survey data, ensuring consistency across the

dataset.

Figure 3.1 shows two examples of French and English handwriting samples collected from the

survey participants and the graphologist.

(a) French Handwriting Sample Provided by
Graphologist (b) English Handwriting Sample from Survey

Figure 3.1: Handwriting Samples from Survey Participants and Graphologist
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3.1.2 Labeling Process

To predict the Big Five personality traits from handwriting, the graphologist specified handwrit-

ing features corresponding to each trait based on its definitions and established graphology rules.

Table 3.1 provides an overview of the handwriting features used for each of the five traits: Extraver-

sion, Conscientiousness, Neuroticism, Agreeableness, and Openness to Experience.

Each handwriting sample was manually evaluated by scaling these features. The labeling pro-

cess involved:

• A 5-point scale was used for most traits: 1 = None or Very Low, 2 = Low, 3 = Average, 4 =

High, 5 = Very High.

• For Extraversion, Neuroticism, Agreeableness, and Openness to Experience, each trait was

assessed based on five handwriting features.

• For Conscientiousness, the scale comprised four handwriting features.

• For each trait, the individual scores for all corresponding features were averaged to compute

the final trait score.

The manual labeling process ensured that the handwriting samples were accurately aligned with

graphology principles, providing robust data for model training.

3.1.3 Digitization

The process of digitizing handwriting samples involved converting physical documents into

electronic formats suitable for analysis [22].

• Document Scanning: Handwriting samples were scanned at a resolution of 600 dpi using an

HP Color LaserJet Enterprise M553 series scanner. The scanner’s automatic document feeder

ensured efficiency and consistency during the digitization process.

• Image Output: Scanned documents were saved as high-resolution bitmap images, preserving

the details of the original handwriting for accurate feature extraction.

• Bias Control: Steps were taken to assess and minimize the impact of factors such as hand-

writing language, ensuring fair and unbiased data analysis.
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Table 3.1: Handwriting Features Corresponding to Each of the Big Five Factors [22]

Factor Handwriting Features
Extraversion

• Middle zone more than 2.5 mm. The middle zone includes most
lowercase letters such as a, e, i, o, and u.

• Narrow ending margin. Margin refers to spacing around the text page
and indentations for paragraphs.

• Dominance of garlands: Letters like ”m” and ”n” have a ”u” shape
instead of the taught model.

• Progressive movement: Often right-slanted, with a high degree of
connection.

• Slanted in the direction of the writing: Downstrokes angle to the
baseline between 85°-45°.

Conscientiousness
• Regularity in slant, dimension, and spacing.
• Precision of free stroke placement: ’t’ bars are well-centered, and ’i’

dots align with their stems.
• Legibility: This is measured by how clear and readable the

handwriting is, even when taken out of context.
• Controlled movement: Well-structured forms progressing firmly along

the baseline.

Neuroticism
• Regularity without rigidity.
• Horizontal and flexible baseline.
• Slightly slanted handwriting.
• Balance between white space and ink space.
• Good pressure and quality of strokes.

Agreeableness
• Dominance of curves over angles.
• Adequate spacing between letters, words, and lines.
• Letter width greater than 5.
• Rounded letters without loops, slightly open.
• Nourished and smooth strokes.

Openness to
Experience • Good openness in loops.

• Appropriate speed and movement in writing.
• Slight angles in letters.
• Slanted handwriting in the direction of writing.
• Narrow ending margin.
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3.2 Dataset Distribution Analysis

In psychology, the Big Five Factor Model test aims to assess the levels of Extraversion, Con-

scientiousness, Neuroticism, Agreeableness, and Openness to Experience, categorizing them into

low, average, or high levels simultaneously. Similarly, in computer science, we aim to develop a

supervised learning model capable of performing a classification task for all these traits at once.

This approach involves handling instances that can be associated with multiple labels at the same

time.

To ensure accurate results, it is essential to examine the dataset’s distribution to determine if it is

balanced. An imbalanced dataset can lead machine learning models to perform well on the majority

class but poorly on the minority class. As shown in Figure 3.2, the majority of handwriting samples

are in French (873) and English (181), while other languages have fewer than 20 samples each. This

imbalance means the models would primarily learn patterns from French and English handwriting,

offering little understanding of the underrepresented languages. Including these minority languages

would add minimal value to the study and could even lead to misleading results due to their small

sample sizes.

Figure 3.2: Language Distribution of 1110 Handwriting Samples.

To address this, this study focuses on French and English handwriting samples to ensure suffi-

cient data for reliable and meaningful results. A single-label distribution analysis is conducted for

each five personality traits in these datasets. This analysis, presented in Figure 3.3, helps determine

whether further steps are required to address potential biases in the data.
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(a) Five-Factor Traits in 873 French Samples

(b) Five-Factor Traits in 181 English Samples

Figure 3.3: Overview of Five-Factor Personality Traits Distribution

3.3 Imbalance Ratio Assessment

Figure 3.3 visually shows the personality trait distribution in French (873) and English (181)

handwriting samples. This study aims to develop a model that can predict all five personality traits

at different levels simultaneously. To achieve this, it is important to understand how balanced the

dataset is for each trait, as an imbalanced dataset can lead to several challenges.

A common problem with imbalanced datasets is that the model predicts the majority class more

often, leading to high accuracy but poor performance on the minority class. This imbalance also

reduces the model’s ability to generalize to unseen data, especially when the minority class has very

few samples [54].

To address these challenges, it is important to first identify whether an imbalance exists and

how it impacts the dataset. This involves analyzing class distributions and using statistical measures

to assess the imbalance. In this study, since the dataset is multi-class, we calculate the multi-class
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imbalance ratio (IRmulti) for each trait and use the average imbalance ratio to measure the overall

balance of the dataset.

The IRmulti measures how uneven a dataset is by comparing the proportions of samples across

all classes. A perfectly balanced dataset has an IRmulti of 1, where all classes have the same number

of samples. As the IRmulti increases, the smallest class contains far fewer samples than the largest

class, making it harder for the model to learn from underrepresented classes. Ideally, a lower IRmulti

is better because it indicates a more balanced dataset with better representation across all classes.

While specific threshold values for interpreting IRmulti can vary across different fields and ap-

plications, a general guideline is [55]:

• IRmulti ≤ 1.5: The dataset is balanced or only slightly imbalanced.

• 1.5 < IRmulti ≤ 3: The imbalance is moderate and can be addressed with techniques like

class weighting or simple oversampling.

• IRmulti > 3: The imbalance is significant and may require advanced methods to handle

effectively.

The goal is to reduce IRmulti as much as possible, as a high imbalance ratio makes it chal-

lenging for the model to learn effectively from smaller classes. The IRmulti is calculated using the

following formula, based on the approach outlined in [56]. For each class (Low, Average, High),

the proportion of samples P (Class) is calculated as:

P (Class) =
Samples in Class

Total Samples

This provides the relative proportion of each class within the total samples for each trait. The max-

imum and minimum class proportions (max and min) are identified, and the IRmulti is calculated:

IRmulti =
max(P (Low), P (Average), P (High))
min(P (Low), P (Average), P (High))

To evaluate the overall imbalance across all traits, the average multi-class imbalance ratio is

calculated as:

Average IRmulti =

∑︁
IRmulti (traits)

Number of Traits
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The calculated IRmulti for the English dataset is shown in Table 3.2, and the results for the

French dataset are presented in Table 3.3.

Trait Low (n) Avg (n) High (n) Proportions (Max/Min) IRmulti
Extraversion 59 56 66 0.3646 / 0.3094 1.18
Neuroticism 12 86 83 0.4751 / 0.0663 7.17
Agreeableness 3 149 29 0.8232 / 0.0166 49.62
Conscientiousness 10 49 122 0.6740 / 0.0552 12.22
Open to Experience 8 146 27 0.8066 / 0.0442 18.25

Average IRmulti 17.69

Table 3.2: Multi-Class Imbalance Ratio Calculation for the English Dataset

Trait Low (n) Avg (n) High (n) Proportions (Max/Min) IRmulti
Extraversion 125 333 415 0.4756 / 0.1432 3.32
Neuroticism 88 473 312 0.5421 / 0.1008 5.38
Agreeableness 96 703 74 0.8057 / 0.0848 9.50
Conscientiousness 44 319 510 0.5844 / 0.0504 11.59
Open to Experience 38 558 277 0.6395 / 0.0435 14.69

Average IRmulti 8.89

Table 3.3: Multi-Class Imbalance Ratio Calculation for the French Dataset

The analysis of IRmulti shows a clear difference in class balance between the English and French

handwriting datasets. The English dataset has an average IRmulti of approximately 17.69, indicating

a significant imbalance with some classes being heavily underrepresented. In contrast, the French

dataset has a lower average IRmulti of about 8.89, showing a more balanced distribution of samples

across the traits. Based on these results, we started our study by focusing on the French dataset

because it has more samples and a lower imbalance ratio, making it a better starting point for devel-

oping and evaluating techniques. To assess the impact of language on the model’s performance, we

then will apply the same techniques to the English dataset. Finally, we will combine both datasets to

analyze the results and understand how the model performs when using data from both languages.

The methods used in this study to address the imbalance challenge are evaluated using the same

imbalance ratio formula. This ensures that the techniques are assessed consistently, determining

whether they improve the dataset’s balance and enhance the model’s performance across all traits.

32



Chapter 4

Methodology

This chapter outlines the methodology used in this research to process handwriting data for

personality trait prediction. It covers preprocessing techniques aimed at improving data quality

and increasing the number of handwriting samples, particularly for underrepresented classes, as

discussed in the previous chapter. To address class imbalance, the focal loss is employed, assigning

greater importance to minority classes during training.

Additionally, the chapter introduces the optimization techniques used to enhance model perfor-

mance and explains the classification approach adopted in this study. Transformer OCR is presented

as the primary deep-learning model for handwriting feature extraction. Finally, the evaluation met-

rics such as accuracy, precision, recall, and AUROC are described to assess the effectiveness of the

models.

4.1 Preprocessing Techniques

Preprocessing and feature extraction are important initial steps in preparing handwriting data

for personality trait prediction, particularly in this study, where deep learning models are employed

to automatically learn patterns from handwriting samples. For these models to be effective, it is es-

sential to have a sufficient number of training samples while preserving all meaningful handwriting

patterns.
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To achieve this, handwriting features are categorized into two types: global features, which cap-

ture the overall handwriting style, such as margins, line spacing, and slant; and local features, which

focus on finer details, including stroke pressure, letter connections, and the shapes of individual let-

ters. We focused on techniques that preserve both global and local features while increasing the

number of samples to ensure the model comprehensively learns and identifies patterns associated

with personality traits.

4.1.1 Line Segmentation

A key preprocessing technique used in this study is line segmentation, which increases the

dataset size, reduces class imbalance, and ensures that both local and global handwriting features

are preserved. Some advantages of this technique are as follows:

• Increasing Dataset Size: Splitting handwritten documents into lines significantly increases

the number of samples available for training, which is especially useful when working with

smaller datasets.

• Reducing Class Imbalance: Generating more samples from underrepresented handwriting

classes helps create a more balanced dataset, improving the model’s performance on less

frequent traits.

• Preserving Handwriting Features: Ensures that both global features that represent the

writer’s overall and local features that capture the writer’s unique style handwriting features

are preserved.

• Simplified Processing: Analyzing individual lines simplifies the data processing pipeline and

ensures uniform input dimensions, making it easier to train deep learning models effectively.

The process is implemented on both French and English datasets using OpenCV, a widely used

library for computer vision tasks. Contour detection was applied to identify and isolate individual

lines of text by detecting their boundaries. Bounding rectangles were applied around each line

to extract them accurately. Padding with a white background was added to each image to ensure

uniformity, keeping the dimensions consistent. After extraction, the dataset was manually cleaned
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to remove irrelevant lines, such as signatures or numbers, providing a refined and usable dataset.

This simple and effective approach preserved the structure of the lines and prepared them for further

processing. The results of this process are shown in Figures 4.1 and 4.2.

(a) Handwriting Sample Before Segmentation (b) Handwriting Samples After Line Segmentation

Figure 4.1: French Handwriting Sample and Line Segmentation Results

Figure 4.2: Different Examples of English Handwriting Sub-samples

4.1.2 Image Processing

As handwriting samples are digitized, several image processing techniques are explored to op-

timize the quality of handwriting images for analysis. Among these, Otsu’s binarization method

combined with bilateral filtering proved the most effective approach. Otsu’s binarization simpli-

fies the images by converting them to black and white using an automatically determined optimal
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threshold, effectively separating the foreground (handwriting) from the background. This method

enhances the clarity of the text, making it easier for the model to identify key features [29].

To complement this, bilateral filtering is applied to reduce noise while preserving important

structural details such as edges and fine strokes [57]. This step ensures that the handwriting retains

its essential characteristics, which are important for accurate classification (Figure 4.3).

(a) Before Processing (b) After Processing

Figure 4.3: Comparison of Before and After Image Processing

These processed images are then converted into a three-channel format to align with the input

requirements of neural networks, which are typically designed to process RGB images.

4.1.3 Data Augmentation

Although image segmentation helped to expand our dataset, the limited number of handwrit-

ing samples still required additional data augmentation to train neural networks effectively, a large

dataset is essential for learning meaningful patterns [58]. To address this, we carefully selected

augmentation techniques designed to introduce realistic variations in handwriting that the model is

likely to encounter in real-world scenarios. These techniques include:

• Random Rotations and Flips: Simulate natural variations in how individuals might rotate

or flip their writing.
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• Affine Transformations: Imitate different handwriting scales and distortions, such as stretch-

ing or compressing, common in handwritten notes.

• Perspective Changes and Blurring: Adjust the viewing angle and simulate slight blurring

when handwriting is photographed or scanned.

• Random Erasing: Introduces small areas of missing data, encouraging the model to focus

on the most informative parts of handwriting.

Together, these augmentations help create a reliable dataset that trains the neural network to be

adaptive and accurate in analyzing diverse handwriting styles (Figure 4.4).

Figure 4.4: Data Augmentation Samples

4.2 Focal Loss

Focal Loss is introduced to address the class imbalance by extending the standard cross-entropy

loss [59]. It achieves this by incorporating a modulating factor to reduce the contribution of well-

classified examples and a balancing factor to manage differences in class frequencies [60]. The

formula for Focal Loss is as follows:

Focal Loss = −αt(1− pt)
γ log(pt) (1)

In Eq. 1, pt represents the predicted probability of the true class, defined as pt = p if the true

label t = 1, and pt = 1 − p if t = 0. The parameter αt balances the loss between classes, and γ

focuses the model’s attention on difficult examples by reducing the loss from samples with high pt.

A higher γ further decreases the influence of easy examples.
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The algorithm for Focal Loss, outlined in Algorithm 1, processes each sample by computing the

weighted loss based on pt, the modulating factor (1− pt)
γ , and the balancing weight αt. The losses

for all samples are then accumulated and normalized by the total number of samples to produce the

final loss value [61]. This approach allows the model to prioritize learning from challenging cases,

making it highly effective for tasks with significant class imbalance [62].

Algorithm 1 Focal Loss

Require: Predicted probabilities p, true labels y ∈ {0, 1}, focusing parameter γ ≥ 0, balancing
factor α ∈ [0, 1]

Ensure: Focal Loss FL
1: Initialize FL← 0
2: for each sample i in the dataset do
3: Compute pt:

pt =

{︄
pi if yi = 1,

1− pi if yi = 0

4: Compute the modulating factor: modulating factor ← (1− pt)
γ

5: Compute the balanced cross-entropy weight: weight← α if yi = 1, else 1− α
6: Update focal loss for the sample:

FLi ← −weight ·modulating factor · log(pt)

7: Accumulate: FL← FL+ FLi

8: end for
9: Normalize the loss: FL← FL

N where N is the total number of samples
10: return FL

4.3 Optimization

Selecting the appropriate optimizer is an important aspect of training deep neural networks for

handwriting analysis. In our observation, this factor has not been mentioned in previous studies,

despite its importance in addressing challenges such as imbalanced datasets, varying writing styles,

complex patterns, noise, and multiple labels per sample. To evaluate their impact on performance,

three state-of-the-art optimizers are used: SGD (Stochastic Gradient Descent) with Momentum,

Adabelief (Adaptive Belief), and ADAM (Adaptive Moment Estimation). The selection of each

optimizer is based on its distinct advantages, and they are evaluated for their effect on the model’s

performance, particularly in handling the training dynamics specific to handwriting analysis.
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• SGD with Momentum: It is selected for its ability to accelerate convergence and help the

model escape local minima. The momentum term smooths out the gradient descent path, en-

abling more stable and faster convergence, which is useful for handling complex handwriting

data [63].

• AdaBelief: This is used for its ability to adapt the learning rate based on the variance of the

gradients, similar to Adam, but with improved stability and convergence. By incorporating

a belief about the gradient’s direction that computes adaptive learning rates for each param-

eter, AdaBelief leads to faster convergence and better generalization, making it effective for

training on imbalanced and complex handwriting datasets [64].

• Adam: It is selected for its adaptability and efficiency in handling sparse gradients and noisy

data. Additionally, it dynamically adjusts the learning rate for each parameter, which benefits

datasets with varying patterns. Its initial learning rate and minimal tuning requirements make

it robust for deep learning tasks [65].

These optimizers are employed to identify the most suitable ones for achieving a balance be-

tween convergence speed, stability, and accuracy. This enhances the model’s capability to classify

personality traits from handwriting data.

4.4 Classification

Since the dataset structure includes three classes for each personality trait: low, average, and

high, two classification approaches, multi-class and multi-label binary classification, are evaluated.

These approaches are analyzed to determine which method better handles imbalanced data and

improves the model’s ability to accurately classify traits with fewer samples. The goal is to identify

the approach that provides more balanced learning and enhances classification performance across

all personality traits.
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4.4.1 Multi-Class Classification

The multi-class classification is used to predict each personality trait as a separate task. Each

trait is classified into three mutually exclusive levels: low, average, and high. This setup requires

the model to learn the distinct features associated with each level for all five traits.

To handle this classification, the model is designed with five independent classification heads,

one for each personality trait. Each classification head outputs logits, raw outputs from the network

before activation, (zt) corresponding to the three levels (low, average, and high) for trait t. These

logits are passed through a softmax activation function to convert them into probabilities [66]:

P (yt = i) =
exp(zt,i)∑︁3
j=1 exp(zt,j)

, i ∈ {1, 2, 3}

Where zt,i is the logit output for class i of trait t, and P (yt = i) represents the predicted

probability of level i for trait t.

The model is trained using the cross-entropy loss function, which measures the difference be-

tween the predicted probabilities and the true labels. For a single sample, the loss for a given trait t

is:

Lt = −
3∑︂

i=1

yt,i log(P (yt = i))

where yt,i is the one-hot encoded true label for class i and P (yt = i) is the predicted probability

for class i. The total loss for all five traits is the sum of the individual trait losses:

Ltotal =
5∑︂

t=1

Lt

In this classification, oversampling is implemented alongside sample weighting based on class

frequencies. This approach increases the presence of underrepresented classes during training and

encourages the model to learn their features effectively, enhancing its ability to differentiate among

traits [67].
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4.4.2 Multi-Label Binary Classification

Binary Cross-Entropy with Logits Loss (BCEWithLogitsLoss) combines the sigmoid activation

function with binary cross-entropy loss. This combination transforms raw logits from the neural

network’s final layer into probabilities, then calculates the binary cross-entropy for each label. This

approach models each label as an independent Bernoulli distribution. The loss function is defined

as:

BCEWithLogitsLoss(z, y) = − 1

N

N∑︂
i=1

(yi · log(σ(zi)) + (1− yi) · log(1− σ(zi)))

Where zi represents the logits, σ(zi) = 1
1+e−zi

is the sigmoid function applied to the logits, yi

is the target label (0 or 1), and N is the number of samples or batch size. By applying the sigmoid

function, logits are converted into probabilities, allowing the model to independently predict the

presence or absence of each label.

This classification model includes 15 binary classification heads, one for each level across the

five personality traits, enabling the simultaneous prediction of multiple labels per instance, as in-

stances can belong to multiple classes. The BCEWithLogitsLoss function is applied independently

to each classification head, allowing the model to learn the features of each level without being

influenced by the distribution of other levels.

4.5 Model Development

This section presents an overview of the deep learning models employed for automatic handwrit-

ing feature extraction. The Transformer OCR model is introduced as a new approach specifically

adapted for classification tasks in this study. Its performance is evaluated against three pre-trained

models: ResNet50 and Vision Transformer (ViT) base 16 at two input resolutions (224 × 224 and

384 × 384).

4.5.1 CNN Architecture

Convolutional Neural Networks (CNNs) are well-known for their success in extracting mean-

ingful features from images due to their ability to handle spatial data processing effectively [68].
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In this study, ResNet50 is chosen for its strong feature detection capabilities, making it suitable for

handwriting analysis. It is pre-trained on ImageNet and uses residual blocks to help train deeper

networks without running into vanishing gradient problems.

• ResNet50: This 50-layer network offers a good balance between accuracy and computa-

tional efficiency. It is a practical choice for handwriting feature extraction, especially in

resource-limited environments, where it performs well compared to more demanding models

like transformers [69].

4.5.2 Vision Transformer: ViT base 16

ViT is a transformer-based model designed specifically for computer vision tasks. Unlike CNNs,

which use convolutional filters to detect local patterns, ViT divides an image into patches, treats

each patch as a token, and processes these tokens using a transformer encoder. This architecture en-

ables ViT to capture global relationships within an image, making it highly suitable for handwriting

analysis [70].

To evaluate its effectiveness at different scales and examine the trade-off between computational

efficiency and the ability to capture handwriting features, this study considers two configurations of

ViT base 16 with input resolutions of 224×224 and 384×384. Both configurations are pre-trained on

the ImageNet-21k dataset and share the same transformer-based architecture, providing consistency

in feature extraction for comparison with the proposed TrOCR model [71].

• ViT base 16-224: This model uses an input resolution of 224×224. This configuration is

chosen for its computational efficiency and ability to capture general handwriting features. It

provides a good balance between processing speed and feature representation [72].

• ViT base 16-384: This model operates with a higher input resolution of 384×384, which en-

hances the model’s ability to capture more detailed handwriting features. This configuration

allows the analysis of finer spatial patterns, making it better suited for tasks requiring higher

precision. However, it comes at the cost of increased computational demands [72].
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4.5.3 Transformer OCR

TrOCR, or Transformer Optical Character Recognition, is a transformer-based model developed

by Microsoft specifically for OCR applications. Unlike traditional OCR systems that rely on CNNs

for image processing and RNNs for sequential text generation [73], TrOCR is designed as an end-

to-end transformer model that integrates a ViT encoder, initialized with BEiT weights for image

encoding, and a RoBERTa-based text decoder for autoregressive text generation.

The encoder processes images by dividing them into 16x16 fixed-size patches, embedding each

patch as a sequence token, and using absolute positional embeddings to retain spatial informa-

tion [74]. This architecture effectively captures local and global features within an image, demon-

strating state-of-the-art performance for OCR tasks like printed and handwritten text recognition

without requiring complex pre- or post-processing steps [75].

The TrOCR model is trained on ImageNet-1k for its image encoder and fine-tuned on the IAM

handwriting dataset. In this study, we adapted TrOCR to our handwriting dataset and proposed

a new approach that modifies the model for personality trait classification instead of text genera-

tion (Figure 4.5).

Figure 4.5: The Proposed TrOCR Model for Classification
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In our approach, the handwriting image is first divided into smaller, non-overlapping patches

to capture local features such as stroke patterns, letter shapes, and other distinctive handwriting

characteristics. Each of these patches is then flattened into 1D vectors, converting the 2D spatial

information into a sequential format that can be processed by the model. These flattened vectors are

combined to form a sequence of visual tokens, which are fed into the TrOCR encoder based on the

Vision Transformer (ViT) architecture.

Within the encoder, self-attention mechanisms analyze the relationships between these tokens

to extract high-level representations of handwriting features. After this, a pooling layer is applied

to aggregate information from these tokens, summarizing the most relevant features while reducing

the dimensionality of the data. The pooled outputs are then passed through a series of feed-forward

neural network layers to further transform and refine the extracted features. This step enhances the

model’s ability to capture complex handwriting patterns and relationships between different parts

of the text.

Instead of using the original text decoder for text generation, we replace it with a custom clas-

sification head designed to predict personality traits. This classification head is divided into two

parts: a multi-class head with Softmax activation for predicting mutually exclusive classes and a

multi-label binary head with BCEWithLogitsLoss for independently classifying each trait as a bi-

nary task. To handle class imbalance effectively, Focal Loss is applied to both components, enabling

the model to focus more on challenging and minority samples [76].

This adaptation highlights TrOCR’s flexibility, showing that it can go beyond OCR tasks to

handle complex classification. The model’s transformer-based design captures detailed handwriting

features, making it useful for analyzing personality traits from handwriting images.
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4.6 Evaluation Metrics

Five fundamental metrics are used to evaluate our models’ performance: accuracy, the area

under the receiver operating characteristic (AUROC), F1-score, precision, and recall. These metrics

are defined based on the content of the confusion matrix for each class i [77]:

• True Positives (TPi): Correctly predicted instances of class i.

• True Negatives (TNi): Correctly predicted instances that are not class i.

• False Positives (FPi): Instances incorrectly predicted as class i.

• False Negatives (FNi): Instances of class i incorrectly predicted as another class.

• Accuracy: It is the ratio of correct predictions to total predictions. The overall accuracy is

calculated based on Eq. 2:

Accuracy =
TPi + TNi

TPi + TNi + FPi + FNi
(2)

While accuracy is useful, it can be misrepresented by class imbalances, making precision,

recall, F1-score, and AUROC important for a comprehensive evaluation.

• Precision: It is defined as the proportion of true positive predictions out of all positive pre-

dictions by Eq. 3:

Precision =
TPi

TPi + FPi
(3)

High precision indicates a low false positive rate, which is important in this context to ensure

that traits are not misclassified as other traits. Precision is particularly valuable for evaluat-

ing the model’s performance on minority classes, where false positives could have a more

significant impact.

• Recall, or sensitivity: measures the proportion of true positive predictions out of all actual

positives according to Eq. 4:

Recall =
TPi

TPi + FNi
(4)

High recall means the model effectively identifies the target class, minimizing false negatives.

This metric is essential for ensuring that the model accurately detects all personality traits,

especially those with fewer samples.
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• The F1-score: It balances recall and precision and the overall F1-score can be calculated as

a weighted average of the F1-scores for each class by Eq. 5.

F1i = 2× Recall× Precision
Recall + Precision

(5)

• The AUROC curve: This curve represents a two-dimensional plot of the true positive rate

(recall on the y-axis) against the false positive rate (x-axis). An AUROC close to 1 signifies

a perfect model. In this study, AUROC is calculated separately for each trait to assess the

model’s performance in differentiating between levels(low, average, high) within each trait

which allows for a detailed evaluation of the model’s strengths and weaknesses in classifying

handwriting features linked to different personality traits.

46



Chapter 5

Experimental Result and Discussion

This chapter presents and discusses the experimental results obtained in this study. The dataset is

split into 60% training, 20% validation, and 20% testing, and each model is trained for 100 epochs.

The effectiveness of focal loss and segmentation in addressing class imbalance is highlighted. The

performance of three state-of-the-art optimizers is evaluated to improve model training, and the

impact of multi-class and multi-binary classification heads is examined. The primary deep learning

model, Transformer OCR, is analyzed and compared with ResNet50 and Vision Transformer using

evaluation metrics such as accuracy, precision, recall, and AUROC to assess and compare model

performance. The results are visualized using figures and tables for clarity.

5.1 Segmentation

The comparison of IRmulti values before and after segmentation clearly shows how segmentation

technique helped address the imbalance in the English and French handwriting datasets. Before seg-

mentation, the English dataset had a very high average IRmulti of 17.69, indicating severe imbalance

with some classes having very few samples. The French dataset, though slightly better, still had an

average IRmulti of 8.8, highlighting the need for improvement.

After segmentation and manual data cleaning, which involved removing unnecessary sub-samples

such as signatures and numbers, the dataset expanded to 5,765 sub-samples for French and 1,807

sub-samples for English, significantly improving the dataset size. The English dataset’s average
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IRmulti dropped to 6.02, a noticeable reduction that shows better class representation (Table 5.1).

Similarly, the French dataset’s average IRmulti decreased to 5.81, reflecting a more balanced distri-

bution across classes (Table 5.2). These improvements demonstrate how segmentation effectively

increased the number of samples in each class, particularly addressing the under-representation in

smaller classes.

Trait Low (n) Avg (n) High (n) Proportions (Max/Min) IRmulti
Extraversion 649 528 630 0.3593 / 0.2922 1.23
Neuroticism 134 903 770 0.4997 / 0.0742 6.74
Agreeableness 157 1348 302 0.7459 / 0.0869 8.58
Conscientiousness 164 362 1281 0.7091 / 0.0907 7.81
Open to Experience 228 1303 276 0.7211 / 0.1262 5.71

Average IRmulti 6.02

Table 5.1: Number of Class Samples and IRmulti for English After Segmentation

Trait Low (n) Avg (n) High (n) Proportions (Max/Min) IRmulti
Extraversion 1058 2287 2420 0.4056 / 0.2531 1.60
Neuroticism 392 3019 2354 0.4571 / 0.1000 4.57
Agreeableness 512 4569 684 0.7122 / 0.1306 5.45
Conscientiousness 233 1803 3729 0.6133 / 0.0594 10.33
Openness to Experience 339 3765 1661 0.6150 / 0.0865 7.11

Average IRmulti 5.81

Table 5.2: Number of Class Samples and IRmulti for French After Segmentation

After it is confirmed that segmentation improves the imbalance ratio based on the data pre-

sented in Table 5.2, ResNet50 is selected as the base model to evaluate the impact of segmentation

on performance. This model is chosen for its balance of computational efficiency and effective-

ness, making it suitable for experimentation. The evaluation is conducted on both the original and

segmented French dataset, which has more samples and a slightly improved imbalance ratio, using

three optimizers: SGD with momentum, AdaBelief, and Adam.

The results in Figure 5.1 clearly show the significant positive impact of segmentation on model

performance across various metrics during both the training and testing phases. After segmenta-

tion, all models (Adam, AdaBelief, and SGD with momentum) exhibit substantial improvements in

accuracy, precision, recall, F1-score, and a reduction in loss. For instance, Adam’s loss decreases

from 0.221 to 0.114, while its accuracy increases from 68.88% to 87.10%. Similarly, AdaBelief’s
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accuracy improves from 70.86% to 84.18%, and SGD with momentum achieves a remarkable accu-

racy increase from 49.10% to 73.97%. Precision, recall, and F1-scores consistently improve across

all models, highlighting the critical role of segmentation in isolating key features and minimizing

noise.

On average, segmentation improves accuracy by approximately 18.8% and reduces loss by

43.5%, confirming its effectiveness in enhancing data quality. These results validate segmenta-

tion as an essential preprocessing step, enabling models to generalize more effectively and extract

meaningful patterns from the dataset.

(a) Training Results with Different Optimizers. (b) Test Results with Different Optimizers.

Figure 5.1: Performance of ResNet50 Before and After Segmentation.
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5.2 Impact of Focal Loss

In the initial phase of this study, the dataset was labeled for two personality traits: Extraversion

and Conscientiousness, and categorized into three classes: low, average, and high. The impact of

focal loss is evaluated on this configuration, and the results presented in this section are based on this

setup. Through experimentation with various parameter values, the optimal focal loss parameters

are determined as α = 1 and γ = 2. These parameters enable the model to prioritize harder

examples, improving robustness and mitigating bias toward more frequent labels.

The impact of focal loss is first assessed on the original dataset without segmentation, which

has an imbalance ratio of 8.89. Without focal loss, the validation accuracy achieves only 30.94%.

However, with the inclusion of focal loss, the validation accuracy significantly improves to 76.79%.

This demonstrates that focal loss effectively addresses class imbalance by penalizing easy-to-predict

samples and emphasizing harder examples.

For the segmented dataset, where performance is already discussed in Section 5.1, focal loss

further enhances model training and generalization. The training curves for all three optimizers

(SGD with momentum, AdaBelief, and Adam), shown in Figure 5.2, illustrate faster convergence

and improved stability when focal loss is applied compared to training without it.

Figure 5.2: Training Curves of ResNet50: Comparison with and without Focal Loss

Figure 5.3 illustrates the performance of each optimizer in ResNet50 on unseen data and high-

lights the significant impact of focal loss on AUROC scores. Before applying focal loss (left col-

umn), the models struggle to differentiate personality traits, resulting in lower AUROC values. After

focal loss (right column), a noticeable improvement is observed across all optimizers.
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Before Focal Loss After Focal Loss

SGD with Momentum

AdaBelief

Adam

Figure 5.3: Impact of Focal Loss on AUROC Performance of Optimizers in the Test Phase.
(EX: Extraversion, CO: Conscientiousness)
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The validation results in Table 5.3 confirm that focal loss consistently improves model perfor-

mance across all optimizers. Loss decreases significantly, while accuracy shows substantial im-

provements. For instance, with SGD, AdaBelief, and Adam, accuracy increases by approximately

20% on average, accompanied by a notable reduction in loss.

Table 5.3: Validation Performance of ResNet50 with and without Focal Loss

Optimizer Without Focal Loss With Focal Loss

Loss Accuracy Loss Accuracy

SGD 0.256 62.78% 0.100 82.69%

AdaBelief 0.212 71.52% 0.076 90.72%

ADAM 0.197 74.43% 0.066 91.05%

In the unseen data performance, as shown in Table 5.4, focal loss continues to demonstrate its

effectiveness across all performance metrics, including precision, recall, and F1-score. For example,

with the Adam optimizer, accuracy increases from 67.09% (without focal loss) to 90.16% (with

focal loss), while the F1-score improves from 0.8419 to 0.8881. Similar trends are observed for the

SGD and AdaBelief optimizers, where focal loss consistently outperforms standard cross-entropy

loss.

Table 5.4: Impact of Focal Loss on ResNet50 Performance in the Test Phase

Optimizer Loss Function Accuracy (%) Loss Precision Recall F1-score AUROC
SGD Without Focal 61.65 0.287 0.7796 0.7675 0.7728 0.78

With Focal 80.22 0.021 0.8367 0.7901 0.8127 0.87
AdaBelief Without Focal 68.39 0.231 0.8702 0.8341 0.8578 0.82

With Focal 90.03 0.010 0.8903 0.8837 0.8869 0.96
ADAM Without Focal 67.09 0.241 0.8637 0.8212 0.8419 0.83

With Focal 90.16 0.011 0.8923 0.8844 0.8881 96.00

On average, the overall performance of the model improves by approximately 32.1% when focal

loss is applied compared to training without it. These findings confirm that focal loss is a critical

component for handling imbalanced datasets. By focusing on underrepresented classes and harder

examples, focal loss significantly enhances generalization and robustness.
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5.3 Performance of Optimizers

The evaluation of the SGD with momentum, Adam, and AdaBelief optimizers on the ResNet50

model using focal loss reveals significant differences in their performance, as summarized in Ta-

ble 5.4. Among the three, Adam consistently demonstrates the most superior performance across

precision, recall, F1-score, and accuracy metrics. With an initial learning rate of 0.0001, Adam

achieves the highest validation accuracy, making it the most suitable optimizer for this classification

task (Table 5.3).

AdaBelief, which also uses the same initial learning rate, closely follows Adam, delivering com-

parable results with only minimal differences in performance (Figure 5.2). Even in the segmentation

phase discussed in Section 5.1, these two optimizers excelled on the initial dataset, which featured

limited samples and a high imbalance ratio (Figure 5.1).

In contrast, SGD with momentum shows noticeably weaker performance. Despite using a Mul-

tiStepLR scheduler to adjust the learning rate at critical points (epochs 30 and 80) and starting with

a higher initial learning rate of 0.005 combined with a momentum value of 0.9, SGD fails to match

the results achieved by Adam and AdaBelief. The optimizer struggles with slower convergence and

limited adaptability to the imbalanced nature of the dataset. While SGD makes steady progress over

time, its performance plateaus at a much lower level compared to Adam and AdaBelief, as shown

in the accuracy and loss trends in Figure 5.4.

The accuracy curves highlight the strengths of Adam and AdaBelief, which maintain high and

stable accuracy throughout training and validation. Both optimizers converge quickly during the

initial epochs and demonstrate greater consistency in performance, with Adam slightly outperform-

ing AdaBelief in overall precision and recall. On the other hand, SGD exhibits slower convergence

and fluctuates more in accuracy, which reduces its reliability for this task.

The loss curves further emphasize the advantages of Adam and AdaBelief. Both achieve rapid

loss reductions in the early stages of training and maintain consistently low loss values throughout.

AdaBelief slightly outperforms Adam in terms of loss minimization, while SGD falls behind, with

consistently higher loss values that indicate its struggle to address the dataset’s complexity and

imbalance.
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Figure 5.4: Performance of Optimizers: Training and Validation Analysis in ResNet50

Overall, these findings highlight the clear advantages of Adam and AdaBelief as optimizers for

handwriting-based personality classification. Among them, Adam is chosen for the continuation of

this study due to its superior balance of speed, stability, and precision. While AdaBelief offers a

strong alternative with nearly identical performance, Adam’s consistent and robust results make it

the preferred optimizer. In comparison, SGD with momentum, though computationally efficient,

is considered less suitable for this task due to its slower convergence and limited ability to handle

imbalanced data effectively.

After these findings, the proposed TrOCR model is trained on the segmented dataset using focal

loss and Adam as the best optimizer. On unseen data, the model achieves an accuracy of 90.05%,

precision of 89.01%, recall of 88.75%, F1-score of 89.00%, and an AUROC of 97 for the two-class

classification task, showing slightly better performance than ResNet50.
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5.4 Multi-Label vs. Multi-Class Classification

From this section onward, the research enters its second phase, where the dataset has been

expanded to include labels for all five personality traits across the entire dataset. In the multi-class

classification approach, each personality trait is predicted as a single multi-class problem using

Softmax and cross-entropy loss, with class weighting and focal loss emphasizing minority classes.

In contrast, the multi-binary classification approach treats each class (low, average, high) as an

independent binary problem, using BCE loss with focal loss to handle imbalances. Results indicate

that the multi-binary method captures patterns more effectively, improving performance across all

four models.

Based on the results indicated in Table 5.5, in the multi-class classification approach, ResNet50

achieves the highest accuracy of 65.80% and an F1-score of 0.616, showcasing its capability in

handling multi-class predictions. However, the overall performance of all models in this approach

remains relatively constrained, with TrOCR achieving an accuracy of 61.47% and an F1-score of

0.600, which are slightly lower than ResNet50 but still competitive.

Table 5.5: Comparative Evaluation of Classification Methods on a Validation Dataset

Multi-Class Classification with Cross-Entropy with Softmax

Models Loss Accuracy Precision Recall F1-Score

ResNet50 0.293 65.80 % 0.636 0.648 0.616

ViT-224 0.499 61.81 % 0.577 0.608 0.576

ViT-384 0.354 63.03 % 0.560 0.620 0.577

TrOCR 0.343 61.47 % 0.566 0.634 0.600

Multi-Label Binary Classification with BCELogitLoss

Models Loss Accuracy Precision Recall F1-Score

ResNet50 0.136 81.22 % 0.727 0.699 0.712

ViT-224 0.178 77.18 % 0.769 0.762 0.765

ViT-384 0.124 80.89 % 0.771 0.772 0.776

TrOCR 0.106 84.46 % 0.808 0.807 0.810

In contrast, the multi-label binary classification approach significantly improves the perfor-

mance metrics across all models, underscoring the advantages of independently optimizing each
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trait. ResNet50 shows a marked improvement, achieving an accuracy of 81.22% and an F1-score of

0.712, reflecting its enhanced ability to handle imbalanced data when traits are treated as indepen-

dent binary problems. Similarly, ViT models exhibit notable gains in performance, with ViT-384

attaining an accuracy of 80.89% and an F1-score of 0.776. TrOCR outperforms all other models in

the multi-label binary classification, with the highest accuracy of 84.46% and an F1-score of 0.810.

The AUROC scores in Table 5.6 further illustrate the advantages of multi-binary classification in

capturing trait-specific distinctions, with consistent improvements across all traits compared to the

multi-class approach. The AUROC for the Conscientiousness trait in the proposed TrOCR model

increases substantially from 0.5393 in the multi-class approach to 0.8943 in the multi-binary ap-

proach. Similarly, notable gains have been observed for Extraversion, Neuroticism, Agreeableness,

and Openness to Experience traits. These significant improvements across all traits highlight the

effectiveness of the multi-binary classification approach in addressing data imbalance, optimizing

each trait independently, and capturing patterns unique to each personality factor, thereby enhancing

the overall model performance.

Table 5.6: Comparison of AUROC Scores for Classification Methods Across Models

Model Traits Multi-Class AUROC Multi-Binary AUROC

ResNet50

Extraversion 0.8307 0.8678
Neuroticism 0.7638 0.8255
Agreeableness 0.7273 0.8770
Conscientiousness 0.8412 0.8827
Openness to Experience 0.8863 0.9291

ViT-224

Extraversion 0.7532 0.8178
Neuroticism 0.6340 0.7827
Agreeableness 0.6117 0.8434
Conscientiousness 0.7694 0.8498
Openness to Experience 0.8330 0.8971

ViT-384

Extraversion 0.7716 0.8585
Neuroticism 0.7553 0.8238
Agreeableness 0.7015 0.8738
Conscientiousness 0.7813 0.8591
Openness to Experience 0.8470 0.9192

TrOCR

Extraversion 0.6419 0.9179
Neuroticism 0.6493 0.8850
Agreeableness 0.6642 0.9138
Conscientiousness 0.5393 0.8943
Openness to Experience 0.6719 0.9334
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5.5 Model Performance

The performance of the proposed TrOCR model is evaluated against three pre-trained deep-

learning models: ResNet50, ViT-224, and ViT-384. All models are trained on the same dataset

using a consistent classification approach. This ensures that the comparison is reliable and fair,

particularly in assessing TrOCR’s effectiveness in multi-level classification of personality traits.

The evaluation is conducted separately on English and French sub-samples, followed by an analysis

of the combined dataset to assess how language influences model performance.

5.5.1 English Language Dataset

The English dataset, comprising 1807 line-segmented handwriting samples, is used to evaluate

model performance. During training, TrOCR demonstrates the lowest final training loss and the

highest training accuracy, as illustrated in Figure 5.5.

Figure 5.5: Training Results for English Sub-samples
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The rapid convergence of TrOCR, with a significant reduction in loss over the epochs, highlights

its superior optimization. Similarly, its training accuracy improves steadily to surpass 98%, indicat-

ing its ability to effectively capture handwriting patterns. In contrast, ViT-384 achieves comparable

but slightly lower performance, while ResNet50 and ViT-224 converge more slowly, with visibly

higher loss and lower accuracy values.

The models are validated, and their results are presented in Table 5.7. TrOCR achieves the

lowest validation loss (0.107), which indicates its ability to generalize effectively to unseen data.

TrOCR also attains the highest validation accuracy (85.22%), precision (82.23%), recall (82.25%),

and F1-score (82.27%). These metrics confirm its robustness in learning complex handwriting

features for personality classification.

ViT-384 follows TrOCR with a validation accuracy of 82.39% and an F1-score of 78.17%. This

model performs well but is less effective than TrOCR in capturing handwriting details. ViT-224 and

ResNet50 exhibit lower validation metrics, with ResNet50 achieving the lowest accuracy (78.64%)

and F1-score (71.39%).

Table 5.7: Validation Performance Analysis of Models on English Subsamples

Model Loss Accuracy (%) Precision (%) Recall (%) F1-Score (%)
ResNet50 0.136 78.64 73.27 69.61 71.39
ViT-224 0.126 81.40 78.53 76.83 77.60
ViT-384 0.127 82.39 78.39 78.63 78.17
TrOCR 0.107 85.22 82.23 82.25 82.27

The test phase results, shown in Table 5.8, further demonstrate TrOCR’s superiority. TrOCR

achieves the lowest test loss (0.113) and the highest test accuracy (84.43%) and F1-score (82.37%).

Its ability to maintain strong performance in the test phase highlights its reliability.

ViT-384 achieves a test accuracy of 81.24% and an F1-score of 78.68%, performing well but

behind TrOCR. ViT224, on the other hand, is the weakest performer among the transformer models.

Although it achieves reasonable results, with test accuracy of 81.07%, its metrics are consistently

lower than those of ViT384 and TrOCR. This could be attributed to the smaller input resolution (224

x 224), which may limit the model’s ability to capture fine-grained handwriting features that are im-

portant for accurate classification. ResNet50, while being computationally efficient, has the lowest
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accuracy at 77.57%. This is likely because it struggles with balancing predictions and sometimes

misclassifies majority class samples. However, it performs better than ViT224 in precision, recall,

and F1-score. This is because its ability to focus on detailed features helps it classify challenging

minority class samples more effectively.

Table 5.8: Test Phase Performance Analysis of Models on English Subsamples

Model Loss Accuracy (%) Precision (%) Recall (%) F1-Score (%)
ResNet50 0.150 77.57 78.77 78.00 78.35
ViT-224 0.133 81.07 74.85 73.70 74.19
ViT-384 0.131 81.24 79.00 78.41 78.68
TrOCR 0.113 84.43 82.58 82.17 82.37

The AUROC scores, shown in Figure 5.6, highlight the strengths of TrOCR, which achieves the

highest AUROC score of 0.91, demonstrating its effectiveness in distinguishing between personality

trait classes. ViT-384 and ResNet50 both achieve AUROC scores of 0.88, while ViT-224 records

the lowest score of 0.84.

Figure 5.6: AUROC English Sub-samples Test results

5.5.2 French Language Dataset

The French dataset, consisting of 5,765 subsamples, is used to further evaluate model perfor-

mance. As shown in Figure 5.7, TrOCR achieves the best training results, with the lowest training

loss and highest accuracy, demonstrating its adaptability to French handwriting patterns. While
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ViT-384 follows a similar trend, it stabilizes with a higher loss and lower accuracy compared to

TrOCR. ResNet50, on the other hand, converges more slowly and performs less effectively overall.

Figure 5.7: Training Results for French Sub-samples

The validation results, summarized in Table 5.9, confirm TrOCR’s robustness. TrOCR achieves

the lowest validation loss (0.106) and the highest validation accuracy (84.46%), precision (80.83%),

recall (80.74%), and F1-score (81.04%). These metrics reflect its ability to generalize effectively to

unseen French handwriting data.

ViT-384 achieves a validation accuracy of 80.89% and an F1-score of 77.63%, performing well

but below TrOCR. ResNet50 and ViT-224 show lower performance, with ViT-224 having the highest

validation loss (0.178).

Table 5.9: Validation Performance Analysis of Models on French Subsamples

Model Loss Accuracy (%) Precision (%) Recall (%) F1-Score (%)
ResNet50 0.136 81.22 72.74 69.93 71.25
ViT-224 0.178 77.18 76.93 76.21 76.55
ViT-384 0.124 80.89 77.12 77.25 77.63
TrOCR 0.106 84.46 80.83 80.74 81.04
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The test phase results in Table 5.10 confirm TrOCR’s superior performance, with the lowest

loss (0.106), highest accuracy (84.26%), and best F1-score (83.27%), demonstrating its consistency

across all metrics.

ResNet50 outperforms ViT-224, achieving higher accuracy (80.52%), a better F1-score (77.87%),

and a lower loss (0.121). This suggests ResNet50’s localized feature extraction is more effective for

this dataset, whereas ViT-224 struggles with lower resolution data, reflected in its lower accuracy

(77.71%) and F1-score (74.25%).

ViT-384 performs closer to ResNet50 with an accuracy of 80.07% and an F1-score of 77.23%,

but it still falls short of TrOCR, which leads across all performance metrics.

Table 5.10: Test Phase Performance Analysis of Models on French Subsamples

Model Loss Accuracy (%) Precision (%) Recall (%) F1-Score (%)
ResNet50 0.121 80.52 78.12 77.56 77.87
ViT-224 0.171 77.71 75.02 73.74 74.25
ViT-384 0.138 80.07 77.78 76.84 77.23
TrOCR 0.106 84.26 82.26 84.28 83.27

The AUROC scores in Figure 5.8 show TrOCR’s superior performance with the highest AUROC

(0.91), followed by ResNet50 (0.88). ResNet50 outperforms both ViT-384 (0.87) and ViT-224

(0.84), highlighting its stronger ability to differentiate between personality traits in this dataset.

Figure 5.8: AUROC French Sub-samples Test results
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Based on the results from both the English and French datasets, we observe that the models

performed similarly, with very close outcomes. This is mainly due to the segmentation technique

described in Section 5.1, which successfully made the imbalance ratio almost the same for both

datasets: 5.81 for French and 6.02 for English. This adjustment made the datasets more comparable

despite the French dataset being much larger. The results show that having a larger dataset, such

as the French dataset, does not always lead to better performance. Instead, the imbalance within

classes has a stronger effect on performance than the total number of samples. This shows that

dataset size alone is not the main factor influencing model performance.

In fact, the English dataset, despite its smaller size, slightly performed better than the French

dataset in some metrics. This further highlights the importance of other factors, such as good data

preparation, balancing class distributions, and addressing the complexity of handwriting data. Addi-

tionally, methods like data augmentation and the use of focal loss during training helped the models

focus on challenging samples, reducing the impact of dataset size differences. These findings show

the importance of high-quality data, balanced classes, and proper data processing over simply in-

creasing the number of samples when aiming to build effective models.

5.5.3 Combined Dataset

In this section, the influence of language on model performance is assessed by combining the

English and French datasets, resulting in a total of 7,572 subsamples. The training results on the

combined dataset, shown in Figure 5.9, confirm that the performance of all models improves with an

average increase of approximately 7%. The proposed model, TrOCR, achieves the lowest training

loss and the highest accuracy, demonstrating its strong ability to generalize effectively across the

combined dataset. Its consistent superior performance is highlighted by its adaptability to diverse

handwriting patterns.

Validating the models, we obtained the results presented in Table 5.11, which show that TrOCR

achieves the lowest loss (0.090) and the highest accuracy (90.10%). It also records the best precision

(86.78%), recall (86.74%), and F1-score (86.92%), confirming its strong ability to generalize across

diverse handwriting samples and perform consistently in multi-level personality classification.
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Figure 5.9: Training Results for Total Sub-samples

ViT-384 follows with a validation accuracy of 86.96% and an F1-score of 85.04%, demonstrat-

ing solid performance but still behind TrOCR. ViT-224, with an accuracy of 86.32% and an F1-score

of 82.95%, performs slightly lower than ViT-384 but remains competitive. ResNet50, while showing

improvement compared to its performance on the separate English and French datasets, achieves the

lowest validation accuracy (82.79%) and F1-score (79.02%). This suggests that although the larger

combined dataset enhances its performance, but it is now less effective than the transformer-based

models in handling handwriting variations.

Table 5.11: Validation Performance Analysis of Models on Total Subsamples

Model Loss Accuracy (%) Precision (%) Recall (%) F1-Score (%)
ResNet50 0.099 82.79 80.82 77.30 79.02
ViT-224 0.106 86.32 82.84 82.75 82.95
ViT-384 0.101 86.96 85.72 84.36 85.04
TrOCR 0.090 90.10 86.78 86.74 86.92

The test phase results, presented in Table 5.12, confirm TrOCR as the best-performing model,
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achieving the lowest loss (0.086) and the highest accuracy (89.01%) on unseen data. It also records

the highest precision (87.39%), recall (87.25%), and F1-score (87.32%), demonstrating its ability

to effectively handle diverse handwriting styles and generalize well across different samples.

The ViT models follow after TrOCR, with ViT-384 performing better than ViT-224. This sug-

gests that higher input resolution contributes to improved feature extraction, leading to better clas-

sification results.

In contrast, ResNet50 shows the weakest performance, recording the lowest accuracy and F1-

score. While CNNs like ResNet50 can still capture handwriting features, they struggle more than

transformers when dealing with variations in handwriting styles, making them less effective for this

classification task.

Table 5.12: Test Phase Performance Analysis of Models on Total Subsamples

Model Loss Accuracy (%) Precision (%) Recall (%) F1-Score (%)
ResNet50 0.266 71.18 67.32 66.55 66.87
ViT-224 0.111 84.35 82.56 81.91 82.21
ViT-384 0.091 87.68 86.23 85.94 86.08
TrOCR 0.086 89.01 87.39 87.25 87.32

The AUROC scores for the combined dataset, shown in Figure 5.10, highlight TrOCR’s ability

to handle multilingual handwriting data effectively. TrOCR achieves the highest AUROC, while

ViT-384 shows improved performance. ResNet50 continues to underperform due to its limited

generalization capabilities.

Figure 5.10: AUROC Total Sub-samples Test results
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After combining both datasets, we can conclude that the performance of all transformer-based

models improved when tested on unseen data, demonstrating their ability to generalize better with a

larger and more diverse dataset. TrOCR remained the best-performing model, achieving the highest

accuracy, precision, recall, and F1-score, further confirming its effectiveness in handling hand-

writing variations across different languages. The improved performance of ViT-224 and ViT-384

suggests that increasing the dataset size and incorporating handwriting samples from multiple lan-

guages helped these models learn more robust features.

However, ResNet50 did not show the same level of improvement and recorded the lowest accu-

racy and F1-score. This could be due to its sensitivity to language differences, as CNNs primarily

rely on local feature extraction, which may not be as effective when dealing with handwriting varia-

tions in different languages. This suggests that language bias may have affected ResNet50’s ability

to generalize to unseen handwriting samples.

Overall, the findings show that TrOCR outperforms other models in handwriting-based person-

ality classification, adapting better to unseen data and multiple languages.

Comprehensive TrOCR Analysis

Focusing on the proposed TrOCR model as a superior approach for automatic feature extrac-

tion in this study, its performance is analyzed in detail. The confusion matrices in Figure 5.11

demonstrate that TrOCR performs effectively for traits like Agreeableness and Openness to Expe-

rience, achieving high true positives and low misclassifications. However, traits like Extraversion

remain more challenging, with higher false negatives highlighting some difficulty in capturing dis-

tinct handwriting features for this trait.

Figure 5.11: Confusion Matrices for TrOCR by Trait on Test Sub-samples
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Figure 5.12 shows that TrOCR performs very well across all traits. Agreeableness and Openness

to Experience, with an AUROC of 0.96, show clear and nearly perfect differentiation, highlighting

the model’s ability to pick up distinct handwriting patterns. Neuroticism and Conscientiousness fol-

low closely with an AUROC of 0.95, demonstrating strong classification capabilities. Extraversion,

while slightly lower, still performs reliably, showing only minor difficulties in separating features

for this trait.

Figure 5.12: AUROC Performance of TrOCR Across Traits

Table 5.13 further supports the AUROC results by providing additional evaluation metrics,

demonstrating that the proposed approach effectively classified Agreeableness (F1 Score:89.66%)

and Openness to Experience (F1 Score: 88%), indicating these traits have the most distinguish-

able handwriting patterns. Neuroticism also achieved strong recognition, with an F1 Score of 83%,

highlighting the model’s reliability in identifying this trait. Similarly, Conscientiousness performed

well, attaining an F1 Score of 82%. However, Extraversion remains the most challenging trait to

classify, with the lowest F1 Score (75.66%) and Recall (73.99%), suggesting that its handwriting

features are less distinct, making accurate classification more difficult.

Table 5.13: Performance Metrics of TrOCR for Personality Trait Classification

Metric Extraversion Conscientiousness Neuroticism Agreeableness Openness to Experience
Precision 77.66 84.66 86.33 91.33 88.00
Recall 73.99 84.00 87.00 87.33 89.33
F1 Score 75.66 82.00 83.00 89.66 88.00
Accuracy 84.35 89.69 90.49 91.42 90.79
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The AUROC scores and evaluation metrics for the low, average, and high levels of each per-

sonality trait, presented in Figure 5.13 and Table 5.14, provide detailed insights into the model’s

performance. For Extraversion, the ”average” level achieves the highest AUROC of 0.94, followed

by the ”high” level at 0.92 and the ”low” level at 0.87, indicating some overlap in handwriting

features at lower levels.

For Neuroticism, the ”high” level performs the best with an AUROC of 0.98, while the ”low”

and ”average” levels both score 0.92, reflecting consistent classification.

Agreeableness shows the strongest overall performance, with the ”high” level achieving an

AUROC of 0.99, followed by the ”low” level at 0.91 and the ”average” level at 0.90.

For Conscientiousness, the ”high” level scores 0.96, while the ”low” and ”average” levels

achieve 0.90 and 0.88, showing slightly weaker separability.

Openness to Experience performs consistently, with ”average” and ”high” levels both scoring

0.95, and the ”low” level achieving 0.93, demonstrating reliable classification across all levels.

Table 5.14: TrOCR Metrics for Personality Traits Across Levels (Low, Average, High)

Trait Class Precision Recall F1-Score Accuracy

Extraversion
Low 0.75 0.64 0.69 0.83

Average 0.81 0.75 0.78 0.86
High 0.77 0.83 0.80 0.84

Neuroticism
Low 0.81 0.83 0.82 0.87

Average 0.84 0.82 0.83 0.88
High 0.94 0.96 0.84 0.96

Agreeableness
Low 0.87 0.97 0.92 0.89

Average 0.88 0.75 0.85 0.87
High 0.99 0.90 0.92 0.99

Conscientiousness
Low 0.87 0.84 0.88 0.87

Average 0.74 0.74 0.68 0.85
High 0.93 0.94 0.90 0.96

Openness to Experience
Low 0.82 0.86 0.77 0.88

Average 0.92 0.94 0.92 0.94
High 0.90 0.88 0.95 0.90
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Figure 5.13: AUROC Curves of TrOCR for Personality Trait Levels (Low, Average, High)
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5.6 A Comparative Analysis with Related Studies

This section compares our methodology with the most recent studies that share similarities in

dataset characteristics, BFFM-based labeling, and the use of deep learning for automatic feature

extraction. While these studies follow a similar approach, they exhibit notable limitations in feature

learning, classification depth, and generalization.

Rodriguez et al. [47] in Table 5.15 employed a U-Net+CNN architecture for handwriting-based

personality trait classification. However, their approach struggled to extract meaningful personal-

ity characteristics, leading to low F1 scores. Additionally, U-Net preprocessing may have caused

information loss, negatively impacting classification performance.

Table 5.15: F1-Score (%) Comparison of Personality Trait Classification Models

Study Method Extraversion Conscientiousness Neuroticism Agreeableness Openness to Experience

Rodriguez et al.
(2023) [47]

U-Net+CNN 61.00 57.00 40.00 59.00 33.00

Proposed
Model

TrOCR 75.66 82.00 83.00 89.66 88.00

Table 5.16 shows the study by Safar et al. [51] that used VGG16 as a feature extractor and

applied traditional machine learning classifiers. They used SMOTE to address class imbalance, but

synthetic samples may have introduced biases that do not reflect genuine handwriting variability.

Although their ensemble learning techniques, Majority Voting and Stacking, led to improved

performance, their method only outperformed our approach in Agreeableness. Our proposed TrOCR

model outperformed their best results in all other traits, highlighting the advantage of end-to-end

deep learning over traditional feature-based methods.

Table 5.16: Comparison of Test Accuracy (%) for ML Classifiers with SMOTE

Study Method Extraversion Conscientiousness Neuroticism Agreeableness Openness to Experience

Safar et
al.
(2024)
[51]

KNN 61.24 80.53 78.35 88.92 82.56
Random Forest 67.47 81.26 82.08 93.67 82.56
Bagging Classifier 56.74 77.37 81.09 88.40 78.14
Extra Trees 64.70 80.77 82.58 92.97 84.54
Logistic Regression 68.16 77.61 80.09 86.11 84.32
Majority Voting 67.47 80.04 83.08 93.67 88.52
Stacking 68.51 81.02 83.58 95.60 90.28

Proposed
Model

ResNet50 69.98 58.10 65.01 81.03 81.77
ViT224 79.93 86.37 81.95 85.54 87.94
ViT384 84.16 89.59 86.10 88.49 90.06

TrOCR 84.35 89.69 90.49 91.42 90.79
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Ahmed et al. [33] in Table 5.17 evaluated various deep learning models; however, their perfor-

mance remained below our proposed model. Furthermore, their classification was only for low and

high classes rather than for three classes, which oversimplifies the personality assessment and limits

the ability of the model.

Yan et al. [29] evaluated multiple deep-learning models. While ConvNextTiny achieved the

highest accuracy (86.84%), it still performed lower than our proposed approach. Moreover, their

study was limited to only two personality traits (Conscientiousness and Extraversion), restricting a

comprehensive assessment of all Big Five traits.

Table 5.17: Test Accuracy (%) Comparison of Deep Learning Models

Studies Methods Test Accuracy

Ahmed et al.
(2024) [33]

VGG16 73.8
CNN 75.5
DenseNet201 72.3
ResNet50 70.5
InceptionV3 71.0

Yan et al.
(2024) [29]

Convnexttiny 86.84
Densenet121 80.53
Inceptionv3 77.11
VGG16 76.05
Mobilenetv2 76.05
Nasnetmobile 78.95
ResNet50v2 77.63
Xception 78.95

Proposed model

ResNet50 71.18
ViT-224 84.35
ViT-384 87.68
TrOCR 89.01
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Chapter 6

Conclusion and Future Work

6.1 Summary of Findings

This study explored the application of deep learning models for handwriting-based personality

trait classification, focusing on the Big Five personality traits. The primary objectives included eval-

uating the impact of segmentation on class imbalance, assessing the effectiveness of focal loss, com-

paring the performance of three optimization techniques, and analyzing the benefits of multi-label

binary classification over multi-class classification. The Transformer-based OCR model (TrOCR)

was introduced as a new approach to handwriting analysis. Summary of key findings from the study

include:

• Larger input sizes improve Transformer performance but increase computational cost. ViT384

performed better than ViT224, showing that higher resolution helps, but it also makes training

more expensive.

• Segmenting handwriting into smaller samples improved class balance and model perfor-

mance. The dataset expansion particularly benefited underrepresented personality traits, lead-

ing to better accuracy and more stable training.

• Focal loss significantly improved performance, even before segmentation. It helped models

learn from difficult samples, making them more effective on imbalanced data.

• Adam and AdaBelief were the best optimizers for handwriting analysis. They consistently

outperformed SGD, showing faster convergence and better generalization on imbalanced
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datasets.

• Multi-binary classification was more effective than multi-class classification. Treating each

trait as an independent task improved accuracy and feature learning, especially in imbalanced

data.

• A larger dataset does not always mean better performance. The smaller English dataset

slightly outperformed the larger French dataset, highlighting that class balance is more im-

portant than dataset size.

• ResNet50 performed well in single-language training but struggled with mixed-language

data. While it sometimes outperformed Vision Transformers on separate English and French

datasets, its performance dropped when the datasets were combined, showing that CNNs may

not generalize well across languages.

• Transformers adapted better to multilingual handwriting than CNNs. When training on both

languages together, Transformer models improved their performance, showing that they are

better at handling handwriting variations.

• Our proposed TrOCR achieved the best performance across all models and evaluation metrics.

It outperformed ResNet50, ViT-224, and ViT-384, achieving the highest accuracy, F1-score,

and AUROC, proving its strength in handwriting-based personality classification.

6.2 Conclusions

This study introduced a new approach by adapting the pre-trained TrOCR model for auto-

matic handwriting feature extraction and multi-label classification of personality traits based on

the BFFM. The results demonstrated that TrOCR consistently outperformed ResNet50 as a CNN

architecture and Vision Transformers across all datasets, achieving the highest accuracy and F1-

scores. On the English dataset, TrOCR reached 84.43% accuracy with an F1-score of 82.37%. For

the French dataset, it achieved 84.26% accuracy and an F1-score of 83.27%. When both datasets

were combined, TrOCR delivered its best performance with 89.01% accuracy and an F1-score of

87.32%, showing its ability to generalize across different handwriting styles.
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Beyond model selection, this study emphasized the role of data preprocessing and loss func-

tions in addressing class imbalance. Segmentation effectively improved class distribution, allowing

the models to learn more efficiently, while focal loss helped focus on harder-to-classify samples,

leading to better recognition of underrepresented personality traits. The comparison between multi-

class and multi-label binary classification further confirmed that handling each personality trait as

an independent classification task improves performance, as it enables the model to capture more

precise handwriting patterns.

Despite these advancements, some personality traits, such as Extraversion, remain more difficult

to classify due to handwriting similarities across its levels.

6.3 Suggestions for Future Research

There are several ways to improve handwriting-based personality classification in future re-

search:

• Expanding the Dataset – Collecting more diverse handwriting samples across languages,

age groups, and writing styles to improve model generalization.

• Improving Model Interpretability – Using attention maps in TrOCR to better understand

which handwriting features influence predictions.

• Enhancing Trait-Specific Performance – Addressing challenges in classifying Extraversion

by incorporating additional handwriting features such as pen pressure and stroke dynamics.

• Exploring Better Architectures – Testing newer vision-language models and self-supervised

learning techniques to improve feature extraction.

• Analyzing Bias – Conducting a comprehensive bias analysis on the dataset and evaluating

the influence of data processing tasks on model bias and performance.
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Chapter 7

Publications
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