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Abstract

Early Layer Optimization

Zahra Karimpour

In deep learning, early layers play a fundamental role in building general and
transferable representations. In this thesis, we demonstrate how improving early
layer features can consistently enhance generalization across diverse training settings.

First, we propose a novel iterative training method called Simulated Annealing in
Early Layers (SEAL), which applies intermittent gradient ascent followed by descent
to the early layers during training. This enables the early layers to escape local
minima and refine their representations over time. Doing so reduces overfitting leading
to state-of-the-art in in-distribution and transfer generalization in iterative training
regime.

Second, we observed poor transfer generalization in greedy learning which we
attribute to the lack of generic information especially in the early layers of the network.
To address this, we utilize CS-KD regularization to encourage information gain in the
early layers. Our results show that this adjustment mitigates the transfer performance
drop typically observed in greedy training, while maintaining in-distribution accuracy.

Finally, we extend our investigation to federated learning, where early layer
divergence due to gradient accumulation across clients can lead to poor representation
learning, even under IID data distributions. We demonstrate that greedy training,
by avoiding end-to-end backpropagation, mitigates divergence in the early layers
and improves overall performance, particularly in challenging scenarios with deeper
models or many clients.

Overall, this thesis highlights the importance of early layer learning in building
models that generalize well, and introduces practical strategies for improving it across
iterative, greedy, and federated learning paradigms.
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Contributions

This thesis is comprised of three papers, each emphasizing importance of proper
optimization of early layer learning in deep neural networks. The individual
contributions for each paper are as follows:

Simulated Annealing in Early Layers (SEAL) This project was accepted
to CVPR 2023 and appears in the proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition [1] (refer to section 3).

This work was a collaborative effort. The initial idea and codebase were developed
by Amir Sarfi. Zahra Karimpour contributed significantly to the implementation
and conceptual development of the method. Muawiz Chaudhary was responsible for
conducting the few-shot learning experiments. Nasir Khalid extended the experiments
to synthetic spiral data and contributed to the analysis of internal representation
learning.

Encouraging Information Gain in Early Layers for Greedy Training. This
work will be submitted to the NeurIPS 2025 Workshop (refer to section 4).

This project was led by Zahra Karimpour, who proposed the main idea,
implemented the method, and conducted the primary experiments. Amir Sarfi
collaborated in shaping the core idea and contributed to the codebase. Bobae Jeon
assisted with the implementation and helped with the experimental setup.

Greedy Federated Learning This work will be submitted to the NeurIPS 2025
Workshop (refer to section 5).

This project was also led by Zahra Karimpour, who proposed the idea,
implemented the method, and carried out the main experiments. Amir Sarfi provided
guidance on the conceptual direction of the work and contributed to the coding.
Bobae supported the implementation and experimental setup.
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Chapter 1

Introduction

1.1 Overview

Deep learning models have achieved remarkable progress, yet the importance of early
layers has not been thoroughly examined. Inefficient early layer representations can
limit a network’s ability to generalize effectively. This thesis addresses this gap
by investigating targeted improvements in the network’s initial layers. The work
is organized into three studies that demonstrate how enhancing early layers can
significantly boost overall performance:

• Simulated Annealing in Early Layers (SEAL): The first study introduces
a novel application of simulated annealing to deep learning. By encouraging
employing a simplified version of simulated annealing in early layers, SEAL
mitigates overfitting especially in prolonged training on relatively small datasets.
Empirical evaluations on ResNet-18 and ResNet-50 demonstrate enhanced
performance in both transfer learning and few-shot tasks, outperforming the
previously established baselines.

• Encouraging Information Gain in Early Layers for Greedy Training:
The second study examines the limitations of traditional greedy training methods
in transfer settings. By selectively using CS-KD for early layers to encourage
generic information gain while applying Cross-Entropy for later layers to promote
task-specific features, we observe remarkable improvements in both transfer and
in-distribution performance.

• Greedy Federated Learning: The third study addresses a challenge in federated
learning where the compound effect of backpropagation causes early layers to
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diverge more than the later layers. We mitigate this by adopting a greedy training
approach that updates layers independently, resulting in significant performance
gains, especially in deeper networks, with more clients, and fewer communication
rounds.

1.2 Outline

This thesis is structured into seven chapters. Chapters 1 and 2 cover the introduction
and background, while Chapters 3, 4, and 5 present the main contributions of the
work. Chapter 6 details the experimental results, and Chapter 7 concludes the study.

Simulated Annealing in Early Layers (SEAL) Recently, a number of iterative
learning methods have been introduced to improve generalization. These typically
rely on training for longer periods of time in exchange for improved generalization.
LLF (later-layer-forgetting) is a state-of-the-art method in this category. It
strengthens learning in early layers by periodically re-initializing the last few layers
of the network. Our principal innovation in this work is to use Simulated annealing
in EArly Layers (SEAL) of the network in place of re-initialization of later layers.
Essentially, later layers go through the normal gradient descent process, while the
early layers go through short stints of gradient ascent followed by gradient descent.
Extensive experiments on the popular Tiny-ImageNet dataset benchmark and a series
of transfer learning and few-shot learning tasks show that we outperform LLF by a
significant margin. We further show that, compared to normal training, LLF features,
although improving on the target task, degrade the transfer learning performance
across all datasets we explored. In comparison, our method outperforms both LLF
and normal training across the same target datasets by a large margin. We also show
that the prediction depth of our method is significantly lower than that of LLF and
normal training, indicating on average better prediction performance (in chapter 3).

Encouraging Information Gain in Early Layers for Greedy Training
Training deep neural networks typically involves end-to-end optimization, which
naturally fosters a hierarchical learning process where early layers capture simple
primitives while higher layers learn complex, class-specific features. Methods that
break this hierarchy, such as LayerCNN, where each layer is optimized independently,
offer more interpretable models and lower computational costs due to a reduced
computational graph. However, while these methods outperform end-to-end training
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in in-distribution settings, our empirical results demonstrate that such decoupling
comes at the expense of transfer performance. To address this issue, we propose a
novel training strategy that encourages information gain in the early layers via class-
wise self-knowledge distillation (CS-KD) regularization, while allowing later layers to
focus on the primary task using a cross-entropy objective. Extensive experiments on
CIFAR-10, CIFAR-100, and Tiny-ImageNet demonstrate that our method improves
the transfer performance of greedy training methods significantly, even surpassing
normal training in some cases, and that employing distinct loss functions for early
and later layers is crucial(in chapter 4).

Greedy Federated Learning Federated learning has emerged as a promising
approach for training a global model across clients while preserving user privacy.
Despite its success, recent findings reveal that deeper neural networks can lead
to inferior performance even when client data is independently and identically
distributed (i.i.d.). These observations suggest that the accumulation of divergence
during backpropagation is a key contributing factor. In this paper, we investigate
the use of greedy layer-wise training at the client level to mitigate this issue. Unlike
traditional end-to-end optimization, greedy learning optimizes each layer individually,
thereby eliminating the propagation of divergence across layers. We examine the
impact of network depth, the number of local training steps per client, and the
number of clients. Our experiments demonstrate that greedy training significantly
outperforms end-to-end training across a variety of settings, especially in scenarios
with deeper networks or more extensive local training, underscoring the potential of
greedy layer-wise training in federated learning (in chapter 5).
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Chapter 2

Background

2.1 Fundamentals of Deep Learning

The reader is assumed to have a basic understanding of deep learning concepts. In
this section, we cover the essential background relevant to the work presented in
this thesis. For more comprehensive information, readers are encouraged to refer to
Goodfellow et al. [7].

Convolutional Neural Networks (CNNs) CNNs are deep neural networks built
by stacking convolutional layers designed to learn features from grid-like data, such as
images [8]. They typically include pooling layers to downsample the data and reduce
computational complexity, and use activation functions to introduce non-linearity.

VGG Networks The VGG network, introduced by Simonyan and Zisserman [9],
is a widely used CNN architecture valued for its simplicity and depth. It is built
by stacking sequential 3x3 convolutional layers with ReLU [10] activations, with
occasional max-pooling layers for downsampling. However, due to their deep and
sequential structure, they suffer from the vanishing gradient problem during end-to-
end training.

ResNets and Residual Blocks ResNets, introduced by He et al. [11], address the
vanishing gradient problem in deep networks. They do this by using residual blocks
that include skip connections, which help gradients flow directly to earlier layers. A
typical residual block can be defined as:

xl+1 = xl + F (xl, Wl) (1)
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Figure 1: Hierarchical feature learning in a convolutional neural network: Early
layers extract generic and low level features while later layers capture class specific
representations.1

Here, xl is the input to the block, and F (xl, Wl) is the transformation applied
within the block, typically involving one or more convolutional layers. We utilize
ResNet and VGG architectures for our experiments in this thesis.

Cross-Entropy Loss and CS-KD Loss The Cross-Entropy (CE) loss is a widely
used objective function for classification tasks. Given a model’s posterior distribution
p(y|x) and the true label distribution q(y), CE loss is defined as:

LCE = −
∑

y

q(y) log p(y|x) (2)

CE explicitly encourages the model to maximize the likelihood of the correct class
while implicitly minimizing incorrect predictions.

Contrastive Self-Knowledge Distillation (CS-KD) loss [12] is a regularization term
added to the CE loss. This technique uses the network’s embedding outputs as soft
targets to prevent the network from becoming overly task-specific by promoting the
learning of more general and transferrable features. We utilize CS-KD as a solution
to enhance the network’s generalization in chapter 4.

Transfer Learning Instead of always starting the training from scratch, transfer
learning leverages pre-trained models that have already learned useful features from
one task, adapting them to a related task (figure 2). This can be done either by

1Image from https://cs.brown.edu/courses/cs143/2017_Spring/proj6a/
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Figure 2: A convolutional network pre-trained on a source dataset (top) and
transferred to a target domain (bottom). The shared convolutional backbone is kept
frozen, while the task-specific classification head is re-initialized and fine-tuned on
the target data2.

freezing the pre-trained network as a fixed feature extractor or by fine-tuning the
model end-to-end on new data [13, 14]. Moreover, transfer learning performance is a
strong indicator of how general and robust the learned features are [14].

The success of transfer learning is largely dependent on how generic or task-specific
learned representations across different layers of a deep network. As established
in prior work [14], early layers in a CNN capture general, low-level features such
as edges and textures, which are largely transferable across tasks. In contrast,
later layers encode high-level, task-specific features that may not generalize well to
different domains. Thus, strength of transfer learning is usually attributed to the
generalizability of the early and mid layers of the network. This key insight forms
the basis of chapter 4. Figure 1 demonstrates how feature extraction differs across
different layers of a convolutional network.

2.2 Simulated Annealing

Simulated Annealing (SA) is an optimization algorithm inspired by the physical
annealing process, where a material is heated and then gradually cooled to achieve
a stable, low-energy state [15]. In the context of optimization, SA is used to escape

2Image from: https://www.researchgate.net/publication/342400905_Real-Time_
Assembly_Operation_Recognition_with_Fog_Computing_and_Transfer_Learning_for_
Human-Centered_Intelligent_Manufacturing
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local optima and explore the search space more effectively. Specifically, the heating
process (gradient-ascent phase) allows escaping from the local minima even at the
cost of transient loss increase, followed by gradual cooling (gradient-descent phase)
towards the global optimum. Inspired by this, we propose a novel training strategy
and show the effectiveness of SA in deep learning 3.

2.3 Iterative Training Methods

Training deep neural networks for a large number of epochs presents significant
challenges, with overfitting being the primary obstacle [7]. Overfitting occurs when
the model memorizes training data instead of learning generalized patterns, leading
to poor performance on unseen data. Overfitting is especially severe when working
with small datasets or prolonged training regimes [4, 16].

To reduce overfitting in long training regimes, iterative training methods have been
introduced. These methods typically dividing training into multiple "generations",
where at the beginning of each generation, the model is slightly perturbed to
encourage further optimization and an escape from the local minima. By preventing
the model from becoming trapped in sharp minima or flat regions of the loss
landscape, iterative training promotes better exploration and generalization [2–4,16,
17].

In chapter 3, we propose Simulated Annealing in Early Layers (SEAL) to improve
generalization in iterative training methods.

2.4 Greedy Layerwise Training

Greedy layerwise training is an alternative to conventional end-to-end backpropa-
gation. Instead of optimizing all network parameters simultaneously, the training
proceeds one layer or block at a time. Each layer is trained independently and then
frozen before moving to the next. This approach reduces computational and memory
demands by limiting the number of parameters involved in each training step and has
been explored for its benefits in interpretability, parallelization, and scalability [18,19].

One of the early motivations for greedy training came from the difficulty of training
deep networks with standard backpropagation, particularly due to the vanishing
gradient problem [11]. Bengio et al. [18] introduced layer-wise pretraining as an
unsupervised method that optimizes each layer independently before a final fine-
tuning step. This idea was later extended into supervised methods like LayerCNN
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[19], where each block is trained with an auxiliary classifier while previous layers
remain fixed, ensuring stable intermediate representations. Greedy training offers
clear advantages: it simplifies training dynamics by reducing inter-layer dependencies,
lowers computational costs by updating fewer parameters at each step, and supports
more modular and parallelizable learning.

In Chapter 4, we demonstrate the limited transfer generalization of Greedy
Training and propose a novel solution to address it.

2.5 Federated Learning

Federated Learning (FL) is a machine learning technique that allows multiple clients
to collaboratively train a shared model without exposing their local data. Unlike
centralized machine learning where all data is processed on a single server, FL keeps
data on local devices and only exchanges model updates. This setup provides privacy
and adapts well to real-world scenarios, such as mobile applications and healthcare,
where privacy is a critical [20–22].

Centralized and Decentralized Architectures In FL, architectures can be
categorized into centralized and decentralized designs. In the centralized FL, a central
server gathers updates from clients, aggregates them (often via weighted averaging),
and redistributes the updated model [20]. Decentralized FL, by contrast, allows
clients to directly communicate with each other, reducing single-point failures but
introducing challenges in synchronization and efficiency [20–23].

Federated Averaging (FedAvg) The FedAvg algorithm [20] is a fundamental
method in FL. In FedAvg, each client trains a model on its local data for several epochs
and then sends its updated parameters to a central server. The server aggregates these
updates typically by computing a weighted average and redistributes the new global
model to the clients. This iterative process reduces communication costs by allowing
multiple local updates per round.

Divergence in Federated Learning In Federated Learning, divergence refers to
discrepancies among client models during training. Such divergence is problematic
because significant differences in client updates can prevent the global model from
converging effectively, leading to degraded overall performance [21,24]. A related issue
is "divergence accumulation." When using end-to-end backpropagation, differences
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among client models can be magnified as gradients are propagated backward through
the network. This effect is especially harmful to early layers, which are critical for
learning robust, general features. As divergence accumulates, the global model may
fail to capture consistent and transferable representations, thereby undermining the
benefits of federated training [24].

In Chapter 5, we propose methods to address early layer divergence in FedAvg and
enhance FL performance by employing greedy training to mitigate client divergence
observed with end-to-end gradient descent.
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Chapter 3

Simulated Annealing in Early
Layers Leads to Better
Generalization

3.1 Proposed Method

In this work, we split the network into fit Hfit and forgetting hypotheses Hforget, using
a layer threshold, say, L. All weights prior to L are considered in the forgetting
hypothesis Hforget, and weights in layers > L as the fit hypothesis Hfit. This is the
opposite of LLF [16], since their fit and forgetting hypotheses are swapped.

To induce forgetting, we perform gradient ascent on the forgetting hypothesis
Hforget for k epochs. During the gradient ascent phase of the forgetting hypothesis
Hforget, we train the fit hypothesis Hfit normally (with gradient descent). This can be
categorized under the high-level definition of forgetting that Zhou et al. [16] provide,
in that it drops the training accuracy of the network to completely random. This
is inspired by the simulated annealing algorithm to enhance the optimization of the
network and to introduce a more definitive forgetting mechanism. Our method is
different from the prior methods as they either remove [17,25] or re-initialize [16] [2]
the forgetting hypothesis Hforget (at once) before the first epoch of a new generation.
We set k to 1

4 of total epochs E in the generation.
We adjusted the sign of the weight decay for the layers that perform gradient

ascent; so as to avoid the weights being encouraged to have a higher norm, and
causing the network to diverge. However, we found that even this is not enough to
stop the divergence. We noted that using the same learning rate for the ascending
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phase was the reason for this. Hence we toned down the ascent learning rate using a
factor S:

ηa = S × η (3)

Where η is the learning rate, and ηa is the ascent learning rate. We empirically fix
S = 0.01. We summarize the whole process as follows:

Θe,t+1
forget =

Θe,t
forget + ηa∇J(Θe,t

forget), if e % E < k

Θe,t
forget − η∇J(Θe,t

forget), otherwise
,

Θe,t+1
fit = Θe,t

fit − η∇J(Θe,t
fit )

(4)

Where J(Θ) is the objective function, Θe,t
forget and Θe,t

fit refer to parameters in the
forgetting and fit hypotheses, respectively, and e, t refers to the iteration t during
epoch e. Again, E refers to epochs in each generation and is fixed for all generations.
Figure 3 illustrates this for LLF and our proposed method (SEAL).

Complete implementation details and experimental results are presented in
Section 6.1

12



Chapter 4

Encouraging Information Gain in
Early Layers for Greedy Training

4.1 Introduction

The typical approach to training convolutional neural networks for classification
involves using cross-entropy as the loss function at the end, resulting in a hierarchical
learning process. The early layers of the network learn low- and mid-level
representations, such as shape primitives, while the later layers, which are closer to the
loss function, concentrate on high-level representations that are more relevant to the
classification task. This hierarchical learning strategy allows the network to gradually
acquire more complex features and ultimately make more accurate predictions [26].
Zhao et al. [27] claimed that what matters in transfer learning is the low- and mid-level
representations, and not the high-level, class-specific representations.

Several methods break the hierarchy in neural network learning, either explicitly
or implicitly, by using various training methodologies [1,16,19]. Explicit modification
of the hierarchy involves applying the objective function on multiple layers of the
network instead of just the last layer as in normal training. Belilovsky et al. [19]
proposed LayerCNN, where they optimize each layer to classify the input. Compared
to normal training, this method applies the objective function to every layer, updates
only one layer at a time, and freezes each fully-updated layer before moving on to
the next. This results in strong priors being established from the previous, whereas
normal training produces outputs from near-random priors in the early stages.

Implicit modification of the hierarchy involves making changes to subparts of the
network. For example, Zhou et al. [16] proposed later layer forgetting (LLF), where
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Figure 3: Normal training compared to greedy training. In normal training, the
network is optimized end to end using the loss function that is calculated on the final
layer. In greedy training, the loss function is directly applied to each layer, and only
one layer is updated at a time. The x mark denotes “stop gradient" which prevents
the backpropagation from reaching earlier layers.

later layers are periodically reinitialized, and Sarfi et al. [1] periodically perform
gradient ascent on early layers.

Sarfi et al. [1] demonstrated that implicit frameworks have substantially different
transfer learning behavior than normal training. For instance, LLF has much worse
transfer learning than a network that is trained normally for much fewer epochs.
They further introduced their method, Simulated Annealing in Early Layers (SEAL),
which has better transfer learning than both LLF and normal training.

In this work, we analyze the frameworks that explicitly break the hierarchy of
convolutional networks in transfer learning scenarios, in an attempt to find a training
schema that has both stronger in-distribution and transfer learning performance. We
perform multiple experiments using the popular CIFAR-10, CIFAR-100, and Tiny-
ImageNet datasets. We observe that even though LayerCNN leads to comparable
(and sometimes stronger) distribution performance compared to normal training, it
has a much worse transfer performance.

Tapp [28] suggested that the neural network’s top layers should focus on optimizing
for the task at hand, while the lower layers should prioritize maximizing information
gain. However, in LayerCNN, all layers are optimized for the classification task. To
test whether this is the reason behind the poor transfer performance of LayerCNN,
we modify the objective function of different layers of the network to encourage
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information gain in the early layers of the network and leave the later layers of the
network to focus on the classification task (using cross-entropy). Yun et al. [12]
proposed a regularization technique, namely CS-KD, where they aim to either match
or distill the predictive distribution of deep neural networks across multiple samples
that share the same label. They do so by first sampling an auxiliary batch with the
same labels as the batch of the data at hand and then performing Kullback-Leibler
(KL) divergence on the predicted distribution between the two batches of data (as
the corresponding images have the same labels). To encourage the information gain
in early layers of the network, we make use of the CS-KD regularization, and up to
which layer should use this regularizer is a hyper-parameter that we investigate. We
observe that CS-KD eliminates the gap between normal training and LayerCNN in
transfer learning while having a minor effect on the in-distribution performance. We
also observe that in the transfer setting, it is best to perform CS-KD in the middle
layers of the network rather than all or none of the network.

4.2 Background and Related Work

Iterative training: When training a network for many epochs, its generalization
performance deteriorates. In iterative training methods, after the model well-fits
the data, they perform some operation onto the network that lowers the training
accuracy and makes room for more training. Then, they retrain the network and
repeat this process when the data is well fit. Zhou et al. [16] categorize these methods
as a "forget-and-relearn" mechanism, and propose their own method Later Layer
Forgetting (LLF) where they periodically randomly initialize the later layers of the
network. Sarfi et al. [1] proposed simulated annealing in early layers (SEAL) where
they periodically perform short periods of gradient ascent on the early layers of the
network, imitating simulated annealing. They further show that LLF and SEAL
have a significant impact on the transfer generalization of the network compared to
normal training. We argue that iterative training methods (such as LLF and SEAL)
break the hierarchical learning of the network and the difference in in-distribution and
transfer behavior of these methods compared to normal training is a result of that.
In this paper, we analyze the in-distribution and transfer performance of training
frameworks that explicitly break the hierarchical training of neural networks.

Greedy training: LayerCNN [19] is an example of such method. In this
method, they optimize each layer on the target task separately, freeze the optimized
layers, and use them to serve the upper layers. Compared to normal training, first,

15



each layer is optimized separately which results in less computational and memory
costs as the computation graph becomes smaller. Second, at the beginning of training
in normal training, the input of later layers is completely random as the weights are
randomly initialized. On the other than, in LayerCNN, as they optimize all layers
before going to the new one, the input of higher layers is already optimized and
meaningful. Belilovsky et al. [19] indicated that having normal, end-to-end learning
can make the behavior of intermediate layers hard to interpret. Moreover, it is
challenging to understand the connection between shallow neural networks and deep
neural networks. Lastly, it results in high costs in both computation and memory
resources since it involves end-to-end backpropagation. However, we argue that this
way of training makes all layers of the network very dependent on the task at hand,
and may have negative consequences in transfer learning.

4.3 Proposed Method

Consider a network that consists of k consecutive blocks [B1
ϕB

1
, B2

ϕB
2

, ..., Bk
ϕB

k
], where

the output of each block is the input of the next, and the parameters of a block Bi are
given by ϕB

i . Each block can be any subpart of the network consisting of any number
of layers. In normal cross-entropy training, a single auxiliary block AϕA , typically
consisting of average pooling and a linear layer, is added to the end of the network
that makes the prediction based on the learned features by the network, and the
whole model is trained end-to-end using the cross-entropy loss, and each parameter
update modifies all of the parameters in the network [ϕB

1 , ..., ϕB
k , ϕA]. Belilovsky et

al. [19] argue that such training leads to poor interpretability and high computational
and memory costs.

In LayerCNN [19], the authors propose a new training framework to alleviate
the flaws of normal training. Considering the same network as above, they define
k auxiliary blocks [A1

ϕA
1
, A2

ϕA
2
, ..., Ak

ϕA
k
], where Ai corresponds to block Bi and is

parameterized by ϕA
i . The auxiliary blocks can be thought of as classifiers for the

feature representations of each block. At each instance of time, only the parameters
of the current block and its corresponding auxiliary block are updated. For instance,
At step 1, the network consists of [B1

ϕB
1

, A1
ϕA

1
] where only parameters in [ϕB

1 , ϕA
1 ] are

updated for E epochs. Then, at any other step i, where the goal is to update the ith
block, all of the blocks prior to this target block are frozen, and only the parameters
in [ϕB

i , ϕA
i ] are optimized for the same number of epochs E. This means that when

a layer is optimized, it will not get changed during the training, and at each step
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of time, much fewer parameters are updated and stored in the computational graph,
rendering it faster and more memory efficient. Furthermore, all layers are performing
classification on their own, and thus interpretability of intermediate layers is much
improved. The comparison between normal training and LayerCNN is illustrated in
figure 3.

We argue that local losses (LayerCNN) inject class-specific information into all
layers of the network, weakening the low- and mid-level representations. Thus, we
hypothesize that their transfer learning performance may be weaker than normal
training. To test our hypothesis, we compare the transfer learning performance of
LayerCNN to that of Normal training in tables 17 and 16, where we observe that the
transfer performance of LayerCNN is far worse than that of normal training.

Tapp [28] argues that it is best to encourage the information gain in the early
layers of the network, while only specializing the later layers of the network for the
task at hand. To enhance the information gain of the early layers, we apply the CS-
KD regularization [12] up to a given layer threshold L (inclusive). Therefore, early
layers of the network [B1

ϕB
1

, ..., BL
ϕB

L
] are updated using the cross-entropy loss function

with CS-KD regularizer, while the rest of the networks [BL+1
ϕB

L+1
, ..., Bk

ϕB
k

] are optimized
using only the cross-entropy loss. Note that as this regularization is added to the
normal loss, the loss becomes much larger than that of normal cross-entropy, leading
to divergence of the network. Therefore, when this regularizer is used, we multiply the
learning rate by 1/10 to take the increase of the loss into account. We observe that
just doing so eliminates the gap between the transfer performance of greedy training
and normal training while having minimal impact on the in-distribution performance
(tables 17 and 16). In the future, we wish to investigate other loss functions that aim
at solely improving the information gain for the early layers.

Section 6.2 provides implementation details and experimental results are
presented.
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Chapter 5

Greedy Federated Learning

5.1 Introduction

Federated learning is a promising paradigm for training a global model across multiple
clients while preserving user privacy [20,21]. This approach has achieved great success
in a variety of applications [20–22]. However, recent work by Wang et al. [24] showed
that federated learning with deeper neural networks can suffer from a performance
decline. Their study indicates that differences between client models (divergence) tend
to accumulate during backpropagation. More specifically, at each layer the gradient
is influenced both by the error signal from the next layer and by variations in the
local input data. As these discrepancies build up layer by layer, deeper networks
experience a compounded effect, ultimately leading to degraded performance.

Given these observations, we propose adopting greedy layer-wise training in
federated learning. Traditional training typically relies on end-to-end optimization,
where all layers are updated based on the objective function computed from the final
output [11, 29, 30]. In contrast, greedy learning breaks this end-to-end training by
optimizing each layer individually [18, 19, 31]. For example, in LayerCNN [19], the
objective is computed at every layer, and only one layer is updated at a time. We
hypothesize that isolating the training of each layer can reduce early layer divergence
by limiting the propagation of error signals between layers, thereby preventing the
accumulation of discrepancies.

We evaluate both greedy learning and classical end-to-end training within
federated settings under varying conditions such as network depth, the number
of local training iterations, and the number of clients. Our experiments reveal
that as the network deepens, when clients perform more local iterations prior to
communication, and as the number of clients increases, end-to-end training suffers
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from amplified early layer divergence, leading to significantly worse performance. In
contrast, greedy training proves to be much more robust under these conditions,
consistently outperforming the baselines (see Table 18).

5.2 Background and Related Work

Impact of deeper neural networks in federated learning: In recent federated
learning studies, the emphasis has been primarily on shallow networks. However,
Wang et al. [24] shed light on the adverse effects of deeper networks on federated
learning performance. Within the federated learning setting, deeper networks
often lead to a decline in performance, even when client data is independently
and identically distributed (i.i.d.). Their work illustrates that deep layers exhibit
increasing and non-converging divergences. Notably, their findings indicate that
backpropagation results in the accumulation of divergences, consequently causing a
deterioration in performance in deeper networks due to a longer chain of accumulation.
Wang et al. also propose guidelines to enhance federated learning performance
in deeper networks, emphasizing the importance of strategic model architectures
and enhanced data preprocessing strategies. They successfully demonstrate the
relationship between parameter divergence and architecture, offering valuable insights
and guidelines to improve the performance of federated learning with deeper neural
networks. However, there is still potential for further exploration with greedy learning.

Greedy learning: The conventional approach to training convolutional neural
networks (CNNs) in classification tasks involves the application of a single loss
function, establishing a hierarchical learning paradigm. Explicitly altering this
hierarchy requires implementing the objective function across multiple layers of the
network, deviating from the standard practice of exclusive application at the last
layer. LayerCNN, as proposed by Belilovsky et al. [19], introduces a unique strategy
for optimizing each layer for input classification. Unlike regular training, LayerCNN
applies the objective function to every layer, updating one layer at a time and freezing
each fully-updated layer before proceeding. The distinctive feature of LayerCNN,
where gradient updates come exclusively from the preceding layer, motivates exploring
its application in federated learning.

5.3 Proposed Method
Local model training In a federated learning setting, each client iteratively
updates its local parameters using distributed data over multiple epochs. The
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local models are parameterized as [W1, ..., Wn], where n is the number of clients.
Subsequently, the server aggregates these local model parameters to form a global
model Wg. This iterative process spans multiple communication rounds.

For local parameter updates on clients, we compare the performance of greedy
learning with normal learning. In the conventional training scenario, the output of
the preceding layer is forwarded to the subsequent layer. Once the final prediction
is obtained, the global loss is backpropagated through every layer. Now, consider a
CNN block B composed of multiple layers. The network consists of a sequence of
k consecutive blocks [B1

ϕB
1

, B2
ϕB

2
, ..., Bk

ϕB
k

], where ϕB
k denotes the parameters of block

Bk. At the end of the sequence, an auxiliary block AϕA with average pooling and
a fully-connected layer is added. The entire network passes through end-to-end
training using cross-entropy loss, optimizing all parameters for improved predictive
performance. We argue that such training leads to more challenging convergence due
to the accumulation of divergence.

In greedy learning, the implementation of LayerCNN [19] is applied. While
utilizing the same network architecture as in normal learning, instead of adding a
single auxiliary block solely at the end of the entire network, an auxiliary block is
attached to each CNN block. This results in the definition of k auxiliary blocks
[A1

ϕA
1
, A2

ϕA
2
, ..., Ak

ϕA
k
], where Ai corresponds to block Bi and is parameterized by ϕA

i .
The addition of an auxiliary block at the end of each block allows us to leverage the
classifier output of each block, enabling the updating of parameters one block at a
time. The pair of blocks [Bi−1

ϕB
i−1

, Ai−1
ϕA

i−1
], is updated for E epochs before moving on to

the ith pair. Importantly, as the training progresses to subsequent pairs of blocks,
the weights of previously trained blocks are frozen. This means that the parameters
of earlier blocks are no longer subject to updates during the training of subsequent
pairs. Compared to the normal end-to-end training, far fewer parameters are updated
from a shallower depth at each training step.

Federated averaging We employ FedAvg [32] for aggregation, a widely used
baseline. Following independent local training by each client, the updated local
model parameters are transmitted to the server for aggregation. The central server
accumulates model updates from all participating clients and aggregates them into
a global model using a straightforward averaging method. Formally, the updated
global model parameter Wg, is calculated as the average of corresponding parameters
from all clients: Wg = 1

m

∑m
i=1 Wi, where Wi is the model parameter update from the

ith client, and m is a fraction of the total number of clients (the fraction is always
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set to 0.1). Subsequently, the updated global model Wg is distributed to all clients,
initiating the next round of local training.

We propose that the challenge lies in the conventional backpropagation training
within federated learning context, that the backpropagation signal given to early
layers is weak, resulting in divergence. To test our hypothesis, we adopt a greedy
training approach using LayerCNN for each client. This strategy ensures that every
network update originates from a shallow backpropagation signal. If our hypothesis
holds true, the greedy training is expected to mitigate divergence and yield improved
performance, particularly in scenarios prone to divergence, such as those involving a
larger number of clients and epochs per client.

Implementation details and experimental results can be found in Section 6.3.
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Chapter 6

Experimental Results

6.1 SEAL

6.1.1 Implementation Details

We use Tiny-ImageNet [33] to train models and then evaluate on both the Tiny-
ImageNet test set and a wide set of downstream transfer learning tasks, including
popular few shot learning benchmarks. Following LLF, we use ResNet50 and train
using SGD optimizer with a momentum of 0.9 and weight decay of 5e−4. We train
G = 10 generations for E = 160 epochs using a batch size of 32. As in LLF, we
use cross entropy loss with label-smoothing [34,35] with α = 0.1. We also use cosine
learning rate decay [36] with an initial learning rate of 0.01. For data augmentations,
we perform horizontal flip and random crop with a padding of 4. We use layer
threshold L = 23 for both LLF and our method (the third block in ResNet50). This
means that in LLF, the first two blocks are considered the fit hypothesis Hfit, while
the fit hypothesis in our method is the last two blocks. In all experiments, normal
training refers to G × E epochs of training with the same optimization settings.

For our few shot learning evaluation, we evaluated our models in an episodic
fashion. Each episode has a train set of 5 classes with K examples each (5-way K-
shot) and a test set with 15 examples for each class. These sets are sampled from
a target dataset. Models are fine tuned on the train set and then used to produce
predictions on the test set. The accuracies are reported over 600 episodes. Cross
Domain Few Shot Learning Benchmark (CD-FSL) [37] was selected as the dataset for
the task, which includes data from four different data sets, namely CropDiseases [38],
EuroSAT [39], ISIC2018 [40,41], and ChestX [42].

Overall we compare our method with the following three approaches:
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Method Tiny-ImageNet Flower CUB Aircraft MIT Dogs

Normal 54.37 34.31 6.49 6.24 25.67 8.99
Normal (long) 49.27 26.96 8.07 6.30 24.85 11.53

LLF 56.92 22.84 5.33 4.65 23.8 8.69
SEAL (Ours) 59.22 45.68 8.49 9.81 35.37 12.61

Table 1: Transfer learning accuracy of models trained on tiny-imagenet, fine tuned
on other datasets using linear probe. Normal, and Normal (long) refer to G = 1 and
G = 10 generations of training, respectively. LLF and SEAL were trained for G = 10
generations. Transfer accuracy of LLF after 1, 600 epochs is significantly lower than
normal training with both 160 and 1, 600 epochs; our method after 1, 600 epochs
surpasses normal training by a large margin. This demonstrates that our method
learns much more generalizable features compared to Normal training and LLF.

Normal denotes the standard training with 160 epochs (corresponding to G = 1
generations under the conventions of iterative training).
Normal (long) refers to training the model with the standard settings for 1, 600
epochs (corresponding to G = 10 generations without any forgetting).
LLF refers to fortuitous forgetting [16] where at the beginning of each generation the
later layers of the network are re-initialized.
SEAL refers to our proposal which performs a gradient ascent and subsequent descent
phase during a generation.

Generation Normal LLF Ours

Gen=1 54.37 - -
Gen=3 51.16 56.12 58.25
Gen=10 49.27 56.92 59.22

Table 2: Comparison of our method with normal training and LLF on Tiny-ImageNet.
Please note that the behavior of the first generation for all methods is the same. We
significantly outperform standard long training and LLF.

Datasets Tiny-ImageNet consists of 200 classes and has 100, 000 training and
10, 000 validation images selected from the ImageNet dataset. These images are
downsized to 64x64 colored images. For our transfer learning evaluations we use the
natural image datasets Flower, CUB, Aircraft, MIT, and Stanford Dogs, the statistics
of these datasets are provided in Table 13.
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num_classes Train Valid Test Total
Flower [43] 102 1,020 1,020 6,149 8,189
CUB [44] 200 5,994 N/A 5,794 11,788
Aircraft [45] 100 3,334 3333 3,333 10,000
MIT [46] 67 5,360 N/A 1,340 6,700
Dogs [47] 120 12,000 N/A 8,580 20,580
CIFAR-100 [48] 100 50,000 N/A 10,000 60,000

Table 3: Summary of the datasets used in tables 2 and 1, adopted from Taha et al. [2].

Block1 Block2.1 Block2 Block3.2 Block3 Block4.1 FC
Layer in ResNet-50
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Figure 4: Comparison of layer-wise prediction depth. SEAL gives comparably much
stronger predictions early on in the network. Note that block.X.Y denotes the output
activations of intermediate layer Y in residual block X. This indicates that our
method encourages learning the difficult examples using conceptually simpler and
more general features of the early layers. This leads to better overall performance as
we progress deeper into the network.

For the few-shot learning, we utilized the 4 datasets from the CD-FSL benchmark,
which include ChestX, ISIC, CropDisease, and EuroSAT. From these, we sample
training and evaluation sets with 5 classes and a varying number of samples per class.

6.1.2 Evaluation

We now present our primary evaluations of SEAL for both improved generalization,
transfer, and few-shot transfer learning.

In-Distribution Generalization: Table 2 compares the in-distribution accuracy
of our method with the state-of-ther-art iterative training method, namely, LLF.
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We note that LLF outperforms Normal training (as reported in [16]). Our method
significantly outperforms both LLF and normal training in this setting. We conduct
our experiment using the same hyper-parameters used in LLF to ensure fairness.

Furthermore, we compare our method with both classical self-distillation methods
such as classical born-again neural networks [3, 4], and a state-of-the-art self-
distillation method [5] in an in-distribution setting.

Yang et al. [4] conducted experiments on CIFAR-100 [48] using a 110-layers
ResNet. CIFAR-100 consists of 60, 000 RGB images of 32×32 resolution, with 50, 000
training examples and 10, 000 test samples. They choose this dataset over CIFAR-10
since CIFAR-10 does not contain fine-level classes, and thus self-distillation methods
do not bring significant gains. For training, they use SGD with a weight decay of
1e−4, and a momentum of 0.9, using batch sizes of 128. Each generation is trained for
E = 164 epochs with a base learning rate of 0.1 which is then divided by 10 after 150
and 225 epochs. They also use standard data augmentation techniques during training
such as padding of four pixels, and random cropping, and horizontal flipping with a
probability of 50% (without any augmentation during the test phase). Using this
exact setting, we compare our method with their method in table 4. We observe that
compared to Furlanello et al. [3], our method outperforms them consistently by the
end of each generation. Furthermore, we compare our best model after 10 generations
with that of [4] (each generation is trained for the same number of epochs in both
works). Our method demonstrates 1.71% higher accuracy compared to [4] under this
setting.

Generation Furlanello et al. [10] Yang et al. [41] Ours

Gen=0 71.55 − −
Gen=1 71.41 − 72.83
Gen=2 72.30 − 73.53
Gen=3 72.26 − 73.88
Gen=4 72.52 − 74.18
Gen=10 (Best) 72.61 73.72 75.43

Table 4: Comparison with [3,4] on CIFAR100 using ResNet-110 with inferior hyper-
parameter settings. The last row lists the best accuracy of each method throughout
10 generations. The hyperparameters and baseline accuracies are adopted (and not
changed) from [4] to ensure fairness.
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Pham et al. [5] observed that the hyper-parameter settings used in previous self-
distillation methods are not properly tuned, and hence there is a gap between their
teachers’ performance and their capacity. Therefore, they question whether self-
distillation methods only work when the teacher is far from their capacity, or do
they always enhance the teacher, even when the teacher is properly trained. To
this end, they trained a teacher with well-tuned hyperparameters using ResNet-
18 on the CIFAR-100 dataset. Precisely, they use SGD with a weight decay of
3e−4, and a Nestrov momentum of 0.9, using batch sizes of 96 with standard data
augmentation techniques. Using the same hyperparameter setting, SEAL outperforms
self-distillation techniques by a 1.18% margin (refer to table 5.

Therefore, our method outperforms self-distillation methods in both an inferior
hyper-parameter setting [3, 4] and a well-tuned one [5].

Generation Pham et al. [5] SEAL (Ours)

Gen=0 (Teacher) 76.30 76.15
Gen=Last (Student) 77.32 78.50

Table 5: Comparison with Pham et al. [5] on CIFAR100 using ResNet-18 with a
well-tuned hyper-parameter setting. We train our method for the same number of
epochs and under the same hyper-parameter setting as [5] to ensure fairness.

Transfer Learning We now turn to evaluate the transfer learning properties of
our method and that of LLF. We begin by studying the transfer learning from the
Tiny-ImageNet pretrained models to 5 different image datasets. Specifically, CUB-
200-2011 (CUB) [44] contains images of 200 wild bird species, Flower102 (Flower) [43]
contains images from 102 flower categories, FGVC-Aircraft (Aircraft) [45] consists of
100 aircraft model variants, and Stanford Dogs dataset contains images of 120 breeds
of dogs for fine-grained classification. MIT Indoor 67 (MIT) [46] is an indoor scene
recognition dataset that includes 67 different scene classes.

We train linear models on top of pretrained models from each method to measure
their transfer learning properties. Specifically, we re-initialize the last linear layer of
the network and freeze the rest. Then, we train the linear head using the train set of
the target datasets and evaluate on their test sets. For training on the target dataset,
we again use SGD with a momentum of 0.9, weight decay of 1e−4, and flat learning
rates of [1e−1, 1e−2, 1e−3] for 120 epochs and report the highest accuracy.

Table 1 demonstrates the transfer accuracy of LLF, normal training, and our
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Updates Base Model ChestX ISIC EuroSAT CropDisease

5-way, 1-shot

Linear

Normal 21.01 ± 0.35 25.7 ± 0.47 53.41 ± 0.92 50.31 ± 1.03
Normal (long) 20.40 ± 0.23 22.59 ± 0.35 36.60 ± 0.75 27.50 ± 0.69
LLF 20.38 ± 0.24 24.61 ± 0.46 36.58 ± 0.86 26.28 ± 0.68
SEAL (ours) 21.67 ± 0.36 27.93 ± 0.55 57.75 ± 0.88 63.64 ± 0.96

LA

Normal 21.14 ± 0.35 26.71 ± 0.56 47.36 ± 1.26 64.75 ± 1.13
Normal (long) 20.90 ± 0.37 26.41 ± 0.54 45.51 ± 1.25 63.73 ± 1.05
LLF 20.24 ± 0.24 23.28 ± 0.45 34.02 ± 1.35 35.12 ± 1.61
SEAL (ours) 21.3 ± 0.39 29.14 ± 0.57 55.68 ± 1.05 67.87 ± 0.54

5-way, 5-shot

Linear

Normal 22.79 ± 0.36 33.28 ± 0.49 71.74 ± 0.75 77.05 ± 0.80
Normal(long) 21.00 ± 0.28 28.93 ± 0.48 53.40 ± 0.77 57.10 ± 1.07
LLF 22.03 ± 0.33 29.60 ± 0.48 60.69 ± 0.87 53.55 ± 1.12
SEAL (ours) 24.42 ± 0.42 37.58 ± 0.54 74.61 ± 0.65 85.00 ± 0.61

LA

Normal 20.82 ± 0.26 28.57 ± 0.78 53.35 ± 1.74 63.22 ± 2.35
Normal(long) 21.59 ± 0.34 29.67 ± 0.82 55.79 ± 1.67 71.55 ± 2.00
LLF 20.44 ± 0.19 22.01 ± 0.44 30.83 ± 1.45 28.06 ± 1.47
SEAL (ours) 22.98 ± 0.36 39.64 ± 0.79 73.83 ± 0.93 88.24 ± 0.54

Table 6: Few-shot transfer results for the CFSDL benchmark (extreme distribution
shift) for 1 and 5 shots. All methods make use of a ResNet50 backbone trained on
Tiny-ImageNet evaluated over 600 episodes. We consider finetuning both the linear
layer (Linear) and the linear layer and affine parameters (LA), the best performer
in both categories highlighted in red. We observe that SEAL outperforms standard
training even for a very long number of epochs, while LLF under-performs.

method (SEAL). Even though LLF outperforms normal training with a 2.55% margin
in the in-distribution setting, we observe that in transfer learning, LLF’s performance
is substantially lower than normal training for 1/10 of epochs (G = 1), as well as
normal training for the same number of epochs (G = 10). On the other hand, our
method not only dominates in the in-distribution setting, but it also has a much
stronger transfer learning performance than both LLF and normal training across all
of the target datasets in our experiments.

Few-Shot Transfer Learning We now consider evaluating our approach for a
challenging distant transfer learning task studied in [49, 50]. Here we are presented
with a few shot learning problem on multiple datasets from medical imaging to
satellite images, with only one dataset of natural images available for pre-training.
Several approaches to this problem exist, some utilizing meta-learning methods [51]
and others focused on transfer learning [50]. It has been shown in multiple works
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Updates Base Model ChestX ISIC EuroSAT CropDisease

5-way, 20-shot

Linear

Normal 25.16 ± 0.37 41.24 ± 0.50 79.14 ± 0.67 86.74 ± 0.57
Normal (long) 21.79 ± 0.27 32.85 ± 0.50 60.95 ± 0.81 70.20 ± 1.01
LLF 22.54 ± 0.29 32.26 ± 0.48 67.79 ± 0.85 68.43 ± 1.07
SEAL (ours) 27.44 ± 0.40 46.96 ± 0.53 82.45 ± 0.53 92.47 ± 0.39

LA

Normal 22.91 ± 0.36 49.40 ± 1.14 81.52 ± 1.38 87.43 ± 1.67
Normal (long) 23.38 ± 0.37 47.36 ± 1.25 80.03 ± 1.53 89.63 ± 1.53
LLF 21.10 ± 0.25 30.54 ± 1.22 46.55 ± 2.42 39.80 ± 2.30
SEAL (ours) 26.99 ± 0.46 55.12 ± 0.77 87.70 ± 0.52 95.67 ± 0.28

5-way, 50-shot

Linear

Normal 26.55 ± 0.36 46.29 ± 0.47 82.20 ± 0.61 90.51 ± 0.45
Normal (long) 22.56 ± 0.29 36.57 ± 0.53 67.14 ± 0.77 80.60 ± 0.78
LLF 23.78 ± 0.31 35.59 ± 0.5 73.76 ± 0.79 79.67 ± 0.78
SEAL (ours) 29.78 ± 0.40 51.46 ± 0.50 84.99 ± 0.52 94.91 ± 0.29

LA

Normal 24.2 ± 0.40 60.27 ± 1.10 88.09 ± 1.30 93.80 ± 1.33
Normal (long) 24.62 ± 0.45 56.98 ± 1.32 85.17 ± 1.58 89.8 ± 1.9
LLF 22.56 ± 0.34 41.53 ± 1.65 58.69 ± 2.76 51.35 ± 2.92
SEAL (ours) 27.13 ± 0.45 60.59 ± 1.11 91.94 ± 0.53 97.91 ± 0.40

Table 7: Low-shot transfer results for the CFSDL benchmark (extreme distribution
shift) for 20 and 50 shots. We fine-tuned both the linear layer (Linear) and the
linear layer along with affine parameters (LA). We observed that SEAL outperforms
standard training and that LLF severely under-performs in this case. Tuning the
affine parameters and linear layer provides consistent performance gains for both
Normal training models and SEAL.

that for this distant few shot learning task, transfer learning approaches exceed
meta-learning [50]. We use our Tiny-ImageNet models from the previous section
as base model for FSL transfer. In transfer we train a linear head as in the standard
protocol [49, 50], we also consider jointly training linear head and affine parameters
as suggested by [50]. Results of our evaluations for 1, 5, 20, and 50 shots are
shown in Table 6 and Table 7. We observe that in this challenging benchmark LLF
substantially underperforms standard training, suggesting features learned by LLF do
not generalize well. We note that the training accuracies on Tiny-Imagenet of all the
suggested models are 100% and the testing accuracies are the ones shown in Table 2.
Although LLF has higher in-distribution performance than normal training, its FSL
transfer properties are much worse. On the other hand, SEAL features generalize
both in-distribution and to the distant FSL tasks.
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Evaluating on Smaller Models: In this experiment, we evaluate both the in-
domain and transfer learning performance of SEAL, LLF, and normal training using
ResNet-18 on Tiny-ImageNet. We do not modify any of the hyper-parameters that
were used for ResNet-50. We observe that SEAL outperforms both LLF and Normal
training on this model as well (Table 8).

Generation Normal LLF Ours

Gen=1 50.47 - -
Gen=3 48.32 52.36 53.69
Gen=10 46.66 53.64 54.75

Table 8: Comparison of our method with normal training and LLF on Tiny-ImageNet
with ResNet-18. Please note that the behavior of the first generation for all methods
is the same. We outperform standard long training and LLF on ResNet-18 as well.

Furthermore, we transfer the models trained on ResNet-18 to multiple datasets.
We observe the same performance improvements as we saw with ResNet-50 with this
smaller model as well (Table 9).

Method Tiny-ImageNet Flower CUB Aircraft MIT Dogs

Normal 50.47 31.47 7.47 7.14 28.20 11.85
Normal (long) 46.66 19.11 5.36 4.80 21.71 8.17

LLF 53.64 31.66 7.19 6.09 25.67 11.64
SEAL (Ours) 54.75 40.68 9.87 8.85 33.65 14.61

Table 9: Transferring features learned from Tiny-ImageNet with ResNet-18 to other
datasets using linear probe. Normal, and Normal (long) refer to G = 1 and G = 10
generations of training, respectively. LLF and SEAL were trained for G = 10
generations. Our method, after 1, 600 epochs, surpasses both LLF and normal
training by a large margin. This demonstrates that our method learns much more
generalizable features as compared to Normal training or LLF.

6.1.3 Analysis and Ablation Studies

In this section we present additional analysis of our method, specifically we study the
effects on the prediction depth as well as on the eigenvalues of the Hessian at the end
of model training. Finally, we perform ablation studies to demonstrate that the early
layers indeed benefit the most from SEAL.
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Analysis of Hessian Eigenvalues We first study the eigenvalue spectra of the
Hessian for the different proposed models. We utilize the same process for estimating
the eigenvalues suggested in [52]. The results for the 4 models are summarized in
Table 10 where we report both the maximum eigenvalues and the percentage of
negative eigenvalues. We observe that the maximum eigenvalues are smaller for SEAL
than for normal long training and also for LLF, suggesting a flatter minimum. Flatter
minima have been previously associated with improved generalization [53].

We further observe that SEAL has no negative eigenvalues. This suggests that
SEAL obtains some of its advantages by helping to avoid saddle points during training.
This is consistent with prior uses of simulated annealing [54]. Following [52] we
hypothesize the absence of negative eigenvalues can indicate a more robust solution.

Method Max Eigenval Negative % Eigenval

Normal 889.06 4.25%
Normal (long) 2353.74 0%

LLF 1027.21 14.63%
SEAL (Ours) 847.89 0%

Table 10: In this table, we demonstrate the statistics of the Hessian eigenvalues.
We observe that our method has a lower max eigenvalue which suggests flatter local
minima. Furthermore, our method has no negative eigenvalues, suggesting SEAL can
avoid saddle points.

Prediction Depth: Zhou et al. [16] proposed LLF to specifically enhance the
prediction depth of the model. Their intuition was that periodically resetting the final
layers would decrease the prediction depth. Following Zhou et al. [16], we approximate
the prediction depth using the K Nearest Neighbor (KNN) probe (with K = 5) on
different layers of the network. To do so, for every image in the test set, we use all of
the images in the train set for the KNN.

We affirm that the prediction depth of LLF is improved over normal training
(Figure 4). However, with SEAL, we achieve a much stronger prediction depth. For
instance, the KNN accuracy of our method is more than 18.54% stronger than LLF
and 25.04% stronger than normal training on the outputs of the second block of the
network. This is the layer threshold L used in our method and LLF. The layer-wise
accuracy of the other layers indicates the superiority of our method across all layers.

Baldock et al. [55] demonstrated that example difficulty is correlated with
prediction depth; decreasing the prediction depth corresponds to lower example
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difficulty, which is desired. They show this correlation by analyzing the speed of
learning, the input and output margin, and the adversarial input margin for each data
point. In Figure 5, we measure the prediction depth evolution of the three methods
over different generations (G = [1, 2, 4, 10]). For normal training, the prediction
depth gets worse over time, which explains its poor in-distribution performance. This
suggests that in normal training, the early layers are becoming weaker after G = 1
and more samples are being classified by the later layers.

LLF slightly improves the prediction depth of the model. However, this comes
with a deterioration of the performance of the later layers. For instance, the KNN
probe on the activations of Block 4.1 in G = 1 has 50.15% accuracy which decreases
to 45.62 in G = 10. On the other hand, our method does a better job of pushing
more examples to be classified in the early layers than normal training and LLF. This
implies that SEAL promotes relearning the more difficult samples using the simpler
and more general features of the early layers. Furthermore, the later layers of the
network improve over time with our method.

Ablation Study: We now investigate different strategies for the fit hypothesis
Hfit during the forgetting phase. By default, during this phase, we perform gradient
descent on the fit hypothesis and gradient ascent on the forgetting hypothesis. In
"Ours+Reinit", following LLF [16], at the beginning of the forgetting phase, we
reinitialize the fit hypothesis and during this phase, we perform gradient descent on
these layers. We observe that not using the re-initialization leads to higher accuracy.
Further, we demonstrate that freezing the final layers during the forgetting phase
has a negative impact on the training. Finally, in "Ours+Reverse", we swap the fit
and forgetting hypotheses, where we perform the gradient ascent on the later layers.
We observe that performing simulated annealing in later layers fails drastically. This
shows the importance of promoting the early layers and affirms the observations of
Baldock et al. [55].

Furthermore, we demonstrate that SEAL is not sensitive to forgetting
frequencies. To this end, in an experiment, we evaluate the sensitivity of SEAL
to different forgetting frequencies. For this, we test multiple values for the number
of epochs per generation E. The fewer the number of epochs in a generation
more is the number of forgetting stages. We do not modify any other hyper-
parameter. As summarized in Table 12, we observe that our method is not sensitive
to the forgetting frequency and significantly improves over Normal training with any
forgetting frequency. Please note that in this experiment, the maximum number of
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Gen Normal SEAL+Freeze SEAL+Reinit SEAL+Reverse SEAL+Descent

Gen1 54.37 - - - -
Gen3 51.16 52.45 56.82 50.25 58.25
Gen10 49.27 51.17 58.87 41.05 59.22

Table 11: Fitting hypothesis Hfit ablation study. While performing gradient ascent
on the early layers during forgetting, we freeze, reinitialize, and perform gradient
descent on the later layers. In reverse, we swap the fit and forgetting hypotheses. We
observe that doing gradient descent on the fitting hypothesis during the forgetting
phase leads to the best performance.

training epochs is different as each model is trained for E epochs for 10 generations.

Gen E=160(default) E=60 E=70 E=80 E=90 E=100 E=120 E=200

Gen1 54.37 53.33 53.62 53.59 53.66 53.84 53.92 54.07
Gen3 58.25 54.00 55.36 57.04 57.8 57.21 57.59 57.78
Gen10 59.22 56.56 57.49 58.35 58.37 59.36 59.50 59.47

Table 12: Dependency of SEAL on forgetting frequency in ResNet-50. Numbers
in the columns indicate the number of epochs per generation E. Every E epochs,
we perform gradient ascent for k = E

4 epochs. Each model is trained for G = 10
generations. We can see that our method has a significant positive impact on every
forgetting frequency.
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Figure 5: Evolution of Prediction Depth over Epochs for LLF, SEAL, and Normal
training. Normal training worsens the prediction depth after the first generation
which explains its poor in-distribution performance. LLF slightly improves the
prediction depth of the model, however, it hurts the performance of the later layers
of the network. SEAL shows the most significant improvement in prediction depth,
while the later layers are improving over time.
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6.2 Encouraging Information Gain in Early Layers
for Greedy Training

6.2.1 Implementation Details

We conduct experiments on the CIFAR-10 [56], CIFAR-100 [57], and Tiny-ImageNet
[58] datasets, which are widely used benchmark datasets for image classification tasks.
These datasets consist of RGB images with varying numbers of classes. Table 13
presents additional statistics of the datasets. We use a predefined train and test split
for each dataset during the training process.

To preprocess the train set, we first perform a RandomCrop with padding to the
size of 32x32, and then randomly flip the images horizontally. Finally, we normalize
the images. For the test set, only normalization is applied.

CIFAR-10 CIFAR-100 Tiny-ImageNet
num_cls 10 100 200
Train 50,000 50,000 100,000
Test 10,000 10,000 10,000
Resolution (32, 32) (32, 32) (64, 64)

Table 13: Statistics of the used datasets.

Following Belilovsky et al. [19], we train the models using an SGD optimizer with
a momentum of 0.9, a weight decay of 5e − 4, and a batch size of 32. Additionally,
we schedule learning rate decay with an initial learning rate of 0.1, reducing it every
15 epochs by lr/5, and train for 50 epochs. Furthermore, each block Bi of the
network starts with a downsampling if specified, which is then followed by a stack of a
convolutional layer, batch norm, and Relu activation function. The auxiliary network
always ends with an average pooling and linear layer that makes the predictions using
the features of the network. The auxiliary network can also have a depth d that
denotes the convolutional depth of the auxiliary network. For instance, if d = 0,
the auxiliary network consists of only a linear layer, whereas if d = K, the auxiliary
network begins with a stack of K convolutional layers (followed by batch norm and
Relu), and finally end with the typical average pooling and linear layer. Please note
that the kernel size of all convolutional layers used in all the experiments is 3.
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Method Accuracy Ensemble Acc

Config: k = 5, d = 0
Normal (CE) 86.73 -
Normal (CS-KD) 87.84 -
LayerCNN [19] (CE-All) 88.07 88.20
Ours (L = 1) 88.23 88.33
Ours (L = 2) 87.18 87.47
Ours (L = 3) 87.28 87.41
Ours (L = 4) 87.19 87.11
Ours (L = All) 86.77 86.50

Config: k = 4, d = 2
Normal (CE) 91.16 -
Normal (CS-KD) 90.93 -
LayerCNN [19] (CE-All) 91.00 91.77
Ours (L = 1) 90.54 91.11
Ours (L = 2) 90.47 90.67
Ours (L = 3) 90.87 91.27
Ours (L = All) 90.69 91.20

Table 14: In-distribution performance on CIFAR-10 of networks with different
numbers of blocks k and auxiliary depths d.

6.2.2 Evaluation

We assess the performance of our models based on their accuracy, which measures
the number of correct predictions out of the total number of samples. We distinguish
between two types of accuracy: the end-of-training accuracy and the ensemble
accuracy, which corresponds to the highest accuracy achieved by any block.

In-Distribution Generalization Tables 14, 15, 16, and 17, demonstrates the
in-distribution performance of normal training, LayerCNN, and our method across
different datasets and settings. In these tables, CE refers to cross-entropy loss, and in
ours, L = i denotes how many early layers of the network are optimized by CS-KD,
where L = All means all layers use this regularizer. We observe that there is no
significant difference between our method, normal training, and LayerCNN [19] in an
in-distribution setting.

Transfer Learning Tables 16, 17 show the transfer learning performance of the
three methods. First, we transfer the models pre-trained on the Tiny-ImageNet
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Method Accuracy Ensemble Acc

Normal (CE) 68.95 -
Normal (CS-KD) 72.29 -
LayerCNN [19] (CE-All) 69.90 72.23
Ours (L = 1) 69.03 70.11
Ours (L = 2) 69.29 70.56
Ours (L = 3) 69.74 70.85
Ours (L = All) 71.25 71.89

Table 15: In-distribution accuracies of a model configured with k = 4 blocks and
d = 1 auxiliary depth on CIFAR-100 dataset. We observe close results across all
three methods.

dataset (table 16), where the network had k = 5 blocks, auxiliary depth of d = 1, and
the 2nd and 3rd blocks of the network perform downsampling. In this experiment,
we observe that although LayerCNN has better in-distribution performance than
that of normal training with Cross-Entropy, it has 1.52% and 1.91% lower transfer
accuracy on CIFAR-10, and CIFAR-100, respectively. On the other hand, our method
outperforms normal training with Cross-Entropy, and demonstrates comparable
results to that of normal training with CS-KD while having all the benefits of
LayerCNN, such as being more efficient in memory and computational consumption
and being more interpretable.

Second, we transfer models pre-trained on the CIFAR-10 dataset (table 17),
wehere the network had k = 4 blocks, and auxiliary depth of d = 1, and only
the 2nd block performs downsampling. We observe significantly worse transfer
generalization performance in LayerCNN. For example, compared to conventional
cross-entropy training, LayerCNN achieved transfer accuracies that were 3.67% and
4.70% lower on the CIFAR-100 and Tiny-ImageNet datasets, respectively. On the
other hand, our method exceeds normal training with cross-entropy on these datasets
and demonstrates very competitive transfer results to that of normal training with
CS-KD.

Another observation here is that the transfer performance of the model using our
method is best when the layer threshold is more towards the middle of the network,
compared to all layers performing CS-KD (L = ALL) or none (LayerCNN). This
affirms that it is best to encourage early layers to optimize for information gain and
let the layers focus on the task at hand [28].
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In-Distribution Transfer

Method Acc Ens. Acc CIFAR-10 CIFAR-100

Normal (CE) 47.38 - 79.57 57.60
Normal (CS-KD) 56.87 - 80.05 60.07
LayerCNN [19] (CE-All) 50.16 53.61 78.05 55.69
Ours (L = 1) 50.66 52.72 77.77 57.55
Ours (L = 2) 50.31 52.20 78.32 56.63
Ours (L = 3) 51.19 54.72 79.28 58.09
Ours (L = 4) 54.06 55.66 79.14 57.58
Ours (L = All) 51.82 56.23 78.05 58.02

Table 16: This table demonstrates the in-distribution and transfer generalization of
models trained on Tiny-ImageNet dataset. The network was configured to have k = 5
blocks with auxiliary depth of d = 1. We observe that the in-distribution accuracy
of our method out performs LayerCNN and normal training using Cross-Entropy
loss function by a large margin. Furthermore, LayerCNN has much worse transfer
performance compared to normal training, while our method outperforms LayerCNN
and Normal (CE) by a large margin, achieving comparable results to that of Normal
(CS-KD).

In-Distribution Transfer

Method Acc Ens. Acc CIFAR-100 Tiny-ImageNet

Normal (CE) 90.38 - 56.91 36.07
Normal (CS-KD) 90.33 - 57.91 35.81
LayerCNN [19] (CE-All) 90.03 90.50 53.24 31.37
Ours (L = 1) 89.23 89.64 56.25 36.12
Ours (L = 2) 89.38 89.79 57.18 36.25
Ours (L = 3) 89.85 90.24 56.90 36.48
Ours (L = All) 90.25 90.64 56.51 35.50

Table 17: CIFAR-10 in-distribution and transfer accuracies with k = 4 blocks and
auxiliary depth d = 1. LayerCNN lags behind normal training in transfer learning,
while our method achieves competitive performance.
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6.3 Greedy Federated Learning

6.3.1 Implementation Details

We conduct experiments on the CIFAR-10 [56] dataset, which is a widely used
benchmark dataset for image classification tasks. It consists of RGB images with 10
class, 50,000 train and 10,000 test images of (32,32) resolution. We use a predefined
train and test split for each dataset during the training process. To preprocess the
train set, we first perform a RandomCrop with padding to the size of 32x32 and
occasionally flip the images horizontally. Finally, we normalize the images. For the
test set, only normalization is applied.

Following Belilovsky et al. [19] and Wang et al. [24], we train the models using an
SGD optimizer with a momentum of 0.9, a constant learning rate of 0.01, and a batch
size of 128. Furthermore, each block Bi of the network starts with a downsampling
if specified, which is then followed by a convolutional layer, batch norm, and Relu
activation function. The downsampling method is maxpooling layers unless specified
otherwise. The auxiliary network always contains an average pooling and linear layer
that makes the predictions using the features of the network. Note that the kernel
size of all convolutional layers used in all the experiments is 3.

We conducted our experiments on 3 different model sizes:

• Small model: We use 3 convolutional blocks with downsampling in layers 1
and 2.

• Medium model: We use a 6-layered model with downsampling after layers 1,
2, and 4.

• Large model: We use VGG16 [59] with downsampling on layers 2, 4, 7, 10
and 13.

In our experiments, we compare the normal and greedy training of each client
under i.i.d. federated settings. We conduct our experiments with 1, 30, and 100
clients N where each client is trained for 8, 20, and 40 epochs E for 120 communication
(server) epochs and report the maximum accuracy. Note that the number of clients
refers to training the models normally without any federated learning, as training
only 1 client is a normal learning regime. Also, at each server update, 10% of the
clients are randomly selected.
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E=8 E=20 E=40

Size Clients Normal Greedy Normal Greedy Normal Greedy

Small
1 82.56 80.93 83.36 80.67 83.02 80.57
30 62.63 58.19 65.85 64.39 65.45 69.23

100 58.26 56.83 55.35 59.81 51.04 66.01

Medium
1 87.20 81.74 87.22 81.88 87.29 82.84
30 56.14 55.23 56.27 63.70 51.04 66.80

100 59.71 49.28 60.24 59.69 54.24 62.04

Large
1 89.41 80.77 89.16 81.15 90.58 80.46
30 52.04 27.09 30.79 66.51 38.32 69.71

Table 18: Comparison of normal and greedy training in FL. E denotes the
number of local client updates. As the number of clients and local update intervals
increase, normal training declines, while greedy training improves. Note that Clients
= 1 represents a normal (non-federated) learning regime.

6.3.2 Evaluation

Our main experiment demonstrates that normal training outperforms greedy
training in non-federated learning scenarios. However, greedy training significantly
outperforms normal training in federated learning scenarios, which is severe in bigger
model sizes or as the number of clients and local updates increase (table 18).
Belilovsky et al. [19] used invertible downsampling [6] in place of maxpooling layers
as maxpooling strongly encourages loss of information. In table 19, we demonstrate
that the same pattern consistently persists across different experimental settings.
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E=8 E=20 E=40

Size Clients Normal Greedy Normal Greedy Normal Greedy

Small
1 83.89 80.84 83.66 81.41 84.04 81.52
30 57.15 54.77 60.73 62.10 63.35 66.49

100 51.17 51.24 48.90 63.25 49.52 63.70

Medium
1 87.07 81.94 87.17 83.35 86.26 82.29
30 49.58 48.87 39.79 65.33 41.54 65.11
100 48.74 41.31 44.82 58.58 40.68 60.57

Table 19: Comparison of normal and greedy training in FL using invertible
downsampling [6]. While results are slightly worse than maxpooling (Table 18),
the same trend holds: under complex settings, greedy training outperforms normal
training.
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Chapter 7

Conclusions and Future Work

This thesis explored the role of early layer optimization in improving generalization
across various training paradigms. We began by introducing Simulated Annealing
in Early Layers(SEAL), a novel iterative training technique that applies intermittent
gradient ascent to the early layers of a network. Inspired by simulated annealing,
SEAL enables the model to escape poor local minima by periodically "heating" and
then gradually "cooling" the early representations. Compared to the previous state-of-
the-art in iterative training, namely Later-Layer Forgetting (LLF), we observed that
SEAL not only shows stronger in-distribution performance, but it also significantly
outperforms LLF in transfer generalization.

In the second part of the thesis, we focused on greedy layer-wise training and
its generalization behavior. While greedy methods such as LayerCNN can match
conventional training in in-distribution settings, we observed a significant drop in
their transfer performance. We attributed this issue to weakened generic early-layer
representations, as they tend to overfit to class-specific features due to the use of
cross-entropy loss in all layers. To address this, we proposed enhancing early layers
with CS-KD regularization, which encourages information gain, while keeping later
layers trained with standard cross-entropy. This adjustment substantially improved
the transfer performance of greedy training, matching or even surpassing that of
end-to-end training using cross-entropy or CS-KD in transfer learning tasks. This
result suggests a promising direction for improving greedy training which we intend
to explore further.

Finally, [24] demonstrated that even in IID centralized federated learning, the
accumulation of gradients leads to divergence in early layers during end-to-end
optimization, resulting in poor representation learning in these layers. To tackle this
gradient accumulation problem, we proposed the use of greedy training in this setting,
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as it avoids the multiplicative effect of gradient accumulation caused by end-to-end
backpropagation. We showed that greedy training can mitigate early layer divergence
and improve overall performance in scenarios with large numbers of clients, many local
updates, and deeper models.

In summary, this thesis underscores the importance of early layer learning in
improving both generalization and stability across diverse deep learning paradigms.
While we introduced practical methods to enhance early layer representations, we
encourage future work to theoretically investigate their role. Furthermore, while we
opened the door to using greedy training in centralized federated learning, we believe
it is also well-suited for many other federated learning scenarios, which we intend to
investigate in the future.
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