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Abstract

Investigating Zero-Shot Diagnostic Pathology in Vision-Language Models with Efficient
Prompt Design

Vasudev Sharma

Vision-Language Models (VLMs) have emerged as powerful tools in computational pathol-

ogy, offering the ability to perform zero-shot diagnostic inference on gigapixel whole slide images

(WSIs). However, a core challenge remains: these models exhibit high sensitivity to the linguistic

structure and specificity of prompts, which can significantly impact diagnostic accuracy, repro-

ducibility, and clinical interpretability. This thesis systematically investigates the role of prompt en-

gineering in enhancing the diagnostic performance of VLMs in histopathology. We propose a struc-

tured prompt engineering framework that modulates four critical dimensions: anatomical precision,

information density, instructional framing, and output constraints, to evaluate their effect on model

behavior. Using a clinically validated in-house dataset of 3,507 digestive system WSIs spanning

multiple tissue types and pathological conditions, we conduct a comprehensive evaluation of four

state of the art VLMs called Biomedical Contrastive Language-Image Pre-training (BioMedCLIP),

Quilt-Net, Quilt-Large Language and Vision Assistant (Quilt-LLAVA), and Contrastive Learning

from captions for Histopathology (CONCH). Our methodology includes a combination of quanti-

tative assessments using Area Under the Curve (AUC) analysis , Receiver Operating Characteristic

(ROC) and qualitative analyses to understand how prompt design influences diagnostic inference,

interpretability, and generalization across tissues.

Our results demonstrate that prompt formulation significantly affects model performance across

the full dataset. In particular, prompts that incorporate high anatomical specificity and clear instruc-

tional framing yield consistent improvements in classification accuracy across multiple tissue sites.

The study further reveals that domain aligned prompting strategies are often more effective than
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increase in architectural complexity, highlighting the centrality of human and AI communication in

medical vision-language tasks. In addition to empirical findings, we contribute actionable guidelines

for implementing VLMs in clinical computational pathology workflows, emphasizing prompt stan-

dardization and interpretability. This work shifts the emphasis from purely architectural innovation

to optimizing the language mediated interface between human expertise and AI systems, thereby

enhancing both diagnostic performance and clinical utility in zero-shot medical image analysis.
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Chapter 1

Introduction

1.1 Target Search and Localization: An Example

Computational pathology represents a transformative frontier in the integration of artificial in-

telligence (AI) with medical diagnostics, particularly in the analysis of histopathological images.

This emerging field leverages powerful algorithmic approaches to analyze microscopic tissue speci-

mens traditionally examined by human pathologists. The evolution of computational methods in

pathology mirrors the broader trajectory of medical image analysis from rule-based systems to

sophisticated deep learning architectures capable of identifying complex morphological patterns

indicative of disease states (Gurcan et al., 2009; Hosseini et al., 2024). Consider the diagnostic

process of identifying invasive colorectal adenocarcinoma in a WSI. A pathologist examines tis-

sue at multiple magnifications, recognizes cellular atypia, identifies aberrant glandular structures

permeating through the muscularis mucosa, and integrates these observations with the anatomi-

cal context to render a diagnosis. This complex cognitive process has traditionally been difficult

to replicate algorithmically. Early computational approaches using convolutional neural networks

(CNNs) achieved modest success in isolated classification tasks (K. He, Zhang, Ren, & Sun, 2015;

Krizhevsky, Sutskever, & Hinton, 2012) but struggled with the integrative reasoning that character-

izes expert diagnosis.

The recent emergence of large language models (LLMs) and VLMs represents a paradigm shift
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in computational pathology by enabling cross-modal reasoning between visual patterns and nat-

ural language descriptions. Models such as CLIP (Radford et al., 2021a), Florence (Yuan et al.,

2021), DALL-E (Ramesh et al., 2021), LLaVa (H. Liu, Li, Wu, & Lee, 2023) along with specialized

histopathology models like Med-PaLM (Singhal et al., 2023) ,Quilt-LLAVA (Seyfioglu, Ikezogwo,

Ghezloo, Krishna, & Shapiro, 2025), LLaVA-Med (C. Li et al., 2023) and CONCH (Lu, Chen,

Williamson, et al., 2023) established meaningful connections between visual inputs and textual in-

structions or descriptions. This capability is particularly valuable in histopathology, where expert

knowledge is encoded in natural language while diagnostic evidence manifests as visual patterns

across multiple biological scales.

Returning to our colorectal adenocarcinoma example, these advanced VLMs can now process

instructions like ”Identify regions of invasive adenocarcinoma infiltrating the muscularis mucosa”

and locate relevant visual patterns within gigapixel WSIs. This represents a fundamental advance-

ment in creating more intuitive interfaces for computational pathology systems. However, the ef-

fectiveness of these models depends critically on how the diagnostic task is linguistically framed a

relationship that remains poorly characterized despite its central importance to clinical implemen-

tation.

The sensitivity of VLMs to prompt formulation presents both opportunities and challenges. On

one hand, careful prompt engineering could potentially enhance model accuracy by directing atten-

tion to diagnostically relevant features and incorporating appropriate anatomical and histological

context. On the other hand, this sensitivity introduces variability that may undermine reproducibil-

ity in clinical settings if not systematically addressed. This tension motivates our research into

optimal prompt engineering strategies for computational pathology. Our study focuses specifically

on digestive system pathology for several compelling reasons. First, digestive cancers represent a

significant global health burden, with colorectal cancer alone ranking as the third most common

malignancy worldwide (Hossain et al., 2022). Second, the morphological manifestations of inva-

sive cancer across different digestive tissues (from esophagus to colon) exhibit substantial variation,

providing an ideal testbed for evaluating the generalization capabilities of VLMs. Third, the diges-

tive system presents diverse histological patterns across normal, inflammatory, pre-malignant, and

malignant states, requiring models to distinguish subtle differences in tissue architecture that have
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significant diagnostic implications.

By systematically analyzing how prompt construction affects diagnostic accuracy across tissue

types, we establish evidence based guidelines for integrating VLMs into clinical pathology work-

flows. This research addresses the underexplored human and AI interface in computational pathol-

ogy, where existing literature has emphasized architectural innovations while overlooking how di-

agnostic tasks are communicated to models. Our work demonstrates that optimizing anatomical

precision, information density, and instructional framing in prompts significantly enhances zero-

shot diagnostic capabilities for both cancer and dysplasia detection.

1.2 Problem Statement and Research Questions

Despite significant advances in computational pathology, VLMs face critical challenges when

applied to zero-shot diagnostic tasks in histopathology. The fundamental problem addressed in this

thesis is the insufficient understanding of how prompt design influences diagnostic performance in

VLM based computational pathology systems. This knowledge gap manifests in several intercon-

nected dimensions that impede the reliable deployment of these models in clinical settings.

(1) VLMs demonstrate remarkable sensitivity to the specific wording, structure, and framing of

prompts (J. Gu et al., 2023; Radford et al., 2021a; Sahoo et al., 2025). In clinical diag-

nostic contexts, where precise interpretation is paramount, this sensitivity creates significant

challenges. Minor variations in prompt formulation can lead to substantial differences in di-

agnostic output (J. Wang et al., 2024). The optimal linguistic strategies for prompting medical

VLMs remain poorly characterized compared to general domain applications, and standard-

ization of prompt methodologies across different pathological contexts is lacking, limiting

reproducibility.

(2) Histopathological WSIs present unique computational challenges due to their gigapixel di-

mensions, which typically exceed the input resolution capabilities of current VLM architec-

tures (R. J. Chen et al., 2022; Tellez et al., 2019). Additionally, these images contain relevant

information at multiple scales, from tissue architecture to cellular and subcellular details,
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requiring models to effectively integrate information across magnification levels. The com-

plex spatial relationships between tissue structures carry significant diagnostic importance,

necessitating specialized approaches to image processing and prompt design that can effec-

tively guide model attention across multiple scales while maintaining diagnostically relevant

context.

(3) Pathological diagnosis relies heavily on specialized anatomical knowledge and contextual

information that general-purpose VLMs may not adequately capture. Normal histological

variations across different anatomical sites must be distinguished from pathological changes,

tissue-specific diagnostic criteria require precise anatomical referencing in prompts, and the

relationship between anatomical precision in prompts and diagnostic accuracy remains poorly

characterized. The optimal level of anatomical specificity, information density, and instruc-

tional framing required for reliable diagnosis has not been systematically investigated, creat-

ing uncertainty in how to effectively prompt VLMs for specialized medical diagnostic tasks.

Based on these interconnected challenges, we formulate the following specific research questions:

(1) How does the anatomical precision in prompts (ranging from tissue-agnostic to highly specific

anatomical referencing) affect diagnostic accuracy across different tissue types and VLM

architectures.

(2) What is the relationship between information density in prompts and model performance, and

is there an optimal level of detail that maximizes diagnostic accuracy.

(3) How does instructional framing (including expert role assignment, task formulation, and

query structure) influence model attention to diagnostically relevant features.

(4) To what extent do output constraints affect the consistency and reliability of diagnostic pre-

dictions across different VLM architectures.

(5) Can systematic prompt engineering approaches improve zero-shot diagnostic performance on

rare or unusual pathological presentations where annotated training data is limited.
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(6) How does model complexity (in terms of architecture, parameter count, and training ap-

proach) interact with prompt engineering strategies to influence diagnostic performance across

different pathological conditions.

Our investigation of these questions employs a systematic approach that varies key dimensions

of prompt design across multiple state of the art VLM architectures specifically (BioMedCLIP

(Zhang et al., 2025), Quilt-Net (Ikezogwo et al., 2025), Quilt-LLAVA (Seyfioglu et al., 2025), and

CONCH (Lu, Chen, Williamson, et al., 2023)), evaluating performance on a large, clinically vali-

dated dataset of digestive system WSIs spanning multiple tissue types and pathological conditions.

This comprehensive approach addresses a critical gap in current research, which has predomi-

nantly focused on architectural innovations rather than optimization of the human and AI interac-

tion interface represented by prompt engineering. By systematically characterizing the relationship

between prompt formulation and diagnostic accuracy, we aim to establish a foundation for more

robust, reproducible, and clinically viable computational pathology systems.

1.3 Research Objectives and Contributions

This thesis aims to systematically evaluate and optimize prompt engineering strategies for vision-

language models in computational pathology through a structured investigation that addresses the

complex interplay between linguistic formulation and diagnostic performance. Our research is

guided by the following primary objectives:

(1) We seek to quantify the impact of prompt variations along four critical dimensions called

anatomical precision, information density, instructional framing, and output constraints on

diagnostic accuracy across different VLM architectures. This objective involves the devel-

opment of a comprehensive prompt engineering framework that systematically varies these

dimensions and evaluates their influence on model performance across diverse tissue types

and pathological conditions. By establishing the relative importance of these factors and their

interactions, we aim to provide a robust empirical foundation for prompt design in computa-

tional pathology.
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(2) We aim to identify optimal prompt structures for different tissue types and pathological con-

ditions within digestive system pathology. This objective recognizes that the optimal prompt

formulation may vary based on anatomical context, pathological entity, and specific diag-

nostic task. By analyzing how prompt effectiveness varies across these contexts, we seek

to develop tissue-specific and task-specific guidelines that maximize diagnostic accuracy in

diverse clinical scenarios.

(3) We seek to analyze attention map patterns from different VLM architectures to assess diag-

nostic relevance and model interpretability across varying prompt conditions. This objective

addresses not only what prompt structures optimize performance but also how they influ-

ence the model’s focus on diagnostically relevant regions within the image. By correlating

attention patterns with expert-annotated regions of interest, we aim to enhance model inter-

pretability and provide insights into the mechanisms by which prompt variations influence

model behavior.

(4) We aim to develop practical guidelines for implementing VLMs in clinical diagnostic work-

flows based on empirical evidence from our systematic investigation. This objective translates

our technical findings into actionable recommendations for researchers, developers, and po-

tentially clinicians integrating VLM-based systems into pathology practice. These guidelines

will address considerations for prompt design, model selection, and implementation strategies

that optimize diagnostic performance while maintaining reproducibility and reliability.

The successful execution of these objectives contributes several significant advances to the field of

computational pathology:

(1) We provide a comprehensive prompt engineering framework specifically designed for com-

putational pathology that systematically addresses anatomical precision, information density,

instructional framing, and output constraints. This framework fills a critical gap in current

research by establishing a structured approach to prompt design in medical vision-language

applications. Unlike ad hoc approaches that have characterized much of the existing work in

this domain, our framework enables systematic optimization and reproducible implementa-

tion of prompt engineering strategies.
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(2) We offer robust empirical evidence demonstrating the relationship between prompt formu-

lation and diagnostic accuracy across diverse tissue types within the digestive system. This

evidence illuminates how subtle variations in prompt structure can significantly impact model

performance, providing a quantitative basis for understanding the sensitivity of VLMs to lin-

guistic formulation in medical applications. Our findings help establish which aspects of

prompt design are most critical for optimizing performance in specific diagnostic contexts.

(3) We provide novel insights into the attention mechanisms of different VLM architectures when

processing histopathological images under various prompt conditions. By analyzing how

attention patterns correlate with diagnostically relevant regions and how they change in re-

sponse to prompt variations, we enhance understanding of model behavior and interpretabil-

ity. These insights contribute to the development of more transparent and trustworthy AI

systems for clinical applications.

(4) We establish practical guidelines for optimizing zero-shot diagnostic performance in compu-

tational pathology applications. These guidelines translate our experimental findings into ac-

tionable recommendations for researchers and developers implementing VLM based systems

in pathology workflows. By providing evidence-based strategies for prompt design across dif-

ferent anatomical contexts and diagnostic tasks, we enhance the clinical utility and reliability

of computational pathology systems.

The significance of these contributions extends beyond technical optimization to address fundamen-

tal challenges in the clinical implementation of AI systems in pathology. By enhancing the accuracy,

reproducibility, and interpretability of VLM based diagnostic approaches, our research supports the

development of more reliable and clinically relevant tools that can potentially improve diagnostic

efficiency and accuracy in both common and rare pathological conditions. As computational pathol-

ogy continues to evolve toward clinical integration, understanding how to effectively communicate

diagnostic tasks through natural language prompts becomes increasingly important for human and

AI collaboration in diagnostic workflows.
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1.4 Thesis Organization

This thesis is organized into four chapters that progressively build a comprehensive understand-

ing of vision-language models in computational pathology, with particular emphasis on prompt en-

gineering for zero-shot diagnostic applications. The structure reflects the logical progression from

foundational concepts to experimental methodology, results, and broader implications.

Chapter 1 establishes the research context and motivation through an illustrative example of

target search in computational pathology. It introduces the fundamental problem addressed in this

thesis, the insufficient understanding of how prompt design influences diagnostic performance in

VLM based pathology systems and articulates the specific research questions that guide our inves-

tigation. The chapter outlines the primary objectives and contributions of the research, highlighting

the development of a comprehensive prompt engineering framework, empirical evidence on prompt

performance relationships, insights into attention mechanisms, and practical guidelines for clinical

implementation.

Chapter 2 provides a comprehensive review of the technological and conceptual foundations

of computational pathology, with emphasis on the evolution towards vision-language integration.

The chapter begins with an overview of computational pathology as a discipline, including its his-

torical development, key applications, and technical challenges. It then examines self-supervised

learning approaches in computational pathology, including contrastive learning methods like CLIP

(Radford et al., 2021a) and non-contrastive techniques (K. He et al., 2021). The chapter explores the

fundamental architecture of transformer models (Vaswani et al., 2023) and their adaptation to vi-

sion tasks through Vision Transformers (ViT) (Dosovitskiy et al., 2021), with particular attention to

the challenges of processing gigapixel histopathological images. It then discusses the emergence of

foundation models in the biomedical domain and their impact on computational pathology, followed

by an in depth examination of VLMs, including their architecture, training methodologies, and ap-

plications to histopathology. The chapter concludes with a detailed review of prompt engineering

approaches and their current applications in computational pathology, identifying key knowledge

gaps that motivate our research.
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Chapter 3 presents the core experimental methodology and results of our investigation into zero-

shot diagnostic pathology with vision-language models. The chapter begins with a detailed descrip-

tion of the four state of the art VLM architectures evaluated in our study: BioMedCLIP (Zhang et

al., 2025), Quilt-Net (Ikezogwo et al., 2025), Quilt-LLAVA (Seyfioglu et al., 2025), and CONCH

(Lu, Chen, Williamson, et al., 2023). It then characterizes our in house dataset of 3,507 digestive

system WSIs, describing the distribution of tissue types, pathological conditions, and annotation

methodology. The chapter details our prompt engineering framework, which systematically varies

anatomical precision, information density, instructional framing, and output constraints across nine

template structures. The results section presents our findings through quantitative performance met-

rics (AUC scores) across different prompt configurations and model architectures, complemented

by qualitative analysis of attention maps that visualize how different prompts influence model focus

on diagnostically relevant regions. The chapter includes a comprehensive ablative study that isolates

the impact of each prompt dimension on model performance, as well as an analysis of how model

performance varies across different tissue types and magnification levels. The discussion interprets

these findings in the context of current knowledge and their implications for clinical implementa-

tion.

Chapter 4 synthesizes the key findings of our research and explores their broader implications

for computational pathology and medical AI. The chapter begins by summarizing the major empiri-

cal results regarding the relationship between prompt design and diagnostic performance, highlight-

ing the critical importance of anatomical precision and appropriate information density across dif-

ferent VLM architectures. It then discusses the theoretical implications of these findings for under-

standing vision-language integration in specialized medical domains. The chapter outlines practical

guidelines for implementing prompt engineering in clinical computational pathology workflows,

addressing considerations for different tissue types, diagnostic tasks, and model architectures. It

acknowledges the limitations of the current study and identifies promising directions for future

research, including extensions to other organ systems, more complex diagnostic tasks, and integra-

tion with multimodal data sources. The chapter concludes by situating our contributions within the

broader evolution of computational pathology toward more interpretable, trustworthy, and clinically

relevant AI systems that can enhance diagnostic accuracy and efficiency.
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Throughout this organizational structure, we maintain a focus on the central research questions

while providing sufficient context, methodological details, and interpretive discussion to establish

the significance of our findings for both technical research and clinical practice. Each chapter builds

upon the previous ones to create a cohesive narrative that advances understanding of how prompt

engineering can optimize VLMs for computational pathology applications.
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Chapter 2

Background and Literature Review

2.1 Background

This section establishes the technical foundations underlying computational pathology and AI

driven approaches to histopathological image analysis. We examine the core principles, method-

ological frameworks, and architectural innovations that have enabled significant advances in this

field, from basic image processing to sophisticated multimodal reasoning systems. The discussion

progresses from computational pathology fundamentals through self-supervised learning methods,

transformer architectures, foundation models, and vision-language integration, providing the neces-

sary context for understanding our research on prompt engineering in diagnostic applications.

2.1.1 Computational Pathology

Computational Pathology represents an interdisciplinary field that integrates traditional pathol-

ogy with advanced computational methods to extract meaningful information from pathological

data. This emerging discipline extends beyond machine learning applications to encompass the

entire digital transformation of pathology practice (Hosseini et al., 2024). By combining exper-

tise from pathology, computer science, and biomedical engineering, computational pathology aims

to develop tools and methodologies that enhance diagnostic accuracy, improve prognostication,

and guide personalized treatment decisions. The foundation of computational pathology lies in

the digitization of pathology specimens through WSI technology. Modern WSI scanners convert
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glass slides into high resolution digital images, generating gigapixel sized representations that can

be stored, shared, and analyzed computationally (Ehteshami Bejnordi et al., 2017). This digital

transformation enables pathologists to access slides remotely, collaborate across institutions, and

implement quality assurance measures that were previously challenging with physical slides. How-

ever, the digitization process introduces technical challenges related to storage infrastructure, color

standardization, and image quality control (Tellez et al., 2019). Beyond simple digitization, compu-

tational pathology encompasses diverse analytical approaches. Image analysis algorithms, ranging

from traditional computer vision techniques to modern deep learning models, can segment tissue

components, detect cellular structures, and quantify morphological features with high precision and

reproducibility (Litjens et al., 2017). These methods standardize measurements that were histori-

cally subjective, such as nuclear pleomorphism assessment, mitotic counting, and tumor infiltrating

lymphocyte quantification (Veta et al., 2019). The resulting quantitative data provides objective

metrics that can supplement pathologists qualitative assessments and reduce inter-observer variabil-

ity.

A key strength of computational pathology is its capacity for multimodal data integration. Mod-

ern approaches combine histopathological images with molecular data (genomics, proteomics, tran-

scriptomics), radiological findings, and clinical information to develop comprehensive models of

disease (R. J. Chen et al., 2021). This integration reveals connections between morphological

patterns and underlying molecular mechanisms, enabling more precise disease classification and

treatment selection. For example, recent studies have demonstrated that computational analysis of

Hematoxylin and Eosin (H&E) slides can predict genetic mutations and molecular subtypes that

traditionally require expensive specialized testing (B. He et al., 2020). Workflow enhancement rep-

resents another significant benefit of computational pathology. Automated screening and triaging

systems can prioritize cases requiring urgent review, while specialized algorithms can assist with

time-consuming tasks like microorganism detection and immunohistochemistry scoring (Fuchs &

Buhmann, 2011). These workflow improvements address practical challenges in pathology practice,

including increasing case complexity, growing subspecialty requirements, and declining pathologist

workforce numbers in many regions. By automating routine aspects of slide review, computational
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tools allow pathologists to focus their expertise on complex diagnostic decisions and clinically rel-

evant interpretations. The clinical impact of computational pathology has been demonstrated in

several domains. The CAMELYON challenge series showed that algorithmic detection of breast

cancer metastases in lymph nodes can match or exceed pathologist performance under certain con-

ditions (Ehteshami Bejnordi et al., 2017). Similar successes have been reported in prostate cancer

grading, dermatopathology, and hematopathology applications. These achievements highlight the

potential for computational methods to serve as diagnostic decision support tools, particularly for

standardized tasks with well-defined endpoints (Campanella et al., 2019).

Despite these advances, computational pathology faces several implementation challenges. Tech-

nical barriers include the need for standardized image acquisition protocols, robust validation method-

ologies, and interoperable software systems (Fuchs & Buhmann, 2011). Regulatory frameworks for

computational pathology tools are still evolving, with regulatory bodies developing guidelines for

clinical validation and quality assurance. Additionally, integration into existing laboratory infor-

mation systems and electronic health records remains complex (Tizhoosh & Pantanowitz, 2018).

Financial considerations also influence adoption, as laboratories must invest in digital infrastructure

while navigating uncertain reimbursement models. Perhaps most importantly, cultural adaptation

requires pathologists and laboratory professionals to develop new skills and adjust established work-

flows. Educational initiatives and collaborative research programs play crucial roles in addressing

these challenges by building capacity and demonstrating practical benefits in diverse clinical settings

(Tizhoosh & Pantanowitz, 2018). Looking forward, computational pathology is expanding beyond

traditional histopathology to encompass spatial omics technologies, digital cytology, electron mi-

croscopy, and other specialized domains. Federated learning approaches are addressing data sharing

concerns by enabling model training across institutions without transferring sensitive information

(Lu, Kong, et al., 2020). Explainable AI methods are improving transparency and interpretability,

which are essential for clinical adoption and regulatory approval (M., V., S., & H., 2020). Com-

putational pathology is evolving from research into clinical practice, transforming traditional mi-

croscopy into a quantitative, data-enriched field. Rather than replacing pathologists, computational

tools augment human expertise by providing consistent measurements, revealing subtle patterns,
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and integrating complex multimodal data. This human-AI partnership forms the foundation of pre-

cision pathology, optimizing diagnostic accuracy and personalized treatment selection.

Computational pathology is evolving alongside broader healthcare technology trends, requir-

ing advanced computational methods to handle emerging imaging technologies like multiplex im-

munofluorescence and spatial transcriptomics. Its applications extend to underserved regions with

pathologist shortages and are being integrated into educational programs. These developments rep-

resent a fundamental paradigm shift in pathology practice rather than merely a technological addi-

tion.

2.1.2 Self-Supervised Learning in Computational Pathology

Self-supervised learning represents a fundamental paradigm shift in how computational systems

learn from medical imaging data, particularly in the context of digital pathology (Koohbanani, Un-

nikrishnan, Khurram, Krishnaswamy, & Khalifa, 2021). Rather than relying on human-annotated

labels, which are time-consuming and expensive to obtain, self-supervised approaches extract mean-

ingful patterns directly from the data itself. This concept mirrors the natural learning process of

pathology trainees, who develop pattern recognition abilities by examining numerous tissue spec-

imens before focusing on specific diagnostic criteria (L. Chen et al., 2022). At its core, self-

supervised learning creates artificial learning tasks from unlabeled data, generating supervisory

signals that encourage models to understand the underlying structure of histopathological images

(R. J. Chen & Krishnan, 2022). These pretext tasks might involve reconstructing masked portions

of tissue images (K. He et al., 2021), predicting the spatial relationships between tissue regions, or

identifying matching augmented views of the same specimen (Ciga, Xu, & Martel, 2021). Through

solving these tasks, models develop rich representations of tissue morphology, cellular architecture,

and pathological features without explicit annotation. The relevance of self-supervised learning to

computational pathology stems from several inherent characteristics of histopathological data. First,

digital pathology generates vast repositories of unlabeled whole slide images that contain valuable

information but lack detailed annotations (Lu, Williamson, et al., 2020). Second, histopathological

images exhibit complex hierarchical organization across multiple scales, from subcellular structures

to tissue architecture. Self-supervised approaches naturally accommodate this multi-scale nature by
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learning representations at different levels of magnification (R. J. Chen et al., 2022). Third, pathol-

ogy images display significant variability in staining, preparation, and scanning protocols across in-

stitutions. Self-supervised learning methods develop more robust representations that can generalize

across these technical variations (Hou et al., 2019). Several conceptual frameworks have emerged

within self-supervised learning for pathology image analysis. Contrastive learning approaches build

representations by comparing different views of tissue, encouraging similar embeddings for aug-

mented versions of the same tissue while pushing apart representations of different tissues (Ciga et

al., 2021). Non-contrastive methods focus on internal consistency within images without relying on

explicit negative examples (Zbontar, Jing, Misra, LeCun, & Deny, 2021). Masked modeling tech-

niques randomly obscure portions of images and train models to predict the missing content, forcing

them to understand the contextual relationships within tissue structures (Xie et al., 2022). Knowl-

edge distillation frameworks transfer information between different model components to enhance

representation quality (Caron et al., 2021).

The hierarchical organization of pathology data has inspired multi-scale self-supervised ap-

proaches that simultaneously capture information at cellular, local tissue pattern, and global contex-

tual levels (R. J. Chen et al., 2022). This capability aligns with diagnostic workflows in which

pathologists examine specimens at progressively higher magnifications to integrate information

across scales. Models that preserve this hierarchical perspective can maintain both the fine de-

tails necessary for cellular classification and the broader context essential for disease characteri-

zation (X. Wang et al., 2022). Integration of self-supervised learning with other methodological

approaches creates powerful hybrid frameworks for computational pathology. Combining self-

supervised representations with weakly-supervised methods enables more effective learning from

slide-level labels (Lu, Williamson, et al., 2020). Graph based approaches incorporate spatial re-

lationships between tissue regions, maintaining the topological information critical for accurate

diagnosis (Gadiya, Anand, & Sethi, 2019; Jaume et al., 2021; Zhou et al., 2019). Multi-modal

techniques integrate histopathological images with complementary data sources to provide more

comprehensive characterization of tissue specimens (R. J. Chen et al., 2021). Recent innovations

in self-supervised learning include multi-instance contrastive approaches that leverage slide-level
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heterogeneity (Lu, Williamson, et al., 2020), patch-based pretraining strategies that preserve spa-

tial relationships (X. Wang et al., 2022), and domain-adaptive frameworks that mitigate staining

variation across institutions (Hou et al., 2019). These techniques address pathology specific chal-

lenges like sparse annotations and technical variability. Federated self-supervised frameworks have

emerged to enable collaborative model training across institutions while preserving patient privacy

and data sovereignty (Lu, Kong, et al., 2020). Integration with explainable AI methods further en-

hances these models clinical utility by providing interpretable visual evidence for their predictions

(Jaume et al., 2021). As self-supervised methodologies mature, it becomes more instrumental in

developing robust computational pathology systems .

2.1.3 Transformers

Transformer architectures represent a pivotal advancement in neural network design that has

fundamentally altered the landscape of machine learning research and applications across domains.

Initially introduced by (Vaswani et al., 2023) for natural language processing tasks, these architec-

tures have subsequently demonstrated remarkable efficacy in computer vision, multimodal learning,

and computational pathology. The fundamental innovation of the transformer lies in its exclusive

reliance on attention mechanisms to model relationships between elements in a sequence, eschew-

ing the recurrent and convolutional operations that characterized previous architectural paradigms.

The core architectural innovation of the transformer is the self-attention mechanism, which enables

each element in a sequence to attend to all other elements, thereby capturing long-range depen-

dencies with constant path length between any two positions. This contrasts with recurrent neural

networks (RNNs), which process sequences serially and suffer from vanishing gradient problems

when modeling long range dependencies, and CNNs, which capture local dependencies through spa-

tially limited receptive fields. The multi-head attention design enables specialized pathology feature

extraction across diverse tissue morphologies, capturing both local cellular patterns and long-range

architectural dependencies critical for accurate histopathological analysis (R. J. Chen et al., 2022;

Kirilenko, Andreychuk, Panov, & Yakovlev, 2022). Formally, the self-attention mechanism com-

putes attention scores between query vectors Q and key vectors K, which determine the influence

of each key on the output, followed by a weighted aggregation of value vectors V . This operation
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is expressed mathematically as:

Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V (1)

where dk represents the dimensionality of the key vectors and serves as a scaling factor to

prevent excessively large attention scores in high-dimensional spaces. The original transformer

enhances this mechanism through multi-head attention, which projects the queries, keys, and values

into multiple subspaces, computes attention within each subspace, and subsequently concatenates

the results as seen in Fig. 2.1. This approach enables the model to attend to information from

different representation subspaces, thereby capturing diverse relationships within the data. The

computational efficiency of the transformer derives from its parallelization during training.

(a) Multi-Head attention mechanism (b) Attention mechanism

Figure 2.1: Detailed overview of the multi-head attention mechanism

Unlike RNNs, which process sequences serially, transformers compute attention scores between

all elements simultaneously, enabling efficient parallelization on modern hardware accelerators.

This parallelization, coupled with the architecture’s expressiveness, has facilitated the development

of increasingly large-scale models with millions or billions of parameters, contributing to the emer-

gence of foundation models. The quadratic computational complexity of self-attention with respect

to sequence length (O(n2) for a sequence of length n) initially posed challenges for processing
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long sequences. However, subsequent architectural innovations, including sparse attention patterns

(Child, Gray, Radford, & Sutskever, 2019), linear attention mechanisms (Katharopoulos, Vyas,

Pappas, & Fleuret, 2020), and other approximation techniques (Kitaev, Łukasz Kaiser, & Levskaya,

2020), have addressed this limitation while maintaining model performance.

The original transformer architecture comprises of an encoder-decoder structure designed for

sequence to sequence tasks such as machine translation. The encoder transforms an input se-

quence into a continuous representation, while the decoder generates an output sequence based

on this representation. Each encoder and decoder block combines self-attention mechanisms with

position-wise feed-forward networks, normalization layers, and residual connections. Position-wise

feed-forward networks apply identical transformations to each position independently, incorporat-

ing non-linearities and enabling the model to process the contextual representations generated by

attention mechanisms. Layer normalization stabilizes training by normalizing activations across the

feature dimension, while residual connections facilitate gradient flow through deep architectures.

The transformer incorporates positional encodings to provide information about the relative or ab-

solute positions of elements in the sequence. Various architectural variants have emerged from the

original transformer design, each optimized for specific applications or addressing particular limi-

tations. The transformer encoder alone forms the basis for bidirectional models like BERT (Bidi-

rectional Encoder Representations from Transformers) (Devlin, Chang, Lee, & Toutanova, 2019),

which develop contextual representations by attending to all tokens in a sequence. Conversely,

the transformer decoder underlies autoregressive models like GPT (Generative Pre-trained Trans-

former) (Radford, Narasimhan, Salimans, & Sutskever, 2018), which generate sequences by pre-

dicting each token conditioned on all previous tokens. Hybrid approaches incorporate both encoder

and decoder components for tasks requiring both bidirectional understanding and autoregressive

generation (Raffel et al., 2023).

In the visual domain, ViT (Dosovitskiy et al., 2021) adapt the transformer architecture to image

processing by decomposing images into sequences of fixed-size patches, linearly embedding these

patches, and processing them with standard transformer encoders. This approach contrasts with

the convolutional architectures, demonstrating that locality bias is not an essential inductive bias

for visual processing when sufficient data and computational resources are available. Subsequent
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developments have integrated convolutional operations into transformer architectures (Z. Liu et al.,

2021), incorporated hierarchical processing (W. Wang et al., 2021), and developed efficient atten-

tion mechanisms for high-resolution images (Z. Liu et al., 2021). The application of transformers

to computational pathology presents both significant opportunities and unique challenges. The gi-

gapixel dimensions of histopathological images exceed the context length limitations of standard

transformer architectures, necessitating adaptations to accommodate these large-scale images. Sev-

eral strategies have emerged to address this constraint. Hierarchical transformers process images at

multiple levels of granularity, from patches to regions to whole slides, enabling efficient modeling

of long range dependencies while maintaining tractable computational complexity (R. J. Chen et

al., 2022). Patch based approaches (X. Wang et al., 2022) segment whole slide images into man-

ageable patches, process these patches independently with transformer encoders, and subsequently

aggregate the patch level representations to derive slide level predictions. Attention mechanism

modifications, including sparse attention patterns, linear attention variants, and local to global at-

tention combinations, reduce the complexity of processing large histopathological images while

preserving the ability to capture dependencies (X. Wang et al., 2022).

Beyond architectural adaptations, the future of transformers in computational pathology points

toward specialized foundation models pre-trained on histopathological datasets (Filiot et al., 2023),

increasingly sophisticated multi-modal integration with genomic and clinical data (R. J. Chen et al.,

2021), and enhanced interpretability mechanisms aligned with diagnostic workflows. These devel-

opments suggest transformers will become the architectural backbone for next generation pathol-

ogy systems, potentially revolutionizing diagnosis while bridging visual patterns with underlying

disease mechanisms (Ciga et al., 2021).

2.1.4 Foundation Models

Foundation models represent a paradigm shift in artificial intelligence, characterized by large-

scale neural networks trained on vast, diverse datasets that can be adapted to numerous downstream

tasks with minimal additional training (Bommasani et al., 2022). Unlike conventional task spe-

cific models that require extensive labeled data for each new application, foundation models learn

generalizable representations through self-supervised learning on unlabeled data, enabling efficient
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knowledge transfer to specialized domains. This transfer learning capability, where knowledge from

one domain or task transfers to another forms the cornerstone of foundation models’ flexibility and

efficiency.

The concept of foundation models coalesced around several pioneering systems, most notably

LLMs like GPT developed by OpenAI. The GPT series demonstrated that scale in parameters,

compute, and data—could lead to qualitatively different capabilities, with GPT-3 showcasing re-

markable zero-shot and few-shot learning abilities (Brown et al., 2020). Similarly, models like

Large Language Model Meta AI (LLAMA) as seen in Fig. 2.2 illustrated how architectural opti-

mization could create more efficient foundation models that maintain performance while reducing

computational requirements. These models exhibit emergent capabilities that appear only at scale,

including complex reasoning, instruction following, and in-context learning that were not explicitly

programmed (Wei et al., 2022). Foundation models can be broadly categorized into generative and

non-generative architectures, each with distinct capabilities and applications. Generative foundation

models, exemplified by GPT, LLAMA, and diffusion models like Stable Diffusion and DALL-E,

are designed to produce novel content whether text, images, or other modalities by learning the

underlying distribution of training data and sampling from this distribution. These models excel

at creative tasks, content generation, and reasoning. Non-generative foundation models, such as

BERT and early versions of CLIP, focus on representation learning and understanding rather than

generation. They excel at tasks like classification, retrieval, and feature extraction, mapping in-

puts to meaningful vector representations without necessarily producing new content. While this

distinction was initially clear, recent foundation models increasingly blur these boundaries, with

many systems incorporating both discriminative understanding and generative capabilities (Ramesh,

Dhariwal, Nichol, Chu, & Chen, 2022; Touvron, Lavril, et al., 2023).

These diverse architectures rely on similar training methodologies centered on self-supervised

objectives that derive supervision signals intrinsically from data structure, eliminating dependency

on manual annotation. For language models, these objectives include autoregressive next-token

prediction, which maximizes the probability of subsequent tokens given preceding context (De-

vlin et al., 2019). This approach enables models to learn linguistic patterns, factual knowledge,
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and reasoning capabilities from text alone, without explicit supervision. Visual foundation mod-

els implement analogous techniques including contrastive learning between image pairs, masked

image modeling where models reconstruct obscured image regions, and teacher-student distilla-

tion frameworks (Caron et al., 2021; T. Chen, Kornblith, Norouzi, & Hinton, 2020; K. He et al.,

2021). While general-purpose foundation models demonstrate impressive transfer capabilities,

domain-specific variants achieve superior performance in specialized contexts through additional

pre-training or fine-tuning on domain-relevant data. In biomedicine, models like BioBERT and

ClinicalBERT adapt to medical terminology through additional pre-training, while visual models

pre-trained on medical imaging capture domain-specific patterns (Alsentzer et al., 2019; Lee et

al., 2020; Sellergren et al., 2023). Adapting these to computational pathology requires addressing

unique challenges of histopathological images: gigapixel dimensions, multi-scale content, and spe-

cialized semantics—through hierarchical architectures that process information across scales and

efficient attention mechanisms for handling large-scale images (R. J. Chen et al., 2022; X. Wang et

al., 2022).

For computational pathology specifically, three principal approaches have emerged: fine-tuning

existing vision models, training pathology-native models, and integrating multimodal data, enabling

natural language interactions, semantic search, and cross-domain knowledge transfer. Implementa-

tion challenges include computational demands for gigapixel images requiring model compression,

ensuring interpretability through concept based explanations, domain adaptation across varied stain-

ing protocols, and addressing privacy concerns through federated learning approaches that preserve

patient data security while enabling model training across institutions (Lu, Kong, et al., 2020).

2.1.5 Vision Language Models

VLMs represent a specialized category of foundation models that integrate visual and linguistic

understanding to interpret and reason about visual content through language. As foundation mod-

els have revolutionized AI development across domains, VLMs specifically address the challenge

of bridging visual perception with language comprehension, enabling systems to understand and

communicate about visual information using natural language interfaces. This integration creates

powerful systems capable of tasks ranging from image captioning and visual question answering
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Figure 2.2: LLAMA architecture

to complex visual reasoning and cross-modal retrieval. The evolution of VLMs has been marked

by several revolutionary conceptual advances. Initially, visual and linguistic understanding existed

as separate capabilities, connected through simple alignment mechanisms (Agrawal et al., 2016;

Vinyals, Toshev, Bengio, & Erhan, 2015). The breakthrough came with contrastive learning ap-

proaches, exemplified by CLIP, which trained models on millions of image-text pairs from the web

without requiring curated annotations (Radford et al., 2021b). This methodology created a unified

semantic space where visual and textual concepts could be directly compared, enabling remarkable

zero-shot capabilities where models could recognize visual concepts simply by their textual descrip-

tion. This approach fundamentally altered how visual understanding systems could be developed

and deployed.

The integration of VLMs with LLMs such as LLAMA as seen in Fig. 2.2 represents another rev-

olutionary advance, connecting visual perception with the reasoning capabilities, world knowledge,

and flexible output generation of modern language models.
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Models like Bootstrapped Language-Image Pretraining (BLIP), Flamingo, and LLaVA demon-

strated that visual information could serve as context for language models, enabling complex rea-

soning about visual content through natural language interaction (H. Liu et al., 2023). This inte-

gration allows systems to not merely describe what they see but to analyze, infer, and reason about

visual information in ways that more closely resemble human cognitive processes. In computational

pathology, VLMs address domain-specific challenges that traditional computer vision approaches

struggle with. Histopathological images present unique properties including gigapixel dimensions,

specialized visual features, and hierarchical tissue organization spanning multiple biological scales

(R. J. Chen et al., 2024; Lu, Chen, Williamson, et al., 2023; Song et al., 2023). VLMs offer trans-

formative capabilities for computational pathology through several key mechanisms. They enable

intuitive natural language interfaces for examining complex histopathological data, allowing pathol-

ogists to query whole slide images using domain-specific terminology that aligns with clinical prac-

tice. By leveraging representations learned from general image-text pairs, these models facilitate

zero-shot and few-shot learning, recognizing pathological patterns from descriptions alone without

requiring extensive labeled examples (Lu, Chen, Zhang, et al., 2023). Their hierarchical architec-

tures support multi-scale analysis that mirrors pathologists’ workflow integrating information from

tissue architecture to cellular details (R. J. Chen et al., 2022). Pathology specific VLMs connect

visual findings with medical knowledge, bridging visual patterns and concepts from literature and

clinical guidelines through domain adapted encoders paired with biomedically enhanced language

models (Lu et al., 2024; Sun et al., 2024; Zhang et al., 2025). This integration enables sophis-

ticated diagnostic reasoning that combines visual evidence with medical knowledge in ways that

conventional computer vision approaches cannot achieve.

2.2 Literature Survey

This section synthesizes current research in computational pathology, examining how different

AI approaches address the unique challenges of histopathological image analysis. We critically

analyze the evolution from basic convolutional methods to advanced VLMs, comparing contrastive
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and non-contrastive learning paradigms, knowledge distillation techniques, multiple instance frame-

works, state space models, and prompt engineering strategies. This comprehensive review identifies

key trends, remaining challenges, and promising directions that inform our investigation of prompt

engineering for zero-shot diagnostic applications in computational pathology.

2.2.1 AI in Computational Pathology

Artificial intelligence has revolutionized computational pathology by addressing the unique

challenges of analyzing gigapixel whole slide images with multi-scale tissue organization. The

progression of AI approaches in this domain demonstrates increasingly sophisticated adaptations

to these challenges. CNNs initially proved viable for cancer detection tasks but were limited by

their inability to process entire WSIs and dependence on extensive annotations (Coudray et al.,

2018). Multiple Instance Learning frameworks subsequently enabled training on slide-level diag-

noses without requiring patch-level annotations, significantly reducing the annotation burden while

maintaining diagnostic accuracy (Campanella et al., 2019; Lu, Williamson, et al., 2020). These

methods conceptualize slides as collections of patches, employing attention mechanisms to focus

computational resources on diagnostically relevant regions. Self-supervised learning techniques

further reduced annotation requirements by leveraging unlabeled histopathology data to learn mean-

ingful representations before fine-tuning on specific tasks. Domain-specific adaptations, particularly

H&E color augmentations simulating staining variations, proved essential for representation quality

(Kang, Song, Park, Yoo, & Pereira, 2023). ViT then revolutionized the field by effectively capturing

long range dependencies crucial for assessing tissue architecture. The hierarchical image pyra-

mid transformer (HIPT) specifically addressed histopathology’s multi scale nature by pretraining at

multiple magnification levels, mirroring pathologists diagnostic workflow of examining specimens

across different magnifications (R. J. Chen et al., 2022). Recent innovations focus on multimodal

integration combining histopathological images with molecular data to reveal morpho-molecular

correlations that enhance disease characterization (R. J. Chen et al., 2021). These approaches

enable computational staining that highlights morphological features predictive of molecular sub-

types, democratizing access to precision medicine. VLMs now create natural language interfaces to
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histopathological images, enabling interactive exploration through queries, automated report gener-

ation, and semantic search for similar cases (Lu, Chen, Williamson, et al., 2023).

Despite significant progress, implementation challenges persist, including domain shift between

institutions, interpretability concerns, and data privacy issues (M. et al., 2020; Tellez et al., 2019).

Federated learning approaches address some of these challenges by enabling model training across

institutions without direct data sharing (Lu, Kong, et al., 2020). Looking forward, AI in computa-

tional pathology is evolving toward human and AI partnerships that augment pathologist capabilities

through consistent quantification, region of interest highlighting, and multimodal data integration,

positioning pathology at the forefront of precision medicine initiatives.

2.2.2 Self Supervised Learning for Computational Pathology

Contrastive learning has emerged as a dominant paradigm in computational pathology, enabling

effective representation learning from unlabeled histopathology data. The core principle involves

maximizing agreement between differently augmented views of the same image while minimizing

similarity between different images. For a positive pair (i, j), the standard contrastive loss from

Simple Framework for Contrastive Learning of Visual Representations (SimCLR) (T. Chen et al.,

2020) can be expressed as:

Li,j = − log
exp(sim(zi, zj)/τ)∑2N

k=1 1[k ̸=i] exp(sim(zi, zk)/τ)
(2)

where τ is a temperature parameter, and sim(zi, zj) denotes cosine similarity between nor-

malized embeddings. Histopathology presents unique challenges that shape contrastive learning

approaches: extensive tissue heterogeneity within single slides, significant stain variability across

laboratories, and the multi-scale nature of diagnostic patterns (Kang et al., 2023). These domain-

specific challenges have driven the development of specialized contrastive frameworks. (Tellez, Lit-

jens, van der Laak, & Ciompi, 2021) pioneered self-supervised learning for computational pathol-

ogy through neural image compression, demonstrating that networks trained to reconstruct com-

pressed histopathology images developed useful representations for tumor classification while re-

quiring only a small percentage of labeled data. This established the viability of self-supervised
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approaches for pathology applications where annotations are scarce. A critical advancement came

when SimCLR was adapted for pathology (Ciga et al., 2021), revealing that domain-specific color

augmentations capturing staining variations were substantially more effective than standard aug-

mentations used for natural images. These H&E color perturbations, which simulate routine staining

variations seen in clinical practice, significantly improved representation quality and have become a

foundational principle for subsequent self-supervised methods in computational pathology (Ciga et

al., 2021). Momentum Contrast for Unsupervised Visual Representation Learning (MoCo) (K. He,

Fan, Wu, Xie, & Girshick, 2020) has been particularly influential in computational pathology. By

maintaining a dynamic dictionary of encoded representations with a momentum-updated encoder,

MoCo enables more consistent feature learning across large and diverse pathology datasets. The

InfoNCE loss used in MoCo is formulated as:

Lq = − log
exp(q · k+/τ)∑K
i=0 exp(q · ki/τ)

(3)

where q is the query encoding, k+ is the positive key encoding, and {ki}Ki=0 are the encodings

in the queue. This memory bank mechanism has proven particularly effective for rare histological

patterns by providing a larger and more diverse set of negative samples, addressing the long-tailed

distribution of tissue appearances in pathology datasets. Knowledge distillation techniques like

DINO (Distillation with No Labels) (Caron et al., 2021) represent another important advancement

in contrastive learning. The DINO loss is defined as:

L = H(Pt, Ps) = −Pt logPs (4)

where Pt and Ps are the teacher and student probability distributions, respectively. In pathology

applications, DINO enables vision transformers to capture histological structures, with attention

heads learning to localize diagnostically relevant regions without explicit supervision (R. J. Chen &

Krishnan, 2022). The Self-Path framework (Koohbanani et al., 2021) introduced pathology-specific

pretext tasks including magnification prediction, jigsaw puzzles of tissue regions, and rotation pre-

diction. These tasks leverage domain knowledge that diagnostically relevant features appear at
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different magnification levels and in specific spatial arrangements. Comparative evaluations demon-

strated that these pathology-specific tasks outperformed generic contrastive methods for tumor clas-

sification. The contrastive learning framework has been extended to address the heterogeneity inher-

ent in whole slide images through multiple instance contrastive learning (B. Li, Li, & Eliceiri, 2021).

This approach considers the multiple instance learning paradigm where a slide contains numerous

tissue patches (instances). The dual stream contrastive learning combines instance level and bag-

level contrastive objectives. This approach significantly improved rare pattern detection in breast

and colon histopathology by ensuring that the model learned discriminative features at both the

cellular and architectural levels. The evolution of contrastive learning in computational pathology

extends to applications in survival prediction (Abbet, Zlobec, Bozorgtabar, & Thiran, 2020), tumor

segmentation (X. Wang et al., 2022), and rare disease identification (Azizi et al., 2022). These ap-

proaches demonstrate how foundational contrastive techniques can be adapted to specific clinical

tasks. A significant development in contrastive learning came with the introduction of supervised

contrastive learning (Khosla et al., 2021), which extended the self-supervised contrastive approach

to the supervised setting. The supervised contrastive loss is defined as:

Lsup =
∑
i∈I

−1
|P (i)|

∑
p∈P (i)

log
exp(zi · zp/τ)∑

a∈A(i) exp(zi · za/τ)
(5)

where P (i) is the set of indices of samples with the same class as i, and A(i) is the set of all

indices except i. Collectively, these advancements demonstrate a clear trend toward domain-specific

adaptations of foundational contrastive learning techniques.

Non-contrastive self-supervised learning methods have emerged as compelling alternatives in

computational pathology, offering distinct advantages by eliminating dependence on negative pairs

and addressing limitations related to batch size and sampling strategies. These methods main-

tain representation distinctiveness through mechanisms other than explicit contrast between positive

and negative pairs, often employing redundancy reduction, clustering, or reconstruction objectives.

Barlow Twins (Zbontar et al., 2021) exemplifies the redundancy reduction approach by producing

similar representations for distorted versions of the same image while simultaneously minimizing

redundancy in the embedding space:
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LBT =
∑
i

(1− Cii)2 + λ
∑
i

∑
j ̸=i

C2ij (6)

where C is the cross-correlation matrix between network outputs. The first term encourages

diagonal elements to be 1, ensuring perfect correlation for positive pairs, while the second term

encourages off-diagonal elements to be 0, reducing redundancy by decorrelating dimensions (Lu,

Williamson, et al., 2020). In computational pathology, barlow twins has demonstrated superior

performance on smaller datasets compared to contrastive methods (Kang et al., 2023), making it

particularly valuable for institutions with limited data repositories. VICReg (Variance-Invariance-

Covariance Regularization) (Bardes, Ponce, & LeCun, 2022) maintains representation variance

above a threshold while ensuring invariance between augmented views and minimizing covariance

between different representation dimensions.

In pathology applications, VICReg has demonstrated robust performance with particular strength

in preserving local structural information critical for diagnostic assessment (Bardes et al., 2022),

better preserving local tissue morphology characteristics than contrastive methods that may focus

on globally distinctive features. The integration of masked autoencoding with vision transformers

has shown remarkable promise in computational pathology. Masked autoencoders randomly mask

patches and attempt to reconstruct the original content:

LMAE =
1

|M |
∑
i∈M
||xi − x̂i||22 (7)

where M represents masked patch indices and x̂i the reconstructed patches (K. He et al., 2021).

TransPath (X. Wang et al., 2022) pioneered region-aware masking based on tissue importance. This

approach demonstrated significant improvements in tumor classification and segmentation by fo-

cusing reconstruction efforts on diagnostically significant regions.

This multi-scale approach has demonstrated superior performance for survival prediction across

multiple cancer types (R. J. Chen et al., 2022; Vorontsov et al., 2024), capturing both cellular

morphology and tissue architecture in alignment with diagnostic paradigms in pathology. Simple

Masked Image Modeling (SimMIM) (Xie et al., 2022) has been adapted for computational pathol-

ogy through tissue density-guided masking that prioritizes regions with higher cellular content. This
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approach ensures focus on diagnostically relevant regions while paying less attention to background

areas (Xie et al., 2022). A comprehensive benchmark of non-contrastive self-supervised frameworks

for computational pathology (Kang et al., 2023) revealed that while barlow twins performed better

on smaller datasets, transformer-based masked autoencoders excelled with larger pre-training data.

The benchmark also highlighted the critical importance of domain-specific augmentations for all

non-contrastive methods, with H&E color perturbations providing substantial benefits across dif-

ferent architectural approaches. The integration of non-contrastive self -supervised with ViT has

demonstrated the emergence of interpretable attention maps that correspond to diagnostically rele-

vant regions without explicit supervision (L. Chen et al., 2022). This implicit localization capability

offers visual explanation that aligns with pathologists diagnostic reasoning, potentially enhancing

model trustworthiness in clinical settings. Together, these non-contrastive approaches offer comple-

mentary strengths to contrastive methods in computational pathology. Their reduced dependency

on negative samples, superior performance on smaller datasets, and explicit modeling of multi-scale

tissue characteristics address specific challenges in pathology image analysis. As these methods

continue to evolve with domain-specific adaptations, they promise to further reduce annotation re-

quirements while preserving interpretability and diagnostic accuracy.

Knowledge distillation represents a powerful paradigm in deep learning that enables the trans-

fer of knowledge from complex, high capacity models to more compact architectures. Origi-

nally formalized by (Hinton, Vinyals, & Dean, 2015), knowledge distillation employs a teacher-

student framework where a large, pre-trained teacher model guides the training of a smaller student

model through soft targets. The fundamental knowledge distillation objective can be expressed as a

weighted combination of task-specific and distillation losses:

L = αLtask + (1− α)LKD (8)

where LKD typically employs Kullback-Leibler divergence to measure differences between

probability distributions from teacher and student models. The temperature parameter controls the

softness of these distributions, revealing the teacher’s confidence in secondary predictions and trans-

ferring this generalization capability to the student.
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Subsequent work has expanded on this foundation in several directions. (Romero et al., 2015)

introduced FitNets, which extends knowledge distillation to intermediate layers, enabling the trans-

fer of not just outputs but also feature representations. This approach, termed hint-based training,

allows deeper and thinner student networks to learn from wider teacher networks by matching inter-

mediate feature maps. The student’s hidden layers are guided to mimic the teacher’s intermediate

representations, providing richer supervision than output-only distillation.

(Park, Kim, Lu, & Cho, 2019) proposed Relational Knowledge Distillation (RKD), shifting

focus from individual outputs to structural relationships between data examples. RKD preserves

the relative distances and angles between data points in the feature space, ensuring that the student

learns the same structural relationships captured by the teacher. This approach proves particularly

effective when the absolute values of outputs are less important than their relative relationships,

enhancing the student’s generalization capabilities.

(Gou, Yu, Maybank, & Tao, 2021) conducted a comprehensive survey of knowledge distillation

methods, categorizing the evolving landscape into response based, feature-based, and relation-based

approaches. Their analysis reveals that while the original formulation focused on transferring soft-

ened logits, modern approaches increasingly emphasize the transfer of structural knowledge and

representations. These advanced techniques have enabled significant compression of large models

while maintaining performance across various domains including computer vision, natural language

processing, and speech recognition.

Knowledge distillation continues to evolve as model architectures grow in complexity. The

technique offers substantial practical benefits, enabling the deployment of high performing mod-

els in resource constrained environments, reducing computational costs and energy consumption,

and potentially improving generalization through the regularization effect of soft targets. As foun-

dation models continue to grow in size and capability, knowledge distillation will likely play an

increasingly crucial role in making these advancements accessible across diverse computational

environments.
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2.2.3 Multiple Instance Learning

Multiple Instance Learning (MIL) addresses a distinctive form of weakly supervised learning

where labels are associated with groups of instances (bags) rather than individual instances. In the

standard MIL formulation, a bag is labeled positive if at least one instance within it is positive, while

negative bags contain exclusively negative instances. This framework elegantly accommodates sce-

narios where fine-grained instance-level annotations are unavailable or prohibitively expensive to

obtain, making it applicable across diverse domains including computer vision, drug discovery, and

document classification (Dietterich & Bakiri, 1995).

The seminal work by (Ilse, Tomczak, & Welling, 2018) introduced attention-based pooling for

MIL, significantly advancing the field by enabling models to learn which instances are most relevant

for bag-level classification. Their approach employs a trainable attention mechanism to dynamically

weight instance contributions when forming bag-level predictions. The attention-based aggregation

can be formulated as:

z =
K∑
k=1

ak · fk, where ak =
exp(wT tanh(V fT

k ))∑K
j=1 exp(w

T tanh(V fT
j ))

(9)

with V and w being trainable parameters. This formulation allows the network to determine

which instances are most informative without requiring explicit instance-level annotations. The

resulting attention weights provide interpretable insights into instance importance, revealing which

elements most strongly influence the bag-level classification.

(X. Wang, Yan, Tang, Bai, & Liu, 2018) conducted a comprehensive analysis of MIL pool-

ing strategies, comparing various instance aggregation approaches including max-pooling, mean-

pooling, and attention-based pooling. Their findings demonstrate that different aggregation func-

tions embody distinct assumptions about the relationship between instance-level and bag-level clas-

sifications. They showed that while max-pooling aligns with the standard MIL assumption (focusing

exclusively on the most positive instance), attention mechanisms better capture complex scenarios

where multiple instances contribute to the bag label with varying importance.

Recent innovations in MIL include transformer-based approaches that model relationships be-

tween instances while maintaining permutation invariance. These methods treat instances as tokens
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and employ self-attention mechanisms to capture interactions, demonstrating the continued evolu-

tion of MIL toward more sophisticated modeling of bag structures. As weakly supervised learning

continues to gain importance in scenarios where exhaustive annotation is impractical, MIL remains

a fundamental paradigm with ongoing methodological advances across application domains.

2.2.4 State Space Models

State space models offer an alternative to attention-based architectures, with notable advantages

in computational efficiency (A. Gu, Goel, & Ré, 2022). Inspired by classical linear state space sys-

tems, these models maintain linear complexity while effectively capturing long-range dependencies

(Smith, Warrington, & Linderman, 2023). The fundamental state space transformation is expressed

as:

d

dt
h(t) = Ah(t) +Bx(t), y(t) = Ch(t) (10)

where A denotes the state matrix, B the input matrix, and C the output matrix (A. Gu et al.,

2022). This formulation enables efficient processing of sequential data while preserving important

temporal relationships. The Structured State Space Sequence Model (S4) extends this framework

to handle multi-scale data through discretized S4 layers with learnable parameters (A. Gu et al.,

2022). Similarly, various architectures combine the efficiency of state space models with domain-

specific adaptations (Nguyen et al., 2022). Benchmark studies have demonstrated that state space

architectures can process high-resolution images substantially faster than equivalent transformer

models while using significantly less memory. Architectural innovations include hierarchical de-

signs that operate at multiple scales and selective state space models, which incorporate learned

gating mechanisms to dynamically adjust state parameters based on input characteristics (A. Gu &

Dao, 2024). These approaches have proven effective for complex analysis tasks requiring the simul-

taneous assessment of multiple components. Training strategies for state space models often utilize

self-supervised pretraining to learn meaningful representations without explicit labels (Smith et al.,

2023), frequently employing contrastive objectives between different views of the same data. The
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computational advantages of state space models linear complexity, reduced memory usage, and sig-

nificant efficiency gains make them particularly well suited for resource-constrained environments

and real-time analysis applications (A. Gu et al., 2022).

2.2.5 Prompt Engineering in Computational Pathology

Prompt engineering involves crafting inputs or input templates to elicit desired behavior from

a pre-trained model. It has emerged as a critical component in leveraging LLMs and VLMs for

computational pathology applications. At its core, prompt engineering entails designing input in-

structions that guide these models toward generating optimal outputs, with particular emphasis on

domain-specific requirements in medical imaging analysis (Qu et al., 2024). The strategic for-

mulation of prompts directly influences the quality, relevance, and accuracy of model responses,

especially in diagnostic applications where precision is paramount.

Configuration parameters significantly affect model behavior and are essential elements of prompt

engineering practice (J. Gu et al., 2023). These parameters are particularly crucial in medical

settings, where diagnostic accuracy demands careful tuning to ensure consistency and reliability.

Various prompting techniques have evolved to enhance model performance across different tasks

(Sahoo et al., 2025). Zero-shot prompting represents the most basic form, while one-shot and few-

shot prompting techniques introduce exemplars to guide the model through similar input-output

patterns. These approaches are especially valuable in specialized domains such as pathology, where

task-specific guidance helps models focus on relevant visual features and domain-specific terminol-

ogy (J. Wang et al., 2024).

Advanced techniques, including Chain-of-Thought (CoT) prompting, have demonstrated sig-

nificant improvements in complex tasks requiring multi-step logical inference (Wei et al., 2023).

For VLMs analyzing pathology images, CoT enables explicit reasoning about visual features and

their diagnostic significance. System prompting, role prompting, and contextual prompting rep-

resent complementary strategies that establish the operational frame for model responses, often

positioning the model as a domain expert, such as a pathologist. The development of VLMs for

computational pathology necessitates careful consideration of domain-specific prompt engineering
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strategies (Qu et al., 2024). Domain-adapted prompts incorporating medical terminology, anatomi-

cal specificity, and diagnostic criteria have been shown to significantly enhance model performance

compared to generic templates.

The effectiveness of prompt engineering strategies varies across different VLM architectures,

with models exhibiting different levels of sensitivity to prompt formulation. Models with dedicated

pathology pretraining generally achieve better performance with domain-specific prompts compared

to general domain counterparts. As VLMs continue to evolve, prompt engineering techniques must

adapt to exploit architecture-specific strengths while mitigating model limitations, particularly in

high-stakes medical applications (J. Gu et al., 2023).

Recent developments have focused on dynamic prompt optimization, including interpretable

prompt optimization and attribute-guided prompt tuning (Zhan, Zhang, Lin, Wang, & Wang, 2023).

Reinforcement learning from human feedback (RLHF) shows promise for dynamically adjusting

prompts to stabilize model responses and improve prediction reliability. The field is also progressing

toward automated prompt optimization, where models autonomously generate and refine prompts

based on feedback loops. These innovations suggest that prompt engineering will remain essential

for the deployment of VLMs in computational pathology, with increasingly sophisticated techniques

emerging to address domain-specific challenges and enhance diagnostic capabilities.
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Chapter 3

Investigating Zero-Shot Diagnostic

Pathology in Vision-Language Models

with Efficient Prompt Design

3.1 Introduction

Building upon the foundation of VLMs in computational pathology as discussed in Chapter 1

and 2, this chapter conducts a systematic zero-shot evaluation of the four state of the art VLM archi-

tectures called Quilt-Net (Ikezogwo et al., 2025), Quilt-LLAVA (Seyfioglu et al., 2025), CONCH

(Lu, Chen, Williamson, et al., 2023) and BioMedCLIP (Zhang et al., 2025). Each model represents

a unique approach to integrating visual and linguistic information in the histopathology domain. Us-

ing an in-house dataset of 3,507 clinically validated digestive system WSIs, we assess these model’s

diagnostic performance while systematically varying prompt engineering dimensions including do-

main specificity, anatomical precision, instructional framing, and output constraints. This compar-

ative analysis provides insights into how architectural differences interact with prompt formulation

to influence diagnostic accuracy across different tissue types and pathological conditions.
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3.2 Methods

This section presents the architectures and foundations of the four distinct VLM frameworks

investigated as part of this research under a zero-shot setting. All hyperparameter values appearing

in the training procedure discussion, including temperature parameters (τ , σ), learning rates (η),

batch sizes (B), epoch counts (E), and loss weights (λCon, λCap) are adopted directly from the

original model implementations and publications for CONCH (Lu, Chen, Williamson, et al., 2023),

BioMedCLIP (Zhang et al., 2025), Quilt-Net (Ikezogwo et al., 2025), and Quilt-LLAVA (Seyfioglu

et al., 2025), unless stated otherwise.

3.2.1 CLIP based VLMs

Both BioMedCLIP and Quilt-Net adapt the CLIP architecture’s dual-encoder paradigm for spe-

cialized domains, employing contrastive learning to create a joint embedding space between images

and text descriptions. As shown in equations 11,12 and 13, these models employ a contrastive loss

function to align visual and textual representations. Quilt-Net establishes a foundational framework

for learning robust visual representations from WSIs while simultaneously aligning these repre-

sentations with natural language descriptions (Ikezogwo et al., 2025; Lu, Chen, Williamson, et al.,

2023). It combines the strengths of both contrastive learning and hierarchical feature extraction to

address the unique challenges of computational pathology, building upon recent advancements in

self-supervised learning for gigapixel histopathology images (R. J. Chen et al., 2022). Quilt-Net is

trained by finetuning the pre-trained CLIP model from OpenAI (Radford et al., 2021b) on Quilt-

1M . Quilt-1M is a large-scale dataset of 1 million image-text pairs for histopathology, created by

combining data from YouTube educational videos, Twitter, research papers, and the internet. It was

developed to enable representation learning for histopathology.

BioMedCLIP takes a similar approach but is specifically tailored for broader biomedical ap-

plications, being pre-trained on PMC-15M, a 15 million biomedical image and text pairs sourced

from scientific literature and clinical repositories. PMC-15M, a dataset collected from 4.4 million

scientific articles in PubMed Central. The dataset spans diverse biomedical image types, includ-

ing radiography, microscopy, and pathology. While Quilt-Net focuses specifically on pathology,
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BioMedCLIP’s domain specialization allows it to recognize subtle tissue patterns across various

biomedical imaging modalities and correlate them with precise medical descriptions. This special-

ization enables BioMedCLIP to capture nuanced relationships between pathological features and

corresponding medical terminology that might be overlooked by less specialized models. Both

models demonstrate superior performance compared to those pre-trained on natural images (Deng

et al., 2009). For a batch size of N (image, text) pairs, the contrastive loss can be formulated as:

Lcontrastive =
1

2N

N∑
i=1

(
Liv2t + Lit2v

)
(11)

where the vision-to-text and text-to-vision losses are defined as:

Liv2t = − log
exp(f I

i · fT
i /τ)∑N

j=1 exp(f
I
i · fT

j /τ)
(12)

Lit2v = − log
exp(fT

i · f I
i /τ)∑N

j=1 exp(f
T
i · f I

j /τ)
(13)

where f I
i and fT

i are the normalized image and text embeddings respectively, and τ is a tem-

perature parameter controlling the sharpness of the probability distribution. The training procedure

for Quilt-Net and BioMedCLIP can be formalized as shown in Algorithm 1.

Algorithm 1 Quilt-Net and BioMedCLIP Training Procedure
1: procedure TRAINCLIP(D, B, τ , η, E)
2: Input: Dataset D, batch size B, temperature τ , learning rate η, epochs E
3: Initialize image encoder EI (ViT-B/32) and text encoder ET (GPT-2) with CLIP weights
4: for epoch = 1 to E do
5: for each batch {(I1, T1), . . . , (IB , TB)} ⊆ D do
6: for i = 1 to B do
7: f I

i ← EI(Ii)/∥EI(Ii)∥2; fT
i ← ET (Ti)/∥ET (Ti)∥2 ▷ Normalized embeddings

8: end for
9: LI→T = − 1

B

∑B
i=1 log

exp(Sim(fI
i ,f

T
i )/τ)∑B

j=1 exp(Sim(fI
i ,f

T
j )/τ)

▷ Sim: cosine similarity

10: LT→I = − 1
B

∑B
i=1 log

exp(Sim(fT
i ,fI

i )/τ)∑B
j=1 exp(Sim(fT

i ,fI
j )/τ)

11: L = (LI→T + LT→I)/2
12: Update EI and ET using L and η
13: end for
14: end for
15: return EI , ET

16: end procedure
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During inference for a classification task, as summarized in Fig. 3.1a, an input image is fed to

the image encoder and the class labels are fed to the text encoder. The image and text embeddings

then undergo cosine similarity, where the image-text combination with the highest similarity is

selected as the class label. The image encoder is based on the ViT-B/32 architecture (Dosovitskiy

et al., 2021), while the text encoder is based on GPT-2 (Radford et al., 2019).

3.2.2 Quilt-LLAVA

Quilt-LLAVA extends beyond the dual encoder approach of BioMedCLIP and Quilt-Net by

adopting the LLAVA framework (H. Liu et al., 2023; Wu et al., 2023), which integrates an LLM

based on LLAMA-2 (Touvron, Martin, et al., 2023) for enhanced vision-language capabilities in

computational pathology. This architectural approach enables sophisticated interaction between

visual histopathological data and medical textual descriptions, addressing limitations in previous

models that lacked generative capabilities (H. Liu et al., 2023). In the Quilt-LLAVA architecture,

generally described in Fig. 3.1b, the input image goes through a visual encoder (i.e., pre-trained

Quilt-Net (Ikezogwo et al., 2025)) to extract features that are then projected into embeddings. The

projection layer received the input from the visual encoder and maps the visual features into the

language model’s embedding space:

hv = W · zv (14)

where W are the weight of the project layer, zv = g(xv) represents the output of the CLIP vision

encoder g applied to the input image xv, and hv is the projected visual embedding compatible

with the language model’s embedding space. The LLAMA-2 architecture incorporates three key

innovations that substantially enhance performance beyond traditional transformer models:

(1) Pre-Normalization (RMS Norm): LLAMA dramatically improves training stability by ap-

plying normalization to the input of each transformer sub-layer, rather than the output as in
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conventional transformers. This RMS normalization is defined as:

RMS(x) =

√√√√ 1

n

n∑
1

(x2) (15)

x̄ =
x

RMS(x) + ϵ
(16)

where ϵ is a small value to prevent division by zero. This approach effectively eliminates

training instabilities.

(2) SwiGLU Activation Function: LLAMA uses the SwiGLU activation function, which pro-

vides superior gradient flow and expressiveness:

swiGLU(x) = Swishβ(xW + b)⊗ (xV + c) (17)

Swishβ(xW + b) = (xW + b)⊗ σ(β(xW + b)) (18)

σ(β(xW + b)) =
1

1 + e−(β(xW+b))
(19)

(3) Rotary Positional Embeddings (RoPE): LLAMA’s revolutionary approach to position en-

coding uses rotary embeddings instead of the static positional encodings in vanilla transform-

ers. This ingenious encoding method vastly improves the model’s ability to handle long-range

dependencies and generalizes to sequence lengths beyond those seen during training.

Quilt-LLaVA uses a two-stage training approach :

(1) It is aligned with the histopathology domain using 723K image-text pairs from QUILT-1m

dataset, with only the MLP projection layer trained while the vision encoder and language

model are frozen.

(2) Then only the language model and MLP are instruction tuned on QUILT-INSTRUCT, a

dataset of 107K histopathology-specific question-answer pairs extracted from educational

videos with spatially localized medical concepts.

This enables Quilt-LLaVA to analyze histopathology images in detail, localize medical concepts,
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reason beyond single image patches, and significantly outperform models like LLAVA and LLAVA-

MED on histopathology visual question answering tasks. The entire training procedure for it can be

seen in Algorithm 2.

Algorithm 2 Quilt-LLAVA Two-Stage Training Procedure
1: procedure TRAINQUILTLLAVA(Dpre, Dinst, B, η1, η2, E1, E2)
2: Input: Pre-training dataset Dpre, instruction dataset Dinst, batch size B
3: Freeze vision encoder g(·) (CLIP ViT-L/32) and LLM parameters ϕ
4: Initialize projection layer W randomly with optimizer learning rate η1
5: Stage 1: Pre-training projection layer only
6: for epoch = 1 to E1 do
7: for each batch {(X1

v , X
1
c ), . . . , (X

B
v , XB

c )} ⊆ Dpre do
8: for j = 1 to B do
9: Zj

v ← g(Xj
v) ▷ Extract frozen visual features

10: Hj
v ←W · Zj

v ▷ Project to word embedding space

11: Lpre
j ←

∑|Xj
c |

t=1 − log p
(
Xj

c,t | H
j
v , X

j
c,<t

)
12: end for
13: Update W using gradients of Lpre = 1

B

∑B
j=1 L

pre
j

14: end for
15: end for
16: Stage 2: Instruction tuning
17: Keep g(·) frozen, initialize optimizer for W and ϕ with learning rate η2
18: for epoch = 1 to E2 do
19: for each batch {(X1

v , X
1
q , X

1
a), . . . , (X

B
v , XB

q , XB
a )} ⊆ Dinst do

20: for j = 1 to B do
21: Zj

v ← g(Xj
v) ▷ Extract frozen visual features

22: Hj
v ←W · Zj

v ▷ Project to word embedding space
23: Xj

instruct ← Format instruction according to Eq. (2) in paper

24: Linst
j ←

∑|Xj
a|

t=1 − log p
(
Xj

a,t | H
j
v , X

j
instruct, X

j
a,<t

)
25: end for
26: Update W and ϕ using gradients of Linst = 1

B

∑B
j=1 Linst

j

27: end for
28: end for
29: return g(·), W , ϕ
30: end procedure

In Stage 1, the loss function Lpre
j =

∑|Xj
c |

t=1 − log p
(
Xj

c,t | H
j
v , X

j
c,<t

)
is computed over caption

tokens Xj
c , where Xj

c,<t denotes all caption tokens before the current token xjc,t. In Stage 2, the loss

function Linst
j =

∑|Xj
a|

t=1 − log p
(
Xj

a,t | H
j
v , X

j
instruct, X

j
a,<t

)
is computed over answer tokens Xj

a,

with Xj
instruct representing the formatted instruction and Xj

a,<t denoting all answer tokens preceding

the current token xja,t. Xv represents the image input that grounds the visual context.
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3.2.3 CONCH

CONCH builds upon the foundations of BioMedCLIP, Quilt-Net and Quilt-LLAVA while intro-

ducing novel components for contextual reasoning and knowledge integration (Lu, Chen, Williamson,

et al., 2023). Drawing inspiration from the Contrastive Captioners (CoCa) method and recent ad-

vances in VLMs (Yu et al., 2022), CONCH employs a decoupled decoder design that simultaneously

supports contrastive and generative objectives. CONCH was trained on a large dataset of 1.17 mil-

lion histopathology image–caption pairs, sourced from open-access articles and educational content.

CONCH consists of an image encoder, a text encoder, and a multi-modal text decoder. The training

procedure follows a unified approach combining contrastive and captioning objectives:

LCoCa = λCon · LCon + λCap · LCap (20)

where λCon and λCap are loss weighting hyper-parameters. The contrastive loss is formulated as

a symmetric loss between image-to-text and text-to-image directions:

LCon = − 1

N

(
N∑
i=1

log
exp(x⊤i yi/σ)∑N
j=1 exp(x

⊤
i yj/σ)

+

N∑
i=1

log
exp(y⊤i xi/σ)∑N
j=1 exp(y

⊤
i xj/σ)

)
(21)

where xi and yj are normalized embeddings of the image in the i-th pair and that of the text in

the j-th pair. N is the batch size, and σ is the temperature to scale the logits. The captioning loss

uses the standard autoregressive language modeling objective:

LCap = −
T∑
t=1

logPθ(yt|y<t, x) (22)

The training procedure for CONCH can be observed in the Algorithm 3.

BioMedCLIP, Quilt-Net, Quilt-LLAVA, and CONCH represent distinct vision-language archi-

tectures for computational pathology, each with different parameter scales and architectural ap-

proaches (Chanda, Aryal, Soltani, & Ganji, 2024; Lu, Chen, Williamson, et al., 2023). Quilt-Net

and BioMedCLIP employ a CLIP-inspired dual-encoder approach with over 186M parameters (86M

for the ViT-B/32 image encoder and over 100M for the text encoder), establishing effective con-

trastive learning between histopathological images and text. Quilt-LLAVA significantly expands
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Algorithm 3 CONCH Training Procedure
1: procedure TRAINCONCH(D, λCon, λCap, σ)
2: Initialize model parameters Θ = {ΘV ,ΘT ,Θproj,Θfusion} ▷

ΘV : visual encoder weights,
ΘT : text encoder weights,
Θproj: projection head for joint embedding,
Θfusion: decoder for caption generation

3: Initialize temperature parameter σ
4: while not converged do
5: Sample batch (I, T ) from dataset D
6: V = fV (I; ΘV ) ▷ Visual encoder
7: T = fT (T ; ΘT ) ▷ Text encoder
8: ZV , ZT = Project(V, T ; Θproj) ▷ Project to joint embedding space
9: LCon = LInfoNCE(ZV , ZT ;σ) ▷ Contrastive loss

10: LCap = LCE(T, V ; Θfusion) ▷ Captioning loss
11: L = λConLCon + λCapLCap ▷ Combined loss
12: Update Θ using gradient of L
13: end while
14: return Trained model parameters Θ
15: end procedure

this capacity by integrating a large language model with the visual encoder, increasing the parame-

ter count to approximately 7B parameters, enabling more sophisticated reasoning while maintaining

a lightweight projection layer. CONCH, with approximately 200M parameters (110M for the lan-

guage model and 90M for the ViT-B/16 vision encoder), introduces a CoCa-inspired decoupled de-

coder architecture that efficiently supports both contrastive objectives through a unified framework.

This design offers computational advantages while still outperforming general-purpose VLMs on

histopathology tasks, with significant performance gains on cancer subtyping and prognostic pre-

diction compared to models without hierarchical visual processing capabilities (R. J. Chen et al.,

2022; Vorontsov et al., 2024).

3.3 Benchmarking on Big-Data Cohort of Digestive Pathology

This study leverages a digestive computational pathology dataset obtained through secondary

use of giga-pixel WSIs, generated during routine clinical care with ethics approval from Centre

hospitalier de l’Université de Montréal (CHUM). The dataset comprises a comprehensive collection

of 3,507 high-resolution WSIs in big-data form encompassing diverse tissue specimens from the

digestive system with H&E staining. Each WSI is annotated on the slide level, providing rich
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(a) Non-Generative VLMs (b) Generative VLMs

Figure 3.1: High level overview of the inference process for the four VLMs.

material for our vision-language modeling experiments. The dataset includes seven distinct tissue

types with varying representation across classes. Colon wall (CW) specimens constitute the largest

proportion (36.18%, n = 1, 269), followed by lymph nodes (LN) (28.40%, n = 996), fibroadipose

tissue (FT) (17.65%, n = 619), and small intestinal wall (SIW)(12.26%, n = 430). The remaining

specimens include appendiceal wall (AW) (3.08%, n = 108), muscular colon wall (MCW) (1.28%,

n = 45), and anastomotic or gastroduodenal junctions (GJ) between the colon and small intestine

(1.14%, n = 40). Each WSI in the dataset is annotated in terms of the presence of invasive cancer.

Table 3.1 summarizes the dataset statistics, while Fig. 3.2 presents sample WSI thumbnails from

each tissue type.

Dysplasia is the abnormal growth or development of cells, tissues, or organs, typically charac-

terized by altered size, shape, and organization. The majority of specimens in the dataset show no

dysplasia (92.73%, n = 3, 252). High-grade dysplasia is present in 5.19% (n = 182) of speci-

mens, while low-grade dysplasia is detected in 2.08% (n = 73). This imbalance reflects real world

clinical scenarios where pathological findings often represent a small subset of examined tissue. Im-

portantly, the distribution of dysplasia varies considerably across tissue types. Dysplastic changes
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Table 3.1: In-house digestive dataset statistics

Tissue Type Distribution Dysplasia Status Invasiveness
Count % None Low High Non-inv. Inv.

Colon wall 1,269 36.18% 1,038 65 166 809 460
Lymph node 996 28.40% 996 0 0 845 151
Fibroadipose tissue 619 17.65% 619 0 0 521 98
Small intestinal wall 430 12.26% 413 7 10 364 66
Appendiceal wall 108 3.08% 106 0 2 104 4
Muscular colon wall 45 1.28% 44 0 1 29 16
Anastomotic junction 40 1.14% 36 1 3 21 19
Total 3,507 100% 3,252 73 182 2,693 814
Percentage - - 92.73% 2.08% 5.19% 76.79% 23.21%

Figure 3.2: Sample images from the in-house dataset

are predominantly observed in CW specimens, where 18.20% of CW specimens exhibit some de-

gree of dysplasia (13.08% high-grade and 5.12% low-grade). Dysplasia is also present to a lesser

extent in SIW (3.95%) and GJ specimens (10.00%), while being rare or absent in LN and FT.

Invasiveness refers to the ability of abnormal cells, particularly cancer cells, to penetrate and

infiltrate surrounding tissues, breaking through basement membranes and potentially spreading to

distant sites. Approximately, one fourth of all specimens (23.21%, n = 814) exhibit invasive

characteristics, while the majority (76.79%, n = 2, 693) are non-invasive. The distribution of

invasiveness varies significantly across tissue types, revealing valuable patterns for model learning.

The highest rates of invasion are observed in GJ specimens (47.50%), followed by CW (36.25%),

MCW (35.56%), and LN (15.16%). This finding is an important prognostic marker during routine
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pathology diagnostics and is critical to clinical care as the degree of invasion into tissue layers and

types are the most significant predictors of cancer aggressiveness. It presents a clinically relevant

and critical task that can be addressed by VLMs to learning contextually relevant associations.

3.4 Evaluation Methodology

This section discusses the methodology followed to assess the aforementioned VLMs on the in-

house digestive dataset. All models were evaluated in a zero-shot setting, using pre-trained weights

from their respective base architectures without any task-specific fine-tuning. We investigate how

prompt engineering affects the model’s ability to identify invasiveness and cancer status across di-

verse digestive system tissue samples. We processed WSIs from our dataset by extracting patches

at 10× and 5× magnification levels using a sliding window approach with a patch size of 512×512

pixels and 0% overlap. A small custom CNN consisting of 109,586 learnable parameters and three

convolution layers is used to remove background patches from the patch dataset. This CNN was

trained on images consisting of tissue and background patches collected from various dataset’s such

as our in-house dataset, NCT-CRC-HE (Ignatov & Malivenko, 2024) and PCAM (Veeling, Lin-

mans, Winkens, Cohen, & Welling, 2018) so that it generalizes well and is more robust to outliers.

The tissue patches selected from these datasets were random. The pipeline can be seen in Ap-

pendix Fig. A.2 .We developed a systematic prompt engineering framework based on information

theory and clinical communication principles to evaluate how linguistic variations influence model

performance in computational pathology tasks.

We refer to our strategy as efficient prompt design because it seeks to optimize diagnostic per-

formance and generalization through carefully structured linguistic inputs, rather than relying on

additional model fine-tuning or architecture specific engineering. Our framework explores four crit-

ical dimensions of prompt design that we hypothesize significantly impact model performance. We

formalized a set of nine prompt templates by systematically varying four key dimensions: detail

specificity (DS), anatomical precision (AP ), instructional framing (IF ), and output constraints

(OC). In templates where organ-specific information is required, we use the variable O as a place-

holder for the target organ being examined. DS refers to the level of granularity in the prompt,
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Table 3.2: Prompt templates for histopathology Invasive classification

ID Dimensions Template

P1(O)

DS: Medium
AP: High
IF: Minimal
OC: Explicit

The image is taken from the O using H&E staining,
output only the label name which best fits the image
out of the following Invasive or Non-Invasive

P2(O)

DS: Medium
AP: High
IF: Minimal
OC: Explicit

The image is taken from the O using H&E staining,
output only the label name which best fits the image
out of the following Cancerous or Normal

P3(O)

DS: High
AP: High
IF: Expert
OC: Explicit

You are an expert pathologist analyzing histopathology
slides. Given an image of a tissue sample stained with
Hematoxylin and Eosin (H&E) from the O and the
question of classifying the presence of cancer, classify
it as either ’Invasive’ or ’Non-Invasive’. Provide only
the single word label.

P4(O)

DS: High
AP: High
IF: Task
OC: Explicit

Given an image of a tissue sample stained with
Hematoxylin and Eosin (H&E) from the O, classify
the existence of cancer as either ’Invasive’ or
’Non-Invasive’. Provide only a single word label.

P5(O)

DS: Medium
AP: High
IF: Task
OC: Explicit

Given an image of a tissue sample stained with
hematoxylin and eosin from the O, identify whether the
sample is cancerous or not. Provide only a single word
label

P6

DS: Medium
AP: Medium
IF: Task
OC: Explicit

Given an image of a tissue sample stained with
hematoxylin and eosin from the gastrointestinal system,
identify whether the sample is cancerous or not.
Provide only a single word label

P7

DS: Medium
AP: Medium
IF: Task
OC: Explicit

Given an image of a tissue sample stained with
hematoxylin and eosin from the digestive system,
identify whether the sample is cancerous or not. Provide
only a single word label

P8

DS: Medium
AP: Low
IF: Task
OC: Explicit

Given an image of a tissue sample stained with
hematoxylin and eosin, identify whether the sample
is cancerous or not. Provide only a single word label

P9

DS: High
AP: Medium
IF: Expert
OC: Explicit

As a pathologist examining this H&E-stained
digestive system tissue sample, provide your
assessment of malignancy as a single word: either
’Invasive’ or ’Non-Invasive’.

ranging from general to detailed instructions, taking values of LOW, MEDIUM, or HIGH. AP

represents the extent to which the prompt includes precise anatomical details to make the prompt

more focused, similarly taking values of LOW, MEDIUM, or HIGH. IF determines the structure of

the prompt, such as posing a direct question versus providing a declarative statement, with values

of EXPERT (positioning the model as a specialist), MINIMAL (providing basic instructions), or
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TASK (focusing on specific objectives). OC controls the format and length of the model’s response

to ensure consistency, defined as either EXPLICIT (strictly defined output format) or IMPLICIT

(loosely defined format). Table 3.2 presents each prompt template with its corresponding dimen-

sional properties.

The prompt templates were strategically designed to address several research questions in med-

ical vision-language interaction:

(1) Information Theoretic Perspective: We hypothesized that intermediate levels of informa-

tion content in prompts (neither too sparse nor too detailed) would optimize model perfor-

mance, following principles from communication theory and cognitive load theory (B. Wang,

Liu, Karimnazarov, & Thompson, 2024). Prompts 3-5 were designed with varying informa-

tion density to test this hypothesis.

(2) Anatomical Specificity Gradient: Prompts 5-8 implement a controlled degradation of anatom-

ical specificity to quantify how precision of anatomical reference affects classification perfor-

mance. This addresses a key question in medical AI regarding the importance of anatomical

context in diagnostic reasoning.

(3) Expert Role Framing: Prompts 3 and 9 incorporate expert role assignment, a technique that

has shown promise in general LLM task performance but remains under-explored in medical

vision-language tasks. By positioning the model as a pathologist, we investigated whether

role framing enhances performance on specialized medical tasks.

(4) Output Constraint Consistency: All prompts maintain explicit output constraints to isolate

the effects of input prompt variations rather than confounding with output format variations.

This systematic approach to prompt design allows us to quantify the relationship between lin-

guistic features of prompts and model performance, potentially yielding insights for optimal prompt

engineering in medical vision-language applications. The decision to use binary or explicit re-

sponses in the model output is motivated by the nature of the annotations, which are provided at the

slide level. As a result, the ground truth does not support more granular or localized predictions,

making binary classification the most reliable and interpretable approach for this task.
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3.5 Results

This section summarizes the performance of the different VLM models under various prompts

on our in-house digestive dataset. We first conduct an ablative study comparing the different per-

formances using AUC scores. The scores for the tissue patches of a given WSI are aggregated to

generate the WSI label. We analyze the effect of prompt design and model complexity on the ob-

tained performance. We then analyze attention maps obtained by the different models on different

WSIs and highlight relevant tissue regions, with feedback given by certified pathologists. All ex-

periments were conducted on NVIDIA A100-SXM4-40GB GPUs to ensure consistent evaluation

across all models. Quilt-LLAVA during inference uses a temperature of 0.1 for minimized halluci-

nations and less variability in output.

3.5.1 Ablative study

Our ablative study starts by investigating the impact of prompt formulations on model perfor-

mance. Figures 3.3 and 3.4 present the AUC curves and AUC heatmap for different prompts used

on Quilt-Net and CONCH, demonstrating significant performance variations based on architectural

differences and prompt design choices. We evaluated model performance using AUC curves and

the corresponding AUC metric, which plot true positive rates against false positive rates at various

classification thresholds. The AUC metric ranges from 0 to 1, with higher values indicating superior

discriminative ability.

When analyzing the model’s performance, it can be seen that Quilt-Net generally shows more

variance and pronounced drops in AUC scores with certain prompts. This is unlike CONCH, which

is more robust to most of the changes. When comparing prompts 3 to 5, which vary in terms of

information density, it is evident that more information leads to degraded performance. This can be

seen in the AUC drop from 0.758 to 0.523 for Quilt-Net, and from 0.935 to 0.736 for CONCH, when

going from P5(O) to P3(O). This supports our first hypothesis, presented in Section 3.4, stating that

intermediate levels of general information optimize the model’s performance better when compared

to those that are too detailed.
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(a) Quilt-Net (b) CONCH

(c) BioMedCLIP (d) Quilt-LLAVA

Figure 3.3: Performance comparison of VLM models.

When comparing prompts 5 to 8, which vary in terms of anatomical specificity, the impor-

tance of precise anatomical context is evident in classification performance. For both Quilt-Net and

CONCH, prompt 5 (which has high anatomical precision) achieves stronger performance (0.758 for

Quilt-Net and 0.935 for CONCH) when compared to prompts 6, 7, and 8 that have lower anatomical

specificity. In particular, prompt 8 results in the highest performance in this particular group (0.673
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Figure 3.4: AUC heatmap displaying performance values by model and prompt configuration.

for Quilt-Net and 0.910 for CONCH). This answers our second research question regarding the im-

portance of anatomical context in diagnostic reasoning. When evaluating the impact of expert role

framing (prompts 3 and 9), we observe a negative or neutral effect on performance. Specifically,

in Quilt-Net, prompts 3 and 9 show the worst performance, with AUC scores of 0.523 and 0.589,

respectively. Similarly, prompt 3 gives the lowest performance in CONCH (AUC = 0.736), while

prompt 9 shows neutral behavior with no improvement (AUC = 0.915). This suggests that fram-

ing the model as an expert does not necessarily enhance the model’s performance and may even

introduce unnecessary complexity that misleads the model’s pre-trained embeddings.

When analyzing the model’s performance, Quilt-LLAVA demonstrates moderate sensitivity to

prompt variation, with AUC values ranging from 0.669 to 0.807. Compared to Quilt-Net, which

exhibited severe performance drops under detailed or poorly framed prompts, Quilt-LLAVA main-

tains relatively stable performance, indicating a stronger capacity to parse complex linguistic input.

When evaluating prompts 3 to 5, which differ in information density, Quilt-LLAVA performs best
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with prompt P5(O) (AUC = 0.807), which features medium detail specificity, high anatomical pre-

cision, and task-oriented framing. Performance slightly declines with prompts P4(O) and P3(O)

(AUC = 0.803 and 0.801, respectively), suggesting that overly detailed or expert-oriented framing

introduces mild cognitive overhead, but not to the extent observed in Quilt-Net or CONCH. This be-

havior also supports our first hypothesis that intermediate information density (as in P5(O)) strikes

the best balance for this model, minimizing ambiguity without overloading the LLM with excessive

detail. When comparing prompts P5(0) through P8, which systematically degrade anatomical speci-

ficity, Quilt-LLAVA again exhibits patterns aligned with our second hypothesis. Prompt P5(O),

containing explicit organ level context, produces the highest performance (AUC = 0.807), while

prompts P6, P7, and P8 progressively lower anatomical granularity and correspondingly result in

declining performance (AUCs of 0.731, 0.749, and 0.769, respectively). The relatively contained

drop in AUC (from 0.807 to 0.731) highlights Quilt-LLAVA’s resilience but still underscores the

value of anatomical precision in model comprehension and decision-making.

Regarding expert role framing, prompts P3(O) and P9(O) yield AUCs of 0.801 and 0.772,

respectively, reflecting a minimal performance change relative to task based prompts. Unlike Quilt-

Net or CONCH, which either deteriorate or remain neutral under expert framing, Quilt-LLAVA ex-

hibits tolerance to this linguistic shift. However, it does not appear to benefit meaningfully from it.

This suggests that while instruction tuning allows Quilt-LLAVA to handle more human-like instruc-

tions, the addition of expert persona framing does not further enhance its capacity for specialized

tasks in computational pathology.

In contrast, BioMedCLIP exhibits the narrowest AUC range among all models, with scores

spanning from 0.719 to 0.794, indicating low sensitivity to prompt variation. When comparing

prompts P3(O) through P5(O), which differ in information density, we observe that prompt P4(O)

achieves the best performance (AUC = 0.794), followed by P5(O) (AUC = 0.773), and P3(O) (AUC

= 0.742). This ordering partially supports our first hypothesis, where an intermediate level of infor-

mation (as in P4(O), which uses high detail specificity with task oriented framing) results in optimal

performance. Unlike Quilt-Net and CONCH, however, BioMedCLIP does not experience drastic

performance drops under more verbose or expert framed prompts, suggesting a more flattened sen-

sitivity curve and weaker interaction between prompt verbosity and model performance. When
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analyzing prompts P5(O) through P8, which vary in anatomical specificity, we observe a gradual

performance decline with decreasing anatomical precision. Prompt P5(O), which includes explicit

organ level information, yields an AUC of 0.773, while prompts P6, P7, and P8 result in slightly

lower AUCs of 0.734, 0.764, and 0.719, respectively. The relatively shallow decline across this set

indicates that although anatomical specificity contributes positively, the effect is less pronounced

in BioMedCLIP compared to models with more tightly coupled vision-language alignment such

as CONCH. This trend is consistent with our second hypothesis but highlights the model’s overall

insensitivity to changes in anatomical granularity.

With respect to expert role framing, prompts P3(O) and P9 lead to modest gains over the least

specific prompts, with AUCs of 0.742 and 0.758, respectively. This behavior contrasts with Quilt-

Net, which exhibits a substantial drop under the same conditions. In BioMedCLIP, the addition of an

expert persona appears to have a mildly stabilizing effect without significantly enhancing or dimin-

ishing performance. This neutrality suggests that BioMedCLIP’s pre-training on broad biomedical

data provides a general robustness but lacks the fine-tuned responsiveness to task framing found

in instruction-tuned models. Overall, BioMedCLIP’s consistent yet modest performance across

prompt variants indicates a prompt-agnostic architecture that operates effectively within a narrow

band of performance. While it benefits marginally from clearer anatomical context and moderate

instruction design, it does not fully capitalize on optimized prompt structures. This behavior likely

stems from its contrastive training paradigm on a large scale biomedical corpus, which confers

general visual-text alignment without pathology-specific specialization. Consequently, BioMed-

CLIP remains stable across variations but does not exhibit the dynamic range seen in more domain

adapted models.

Figure 3.5 analyzes the average performance (AUC) of the four VLMs. As seen in the figure,

CONCH achieves the highest average AUC (0.876), followed by Quilt-LLAVA (0.753), BioMed-

CLIP (0.748), and Quilt-Net (0.666). The underperformance by Quilt-Net is expected, given it is

the smallest model compared to the others. However, despite Quilt-LLAVA being the largest model

, it does not outperform CONCH . This suggests that model scale alone is not a dominant factor

in performance and that domain-specific training and vision-language alignment have crucial roles.

While Quilt-LLAVA uses instruction tuning and a powerful LLM , it is constrained by suboptimal
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(a) Average ROC curves by model with
confidence intervals. (b) Average AUC performance comparison.

Figure 3.5: Performance comparison of VLM models.

domain alignment between its visual encoder and the LLM for computational pathology. This is

unlike CONCH, which uses a contrastive learning approach specifically tuned on histopathology

image-text pairs, allowing for better generalizability.

Collectively, these observations reinforce our initial hypotheses: (1) intermediate information

density optimizes model performance, (2) anatomical specificity significantly enhances classifica-

tion accuracy, and (3) expert role framing does not reliably improve and may even degrade results.

The varied prompt responsiveness across architectures also suggests that robust vision-language

alignment and pathology-specific pre-training are more impactful than raw parameter count or

instruction-following capacity alone.

Table 3.3 summarizes the AUC performance of all models across digestive system tissues for

each prompt. CONCH consistently achieves strong results across organs, notably attaining perfect

classification for GJ under prompt P6 (AUC = 1.000). Quilt-LLAVA shows stable high performance

on GJ and CW across prompts, while BioMedCLIP performs uniformly but with a lower ceiling,

including a major drop on AW with prompt P7 (AUC = 0.181). QUILT-Net exhibits high variability,

performing well on MCW and CW under optimal prompts, but underperforming significantly on

AW and LN. These trends highlight both the strengths and limitations of each model in organ-

specific classification, especially for low-frequency or histologically complex tissues.

53



Table 3.3: VLM Performance on Digestive System Tissue Cancer Classification

Prompt Model Organs (AUC)
CW SIW GJ AW LN MCW FT

P1(O)

QUILT-Net 0.944 0.814 0.970 0.257 0.690 0.813 0.802
Quilt-LLAVA 0.657 0.507 0.982 0.594 0.682 0.651 0.544
CONCH 0.930 0.894 0.937 0.483 0.830 0.903 0.797
BioMedCLIP 0.877 0.553 0.579 0.542 0.538 0.565 0.444

P2(O)

QUILT-Net 0.703 0.781 0.974 0.827 0.842 0.989 0.800
Quilt-LLAVA 0.718 0.798 0.987 0.452 0.655 0.862 0.734
CONCH 0.942 0.886 0.967 0.488 0.952 0.823 0.874
BioMedCLIP 0.823 0.842 0.892 0.649 0.755 0.800 0.730

P3(O)

QUILT-Net 0.789 0.724 0.815 0.778 0.533 0.547 0.759
Quilt-LLAVA 0.863 0.622 0.898 0.547 0.750 0.902 0.760
CONCH 0.818 0.806 0.920 0.445 0.800 0.713 0.614
BioMedCLIP 0.817 0.733 0.860 0.712 0.553 0.888 0.602

P4(O)

QUILT-Net 0.607 0.649 0.642 0.481 0.716 0.440 0.714
Quilt-LLAVA 0.910 0.726 0.974 0.500 0.654 0.875 0.577
CONCH 0.962 0.994 0.977 0.606 0.938 0.886 0.823
BioMedCLIP 0.848 0.877 0.945 0.659 0.716 0.782 0.793

P5(O)

QUILT-Net 0.872 0.759 0.947 0.550 0.633 0.782 0.840
Quilt-LLAVA 0.814 0.905 0.995 0.447 0.721 0.882 0.820
CONCH 0.974 0.972 0.980 0.635 0.921 0.897 0.855
BioMedCLIP 0.830 0.737 0.925 0.469 0.730 0.807 0.799

P6

QUILT-Net 0.579 0.548 0.759 0.613 0.596 0.694 0.813
Quilt-LLAVA 0.752 0.667 0.952 0.517 0.689 0.780 0.782
CONCH 0.954 0.961 1.000 0.477 0.761 0.944 0.842
BioMedCLIP 0.744 0.483 0.846 0.736 0.788 0.591 0.768

P7

QUILT-Net 0.807 0.617 0.947 0.502 0.509 0.843 0.629
Quilt-LLAVA 0.798 0.721 0.989 0.427 0.700 0.827 0.776
CONCH 0.890 0.750 0.995 0.443 0.639 0.856 0.793
BioMedCLIP 0.858 0.845 0.974 0.181 0.620 0.893 0.587

P8

QUILT-Net 0.685 0.572 0.912 0.556 0.603 0.781 0.776
Quilt-LLAVA 0.828 0.740 0.985 0.511 0.678 0.824 0.830
CONCH 0.937 0.845 0.992 0.611 0.910 0.968 0.845
BioMedCLIP 0.767 0.566 0.892 0.550 0.669 0.759 0.767

P9

QUILT-Net 0.851 0.685 0.962 0.337 0.397 0.836 0.579
Quilt-LLAVA 0.798 0.828 0.957 0.448 0.699 0.879 0.850
CONCH 0.971 0.971 0.992 0.466 0.831 0.878 0.871
BioMedCLIP 0.841 0.749 0.957 0.435 0.651 0.802 0.745

Following our investigation of prompt engineering for cancer detection, we extended our abla-

tive study to examine the more nuanced task of dysplasia classification. The subtle architectural and

cytological alterations in dysplastic tissues often exist on a continuum with reactive changes, making

their computational detection particularly challenging yet clinically crucial for early intervention.

To assess prompt wording effects on dysplasia detection, we conducted an ablative experiment

using three prompt variants derived from the base prompt P5(O) since it is the best performing
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Table 3.4: Prompt templates for histopathology dysplasia classification

ID Dimensions Template

D1(O)

DS: Medium
AP: High
IF: Task
OC: Explicit

Given an image of a tissue sample stained with
hematoxylin and eosin from the O, identify whether the
sample is Dysplasia or Benign. Provide only
a single word label

D2(O)

DS: Medium
AP: High
IF: Task
OC: Explicit

Given an image of a tissue sample stained with
hematoxylin and eosin from the O, identify whether the
sample is Atypia or Benign. Provide only
a single word label

D3(O)

DS: Medium
AP: High
IF: Task
OC: Explicit

Given an image of a tissue sample stained with
hematoxylin and eosin from the O, identify whether the
sample is Precancerous or Benign. Provide only
a single word label

prompt as observed from previous results. In each variant, the key term for the target pathology was

changed while keeping all other prompt aspects constant (medium detail specificity, high anatomical

precision, task-oriented instruction, and explicit output constraints). Specifically, D1(O) used the

term dysplasia, D2(O) replaced it with atypia, and D3(O) used precancerous. These synonyms

describe the same precancerous condition but differ in technical tone as seen in Table 3.4. The

task for each vision-language model remained identifying dysplasia in images given the prompt.

Performance was evaluated by AUC, summarized in the Fig. 3.6.

Each model exhibited a distinct sensitivity to the terminology. QUILT-Net performed best with

the original term dysplasia, achieving an AUC of about 0.711 with D1(O). Using the synonym

atypia substantially lowered QUILT-Net’s performance (AUC = 0.607 for D2(O)), indicating this

model is tuned to the exact pathological term. Its AUC with precancerous (D3(O)) was intermediate

(AUC = 0.664), suggesting that while QUILT-Net can partly understand the term, it still prefers

the standard medical vocabulary. CONCH and BioMedCLIP, both domain pretrained models, sim-

ilarly showed stronger results with pathology specific wording. CONCH attained its highest AUC

( = 0.904, the highest among all models) when prompted with atypia, but its performance dropped

when the prompt used dysplasia. BioMedCLIP likewise performed best with technical terminol-

ogy, it favored atypia (AUC = 0.832) over dysplasia ( AUC = 0.817) and saw a notable decline to

about 0.684 AUC with the precancerous. In contrast, the Quilt-LLAVA model exhibited the oppo-

site trend. Quilt-LLAVA struggled with the highly technical prompt, obtaining its lowest (AUC =
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Figure 3.6: AUC heatmap displaying performance values by model and prompt configuration for
dysplasia classification

0.620) with D1(O) dysplasia, but its performance improved markedly with more colloquial phras-

ing. Using precancerous in the prompt boosted Quilt-LLAVA’s AUC to approximately 0.794, the

highest for this model. This gain highlights that the LLM-based vision model benefited from lay-

men terminology that aligned with its general language understanding. These AUC curves give a

more detailed understanding of these models behave as observed in Fig. 3.7

In summary, the dysplasia detection results show that prompt terminology can significantly in-

fluence model performance. Each model demonstrates a preferred vocabulary reflecting its training

and design: the two contrastive models (CONCH and BioMedCLIP) and QUILT-Net perform opti-

mally with domain-specific terms, whereas the multi-modal Quilt-LLAVA requires more accessible

language for best results. Notably, all models handled the concept of dysplasia to some extent, but

their AUCs varied by approximatley 0.20 across the three wording variants as observed from Fig.

3.8. These findings underscore the importance of prompt calibration for each model. The preferred

terminology for dysplasia thus differs by model, and choosing the right prompt phrasing yields a

measurable improvement in AUC for this task.

Table 3.5 presents tissue-level AUC performance for each model across the three dysplasia
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(a) Quilt-Net (b) CONCH

(c) BioMedCLIP (d) Quilt-LLAVA

Figure 3.7: Performance comparison of VLM models on dysplasia.

prompts. CONCH consistently achieves the highest scores, particularly on GJ (AUC = 0.982 with

D2(O)) and MCW (AUC = 0.870 with D1(O)). Quilt-LLAVA performs best on GJ under D3(O)

(AUC = 0.887), while BioMedCLIP shows strong results for MCW (AUC = 0.860) and FT (AUC =

0.789) using D3(O) and D2(O), respectively. QUILT-Net’s performance varies significantly across

tissues and prompts, with its highest AUC (0.737) on GJ using D2(O). These results reinforce the

importance of both anatomical context and terminology alignment in prompt design for dysplasia
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(a) Average ROC curves by model with
confidence intervals. (b) Average AUC performance comparison

Figure 3.8: Performance comparison of VLM models on dysplasia.

Table 3.5: VLM performance on Digestive System Tissue Dysplasia Classification

Prompt Model Organs (AUC)
AW CW GJ MCW LN FT SIW

D1(O)

QUILT-Net 0.724 0.307 0.148 0.263 0.642 0.578 0.309
Quilt-LLAVA 0.413 0.630 0.729 0.586 0.521 0.593 0.573
CONCH 0.815 0.736 0.947 0.870 0.757 0.776 0.607
BioMedCLIP 0.695 0.585 0.702 0.526 0.675 0.723 0.302

D2(O)

QUILT-Net 0.462 0.467 0.737 0.534 0.394 0.528 0.331
Quilt-LLAVA 0.399 0.542 0.709 0.569 0.538 0.668 0.596
CONCH 0.578 0.854 0.982 0.753 0.647 0.739 0.755
BioMedCLIP 0.728 0.671 0.692 0.478 0.691 0.789 0.448

D3(O)

QUILT-Net 0.649 0.406 0.396 0.552 0.600 0.623 0.308
Quilt-LLAVA 0.522 0.621 0.887 0.668 0.698 0.784 0.582
CONCH 0.550 0.906 0.947 0.845 0.858 0.734 0.792
BioMedCLIP 0.498 0.714 0.617 0.860 0.703 0.658 0.558

detection. Another important factor is that the prompts fed to the non-generative VLMs models

being used for our experiments expect each input prompt to represent a different class; hence the

prompt template has to be decomposed such that each prompt represents only one class and the

number of input prompts to these non-generative VLMs is equal to the number of classes, whereas

generative VLMs expect all the class names to be within the same prompt.

Figure 3.9 analyzes the effect of magnification levels on the model’s performance. Generally,

it can be seen that better performance is achieved with higher magnification, as it aids in capturing

finer morphological structures, which could be needed for accurate classifications. It is also evident
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Figure 3.9: Average AUC curves comparing model performance at different magnification levels.

that the performance in CONCH is nearly similar regardless of the magnification level, indicating

that CONCH is more robust to changes in resolution. The experiments on different magnification

levels was conducted by randomly sampling 1000 WSIs from our in-house dataset.
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3.5.2 Attention Maps Analysis

Figure 3.10 presents attention maps generated for histopathological analysis of randomly se-

lected invasive cancer tissue samples. The heatmaps for BioMedCLIP, shown in Appendix Fig.

A.1 are generated from a different set of whole slide images to supplement the visual analysis with

additional examples. While these slides differ from those used for the other models, the heatmaps

provide valuable qualitative insights into BioMedCLIP’s attention mechanisms. These visualiza-

tions represent probability scores assigned at the patch level by the different models to various

regions of WSI. The process begins with segmenting each WSI into patches and classifying them

as either tissue or background using an in-house CNN. Tissue patches are then processed through

the models to obtain probability scores. By default, Quilt-Net and CONCH generate continuous

confidence scores, which are used to represent each patch in the WSI and construct a heatmap. In

contrast, Quilt-LLAVA does not inherently produce such scores; therefore, binary labels are used

to highlight patches or regions identified as invasive. After scoring, the patches are reconstructed

with their corresponding probability values to create comprehensive attention maps that highlight

regions of interest across the entire WSI, potentially indicating areas of malignancy or specific tis-

sue characteristics. We selected 4 WSIs that cover a diversity of forms of colorectal cancer invading

into different levels of depth into the colonic wall.

All four models displayed different attention behavior in the underlying images. Quilt-Net

randomly identified high-attention areas throughout the image, with no significant shift towards

areas containing invasive cancer versus areas with cancer. Quilt-LLAVA displayed high-attention

patches found within the invasive cancer, but was rather inconsistent in its approach as some areas

of the invasive cancer was not highlighted. However, most high attention maps were accurately

identified within cancer. CONCH showed the most accurate attention maps of invasive cancer

and consistently highlighted its presence throughout the patches. CONCH was more precise in all

images but highlighted low-attention areas that were distant from the cancer. CONCH could also

highlight at medium-level attention areas of a precursor lesion that is on the verge of becoming

cancer and altered tissue areas adjacent to the invasive cancer. Overall, per the review of a board-

certified pathologist, CONCH most accurately mimicked the general approach by pathologists in
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addressing these tissues. Most attention is drawn towards the invasive cancer area, and second-

order areas are revised to detect relevant findings, such as precursor lesions and mild changes in the

peritumoral area that can be relevant for invasive cancer.

(a) WSI 1: Quilt-Net (b) WSI 1: Quilt-LLAVA (c) WSI 1: CONCH

(d) WSI 2: Quilt-Net (e) WSI 2: Quilt-LLAVA (f) WSI 2: CONCH

(g) WSI 3: Quilt-Net (h) WSI 3: Quilt-LLAVA (i) WSI 3: CONCH

(j) WSI 4: Quilt-Net (k) WSI 4: Quilt-LLAVA (l) WSI 4: CONCH

Figure 3.10: Comparison of different models across multiple WSI samples
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Below are detailed analysis on the four WSIs from the board-certified pathologist:

• WSI 1 represents a diverticular disease which has progressed into invasive cancer that breaches

into the muscularis propria. Quilt-Net targets the whole colon wall with no preference for

the invasive cancer versus the non-invaded areas. Quilt-LLAVA targets the invasive cancer

and peri-invasive cancer area accurately. CONCH gives high attention at the invasive cancer

consistently and highlights at medium attention the precursor area in the epithelium and the

affected peri-cancer areas. It notes at low attention the unaffected normal tissue further away.

• WSI 2 represents a classical invasive cancer that reached the resection margin and invades into

the subserosal connective tissue. Quilt-Net produces randomized high-attention area through-

out the image, Quilt-LLAVA accurately targets the invasive cancer, and CONCH shows high-

attention for invasive cancer, medium-attention for the affected pericancer areas, and low-

attention to areas without cancer.

• WSI 3 represents a classical invasive cancer that is restricted to the muscularis propria, arising

from a precursor adenoma. Quilt-Net gives randomized high-attention area throughout the

image, Quilt-LLAVA targets the cancer area while ignoring the precursor lesion, and CONCH

targets the cancer area accurately, and at medium- attention the precursor lesion. It further

gives low attention to the non-invasive area.

• WSI 4 represents a very large cluster of cancer with reactive epithelium at the surface. It

invades deeply into the wall, into the subserosal connective tissue. Quilt-Net targets the inva-

sive cancer a bit more, but large areas of rather non-invaded tissues. Quilt-LLAVA seems to

highlight the cancer, but only in areas that are adjacent to the non-tumoral tissues. CONCH

accurately targets the cancer but appears to give low attention to an area of the cancer that is

less aggressive while overcalling the reactive epithelium that overlies the cancer.
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Chapter 4

Conclusion and Future direction

4.1 Conclusion

This study has systematically investigated the impact of prompt engineering on the zero-shot

diagnostic capabilities of VLMs in computational pathology. Through our comprehensive analysis

of BioMedCLIP, Quilt-Net, Quilt-LLAVA, and CONCH on a large-scale dataset of 3,507 diges-

tive system whole slide images, we have established several key findings that advance the field’s

understanding of how VLMs can be effectively deployed for pathological diagnosis. Our results

demonstrate that prompt design significantly influences model performance, with anatomical pre-

cision emerging as a critical factor in diagnostic accuracy. The consistent degradation in perfor-

mance observed when reducing anatomical specificity highlights the importance of domain-specific

contextual cues in guiding model attention toward diagnostically relevant features. This finding

parallels the diagnostic process of human pathologists, who rely on precise anatomical context to

interpret histological patterns correctly. The comparative performance analysis across models re-

vealed that CONCH consistently outperformed BioMedCLIP, Quilt-Net and the significantly larger

Quilt-LLAVA model, achieving an impressive AUC with optimally formulated prompts. This sug-

gests that domain-specific architectural design and training approaches are more crucial than raw

parameter count for computational pathology applications. CONCH’s superior performance can be

attributed to its effective contrastive learning strategy specifically tuned on histopathology image-

text pairs, which appears to enable better generalization across diverse tissue types. BioMedCLIP
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demonstrated strong generalization capabilities across tissue types, highlighting the effectiveness

of large-scale contrastive pretraining in the biomedical domain. Its consistent performance rein-

forces the value of domain-aligned pretraining even in zero-shot diagnostic settings. Our attention

map analysis, validated by expert pathologists, provided visual confirmation that models with su-

perior quantitative metrics also demonstrated more clinically relevant attention patterns. CONCH

consistently highlighted invasive cancer regions with high attention, while also appropriately identi-

fying precursor lesions and affected peri-cancer areas with medium attention, a pattern that closely

resembles the diagnostic approach of human pathologists. This alignment between quantitative

performance and qualitative attention distribution strengthens confidence in the clinical relevance

of our findings. The observation that information density in prompts affects model performance

supports an information-theoretic perspective of prompt engineering, where intermediate levels of

detail yield optimal results. Similarly, the finding that expert role framing did not enhance (and

sometimes degraded) model performance challenges assumptions about effective prompt strategies

in specialized domains. These insights establish foundational guidelines for implementing VLMs

in computational pathology workflows. By systematically optimizing prompts with appropriate

anatomical precision and information density, while leveraging models with domain-appropriate ar-

chitectures, researchers and developers can significantly enhance diagnostic accuracy in zero-shot

settings. This approach holds particular promise for rare pathologies where annotated training data

is limited. Future work should extend these findings across broader tissue types and more complex

diagnostic tasks, incorporate multimodal data sources, and develop interactive systems that enable

pathologists to iteratively refine prompts during diagnostic sessions. Additionally, exploring ap-

proaches to enhance model robustness to staining variations and further improving explainability

will be crucial for clinical adoption. In conclusion, this research demonstrates that VLMs, when

guided by carefully engineered prompts, can achieve impressive diagnostic accuracy in compu-

tational pathology. The established relationship between prompt design, model architecture, and

diagnostic performance provides a solid foundation for developing more robust, interpretable, and

clinically viable AI systems that can augment pathologist capabilities and ultimately improve patient

care. In conclusion, this research demonstrates that VLMs, when guided by carefully engineered

prompts, can achieve impressive diagnostic accuracy in computational pathology. The established
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relationship between prompt design, model architecture, and diagnostic performance provides a

solid foundation for developing more robust, interpretable, and clinically viable AI systems that can

augment pathologist capabilities and ultimately improve patient care.

4.2 Future Direction

Our systematic investigation of VLMs for zero-shot diagnostic pathology has revealed several

promising directions for future research that can rely upon our key findings. The significant per-

formance variations observed across different prompt structures and model architectures point to

critical areas for advancement in computational pathology. The marked impact of anatomical pre-

cision on model performance suggests that further refinement of prompt engineering approaches

could yield substantial improvements in diagnostic accuracy. Future research should develop com-

prehensive anatomical reference frameworks that can be systematically incorporated into prompts.

This approach would extend beyond simple organ identification to include detailed tissue layers,

cell types, and histological structures relevant to specific diagnostic tasks. Additionally, researchers

should investigate algorithmic approaches to automatically generate and optimize prompts based

on specific tissue types and diagnostic contexts. Such systems could employ meta-learning tech-

niques to identify prompt patterns that maximize diagnostic accuracy across diverse pathological

conditions, potentially discovering prompt structures that outperform manually crafted ones.

The creation of standardized prompt libraries optimized for different pathological tasks would

also benefit the broader research community. These libraries could serve as benchmarks for eval-

uating new models and establishing consistent reporting standards across studies. By sharing op-

timized prompts for tasks such as cancer detection, subtyping, and grading, researchers could ac-

celerate progress while maintaining comparability across different institutional implementations.

Our finding that CONCH outperformed the significantly larger Quilt-LLAVA model highlights the

importance of domain-specific architectural design over raw parameter count. Future architectural

research should focus on specialized pre-training strategies exclusively tailored to histopathological

data. This approach might include developing novel self-supervised learning objectives that specif-

ically target the identification of diagnostically relevant tissue patterns and cellular arrangements.
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Pre-training on expanded histopathology-specific datasets would likely yield further improvements,

particularly if these datasets encompass diverse organ systems and pathological conditions.

The observed variations in performance across magnification levels underscore the need for ar-

chitectures that explicitly incorporate multi-resolution analysis capabilities. Future models should

implement parallel processing streams that simultaneously leverage information from different mag-

nification levels, integrating these diverse perspectives through cross-scale attention mechanisms.

This approach would more closely mirror the diagnostic process of human pathologists, who rou-

tinely navigate between low and high magnification views during assessment. Computational ef-

ficiency remains a significant challenge when processing gigapixel whole slide images. Future re-

search should focus on developing architectures that can efficiently analyze such large-scale images

without sacrificing diagnostic accuracy. Promising approaches include hierarchical patch process-

ing strategies, region-of-interest identification systems, and attention mechanisms that prioritize

diagnostically relevant regions based on preliminary low-resolution scans.

While our study focused on digestive pathology, future work should validate and extend these

approaches across diverse organ systems. This cross-organ investigation would reveal whether

the prompt engineering strategies identified in our work generalize to different tissue contexts or

whether organ-specific adaptations are necessary. The systematic examination of prompt transfer-

ability across tissue types could yield valuable insights about the fundamental visual-semantic rela-

tionships in histopathology that transcend specific anatomical contexts. Current pathology datasets

typically overrepresent common conditions while underrepresenting rare pathologies. Future re-

search should address this imbalance by incorporating more examples of rare cancers and uncom-

mon histological variants. When direct data collection is limited by the inherent rarity of these

conditions, synthetic data generation approaches could be employed to augment available samples.

Future studies should also move beyond binary invasive and non-invasive classification to ad-

dress more complex diagnostic tasks. These include multi-class grading schemes, prediction of

molecular subtypes from morphological features, assessment of treatment response indicators, and

identification of prognostic markers. Each of these more nuanced diagnostic tasks will likely require

specialized prompt engineering approaches that carefully structure the model’s attention and reason-

ing process. The promising performance demonstrated in our study warrants prospective clinical
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validation of optimally-prompted VLMs in real-world settings. Future clinical studies should focus

particularly on challenging cases where inter-observer variability among pathologists is high, as

these represent scenarios where computational assistance could provide the greatest clinical value.

The sensitivity of VLMs to prompt design could be leveraged as a feature rather than a limitation

through interactive systems where pathologists iteratively refine model prompts during diagnostic

sessions. Such human-AI collaborative workflows would combine the pathologist’s domain exper-

tise with the model’s computational capabilities, potentially yielding diagnostic accuracy superior

to either alone. For clinical adoption, improved explainability remains essential. Future research

should extend attention map approaches to provide more granular and interpretable explanations of

diagnostic reasoning. These might include natural language explanations that link model decisions

to specific histological features, comparison visualizations with reference cases, and uncertainty

quantification for different aspects of the diagnosis.

Variations in tissue preparation and staining protocols represent a significant challenge for com-

putational pathology systems deployed across different laboratories and institutions. Future work

should investigate how prompt engineering can address these variations, potentially through specific

prompt components that instruct models to account for staining intensity differences or preparation

artifacts. The ability to rapidly adapt models to new diagnostic contexts with minimal examples

would significantly enhance clinical utility. Future research should explore how few-shot learn-

ing can be incorporated into prompts to quickly adapt pre-trained models to novel pathologies or

rare variants. Finally, the integration of additional data modalities beyond H&E images represents

an important frontier. Future systems should incorporate immunohistochemistry results, molecular

profiles, and relevant clinical metadata through multimodal prompt designs.

The promising results of our current study, particularly the strong performance of CONCH with

anatomically precise prompts, demonstrate that VLMs hold significant potential for computational

pathology. By addressing these future research directions, the field can move toward developing ro-

bust, interpretable diagnostic systems that enhance pathologists’ efficiency and accuracy in clinical

practice while potentially revealing new insights into disease morphology and progression.
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Appendix A

My Appendix

(a) WSI 1 (b) WSI 2 (c) WSI 3

Figure A.1: Visualization of heatmaps across three WSIs using the BioMedCLIP model.

Figure A.2: Cleaning pipeline for patches extracted from WSI using custom CNN
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