
AUTOMATION AND INTELLIGENCE IN IT OPERATION

MANAGEMENT: MACHINE LEARNING FOR CAPACITY

PLANNING AND LOAD TESTING OPTIMIZATION

Arthur Vitui

Under the supervision of Dr. Tse-Hsun (Peter) Chen

A Thesis

in

The Department

of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements

For the Degree of Doctor of Philosophy

Concordia University

Montréal, Québec, Canada

April 2025

© Arthur Vitui, 2025

CONCORDIA UNIVERSITY

SCHOOL OF GRADUATESTUDIES

This is to certify that the thesis prepared

By: Arthur Vitui

Entitled: Automation and Intelligence in ITOM: Machine Learning for Capacity Planning and Load Testing
Optimization

and submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy (Computer Science)

complies with the regulations of the University and meets the accepted standards with respect to originality and quality.

Signed by the final examining committee:

Chair
Dr. Manar Amayri

External Examiner
Dr. Marin Litoiu

 Arms-Length Examiner
Dr. Ching Yee Suen

Examiner
Dr. Weiyi Ian Shang

Examiner
Dr. Diego Costa

Thesis Supervisor
Dr. Tse-Hsun Peter Chen

Approved by
Dr. Sabine Bergler, Graduate Program Director

4/24/2025

Dr. Mourad Debbabi, Dean, Gina Cody School of Engineering and Computer Science

Abstract

Automation and Intelligence in IT Operation Management: Machine

Learning for Capacity Planning and Load Testing Optimization

Arthur Vitui, Ph.D.

Concordia University, 2025

The increasing complexity and scale of modern IT infrastructures necessitate inno-

vative strategies to maintain efficiency, reliability, and cost effectiveness. Large scale

industrial systems require precise capacity planning to manage fluctuating demands,

prevent downtime, and operate within optimal cost parameters. However, traditional

capacity planning methods often fall short in today’s dynamic environments. This

dissertation introduces an agentic approach to AIOps (Artificial Intelligence for IT

Operations) aimed at enhancing the maintenance and operational stability of large

scale systems. Effective capacity planning is essential for stable system operations.

Over provisioning leads to resource waste, while under provisioning can cause failures

and diminished performance. By utilizing load testing data and advanced machine

learning (ML) models, we propose a blueprint process that optimizes system capacity

planning. Integrating ML into this process enhances predictive capabilities, enabling

proactive resource scaling, reducing costs, and increasing system resilience. A sig-

nificant challenge in optimizing this process is the inefficiency and time consuming

nature of traditional load testing. Existing methodologies often require substantial

manual effort and considerable time to simulate large scale workloads. To address

this, we propose a framework that streamlines load testing through automation and

early stopping rules based on spike detection techniques for system Key Performance

Indicators (KPIs). By leveraging a system’s ability to predict KPI spikes, we can dy-

namically adjust capacity as needed. We aim to integrate these processes into tools

utilized by LLM (Large Language Model) agents within an AIOps system. These

tools will act as intermediaries for monitoring and maintaining large scale systems.

This integration will establish a fully managed architecture, where AIOps agents en-

hance the IT operations team’s ability to perform proactive maintenance, respond

to new incidents, autonomously monitor system health, predict potential issues, and

implement proactive measures to maintain optimal performance. This dissertation

presents a novel approach to enhancing efficiency in large scale systems by combining

automation and load testing improvements with machine learning and LLM agents.

By developing a comprehensive, scalable framework, this research seeks to reduce op-

erational overhead and establish a new standard for IT system management and load

testing practices within the Software Development Life Cycle (SDLC) in industrial

settings.

iii

To my beloved wife.

iv

Acknowledgments

I express my deepest gratitude to my supervisor, Dr. Peter Chen, whose guidance,

patience, and wisdom have been invaluable throughout the course of this research.

His commitment to pushing the boundaries of knowledge while providing me with

the support and encouragement I needed at every step is something that I deeply

appreciate. This work would not have reached its potential without his insight and

steady mentorship.

I also extend my sincere thanks to the members of my dissertation committee:

Dr. Marin Litoiu, Dr. Weiyi (Ian) Shang, Dr. Ching Yee Suen, and Dr. Diego Elias

Costa. Their thoughtful feedback, constructive criticism, and invaluable suggestions

helped refine and strengthen the direction of my work. I am grateful for their time

and dedication, which contributed significantly to the quality of this thesis.

I am deeply grateful to my wife, Mihaela, for her unwavering support. Her belief

in my abilities, her patience during the long hours, and her constant encouragement

provided me with the strength to continue, especially during the most challenging

moments of this journey. I am forever grateful for her love and understanding, without

which this achievement would not have been possible.

Lastly, I want to acknowledge my loyal companion, Newton. His joyful presence

and unconditional affection brought balance and happiness to my life throughout

this endeavor. The simple moments spent with him provided much needed respite

and reminded me of the importance of taking care of oneself amid rigorous academic

pursuits.

To all those who have supported me on this path, your contributions have been

integral to this accomplishment. I offer my heartfelt thanks.

v

Related Publications

In all chapters and related publications of this dissertation, I made contributions in-

cluding formulating the initial research idea, conducting surveys of related work and

research background, implementing the code, performing case studies, analyzing the

results, and writing and finalizing the work. My co-author assisted me by review-

ing the initial idea, referencing related work, reviewing the writing, and providing

feedback.

Earlier versions of the chapters in this dissertation were published and submitted

as follows:

1. MLASP: Machine learning assisted capacity planning: An industrial experience

report (Chapter 3)

Arthur Vitui, Tse-Hsun (Peter) Chen, Empirical Software Engineering (EMSE),

2021. Volume 26, Articles 87 and 109.

2. MLOLET - Machine Learning Optimized Load and Endurance Testing: An in-

dustrial experience report (Chapter 4)

Arthur Vitui, Tse-Hsun (Peter) Chen, IEEE/ACM International Conference on

Automated Software Engineering (ASE), 2024. Sacramento, CA, USA.

3. Empowering AIOps: Leveraging Large Language Models for IT Operations Man-

agement(Chapter 5)

Arthur Vitui, Tse-Hsun (Peter) Chen, Under review for IEEE/ACM Inter-

national Conference on Automated Software Engineering (ASE), 2025, Seoul,

Republic of Korea.

vi

Table of Contents

List of Tables ix

List of Figures xi

1 Introduction 1

1.1 Research Statement . 4

1.2 Research Overview . 5

1.3 Capacity Planning Challenge . 5

1.4 Load Testing Cost Efficiency Challenge 7

1.5 AIOps Challenge . 9

1.6 Contributions . 11

2 Background and Related Works 13

2.1 Capacity Planning For Large Scale Systems 13

2.2 Traffic Spike Detection and Load Testing Enhancements for Large Scale

Systems . 15

2.3 Using Large Language Models for IT Operations Management 17

2.4 Evaluation metrics for Predictive Machine Learning Models in Capac-

ity Planning and Load Testing Optimization 18

2.5 Evaluation metrics for Large Language Models 19

I Capacity Planning For Large Scale Systems 21

3 Enhancing the Effectiveness of Capacity Planning for Large Scale

Systems 22

3.1 Motivation . 23

vii

3.2 Case Study Setup . 25

3.3 Case Study Results . 39

3.4 Discussion and Implication of Our Findings 49

3.5 Threats to Validity . 53

II Load and Endurance Testing For Large Scale Systems 55

4 Enhancing the Effectiveness of Load Testing for Large Scale Systems 56

4.1 Motivation . 58

4.2 Case Study Setup . 59

4.3 Case Study Results . 70

4.4 Discussion . 76

4.5 Threats to Validity . 79

III Large Language Model Agents for IT Operations Man-

agement 81

5 Using Large Language Models for adding AIOps Capabilities to

Large Scale Systems 82

5.1 Motivation . 83

5.2 Case Study Setup . 83

5.3 Case Study Results . 94

5.4 Discussion . 112

5.5 Threats to Validity . 117

6 Conclusion 119

6.1 Contributions . 120

6.2 Future Research Directions . 121

viii

List of Tables

1 Model evaluation results when using the entire data with separated

training and testing. We excluded the MAE, MSE and RMSE for the

enterprise systems due to NDA. 41

2 Mean of model evaluation results when using the entire data with a

10-fold cross-validation. We excluded the MAE, MSE and RMSE for

the enterprise systems due to NDA. 42

3 Model evaluation results when using a subset of the entire data

with separated training and testing. We excluded the MAE, MSE and

RMSE for the enterprise systems due to NDA. 47

4 Mean of model evaluation results when using a subset of the en-

tire data with separated training and testing and leave-one-out cross-

validation technique on the training dataset. We excluded the MAE,

MSE and RMSE for the enterprise systems due to NDA. 50

5 Enterprise System - One step forecasting results (MLOLET-RQ1). . . 72

6 Open Source System - One step forecasting results (MLOLET-RQ1). 72

7 Enterprise System - Forecasting results in an online setting using a

previously trained model on new system configurations (MLOLET-RQ2). 74

8 Open Source System - Forecasting results in an online setting using a

previously trained model on new system configurations (MLOLET-RQ2). 74

9 Enterprise System - Results of forecasting capabilities for different

model architectures (MLOLET-RQ3). 76

10 Open Source System - Results of forecasting capabilities for different

model architectures (MLOLET-RQ3). 77

ix

11 Large Language Model Agents for AIOps Evaluation Queries and aaso-

ciated tools for responding. Category shows the category of the ques-

tion, where SR means Simple Reasoning (use at most one tool) and

AR means Advanced Reasoning (use multiple tools). 92

12 RQ1 - Summary of Large Language Model Agents solving task accu-

racy in AIOps Context grouped by type of reasoning: Simple Reason-

ing, SR, (use at most one tool), and Advanced Reasoning, AR (use

multiple tools). 97

13 RQ1 - Detailed Results for Large Language Model Agents solving task

accuracy in AIOps Context. 98

14 RQ2 - Summary of Large Language Model Agents solving task average

response times (in seconds) in AIOps Context. 102

15 RQ2 - Detailed Results for Large Language Model Agents solving task

response times (in seconds) in AIOps Context. 103

16 RQ3 - Summary Average token count (verbosity) of Large Language

Model Agents solving tasks in AIOps Context. 108

17 RQ3 - Average token count (verbosity) of Large Language Model Agents

solving task in AIOps Context. 110

18 Query Q-24 correctly solved by GPT 4-turbo powered agent. 113

x

List of Figures

1 MLASP Process with its three stages: (1) Automated Load Testing, (2)

Feature Engineering and ML Training, and (3) Model On-Line Serving. 26

2 A high-level overview of our approach and load test execution setup. . 36

3 An example of the predicted v.s. actual throughput for the open-

source system from the MLP Neural Net model results built using the

complete dataset. 43

4 Distributions of the percentage deviation between the predicted and

actual value for the open-source system using the complete dataset

with separated training and testing dataset. 44

5 An example of train v.s. validation loss for the open-source system

from the MLP Neural Net model results built using a subset of the

complete dataset. 45

6 Distributions of the percentage deviation between the predicted and

actual value for the open-source system using a subset of data to train

the models. 48

7 Feature Importance: Open source system parameters that have the

most impact over the load test results. 51

8 MLOLET framework overview. 60

9 Traffic KPI information captured from a test application running under

different load and configuration settings. 63

10 MLOLET traffic forecasting process overview. 64

11 MLOLET Models Data windowing. 69

12 Gartner’s AIOps platform conceptualization [2]. 84

13 An example workflow for LLM performance evaluation in an AIOps

context. 92

xi

Chapter 1

Introduction

Modern large-scale systems are expected to handle a vast number of concurrent re-

quests every day. Any malfunctions or service degradations—resulting from sudden

traffic spikes or sustained load pressure—can cause companies to lose millions or

even billions of dollars [32]. Therefore, capacity planning and traffic spike detec-

tion and prediction are critical components in the quality assurance process of these

systems. Consequently, IT Operations teams must proactively ensure that services

remain operational by properly sizing the software ecosystem and swiftly detecting

and addressing any traffic spikes. Ideally, these measures should be taken before they

lead to service disruptions.

Load testing is essential for determining system capacity and is a key part of

the software development process. Its main goal is to ensure that the system behaves

correctly under load conditions. By simulating real-world usage, load tests collect data

during and after the simulation, helping load test engineers and software developers

evaluate the system’s performance and ability to handle capacity [56].

To address the functional complexity of modern large-scale systems, software de-

velopers offer configuration parameters to provide additional flexibility. Load test

engineers apply load to the system and analyze its behavior and performance [21].

The idea is to change the values of configuration parameters—such as thread pool

sizes, buffer sizes, and so on—without modifying the source code. During the pa-

rameter tuning process, load test engineers also need to consider different hardware

configurations, both in terms of compute resource availability and horizontal scaling

options.

1

Large-scale systems often consist of multiple components, each of which may have

hundreds of configurable parameters and deployment settings [45, 70]. Due to limited

project resources and tight deadlines before releases, it is impossible and impractical

for load test engineers to evaluate all possible configuration settings during load tests.

This constraint prevents them from providing a comprehensive assessment of the

system’s capacity [42, 43, 45]. As a result, load test engineers typically test only a

few combinations of parameter values from the default deployment settings, using an

ad hoc selection process [70]. Moreover, the default parameters are only minimally

adjusted and rely on the domain knowledge of the load test engineer. Without a

thorough understanding of how parameter values affect system performance, this can

lead to load-related issues—such as high response times that may cause timeouts or

even component crashes—improperly utilized resources, or service level agreement

violations [20, 128].

Many studies have proposed various techniques for finding optimal parameter

values [9, 42, 43, 45, 101]. However, capacity planning differs from parameter op-

timization because the latter often focuses on tuning a single instance of a software

component under a small load (e.g., a few seconds of load). In contrast, capacity plan-

ning considers all the software components in the system to determine the system’s

capacity using key performance indicators (KPIs), given a load, a set of parameters

for each component, and a deployment setting. The goal is to provide customers and

product managers with tuning guidelines to meet service level agreements (SLAs) in

industrial settings for long-running loads.

Running long load tests presents another challenge in modern software develop-

ment, where release cycles are only a few weeks long. Executing lengthy load tests

becomes expensive—not just due to the significant resources required but also be-

cause of the time needed to reserve them. Therefore, it would be more economical to

stop failing load tests as early as possible. Additionally, it is important for load test

engineers to forecast the system’s performance trends based on load test results. This

ability would allow them to take appropriate actions to ensure the system’s stability

in the event of sudden load spikes.

Given the importance and critical nature of the aforementioned technical pro-

cesses, our research aims to expand the techniques applicable in industrial settings.

This expansion seeks to enhance the quality of the resulting software systems and

2

improve the cost and environmental efficiency of using such techniques.

The challenges previously mentioned are encountered daily by companies involved

in the development and delivery of large-scale solutions. Thanks to our industrial

partner, Ericsson Inc., we had access to such environments to conduct empirical

studies and propose new techniques to address these issues. Due to a Non-Disclosure

Agreement (NDA) with our partner, we are unable to disclose the complete details of

the subject systems. Consequently, we have validated our proposed approaches using

open-source software or custom-developed mock software that we have made publicly

available. This enables others to reuse our tools in their projects and experiments,

ensuring that our experiments can be reproduced.

To address the capacity prediction problem, we propose an approach called MLASP

(Machine Learning Assisted Capacity Planning) [114]. This process framework accel-

erates the load testing process through automation and then uses machine learning

algorithms to model the system’s KPIs. These models can assist in tuning the con-

figuration parameters of the software ecosystem to achieve the desired KPIs. The

MLASP framework offers non-intrusive methods for metrics collection and configu-

ration management. Combined with its automation features, this makes MLASP an

easily adaptable and adoptable blueprint for many software systems without requiring

code changes to the underlying software.

To solve the problem of failing load tests, we propose an approach called MLO-

LET (Machine Learning Optimized Load and Endurance Testing) [115]. MLOLET

leverages time series analysis and forecasting for spike detection capabilities to pre-

dict emerging traffic trends. It then uses a rule based decision algorithm to decide

whether a load test is failing.

The management of complex large-scale systems remains a significant challenge,

even with the introduction of new frameworks that leverage machine learning (ML)

to assist in task resolution. This difficulty arises primarily due to the extensive scripts

and configurations required for the overall tuning of such systems. Recent advance-

ments in natural language processing, particularly the emergence of Large Language

Models (LLMs), present new opportunities for IT Operations Management (ITOM).

By integrating LLMs to develop tool-based agents and assistants, organizations can

introduce varying levels of autonomy in AI-driven IT Operations, including tasks such

as configuration management for capacity planning. This approach helps ensure that

3

the KPIs of monitored software systems consistently meet desired SLAs. Ultimately,

businesses will benefit from more reliable services, efficient operations management,

and overall cost savings through this proactive and adaptive system optimization.

1.1 Research Statement

Industrial systems are often deployed on a large scale to handle millions of requests

daily. Some of these systems provide real-time, mission-critical services, making it es-

sential to maintain sufficient capacity to manage sudden spikes in demand. However,

determining the optimal capacity and dynamically adjusting system parameters to

ensure that Service Level Agreements (SLAs) and Key Performance Indicators (KPIs)

stay within business-defined thresholds is both challenging and costly, requiring sig-

nificant time, resources, and financial investment. An under-provisioned system can

negatively impact the business by causing substantial revenue loss during outages.

Conversely, an over-provisioned system may lead to revenue loss due to unnecessary

resource consumption and also increase the environmental footprint by raising carbon

emissions. Balancing these factors is crucial for maintaining operational efficiency, en-

suring reliability, and minimizing costs. Therefore, effective capacity planning and

adaptive system management are critical for the sustainable and profitable operation

of large-scale industrial systems. Based on these challenges and prior research, in

this thesis we focus further enhancing software development lifecycle (SDLC) tasks

as well as ITOM tasks as follows:

This thesis aims to to improve the practical efficiency of load testing

within the software development lifecycle through the use of automa-

tion and non-intrusive data collection techniques, as well as machine

learning. It leverages machine learning methodologies, combined with

Large Language Models (LLMs), to develop actionable AIOps solutions.

These solutions are tailored to tackle real-world capacity planning chal-

lenges in large-scale systems, fostering more effective resource manage-

ment and improved operational scalability.

Using non-intrusive data collection techniques is essential to our objective, as

it allows our proposed methods to generalize across a wider spectrum of software

4

applications and systems. In the next section, we present the research overview and

its objectives that form the focus of this dissertation.

1.2 Research Overview

Overall, this dissertation presents techniques to enhance the efficiency of processes

related to both the software development life cycle (SDLC) management of large-

scale application ecosystems and their operational aspects. For the SDLC, we focus

on improving the load testing process through automation and introducing early

stopping techniques for failing load tests using spike detection. For capacity planning

in IT operations, we propose a novel framework that begins during the SDLC and

leverages load testing data to create models that can predict configurations based

on business needs. Critical to our objective is using non-intrusive data collection

techniques so that our proposed methods generalize for a larger spectrum of software

applications and systems. Lastly, the emergence of Large Language Models (LLMs)

has opened the door to a new era of chatbots and assistants that can aid in IT

operations management.

This dissertation is divided into three main parts. The first two provide perspec-

tives on the load testing process and its data. In particular, Chapter 3 proposes a new

framework for capacity planning using load testing data, while Chapter 4 proposes a

novel framework for increasing the efficiency of the load testing process itself. The

third part, Chapter 5, provides perspectives in the use of LLM agents in IT operations

management of modern software ecosystems.

1.3 Capacity Planning Challenge

As previously stated, load testing is essential for determining system capacity. Its goal

is to ensure that the system behaves correctly under load (e.g., simulated real-world

usage) and to help load test engineers and developers evaluate system performance

and capacity [21].

Due to the complexity of modern large-scale systems and deployment methods,

developers often provide configuration parameters for additional flexibility. Load test

engineers execute the same load against the system under different settings to analyze

5

its behavior and expected performance [21]. Developers or load test engineers can

adjust system performance by changing the values of configuration parameters (e.g.,

increasing the size of thread pools) without modifying the source code. When tun-

ing parameter values, load test engineers also need to consider different deployment

settings (e.g., horizontal scaling by adding more worker nodes) or hardware config-

urations (e.g., vertical scaling by adding more computational power) that customers

employ.

Large-scale software systems may consist of multiple components, each with up to

hundreds of configurable parameters and deployment settings [44, 69]. This creates

a huge search space for parameter combinations and due to limited resources and

tight time constraints before releases, it is impossible and impractical to perform

load testing on all possible combinations of configuration parameter values to provide

a comprehensive overview of the system’s capacity [42, 43, 44]. In practice, load test

engineers typically test only a handful of parameter combinations under the default

deployment setting, and their selection process remains ad hoc [69]. For example,

they often use default configuration parameter values provided by developers and

may only make marginal modifications during load tests.

Such configuration tuning is inefficient and largely depends on the load test engi-

neers’ domain knowledge of the systems, which may not be up to date as the systems

evolve. Failure to understand how parameter values affect system capacity under

specific deployment settings can lead to load-related issues (e.g., high response times

or even crashes), underutilization of resources, or violations of service level agree-

ments [20, 128].

Parameter configuration tuning for software systems has been a significant area

of interest in the research community over the years [9, 20, 42, 43, 45, 70, 101].

However, these studies primarily focus on finding the optimal parameter values in a

single setting—that is, on one instance of the tested software application—and mostly

involve tuning binary system configuration parameters. Recent advances in neural

networks have led to testing some of the earlier state-of-the-art approaches against

newer algorithms [45], still within single-instance use cases.

These prior studies mainly focus on techniques that optimize parameter values to

maximize performance of software applications. As stated before, although param-

eter optimization and capacity planning might appear similar, there are significant

6

differences between them. Parameter optimization typically focuses on finding the

optimal performance of a single instance of a system (e.g., on one machine) using a

relatively small load (e.g., lasting only seconds). In contrast, capacity planning pri-

mary focus is to determine the system’s capacity—such as key performance indicators

(KPIs)—given a specific load, system configuration, and deployment setting. While

capacity planning aims to minimize the resource usage as its secondary objective, it

does not guarantee that the proposed configuration is the most performant one, as

opposed to parameter optimization. The idea here is to have a minimal, potentially

redundant, stable system that is able to perform long term under continuous load and

produce the desired KPIs and meet the Service Level Agreements (SLA). Addition-

ally, the goal is to provide guidelines so that different settings may be applied when

the KPIs and SLAs change. Therefore, capacity planning is usually conducted in a

larger test environment that mimics a production deployment and involves running

long-duration loads.

Chapter 3 addresses this challenge by proposing a new framework that uses au-

tomation, non-intrusive information retrieval and machine learning. The proposed

process has been tested in an industrial setting on two large scale enterprise systems,

as well as on two open source systems.

1.4 Load Testing Cost Efficiency Challenge

Load and endurance testing are crucial in the software development life cycle and dur-

ing operations because they ensure that software systems can handle expected and

unexpected workloads over time. Running workloads over extended periods of time

may cause malfunctions or service degradation resulting from spikes which may cause

companies losses in the millions or even billions of dollars [32]. Load testing simulates

real-world user demand on the system, helping developers identify performance bot-

tlenecks and optimize resource utilization before deployment. Endurance testing, also

known as soak testing, evaluates the system’s performance over an extended period

to detect issues like memory leaks, resource exhaustion, or performance degradation

that may not appear in shorter tests. There are, however, two main challenges when

considering the execution of load and endurance testing processes and monitoring

the production system’s performance. As a first challenge, due to the project time

7

limits, detection of failing load/endurance tests must occur as early as possible in the

execution so that the load test engineers may stop their execution, and save resources

(time and money). These tests may be failing for various reasons, such as:

• A slowdown in the overall system performance can occur due to bottlenecks or

overload in any of the software system’s components. For example, the system’s

throughput might drop below a defined threshold for a specific duration—for

instance, if in the last 5 minutes the throughput fell below 50 transactions per

second (TPS).

• Intermittent information loss represents a worsening of the previous condition

where the system’s processing speed has decreased and is also losing some of

the incoming requests. For example, in the last five minutes, the throughput

dropped below 50 transactions per second (TPS), and/or three percent of the

messages were lost.

• Experiencing a malfunction or critical error in one or more components of the

software ecosystem—which is a worsening of the previous condition—can ulti-

mately lead to incorrect behavior throughout the entire system. For example,

if the database backend becomes unavailable, all processing operations result in

errors.

We can see that all of the above situations have in common the fact that they

are measured by KPI values over time and the changes in these values hold the key

to determine whether a load/endurance test is executing correctly or not. In other

words, we are talking about spike detection in time series data. This also means that,

during load testing, different types of spikes can occur within the software ecosystem,

potentially leading to adverse effects. This is a serious challenge that needs to be

addressed.

The second challenge, is the one faced this time by the operations team. They

need to know a load increase might occur so they can take preventive measures to

maintain the software system’s agreed-upon KPIs and SLAs.

We encountered both these challenges when working with our industrial partner.

In order to address them, we proposed a novel load testing process and framework.

Similar to the capacity planning challenge, we rely on automation, non-intrusive data

collection mechanisms and machine learning used in an online setting for the building

8

blocks of the suggested load/endurance testing process improvements. Chapter 4

presents the details and specifics of the suggested improvements.

1.5 AIOps Challenge

The integration of Artificial Intelligence (AI) into IT Operations Management (ITOM),

often referred to as AIOps [2], holds significant promise for automating processes, im-

proving efficiency, and enhancing decision-making. However, implementing AI in IT

operations presents several challenges that organizations must address to realize its

full potential. Below we present some of the most important challenges:

1. Data Quality and Diversity: AI systems rely heavily on large volumes of

high-quality data to function effectively. In IT operations, data is generated

from various sources such as logs, metrics, events, and alerts. This data is

often unstructured, noisy, and inconsistent, making it difficult for AI algorithms

to process accurately. Ensuring data cleanliness, relevance, and consistency

requires significant effort in data preprocessing and management [22, 39, 62, 68,

79].

2. Complexity of IT Environments: Modern IT infrastructures are highly

complex and heterogeneous, encompassing on-premises systems, cloud services,

virtualized environments, and legacy systems [21, 22, 39, 79]. Integrating AI

solutions into these environments without disrupting existing services is a sub-

stantial challenge. AI models must be adaptable to various platforms and tech-

nologies, increasing the complexity of deployment and maintenance [22, 39, 62].

3. Interpretability and Transparency: Many AI models, particularly those

based on deep learning, are often considered ”black boxes” due to their lack of

explainability [39, 50, 60, 62, 79]. In IT operations, understanding the reasoning

behind AI-driven insights is crucial for trust, compliance, and effective decision-

making. The inability to interpret model outputs can hinder adoption, as IT

professionals may be reluctant to rely on recommendations they cannot fully

understand.

4. Skill Gaps and Expertise: Implementing AI in IT operations requires a

unique blend of expertise in both AI technologies and IT domain knowledge [39,

9

62, 79]. There is a shortage of professionals who possess this combination of

skills, making it challenging for organizations to develop, deploy, and maintain

AI solutions effectively. This skills gap can slow down AI initiatives and reduce

their overall effectiveness.

5. Cultural Resistance and Change Management: The introduction of AI

technologies can be met with resistance from IT staff who may fear job dis-

placement or distrust automated systems. Overcoming this resistance requires

effective change management strategies, including education, clear communica-

tion about the role of AI, and involving staff in the implementation process to

build trust and acceptance [39, 62].

The above list is not exhaustive as there may be other considerations that slow

down adoption including security and privacy concerns, ethical and legal considera-

tions as well as cost and resource allocation [39, 62, 79].

Addressing these challenges requires a comprehensive approach, that requires de-

velopment of frameworks, tools and procedures [39, 62]:

• Implement robust data governance practices to ensure data quality and acces-

sibility. Employ data preprocessing techniques to clean and normalize data for

AI consumption.

• Upgrade infrastructure to support the computational demands of AI models.

Utilize cloud services and scalable architectures to manage resource allocation

efficiently.

• Develop and adopt AI models that provide transparency and interpretability,

enabling IT professionals to understand and trust AI-driven insights.

• Invest in training and development programs to build internal expertise. En-

courage collaboration between AI specialists and IT operations staff to foster

knowledge sharing.

• Engage stakeholders throughout the organization. Communicate the benefits

of AI and involve staff in planning and implementation to reduce resistance.

The emergence of Large Language Models (LLMs) may be key in addressing some

of the challenges, especially when dealing with data quality, IT environments com-

plexity and skill gaps challenges given their advances natural language understanding

10

abilities. These features may help organizations analyze vast amounts of unstructured

data, such as logs, incident reports and system documentation and is motivating our

research. We aim to combine the traditional predictive ML models with generative AI

models such as the LLMs and propose new ways to address some of the earlier men-

tioned AIOps challenges. Chapter 5 presents the details and specifics of the suggested

improvements.

1.6 Contributions

In this dissertation, we study how to improve the load testing process and how using

load test results and automation contribute to improved capacity planning techniques.

We also study how the load testing data collected during this process may be used

to increase the efficiency and thus reduce the overall cost of the load and endurance

testing processes. Additionally, we explore the utilization of generative AI with large

language models agents to extend the capabilities of ITOM practices and increase

efficiencies through AIOps where LLMs and predictive models are used together to

solve everyday operational challenges. Our contributions are as follows:

1. We introduce MLASP [114], a framework that combines automation with pre-

dictive online machine learning models to enhance capacity planning for large-

scale industrial systems. This framework may be used during the software devel-

opment phase (managed by project teams) and the production phase (managed

by IT operations teams). We demonstrate how load testing data can be pro-

gressively used to help developers identify the most sensitive parameters in the

software ecosystem and expedite the load testing process. Additionally, we show

how automation and non-intrusive data collection techniques can be generalized

to increase efficiency and reduce costs throughout the software development life

cycle (SDLC).

2. We propose MLOLET [115], a novel process that employs predictive machine

learning models in an online setting. This process further assists load testing

and operational teams in improving the efficiency of load and endurance test-

ing. Additionally, IT operations can use these same models to predict traffic

trends, allowing them to anticipate when system tuning is needed to meet traffic

demands and uphold service level agreements (SLAs).

11

3. We propose the use of generative AI and predictive ML as a means to im-

prove AIOps adoption for large scale industrial systems and allow organizations

to achieve higher levels of autonomy and adaptability in their IT operations,

leading to improved performance, scalability, and overall service quality.

12

Chapter 2

Background and Related Works

In this section, we review existing literature and methodologies that use machine

learning based approaches related to capacity planning, load testing optimization,

traffic trend prediction. We also review the same for the application of AIOps in

industrial settings. We then describe the commonly used metrics for evaluation to

provide a comprehensive understanding of the effectiveness of these approaches.

2.1 Capacity Planning For Large Scale Systems

As previously mentioned, the research community has displayed a great interest for

running software with optimal configuration parameters. Based on the direction of

the approach, the research can be grouped as follows [9]:

• Analytical optimization: makes use of mathematical models to calculate the

effect of the configuration parameters over the software system. This method

is often used in the early development cycles of the software system [20, 101].

• Measurement based optimization - makes use of statistical approaches [42, 43]

• Search based optimization - this direction follows a black box optimization

approach using various search algorithms [70].

• Learning based configuration optimization - makes use of different machine

learning techniques [9, 101, 108].

13

Guo et al. [42, 43] use statistical learning approaches to predict system perfor-

mance by randomly sampling various sets of system configuration parameters. How-

ever, their methods primarily focus on tuning binary system parameters. With the

increasing prominence of neural networks, Ha and Zhang [45] have proposed a novel

approach for performance prediction using deep sparse neural networks, called Deep-

Perf. In their research, they conducted experiments on eleven open-source projects

and compared their method with existing state-of-the-art approaches. They deter-

mined that their proposed method outperforms existing techniques.

Sayyad et al. [101] proposed an approach called the Indicator-Based Evolutionary

Algorithm (IBEA) for finding optimal configuration models in very large software

systems, such as the Linux kernel, which may have thousands of parameters. Their

method uses heuristics to determine a subset of configuration parameters that affect

specific parts of the system.

Chen et al. [20] utilize log analysis to understand system execution. With this

information, they employ Petri net models to recommend caching configurations. Au-

toConfig, by Bao et al. [9], proposed automated configuration for distributed message

systems (DMS) such as Apache Kafka [6] and RabbitMQ [96]. While their work fo-

cuses on the proposed type of systems, it may be extended to other systems too. When

it comes to large-scale industrial settings, Li et al. [70] share their experience from an

industrial environment where they worked with their partner to include autonomic

computing capabilities to address performance configuration tuning.

Unlike prior studies, our proposed approach, MLASP [114], considers the entire

set of configuration parameters, including environment and deployment settings. Our

focus is to assist load testers and operations engineers with capacity prediction, rather

than seeking the optimal configuration parameter for every component of the soft-

ware ecosystem. Additionally, we propose a blueprint for integrating automated test

pipelines.

Another key aspect of our approach is data collection: we concentrate on non-

intrusive information retrieval that does not require code changes to the underlying

system. This is important because, in industrial settings, source code profiling or

sampling is often not feasible due to performance overhead or the use of closed-

source systems where the source code is unavailable. This means lower-level design

documents are not always accessible, so the emphasis is on system integration aspects.

14

As a result, a white-box approach is not always possible or may only be viable to a

limited extent.

2.2 Traffic Spike Detection and Load Testing En-

hancements for Large Scale Systems

Over the past few years, event forecasting and anomaly detection have also been of

great interest in the research community. However, they have rarely been studied

and applied simultaneously in industrial environments due to their different char-

acteristics. To identify anomalies, there are two general methods: online detection

and offline detection. Given our research objective to increase the efficiency of load

testing, we focus exclusively on online detection methods. While spikes can be con-

sidered a subclass of anomalies, they have special characteristics—such as extended

duration—that set them apart from typical anomalies, which are generally brief de-

viations from the normal or expected behavior of the system. It is important to note

that we view load testing data as a series of events over time. Therefore, we will dis-

cuss related work from two areas: time-series forecasting using deep learning models

and time-series-based spike detection in load test data.

2.2.1 Time-series Forecasting Using Deep Learning Models

Modern business applications frequently encounter daily challenges in event forecast-

ing. To address various business problems, prior research has developed and evaluated

architectures based on machine learning models.

Wei et al. [119] have demonstrated that Long Short-Term Memory (LSTM) based

auto-encoders (AE) models outperform other model architectures when applied to

modeling and predicting road traffic flow. Similarly, Laptev et al. [65] and Zhu and

Laptev [132] have also used an LSTM-AE (Long Short-Term Memory Autoencoder)

architecture at Uber to forecast the number of trips during special events like Christ-

mas or New Year’s Eve. In addition to event forecasting, they applied the model

for anomaly prediction during real-time data collection, predicting anomalies when

the forecasts fell outside the expected interval. Our proposal, MLOLET [115], differs

from these prior research as we focus on a different domain – load testing of software

15

systems. As in the above mentioned work, we also plan on trying different machine

learning architectures.

An example of such an architecture is the Temporal Convolutional Network (TCN).

Lin et al. [73] demonstrated the effectiveness of TCNs in predicting long-term time

series events. While their approach combined two types of data for model training,

our work differs by focusing on a single dimension for training data—specifically, one

key performance indicator (KPI) at a time.

Combining different types of networks for distinct purposes is another promis-

ing approach for time series forecasting, as demonstrated by Shen et al. with their

SeriesNet architecture [105]. This approach employs two network architectures: an

LSTM-based network in the first step, followed by a causal convolutional network

(CN) in the second step. Shen et al. suggest that LSTMs are effective for learning

holistic features and reducing the dimensionality of multi-conditional data, while the

CN focuses on capturing patterns across different time intervals. Our work differs from

theirs as we evaluate only one architecture at a time. However, their proposed inte-

gration of the two-network architectures could be incorporated into MLOLET [115],

given its extensibility feature.

2.2.2 Time-series based Spike Detection for Load Tests

Chen et al, [16], proposed SPIKE as a method to predict cloud resource usage spikes

using regression trees. In their approach, they used supervised learning to classify

any data point above a certain threshold as an anomaly, identifying it as a traffic

event contributing to a spike. While we plan to use similar modeling features as

Chen and his team (e.g., service response time, transaction throughput, etc.), we

intend to adopt a different approach—specifically, unsupervised learning—for the

spike detection component, as we will not do a classification based on fixed thresholds.

Wen and Keyes [120] talk about the criticality of anomaly detection in automated

monitoring systems. Through their work, they demonstrate the significant role that

transfer learning can play when using Convolutional Neural Network (CNN) archi-

tectures, particularly in extending partially trained models to other systems. In our

research, we plan to leverage this idea by testing how models trained on specific time

series data perform when system conditions have changed. In other words, we aim

to assess how well previously trained models can predict spikes and forecast system

16

traffic when the application is configured with a new, previously unseen configura-

tion. To verify this assumption, we plan to use several model architectures, including

CNNs.

2.3 Using Large Language Models for IT Opera-

tions Management

Integrating Large Language Models (LLMs) into Artificial Intelligence for IT Op-

erations (AIOps) is an emerging field poised to revolutionize the management and

maintenance of IT systems. LLMs like OpenAI’s GPT-4 and Anthropic’s Claude

have demonstrated exceptional abilities in understanding and generating human-like

text, which can be leveraged to enhance various aspects of IT operations.

There are different research areas on utilizing LLMs for AIOps. One such area

is related to log analysis, which includes sub-areas like log parsing [57, 80, 81, 125],

log anomaly detection [46, 74] and logging statement generation [71, 124]. IT sys-

tems generate vast amounts of unstructured and complex log data. Researchers are

exploring how Large Language Models (LLMs) can process and interpret this data

to identify patterns, detect anomalies, and predict potential system failures. By un-

derstanding the context within log messages, LLMs can proactively identify issues

before they escalate, thus reducing downtime and improving system reliability. Our

work differs from prior research because we are not targeting logs but focusing on

remediation workflows and procedures.

Another research path refers to automating incident management and response [41,

55, 100, 129]. Large Language Models (LLMs) can be trained to interpret alerts, cor-

relate events, and suggest remediation steps. They are capable of generating incident

reports, summarizing key findings, and even automating communication between IT

teams. This not only accelerates the incident resolution process but also reduces

the cognitive load on IT personnel, allowing them to focus on more strategic tasks.

While our work can be applied to incident management, the agents we develop—with

their associated toolsets—can also be used for preventive maintenance. Moreover, to

the best of our knowledge, our research is the first to integrate predictive machine

learning models with LLMs in AIOps specifically for capacity planning purposes.

17

2.4 Evaluation metrics for Predictive Machine Learn-

ing Models in Capacity Planning and Load

Testing Optimization

The choice of metrics to evaluate machine learning models depends heavily on the

type of problem being addressed, as each metric provides unique insights into model

performance. Each metric emphasizes different aspects of performance, making it

crucial to select the most appropriate ones to ensure the model aligns with the specific

goals and requirements of the problem being solved. As we’ve seen earlier, the capacity

planning challenge is a regression problem and load testing optimization relies on a

time series forecasting problem. Below we provide the names and definitions of most

commonly used metrics to evaluate these types of machine learning models.

1. Median Percentage DeviationMPD, is the median of the measured percent-

age deviation between the predicted and actual target (system throughput) The

percentage deviation for a point in this set (given n points in the testing set) is

the fraction of the difference between the actual and the predicted throughput

from the actual, for each point i in the set. Thus, the MPD is calculated as:

MPD = Median(
actuali − predictedi

actuali
). (1)

2. Mean Absolute Percentage Error (MAPE), also known as mean absolute

percentage deviation (MAPD), is a measure of prediction accuracy of a fore-

casting method and measures the size of the error in percentage terms. It is

calculated by the formula (given n points in the testing set):

MAPE =
1

n

n∑
i=1

| actuali − predictedi
actuali

| (2)

3. Mean Absolute Error (MAE) is the average of the absolute errors, which is

the difference between the measured/predicted value and the actual value and

it is defined by the following formula (given n points in the testing set):

MAE =
1

n

n∑
i=1

| actuali − predictedi | (3)

18

4. Mean Squared Error (MSE) measures the squared average distance between

the real data and the predicted data and it is defined by the following formula

(given n points in the testing set):

MSE =
1

n

n∑
i=1

(actuali − predictedi)
2 (4)

5. Root Mean Squared Error (RMSE) is the square root of the mean squared

error, thus defined as:

RMSE =

√√√√ 1

n

n∑
i=1

(actuali − predictedi)2 (5)

6. R2 score, or the coefficient of determination is a statistical measure of how

close the data are to the fitted regression line and it is defined by the following

formula:

R2 =
V ariance explained by the model

Total variance
=

SStot − SSres

SStot

,

SStot = sum of total squares,

SSres = sum of squares of residuals

(6)

The SSres is also known as the the unexplained variation.

7. Pearson Correlation Coefficient (PCC) is a measure of the linear correlation

(or dependence) between two data sets. In our case, we applied this metric only

for evaluation of the time series models performance, therefore the two data sets

in question are the true values set and the predicted set. In summary, the PCC

is defined as the ratio between the covariance of the two variables and product

of their standard deviations as follows:

ρact,pred =
cov(act, pred)

σactσpred

=

E[(Actual − µact)(Predicted− µpred)]

σactσpred

(7)

2.5 Evaluation metrics for Large Language Models

Large Language Models (LLMs) are evaluated using a variety of metrics that assess

their performance across different dimensions, depending on the specific tasks they

19

are designed to perform. Since LLMs are technically text generators that predict

the next word in the sequence, some of the metrics used to evaluate LLMs are from

traditional Natural Language Processing (NLP) metrics or the rise of the pretrained

models (e.g., BERT [28]), as highlighted in prior studies [51, 82].

According to Sai et. al [99], LLMs should be evaluated by the task they perform

(e.g. classification, question and answering, summarization), therefore many other

metrics can be used. They also suggest that human expert evaluation that rate a

model’s outputs based on criteria like fluency, coherence, relevance, and appropriate-

ness are essential for open-ended generation tasks where quantitative metrics may

not capture nuances. In addition, there are also system performance metrics that

need to be taken into account. As a result, given their contextual nature, below we

present next only the metrics used in our research to determine the performance of

LLM agents used in an AIOps context:

1. Compliance with Instructions: Measures how well the model follows user

instructions or prompts. Since agents make use of tools, with the help of this

metric we are measuring the LLMs capacity to understand what tools it needs

to use and in what order.

2. Accuracy: Measures the ratio of correctly predicted instances to the total

instances. Although this metric is usually applicable for classification tasks, we

use it to measure, when asked repeatedly, the agent has been able to correctly

solve a task and provide the correct answer. The correctness of the answer is

made by human expert evaluation.

3. Human Evaluation: Involves human judges rating the model’s outputs based

on criteria like fluency, coherence, relevance, and appropriateness. This is essen-

tial for open-ended generation tasks where quantitative metrics may not capture

nuances, or for expert systems evaluation where the result is a chain of actions

decided by the chain of thought of the LLM [23, 117].

4. Latency and Throughput: Measures the time taken to generate responses

and the number of responses generated per unit time. This is important for real

time applications where the responsiveness is critical.

5. Cost: Measures the number of tokens by the LLM in the chain of thought to

process the user request, reach a conclusion and format the final response.

20

Part I

Capacity Planning For Large Scale

Systems

21

Chapter 3

Enhancing the Effectiveness of

Capacity Planning for Large Scale

Systems

This chapter presents an empirical study that examines the challenges of capacity

planning for large scale industrial systems and our proposed blueprint for a framework

and process that may be used both during the project phase and the production phase.

The blueprint we propose is extensible and generalizes on any configurable software

systems.

Prior research [32] has highlighted the significant economic impact on projects

and companies when applications cannot handle sustained load pressures and traffic

spikes. Similarly, the research community has shown that finding optimal parameter

values is a complex and time-consuming task [9, 20, 42, 43, 45, 70, 101].

However, although optimization is important, in industrial settings it makes more

sense to focus on optimizing Key Performance Indicators (KPIs) and Service Level

Agreements (SLAs), since these metrics ensure the correct functionality of the system.

Therefore, concentrating on capacity planning is more meaningful for the business.

This means that optimization efforts should target achieving optimal capacity for

the entire software ecosystem, rather than solely optimizing individual software con-

figuration parameters—even though the two are, to some extent, directly linked for

obvious reasons.

22

We, therefore propose MLASP [114], a framework that uses automation and ma-

chine learning to address the capacity planning in industrial settings starting from

the project phase and continue into the production phase.

An earlier version of this chapter has been published at Empirical Soft-

ware Engineering (EMSE), 2021, Volume 26, Article Number 87. Vitui

and Chen [114]

3.1 Motivation

The motivation for our research was derived from the collaboration with our industrial

partner, Ericsson Inc. We present in this section the challenges faced by our partner

during the capacity planning process.

Load test engineers at Ericsson Inc. are tasked with testing and verifying the

capacity of software systems within a short time frame—the release cycle is only six

weeks. Software development teams rely on the load testing team’s results to deter-

mine whether the new release can be deployed to production. Depending on these re-

sults, a new Service Level Agreement (SLA) may also be provided if needed. However,

given the complexity of the software systems and the hundreds of performance-related

configurations, it is difficult for the load testing teams to execute comprehensive load

tests within the allotted time frame.

Ericsson’s systems consist of multiple components that combine both third-party

software and in-house developed software. The in-house components are maintained

by numerous developers and can encompass millions of lines of code. Depending on

requirements driven by capacity needs and project economics, these components are

grouped together either within the same application server or across different ones.

This approach addresses the need for increased capacity and redundancy. Sometimes,

redundancy is geographically distributed across several data centers. Each component

of the software system has various configuration parameters to provide increased

operational flexibility. However, this can affect the system’s performance and capacity

at both single-instance and clustered levels. The task of the load test engineers is

to estimate the software system’s capacity by considering not only the components’

configuration values but also the hardware settings, and to provide guidelines that

meet the performance and service level agreements expected by the customer.

23

Generally, load test engineers do not know how each configuration parameter—or

combination of parameters—affects overall system performance. They rely on default

values provided by software developers. Similarly, developers may not know what type

of hardware or virtualization technology will be used to run the software. A prior

study by Li et al. [70] shows that developers may not even understand the effects

of parameter value combinations, so default values are sometimes provided based on

guessing or prior experience with similar systems. Load test engineers cannot afford

to test all possible combinations of parameter values, so they rely on their experience

and test only the most significant parameters.

Once an initial set of parameters has been selected, the load testing teams need to

perform additional endurance testing to ensure the software system’s stability under

sustained load. Throughout the endurance testing phase, the software components are

continuously monitored for capacity metrics—such as throughput and other KPIs—as

configuration values change.

One major drawback in capacity and performance evaluation is that when system

components are modified—such as through code changes, deployment settings, or

hardware configuration changes—the effects of the configuration parameters may also

change. This issue is known as the n-way feature interaction problem. Rerunning all

load tests to verify the effects of different parameter combinations becomes very time-

consuming and costly. Moreover, the number of parameters can increase exponentially

when new components are added to the software system. This makes it impossible

to test a sufficiently wide range of parameter values to confidently assert that a given

set leads to the desired capacity capable of sustaining SLAs under heavy load for

extended periods.

To meet time constraints between releases, load test engineers might consider ac-

celerating testing through parallelism by adding more computing resources, if avail-

able. However, this approach may not be feasible for large-scale solutions due to the

time required to deploy these resources, not to mention the significant cost increase

that the project would incur.

To summarize, poorly configured software can lead to suboptimal resource utiliza-

tion, resulting in performance issues and revenue loss. It can also cause deployments

to be larger than necessary, increasing capital expenditure costs for hardware, elec-

tricity, and other resources. Capacity planning for large-scale systems is an expensive

24

and time-consuming process. These points highlight the critical importance of having

an efficient capacity planning and configuration analysis process for large-scale sys-

tems. In this section, we present a novel machine learning-based approach to help load

test engineers reduce the number of test runs needed to study and verify a system’s

capacity.

3.2 Case Study Setup

In this section, we present details about the studied systems. We then present the

methodology for the proposed framework blueprint.

3.2.1 MLASP Framework Proposal

Our objective for improving the capacity planning process is to provide a generic

process blueprint that can be adopted in an industrial setting with minimal effort.

The intention is to have a process that leverages existing and integrated toolsets used

by load testing engineers and developers for various tasks within their current capac-

ity planning and parameter tuning processes, preferably without requiring any code

changes. To achieve this, we propose a three-stage process called Machine Learning

Assisted System Performance and Capacity Planning (MLASP) [114] to effectively

address capacity planning challenges.

MLASP is a three stage process and its overview is presented in Figure 1. In the

first stage we aim to increase the load testing efficiency by the means of automation.

As mentioned before, we focus on non-intrusive data collection mechanisms. This is

imperative to follow as a generic approach which does not require access to the original

source code of a subject software component to extract valuable metrics. The second

phase presents the machine learning modeling and its associated activities: data

cleaning and feature engineering, model training and validation. The third and final

part is about using a trained model to answer the two applicable business situations:

”what if?” and ”find a valid configuration for a desired KPI” (i.e., throughput).

Noteworthy is the fact here that due to the nature of the problem we’re trying to

solve, it may be impossible to find a configuration set that yields precisely a KPI,

therefore we must consider searching for a configuration set that is close enough to a

desired target, in other words, it is within an acceptable percentage deviation from

25

Figure 1: MLASP Process with its three stages: (1) Automated Load Testing, (2)

Feature Engineering and ML Training, and (3) Model On-Line Serving.

the desired KPI value.

Our proposed approach to automated load testing considers the following aspects

of the overall process:

• Automatic component configuration: at the beginning of each test cycle,

random values are generated and applied to the selected configuration parame-

ters. This operation is performed for every selected component.

• Automatic cluster configuration: at the beginning of each test cycle, within

the available resource boundaries, each component deployment is randomly

scaled.

• Automatic invocation of a dynamically configurable load driver: at the

beginning of each test cycle, a load driver is programmed to generate and apply

constant or variable load over the subject system as required by the business

test case scenarios.

• Automatic and consolidated data collection: throughout the execution

of the load test and as well as at its completion data is collected from the

components and underlying infrastructure using non-intrusive methods. These

data points form the desired KPI metrics data sets.

26

Key to controlling the automation of the load testing part of the MLASP frame-

work is the random configuration parameter value generator which may be imple-

mented in various ways: as a generic script, or as a custom application written

in several programming languages. Alternatively, for regression testing purposes,

prior configurations may be retrieved from persistent storage solutions such as re-

lational databases (e.g., MySQL [87], PostgreSQL [91], etc.), no-sql databases (e.g.

CouchDB [7], etc.), or even a file versioning system. A new randomly generated, or a

previously defined configuration set is then applied to the target components (includ-

ing the load generator) by using either specialized tools (e.g., Ansible [5], Puppet [93],

or Chef [15]), or by custom scripts/applications. The load generator may also be im-

plemented through various ways: it may be a custom developed application or an

existing specialized tool such as JMeter [34], Jenkins [54], Soap-UI [107], etc. To col-

lect metrics using a non-intrusive approach, the software systems (applications and

the underlying infrastructure) must expose beforehand the KPIs of interest. These

KPI values maybe collected through logs (if available), or, by exposing counters that

may be queried by external agents, specialized for collecting such information. Most

modern systems follow the practice of exposing counters for querying either logs, for

tools such as Logstash [77] or Elasticsearch [29], or through specialized web services

where the information may be collected using specialized agents like JMX [58] (for

Java application only) or Prometheus (for any application that exposes Prometheus

style counters). The metrics information collected may also be aggregated and stored

in various types of databases (relational, time-series, no-sql).

The next phase in the proposed framework is the Machine Learning engineering

stage. This consists of a feature engineering pipeline and model training and vali-

dation step. Similar to the previous stage, there are many available tools for each

step in the stage (data engineering, model training and validation) such as: Apache

Spark [8], DeepLearning4J [27], Tensorflow [111], PyTorch [95], scikit-learn [103], etc.

The final stage of the MLASP blueprint is the model serving and inferencing

phase. Depending on the tools and libraries the model was created with, the final

trained and validated model may be served by frameworks such as Apache Spark [8],

Seldon [104], Flask [33], DeepLearning4J [27], etc. The resulting inferencing endpoint

may then be used for the two earlier mentioned business scenarios:

• What if – in this case the load test engineer provides the model with concrete

27

parameter values and finds out the predicted KPI information from the model.

• Find valid configurations within provided ranges of parameter values that meet

a desired KPI value within an acceptable threshold. This scenario is very useful

for production capacity planning when a robust model (that has been trained

on a significant amount of data) is queried repeatedly to provide possible sets

of configuration parameter and deployment setting values. Using specialized

knowledge of the system, the load test engineers may then select one of the

proposed configuration sets and apply them to the software ecosystem.

Due to NDA reasons, we cannot disclose the integrations and tool sets our in-

dustrial partner has used in each phase of the MLASP process. However, as we

described above, several options are available for each stage. Furthermore, the pro-

posed blueprint is flexible may be extended or adapted to incorporate additional steps

as needed.

3.2.1.1 Feature Engineering and Selection

Feature selection and engineering are the precursor steps for machine learning model

training. They are necessary as they ensure that quality data is provided to the

machine learning models, which are very sensitive to this type of information. For

example, as prior studies show, multicolinearity may affect the stability of the model

(e.g., overfitting) [35, 47]. Therefore, we conduct an analysis to find correlated

features and only keep one of them in case a correlation of over 0.8 is detected [36].

As prior studies indicate [106, 108], some machine learning algorithms are sensitive

to the scale of the input data. There are various scaling techniques available, and

in our experiments, we use the StandardScaler and MinMaxScaler implementations

from the scikit-learn [103] library. The StandardScaler subtracts the mean and scales

the data to have unit variance, while the MinMaxScaler rescales the dataset so that

the entire feature set falls within the range [0, 1].

Also, for training purposes we consider only the configurations of successful load

tests, meaning that during a load test there were no errors recorded in the system

(i.e. all request were responded with 2xx OK type response).

It is important to note that the outcome of the feature selection process is closely

tied to a specific set of configuration parameters. This means that whenever a new

28

non-constant parameter is added to the system, it becomes necessary to recreate

and retrain the model. The reason is that the existing model may no longer provide

accurate predictions if it does not take into account the newly introduced parameters.

3.2.1.2 Applying Machine Learning Techniques

To model and predict KPI responses based on a given set of parameter values, we

utilize different machine learning algorithms and architectures. This approach allows

us to capture various relationships between the features and the target variables, as

different models may excel in different aspects. By applying multiple techniques, we

study how effectively each algorithm models the given data. We apply the following

types of models:

Tree-based models:

• Random Forests - they are an ensemble learning algorithm that are constructing

multiple decision trees. Random Forests are less sensitive to outliers and can

identify important features [12].

• Extreme Gradient Boosting (XGBoost) - they are an optimizied version of the

gradient boosting machine learning method that is based on decision trees.

Prior research pointed out that this method is highly efficient for modelling

regression problems [18, 86, 90].

Deep Neural Network models:

• Multi-Layer Perceptron (MLP) - it is the base unit of a fully connected feed

forward neural network. Such a network is capable of modeling data with non-

linear relationship [130]. As pointed out by Cybenko’s theorem [17], MLPs are

universal approximators and are suitable for regression problems. It is impor-

tant to consider this factor in model selection because universal approximators

can extrapolate and make predictions using data that falls outside the sets and

ranges used during training. In contrast, tree-based methods do not perform

well when asked to make predictions on data that falls outside the feature ranges

they were trained on.

• Convolutional Neural Networks (CNNs) are regularized versions of Multi-Layer

Perceptron (MLP) networks. Although they were originally created for image

29

analysis [38], CNNs have proven to be very effective at modeling regression

problems, as highlighted by prior research [66].

• Long Short-Term Memory (LSTM) networks [130] are a variant of recurrent

neural networks that capture and remember the order of data in sequences

during model training [30, 123].

Traditional model:

• The Linear Regression (LR) model serves as a fundamental baseline in machine

learning for regression problems. We use this model as a reference point to com-

pare its prediction performance with the more advanced models we mentioned

above.

For each model, we use the same training and testing data sets. Following the

Pareto principle [3, 126], we split the training data into 80% for actual model training

and 20% for validation. We then test the models using the test data sets.

3.2.1.3 Training Machine Learning Models

In this section we discuss aspects about ML model training. In our approach, we

implemented a sequential model hyperparameter tuning process, which can result in

longer training times. Specifically, we observed that searching for optimal hyperpa-

rameters in deep neural network models can take a significant amount of time (e.g.,

several hours for the open-source system) due to their complexity and the large num-

ber of parameters that require optimization. While deep neural networks generally

deliver excellent prediction results when sufficient training data is available, load test

engineers may still opt for algorithms like XGBoost. This is because XGBoost offers

significantly shorter training times while still providing strong prediction performance.

Based on our experience, as more test data becomes available, the optimal model

architecture (e.g., the number of neurons per layer in Neural Network models) or

hyperparameter values may change. For instance, we observed that the optimal hy-

perparameter values identified in research questions RQ1 and RQ2 differed when using

our model hyperparameter tuning approaches. Consequently, in addition to online

training, it is necessary to periodically retrain the models to determine new opti-

mal hyperparameter values. Similar findings were observed in the enterprise systems,

30

prompting our industrial collaborators to incorporate model retraining and hyperpa-

rameter tuning into their CI pipeline once the number of new load tests exceeds a

certain threshold. This practice has been shown to improve prediction accuracy and

better capture the relationship between the system’s configuration parameters and

throughput.

Similar to the approach by Ha and Zhang [45], we developed an iterative method to

determine the optimal depth for the neural network that yields the best performance

on the validation subset. This iterative search involves testing network architectures

with different widths, such as 32, 64, and 128 neurons per layer, respectively. We

begin the evaluation with no hidden layers and incrementally increase the network

depth by adding one layer at a time, up to a predetermined maximum number of

layers (15 in our case). For each iteration, we record the following information:

• Model performance metrics: Metrics such as R2 score and Mean Absolute

Error (MAE) are calculated for the trained network’s performance on the test

data. These metrics help visualize the evolution of the loss function’s perfor-

mance with respect to the number of hidden layers.

• Training and validation data values: We store the training and validation

data values for each iteration to visualize their history. This allows us to identify

signs of overfitting or underfitting, such as when the training results deviate

significantly from the validation results.

• Predicted throughput: The predicted throughput values for the test data

are recorded to evaluate the model’s predictive performance.

• Model details: The trained model’s parameters and associated details are

saved in a file containing the best training score. These files allow us to reload

the fully trained model and deploy it within the CI process for further validation

and use.

This comprehensive recording process ensures that we can effectively evaluate and

refine our neural network architectures for optimal performance.

The process of expanding network depth can be either manual or automated. In

the manual expansion process, ML model developers follow an iterative approach to

determine the optimal maximum depth for neural networks or decision trees. For

31

example, during the first trial, the maximum depth may be set to N = 5. After

reviewing the results, developers can decide whether the performance is acceptable

or if further modeling is required. If additional modeling is needed, the maximum

depth can be increased (e.g., to N = 10 or N = 15).

Although the manual process is straightforward to implement, it may not be the

most efficient method in terms of training time. To optimize the depth expansion

process, developers can adopt an automated approach [45]. This involves continuously

increasing the depth as long as the model performance metrics improve beyond a

certain threshold. For instance, the process can stop if the performance improvement

is less than x% after adding N additional layers, or if the results deteriorate by more

than y% after adding M additional layers. In our experiments, we chose a manual

approach for the open-source system, while we employed an automated approach for

the enterprise system.

During this iterative process, to optimize model performance we also tune other

neural network-specific parameters, including the following:

• Batch size: Determines the number of samples from the training set that the

model processes before adjusting its internal parameters (weights).

• Epochs: Specifies the number of complete passes (forward and backward)

through the entire dataset during the learning process. One epoch corresponds

to a single full pass through the dataset.

• Regularization values: Adjusts the L1 and L2 regularization parameters [88]

to help prevent overfitting by adding a penalty for large weights.

Regularization is a technique used to prevent overfitting by adding a penalty to

the model’s parameters (excluding the intercept). This penalty is incorporated into

the loss function, encouraging the model to generalize the data and avoid overfitting.

Prior research [88] recommends evaluating model performance using two standard

types of regularization procedures:

• Lasso regression [112]: Applies a penalty that minimizes the sum of the

absolute values of the model parameters (weights). This method is also known

as the L1 norm.

32

• Ridge regression [89]: Uses a penalty that minimizes the sum of the squares

of the model parameters. This method is also known as the L2 norm.

These methods help ensure that the model remains robust and performs well on

unseen data.

For tree-based algorithms, we also use an iterative approach to determine the

optimal number of trees as well as the L1 and L2 regularization values to achieve

better prediction results. We gradually increased the number of trees until there was

little to no improvement in prediction performance. Similarly, we adjusted the L1

and L2 regularization values incrementally to optimize the model’s performance.

To further study if our models suffer from any overfitting, we also conduct a 10-

fold cross validation for all models on the existing test data. We find that when using

10-fold cross validation, the models show similar prediction results as before.

3.2.2 Studied Systems

We conduct our experiments on two sets of studied systems: enterprise and open

source.

3.2.2.1 Enterprise Systems

We evaluate and integrate our methodology on two large-scale enterprise systems de-

veloped by our industrial partner, Ericsson Inc. Due to a non-disclosure agreement

(NDA), we cannot provide detailed information about these systems. However, we

can offer a high-level description: these systems consist of millions of lines of code

and are maintained by a large team of software engineers. They provide business-to-

business (B2B) and business-to-consumer (B2C) telecommunication services related

to messaging, location-based services, and payments. These systems utilize Ericsson’s

in-house developed products, third-party commercial products, and some open-source

software. They process tens of millions of requests daily, serving millions of customers

around the world, including some in mission-critical operations. Owing to their criti-

cal nature, these systems are deployed with both local and geographically distributed

redundancy.

33

3.2.2.2 Open Source Systems

To validate our findings and ensure reproducibility, we also conduct experiments on

Apache Kafka [6]. Kafka is a distributed messaging streaming (DMS) system that

operates in clusters of one or more servers known as brokers. These clusters can

expand within a single data center or across multiple data centers. Within these

clusters, streams of records (also called messages) are stored. Similar messages are

grouped into topics, which are further divided into partitions. These partitions can be

distributed and replicated across any number of brokers in the cluster for redundancy.

We use Kafka as our first open-source subject system as it has similar high level

features as the enterprise systems as follows:

• Kafka is a highly configurable system.

• Kafka is supports non-intrusive key performance indicator measurements and

dynamic configuration changes (i.e., using JMX).

• Its performance depends on both vertical and horizontal settings.

• It supports both local and geographically distributed redundancy.

We perform our experiments with Kafka on a system using Amazon Web Ser-

vices (AWS) cloud resources, not using the AWS managed Kafka services. In our

experiments we use three different environments (i.e. deployment settings):

• one broker with one topic having one partition and without replication.

• one broker with one topic having two partitions and without replication.

• two brokers with one topic having two cross replicated partitions, meaning each

broker has one active partition and the replica of the other broker.

In addition to the Apache Kafka open source test environment, we verify the

experiments and provide a full scale reproduction of our proposed framework, MLASP,

in a Kubernetes [61] environment implementation, namely Red Hat OpenShift [97].

In this context, we provide comprehensive, step-by-step instructions and source code

for setting up the test environment. This includes the load testing framework, data

collection processes, machine learning (ML) procedures, and example operational

clients for utilizing the trained ML models. The two scenarios in which the ML

34

models are applied are: (1) a ”what if” analysis, and (2) finding a valid configuration

to reach a target KPI within an acceptable margin. The complete instruction set and

source code are available in a GitHub-hosted project called MLASP on OpenShift [84].

This project uses WireMock [121] as the test subject—a popular open-source, generic

web service mocking application that can be adapted and extended to a wide range

of business applications. Through this project, we validate our experiments on an

additional open-source test subject and demonstrate our proposed blueprint on a

commercial-grade open-source software system. Noteworthy is the apsect that this

second open-source system verification based on Red Hat OpenShift was not part of

the original MLASP [114] research. The results presented in Section 3.3 refer only to

the ones from the MLASP [114] publication.

3.2.3 Performing Load Tests

We presented earlier in Figure 1 the three stage process of MLASP. Next, in Figure 2

we depict the overview of the load test execution setup. We use for each studied

system appropriate load scripts to generate traffic and exercise the system. We take

into consideration that a system may contain multiple components, therefore, we

collect the set of configuration parameters and the corresponding throughput in each

component. As mentioned, we rely on non-intrusive data collection and system control

techniques for reconfiguration such as specialized APIs (web-based APIs, RESTful or

SOAP, or Java Management Extensions - JMX), or periodic reloading of configuration

files. Throughput information about the studied software system may be collected

from logs or from API queries. If logs are used, depending on the their nature and

stored information, expert knowledge may be required to perform the calculations

of the desired throughput information. During these load tests, the input payload

was constant during the execution of the test, however different tests had different

payloads as different business request types were tested.

Next, we detail the process of running load tests for the studied systems.

3.2.3.1 Enterprise Systems.

The two enterprise systems are deployed on a large scale. Each system contains several

different products that work together to fulfill specific business requirements. Some

of these systems offer out-of-the-box capabilities for querying dynamically collected

35

Traffic
Generator

Kafka
BrokerKafka

BrokerComponent 1

Load
Script(s)

ML
modeling

Feature Set
Selection Pool

Agent 1

Feature
Engineering &

Selection

Kafka
BrokerKafka

BrokerComponent 2

Agent 2

Kafka
BrokerKafka

BrokerComponent n

Agent n

Studied System

Component 1
Config &

KPI Information

Component 2
Config &

KPI Information

Component n
Config &

KPI Information

ML Pipeline Module

Business Software
Module

ML Data Points

Online
Capacity

Prediction

Legend:

ML Model Exposure
Interface

Load Generator
Software

Test Data

ML Framework

Figure 2: A high-level overview of our approach and load test execution setup.

performance metrics (i.e., for calculating throughput), while others require additional

analysis to extract the necessary metrics.

To handle the distributed information, we aggregated the metrics based on times-

tamps. In large-scale deployments, the various components must be highly synchro-

nized. We leveraged the synchronous properties of the enterprise systems to extract

information from each component at the same synchronized time intervals. Once the

data collection endpoints were in place, the load test engineers executed load tests by

following a defined in-house process.

Due to the nature of the studied systems, load test engineers use in-house custom

scripts to generate and execute the load. The test generation and execution processes

are integrated into the Continuous Integration (CI) pipeline. At the end of each test,

we collect and calculate the throughput of the studied systems under the executed

load, along with the given configuration parameter values and the corresponding

deployment settings.

36

3.2.3.2 Open Source System

As previously mentioned, concerning the studied open source systems, we shall only

refer to the one described in the existing MLASP [114] publication, namely the Apache

Kafka [6].

We consider three sets of configuration parameters in our study: environment

settings, broker (i.e., Apache Kafka), and load-generator (i.e., custom application).

Following recommendations from previous academic research focused on Kafka

performance [10, 67], as well as from commercial support suppliers for Kafka [24, 25],

we select and vary the most important Kafka broker configuration parameters in our

tests [6]:

• background.threads: The number of threads the broke may use for various

background processing tasks. The range of values we used in our experiments

for this parameter was [5-30].

• num.io.threads: The number of threads that the broker uses for processing

requests that refer to disk I/O. The range of values we used in our experiments

for this parameter was [4-16].

• num.network.threads: The number of threads that the broker uses for exchang-

ing requests and response message with the network. The range of values we

used in our experiments for this parameter was [3-6].

• num.replica.fetchers: The number of fetcher threads used to replicate messages

from a source broker. Increasing this value can increase the degree of I/O par-

allelism in the follower broker. The range of values we used in our experiments

for this parameter was [1-2].

For each environment setting, we vary the Kafka broker configuration parameters

as well as the load-driver parameters, using the same sequence of values from the

selected range applicable to each parameter.

Note that the three previously mentioned environment settings concerning the

Kafka cluster setup (i.e., the number of brokers and the number of partitions per

topic) are also part of the configuration parameters. From the load generator’s stand-

point, we use the message size and the number of client threads publishing messages

into Kafka as input variables. The measured target is the client-side throughput

37

in relation to the server-side capabilities of the target Kafka environment. In other

words, given a specific configuration tuple (i.e., broker settings, environment, load

generator parameters), we calculate the throughput as the number of messages that

can be published to Kafka within 30 minutes. The load test results are aggregated

per environment and are used to build the machine learning models for capacity

prediction.

For the actual load test preparation and execution, we follow the steps below for

the open-source system:

• We used the load-driver to run tests for a fixed duration (i.e., 30 minutes).

• At the beginning of each test run, we update the configuration of both the

load-driver as well as of the Kafka brokers. We generate a total number of 300

distinct configurations.

• We executed load tests using the same 300 distinct configurations on each of the

three different Kafka environments (as described in Section 3.2.2.2). In total,

we executed 900 load tests with a total machine execution time of over 18 days.

We utilized expert knowledge to determine which configuration parameters to tune

on the Kafka broker side for each load test scenario [10, 24, 25, 67]. The range used

to vary each configuration parameter was defined as a list of values described by the

function f(x) = nx, where both n and x are positive integers. This range included

values both higher and lower than the default configuration value for the parameter

x. The upper and lower bounds of the range (i.e., n) were selected based on domain

knowledge for each configuration parameter considered in the test scenarios. For

example, in the open-source environment, the BackgroundThreads parameter values

of the Kafka broker were modeled by the function f(x) = 5x, where x ∈ [1, 6] and

the NumIoThreads parameter values were modeled by f(x) = 4x, where x ∈ [1, 4].

Using a custom-developed Java-based command-line application as the load driver,

we controlled the number of client threads used to send messages to the Kafka bro-

kers, as well as the size of the messages being delivered. The load-driver application

recorded the configuration parameter values and the measured throughput (i.e., the

KPI for the studied open-source system) in a log file for each test run.

On the Kafka broker side, we developed an agent that collects Kafka through-

put metrics at one-minute intervals. For each test run, we aggregated the broker’s

38

throughput to correlate it with the load-driver’s recorded throughput, allowing us to

calculate the overall system throughput under a specific set of configuration parame-

ter values. The model’s source code and the test results for the open-source systems

can be found online [83].

Although we cannot disclose the details of the enterprise systems due to our NDA,

we follow a similar process by running load tests with varying configuration parameter

values. We use customized scripts for test execution and data collection, which are

integrated into the Continuous Integration (CI) process used by Ericsson Inc.

3.3 Case Study Results

In this section, we discuss the results of our research questions (RQs). For each RQ,

we present the motivation, our approach and the results.

To comply with the NDA requirements set by our industrial partner, we present

capacity planning information in a generic form applicable to both the enterprise

and open-source systems, focusing on application throughput. We define throughput

as the number of messages or requests processed by the software system within a

specified time period.

3.3.1 RQ1: What is the prediction accuracy on the system

throughput given variable system configuration param-

eters?

Motivation: Modern large-scale systems can be highly complex, comprising multiple

integrated components, each with a varying number of configuration parameters.

Consequently, there may be hundreds of combinations of configuration parameter

values, environment settings, and deployment options that can be applied to the

system. Studying the effects of these parameter combinations requires load testing,

which helps identify the configuration sets that support a desired capacity. However,

this is a lengthy process. In addition to running these tests, load test engineers need to

invest significant time in analyzing the results and creating baseline recommendations

for specific KPI targets, such as throughput.

Approach: To simplify and reduce the time required to accomplish this task, we

39

propose using a series of generic machine learning models to determine which one

performs best on the provided data sets. To asses the performance of the models

we use metrics defined in Section 2.4. We perform the training and valiadion of the

models using the Pareto principle as described in Section 3.2.1.2. We also perform

ten-fold cross validation of our models to verify their robustness.

Results: We have found that the machine learning models can predict the Key

Performance Indicator (KPI), such as throughput, with high accuracy. Specifically,

XGBoost and fully connected neural networks (MLP neural networks) achieve the

best prediction results, and our findings are consistent across the studied systems. In

Table 1 and Table 2, we summarize the results for both one-pass and ten-fold cross-

validation training. We observe that some models exhibit high accuracy due to low

values in the model evaluation metrics—for example, the Mean Absolute Percentage

Error (MAPE) ranges from 0.68% to 4.5% for models like XGBoost and MLP neural

networks. In contrast, other models do not capture the relationship between the

configuration values and throughput as effectively; for instance, MAPE increases up

to 62% for architectures like CNN, LSTM, and classic linear regression.

Similarly, when we examine the Mean Absolute Error (MAE), which measures the

average magnitude of the errors, we see values between 2,200 and 5,500 in the case

of the open-source system for most ML models (due to our NDA, we cannot disclose

the values for the enterprise systems). Considering that the number of processed

messages ranges from 100,000 to 700,000, an MAE of 2,200 to 5,500 is considered

very small.

As an example, Figure 3 shows the predicted vs actual throughput across various

test runs from the MLP Neural Net model of the open-source system. We can easily

see that there is a very high overlap between the predicted and actual throughput

(i.e., there is a near-perfect alignment between the two types of dots in the figure).

Figure 4 illustrates the distribution, where each point represents the deviation

value for one load test result. The results show that the percentage deviation is small

for all models in the open-source systems, except for linear regression models. This

finding indicates that, in the open-source system, the model predictions are consistent

across various load tests given different sets of configuration parameter values. We

exclude the detailed distribution for the enterprise systems due to NDA constraints.

However, as shown in Table 1, the median percentage deviation is higher for models

40

Table 1: Model evaluation results when using the entire data with separated training

and testing. We excluded the MAE, MSE and RMSE for the enterprise systems due

to NDA.

System Model R2 Score Median (%) MAPE MAE MSE RMSE

Type Deviation

Open-Src.

XGBoost 0.99964 0.0865 % 0.8060 % 2,193 2.4028e7 4,901

Random F. 0.99958 -0.1828 % 0.6617 % 2,266 2.8253e7 5,315

MLP NN 0.99969 0.1648 % 0.6822 % 2,110 2.0594e7 4,538

CNN 0.99949 0.1590 % 1.1940 % 3,555 3.4482e7 5,872

LSTM NN 0.99902 0.2583 % 1.4341 % 5,586 6.6280e7 8,141

Linear Regr. 0.90930 7.3951 % 41.3498 % 66,759 6.1744e9 78,579

Entprz. 1

XGBoost 0.99324 0.6323 % 2.3596 %

—–

Random F. 0.95078 -0.1450 % 4.5820 %

MLP NN 0.99512 2.2929 % 2.3435 %

CNN 0.98317 -1.0807 % 3.5182 %

LSTM NN 0.92908 -16.0805 % 8.0132 %

Linear Regr. 0.98830 4.6561 % 21.3450 %

Entprz. 2

XGBoost 0.99973 0.8091 % 4.5485 %

—–

Random F. 0.99647 1.5526 % 67.5510 %

MLP NN 0.99991 1.0868 % 3.3082 %

CNN 0.99067 -8.1808 % 23.6534 %

LSTM NN 0.97589 -5.9882 % 62.2091 %

Linear Regr. 0.92218 4.3187 % 10.4637 %

41

Table 2: Mean of model evaluation results when using the entire data with a 10-fold

cross-validation. We excluded the MAE, MSE and RMSE for the enterprise systems

due to NDA.

System Model R2 Score Median (%) MAPE MAE MSE RMSE

Type Deviation

Open-Src.

XGBoost 0.99967 0.0473 % 0.9716 % 2,360 2.2792e7 4,742

Random F. 0.99963 0.0789 % 0.7673 % 2,295 2.5318e7 5,004

MLP NN 0.99921 0.4544 % 1.8316 % 4,250 5.4934e7 7,320

CNN 0.99181 -0.6284 % 6.8631 % 14,891 5.7416e8 22,665

LSTM NN 0.99759 0.4520 % 1.9627 % 7,286 1.7208e8 11,423

Linear Regr. 0.91294 4.2547 % 42.1498 % 64,867 6.0917e9 77,905

Entprz. 1

XGBoost 0.96281 1.4391 % 3.7316 %

—–Random F. 0.92250 -1.5916 % 7.0361 %

MLP NN 0.95681 3.3302 % 3.0288 %

CNN 0.91407 1.6746 % 5.8063 %

LSTM NN 0.90522 -18.5884 % 10.0907 %

Linear Regr. 0.91538 4.5912 % 19.1878 %

Entprz. 2

XGBoost 0.94997 2.2235 % 8.1909 %

—–Random F. 0.90843 -1.3599 % 57.8177 %

MLP NN 0.95196 -3.4797 % 6.9008 %

CNN 0.91448 9.1220 % 33.5975 %

LSTM NN 0.93642 4.1062 % 69.3470 %

Linear Regr. 0.85118 4.5878 % 27.0634 %

42

Figure 3: An example of the predicted v.s. actual throughput for the open-source

system from the MLP Neural Net model results built using the complete dataset.

such as CNN, LSTM, and linear regression. Our findings demonstrate that CNN,

LSTM, and linear regression may result in a higher deviation between the predicted

and actual throughput. In contrast, XGBoost and MLP Neural Networks have the

highest R2 scores and relatively low deviations in the prediction results.

As mentioned earlier, to further investigate whether our models suffer from overfit-

ting, we conducted a ten-fold cross-validation. Table 2 presents the mean of the met-

rics obtained after applying a ten-fold cross-validation (following the same data split-

ting and training process). Our findings show that, using ten-fold cross-validation,

the models exhibit similar prediction results as before. Figure 5 displays an example

of the training versus validation loss for the MLP model obtained after training on

the training set. The convergence of the training and validation loss indicates that

the model is not suffering from overfitting.

43

Figure 4: Distributions of the percentage deviation between the predicted and actual

value for the open-source system using the complete dataset with separated training

and testing dataset.

44

Figure 5: An example of train v.s. validation loss for the open-source system from

the MLP Neural Net model results built using a subset of the complete dataset.

Our prediction models can forecast a system’s throughput given a set of config-

uration parameter values with very high accuracy. Specifically, machine learning

models like XGBoost and Multi-Layer Perceptron (MLP) neural networks achieve

the best prediction results, with Mean Absolute Percentage Error (MAPE) val-

ues ranging from 0.81% to 8.2% and a low median percentage deviation. How-

ever, other ML models—such as linear regression, Convolutional Neural Networks

(CNN), and Long Short-Term Memory (LSTM) networks—have lower prediction

accuracy and exhibit higher variation in prediction results across the studied sys-

tems.

3.3.2 RQ2: What is the prediction accuracy by training the

models using a small number of test runs with different

configuration parameter values?

Motivation: Predictive ML models usually require large sets of data in order to

train [4, 98] in order to provide useful predictions. Since running load tests can be

resource intensive, load test engineers may not be able to run a large number of load

tests with a wide range of configuration parameter values in order to gather a large

data set for building a high performance capacity prediction model. Therefore, in

45

this research question (RQ), we investigate whether we can accurately predict system

throughput using machine learning models trained on a smaller number of test runs.

The results would provide insights into the test execution time that can be saved

by using our approach to predict system throughput given different configuration

parameter values.

Approach: For the open-source system, we used a small subset of data—specifically,

30 test results out of a total of 900. These 30 test results were randomly selected

to build the models. We then evaluated the models on several hundred randomly

selected test results from the remaining data. We followed a similar process for the

enterprise systems, using only a small subset of the test results to build the models.

To evaluate the models, as in the first research question (RQ1), we reported the

R2 score, Mean Absolute Error (MAE), and the percentage deviation between the

predicted and actual throughput.

Results: We observe that when we used only a subset of the data for model training,

XGBoost achieves the best prediction results with the lowest variability compared to

other machine learning models. Table 3 shows the prediction results when using a

subset of the test results to train the model. We find that, in general, the prediction

accuracy has decreased compared to using the entire dataset.

The Mean Absolute Error (MAE) values for the open-source systems have in-

creased to a range of 4,154 to 64,867, compared to 2,110 to 67,751 in RQ1. Similarly,

the Mean Absolute Percentage Error (MAPE) values for the open-source systems

range between 1.06% and 36.44%, depending on the algorithm used to solve the re-

gression problem, where lower values indicate higher prediction accuracy. Notably,

XGBoost achieves a MAPE of 1.1% to 2.8%, demonstrating that the prediction re-

sults are comparable to those obtained when training the models using the entire

dataset. Our findings show that even though the overall prediction performance has

decreased, the models can still achieve good prediction results. We observe that some

algorithms are less stable, exhibiting a higher percentage deviation compared to oth-

ers (Table 3). Specifically, LSTM models are the least stable and have the highest

median percentage deviation across all studied systems, ranging from -13% to 6.5%.

Additionally, as shown in Figure 6, there are certain test results in the open-source

system where the percentage deviation between the predicted and actual throughput

is very high (i.e., outliers in the box plot).

46

Table 3: Model evaluation results when using a subset of the entire data with

separated training and testing. We excluded the MAE, MSE and RMSE for the

enterprise systems due to NDA.

System Model R2 Score Median (%) MAPE MAE MSE RMSE

Type Deviation

Open-Src.

XGBoost 0.99889 0.5694 % 1.0672 % 4,154 7.8966e7 8,886

Random F. 0.99893 0.5315 % 1.4713 % 5,539 7.6122e7 8,724

MLP NN 0.99953 2.1227 % 2.6546 % 4,392 3.3086e7 5,752

CNN 0.96168 -2.2649 % 15.5894 % 29,567 2.7289e9 52,239

LSTM NN 0.96830 -13.0955 % 14.7153 % 37,675 2.1557e9 46,430

Linear Regr. 0.89828 10.4876 % 36.4431 % 67,751 7.2433e9 85,108

Entprz. 1

XGBoost 0.99159 0.0262 % 2.7578 %

—–

Random F. 0.94208 -0.6794 % 5.0949 %

MLP NN 0.98547 1.5053 % 5.7127 %

CNN 0.98269 1.3599 % 4.5767 %

LSTM NN 0.90235 6.5161 % 17.8877 %

Linear Regr. 0.96475 8.4154 % 14.4674 %

Entprz. 2

XGBoost 0.99954 -1.0259 % 1.7781 %

—–

Random F. 0.99367 -1.2040 % 7.8301 %

MLP NN 0.99192 7.1343 % 13.3365 %

CNN 0.94616 -4.2667 % 36.1945 %

LSTM NN 0.95059 -13.1491 % 13.9580 %

Linear Regr. 0.96084 2.5049 % 8.18635 %

47

Figure 6: Distributions of the percentage deviation between the predicted and actual

value for the open-source system using a subset of data to train the models.

48

Table 4 presents the mean evaluation metrics obtained when applying leave-one-

out cross-validation on the subset dataset. We observe that for some models (e.g.,

LSTM), the MAPE achieved in leave-one-out cross-validation is significantly differ-

ent from that obtained using separate training and testing subsets. This suggests

that, due to the smaller size of the training and testing data, some models may

experience overfitting issues (i.e., different runs yield varied results in leave-one-out

cross-validation). Nevertheless, XGBoost models achieve very similar results when

using both separate training and testing datasets and leave-one-out cross-validation.

Our findings indicate that XGBoost models provide the best prediction results and

are the most stable when trained on a subset of data. Therefore, future studies and

practitioners may prefer XGBoost models for capacity prediction when only limited

training data is available.

MLASP can still achieve excellent prediction results for throughput when trained

on a small subset of data (i.e., 3% of the open-source data and a subset of the en-

terprise systems data). We also find that XGBoost provides the best prediction re-

sults—with MAPE values ranging from 1% to 3% across all studied systems—and

exhibits the most stable performance when the training data is limited.

3.4 Discussion and Implication of Our Findings

In this section, we delve into the lessons learned from conducting our experiments

and integrating our approach into the enterprise systems. We highlight key insights

and practical implications that emerged during this process. We also highlight some

key findings from studying the Apache Kafka open source system.

3.4.1 Understanding the Effect of Configuration Parameters

As discussed in prior research [69], we find that developers may not fully understand

the impact of a configuration parameter once the system is deployed in a distributed

and complex setting. Consequently, load test engineers need to spend considerable

time testing the system under various configuration parameter values, which can be

costly or even impractical. By building models, we can comprehend the importance

of each feature (i.e., configuration parameter) in relation to the target variable (i.e.,

49

Table 4: Mean of model evaluation results when using a subset of the entire data

with separated training and testing and leave-one-out cross-validation technique on

the training dataset. We excluded the MAE, MSE and RMSE for the enterprise

systems due to NDA.

System Model R2 Score Median (%) MAPE MAE MSE RMSE

Type Deviation

Open-Src.

XGBoost 0.99883 0.5632 % 1.0795 % 4,242 8.3032e7 9,092

Random F. 0.99877 0.7213 % 1.5241 % 5,857 8.7052e7 9,252

MLP NN 0.99660 -4.0275 % 7.8962 % 11,654 2.4191e8 14,454

CNN 0.88445 -4.8323 % 23.8084 % 51,175 8.2286e9 87,672

LSTM NN 0.83048 -33.5486 % 47.4998 % 73,846 12.149e9 90,930

Linear Regr. 0.89742 9.2974 % 36.4756 % 67,810 7.3047e9 85,466

Entprz. 1

XGBoost 0.96354 0.0879 % 3.6777 %

—–

Random F. 0.89339 0.7440 % 7.3675 %

MLP NN 0.91848 1.9285 % 5.7111 %

CNN 0.88238 2.6036 % 7.0554 %

LSTM NN 0.89979 7.2277 % 25.8928 %

Linear Regr. 0.86504 9.6058 % 21.4257 %

Entprz. 2

XGBoost 0.98516 0.5902 % 2.0413 %

—–

Random F. 0.94357 0.7911 % 13.3980 %

MLP NN 0.92409 8.1647 % 19.3214 %

CNN 0.88860 -6.4085 % 48.8870 %

LSTM NN 0.92140 -15.6541 % 21.1542 %

Linear Regr. 0.82025 3.0043 % 11.4730 %

50

Figure 7: Feature Importance: Open source system parameters that have the most

impact over the load test results.

KPI). This approach allows us to detect upper boundaries where increasing the pa-

rameter values further does not significantly affect the KPI.

The importance of the features can be determined directly from the ML mod-

els using specialized libraries that provide such insight. Figure reffig:mlasp-feature-

importance, depicts the feature importance of the parameters for the open source

system, correlated with the performed load test data.

For example, in the open-source system, we observe that the throughput remains

unchanged once the number of background threads in a Kafka broker reaches a cer-

tain threshold. After examining the feature importance in the model, we find that

the combinational effect of configuration parameters is more significant than any sin-

gle parameter. In addition to the number of threads, the model results also indicate

that message size is an important feature. Our investigation reveals that the overall

input/output operations per second (IOPS) of the disk and network greatly influ-

ence the total number of messages the system can process, regardless of how many

background threads we use. By utilizing MLASP, we can model the combinational

effects of configuration parameters and environment/deployment settings while run-

ning fewer load tests. This approach enables us to provide more informed suggestions

51

to load test engineers and developers regarding system capacity.

We observed similar benefits in the enterprise systems. Specifically, MLASP not

only enhances our understanding of the importance of configuration parameters but

also provides strong evidence for fine-tuning scaling strategies. For example, knowing

the IOPS limits and requirements of a system aids in virtual machine allocation and

relocation strategies for multi-tenant hardware within private clouds and data centers.

The models also assist in test automation by reducing the number of tests needed to

tune or verify less important configuration parameters, leading to an overall reduction

in load testing time. Overall, we find that MLASP can lead to significant cost savings,

streamline the CI process, and enhance the efficiency of load testing activities.

3.4.2 Integrating MLASP in Industrial Setting

There are various methods to integrate MLASP into industrial settings, such as mod-

ifying the source code to include self-monitoring and self-tuning functionalities. Ulti-

mately, MLASP employs a non-intrusive approach for data collection and configura-

tion parameter tuning. As discussed in Section 3.2, we calculate system throughput

by leveraging readily available information. Our approach requires no changes to the

system’s source code and does not affect the testing activities that are part of the

enterprise systems’ software development process. This non-intrusive method was

highly regarded by the project management team, as it avoided adding additional

costs to the project. Consequently, it did not jeopardize timely delivery plans and

release roadmaps, which ultimately led to the integration of MLASP. Future studies

may consider such a non-intrusive approach to increase the adoption of the developed

methods.

Beyond delivering excellent prediction results, MLASP also assists load test engi-

neers in identifying combinations of configuration parameter values that yield specific

outputs. When integrating our approach with the industrial system, we discussed

with our industrial partner—including project management and technical person-

nel—whether the models could be used for capacity planning in addition to capacity

prediction. For example, our industrial partner might be interested in knowing the ex-

pected throughput if the number of deployed nodes decreases by two. If the model can

provide accurate predictions by inputting the desired variable values into the trained

models, it can offer an accurate estimated outcome. Essentially, MLASP helps load

52

test engineers model the scalability of the software system (e.g., determining the types

and amounts of resources needed to achieve a desired throughput based on forecasts

of future traffic needs). Such inverse prediction or classification is commonly used

in statistics and machine learning to understand the effect of variables and to aid in

business decisions [1, 19, 69]. MLASP also helps load test engineers identify poten-

tial physical limitations of the system hardware by studying the correlation between

features (i.e., configuration parameters) and throughput, as discussed in Section 3.2.

This information was highly valuable for reporting purposes to both management

and development teams when simulating ”what-if” scenarios. The results from these

simulations highlighted the relationships between different parameters—such as un-

derlying infrastructure and software configurations—and provided important insights

to development teams on where to focus improvement efforts in the next iteration.

Project management also gained a clearer understanding of the roadmap and were

able to create risk mitigation plans more quickly (e.g., determining when to order

additional hardware and when and what communications should be given to the cus-

tomer regarding the roadmap).

Given the high level of interest from our industrial partner, we also adapted this

tool for use with the open-source system. We added the adapted code to the public

GitHub repository, sharing the data and algorithms [83].

During our integration process, we also enhanced the existing load testing pro-

cess by improving automation. Specifically, we integrated the previously mentioned

random configuration generator tool and the machine learning model training capa-

bility. Due to the NDA, we cannot disclose which tools are used in each phase by our

industrial partner.

3.5 Threats to Validity

In this section, we discuss the threats to validity related to the MLASP framework.

3.5.1 External Validity

We conducted our experiments on both open-source and enterprise systems. Ulti-

mately, MLASP was well received by our industrial partner, and the prototype has

been integrated into their software development process. Although our findings are

53

consistent across the studied systems, these results may not generalize to other sys-

tems. We believe that the approach may be easily extended to any type of IT system

that takes in a request, takes some time to process it and provides a response (the

input and output payloads may differ in structure and size).

3.5.2 Internal Validity

Since enterprise systems are continuously evolving, changes in the source code can

affect the system’s throughput. Therefore, we aimed to use the same release of the

system throughout the process to minimize the impact of new code changes. For the

open-source system, we did not use any system KPI metrics (e.g., CPU usage), as the

underlying hardware and virtual server capabilities may experience some noise (e.g.,

context switches or garbage collection overhead). Therefore, we chose to model the

KPI that better reflects users’ perception of the system—namely, throughput.

3.5.3 Construct Validity

Previous studies [44, 88] have shown that parameters in machine learning models can

significantly affect model performance. Therefore, in our experiments, we applied a

semi-automated analysis to tune a wide range of model parameters using a validation

set. Other potential issues with machine learning models include multicollinearity

and overfitting. To mitigate these risks, we split the data into training, validation,

and testing sets to avoid training biases. We also applied different regularization

methods to reduce the possibility of overfitting. Our prediction results on external test

datasets demonstrate that our models perform very well and are similar to the results

obtained on the validation set. Thus, the models are not suffering from the problem

of overfitting. However there is an aspect to consider that due to the technique we

used, the models are not guaranteed to cover the worst case scenarios.

54

Part II

Load and Endurance Testing For

Large Scale Systems

55

Chapter 4

Enhancing the Effectiveness of

Load Testing for Large Scale

Systems

This chapter presents an empirical study that examines the challenges of the load

testing process for large scale industrial systems and our proposed blueprint for a

framework and process that may be used both during the project phase and the

production phase. The blueprint we propose is extensible and generalizes on any

configurable software systems.

We have learned from prior studies [32] how costly load-related issues can be

for companies. Therefore, having proper capacity planning is critical for businesses.

However, capacity planning heavily depends on load testing, which, in turn, may

require significant resources and time; thus, having an efficient load and endurance

testing process is also crucial for the software development life cycle (SDLC).

Additionally, software systems under load may exhibit spikes in various metrics.

Neglecting these spikes has often led to more serious problems causing outages [40].

Therefore, it is important to understand the nature of spikes, their causes, and their

potential ripple effects within the system. In other words, having a good spike de-

tection system in place can help correlate events among the different components of

a software ecosystem, making it easier to isolate and study their effects. This aspect

is extremely useful when spikes cause ripple effects that destabilize later parts of the

56

ecosystem, as those events are hard to reproduce—especially when the starting con-

ditions are unknown (e.g., a spike in the load of a component may have caused a

buffer overrun, leading to loss of messages or corruption of other data).

An earlier version of this chapter has been published in the Proceedings

of the 39th IEEE/ACM International Conference on Automated Software

Engineering - Pages 1956–1966 · Oct 28, 2024. Vitui and Chen [115]

57

4.1 Motivation

In this section, we present the challenges faced by our industrial partner, Ericsson

Inc., during endurance testing execution.

Load test engineers are required to perform both load and endurance testing. An

endurance test is a specialized load test that aims to observe how a system behaves

under prolonged load conditions, potentially running for hours or even days [21, 56].

The first challenge is for load test engineers to identify as early as possible when a

load or endurance test is failing and to stop its execution, given the limited time and

resources available for the project. Endurance tests may fail for various reasons, such

as:

• Slowdown of the end-to-end system performance due to bottlenecks or

overload in any number of components within the software system. For ex-

ample, the system’s throughput drops below a defined threshold for a specific

duration—for instance, in the last 5 minutes, the system throughput fell below

50 transactions per second (TPS).

• Intermittent information loss, which is an escalation of the previous condi-

tion where the system’s processing speed has decreased and it is also losing some

of the received requests. For example, in the last five minutes, the throughput

decreased below 50 TPS, and/or three percent of the messages were lost.

• Encountering a malfunction or critical error in one or more components

of the software ecosystem—an exacerbation of the previous condition—that

ultimately leads to erroneous behavior across the entire software ecosystem. For

example, if the database backend becomes unavailable, all processing results in

errors.

This means that different types of spikes can occur in the software ecosystem

during load testing, potentially leading to adverse effects. This is a serious challenge

that needs to be addressed.

Another challenge, faced by the operations team, is to anticipate when an increase

in load might occur so that preventive measures can be taken to maintain the agreed

Key Performance Indicators (KPIs) for the software system. In other words, there is

a spike-capacity forecasting challenge that needs to be solved.

58

4.2 Case Study Setup

4.2.1 MLOLET Framework Proposal

Our objective in improving the load and endurance testing process is to provide a

generic process blueprint that can be adopted in an industrial setting with minimal

effort.

We propose enhancing the load and endurance testing procedures by incorporating

an online spike detection mechanism for the load test data. We introduce an approach

called MLOLET (Machine Learning Optimized Load and Endurance Testing) that

aims to detect spikes in KPI data using an online method. Being an online detection

system means that MLOLET is expected to detect spikes while the load test is being

executed. Having an online spike detection system is the first step in addressing the

initial challenge presented by the load testing team of our industrial partner.

As mentioned before, an endurance test may fail if the system experiences a large

number of spikes (e.g., the system’s response time is outside the normal distribution)

within a given period. With this insight, load test engineers can stop failing tests

early, saving time and costs in the testing process.

To solve this challenge, we suggest including a configurable component in the load

testing practice that can provide the following functions:

• Alert (by email or on a central monitoring system dashboard) the load testing

team if the number of anomalous events in the load or endurance test exceeds

a certain threshold.

• Stop the load or endurance test if the number of spikes in the test exceeds a

certain threshold.

• Begin a new load or endurance testing cycle if the number of spikes in the test

exceeds a certain threshold.

To address the second challenge, we propose a time-series-based load testing frame-

work that:

• Forecasts the system’s trend in an online setting.

• Increases the efficiency and project economics of the load testing team.

59

Figure 8: MLOLET framework overview.

• Improves the operational performance and economics of the operations team

regarding service upkeep and associated SLA fulfillment.

Figure 8 depicts the overall process of MLOLET.

One of the most important building blocks of the framework is the ‘Real Time

Spike Detection‘ one. The pseudo-code for this procedure is detailed in Algorithm 1.

Various tools are available for each stage of the process blueprint. Defining a

tool-agnostic process is important because it increases the likelihood of adopting the

framework in an industrial setting, where, depending on business needs and regula-

tions, certain tools must be used for specific processes. This is very similar to the

60

Algorithm 1 MLOLET Real Time Spike Detection

Require: Y pred train ▷ The list of predictions on the train data

Require: Y true train ▷ The true values of the train data

Require: error selector ▷ The error function selector

Require: y pred test ▷ The prediction of the test/new data

Require: y true test ▷ The true value of the test/new data

Require: is train configuration flag ▷ Is 1 if the test values are from the training

set

function calculate error(Y true, Y pred)

if error selector is Absolute Error then

errors←| Y true− Y pred |
else if error selector is Squared Error then

errors← (Y true− Y pred)2

end if

return errors

end function

errors← calculate error(Y true train, Y pred train)

err mean← mean(errors)

std deviaton err ← std(errors)

up threshold← err mean+ 3 ∗ std deviation err

low threshold← err mean− 3 ∗ std deviation err

repeat

deviation← calculate error(y true test, y pred test)

if is train configuration flag ̸= 1 then

deviation← deviation+ std deviation err

end if

if low threshold ≤ deviation ≤ up threshold then

spikes← unchanged

else

spikes← increased

end if

until there is new data.

61

MLASP [114] process we defined in Section 3.2.1. In fact, the automation part of

the load testing process defined by MLASP is vary much applicable here, with the

distinction that we are interested in collecting different type of metrics. We describe

next the possible tools tailored to the purposes of MLOLET.

The configuration generator is a component-specific tool that can be developed

by software engineers—testers and developers alike—using any available scripting

or programming language (e.g., C/C++, Python, Bash scripting, Java, Ruby). Its

purpose is to provide a base of meaningful configuration sets for testing and load

testing purposes of a specific software component within the overall software system.

The generated configurations can be stored in a repository, which may be a

database (relational or NoSQL), a Git repository, or simply a folder containing text-

like documents (e.g., YAML, CSV, XML, or JSON formatted files).

Subsequently, the controlled load generator will use the configuration repository

to select available configurations, apply them to the tested components, and then

initiate a load test. Automation is key in this case, and there are several specialized

tools available to accomplish the necessary steps. For example, specific component

configuration settings (i.e., the parameters of the tested software component) and

component scalability values within the test environment can be controlled by spe-

cialized tools such as Ansible [5], Chef [15], or Puppet [93], or by in-house automated

scripts or configurator applications. Selecting the right tool for the job will depend on

the specific behavior of a software component with regards to reconfiguration: some

software components may expose a reconfiguration interface (e.g., JMX interface)

that accepts commands to adjust internal parameter settings. Other software com-

ponents may require setting specific values in a configuration file and might need a

restart if the configuration is not automatically reloaded upon detecting a file change.

The load testing step can be accomplished using either custom-developed appli-

cations or specialized tools such as JMeter [34], Jenkins [54], SoapUI [107], etc.

To maximize system portability, we collect the desired metrics—including both

computing nodes’ resources and the application’s processing metrics (throughput per

unit of time and associated average response time)—in a non-intrusive manner. Meth-

ods for this include log parsing and aggregation using tools such as LogStash [77] or

ElasticSearch [29], or even through in-house developed scripts. The collected metrics

can then be stored in various types of databases (relational, time-series, NoSQL), or

62

even as simple text files (e.g., CSV, JSON-formatted documents).

Next, we propose using machine learning to help solve the previously mentioned

challenges. There are many libraries available for data preprocessing and machine

learning-based modeling, such as Apache Spark [8], TensorFlow [111], PyTorch [95],

etc. Once a model is trained and validated, model serving can also be achieved

through various tools: Apache Spark [8], Flask [33], Seldon [104], etc. This step is,

however, somewhat dependent on the modeling tools and approach selected in the

previous step.

It is noteworthy that MLOLET’s spike detection relies on an online detection

approach. Machine learning offers several architectures that function in an online

setting; however, this is not a prerequisite, as other techniques may be used as long

as they operate in an online setting (e.g., the VARMA statistical method [78]).

Another important aspect of the spike detection is that we aim do detect both

upwards and downwards occurrences. This is important as a sudden drop may be an

indicator of a malfunction, where the sudden increase may be an indicator of a capac-

ity problem (a bottleneck processing flow). In Figure 9, we see traffic samples from an

application running under three different load and configuration settings. In the first

example the systems seems to struggle with requests processing and eventually fails;

the second scenario shows that everything performs as expected, where the third one

shows that despite some troubles (spikes), the system is eventually recovering and

able to continue performing nominally.

Figure 9: Traffic KPI information captured from a test application running under

different load and configuration settings.

63

4.2.1.1 Using MLOLET Models for Traffic Trend Prediction

In Figure 8, we presented our proposed process for using spike detection to early-stop

failing load and endurance tests. However, this only addresses the first challenge.

To tackle the second challenge, we assess how suitable the models trained with the

existing load testing data are for predicting future trends in the load testing sequence.

The proposed process is depicted in Figure 10.

N-step Forecasting
Results Analysis

+ Operational
Procedures Updates

Ground Truth
Comparison

Time Series Data
Pre-processing

Test Data
Trained Model

Selector

Figure 10: MLOLET traffic forecasting process overview.

Engineers can test how different models perform in trend forecasting by comparing

their predictions with the ground truth after a predetermined number of steps or

iterations (denoted by ’N’). Based on the conclusions drawn from this comparison,

engineers can devise new or update existing operational procedures to ensure that

the Service Level Agreements (SLAs) of the software systems are maintained within

the desired boundaries.

4.2.1.2 Defining Spikes

Spike detection involves identifying data points that significantly deviate from the

majority of the data. Anomalies are highly context-dependent, meaning that what

constitutes a spike can vary based on the situation. Generally, a spike is an event

that does not conform to any established pattern or group within the data. In the

context of time series, a single value may be considered a spike based on its timing

and the preceding values. For example, if an application’s CPU load typically hovers

around 10%, a sudden jump to 70% would be considered an extreme event or spike.

However, if the CPU load consistently remains around 70%, that jump is no longer

unusual and is instead part of normal behavior.

Based on this example, we found that simple threshold-based monitoring is insuf-

ficient to handle complex real-world situations. More advanced methods are needed.

64

One such method uses the 3-sigma statistical rule (also known as the empirical rule)

to determine if the next point in a time series is a spike. The 3-sigma rule is a com-

mon guideline in science, stating that in a normal distribution, most values fall within

three standard deviations of the mean [52, 109, 131]. Therefore, we first measure the

mean and the standard deviation (σ) of the data points in the training data. Then,

we define our error thresholds as: ϵ1,2 = mean ± 3σ. Any data point value outside

of this threshold interval is considered a spike. As described earlier by Algorithm 1,

the data points considered here are actually the calculated error between the true

value of the measured indicator and its predicted value (produced by the employed

ML algorithm).

As previously mentioned, our experiments use point-in-time values from two KPI

indicators: request throughput rate and request response time, collected from the

software system. These data sets are gathered during load testing cycles, which may

vary in duration and load, as shown in the overall process diagram (Figure 8). Each

load testing cycle therefore provides two distinct time series that we can use for model

training.

4.2.1.3 Performing Load Tests

We performed load tests using various configurations. During these tests, we moni-

tored system configuration variables, including both internal component settings and

deployment factors (such as the number of component instances). Additionally, we

recorded the actual load applied to the system for each configuration.

The load applied to the systems used several types of request that had different

payloads, namely different structure and overall size (e.g. 50, 150 and 255 bytes

respectively). These requests were randomly selected. The response payloads for

these requests had also different payload sizes, and each payload depended on the

result of processed request.

With these settings, we collected time-series data for each key application met-

ric—specifically, throughput per unit of time and average response time—by running

multiple load tests with different workload types and configurations. This data allows

us to explore whether we can train a time-series model using data from one specific

test and then evaluate the model on other tests with different configurations.

65

4.2.1.4 Model Classes in MLOLET

Based on MLOLET’s requirements for online testing and evaluation, two types of

spike detection algorithms are suitable for time-series analysis: traditional statistical

models and artificial neural network-based models.

Importantly, the MLOLET process does not mandate the use of a specific model.

Instead, it is designed to be horizontally extensible, allowing multiple models to be

used simultaneously if needed for different scenarios.

Traditional (or statistical) models. We use the Vector Auto-Regression Moving

Average (VARMA) [78] as our traditional reference model. The VARMA method

extends the ARMA model to handle multivariate stationary time series by combining

Vector Auto-Regression (VAR) and Vector Moving Averages (VMA) to predict the

next step in multivariate time series data. We have chosen VARMA as a reference

model because two of its characteristics make it well-suited for comparison with newer

deep learning algorithms.

First, like deep neural networks (DNNs [130]), the VARMA algorithm can take

a custom-defined input time series sequence to predict the next value. Second, the

length of the input sequence in VARMA can be adjusted as a hyperparameter during

training, similar to how it is done in DNNs. These two similarities make it easy to

use VARMA in an online prediction setting, just as you would with a DNN-based

model. Because of these shared features, comparing the results of VARMA and neural

network-based models becomes more straightforward.

Artificial Neural Network (ANN) based models. Artificial neural networks are

highly effective at generalizing across different types of datasets and are equally adept

at modeling time series data. Previous studies [53, 72, 110] have demonstrated that

specific types of neural networks are particularly well-suited for time series analysis.

In our tests, we evaluated the following architectures: Convolutional Neural Net-

works (CNN) [130], classical Recurrent Neural Networks (RNN) [130], and variants

such as Long Short-Term Memory networks (LSTM) [130] as well as Bidirectional

Recurrent Neural Networks [14]. For more advanced architectures, we also evaluated

ResNet [49]-type models and LSTM-AutoEncoder [132]-based approaches.

A Recurrent Neural Network (RNN) is a type of artificial neural network (ANN)

where connections between nodes form a directed graph along a temporal sequence.

Unlike traditional feedforward networks, RNNs have internal memory that allows

66

them to process sequences of varying lengths by retaining information from previous

steps in the sequence. An LSTM is a variant of RNN that remembers the order of

data in sequences during the training process [30, 123].

A key limitation of standard RNNs is that they can only utilize past informa-

tion without access to future context. Bidirectional Recurrent Neural Networks (B-

RNNs) [102] overcome this limitation by employing two separate recurrent layers.

One processes the input sequence in the forward direction, while the other processes

it in reverse. Both layers are connected to the same output, enabling the network to

consider both past and future contexts for a more comprehensive understanding of

the input. Bidirectional LSTMs (B-LSTMs) combine the principles of bidirectional

networks and LSTMs [14].

As highlighted by Zhu and Laptev [132], neural networks can encounter prediction

uncertainties, which may result in false anomaly alerts. To mitigate this, they pro-

posed an autoencoder-based architecture. Similarly, in our case, we consider spikes as

anomalies, even though they may not always qualify as such, as discussed earlier. The

encoder-decoder layers in the autoencoder are designed to extract key features from

the input time series, leveraging the common use of autoencoders for dimensionality

reduction and feature extraction [11]. Essentially, the autoencoder functions as an

intelligent feature extraction mechanism [132].

Another type of network that excels at feature extraction is the Convolutional

Neural Network (CNN), renowned for its ability to automatically detect important

features without human intervention [37, 59]. This capability allows CNNs to learn

patterns from sequential data, making them valuable for both spike detection and

forecasting.

ResNet (Residual Networks), introduced by Microsoft Research in 2015 [49], is

an advanced Convolutional Neural Network (CNN) architecture designed to address

the vanishing and exploding gradient problems in deep neural networks. According

to He et al. [49], ResNet stands as one of the most sophisticated CNN architectures

available. Its effectiveness in time series analysis has been demonstrated by Fawaz et

al. [53].

We evaluated the efficiency of the different models by using the same input se-

quence length for each, while optimizing each model according to its own set of

hyperparameters.

67

4.2.1.5 Data Processing and Machine Learning Models Tuning

Neural network inputs are scale sensitive, as prior studies have shown [106, 108].

Therefore, several normalization methods have been utilized in defining our approach:

MinMaxScaler provided by the scikit-learn [103] library and logarithmic based scaling

(i.e., log transformation). Note that we retrain the models using the different scaling

methods separately and only report the model that achieves the best performance.

The MinMaxScaler rescales the dataset so that the entire feature set is in the

range [0, 1]. Since in general traffic data is a positively skewed distribution, we also

considered log transformation as a second option for data normalization [113].

Furthermore, we also apply grid search optimization for hyperparameter tuning

in the case of the neural network based models.

We used the same range of values for all the parameters within the hyperparameter

tuning step. The following common neural network parameters have been tuned in

the process: number of neurons per layer [100 - 250], the learning rate [10e-4, 10e-3,

10e-2], and the number of hidden layers [1 - 10]. For each pass we consider different

data window sizes, in the range [5 - 120]. An input data window (T) is the number

of time steps to use for predicting the next value in the series. The offset represents

the number of steps forecasted from the selected data window (e.g., an offset of

one is equivalent with having one forecasted value). Figure 11 provides a visual

representation of the data windowing concepts with T = 6, the input width, label

width = 1 as the length of the time unit and offset = 1 being the number of steps

forecasted.

We evaluated our time-series forecasting models using several metrics: Mean Ab-

solute Error (MAE), Mean Squared Error (MSE), Mean Absolute Percentage Error

(MAPE) and the Pearson Correlation Coefficient (PCC) value. The definitions of

these metrics have been provided in Section 2.4.

4.2.2 Studied Systems

We verify our experiments on two sets of studied systems: enterprise and open source.

68

t=0 t=1 t=2 t=3 t=4 t=5 t=6

Input width = 6 offset = 1

Label width = 1

Total width = 7

Figure 11: MLOLET Models Data windowing.

4.2.2.1 Enterprise Systems

In this section, we present, within the limits of the NDA boundaries, the studied

enterprise system and the available metrics that may be monitored in order to im-

plement our proposed framework. The system offers Business-to-Business (B2B) and

Business-to-Consumer (B2C) messaging services, combining Ericsson’s in-house prod-

ucts, open-source software, and third-party commercial solutions. Since these func-

tions are business-critical, the system is built for high availability with local redun-

dancy across multiple data centers. It is used daily by millions of users worldwide

and processes tens of millions of requests.

In general, there are many metrics available to measure a complex system’s per-

formance when running load testing. Common performance metrics include CPU,

memory, and disk usage, and application specific metrics such as the throughput per

unit of time (transactions per second - TPS, and transactions per minute TPM, etc.)

and the associated average component response time for the selected unit of time.

To generalize the approach we imply the use of the following two metrics: 1) how

many requests the software component is capable of processing within a desired time

unit (i.e., throughput); and 2) how fast the software component is processing those

requests (i.e., response time).

69

4.2.2.2 Open Source System

To validate our findings and ensure reproducibility, we also run our experiments on

open-source software. We use a custom developed load generator, code available in

this GitHub repository [76]. The reason we developed our custom load generator is

to have a fine tuned control over the load, including the capability of emitting spikes

as well as collect near-real time using Prometheus [92] metrics information about

the load test such as number of processed messages (both successful and erroneous)

and average latency of the responses. These three functions together are typically

not available in commercial or other open source software. The test subject is a

generic black box application created with the help of an open source mock applica-

tion framework, WireMock [121]. We extended the framework with Prometheus [92]

metrics generator and a global random string payload ResponseTransformer. The test

application responds to requests by providing a string payload of a specified length,

with a response delay following a user-controlled uniform distribution. Depending on

the deployment configuration, the application may recursively call itself several times.

This behavior, modeled in a generic way using a black-box approach, simulates a wide

range of business applications, which typically share the same process: receiving a

request, processing it, and returning a response. The source code for the test subject

is available in the following GitHub repository [122].

The test results related to MLOLET and the Machine Learning model prototypes

used by MLOLET are also available online [85].

4.3 Case Study Results

In this section, we discuss the results of our three research questions (RQs). To uphold

the NDA requirements with our industrial partner we present only limited information

from the enterprise system. We model generic KPI information applicable to a large

number of systems both enterprise and open source, namely throughput and average

response time.

70

4.3.1 RQ1: How do different models compare in one-step

forecasting?

Motivation: To implement the early stopping mechanism proposed by the MLO-

LET framework, we first need to identify a highly effective forecasting model. The

best-performing model becomes the baseline for our subsequent research questions.

Identifying such a model and knowing its limitations is very important for the subse-

quent research questions.

Approach: We randomly select one load testing event. We use this event to train

and test several different machine learning model architectures as defined in Sec-

tion 4.2.1.4. We follow the process described in Section 4.2.1 to ensure consistency.

Our primary interest is in the one-step time forecasting accuracy of the various ma-

chine learning algorithms and architectures.

Results: We find that, in general, all the models provide a good one step forecasting

results. Table 5 summarizes, for the enterprise system, the best prediction result

for every type of model that we experimented, where Table 6 provides the same

information for the open source system. We used the normalized values of the datasets

(e.g., KPIs) when calculating the model results. We find that VARMA achieves the

worst results in terms of all the evaluated metrics (i.e., MAE is 0.1156 and MSE is

0.0743). On the other hand, LSTM-based models achieve the best results (i.e., MAE

ranges from 0.0386 to 0.0804, and MSE ranges from 0.0131 to 0.0207). In contrast,

CNN and ResNet have a slightly higher MAE and MSE compared to Autoencoder

LSTM.

From the results we see that in general, the ML models are able to predict the

normalized KPIs in the next time step with good accuracy. Although VARMA de-

livers the worst results, its training and execution time are much faster than DNN

models. In situations where computing resources are limited, VARMA could still be a

good option for online training and application. However, advanced neural networks

remain superior for delivering more accurate one-step predictions. While we cannot

disclose the specific ML model configuration values we identified for the enterprise

system due to an NDA, we found that choosing the correct time window size, T, is

crucial.

71

Table 5: Enterprise System - One step forecasting results (MLOLET-RQ1).

Model MAE MSE MAPE (%) PCC

VARMA 0.1156 0.0743 8.290 0.5965

RNN 0.0644 0.0227 1.347 0.8217

LSTM 0.0756 0.0207 1.641 0.8611

Bidirectional LSTM 0.0804 0.0254 1.720 0.843

Autoencoder LSTM 0.0386 0.0131 1.0826 0.8999

CNN 0.07173 0.0282 1.494 0.8094

ResNet 0.0687 0.0177 1.457 0.8851

Table 6: Open Source System - One step forecasting results (MLOLET-RQ1).

Model MAE MSE MAPE (%) PCC

VARMA 0.0303 0.0236 26.6544 0.9888

RNN 0.0058 0.0010 3.5584 0.9888

LSTM 0.0072 0.0010 3.4166 0.9887

Bidirectional LSTM 0.0083 0.0010 6.0844 0.9887

Autoencoder LSTM 0.0078 0.0010 12.7623 0.9890

CNN 0.0086 0.0010 6.9289 0.9894

ResNet 0.0177 0.0013 55.3107 0.9854

72

For 1-step forecasting, the LSTM-Autoencoder model architecture achieves the

best result. Noteworthy is that depending on the required accuracy of the de-

tection and from the project perspective, simpler models, like VARMA, may also

provide reasonable results.

4.3.2 RQ2: What is the generalizability of the forecasting

model when system deployment settings change?

Motivation: Spike detection mechanisms are typically designed for static systems,

meaning the system’s internal configuration remains unchanged regardless of the ap-

plied load. This setup doesn’t account for changes in the number of nodes added for

redundancy or capacity scaling. In load testing, however, applications or ecosystems

of multiple applications often require parameter tuning. It would be inefficient for

load test engineers to retrain the model every time the internal configuration changes.

Therefore, we compare the forecasting performance of each model both when the sys-

tem’s internal configuration changes and when the type of business request changes.

Approach: Each load test varies either the system configuration or the applied load

or both. For this research question, we take a model trained with one of the randomly

selected load tests data and verify the forecasting capabilities on all the remaining

data sets. In other words, we take the model trained on a specific configuration and

apply it for all other configurations and request types.

Results: Tables 7 and 8 summarize the prediction metrics for each model, on the

respective studied system. Similar to RQ1, we normalize the values of the dataset

when calculating the prediction metrics. Overall, we observe an increase in errors

compared to the results from RQ1. However, the average errors remain relatively

small, and most models show similar performance. Similar to RQ1, we find that,

even though VARMA has one of the worst performance, the prediction results are

still reasonable (i.e., MAE of 0.1236 and MSR of 0.0775). Therefore, in the case

of limited resources, practitioners may still consider VARMA as a possible choice.

We also see an increase in percentage error in convolution based models (CNN and

ResNet). We attribute this to the data training requirements of these models, that

these models may require more training data to correctly recognize the patterns in

the datasets.

73

Table 7: Enterprise System - Forecasting results in an online setting using a previously

trained model on new system configurations (MLOLET-RQ2).

Model MAE MSE MAPE (%) PCC

VARMA 0.1236 0.0775 8.376 0.5825

RNN 0.2231 0.1534 7.213 0.7339

LSTM 0.9777 0.9218 2.603 0.8008

Bidirectional LSTM 0.9752 0.1354 1.928 0.7941

Autoencoder LSTM 0.0610 0.1179 3.7872 0.7524

CNN 0.8649 0.0785 10.885 0.8458

ResNet 0.3561 0.1604 6.721 0.8023

Table 8: Open Source System - Forecasting results in an online setting using a previ-

ously trained model on new system configurations (MLOLET-RQ2).

Model MAE MSE MAPE (%) PCC

VARMA 0.0401 0.0779 6.2584 0.9613

RNN 0.0690 0.0880 12.4745 0.9529

LSTM 0.0154 0.0037 4.7358 0.9525

Bidirectional LSTM 0.0124 0.0038 3.8204 0.9519

Autoencoder LSTM 0.0129 0.0036 3.8595 0.9528

CNN 0.0258 0.0044 8.5224 0.9451

ResNet 0.0751 0.0190 24.6865 0.8659

74

When testing a model on a different configuration we find that LSTM based ar-

chitectures still achieve the best results. Our findings indicate that practitioners

should consider LSTM based models for having the best prediction accuracy.

4.3.3 RQ3: How far in time can MLOLET forecast future

trends?

Motivation: As mentioned before, the operations teams are interested in knowing

how far models can predict traffic trends. Such forecasting may provide insight to

operations teams, and load testing teams, on how to adapt the resources configuration

to account for the new load.

Approach: To address this problem, a significant number of model coefficients must

be determined, along with the appropriate size of the sliding window. This is crucial

for defining a model that uses the last X time steps to predict the next N time steps.

If a model can accurately forecast far enough into the future, the operations team can

gain valuable insights that help them manage the software system more efficiently by

scaling it up or down based on projected traffic requirements. The process flow has

been presented in Section 4.2.1.1.

Results: While we are unable to share the detailed results due to an NDA, we can

share our findings on the maximum forecast steps (in seconds) that maintained rea-

sonable accuracy in our experiment. (Table 9). We provide, however, the MAE and

MSE details for the open source system (Table 10). For our subject system, our test

results show that many models have difficulties forecasting beyond 5-15 seconds in

the future. One exception is the AutoEncoder-LSTM model, for which we obtained

acceptable forecasts up to 120 seconds, followed by the B-LSTM architecture, for

which we obtained forecasts up to 30 seconds. Even though the forecasting capa-

bilities of some models may seem limited (5-15 seconds), they can still be practical

in real-world applications since many industry systems support online reconfigura-

tion features (such as JMX-based systems) or can be restarted in under 5 seconds,

particularly in containerized or Kubernetes-based environments.

To generalize, for an automated cutover process, we observe that n-step forecasting

remains effective as long as the MAE and/or MSE do not exceed ten times the baseline

measurements obtained in RQ2 4.3.2. However, different models exhibit varying

75

Table 9: Enterprise System - Results of forecasting capabilities for different model

architectures (MLOLET-RQ3).

Model Name Max Forecast Steps (seconds)

VARMA 5

RNN 10

LSTM 10

Bidirectional LSTM 30

AutoEncoder LSTM 120

CNN 10

ResNet 15

thresholds for acceptable performance, indicating that the cut-off values at which the

forecasting remains reliable may differ across models.

We also observed that increasing the input data window size, T (the number of

time steps used to predict the next value in the series), does not always improve

performance. Additionally, a larger T typically leads to a more complex network,

often requiring more hidden layers rather than just more neurons per layer.

When forecasting traffic trends for operations, LSTM-Autoencoder models have

the longest trend prediction accuracy. This performance is however tightly coupled

with the input data window size, and, using more time steps in the training process

may not always help improve the model’s accuracy.

4.4 Discussion

In this section, we discuss the feedback from our industrial partner for the experiments

we conducted on the enterprise systems.

4.4.1 The Effects of Spikes and Online Spike Detection Ob-

servations

Addressing spike misclassification is a crucial part of model training, where different

metrics—such as Mean Absolute Error (MAE) or Mean Squared Error (MSE)—are

76

Table 10: Open Source System - Results of forecasting capabilities for different model

architectures (MLOLET-RQ3).

Model Name Max Forecast MAE MSE

Steps (seconds)

VARMA 15 0.2827 0.3178

RNN 30 0.1198 0.0369

LSTM 30 0.1072 0.0342

Bidirectional LSTM 45 0.1228 0.0330

AutoEncoder LSTM 120 0.5149 0.3170

CNN 15 0.1717 0.0441

ResNet 10 0.1572 0.0395

used to determine dynamic thresholds. These metrics enable us to control the sen-

sitivity of spike detection relative to the previous data point (or sequence of points)

observed by the model, which are used to predict the next value in the sequence.

In our experiments, we found that using the Mean Absolute Error as a measure of

prediction deviation provided better results for KPI spike detection.

Additionally, software systems under load may exhibit spikes across various met-

rics. Neglecting these spikes can often lead to more serious issues, including out-

ages [40]. Therefore, it is important to understand the nature of the spikes, their

causes, and possible ripple effects within the system. In other words, having a robust

spike detection system in place and performing detection for various Key Performance

Indicators (KPIs) simultaneously can help correlate events among the different com-

ponents of a software ecosystem, making it easier to isolate and study their effects.

These factors play a significant role in the software development lifecycle (SDLC)

and solution operational processes. In the SDLC, improving the efficiency of the load

test cycle enables developers to gain accurate insights into when events occur. This

aspect is extremely useful when spikes cause ripple effects that destabilize later parts

of the ecosystem, as such events are hard to reproduce without knowing the initial

conditions (e.g., a spike in the load of a component may have caused a buffer overrun,

leading to loss of messages or data corruption).

Another important aspect of handling spikes and their ripple effects is knowing

when to act on them and determining the count threshold that signifies a failing load

77

test, necessitating a decision to stop it. This often requires expert knowledge of the

software system to correlate different data points and logs collected from the system.

The challenge lies in understanding how the ripple effects of spikes may propagate

through specific components or affect other components. For instance, suppose that

during a load test, three detected problems do not occur simultaneously. If the load

test is stopped early after detecting the first problem, would the other two problems

still occur in subsequent load test runs, or were they consequences of the first error?

By correcting the first error, would we avoid encountering the others? This issue does

not generalize easily, and in the case of our industrial partner, it was often determined

that by detecting a certain problem, test engineers could, using expert knowledge,

predict where the next problem might occur. Therefore, performing an early stop

was more beneficial to the overall project economics.

4.4.1.1 Operational Insights

To reduce load testing time while enhancing process efficiency through spike detection-

based techniques, it is most effective to use a model that can be applied across different

configurations and multiple business case scenarios. In our experiments, we demon-

strated that it is possible to train a model using load testing data from one system

configuration and then utilize that trained model for spike detection in other configu-

rations and business scenarios. We observed that when using different configurations,

the signal reconstruction from the time series data improves when the predictions are

adjusted with the mean of the training data.

Overall, the outcomes of these tests had two significant implications for our in-

dustrial partner:

• For future iterations, it is not necessary to train a spike detection model for

each scenario, thereby reducing the overall effort of the load testing process and

improving project economics.

• The trained model can be deployed in production by the operations team, pro-

vided that the load test data resembles production load conditions.

78

4.5 Threats to Validity

4.5.1 External Validity

Threats to external validity relates to the generalizability of our findings. We con-

ducted our experiments on a large enterprise system composed of numerous compo-

nents with different business functions. To ensure reproducibility, we also tested our

assumptions on an open-source system that generically models a vast number of busi-

ness applications using a black-box approach, characterized by the common process

of receiving a request, processing it, and returning a response. Future studies may be

necessary to evaluate our approach on other, more specific systems.

4.5.2 Internal Validity

Since the enterprise system is continuously evolving, changes to the source code from

one release to another can affect the system’s overall throughput, depending on the

specific modifications made. In our tests, we used the same release of the system to

avoid side effects introduced by such code changes.

4.5.3 Construct Validity

Prior studies [44, 88] have shown that model performance is closely tied to machine

learning parameters. In our experiments, we used grid search as a technique to tune

these parameters and reduce bias.

While we mitigated multicollinearity and overfitting by splitting the data into

training, validation, and testing sets, it is still possible that the models may suffer

from overfitting. However, in our experiments on external validation (as described in

Section 4.3.2), we found that the models continued to perform well.

We evaluated ML models as presented in Section 4.3. Although there may be other

models that could achieve better results, the models we implemented were sufficient to

address the challenges we encountered. Another aspect to consider is that due to the

technique we used, the models are not guaranteed to cover the worst case scenarios.

We also assumed that the different request types used during the load testing process

were well distributed and the payloads did not drastically differ in size. It is possible

that in case this assumption were not satisfied that the models would produce a lower

79

accuracy in predictions. Future studies may consider including other ML models to

evaluate their effectiveness.

80

Part III

Large Language Model Agents for

IT Operations Management

81

Chapter 5

Using Large Language Models for

adding AIOps Capabilities to

Large Scale Systems

This chapter presents an empirical study that examines the adoption of Large Lan-

guage Models (LLMs) to help with IT Operations management in a form of AIOps [2]

agentic approach.

This approach enhances traditional AIOps by providing a deeper contextual un-

derstanding of system behaviors and automating processes such as incident manage-

ment, capacity planning, and resource allocation. LLMs, and LLM based agents,

can also facilitate communication between teams and systems by generating human-

readable reports, explanations, and action plans. In essence, the integration of LLMs

into IT operations transforms how businesses handle infrastructure and operations,

driving greater efficiency, reducing downtime, and improving the overall stability of

the software ecosystem.

The study focuses a viable example applicable in the industry for Kubernetes [61]

based platforms, more precisely, applied on the Red Hat OpenShift [97] platform. We

also incorporate in the LLM agents tool set models from our prior studies.

This chapter has submitted for publishing in Proceedings of the 40th

IEEE/ACM International Conference on Automated Software Engineer-

ing, Seoul, Republic of Korea

82

5.1 Motivation

Red Hat OpenShift [97] is the industry’s leading Kubernetes based hybrid cloud

application platform. It is an enterprise grade Platform as a Service (PaaS) product

for containerized and virtualized application deployment at scale. One challenge

with deployment scaling within the Red Hat OpenShift platform is that out of the

box it offers only horizontal auto-scalers applicable only for Kubernetes pods. This

approach is often inefficient or insufficient as prior research shows [13, 26, 48]. A

major issue with linear scaling is that distributed applications are usually non-linear

in nature and therefore pure horizontal scaling inevitably leads to over-provisioning

of resources. By using MLASP’s dynamic capacity scaling we can address this issue

given that MLASP can have many models that run in parallel, addressing the needs of

different applications. Enhancing the application traffic monitoring with forecasting

models and capacity planning models we lay the foundation for dynamic scaling.

Furthermore, the platform allows control over Kubernetes resource deployments

and scaling, but this is not a simple task. Additionally, since the platform is designed

to host thousands of applications and run them at scale, integrating and monitoring

these applications and their deployments in IT operations requires significant effort.

The emergence of Large Language Models brings us a new generation of assistants

in form of agents and chatbots that IT Operations teams can use to simplify and

accelerate their work, namely for application reconfiguration and scaling.

To better understand how these different items can work together we present in

Figure 12 the AIOps platform conceptualization in the view of the Gartner analyst

who coined the term in 2016 [2].

5.2 Case Study Setup

5.2.1 Studied Systems

We validate our experiments on an open-source enterprise-grade Kubernetes system,

namely the Red Hat OpenShift [97] application platform. We use this platform to host

our custom workloads, which serve as test subjects for our experiments. The test sub-

ject application we employ is the generic WireMock extension application described

in Section 4.2.2.2, whose source code is available in a GitHub repository [122].

83

Figure 12: Gartner’s AIOps platform conceptualization [2].

We selected Red Hat OpenShift as our test subject for agentic AIOps integration

as OpenShift is considered a state-of-the-art Kubernetes environment and Platform as

a Service (PaaS) because it extends Kubernetes with additional features that simplify

and enhance the development, deployment, and management of containerized applica-

tions. OpenShift provides an integrated set of tools for developers, including built-in

CI/CD pipelines, automated builds, and application catalogs, which streamline the

application lifecycle. It offers advanced security features, such as integrated authenti-

cation, authorization, and policy management, ensuring enterprise-grade compliance

and governance. Furthermore, OpenShift supports hybrid and multi-cloud deploy-

ments, allowing organizations to run applications consistently across on-premises and

cloud environments. Its robust ecosystem and developer-friendly interfaces make it

an ideal platform for accelerating the delivery of modern, cloud-native applications.

84

5.2.2 Large Language Model Agents

We use Large Language Models in the form of ReAct [127] (Reason and Act) type

agents equipped with various tools to perform IT Operations management functions

inside the Red Hat OpenShift platform.

ReAct is a framework designed to enhance Large Language Model (LLM)-based

agents by enabling them to perform both reasoning and action tasks in a unified

manner. ReAct-based LLM agents combine the natural language understanding and

generation capabilities of LLMs with the ability to interact with external tools and

environments, allowing for more sophisticated and context-aware responses.

Some of the key features of ReAct based LLM Agents include:

• Integrated Reasoning and Acting: ReAct agents interleave reasoning steps

(thought processes) with action steps (interactions with the environment). This

integration allows the agent to think through a problem, take necessary actions

(like querying a database or using an API), and refine its understanding based

on the results.

• Chain-of-Thought Prompting [118]: The agents use chain-of-thought prompt-

ing techniques to generate intermediate reasoning steps. This approach makes

the reasoning process transparent and improves the agent’s ability to handle

complex tasks that require multi-step solutions.

• Tool and API Utilization: ReAct agents can leverage external tools, APIs,

and databases to gather real-time information or perform computations beyond

their trained knowledge. This capability extends the agent’s functionality, en-

abling it to provide up-to-date and accurate responses.

• Enhanced Problem Solving Abilities: By combining reasoning with action,

the agents can tackle tasks that involve planning, decision-making, and dynamic

interactions. This makes them suitable for applications like virtual assistants,

automated research, and complex data analysis.

• Improved Transparency and Interpretability: The interleaving of reason-

ing and action steps allows developers and users to trace the agent’s thought

process. This transparency is valuable for debugging, refining agent behavior,

and ensuring alignment with user intentions.

85

The typical ReAct instructions provided in the LangGraph [64] library (which we

used for conducting our experiments) is presented below:

Answer the following questions as best you can.

You have access to the following tools:

{tools}

Use the following format:

Question: the input question you must answer

Thought: you should always think about what to do

Action: the action to take, should be one of [{tool_names}]

Action Input: the input to the action

Observation: the result of the action

... (this Thought/Action/Action Input/Observation can repeat N times)

Thought: I now know the final answer

Final Answer: the final answer to the original input question

Begin!

Question: {input}

Thought:{agent_scratchpad}

With this approach, by leveraging the natural language processing capabilities of

the LLM, the IT Operations teams shall have a transformative approach to managing

deployed applications and resources. The LLM agents can interpret user commands

and by having access to OpenShift’s APIs and other tools (such as capacity planning

models from MLASP [114]) will be able to execute complex workflows without manual

intervention. This agentic approach enhances operational efficiency by reducing the

cognitive load on IT teams, enabling faster issue resolution, and facilitating contin-

uous deployment and scaling of applications. Furthermore, LLM agents can provide

contextual recommendations and predictive maintenance, ensuring that applications

remain resilient and performant within the dynamic environments managed by Open-

Shift. Ultimately, this integration fosters a more intelligent, responsive, and scalable

86

IT infrastructure, driving superior business outcomes.

As an example, let’s walk through the process of how an LLM Agent chat bot

equipped with a Retrieval Augmented Generation (RAG) tool can help in IT Oper-

ations by efficiently summarizing procedures from extensive documentation:

1. User Query: An IT professional interacts with the chatbot by asking a ques-

tion or requesting a summary of a procedure: ”How do I reset a user’s password

in Active Directory?”

2. Query Interpretation: The LLM interprets the query, identifying key enti-

ties and intent. It recognizes that the user needs a step-by-step procedure for

resetting a password in Active Directory. It will parse the list of available tool

descriptions to identify which tool could possibly be used to provide an answer.

It identifies a RAG tool for Active Directory documentation that may provide

relevant content.

3. Document Retrieval: The RAG tool searches the organization’s documenta-

tion repositories for relevant content. It uses semantic search to find the most

pertinent procedures, even if exact keywords aren’t matched. It retrieves previ-

ously ingested content which may be sections from manuals, knowledge bases,

or previous incident resolutions.

4. Content Summarization: The LLM processes the retrieved documents to

generate a concise summary. It extracts essential steps and presents them in

an easy-to-understand format and filters out irrelevant information to focus on

actionable instructions.

5. Response Delivery: The chat bot presents the summarized procedure to the

user in a conversational manner that may include numbered steps, warnings, or

prerequisites. Here is an example response for our earlier user query:

• Open the Active Directory Users and Computers console.

• Locate and right-click the user’s account.

• Select ’Reset Password’ from the context menu.

• Enter the new password and confirm.

• Ensure ’User must change password at next logon’ is checked if required.

87

• Click ’OK’ to apply the changes.

Looking at the earlier example, we can easily identify benefits for IT Operations,

such as:

1. Time Efficiency: Reduces the time spent searching through extensive doc-

umentation. Provides immediate access to necessary procedures, enhancing

productivity.

2. Consistency and Accuracy: Ensures that all team members follow stan-

dardized procedures. Minimizes errors by providing up-to-date and verified

instructions.

3. Knowledge Sharing: Acts as a centralized knowledge repository accessible via

natural language queries. Aids in onboarding new team members by simplifying

access to operational procedures.

4. Scalability: Handles multiple simultaneous queries without degradation in

performance. Supports large IT teams and complex operational environments.

5. Multilingual Support: Translate documentation and responses as needed,

therefore providing support in multiple languages is the IT team is global or

multilingual.

6. Integration with ITSM Tools: depending on the available tools, LLMs can

help automate ticket creation/updates/closures, retrieve system information or

application KPI information, execute application or system adjustments.

Although there are clear and powerful benefits from using LLM agents we must

still have the following considerations when implementing them:

1. Safety and Ethical Use: Developers must ensure the agent acts responsibly,

especially when interacting with external systems that can alter data or perform

transactions.

2. Error Handling: Developers must implement robust mechanisms to handle

failures in external tools or incorrect data.

3. Privacy and Security: Developers must ensure user data protection and

secure interactions with APIs and services.

88

5.2.3 Integrating Tools for LLM Agents

We conduct our experiments with the help of the LangChain [63] and LangGraph [64]

frameworks. We use this approach as these frameworks provide a higher level ab-

straction for using different Large Language Models (different providers and different

variants from the same provider). This aspect is important to maintain consistency

across the tests, given that different LLMs use different prompt formats and infor-

mation is expected to passed in a specific way. In other words, by using LangChain

and LangGraph as LLM access libraries, we avoid writing custom code for conversing

with all the different language models.

We test the LLM agents in the form of chat bots as this is one of the easiest

ways to generalize their integration within IT Operations Management. Our chat-

bot, implemented as a Knative application, serves as an interface for IT operations

professionals by leveraging an LLM and specialized tools to process requests. The

chatbot’s key components include: (1) A user interface for receiving input, which was

bypassed in our testing as we used predefined queries. (2) An LLM client module

that connects to an LLM inference server. While an optional memory component can

enable conversational functionality, it may sometimes disrupt reasoning processes (see

Section 5.4).

For our experiments, we developed a set of custom tools, denoted as T < n >,

where n ∈ [1, 9], using the Python programming language and supporting libraries.

These tools are designed to assist with various ITOM tasks, including capacity plan-

ning, extracting procedure summaries, retrieving platform deployment and config-

uration information, and extracting platform and application KPIs for a specified

datetime range, with outputs in both CSV and graphical formats. In the next sec-

tion, we present the user query and tool list association the LLMs must use in order

to correctly respond to the each query. Below is the list of tools we created for our

experiments:

1. T1, mlasp-tool: to integrate the MLASP [114] based capacity planning ML

model for the WireMock based custom workload application. This tool gen-

erates a set of parameter configuration to support a desired KPI value within

a given precision boundary for the WireMock application. It searches for the

parameter configurations a given number of epochs.

89

2. T2,rag-tool: a tool that gives the LLM the ability to search through a spe-

cialized vector database that contains encoded documentation about the Red

Hat OpenShift AI operator, including procedure description and howto infor-

mation. The LLM can inspect this database to obtain information based out of

the received query and then summarize a response to the user.

3. T3, time-tool: Tool to calculate the timestamp, the iso formatted string and

the timezone string of the requested time information. It returns a pydantic

object containing the timestamp value, the ISO formatted string of the date

time value, the timezone string.

4. T4, list-operators-tool: to find out information about operators installed

within a namespace. The response may contain information such as the name

of the operator, its version and deployment status.

5. T5, pod-summary-tool: Tool used to summarize information about the pods

that exist in a namespace. It returns an object containing the name of names-

pace and pod state and count information. For the running pods it also returns

its name and if available any service information such as service name, service

ports and route.

6. T6, service-summary-tool: Tool used to summarize services information in

an OpenShift namespace. It returns an object containing the name of names-

pace and a list of the available services and their properties such as name, port

numbers and route information.

7. T7, prometheus-metric-names-tool: Tool to List available metric names in

a Prometheus instance using an input filter. The input filter name and value

are expected as input (e.g. input filter name is ’namespace’ and filter value is

’demo’). Returns a list containing the available metric names.

8. T8, prometheus-metric-data-range-tool: Tool used to list the application

metric values and associated timestamps between a start and an end timestamp

interval for a given metric name stored within a Prometheus instance. It returns

a pydantic object containing the list of the desired application metric values and

associated timestamp information.

90

9. T9, plot-prometheus-metric-range-data-as-file-tool: Tool used to create

a file with the plot of the instantaneous rate (irate) of an application metric

values and associated timestamps between a start and an end timestamp interval

for a given metric name stored within a Prometheus instance. It returns a string

containing the name of the file containing the plot.

The tools mentioned above allow us to evaluate a limited scope of IT Operations

Management (ITOM) operations and scenarios. Nonetheless, these use cases are ad-

equate to assess and report on the performance of various LLMs. Naturally, this

toolset can be extended with additional tools, thereby enhancing the ITOM man-

agement capabilities of the LLM-powered AI assistant and enabling support for a

broader range of operational tasks.

5.2.4 Evaluating Agents in AIOps Context

We test the LLM agents in the form of chat bots as this is one of the easiest ways to

generalize their integration within IT Operations Management. We provide the same

list of questions as detailed in Table 11. We form this list as a mix of general purpose

queries (e.g., Q-01, Q-02, Q-08, etc.) and very specific platform queries (e.g., Q-05,

Q-10, Q-13, etc.) as well as target application management questions (e.g., Q-21,

Q-23, Q-24, etc.).

To respond to these queries, the LLMs must rely on either their training data or

the provided list of tools. We classify these queries into two categories: Simple Rea-

soning (SR)—where the LLM generates a response based solely on its training data

or by utilizing a maximum of one tool; andAdvanced Reasoning (AR)—where the

LLM identifies and utilizes multiple tools, constructing a workflow that ensures the

tools are executed in the correct sequence. In advanced reasoning scenarios, the LLM

must also format the data appropriately before invoking a tool, with the possibility

of using the same tool multiple times with different inputs.

The intent is to see how different models understand the questions and use either

their internal knowledge or access the right tools in the right order in order to produce

an answer. We ask these questions to different large language models and different

variants of the same model and assess their responses for correctness, while collecting

KPI information such as response time and average tokens consumed to produce an

answer. We evaluate our queries on the following list of large language models: from

91

Initialize environment
(API keys, etc.)

Select LLM and
initialize client

Claude-3_5-sonnet
Claude-3-opus

...
GPT-4o

...

Load Tools

Load Queries

Q-01
Q-02

...
Q-25

No

Yes

Queries
Completed?

Yes

No

All LLMs
Tested?

Process QueryMonitor and
collect KPI

time_tool
rag_tool

mlasp_tool
...

Aggregate Results

Select Next Query
(Loop Over)

Yes

No 10-fold
Completed?

End

Figure 13: An example workflow for LLM performance evaluation in an AIOps con-

text.

the OpenAI family: GPT 3.5 Turbo, GPT 4-o, GPT 4-o Mini, and GPT 4 Turbo;

from the Anthropic family: Claude 3.5 Sonnet, Claude 3 Haiku, and Claude 3 Opus;

from the Mistral family: Mistral Largest, Mixtral 8x22B, and Mistral Small 7B.

To assess a model’s robustness and consistency in providing answers, we ask each

model the same question ten times. The overall evaluation process is depicted in

Figure 13.

Table 11: Large Language Model Agents for AIOps Evaluation Queries and aasociated

tools for responding. Category shows the category of the question, where SR means

Simple Reasoning (use at most one tool) and AR means Advanced Reasoning (use

multiple tools).

Q#. Cat. Tools Query Text

Q-01 SR - Hi, who are you?

Q-02 SR - What tools do you have access to?

Q-03 SR - Give me the list of tools you have access to.

92

Q#. Cat. Tools Query Text

Q-04 SR - Give me the list and a short description of the tools you

have access to.

Q-05 SR T4 What operators are in namespace demo?

Q-06 SR T4 What operators are in namespace demo? Please provide

only the name and the version for each operator.

Q-07 SR T2 How can I create a Data Science Project?

Q-08 SR - Can you describe Paris in 100 words or less?

Q-09 SR - Is there a river?

Q-10 SR T5 Tell me about the pods in namespace demo.

Q-11 SR T5 Give me a summary of the running pods in namespace

demo. Please include service and route information in

the response.

Q-12 SR T5 Give me the complete summary of the pods in names-

pace demo.

Q-13 SR T5 Give me a summary of the running pods in namespace

demo. Give me only the names and the route if they

have one.

Q-14 SR T3 What day is today?

Q-15 SR T3 What is the current date time?

Q-16 SR T3 What is the current timestamp?

Q-17 SR T3 What is the timestamp and date time for 3 hours ago?

Q-18 SR T3 What is the timestamp and date time for 3 hours from

now?

Q-19 SR T3 What is the timestamp and date time for 3 hours ago?

Q-20 SR T6 Is there a prometheus service running in namespace

demo? If so, give me its name and port values.

Q-21 AR T6, T7 Find out the service name and port number of the

Prometheus service running in namespace demo. Then

use that information to retrieve the list of metrics fil-

tered by namespace demo.

93

Q#. Cat. Tools Query Text

Q-22 AR T6, T7 Find out the Prometheus service name and port num-

ber running in namespace demo. Give me all the met-

rics stored by it that have a name that starts with

load generator.

Q-23 SR T1 What configuration of WireMock supports a through-

put KPI of 307 within a 2.9 percent precision? Search

for 100 epochs to find the result.

Q-24 AR T3, T6,

T9

Find out the Prometheus service name and port

number running in namespace demo. Use it to to

plot all the prometheus metric data for the metric

load generator total msg starting 40 days ago until

now. Return only the file name and nothing else.

Q-25 AR T3, T6,

T8

Find out the Prometheus service name and port

number running in namespace demo. Use that to

get all the prometheus metric data for the metric

load generator total msg starting 40 days ago until

now. Print out only the metric values and their as-

sociated timestamp as a CSV table.

5.3 Case Study Results

In this section, we discuss the results of our three research questions (RQs).

5.3.1 RQ1: How accurately do different LLMs perform on a

set of IT Operations tasks?

Motivation: Large Language Models are different from one another from several

perspectives:

• Training Data: Different LLMs are trained on varying datasets, which can

affect their knowledge base, language proficiency, and domain expertise.

• Model Size: LLMs differ in the number of parameters (millions or billions),

94

which affects their complexity, performance, and ability to understand nuanced

language.

• Architecture: While most LLMs are built on transformer-based architectures,

specific variations in model design (for example, GPT, BERT, T5) lead to dif-

ferences in processing language and generating outputs.

• Specialization: Some LLMs are fine-tuned for specific tasks (e.g., medical,

legal, or technical language), making them more effective in particular domains.

• Inference Speed: The response time of LLMs varies based on their archi-

tecture and model size, with smaller models generally being faster but less

accurate.

• Context Window: LLMs differ in how much previous conversation or text

they can retain in their context, affecting their ability to maintain coherence

over long exchanges.

• Fine-tuning and Adaptability: Some LLMs are more easily fine-tuned or

adapted to specific use cases or custom datasets, while others may be less flex-

ible.

Given these differences we want to evaluate how accurately different models perform

on the user queries detailed in Table 11.

Approach: We perform the procedure described in Section 5.2.4 and depicted in

Figure 13.

Results: Table 12 presents the summary of the accuracy for the models we evaluated,

based on the testing process described in our approach. We observe that some models

excel in simple reasoning tasks, others perform better in advanced reasoning tasks,

while a few demonstrate consistent performance across both types of tasks. Notably,

the Anthropic model family outperforms others in simple reasoning, whereas Ope-

nAI’s models excel in advanced reasoning tasks. For advanced reasoning specifically,

Claude 3.5 Sonnet and Claude 3 Opus exhibit high accuracy rates but tend to lack

the depth and completeness found in the responses provided by GPT-4 models.

We notice that, in general, larger models perform better. This is expected for a

number of reasons:

95

• Representation Capacity: Larger models have more parameters, allowing them

to capture complex patterns and nuances in language data. This enables them to

understand idiomatic expressions, rare words, and intricate linguistic structures.

With increased capacity, models can differentiate between subtle differences in

context and meaning, leading to more accurate and relevant responses.

• Generalization Ability: Larger LLMs are trained on vast amounts of data, en-

compassing diverse topics and styles. This broad training helps them generalize

better to new and unseen inputs.

• Contextual Understanding: Bigger models can maintain context over longer

stretches of text, which is crucial to understanding and generating coherent

responses in conversations or long documents. They are also better at resolving

ambiguities by considering more extensive contextual information.

• Complex Reasoning and Inference: Multistep reasoning allows the model to

perform more complex reasoning tasks, like mathematical calculations, logi-

cal inferences, and following intricate instructions. Larger models can better

grasp relationships between concepts, aiding in tasks like question answering

and problem solving. They are also better at understanding and generating

figurative language.

However, smaller models are also quite efficient when it comes to reasoning and tool

selection to complete a task.

Table 13 provides the detailed results of the accuracy report of the models we

tested following the process mentioned in our approach. We provide further details

and explanation on various aspects of the model responses and their accuracy in the

Discussion section, Section 5.4, where we shall explain why models such as ChatGPT

3.5 Turbo (once a state-of-the-art model) are struggling with certain queries that

seem quite straightforward (e.g., query Q7).

96

Table 12: RQ1 - Summary of Large Language Model Agents solving task accuracy in

AIOps Context grouped by type of reasoning: Simple Reasoning, SR, (use at most

one tool), and Advanced Reasoning, AR (use multiple tools).

Model SR Task AR Task

(0..1 tools) (2+ tools)

Claude 3.5 Sonnet 95.23% 95%

Claude 3 Haiku 89.52% 30%

Claude 3 Opus 90% 95%

Mistral Largest 94.76% 45%

Mixtral 8x22B 2.38% 0%

Mistral Small 7B 76.19% 0%

GPT 3.5 Turbo 85.71% 0%

GPT 4-o 87.14% 100%

GPT 4-o Mini 85.71% 77.5%

GPT 4 Turbo 85.71% 90%

With the exception of Mixtral 8x22B, all tested LLMs followed the ReAct prin-

ciples and effectively utilized the available tools when the instructions were clear.

Among the models, the GPT family achieved the best overall performance in ad-

vanced reasoning tasks, with GPT 4-o excelling in accuracy and reliability. The

Claude model family, on the other hand, performed best on simple reasoning

tasks. In contrast, Mixtral 8x22B exhibited the poorest performance, frequently

hallucinating responses and failing to leverage the tools provided. Being a closed

model, we cannot say why it hallucinated most of the responses and did not use

the available tools to form the responses.

97

Table 13: RQ1 - Detailed Results for Large Language Model Agents solving task accuracy in AIOps Context.

Query Claude Claude Claude Mistral Mixtral Mistral GPT GPT GPT GPT

No. 3.5 3 3 Largest 8x22B Small 3.5 4-o 4-o 4

Sonnet Haiku Opus 7B turbo mini turbo

Q-01 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

Q-02 100% 90% 100% 100% 100% 100% 100% 100% 100% 100%

Q-03 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

Q-04 100% 100% 100% 100% 100% 100% 0% 100% 100% 100%

Q-05 100% 90% 100% 100% 0% 100% 100% 100% 100% 100%

Q-06 100% 100% 100% 100% 0% 100% 100% 100% 100% 100%

Q-07 100% 0% 0% 90% 0% 0% 100% 30% 0% 0%

Q-08 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

Q-09 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Q-10 100% 100% 100% 100% 0% 100% 100% 100% 100% 100%

Q-11 100% 100% 100% 100% 0% 100% 100% 100% 100% 100%

Q-12 100% 100% 100% 100% 0% 100% 100% 100% 100% 100%

Q-13 100% 100% 100% 100% 0% 100% 100% 100% 100% 100%

Q-14 100% 100% 100% 100% 0% 0% 100% 0% 0% 0%

Q-15 100% 100% 100% 100% 0% 0% 100% 100% 100% 100%

Q-16 100% 100% 100% 100% 0% 100% 100% 100% 100% 100%

Q-17 100% 100% 100% 100% 0% 100% 100% 100% 100% 100%

Q-18 100% 100% 100% 100% 0% 100% 100% 100% 100% 100%

98

Query Claude Claude Claude Mistral Mixtral Mistral GPT GPT GPT GPT

No. 3.5 3 3 Largest 8x22B Small 3.5 4-o 4-o 4

Sonnet Haiku Opus 7B turbo mini turbo

Q-19 100% 100% 100% 100% 0% 100% 100% 100% 100% 100%

Q-20 100% 100% 100% 100% 0% 0% 0% 100% 100% 100%

Q-21 80% 10% 0% 0% 0% 0% 0% 100% 100% 100%

Q-22 100% 50% 100% 100% 0% 0% 0% 100% 100% 100%

Q-23 100% 100% 90% 100% 0% 100% 100% 100% 100% 100%

Q-24 100% 30% 100% 80% 0% 0% 0% 100% 100% 80%

Q-25 100%* 30%* 100%* 0% 0% 0% 0% 100% 10% 80%

99

5.3.2 RQ2: How fast do different LLMs perform on a set of

IT Operations tasks?

Motivation: Building on the earlier mentioned differences between LLMs, we will

measure how quickly various models respond to user requests. Specifically, we record

the 50th percentile (median), 90th percentile, and maximum response times (in sec-

onds) for models that vary in size, architecture, context window, and training data.

This measurement is important because some tasks may be critical in time, partic-

ularly in real-time applications such as chatbots, virtual assistants, and customer

support systems. Preventive maintenance in applications is another area where quick

responses are critical. Slow responses can lead to user frustration, decreased engage-

ment, and a perception of unreliability. Evaluating the LLM’s performance over re-

peated requests using the 50th-percentile (median) and 90th-percentile response times

helps in understanding both typical and worst-case scenarios. The 50th percentile in-

dicates the response time that half of the users experience or is faster, reflecting the

general performance. The 90th percentile shows the response time below which 90%

of the requests are served, highlighting the tail-end delays that can impact user sat-

isfaction. Analyzing these percentiles allows developers to identify latency issues and

optimize the system to ensure consistent and timely responses for most users.

Approach: We perform the procedure described in Section 5.2.4 and depicted in

Figure 13.

Results: In Table 14 we present the results summary for the performance metrics

we observed and described in the motivation part of this research question. The

summary is aligned to the type of reasoning required to perform the task, namely

simple reasoning (SR) or advanced reasoning (AR). The detailed results are provided

in Table 15.

Response times must always be evaluated alongside accuracy to provide mean-

ingful insights into a model’s performance. This combined assessment is particularly

important in scenarios where both speed and correctness are critical. Without such

context, faster response times might overshadow inaccuracies, or highly accurate re-

sponses might fail to meet real-time requirements. Considering this, we observe that

for SR queries, OpenAI models generally respond the fastest, closely followed by

Anthropic models, with Claude 3 Haiku standing out as the fastest responder based

100

on P-50 response times. The Mistral family models, excluding Mixtral 8X22B, also

deliver competitive response times for SR tasks. For AR queries, response times

among models capable of solving these tasks are relatively consistent.

Smaller models within a family generally respond approximately 50% faster than

their larger counterparts. When evaluating both response time and accuracy, OpenAI

models, particularly GPT-4o, stand out as the fastest and most reliable performers.

Conversely, the Mistral models, especially Mixtral 8x22B, performed the worst. Al-

though Mixtral 8x22B returned hallucinated responses quickly, it failed to resolve

any AR queries. However, for SR queries, the Mistral Small 7B model remains a

viable option due to its reasonable accuracy, as observed in RQ1. Its relatively fast

response times combined with acceptable accuracy make it suitable for specific ITOM

operations scenarios where high precision is not the primary requirement.

We notice that in general larger models take more time to respond, especially

where the query requires several reasoning and action steps in order to determine

the response (e.g., Q-21, Q-22, Q-24, and Q-25). These queries require the LLM to

piece together several instructions from the input and decide which tools and in which

order to use. In some cases, the results of one tool are input for the next; therefore,

the model performance is also dependent on the performance of the tools themselves.

We must remember that faster here does not necessarily mean better, since response

times must be correlated with the accuracy aspect of the associated responses. This

is in particular visible for the Mixtral 8x22B model, which has the smallest response

times. However, when correlated with the RQ1, we can see that this model has a

very low accuracy as it failed to respond to the majority of the queries.

Response times should always be assessed in context and alongside the accuracy of

responses to ensure a comprehensive evaluation. Within this framework, OpenAI

models generally exhibit the fastest response times for both SR and AR queries.

However, when considering the P-50 metric specifically, Claude 3 Haiku emerges

as the fastest model for SR queries, while GPT-4o demonstrates the fastest

performance for AR queries.

101

Table 14: RQ2 - Summary of Large Language Model Agents solving task average

response times (in seconds) in AIOps Context.

Model Metric SR Task AR Task

(Average) (0..1 tools) (2+ tools)

Claude 3.5 P-50 6.41 19.14

Sonnet P-90 7.12 20.54

Max 7.52 21.01

Claude 3 P-50 3.14 9.07

Haiku P-90 4.38 16.08

Max 5.16 16.97

Claude 3 P-50 18.18 48.38

Opus P-90 20.97 55.12

Max 22.73 57.54

Mistral P-50 8.36 71.95

Largest P-90 12.31 88.04

Max 17.17 94.67

Mixtral P-50 4.73 6.88

8x22B P-90 5.72 7.17

Max 11.00 7.50

Mistral P-50 4.72 9.12

Small 7B P-90 5.17 9.42

Max 5.44 9.66

GPT 3.5 P-50 3.45 6.99

Turbo P-90 4.25 7.35

Max 4.50 7.71

GPT 4-o P-50 4.47 46.12

P-90 5.69 54.42

Max 7.13 69.40

GPT 4-o P-50 4.13 22.08

Mini P-90 6.06 28.61

Max 9.91 46.00

GPT 4 P-50 9.17 48.62

Turbo P-90 10.53 54.99

Max 11.47 57.10

102

Table 15: RQ2 - Detailed Results for Large Language Model Agents solving task response times (in seconds) in AIOps

Context.

Query Metric Claude Claude Claude Mistral Mixtral Mistral GPT GPT GPT GPT

No. 3.5 3 3 Largest 8x22B Small 3.5 4-o 4-o 4

Sonnet Haiku Opus 7B turbo mini turbo

P-50 1.81 0.77 7.07 1.16 2.06 1.38 0.71 0.87 0.93 1.85

Q-01 P-90 2.04 1.22 9.50 1.62 2.34 1.70 0.87 1.29 1.20 2.54

Max 2.07 2.16 12.97 2.07 2.77 2.23 1.18 3.13 1.23 2.73

P-50 6.39 2.81 23.05 8.38 7.56 6.32 2.02 5.15 3.68 13.33

Q-02 P-90 6.72 4.45 31.52 12.32 7.82 6.76 2.57 5.95 6.44 16.86

Max 6.83 4.94 39.60 18.01 7.87 7.03 3.13 8.07 14.86 17.72

P-50 3.86 2.79 20.63 11.10 5.17 2.72 2.06 4.77 4.40 10.96

Q-03 P-90 6.22 5.28 27.50 27.96 5.82 2.95 2.38 5.67 6.39 12.56

Max 6.35 6.84 28.23 42.01 6.22 3.26 2.44 6.00 9.74 12.64

P-50 7.00 4.13 24.35 25.17 7.97 6.21 1.64 8.39 5.48 14.84

Q-04 P-90 8.46 4.97 27.31 33.17 8.24 6.96 1.91 10.49 10.80 16.30

Max 9.03 7.47 33.90 34.49 8.26 7.18 1.95 15.49 43.94 19.60

P-50 5.99 2.9 17.73 5.31 2.29 6.42 3.77 5.47 4.08 12.63

Q-05 P-90 7.37 3.88 20.60 6.62 2.85 6.89 4.36 6.43 6.84 13.62

Max 7.49 4.13 20.94 7.53 3.11 7.08 4.38 6.67 10.80 13.62

P-50 4.95 2.09 16.37 5.53 2.53 4.86 4.02 4.12 3.76 9.48

Q-06 P-90 5.18 2.36 18.53 9.46 2.85 5.11 4.73 4.98 5.09 11.73

103

Query Metric Claude Claude Claude Mistral Mixtral Mistral GPT GPT GPT GPT

No. 3.5 3 3 Largest 8x22B Small 3.5 4-o 4-o 4

Sonnet Haiku Opus 7B turbo mini turbo

Max 5.27 2.52 18.92 9.54 3.14 5.64 4.76 5.59 6.45 12.84

P-50 7.53 3.14 23.69 6.46 7.08 5.56 3.59 8.19 9.46 25.81

Q-07 P-90 8.62 4.95 26.87 11.74 7.99 6.36 4.08 11.28 17.28 28.15

Max 8.79 5.77 32.01 11.88 9.10 6.72 4.58 13.66 17.55 29.08

P-50 3.97 1.96 12.45 3.83 1.95 2.61 2.34 2.00 1.78 5.68

Q-08 P-90 4.47 3.71 13.30 6.50 2.58 2.76 3.43 2.51 2.31 6.66

Max 4.54 4.23 13.46 6.74 2.66 2.82 3.80 3.02 3.71 6.86

P-50 2.64 1.08 11.38 23.71 2.20 1.83 1.64 0.87 0.98 1.60

Q-09 P-90 2.93 2.17 13.67 28.07 2.63 1.92 1.72 1.79 2.20 2.66

Max 3.07 2.30 13.76 51.20 2.71 2.00 1.95 1.99 2.74 3.88

P-50 10.61 6.36 22.38 13.58 6.09 8.53 8.28 10.31 8.98 16.17

Q-10 P-90 10.97 7.06 23.45 18.39 6.36 8.85 10.60 12.01 14.82 18.78

Max 11.03 7.27 23.72 25.84 6.86 8.93 10.90 15.89 29.50 19.26

P-50 10.52 5.93 22.81 12.27 4.70 9.01 8.19 8.23 8.67 15.19

Q-11 P-90 11.17 8.42 23.28 14.58 4.89 10.02 8.94 9.36 9.86 16.32

Max 11.61 10.04 23.49 22.14 5.16 10.30 9.08 10.58 10.31 17.42

P-50 11.04 6.21 22.00 11.30 3.52 8.64 7.74 8.71 8.81 15.78

Q-12 P-90 11.72 6.98 26.90 19.09 15.42 8.88 8.57 12.04 10.93 17.68

Max 12.36 7.17 27.72 20.55 120.12 9.04 8.92 16.60 11.75 20.88

P-50 8.33 5.45 20.05 8.17 3.37 6.94 6.69 6.65 6.46 12.14

104

Query Metric Claude Claude Claude Mistral Mixtral Mistral GPT GPT GPT GPT

No. 3.5 3 3 Largest 8x22B Small 3.5 4-o 4-o 4

Sonnet Haiku Opus 7B turbo mini turbo

Q-13 P-90 9.07 6.89 22.06 15.11 3.74 7.54 7.14 8.09 8.43 13.01

Max 9.32 7.27 22.96 15.48 4.49 7.74 7.58 9.36 11.30 13.76

P-50 5.03 1.77 15.89 2.66 5.26 1.39 1.59 0.57 0.67 0.90

Q-14 P-90 5.77 1.85 17.29 3.23 5.82 1.91 1.86 0.60 1.08 1.09

Max 6.27 2.15 18.10 3.46 6.14 2.58 2.03 0.62 1.09 1.11

P-50 5.39 1.86 16.80 3.44 2.53 2.55 1.77 2.07 1.70 3.53

Q-15 P-90 5.81 3.32 17.29 5.11 3.28 2.97 1.95 2.54 2.49 4.81

Max 5.83 4.02 18.10 10.68 3.38 3.11 2.03 3.02 6.39 5.57

P-50 5.55 2.29 16.24 3.81 3.33 2.98 2.06 2.19 1.97 4.41

Q-16 P-90 5.94 3.83 19.09 4.88 3.51 3.40 2.33 3.30 3.43 5.17

Max 6.10 5.85 19.31 5.15 3.69 3.52 2.50 4.39 3.62 5.69

P-50 6.36 2.32 16.42 4.60 8.77 3.18 2.10 2.44 2.06 4.34

Q-17 P-90 6.69 2.98 18.86 5.64 9.47 3.54 2.24 3.17 2.37 5.13

Max 7.01 3.53 18.97 6.36 9.54 3.60 2.64 3.62 2.43 7.40

P-50 5.73 2.04 17.34 3.87 5.45 3.17 2.16 2.19 2.47 4.67

Q-18 P-90 6.92 2.19 19.91 5.60 5.90 3.74 2.34 3.07 3.46 5.29

Max 6.95 2.78 20.39 5.80 6.35 3.96 2.52 5.46 4.51 5.34

P-50 6.19 2.29 16.35 5.81 8.84 3.13 2.09 2.27 2.13 4.38

Q-19 P-90 6.42 4.48 18.52 8.56 9.52 3.59 2.53 2.84 2.59 5.79

105

Query Metric Claude Claude Claude Mistral Mixtral Mistral GPT GPT GPT GPT

No. 3.5 3 3 Largest 8x22B Small 3.5 4-o 4-o 4

Sonnet Haiku Opus 7B turbo mini turbo

Max 6.69 6.49 20.99 14.72 9.54 3.80 2.91 2.87 4.29 6.64

P-50 5.31 2.25 15.62 6.58 5.18 4.17 1.97 2.12 2.54 3.91

Q-20 P-90 5.72 3.31 18.28 8.42 5.37 4.77 8.02 4.75 2.84 4.90

Max 6.04 3.45 19.57 8.63 5.41 5.68 8.20 5.82 2.84 6.00

P-50 17.68 5.90 37.57 124.03 6.28 9.22 3.54 75.95 66.59 21.11

Q-21 P-90 20.51 6.97 42.13 126.67 6.60 9.42 3.76 91.96 75.10 26.04

Max 20.72 7.06 47.22 126.71 6.75 9.64 3.99 118.36 77.52 28.39

P-50 16.51 7.79 41.35 23.20 6.83 11.14 8.10 9.15 9.86 18.68

Q-22 P-90 17.74 10.38 47.66 26.49 7.27 11.81 8.23 10.37 11.68 20.98

Max 18.43 12.43 49.04 32.98 8.02 12.13 8.23 12.20 12.22 22.43

P-50 10.43 5.47 23.17 8.74 3.44 7.46 6.12 6.26 5.77 11.03

Q-23 P-90 11.38 7.62 25.48 12.47 3.76 7.89 6.71 7.33 6.61 12.10

Max 15.19 7.96 28.87 38.28 4.54 8.01 7.06 7.99 9.01 12.79

P-50 10.84 4.41 37.27 8.42 6.99 10.99 8.13 6.38 7.69 13.19

Q-24 P-90 11.20 9.94 42.08 24.29 7.20 11.21 8.59 8.00 13.26 14.88

Max 11.74 10.99 44.95 37.83 7.59 11.28 8.60 8.67 14.55 19.17

P-50 31.54 18.18 77.33 132.14 7.40 5.12 8.19 92.99 4.16 141.51

Q-25 P-90 32.72 37.02 88.60 174.69 7.62 5.22 8.80 107.35 14.42 158.07

Max 33.15 37.39 88.96 181.16 7.64 5.58 10.03 138.38 79.72 158.40

106

5.3.3 RQ3: How verbose do different LLMs perform on a set

of IT Operations tasks?

Motivation: Building on the differences between LLMs mentioned earlier, we will

assess how verbose each model is in responding to user requests. This will be mea-

sured by calculating the average number of tokens that a model uses to answer a

specific request. We will determine this average by repeating the same request ten

times and recording the token count for each response. Similarly to the previous

research questions, our observations are made for different models that vary in size,

architecture, context window, and training data. This measurement is important as

it not only affects the response time (more tokens means more time to stream back a

response, more time for a human to spend on absorbing a response), but also affects

the overall operational costs for models hosted by third party providers where access

is paid on the number of utilized tokens. Additionally, a more verbose model with a

limited context window may also be limited in being able to answer complex questions

or execute workflows.

Approach: We perform the procedure described in Section 5.2.4 and depicted in

Figure 13.

Results: In Table 16 we present the summary of the results for the verbosity of the

different LLMs solving the AIOps-related tasks, grouped by the type of reasoning

required: simple reasoning (SR), or advanced reasoning (AR). The detailed results

are provided in Table 17. For the detailed results (Table 17), the numbers represent

the average token count, rounded to closest integer, for the ten-fold execution of each

query in Table 11.

As observed in previous research questions, a model’s verbosity is strongly tied to

its ability to solve tasks effectively. Larger models generally produce more verbose

responses. Additionally, verbosity levels vary across models from different providers,

even within the same class (e.g., Anthropic’s Claude 3.5 Sonnet, Mistral’s largest

model, and OpenAI’s GPT 4-turbo). These differences reflect provider-specific ap-

proaches to response generation and structuring.

Similarly to the prior research question, the verbosity of a model is tightly coupled

with its ability to solve a task. We notice that larger models are generally more

verbose in their answers. The verbosity also varies for different model suppliers,

107

Table 16: RQ3 - Summary Average token count (verbosity) of Large Language Model

Agents solving tasks in AIOps Context.

Model SR Task AR Task

(0..1 tools) (2+ tools)

Claude 3.5 Sonnet 5420.3 42768.1

Claude 3 Haiku 5564.6 46535.7

Claude 3 Opus 5892.6 44648.5

Mistral Largest 6066.8 39877.6

Mixtral 8X22B 2803.4 3007.3

Mistral Small 7B 4162.7 4619.5

GPT 3.5 Turbo 3242.3 2722.6

GPT 4-o 3031.6 25965

GPT 4-o Mini 3065 20900.7

GPT 4 Turbo 3081.3 24308.5

despite the respective models’ belonging to similar model classes. (e.g., Anthropic’s

Claude 3.5 Sonnet versus Mistral Largerst versus OpenAi’s GPT 4-turbo).

In general, Anthropic’s Claude family models are the most verbose, despite their

responses being less complete or accurate compared to OpenAI’s GPT models. For

instance, Claude models consistently truncated their responses to query Q-25, whereas

GPT 4-turbo delivered a complete response. The verbosity of Mistral family models

is often comparable to that of the Claude family but only when they provided correct

responses. This demonstrates that verbosity does not always align with response

quality or completeness.

In RQ1 we mentioned that queries Q-04 and Q-21 were not resolved by the GPT

3.5 turbo model due to a model internal processing error (as reported by the inte-

gration library). The correlation between the token count and result of the query is

especially visible for these two queries as in RQ3 we see the count of tokens at zero,

despite the model taking some times before an error is provided, as per the results

from RQ2.

108

Overall, the OpenAI model family is the most efficient in token usage for both

SR and AR queries, whereas the Anthropic models are the most verbose. This

difference is important because token usage directly affects the operational costs

of employing the models for ITOM tasks. Higher verbosity can substantially

increase costs, making such models less desirable from a project cost management

perspective.

109

Table 17: RQ3 - Average token count (verbosity) of Large Language Model Agents solving task in AIOps Context.

Query Claude Claude Claude Mistral Mixtral Mistral GPT GPT GPT GPT

No. 3.5 3 3 Largest 8x22B Small 3.5 4-o 4-o 4

Sonnet Haiku Opus 7B turbo mini turbo

Q-01 2841 2789 3147 2519 2609 2550 1713 1662 1679 1728

Q-02 3189 5668 5065 2833 3021 2831 1810 1950 1917 2059

Q-03 3056 6123 5101 6958 2857 2636 1813 1951 1919 2004

Q-04 3265 6223 4752 7841 3061 2848 0* 2174 2011 2097

Q-05 6386 6021 6859 5488 2627 5685 3870 3856 3850 3982

Q-06 6307 6093 6849 5597 2664 5582 3912 3801 3803 3915

Q-07 7178 6203 3927 5697 2993 2799 4197 3083 2210 2386

Q-08 3003 2934 3252 2628 2621 2633 1831 1754 1764 1840

Q-09 2894 2823 3243 7064 2621 2580 4297 1664 1673 1720

Q-10 6505 6173 6946 5798 2877 5673 3988 3942 3922 4018

Q-11 6574 6230 6972 5792 2826 5712 3998 3944 3920 4025

Q-12 6566 6200 6925 5727 2466 5677 3973 3927 3965 4022

Q-13 6369 6174 6928 5621 2727 5617 3916 3813 3807 3930

Q-14 6044 5783 6605 5201 2843 2552 3508 1646 1646 1701

Q-15 6055 5809 6697 5239 2658 2623 3533 3423 3417 3527

Q-16 6094 5829 6655 5247 2696 5267 3550 3437 3438 3554

Q-17 6152 5890 6709 5277 3117 5286 3566 3457 3457 3570

Q-18 6142 5867 6721 5279 2868 5290 3569 3460 3460 3575

110

Query Claude Claude Claude Mistral Mixtral Mistral GPT GPT GPT GPT

No. 3.5 3 3 Largest 8x22B Small 3.5 4-o 4-o 4

Sonnet Haiku Opus 7B turbo mini turbo

Q-19 6146 5886 6685 5278 3117 5287 3565 3457 3457 3570

Q-20 6187 5949 6724 20770 2859 2729 3693 3587 5374 3696

Q-21 34865 34023 35594 21463 2950 5062 0* 25882 28049 20108

Q-22 34822 25803 35862 33235 2994 5426 3601 11173 26946 21859

Q-23 6877 6191 6985 5551 2745 5562 3788 3678 3679 3791

Q-24 17319 12892 19398 19867 3021 5180 3638 11612 15648 11163

Q-25 84066 113426 87740 84946 3065 2810 3650 55193 12960 44105

111

5.4 Discussion

In this section, we discuss the key observations of developing tools for LLM agents

and integrating them into the Red Hat OpenShift [97] platform.

To summarize our testing approach, we used the LangChain [63] and Lang-

Graph [64] framework for agent creation and LLM integration. Additionally, we used

for integration the Pydantic [94] library which allowed us to use the object-oriented

programming (OOP) approach for data exchange with the different LLMs. For the

agent setup, we used the default ReAct implementation from the LangGraph library,

without any other tuning. We used this approach to ensure that we do not introduce

any bias, by prompt manipulation, to any of the LLMs we tested. As mentioned

in Section 5.2.4, we used a set of different questions in our tests that ranged from

general knowledge, to platform knowledge (RedHat OpenShift), product documenta-

tion - through retrieval augmented generation (RAG), and application configuration

(using MLASP [114] predictions to configure an mock application for a desired KPI

throughput).

Chat agents may be implemented with a memory component (to retain aspects

of earlier queries) or without it. Using a memory component for the chat assistant

may seem beneficial, as it may follow up on queries from the user and behave like

an ongoing conversational agent. This proved to work well for queries Q-08 and Q-

09. However, it completely provided unexpected results when used later for queries

Q-15 through Q-25 when the LLM did not calculate updated timestamp information

anymore. To avoid this behavior, we disabled the memory component of the agent,

which allowed correct calculations for the real IT operations queries and an incorrect

response 100% of the time for query Q-09, as the LLMs were no longer capable of

inferring that the Q-09 query may be in context with query Q-08 (expected response

for query Q-09 would have been the LLM mentioning the river Seine). Since asking

the agent to always calculate timestamps may decrease the user experience, we opted

to remove the memory component from our agent setup. Another reason why we

opted to remove the chat history feature (through removing the memory component)

was that some models have a shorter context window which is directly affected by

the length of the chat history feature. Also, when performing IT operations tasks,

the response expected from the LLM may not be usable in future queries (e.g., Q-24

returns the name of a file). We recognize that in some cases the existence of a chat

112

history may be beneficial. For example, after obtaining the response for Q-23 the

user may want to use the agent to apply the response on the system (if such a tool

were available to the agent).

Some of the queries we used for testing the agents’ reasoning capabilities require

detecting and using in the correct order of several tools, in some cases using the same

tool repeatedly withing the same workflow. As an example, Table 18 describes the

correct reasoning and steps taken by the LLM to solve the task. The LLM that

provided the response was OpenAi’s GPT 4-turbo.

Table 18: Query Q-24 correctly solved by GPT 4-turbo powered agent.

Step Agent activity

1 Input: Find out the Prometheus service name and port number running

in namespace demo. Use it to to plot all the prometheus metric data

for the metric load generator total msg starting 48 hours ago until now.

Return only the content string of the tool and nothing else.

2 Entering new AgentExecutor chain... To solve the question, I need to first

identify the Prometheus service name and port number in the ”demo”

namespace. Then, I will use this information to plot the Prometheus

metric data for ”load generator total msg” from 48 hours ago until now.

3 Action: Summarize Services Information In OpenShift Namespace

Action Input: {”namespace”: ”demo”}
namespace = ’demo’ svc summary = [ServiceInfo (name = ’grafana-

demo-service’, ports = [PortInfo (port=3000, name = ’grafana’,

protocol = ’TCP’)], route = ’http://grafana-demo.apps.cluster-

dnjmk.dnjmk.sandbox1590.opentlc.com/’), ServiceInfo (name =

’influxdb’, ports = [PortInfo (port = 8086, name = ’No name avail-

able’, protocol = ’TCP’)], route = ’unavailable’), ServiceInfo (name =

’load-generator’, ports = [PortInfo (port = 9090, name = ’metrics-app’,

protocol = ’TCP’), PortInfo (port = 9100, name = ’metrics-node’,

protocol = ’TCP’)], route = ’unavailable’), ServiceInfo (name =

’prometheus-operated’, ports = [PortInfo (port = 9090, name = ’web’,

protocol = ’TCP’), PortInfo (port = 10901, name = ’grpc’, protocol =

’TCP’)], route = ’unavailable’)]

113

Step Agent activity

4 From the observation, the Prometheus service in the ”demo” namespace

is named ”prometheus-operated” and it uses port 9090 for web access.

Next, I need to get the current time and the time 48 hours ago to define

the time range for plotting the metric data.

5 Action: Get timestamp and time ISO

Action Input: {”time value”: ”now”, ”time metric”: ”seconds”,

”ago flag”: 0}
timestamp = 1730500568.411993 date time iso format string = ’2024-11-

01T18:36:08.411993-04:00’ timezone = ’America/New York’

6 Now I have the current timestamp. Next, I need to calculate the times-

tamp for 48 hours ago.

7 Action: Get timestamp and time ISO

Action Input: {”time value”: 48, ”time metric”: ”hours”, ”ago flag”: 1}
timestamp = 1730327770.333979 date time iso format string = ’2024-10-

30T18:36:10.333979-04:00’ timezone = ’America/New York’

8 Now I have the timestamp for 48 hours ago. With both timestamps, I

can proceed to plot the metric data for ”load generator total msg” from

48 hours ago until now using the Prometheus service details.

9 Action: File create plot irate

Action Input: {”prom service”: ”prometheus-operated”,

”prom namespace”: ”demo”, ”prom port”: 9090, ”metric name”:

”load generator total msg”, ”metric range start”: 1730327770.333979,

”metric range end”: 1730500568.411993}
file name=’FILE-plot-load generator total msg-1730327770-

1730500568.png’

10 I now know the final answer

Final Answer: FILE-plot-load generator total msg-1730327770-

1730500568.png

We can see that in the first step, the agent receives the input query. In the second

step, the agent provides a brief summary of the reasoning it needs to use to solve the

task. We identify a first tool that the agent will use in solving the task in the third

114

step where the Summarize Services Information In OpenShift Namespace tool shall

be used to find the Prometheus service name and port number of the Prometheus

operator instance running in the specified namespace, in our case called demo. The

response from the tool returns as a list of Pydantic objects. These items are then

parsed by the LLM and provided as an observation in step four. In the same step,

the LLM informs what the next steps will be. In steps five through eight, it uses

twice the Get timestamp and time ISO tool in order to obtain the timestamps for

the time range needed in step nine by the File create plot irate tool. Naturally, the

tool execution in this step returns the plot as a file which is then used by the agent

executor in step ten to draw the conclusion that the response is now complete and

final, thus returning the file name as its final answer.

As depicted in Table 12, we can see that seven of the ten models we tested were

able to respond with various degree of accuracy to Q-24, six models providing over

80% accuracy. Looking into the chains call logs we can see that when the models fail

they do for the following reasons:

• The model hallucinates the date range instead of using the tool to calculate the

time interval.

• The model simply hallucinates a response by saying what the user should do to

obtain the response.

• The model does not create the right workflow and chain of tools that it should

use and responds that it did not find anything.

In some cases, for the Anthropic model family, the LLM does not determine

the correct order in which to use the tools (particularly the timestamp calculation

tool), but it eventually manages to correct itself. While this demonstrates a positive

capability—the model can recover from erroneous reasoning—it may incur significant

costs in both response time and the number of tokens consumed. Ultimately, this

approach could be economically inefficient for the operations team.

Surprisingly, although Q-25 is almost identical in terms of reasoning with Q-24,

with the exception of the GPT 4-turbo and GPT 4-o models, all other models en-

countered some challenges in providing the response. The challenges were as follows:

• Truncate the response (to some extent) - the case of Anthropic models. The

impact of truncation depends on how the user intends to utilize the resulting

115

information. If the truncated result is solely for review or display purposes, it

may not pose an issue. However, if the result is subsequently used as input for

a reporting tool to perform additional calculations, the truncation should be

regarded as an error in processing.

• Improper use of tools (especially the timestamp calculation tool) - Anthropic

Claude 3 Haiku, OpenAi’s GPT 3.5 turbo and GPT 4-o mini

• Hallucinate a response: MistralAI’s Mixtral 8x22B and Mistral Small

• Timeout from the model - Mistral Largest.

MistralAI also provides an LLM variant that functions as a mixture of experts in

the Mixtral8 family (with different weight variants). However, our tests—following

the framework and approach outlined in Section 5.2.4—showed that this model per-

formed the worst. It frequently produced hallucinations related to IT operations tasks

and failed to use the provided tools for calculations. As the model is closed-source,

we cannot determine the root cause of this behavior. We recommend future stud-

ies that involve further tuning the agentic approach and reevaluating this model’s

performance.

We further report that in some cases the GPT 3.5 turbo model has failed to

provide a response since the response exceeded the context window of the model.

To summarize, the best-performing models were the larger ones in the GPT-4 fam-

ily, namely GPT-4 turbo and GPT-4-o. Notably, when we adjusted the Q-07 query

to include the product name from the documentation stored in the RAG database,

the model’s performance on this query improved, highlighting once again the impor-

tance of specificity in the query prompt. The worst-performing model was Mixtral

8x22B, while Mistral Small 7B delivered acceptable results in most cases. This makes

Mistral Small 7B a suitable candidate for local deployments, where improvements in

performance and cost are relevant, as discussed in RQ2 5.3.2 and RQ3 5.3.3.

Overall, when we conducted an anonymous survey at various events showcasing

AIOps capabilities for managing a Kubernetes-based infrastructure using an agentic

approach with large language models, the respondents provided positive feedback.

The concept was well received by diverse groups within the software industry, includ-

ing development, infrastructure, and operations teams. This feedback aligns with cur-

rent industry trends, where a more agentic AI-based approach is increasingly sought

116

to manage operational tasks. The code and results of the experiments from this study

are available in the following GitHub repository [31].

5.5 Threats to Validity

5.5.1 External Validity

Threats to external validity concern the generalizability of our findings. Our experi-

ments were conducted using a single family of frameworks for Large Language Model

integration: LangChain [63] and LangGraph [64]. These libraries provide abstractions

over the implementation details required to interact with specific LLMs by leveraging

the SDK (software development kit) provided by the model provider. However, other

frameworks, such as LLamaIndex [75], offer similar functionalities and could be worth

exploring in future studies.

Additionally, abstraction frameworks like LangChain and LangGraph may intro-

duce limitations compared to using the native SDKs of specific models. This is be-

cause these frameworks aim to provide a unified interface that works across multiple

models, potentially overlooking unique features offered by model-specific SDKs. As a

result, not utilizing the specialized functionalities available in a dedicated SDK could

negatively affect the performance of the overall agent.

5.5.2 Internal Validity

As we mentioned earlier, we performed our experiments using only the LangChain [63]

and LangGraph [64] libraries, the python programming language variant. We did not

test the behavior using the Javascript variants of the integration libraries.

5.5.3 Construct Validity

We conducted our experiments using specific versions of the LangChain [63] and

LangGraph [64] libraries, specifically versions 0.2.12 and 0.2.10, respectively. It is

possible that newer versions of these libraries may behave differently, potentially

offering enhancements to the client-side instance of the LLMs. Another aspect of

our experimental setup is the reliance on the serving capabilities provided by the

117

LLM model owners (OpenAI, Anthropic, MistralAI) and their assurance of runtime

compatibility with the integration libraries we employed.

As Anthropic and OpenAI models are fully closed, we could not test their agentic

functionality in custom, locally deployed runtimes. While testing the MistralAI model

family in a local environment is feasible, the compute requirements (both CPU and

GPU) for larger models made it cost-prohibitive. However, we tested Mistral Small 7B

locally using a vLLM [116] runtime but were unable to replicate the results obtained

from the MistralAI endpoints. This discrepancy was due to a missing feature in the

vLLM-LangChain integration library at the time of our experiments, specifically the

bind tools function. Further testing may be feasible with other runtime servers or with

updated vLLM serving runtimes once the missing functionality becomes available.

Future studies will aim to address these limitations.

118

Chapter 6

Conclusion

In this chapter we summarize the contributions of this dissertation. We also propose

future work related to AIOps and agentic AIOps practises for large scale systems.

We presented a series of empirical studies, each one covering a particular goal

in the scope of improvements to load testing, capacity planning and to operational

efficiency of software systems with emphasis on large scale and distributed systems.

Load testing is a critical activity in the software development lifecycle (SDLC)

as it ensures that the software system behaves correctly within defined SLA ranges

under loads as close as possible to real world usage. As a result, it is recommended

that load test engineers run as many tests as possible using different loads and system

configurations. Furthermore, the results of load testing are also critical in calculating

the required software, environment and deployment settings for the components of a

software ecosystem required to have a desired capacity for business processing.

The use of frameworks that accelerate and offer cost savings to businesses when

performing the tasks related to both load testing and capacity planning are highly

appreciated, especially when the frameworks are extensible, and non-intrusive in their

approach. Using a non-intrusive approach for KPI information retrieval is very impor-

tant as it simplifies the integration of these methods with existing software ecosystems.

Including Machine Learning models in the proposed frameworks leverages cutting

edge technologies for solving the challenges raised by the use of traditional methods.

Furthermore, the rise of Large Language Models opens new possibilities for man-

aging large scale systems. Incorporating LLM powered agents equipped with tools

119

can lift operational burdens. Having LLM powered agents equipped with predic-

tive machine learning (ML) tools is a game changer for modern IT operations and

business processes. These agents combine the natural language understanding and

contextual reasoning capabilities of LLMs with the powerful data analysis and fore-

casting abilities of predictive ML models. This synergy enables them not only to

interpret complex queries, but also to proactively offer actionable insights and pre-

dictions to uphold service level agreements (SLAs). By integrating predictive tools,

these agents can go beyond reactive responses, offering a forward-thinking approach

that enhances decision making, reduces downtime, and optimizes resource utilization,

ultimately improving overall operational efficiency.

6.1 Contributions

In this dissertation we focus on improvements to different processes that are part of

the software development life cycle (SDLC) for distributed large scale systems. In

particular we focus on improvements to load testing, capacity planning and use of

AIOps for IT Operations management. Our studies managed to fill in process gaps in

the practice of the aforementioned processes. Below, we outline the key contributions:

1. MLASP - Machine Learning Assisted Capacity Planning [114] is an in-

dustrial report that introduces a novel approach to capacity planning for large-

scale industrial systems using automation and machine learning. A central

aspect of this approach is the use of non-intrusive data collection, which en-

hances its applicability to a broader range of systems, including closed-source

ones. Our findings demonstrate that leveraging machine learning (ML) en-

ables highly accurate predictions of key performance indicators (KPIs), with

the difference between predicted and actual throughput being less than 1%.

Additionally, we show that effective results can be achieved even when train-

ing on a smaller subset of data—for instance, just 3% of the total data in the

case of the open-source system. By adopting MLASP, our industrial partner

experienced substantial cost savings in the load testing process and reduced

operational costs in production environments.

2. MLOLET - Machine Learning Optimized Load and Endurance Test-

ing [115] is an industrial report presenting a novel approach to improving the

120

efficiency of load and endurance testing processes through the early detection

and termination of failing tests. This approach leverages machine learning (ML)

for time series modeling to identify spikes, which are then validated against

business rules to assess the health of ongoing tests. Our findings indicate that

adopting MLOLET in an industrial environment can lead to significant cost

savings across multiple areas. For instance, it can reduce the setup and execu-

tion time for load testing by up to 50% and cut the time required for analyzing

load test data for spikes by up to 65%. Moreover, the number of load and en-

durance tests that can be conducted within the project timeline may increase

by up to 100%, depending on the specific business scenario. Lastly, we show

that time series models trained on load testing data may be used in production

environments to help with IT Operations management processes.

3. Using Large Language Models for Adding AIOps Capabilities to Large-

Scale Systems - an empirical study evaluating the effectiveness of LLM-

powered agents in performing IT Operations management tasks, including ca-

pacity planning. The study assesses the agents’ performance based on their

accuracy in resolving user queries, the time taken to address these queries, and

their associated costs (measured in token usage). We compare the performance

of various state-of-the-art models across different scenarios. Our findings in-

dicate that OpenAI’s fourth-generation GPT family consistently delivers the

best results within the proposed testing framework. However, other models

also demonstrate acceptable performance, depending on the specific scenario

and business requirements.

6.2 Future Research Directions

While we have introduced approaches to enhance the efficiency of various IT oper-

ations management processes, several challenges remain that warrant further explo-

ration. These challenges are discussed in the following sections.

121

6.2.1 Evaluating Agentic frameworks

In Chapter 5, we discussed that our LLM-powered agents were implemented using

one family of frameworks: LangChain [63] and LangGraph [64]. While these libraries

support a variety of models, other libraries, such as LLamaIndex [75], also offer similar

capabilities and may be worth investigating. Additionally, constructing agents using

native SDKs could provide certain benefits compared to generic abstraction frame-

works like LangChain and LangGraph. Leveraging dedicated functionalities available

in native SDKs might enhance performance and flexibility, offering advantages over

the generalized features provided by abstraction frameworks.

6.2.2 Improving Cost Efficiency for Agentic AIOps

As discussed in Chapter 5, the use of LLM-powered agents in IT Operations manage-

ment can be expensive, both in terms of the time required for the agent to generate a

response and the financial cost associated with token usage. As LLMs become more

advanced and open-source models increasingly emerge, it would be valuable to inves-

tigate the performance of these agents when deployed locally, on the same platform

(e.g., RedHat OpenShift [97]) where tools, data and other managed workloads are

hosted. Running LLMs locally could potentially lead to significant operational expen-

diture (Opex) savings. This cost reduction could enable the testing and deployment

of autonomous monitoring agents capable of continuous 24x7 application ecosystem

oversight. Such agents could also utilize tools to perform preventive maintenance,

including adjustment of parameters on the fly (e.g. use the ideas from MLOLET and

MLASP simultaneously) and recovery actions for monitored applications. This ap-

proach could broaden the accessibility and scalability of agents for AIOps purposes,

offering enhanced operational efficiency and reduced costs.

122

Bibliography

[1] C. Aggarwal, C. Chen, and Jiawei Han. The inverse classification problem.

Journal of Computer Science and Technology, 25:458–468, 2010.

[2] AIOps. Applying aiops platforms to broader datasets will create unique business

insights, 2016. https://www.gartner.com/en/documents/3364418.

[3] Ayedh H. ALQahtani and Andrew Whyte. Estimation of life-cycle costs of

buildings: regression vs artificial neural network. 2016.

[4] Ateret Anaby-Tavor, Boaz Carmeli, Esther Goldbraich, Amir Kantor, George

Kour, Segev Shlomov, Naama Tepper, and Naama Zwerdling. Do not have

enough data? deep learning to the rescue! In Proceedings of the AAAI confer-

ence on artificial intelligence, volume 34, pages 7383–7390, 2020.

[5] Ansible. Ansible - automation for everyone, 2019. https://www.ansible.com/.

[6] Apache. Apache kafka - a distributed streaming platform, 2019.

https://kafka.apache.org/.

[7] Apache CouchDb. Apachecouchdb - the nosql database, 2019.

https://couchdb.apache.org/.

[8] Apache Spark. Apache spark - unified engine for large-scale data analytics,

2019. https://spark.apache.org/.

[9] Liang Bao, Xin Liu, Ziheng Xu, and Baoyin Fang. Autoconfig: Automatic

configuration tuning for distributed message systems. In Proceedings of the

33rd ACM/IEEE International Conference on Automated Software Engineer-

ing, ASE 2018, 2018.

123

[10] Liang Bao, Xin Liu, Ziheng Xu, and Baoyin Fang. Autoconfig: automatic

configuration tuning for distributed message systems. In Proceedings of the

33rd ACM/IEEE International Conference on Automated Software Engineer-

ing, ASE 2018, pages 29–40, 2018.

[11] Yoshua Bengio. Learning deep architectures for ai. Foundations and Trends® in

Machine Learning, 2(1):1–127, 2009. ISSN 1935-8237. doi: 10.1561/2200000006.

URL http://dx.doi.org/10.1561/2200000006.

[12] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[13] Eric A. Brewer. Towards robust distributed systems (abstract). In ACM

SIGACT-SIGOPS Symposium on Principles of Distributed Computing, 2000.

URL https://api.semanticscholar.org/CorpusID:207631444.

[14] Raymond Brueckner and Björn Schuller. Social signal classification using deep

blstm recurrent neural networks. 2014 IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP), pages 4823–4827, 2014.

[15] chef. Chef - configuration management automation software, 2019.

https://www.chef.io/products/chef-infrastructure-management.

[16] Jianfeng Chen, Joymallya Chakraborty, Philip V. Clark, Kevin Haverlock, Sne-

hit Cherian, and Tim Menzies. Predicting breakdowns in cloud services (with

spike). Proceedings of the 2019 27th ACM Joint Meeting on European Soft-

ware Engineering Conference and Symposium on the Foundations of Software

Engineering, 2019.

[17] Tianping Chen, Hong Chen, and Ruey-wen Liu. A constructive proof and an

extension of cybenko’s approximation theorem. In Connie Page and Raoul

LePage, editors, Computing Science and Statistics, pages 163–168, New York,

NY, 1992. Springer New York.

[18] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system.

In Proceedings of the 22nd acm sigkdd international conference on knowledge

discovery and data mining, pages 785–794, 2016.

124

http://dx.doi.org/10.1561/2200000006
https://api.semanticscholar.org/CorpusID:207631444

[19] Tse-Hsun Chen, Stephen W. Thomas, Meiyappan Nagappan, and Ahmed E.

Hassan. Explaining software defects using topic models. In Proceedings of the

9th IEEE Working Conference on Mining Software Repositories, MSR ’12, page

189–198, 2012.

[20] Tse-Hsun Chen, Weiyi Shang, Ahmed E. Hassan, Mohamed Nasser, and Par-

minder Flora. Cacheoptimizer: Helping developers configure caching frame-

works for hibernate-based database-centric web applications. In Proceedings of

the 24th ACM SIGSOFT International Symposium on Foundations of Software

Engineering, FSE 2016, page 666–677, 2016.

[21] Tse-Hsun Chen, Mark D Syer, Weiyi Shang, Zhen Ming Jiang, Ahmed E Has-

san, Mohamed Nasser, and Parminder Flora. Analytics-driven load testing:

An industrial experience report on load testing of large-scale systems. In 2017

IEEE/ACM 39th International Conference on Software Engineering: Software

Engineering in Practice Track (ICSE-SEIP), pages 243–252, 2017.

[22] Qian Cheng, Doyen Sahoo, Amrita Saha, Wenzhuo Yang, Chenghao Liu, Ger-

ald Woo, Manpreet Singh, Silvio Saverese, and Steven CH Hoi. Ai for it opera-

tions (aiops) on cloud platforms: Reviews, opportunities and challenges. arXiv

preprint arXiv:2304.04661, 2023.

[23] Zheng Chu, Jingchang Chen, Qianglong Chen, Weijiang Yu, Tao He, Hao-

tian Wang, Weihua Peng, Ming Liu, Bing Qin, and Ting Liu. A survey of

chain of thought reasoning: Advances, frontiers and future. arXiv preprint

arXiv:2309.15402, 2023.

[24] Cloudera Documentation. Configuring apache kafka

for performance and resource management, 2018.

https://docs.cloudera.com/documentation/kafka/latest/topics/kafka performance.html.

[25] Confluent Blogs. Optimizing your apache kafka deployment, 2017.

https://www.confluent.io/blog/optimizing-apache-kafka-deployment/.

[26] George Coulouris. Distributed systems : concepts and design / george coulouris

... [et al.]. 2011. URL https://api.semanticscholar.org/CorpusID:

155813208.

125

https://api.semanticscholar.org/CorpusID:155813208
https://api.semanticscholar.org/CorpusID:155813208

[27] DeepLearning4J. Deeplearning4j - jvm based deep learning, 2019.

https://deeplearning4j.konduit.ai/.

[28] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert:

Pre-training of deep bidirectional transformers for language understanding,

2019. URL https://arxiv.org/abs/1810.04805.

[29] elasticsearch. Elasticsearch - the distributed, restful search and analytics engine,

2019. https://www.elastic.co/elasticsearch.

[30] Tolga Ergen and Suleyman S Kozat. Online training of lstm networks in dis-

tributed systems for variable length data sequences. IEEE transactions on

neural networks and learning systems, 29(10):5159–5165, 2017.

[31] Evaluating LLM Agents for AIOps on Red Hat OpenShift. Evaluating

llm agents for aiops on red hat openshift - a full implementation exam-

ple of agents with langgraph and langchain on red hat openshift, 2024.

https://github.com/eartvit/llm-agents-on-ocp.

[32] FastCompany. How one second could cost Amazon

1.6 billion sales. http://www.fastcompany.com/1825005/

how-one-second-could-cost-amazon-16-billion-sales, 2016. Last

accessed March 3 2016.

[33] Flask. Flask - the micro web framework, 2019.

https://flask.palletsprojects.com/.

[34] Apache Software Foundation. Apache jmeter, 2019. https://jmeter.apache.org/.

[35] Lynn Friedman and Melanie Wall. Graphical views of suppression and multi-

collinearity in multiple linear regression. The American Statistician, 59:127–136,

02 2005. doi: 10.1198/000313005X41337.

[36] Agustin Garcia Asuero, Ana Sayago, and Gustavo Gonzalez. The correlation

coefficient: An overview. Critical Reviews in Analytical Chemistry - CRIT REV

ANAL CHEM, 36:41–59, 01 2006. doi: 10.1080/10408340500526766.

[37] Dario Garćıa-Gasulla, Ferran Parés, Armand Vilalta, Jonathan Moreno, Ed-

uard Ayguadé, Jesús Labarta, Ulises Cortés, and Toyotaro Suzumura. On the

126

https://arxiv.org/abs/1810.04805
http://www.fastcompany.com/1825005/how-one-second-could-cost-amazon-16-billion-sales
http://www.fastcompany.com/1825005/how-one-second-could-cost-amazon-16-billion-sales

behavior of convolutional nets for feature extraction. J. Artif. Intell. Res., 61:

563–592, 2018.

[38] Antonio Giulli and Sujit Pal. Deep Learning with Keras. Packt Publishing Ltd.,

2017. ISBN 978-1-78712-842-2.

[39] Maloy Jyoti Goswami. Challenges and solutions in integrating ai with multi-

cloud architectures.

[40] Haryadi S. Gunawi, Mingzhe Hao, Riza O. Suminto, Agung Laksono, Anang D.

Satria, Jeffry Adityatama, and Kurnia J. Eliazar. Why does the cloud stop com-

puting?: Lessons from hundreds of service outages. Proceedings of the Seventh

ACM Symposium on Cloud Computing, 2016.

[41] Hongcheng Guo, Jian Yang, Jiaheng Liu, Liqun Yang, Linzheng Chai, Jiaqi

Bai, Junran Peng, Xiaorong Hu, Chao Chen, Dongfeng Zhang, Xu Shi, Tieqiao

Zheng, Liangfan Zheng, Bo Zhang, Ke Xu, and Zhoujun Li. Owl: A large

language model for it operations. ArXiv, abs/2309.09298, 2023. URL https:

//api.semanticscholar.org/CorpusID:262043747.

[42] Jianmei Guo, K. Czarnecki, Sven Apel, Norbert Siegmund, and Andrzej

Wasowski. Variability-aware performance prediction: A statistical learn-

ing approach. 2013 28th IEEE/ACM International Conference on Auto-

mated Software Engineering (ASE), pages 301–311, 2013. URL https://api.

semanticscholar.org/CorpusID:14770655.

[43] Jianmei Guo, Dingyu Yang, Norbert Siegmund, Sven Apel, Atrisha Sarkar,

Pavel Valov, K. Czarnecki, Andrzej Wasowski, and Huiqun Yu. Data-efficient

performance learning for configurable systems. Empirical Software Engineering,

23:1826–1867, 2018. URL https://api.semanticscholar.org/CorpusID:

3282867.

[44] Huong Ha and Hongyu Zhang. Deepperf: Performance prediction for config-

urable software with deep sparse neural network. In Proceedings of the 41st

International Conference on Software Engineering, ICSE ’19, pages 1095–1106,

2019.

127

https://api.semanticscholar.org/CorpusID:262043747
https://api.semanticscholar.org/CorpusID:262043747
https://api.semanticscholar.org/CorpusID:14770655
https://api.semanticscholar.org/CorpusID:14770655
https://api.semanticscholar.org/CorpusID:3282867
https://api.semanticscholar.org/CorpusID:3282867

[45] Huong Ha and Hongyu Zhang. Deepperf: Performance prediction for config-

urable software with deep sparse neural network. In Proceedings of the 41st

International Conference on Software Engineering, ICSE ’19, pages 1095–1106,

2019.

[46] Fateme Hadadi, Qinghua Xu, Domenico Bianculli, and Lionel C. Briand.

Anomaly detection on unstable logs with gpt models. ArXiv, abs/2406.07467,

2024. URL https://api.semanticscholar.org/CorpusID:270379599.

[47] Frank E. Harrell. Regression Modeling Strategies. Springer-Verlag, Berlin, Hei-

delberg, 2006. ISBN 0387952322.

[48] Ibrahim Abaker Targio Hashem, Ibrar Yaqoob, Nor Badrul Anuar, Salimah

Mokhtar, Abdullah Bin Gani, and Samee Ullah Khan. The rise of ”big data”

on cloud computing: Review and open research issues. Inf. Syst., 47:98–115,

2015. URL https://api.semanticscholar.org/CorpusID:205488005.

[49] Kaiming He, X. Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning

for image recognition. 2016 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 770–778, 2016.

[50] Anna Hedström, Leander Weber, Dilyara Bareeva, Daniel Krakowczyk, Franz

Motzkus, Wojciech Samek, Sebastian Lapuschkin, and Marina M. C. Höhne.

Quantus: An explainable ai toolkit for responsible evaluation of neural network

explanations and beyond, 2023. URL https://arxiv.org/abs/2202.06861.

[51] Taojun Hu and Xiao-Hua Zhou. Unveiling llm evaluation focused on metrics:

Challenges and solutions, 2024. URL https://arxiv.org/abs/2404.09135.

[52] Xiaolei Hua, Lin Zhu, Shenglin Zhang, Zeyan Li, Su Wang, Dong Zhou, Shuo

Wang, and Chao Deng. Genad: General representations of multivariate time

seriesfor anomaly detection. ArXiv, abs/2202.04250, 2022.

[53] Hassan Ismail Fawaz, Germain Forestier, Jonathan Weber, Lhassane

Idoumghar, and Pierre-Alain Muller. Deep learning for time series classification:

a review. Data mining and knowledge discovery, 33(4):917–963, 2019.

128

https://api.semanticscholar.org/CorpusID:270379599
https://api.semanticscholar.org/CorpusID:205488005
https://arxiv.org/abs/2202.06861
https://arxiv.org/abs/2404.09135

[54] Jenkins. Jenkins - the open source automation server, 2019.

https://www.jenkins.io/.

[55] Yuxuan Jiang, Chaoyun Zhang, Shilin He, Zhihao Yang, Minghua Ma, Si Qin,

Yu Kang, Yingnong Dang, Saravan Rajmohan, Qingwei Lin, and Dongmei

Zhang. Xpert: Empowering incident management with query recommenda-

tions via large language models. In Proceedings of the IEEE/ACM 46th Inter-

national Conference on Software Engineering, ICSE ’24, New York, NY, USA,

2024. Association for Computing Machinery. ISBN 9798400702174. doi: 10.

1145/3597503.3639081. URL https://doi.org/10.1145/3597503.3639081.

[56] Z. M. Jiang and A. E. Hassan. A survey on load testing of large-scale software

systems. IEEE Transactions on Software Engineering, 41(11):1091–1118, 2015.

[57] Zhihan Jiang, Jinyang Liu, Junjie Huang, Yichen Li, Yintong Huo, Jia-Yuan

Gu, Zhuangbin Chen, Jieming Zhu, and Michael R. Lyu. A large-scale evalua-

tion for log parsing techniques: How far are we? Proceedings of the 33rd ACM

SIGSOFT International Symposium on Software Testing and Analysis, 2023.

URL https://api.semanticscholar.org/CorpusID:261049500.

[58] JMXTerm. Interactive terminal based jmx client, 2017.

https://docs.cyclopsgroup.org/welcome.

[59] Manjunath Jogin, Mohana, M S Madhulika, G D Divya, R K Meghana, and

S Apoorva. Feature extraction using convolution neural networks (cnn) and

deep learning. In 2018 3rd IEEE International Conference on Recent Trends in

Electronics, Information Communication Technology (RTEICT), pages 2319–

2323, 2018. doi: 10.1109/RTEICT42901.2018.9012507.

[60] Maximilian Kohlbrenner, Alexander Bauer, Shinichi Nakajima, Alexander

Binder, Wojciech Samek, and Sebastian Lapuschkin. Towards best prac-

tice in explaining neural network decisions with lrp, 2020. URL https:

//arxiv.org/abs/1910.09840.

[61] Kubernetes. Kubernetes - production-grade container orchestration, 2022.

https://kubernetes.io/.

129

https://doi.org/10.1145/3597503.3639081
https://api.semanticscholar.org/CorpusID:261049500
https://arxiv.org/abs/1910.09840
https://arxiv.org/abs/1910.09840

[62] Bharath Kumar. Challenges and solutions for integrating ai with multi-cloud

architectures. International Journal of Multidisciplinary Innovation and Re-

search Methodology, ISSN: 2960-2068, 1(1):71–77, 2022.

[63] LangChain. Langchain - a framework for developing ap-

plications powered by large language models (llms)., 2024.

https://python.langchain.com/docs/introduction/.

[64] LangGraph. Langgraph - building agents as graphs, 2024. https://langchain-

ai.github.io/langgraph/.

[65] Nikolay Laptev, Jason Yosinski, Li Erran Li, and Slawek Smyl. Time-series

extreme event forecasting with neural networks at uber. In International con-

ference on machine learning, volume 34, pages 1–5. sn, 2017.

[66] S. Lathuiliére, P. Mesejo, X. Alameda-Pineda, and R. Horaud. A comprehen-

sive analysis of deep regression. IEEE Transactions on Pattern Analysis and

Machine Intelligence, pages 1–1, 2019.

[67] P. Le Noac’h, A. Costan, and L. Bougé. A performance evaluation of apache

kafka in support of big data streaming applications. In 2017 IEEE International

Conference on Big Data (Big Data), pages 4803–4806, 2017.

[68] Anna Levin, Shelly Garion, Elliot K. Kolodner, Dean H. Lorenz, Katherine

Barabash, Mike Kugler, and Niall McShane. Aiops for a cloud object storage

service. In 2019 IEEE International Congress on Big Data (BigDataCongress),

page 165–169. IEEE, July 2019. doi: 10.1109/bigdatacongress.2019.00036. URL

http://dx.doi.org/10.1109/BigDataCongress.2019.00036.

[69] Heng Li, Tse-Hsun (Peter) Chen, Ahmed E. Hassan, Mohamed Nasser, and

Parminder Flora. Adopting autonomic computing capabilities in existing large-

scale systems: An industrial experience report. In Proceedings of the 40th

International Conference on Software Engineering: Software Engineering in

Practice, ICSE-SEIP ’18, pages 1–10, 2018.

[70] Heng Li, Tse-Hsun (Peter) Chen, Ahmed E. Hassan, Mohamed Nasser, and

Parminder Flora. Adopting autonomic computing capabilities in existing large-

scale systems: An industrial experience report. In Proceedings of the 40th

130

http://dx.doi.org/10.1109/BigDataCongress.2019.00036

International Conference on Software Engineering: Software Engineering in

Practice, ICSE-SEIP ’18, pages 1–10, 2018.

[71] Yichen Li, Yintong Huo, Renyi Zhong, Zhihan Jiang, Jinyang Liu, Junjie

Huang, Jiazhen Gu, Pinjia He, and Michael R. Lyu. Go static: Contex-

tualized logging statement generation. ArXiv, abs/2402.12958, 2024. URL

https://api.semanticscholar.org/CorpusID:267760100.

[72] Bryan Lim and Stefan Zohren. Time-series forecasting with deep learning: a

survey. Philosophical Transactions of the Royal Society A, 379(2194):20200209,

2021.

[73] Wen-Hui Lin, Ping Wang, Kuo-Ming Chao, Hsiao-Chung Lin, Zong-Yu Yang,

and Yu-Huang Lai. Wind power forecasting with deep learning networks: Time-

series forecasting. Applied Sciences, 11(21), 2021. ISSN 2076-3417. doi: 10.

3390/app112110335. URL https://www.mdpi.com/2076-3417/11/21/10335.

[74] Yilun Liu, Shimin Tao, Weibin Meng, Jingyu Wang, Wenbing Ma, Yuhang

Chen, Yanqing Zhao, Hao Yang, and Yanfei Jiang. Interpretable online log

analysis using large language models with prompt strategies. 2024 IEEE/ACM

32nd International Conference on Program Comprehension (ICPC), pages 35–

46, 2023. URL https://api.semanticscholar.org/CorpusID:260900274.

[75] LlamaIndex. Llamaindex - a framework for building context-augmented

generative ai applications with llms including agents and workflows., 2024.

https://docs.llamaindex.ai/en/stable/.

[76] Load Generator. Load generator - load testing controller with spike load capa-

bility, 2023. https://github.com/eartvit/load-generator.

[77] logstash. Logstash - collect, parse, transform logs, 2019.

https://www.elastic.co/logstash.

[78] Helmut Lütkepohl. Specification and Checking the Adequacy of VARMA Models,

pages 493–514. Springer Berlin Heidelberg, Berlin, Heidelberg, 2005. ISBN 978-

3-540-27752-1. doi: 10.1007/978-3-540-27752-1 13. URL https://doi.org/

10.1007/978-3-540-27752-1_13.

131

https://api.semanticscholar.org/CorpusID:267760100
https://www.mdpi.com/2076-3417/11/21/10335
https://api.semanticscholar.org/CorpusID:260900274
https://doi.org/10.1007/978-3-540-27752-1_13
https://doi.org/10.1007/978-3-540-27752-1_13

[79] Lucy Ellen Lwakatare, Aiswarya Raj, Ivica Crnkovic, Jan Bosch, and He-

lena Holmström Olsson. Large-scale machine learning systems in real-world

industrial settings: A review of challenges and solutions. Information and Soft-

ware Technology, 127:106368, 2020. ISSN 0950-5849. doi: https://doi.org/10.

1016/j.infsof.2020.106368. URL https://www.sciencedirect.com/science/

article/pii/S0950584920301373.

[80] Zeyang Ma, An Ran Chen, Dong Jae Kim, Tse-Husn Chen, and Shaowei Wang.

Llmparser: An exploratory study on using large language models for log pars-

ing. 2024 IEEE/ACM 46th International Conference on Software Engineering

(ICSE), pages 1209–1221, 2024. URL https://api.semanticscholar.org/

CorpusID:269123285.

[81] Zeyang Ma, Dong Jae Kim, and Tse-Husn Chen. Openlogparser: Unsupervised

parsing with open-source large language models. ArXiv, abs/2408.01585, 2024.

URL https://api.semanticscholar.org/CorpusID:271709638.

[82] Shervin Minaee, Tomas Mikolov, Narjes Nikzad, Meysam Chenaghlu, Richard

Socher, Xavier Amatriain, and Jianfeng Gao. Large language models: A survey,

2024. URL https://arxiv.org/abs/2402.06196.

[83] MLASP. Mlasp - open source system experimental data, 2020.

https://github.com/SPEAR-SE/mlasp.

[84] MLASP on OpenShift. Mlasp on openshift - a full implementation example of

the mlasp framework, 2022. https://github.com/eartvit/mlasp-on-ocp.

[85] MLOLET on OpenShift. Mlolet on openshift - a full implementa-

tion example of the mlolet framework on red hat openshift, 2024.

https://github.com/eartvit/mlolet-on-ocp.

[86] Pablo Montero-Manso, George Athanasopoulos, Rob J Hyndman, and

Thiyanga S Talagala. Fforma: Feature-based forecast model averaging. In-

ternational Journal of Forecasting, 36(1):86–92, 2020.

[87] MySQL. Mysql - an open source rdbms database, 2019.

https://www.mysql.com/products/.

132

https://www.sciencedirect.com/science/article/pii/S0950584920301373
https://www.sciencedirect.com/science/article/pii/S0950584920301373
https://api.semanticscholar.org/CorpusID:269123285
https://api.semanticscholar.org/CorpusID:269123285
https://api.semanticscholar.org/CorpusID:271709638
https://arxiv.org/abs/2402.06196

[88] Andrew Y. Ng. Feature selection, l1 vs. l2 regularization, and rotational invari-

ance. In Proceedings of the Twenty-First International Conference on Machine

Learning, ICML ’04, page 78, New York, NY, USA, 2004. Association for Com-

puting Machinery. ISBN 1581138385. doi: 10.1145/1015330.1015435. URL

https://doi.org/10.1145/1015330.1015435.

[89] Kamal Nigam, John Lafferty, and Andrew McCallum. Using maximum en-

tropy for text classification. In IJCAI-99 workshop on machine learning for

information filtering, volume 1, pages 61–67. Stockholom, Sweden, 1999.

[90] Bingyue Pan. Application of xgboost algorithm in hourly pm2.5 concentration

prediction. IOP Conference Series: Earth and Environmental Science, 113:

012127, 02 2018. doi: 10.1088/1755-1315/113/1/012127.

[91] PostgreSQL. Postgresql - the world’s most advanced open source relational

database, 2019. https://www.postgresql.org/.

[92] Prometheus. Prometheus - monitoring system and timeseries database, 2022.

https://prometheus.io/.

[93] Puppet. Puppet - infrastructure automation compliance at enterprise scale,

2019. https://www.puppet.com/.

[94] Pydantic. Pydantic - a widely used data validation library for python., 2024.

https://docs.pydantic.dev/latest/.

[95] PyTorch. Pytorch - an end to end machine learning framework, 2019.

https://pytorch.org/.

[96] Rabbit MQ. Rabbit mq - an open source message broker system, 2020.

https://www.rabbitmq.com/.

[97] Red Hat OpenShift. Red hat openshift - the industry’s lead-

ing hybrid cloud application platform powered by kubernetes, 2022.

https://www.redhat.com/en/technologies/cloud-computing/openshift.

[98] Yuji Roh, Geon Heo, and Steven Euijong Whang. A survey on data collection

for machine learning: a big data-ai integration perspective. IEEE Transactions

on Knowledge and Data Engineering, 33(4):1328–1347, 2019.

133

https://doi.org/10.1145/1015330.1015435

[99] Ananya B. Sai, Akash Kumar Mohankumar, and Mitesh M. Khapra. A survey

of evaluation metrics used for nlg systems, 2020. URL https://arxiv.org/

abs/2008.12009.

[100] Komal Sarda, Zakeya Namrud, Marin Litoiu, Larisa Shwartz, and Ian Watts.

Leveraging large language models for the auto-remediation of microservice ap-

plications: An experimental study. In SIGSOFT FSE Companion, 2024. URL

https://api.semanticscholar.org/CorpusID:271099029.

[101] Abdel Salam Sayyad, Joseph Ingram, Tim Menzies, and Hany Ammar. Scalable

product line configuration: A straw to break the camel’s back. In Proceedings

of the 28th IEEE/ACM International Conference on Automated Software En-

gineering, ASE’13, page 465474. IEEE Press, 2013. ISBN 9781479902156.

[102] M. Schuster and K.K. Paliwal. Bidirectional recurrent neural networks. IEEE

Transactions on Signal Processing, 45(11):2673–2681, 1997. doi: 10.1109/78.

650093.

[103] SciKit-Learn. Scikit learn - machine learning in python, 2019.

https://pypi.org/project/psutil.

[104] Seldon. Seldon - mlops for the enterprise, 2019. https://www.seldon.io/.

[105] Zhipeng Shen, Yuanming Zhang, Jiawei Lu, Jun Xu, and Gang Xiao. A

novel time series forecasting model with deep learning. Neurocomputing,

396:302–313, 2020. ISSN 0925-2312. doi: https://doi.org/10.1016/j.neucom.

2018.12.084. URL https://www.sciencedirect.com/science/article/pii/

S0925231219304461.

[106] Bikesh Kumar Singh, Kesari Verma, and A. S. Thoke. Investigations on impact

of feature normalization techniques on classifier’s performance in breast tumor

classification. International Journal of Computer Applications, 116:11–15, 2015.

[107] SoapUI. Soapui - the world’s most widely-used automated testing tool for soap

and rest apis, 2019. https://www.soapui.org/.

[108] J. Sola and Joaquin Sevilla. Importance of input data normalization for the

application of neural networks to complex industrial problems. Nuclear Science,

IEEE Transactions on, 44:1464 – 1468, 07 1997. doi: 10.1109/23.589532.

134

https://arxiv.org/abs/2008.12009
https://arxiv.org/abs/2008.12009
https://api.semanticscholar.org/CorpusID:271099029
https://www.sciencedirect.com/science/article/pii/S0925231219304461
https://www.sciencedirect.com/science/article/pii/S0925231219304461

[109] Siwoon Son, Myeong-Seon Gil, Yang-Sae Moon, and Hee-Sun Won. Anomaly

detection of hadoop log data using moving average and 3-sigma. 2016.

[110] Yang Syu, Chien-Min Wang, and Yong-Yi Fanjiang. A survey of time-aware dy-

namic qos forecasting research, its future challenges and research directions. In

International Conference on Services Computing, pages 36–50. Springer, 2018.

[111] TensorFlow. Tensorflow - an end-to-end open source machine learning platform,

2019. https://www.tensorflow.org/.

[112] Robert Tibshirani. Regression shrinkage selection via the lasso. Journal of the

Royal Statistical Society Series B, 73:273–282, 06 2011. doi: 10.2307/41262671.

[113] John W Tukey et al. Exploratory data analysis, volume 2. Reading, MA, 1977.

[114] Arthur Vitui and Tse-Hsun Peter Chen. Mlasp: Machine learning assisted

capacity planning. Empirical Software Engineering, 26:1–27, 2021. URL https:

//api.semanticscholar.org/CorpusID:236930377.

[115] Arthur Vitui and Tse-Hsun Peter Chen. Mlolet - machine learning optimized

load and endurance testing: An industrial experience report. In Proceedings

of the 39th IEEE/ACM International Conference on Automated Software En-

gineering, ASE’24, page 465474. IEEE Press, 2024. ISBN 979-8-4007-1248-

7/24/10.

[116] vLLM. vllm - a fast and easy-to-use library for llm inference and serving., 2024.

https://docs.vllm.ai/en/latest/.

[117] Chaojie Wang, Yishi Xu, Zhong Peng, Chenxi Zhang, Bo Chen, Xinrun Wang,

Lei Feng, and Bo An. keqing: knowledge-based question answering is a nature

chain-of-thought mentor of llm. arXiv preprint arXiv:2401.00426, 2023.

[118] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter,

Fei Xia, Ed Chi, Quoc Le, and Denny Zhou. Chain-of-thought prompting

elicits reasoning in large language models, 2023. URL https://arxiv.org/

abs/2201.11903.

[119] Wangyang Wei, Honghai Wu, and Huadong Ma. An autoencoder and lstm-

based traffic flow prediction method. Sensors (Basel, Switzerland), 19, 2019.

135

https://api.semanticscholar.org/CorpusID:236930377
https://api.semanticscholar.org/CorpusID:236930377
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903

[120] Tailai Wen and Roy Keyes. Time series anomaly detection using convolutional

neural networks and transfer learning. ArXiv, abs/1905.13628, 2019.

[121] WireMock. Wiremock: Mock the apis you depend on, 2022.

https://wiremock.org/.

[122] WireMock Metrics. Wiremock metrics - extended wiremock with prometheus

metrics and global random string payload responsetransformer, 2023.

https://github.com/eartvit/wiremock-metrics2.

[123] Martin Wöllmer, Florian Eyben, Björn Schuller, Ellen Douglas-Cowie, and

Roddy Cowie. Data-driven clustering in emotional space for affect recogni-

tion using discriminatively trained lstm networks. In Proc. Interspeech 2009,

Brighton, UK, pages 1595–1598, 2009.

[124] Junjielong Xu, Ziang Cui, Yuan Zhao, Xu Zhang, Shilin He, Pinjia He, Liqun

Li, Yu Kang, Qingwei Lin, Yingnong Dang, S. Rajmohan, and Dongmei Zhang.

Unilog: Automatic logging via llm and in-context learning. 2024 IEEE/ACM

46th International Conference on Software Engineering (ICSE), pages 1–12,

2024. URL https://api.semanticscholar.org/CorpusID:267523731.

[125] Junjielong Xu, Ruichun Yang, Yintong Huo, Chengyu Zhang, and Pinjia He. Di-

vlog: Log parsing with prompt enhanced in-context learning. 2024 IEEE/ACM

46th International Conference on Software Engineering (ICSE), pages 2457–

2468, 2024. URL https://api.semanticscholar.org/CorpusID:269123195.

[126] Yun Xu and Royston Goodacre. On splitting training and validation set: A

comparative study of cross-validation, bootstrap and systematic sampling for

estimating the generalization performance of supervised learning. Journal of

Analysis and Testing, 2, 10 2018. doi: 10.1007/s41664-018-0068-2.

[127] Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik

Narasimhan, and Yuan Cao. React: Synergizing reasoning and acting in lan-

guage models, 2023. URL https://arxiv.org/abs/2210.03629.

[128] Zuoning Yin, Xiao Ma, Jing Zheng, Yuanyuan Zhou, Lakshmi N. Bairavasun-

daram, and Shankar Pasupathy. An empirical study on configuration errors in

commercial and open source systems. SOSP ’11, page 159–172, 2011.

136

https://api.semanticscholar.org/CorpusID:267523731
https://api.semanticscholar.org/CorpusID:269123195
https://arxiv.org/abs/2210.03629

[129] Zhaoyang Yu, Ming-Jie Ma, Chaoyun Zhang, Si Qin, Yu Kang, Chetan Bansal,

S. Rajmohan, Yingnong Dang, Changhua Pei, Dan Pei, Qingwei Lin, and

Dongmei Zhang. Monitorassistant: Simplifying cloud service monitoring via

large language models. In SIGSOFT FSE Companion, 2024. URL https:

//api.semanticscholar.org/CorpusID:271098855.

[130] Giancarlo Zaccone, Md. Rezaul Karim, and Ahmed Menshawy. Deep Learning

with TensorFlow. Packt Publishing Ltd., 2017. ISBN 978-1-78646-978-6.

[131] Chunkai Zhang and Ao Yin. Anomaly detection algorithm based on subspace

local density estimation. Int. J. Web Serv. Res., 16:44–58, 2019.

[132] Lingxue Zhu and Nikolay Pavlovich Laptev. Deep and confident prediction

for time series at uber. 2017 IEEE International Conference on Data Mining

Workshops (ICDMW), pages 103–110, 2017.

137

https://api.semanticscholar.org/CorpusID:271098855
https://api.semanticscholar.org/CorpusID:271098855

