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Abstract

Low-Power Class-D Amplifier for Industrial Applications

Nueraimaiti Aimaier, Ph.D.

Concordia University, 2025

This dissertation investigates the design and development of fully differential switching (class-

D) amplifiers optimized for high efficiency, linearity, and compact integration, tailored to low-power

applications such as industrial servo valves, hall effect sensors, and low-power actuators. These

loads, commonly employed in automotive and other critical power systems, require differential sine

wave inputs at frequencies ranging from several kilohertz to 10 kHz. Traditional linear amplifiers

(Class A, B, and AB) are constrained by low efficiency and significant thermal management require-

ments, while switching amplifiers, despite their inherent efficiency advantages, pose challenges in

mitigating nonlinearities and distortions.

The first major contribution is the development of a low-power Selective Harmonic Elimination

Pulse-Width Modulation (SHEPWM)-based full-bridge inverter, featuring a novel FPGA hardware

implementation. Unlike conventional SHEPWM systems focused on high-power, fixed-frequency

applications (50Hz–60Hz), this work extends SHEPWM to low-power systems operating at high

fundamental output frequencies (4 kHz–10 kHz). A unique FPGA-based architecture enables real-

time configurability of output amplitude and frequency, offering flexibility without excessive com-

putational or storage demands. Experimental results demonstrate harmonic elimination up to the

34th order, achieving total harmonic distortion (THD) below 5.1% and efficiency improvements

of up to 17.3% compared to natural PWM (NPWM). By integrating this design into a compact

system-in-package (SiP) utilizing Gallium-Nitride (GaN) power transistors, the inverter minimizes

the printed circuit board (PCB) footprint compared to conventional discrete implementations. This

iii



integration offers a robust and versatile solution for next-generation low-power industry applica-

tions.

The second contribution is the design and analysis of a Double Integral Sliding Mode Control

(DISMC)-based class-D amplifier. Theoretical work forms the foundation of this research, involv-

ing a rigorous analysis of reaching and stability conditions to derive optimal controller gains. The

proposed controller employs a double-loop strategy that uses the integrals of inductor current and

output voltage tracking errors to ensure robust tracking and stability under varying operating condi-

tions. The theoretical findings are validated through extensive simulation and experimental studies,

demonstrating the DISMC’s superior disturbance rejection, enhanced transient response, and relia-

bility compared to conventional proportional-integral (PI) controllers.

By combining innovative control techniques such as SHEPWM and DISMC with compact and

efficient hardware designs, this research advances the state-of-the-art in switching amplifier tech-

nology. The outcomes offer practical solutions for compact, high-performance systems, addressing

critical requirements in modern industrial applications while paving the way for future advance-

ments in power electronics.
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Chapter 1

Introduction

Low-power loads, such as industrial servo valves, hall effect sensors, and low-power actuators,

often operate using a differential output sine wave, and are commonly used in industries such as

automotive and other critical power systems. The typical operating frequency of these loads ranges

from several kHz to 10 kHz. The choice of amplifier architecture plays a critical role in achieving

both high efficiency and linearity. Traditional amplifiers, such as Class A, B, and AB, suffer from

limited efficiency, requiring bulky heat sinks that increase the size and weight of the overall power

delivery system.

Switching amplifiers, by contrast, offer significantly higher efficiency, eliminating the need for

large heat sinks and relaxing thermal design constraints. However, their inherently nonlinear oper-

ation, caused by the switching of power transistors between on and off states, introduces unwanted

distortions at the amplifier output if not carefully designed. Although switching amplifiers are more

efficient than their linear counterparts, this does not guarantee consistently high efficiency across all

operating ranges. Switching losses are intrinsic to these amplifiers, and a trade-off must be made

between switching and conduction losses.

Digital control of switching amplifiers benefits from process scaling and the ease of config-

urability, whereas analog circuits are limited by reduced supply voltages and decreased linearity.

However, since the loads are inherently analog, there is still a need for sensing amplifiers, signal

conditioning, and the conversion of analog signals into the digital domain. Integrating both the
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power stage and readback circuitry can occupy significant board space, leading to increased system

size and cost.

In this research, we focus on designing fully differential switching amplifiers that deliver high

efficiency to the load while improving linearity and accuracy, all within a compact board size.

Gallium-Nitride (GaN) power transistors are employed in the power stage due to their small foot-

print and fast switching capabilities. Two control and modulation techniques are explored: Selec-

tive Harmonic Eliminated Pulse Width Modulation (SHEPWM), aimed at reducing the switching

activity of the power transistors to achieve superior efficiency in low-power operating ranges, and

Double Integral Sliding Mode Control (DISMC), known for its robustness and high accuracy, uti-

lizing a double-loop control strategy. The goal is to achieve superior performance in both efficiency

and linearity, while also minimizing the overall system size through the integration of power stages

and readback circuitry into a system-in-package (SiP). Furthermore, the digital control is imple-

mented on an Field Programmable Gate Array (FPGA) platform, offering versatility by allowing

easy adjustments to control parameters. This flexibility enables fine-tuning of the system to achieve

optimal performance under varying operating conditions, making it adaptable to different applica-

tion requirements.

1.1 Motivation

Recent advances in microelectronic fabrication have enabled the development of smaller and

lighter power electronics boards. However, reducing system volume and replacing bulky power

electronic components with reconfigurable units is essential to further minimize overall size and

effectively distribute power to various loads operating under different conditions. In automotive

and other industrial applications where safety is critical, designing redundancy is crucial to ensure

continuous operation despite potential component failures. Such a system can be described as a

Configurable Power Input/Output System (CPIOS), as illustrated in Figure 1.1. The main compo-

nents of the CPIOS include:

1. An array of Configurable Power Input/Output (CPIO) units, which can be integrated into a

SiP to reduce size and weight.
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Figure 1.1: The block diagram of CPIOS

2. Power Supply Units (PSUs) that regulate the power of the CPIO-SiP.

3. A configuration system that interconnects the CPIO-SiP units, determining which units oper-

ate and replacing any that fail.

4. An interface to a digital control unit such as a FPGA, Digital Signal Processing (DSP) board,

or Micro-Controller Unit (MCU), which controls the system.

5. An interface to the load, connecting the CPIO-SiP array to various loads.

3



With such a CPIOS system, different power topologies such as Direct Current (DC)-DC buck-

boost converters, Class-D Amplifiers (CDAs), and line drivers within CPIO can be controlled with

a digital control unit to drive different loads. Additionally, redundancy of the CPIO-SiP is ensured,

allowing for control and configuration to decide which unit to operate and to replace any failed

CPIO system, thus ensuring continued operation of the CPIOS.

The major component of the CPIOS is the CPIO design. The CPIO consists of:

1. Configurable Switching Units (SUs) array. Each SU includes a gate driver and power devices

such as GaN. Given that the SU is the most critical part, it is essential to design for redundancy

and ensure continuous operation of the system.

2. Readback circuitry, which includes sensing and buffer circuits, filters to remove high-frequency

noise and provide gain for the desired signal, and Analog-to-Digital Converters (ADCs) to

convert the measured output signals to digital signals.

3. Digital isolation, which isolates the FPGA from the entire CPIO system.

4. Power Micro-Electro-Mechanical-System (MEMS) Switchs (SWs), which serve as the con-

figuration interface between the SUs and the loads. The continuous operation of the system

is achieved by the MEMS SWs in case of failures in the critical SUs.

5. Other components specific to different control systems, such as DC-DC converters, CDAs,

and line drivers.

6. A fault detection system, which performs early diagnostic detection of system failures or

aging components to enable early failure detection.

7. Research on Electromagnetic Inteference (EMI) and power integrity among the subsystems,

aiming to reduce interferences between subsystems, such as noisy high-power SUs and other

sensitive low-power analog circuits in the readback subsystem. This also ensures efficient

power delivery from the source to the destination, maintaining the power integrity of the

system.
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1.2 Focus of This Work

This work focuses on elaborating the methods and techniques for designing the CPIO. The

research primarily investigates the design of the SUs, readback circuits, and control algorithms.

The CPIO can be integrated into a SiP to reduce the footprint size and weight of the electronic

board. However, this integration largely depends on the current available SiP technology and the

selection of components to be integrated. In terms of electronic design, the major components of

the CPIO remain largely unchanged.

To deliver efficient power to the load, Switch Mode Power Supplies (SMPS) are advantageous

due to their highly efficient operation and the elimination of heat sinks compared to class-A, B, and

AB amplifiers. This enables the reduction of the PCB area and thermal budget of the electronic

system. CDAs are a type of SMPS that can deliver arbitrary voltage/current waveforms to the load,

unlike DC-DC converters which regulate the output voltage/current to a constant value. In this work,

most of the loads require a sine wave output voltage/current, while a few require a DC output. The

CDA in a full-bridge topology is chosen to deliver differential output voltages/currents efficiently

to the load.

This work is a collaboration between researchers in different fields to achieve the final goal of

CPIOS. The research areas in this work include the blocks of SU, sensing and buffer circuits, gain

and filter stages, ADCs, digital isolation, and control algorithms for the CDA, which are highlighted

with an asterisk (*) in Figure 1.1.

The differential output power delivered from the CDA is primarily intended for low-power loads.

The major power-consuming blocks in the CPIO are the SUs, or power stages. For low output power,

switching losses in power stages dominate over conduction losses. Therefore, one of the challenges

of this research is to decrease the switching frequency of the CDA without sacrificing THD. To

address this, the SHEPWM technique is investigated in this work. SHEPWM is particularly attrac-

tive because it significantly reduces the switching frequency of Pulse Width Modulation (PWM)

while canceling lower-order harmonics, thereby improving efficiency. This makes SHEPWM an

ideal choice for applications requiring high efficiency and low harmonic distortion, aligning with

the objectives of this research.
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In addition to SHEPWM, this work explores the application of Sliding Mode Control (SMC) to

address the challenges associated with precise control of the CDA. The gain of a CDA is directly

influenced by the input supply voltage, which can degrade output accuracy in the presence of ripples

or noise. Traditional feedback mechanisms typically compensate after the power stage for simplic-

ity, but this research investigates feedback after the LC filter to directly improve the accuracy of

the output voltage/current at the load. SMC is particularly well-suited for this purpose due to its

robustness against parameter variations and external disturbances. By leveraging SMC, this work

aims to enhance the load/line regulation, achieve precise regulation of output voltage/current, and

ensure stable operation under varying conditions. Together, these attributes make SMC a powerful

tool for improving the performance and reliability of the CDA.

1.2.1 Problem Statement

Efficiently delivering differential output power to low-power loads using CDA presents sev-

eral challenges, particularly in applications requiring high efficiency, low distortion, and compact

design. Unlike high-power electronics, low-power systems demand innovative solutions to ad-

dress issues such as switching losses, dynamic load conditions, and precise control of output volt-

age/current. Furthermore, the integration of advanced control techniques, such as SHEPWM and

SMC, into low-power CDA design introduces additional complexities.

The key challenges identified in this research are as follows:

• P1: Existing implementations of SHEPWM are primarily designed for high-power electron-

ics, characterized by fixed filter sizes, fixed output frequencies, and minimal load variation.

A detailed review of these implementations is provided in Section 2.4. However, adapting

SHEPWM for low-power applications with diverse operating conditions and dynamic load

variations remains an unexplored research area.

• P2: Minimizing the PCB footprint size is critical for low-power systems. Power stages and

digital isolators occupy significant board area, necessitating exploration of new SiP technolo-

gies to integrate these components and reduce the overall footprint.

• P3: Discrete implementation of DISMC for CDA applications remains largely unexplored.
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Challenges such as phase delay introduced by the LC filter and the high-frequency switching

dynamics need to be addressed.

• P4: While double-loop DISMC has been successfully implemented in DC-DC converters, its

application to CDA systems is complicated by the time-varying nature of the reference signal.

Stability analysis for such systems remains an open research problem.

By addressing these challenges, this research aims to advance the design of CDA systems for

low-power applications, leveraging the unique capabilities of SHEPWM and SMC to achieve high

efficiency, precise control, and compact integration.

1.2.2 Research Objectives

The primary objective of this research is to design a full-bridge CDA that efficiently delivers dif-

ferential output power to the load while addressing the identified challenges. This involves tailoring

advanced techniques such as SHEPWM and SMC to meet the unique requirements of low-power

applications.

To address the challenges outlined in Section 1.2.1, the following specific research objectives

are defined:

• O1: Investigate and adapt the SHEPWM technique to reduce the switching frequency of the

CDA without compromising THD for low-power applications. Develop a unique FPGA-

based architecture to implement SHEPWM, enabling on-the-fly configuration of inverter out-

puts to dynamically adjust to varying load conditions. (Addresses problem statement P1)

• O2: Develop a tailored SHEPWM approach to accommodate a wide range of operation and

variable load conditions in low-power systems. Simultaneously, explore a new SiP technolo-

gies to minimize the PCB footprint by integrating power stages and digital isolators, thereby

reducing the overall size of the CDA. (Addresses problem statement P2)

• O3: Conduct an in-depth investigation into the development of a discrete DISMC framework

for CDA systems. This research aims to address the fundamental challenges posed by phase
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delays inherent in the system dynamics, ensuring robust and precise control under varying

operational conditions. (Addresses problem statement P3)

• O4: Explore the application of double-loop DISMC to CDA systems, considering the time-

varying nature of the reference signal, and perform stability analysis to ensure reliable oper-

ation. (Addresses problem statement P4)

By achieving these objectives, this research aims to advance the state of the art in low-power

CDA design, enabling high efficiency, precise control, and compact integration.

1.3 Fundamentals of Class-D Amplifiers

CDAs, first introduced in 1958, have seen a significant rise in popularity in recent years Gaalaas

(2006). Also known as switching amplifiers or digital amplifiers, CDAs represent a notable ad-

vancement in amplifier technology, particularly due to their high efficiency and compact design.

Unlike traditional linear amplifiers (class A, B, and AB), which operate transistors in their linear

region and consequently suffer from substantial power losses and heat dissipation, CDAs use a dif-

ferent approach to amplification. Even a well-designed class AB amplifier experiences significant

power dissipation because its midrange output voltages are generally far from either the positive

or negative supply rails. This results in large drain-source voltage drops, producing substantial

instantaneous power dissipation.

In contrast, CDAs employ a topology that significantly reduces power dissipation. Figure 1.2 il-

lustrates the basic CDA open-loop block diagram. The input signal (Vsignal) is modulated to generate

small voltage pulses (VPWM). Among various modulation techniques, PWM is the most common.

The output power stage of a class-D amplifier switches between the positive (+VIN) and negative

(−VIN) power supplies to produce a train of large voltage pulses at the switching node, VSW. This

power stage, also known as a half-bridge, contains two output transistors: a high-side transistor

(MHS) and a low-side transistor (MLS).

The PWM signal (VPWM) cannot directly drive the half-bridge power transistors due to their

large size. Therefore, a gate driver circuit is typically used to drive the gate terminals of the power
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transistors. The gate voltages (VHS and VLS) for the high-side and low-side power transistors are

turned on in a complementary manner to avoid cross-conduction, a function usually managed by

the gate driver. Sometimes, the controller generates complementary PWM signals if the gate driver

lacks a dead-time generation block.

This switching mechanism is efficient because the output transistors carry zero current when

not switching and maintain a low drain-source voltage (VDS) when conducting current. As a result,

the product of current (IDS) and voltage (VDS) is minimized, leading to significantly lower power

dissipation compared to linear amplifiers. By driving the transistors either fully on or fully off,

CDAs minimize the time spent in high-power dissipation states, thereby achieving greater efficiency.

The amplified switching node voltage (VSW) is then filtered by an LC filter to reconstruct the

original input signal (Vsignal). The LC filter effectively removes the high-frequency switching com-

ponents, allowing the desired low-frequency signal to pass through, thereby recreating a clean and

amplified version of the original input signal at the output.

The primary advantage of CDAs is their high efficiency, which results in significantly lower

power and heat dissipation compared to other amplifier classes. Consequently, the heat sinks typi-

cally required for other amplifiers can be greatly reduced or even eliminated. However, one draw-

back of CDAs is that their output signal is a square wave at full power, which must be filtered before

being applied to the load. This necessitates the use of an LC filter, which occupies Printed Circuit

Board (PCB) space and increases the Bill of Materials (BOM). Additionally, CDAs generate switch-

ing noise due to the rapid switching of power transistors and the presence of parasitic inductances

and capacitances. This noise can increase EMI radiation and degrade the power integrity of other

sensitive analog circuits.

For PWM, the two popular modulation schemes are AD and BD modulation, where D stands

for Class-D, and A and B denote the order in which they were invented. Figures 1.3a and 1.3b

show how the H-bridge operates with an AD modulation scheme, which essentially has two states.

The high-side and low-side transistors in each half-bridge are switched alternately. When the high-

side transistor is ON, the low-side is OFF, and vice versa. The switching node voltage VSW2 is

a complement of VSW1. The differential switching node voltage produces a two-level switching

waveform as shown in Figure 1.4a.
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Figure 1.2: class-D amplifier open-loop block diagram

In BD modulation, there are four states as shown in Figure 1 (a), (b), (c), and (d) depending

on the input signal conditions: increasing positive signal, increasing negative signal, decreasing

positive signal, and decreasingly negative signal. The differential switching node voltage produces

a three-level switching waveform as shown in Figure 1.4b. Both half-bridges operate in a comple-

mentary fashion, which helps to balance the output and reduce common-mode noise. By using com-

plementary signals, BD modulation minimizes the EMI and improves overall noise performance.
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Figure 1.3: Full-bridge output stage operation
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Class-D modulators can be implemented in various ways. Here we introduces some fundamental

concepts. The most common modulation technique is PWM. In PWM, the input signal is compared

to a triangular or ramp waveform running at a fixed carrier frequency, generating a stream of pulses

at the carrier frequency. Within each carrier period, the duty cycle of the PWM pulse is proportional

to the amplitude of the input signal.

Another modulation technique is Pulse Density Modulation (PDM), where the number of pulses

in a given time window is proportional to the average value of the input signal. Unlike PWM, PDM

has ”quantized” pulse widths that are multiples of the modulator clock period. One-bit sigma-delta

modulation is a form of PDM. Sigma-delta modulation spreads high-frequency energy over a wide

range of frequencies rather than concentrating it at multiples of a carrier frequency as PWM does.

This distribution can offer an EMI advantage.

Recently, self-oscillating amplifiers have been developed. These amplifiers include a feedback

loop that determines the switching frequency of the modulator, rather than relying on an external

clock. High-frequency energy in self-oscillating amplifiers is often more evenly distributed than in

PWM. The feedback loop enables excellent performance, but because the loop is self-oscillating, it

is challenging to synchronize with other switching circuits or connect to digital sources without first

converting the digital signal to analog.

To effectively compare the performance of the CDA, it is crucial to understand its performance
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metrics. These metrics can be categorized into three main groups: time domain measurements,

frequency domain measurements, and power measurements.

1. Time Domain Measurements: These include both steady-state operation and dynamic perfor-

mance. Dynamic performance encompasses line and load transitions, as well as the quantified

ability for line and load regulation.

2. Frequency Domain Measurements: This category includes THD, Total Harmonic Distortion

plus Noise (THD+N), Signal-to-Noise Ratio (SNR), and PSRR.

3. Power Measurements: The primary metric in this group is power efficiency.

Each of these metrics provides valuable insights into the performance and suitability of a CDA

for various applications.

1.4 Thesis Outline and Publications

The first chapter of this thesis provides the motivation, scope, and objectives of the research.

Additionally, this chapter introduces the fundamental concepts of CDA operation, offering a foun-

dation for understanding the advanced techniques discussed in subsequent chapters.

Chapter 2 presents a comprehensive review of the existing literature related to CDAs, focusing

on several key areas. In Section 2.1, the various sources of power dissipation in CDAs are reviewed,

highlighting their impact on efficiency. The CDA architectures and modulation techniques dis-

cussed in the literature are reviewed in Section 2.2. Section 2.3 provides the necessary background

information on the SHEPWM technique, followed by a review of the latest advancements and cur-

rent state of the art in SHEPWM techniques in Section 2.4. Section 2.5 presents the fundamental

principles of SMC, providing the necessary background for its application in CDAs. Section 2.6

reviews research and developments in SMC techniques, focusing on their implementation in power

electronics.

Chapter 3 details the design, simulation, and experimental results of the SHEPWM inverter.

Section 3.1 describes the design methodology and implementation of the SHEPWM inverter. The

simulation and experimental results are presented and discussed in Section 3.2, providing a thorough
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analysis of the inverter’s performance. The chapter concludes with Section 3.3, which summarizes

the findings and offers recommendations for improvement. This chapter led to one conference

paper and one journal paper as the first author, along with two conference papers as the second

author. The key contributions of this chapter include bridging the gap in utilizing the SHEPWM

technique, which has primarily been applied in high-power grid applications, to its implementa-

tion in a low-power inverter where higher frequencies can also be employed with high efficiency.

Furthermore, the on-the-fly configuration of the SHEPWM inverter output is achievable with the

unique SHEPWM architecture introduced in this chapter. Additionally, the SHEPWM inverter is

implemented in a compact 3-D LTCC SiP technology, demonstrating that size reduction compared

to traditional boards is feasible.

Chapter 4 focuses on the design and evaluation of the DISMC for CDAs. Section 4.1 explains

the design approach and methodology used to implement the DISMC. The performance of the

DISMC CDA is evaluated through simulation and experimental results in Section 4.2, followed by

a detailed discussion. The chapter concludes with Section 4.3, providing a summary of the findings

and their implications for future research. This chapter led to one conference paper and is expected

to result in one journal paper. The key contributions of this chapter include not only the theoreti-

cal contribution of defining the stability condition and determining the controller gain but also the

experimental demonstration that DISMC can be implemented in CDA, where the reference signal

is time-varying, complicating the stability analysis of the controller compared to DC-DC convert-

ers, where the reference is constant. Furthermore, it shows that DISMC outperforms traditional

proportional-integral (PI) controllers in terms of handling large signal variations, such as line and

load regulations.

The final chapter, Chapter 5, provides a comprehensive summary of the research conducted,

highlighting key contributions and findings. It includes recommendations for future work and po-

tential areas for further investigation.

The papers are listed below in chronological order.

• N. Ly, N. Aimaier, A. H. Alameh, Y. Blaquière, G. Cowan, and N. G. Constantin, “A

High Voltage Multi-Purpose On-the-fly Reconfigurable Half-Bridge Gate Driver for GaN
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• N. Aimaier, N. Ly, G. Nobert, Y. Blaquière, N. Constantin, and G. Cowan, “SHEPWM Class-
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Chapter 2

Literature Review

In this chapter, a review of the most recent literature has been conducted. Given the focus on

designing a low-power full-bridge CDA, it is imperative to delve into the mechanisms responsible

for power losses within the CDA. Section 2.1 thoroughly examines all power losses within the

CDA. An overview of CDA architectures and their implementations, along with a brief description

of existing modulation techniques, is provided in Section 2.2. Subsequently, in Section 2.3, the

chapter delves into the background of SHEPWM, which plays a crucial role in reducing switching

losses. Then, the current state-of-the-art SHEPWM techniques are reviewed. Additionally, the

background of a robust non-linear controller with a feedback loop, specifically SMC, is discussed

in Section 2.5, with an emphasis on its current advancements and different derivatives in the realm

of converters. Finally, Section 2.6 offers insights into the state-of-the-art techniques employed in

power converters, including SMPS and CDA fields.

2.1 Class-D Amplifier (CDA) Power Dissipation Sources

In this section, a power loss estimation for the half-bridge converter is reviewed. Figure 2.1

depicts the circuit diagram of a half-bridge CDA, including parasitic capacitances and resistors.

The switching node voltage and inductor current waveform are given in Figure 2.2.
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Figure 2.1: Circuit diagram of the half-bridge class-D amplifier for power loss analysis.

The calculation of power loss for the half-bridge CDA is as follows:

• Conduction loss:

1⃝ PON−H = I2OUT ×RON−H ×D (1)

2⃝ PON−L = I2OUT ×RON−H × (1−D) (2)

where IOUT is the output current, RON−H and RON−L are the turn-on resistance of a high-side

and low-side transistors, D represents the duty cycle, denoting the duration of the high-side power

Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET) turn-on time, while (1−D) corre-

sponds to the turn-off time.

• Switching loss:

3⃝ 4⃝ PSW−H =
1

2
× VIN × IOUT × (tr−H + tf−H)× fSW (3)

5⃝ 6⃝ PSW−L =
1

2
× VD × IOUT × (tr−L + tf−L)× fSW (4)

where tr−H and tf−H are the rise and fall time of the high-side transistor, fSW is the switching
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Figure 2.2: The diagram of switching node voltage and inductor current waveform and power loss.

frequency of the converter, VD is the voltage drop of the body diode, tr−L and tf−L are the rise and

fall time of the low-side transistor.

• Dead-time loss:

7⃝ 8⃝ PD = VD × IOUT × (tDr + tDf)× fSW (5)

where tDr and tDf are the dead-time in rising and falling.

• Controller operation loss:

Pctrl = VDD × IDD (6)

where VDD and IDD are the controller operating voltage and current.

• Gate charge loss:
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PG = (CGS−H + CGS−L)× V 2
DD × fSW (7)

where CGS−H and CGS−L are the gate-source capacitance of the high and low side transistors.

• Output capacitance loss in the MOSFET:

PCOSS =
1

2
× (COSS−H + COSS−L)× V 2

IN × fSW (8)

where

COSS−H = CDS−H + CGD−H (9)

COSS−L = CDS−L + CGD−L (10)

where CDS−H and CDS−L are the drain-source capacitance of the high and low side transistors,

CGD−H and CGD−L are the gate-drain capacitance of the high and low side transistors.

• Conduction loss in inductor:

PL(DCR) = I2OUT ×RDCR (11)

where RDCR is the DC resistance of the inductor.

• Conduction loss in capacitor:

PCAP(ESR) = I2C(RMS) ×RESR (12)

where IC(RMS) is the capacitor Root Mean Square (RMS) current, RESR is the Equivalent Series

Resistance (ESR) of the capacitor.

• Reverse recovery loss:

PDIODE =
1

2
× VIN × IRR × tRR × fSW (13)

where IRR is the peak value of body-diode reverse recovery current, and tRR is the body-diode

reverse recovery time.
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Additionally, it’s worth noting that power losses arising from factors such as ripple current in the

inductor and magnetic core losses are also present. However, these losses, while related to switching

frequency, are of relatively minor significance and have been excluded from the discussion due to

their negligible impact on the overall assessment.

In a half-bridge CDA, the total power loss is the sum of all the aforementioned losses. Among

these, conduction loss and switching loss of the power transistors are predominant. Typically, losses

proportional to the output current IOUT are categorized as conduction losses, while losses propor-

tional to the switching frequency fSW are categorized as switching losses. From the above power

loss equations, in low-power CDA designs where the output current is small, switching losses dom-

inate over conduction losses. Therefore, it is crucial to reduce the switching frequency of the CDA.

However, this reduction compromises the THD.

In contrast, when increasing the output power, conduction losses start to rise and eventually

surpass switching losses. In this scenario, increasing the switching frequency becomes desirable

to achieve better THD. As the output current increases, so does the power delivered to the load.

Consequently, the efficiency of the CDA can remain high since the turn-on resistance and other

parasitic resistances from the input voltage to the output voltage path are relatively small.

It is worth noting that in the full-bridge topology, the inductor current flows both into and out

of one side of the half-bridge. When the inductor current flows out of the half-bridge, the switching

mechanism is hard-switching, where the switching node voltage VSW is solely pulled up by turning

on the high-side power transistor, consuming power. However, when the inductor current flows

into the half-bridge, as shown in Figure 2.3, it contributes partially to the rise of VSW during the

dead-time (td) by charging the parasitic output capacitance (Cpar) in the switching node before the

high-side transistor turns on. During this period (from t0 to t1 in the figure), no power is consumed.

Once the dead-time is over, the rest of the rise in VSW (from t1 to t2) is contributed by turning on

the high-side power transistor, which is faster but also consumes power.
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Figure 2.3: Timing diagram of switching waveform when indcutor current flows into a half-bridge

(Ma et al. (2015))
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Figure 2.4: Efficiency diagram of a CDA versus output power, illustrating the dominant loss in the

output power region.

Figure 2.4 illustrates the efficiency diagram of a CDA versus the output power, highlighting the

dominant loss in different output power regions. Region I, II, and III represent low-power, medium-

power, and high-power operation regions of the CDA, respectively. In Region I, switching losses

dominate; in Region II, both switching and conduction losses are significant; and in Region III,
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conduction losses surpass switching losses. Depending on the specific application and the CDA’s

operating power region, one can target specific losses for optimization to achieve better efficiency

in that region.

2.2 Class-D Amplifier Architectures and Modulation Techniques

This literature review examines the principal components and control strategies of CDA sys-

tems, focusing on architectural structures, modulation techniques, and feedback topologies. By an-

alyzing the main developments and methodologies in CDA design, this review provides a thorough

overview of the current approaches in the field, evaluating the benefits and drawbacks of different

architectural choices and control mechanisms.

First, existing CDA structures will be reviewed with an emphasis on architectural configura-

tions. In this examination, three primary categories—fully analog CDA, fully digital CDA, and

mixed-signal CDA architectures—will be considered, each presenting distinct advantages and de-

sign challenges in achieving optimal efficiency, linearity, and fidelity in class-D amplification.

Second, modulation techniques employed in class-D amplifier design will be reviewed, as

these play a critical role in shaping the amplifier’s performance and suitability for various appli-

cations. Depending on the specific requirements—such as efficiency, linearity, or spectral charac-

teristics—different modulation strategies are applied. This review will examine the most commonly

used techniques in the literature, highlighting their distinct features, advantages, and limitations.

By comparing methods such as PWM, SHEPWM, and Delta-Sigma Modulation, this section will

provide insights into the modulation choices available for optimizing CDA performance across a

range of operational contexts.

2.2.1 Class-D Amplifier Structures

Most CDAs are for audio applications, therefore numerous publications are available for audio

CDAs. Very few published CDAs are for industrial or automotive applications. But generally, their

structures can be classed into three different categories. In the first category are CDAs that are

designed using analog circuits. Choi et al. (2012); Kovačević, Pešić-Brdjanin, and Galić (2018);
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W.-C. Wang and Lin (2016) reported such CDAs and their input signals are analog signals (Fig-

ure 2.5). Input analog signals are summed with feedback signals and create error signals which will

be compared with ramped signals. The PWM signals are generated at the output of comparators and

non-overlapping PWM signals are derived which will drive the power MOSFETs. Such an analog

CDA’s modulation technique uses an analog modulator.

Figure 2.5: Analog class-D amplifier block diagram (W.-C. Wang and Lin (2016))

The second category is CDAs that are designed in digital circuits. Chang and Wu (2016); Kuo

and Liou (2019); McKenzie and Ng (2018); M. Wang, Jiang, Song, and Brooks (2010) reported

such CDAs and they use a digital PWM modulator (Figure 2.6). The input signals are available in

digital audio form. The digital CDA uses an ADC in its feedback loop because CDA’s output is an

analog signal while the input is a digital signal. The operation principle is the same as an analog

CDA where the input signal is summed with the feedback signal and the error signal is accumulated

by the loop filter. The error signal from the loop filter is quantized using a digital comparator and

the generated PWM signal drives the power stage.
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Figure 2.6: Digital class-D amplifier block diagram (McKenzie and Ng (2018))

The third category is CDAs that are designed in mixed-signal circuits. Berkhout and Dooper

(2010); Guanziroli, Bassoli, Crippa, Devecchi, and Nicollini (2012) reported such CDAs. Their

input signals are in digital form and use a digital PWM modulator (Figure 2.7). However, the

feedback path and loop filter are implemented in analog circuits and analog PWM is generated to

drive the power stage.

Figure 2.7: Digital class-D amplifier block diagram (Berkhout and Dooper (2010))

Depending on the applications and requirements of the system, the CDA’s structures discussed

above have their advantages and disadvantages. Analog CDA is used in applications where input
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signals are available as analog signals, and its feedback system does not require complex ADC.

Most of the input signals are available in digital form due to the increasing demand for digital

electronics and it is easy to store audios in digital format. So, most of the CDA’s front-end uses

a digital modulator for easy processing of the input signals. Pure digital CDAs, however, still

require ADC in its feedback. The mixed-signal CDAs combine the advantages of both analog and

digital CDAs, use digital PWM modulator in front-end, and analog circuits are used for the back-

end. Such a structure gets rid of ADC and complex signal processing in the feedback loop. Most

of the existing power stage topologies use full-bridge differential output. This power topology

generates two or three-level PWM at the output depending on the modulation technique it uses.

As discussed before, multilevel inverters that use more than three-level topologies have advantages

over fewer-level topologies in reducing the THD and filter size. There are very few publications

in CDAs that use multilevel topologies whereas most of the multilevel topologies are reported in

DC-DC converters. This is because the duty cycle of CDA’s PWM is always changing but DC-

DC converters’ PWM duty cycle is fixed. This makes the signal processing of multilevel CDA

even more complex. Høyerby, Jakobsen, Midtgaard, and Hansen (2016) reports state-of-the-art

multilevel CDA. Its general structure is the same as an analog CDA, where it uses a fourth-order

analog loop filter to get rid of an ADC in the feedback loop.

It is noteworthy that many existing CDAs implement feedback after the power output stage. This

design choice is often due to practical constraints in integrating the low-pass filter (LPF) within the

chip, as most CDAs are implemented as integrated circuits without internal LPFs. Consequently,

the power stage output is typically the only point available for feedback within these chips. Only

a limited number of studies have explored feedback configurations that incorporate the LPF W. Yu

et al. (2009). The majority of previously reviewed literature utilizes “incomplete feedback” (see

Figure 2.8), where the feedback loop does not include the LPF. In contrast, “complete feedback”

which integrates the LPF, effectively suppresses the non-linear effects of the inductor. By including

the LPF in the feedback path, CDAs employing complete feedback achieve more accurate output at

the load, though they require more complex compensation. Additionally, W. Yu et al. (2009) reports

that “complete feedback” not only improves output accuracy but also reduces THD compared to the

same CDA using “incomplete feedback”.
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Figure 2.8: Two different feedback types in CDA (W. Yu et al. (2009))

2.2.2 Class-D Amplifier Modulation Techniques

PWM and PDM are two widely used modulation schemes in CDAs, and both can be imple-

mented in either fully analog or digital designs.

PWM is generally preferred over PDM due to its straightforward implementation and intuitive

operational principles. However, PWM introduces significant EMI because of the high-frequency

carrier signal and its harmonics. To address this issue, the fully analog CDA presented in Nagari,

Allier, Amiard, Binet, and Fraisse (2012) employs PWM modulation with spread spectrum clocking,

achieving an 11 dB reduction in carrier EMI energy and a -72 dB total harmonic distortion plus noise

(THD+N) at 1.2 W with an 8 Ω load. Fully digital CDAs are less common, as the use of an ADC in

the feedback loop can compromise loop stability. Nevertheless, digital-input CDAs are popular due

to the ease of processing digital audio sources. Consequently, many CDAs are designed with digital

input and analog feedback structures, as discussed in the previous section. For digital-input CDAs,

some designs convert Pulse Code Modulation (PCM) to PWM using a multi-bit digital noise-shaper

followed by a counter Grosso, Botti, Stefani, and Ghioni (2001), while others employ PCM to PDM

conversion with a single-bit high-frequency digital noise-shaper Philips, van den Homberg, and

Dijkmans (1999).

PDM requires a significantly higher switching frequency to achieve performance comparable to

that of PWM. A study in Gaalaas, Liu, and Nishimura (2005) demonstrates a hysteretic technique
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to reduce switching speed, utilizing a fully analog PDM with a 7th-order Delta-Sigma Modulator,

achieving -90 dB THD+N at 1 W output into a 6 Ω load. In contrast, a fully digital PDM implemen-

tation in Ihs and Dufaza (2010) employs a 5th-order DSM, reaching -75 dB THD+N at 0.8 W into

an 8 Ω load. Although higher-order Delta-Sigma Modulator can yield lower THD+N, they also risk

stability issues, introducing a trade-off between phase margin and THD+N in the selection of DSM

order. Unlike PWM, PDM avoids carrier frequency interference and its harmonics within the signal

band of interest. However, the high switching frequency required by PDM contributes to increased

power loss.

SHEPWM is a notable, albeit less commonly utilized, modulation technique in CDAs. The

foundational theory of SHEPWM was first introduced in Patel and Hoft (1973), with the major-

ity of existing research focusing on three-phase, high-power electronic applications where the load

frequency remains fixed. This technique employs a Fourier Transform on the PWM signal, uti-

lizing mathematical methods to selectively eliminate specific harmonics by reducing them to zero.

SHEPWM has been adapted for use in multilevel inverters, as illustrated in Manai, Armi, and Besbes

(2019), where a Flying Capacitor Multilevel Inverter (FCMI) effectively cancels lower-order har-

monics. In this three-phase, high-power inverter application, triple-order harmonics are inherently

canceled, and the remaining low-order harmonics are further mitigated through advanced mathe-

matical techniques. Compared to traditional PWM and PDM, SHEPWM operates at a significantly

lower switching frequency, leading to substantial reductions in switching losses within the system.

However, one of the principal challenges of SHEPWM is maintaining the voltage balance of the

flying capacitor. This issue persists because no universal mathematical solution can address all

modulation indices, thereby restricting the achievable voltage amplitudes at the load to specific val-

ues. Further discussion on the background and current state-of-the-art developments in SHEPWM

will be provided in subsequent sections.

Several studies have reported on CDAs utilizing nonlinear control techniques, specifically SMC

Ge and Chang (2009); Hussein, Mohieldin, Hussien, and Eladawy (2016); Pillonnet, Abouchi, Cel-

lier, and Nagari (2009); Pinar and Weaver (2014); Rojas-Gonzalez and Sanchez-Sinencio (2009);
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Rojas-González and Sánchez-Sinencio (2007); Torres, Colli-Menchi, Rojas-Gonzalez, and Sanchez-

Sinencio (2011); Torres, Colli-Menchi, Rojas-González, and Sánchez-Sinencio (2010); X. Wu, Za-

man, Zheng, Khan, and Ali (2019); Ying, Ling, Qing-De, and Yao-hua (2008); S.-H. Yu and Tsai

(2010); S.-H. Yu and Tseng (2011). These works claim improved efficiency, lower THD, and en-

hanced PSSR. In these implementations, CDAs achieve higher efficiency since SMC eliminates the

need for a triangular carrier signal, reducing power consumption. Improved THD performance is

attributed to SMC’s typically high switching frequencies, which help to reduce chattering effects

and enhance signal fidelity, though at the expense of increased switching losses. Due to the ro-

bustness and disturbance insensitivity of SMC, these studies also report higher PSSR. A common

feature across these works is the implementation of SMC in continuous-time systems using analog

IC technology, as continuous-time operation allows state variables to remain close to the sliding

surface. In contrast, discrete-time SMC can only operate in a quasi-SMC scheme, where control

events are limited to sampling instants. As a result, state variables may deviate from the sliding

surface between sampling periods, degrading overall system performance. Consequently, very few

studies have explored discrete-time SMC in CDAs or addressed its impact on robust performance.

To mitigate chattering effects and reduce THD, the switching frequency of an SMC-based CDA

should be sufficiently high. However, this approach decreases overall system efficiency due to the

increased switching losses in power transistors. One method to reduce the effective switching fre-

quency per transistor is to implement a multilevel topology; for instance, S.-H. Yu and Tseng (2011)

employs a nine-level cascaded H-bridge topology. While S.-H. Yu and Tseng (2011) achieves a

THD+N of less than 0.027% across the audio band (20Hz – 20 kHz), the efficiency reaches only

80% at an output power of 8.3W. A notable disadvantage of the cascaded H-bridge topology is

its requirement for two isolated DC sources, which is suboptimal for applications where only a

single DC source is available. Additionally, the study does not report performance metrics for out-

put power levels below 8.3W. Further discussion on the background and current state-of-the-art

developments in SMC will be provided in subsequent sections.
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2.3 Background of Selective Harmonic Eliminated Pulse Width Mod-

ulation (SHEPWM) Technique

Recent advances in power transistors have facilitated the development of smaller and lighter

power electronics boards. Among these, GaN devices are considered among the most promis-

ing candidates for switch-mode converters due to their fast switching capability and compact size

Chung, McKenzie, and Ng (2016); Gedz, Lazebnyi, Onikienko, and Vlasjuk (2018); Ly et al. (2020);

Mauerer and Kolar (2018); Sangid et al. (2018); Seidel and Wicht (2018). However, to achieve fur-

ther reduction in overall system size and improve power distribution across different loads and

varying conditions, it is necessary to replace conventional bulky power electronic components with

reconfigurable power electronics units. Reconfigurability contributes to size reduction by integrat-

ing multiple functionalities within a single, adaptable module. This flexibility eliminates the need

for multiple discrete power circuits, each tailored for specific load conditions. As a result, a recon-

figurable power unit can dynamically allocate power based on load requirements, optimizing space

and reducing the number of components needed. To realize such reconfigurable systems, a hetero-

geneously integrated SiP on a low-temperature co-fired ceramic (LTCC) substrate is a particularly

promising approach. This solution not only supports the integration of diverse components but also

provides high 3D integration density, along with superior thermal and electrical performance Bayer

et al. (2020); Nobert, Alameh, Ly, Constantin, and Blaquière (2021).

Low-power loads, such as industrial servo valves, hall effect sensors, and low-power actuators,

find common usage in a wide range of industries, including automotive, industrial automation, and

critical power systems. These applications necessitate precise control, sensing, and measurement

of diverse parameters. In such scenarios, the switching losses of power devices in the inverter play

a dominant role compared to conduction losses due to their operation at extremely low AC load

currents. The operation frequency of these loads is usually in the range of several kHz to 10 kHz. A

Natural Pulse Width Modulation (NPWM), where a reference sinewave is compared with a carrier

signal to generate the PWM signal, needs to operate with a high switching frequency to reduce

the THD at the cost of high-switching losses Jahmeerbacus and Sunassee (2014). This reduces the

overall efficiency of the converter.
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Figure 2.9: Schematic of a full-bridge inverter output stage.
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Figure 2.10: A three-level odd-symmetrical SHEPWM waveform.

Unlike an NPWM inverter, the SHEPWM technique reduces switching losses by predetermining

the switching angles of the PWM signal, which eliminates lower-order harmonics and enables low

THD without increasing the switching frequency of the power transistors. A three-level differential

SHEPWM signal can be generated at the differential switching nodes (+VSW- in Figure 2.9), where

PWM1 and PWM2 are driven by two Gate Drivers (GDs). Lower-order harmonics at VSW can

be cancelled by expanding the Foureir Series of the switching node voltage and make lower-order

harmonics (except the fundamental component) equal to zero. Meanwhile, the higher-order har-

monics are suppressed by a low-pass LC filter, resulting in a single-tone AC output signal (+VOUT-)

delivered to the load.

A three-level PWM is depicted in Figure 2.10 with N switching angles per quarter cycle. VSW

can be represented by a Fourier Series as follows:

VSW(ωt) =
a0
2

+

∞
∑

n=1

an cos(nωt) +

∞
∑

n=1

bn sin(nωt) (14)
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where a0 is the DC component, n is the harmonic order, ω is the angular frequency in rad/second,

t is time, an are the coefficients of the cosine terms, and bn are the coefficients of sine terms. In

signals with odd quarter-wave symmetry, specific Fourier Series coefficients naturally become zero

due to the inherent properties of the waveform. This symmetry ensures that the DC component,

represented by a0, is eliminated, preventing any undesired offset in the signal. Additionally, all

cosine coefficients, an, are also equal to zero, indicating that the waveform lacks even-harmonic

content, which is a key characteristic of odd-symmetric signals. Moreover, the sine coefficients

corresponding to even-order harmonics, such as b2, b4, and up to b2n, are inherently zero, which

significantly reduces the presence of these harmonics in the frequency spectrum. This natural har-

monic cancellation simplifies the control and design of the switching waveform, as it inherently

eliminates certain undesired harmonic components without requiring additional filtering or modu-

lation efforts. By leveraging this odd quarter-wave symmetry, the output waveform becomes more

spectrally efficient, reducing distortion and improving the overall linearity of the system. Thus, (14)

can be simplified to:

VSW(ωt) =















∞
∑

n=1
bn sin(nωt) for odd n

0 for even n

(15)

where

bn =
1

π

∫ 2π

0
VSW(ωt) sin(nωt)d(ωt) (16)

If the inverter input voltage is VIN, then bn can be expressed as:

bn =
4VIN

nπ

N
∑

k=1

(−1)k+1 cos(nαk) (17)

where k is an integer number (1 < k < N ) and ak is the k th switching angle in Figure 2.10.

Equation (17) can be expanded to the following equations:
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cos(α1)− cos(α2) + · · · ± cos(αN ) = π
4VIN

b1

cos(3α1)− cos(3α2) + · · · ± cos(3αN ) = 3π
4VIN

b3

cos(5α1)− cos(5α2) + · · · ± cos(5αN ) = 5π
4VIN

b5

. . .

cos(nα1)− cos(nα2) + · · · ± cos(nαN ) = nπ
4VIN

bn

(18)

which must satisfy the following condition:

α1 < α2 < · · · < αN <
π

2
(19)

To cancel lower odd harmonics, b3 to bn in Eq. (18) are set to equal to zero. b1 is the amplitude

of the fundamental output signal and b1/VIN is defined as the Modulation Index (MI). To solve for

N unknown switching angles, N equations are needed, and N -1 odd harmonics can be cancelled.

More switching angles mean more harmonic cancellation, however, solving the non-linear transcen-

dental equations becomes more complicated and hardware resources for implementation increase

as well. In addition, for small MI PWM signals, the pulses get narrow near 0◦ and 180◦, therefore,

a higher FPGA clock frequency (fCLK) is needed for a better timing resolution for the switching

angles, especially for an increased number of switching angles.

2.4 State-of-the-Art of Selective Harmonic Eliminated Pulse Width

Modulation (SHEPWM) Technique

SHEPWM was first introduced in Patel and Hoft (1973, 1974). Since then, numerous papers

have been published on SHEPWM theory, particularly focusing on solving the nonlinear transcen-

dental equations necessary to determine the optimal switching angles Ahmad, Iqbal, Ali, Rahman,

and Ahmed (2021); Ahmed et al. (2020); Czarkowski, Chudnovsky, and Selesnick (2002); Etesami,
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Farokhnia, and Fathi (2015); Janabi, Wang, and Czarkowski (2020); Li, Zhang, and Li (2022);

C. Wang et al. (2022); Yang et al. (2015, 2016, 2017). These research efforts have significantly ad-

vanced the mathematical techniques used to find switching angles that minimize harmonic distortion

while maintaining desired output voltage characteristics.

As highlighted in problem statement P1 in Section 1.2.1, previous experimental research on the

SHEPWM technique has primarily been conducted in mid-to-high power applications with fixed,

low output frequencies. Detailed hardware implementations in these studies were either omitted

or only briefly described. For instance, works such as Iqbal et al. (2019); Manai, Armi, and Bes-

bes (2017); Perez-Basante et al. (2020); Sharifzadeh, Vahedi, and Al-Haddad (2018); Siddique,

Mekhilef, Padmanaban, Memon, and Kumar (2021); M. Wu et al. (2020); Yang, Lan, Zhang, and

Tang (2018); Yang et al. (2015) focused on fundamental output frequencies (fT) of approximately

50Hz, with DC supply voltages ranging from 60V to 200V. In Zhao, Jin, Wang, and Sun (2016), an

output frequency of 60Hz was achieved with a DC supply voltage of 127V. Additionally, Cheng,

Xu, Chen, and Chen (2021) analyzed the dynamic response of the SHEPWM technique under a step

change in output voltage, demonstrating the behavior when transitioning from 0 to 200V.

Ahmed, Sheir, and Orabi (2017) introduced a method for real-time calculation of switching

angles and showcased its application in a cascaded full H-bridge inverter with MI variations. Despite

these advances, the majority of experimental studies remain limited to fixed output frequencies,

which poses a challenge for applications that require variable frequency operation. To the best of

the author’s knowledge, there has yet to be a comprehensive study that details the implementation

of a SHEPWM inverter capable of supporting variable output frequencies.

The standard approach for hardware realization of the SHEPWM technique typically involves

the use of FPGAs or DSPs to generate the PWM signals. However, the existing literature Iqbal

et al. (2019); Manai et al. (2017); Perez-Basante et al. (2020); Sharifzadeh et al. (2018); Siddique

et al. (2021); M. Wu et al. (2020); Yang et al. (2018, 2015) often lacks sufficient detail regarding

the hardware design, which complicates efforts to replicate or build upon these systems. This lack

of transparency in hardware implementation remains a significant barrier to broader adoption and

further innovation in the field of SHEPWM applications.

This dissertation presents a compact 3D SiP design (research objective O2) of a low-power
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full-bridge SHEPWM inverter with reconfigurable AC outputs that can be adjusted dynamically,

focusing on high-frequency applications to overcome the limitations of previous works (research

objective O1). As there is no existing literature on low-power SHEPWM inverters and their as-

sociated THD relationship with MI and fundamental output frequency, this study explores these

critical aspects over a broad range of MI and output frequencies (ranging from several kHz to

10 kHz). Additionally, the FPGA-based hardware implementation described in this work, which

utilizes MATLABTM SIMULINKTM, is straightforward and easily replicable (research objective

O1).

2.5 Background of Sliding Mode Controller (SMC) Technique

SMC, a specific type of variable structure control, holds significant promise for application in

CDAs due to the inherent ON/OFF nonlinear control characteristics of the power stage. SMC is

known for its robustness against parameter variations, disturbances, and modeling errors. In the

context of CDAs, uncertainties such as variations in transistor behavior due to manufacturing toler-

ances, aging, temperature fluctuations, external disturbances like load variations, and discrepancies

between the ideal mathematical model and real-world dynamics may affect performance. Addi-

tionally, switching dynamics and imperfections in the power stage, such as parasitic elements and

higher-order harmonics, introduce further complexities. By designing a sliding surface, the sys-

tem can be driven towards this surface, leading to stable operation despite these uncertainties. In

CDAs, SMC can offer precise and efficient control over the switching behavior of the transistors,

contributing to improved performance and reliability Hung, Gao, and Hung (1993).

In an ideal scenario, SMC would operate at an infinite switching frequency to closely track the

reference signal’s controllable variable states. However, this is impractical for power converters due

to limitations such as switching losses, power efficiency degradation, and the physical constraints of

switching components. As a common solution to address this, a hysteresis band is often applied in

SMC to constrain the switching frequency. Nevertheless, employing a hysteresis band introduces its

own challenges. Notably, it results in a variable switching frequency, and if not chosen judiciously,

the upper limit of the switching frequency may become excessively high, leading to a degradation
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in the converter’s power efficiency. One approach to mitigate this issue is to implement an adaptive

hysteresis band, which fixes the switching frequency but increases the complexity of implementa-

tion. Conversely, a PWM based SMC offers a fixed switching frequency determined by the carrier

frequency. This grants the designer flexibility in determining the switching frequency, allowing for

optimizing other parameters of the system Sebaaly, Vahedi, Kanaan, Moubayed, and Al-Haddad

(2016); Tan, Lai, and Tse (2006); Tan, Lai, Tse, and Cheung (2005); Tan, Lai, and Tse (2008a,

2008b); Tan, Lai, Tse, Martinez-Salamero, and Wu (2007); X. Wu et al. (2019).

Figure 2.11 shows two different operation states of a half-bridge. High-side and low-side tran-

sistors (MHS and MLS) turn on and off periodically but are complementary to each other. SMC

controls two state variables: inductor current (iL) and capacitor voltage (vC). According to Kirch-

hoff’s Voltage Law (KVL) and Kirchhoff’s Current Law (KCL), we can write:
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Figure 2.11: A half-bridge two-state operation.















vC = VSW − VL

iL = iC + iOUT

(20)

which can also be written as,














vC = VSW − LdiL

dt

iL = C dvC

dt
+ iOUT

(21)

where vC is the capacitor voltage, equals to the output voltage vOUT, VSW is the switching node
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voltage, and its value changes between +VIN and −VIN depending on which switch turns on, VL is

the inductor voltage, iL is the inductor current, iC is the capacitor current, and iOUT is the output

current which flows through the load.

We can finally write down the dynamic state equation in matrix form as,







diL
dt

dvC
dt






=







0 − 1
L

1
C

− 1
CR













iL

vC






+







1
L

0






VSW, VSW =















+VIN if VHS = 1

−VIN if VLS = 1

(22)

If we describe state variables in a vector form as x, then the above equation can be represented

by the state equation:

ẋ = Ax+Bu (23)

where x = [iL vC]
T , and u represents the control law, with A and B being the coefficients of x and

u, respectively, the next step is to design a control law u that ensures the desired system behavior.

u =















+VIN if s(x) > 0

−VIN if s(x)) < 0

(24)

where s(x) is the switching function. A switching function generally includes state variables and

can be expressed as a linear transformation, i.e.,

s(x) = Cx (25)

where C is an m-dimensional vector. When s(x) = 0, a switching surface (sliding surface) can be

obtained. The above equations indicate that designing an SMC consists of two steps:

(1) Design a sliding surface s(x) = 0, which is a function of state variables.

(2) Design a control law u such that the state equation represents the dynamics of the system,

and u drives the state variables to the equilibrium point.

The physical meaning of SMC in the above two steps are:
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(1) Reaching mode: given that state variables have any initial conditions, and control law u drives

any state x to the sliding surface. The reaching condition can be achieved when,















ṡ > 0 if s < 0

ṡ < 0 if s > 0

(26)

or, equivalently,

sṡ < 0 (27)

(2) Sliding mode: when state x reaches the sliding surface, control law u ensures that state x

stays on the sliding surface and drives the state to the origin point. In this way, the overall

system is globally asymptotically stable.

Figure 2.12 illustrates the sliding mode and the difference between an ideal sliding mode and a

quasi-sliding mode. It is desirable that state x stays on the sliding surface s(x) = 0 and moves to

the origin point without deviating from the sliding surface. However, in the real world with a finite

switching frequency, the state x stays nearby the sliding surface, and usually, a band is designed on

the two sides of the sliding surface to ensure that state x would not deviate from the designed band.

This causes a chattering effect and is not desirable, as it degrades the performance of the system.
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Figure 2.12: Sliding mode illustration.
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Figure 2.13: A diagram illustrating the reaching mode condition of the SMC.

To better understand, a simple reference tracking system using the SMC was designed (Fig-

ure 2.14) and simulated using SIMULINK. An analog filter with a cut-off frequency of 20 kHz

replaced the LC filter for simplicity. The gate driver and power stage are implemented as a relay.

The objective is to design a sliding surface (x) and control law (VSW) that depends on the SF. The

designed SF is:

s(Ve1, t) = Ve1(t) +KVe2(t) (28)

where,

Ve1(t) = Vi − Vout (29)

Ve2(t) = V̇e1(t) (30)

where K is the first-order derivative coefficient. The goal is to design a control law such that SMC

output changes according to the sign of sliding surface:

Vsw =















+VIN when s(Ve1, t) > 0

−VIN when s(Ve1, t) < 0

(31)

The simulation result is shown in Figure 2.15. It shows that the output voltage (Vout) tracks the

input voltage (Vi), and the error voltage (Ve1, first column second row in Figure 2.15) between them

is below 7 mV with 1 V input and output voltage. There is no amplification (gain) between Vout

and Vi because the relay in Figure 2.14 used a unit amplitude, which means the feedback gain is

also a unity gain. The SF is around zero with a band width of ±0.02 V. Ideally, the SF should be
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Figure 2.14: Simulink schematic of a reference tracking system using SMC.

zero so that there is no error between Vout and Vi (no chattering effect), but that requires an infinite

switching frequency at the switching node (VSW, second column second row in Figure 2.15).

Figure 2.15: Simulink simulation of the reference tracking system using SMC.

In the real physical world, usually a hysteresis window is designed to achieve a finite switching

frequency at the switching node. In a simple SMC design, the switching frequency depends on

several parameters, which can be calculated using the equation below:
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fSW =
1

2k

R

L

(

1−
vC

VIN

)

(32)

where k is the hysteresis window, R is the load resistor, L is the inductor value of the LC filter,

vC is the capacitor output voltage, and VIN is the power stage voltage.

2.6 State-of-the-Art of Sliding Mode Controller (SMC) Technique in

Class-D Amplifiers

There exist various approaches to define the SMC, with the most prevalent being a fusion of

state variables and their derivatives Ding, Zheng, Sun, and Wang (2018); Ma and Han (2004); Ma

and Zhang (2005); Rojas-González and Sánchez-Sinencio (2007); Sahu, Maity, Mahakhuda, and

Samal (2014); Tan, Lai, Cheung, and Tse (2005). These controllers leverage the sliding mode

concept to achieve robust control by driving the system states onto a specified sliding surface and

maintaining them there, despite the presence of system uncertainties and external disturbances. To

address steady-state error more effectively, some studies have incorporated an additional integral

term into the state variables, resulting in the Integral Sliding Mode Controller (ISMC) Brisilla and

Rani (2019); Hussein et al. (2016); Pinar and Weaver (2014); Tan, Lai, Tse, and Cheung (2005);

Tan, Lai, Tse, and Wu (2006); Torres et al. (2011). The ISMC enhances the ability of the controller

to reject persistent disturbances and reduces steady-state error, thereby improving overall system

performance.

To further augment this error reduction, a subset of publications has introduced a second inte-

gral term, leading to the development of the DISMC Harirchi, Rahmati, and Abrishamifar (2011);

Pradhan and Subudhi (2016); Tan et al. (2008b); X. Wu et al. (2019). This advanced control ap-

proach has shown promise in applications requiring higher precision and robustness by incorporat-

ing both integral actions, thereby providing enhanced disturbance rejection and reduced chattering

effects. However, the DISMC concept remains largely unexplored in CDAs, especially with re-

spect to discrete implementations (problem statement P3). The main challenge in applying DISMC

to CDAs lies in the time-varying nature of the reference signal inherent in AC tracking systems.
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This variability complicates the dynamic equations and makes determining appropriate controller

gains more difficult, often requiring sophisticated design methodologies and computational tools

(problem statement P4).

The use of digital DISMC presents significant advantages in the realm of SMPS and similar

high-frequency power electronic applications. Unlike traditional analog implementations, which

are tied to specific technology nodes and can require substantial redesigns to accommodate differ-

ent application requirements, digital controllers provide unparalleled flexibility. Adjustments and

updates can be made through software reprogramming, allowing for rapid iteration and customiza-

tion. This adaptability simplifies the design and testing processes while improving the system’s

robustness to parameter variations and external disturbances. Moreover, digital implementations

facilitate the incorporation of advanced control algorithms, such as adaptive and predictive control

techniques, which can be seamlessly integrated to optimize performance.

The potential of DISMC in CDAs is particularly noteworthy given the increasing shift toward

digital control in modern power electronics. The ability to implement complex control strategies,

achieve precise waveform tracking, and enhance power efficiency through reduced switching losses

makes exploring digital DISMC implementations a promising avenue for future research in CDA

applications (research objective O3). This exploration could open new opportunities for creating

highly adaptable, efficient, and robust audio amplification systems capable of meeting the demand-

ing requirements of contemporary electronic devices.

This dissertation presents a new application of the discrete DISMC in full-bridge CDAs, a do-

main where its use has not been explored before, as previous studies have focused on DC-DC

converters. In DC-DC converters, the reference signal remains constant, whereas in CDAs, the

reference signal is time-varying. To address this, the research introduces a unique reaching and

stability analysis to derive the appropriate DISMC controller gain for CDAs (research objective

O4). Additionally, this dissertation investigates the discrete implementation of DISMC, a technique

traditionally applied in the analog domain, where its fast signal processing capabilities are well-

established. However, in the digital domain, feedback loop delay becomes a critical factor, which

has been considered in the context of this work. These contributions provide a comprehensive un-

derstanding of DISMC in both continuous and discrete domains, highlighting its advantages and
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challenges when applied to CDAs.
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Chapter 3

SHEPWM Inverter with a Compact SiP

Implementation

In the pursuit of different methods for low-power applications, various linear amplifier topolo-

gies such as Class A, B, AB, and C were initially considered. These amplifiers offer low THD;

however, they inherently suffer from reduced efficiency when compared to switching amplifiers.

Additionally, alternative architectures for sine wave generation, such as direct digital synthesis and

arbitrary waveform generators, presented significant difficulties in delivering more than 1W output

power.

Existing works on SHEPWM techniques primarily target high-power systems operating at a nar-

row fundamental output frequency range, typically around 50Hz or 60Hz. These studies assume

fixed filter designs optimized for such frequencies, ensuring effective harmonic suppression and sys-

tem efficiency. However, no prior work has explored the challenges of applying SHEPWM across

a wide range of fundamental output frequencies—specifically from 4 kHz to 10 kHz—while main-

taining a fixed filter cutoff frequency. This unexplored area is critical for low-power applications

where frequency adaptability and efficient harmonic control are essential.

In this work, to achieve research objectives O1 and O2, we address these challenges by develop-

ing a novel FPGA-based architecture tailored for wide-frequency SHEPWM operation, which will
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be implemented in an LTCC SiP. LTCC technology is selected not only for its high level of compo-

nent integration on both sides of the substrate, but also for additional advantages such as the ability

to print and embed passive components, and the use of via fill and substrate materials with supe-

rior thermal conductivity compared to traditional PCBs—features that have been utilized in other

research studies. However, the exploitation of these LTCC properties is not the objective of this

dissertation. The design supports on-the-fly configurability of the inverter output, allowing dynamic

adjustment of both the modulation index and the fundamental frequency without requiring exten-

sive storage or computationally intensive real-time calculations. The FPGA architecture achieves

this flexibility through the efficient implementation of the SHEPWM algorithm, enabling precise

harmonic elimination across a broad frequency range while adhering to the constraints imposed by

a fixed filter design.

By investigating wide-frequency operation with SHEPWM and introducing a resource-efficient,

dynamically configurable FPGA architecture, this work contributes significantly to the field. It

demonstrates the feasibility of extending SHEPWM techniques to low-power systems with diverse

operational requirements, achieving high efficiency and harmonic performance across varying fre-

quencies.

This chapter is organized as follows: Section 3.1 discusses the design of the SHEPWM full-

bridge inverter, detailing the converter topology and control strategy. Section 3.2 presents both

simulation and experimental results to validate the proposed design, highlighting its performance in

low-power applications. Finally, Section 3.3 provides a conclusion to this chapter, summarizing the

key findings and contributions of the work.

3.1 Design of SHEPWM Full-Bridge Inverter

In this work, an FPGA was chosen to implement the SHEPWM technique due to its advan-

tages in optimizing mathematical operations, offering enhanced interface capabilities, and support-

ing higher clock frequencies.
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While application specific integrated circuits (ASICs) can provide superior performance in high-

volume, specialized applications due to their customization, their development comes with signif-

icantly higher initial costs, longer design cycles, and reduced flexibility, making them unsuitable

for this design. On the other hand, MCUs are attractive for their cost-effectiveness, low power

consumption, and simpler development process. However, MCUs typically operate at lower clock

frequencies, which can limit the resolution of switching angles—an issue that becomes especially

critical at high fundamental frequencies. The choice of FPGA was driven by:

(1) Mathematical Operations Optimization: In this work, several multiplications were used. FP-

GAs are inherently adept at executing mathematical operations, particularly multiplications,

due to their tailored optimization. Their ability to perform math and logic operations in paral-

lel significantly boosts efficiency and speed—a significant advantage over microcontrollers,

which are primarily optimized for sequential processing.

(2) Interface Optimization: The designed system includes multiple interfaces with the controller,

a configuration that aligns optimally with the FPGA architecture. In the designed SHEPWM

inverter architecture, the setup includes not only two PWM interfaces to the LTCC SiP but

also includes gate driver configuration interfaces. These interfaces facilitate both writing

and reading of shift registers within the gate driver. These shift registers configure different

driving strengths and deadtime. In contrast, MCUs typically encounter limitations in terms of

available interfaces.

(3) Rapid prototyping and Development: the FPGA’s capacity for implementing digital logic

coupled with the sophisticated tools available significantly reduces prototyping development

time. For instance, this work highlighted the implementation of the SHEPWM algorithm

through the Xilinx System Generator for DSP embedded into Simulink. This integration

expedited algorithm validation and Hardware Description Language (HDL) code generation

within the Simulink environment. This accelerated process minimizes the development time

disparity between FPGAs and MCUs.
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(4) Storage Availability: FPGAs offer the advantage of readily available embedded storage re-

sources, such as block random access memory (BRAM), which can be used without addi-

tional costs. This provides efficient data storage and retrieval, supporting complex control

algorithms and intermediate data management. Compared to ASICs, which may require ex-

ternal memory interfaces, FPGAs have built-in storage resources, making them more versatile

and cost-effective for the design.

In conclusion, the unique combination of optimized mathematical operations, interface compati-

bility, rapid prototyping capabilities, team expertise, advantageous clock frequency, and embedded

storage makes the FPGA the most suitable choice for achieving the high-resolution switching angles

required in this research. For prototyping and iterative development, an FPGA offers the optimal

balance between performance, development time, and cost.

This work demonstrates a low-power full-bridge SHEPWM inverter with on-the-fly reconfig-

urable AC outputs in a compact 3D SiP, with an emphasis on high-frequency applications to address

the shortcomings of the aforementioned works. As no low-power SHEPWM inverter along with its

output THD relationship with MI and the fundamental output frequency is reported in the litera-

ture, this work investigates these key aspects with a full range of MI and a wider range of output

frequencies (several kHz to 10 kHz). Furthermore, a detailed FPGA hardware implementation in

MATLABTM SIMULINKTM is described in this work, which is simple and can be replicated eas-

ily. The method of FPGA hardware implementation is straightforward and does not require any

knowledge of an HDL.

The architecture of the FPGA for SHEPWM is designed using System Generator (SysGen) for

DSP, which is fully integrated into MATLAB Simulink. HDL codes are generated automatically us-

ing SysGen after validating the SHEPWM block’s function using Simulink. The proposed method

is simple, cost-effective, and has the capability of on-the-fly configuration of both output ampli-

tude and frequency. The detailed hardware implementation along with Simulink simulations are

described in detail in this section.

Selecting the appropriate number of switching angles for generating a fundamental sine wave
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output significantly impacts both the THD and power consumption of the SHEPWM inverter. Al-

though increasing the number of switching angles enables the cancellation of more lower-order

harmonics, thereby reducing THD, there are practical limitations to this approach. As the number

of switching angles rises, solving the corresponding transcendental equations becomes increasingly

challenging. Moreover, the reduction in THD becomes less pronounced with a higher number of

switching angles.

Figure 3.1 illustrates the THD after filtering SHEPWM waveforms with 13, 15, and 17 switch-

ing angles per quarter cycle in Matlab. The filtering is performed using a second-order filter with a

cut-off frequency of 20 kHz, applied to fundamental output frequencies of 5 kHz and 4 kHz. The MI

remains constant at 0.4167 for all waveforms. The results demonstrate that while an increase in the

number of switching angles from 13 to 15 yields a noticeable reduction in THD, the improvement

from 15 to 17 angles is minimal, particularly at higher fundamental output frequencies. This indi-

cates that further increasing the number of switching angles provides diminishing returns in THD

reduction.

Additionally, there are cases where solutions to the transcendental equations do not exist as the

number of switching angles increases. Higher switching frequencies at the power stage also lead

to increased switching losses, counteracting the benefits of additional switching angles. Thus, the

THD advantages of increasing the number of switching angles must be carefully weighed against

these practical constraints.

The example used in this work targets 17 switching angles per quarter-cycle, which eliminates

16 odd harmonics. That means 3rd to 33rd odd harmonics are cancelled and even harmonics do not

exist in the odd symmetric SHEPWM signal. Therefore, the 35th harmonic is the first tone following

the cancelled harmonics. The equations are solved in MATLAB by guessing the initial switching

angles. The resulting optimal switching angles in degrees for different MI are given in Table 3.1 and

plotted in Figure 3.2. In Table 3.1, the odd index switching angles (α1,α3, . . . ,α17) are the rising

edges and the even index switching angles (α2,α4, . . . ,α16) are the falling edges of the SHEPWM

signal. The second row is the set of initial (guessed) switching angles common for all the modulation

indices (MIs). Subsequent rows show the solutions for optimal switching angles for each MI from

0.2 to 0.9. As seen in the table, the solved optimal switching angles for all MI are in the vicinity of
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Figure 3.1: THD of second-order filtered output for various switching angle counts at fundamental

output frequencies of 5 kHz and 4 kHz

initial switching angles.

3.1.1 Proposed SHEPWM FPGA Architecture

In this work, the precomputed optimal switching angles are stored in a Look-up Table (LUT),

implemented using a BRAM in the FPGA. To avoid reprogramming the FPGA when generating

different AC output signals at the load, the switching angles (first half period) of different amplitude

and frequency output signals can be stored in the LUT so that configuring outputs on-the-fly is

achieved by simply sending a command signal to the FPGA.

A counter-based methodology is used to generate the pulses according to the computed switch-

ing angles, as shown in Figure 3.3. In this work, 17 (N = 17) optimal switching angles per quarter-

cycle are used. When the counter (ramp signal in Figure 3.3) equals each switching angle (horizontal

line), PWM signals change their logic levels. Switching angles in the first half-period (α1 to α2N )

are used to generate the PWM1 signal and α2N+1 to α4N are used to generate the PWM2 signal.

PWM1 and PWM2 drive the full-bridge GaN devices from two sides and a three-level differential
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Table 3.1: INITIAL GUESSED AND CALCULATED OPTIMAL SWITCHING ANGLES IN DE-

GREES FOR DIFFERENT MODULATION INDICES (MI)

MI α1 ↑
a α2 ³

b α3 ↑ α4 ³ α5 ↑ α6 ³ α7 ↑ α8 ³ α9 ↑ α10 ³ α11 ↑ α12 ³ α13 ↑ α14 ³ α15 ↑ α16 ³ α17 ↑

10.03c 11.00c 20.00c 21.94c 29.97c 32.83c 39.94c 43.60c 49.90c 54.26c 59.87c 64.74c 69.84c 75.06c 79.81c 85.14c 89.67c

0.2 9.81 10.16 19.63 20.31 29.46 30.46 39.31 40.60 49.19 50.72 59.10 60.83 69.03 70.91 79.00 80.97 89.00

0.3 9.71 10.22 19.43 20.45 29.17 30.66 38.94 40.86 48.75 51.05 58.61 61.21 68.52 71.35 78.48 81.45 88.49

0.4 9.60 10.28 19.21 20.56 28.85 30.83 38.54 41.10 48.29 51.34 58.10 61.57 67.99 71.76 77.95 81.92 87.99

0.5 9.48 10.33 18.97 20.65 28.51 30.98 38.11 41.30 47.79 51.61 57.56 61.90 67.43 72.16 77.40 82.38 87.47

0.6 9.35 10.36 18.73 20.72 28.15 31.09 37.65 41.45 47.25 51.82 56.97 62.19 66.83 72.53 76.82 82.83 86.94

0.7 9.21 10.38 18.46 20.76 27.76 31.15 37.15 41.55 46.66 51.97 56.33 62.41 66.16 72.85 76.19 83.27 86.39

0.8 9.07 10.37 18.16 20.75 27.33 31.15 36.59 41.56 45.99 52.01 55.58 62.52 65.39 73.08 75.47 83.67 85.81

0.9 8.90 10.33 17.83 20.67 26.82 31.03 35.92 41.41 45.17 51.84 54.63 62.36 64.36 73.05 74.49 83.96 85.09

a ↑ indicates the rising edge of the switching angle, b ↓ indicates the falling edge of the switching angle, c Initial

guessed switching angles.

PWM signal is obtained at the switching nodes as shown in Figure 2.9.

The proposed SHEPWM architecture in SysGen for DSP, fully integrated into MATLAB Simulink,

is shown in Figure 3.4. The critical signals within the core are labeled as output port ”Out” and these

are monitored both in simulation and measurement to ensure the correct operation of the SHEPWM

core. The architecture is illustrated in Figure 3.5, detailing the number of MIs and frequencies

for better understanding. The architecture can be divided into two major blocks: the configuration

block and the computing block. Each block is further divided into sub-blocks, with the bit length of

each signal indicated in Figure 3.5. The description of the two major blocks is as follows.

The configuration block: This block reads the input “Data” that the user sends to the FPGA,

setting a particular MI and inverter fundamental output frequency. The field Data [3:0] and [7:4]

specify different output frequencies and MIs. The reserved Data [13:8] can be used if more out-

put waveform is needed. Enable/disable function of PWMs generation is controlled by Data [14].

Data [15] loads the “Address Counters” through the Finite State Machine (FSM) so that the first

switching angle of a specific MI is indexed in “LUT NCnt”. This mechanism allows real-time

user-specific MI selection when a new “Data” is sent to the FPGA.

The computing block: This block consists of logic for generating the switching signals PWM1

and PWM2. All calculations in the FPGA are based on fixed-point unsigned arithmetic. The cal-

culated optimal switching angles (αk) of the first half-cycle (α1 to α2N ) for different MIs are nor-

malized (NCntA/B=fCLK × αk / 360◦) to FPGA clock frequency (fCLK) and pre-stored in a dual

port LUT, “LUT NCnt”. Up to 16 periods (T = 1/fT) of different inverter AC output signals

are stored in another LUT, “LUT T”. The counters AddrA and AddrB are initialized with the first
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Figure 3.2: The 17 optimal switching angles per quarter-cycle for different modulation indices.

switching angle of a specific MI when “LoadAddr” or “Reset” is asserted then count when their

respective enable signals “EnAddrA” and “EnAddrB” are asserted. The “Period” of the inverter

output signal from “LUT T” is multiplied by normalized switching angles to generate the absolute

switching angles: ACntA = T × NCntA, ACntB’ = T × NCntB. As PWM2 is phase shifted by

180◦ with respect to PWM1, the final absolute switching angles for the second half-cycle (ACntB)

are achieved by adding a period-dependent offset to ACntB’, which is performed by the sub-block

“Offset”. This “Offset” block reduces the memory size of “LUT NCnt” since switching angles from

α2N+1 to α4N are not stored in the LUT. As the switching angles are normalized tofCLK (200 MHz

in this work), the largest number in “LUT NCnt” is 2·108. The outputs of this 2-port LUT require

NCntA/B = ceil(log2(fCLK)) bits, totaling 28 bits, to represent the normalized switching angles.

As a result of the structure in Figure 3.5, the size of LUT AddrMI, the 2-port LUT NCnt and the

LUT T are ceil(log2(M ·2N)), M ·2N ·ceil(log2(fCLK)) and Nf ·ceil(log2(fCLK)) bits respectively,

where M is the number of modulation indices and Nf is the number of fundamental output frequen-

cies. The total LUT size in Figure 3.5 is 1.98 kB, while the implementation for these experiments,
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Figure 3.3: Generating the SHEPWM pulses using a counter-based methodology.

with M = 8, Nf = 7 and N = 17, is 0.985 kB.

With the equations provided in Table 3.2, it becomes straightforward to calculate the LUT size

when employing different numbers of Modulation indices (M ), frequencies (Nf ), switching angles

(N ), or FPGA clock frequencies (fCLK).

In Table 3.1, the switching angles have been pre-computed using MATLAB and the floor

method, with deliberate inclusion of an extensive number of decimal points to ensure the preci-

sion of the angles, followed by truncation. For simplicity, only two decimal points are shown in the

Table 3.2: Lookup Table (LUT) size of the FPGA architecture in Figure 3.5

LUT Formula
M = 16, Nf = 16, N = 17

(bits)

Total

(bits)

LUT AddrMI : M ·ceil(log2(M ·2N)) 16 × 10 160

LUT NCnt : M ·2N ·ceil(log2(fCLK)) 16 × 2 × 17 × 28 15232

LUT T : Nf ·ceil(log2(fCLK)) 16 × 28 488

Total: 1.98 kB
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Figure 3.4: The designed SHEPWM core in Xilinx System Generator.

Table 3.3: Lookup Table (LUT) size of the SHEPWM experiment in this work

LUT Formula
M = 8, Nf = 7, N = 17

(bits)

Total

(bits)

LUT AddrMI : M ·ceil(log2(M ·2N)) 8 × 9 72

LUT NCnt : M ·2N ·ceil(log2(fCLK)) 8 × 2 × 17 × 28 7616

LUT T : Nf ·ceil(log2(fCLK)) 7 × 28 196

Total: 0.985 kB

table. The SHEPWM signal with the lower switching frequency gets more switching angle reso-

lution than the higher switching frequency since fCLK is fixed in the FPGA. The switching angle

resolution in degrees can be calculated as:

∆α =
360◦ × fT

fCLK
(33)

where fT is the fundamental output frequency. With fCLK = 200MHz, the switching angle reso-

lution of the different fundamental output frequencies is given by Table 3.4.

Table 3.4: SWITCHING ANGLE RESOLUTION IN DEGREES FOR DIFFERENT FUNDA-

MENTAL OUTPUT FREQUENCY

fT (kHz) 4 5 6 7 8 9 10

Resolution

(10−3 degree)
7.2 9.0 10.8 12.6 14.4 16.2 18

SysGen simulation results of important signals in the computing block are shown in Figure 3.6.
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Figure 3.5: The SHEPWM architecture on the FPGA with M = 16 MIs and Nf = 16 frequencies,

employing N = 17 switching angles.

A periodic counter’s (“Ramp Counter” sub-block) output signal “CntRamp” is compared with the

final absolute switching angles “ACntA” and “ACntB” (first-row in Figure 3.6). When they are

equal, the comparator triggers “EnAddrA” and “EnAddrB” respectively (second-row in Figure 3.6)

so that address of the next switching angle is indexed in “LUT NCnt” (third-row in Figure 3.6). The

signal CntRamp is then compared with the next absolute switching angle. This continues until all

the switching angles within the same MI are compared with CntRamp. When the “Ramp Counter”

counts to one full inverter output period, which is given by “LUT T”, the comparator output resets

the “Ramp Counter” to zero, and loads the “Address Counters” so that the first switching angle of

the same MI is indexed in “LUT NCnt”. For example, the first half-period of switching angles of

MI=0.1 occupies the first 34 addresses in “LUT NCnt”, and all the corresponding switching angles

of MIs from 0.1 to 0.9 with a step of 0.1 are pre-stored in “LUT NCnt”. If the user sends a new

input “Data” to the FPGA with a MI = 0.9, then “Address Counters” point to the address index (AI)

of 272 [(9 − 1)× 34] in “LUT NCnt”. For MI = 0.9, the switching angles occupy the AI from 272

to 306 (Figure 3.6).

Finally, the two PWM signals are obtained from the Least-Significant Bit (LSB) of signals

AddrA and AddrB (third to fourth-row in Figure 3.6).
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Figure 3.6: SHEPWM simulation showing critical FPGA signals in Figure 3.5.

3.1.2 On-the-Fly Configuration of AC Output Signals

The proposed SHEPWM architecture can configure the PWM output signals on-the-fly, directly

from the Personal Computer (PC) commands without reprogramming the FPGA. As a result, a

variable output frequency and/or amplitude can be generated at the inverter output. Figure 3.7 shows

relevant FPGA signals during on-the-fly configuration. When a reconfiguration command is sent

from the PC, the optimal switching angles are applied immediately, while the ramp counter waits

for the next peak count to take effect. Consequently, the new waveform, with updated amplitude

and frequency, is generated in the next period. Figure 3.8 shows VSW, extracted from PWM1 and

PWM2. A second-order Butterworth analog filter with a cut-off frequency of 20 kHz filters VSW to

give the differential output signal VOUT.

From t = 0.1ms to t = 0.87ms, a waveform with MI = 0.9 and fT = 5kHz is generated. At

t=0.9ms the waveform parameters are updated to MI=0.5 and fT=10 kHz . Finally at t=1.7ms

a waveform with MI= 0.7 and fT=7kHz is generated. It can be seen in Figure 3.7 (Top) that the

higher frequency PWM signal’s ramp counter peak is lower than in the case of a lower frequency

PWM signal. The third row within Figure 3.7 shows that smaller MI signals occupy lower AI. The
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Figure 3.7: FPGA signals during on-the-fly configuration.

discontinuity in the waveform between different MI and output frequency in Figure 3.8 is due to

uploading new “Data” information from the MATLAB Graphic User Interface (GUI) and resetting

the FSM in the SHEPWM block. Nevertheless, the results show that the on-the-fly configuration of

different AC output signals in real-time is achievable with this architecture.

3.1.3 SHEPWM Inverter System Implementation

The overall SHEPWM inverter system implementation is described in this section. Figure 3.9

shows the architecture of the inverter. The system includes the MATLAB GUI, Nexys Video Artix-7

FPGA board, and a custom host PCB. The input “Data” and GD configuration bits are sent from

the MATLAB GUI through a Universal Asynchronous Receiver/Transmitter (UART) interface. The

SHEPWM block generates two PWMs using a 200MHz clock signal that gives 5 ns timing resolu-

tion of the switching angles. Faster clock frequency means better timing resolution of the switching

angles but at the cost of more severe FPGA timing constraints and higher power dissipation. The

host PCB includes the auxiliary power systems (not shown in Figure 3.9), an LTCC SiP which con-

sists of digital isolators, two custom-designed reconfigurable GDs Ly et al. (2020) and GaN Field

Effect Transistors (FETs) (EPC2012C), and a hybrid second-order LC LPF. The digital isolators
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Figure 3.8: The effect of on-the-fly configuration on the amplitude and frequency of the inverter

output waveform.

protect the FPGA from any voltage/current spikes from the host PCB that circulates back to the

FPGA. They also convert 3.3V logic signals from the FPGA to 5V logic for the GDs. Two GDs

drive an H-bridge of GaN FETs and generate a three-level differential PWM signal at the switching

nodes.
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Figure 3.9: The architecture of the SHEPWM inverter.

The highest fundamental output frequency achieved in this work is 10 kHz. Consequently, it is

essential for the LC filter’s cutoff frequency to exceed this value to prevent attenuation of the output

voltage. To ensure robust performance, a cutoff frequency of approximately 20 kHz is selected.
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While higher-order LC filters, such as a 4th order, are available, they come at the cost of doubling

the size of the current second-order LC filter. Since one of the primary objectives of this work

is to minimize the inverter’s size, opting for higher-order filters is not favourable. Lower-order

filters exhibit a gentler attenuation slope at high frequencies, which, in the context of SHEPWM

modulation, exacerbates the issue of uncancelled harmonic power at high frequencies, resulting in

increased THD at the output. Therefore, considering both filter size and THD performance, we

choose a 2nd order LC filter with a cutoff frequency of approximately 20 kHz as the most suitable

option.

Figure 3.10 shows the LTCC SiP in which digital isolators, GDs and GaN FETs are integrated

with its size referenced to a Canadian two-dollar coin. The two GD Integrated Circuits (ICs) and

some digital isolators on the bottom of the LTCC substrate are located in cavities to reduce the

thickness of the SiP. More information about designing the LTCC SiP, its specifications and imple-

mentation can be found in Nguyen et al. (2022); Nobert et al. (2021).

Figure 3.10: LTCC SiP with a Canadian two-dollar coin (diameter=28mm) as a reference.

56



3.2 Simulation and Experimental Results of Designed SHEPWM In-

verter

In this section, the simulation and experimental results of the SHEPWM inverter system are

presented. The generated SHEPWM waveform from MATLAB is imported into the LTspice en-

vironment (Figure 3.11) in which real component values and models are used. The SHEPWM

waveform drives the inputs of the gate driver and the amplified SHEPWM signal at the power stage

is filtered out by the LC filter. The SHEPWM inverter was simulated using the conditions given

in Table 3.5 with two different loads. The simulated singled-ended switching node voltages (VSW1

and VSW2), differential switching node voltage (VSW) and differential output voltage (VOUT) for

MI = 0.9, fT = 10 kHz are shown in Figure 3.12. It can be seen that a sinusoidal AC output sig-

nal with the correct MI and fundamental output frequency (fT) is extracted from the three-level

SHEPWM signal.

Figure 3.11: SHEPWM inverter output stage schematic in LTspice

The experimental test setup of the SHEPWM inverter is shown in Figure 3.13. Single probes

are used to probe the single-ended switching node voltages (VSW1 and VSW2) and output voltages

(VOUT1 and VOUT2). Differential probes are used to probe the differential switching node voltage

(VSW) and output voltage (VOUT). Figures 3.15 and 3.16 show the measured output waveforms

for these signals. It can seen in Figure 3.15 that there are 17 switching angles per quarter cycle in

the measured differential switching node voltage (VSW). In other words, 17 rectangle pulses are
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Figure 3.12: Singled-ended switching node voltages (VSW1 and VSW2), differential switching node

(VSW) and output voltage (VOUT) waveforms from LTspice simulations.

generated in both positive and negative half-periods in VSW with a peak-to-peak value of 24V. The

measured differential output voltage (VOUT) has amplitude of approximately 21.3V and frequency

of 10 kHz, which matches the simulation results in Figure 3.12.

The frequency spectrum of the measured switching node voltage (VSW) is given in Figure 3.17,

where each harmonic’s power is normalized to the fundamental harmonic’s power. The fundamental

output frequency (1st harmonic) in this measurement is 10 kHz. It can be seen from the figure

that lower-order harmonics up to 34 are suppressed as expected. Some lower-order harmonics

are not fully eliminated due to timing errors introduced in the SHEPWM signal by the GD and

power transistors, however, their power is very low compared to the fundamental’s power as shown

in Table 3.6, in which the first 50 harmonics’ normalized power is given.

The SHEPWM inverter’s output THD is measured according to the equation below:

THD =

√

V 2
2 + V 2

3 + V 2
4 + · · ·+ V 2

i

V1
(34)

where Vi is the RMS value of the i th harmonic voltage. The output THD and its relationship between
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Table 3.5: SHEPWM INVERTER TEST CONDITIONS

Parameters Values

DC input voltage (VIN) 12V
Supply voltage for gate driver IC 5V
Modulation index (MI) 0.2− 0.9
Output voltage range (peak to peak) 4.8V − 21.6V
Fundamental output frequency (fT) 4 kHz− 10 kHz
Bridge tied loads (RBTL) 50Ω/500Ω
Bridge tied capacitors (CBTL) 0.1 µF/0.01 µF
Gate driver dead time 35 ns
Inductors L1, L2 270 µH/2.2mH
DC resistance of L1, L2 0.248Ω/3.1Ω
Capacitors C1, C2 47 nF/2 nF

MIs and fundamental output frequencies are shown in Figure 3.18a. The results show that the THD

is low for high MI and output frequencies, and it increases gradually with decreasing MI and output

frequency. This can be explained by the high power of the harmonic immediately after the cancelled

harmonics (35th harmonic in Figure 3.17), which is suppressed by the LPF more for higher output

frequencies since the filter’s cut-off frequency is fixed at 20 kHz. For small MI SHEPWM, more

power is concentrated in the harmonics after the cancelled harmonics. With a faster FPGA clock

frequency (Eq. (33)), the angle resolution gets better at smaller MI and THD at the output can

be further reduced but at the cost of more hardware resources and accurate digital logic timing

control. Overall, THD is equal or lower than 5.1% for MI 0.2 to 0.9 and output frequency from

5 kHz to 10 kHz (THD=5.08% for MI=0.2 and fT=5kHz). The THD difference at the inverter

output between simulation and measurement for different MI and the fundamental output frequency

is given in Figure 3.18b in which the simulated THD is lower than the measured one. The THD

difference is larger in the regions of smaller MI and larger output frequencies. This is because short

pulses with a fast-switching frequency at the switching node are more sensitive to timing errors.

From the figure, it can be seen that the THD difference is less than 1% for most of the region, and

MI degrades the measured THD more than the output frequency.

Although the higher switching frequency SHEPWM signal exhibits a lower switching angle res-

olution (Table 3.4), its output THD is lower compared to the lower switching frequency SHEPWM
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Figure 3.13: SHEPWM inverter experimental test setup.

signals. Consequently, the degradation in THD for lower output signals cannot be attributed pri-

marily to the switching angle resolution. Even when adopting SHEPWM in a closed-loop control

to achieve the ideal switching angles, the enhancement in THD output is almost insignificant. The

THD degradation is primarily due to the fixed cutoff frequency of the LC low-pass filter, where

higher switching frequency SHEPWM signals attenuate high-order harmonics more compared to

lower switching frequency SHEPWM signals.

The power efficiency of the SHEPWM inverter is measured according to the equation below:

η =
VOUT(RMS) × IOUT(RMS)

VIN × IIN(AVE)
(35)

where VOUT(RMS) and IOUT(RMS) are the RMS values of the differential output voltage and current,

VIN is the inverter DC input voltage, and IIN(AVE) is the average input current of the inverter. The

inverter’s efficiency is simulated and compared to an NPWM inverter.

Figure 3.19 shows the power efficiency of the inverter for different output power, where dashed
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Figure 3.14: SHEPWM signals from FPGA for MI=0.9 and fT=10 kHz.

lines are for simulated efficiency and solid lines are for measured efficiency. For the same inverter

conditions and output THD, the SHEPWM inverter has better efficiency than NPWM. The results

showed that at fundamental output frequencies of 4 kHz, 7 kHz, and 10 kHz, the SHEPWM inverter,

with an output power of 0.12W, exhibited an average efficiency improvement of 17.3%, 11.7%, and

4.2% over the NPWM inverter, respectively. Conversely, when the output power was increased to

1.2W, the efficiency advantage of SHEPWM, while slightly reduced, remained notable, with an

average improvement of 2.3%, 6.2%, and 6.9%, respectively.

For the SHEPWM inverter, the switching frequency at the switching node is scaled with the

fundamental output frequency since there are fixed 34 rising/falling edges per one sine-wave cycle.

However, there is no fixed switching period for the SHEPWM signal, and the switching frequency

is instead a quasi-switching frequency. That is, for a 10 kHz fundamental output frequency, the

switching node has a 340 kHz quasi switching frequency, and for the 7 kHz and 4 kHz fundamental

output frequency, the quasi switching frequency is 238 kHz and 136 kHz respectively. One thing

is clear that the switching losses happen during the finite rising/ falling time (where GaN FETs’
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Figure 3.15: Measured single-ended switching node voltages (VSW1 and VSW2), differential switch-

ing node (VSW) and output voltage (VOUT) waveforms for MI=0.9 and fT=10 kHz.

drain-source voltage and current overlap), and the rising/falling edges count can be compared with

NPWM. For the same inverter conditions and output THD, the NPWM inverter has a switching

frequency of 370 kHz, 256 kHz and 148 kHz for the fundamental output frequency of 10 kHz, 7 kHz

and 4 kHz, respectively. This implies that the SHEPWM exhibits lower switching activity compared

to the NPWM, resulting in reduced switching losses dissipated in the SHEPWM.

For the same output power (VOUT(RMS) × IOUT(RMS)), SHEPWM and NPWM have the same

conduction loss (Pcon = I2OUT(RMS) × RPATH), where RPATH is the path resistance from input

supply to output voltage, including the GaN FET’s turn on resistor (RDS(ON)), inductor series resis-

tance, and any parasitic resistance in the path. The rest of the power losses come from the switching

losses, which are proportional to the switching frequency of the inverter. These switching losses

include but are not limited to switching loss due to the finite turning on/off time of the power

transistors, gate charge loss due to charging and discharging of the gate capacitance of the power
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Figure 3.16: Measured inverter single-ended (VOUT1 and VOUT2) and differential (VOUT) output

signals for MI=0.9 and fT=10 kHz.

transistors, dead-time loss due to the freewheeling conduction loss of the body diode of the power

transistors, and some power loss due to the ripple current on the inductor. Therefore, to achieve

lower THD than SHEPWM, NPWM would need to operate at an even higher switching frequency,

incurring more switching losses that could degrade the overall inverter efficiency.

For the SHEPWM inverter, the efficiency is higher for the lower output frequency since the

switching frequency at the switching node is scaled with the fundamental output frequency. The

measured efficiency is less than the simulated efficiency, and the difference in efficiency is obvious

for small output power but decreases for large output power. This can be attributed to the predom-

inant switching losses at lower output power levels, and it is possible that the model accuracy of

the gate driver and GaN FETs may not be optimal. Also, calculating the exact switching losses is

almost impossible because the effect of the parasitic inductive components significantly alters the
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Figure 3.17: Spectrum of the measured differential switching node voltage (VSW).

current and voltage waveform, as well as the switching times during the switching process. In addi-

tion, variables such as GaN FET capacitor values, gate threshold voltage, driver output impedance,

and others introduce uncertainty in the calculation of switching losses in the GaN FET.

Another observation from Figure 3.19 is the efficiency advantage of SHEPWM over NPWM

is large for the low-power inverter but reduced for the high-power inverter. There are two reasons

for this. One is as the power increases, the conduction loss increases. Hence, the switching losses

from less switching activity from SHEPWM are insignificant. Secondly, SHEPWM consistently

operates in hard-switching mode, whereas NPWM incorporates a partial soft-switching mechanism.

Soft-switching is known for its higher efficiency compared to hard-switching. As the load current

increases, the dominance of soft-switching becomes more pronounced in NPWM. In SHEPWM the

switching node has a switching activity when there is only a current going out of the switching

node, and there is no switching activity when there is a current going into the switching node

(Figure 3.15). On the other hand, in NPWM there is continuous switching activity on both switching
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Table 3.6: POWER OF THE HARMONICS OF THE DIFFERENTIAL SWITCHING NODE

VOLTAGE (VSW)

Harmonic
Normalized

Power
Harmonic

Normalized

Power
Harmonic

Normalized

Power
Harmonic

Normalized

Power
Harmonic

Normalized

Power

1 100 11 0.25 21 0.09 31 0.39 41 13.32

2 0.07 12 0.01 22 0.03 32 0.05 42 0.03

3 0.32 13 0.26 23 0.22 33 0.41 43 2.49

4 0.02 14 0.01 24 0.01 34 0.08 44 0.04

5 0.24 15 0.07 25 0.42 35 39.06 45 0.23

6 0.05 16 0.05 26 0.04 36 0.08 46 0.04

7 0.12 17 0.15 27 0.16 37 2.57 47 0.03

8 0.01 18 0.03 28 0.01 38 0.13 48 0.01

9 0.16 19 0.36 29 0.08 39 25.67 49 0.14

10 0.02 20 0.02 30 0.03 40 0.03 50 0.05

*Fundamental frequency is 10 kHz; Each harmonic’s power is normalized to the 1st harmonic. The DC harmonic’s

normalized power is 1.07.

nodes. For half of the sine-wave cycle, the current flows out of the switching node, indicating hard-

switching. During the other half-cycle, the current flows into the switching node, charging the

output capacitance of the GaN FET. This contributes to the rising of the switching node during

dead-time. After the dead-time concludes, the remaining rise of the switching node is attributed to

the gate driver pulling up, which consumes power. With increasing load current, the output capacitor

charges more rapidly, leading to reduced power consumption from the gate driver Ma et al. (2015).

We observed the one-side half-bridge waveforms for both SHEPWM and NPWM at low output

power, plotted in Figure 3.20 and Figure 3.21. Positive current indicates inductor current flowing

out of the half-bridge, while negative current denotes current flowing into the half-bridge. From the

SHEPWM waveforms, we observed switching activities only during the half-cycle when inductor

current flows out of the half-bridge, indicating purely hard-switching. No switching activity occurs

during the other half-cycle when the inductor current flows into the half-bridge; the switching node

voltage remains low, indicating no switching losses during this period. Only conduction losses result

from the inductor series resistance and the low-side power transistor turn-on resistance (RDS(ON)).

Similar waveforms can be observed for the other half-bridge, confirming that SHEPWM involves

only hard switching.

In NPWM, however, switching activities occur both when inductor current flows out and into

the half-bridge. When the inductor current flows out of the half-bridge, hard-switching is involved,
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whereas, when it flows into the half-bridge, partial soft-switching occurs. Figure 3.22 presents en-

larged waveforms of NPWM when the inductor current reaches its negative peak value. As depicted,

the switching node voltage rises to 0.3 V at the end of the dead-time. The subsequent rise from 0.3

V to 12 V (input voltage VIN) results from the high-side power transistor turning on. Figure 3.23

illustrates the same waveforms at high output power, nearing the peak value of negative inductor

current. Here, the switching node voltage rises to 7.5 V at the end of the dead-time, consuming

no switching loss. The remaining rise from 7.5 V to 12 V is attributed to the high-side power

transistor turning on, consuming minimal power. It’s important to note that the inductor current is

a sine wave, and this partial soft-switching diminishes as the negative inductor current amplitude

decreases, eventually becoming hard-switching when the inductor current becomes positive.

Although the proposed SHEPWM architecture demands a higher memory footprint due to the

storage of precomputed switching angles across multiple modulation indices and output frequen-

cies, its runtime computational complexity remains comparatively low. In NPWM, a continuous

sinusoidal reference must be generated (e.g., using a CORDIC block or a sine LUT), and a high-

frequency carrier waveform is compared with the reference in real time, requiring frequent compar-

isons and arithmetic operations. When modulation parameters such as amplitude or frequency vary

dynamically, additional computation is needed to scale or adjust the reference waveform accord-

ingly. In contrast, all heavy computation in the SHEPWM approach—namely solving transcenden-

tal equations for switching angles—is performed offline. During runtime, the modulation process is

carried out by simply reading the angle values from look-up tables and comparing them with a ramp

counter, without requiring any real-time trigonometric evaluation or waveform synthesis. Hence,

while SHEPWM involves greater memory usage and slightly more logic for configuration and LUT

addressing, it avoids the continuous arithmetic operations characteristic of NPWM As a result, the

steady-state operation of the SHEPWM architecture incurs no significant computational overhead

compared to NPWM.

This work is compared with other recent works based on the power stage structure, the num-

ber of switching node voltage levels, DC bus voltage(s), MI range, fundamental output frequency,

transitions per quarter period, and capability of configuring the AC outputs on-the-fly, as shown

in Table 3.7. For a multilevel cascaded H-Bridge topology, more than one isolated DC source is
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required. Depending on the topology, voltage level and switching angle numbers, multilevel in-

verters’ MIs may or may not be continuous in the full range of MI. For discontinuous MI, there is

no solution for the optimal switching angles in some regions of MI, therefore, the inverter cannot

generate an output voltage with the specific amplitude. Works in Yang et al. (2017) and M. Wu et al.

(2020) have discontinuous MI ranges and only minimum and maximum MIs are given in Table 3.7.

In Ahmed et al. (2017), an on-the-fly configuration of output amplitude is presented but at the cost

of complex online computation of real-time switching angles. The proposed method in this article

is simple, cost-effective, and has the capability of on-the-fly configuration of both inverter output

amplitude and frequency. It is worth noting that the fundamental SHEPWM technique detailed in

this work can be readily extended to high-power converters operating with kilowatt range. This

extension primarily involves increasing the input voltage for power transistors and adjusting the

LC filter component values (ensuring that the power rating of the power transistors and LC filter

components are suitable for the kilowatt range) to meet the specific requirements of higher power

levels.

Table 3.7: COMPARISON TO OTHER WORKS

Power stage

structure

Voltage

levels

DC bus

voltage

Modulation

index (MI)

Fundamental

output frequency (fT)

Transitions per

quarter period

On-the-fly config

of AC outputs

Yang et al. (2017) Cascaded H-Bridge 13 18×15V
0 − 3.4

(discontinuous)
50Hz 9 No

Yang et al. (2015) H-Bridge 3 100V
0 − 0.83

(continuous)
50Hz 8 No

M. Wu et al. (2020) Hybrid-clamped 4 150V
0 − 1.15

(discontinuous)
50Hz 7 No

Perez-Basante et al. (2020) Module Multilevel - 200V
0.1 − 1

(continuous)
50Hz 17 No

Zhao et al. (2016) Cascaded H-Bridge 7 3×50V
1.65 − 2

(continuous)
60Hz 3 No

Ahmed et al. (2017) Cascaded H-Bridge 7 3×40V
0.1 − 1.04

(continuous)
50Hz 3 Yes (MI only)

Buccella et al. (2023) Cascaded H-Bridge 33 150V
0 − 0.9678

(continuous)
47 − 63Hz N/A No

Kala, Sharma, Jately, Joshi, and Yang (2024) Cascaded H-Bridge 11 5×12V
0.45 − 0.845

(discontinuous)
50Hz 5 Yes (MI only)

This work H-Bridge 3 12V
0.2 − 0.9

(continous)
4 − 10 kHz 17 Yes (MI and fT)

3.3 Conclusions

In this work, a full-bridge low-power inverter design is presented through the utilization of an

open-loop configuration combined with a novel FPGA hardware implementation. Firstly, a low-

power Selective Harmonic Elimination Pulse Width Modulation (SHEPWM) inverter operating at
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high fundamental output frequencies ranging from 4 kHz to 10 kHz is showcased. This work di-

verges from the conventional focus on high-power applications with fixed, low-output frequencies

of 50Hz or 60Hz, offering a novel perspective on the application of SHEPWM in low-power sys-

tems. Importantly, this research is the first to investigate and address the challenges associated with

achieving high-efficiency operation across a wide frequency range while maintaining a fixed filter

cutoff frequency.

Secondly, a unique FPGA-based architecture implementing the SHEPWM algorithm is intro-

duced, marking a key innovation in this field. This architecture supports on-the-fly configurability

of the inverter output, enabling dynamic adjustment of both amplitude and fundamental frequency

in real time. Unlike traditional approaches that rely on fixed configurations or computationally

intensive methods, this architecture achieves adaptability without excessive storage or complex cal-

culations. This flexibility not only enhances the versatility of the SHEPWM algorithm but also

addresses practical constraints in low-power applications, making it a robust solution for diverse

operating conditions.

Furthermore, the integration of compact 3D components within a SiP demonstrates the potential

for significant reductions in PCB area. This SiP design serves as a dual-purpose solution, capable

of supporting both DC-AC inversion and DC-DC conversion. While the current implementation

utilizes only a subset of the SiP components, this work highlights the potential for developing even

more compact and efficient SiP designs with a minimized PCB footprint, paving the way for future

advancements in integrated power electronics.

In summary, this work not only broadens the applicability of SHEPWM to low-power systems

with wide-frequency operation but also introduces a new innovative architectural design and SiP in-

tegration strategies. These contributions collectively advance the state-of-the-art in inverter design,

offering a unique and versatile solution for next-generation low-power industry applications.
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(a)

(b)

Figure 3.18: (a) Measured THD versus different modulation indices and output frequencies, (b)

THD difference between simulation and measurement.
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Figure 3.19: Power efficiency comparisons of the SHEPWM and NPWM inverters for the same

output THD (a) Pout=0.12 W, (b) Pout=1.2 W.
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Figure 3.20: SHEPWM inverter waveform showing one branch inductor and load current, high and

low side gate-source voltages, and switching node voltage

Figure 3.21: NPWM inverter waveform showing one branch inductor and load current, high and

low side gate-source voltages, and switching node voltage
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Figure 3.22: NPWM inverter in light load: negative inductor current contributing to the rising of

switching node voltage during dead-time

Figure 3.23: NPWM inverter in heavy load: negative inductor current contributing to the rising of

switching node voltage during dead-time
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Chapter 4

Discrete DISMC for a Class-D Amplifier

Sliding mode control (SMC) is a robust control technique widely employed in systems char-

acterized by nonlinearity, parameter variations, and external disturbances. The core principle of

SMC lies in driving the system states to a designed sliding surface, where they are then maintained

by the inherent robustness of the control law. While SMC has traditionally been implemented in

analog domains due to its continuous-time switching behavior, advancements in digital technology

have spurred a growing interest in discrete-time implementations. DISMC extends the capabilities

of conventional SMC by incorporating an additional integral action, resulting in improved dynamic

performance, enhanced disturbance rejection, and better steady-state accuracy. This makes DISMC

particularly well-suited for power electronic applications such as CDAs, where precision, efficiency,

and stability are critical.

This work introduces a new approach to stability analysis and controller gain determination for

DISMC in CDAs (O4). The proposed method is validated through MATLAB Simulink simulations

and experimental trials, demonstrating its efficacy in both digital and analog domains.

One key objective of this work (O3) is to validate the discrete DISMC design in double-loop

configurations for CDAs, with a specific focus on current mode control. While SMC has tradi-

tionally been implemented in the analog domain due to its continuous switching behavior, there is

a growing shift among control engineers toward digital implementation. This trend is particularly

relevant for systems with discontinuous behaviors like CDAs, where digital control offers increased
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flexibility. Previous studies have primarily utilized voltage error as the state variable in SMC, re-

sulting in a single-loop feedback control structure. In contrast, the approach presented in this work

incorporates both voltage and current errors as state variables, forming a double-loop configuration.

This configuration enhances performance in several key areas, including output voltage regulation,

transient response, and robustness to load variations.

Although the inherent chattering effect of SMC can be exacerbated in the digital domain com-

pared to its analog counterpart, the increasing availability of high-speed digital processing hardware

is making discrete-time controllers more feasible. Consequently, discrete DISMC implementations

in CDAs are gaining prominence as digital controllers become more capable of matching the per-

formance of analog systems.

The chapter is organized as follows: Section 4.1 derives the mathematical model of the CDA

output stage, the equivalent control signal based on DISMC is derived, followed by the determi-

nation of controller gains using the reaching and stability conditions. Subsequently, the equivalent

discrete-time control signal is formulated. Section 4.2 presents the system-level design of the CDA,

along with simulation and experimental results and their analysis. Finally, Section 4.3 provides the

conclusion of this work.

4.1 Design of the DISMC

4.1.1 Modeling the Class-D Amplifier Output Stage

The full-bridge CDA output stage is depicted in Figure 4.1. The symbols for the left and right

branches in Figure 4.1 are denoted as 1 and 2, respectively, following their respective symbols,

where 1 represents the left branch and 2 represents the right branch. Throughout this dissertation,

the analysis and design of the CDA are based on the half-bridge topology, which is then expanded

to the full-bridge topology. Therefore, for simplicity, the numbers for the left and right branches are

omitted.

In Figure 4.1, the half-bridge CDA output stage comprises a DC voltage source (Vi), bus capac-

itors (Cbus) that split the DC voltage source into equal and opposite polarities, GD, high-side and

low-side power transistors, an inductor (L), a capacitor (C), and a load resistor (R).
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Figure 4.1: Schematic of a full-bridge inverter output stage.

By using the state-space averaging model, the ideal average model of the half-bridge CDA

in Figure 4.1 can be described as:















LdiL
dt = Vi

2 (2uH − 1)− vo

C dvo
dt = iL − vo

R/2

(36)

where iL is the inductor current, vo is the half-bridge output voltage, uH = 1 when the high-

side power transistor turns on, and uH = 0 when the low-side turns on. Since the analysis is

based on a half-bridge, the effective load resistance is R/2. In DC-DC converters, the duty cycle,

which typically ranges between 0 and 1, is commonly employed. However, in DC-AC operation,

modulation depth (u) is frequently utilized instead of the duty cycle, with u being calculated as 2uH

- 1. Equation (36) can be rewritten by utilizing u as follows:















LdiL
dt = Vi

2 u− vo

C dvo
dt = iL − vo

R/2

(37)

From Eq. (37), it can be seen that u ranges from -1 to 1. This corresponds to the operation of

the CDA in Figure 4.1, where the load voltage ranges from −Vi to Vi, as it is configured in bipolar

mode.
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4.1.2 Design of a Discrete Double Integral Sliding Mode Controller for Class-D Am-

plifier

The design process of any SMC typically involves four steps. Firstly, it entails deriving the

switch-model of the power stage by analyzing all the switch states and defining the relevant state

variables that require control. Secondly, a sliding surface, comprised of these state variables, is

proposed. Thirdly, the control law is derived. Lastly, the existence and stability conditions are

verified. This involves deriving controller gains to ensure the trajectory of the state variables remains

close to the sliding surface, while the stability condition ensures that system dynamics approach the

equilibrium point.

In this section, we first derive the control law, followed by the application of reaching and

stability conditions to determine the controller gains. Subsequently, we convert the continuous-time

control signal to a discrete-time control signal, which is then applied to the CDA using discrete-time

DISMC.

4.1.2.1 Derivation of the Double Integral Sliding Mode Control Signal

The proposed DISMC utilizes both the output voltage error and the inductor current error as the

controlled state variables. Incorporating the output voltage error as a state variable enables precise

regulation of the output voltage, while the inclusion of the inductor current error ensures close main-

tenance of the inductor current to the desired reference value. Analogous to conventional current

mode control, the proposed controller generates the reference inductor current profile by amplifying

the output voltage error. Incorporating the double integral of both controlled state variables ensures

the presence of at least one integral term in the control law, which we will derive later. This in-

clusion aims to minimize steady-state error across a wide operating region, encompassing various
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operational switching frequencies. Therefore, the state variables are defined as:















































e1 = iref − iL

e2 = Vref − βvo

e3 =
∫

(e1 + e2)dt

e4 =
∫

[
∫

(e1 + e2)dt]dt

(38)

where iref is the reference inductor current, Vref is the reference voltage, β is the feedback scaling

factor of the output voltage. The reference inductor current relationship with error voltage can be

described as:

iref = K(Vref − βvo) (39)

where K is the scaling coefficient.

First-order derivatives of state variables are:















































ė1 = KV̇ref −
βK
C ic −

Vi

2Lu+ vo
L

ė2 = V̇ref −
β
C ic

ė3 = e1 + e2

ė4 =
∫

(e1 + e2)dt

(40)

where ic is the capacitor current flowing through the capacitor C1 or C2.

Define the sliding surface as the weighted combination of the state variables:

S = a1e1 + a2e2 + a3e3 + a4e4 (41)

where a1 to a4 are the associated coefficients of state variables.

The equivalent control signal of the DISMC can be found when the first-order derivative of the

sliding surface is equal to zero:

Ṡ = a1ė1 + a2ė2 + a3ė3 + a4ė4 = 0 ⇒ ueq (42)
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The derived equivalent control signal from Eq. (42) is:

ueq =
2L

Vi
(K +

a2
a1

)V̇ref −
2βL

CVi
(K +

a2
a1

)ic +
2vo
Vi

+
2a3L

a1Vi
(Vref − βvo)

+
2a3L

a1Vi
[K(Vref − βvo)− iL] +

2a4L

a1Vi

∫

(Vref − βvo)dt

+
2a4L

a1Vi

∫

[K(Vref − βvo)− iL]dt

(43)

As evident from Eq. (43), the equivalent control relies on data regarding capacitor current,

output voltage, and inductor current. Another formulation of the equivalent control equation can be

deduced from Eq. (42) as follows:

ueq =
2a2L

a1Vi
V̇ref +

2L

Vi
i̇ref +

4a2βL

a1CRVi
vo +

2vo
Vi

−
2a2βL

a1CVi
iL +

2a3L

a1Vi
(Vref − βvo)

+
2a3L

a1Vi
(iref − iL) +

2a4L

a1Vi

∫

(Vref − βvo)dt+
2a4L

a1Vi

∫

(iref − iL)dt

(44)

Equation (43) and Eq. (44) yield the same outcome. However, implementing the control sig-

nal from Eq. (43) is more straightforward, while Eq. (44) is convenient for analyzing the stability

conditions, which will be utilized later.

The average dynamics of an SMC-based system are equivalent to the average dynamics of a

PWM-controlled system, where

−1 f ueq = d =
vo
Vi/2

=
vc
v̂car

f 1 (45)

where d is the duty cycle of a PWM controlled system, vc is the control signal of DISMC, and v̂car

is the peak amplitude of carrier signal. The vc can be deduced from Eq. (45) as follows:

v̂car =
Vivc
2vo

= β
Vi

2
, (β =

vc
vo

) (46)

Hence, the control signal can be found as:

vc = ueq × v̂car = ueq × β
Vi

2
(47)
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Substituting Eq. (43) into Eq. (47), the final expression of the control signal is:

vc =K1V̇ref −K2ic + βvo +K3(Vref − βvo) +K3[K(Vref − βvo)− iL] +K4

∫

(Vref − βvo)dt

+K4

∫

[K(Vref − βvo)− iL]dt

(48)

where

K1 = βL(K +
a2
a1

) K2 =
β2L

C
(K +

a2
a1

)

K3 = βL
a3
a1

K4 = βL
a4
a1

4.1.2.2 Reaching condition

The reaching condition states that the equivalent control in Eq. (43) must drive the state variables

to the vicinity of the sliding surface. This can be expressed as the following condition:















Ṡs→0+ < 0, when ueq = 1

Ṡs→0− > 0, when ueq = −1

(49)

The reaching condition in Eq. (49) can be analyzed in two cases below to derive the inequality

that the controller must comply with.

Case 1: Ṡ < 0. By substituting ueq = 1 into Eq. (42), the inequality below can be derived as

follows:

K1V̇ref −K2ic +K3(e1 + e2) +K4e3 < β(
Vi

2
− vo) (50)

Case 2: Ṡ > 0. By substituting ueq = −1 into Eq. (42), the inequality below can be derived as

follows:

−K1V̇ref +K2ic −K3(e1 + e2)−K4e3 < β(
Vi

2
+ vo) (51)

When developing an SM controller with a static sliding surface, a practical approach involves

designing the sliding coefficients to meet the existence conditions for steady-state operations. In this
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context, the time-varying state variables vo, iL, and ic (assuming the stability of the DC input voltage

Vi) can be replaced with their anticipated maximum/minimum or steady-state parameters. These

parameters can be derived from the design specifications. This methodology yields the following

more comprehensive inequality equations, which assist in narrowing down the range of sliding

surface coefficients.















K1V̇ref(max) −K2ic(min) +K3(e1(max) + e2(max)) +K4e3(max) < β(Vi

2 − vo(max))

−K1V̇ref(min) +K2ic(max) −K3(e1(min) + e2(min))−K4e3(min) < β(Vi

2 + vo(min))

(52)

4.1.2.3 Stability condition

Once the reaching condition is achieved, it is desirable for the state variables to remain in the

vicinity of the sliding surface. Here, we first derive the ideal sliding dynamics of the system, and

then establish an equilibrium point at the origin of the sliding surface. Subsequently, we ensure that

both the current and voltage state variables at the equilibrium point meet the stability condition.

By replacing u in Eq. (37) with the equivalent control ueq in Eq. (44), the ideal sliding dynamics

of the system can be derived as:































diL
dt = 2a2β

a1CRvo −
a2β
a1C

iL + a2
a1
V̇ref + i̇ref +

a3
a1
(Vref − βvo) +

a3
a1
(iref − iL)

+a4
a1

∫

(Vref − βvo)dt+
a4
a1

∫

(iref − iL)dt

dvo
dt = iL

C − 2vo
CR

(53)

Here, we assume that DISMC drives the state variables to the sliding surface, and eventually

to the equilibrium point and there is no outside disturbance. Then, there is no tracking error of the

reference signal. At the equilibrium point:

VO = Vm sin(ωot); IL = Im sin(ωot) (54)

Vref − βVO = 0; Iref = IL = K(Vref − βVo) (55)

where VO and IL are the steady-state output voltage and inductor current, Vm and Im are the peak
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amplitude of steady-state output voltage and inductor current, ωo is the fundamental output fre-

quency in radian per second. Substituting Eq. (54) and Eq. (55) into Eq. (53), equilibrium point

steady-state equations can be derived as:















2a2β
a1CRVm sin(ωot)−

a2β
a1C

Im sin(ωot) +
a2β
a1

Vmωo cos(ωot) = 0

Vmωo cos(ωot) =
Im
C sin(ωot)−

2Vm

CR sin(ωot)

(56)

Next, by linearizing the ideal dynamics around the equilibrium point, that is to separate the

steady-state large signals and small ac signals, Eq. (53) becomes:































d(IL+ĩL)
dt = 2a2β

a1CR(Vo + ṽo)−
a2β
a1C

(IL + ĩL) +
a2
a1
V̇ref + İref +

a3
a1
[Vref − β(Vo + ṽo)]

+a3
a1
[Iref − (IL + ĩL)] +

a4
a1

∫

[Vref − β(Vo + ṽo)]dt+
a4
a1

∫

[Iref − (IL + ĩL)]dt

d(Vo+ṽo)
dt = IL+ĩL

C −
2(Vo+ṽo)

CR

(57)

where variables with the tilde sign indicate small ac signals. To further process Eq. (57) to separate

the large and small ac signals, applying equilibrium point equations Eq. (54) and Eq. (55) in Eq. (57),

the following equations can be derived:















































Imωo cos(ωot) +
d̃i
dL = 2a2β

a1CRVm sin(ωot) +
2a2β
a1CR ṽo −

a2β
a1C

Im sin(ωot)−
a2β
a1C

ĩL

+a2β
a1

Vmωot cos(ωot) + Imωo cos(ωot)−
a3β
a1

ṽo −
a3
a1
ĩL

−
a4β
a1

∫

ṽodt−
a4
a1

∫

ĩLdt

Vmωo cos(ωot) +
dṽo
dt = Im

C sin(ωot) +
ĩl
C − 2Vm

CR sin(ωot)−
2ṽo
CR

(58)

Assuming that at the equilibrium point Vo k ṽo and IL k ĩL, closely monitoring Eq. (56) and

Eq. (58), the large signals cancel out in Eq. (58), leaving only small ac signals, which must satisfy
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the stability condition.















d̃iL
dt = ( 2a2

a1CR − a3
a1
)βṽo − ( a2βa1C

+ a3
a1
)̃iL −

a4β
a1

∫

ṽodt−
a4
a1

∫

ĩLdt

dṽo
dt = ĩL

C − 2ṽo
CR

(59)

The objective now is to determine if the small-signal model in Eq. (59) is stable. Let us assume

x = ĩL and y = ṽo, enabling us to rewrite Eq. (59) as:















ẋ = γ1y − γ2x− γ3
∫

ydt− γ4
∫

xdt

ẏ = γ5x− γ6y

(60)

where

γ1 =
2a2β

a1CR
−

a3β

a1
γ2 =

a2β

a1C
+

a3
a1

γ3 =
a4β

a1

γ4 =
a4
a1

γ5 =
1

C
γ6 =

2

CR

Rearranging Eq. (60), a third-order differential equation in terms of small signal output voltage

can be expressed as:

1

γ5
ÿ + (

γ2 + γ6
γ5

)ẏ + (
γ2γ6 + γ4

γ5
− γ1)y + (

γ4γ6
γ5

+ γ3)

∫

ydt = 0 (61)

Taking the Laplace transform (Y = L(y)) of Eq. (61),

Y 3 + (γ2 + γ6)Y
2 + (γ2γ6 − γ1γ5 + γ4)Y + (γ4γ6 + γ3γ5) = 0 (62)

Applying Routh-Hurwitz criteria to Eq. (62), the system will be stable if the following conditions
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are met:















































γ5 > 0

γ2 + γ6 > 0

γ2γ6(γ2 + γ6) + γ2γ4 − γ1γ5(γ2 + γ6)− γ3γ5 > 0

γ4γ6 + γ3γ5 > 0

(63)

Inequalities in Eq. (63) further narrow down the region of the designed sliding surface coefficients

from the existence condition. Directly solving the third-order differential equation in Eq. (62) be-

comes challenging which has three distinct root values. To simplify, let us factorize Eq. (62) into the

product of first-order and second-order systems in a standard form, and make the system dominated

by the second-order system.

Y 3 + b2Y
2 + b1Y + b0 = (Y + p)(Y 2 + 2ωnζY + ω2

n)

= Y 3 + (2ωnζ + p)Y 2 + (ω2
n + 2ωnζp)Y + pω2

n = 0

(64)































b2 = 2ωnζ + p = γ2 + γ6

b1 = ω2
n + 2ωnζp = γ2γ6 − γ1γ5 + γ4

b0 = pω2
n = γ4γ6 + γ3γ5

(65)

where p represents one of the poles (root value), ωn denotes the natural frequency, and ζ stands for

the damping ratio. The system also features two other poles at −ζωn ± ωn

√

ζ2 − 1. Let’s assume

the system exhibits critical damping, with ζ = 1, which implies that the other two real poles are both

at −ωn. If the system is predominantly characterized by a second-order system, this implies that

the third pole is at least ten times greater than the other two poles. Hence, the following conditions
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Table 4.1: SYSTEM PARAMETERS

Parameters Values

DC input voltage (Vi) 24V

Inductor (L1, L2) 112 µH

Capacitor (C1, C2) 0.56 µF

Load resistor (R) 20Ω

Reference voltage (Vref ) 2.4V (peak)

Carrier voltage (Vcar) 2.4V (peak)

Carrier frequency (fsw) 520 kHz

β 0.2

Table 4.2: CALCULATED COEFFICIENTS

Parameter Values Parameters Values

γ1 −6.61× 103 a4/a1 2.693× 108

γ2 −2.17× 104 β 0.2

γ3 5.38× 107 K 20

γ4 2.69× 108 K1 2.24× 10−4

γ5 1.78× 106 K2 5.89

γ6 1.78× 105 K3 0.167

a2/a1 −0.103 K4 3.03× 103

a3/a1 1.482× 104

must be met:















ζ = 1, (critical damping)

p = 10ωn, (dominated by second-order)

(66)

With the natural frequency ωn being the same as the cut-off frequency of the LC filter (ωn =

ωLC = 2πfLC), and by combining the system parameters in Table 4.1, the coefficients are solved

as shown in Table 4.2.

4.1.2.4 Design of the Discrete-time DISMC

To enable the implementation of continuous SMC in a digital processor, SMC is discretized as

DSMC with a sampling time Ts to facilitate practical application. Utilizing the derivative definition

and considering that the system sampling period Ts is much shorter than the fundamental period T ,
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we obtain the following formula:

ė(k) ≈
e(k)− e(k − 1)

Ts
(67)

The continuous-time state variables in Eq. (38) become the discrete-time state variables as fol-

lows:















































e1(k) = iref(k)− iL(k)

e2(k) = Vref(k)− βvo(k)

e3(k) = e3(k − 1) + [e1(k) + e2(k)]Ts

e4(k) = e4(k − 1) + e3(k)Ts

(68)

Therefore, the control signal in Eq. (48) is discretized as follows:

vc(k) =K1V̇ref(k)−K2ic(k) + βvo(k) +K3(vref(k)− βvo(k))

+K3[K(vref(k)− βvo(k))− iL(k)]

+K4[e2(k − 1) + (vref(k)− βvo(k))Ts]

+K4[e1(k − 1) + [K(vref(k)− βvo(k))− iL(k)]Ts]

(69)

As the fundamental output period T is much larger than the sampling period Ts, the controller

gains derived earlier can be utilized for the discrete-time controller gains when implementing the

control signal vc in a discrete-time fashion.

The discrete-time DISMC block diagram for the full-bridge CDA is shown in Figure 4.2. The

output stage variables vo, ic, and iL are measured and discretized before being used in discrete-time

DISMC. The control signal vc(k) in Figure 4.2 is implemented as Eq. (69). The term K1V̇ref(k)

in Eq. (69) is ignored since K1 is very small. The control signal vc is compared with the carrier

signal vcar to generate the PWM signals that drive the power transistors in the full-bridge. The

reference signals Vref1(k) and Vref2(k) are internally generated from the FPGA and are phase-shifted
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Figure 4.2: Discrete-time DISMC block diagram for a full-bridge CDA.

by 180◦.

4.1.3 System Level Design of the DISMC Class-D Amplifier

In this section, the system implementation of the CDA, the simulation conditions and results,

and the experimental results are presented and analyzed.
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Figure 4.3: The system architecture of the designed class-D amplifier

To validate the functionality and demonstrate the performance of the proposed discrete-time

DISMC algorithm, a closed-loop system for the CDA is designed as shown in Figure 4.3. In the

system, the buffer stage consists of sensing amplifiers where CDA output stage variables iL, ic, and

vo are measured. Small shunt resistors are used to measure the current variables. The filter stage
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in hardware is implemented as a Multiple Feedback (MFB) configuration and serves the purpose

of providing gain (amplifying current signals and attenuating the voltage signals) so that it meets

the full input range of ADC. It also serves the purpose of an anti-aliasing filter to remove the noise

above the Nyquist frequency before the measured signals go into the ADC. The measured signals

are discretized by 12-bit ADCs with a sampling time of Ts, then through digital isolators which

serve the purpose of isolating the whole CDA from the FPGA. The FPGA code is written in VHSIC

Hardware Description Language (VHDL) and the design consists of:

1. A Serial Peripheral Interface (SPI) for communicating between the FPGA and ADCs,

2. A UART for writing the configuration bits to ADCs, and reading the ADC outputs for de-

bugging purposes, and writing/setting the modulation index (M ) and fundamental output frequency

(ft) of the reference signal inside the DISMC block,

3. The proposed DISMC plus PWM generation, which is designed in Vitis Model Composer

(formerly known as System Generator) embedded into the MATLAB/Simulink environment. The

MATLAB GUI on the PC is used for writing/reading the commands from the FPGA. The generated

PWM signals from the FPGA go through digital isolators to drive the gate driver which eventually

drives the power transistors in the CDA output stage.

4.1.3.1 Design of DISMC class-D amplifier in Vitis Model Composer

Figure 4.4: The full-bridge class-D amplifier design in Vitis Model Composer (System Generator)
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The entire CDA with the DISMC was designed and simulated using Xilinx Vitis Model Com-

poser (formerly known as System Generator), which is compatible with MATLAB Simulink. The

designed full-bridge CDA is shown in Figure 4.4. The full-bridge CDA, depicted in Figure 4.4, can

be divided into three major parts: the power output stage, the buffer and filter stage, and the DISMC

stage.

• The power output stage: This stage includes the full bridge with power transistors, LC filters,

and a load resistor. The current from the LC filter’s inductor and capacitor is sensed using

small shunt resistors, and single-ended output voltages from each branch are directly sensed.

• The buffer and filter stage: This stage mainly includes gain circuits for sensing voltage and

current, as well as anti-aliasing filters. The purpose of this stage is to perform current-to-

voltage conversion, scale the sensed voltages to within the range of the ADC full scale, and

reduce noise before quantization.

• The DISMC block: This stage is shown in Figure 4.5. It processes the sensed voltages and

currents from the previous buffer and filter stage and generates two duty cycle commands for

both branches of the full bridge. These duty cycle commands are then compared with a ramp

signal to generate two main PWM signals, along with their complementary signals, to drive

the power transistors.

An ADC ready logic signal serves as an input to the DISMC. Whenever new ADC sampled data

arrives at the DISMC block inside the FPGA from the ADC, the ADC ready logic signal goes ”high”

for one clock cycle, updating the corresponding registers. The implementation of the DISMC, as

shown in Figure 4.2, in Vitis Model Composer is illustrated in Figure 4.6. The error signal, resulting

from the subtraction of the reference signal and the scaled output voltage, is fed into a proportional-

integral block to generate the PIeV signal. The current reference is generated by scaling the error

signal and is subtracted from the inductor current, which is then fed into another proportional-

integral block to generate the PIei signal. Finally, the two proportional-integral outputs, along with

the scaled output voltage and the sensed capacitor current, are summed to generate the duty cycle

command, the dn signal.
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Figure 4.5: The top level DISMC showing I/Os

Figure 4.6: The implementation of DISMC in Xilinx blocksets in Vitis Model Composer

The proportional-integral (PI) block is implemented as shown in Figure 4.7, following Eq. (69).

The corresponding registers are updated (enabled) each time new ADC samples are received. To

prevent windup, which is a common issue in PI/PID controllers, the integral path output is con-

strained by user-defined binary point selection. When the predefined limit is reached, the integral

path output becomes saturated.

The digital pulse width modulation (DPWM) block is illustrated in Figure 4.8. The ramp signal

is generated by a counter, which resets upon the arrival of a new ADC sample, ensuring that the

switching frequency of the converter matches the ADC sampling rate. The two duty cycle com-

mands from the DISMC are then compared with the ramp signal to generate the PWM signals,
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while their complementary signals are produced using dead-time blocks.

Figure 4.7: The implementation of proportional-integral in DISMC

Figure 4.8: The digital pulse width modulation block

4.1.3.2 DISMC IP integration and FPGA architecture in Vivado Design Suite

The designed DISMC, developed using Xilinx Vitis Model Composer, is compiled as an In-

tellectual Property (IP) core and imported into the Vivado Design Suite as an IP block, as shown

in Figure 4.9. The I/O pins of this block include an ADC ready logic signal, which goes high for

one clock cycle whenever a new ADC sample is available, along with six channels of 12-bit ADC

data corresponding to the output voltage, inductor current, and capacitor current. Additionally, the

block has a clock input and four PWM output signals.
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Figure 4.9: The DISMC IP in Vivado imported from Xilinx Vitis Model Composer

The DISMC IP block is then integrated into the top-level FPGA design, with the architecture

depicted in Figure 4.10. The FPGA design includes the following components: a SPI master, an

SPI state machine, an asynchronous FIFO, and the PWM control block (DISMC IP). Note that the

UART interface, used to program the ADC through SPI, is not shown in the block diagram. The

functionality of each block is as follows:

• SPI Master: The design includes three SPI masters, each controlling one of the three ADC

slaves. The interface features the master out, slave in (MOSI) line, used to configure the

ADCs. The ADCs, ADS7253 from Texas Instruments (TI), are configured in single serial

data out (SDO) mode, where two analog input channels are converted to digital signals and

transmitted via a single master in, slave out (MISO) line. Consequently, the three ADCs

provide a total of six channels of digital output. The SPI clock operates at 25MHz, derived

from the main 100MHz FPGA clock using a clock divider. The chip select (CS) pin, which

is active low, is shared among the three ADCs for slave selection.

• SPI State Machine: This block deserializes the ADC output data, creating a 72-bit bus from

the six ADC channels. Additionally, it generates an ADC ready signal when new ADC frame

data is available.

• Asynchronous FIFO: This block is responsible for clock domain crossing (CDC), where

the ADC data is transferred from the 100MHz domain to the 160MHz domain. The PWM

control block operates at a higher clock frequency of 160MHz to achieve higher resolution

for the PWM signals and to minimize errors when generating the ramp signal.

91



• PWM Control: This block, implemented as the DISMC IP generated from Xilinx Vitis

Model Composer, reads the ADC data, processes it, and generates four PWM signals for

the full-bridge class-D amplifier.

Figure 4.10: The FPGA block diagrams and its interaction to ADCs

4.2 Simulation and Experimental Results of Designed DISMC

The CDA system is simulated in the MATLAB/Simulink environment. The designed system

is divided into analog and digital parts. The analog parts utilize continuous-time Simulink blocks,

including the output stage, buffer, and filter. The filter incorporates gain blocks and a second-

order Butterworth filter with a cutoff frequency of 250 kHz. The ADC interface, DISMC, and

PWM generation blocks are implemented using fixed-point digital processing blocks in Xilinx Vitis

Model Composer. The ADC is configured as 12-bit with a sampling time of 1.92 µs. The DISMC

block operates at 160MHz and generates synchronized PWM signals with the same period as the

ADC sampling time, resulting in a PWM switching frequency of around 520 kHz. The remaining

conditions utilize the system specifications provided in Table 4.1.

The steady-state and dynamic performance of the DISMC is compared with that of the ISMC

92



and PI controllers. First, the ISMC and PI controller gains are derived based on the same full-bridge

amplifier architecture. The controller gains are calculated using an identical controller bandwidth,

ωn. The controllers are implemented in Vitis Model Composer, similar to the DISMC. For the

ISMC, the control signal is derived using the same procedures as the DISMC, with the coefficients

distinguished by adding a prime (′) symbol. The derived control signal for the ISMC is:

v′c(k) =K ′

1V̇ref(k)−K ′

2ic(k) + βvo(k) +K ′

3(vref(k)− βvo(k))

+K ′

3[K
′(vref(k)− βvo(k))− iL(k)]

(70)

The calculated coefficients for the ISMC are as follows:

K ′ = 20 K ′

1 = 4.34× 10−4

K ′

2 = 6 K ′

3 = 0.044

The current-controlled PI controller is designed as shown in Figure 4.11. The error voltage

between the output voltage and the reference voltage is fed into the voltage-controlled PI controller

(PIv(z)) to produce the reference current. The error current between the reference current and the

inductor current is fed into the current-controlled PI controller (PIi(z)) to generate the duty cycle

command, which will subsequently be used to generate the PWM signal. The two PI controllers are

expressed as:
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Figure 4.11: Steady-state operation of DISMC, ISMC, and PI controllers compared to a reference signal.
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PIv(z) = Kpv +
KivTs

1− z−1
(71)

PIi(z) = Kpi +
KiiTs

1− z−1
(72)

where Kpv and Kiv are the proportional and integral gains for outer voltage control, and Kpi and

Kii are the proportional and integral gains for inner current control. The calculated PI controller

gains are:

Kpv = 0.196 Kiv = 9.26× 103

Kpi = 12.993 Kii = 3.47× 104

The steady-state operation of the full-bridge CDA at a peak output current of 1 A (2 A peak-

to-peak) using the DISMC, ISMC, and PI controllers is depicted in Figure 4.12. The scaled output

voltage of these controllers and the reference voltage are provided. It can be observed from the

figure that all controllers successfully track the reference signal. However, the steady-state error of

the DISMC is the smallest, followed by the PI controller, and then the ISMC.
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Figure 4.12: Steady-state operation of DISMC, ISMC, and PI controllers compared to a reference signal

The dynamic performance of these controllers is simulated under load and line transients. In
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the load transient scenario, the peak load current starts at 0.1 A, jumps to 1 A, and then returns to

0.1 A. The resulting output voltages of these controllers are shown in Figure 4.13, with a zoomed

view of the output voltage response provided in Figure 4.14. Overall, the ISMC controller exhibits

less peaking and faster recovery to the nominal voltage compared to the DISMC and PI controllers.

Although the DISMC controller shows less peaking than the PI controller, it exhibits more pro-

nounced ringing when transitioning from heavy to light load. The PI controller, on the other hand,

takes longer to regulate back to the steady-state voltage level.
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Figure 4.13: (a) Load current transient from 0.1 A to 1 A and back to 0.1 A. (b) Load transient response of

DISMC, ISMC, and PI controllers.
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Figure 4.14: (a) Enlarged load transient response from light load to heavy load. (b) Enlarged load transient

response from heavy load to light load.

In the line transient response simulation, the input voltage jumps from 24 V to 36 V, then back

to 24 V. The output voltage response to the line transient is depicted in Figure 4.15. The enlarged

region of the line transient response is shown in Figure 4.16. It can be seen from the figure that

the PI controller exhibits significant peaking compared to DISMC and ISMC, and nearly becomes
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unstable. The ISMC, on the other hand, has smaller peaking but the output voltage becomes larger

in the higher input voltage region due to poor line regulation, returning to the normal output voltage

when the input voltage returns to the normal value of 24 V. Among all the controllers, DISMC

demonstrates the best line transient response in terms of minimal peaking and the ability to quickly

regulate back to normal operation.

0 1 2 3 4

Time (ms)

25

30

35

In
p

u
t 

V
o

lt
a

g
e

 (
V

)

Vin

(a)

0 1 2 3 4

Time (ms)

-2

-1

0

1

2

V
o

lt
a

g
e

 (
V

)

Vref

DISMC

ISMC

PI

(b)

Figure 4.15: (a) Input voltage transient from 24 V to 36 V and back to 24 V. (b) Line transient response of

DISMC, ISMC and PI controllers at light load of 0.1 A.
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Figure 4.16: (a) Enlarged line transient response from 24 V to 36 V. (b) Enlarged line transient response from

36 V to 24 V.

The CDA was implemented on a PCB to validate the performance of the proposed DISMC

by evaluating both its steady-state and dynamic behavior. The designed PCB is illustrated in Fig-

ure 4.17, with annotations indicating each stage, while the corresponding component part numbers

are provided in Table 4.3. The test setup for the DISMC-controlled CDA is depicted in Figure 4.18.
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Figure 4.17: The prototype of DISMC class-D amplifier

In this setup, the power supplies include a 24V bus voltage for the power stage, ±15V for the

buffer and filter stages, and 7V as the input voltage for the linear low-dropout (LDO) regulators,

which generate 5V and 3.3V for the ADC’s analog and digital circuits, respectively.

Steady-state operation: The DISMC CDA was tested under steady-state conditions for different

modulation indices and frequencies. Two differential probes were used to measure and display

the differential switching node voltage, VSW, and the output voltage, VOUT, on the oscilloscope.

Table 4.3: COMPONENT PART NUMBERS

Component Part number

Gate driver LMG1205

GaN FET EPC2106

Buffer amplifier LT6375

Filter amplifier ADA4522

ADC ADS7253

Digital isolator ISO7760 & ISO7763

FPGA Xilinx Artix-7
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Figure 4.18: Test setup for the DISMC class-D amplifier

Figures 4.19 and 4.20 show the VOUT and VSW waveforms at 1 kHz and 10 kHz, respectively.

Figure 4.21 presents a zoomed-in view of the switching node voltages (VSW1 and VSW2) along with

the differential output voltage. The waveforms of VSW1 and VSW2 confirm the BD modulation

scheme of the CDA. As shown in Figure 4.21a, when VOUT is positive, VSW1 exhibits a longer turn-

on time compared to VSW2, and vice-versa when VOUT is negative. These observations indicate that

the CDA operates as expected in steady-state conditions.
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Figure 4.19: Experimental results of steady state operation of 1 kHz output

VOUT
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Figure 4.20: Experimental results of steady state operation of 10 kHz output
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Figure 4.21: Experimental results of steady state operation showing both branches switching nodes and

differential output voltage waveform. (a) When output voltage is positive (b) when output voltage is negative

Dynamic Response: The load response of the DISMC CDA was evaluated under a step load

change from 20Ω to 200Ω, and the results were compared to those of a PI controller using the same

system parameters. Figures 4.22a and 4.22b illustrate the transition from a light load (200Ω) to a

103



VOUT

IOUT

VSW

12V

40us

(a)

VOUT

IOUT

VSW

14V

60us

(b)

VOUT

IOUT

VSW

120us9V

(c)

VOUT

IOUT

VSW

320us

5V

(d)

Figure 4.22: Experimental results of dynamic response under step load changes. (a) Light load jumps to high

load, (a) DISMC (b) PI, Heavy load jumps to light load, (c) DISMC (d) PI.

heavy load (20Ω) for the DISMC and PI controllers, respectively. Two key aspects were observed:

the extent of voltage deviation from the nominal voltage trajectory and the time required to regulate

the voltage back to steady-state. For the DISMC controller, the output voltage deviated by 12V

and returned to normal operation within 40 µs, whereas the PI controller exhibited a deviation of

14V and required 60 µs for regulation. This indicates that the DISMC controller showed better

performance than the PI controller in terms of both voltage deviation and regulation time, though

the improvement was relatively small. For the transition from a heavy load to a light load, the

DISMC controller showed a slightly larger voltage deviation of 9V compared to 5V for the PI

controller. However, it achieved a significantly faster regulation time of 120 µs compared to 320 µs

for the PI controller, with reduced distortion.

It is important to note that the comparison between the DISMC and PI controller presented in
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this dissertation was conducted under identical system specifications and on the same PCB-level

implementation. While many existing works on DISMC have been realized at the integrated circuit

(IC) level—where inherent advantages such as minimized parasitics and reduced propagation delays

contribute to enhanced performance—this dissertation focuses on a discrete PCB-level implementa-

tion. At this level, the effects of delay, signal distortion, and parasitic elements are more pronounced,

making direct performance comparisons with IC-level implementations less meaningful. Therefore,

the comparative analysis provided in this work is limited to the PCB level and specifically contrasts

the performance of the proposed DISMC with that of a conventional PI controller under consistent

conditions.

Frequency measurement: The THD was measured across different modulation indices, and the

results are shown in Figure 4.23. A THD as low as 0.83% was observed. However, the THD in-

creases as the modulation index decreases or increases beyond a certain range. At lower modulation

indices, the increase in THD is attributed to the reduced resolution of the ADC output due to lower

voltage levels. Conversely, at higher output voltages, the CDA output becomes more distorted be-

cause of fixed design parameters, such as the scaling coefficients of the reference current and the

integral coefficients. As the output voltage increases, fine-tuning of these parameters is required to

reduce distortion.

4.3 Conclusions

A CDA based on DISMC was designed and validated through both simulation and experimen-

tal results. The design process began with the state-space model of the CDA, from which the

control signal was derived, using the inductor current and output voltage tracking errors, along

with their integrals, as state variables. The reaching and stability conditions were thoroughly ana-

lyzed, and the controller gains were subsequently determined. The full-bridge CDA was simulated,

tested, and compared with a conventional PI controller. The results demonstrated that the proposed

DISMC operates reliably and offers improved tolerance to load and line variations compared to the

PI controller. Additionally, the DISMC exhibited superior immunity to large signal transitions and

achieved faster regulation speeds than the PI controller.
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Figure 4.23: Measured THD versus modulation index

A critical insight gained during this work is the central role of precise output voltage and induc-

tor current sensing in achieving low-distortion performance. Since the DISMC algorithm heavily

relies on real-time feedback of these signals to compute the control law, any sensing inaccuracy or

noise directly impacts the controller’s effectiveness. Inaccurate measurements can result in distorted

output waveforms, degraded signal tracking, and increased THD. Therefore, special care must be

taken in the design of the sensing circuitry, including the selection of high-precision components,

implementation of low-noise analog front-ends, and use of appropriate filtering techniques to pre-

serve the fidelity of the feedback signals.
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Chapter 5

Conclusions and Future Work

This chapter presents a comprehensive summary of the key findings and contributions of this re-

search on fully differential switching amplifiers. The work addressed critical challenges in achieving

high efficiency, linearity, and compact design for low-power applications, particularly for differential-

output sine wave loads in industries such as automotive and critical power systems. By leveraging

GaN power transistors and advanced control techniques—SHEPWM and DISMC—this research

demonstrated significant advancements over traditional amplifier architectures.

The conclusions of this study are discussed, focusing on the improvements achieved in effi-

ciency, linearity, and integration. In addition, this chapter outlines recommendations for future

research, exploring opportunities to further enhance the performance of switching amplifiers, in-

tegrate emerging technologies, and address the limitations encountered during this work. These

recommendations aim to serve as a foundation for continued progress in the development of effi-

cient and robust amplifier systems for low-power applications.

5.1 Conclusions

This research has presented significant advancements in the design and implementation of low-

power switching amplifiers and inverters, addressing key challenges in achieving high efficiency,

linearity, and adaptability for low-power (several mW to W) industry applications. A full-bridge
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low-power inverter utilizing SHEPWM was developed, targeting high fundamental output frequen-

cies ranging from 4 kHz to 10 kHz. Unlike conventional approaches focused on high-power, low-

frequency applications, this work demonstrated the feasibility and effectiveness of SHEPWM in

low-power systems, achieving efficient operation across a wide frequency range while maintaining

a fixed filter cutoff frequency.

The introduction of an innovative FPGA-based hardware architecture for SHEPWM implemen-

tation marked another key contribution. This architecture provided real-time configurability of out-

put amplitude and frequency, enabling dynamic adaptation to varying operating conditions without

requiring extensive storage or computational resources. This flexibility significantly enhanced the

practical applicability of the SHEPWM algorithm in low-power systems, making it a robust and

versatile solution.

Additionally, the integration of compact 3D components within a SiP design demonstrated the

potential for substantial reductions in PCB area. The SiP design was shown to support both DC-

AC inversion and DC-DC conversion, offering a versatile and space-efficient solution for integrated

power electronics. While the current implementation utilized only a subset of the SiP components,

the work highlighted promising opportunities for further miniaturization and optimization in future

designs.

Furthermore, the development and validation of a fully differential CDA based on DISMC show-

cased the efficacy of advanced control techniques in improving system performance. Through sim-

ulation and experimental results, the proposed DISMC was shown to offer superior tolerance to

load and line variations, faster regulation speeds, and better immunity to large signal transitions

compared to conventional PI controllers.

In summary, this research has contributed to the advancement of low-power switching ampli-

fiers and inverters through innovative control strategies, hardware architectures, and integration

techniques. These findings not only address existing limitations but also pave the way for future

developments in efficient and compact power electronics for low-power applications.
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5.2 Recommendations for Future Work

Given the precision achieved in the open-loop configuration, as evidenced by the low errors

in both switching angles (and consequently THD) and MI, future work could focus on integrating

closed-loop control to further enhance the performance of the SHEPWM technique. Closed-loop

control has the potential to dynamically adjust switching angles and modulation indices in real-time,

addressing variations in load and line conditions. This could significantly improve the robustness

and adaptability of the system, particularly in applications requiring stringent harmonic suppression

and precise output regulation under variable operating conditions. The fine control over the modu-

lation index achieved in this work, combined with the multifunctional capabilities of the SiP design,

provides a strong foundation for such advancements. The integration of closed-loop feedback could

leverage real-time sensing and signal conditioning to enable automated error correction, further

reducing harmonic distortion and improving overall system efficiency. Additionally, closed-loop

control could enhance the scalability of the SHEPWM technique, allowing it to adapt to a broader

range of load types and operational scenarios. In the SHEPWM technique, since the THD tends to

be higher at lower fundamental frequencies, one potential direction for future work is to scale up

the number of switching angles at these frequencies. This approach could enhance the cancellation

of lower-order harmonics, thereby improving overall spectral performance.

In this work, discrete GaNFETs were employed as power transistors, leveraging their compact

size and superior switching capabilities. While this approach effectively demonstrated the advan-

tages of GaNFETs in achieving high efficiency and fast switching performance, future research

could focus on integrating GaNFETs with gate driver circuitry on the same die. This integration

has the potential to significantly reduce the overall system size and improve performance. By elim-

inating the need for wire bonding between the GaNFETs and gate drivers, such integration would

minimize parasitic inductance, which is a primary contributor to switching ringing and voltage over-

shoots. Reducing these parasitics not only improves switching performance but also enhances sys-

tem reliability by mitigating issues such as shoot-through and EMI. Additionally, the integration of

GaNFETs and gate drivers could lead to simplified PCB layouts and reduced assembly complexity,

further contributing to the miniaturization of power electronics systems.
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In DISMC, the system typically requires sensing of output voltage, inductor current, and ca-

pacitor current. For a full-bridge configuration, this necessitates a total of six signal conditioning

channels and six ADC channels, which can be considered relatively complex. However, since out-

put voltage and capacitor current are inherently related, there is potential to reduce the number of

sensing channels. Specifically, by exploiting the relationship between these two variables, it may be

possible to eliminate one of the channels, thereby reducing the total number of channels required to

four in the full-bridge design. However, this reduction introduces a challenge: the output voltage and

capacitor current are phase-shifted by 90 degrees, which requires careful handling to ensure accu-

rate measurement and control. To maintain system performance and stability, the controller design

would need to incorporate more sophisticated computational techniques, such as phase compensa-

tion or advanced filtering algorithms, to account for this phase shift. These methods would allow for

the effective use of fewer sensing channels without compromising the precision and reliability of the

control system. Future research could focus on developing such advanced techniques for reducing

the number of sensing channels in DISMC-based systems. By optimizing the controller’s ability

to handle phase shifts and relationships between sensing variables, the overall system complexity

could be reduced, leading to simpler designs and lower costs while maintaining performance. This

would make DISMC more practical for real-world applications, particularly in compact and cost-

sensitive power electronics systems. The controller gains in this work are derived using an output

scaling factor of 0.2, with a reference voltage peak value of 2.4V, resulting in an output voltage of

24V peak-to-peak. This is half of the maximum achievable output voltage of 48V peak-to-peak.

If the output scaling factor or reference voltage amplitude changes, the controller gains must be

adjusted accordingly. In this study, the same controller gains, derived for a fixed output voltage, are

used across all modulation indices. As a result, a higher THD is observed at a modulation index

of 0.9. To reduce THD at higher modulation indices, the controller gains should be optimized for

each specific condition. A promising approach for future work would be to implement an adaptive

control scheme that senses the output voltage and adjusts the controller gains dynamically using a

lookup table (LUT). This LUT would store precomputed controller gains for different output voltage

levels or modulation indices, ensuring consistently low THD across the entire operating range.
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Future work could explore using multilevel topologies, particularly the flying capacitor multi-

level configuration, to reduce the size of the LC filter in converters. By balancing the flying capacitor

voltage at half of the converter’s input voltage, a five-level switching waveform is achieved, which

closely resembles a sine wave and reduces the need for large LC filters. However, in SHEPWM,

voltage balancing is challenging as not all switching patterns support every modulation index, limit-

ing achievable output voltages. In contrast, DISMC, using standard PWM modulation, can achieve

all modulation indices and corresponding output voltages, making it more suitable for maintaining

flying capacitor voltage balance. This flexibility allows for more efficient voltage regulation and the

use of smaller LC filters, contributing to a more compact converter design. Future research could

focus on optimizing DISMC-based control for multilevel topologies to further reduce converter size

and improve performance.
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Appendix A

DISMC Class-D Amplifier Printed

Circuit Board

The top level schematic of double integral sliding mode control (DISMC) class-D amplifier

(CDA) is shown below A.13.
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Figure A.1: Top level schematic
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Figure A.2: Power stage including gate drivers, power GaNFETs and LC filters
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Figure A.3: Buffer stage
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Figure A.4: Filter stage
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Figure A.5: Analog to digital converters
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Figure A.6: Power supplies
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Figure A.7: 3D view of the DISMC Class-D PCB

Figure A.8: Layer 1 of the PCB - components placement and signal traces on top
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Figure A.9: Layer 2 of the PCB - ground planes

Figure A.10: Layer 3 of the PCB - power planes
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Figure A.11: Layer 4 of the PCB - power planes

Figure A.12: Layer 5 of the PCB - ground planes
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Figure A.13: Layer 6 of the PCB - signal traces on bottom
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