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ABSTRACT 

Development of Computation-Efficient Computer Vision Systems for High-Quality Brain 

Tumor Segmentation 

 

Yanming Sun, Ph.D. 

Concordia University, 2025 

 

In this thesis, two design methodologies are proposed, and also applied in the development of 2 

computer-vision systems for computation-efficient and high-quality brain-tumor detection. 

The first methodology aims at developing systems to detect, by conventional image processing 

procedures, 3D-object locations with a pixel-wise precision. The main operations of the detection 

are predicting gray-level distribution of the pixels in the object region and, based the prediction 

result, identifying/removing regions of non-interest. As 3D inputs can be sliced into axial, coronal 

or sagittal slice series, the prediction/identification/removal operations are performed step-by-step 

to the 3 series, respectively. Each removal increases the density of the object-information, 

facilitating the next prediction. To comprehend the pixel distributions with their locations, a 2D 

histogram presentation is proposed. In the design of the brain-tumor detection system, it is used to 

highlight the left-right asymmetry of a brain structure. Since the asymmetry is caused by tumors 

and non-pathological elements, an adaptive histogram modulation method is proposed to enhance 

the former by attenuating the latter. The prediction/identification/removal operations transform a 

3D brain image into a tumoral minimum bounding box, which is then transformed into a tumor 

mask using simple morphological operations. The test results, on 1251 samples, have confirmed 

the high quality of the prediction of the tumor data distributions and the tumor detection. 

The second methodology is proposed to design CNN (convolutional neural network) systems 

handling a complex task of brain-tumor segmentation, i.e., classifying the pixels of a brain image 

into 4 classes of intra-tumoral regions and the background. The methodology is to decompose this 

complex task into simple subtasks and each of them is performed by a simply-configurated and 

independently-trained CNN. By doing so, one can optimize the use of computing power and 

minimize the gradient conflict in training. The 4-class classification is decomposed into 3 binary 

classifications. Each of them is further decomposed into 2: first locating the object region and then 

identifying the pixels inside the region, performed by 2 independent-and-simple modules. The 

overall system, requiring only 0.75M trainable parameters, has been trained/tested with BraTS 

datasets, and its processing quality is among the best reported recently. 
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Chapter 1   

 

Introduction 

The work presented in this thesis is about developing computer vision systems for brain tumor 

detection, a difficult task performed by medical professionals. Such systems do not intend to 

replace them, but reduce their workload to facilitate timely diagnosis and treatments. 

In Subchapter 1.1, the task of brain tumor detection is defined in an elaborated manner, the 

other terminologies used for the same task are explained. The challenges in this particular topic 

area are described. In Subchapter 1.2, the motivation and objective of the work presented in this 

thesis are specified. In Subchapter 1.3, the scope of the work is described methodologically, and 

the organization of the materials of the thesis is presented. 

1.1 Background and Challenges 

Brain tumors cause serious health problems. Timely discovery of such tumors is very critical for 

diagnosis and treatment. While 3D brain scanning by magnetic resonance imaging (MRI) has been 

widely used in clinical practice, analyzing brain images to detect tumors and their development is 

usually performed by highly trained medical professionals. Limited resources may lead to a 

lengthy waiting for detection results. Developing computer vision systems for fully automatic 

brain tumor detection can help to reduce the work load of the medical specialists and improve the 

chance of timely diagnosis and treatments. 

By MRI scanning, each patient case can have 3D brain images of four modalities, namely Flair, 

T2, T1 and T1c. Multi-modality MRI allows a better display of different developments inside 

tumor regions, for example, edema (ED), non-enhancing/necrotic core (NET) and enhancing core 

(ET). Each 3D brain image is usually presented as a series of 2D slices. As an example, the center 

slices from the images of the 4 modalities, acquired from one case, are presented in Figure 1.1 (a) 

~ (d).  

The function of a brain tumor detection system is, in general, to specify the tumor regions with 

pixel-wise precision in a 3D image. In terms of image processing, it is to segment precisely the 

tumor regions with respect to the background. Hence, it can be seen, on one hand, as an image 

segmentation problem. On the other hand, some may consider the detection as a classification 

problem, as one needs to classify each pixel, whether it belongs to the tumor region or not. For 

example, in the case shown in Figure 1.1, the detection results in a mask shown in Figure 1.1 (e). 

In this mask, all the pixels classified as background, i.e., outside the tumor region, are given the 

gray level value of zero, and the other pixels, classified as inside ones, are given non-zero values. 

If a whole tumor region is further segmented into 3 different intra-tumoral regions, namely ED, 
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NET, and ET, instead of binary classification of background versus object region, the system will 

need to perform a classification of multi-classes. 

(a) (b)

(c) (d)

(e)

 

Figure 1.1 (a)(b)(c)(d) Center slice of the brain images, acquired by MRI of Flair, T2, T1 and T1c 

modalities, respectively, from a patient.  

(e) Tumor mask obtained from the 4 slices. The non-zero pixels are found in the tumor region that 

is further segmented into 3 kinds of intra-tumoral regions, namely ED (gray), NET (darker gray), 

and ET (brightest). 

Tumors can be found almost everywhere in a brain, and their appearances and sizes can vary 

enormously, as 2 examples shown in Figure 1.2, making the tumor detection a very challenging 

task.  In case of computer vision systems, there are 2 approaches to the tumor detection. 

• Conventional filtering approach. This approach requires very low level of computing power 

to do the task. Moreover, the performance consistency is excellent, i.e., the results are 

completely reproducible. However, to handle a wide range of feature variations in brain images, 

one needs a very large number of filters and it is unlikely to determine the parameters of those 

filters manually and in an optimal manner. Thus, the processing quality of such filtering 

systems for brain tumor detection is usually limited. 

• Machine learning approach by convolutional neural networks (CNN). In this case, the filtering 

parameters are determined by means of progressive update in a training process. Thus, one can 

apply a sufficient number of filters to handle various kinds of feature data. However, to design 

an efficient CNN system, one should address particular problems in neural networks. Firstly, 

such a system requires a huge amount of computing power to train it and then to perform the 

functions. Secondly, the quality of the system training may be affected by many elements, e.g., 

limitation on accessible data resources and employable training methods. Also, as there are 

many random elements in a training process, repeatedly re-training a CNN without modifying 

its config will result in different systems. Hence results produced by a CNN can not be exactly 

reproduced. 
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It is evident that a brain tumor detection system by conventional filtering can operate at a low 

computational cost, but the detection accuracy is its weak point. On the contrary, it is possible to 

achieve a high accuracy by means of a CNN system, but its design is not less challenging, due to 

the complexity in its structure and training process. 

     
(a) 

     
(b) 

Figure 1.2 (a) Example 2D slices of Flair, T2, T1 and T1c modalities, and the corresponding expected 

output. (b) Those of another patient case.  

1.2 Motivation and Objectives 

The 2 approaches specified in Subchapter 1.1 seem to be complement each other, in terms of 

processing quality and computation cost. In general, a good detection system is expected to have 

both good quality and low cost, because a poor accuracy makes it useless and high cost limits its 

implementation & applications. Hence, we are motivated to explore all possible avenues in this 

topic area in order to find effective design methods to achieve both. 

The objective of the research work presented in this thesis is to develop computer vision 

systems for brain tumor detection in 3D brain images. The emphasis is on a high computation 

efficiency, i.e., achieving a good processing quality at a very low computation cost to enable an 

easy implementation and a wide range of applicability of the systems. 

To achieve the objective, we will propose 2 different methodologies for brain image data 

processing. The work includes their applications in designing 2 systems performing, respectively, 

2 tasks specified as follows.  

• The first system is able to detect brain tumor locations, sizes and shapes in 3D brain images, 

delivering binary tumor masks. It should require a very small volume of computation to make 

it possible to operate in an ordinary desktop or laptop, so that such a detection function can be 

performed very easily, accessible everywhere. 



4 

 

• The second one is expected to perform a precise brain image segmentation to identify not only 

the tumor regions, but also intra-tumoral segments. In order words, every pixel should be 

classified into one of the 4 categories, namely ED, NET, ET and the background, resulting in 

4-class tumor masks. Though it needs more computations than the first system, all the research 

efforts will be made to minimise the computational complexity with a view to optimizing the 

processing and the training. Also, such a system will be implementable and functionable in a 

computational resource restricted environment. 

The 2 methodologies should be different to target the design of the systems performing tasks 

of different complexity. The scope of the work for their development and applications is presented 

in the following subchapter. 

1.3 Scope and Organization 

The 2 methodologies for brain data processing will be proposed to design effectively brain tumor 

detection systems performing tasks of different complexity. Though both aim to achieving a good 

processing quality at the lowest computational cost, they should be different to suit the 

complexities of the tasks of the systems. 

The first methodology is proposed to develop a tumor detection system performing a binary 

classification of the pixels in a 3D brain image and delivering a binary brain tumor mask. To make 

it possible to implement the system in an ordinary personal computer, the system will be designed 

with deterministic models, no need for network training nor a large number of filtering kernels. As 

tumors are related to some abnormalities in brains, statistical characters of 3D data of brain scans 

will be analyzed and the symmetric properties of brain structures be explored to determine an 

effective method to detect any abnormalities. Moreover, as the detailed structures of human brains 

may vary from case to case, techniques of adaptive processing will be developed and employed in 

the design process to obtain a good detection quality. 

The second methodology is for CNN design. The second system is expected to perform a 

precise multi-class classification of the pixels of a 3D brain image, which is hardly achievable by 

a conventional filtering system, and a CNN framework is thus the core of the data processing. To 

maximize the computation efficiency, we will explore the following avenues. 

• Design paradigm of application specific convolutional neural network (ASCNN). If the system 

is designed specifically for a particular task, without any redundancy, the computational 

complexity will be minimized. 

• Decomposition of a multi-classification task into simpler subtasks. By doing so, one can 

develop multiple simple CNNs for each of the subtasks.  

• Optimization of network training and optimization of computing structure. Let the 2 help and 

complement each other. 

• Maximum use of available data resources. It can also help to improve the training. 

The thesis is organized as follows. The background of image processing, by conventional 

filtering and CNN, and related work on brain tumor detection are presented in Chapter 2. In 
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Chapter 3, the methodology for designing knowledge-based brain tumor detection systems is 

proposed and the design/test process of such a system is presented in detail. Chapter 4 is dedicated 

to the presentation of our CNN design methodology and its application of a CNN system for brain 

tumor segmentation. The conclusion of the work presented in this thesis is found in Chapter 5. 
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Chapter 2   

 

Background and Relevant Work 

Many researchers have made significant efforts to design systems for automated brain tumor 

segmentation. This chapter is dedicated to describe the basics of the methods for medical image 

processing and the state-of-the-art systems for brain tumor segmentation. 

The basics of filtering and CNN are found in Subchapter 2.1. Subchapter 2.2 and 2.3 are to 

present the related works of conventional non-CNN systems and CNN systems. Subchapter 2.4 is 

a summary of the chapter.  

2.1 Basics of Filtering and CNN for Image Processing 

The conventional filtering method and the CNN method are widely used to design systems for 

image processing. The basics of the two methods are found in the following two subchapters. 

2.1.1 Basics of Conventional Filtering 

Conventional filtering system is able to extract various features under extremely low computation 

cost. The convolution operation of the filtering is to apply a kernel to the input image, transforming 

the input into the desired features. The parameters of the kernel are deterministic and are set by 

the designer, without any training process.  

There are two kinds of filter commonly used in practice. i) Low-pass filter. It is to extract 

features of low-frequency signals, or to attenuate the noise so that increase the signal-to-noise ratio 

(SNR). Gaussian filter, average filter and median filter are widely used low-pass filters. ii) High-

pass filter. It is to extract features of high-frequency signals and to detect the edges of the object. 

Some typical high-pass filters, e.g., Sobel filter, Prewitt filter and Laplacian filter, are discrete 

differentiation operator, computing the gradient of the image intensity.  

Beside the two kinds of typical filter, Gabor filter [1] is more powerful for texture analysis, 

edge detection and feature extraction. It is able to extract any specific frequency features in specific 

orientations, and is defined as a sinusoidal wave multiplied by a Gaussian function, as found in the 

following equation.  

𝑔(𝑥, 𝑦; 𝜆, 𝜃, 𝜓, 𝜎, 𝛾) = sin⁡(2𝜋
𝑥′

2

𝜆
+ 𝜓)exp⁡(−

𝑥′2+𝛾2𝑦′2

2𝜎2
)                           (1) 
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where x’ = xcos(θ) + ysin(θ) and y’ = -xsin(θ) + ycos(θ). λ and θ are the wavelength and orientation. 

ψ, σ and γ are the phase offset, sigma of Gaussian function and spatial aspect ratio. Example kernels 

with different λ and θ are illustrated in Figure 2.1. 

 
(a) 

 
(b) 

Figure 2.1 Example kernels of Gabor filter.  

(a) Wavelength λ = 5, orientation θ = 0º, 45º, 90º, 135º. 

(b) Wavelength λ = 10, orientation θ = 0º, 45º, 90º, 135º. 

Besides the conventional filtering method with deterministic kernels, the CNN method with 

trainable kernels has become much more popular in recent years. The basics of the CNN are found 

in the following subchapter. 

2.1.2 Basics of CNN 

In general, large scale CNN is able to handle complex tasks, but requires a huge number of 

computation resources. The CNN involves multiple convolution layers, and other critical 

components e.g., normalization, activation function, pooling (down-sampling), up-sampling and 

so on [2][3]. The parameters of the convolution kernels are initialized randomly and then updated 

iteratively by a backpropagation operation of the training process. The components relevant to the 

work of this thesis are as follows. 

1) Convolution layer 

In a convolution layer, assume the convolution kernel size is 3×3, each element of the output 

map is generated from the corresponding input element and its 8 neighbors, as an example 

presented in Figure 2.2 (a). In some case, the convolution mode can be modified to acquire better 
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output. For instance, i) dilation convolution illustrated in Figure 2.2 (b), its receptive field is 

extended significantly, which means that each output is generated from a larger neighborhood, ii) 

convolution with larger stride, e.g., stride=2 presented in Figure 2.2 (c), the input data is pooled 

into a smaller size, so the computation cost is reduced significantly and the signal density is 

increased.  

 
(a) 

 
(b) 

 
(c) 

Figure 2.2 (a) Convolution operation. (b) Dilation convolution, dilation=2. (c) Convolution with stride=2. 

2) Normalization 

Normalization is performed to the input data and the internal convolutional data of the CNN, 

in order to uniform the gray-level range of the data and facilitate the convergence of the training 

process. Its calculation is expressed as y = (x - µ) / σ, where µ and σ are the mean and standard 

deviation of a set of data. The main difference among the widely used normalization methods, i.e., 

batch normalization (BN) [4], layer normalization (LN) [5], instance normalization (IN) [6] and 

group normalization (GN) [7], is the acquisition of µ and σ, which is presented in Figure 2.3. As 
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for the batch normalization, the µ and σ is channel-wise, i.e., each channel has its own µ and σ 

generated from the whole mini-batch.  

 

Figure 2.3 Widely used normalization methods [7], where C is the number of channels, N is the batch 

size, and H & W are the height and width of an image.  

3) Non-linear activation function 

In general, the expected transfer function of a CNN system for image segmentation is a non-

linear function, because the output of the CNN is usually a set of simple binary or multi-class 

labels, but the input image has a large number of intensity levels, e.g., 255.  There is no linear 

function to generate the simple output label from such a complicated input image. Since 

convolution operation is linear function, the CNN requires additional non-linear component. A 

non-linear activation function should be continuously differentiable, as the training process of the 

CNN is gradient-based optimization.  

Rectified linear unit activation function (ReLU) [8] is one of the most computation-efficient 

activation function. It is defined as f(x) = max(0, x). Although it is non-differentiability at x=0, the 

derivative value at this point can be simply set to be 0 or 1.  

Sigmoid function is another widely used activation function. It is defined as f(x) = 1 / (1 + e-x), 

bounds the range of the data into (0, 1). Thus, it is often performed to the data of the last layer of 

a CNN in order to generate the probabilities of each class. 

4) Pooling and up-sampling 

Pooling operation is to down-sample the image, thereby increasing the signal density and 

reducing the computation cost. The most commonly used pooling methods include max pooling 

and average pooling, as well as the trainable convolution with stride=2. 

For certain medical image processing tasks, e.g., image segmentation, the dimension of the 

output should be identical to that of the input. Therefore, up-sampling and pooling operations are 

performed in pairs. Commonly used up-sampling methods include non-trainable nearest neighbor 

and bilinear interpolation, as well as the trainable deconvolution (transposed convolution). 

5) Loss function 

A loss function, such as cross-entropy loss [9] or Dice loss [10], is used to measure the degree 

of dissimilarity between the predicted results and the ground truth. Cross-entropy loss is widely 
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used for classification problem, as well as image segmentation problem, which is regarded as 

pixel-wise classification task. Dice loss is typically used to measure the dissimilarity between two 

regions. They are defined as follows. 

Cross-entropy loss: 

𝐿𝑐𝑟𝑜𝑠𝑠−𝑒𝑛𝑡𝑟𝑜𝑝𝑦 = −∑ 𝑦𝑖 log �̂�𝑖
𝐶
𝑖                                             (2) 

where y and �̂� are the label of ground truth and the predicted probability, respectively, e.g., 𝑦 ∈
{𝑝, 1 − 𝑝} and �̂� ∈ {𝑞, 1 − 𝑞}. C is the number of classes. 

Dice loss: 

𝐿𝐷𝑖𝑐𝑒 = 1 −
2(|𝑋|∩|𝑌|)

|𝑋|+|𝑌|
                                                        (3) 

where |X| and |Y| are the number of elements, e.g., pixels, of the two sets. 

6) Backpropagation 

Backpropagation [11][12] is a gradient-based method to update the trainable parameters in the 

training process of a CNN. A very simple parameter updating by backpropagation operation is 

defined as follows. 

𝜔𝑛𝑒𝑤 =⁡𝜔𝑜𝑙𝑑 − 𝜂∇𝑄(ω)                                               (4) 

where ω is trainable parameter. Q(ω) is loss value. ∇Q(ω) is gradient. η is learning rate.  

The components of the CNN mentioned above can be assembled into various complex systems. 

These systems are then trained using various strategies and achieve impressive performance in 

image processing. 

Many conventional non-CNN systems and CNN systems have been developed for brain tumor 

segmentation. The state-of-the-art systems related to the work of this thesis are found in the 

following subchapters.  

2.2 Related Work of Conventional Non-CNN System for 

Brain Tumor Detection 

Conventional non-CNN systems require little computational cost, allowing fast object detection. 

A good number of such systems have been developed and reported for brain tumor detection.  

In general, a conventional non-CNN system performs 2 functions, feature extraction from the 

input data and classification operation applied to the extracted features. As the 2 functions can be 

performed in different ways, there are varieties systems reported in this topic area. Feature 

extraction can be performed by means of filters. Gabor filters are commonly used for texture 

analysis and feature extraction in conventional non-CNN systems. The extracted features are then 

applied to various classifiers. For example, the method of Extremely Randomized Trees can be 

used for this purpose [13][14]. In some systems, Gabor filtering method is combined with Support 
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Vector Machine (SVM) to detect brain tumors [15][16]. One can also combine Gabor filtering and 

K-means clustering methods for feature extraction and SVM together with Random Forest (RF) 

for classification to improve the detection result [17]. Gabor filtering and Walsh-Hadamard 

transform (WHT) can be used for feature extraction, and Fuzzy C-Means clustering for 

classification [18]. 

Some region-based image segmentation methods are used to detect brain tumor, e.g., 

homogeneity- and object-feature based Random Walks (HORW) [19], and multi-agent adaptive 

region grow [20]. In these methods, initial seed points should be selected, and the neighboring 

pixels are examined and determined whether they belong to the same region of the seed. 

The feature information concerning brain tumors can also be extracted by measuring 

asymmetry of a brain structure, as a tumor can make its left-right halves less symmetrical. The 

degree of asymmetry can be measured by calculating, for example, the pixel-by-pixel difference 

of the two 3D halves. Then, the 3D data resulting from such a calculation are used as feature data 

to be applied to a classifier of Random Forest [21]. 

It should be noted that the 3D data produced by the dissimilarity measures represent all the 

asymmetry caused not only by the tumors but also by the differences of texture details in healthy 

parts. To make the latter less pronounced, one can measure the degree of asymmetry of the 2 halves 

based on their statistical presentations, e.g., gray level distributions, instead of their 3D data. For 

example, the difference between the gray level histograms of the normal hemisphere and the 

pathological hemisphere of a brain are calculated by a very simple subtraction operation, as 

illustrated in Figure 2.4 [22]. One can also generate multiple pairs of histograms, each of which 

given by 2 subregions located symmetrically in the 2 halves, and calculate the degree of 

dissimilarity by Bhattacharya coefficient method to find the likely tumor location [23]. By these 

measures, the dissimilarity of healthy parts in image details may be less pronounced, but it can still 

be more visible than that caused by tumors. 

      
(a)                         (b)                                                                   (c)   

Figure 2.4 (a) Example of slice of brain image with tumor. Tumor reduces the degree of the natural left-

right symmetry of the brain. (b) Tumor mask. (c) Gray level distributions of the left and right 

halves of the slice. Hn is the histogram of the half without tumor. Hp is the histogram of the half 

with tumor. Hs is the histogram difference between Hn and Hp [22].  
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Besides the conventional non-CNN systems for fast brain tumor detection, many CNN systems 

have been developed for high-quality brain tumor segmentation. The details of the CNN systems 

published in recent years and related to the work of this thesis are found in the next subchapter. 

2.3 Related Work of CNN System for Brain Tumor 

Segmentation 

A CNN system has the potential to handle challenging problems, as it can be very large scale to 

extract and classify complex features. Many CNN systems have been developed and reported for 

brain tumor segmentation. 

U-Net [24] is the most popular CNN for medical image processing. It composed a contracting 

path for feature extraction and an expanding path for precise segmentation, as presented in Figure 

2.5. In the contracting path, the size of the feature map is reduced gradually through pooling 

operations, while the number of channels increases accordingly. The expanding path is a 

symmetrical version of the contracting path, where the size of the feature map is gradually 

increased while the number of channels decreased. Several skip connections provide the feature 

maps generated by the contracting path for the expanding path. Many state-of-the-art CNN systems 

for brain tumor segmentation are designed on the basic of U-Net [25][26][27][28]. In clinical 

routine, some of the MRI modalities can be missing, because of time constraints and/or image 

artifacts (such as patient motion), so many U-Net based CNNs are designed for brain tumor 

segmentation with missing MRI modalities [29][30][31]. 

 

Figure 2.5 Architecture of U-Net [24].  

The task of brain tumor segmentation can be decomposed into several subtasks, as it is a multi-

task problem, i.e., detecting the whole tumor (WT) region and segment the intra-tumoral regions 

of tumor core (TC) and enhancing tumor (ET) inside the WT region. Residual cyclic unpaired 
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encoder-decoder network (RescueNet) [32] is a CNN system involving 3 networks, as presented 

in Figure 2.6. Network I is responsible for detecting the WT region, while Network II and Network 

III are to segment the TC and ET regions.  

 
Figure 2.6 Structure of residual cyclic unpaired encoder-decoder network (RescueNet) [32].  

The three subtasks can be performed by a single CNN with three blocks in parallel or in a 

cascade. One-pass Multi-task Network (OM-Net) [33] is a U-Net based 3D CNN with 3 parallel 

pathways for three subtasks. Its block diagram is found in Figure 2.7. The three sets of input data 

are applied to a shared model, then the feature maps generated by the shared model are split into 

three sections and applied to the three classifiers. The output of the former classifier is utilized as 

the cross-task guidance for the later classifier. The subtasks can also be performed by multiple 

blocks structured in a complex architecture, e.g., task-structured brain tumor segmentation network 

(TSBTS net) [34]. The block diagram of TSBTS net is presented in Figure 2.8. Module I of the 

green block is responsible for WT detection, while Module II of the red block and Module III of 

the blue block are for TC and ET segmentation, respectively.  

 
Figure 2.7 Block diagram of One-pass Multi-task Network (OM-Net) [33]. 
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Figure 2.8 Block diagram of task-structured brain tumor segmentation network (TSBTS net) [34]. 

Besides using multiple CNNs for several subtasks, many CNN systems involve several 

networks in order to make a good used of the 3D input data. A 3D brain image can be sliced into 

three series of 2D slices in three directions, namely axial, coronal and sagittal. The 3 sets of the 

input data can be fed into three 2D networks, respectively, as an example of multi-view dynamic 

fusion framework (MVFusFra) [35], which structure is illustrated in Figure 2.9. Then, the 3 output 

are fused into 3D output. A CNN system can also incorporate 3 networks of 3D, 2D and 2.5D for 

high-quality segmentation [36], as an example presented in Figure 2.10. Unlike the plain 2D or 3D 

network, the input of the 2.5D is a group of adjacent slices, while the output is a 2D slice. 

 

Figure 2.9 Structure of multi-view dynamic fusion framework (MVFusFra) [35].  
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Figure 2.10 CNN system with 3 different dimensional networks [36]. 

In addition to optimizing the CNN structure, much research has focused on enhancing the 

training process of CNN systems. Deep supervision is a widely used technique for this purpose. It 

is to calculate the loss values not only for the final output layer but also for several intermediate 

layers of a CNN. In the U-Net based CNNs, the deep supervision can be performed to various 

spots of the network, e.g., i) the bottom layer [37], as presented in Figure 2.11, ii) the expanding 

path [38], as found in Figure 2.12, iii) the contracting path[39], as presented in Figure 2.13, and 

iv) both of the bottom layer and the expanding paths [40], as presented in Figure 2.14. Acquiring 

appropriate ground truth data for a specific supervision spot in the hidden layers of a CNN is 

challenging. The feature maps of the supervision spot are not directly comparable to the final 

ground truth, because they differ both in data content and data dimensions. Thus, additional 

convolution layers along with up-sampling operations can be performed to the feature maps to 

make them comparable to the final ground truth [38][39][40][41]. Besides, one can also down-

sample the final ground truth to generate the ground truth data for the specific supervision spot, 

and additional convolution layers are still required for the feature maps [37].  

 

Figure 2.11 Block diagram of Dual-force U-Net (DF-U-Net) [37]. 
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Figure 2.12 Block diagram of multi-scale context and attention mechanisms network (MsANet) [38]. 

 
Figure 2.13 Block diagram of 3D Parallel Shifted Window-based Transformer module (3D PSwinBTS) 

[39]. 

 
Figure 2.14 Block diagram of Aligned Cross-Modality Interaction Network (ACMINet) [40].  
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The systems mentioned above show that significant efforts have been made for automated 

brain tumor segmentation. However, they can still be optimized for higher processing quality and 

lower computational cost.  

2.4 Summary 

In this chapter, the basics of conventional filtering and CNN, which are relevant to the work of 

this thesis, are introduced. Moreover, the methods of the state-of-the-art systems, conventional 

non-CNN systems and CNN systems, for brain tumor segmentation are presented. In general, 

conventional non-CNN systems are able to achieve fast object detection with very low 

computational cost, but they struggle to segment intra-tumoral regions with high precision. In 

contrast, CNN-based systems have the potential to achieve high processing quality, but require 

extensive computational resources and large amounts of training data. 

In this work, we propose methodologies to develop high-efficient systems for high-quality 

brain tumor segmentation. Both conventional non-CNN methods and CNN methods are employed 

to design the high-performance systems.   
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Chapter 3   

 

Knowledge-Based System for Whole Tumor Detection 

The objective of this part of the work is to develop a system detecting brain tumor locations, sizes 

and shapes in 3D brain images, delivering binary tumor masks. It aims at achieving a good 

processing quality at the lowest computation cost so that the system can operate in an ordinary 

desktop or laptop, making such a brain tumor detection accessible everywhere. 

Tumors can be found everywhere in a brain and appear in very different sizes, shapes and 

texture patterns. They can change from case to case with little coherence, as two examples of brain 

image slices illustrated in Figure 3.1 (a) and (c). A brain tumor detection system is expected to 

generate a 3D tumor mask covering, in a pixel-wise precision, the entire tumor region in all the 

slices. Hence, the detection by computer vision is a very challenging task. It becomes even more 

challenging under the condition of very limited computing power. 

This chapter is organized as follows. The methodology is presented in Subchapter 3.1. A new 

presentation of the pixels distribution and the design of the proposed system are found in 

Subchapters 3.2 and 3.3. Subchapter 3.4 is dedicated to the performance evaluation. A summary 

is found in Subchapter 3.5. 

The methodology and the design of the system are also presented in the research paper titled 

“Brain tumor detection based on a novel and high-quality prediction of the tumor pixel 

distributions” [42]. The paper has been published on the journal of “Computers in Biology and 

Medicine”.  

        
(a)                                (b)                                          (c)                                 (d) 

Figure 3.1 (a)(c) Slices sampled from two 3D brain images of Flair modality.  

(b)(d) Binary tumor masks of the slices in (a) and (c). 
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3.1 Methodology 

To achieve a high processing quality at the lowest computation cost, we propose to develop the 

system having 2 characters: mono-modality MRI data input and knowledge-based computing 

structure. Each brain image is of 3D data. Handling multiple 3D images, acquired by multi-

modality scanning, for each patient case is a heavy load for data storage/transfer/processing. We 

choose the images scanned with Flair modality as the input of the proposed system, since they 

illustrate better the whole tumor regions, with respect to those with other modalities. The 

knowledge-based computing structure of the system is designed specifically to address the 

challenge. 

The proposed system has a very specific structure. The main processing in the system is to 

predict, step-by-step, the gray level distribution of the pixels in the tumor regions of a 3D brain 

image. The prediction result of each step is used to identify and to remove regions of non-interest, 

i.e., tumor-free regions, from the 3D image. Each removal reduces the data volume and improves 

the density of the tumor information, facilitating the prediction in the succeeding step. The final 

prediction result is then applied to the remaining 3D data to detect, by means of very simple 

operations, the tumor locations precisely. In the design of this system, the following ideas and 

methods have been proposed and implemented, as positive contributions to this topic area. 

• Presentation of 2D histogram of 3D data. It encompasses the gray level distribution of the data 

and their locational distribution. As the pixels of a 3D image can be presented in a series of 2D 

slices, the 2D histogram illustrates how the pixels at a particular gray level, or in a given gray 

level range, are distributed over the slices. 

• Histogram modulation function to attenuate the presence of tumor-free elements. It transforms 

a histogram representing the gray level distribution of the elements in both tumoral and tumor-

free regions to a histogram representing mainly the distribution of the tumoral elements. The 

modulation function is generated with the original data of each patient case so that its 

characteristic can adapt to the data distribution of the particular case. 

• Method to interleave a step-by-step processing to predict the gray level distribution of pixels 

in the object region and that to identify/remove non-object region in the same 3D image. The 

two interact with each other and complement each other: The result of each prediction step is 

used to identify and to remove non-object regions, improving the density of the object 

information and benefiting the prediction in the following step. 

The details of the new presentation of the 2D histogram and the design of the system on the 

based of the 2D histogram are found in the following subchapters. 

3.2 Two-D Gray Level Distribution of 3D data 

A tumor can appear in any location in a 3D brain structure and tumor regions can have various 

gray level distributions. The histograms illustrated in Figure 3.2 (a) and (b) are the gray level 

distributions of two brain images and those of their tumor regions. Such histograms provide us 

with important statistical characters of a 3D image data, but without locational information about 
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the tumor regions. In this subchapter, we propose a 2D histogram presentation, bringing the 

locational information to the gray level distributions. 

     
(a)                                                                   (b) 

Figure 3.2 Gray level distributions of 3D brain images given by the patient cases 01417 and 01438 from 

BraTS2021 dataset [43]. The pixels outside the brain regions are excluded. 

It is known that a 3D brain image can be presented as a series of axial, coronal or sagittal slices, 

and each slice has a gray level distribution. A 2D histogram presents collectively a series of 

distributions given by a series of slices, as one example shown in Figure 3.3 (a). Let H(i,j) denote 

such a histogram, the i-axis specifies the gray level, normalized to [0, 1], and the j-axis is the slice 

index, i.e., one of the 3 coordinates in the 3D structure. 

If j0 is given, H(i, j0) is the gray level distribution of the pixels in the j0
th slice, whereas if i = 

i0, H(i0,j) represents the locational distribution of the pixels at the gray level i0 over the slices in 

the series. Hence, a 2D histogram H(i,j) encompasses gray level distribution and locational 

distribution of the pixels. 

The 2D histogram illustrated in Figure 3.3 (a) is made of the pixels inside the brain region of 

the 155 slices from a 3D Flair brain image. It demonstrates that a vast majority of the pixels are 

found (i) in the gray level range (0.2, 0.4) and (ii) in the slices indexed 15 to 142. In other words, 

the first 14 slices and the last 13 slices (indexed 143 ~ 155) are outside the effective brain region. 

Hence the coordinates in the y-axis define the location of the brain region in the direction 

perpendicular to the slices. 
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(a) Two-D histogram of a 3D brain region

(b) Gray-level distribution of 80th slice

(c)  Gray-level distribution of 142nd slice
 

Figure 3.3 (a) Two-D histogram of the 3D brain region of the patient case 01417 from BraTS2021 

dataset. It is composed of a series of gray level distributions of the 155 2D axial slices, excluding 

the pixels outside the brain region. The x-axis specifies the gray levels, normalized to [0, 1], the 

y-axis the index of axial slices, the z-axis the number of pixels.  

(b) Distribution of the 80th axial slice. 

(c) Distribution of the 142nd axial slice. 

The 2D histogram shown in Figure 3.4 (a) is given by the pixels in a 3D brain region whereas 

that in Figure 3.4 (b) by the tumor pixels, i.e., the pixels in the 3D tumor regions inside the brain. 

The latter illustrates not only what the gray level distribution of the tumor pixels looks like, but 

also which slices contain the tumor pixels and which slices are tumor-free. The 2D histogram 

shown in Figure 3.4 (c) and (d) are of another patient case and plotted in the same manner. 

Comparing the two cases, one can get the following observation.  

• The gray level distributions can vary a lot from case to case. The tumor regions in different 

cases have different brightness. 

• The difference in tumor locations in the 2 cases are illustrated in Figure 3.4 (b) and (d). Figure 

3.4 (b) shows the tumor appears in the higher index-numbered section. As the axial slices are 

index-numbered from the bottom up, the tumor is found in the very top of the brain. The tumor 

in the 2nd case, shown in Figure 3.4 (d), is visibly in the lower section of the brain. 
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(a)                                                                                     (b) 

     
(c)                                                                                     (d) 

Figure 3.4 (a) Two-D histogram of a 3D brain region in a series of axial slices, given by the case 01417 

from BraTS2021 dataset.  

(b) Two-D histogram of the tumor region (ground truth data). 

(c)(d) Two-D histograms given by the case 01438 from BraTS2021 dataset. 

If a 3D brain image is sliced 3 times, resulting in axial, coronal, and sagittal slice series, one 

will have three 2D histograms representing the gray level distributions of the pixels over the 3 

series, respectively. Figure 3.5 illustrates such a case. The 2D histograms shown in Figure 3.5 (b) 

(d) and (f) represent the gray level distributions of tumor regions in the three series, respectively. 

They indicate, on one hand, the tumor location in the 3D brain image, and on the other hand, the 

tumor-free axial, coronal or sagittal slices. 

It should, however, be noted that, in a real detection case, 2D histograms of tumor pixels are 

not available. Nevertheless, they are predictable. We propose a method to use the information from 

2D histograms of a brain image to predict the gray level distribution of the tumor pixels inside the 

image. Based on the results of the prediction, the task of the brain tumor detection can be done 

easily and effectively to achieve a good processing quality. The procedure of the prediction and 

the detection is described in the following subchapter. 
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(a)                                                                                 (b) 

     
(c)                                                                                 (d) 

     
(e)                                                                                 (f) 

Figure 3.5 Two-D histograms of a brain region and that of the tumor region, given by 

(a)(b) the axial slices, 

(c)(d) the coronal slices, and 

(e)(f) the sagittal slices. 

The original data sample is from the case 01417 from BraTS2021 dataset. 

3.3 Proposed Knowledge-Based system 

The proposed system is designed to predict 2D histograms of the pixels in the tumor region in a 

3D brain image of Flair modality, and the prediction results are used to detect brain tumor in pixel-

wise precision. The details are as follows. 

3.3.1 System Overview 

Of a 3D input image, the object region takes, in general, only a very small percentage of the space 

and thus the density of the object information is extremely low in the input data. In case of brain 
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tumor detection and there is a thick tumor-free margin in each of the 6 sides of the 3D input. In 

other words, in each of the 3 series of slices, namely axial, coronal and sagittal series, only a small 

number of slices contains tumor pixels, and the other slices are tumor-free. However, as a tumor 

can be found in any place in the 3D brain, it is not easy to localize these slices in the series. 

Moreover, though we know that the gray levels of the tumor are mainly found in an upper section 

of the range of the brain region, there is no model relating the gray level distribution of the pixels 

inside the tumor space to that of the entire brain. Hence, it is very challenging task to predict the 

2D histograms with a good precision. 

The proposed system is designed to explore 3 commonly known points. 

• Though the object location is unknown, some object-free regions can be localized with some 

certainty. One can identify/remove object-free regions in multiple steps, starting from the most 

obvious ones, and each step results in a higher density of object information. 

• A higher object information density in the input data leads to a better processing quality.  

• Since a 3D input image can be sliced three times in the three different directions, i.e., x, y, z 

axis, resulting in 3 different series of slices, one can design a 3-step process and each step can 

be performed with a different series of the same 3D data. 

The processing scheme in the proposed system is shown in Figure 3.6. It has 3 prediction steps 

interleaved with 3 cropping operations. In each step, the 3D data is sliced in one of the 3 directions, 

the 2D histogram of the tumor pixels of this series is predicted, and the result is then applied to 

crop out object-free margins, i.e., tumor-free slices. The cropped 3D data is expected to have a 

higher object information density, with respect to that in the preceding step, and are then used for 

the prediction in the following step. In this way, the prediction result can be improved step by step. 

The proposed system also involves the generation of asymmetry maps and a modulation 

function, as shown in Figure 3.6. The modulation function is generated from the input data and 

used to modulate the asymmetry map, or pixel distribution, in each step to produce the prediction 

result. In the present design, the same modulation function is applied to all the 3 coarse prediction 

steps, and a modified version to the finalization of the prediction. 

The progressive removals of tumor-free regions in the proposed scheme transforms the input 

3D image into a 3D minimum bounding box, in which most of the pixels are inside the tumor 

region.  This minimum bounding box is then used to finalize the 3 predicted 2D histograms, as 

shown in Figure 3.6. 

The proposed system also includes a simple procedure of brain tumor detection, in which the 

predicted gray level distribution of the tumor pixels is used to localize them in the minimum 

bounding box to segment the brain tumor region in a pixelwise precision. 

The quality of the final results is related to the data processing quality in each of the prediction 

steps. In particular, as the operations are performed sequentially, the first prediction and cropping 

are very critical. The design of the blocks is presented in the following subchapters.  
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Figure 3.6 Block diagram of the proposed system. It receives a 3D brain image input that can be sliced 

into a series of nA axial slices, or a series of nC coronal slices or nS sagittal slices, and generates 

the predicted 2D histogram of the brain tumor region for each of the 3 series of slices and a 3D 

tumor mask. 
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3.3.2 Brain Image Asymmetry Measure to Extract Tumor 

Information 

In the proposed system, the brain asymmetry is measured for the extraction of the brain tumor 

information. The results are presented in 2D histograms to indicate how the asymmetry evolves 

from slice to slice. In this subchapter, the details of the measurement are described and the analysis 

of the data is presented. 

A healthy human brain looks left-right symmetrical, though its details are not really left-right 

mirrored [44]. A tumor-free axial slice shown in Figure 3.7 (a) is an example. The presence of a 

brain tumor causes a more noticeable asymmetry in its structure, as shown in Figure 3.7 (b) and 

(c). Hence, the asymmetry measures in brain images have been used to detect brain tumors 

[22][23][45]. It should, nevertheless, be noted that, though the tumor-related asymmetry is salient 

for trained human eyes, it is not prominent in an asymmetry measurement in computer vision. The 

results of the measurement can be more dominated by the elements representing the natural 

asymmetry in brain image details than those of the asymmetry caused by tumor, referred to as 

tumoral asymmetry. 

                       
(a)                                                     (b)                                       (c) 

Figure 3.7 (a) Slice of brain image without tumor. The left-right asymmetry in image details is referred to 

as natural asymmetry.  

(b)(c) Slice of brain image with tumor and its binary tumor mask. The asymmetry is more 

noticeable. 

The natural asymmetry in brain images is in image details, reflecting different tissues and fluid, 

whereas the tumoral asymmetry is more in brain structure. Before all the measures, a 3D low-pass 

filtering is applied to the input and then each slice is down-sampled to erase some image details 

so that the elements of natural asymmetry are less dominant in the asymmetry measures.   

In the proposed prediction process, the left-right asymmetry of a 3D brain image is measured 

simply by means of the difference between the 2 histograms given by the left and right halves, 

respectively, so that the natural asymmetry in fine image patterns is less counted. It should be 

noted that, in this measure, all the histograms are 2D so that each of them indicates the gray level 

distributions with the coordinates in one of the 3 dimensions. Let ΔH(i,j) denote the unsigned 

histogram difference of the 2 halves, and it is expressed as follows. 

∆𝐻(𝑖, 𝑗) = ⁡ |𝐻𝑙𝑒𝑓𝑡(𝑖, 𝑗) − 𝐻𝑟𝑖𝑔ℎ𝑡(𝑖, 𝑗)|                                               (5) 
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where Hleft(i,j) is the 2D histogram of the left half and Hright(i,j) is that of the right half, i 

representing the gray level, scaled between 0 and 1, and j the slice index in the axial or coronal 

series. As the 2D histogram ΔH(i,j) represents the gray level distribution of the asymmetry 

elements over the series, it is referred to as asymmetry map. 

As the gray level range of a tumor space is in an upper-level section of that of the brain region, 

the pixels having their gray levels below the mean level of the 3D brain region are not included in 

ΔH(i,j). In other words, in the asymmetry maps presented in this section, the gray scale is 

normalized to the range of [0,1] with i = 0 corresponding to the mean level of the 3D brain region. 

Figure 3.8 illustrates an example of Hleft(i,j), Hright(i,j) and H(i,j) obtained from a 3D Flair 

image of a typical patient case, in comparison with HT(i,j), the 2D gray level distribution of the 

true tumor region, referred to as the ground truth. Comparing Hleft(i,j) and Hright(i,j), one can see 

the right half has more pixels in the upper gray levels, indicating the presence of a tumor, which 

is also reflected in H(i,j). Comparing H(i,j) and the ground truth HT(i,j), one can clearly see that 

the distribution in the upper level range in H(i,j) is highly correlated to that of HT(i,j), but that in 

the lower level range is not.  

     
(a)                                                                       (b) 

     
(c)                                                                        (d) 

Figure 3.8 Four 2-D histograms obtained from the155 axial slices of a low-passed 3D Flair image sample. 

The X-axis is the normalized gray scale and the zero point corresponds to the mean value of the 

3D brain region, excluding the pixels of gray level values below the mean. The data sample is 

from the case 01412 of BraTS2021 dataset.  

(a) Hleft(i,j), the 2D histogram of the left half of the 3D image,  

(b) Hright(i,j), the 2D histogram of the right half of the 3D image,  

(c) ΔH(i,j) = |Hleft(i,j) - Hright(i,j)|, and  

(d) HT(i,j), the ground truth of the 2D gray level distribution of the tumor region. 
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Evidently, the upper-gray-level section of ΔH(i,j) is dominated by the pixels in the tumor 

region, representing more the tumoral asymmetry. The section of the lower gray levels in ΔH(i,j) 

is, however, more relevant to the natural asymmetry. With a view to obtaining a good prediction 

of the gray level distribution of the tumor region, the data of ΔH(i,j) needs to be modulated so that 

the elements related to the natural asymmetry will be attenuated. The development of the 

modulation function is presented in the next subchapter.  

3.3.3 Generation of the Modulation Function 

The asymmetry measurement results in a 2D histogram ΔH(i,j) representing the natural and 

tumoral asymmetries in the consecutive slices of a 3D brain image. To generate, from ΔH(i,j), a 

2D histogram Hm(i,j) resembling the true gray level distribution of the tumor pixels, one needs to 

attenuate the elements of natural asymmetry in ΔH(i,j). As such elements are found in the lower 

part of the gray level range of ΔH(i,j), we propose a modulation function fm(i), of which the 

characteristic is shown in Figure 3.9, and Hm(i,j) will simply be the product of  ΔH(i,j) ∙ fm(i). 

L-section M-section H-section

fm(i)   [α, 1]

 
Figure 3.9 Graph of the modulation function fm(i), plotted in magenta, that matches well htumor-free(i) and 

htumor(i), the gray level distribution of the tumor-free region and that of the tumor region, 

respectively. Ideally, its low (L), mid (M) and high (H) sections should adapt to each individual 

patient case. The range of fm(i) is set to be [α, 1] and α << 1. 

Let us divide the gray level range of the modulation function fm(i) into L-section, M-section 

and H-section, as shown in Figure 3.9. L-section, in which fm(i) has its lowest value, covers the 

gray level range where most pixels are in the tumor-free region and H-section covers that of the 

tumor region, whereas M-section should cover the range where each gray level bin contains pixels 

of both tumor and tumor-free regions. Ideally, the 3 sections of fm(i) should match the gray level 

distribution of the tumor region and that of the tumor-free region in each patient case, but neither 

of them is available. Hence, the data of the input brain image is the only information source to be 

used to establish the modulation function fm(i). 
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In case of brain tumor detection, the data of the left or right half of a brain is available to 

generate its 1D and 2D histograms. Since a tumor region usually appears in the left or right half, 

the half involving the tumor will have its histogram more populated in the upper gray levels than 

the other half. Let us call the first half tumor-half and the other tumor-free-half, and htumor-half and 

htumor-free-half denote their 1D histograms, respectively. Figure 3.10 (a) and (b) illustrate htumor-half 

and htumor-free-half given by 2 very different patient cases, and each pair is superimposed with the 

ground truth htumor-free, the normalized gray level distribution of the pixels outside the tumor space 

in the entire 3D brain region. One can find, in each of these 2 cases, a high degree of similarity 

between htumor-free-half and htumor-free. It indicates that, in the half that is less affected by the tumor, 

the statistical characters of the data are not much different from those of the entire tumor-free 

regions of the brain. Thus, htumor-free-half can be used to emulate htumor-free to determine M-section 

and H-section of the modulation function fm(i). 

 
(a)                                                                                            (b) 

Figure 3.10 Gray level distributions given by patient cases 01412 and 01414 from BraTS 2021 dataset. In 

the 2 graphs, htumor-free-half, the distribution of the pixels from the tumor-free half is compared with 

htumor-half, that of the tumor half and htumor-free, that of the true tumor-free region inside the entire 

brain region. 

Of the 1251 patient cases available in BraTS2021 datasets, approximately 94% have tumors 

developed in either left or right half, and the above observation/analysis is valid for a vast majority 

of patient cases. Even though a tumor grows in the middle, its region can hardly straddle the left 

and right halves symmetrically. Hence, the histogram of the half having fewer tumor pixels bears 

a similitude of htumor-free and thus can substitute it to determine fm(i). 

The procedure to generate the modulation function fm(i) from the distribution of the pixels in 

the tumor-free half has 2 steps. The first step is to identify which of the 2 halves is more likely to 

be tumor-free, and the second step is to transform the distribution of the pixels of the identified 

half into a desired fm(i). 

As the pixels in tumor regions are in the upper-gray-level section, the tumor-free half of the 

3D brain image should have a smaller number of high-gray-level pixels with respect to the other 

half. Hence, the identification is done by simply counting the number of pixels in the upper-gray-

level section. In case of samples from BraTS2021, this section is defined as [0.55, 1] in the 
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normalized gray scale, in which the point i = 0 corresponds to the mean value of the pixels in the 

brain region. Let Nleft denote the number of the pixels in the upper-gray-level section of the left 

half, and Nright that of the right half.  Let htf(i) denote the 1D gray level distribution of the identified 

half that is presumed tumor-free, and it is calculated as follows. 

𝑁𝑙𝑒𝑓𝑡 = ∑ ∑ 𝐻𝑙𝑒𝑓𝑡(𝑖, 𝑗)
𝑁𝑠
𝑗=1

1
𝑖=0.55 , 𝑁𝑟𝑖𝑔ℎ𝑡 = ∑ ∑ 𝐻𝑟𝑖𝑔ℎ𝑡(𝑖, 𝑗)

𝑁𝑠
𝑗=1

1
𝑖=0.55                (6) 

ℎ𝑡𝑓(𝑖) = ⁡ {
∑ 𝐻𝑙𝑒𝑓𝑡(𝑖, 𝑗)
𝑁𝑠
𝑗=1 ,⁡⁡⁡⁡⁡𝑖𝑓⁡𝑁𝑙𝑒𝑓𝑡 ≤ 𝑁𝑟𝑖𝑔ℎ𝑡

∑ 𝐻𝑟𝑖𝑔ℎ𝑡(𝑖, 𝑗)
𝑁𝑠
𝑗=1 ,⁡⁡⁡𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

                                              (7) 

where Ns is the number of the slices.  

Transforming htf(i), the distribution of the pixels of the identified half, into a desired fm(i) is 

done mainly by truncation and inversion. A block diagram of the transformation presented in 

Figure 3.11 (a), and the curves of the data in this process is visualized in Figure 3.11 (b). The 1D 

histogram htf(i) of the tumor-free half, plotted in blue, is the input of the process. It is truncated to 

limit the heights of its bins, resulting in hT(i) plotted in cyan. The curve of 1/hT(i), plotted in black, 

can be adjusted to approach the expected fm(i), plotted in magenta. In this process, low-pass 

filtering operations are applied before and after the inversion to remove the discontinuity in the 

curves. The mathematic expressions used in the transformation process are as follows. 

ℎ𝑇(𝑖) = {

max𝑇 ,⁡⁡⁡⁡⁡⁡⁡ℎ𝑡𝑓(𝑖) > 𝑚𝑎𝑥𝑇⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

ℎ𝑡𝑓(𝑖),⁡⁡⁡⁡⁡𝑚𝑖𝑛𝑇 ≤ ℎ𝑡𝑓(𝑖) ≤ max𝑇
min𝑇 ,⁡⁡⁡⁡⁡⁡⁡ℎ𝑡𝑓(𝑖) < 𝑚𝑖𝑛𝑇⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

                               (8) 

𝑓𝑚(𝑖) = [
1

ℎ𝑇(𝑖)
]
𝛾

+ 𝛼                                                                      (9) 

where maxT and minT are the pre-determined highest and lowest bin-heights, γ is a correction factor, 

and α is a constant. 

htf(i)

Truncation 
& low-pass filtering

hT(i)

fm(i)

Inverting 
& low-pass filtering

1/hT(i)

Correction
 with γ and α 

    
(a)                                                                              (b) 

Figure 3.11 (a) Block diagram of the procedure to transform htf(i) to fm(i).  

(b) Graph of htf(i) of a 3D Flair image, hT(i), truncated htf(i) with maxT ≈ 0.5, minT ≈ 0.05, 1/hT(i) 

and fm(i) given by Equation (9) with γ = 1.8 and α = 0.02. 
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The modulation function fm(i) can be adjusted by means of the four parameters, maxT and minT, 

γ, and α. One can use maxT and minT to fine-tune, respectively, the 2 particular points where 

dfm(i)/di = 1, and these 2 points define M-section of fm(i) curve. The parameter γ can be used to 

modify dfm(i)/di in this section, and α << 1 to maintain a minimum value of fm(i). For example, 

increasing the values of maxT and minT shifts the M-section slightly left-wards, making the 

modulation "milder", i.e., attenuating less the elements in mid gray level range. 

Figure 3.12 (a) and (b) illustrate the curves of fm(i) generated from the Flair images of 2 patient 

cases, respectively. Each of them is superimposed with the ground truth, i.e., the gray level 

distribution of the tumor-free region and that of the tumor region. One can see that fm(i) can be 

made to adapt to the distributions of the tumor and tumor-free pixels in each case, although it is 

generated independently without them. Its high-value section covers the gray level range of a large 

majority of tumor pixels, whereas its low-value section covers that of most pixels in the tumor-

free region. 

   
(a)                                                                                     (b) 

Figure 3.12 Two characteristics, plotted in magenta, of the modulation function fm(i) with γ = 1.8 and α = 

0.02, generated with the input data from the Flair modality of the patient cases 01412 and 01414, 

respectively, of BraTS2021 dataset. In each graph, the curve of fm(i) is superimposed with 

htumor(i), the distribution of the pixels in the tumor region and htumor-free(i), that of the tumor-free 

part of brain region. The scale of fm(i) is [0,1]. 

3.3.4 Prediction of the Tumor Pixel Distribution 

The core of the proposed system is the procedure of 3 coarse predictions of the 2D histograms of 

the tumor region interleaved with 3 cropping operations, as shown in Figure 3.6. The 3 coarse 

predictions are performed with axial, coronal and sagittal slice series, respectively. The objective 

of each prediction is to find the concentration of likely tumor pixels in order to identify the likely 

tumor-free slices that are then removed, i.e., cropped out, from the slice series.  
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The processing in the first 2 steps are performed with the axial and coronal slices, respectively, 

as each of them reflects the left-right symmetry of brain structure, allowing to generate an 

asymmetry map ΔH(i,j), whereas that in the third step is with a series of cropped sagittal slices. 

After the 3-step prediction and cropping, the input 3D image is reduced to a minimum bounding 

box, from which the predicted distribution of the tumor region is refined. The details of the 

prediction and cropping operations are presented in the following subchapters. 

3.3.4.1 First Two Coarse Predictions and Cropping Operations 

In the proposed system, the first coarse prediction is performed on the axial slices. Let ΔHa(i,j) 

denote the asymmetry map generated from the axial slices and Hma(i,j) denote the coarsely 

predicted distribution of the tumor pixels over the axial slices, we have Hma(i,j) = ΔHa(i,j) ∙ fm1(i). 

The modulation function fm1(i) is defined by Equations (8) and (9), described in Subchapter 3.3.3, 

generated from the data of the tumor-free half of the original 3D input.  

The modulated 2D histogram Hma(i,j) represents the asymmetry in the upper gray levels, where 

most of the pixels in the tumor region are found. Thus, it is highly correlated with HTa(i,j), the 2D 

histogram of the pixels in the tumor region given by the ground truth. 

Figure 3.13 (a) and (b) illustrates an example of the first prediction results, in which ΔHa(i,j) 

and Hma(i,j) are obtained from the same patient case shown in Figure 3.8.  Comparing Hma(i,j) with 

HTa(i,j) shown in Figure 3.13 (c), one can observe that i) Hma(i,j) emulates well the distribution of 

most pixels in the tumor region and ii) it indicates a slice-index range, very similar to that in HTa(i,j), 

where the tumor pixels are located. The same degree of similarity is also observed in the prediction 

results of a vast majority of the 1251 patient cases in BraTS2021 dataset. Thus, in the absence of 

HTa(i,j), Hma(i,j) can be considered as a coarsely predicted gray level distribution of the tumor 

pixels in the consecutive axial slices. 

 
(a)                                                  (b)                                                    (c)  

Figure 3.13 (a) Asymmetry map ΔHa(i,j), generated with the axial slice series of the patient case 01412 

from BraTS2021 dataset.  

(b) Modulated 2D histogram of the axial slice series, Hma(i,j), to be used as a coarsely predicted 

2D histogram of the tumor region. 

(c) Two-D histogram of the pixels in the tumor region given by the ground truth, HTa(i,j), over the 

axial slices. 

To identify the tumor-free axial slices, the Hma(i,j), obtained from the axial series, is 

transformed into 1D histogram hla(j) to represent the locational distribution of the tumor pixels in 

the axial slice, which is done as follows. 

ℎ𝑙𝑎(𝑗) = ⁡∑ 𝐻𝑚𝑎(𝑖, 𝑗)𝑖                                                           (10) 
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where j = 1 ~ Ns and Ns is the number of slices in the series. An example of hla(j) shown in Figure 

3.14 (b) is obtained from Hma(i,j) shown in Figure 3.14 (a). High magnitudes in hla(j) indicate the 

concentration of pixels of interest, i.e., tumor pixels, in the corresponding slices. The index range 

of these slices is determined by the two local minima in hla(j) curve. The slices indexed between 

them are considered slices with tumor, and the others tumor-free. One can see in Figure 3.14 (b) 

that the set of the axial slices identified as tumor slices are almost identical to that in the ground 

truth. The tumor-free slices, found on the top and bottom of the input 3D image, constitute two 

tumor-free margins and are then effectively cropped out.  

    

local 

minima 1

local 

minima 2

 
(a)                                                                                           (b) 

Figure 3.14 (a) Coarsely predicted 2D histogram of the tumor region, Hma(i,j), over the axial slices.  

(b) Predicted locational distribution of the tumor pixels over the series of axial slices, hla(j), 

plotted in blue. The 2 local minima define the 2 boundaries of the predicted set of consecutive 

tumor slices, specified by the green frame, in comparison with the ground truth framed in red.  

The data sample is from the patient case 01412 of BraTS2021. 

By the first cropping operation, the size of the 3D image is reduced significantly, whereas the 

loss of the tumor pixels is insignificant. Of the 1251 patient cases in BraTS2021, it results in a 

removal of more than 60% slices from the 3D brain region, while losing less than 4% of the tumor 

pixels.  

The second coarse prediction is then applied to the cropped 3D image presented as a series of 

coronal slices. The number of slices in this series is the same as that of the original Flair image, 

but the number of non-zero pixels per slice is much smaller because the predicted tumor-free top 

and bottom margins of the input 3D image have been cropped out in the first step of 

prediction/cropping, as examples shown in Figure 3.15. Nevertheless, the overall left-right 

symmetry is preserved in the cropped coronal slices that are not affected by tumor, and a coronal 

asymmetry map ΔHc(i,j) can be calculated to represent the distribution of asymmetrical elements 

from the cropped coronal slices. 
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(a)                             (b)                                (c)                             (d)                                 (e) 

Figure 3.15 Coronal slices sampled from a 3D image, after the cropping operation to remove the tumor-

free axial slices.  

(a)(e) Cropped coronal slice without tumor. The left half is somehow symmetrical to the right 

half. 

(b)(c)(d) Those with tumor. The left-right symmetry is much less than that in (a) or (e). 

The procedure of the second prediction is the same as the first one. The same modulation 

function fm1(i) is applied to the coronal asymmetry map ΔHc(i,j) obtained from the coronal slices 

to generate the second predicted tumor pixel distribution Hmc(i,j). Figure 3.16 illustrates the 

predicted distribution over the coronal slices, in comparison with the ground truth. 

 
(a)                                              (b)                                                   (c) 

Figure 3.16 (a) Asymmetry map ΔHc(i,j),  generated with the cropped coronal slice series of the patient 

case 01412 in BraTS2021. 

(b) Modulated 2D histogram of the coronal slice series, Hmc(i,j), to be used as a coarsely predicted  

2D histogram of the tumor region. 

(c) Two-D histogram of the pixels in the tumor region given by the ground truth, HTc(i,j), over the 

coronal slices. 

The cropping operation following the second coarse prediction is identical to that in the first 

step. It results in the removal of 2 sets of coronal slices that are considered tumor-free.  

After the 2 cropping operations in the first 2 steps, the predicted tumor-free margins in the top, 

bottom, back and front sides of the original 3D input have been removed. The result of these 

removals can be seen in sagittal slices. Figure 3.17 illustrates a few examples of sagittal slices 

cropped twice, in comparison with the original ones. The series of cropped sagittal slices is then 

ready for the next step of prediction and cropping. 
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(a) 

 
(b) 

Figure 3.17 (a) Sagittal slices sampled from an original series, before the 2 cropping operations.  

(b) Sagittal slices after the cropping operations applied to the axial and coronal slices. The first 

and the last sagittal slices are tumor-free, whereas the other 3 involve tumor regions. 

3.3.4.2 Third Coarse Prediction & Cropping and the Final Prediction 

The objective of the 3rd coarse prediction and cropping is to identify tumor-free sagittal slices and 

to remove them. As a sagittal slice does not feature left-right symmetry, no asymmetry map can 

be generated in this step. It should, however, be noted that the percentage of tumor pixels in this 

sagittal slice series is evidently much higher than that of the original 3D input. In particular, most 

pixels in the upper gray levels are found in the tumor region. The prediction in this 3rd step is done 

by modulating Hs(i,j), the 2D histogram of the cropped sagittal slices. The coarsely predicted 2D 

histogram of the tumor pixels over the sagittal slices is denoted as Hms(i,j) =  Hs(i,j) ∙ fm1(i), with 

the same fm1(i) used in the 2 previous coarse prediction steps. This modulation attenuates the 

elements in the lower-gray-level section, resulting in a coarsely predicted 2D histogram of the 

tumor pixels in the sagittal slices, as an example shown in Figure 3.18.  

 
(a)                                                (b)                                                    (c) 

Figure 3.18 (a) Two-D histogram Hs(i,j),  given by the pixels in the cropped sagittal slice series of the 

patient case 01412 in BraTS2021.  

(b) Modulated 2D histogram of the sagittal slice series, Hms(i,j), to be used as a coarsely predicted  

2D histogram of the tumor region.  

(c) Two-D histogram of the pixels in the tumor region given by the ground truth, HTs(i,j), over the 

sagittal slices. 

The cropping operation in this step is identical to that in the other steps. It results in removal 

of the 2 sets of tumor-free sagittal slices, i.e., the tumor-free margins in the left and right sides of 

the 3D input. By the 3-step cropping, the original 3D input is reduced to a 3D minimum bounding 

box, in which most of the pixels are found in the tumor region. 
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The operation of the fine prediction is applied to the data of the 3D minimum bounding box. 

Its axial, coronal and sagittal slice series give three 2D histograms, denoted by Hba(i,j), Hbc(i,j) and 

Hbs(i,j), respectively. An example is illustrated in Figure 3.19 (a) (d) and (g). Comparing the 3  

histograms with the ground truth of the tumor pixel distributions illustrated in Figure 3.19 (c) (f) 

and (i), one can notice that A) the 2 sets are very similar in the upper-gray-level section and B) 

their differences are found in the lower and mid gray level sections, as the minimum bounding box 

involves tumor-free regions. Hence, like the coarse predictions, the operation for the fine 

prediction is to attenuate the elements of Hba(i,j), Hbc(i,j) and Hbs(i,j) in the mid and lower-gray-

level sections by a simple modulation.  

It should, however, be noticed that the gray levels of the pixels in tumor regions can cover a 

wide range. Though a majority of the tumor pixels is found in the upper-gray-level section, a non-

negligible minority is found in the middle and lower sections, which should be taken into 

consideration in the fine prediction. Hence, the modulation function in this stage is adjusted to 

attenuate less elements in the mid and lower-gray-level ranges, with respect to that in the coarse 

prediction steps. 

The final prediction results in the three 2D histograms, denoted as Hpa(i,j), Hpc(i,j) and Hps(i,j), 

indicating the gray level distribution of the tumor pixels over the axial, coronal, and sagittal slice 

series, respectively. They are expressed as follows. 

{

𝐻𝑝𝑎(𝑖, 𝑗) = 𝐻𝑏𝑎(𝑖, 𝑗) ⁡ ∙ 𝑓𝑚2(𝑖)

𝐻𝑝𝑐(𝑖, 𝑗) = 𝐻𝑏𝑐(𝑖, 𝑗) ⁡ ∙ 𝑓𝑚2(𝑖)

𝐻𝑝𝑠(𝑖, 𝑗) = 𝐻𝑏𝑠(𝑖, 𝑗) ⁡ ∙ 𝑓𝑚2(𝑖)

                                              (11) 

where fm2(i) is defined by Equations (8) and (9). Compared to fm1(i), the characteristic of fm2 is 

slightly left-wards shifted, the slope, dfm2(i)/di, in M-section is gentler, and the minimum value of 

fm2(i) is increased to preserve more pixels in the low-and-mid gray level range. It is done by i) 

slightly increasing maxT and minT, ii) reducing γ and iii) increasing α. 

An example of the 3 predicted 2D histograms are presented in Figure 3.19 (b)(e)(h). The 

ground truth data of the tumor distributions are presented in Figure 3.19 (c)(f)(i). One can find that, 

the predicted tumor distributions are very similar to the ground truth. They can be used, for 

example, to detect the whole tumor regions in pixel-wise precision in the brain image. 
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(a)                                                         (b)                                                     (c)  

 
(d)                                                         (e)                                                     (f) 

 
(g)                                                         (h)                                                     (i)  

Figure 3.19 (a)(d)(g) Two-D histograms of minimum bounding box of axial, coronal and sagittal slice 

series. 

(b)(e)(h) Predicted 2D histograms of tumor pixels in axial, coronal and sagittal slice series.  

(c)(f)(i) Ground truth of the 2D histograms in (b)(e)(h).  

The data sample is from the patient case 01412 in BraTS2021. 

3.3.5 Whole Tumor Detection in Pixel-Wise Precision 

In the proposed system, the input data of the brain tumor detection block is a 3D bounding box 

after the 6 tumor-free margins are cropped out from the original 3D brain image of Flair modality. 

The gray level distribution of the tumor pixels has been predicted, but the locations of the pixels 

in this bounding box are not specified. The process in this detection block is to transform the 

bounding box into a 3D binary tumor mask with pixel-wise precision. The transformation is done 

by 2 very simple operations, i.e., pixel binarization by gray level thresholding and morphological 

processing by low-pass filtering. 

The binarization is to divide, coarsely by a simple gray level threshold, the pixels in the 

bounding box into 2 groups, those inside the tumor region and those outside. The threshold should 

be determined with 2 issues taken into consideration. 

• It should be variable to adapt to the gray level distribution of the pixels in individual cases.  
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• The gray level range of the pixels in the tumor region can extend to a very low point, as the 

example shown in Figure 3.20 (a). If the threshold is determined in such a way that most of the 

tumor-free pixels are put in one side and most of tumor pixels on the other side, as the graphs 

in Figure 3.20 (a) shows, a small portion of the true tumor pixels will unavoidably be misplaced. 

In practice, in order to separate a vast majority of tumor-free pixels from the tumor pixels, it is 

reasonable to allows, e.g., 20% of tumor pixels to be misplaced if their misplacement is 

insignificant enough to be corrected in the following processing. In this case, the threshold is found 

at the gray level point corresponding to 20% in the cumulative distribution function (CDF) of the 

tumor pixel population, as shown in Figure 3.20 (c). The thresholds defined in this manner can be 

adaptive to the various distributions of individual cases. Since the true distribution of the tumor 

region is not available, the predicted one is used to determine the threshold, as Figure 3.20 (c) 

shows. 

(a)

(b)

(c)

Threshold = 0.44

 
Figure 3.20 (a) True gray level distributions of the pixels inside the tumor region, plotted in red, and that 

of outside the tumor region, plotted in green, of a 3D minimum bounding box. The blue dashed 

line indicates an assumed gray level threshold.  

The data sample is from the case 01452 of BraTS2021 dataset.  

(b) Predicted gray level distributions, obtained from the original 3D Flair image of the same case.  

(c) CDF derived from the predicted distribution of the tumor pixels shown in (b). The gray level 

threshold is 0.44, corresponding to the level of CDF = 20%. 
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The binarization by means of a simple thresholding results in a coarse binary tumor mask with 

a minority of tumor pixels misplaced in the tumor-free group and vice versa. A slice of such a 3D 

mask is illustrated in Figure 3.21 (b). To correct the misplacement, a morphological operation is 

applied. In this design, it is done by (i) a convolution with a simple 3D averaging kernel of 5×5×5 

pixels and (ii) assigning the logic-1 value to all the pixels having their gray levels grater than a 

pre-determined floor and logic-0 to the others. Figure 3.21 (c) illustrates the slice generated by 

such a morphological operation, in comparison with the ground truth illustrated in Figure 3.21 (d). 

 
(a)                     (b)                        (c)                      (d) 

Figure 3.21 (a) Slice from a 3D minimum bounding box generated from the data of the patient case 01418 

of BraTS2021 dataset.  

(b) Slice of the coarse mask after the binarization.  

(c) Slice of the final binary mask after the morphological operation.  

(d) Slice of the true tumor mask. 

This brain tumor detection is done by the 2 very simple operations, as it is performed on the 

data of the predicted 3D minimum bounding boxes of tumors and the predicted tumor pixel 

distribution. Hence it is an application of the prediction results. The quality of the detection 

depends very much on the quality of the prediction. Various quality measures have been conducted 

to evaluate the performance of the proposed system. The results are presented in the next 

subchapter. 

3.4 Performance Evaluation 

The performance of the proposed system has been evaluated with the available patient cases in 

BraTS datasets. The quality of the prediction of the tumor pixel distribution in a 3D brain image 

has been assessed, so has the quality of the brain tumor detection. The information about the 

datasets is found in Subchapter 3.4.1. The prediction and detection results are visualized in 

Subchapter 3.4.2. The performance measurements are found in Subchapter 3.4.3, and the 

performance comparison is presented in Subchapter 3.4.4. 

3.4.1 Dataset 

The processing quality of the proposed system has been measured with the data of BraTS2021 

[43]. There are 1251 patient cases of MRI scanning and each is accompanied by a ground-truth 

tumor mask approved by medical specialists.  As the system does not need training, the data of all 
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the 1251 patient cases have been used to measure the processing quality of both the prediction of 

the tumor pixel distributions and the brain tumor detection. 

In BraTS2021 dataset there are additional 219 patient cases, referred to as the validation 

samples, of which the ground truth data is not accessible for public. They have also been used to 

evaluate the tumor detection quality of the proposed system, by means of the online platform 

Synapse [46] where the assessment is a standard process with data from the Cancer Imaging 

Archive [47][48][49][50]. 

In order to compare the performance of the proposed system, in terms of brain tumor detection, 

with those published in recent years, earlier versions of BraTS datasets, namely BraTS2013, 

BraTS2017, BraTS2018 [51], BraTS2019 [52] and BraTS2020 [53] have also been used for the 

evaluation. The number of patient cases in each of the datasets is specified in Table 3.1. In case of 

testing on the validation samples of these datasets, the tumor detection results have been evaluated 

by the online platform, Center for Biomedical Image Computing and Analytics Image Processing 

Portal (CBICA IPP) [54]. 

Table 3.1 Numbers of patient cases in BraTS dataset 

 
BraTS 

2013 

BraTS 

2017 

BraTS 

2018 

BraTS 

2019 

BraTS 

2020 

BraTS 

2021/2023 

Training set 30 285 285 335 369 1251 

Validation set N.A. N.A. 66 125 125 219 

 

3.4.2 Visualization of Prediction and Detection Results 

The first step of the performance assessment of the proposed system is to observe (i) the predicted 

histograms and (ii) the detected 3D tumor masks, in comparison with the ground truth of the 

datasets. The histograms include three 2D gray level distributions of tumor pixels in the axial, 

coronal and sagittal series, respectively.  

The prediction results of 2 patient cases are illustrated in Figure 3.22 and Figure 3.23. The 

distributions of tumor pixels in these cases are very different, as shown in Figure 3.22 (d)(e)(f) and 

Figure 3.23 (d)(e)(f), which is very common in practice. One can see that the predicted histograms 

are highly similar to the true ones, demonstrating that the proposed system is able to predict the 

distributions of different cases. The predicted 1D histograms are derived from the 2D ones and are 

also highly similar to the true ones, as shown in Figure 3.22 (g)(h) and Figure 3.23 (g)(h). 
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(a)                                                          (b)                                                  (c) 

 
(d)                                                          (e)                                                  (f)  

  
(g)                                                                            (h) 

Figure 3.22 (a)(b)(c) Predicted 2D gray level distributions of tumor pixels of axial, coronal and sagittal 

slice series.  

(d)(e)(f) True 2D gray level distributions of the case.  

(g) Predicted and true 1D gray level distribution of tumor pixels.  

(h) Predicted and true CDF of (g).  

The data sample is from patient case 01268 of BraTS2021 dataset. 
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(a)                                                          (b)                                                  (c)  

 
(d)                                                          (e)                                                  (f) 

  
(g)                                                                            (h) 

Figure 3.23 (a)(b)(c) Predicted 2D gray level distributions of tumor pixels of axial, coronal and sagittal 

slice series.  

(d)(e)(f) True 2D gray level distributions of the case.  

(g) Predicted and true 1D gray level distribution of tumor pixels.  

(h) Predicted and true CDF of (g).  

The data sample is from patient case 01414 of BraTS2021 dataset. 

In Figure 3.24, four examples of tumor detection results generated by the proposed system are 

illustrated. The gray level ranges and variations inside and outside the tumor regions are very 

different in these cases. As described previously, the detection process is a very simple 

thresholding operation followed by a low-pass-based morphological operation. Finding an 

appropriate threshold for each individual case is the key to achieve a good detection. A good 

prediction of the tumor pixel distribution results in a suitable threshold. The 4 detected tumor 

masks presented in the central column are very similar to the true ones shown the right column, 

demonstrating that the proposed method is effective to detect varieties of tumors. Though the 

detected masks look like a bit over-smoothed, compared to the true ones, they can be used to 

localize the brain tumors with a good accuracy. 
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Besides the visualization, quantitative measurements have been performed on a very large 

number of samples to assess more objectively the performance of the proposed system. The details 

are presented in the following subchapter. 

 

 

 

 

Figure 3.24 Four examples of brain tumor detection by the proposed system. The 4 original MRI slices of 

Flair modality are found in the left column, the 4 detected binary tumor masks in the middle 

column and the true ones in the right column.  

The original data are from patient cases 01268, 01414, 01417, and 01420 of BraTS2021 dataset. 

3.4.3 Performance Measurements 

The quantitative measurements of the performance have been done mainly with the data of the 

1251 patient cases of MRI scanning, including the ground truth data, in BraTS2021 dataset. In this 

subchapter, the description of the performance metrics is found in Subchapter 3.4.3.1, the results 

of the comprehensive tests of the prediction and detection in Subchapter 3.4.3.2 and Subchapter 

3.4.3.3, respectively. 
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3.4.3.1 Performance Metrics 

As the proposed system is designed to predict the gray level distributions of tumor pixels and to 

detect tumors, the performance metrics involve 2 kinds of measures, for the prediction and the 

detection, respectively. 

The prediction quality can be measured by the degree of similarity between the predicted and 

true histograms. Correlation coefficient (CC), mean squared error (MSE) and structural similarity 

index measure (SSIM) [55] are commonly used for similarity measurement. SSIM is defined as 

follows. 

𝑆𝑆𝐼𝑀(𝒙, 𝒚) = [𝑙(𝒙, 𝒚)]𝛼 ∙ [𝑐(𝒙, 𝒚)]𝛽 ∙ [𝑠(𝒙, 𝒚)]𝛾                              (12) 

where 

𝑙(𝒙, 𝒚) = ⁡
2𝜇𝑥𝜇𝑦+𝐶1

𝜇𝑥
2+𝜇𝑦

2+𝐶1
,    𝑐(𝒙, 𝒚) = ⁡

2𝜎𝑥𝜎𝑦+𝐶2

𝜎𝑥
2+𝜎𝑦

2+𝐶2
,    𝑠(𝒙, 𝒚) = ⁡

𝜎𝑥𝑦+𝐶3

𝜎𝑥𝜎𝑦+𝐶3
 

(x, y) are two sets of data, (µx, µy) denote the mean values of x and y, (σx, σy) are the standard 

deviations, σxy is the correlation coefficient, (α, β, γ) are set to be (1, 1, 1), and (C1, C2, C3) are 

small non-zero constants to stabilize the division with weak denominator.  

The detection quality can be measured in Dice score indicating how much a predicted object 

mask and the true object mask are overlapped. It is defined as 

𝐷𝑖𝑐𝑒 =
2𝑇𝑃

(𝑇𝑃+𝐹𝑁)+(𝑇𝑃+𝐹𝑃)
                                                       (13) 

where TP (true positive) is the overlapped part of the predicted and true object masks, FN (false 

negative) is the part of the true object mask that is not covered by the predicted mask. The entire 

true object mask is represented by (TP + FN) and the predicted one by (TP + FP). 

Sensitivity (Sens) and false discovery rate (FDR) [56], defined as 

𝑆𝑒𝑛𝑠 = ⁡
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                                           (14) 

𝐹𝐷𝑅 =
𝐹𝑃

𝑇𝑃+𝐹𝑃
= 1 −

1

2 𝐷𝑖𝑐𝑒⁄ −1 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦⁄
                                   (15) 

can also be used to measure the detection quality, as complements to Dice score. 

3.4.3.2 Prediction Results 

To evaluate the prediction quality of the proposed system, the similarity between the predicted 2D 

histogram of the tumor pixels in each of the axial, coronal and sagittal series and its ground truth 

has been measured on the 1251 patient cases from BraTS 2021 dataset. Large varieties of tumors 

appear in these 1251 cases, and some are more difficult to detect than others. The test results, 

presented as statistic values of SSIM, CC and MSE measures, are shown in Table 3.2. The 

following two points are observed. 

• Overall, the proposed system is able to deliver predicted 2D histograms of good quality, 

confirmed by the overall average SSIM of 84.3% and MSE of 0.004 on the 1251 cases.  
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• The median SSIM value of 2D histograms, obtained from axial, coronal or sagittal series, is 

visibly higher than the mean value, and even the 25-quantile is around 80%. It is confirmed 

that the proposed prediction method yields a good result for a large majority of patient cases. 

Table 3.2 Similarity between the predicted and true gray level distributions. The data are generated 

by testing the 1251 patient cases of BraTS2021 dataset 

  Predicted 2D gray level  

distributions of tumor pixels 
Predicted CDF  

of tumor pixels 
  Axial Coronal Sagittal 

SSIM 

mean 0.841 0.837 0.851 0.944 

median 0.944 0.942 0.947 0.967 

25quantile 0.798 0.796 0.818 0.945 

75quantile 0.979 0.978 0.980 0.973 

CC 

mean 0.878 0.872 0.887 0.958 

median 0.956 0.954 0.958 0.971 

25quantile 0.856 0.855 0.874 0.960 

75quantile 0.982 0.981 0.983 0.974 

MSE 

mean 0.0049 0.0038 0.0028 0.0113 

median 0.0016 0.0013 0.0009 0.0027 

25quantile 0.0006 0.0005 0.0004 0.0007 

75quantile 0.0054 0.0041 0.0031 0.0101 

 

The prediction results have been applied to detect brain tumor by means of a block with very 

simple thresholding and filtering operations. The test results of the tumor detection are presented 

in the following subchapter. 

3.4.3.3 Whole Tumor Detection Results 

As the proposed system does not need training, the data samples in both validation and training 

sets have been used to assess its quality of the brain tumor detection delivered by the proposed 

system. It is done in the following 2 approaches. 

• Testing on the 3 validation sets from BraTS 2018, 2019, 2020 and 2021 datasets, respectively, 

as the validation sets of BraTS2019 and BraTS2020 are identical. Then using the online 

validation tools, namely CBICA IPP [54] and Synapse [46], to get the results. 

• Testing on the 4 training sets from the BraTS datasets and measuring the detection quality with 

the available ground truth data. The advantage of this approach is that the test is done on a 

large number of data samples. For example, one can test on the 1251 patient cases in the 
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training set, instead of 219 in the validation set, of BraTS2021 dataset. Thus, the test has been 

done quite comprehensively. 

In total, there are 7 tests, each on a different set of patient cases. The test results, measured in 

Dice score, Sensitivity and FDR, are summarized in Table 3.3, presented in 7 columns. One can 

see that, in all the columns, the mean Dice scores are higher than 0.80 and the median values are 

higher than 0.86. In the right-most column, given by the test performed extensively on the 1251 

patient cases, the Dice scores of 25 quantile is 0.767, indicating that the Dice scores of 75% of the 

cases are 0.767 or more. It has been confirmed that the proposed detection method, applying the 

results of the predicted tumor pixel distributions, is very effective to detect most brain tumors, 

despite the vast variations in their locations, shapes, sizes and texture patterns in the tumor regions. 

The same test results are also visualized in Figure 3.25 by means of boxplots. 

It should be underlined that, as the parameters of the proposed system are not determined by 

training, neither the problem of randomness in training nor the problem of reproducibility could 

arise.  Hence the performance is robust and reliable. 

Table 3.3 Dice score, Sensitivity and FDR of tumor detected by the proposed system 

Flair  

mono-modality input 

Test on validation set 

(assessed by online portal) 
Test on training set 

BraTS dataset 2018 2019/2020 2021 2018 2019 2020 2021 

Number of patient cases 66 125 219 285 335 369 1251 

Dice 

mean 0.843 0.816 0.812 0.814 0.816 0.818 0.802 

median 0.884 0.881 0.874 0.869 0.873 0.872 0.876 

25quantile 0.807 0.771 0.769 0.772 0.786 0.786 0.767 

75quantile 0.914 0.917 0.915 0.913 0.914 0.914 0.920 

Sens 

mean 0.850 0.819 0.824 0.825 0.835 0.834 0.827 

median 0.896 0.877 0.885 0.881 0.896 0.893 0.904 

25quantile 0.815 0.756 0.777 0.777 0.787 0.778 0.785 

75quantile 0.940 0.928 0.941 0.944 0.949 0.948 0.955 

FDR 

mean 0.127 0.138 0.154 0.150 0.154 0.150 0.162 

median 0.102 0.097 0.102 0.091 0.100 0.092 0.101 

25quantile 0.175 0.176 0.188 0.190 0.190 0.183 0.190 

75quantile 0.044 0.033 0.048 0.037 0.042 0.042 0.049 
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Figure 3.25 Boxplots of the results in Table 3.3. The tests have been done on 7 different sets of data 

samples. 

3.4.4 Performance Comparison 

The performance of the proposed system, in terms of detection quality, has been compared with 

that of other systems reported in reputed journals. As no data about the prediction of tumor pixel 

distributions are available, this performance comparison is in the aspect of brain tumor detection. 

To make the comparison meaningful, the test results of these systems should be produced, in 

principle, under the same conditions, i.e., testing on the same data samples and using the same 

performance metrics. 

The comparison results of the proposed system with 2 conventional non-CNN systems are 

presented in Table 3.4. These 2 systems were chosen for the comparison because their detection 

quality was assessed with BraTS datasets and the test conditions were the same as those of the 

proposed system. 

Table 3.4 Comparison of the results of the proposed system with those of other conventional non-

CNN systems 

Dataset Systems # cases for testing Modality Dice 

BraTS2013 

Lim and Mandava 2018 [19] 20H T1c, T2 0.701 

Lim and Mandava 2018 [19] 10L T1c, T2 0.692 

Proposed 20H Flair 0.777 

Proposed 10L Flair 0.709 

BraTS2017 

Bonte et al. 2018 [21] 210H Flair, T1c 0.762 

Bonte et al. 2018 [21] 75L Flair, T1c 0.656 

Proposed 210H Flair 0.829 

Proposed 75L Flair 0.772 

BraTS2021 Proposed 1251 Flair 0.802 

H: High-grade glioma (HGG),       L: Low-grade glioma (LGG) 

Table 3.5 summarizes the comparison of the detection quality between the proposed system 

and 4 CNNs reported recently. In order to make the test results comparable to these CNN systems, 
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the proposed system has been tested on BraTS 2018 and 2019 datasets, besides BraTS 2021 dataset. 

It should, however, be mentioned that, the test conditions of the proposed systems are much more 

rigorous, as the test has been done on all the available patient cases of each dataset, instead of a 

small number of cases sampled from the training pools of the datasets. Also, the test has been done 

on the BraTS validation sets and the Dice scores have been generated by a 3rd-party platform 

CBICA IPP [54], whereas the corresponding data of the other systems listed in the table are not 

available. 

Table 3.5 Comparison of the results of the proposed system with those of CNN systems 

Dataset Systems # cases for testing Modality Dice 

BraTS2018Training set 

Wu et al. 2021 [25] 143 out of the 285 T2 0.619 

Zhou et al. 2021 [29] 57 out of the 285 Flair 0.737 

Yang et al. 2022 [30] 95 out of the 285 Flair 0.842 

Rahimpour et al. 2021 [31]  57 out of the 285 T1 0.790 

Proposed All the 285 cases Flair 0.814 

BraTS2019Training set 
Zhou et al. 2021 [29] 67 out of 335 Flair 0.743 

Proposed All the 335 Flair 0.816 

BraTS2018Validation set Proposed All the 66* Flair 0.843 

BraTS2019Validation set Proposed All the 125* Flair 0.816 

BraTS2021Training set Proposed All the 1251 Flair 0.802 

* Testing on the official validation set, and the results are assessed by CBICA IPP [54] 

 

The data presented in Table 3.4 and Table 3.5 demonstrate the high performance of the 

proposed system, specified in the following aspects.  

• Processing quality measured in Dice scores. It outperforms the other systems, conventional 

non-CNN systems or CNN systems, under the same or more tougher test conditions. 

• Performance robustness and reproducibility. On one hand, the results of performance 

evaluation are obtained by testing extensively with a very large number of patient cases. They 

are much more comprehensive and reliable than those given by the other systems. On the other 

hand, as it is a deterministic system, its results are completely reproduceable. 

• Computation cost. It is so low that one can run the computation procedure for the prediction 

and detection in an ordinary laptop or desktop. In case of laptop of i7-11800H CPU with clock 

of 4.6 GHz, it takes only 0.85 seconds to process a patient case. 

It should be mentioned that the proposed system is developed analytically and the processing 

are modeled mathematically. The functions implemented in the system, such as the 2D histogram 

modulation or the gray level thresholding for the mask generation, are adaptive to the statistical 

image features of individual patient cases. Very little tuning is needed. Thus, users can be applied 

it easily, without "trial and error". 
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3.5 Summary 

The challenges in brain tumor detection, like in all kinds of object detections, are often related to 

the extremely low density of object information in the input data and the enormous variations of 

the objects. In this chapter, we have proposed a system that predicts the gray level distributions of 

tumor pixels, i.e., pixels in the tumor regions, of a 3D MRI brain scan of Flair modality, and detects 

precisely tumor locations in the 3D scan. We have proposed (i) 2D histogram presentations of the 

data in the axial, coronal and sagittal slice series of a 3D image, comprehending the distributions 

of the gray levels of the pixels with their locations, (ii) extraction of brain tumor information by 

exploiting the left-right asymmetry of a brain structure, (iii) histogram modulation, automatically 

on a case-by-case basis, to enhance the structural asymmetry related to the presence of tumors and 

to attenuate that due to non-pathological causes, (iv) step-by-step prediction of tumor pixel 

distribution, accompanied by step-by-step cropping out the regions of non-interest to improve the 

signal density, and (v) tumor mask generation process consisting of a simple thresholding, based 

on the prediction results, and a low-pass filtering for morphological purpose. 

The proposed system does not need training. It has been tested extensively with the data of 

more than one thousand patient cases in BraTS 2018~2021 datasets. The test results demonstrate 

that, with the input data of only Flair modality, the predicted 2D histograms have a high degree of 

similarity with respect to the true ones. Also, the tumor detection performed by the system is also 

of high-quality. Moreover, as the system parameters are determined without randomness, its 

performance is completely reproduceable. It is worth mentioning that the good performance of the 

proposed system has been achieved at an extremely low computation cost that may be negligible 

with respect to those of other state-of-the-art systems. 

Though the system has been designed to process the data of MRI brain scanning, it can also be 

used if the 3D data are from CT scanning. The design principle can also be applied to develop 

systems detecting 3D objects in a symmetrical environment. 

Needless to say, the proposed system is not perfect. As it takes the input data produced by MRI 

Flair scanning to minimize the data volume in the process, its ability to identify some types of 

tumor regions, in particular in some low-grade glioma (LGG) cases, may be limited.  Also, like 

many other exiting systems, the performance may be reduced if the input images are of poor quality. 

The future work can be in 2 avenues. The first avenue is the input data pre-processing to improve 

the image quality. The other avenue is to incorporate CNN and knowledge-based processing 

blocks to further improve the processing quality. In this case, there will be new challenges of 

limitation of data samples and the risk of randomness in system training. 
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Chapter 4   

 

CNN for Multi-Class Brain Tumor Segmentation 

The objective of the research work presented in this chapter is to develop a CNN system. It receives 

a set of four 3D images, acquired by MRI brain scanning of the 4 modalities, i.e., Flair, T2, T1 and 

T1c. It is expected to deliver a tumor mask indicating 3 different intra-tumoral regions, namely 

ED, NET, and ET, inside the whole tumor (WT) region, with respect to the background. As 

mentioned previously, it is to segment, with pixel-wise precision, the 3 intra-tumoral regions from 

the input, which is often done by classifying each of the pixels into one of the 4 classes. Hence, 

this segmentation problem is, in fact, a complex multi-level classification problem. 

To design a CNN system handling such a complex classification problem, we propose a 

particular design methodology. It aims to achieve a high computational efficiency by optimization 

of both computing structures and training processes. 

This chapter are organized as follows. In Subchapter 4.1, we present the challenge in designing 

& training convolutional neural networks, and present the proposed methodology. The detailed 

design of the computing structure and training process of the brain tumor segmentation system is 

found in Subchapter 4.2.  Subchapter 4.3 is dedicated to the performance evaluation of the system. 

The work is summarized in Subchapter 4.4. 

4.1 CNN Problem Statement and Design Methodology 

A CNN can have a large number of filtering kernels and layers, to perform complex feature 

extraction and classification operations. The complexity of the brain tumor segmentation task 

prompts us to take this approach to design our system. One should, however, notice that the 

performance of a CNN is not only related to its computing structure but also its training process, 

as the latter determines the values of the trainable parameters in the structure. A commonly used 

backpropagation-based training method enables an effective parameter update, but not necessarily 

results in an optimal state of the system to give the best processing result. Hence, improving the 

training quality is critically important to improve the performance. When the network gets deeper 

and wider, and its units are more intricately combined, the backpropagation will be more 

complicated and it will be more difficult to optimize the training processes. 

To improve the training quality, it is reasonable to add more supervision spots in a network so 

that the information captured in hidden layers can be involved in the process of the back 

propagation. To implement this idea, one may note the following 2 challenges. 

• If the ground truth data at a supervised spot of a hidden layer is not available, it is a challenge 

to find an appropriate way to calculate the loss at that spot. 
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• In the training process, the loss generated in the nth layer will effectively involved in updating 

the parameters from the first layer to the nth layer. If there is another loss generated in-between 

and it attempts to interfere the parameter updating differently, the gradient conflict may get 

worse. 

It may not be easy to handle these 2 challenges. Without having to deal with them, the 

methodology proposed here allows to supervise, effectively, at multiple spots in the process of 

generating precise classification results from the 3D brain scan data. It involves the following 

elements.  

• Decomposing a complex task into simpler subtasks and each is performed by a simpler CNN 

that is easy to configurate and to train. 

• Custom-designing the structures of these CNNs to optimize, on one hand, the computation 

efficiency and, on the other hand, the training process. 

• Multiple networks supervised at their respective output spots, instead of multiple supervisions 

in a single network. 

• Emphasizing on a particular performance aspect in designing each of the CNNs, and making 

them complement each other, with a view to solving certain design conflicts (e.g., false positive 

and false negative) and to achieving the best overall performance. 

• Exploring the available data resources to generate reasonable “ground truth” data usable to 

train a network performing a subtask or sub-subtask. 

We have applied this methodology to design the brain tumor segmentation system. The above-

mentioned elements are used to determine the basic frame of the design plan. 

First of all, the task of the pixel classification of the 4 classes is decomposed in 2 steps. In the 

first step, it is decomposed into 3 binary classifications, each of which is to check if a pixel is 

inside the object region or not, as illustrated in Figure 4.1. It should be mentioned that the 

segmentation accuracy of brain tumors is conventionally assessed in 3 categories, i.e., enhancing 

tumor (ET), tumor core (TC) that combines NET and ET regions, and whole tumor (WT) covering 

all the 3 intra-tumoral regions. Hence, the 3 binary classifications are defined as follows. 

• ET vs. outside ET. The ET regions are the object regions. 

• TC vs. non-TC. The object regions cover all the ET and NET regions combined. 

• WT vs. outside all tumor regions. The object regions cover all ED, ET and NET regions 

combined. 
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Figure 4.1 Decomposing the 4-class classification task into 3 binary classification subtasks for WT, TC 

and ET, respectively. 

In the second step, each of the above-mentioned binary classification is decomposed into 2 

sub-functions so that they can be performed, respectively, by 2 separate functional CNN modules, 

instead of single CNN. The sub-functions should be defined in such way that (i) the sub-functions 

can be easily performed by simple modules and (ii) the ground truth data for the module training 

can be obtained from the available data sources.  

The process to segment a tumor region involves usually 2 kinds of operations, feature 

extraction and pixel classification. The features representing different patterns/textures are used (i) 

to locate the object region in the entire input image and (ii) to identify the pixels inside the region. 

In general, the location needs features extracted from a very large neighborhoods, whereas the 

identification needs features of fine and coarse details. Nevertheless, if the object is localized, even 

though in a low resolution, the regions of interest are detected, the pixel identification can be done 

more easily. 

We propose to decompose an image segmentation task into 2: approximately locating the 

object region and then precisely identifying the pixels inside the region. For example, to segment 

a whole tumor (WT) region from a brain image, we use the first CNN module to generate a low-

resolution WT location mask and then another module to produce the final high-resolution WT 

mask, as shown in Figure 4.2. The reasons for this decomposition are as follows. 

• Firstly, one can use a simple series of convolution layers to generate the features specifically 

for the object-locating purpose and to generate low-resolution mask to indicate approximately 

the location in the entire image. Such a straight forward CNN structure can be easily trained. 
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• One can produce very easily, from the ground-truth masks of full-size image, the ground truth 

data of low-resolution location masks to train the first module. 

• The location mask produce by the first module will be used in the second module to enhance 

the signal in the region of interest. The feature extraction in the second module has then only 

one focus: optimizing the pixel classification. There will be less risk of the gradient conflict in 

the training. 

Module 1

for location

Flair T2

T1 T1c

Module 2

for tumor 

segmentation

Low-resolution 

location mask

Precise tumor mask

 

Figure 4.2 Decomposing an image segmentation task into 2, for coarse location and for precise 

classification, respectively. 

In summary, by the decomposition in the first step, the task of classifying the pixels of a 3D 

brain image in 4 classes is turned into 3 binary classifications.  The decomposition in the second 

step makes it possible to perform each binary classification by 2 CNN modules trained separately. 

In each of the modules, the features extracted from its input data are made to serve exclusively for 

one purpose, minimizing the risk of gradient conflict in the training process. The detailed design 

of the CNN structures is described in the following subchapter. 

4.2 Detailed Design 

The proposed CNN system consists of 3 subsystems to perform the 3 binary classifications to 

identify the pixels in WT, TC and ET regions, respectively.  Each subsystem can be configured 

and trained independently so that the operations in each of them can be optimized to deal with the 

particular challenges in detecting its designated object regions. 

As each binary classification is further decomposed into 2 subfunctions, in each of the 3 

subsystems, there are 2 CNN modules that can also be configured and trained independently. They 

operate in 2 phases. In Phase 1, Module 1 is used to generate, from brain image data acquired with 

the four modalities, a low-resolution mask to locate approximately the object region. In Phase 2, 

the same image data, together with the low-resolution mask, are processed by Module 2 to produce 

a precise mask delineating the object region in the brain image in its original resolution. 
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The four 3D brain images of the four MRI modalities are pre-processed in 2 steps before 

applied to each of the 2 modules. The first step is to remove tumor-free axial slices, using the 

method presented in Chapter 3, reducing approximately 30% ~ 50% of the data volume and 

increasing the density of the object information. The data in each of the 4 images are then 

normalized with the mean and standard deviation calculated only from the pixels inside the brain 

region. 

Module 1 is a simple series of 9 convolution layers, as shown in Figure 4.3. The processing is 

mainly on 2D maps for the sake of simplicity. To collect information of consecutive slices, each 

input sample has series of 5 consecutive slices, and 2 layers of 3D convolution (without padding) 

convert series of slices into 2D data maps. To gather feature information from a large neighborhood, 

down-sampling and convolution operations with dilated kernels (d=2) are employed. As it focuses 

on the object location in a low-resolution image, instead of object details, the decrease of the image 

resolution caused by the down-samplings is tolerated. 

3×3 standard 

convolution

Batch 

normalization
ReLU

3×3×3 standard 

convolution, 

no padding

3×3 standard convolution,

stride = 2

96×112 48×56

32

5×196×228

Flair

192×224

3232 32 1
Sigmoid

dilation=2

32 32

5 consecutive slices

48×56

dilation=2 dilation=2
T2

T1

T1c

Low-resolution 

location mask

4

3×194×226

 

Figure 4.3 Detailed CNN structure of Module 1 for low-resolution location mask generation. 

To train Module 1, one can obtain the ground truth data of the location mask easily.  The full-

size tumor masks can be generated from the brain images with the tumor labels, and one can 

generate the low-resolution location masks by simply down-sampling the tumor masks. 

Module 2 is expected to identify all the pixels in the designated object region to produce a 

high-resolution mask. The block diagram is shown in Figure 4.4. Its input, i.e., the pre-processed 

brain image data acquired with the 4 MRI modalities, provides the module with ample image 

features all over the space. The location mask helps to locate approximately the regions of interest 

so that the data processing for the feature extraction and pixel classification can be more focused. 

On one hand, the feature extraction is focused on a sole purpose, i.e., getting features useful only 

for the pixel classification, no more need for object location, reducing the risk of the gradient 

conflict in the training process. On the other hand, the pixel classification is focused on the feature 

data around and inside the object regions, as they are highlighted by means of the location mask. 

It should be noted that, to recognize every pixel in the object region, Module 2 needs the feature 

data representing image details “seen” in different receptive fields. Thus, the module involves 3 

branches to extract, respectively, high-frequency (HF), mid-frequency (MF) and low-frequency 

(LF) features, as shown in the block diagram illustrated in Figure 4.4. 
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Figure 4.4 Block diagram of Module 2 of the CNN. 

The detailed structure of Module 2 is illustrated in Figure 4.5. The particular elements are as 

follows. 

• In the first two layers, 3D convolutions are employed to collect information of consecutive 

slices, which is similar to Module 1. But the module trainings will make them different to serve 

their respective purposes. 

• Average pooling operations are used to remove image details and reduce the resolution 

gradually, in view of extracting features in different levels of receptive field and applying the 

low-resolution location mask. 

• Three feature extraction units are employed and each consists of 3 convolution layers. It should 

be mentioned that there is neither BN nor ReLU applied to the output data of the third layer. 

• The low-frequency feature extraction is performed on low-resolution data maps, minimizing 

the computation volume, while generating the feature maps of the same resolution as that of 

the location mask produced by Module 1. 

• Two layers of convolutions are applied to the location mask to generate data maps compatible 

to the LF feature maps. 

• Simple bilinear interpolations are used to raise the image resolution. When the map size is 

expanded steps by step, more and more detailed image data, represented by MF and HF 

features, are added successively to get involved in the pixel classification operations. 



56 

 

3×3 standard 

convolution

Bilinear 

upsampling
+ Addition

Batch 

normalization
ReLU

3×3×3 standard 

convolution, 

no padding

Average  

pooling

Flair

Sigmoid +++

96×112 48×56

32

32

96×112

32

192×224

1

32

32 32 32

5×196×228

5 consecutive slices

192×224

3232

32

192×224192×224

32 32 32

32

48×56

32

48×56

3×194×226

4

T2

T1

T1c

1 1

Low-resolution 

location mask

Precise tumor 

mask

 

Figure 4.5 Detailed CNN structure of Module 2 for precise pixel-wise classification. 

It is understood that neither of the 2 modules can be perfect. The location masks produced by 

Module 1 can not be identical to the true ones. If a segment of the true object region is not covered 

by the mask, the pixels in this segment will not be highlighted in the processing of Module 2 and 

can then be irrecoverably missed out on the classification, causing more false negatives (FN). 

Contrarily, the mask covering too much may cause more false positives (FP). In the design of 

Module 2, one has also to deal with the FN-FP conflict. 

The strategy to achieve the best overall outcome is to let Module 1 produce location masks of 

good coverage, minimizing the false negatives, and Module 2 focus on minimizing the false 

positives. Though this strategy may lead to producing a location mask overcovering the object 

location, the filtering functions in Module 2 can be enhanced to better distinguish the pixels outside 

the object region from those inside it. An example of applying this strategy is detailed in 

Subchapter 4.3.2. 

This strategy can be implemented by training the 2 modules separately with different emphases. 

The loss calculation in each of the 2 training processes involves multiple error components.  For 

Module 1, the component related to the error of false negatives is more weighted than that of false 

positives. For Module 2, the loss value is made to be more sensitive to the error of false positives. 

By doing so, the 2 modules are made to complement each other to yield, overall, a good result. 

In this design, for the sake of simplicity, the 3 subsystems, segmenting WT, TC and ET regions, 

respectively, are configurated identically, though they can have different structures if needed. The 

configuration details of Modules 1 and 2 are presented in Table 4.1 and Table 4.2, respectively. 

Each subsystem for ET, TC or WT segmentation has 249,474 trainable parameters and the total 

number for the complete system is 748,422, which is a tiny fraction of what one can find in a 

modest CNN system for the same task.  
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Table 4.1 Details of the CNN configuration of Module 1 

Layer Kernel size 
# input 

channels 

# output 

channels 

Input 

dimension 

Output 

dimension 
# parameters 

1 3×3×3 4 32 5×196×228 3×194×226 3,552 

2 3×3×3 32 32 3×194×226 192×224 27,744 

3* 3×3 32 32 192×224 192×224 9,312 

4** 3×3 32 32 192×224 96×112 9,248 

5* 3×3 32 32 96×112 96×112 9,312 

6** 3×3 32 32 96×112 48×56 9,248 

7* 3×3 32 32 48×56 48×56 9,312 

8 3×3 32 32 48×56 48×56 9,312 

9 3×3 32 1 48×56 48×56 289 

Total 87,329 

* Convolution with dilated kernels (d=2) 

** Down-sampling by convolution (stride=2) 

 

Table 4.2 Details of the CNN configuration of Module 2 

Block 
Kernel 

size 

# input 

channels 

# output 

channels 

Input 

dimension 

Output 

dimension 

# 

parameters 

First 3D Conv. layer 3×3×3 4 32 5×196×228 3×194×226 3,552 

Second 3D Conv. layer 3×3×3 32 32 3×194×226 192×224 27,744 

Low-frequency  

feature extraction 
3×3 32 32 48×56 48×56 27,872 

Mid-frequency  

feature extraction 
3×3 32 32 96×112 96×112 27,872 

High-frequency  

feature extraction 
3×3 32 32 192×224 192×224 27,872 

2 layers performed to 

locational mask 
3×3 1 32 48×56 48×56 9,696 

Conv. &  

bilinear up-sampling 
3×3 32 32 48×56 96×112 9,312 

Conv. &  

bilinear up-sampling 
3×3 32 32 96×112 192×224 9,312 

3 layers to generated 

final mask 
3×3 32 1 192×224 192×224 18,913 

Total 162,145 
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There is a 2-step post-processing applied to the masks delivered by the 3 CNN subsystems 

designated for ET and TC, and WT segmentation. 

• The first step is to generate a single multi-class mask delineating 4 different regions, i.e., 3 

intra-tumoral regions, namely ED, NET, and ET, and the background. As mentioned 

previously, a TC region covers both NET and ET regions, whereas a WT region includes ED 

and TC. Thus, the 3 intra-tumoral regions are specified by the pixel values produced by the 3 

subsystems. There could be a small number of cases of classification conflict. For example, at 

a pixel position, the subsystems for TC tend to identify it in the TC region by giving a high 

probability value, whereas the subsystem for WT gives a low probability value. In such a case, 

the final decision is made, by means of the Euclidean distance calculation, based on the 3 

probability values given by the 3 subsystems. 

• The second step is to remove isolated regions. It can be a tumoral region surrounded by the 

background, or a small piece of background inside a tumoral region. Each of them consists of 

a very small number of pixels, and are too small to be real. Thus, such pixels are more likely 

misclassified and to be removed. In this design, a morphological operation, by means of low-

pass filtering, is done to remove such isolated regions. 

With respect to the 2 CNN modules, the computation volume of the post processing unit is 

negligible. The performance evaluation of the proposed system is presented in the next subchapter. 

4.3 Performance Evaluation 

The proposed system has been trained and test with the patient cases of BraTS datasets. In this 

subchapter, the details of the datasets, the training parameters and loss functions are described. 

The test results and performance comparison are also presented. 

4.3.1 Dataset and Performance Metrics 

BraTS dataset has been used in developing CNN systems for brain tumor detections. This dataset 

has been evolved over the past years. In each version, there are 2 sets of samples, one for training 

and the other exclusively for validation. As the patient cases in the latter are not labelled, the 

quality of the output masks needs to be assessed by online platforms [57]. 

Consider that many brain tumor segmentation systems reported in recent publications were 

tested with the validation sets of earlier versions, in order to make a fair comparison with those 

system, the proposed system has also been trained and tested on the datasets of BraTS2021 [43], 

BraTS2020 [53] and BraTS2019 [52]. The numbers of the samples in these samples are found in 

Table 4.3. 

The 3 scores concerning the processing quality of the system are the Dice, Sensitivity and false 

discovery rate (FDR). Their general definitions are presented in Subchapter 3.4.3.1, in which the 

performance metrics of whole tumor detection are described. The system presented in this chapter 
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performs the segmentations of the 3 kinds of tumor regions, namely WT, TC and ET. In each of 

the 3 segmentations, the processing results are measured to generate the 3 scores. 

The computation complexity of the system is also part of the performance metrics. It is 

measured in the number of trainable parameters and the number of multiply-accumulate (MAC) 

operations required to complete the test of a patient case, i.e., generating the WT, TC and ET masks 

from the images of the 4 MRI modalities. The processing time, with a particular computing 

hardware system, is also part of the performance metrics. 

Table 4.3 Number of patient cases in different versions of BraTS dataset 

 
BraTS2023/ 

BraTS2021 
BraTS2020 BraTS2019 

Training set 1251 369 335 

Validation set (online assessment) 219 125 125 

 

4.3.2 Training and Implementation Details 

The proposed system has three 2-module subsystems, and each module is independently trained. 

The filtering parameters of each of the modules are determined in a training process. Applying the 

training strategy described in Subchapter 4.2 is part of the implementation of the design 

methodology in the system design. The following training hyperparameters are commonly used to 

train all the modules. 

• The number of data samples in each batch is 128. Each data sample is a series of 5 consecutive 

axial slices. 

• The optimizer is chosen to be Adaptive Moment Estimation (ADAM) [58]. 

• Each module is trained in 50 epochs. 

• The learning rate is variable cosine decay [59], changing from 10-3 ~ 10-6 over the 50 epochs. 

• The trainable parameters are randomly initialized using a uniform distribution [60]. 

As mentioned previously, for each subsystem to deliver a good classification result, the training 

strategy is to train Module 1 sensitive to the error of false negatives (FN) and Module 2 to that of 

false positives (FP). This strategy can be implemented by means of loss calculations involving 

elements related to the false negatives or false positives. To this end, the two loss functions, loss1 

and loss2 to train the Modul 1 and Module 2, respectively, are defined as follows. 

𝑙𝑜𝑠𝑠1 = 𝑙𝑜𝑠𝑠𝐷𝑖𝑐𝑒 + 𝑤1 ∙ 𝑙𝑜𝑠𝑠𝐹𝑁                                         (16) 

𝑙𝑜𝑠𝑠2 = 𝑙𝑜𝑠𝑠𝐷𝑖𝑐𝑒 + 𝑤2 ∙ 𝑙𝑜𝑠𝑠𝐹𝑃                                         (17) 

where w1 and w2 are weight coefficients. In each of the loss function, lossDice is the basic loss 

component and the other component is added to place more weight on FP or FN errors. We define 

lossFN and lossFP as follows. 
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𝑙𝑜𝑠𝑠𝐹𝑁 =
∑ −𝑦𝑛∙ln(�̂�𝑛)
𝑁
𝑛=1

𝜀⁡+⁡∑ 𝑦𝑛
𝑁
𝑛=1

                                                   (18) 

𝑙𝑜𝑠𝑠𝐹𝑃 =
∑ −(1−𝑦𝑛)∙ln(1−�̂�𝑛)
𝑁
𝑛=1

𝜀⁡+⁡∑ (1−𝑦𝑛)
𝑁
𝑛=1

                                          (19) 

where N is the number of pixels in a mini-batch, while yn and �̂�𝑛 represent, respectively, the true 

label and the predicted probability value of the nth pixel, and ε is a small constant to avoid division 

by zero. 

The values of w1 and w2 can be determined independently for the 3 subsystems. The values 

chosen in our experiments are found in Table 4.4. 

Table 4.4 Weight values of loss function for the two CNN modules 

 WT TC ET 

w1 0.2 1.0 0.1 

w2 0.1 0.2 0.1 

 

4.3.3 Test Results and Comparison 

The results of the processing quality assessment are presented in Table 4.5. Each experiment, i.e., 

a procedure of initializing, training and then testing, has been repeated 3 times under the exactly 

same conditions. One can see that the proposed system delivers tumor masks of a good quality and 

the data resulting from 3 experiments have very small deviations. In other words, its results are 

almost reproducible. 

Table 4.6 illustrates the main specifications concerning the computing power requirement. It 

includes the measures for computation complexity, training time and inference time. 

• The computation complexity is indicated by 2 numbers: the total number of the trainable 

parameters of the entire system and the total number of multiply-accumulate (MAC) operations 

needed for the system to generate the final mask delineating 3 different tumoral regions. The 

latter is also related to the data volume of the input. In this test, a patient case consists of four 

3D images and each has 240×240×155 pixels. 

• The training time is related to the batch size, the total number of training samples, the data 

volume per sample, the number of epochs, the computing system used for the training, etc. As 

the modules in the proposed system are trained independently, in Table 4.6, their training times 

are listed. 

• The inference time is defined as the time required for a trained system to complete all the data 

processing for a patient case. It is highly dependent on the type of computing hardware 

employed. Moreover, as the proposed system has 3 subsystems that can operate concurrently 

or sequentially, the inference time also depends on the way that the system operates. The 

inference time presented in the table is in case of the subsystems operating sequentially on an 

ordinary laptop with GPU NVIDIA A3000 and CPU i7-11800H 2.3 GHz. 
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Table 4.5 Test results on BraTS validation sets, assessed by online platforms. 

Dataset  
Dice Sensitivity FDR 

ET WT TC ET WT TC ET WT TC 

BraTS2023/ 

BraTS2021 

Training set: 1251 samples 

Validation set: 219 samples 

Expt. 1 0.825 0.918 0.840 0.826 0.925 0.879 0.176 0.090 0.195 

Expt. 2 0.827 0.918 0.834 0.829 0.927 0.879 0.175 0.091 0.207 

Expt. 3 0.830 0.918 0.841 0.830 0.926 0.884 0.170 0.090 0.199 

Mean 0.827 0.918 0.838 0.828 0.926 0.881 0.174 0.090 0.200 

BraTS2020 

Training set: 369 samples 

Validation set: 125 samples 

Expt. 1 0.763 0.897 0.782 0.761 0.907 0.828 0.235 0.112 0.259 

Expt. 2 0.773 0.899 0.778 0.773 0.913 0.833 0.226 0.115 0.271 

Expt. 3 0.770 0.896 0.773 0.770 0.910 0.831 0.231 0.118 0.277 

Mean 0.769 0.897 0.778 0.768 0.910 0.831 0.230 0.115 0.269 

BraTS2019 

Training set: 335 samples 

Validation set: 125 samples 

Expt. 1 0.765 0.893 0.769 0.765 0.910 0.828 0.235 0.125 0.281 

Expt. 2 0.771 0.894 0.767 0.770 0.903 0.835 0.227 0.115 0.291 

Expt. 3 0.777 0.893 0.763 0.772 0.907 0.829 0.217 0.121 0.293 

Mean 0.771 0.893 0.767 0.769 0.907 0.831 0.226 0.120 0.288 

 

Table 4.6 Computation cost of the proposed CNN system 

Specifications Values Notes 

Number of trainable parameters 748,422 The total number of the entire system 

Number of MACs per patient case 1,956 G Input data: 4 MR images, each having 240×240×155 pixels 

Training time  

(1251 samples, 50 epochs) 

Module 1 ≈ 6 h 

Module 2 ≈ 6 h 

Module 1: GPU 1 × NVIDIA A100 (40 GB memory), CPU 16 
cores of AMD EPYC 7413 (Zen 3) @ 2.65 GHz 

Module 2: GPU 2 × NVIDIA A100 (40 GB memory), CPU 16 

cores of AMD EPYC 7413 (Zen 3) @ 2.65 GHz 

Inference time per patient case ≈ 2.5 s 
Laptop with GPU NVIDIA A3000, CPU i7-11800H @ 2.3 GHz, 

3 subsystems operating in series 

 

The performance of the proposed system has also compared with 5 other systems. The criteria 

used to select these systems for comparison are as follows. 

• Using the same input data and performing the same brain tumor segmentation task  

• Published recently in reputed research journals in the topic area 

• Tested on the same BraTS validation sets and the results assessed by the same online platform 

The comparison results are presented in Table 4.7. The data scores are grouped according to 

the versions of BraTS dataset used in the training/testing. One can see that the number of 

parameters of the proposed system is significantly smaller than the others, requiring far less 
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computing power to operate. Its processing quality is, however, among the best reported in 

literature. Hence, it has no doubt a very high computation efficiency. 

It is evident that the proposed system delivers excellent performance with high processing 

quality and low requirement for computing power. Moreover, thanks to its multi-module structure 

and independency of each module in training and testing, one can train the modules one by one 

and operate them one after another. In this way, the minimum computing power required to operate 

the system is related to its largest module, i.e., Module 2 of 162,145 trainable parameters. Hence, 

it can be easily implemented for various applications. 

Table 4.7 Performance comparison  

Dice and Sensitivity scores resulting from the tests on BraTS validation sets 

Datasets Systems 
Number of  

parameters 

Dice Sensitivity 

ET WT TC ET WT TC 

BraTS2019 

Liu et al., 2021 [41] 33.4 M 0.759 0.885 0.851 N.A. N.A. N.A. 

An et al., 2024 [26] 5.8 M + 0.02 M 0.694 0.875 0.763 N.A. N.A. N.A. 

An et al., 2024 [26] 19 M + 0.06 M 0.730 0.887 0.790 N.A. N.A. N.A. 

Liu et al., 2024 [27] 1.90 M 0.771 0.896 0.833 0.780 0.930 0.822 

Proposed 0.75 M 0.771 0.893 0.767 0.769 0.907 0.831 

BraTS2020 

An et al., 2024 [26] 5.8 M + 0.02 M 0.692 0.873 0.776 N.A. N.A. N.A. 

An et al., 2024 [26] 19 M + 0.06 M 0.721 0.888 0.794 N.A. N.A. N.A. 

Liu et al., 2024 [27] 1.90 M 0.778 0.900 0.832 0.791 0.920 0.823 

Proposed 0.75 M 0.769 0.897 0.778 0.768 0.910 0.831 

BraTS2021 

Liang et al., 2022 [39] 20.4 M 0.826 0.926 0.867 N.A. N.A. N.A. 

An et al., 2024 [26] 5.8 M + 0.02 M 0.757 0.884 0.803 N.A. N.A. N.A. 

An et al., 2024 [26] 19 M + 0.06 M 0.782 0.903 0.839 N.A. N.A. N.A. 

Liu et al., 2024 [27] 1.90 M 0.835 0.907 0.889 0.824 0.930 0.895 

Liu and Xia, 2024 [28] 3.65 M 0.787 0.899 0.865 0.848 0.855 0.848 

Proposed 0.75 M 0.827 0.918 0.838 0.828 0.926 0.881 

 

4.4 Summary 

To handle more and more challenging processing tasks, such as brain tumor segmentation, CNN 

systems become more and more complex, requiring more and more computing and data resources. 

In this chapter, we have proposed a CNN design methodology, aiming at develop CNN systems 

of high computation efficiency, and also proposed a CNN system, applying the methodology, for 

high quality brain tumor segmentation. 
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The methodology is to decompose a complex task, step by step, into sub-subtasks processed 

concurrently or sequentially. Each of them can be performed by a simple CNN module that can be 

configurated and trained independently. For the purpose of training the modules, 2 issues can 

determine how the task should be decomposed, or how the subtasks or sub-subtasks are defined. 

One is the feasibility to generate the ground truth data from available datasets, and the other is the 

facility to build a simple CNN module for a particular task. 

The proposed methodology implies a scheme of multi-module CNN system. The particular 

character in this scheme is that each module can be configurated and trained to enhance a particular 

aspect of performance. If the module is designed to have a simple structure and to emphasize on 

one sole issue in its operations, there will be little risk of the gradient conflict in its training process. 

All the modules can made to operate in such a way that they complement each other to yield overall 

the best results. 

Applying the methodology, we propose a CNN system for brain tumor segmentation. It 

consists of 3 subsystems for WT, TC and ET segmentations, respectively. Each subsystem has 2 

simple custom-design modules operating sequentially. The first generates a low-resolution object-

location mask that is used in the second to produce a high-resolution object mask. We have applied 

a particular training strategy that the first module is made to have a good location coverage, 

minimizing the false negatives, and the second module is trained to minimize the false positives.  

Despite that the proposed system consists of 3 subsystems, it has, in total, only 0.75 M trainable 

parameters, an insignificant number with respect to those of other systems performing the same 

function. Moreover, as the modules, of which the largest has only 0.162 M parameters, can be 

trained separately one after another, such a system can be developed without need for high 

computing power resources. 

The proposed CNN system has been trained with the data from different versions of BRATS 

dataset. The test results, on the BRATS validation sets, are among the best reported recently in 

reputed research journals in the topic area, though the system operates with a very tiny fraction of 

the computing power needed by others. The effectiveness of the design methodology and the high 

computation efficiency of the system have been confirmed. 
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Chapter 5   

 

Conclusion 

Brain tumor detection, or brain tumor segmentation in terms of image processing, is a complex 

task and there are CNN systems developed to handle it automatically. To achieve a good 

processing quality, one tends to build complex CNN systems that require a lot of computing power 

to train the systems and to operate them, which may limit their implementations, their performance 

in terms of reliability, and their applications.  

The objective of the work presented in this thesis is to develop brain tumor segmentation 

systems with the emphasis on a high computation efficiency, i.e., achieving a good processing 

quality at a very low computation cost to enable an easy implementation and a wide applicability 

of the systems. To this end, two different methodologies have been proposed, and also applied in 

the development of 2 brain tumor detection systems, respectively. 

In the first part of the work presented in the thesis, we have proposed a design methodology 

that uses conventional knowledge-based models to develop a system capable to detect object 

locations, sizes and shapes in a 3D image. The detection has 2 main operations interleaved each 

other and performed step-by-step:  predicting the gray level distribution of the pixels in the object 

regions and employing the prediction results to identify/remove regions of non-interest. Each 

removal increases the density of the object information in the remaining part of the 3D image, 

improving the prediction and identification/removal in the following step. In the design of the 

system for whole tumor detection, as each input 3D brain image can be sliced into series of axial, 

coronal or sagittal slices, the prediction/identification/removal operations are performed in 3 steps 

to the 3 series of slices, respectively. To comprehend the distributions of the gray levels of the 

pixels with their locations, we have proposed a 2D histogram presentations of the data from each 

of the 3 series. Also, the left-right asymmetry of a brain structure is explored to extract brain tumor 

information and a novel adaptive histogram modulation method is applied to enhance the structural 

asymmetry related to the presence of tumors and to attenuate that due to non-pathological causes. 

The 3-step operations turn an input 3D brain image into a minimum 3D bounding box covering 

the tumor region that is then transformed into a tumor mask by means of simple morphological 

operations. The system has been tested extensively with the samples of more than 1000 patient 

cases. The test results have confirmed the high quality of the prediction of the distributions. The 

average Dice scores of the whole tumor masks is above 80%, which is achieved at a computation 

cost that is completely negligible with respect to those of the other systems for the same task. 

The second part of the work is to develop a new CNN system performing a brain tumor 

segmentation. It needs not only to detect the whole tumor (WT) regions, which the system 

presented in the first part of the thesis does, but also to classify each pixel into 4 classes, namely 

ED, NET, ET and the background. To develop a system for such a complex task, we have proposed 
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a methodology aiming at designing CNN systems for high-computation-efficient image 

segmentation. It is to decompose a complex task into several simple subtasks in such a way that 

each of them can be performed by a simple CNN module configurated and trained independently. 

In this way, one can optimize the use of computing power for processing, on one hand, and 

minimize the gradient conflict in training, on the other hand. For the design of the CNN system, 

the task of classifying each pixel into one of the 4 classes is decomposed into 3 binary 

classifications, each of which is performed in 2 steps: first locating the object region and then 

identifying the pixels in the region. Thus, we have developed 3 CNN subsystems and each consists 

of 2 independent and simple modules. One generates low-resolution location maps and the other 

the final masks delineating its designated tumor regions. The 2 modules are made to complement 

each other to achieve an overall good performance at a low computation cost. The entire CNN 

system has been trained and tested with different versions of BraTS dataset, and its average Dice 

score, obtained on the BraTS2023 validation set, is 82.7% for ET, 91.8% for WT and 83.8% for 

TC, which is among the best reported recently, whereas the system requires only 0.75 M trainable 

parameters, a tiny fraction of the others.  

This research work provides, to the topic area of computer vision for medical image processing, 

with the design methodologies to develop high-quality object detection/segmentation systems. It 

demonstrates that one can choose to use knowledge-based structures to perform a difficult task. 

To do it, the key is to understand the characters/features of the input images and to make good use 

of them, i.e., finding the hidden correlation between the input features and the output data to be 

generated. The advantage of this kind of knowledge-based systems is, obviously, its extremely 

low-computation cost, and little dependency on data resources as no training is needed. More 

importantly, it yields consistent performance and the results are always reproducible. However, 

such a system has its limitation, and may not be able to handle a very complex task, such as multi-

class segmentation with more variations in objects. In this case, the proposed methodology aiming 

at CNN design can be useful. Applying this methodology, we have developed the CNN system of 

multiple independently-trained modules. It demonstrates that a CNN system can be made 

computation-efficient, i.e., good processing quality achieved without complex networks. The keys 

in this design are (i) appropriately decomposing the task and well defining the subtasks that one 

can easily implement in simple and independently-trained CNN modules, (ii) custom-design each 

module and understanding its design constrains, and (iii) using a good training strategy to optimize 

the parameter updating.  

Brain tumor detection is a specific kind of object detections. We will apply the methodologies 

proposed in this thesis to develop systems for other object detection/segmentation tasks. Hopefully, 

our work will have a positive effect in the area of object detection/recognition and let everybody 

pay more attention to the computation efficiency. In this way, even with limited available 

computation and data resources, more developments in designing efficient processing systems can 

be expected in the important area. 
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