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Abstract

Machine Learning for Anomalies Detection in Real-time Cloud

Mahsa Raeiszadeh, Ph.D.
Concordia University, 2025

Cloud computing enables on-demand access to shared resources hosted in data centers
and managed by cloud service providers. However, as cloud environments scale in size
and complexity, they become increasingly prone to anomalies—deviations from expected
behavior—that can disrupt reliability and availability. In real-time clouds, where operations
must be completed within strict time constraints, anomalies pose a greater risk, potentially
causing cascading failures, degraded performance, and increased maintenance costs. To
address these issues, efficient methods for anomaly detection in real-time cloud environments
are essential for maintaining service quality and operational efficiency.

Machine Learning (ML) has emerged as a promising approach for detecting anomalies
in real-time clouds. By analyzing high-dimensional data such as system logs, traces, and
performance metrics, ML models can identify complex patterns and deviations in dynamic,
large-scale, and heterogeneous environments. However, employing ML in real-time clouds
introduces several challenges, including handling sequential performance metrics, where
evolving system behaviors cause concept drift, degrading model accuracy and requiring rapid
adaptation to maintain low-latency anomaly detection; analyzing distributed traces, where
inter-service dependencies and dynamic workloads introduce latency-sensitive bottlenecks,
making timely anomaly detection difficult; and detecting anomalies in contextual logs, where
log instability, class imbalance, and labeling dependency hinder model learning, further
complicating real-time anomaly response under strict time constraints.

This thesis addresses these challenges with three key contributions for real-time cloud
environments, where low-latency, adaptive, and scalable anomaly detection is critical. First,
we propose a concept drift adaptation algorithm that integrates prediction-driven anomaly
detection and adaptive window-based methods. This approach ensures effective handling
of concept drift by dynamically adjusting to changes in the data distribution, enhancing
detection accuracy over time. Second, we introduce a graph-based learning approach
that captures inter-service dependencies while leveraging collaborative learning to reduce
computational overhead and enable real-time updates. Third, we present a self-supervised
log anomaly detection that adapts to evolving log structures without requiring labeled data,

improving detection efficiency in dynamic cloud environments.
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Chapter 1

Introduction

1.1 Overview

Cloud computing enables on-demand access to a shared pool of resources such as networks,
servers, and storage. These resources, hosted in data centers managed by cloud providers,
are delivered as services to users. However, as cloud environments grow in scale and
complexity, they become prone to anomalies (i.e., data patterns that deviate from normal
behavior) [8]. Anomalies can propagate through the cloud environment, causing service
interruptions and violations of expected reliability and availability guarantees.

Ensuring reliability in cloud services is particularly challenging for real-time cloud
environments, which prioritize deterministic, low-latency responses over general cloud
goals like scalability and cost efficiency. Real-time clouds are designed to execute critical
operations within strict time constraints (e.g., milliseconds), making them essential for
latency-sensitive applications such as autonomous systems or smart manufacturing. To
meet these stringent demands, real-time clouds must ensure high availability and reliability
to trigger the correct actions within specified time frames.

The dynamic nature of streaming data in real-time clouds, which is heterogeneous and
large-scale, demands real-time analytics within strict deadlines [9]. Moreover, real-time
cloud environments heavily adopt native cloud architectures, particularly microservices,
which enable scalability but also introduce new challenges for anomaly detection. Due
to asynchronous communication, high inter-service dependencies, and dynamic workload
variations, detecting anomalies in such environments is significantly more complex.
Consequently, ensuring the availability and reliability of real-time cloud systems in the
face of anomalous behaviors—such as unexpected hardware or software failures—is critical.
Anomalies in real-time clouds can result in Service Level Agreement (SLA) violations, data
loss, and sudden execution terminations, leading to degraded performance, reliability issues,
and significant maintenance costs for service providers [10].

Traditional rule-based or manual anomaly detection approaches struggle to keep up

with the speed, scale, and variability of real-time cloud environments. As a result,



automated anomaly detection with minimal human intervention has become essential.
Machine Learning (ML), particularly Deep Learning (DL), provides a promising approach
for enabling such automation. ML models can learn from diverse data sources, including
logs, traces, and performance metrics (e.g., CPU, memory, disk usage), to detect anomalies.

Although ML is a promising approach, its deployment in the real-time cloud faces
significant challenges. First, real-time clouds exhibit dynamic and heterogeneous system
performance metrics, leading to high variability. This makes it difficult to establish
consistent patterns for training ML models. Additionally, concept drift—where data
distributions change over time—can degrade ML model performance [11]. To maintain
accuracy, frequent retraining and adaptation are required. Second, the interconnected
and distributed nature of real-time cloud services introduces additional complexity.
These services generate hierarchical and contextual data from traces and logs, requiring
anomaly detection systems to analyze intricate relationships across distributed components
effectively. This is particularly critical in real-time clouds, where even minor delays in
anomaly detection can have cascading effects. Third, the variation and evolution of log
data formats in real-time clouds add another layer of difficulty. Logs, a primary source
of information for anomaly detection, frequently change in format and structure as cloud
systems evolve. In real-time clouds, where strict deadlines must be met, robust mechanisms
are required to dynamically adapt to log format variations while maintaining effective
anomaly detection. This thesis aims to develop robust ML-based techniques for anomaly
detection in real-time cloud environments. By addressing key challenges such as data
variability, service dependencies, and log evolution, this work contributes to enhancing
the reliability and responsiveness of real-time cloud services. The following subsections
discuss the specific challenges of employing ML for anomaly detection, outline the thesis

contributions, provide background on key concepts, and present the thesis structure.

1.2 Challenges

This section outlines the key challenges associated with employing ML models for anomaly
detection in real-time cloud environments.

Sequential Metrics in ML-based Anomaly Detection: ML-based anomaly
detection in real-time cloud relies heavily on sequential performance metrics such as latency,
throughput, and resource utilization. These metrics, which evolve dynamically over time,
pose significant challenges for anomaly detection models due to their inherent temporal
dependencies, high data velocity, and the need for low-latency decision-making. A key
challenge is concept drift, which degrades model accuracy as data distributions shift over
time. Additionally, the high frequency and large scale of data streams demand real-time
processing to ensure timely detection. The presence of temporal dependencies and feature

correlations further complicates anomaly detection compared to static datasets.



Distributed Traces in ML-based Anomaly Detection: The growing adoption of
microservices in cloud computing has introduced new challenges for anomaly detection,
particularly in real-time cloud environments where services operate with strict latency
constraints and dynamic workloads. A key challenge is analyzing distributed traces, which
capture execution paths across microservices. These traces are essential for performance
monitoring but are difficult to interpret due to frequent updates, evolving dependencies, and
high data volumes. Also, the complexity of inter-service dependencies and partial labeling
makes real-time anomaly detection even more challenging.

Contextual Logs in ML-based Anomaly Detection: Log anomaly detection is
critical for maintaining system reliability, identifying security threats, and enabling failure
prediction. This is especially important in real-time cloud environments, where logs
evolve dynamically due to frequent system updates, configuration changes, and fluctuating
workloads. Services must operate under strict latency constraints while processing massive
volumes of log data efficiently. A key challenge is log instability, where constantly changing
log structures hinder models from generalizing to unseen patterns. Additionally, the severe
class imbalance—where normal log entries vastly outnumber anomalies—causes models to
overlook rare but critical events. Moreover, most existing approaches depend on labeled
datasets, which are costly and time-consuming to generate, limiting their scalability in

real-world deployments.

1.3 Thesis Contributions

This section presents three key contributions in ML-based anomaly detection for real-time
cloud environments. Each contribution addresses a unique challenge related to sequential

metrics, distributed traces, and contextual logs.

1.3.1 Sequential Metrics in ML-based Anomaly Detection [1][2]

The first contribution addresses ML-based anomaly detection in sequential metric data
within real-time cloud environments. We propose a drift adaptation method to address
the challenge of concept drift by regularly updating the anomaly detection model to
adapt to heterogeneous real-time clouds while meeting time and accuracy requirements.
The proposed algorithm incorporates sliding and adaptive window-based methods with
a performance-driven approach for effective concept drift adaptation. Building on
the Prediction-Driven Anomaly Detection (PDAD-SID) method, we introduce a drift-
adapted, real-time anomaly detection algorithm that leverages multi-source prediction for
estimating anomaly probabilities and optimizes the model using a Genetic Algorithm (GA).
Additionally, our method employs a dynamic algorithm to detect and adapt to concept drift,
ensuring the model remains accurate over time in real-time cloud environments. Trace-

driven evaluations on three real-world datasets demonstrate that our approach achieves



up to 89.71% accuracy (AUC), outperforming state-of-the-art methods while maintaining

efficiency and scalability.

1.3.2 Distributed Traces in ML-based Anomaly Detection [3][4]

The second contribution addresses ML-based anomaly detection in distributed trace data
within real-time cloud, where service interactions are highly dynamic. We propose a
Trace-Driven Anomaly Detection (TDAD) method that utilizes a Graph Neural Network
(GNN) to learn vector representations of traces and employs Positive and Unlabeled
(PU) learning to train an anomaly detection model with partially labeled data. By
leveraging a small set of labeled anomalous traces alongside a large set of unlabeled traces,
this approach facilitates timely and accurate anomaly detection. Building on this, we
introduce an Asynchronous Real-Time Federated Learning (ART-FL) framework to mitigate
communication and computation overhead in microservice systems. ART-FL enables real-
time learning by allowing the global model to proceed asynchronously, without waiting
for lagging clients. This ensures continuous computation, with clients performing real-
time updates on local streaming data, resulting in improved model convergence compared
to synchronized federated learning methods. We conduct a comprehensive experimental
evaluation on a real-world microservice benchmark to assess the performance of our

proposed method in terms of detection effectiveness, detection time, and resource overhead.

1.3.3 Contextual Logs in ML-based Anomaly Detection [5][6]

The third contribution addresses ML-based anomaly detection in contextual log data within
real-time cloud, We propose an Adaptable Log-based Self-supervised method to Catch
ANomalies (ALogSCAN). Our approach employs a dual-network architecture consisting of
an Auto-Encoder (AE) teacher model and an Encoder-Only (EO) student model leveraging
Knowledge Distillation (KD) to provide prompt anomaly detection. In addition, we
introduce dynamic filtering and frequency-based reconstruction into our dual-network
architecture to adapt to unstable log data and prioritize less common patterns during
training. Finally, ALogSCAN relies on self-supervised learning techniques to skip labeling
dependency, using the input data as supervision to reach comparable and better accuracy
results than other learning methods. We comprehensively evaluate ALogSCAN against six
state-of-the-art baselines using real systems’ public and private log data. The comparative
evaluation demonstrates that ALogSCAN is more efficient in accuracy and detection time
than the other anomaly detection approaches. Furthermore, extensive ablation experiments

confirm the effectiveness of each principal component in our proposal.



1.4 Background Information

This section provides an overview of key concepts and technologies relevant to the scope
of this work. It begins with a discussion of real-time cloud and its role in enabling low-
latency applications. Subsequently, the focus shifts to real-time cloud-native, emphasizing
modularity, scalability, and resilience achieved through microservices, containerization, and
orchestration. The section then explores the fundamentals of ML algorithms and provides

an overview of anomalies and anomaly detection techniques.

1.4.1 Real-time Cloud

Real-time cloud refers to cloud-based systems designed to process data and respond to inputs
or events within a strictly defined time frame, ensuring predictable and timely outcomes.
This capability is crucial for applications where delays can lead to significant issues, such
as in smart manufacturing, healthcare, or financial services. According to Ericsson, a
leader in telecommunications technology, the real-time cloud integrates components like
real-time hypervisors, virtual networks, routers, application execution environments, and
development toolchains. These elements work together to manage the edge and cloud
continuum, providing end-to-end latency guarantees essential for critical systems [12].

A prominent example of real-time cloud is its application in the Industrial Internet of
Things (IIoT), particularly in smart manufacturing. In smart manufacturing environments,
IToT devices such as sensors, actuators, and edge devices continuously generate vast amounts
of data. Real-time cloud enables the aggregation, processing, and analysis of this data with

minimal latency.

1.4.1.1 Real-time Cloud-native

As clouds has evolved, the focus has shifted toward real-time cloud-native systems,
which offer modularity, scalability, and resilience by leveraging a microservices-based
architecture. These systems leverage a microservices-based architecture to ensure low-
latency processing, seamless scalability, and fault tolerance, enabling real-time decision-
making and responsiveness. According to the Cloud Native Computing Foundation
(CNCF), cloud-native encompasses the collection of technologies that break down
applications into microservices and package them into lightweight containers to be deployed
and orchestrated across a variety of servers [13]. In the context of real-time cloud-native
systems, these technologies must also support high-velocity data processing, real-time
analytics, and rapid adaptation to changing workloads to maintain the performance and
reliability of time-critical applications. The key characteristics of real-time cloud-natives

are defined as follows:



(A) Microservices: Self-contained, loosely coupled services that execute specific
functions, allowing independent development, deployment, and scaling. Microservices use
lightweight protocols like RESTful APIs and support agile practices such as CI/CD [13].

A critical concept for managing microservice architectures effectively is observability,
which refers to the ability to assess the internal state of a system through its external
outputs [14]. Observability ensures the transparency and manageability of distributed
systems, making it essential for the reliability and performance of cloud-native applications.

The three pillars of observability are as follows:

e Metrics: Quantitative data reflecting the performance and health of services, such as
response times and resource utilization. Metrics help ensure microservices operate

efficiently and meet SLAs.

o Traces: Visual representations of request journeys across services, offering insights

into inter-service dependencies and optimizing overall responsiveness and reliability.

e Logs: Detailed records of events or errors produced by each service. Logs are essential

for debugging and diagnosing emergent behaviors, enabling rapid issue resolution.

(B) Containerization: A process that packages applications and their dependen-
cies into portable, isolated units called containers. Tools like Docker ensure consistency

across environments, enabling reproducibility and efficient resource utilization [13].

(C) Orchestration: The automated management of containerized microservices,
including deployment, scaling, networking, and load balancing. Platforms like Kubernetes

streamline operations, ensuring scalability and reliability [13].

1.4.2 Machine Learning

ML is a subset of Artificial Intelligence (AI), which allows machines to learn automatically
and improve based on experience without being explicitly programmed [15]. There has
been a significant increase in the use of ML algorithms in anomaly detection applications
for analyzing data and making decisions [16]. ML algorithms include Support Vector
Machine (SVM), K-means, DBSCAN, Decision Tree, Principal Component Analysis (PCA),
and Artificial Neural Network (ANN). Additionally, Deep Learning (DL) is a class of
ML algorithms based on ANN that uses more than one hidden layer to extract higher-
level features defined in terms of lower-level features [17]. DL models are able to catch
dependencies between the features of data and can handle high-dimensional data. DL
algorithms include Convolution Neural Networks (CNNs), Recurrent Neural Networks
(RNNs), Long Short Term Memory (LSTM), Bidirectional Long Short Term Memory
(Bi-LSTM) and Autoencoders (AEs). ML techniques can be categorized based on the
availability of data labels. There are three main types of ML techniques as follows [8].



e Supervised Learning: This approach uses labeled data to train the ML models. The
algorithm observes some example input-output pairs and learns a function that maps

from input to output [8].

e Unsupervised Learning: This approach does not require labeled data, making it more
versatile. It analyzes data based solely on its inherent structure, typically using
distance metrics. The algorithm learns patterns in the input, even though no explicit

feedback and guidance are supplied [8]

e Semi-supervised Learning: This approach aims to bring the benefits of both the
approaches of supervised and unsupervised techniques. Semi-supervised methods have
the underlying assumption that labeled data are available for a portion of data, while
the rest of the data are unlabelled [18]. Although this technique, unlike the supervised
technique, does not require labeling of all data instances, the need for labeling data
for a portion of learning data still makes it less applicable for many environments

where such labeling data are not available [8].

e Self-supervised Learning: This approach skips the need for labeled data, using the
same input as supervision. This learning method enables transferring representations
to other tasks, favoring tasks that depend on the output of a previous process
(i.e., downstream tasks), such as natural language processing, computer vision,
and anomaly detection [19]. Self-supervised learning broadly divides into two
categories: predictive and contrastive. Predictive methods train deep learning models
to predict labels derived from the input data, such as masked inputs, statistical
properties, or domain knowledge-based targets. Contrastive methods focus on pair-
wise discrimination; they apply transformations or augmentations to generate multiple
views of data samples and train models to distinguish between view pairs, jointly and

independently sampled.

1.4.3 Anomalies and Anomaly Detection

Anomalies are patterns in data that do not conform to a well-defined notion of normal
behavior [8]. Anomaly detection refers to the problem of finding patterns in data that do not
conform to expected behavior. Nonconforming patterns in different application domains are
called anomalies, outliers, exceptions, aberrations, surprises, peculiarities, or contaminants.
Outliers and anomalies are most commonly used in anomaly detection; sometimes, these
terms are used interchangeably [8]. Anomaly detection has applications in a broad range
of domains, such as fraud detection, network intrusion detection, system monitoring,
medical problems, and image and text processing. For instance, in the medical domain,
anomalous data observation from an MRI image may show the presence of malignant

tumors. Anomalous activity in credit card transactions could be an indicator of credit



card fraud. Also, network traffic with an anomalous pattern may indicate an intrusion
into the network [20]. Real-time detection of anomalies is a key requirement of a number
of time-sensitive applications, including robotic system monitoring, smart sensor networks,
and data center security. Real-time anomaly detection refers to the detection of anomalies
within a finite and specified time period. [21].

In contrast, faults are the incapability of a system to perform its necessary tasks that
are caused by some abnormal state or bug present in one or multiple parts of a system [20].
Typically, to fix a fault, corrective action is required, such as replacement or maintenance.
Based on this notion, we can define fault detection as the problem of finding changes in a

system so that it can no longer operate in accordance with the requirements of its user.

1.4.3.1 Types of Anomalies

Anomalies can be classified into the following three categories: [8].

e Point Anomalies: If an individual data instance can be considered as anomalous
concerning the rest of the data, then the instance is termed a point anomaly. Let
us consider the detection of credit card fraud as an example from real life. Suppose
the data set corresponds to an individual’s credit card transactions. To simplify the
analysis, let us assume that only one feature is used to define the data: the amount
spent. A point anomaly is a transaction in which the amount spent exceeds that

individual’s normal range of expenditures.

e Contextual Anomalies: Anomalies, which can only be identified with respect to a
specific context, are called contextual anomalies. This type is most likely to be the

most often occurring type when processing real-world data.

e Collective Anomalies: Collective anomalies are the most complex type of anomalies.
In this case, multiple instances form an anomaly, whereas each individual instance
is not necessarily an anomalous entity. This means that instances in the dataset
are related to one another in some way. For example, the number of users’ requests

increases on a specific day, but it is normal on other days.

In cloud systems, these types of anomalies manifest across different operational and
architectural layers. Table 1.1 provides a detailed taxonomy of cloud-specific anomalies.
It categorizes anomalies based on their source, behavior, and impact while also linking
them to their respective types. This mapping demonstrates how the general anomaly types
translate into practical scenarios in cloud environments, offering a structured framework for

understanding and detecting such anomalies.



Table 1.1: Taxonomy of cloud anomalies.

Category

Sub-Category

Examples

Type of
Anomaly

Source-Based

Application-Level Anoma-
lies

- Software crashes (e.g., memory
leaks).

- Misconfigurations (e.g., service
parameters).

- Faulty deployments (e.g., version
mismatches).

Point

Infrastructure-Level
Anomalies

- Hardware failures disk
crashes).

- Network issues (e.g., packet loss).
- Resource contention (e.g., CPU

bottlenecks).

(e-g.

Point

Security-Related Anoma-
lies

- Unauthorized access.
- DoS attacks.
- Malware injection.

Collective

Behavior-Based

Performance Anomalies

- Slower response times.

- Throughput degradation.

- Resource overutilization or un-
derutilization.

Contextual

Operational Anomalies

- Unexpected workload spikes.
- Resource allocation mismatches.
- Configuration drifts.

Contextual

Data Anomalies

- Corrupted logs.
- Missing data packets.
- Unusual storage patterns.

Point

Impact-Based

Transient Anomalies

- Temporary deviations (e.g., brief
CPU spikes).
- Often self-correcting.

Contextual

Persistent Anomalies

- Long-lasting issues (e.g., software
bugs).
- QoS degradation.

Point

Cascading Anomalies

- Failures propagating to other
services (e.g., database outages).

Collective

Catastrophic Anomalies

- System-wide failures (e.g., data
center crashes).

Collective

1.5 Thesis Outline

The remainder of this thesis is organized as follows: Chapter 2 outlines the requirements
for ML-based anomaly detection in the real-time cloud and critically reviews the state-
of-the-art approaches. Chapter 3 introduces an algorithm for concept drift detection and
adaptation for anomaly detection in real-time cloud environments. Chapter 4 describes
a distributed trace-based anomaly detection algorithm in real-time cloud environments.
Chapter 5 presents an algorithm for contextual log anomaly detection in the real-time

cloud. Finally, Chapter 6 concludes the thesis and suggests directions for future research in

this domain.




Chapter 2
Requirements and Related Work

In this chapter, we first describe an illustrative use case. Next, we use the use case to
derive a set of requirements for ML-based anomaly detection in real-time clouds. Finally,

we review the related work in light of these requirements.

2.1 Illustrative Use Case

In this section, we present an illustrative use case to derive the general requirements of
ML-based anomaly detection in real-time cloud environments.

To better understand the challenges of ML-based anomaly detection in real-time cloud
environments, consider a cloud-based real-time video analytics system used for smart
traffic management in a metropolitan city. This system relies on a combination of cloud
infrastructure and edge computing to analyze high-speed video streams from thousands of
traffic cameras deployed across urban intersections. The system detects anomalies such
as sudden traffic congestion, accidents, reckless driving, and road hazards. At the core of
this system is an ML-based anomaly detection model running within a hybrid cloud-edge
environment. The edge nodes—situated near intersections—process video frames in real-
time to detect immediate anomalies (e.g., a vehicle running a red light or a pedestrian
jaywalking). These localized insights are then transmitted to the central cloud, where they
are aggregated, correlated with other data sources (e.g., GPS feeds, weather conditions,
historical traffic patterns), and analyzed for broader trends. The cloud layer also plays a
critical role in orchestrating large-scale traffic control measures, such as adjusting traffic
light sequences, sending alerts to city authorities, or rerouting vehicles dynamically.

However, ensuring accurate and timely anomaly detection in this real-time cloud
environment introduces several challenges. Since traffic anomalies must be identified within
milliseconds to trigger immediate interventions, such as adjusting traffic light timings
or dispatching emergency services, traditional batch-processing models fail to meet the
system’s stringent low-latency constraints. Additionally, the continuous influx of high-

velocity video streams means that data distributions frequently shift due to varying weather
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conditions, seasonal traffic fluctuations, and infrastructural changes. Without adaptation
mechanisms, anomaly detection models trained on historical data risk becoming outdated,
leading to misclassifications, false alarms, or missed incidents.

Compounding these challenges, the system must dynamically adjust to fluctuations
in workload as the number of active cameras changes based on traffic density and
system demand. Anomaly detection models must therefore scale seamlessly to maintain
efficiency without compromising detection performance. Moreover, the diverse nature
of video data—affected by variations in lighting, camera angles, and environmental
conditions—demands robust ML models capable of generalizing across highly variable

inputs.

2.2 Requirements

In this section, we outline the general requirements for ML-based anomaly detection in real-
time cloud environments, considering the illustrative use case. We then present solution-

specific requirements addressing the challenges identified in Section 1.2.

2.2.1 General Requirements for ML-based Anomaly Detection in Clouds

The following requirements are identified as general requirements for the problem of anomaly
detection in a real-time cloud-based smart manufacturing environment.

Accuracy: The anomaly detection model must achieve high precision and recall,
minimizing false positives and false negatives. For instance, in the smart traffic management
system, the model must correctly distinguish between genuine accidents and routine traffic
slowdowns. High false positives could trigger unnecessary emergency dispatches, while false
negatives could delay responses to critical incidents.

Real-Time Detection: The model must process high-velocity streaming data with
minimal latency. In the smart traffic system, detecting a traffic accident even a few seconds
late could delay response times and worsen congestion. The system must ensure sub-second
anomaly detection to enable timely interventions.

Scalability: The system must efficiently handle thousands of concurrent data streams
from cameras across the city. The anomaly detection pipeline must scale horizontally as new
cameras are added, ensuring consistent performance without overwhelming cloud resources.

Adaptability: The model must adapt to evolving data distributions caused by
environmental changes (e.g., day vs. night traffic patterns, seasonal shifts, construction
projects). The ability to detect concept drift and update models dynamically ensures that

the system remains accurate under changing conditions.
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2.2.2 Requirements for Sequential Metrics in ML-based Anomaly
Detection

While the requirements identified in Section 2.2.1 were general to ML anomaly detection
models, in this section, we present the requirements specific to a solution that adapts to
concept drift in sequential metrics data while detecting anomalies in real-time clouds.

Autonomy: The adaptation algorithm must operate autonomously with minimal or
no human intervention. Real-time cloud systems involve diverse anomaly detection models
with varying architectures, which can experience degraded performance due to concept drift.
An automated solution is essential for continuously monitoring and adapting these models
to maintain effective anomaly detection without manual oversight.

Concept Drift Adaptation: The algorithm must be capable of accurately detecting
concept drifts with varying degrees of severity and frequency. In real-time cloud systems,
concept drifts can manifest gradually or abruptly, impacting anomaly detection differently.
An adaptation mechanism should differentiate between these drift types and respond
appropriately, ensuring both timely and effective adaptation without overreacting to minor
or temporary fluctuations.

Post-Adaptation Detection Accuracy: The algorithm should ensure that the
anomaly detection model maintains high accuracy after adaptation. The performance post-
adaptation must remain comparable to or exceed the pre-drift performance, enabling reliable
detection of anomalies even under evolving cloud conditions.

Adaptation Time Efficiency: Adaptation to concept drift must be performed swiftly
to minimize the impact on real-time anomaly detection. A short adaptation time ensures
that the detection system can quickly recover from drift and continue identifying anomalies

effectively.

2.2.3 Requirements for Distributed Traces in MIL-based Anomaly
Detection

In this section, we present the key requirements for effectively handling distributed trace
data in ML-based anomaly detection.

Integration of Multi-Source Data: The system should seamlessly integrate data
from various sources, such as logs and traces, to detect anomalies. This integration is
critical as it allows for a comprehensive view of interactions and the internal state of services,
capturing details like memory usage, request handling, and response times.

Preservation of Trace Structure: Anomaly detection methods must maintain the
hierarchical, parallel, and asynchronous structure of traces. Simplifying these into sequential
representations can obscure critical causal relationships and temporal dynamics that are
essential for accurately detecting anomalies.

Scalability to Trace Size: The system should effectively handle traces of varying

12



lengths and complexities, including very large traces generated by complex workflows.
It must process and analyze these traces without a significant increase in computational
overhead or degradation in detection performance.

Low Communication Overhead: The anomaly detection system must leverage
collaborative learning to analyze data across distributed nodes while minimizing
communication rounds between clients and the central server to reduce bandwidth usage

and latency.

2.2.4 Requirements for Contextual Logs in ML-based Anomaly Detection

In this section, we present the key requirements for effective ML-based anomaly detection
systems utilizing contextual log data.

Contextual Detection: ML-based anomaly detection should analyze logs in context
rather than in isolation. The meaning and significance of a log entry depend on its
relationship with other logs, system state, and service interactions. Considering semantic
similarities, temporal patterns, and cross-service dependencies helps improve detection
accuracy and reduces false positives . For example, in OpenStack Cinder logs, "Volume
attachment failed due to connection timeout" and "Failed to attach storage due to network
timeout" are semantically similar but written differently.

Adaptability to Log Format Variations: Cloud environments are highly dynamic,
with frequent modifications, additions, or removals of logging statements across different
software versions. As log formats evolve over time, static anomaly detection models become
less effective. To maintain high detection accuracy, the anomaly detection system must
adapt dynamically to changes in log patterns without manual intervention.

Effective on unlabeled data: Manual labeling of logs is often impractical and time-
consuming, especially in large-scale real-time cloud environments. Since most log data is
unlabeled, ML-based anomaly detection must effectively identify anomalies without relying
on labeled training data.

Handling High Log Volume: Since large-scale real-time cloud environments generate
a vast amount of log data, the anomaly detection solution should be scalable. For example,
As OpenStack environments generate millions of logs per hour, anomaly detection models

must Scale to handle distributed log streams across cloud nodes.

2.3 Related Work

In this section, we present the state-of-the-art for the challenges identified in this thesis.
First, we review the existing ML-based anomaly detection solutions in clouds. Next, we
review the prior art on the three main contributions of this thesis, i.e., sequential metrics
in ML-based anomaly detection, distributed traces in ML-based anomaly detection, and

contextual logs in ML-based anomaly detection.
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2.3.1 ML-based Anomaly Detection in Clouds [7]

In this section, we review the research work on ML-based anomaly detection in cloud
environments. Existing anomaly detection methods can be classified into three categories

(A) statistical, (B) machine learning, and (C) deep learning methods.

(A) Statistical Methods: Statistical anomaly detection primarily uses distance-
based methods, which calculate anomaly scores through k-nearest-neighbors distance [22],
local outlier factor (LOF) [23], or histogram-based outlier scores [24]. Common models
include the autoregressive model, moving average, and autoregressive moving average
models [25]. While effective for consistent trends, these models are noise-sensitive and
assume known data distribution, which is often not valid for high-dimensional datasets with
unpredictable events. Histogram-based methods are inadequate for high-dimensional data
due to their inability to analyze feature interactions. Additionally, selecting the optimal k

value for accurate LOF computation in the LOF algorithm [23] is challenging.

(B) Machine Learning Methods: Machine learning techniques can be supervised,
unsupervised, or semi-supervised [26]. Supervised learning [27, 28] involves training models
with labeled data, which typically requires human input. This, however, can be time-
consuming and sometimes infeasible in practical scenarios, where some anomalies may be
unknown.

Alternatively, unsupervised learning methods for anomaly detection typically aim to
identify the unique features which help distinguish abnormal data from normal data. To
this end, iForest [29] uses a forest of isolation trees from training samples to compute
anomaly scores based on path lengths. iForest is efficient for large and high-dimensional
data, though its detection performance reaches convergence rapidly with a limited number
of trees. In [30], an unsupervised clustering-based method called Online Anomaly Detection
in Data Streams (ODS) was introduced for real-time anomaly detection in telemetry data.
However, it may easily be trapped in local minima and do not behave proactively when
changes occur.

In semi-supervised learning, the data distribution is estimated from normal behavior
during training, and then the test data is compared to the obtained distribution. Hu et
al. [31] developed six meta-features for univariate and multivariate time series using a One-
Class Support Vector Machine (OCSVM) for anomaly detection. OCSVM, however, is

sensitive to outliers in the absence of labels.

(C) Deep Learning Methods: Munir et al. [32] introduced DeepAnT, which
relies on deep Convolutional Neural Network (CNN). This method is effective for anomaly
detection in time-series data, even with small datasets. In [33], a multilayer convolutional

recurrent autoencoder is developed for detecting anomalies in multivariate time series. Zhou
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et al.[34] developed a variational LSTM (VLSTM) model for unbalanced, high-dimensional
industrial data. The authors of [35] proposed an LSTM-Gauss-NBayes method, which
combines LSTM-NN and Naive Bayes for anomaly detection in IIoT. A real-time anomaly
detection method for NoSQL systems called RADAR was proposed in [36], which identifies
anomalous events by extracting process information during resource monitoring. Malhorta
et al. [37] used a multiple-prediction technique assessing anomalies through prediction error
and Gaussian error distribution. Wang et al. [38] proposed an improved LSTM method to
detect anomalies in time series data by forecasting and comparing predicted and observed
sequences, addressing the issue of data with diverse distributions and the lack of labeled
anomalous data.

Table 2.1 compares the existing relevant works for sequential metric anomaly detection
based on the general requirements. Existing studies simply detect anomalies in streaming
data, and they mostly ignore real-time detection; for example, some works, e.g., [29], [32],
store the observed data for processing and do not stick to the one-pass criterion. Therefore,
they fail to deliver meaningful results in a timely manner. Furthermore, some works
(e.g. [1], [30], [32], [29]) fail to incorporate adaptability, crucial for addressing the changing
statistical behavior of data streams.

Table 2.1: Comparison of the related work on ML-based Anomaly Detection in Real-Time
Cloud.

Related Work Requirements
Accuracy | Real-Time Detection | Adaptability | Scalability

23, 24, 25] v X X X
[29], [31] v X X v
32], [35], [34] v X X X
36], |38 X v X X
30], [33] v X v v
1] v v X X

2.3.2 Sequential Metrics in ML-based Anomaly Detection

In the following, we review the related work on anomaly detection, followed by existing
methods addressing challenges in sequential metrics within real-time clouds, such as concept
drift.

Mothukuri et al. [39] proposed an anomaly detection method using Gated Recurrent
Units (GRUs) models for the real-time and proactive identification of network intrusions
in IoT systems. Some studies have studied the problem of anomaly detection in the
presence of concept drift. Dromard et al. [40] presented ORUNADA, an unsupervised
network anomaly detection algorithm using incremental grid clustering and a discrete sliding
window to update features. Spinosa et al. [41] introduced OLINDDA, an unsupervised

clustering algorithm for detecting anomalies in streaming data by modeling normal data
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with a hypersphere around normal data clusters. Yu et al. [42] developed a framework for
detecting anomalies in large-scale datasets, clustering nodes based on geographic location
and network topology, and employing a two-phase majority voting algorithm to identify
anomalous nodes. This method effectively detects new anomalies by spotting deviations
from majority behavior, but its adaptability to system behavior changes during runtime is
unclear.

In [43], the so-called A-Detection method was proposed, which uses reservoir sampling
and singular value decomposition (SVD) to analyze data streams and applies Jensen
Shannon (JS) divergence to detect anomalies. Yang et al. [44] introduced ASTREAM, an
anomaly detection system for data streams in real-time scenarios. ASTREAM incorporates
sliding windows, concept drift detection, and updating models in a hashing-based locality-
sensitive iForest model to address the challenges of continuous data streams. Presenting a
comprehensive performance evaluation using the KDDCup99 dataset, the authors of [44]
have shown that the ASTREAM algorithm is robust in handling the challenges of IIoT data
streams, such as managing infinite data and adapting to data distribution changes.

In [45], a deep RNN-based method called Online RNN-AD was introduced for online
time-series anomaly detection. This method incorporates local normalization of incoming
data and incremental neural network retraining, showing adaptability to concept drift in
time-series data. In [46], an online and adaptive anomaly detection model was proposed
by employing a one-class SVM, which uses unlabeled data to create a hyperplane, isolating
a region with most normal vectors, and evaluates anomalies based on their proximity to
this hyperplane. This method allows dynamic input normalization and adaptation based on
operator feedback, offering a confidence level for each anomaly. We note that recalculating
the hyperplane for conflicting operator feedback can hamper real-time accuracy. Besides,
the SVM approach suffers from the curse of dimensionality and struggles with large feature
sets.

Table 2.2 compares the existing relevant works for sequential metric anomaly detection
based on the specific requirements. The general requirements of ML-based anomaly

detection models are not included in the table.

Table 2.2: Comparison of related work concerning the requirements for sequential metric
anomaly detection.

Related Work Requirements
Autonomy | Concept Drift Adaptation | Post-Adaptation Detection Accuracy | Adaptation Time Efficiency
ORUNADA [40]
OLINDDA [41]

[42]

A-Detection [43]
ASTREAM [44]
Online RNN-AD [45]

x| N x| 8| %[x
ANERNENANESNEN
INENENEEN R
LNENEN RN
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2.3.3 Distributed Traces in ML-based Anomaly Detection

In this section, we review existing approaches for anomaly detection in centralized learning

and federated learning across various applications and domains.

2.3.3.1 Centralized Learning Anomaly Detection

Gan et al. [47] developed Seer, a performance anomaly detection method for services that
integrates convolutional and LSTM layers. In [48], dual neural networks for service anomaly
detection were proposed. Their method involves a variational autoencoder, trained on
normal activity to spot anomalies through reconstruction errors, and a convolutional neural
network trained on failure-injected data for specific anomaly detection. This approach
effectively reduces false positives and identifies anomaly types in anomalous services.
Bogatinovski et al. [49] developed a self-supervised encoder-decoder network for anomaly
detection by learning event dependencies. In [14], SCWarn employed a multi-model LSTM
approach to analyze data from diverse multi-source inputs.

The authors of [50] proposed TraceAnomaly, which utilizes a deep Bayesian neural
network with posterior flow for anomaly detection. Nedelkoski et al. [51] proposed a multi-
modal LSTM neural network for anomaly detection in multi-service applications trained
on normal execution traces. Microscope [52] is a performance anomaly detection model
for applications, tracking front-end KPIs of microservices against predefined Service Level
Objectives (SLOs). Jin et al. [53] proposed their so-called RPCA, which is an offline
anomaly detection method for microservices using distributed traces. Centralized methods
for anomaly detection, while effective, face practical challenges in distributed edge device
scenarios. First, these models often lose accuracy over time due to their inability to adapt to
evolving data. Second, privacy concerns hinder data exchange among edge devices, leading
to the creation of the so-called “data islands," which impairs anomaly detection efficiency.
Third, centralized machine learning methods are not able to satisfy both the accuracy and

real-time requirements of anomaly detection.

2.3.3.2 Federated Learning Anomaly Detection

Nguyen et al. [54] used FL for network intrusion detection in IoT devices. In [55], the authors
used FL and LSTM to monitor activities and detect abnormal energy usage in smart homes.
Truong et al. [56] developed a fast, resource-efficient FL. method for anomaly detection in
industrial control systems. Mothukuri et al. [39] employed FL with federated GRU models
for detecting and classifying attacks in IoT networks. In [57], the authors introduced an
FL-based system for anomaly detection in IoT streaming data, incorporating a compression
algorithm to improve FL gradient communication efficiency and reduce network resource
use. In [58], an FL-based anomaly detection method using autoencoder architecture was

proposed for IIoT. In [59], an FL method for IoT anomaly detection was proposed, which
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integrates differential privacy for enhanced user privacy. Pei et al. [60] presented an anomaly
detection framework that utilizes LSTM for identifying anomalies in network traffic. In [61],
an FL-based approach named FLOG was proposed to detect anomalies in distributed log
data. Deepfed, a FL-based framework for intrusion detection in cyber-physical systems
(CPSs), was introduced in [62]. CNNs and GRUs are combined in this architecture to detect
threats. Li et al. [63] applied deep learning for extracting features from log sequences and
employed an FL framework for training in a distributed IoT environment.

FedAnomaly, an FL-based transformer framework, was proposed in [64] for anomaly
detection in cloud manufacturing. This method enables distributed edge devices to jointly
train a global model without sharing data, thus preserving privacy and enhancing anomaly
detection in cloud manufacturing settings. Kong et al. [65] introduced a federated graph
anomaly detection framework that leverages contrastive learning and anomaly information
updates to enhance detection performance on distributed graph data. Jithish et al. [66]
developed an FL approach for anomaly detection in smart grids, focusing on enhancing
data security and privacy.

Table 2.3 compares the existing relevant works for distributed traces anomaly detection
based on our requirements. The general requirements of ML-based anomaly detection
models are not included in the table. Centralized learning in microservices uses supervised
or unsupervised algorithms [47, 48, 49, 50, 52]. Unsupervised learning, assuming most
data is normal, fails to effectively incorporate historical anomalies, while supervised
learning requires extensive, resource-heavy labeling, potentially missing diverse anomalies.
Additionally, trace comparison methods are useful for anomaly detection but may not
meet real-time detection needs due to their slowness [67], [68]. While existing research
uses deep learning for metric or log analysis in microservice anomaly detection, it often
neglects distributed trace data’s potential [50, 51, 52]. These studies simplify traces to
sequences of service calls, ignoring their complex structure, including hierarchical, parallel,
and asynchronous relationships, and the detailed log messages critical for anomaly detection.
Furthermore, current log anomaly detection methods [69, 70] mainly learn from normal
operations, identifying deviations as anomalies without capturing the subtle anomaly
patterns effectively. The existing FL approaches [64, 66] assume uniform device behavior
under synchronous protocols, which does not accurately reflect the real-world heterogeneity
of devices. These approaches struggle with variations in data volume and distribution,
system latency, hardware configurations (such as memory and processor speed), and the
availability issue of edge devices. This leads to inconsistent computation times and

contributions across clients in the FL model.

2.3.4 Contextual Logs in ML-based Anomaly Detection

This section reviews existing anomaly detection methods, grouping them by the learning

approach: supervised, unsupervised, and semi-supervised.
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Table 2.3: Comparison of related work concerning the requirements for distributed traces
anomaly detection.

Related Work Domain Data Type Learning Requlr_e menPs - —
Manner Multi-source data Preservation of | Scalable to | Low communication
Trace Structure | Trace size Overhead
DIoT[54] Intent of Things (IoT) Metric FL X v v v
FSLSTM][55] Smart Building Log FL X v X v
FL-GRU[39] Industrial Control System | Metric FL X v v v
FATRAF[56] Industrial Control System | Metric FL X X v v
FLOGCNN][61] Software Systems Log FL X v X v
DeepFed|[62] Cyber Physical System Metric FL X v X v
FedAnomaly [64] Cloud Manufacturing Metric FL v X X v
TCN-ACNN(63] IoT Log FL v X X v
TraceAnomaly [50] Microservice Application | Trace CL X X v X
MultimodalTrace [51] | Microservice Application | Trace CL X X 4 X
LogAnomaly [70] Software Systems Log FL X v X v
RobustLog [69] Software Systems Log CL X v 4 X
Microscope [52] Microservice Application | Trace CL v v 4 X
FL-SmartGrid-AD[66] | Smart Grid Metric FL v v X v
TDAD (3] Microservice Application | Trace CL v v X X
SCWarn [14] Microservice Application | Metric and Log FL v v X v
Seer[47] Microservice Application | Metric and Trace CL X v v X
2.3.4.1 Supervised anomaly detection

Supervised anomaly detection has been extensively studied by many research works that
apply different supervised learning techniques on labeled data. However, most of them fail
to manage log instability. LogRobust [69] was the earliest supervised method to address
this issue. First, LogRobust generates vector representations of log templates by leveraging
word embedding learning (i.e., FastText) and Term Frequency-Inverse Document Frequency
(TF-IDF). Then, it implements an attention-based bidirectional LSTM model to capture
contextual information within log sequences and automatically learn the importance of
different log events. These components enable LogRobust to detect anomalies even in
unstable log data. Similarly, HitAnomaly [71] tackles log instability using a hierarchical
transformer structure that effectively models log template sequences and parameter values.

Nevertheless, supervised methods rely on labeled datasets, requiring manual intervention
to label normal and abnormal events. This manual effort creates extensive overhead in terms
of time, resources, and data management, impeding the timely operation of supervised
methods. In addition, LogRobust and HitAnomaly lack class imbalance support, being

prone to reduced accuracy when the number of anomalies is much less than normal data.

2.3.4.2 Unsupervised anomaly detection

Unsupervised anomaly detection skips the need for labeled data and provides solutions
that effectively handle class imbalance. The anomaly detection model in [72] combines
AE networks and Isolation Forest (AE+IF) to handle feature extraction and detect
anomalies based on the extracted features, respectively. In contrast, DeepLog [73] and
Both

approaches employ LSTM networks to predict the next log event index, flagging deviations

LogAnomaly [70] work with log sequences that use indexed event templates.

as anomalies. LogAnomaly goes a step further, incorporating natural language processing to
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Table 2.4: Comparison of related work concerning the requirements for contextual log

anomaly detection.

Related Learning approach Requirements
Work Contextual | Adaptability to Effective on Handling High
Detection Log Format Unlabeled Data | Log Volume

HitAnomaly [71] g ised X v X v
LogRobust [69] Hpervise X 7 X 7
AE+IF [72] 4 X 4 v
LogAnomaly [70] Unsupervised X X v v
DeepLog (73] X X v v
PLELog [74] Semi-supervised X X d i
LogBERT [75] ) X X v v

generate log template sequence vectors and log count vectors. These vector representations
capture semantic and syntactic information of log data and feed the training of the LSTM
network.

However, unsupervised methods tend to produce low accuracy performance due to
In addition,

methods based on LSTM networks struggle to meet strict time requirements due to their

the lack of supervision, particularly when dealing with unstable log data.

computationally expensive nature, especially for long sequences. LSTM process log events

sequentially, one at a time, which leads to delays when managing large volumes of logs.

2.3.4.3 Semi-supervised anomaly detection

Semi-supervised anomaly detection includes different solutions requiring minimal labeled
data. PLELog [74] employs a probabilistic label estimation approach, applying positive and
unlabeled learning on known normal sequences in the training set to derive pseudo-labels
for unlabeled log sequences. These pseudo-labels feed the training of a supervised deep-
learning model that classifies log sequences as normal and abnormal. However, PLELog’s
performance heavily depends on the accuracy of the probabilistic label estimation, which
is influenced by the data characteristics. Therefore, unstable log data can lead to poor
accuracy performance.

LogBERT [75] leverages Bidirectional Encoder Representations from Transformers
(BERT) to capture the contextual embeddings of log entries within the broader sequence.
It employs two self-supervised training tasks, masked log key prediction and volume of
hyper-sphere minimization, to learn patterns of normal log sequences. However, LogBERT
disregards the semantic information of anomalous logs. In addition, this semi-supervised
method performs multiple predictions on each sequence, which is unsuitable to meet strict
time requirements.

Table 2.4 summarizes the comparison the reviewed log anomaly detection methods based
on the key requirements discussed in Section 2.2.4. In general, existing anomaly detection
methods fail to meet all the four requirements. Supervised methods like HitAnomaly and

LogRobust address log instability and provide scalability support. However, they rely
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on extensive batch processing and fail to work with unlabeled data, limiting their timely
execution in dynamic cloud environments.

In contrast, unsupervised (i.e., AE4+IF, LogAnomaly, DeepLog) and semi-supervised
(i.e., PLELog, LogBERT) methods operate with non- or minimal-labeled data and leverage
techniques that support scalability, such as AE+IF’s isolation forests and LogBERT’s
transformer-based architecture. However, these methods fail to effectively adapt to evolving
log patterns. For example, LogBERT requires retraining to model unseen log data.
Furthermore, unsupervised methods based on LSTMs (i.e., LogAnomaly, DeepLog) are
prone to delays due to their costly sequential processing of log events. Semi-supervised
methods also struggle to meet strict time conditions due to their extensive training and
prediction times. The research gap described in this section highlights the need for prompt,
adaptive, and scalable anomaly detection in dynamic cloud environments, particularly when

dealing with large volumes of unlabeled log data.

2.4 Conclusion

This chapter outlined an illustrative use case and derived key requirements for ML-based
anomaly detection in real-time cloud environments. We then reviewed existing algorithms
and evaluated them against these requirements. Our analysis revealed that current anomaly

detection methods fail to fully address the three key challenges discussed in Section 1.2.
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Chapter 3

Sequential Metrics in ML-based

Anomaly Detection!

3.1 Introduction

ML-based anomaly detection in real-time cloud environments relies heavily on sequential
performance metrics such as latency, throughput, and resource utilization. These metrics,
which evolve dynamically over time, pose significant challenges for anomaly detection
models due to their inherent temporal dependencies, high data velocity, and the need
for low-latency decision-making. Among these challenges, one of the most critical is
concept drift, where shifts in the statistical properties of data streams can degrade model
accuracy over time [11]. Unlike static datasets, sequential metrics in real-time cloud
environments demand continuous adaptation to ensure reliable anomaly detection. Real-
time cloud systems introduce additional complexities due to their large-scale, high-frequency
data streams and stringent latency constraints. Adapting ML models in such settings
is particularly challenging, as it requires real-time processing of continuous sequential
data while maintaining accuracy and efficiency. Moreover, time series characteristics
such as periodicity, seasonality, and feature correlations are intensified in real-time
cloud environments, further complicating anomaly detection. Many existing ML-based
approaches, originally designed for general-purpose cloud environments, struggle to address
these challenges, as they often lack mechanisms for handling high-frequency sequential data
or adapting to concept drift in real time.

This chapter explores these challenges, focusing on the role of sequential metrics in ML-

based anomaly detection for real-time cloud environments. We analyze how sequential data

!This chapter is based on two published papers: [1] Mahsa Raeiszadeh, A. Saleem, A. Ebrahimzadeh,
R. H. Glitho, J. Eker, and R. A. Mini, “A deep learning approach for real-time application-level anomaly
detection in IoT data streaming,” in Proc. IEEE Consumer Communications € Networking Conference
(CCNC), pp. 449-454, 2023 and [2] Mahsa Raeiszadeh, A. Ebrahimzadeh, R. H. Glitho, J. Eker, and R. A.
Mini, “Real-Time Adaptive Anomaly Detection in Industrial IoT Environments,” in IEEE Transactions on
Network and Service Management (TNSM), vol. 21, no. 6, pp. 6839-6856, 2024.
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behavior influences anomaly detection performance and discuss the limitations of current
methods in adapting to evolving cloud conditions. By addressing these issues, we aim to
highlight the need for adaptive, low-latency, and robust ML models that can effectively
detect anomalies in real-time clouds.

The rest of this chapter is organized as follows. First, we present an illustrative use
case that highlights the specific challenges and importance of addressing concept drift in
real-time cloud anomaly detection. Next, we detail the proposed algorithm, followed by its
evaluation and comparison with existing methods. Finally, we summarize the findings and

contributions of this chapter.

3.2 Illustrative Use case
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Figure 3.1: Illustration of a cloud-based smart manufacturing environment.
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In this section, we present an illustrative use case. Fig. 3.1 depicts a cloud-based smart
manufacturing environment where Automated Transport Robots (ATRs) navigate a factory
floor using camera-based positioning. This serves as a motivating example to highlight real-
time cloud constraints and the need for an ML-based anomaly detection system. As shown in
Fig. 3.1, camera-based positioning is used to control the ATRs on the factory floor. Cameras
covering the factory floor are connected via a Local Area Network (LAN). To avoid any
blind spots, neighboring cameras have overlapping coverage. Several cameras are mounted
as visual sensors to capture video from the factory floor. The captured video streams are
processed to locate and identify mobile objects and/or obstacles, building a real-time world
model that can be used for path planning and obstacle avoidance. The planned paths
are sent in segments to the ATRs by the ATR Controller. The Robot Operating System
(ROS) is used for robot control. Given that both ROS v.1 and ROS v.2 nodes coexist,
ROS Bridge is used to translate from ROS v.1 to ROS v.2. A number of tasks need to be
accomplished partly in parallel, like scheduling the fleet of ATRs and the Manufacturing
Execution System (MES). One observation of broker-based messaging systems is that they
support some of the service meshes’ functionality. For example, they can provide basic
load balancing using their queue and consumer groups. The smart manufacturing system
requires latency to control ATRs.

This cloud-based environment qualifies as a real-time cloud because it processes and
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responds to critical data within bounded time constraints. Real-time capabilities are
essential for latency-sensitive tasks such as controlling ATRs, processing continuous video
streams for path planning and obstacle avoidance, and delivering prioritized anomaly alerts.
Moreover, its event-driven architecture and ability to adapt dynamically to changes, such
as replacing IoT devices or handling anomalous network events, ensure the system meets
the stringent requirements of real-time industrial operations. Anomalous behaviors, such as
ATRs deviating from their paths or moving without updated instructions, pose significant
risks in this environment.

To further elaborate on this use case, let us provide an example in this setting. In a highly
automated manufacturing environment, the ATRs are essential for the seamless transport
of materials across the factory floor, and they are scheduled to deliver critical components
to assembly lines within stringent time windows. This precision is necessary to maintain
continuous production without delays, where any disruption could lead to substantial
downtime costs and production delays. During routine operations, it is conceivable that
an ATR might deviate from its scheduled path due to a navigation error or encounter
an unexpected obstacle. For instance, if an ATR accidentally enters an area restricted
for ongoing maintenance, it risks collisions or damage to sensitive equipment, potentially
causing safety hazards or costly interruptions. Cameras continuously stream data to the
edge network for preliminary analysis, including monitoring the ATRs’ movements. An
advanced anomaly detection system, running on the real-time cloud, processes this data to
identify any deviations from normal operational patterns in a bounded time. Upon detecting
an anomaly, such as an ATR moving off its planned path or stopping unexpectedly, the
system sends an immediate alert to the ATR controller and the factory’s central monitoring
system. These alerts are prioritized to ensure they are processed in a timely manner,
adhering to the real-time needs of the smart manufacturing environment. The ATR
controller may initiate corrective actions based on the specific anomaly detected. This
might involve rerouting the ATR automatically or stopping it before entering a restricted
area and, if necessary, dispatching a human operator for manual intervention. Additionally,
the feedback concerning the anomaly is used to refine and enhance the detection algorithms,

thereby improving the system’s predictive capabilities and preventing future incidents.

3.3 System Model

Fig. 3.2 illustrates a smart factory environment, which comprises a factory floor, an edge
network, and a remote cloud. The factory floor comprises human operators, dynamic
objects such as ATRs and forklifts, and static obstacles like pallets. ATRs are assisted
by visual object detection in order to pick up the components without human assistance
and deliver them to the production line. Multiple cameras, each equipped with an Image

Analysis module, are mounted in the area. Each camera transmits the captured video to
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Figure 3.2: System Model

the Image Analysis module via REST API, which is typically used in industrial systems
for inter-component communication [76]. The captured video streams are analyzed in the
Image Analysis module to detect, classify, identify, position, and track the objects on the
factory floor to build a world model that can be used for objects’ traveling, scheduling, and
obstruction avoidance. For instance, scheduling ATRs’ travel paths involves planning how
ATRs should travel to arrive at the destination at a certain time and is based on a set of
objects with predicted trajectories.

Almost all of the processing, such as travel planning and scheduling, is carried out in
the edge network rather than the devices on the factory floor. As shown in Fig. 3.2, the
data collector in the edge network has the crucial task of collecting the data in the form of
time-series metric data. The time-series metric data can be either one-dimensional, where a
sequence of measurements from the same features are collected, or multi-dimensional, where
a sequence of measurements from multiple features or sensors are collected. The smart
factory system may generate multi-dimensional series metric data with intricate features
such as ATRs status, which is stationary or moving, or the wheel velocity of ATRs. The
raw collected metric data is passed to the Preprocessing module to clean and normalize.
The preprocessed data undergoes offline training to develop a time-series prediction model.
Subsequently, the trained model is deployed in the Anomaly Detector system, which is
responsible for detecting application-level anomalies. Moreover, the data collector also
receives an online metric data stream and feeds it to the Anomaly Detector in order to
carry out a real-time detection of anomalies.

Ideally, detecting anomalies should be as simple as computing the distance between the

ground truth (i.e., class labels) and the target (i.e., record). A record is a data sample at
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a specific moment within a series. A record can take the form of a vector within a multi-
dimensional time-series data or a scalar value within a one-dimensional time-series data.
However, data labels may not always be available in practice since labeling the data is often
challenging, mainly because anomalous records (i.e., records that do not conform to normal
or expected records) are rare compared to normal records. To cope with this, a prediction-
driven anomaly detection mechanism is needed, where the ground truth is replaced by their
predicted values, which can be generated by a time-series prediction algorithm. Clearly,
such an approach is dependent on the accuracy of the prediction module, which is usually
affected by the anomalous records in the historical data.

Due to the dynamic nature of configurations and workloads caused by, for instance,
updates to ROS or replacement of ATRs, the distribution of incoming data may undergo
frequent changes over time, resulting in concept drift. This, in turn, leads to false anomaly
detection and results in poor performance of the detection model. To address this issue,
the Drift Detector within the edge network takes in the anomaly rate (which specifies the
likelihood that an anomaly has occurred) as the input. If the anomaly rate consistently
increases, the Drift Detector identifies a concept drift and triggers an alert to indicate drift
occurrence. Following a drift alert, the system collects new data, and the Drift Adapter in
the edge network adjusts the anomaly detection model to adapt to the concept drift using
the newly received data.

In the smart factory environment, anomaly detection is crucial for addressing a wide
range of cybersecurity and physical vulnerabilities, particularly in industrial control systems.
Key concerns include data interception and tampering, where IIoT data streams are
vulnerable to manipulation by external attackers, potentially hiding real anomalies or
creating false ones. This risk extends to unauthorized access and control over critical IIoT
systems, leading to failures such as operational disruptions and data breaches, which often
result from root causes such as software vulnerabilities, insecure network configurations,
and/or compromised third-party services. Network-based threats such as DDoS attacks
disrupt services and pose safety hazards, representing another failure mode. Insider threats
involving system users compromising IToT security and physical security breaches, such as
tampering with IIoT devices, are also key components of the threat landscape. Also, failures
like application crashes due to root causes such as software bugs or resource leaks can cause
significant operational downtime. Similarly, failures such as network latency, commonly
caused by root causes like bandwidth overload or hardware malfunctions, can significantly

disrupt manufacturing operations. In this paper, we make the following assumptions:

e We assume that the smart manufacturing environment is equipped with automated

network management, such as a self-healing system [77].

e We assume that the data collected by different types of industrial sensors on the
factory floor is transmitted to edge nodes through REST API, which is typically used

in industrial systems for inter-component communication [76].
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o We assume that IoT devices generate a high-volume data stream with high frequency
that is not independent and identically distributed (non-i.i.d.) and possesses high
correlation.  Additionally, this data varies in format and characteristics, often

including irrelevant, noisy, or redundant elements [78].

e We assume that data patterns change over time, due to a phenomenon commonly
known as concept drift, which can manifest in various forms. We specifically consider

three types of concept drifts, namely, sudden, gradual, and recurring [79].

o We assume that various types of anomalies may happen in the smart manufacturing
environment. These include hardware anomalies (e.g., caused by environmental
interference, device malfunction, or reading errors) and software anomalies (e.g.,

resulting from program exceptions, transmission errors, or malicious attacks) [77].

3.4 Problem Formulation

In cloud environments, a significant portion of the data generated consists of time-series
data exhibiting temporal correlations, where a record collected at a one-time point may
have connections to previously collected data records. Time-series data consist of successive
observations collected in chronological order at each time slot . In our study, we define
the stream of records as R = {rg,r1,....rap}, (r; € R,i € [0, M]), from M time instants and
each data record r; is an D-dimension vector.

In the environment described in Section 3.3, considering the diversity of architectures
employed in the edge networks, the varying requirements for time-sensitive smart factory
services, and the variety of drift types, the task of detecting anomalies in real time and
coping with drifts while keeping all possible variations is challenging. The objective of this
work is to determine the real-time anomaly status of an observation r at time slot ¢, taking

into account the temporal changes in the data distribution over time.

3.5 Proposed Solution

To tackle the problem described in Section 3.4, we propose an approach to effectively cope
with the concept drift of data streams and accomplish real-time and accurate anomaly
detection. Fig. 3.3 shows the overview of our proposed Scalable and Adaptable Prediction-
Driven Anomaly Detection (SAPDAD) method, which comprises two main phases: (i)
offline phase and (ii) real-time phase. During the offline phase, historical data is collected,
preprocessed, and used to train a predictive model. In the real-time phase, anomalies are
detected in streaming data in real time, and the model is retrained once a concept drift

occurs. In the following, we provide a more detailed explanation of each phase.
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Figure 3.3: Overview of the proposed Scalable and Adaptable Prediction-Driven Anomaly
Detection.

3.5.1 Offline Phase

The offline phase comprises two main components of (A) Data Preprocessing, (B) Training

and Prediction.

(A) Data Preprocessing;: The Data Preprocessing module converts the time-
series data into the proper form required to be used in a neural network. First, the data is
cleansed from errors (e.g., missing values, outliers) and normalized. Second, we employ the
PCA method as our preprocessing module to take into account the correlation between the
features [80]. Using PCA, correlated features can be transformed into uncorrelated features
called orthogonal features, also known as principal components. Principal components
capture the orientations of the data, explaining the highest proportion of variance. The
correlations between relevant features are considered during the process of reducing the
dimension. We note that the incorporation of dimension reduction can further enhance the
efficiency of our proposed method. By leveraging the covariance matrix of data with a high
number of dimensions, PCA allows for its projection onto a new space. In this transformed
space, the axes are aligned with the eigenvectors of the covariance matrix, prioritized based
on the magnitude of their corresponding eigenvalues. This process effectively reduces the
data size by retaining only the directions that capture the most informative aspects, i.e.,
those associated with higher eigenvalues.

Next, the time series of each sample feature is decomposed via time-series
decomposition. For feature decomposition, we apply the so-called Time Series Analysis
(TSA) decomposition [81] method, which is a procedure for predicting time-series data
based on an additive model. More specifically, the obtained seasonal features of the record
are concatenated with the selected features of the record by PCA as an additional input

before being fed to the Training and Prediction module, to be explained next.

(B) Training and Prediction: The Training module is responsible for training an

LSTM model, which can be used in conjunction with the feature decomposition process
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explained in Section (A) to make multi-source predictions using a sequence of records.
LSTM provides an effective method for analyzing time correlation features of time-series
data. Capturing time correlation is critical as anomalies may be related to previous period
data. As a result, by analyzing the time correlation present in time-series data, we can
effectively detect anomalies. We note, however, that LSTM models inherently fall short of
learning complicated seasonal patterns across a given multi-seasonal time-series data. To
cope with this, the proposed method explicitly considers the seasonal aspects of the data
as inputs to the LSTM model by feature decomposition. Extracting and using the seasonal
features not only can help the LSTM model learn complicated seasonal patterns but also
lead to more efficient and shorter training. we employ a hyperparameter optimization
technique based on GA [82]. This technique involves searching the hyperparameter space
using GA to identify the combination of hyperparameters that best fit the data and produce
accurate predictions. By leveraging GA-based hyperparameter optimization, we aim to
improve the overall performance of our LSTM model. GA identifies optimal hyperparameter
values by leveraging information sharing and cooperation among individuals in a population.
We employ GA to identify the optimal hyperparameters and LSTM network architecture,
including the number of hidden units, training times, gradient threshold, and learning rate,

for achieving the best performance [82].

3.5.2 Real-Time Phase

In the real-time phase, the proposed method processes online streams of data generated
continuously over time. This phase starts with the utilization of the LSTM model generated
during the offline phase to predict the future records of the data stream to compute
their anomaly probability utilizing PDAD-SID. PDAD-SID, a multi-source prediction
approach, uses a record-to-sequence predictor. This differs from traditional record-to-record
predictors [37] by considering a sequence of records for making predictions at different time
points rather than only one. Multiple predictions from multiple records form a unified
estimated value of the target record, which can be used to determine whether or not it is

anomalous, depending on the target record’s deviation from the unified estimated value.
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Algorithm 3.1 describes the pseudo-code of the proposed PDAD-SID anomaly detection
method. Furthermore, it is crucial to update the anomaly detection model frequently to
keep up with the changes in data distribution. Therefore, upon detecting concept drift
in the new data streams, the LSTM model will undergo retraining to align with the new
data. As a result, the proposed method can effectively adjust to constantly evolving traffic
data patterns and consistently achieve accurate anomaly detection. The Real-Time phase
comprises two main components of (A) Anomaly Detection, and (B) Drift Detection and
Model Update.

(A) Anomaly Detection: The real-time anomaly detection module relies on the
calculation of two key metrics, namely, Sequence Inconsistency Distance (SID) metric and
Anomaly Probability (AP), which are explained below.

SID Metric: Let r; and r; denote records ¢ and j, respectively, D be the dimension of
O]

each record, and r;” be the component [ of record i. We obtained the Record Distance

(RD) between records i and j as follows:

1 & g !
RD(r,r;) = 5 > (i = 1), (3.1)
=1

Next, let us define sequence S¥, Vi > N, of length N, which comprises N consecutive

records ending at record :

va - (ri7N+17 R e b ri)‘ (32)

In order to obtain a uniform scale for measuring the distance between two sequences, the
sequence distance metric should be independent of the sequence length. Thus, we calculate
the distance between sequence S of actual record values and sequence gfv of predicted

record values via Weighted Sequence Distance (WSD), which is defined as follows:

S e™ =™ RD (vi_mi1, Bimt1)

Soh—y e=m) 7

wsD (sV,8Y) = (3.3)
where r;_,,+1 and ¥;_,,4+1 are the actual and predicted values of record ¢ — m + 1. In the
definition of the WSD function, time decay weight e(N=™) is associated with record i —m+1
in order to assign a greater level of reference to more recent records.

To quantify the deviation of the target record 7 from the estimated value, we define a

new metric called SID, which is given by:

_ Yie1 P(i — k) - WSD(S}, §F)
Sk P(i— k)

SID (4) , (3.4)

where L is the prediction horizon, which determines the maximum length of the predicted

sequence, and P(i—k) denotes the probability that record i —k is normal. The proposed SID
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metric alleviates the impact of anomalous records within the historical data by weighting
the predictions (see Eq. (3.4)). Fig. 3.4 provides a visual representation of the calculation
of SID in a specific case where L = 3. For example, let us assume that we aim to calculate
the SID of target 4 for L = 3. Once the actual record r; arrives, the model predicts the
next three records ro, rs, and ry. Similarly, once record ro arrives, the model predicts
r3, r4, and r5. Likewise, once r3 arrives, the model predicts r4, r5, and rg. A three-step
process is carried out to calculate SID(4) of the target 4. First, we calculate the WSD of
the actual and matching predicted sequences up to target 4, i.e., the distances between S}
and é}l, between S? and S?p and between S and Si and then normalize it by SV _, e(N=m),
as shown in Eq. (3.3). Subsequently, SID is obtained as the normalized weighted sum of
WSDs, see Eq. (3.4).

Anomaly Probability: Given that the range of the SID metric is application-specific,
we aim to map the value of SID(7) of target ¢ to its probability AP (i) of being anomalous

as follows: )

AP<Z) = 90( 1+ e—C(SID()—p) )7

(3.5)

where ¢(+) is the logistic mapping function, p is the mean of the SIDs of some of the targets,
C is the logistic growth rate, which is set to 1/02, where ¢ is the variance of the SIDs of
some of the targets. To determine the optimal C' and p, we use an automated iterative
algorithm, which is applied to the training data. As time passes and the probability of the
targets becomes more accurate, we calculate 4 and C according to the mean and standard
deviation of previous SIDs, respectively, until the algorithm converges to stable values of
w and C. Using Eq. (3.5) to map SIDs to APs not only allows for a better distinguishing
between normal and anomalous data, but it helps the values of APs become less application-
specific. Finally, in order to assign larger weights for normal records in the calculation of
SID, we substitute P(i — k) in Eq. (3.4) with (1 — AP(i — k)). Thus, Eq. (3.4) can be

re-written as follows:

1—AP(i — k)) - WSD(SF, §¥)
Shoi(1— AP(i — k) '

SID (i) = >k ( (3.6)

Algorithm 3.1 utilizes prediction horizon L, reference series length S, and historical
records (r;—x to r;_1) to calculate SID for real-time anomaly detection. Initially, logistic
growth rate C' and mean p are set, and anomaly probabilities AP are initialized (lines 1
to 4 of Algorithm 3.1). For each incoming record r; in the data stream, the algorithm
utilizes the LSTM model generated during the offline phase to predict future records. This
involves predicting multiple steps ahead, up to the prediction horizon L (lines 5 to 6 of
Algorithm 3.1). For each predicted step (k from 1 to L), the algorithm calculates WSD
using Eq. (3.3) (lines 7 in Algorithm 3.1). The SID is then updated using Eq. (3.4), which
involves the weighted sum of WSDs. This step provides a measure of the deviation of the

target record from the estimated value, considering the historical context and the probability
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that previous records were normal. The SID values are mapped to AP using the logistic
mapping function described in Eq. (3.5). It refines SID and AP iteratively until convergence
and dynamically adjusts the parameters (lines 10 to 13 of Algorithm 3.1). Likewise, the
algorithm iteratively updates parameters p and ¢ until convergence, allowing it to adapt to
changing data patterns (lines 14 to 16 of Algorithm 3.1). The resulting SID values are then
updated to assign larger weights for normal records in the calculation of SID, the probability
of a record being normal, denoted as (1 — AP(i— k)) is substituted in the calculation of SID
(line 18 of Algorithm 3.1).

(B) Drift Detection and Model Update:  Streaming data may be subject to
a variety of data distribution changes, which may occur in dynamic cloud environments.
Thus, the anomaly detection model should be updated frequently in order to keep up with
the changes in data distribution. To cope with this issue, we propose a RealTimeOAW
method to detect the concept drift and adapt to it. Our proposed RealTimeOAW algorithm
combines sliding and adaptive window-based methods with performance-based approaches.
The RealTimeOAW algorithm is presented in Algorithm 3.3, which detects concept drift
within streaming data and subsequently incorporates new records to update the model.
Algorithm 3.2 (HyperparameterOptimization Algorithm) uses GA to tune and optimize the
hyperparameters of the RealTimeOAW algorithm.

Our proposed RealTimeOAW algorithm exploits two types of windows: (i) sliding
window for the detection of the concept drift and (ii) adaptive window for storing newly
arrived records. The sliding window has a fixed size of L, which contains the most
recent records. The adaptive window, which has a maximum size of L., can adapt its
size dynamically based on the number of arriving records. When a new record arrives, it is
added to the adaptive window. If the number of records in the adaptive window exceeds Ly,
the oldest records are removed from the window. By keeping a window of recently arrived
records, the adaptive window ensures that the algorithm can adapt to the changes in data
distribution. The sliding window W; associated with data record r; contains Ly records from
record i — L4 to record i. The Anomaly Rate (AR) within the window can be calculated by
considering both the anomaly probability and the number of anomalous data records in the
corresponding window. If the anomaly probability of each record data exceeds a pre-defined
threshold 7', i.e., AP(i) > T, then record i is considered as an anomalous record. Let W

denote the set of the anomaly probabilities in the given sliding window W; as follows:
W= {AP(i — Ls),...,AP(i—1),AP(i)} . (3.7)
We then define W4 as the set of APs (€ W) that are greater than the given threshold T

Wi = {AP(i) € W | AP(i) > T} (3.8)
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Algorithm 3.1: PDAD-SID

Require: Target record r;, prediction horizon L,
reference series length S, records r;_x to r;—1,
AP(i — k) for k € [1, L]

Ensure: SID(¢)

Algorithm 3.3: RealTimeOAW
Require: R: Data stream, LSTM: Pre-trained
LSTM model, L: Prediction horizon, S: Series
length, Asn: Alert threshold, Dyy: Drift
threshold, Ls: Fixed sliding window size, Lq:

1: C+1,u+05 Max adaptive window size
2: fori=0:s—1do Ensure: AR
3 AP(i) «+0 1: Condition <~ Normal
4: end for 2: AdaptWin < 0
5 for k=1:L do 3: for r; in R do
6:  Predict SF 4:  PDAD — SID(i, L,s)
T Calculate WSD (Sf, Sf) using Eq. (3.3) 5: W, <+ Window with last Ls records
8: end for 6:  ARWin; < AR(W;) {Current window AR}
9: while convergence condition is not met do 7 ARWin;_r, +AR(W;_r.) {Last window
10: fori=L:s—1do AR}
11: Calculate SID(z) using Eq. (3.4) 8: if (Condition = Normal) and (ARWin; >
12: Calculate AP(4) using Eq. (3.5) A, ¥ ARWin;_r,) then
13: end for 9: AdaptWin + AdaptWin Ur; {collecting
14:  p < Mean of the SIDs new records}
15: o « Variance of the SIDs 10: Condition < Alert
16:  C<1/o” 11:  else if (Condition = Alert) then
17: end while 12: L), + Len(AdaptWin)
18: Update SID(7) using Eq. (3.6) 13: if ARWin; > D, * ARWin;_r,) then
14: Condition < Drift
Algorithm 3.2: HyperParameter- 15: j i {Dete;‘mine the AR for the first
A . concept drifted window
sOptlm}zatlon - 16: UpdatedLST M <—retrai}n LSTM on
Require: Space: configuration space, AdaptWin
MaxTime: iteration for hyperparameter 17: else if (ARWin; < Ay, * ARWin;_ 1, or
search L,==L,) {False alarm} then
Ensure: Optimizedyp: the detected optimal 18: AdaptWin + 0
hyperparameter values 19: Condition < Normal
MinAR: the average overall AR 20: else
1. MinAR « 1 21: AdaptWin <—AdaptWin U{r;}
2: for j = 1: MaxTime do 22: en_d if o )
3 Ayp.DiniLe.Ly < Genetic 23: elsellf (Condition = Dmft) then
Algorithm(Space) gg .I;.“ ZRLI;I.(ACI;IXWTLRW.
4 AR ¢ RealTimeOAW (R, LSTM, L, s, ' ‘L;(: L) then ke O
A, D, Ls,La) 26: UpdatedLST M <retrain
5: if MinAR > AR then UpdatedLSTM on AdaptWin
6: MinAR + AR 27: AdaptWin + 0
7: Optimizedygp < Ain,Din,Lg,Lg 28: Condition < Normal
8: end if 29: else
9: end for 30: AdaptWin + AdaptWin U {r;}
10: return MinAR, Optimizedy p 3L end if
32:  endif
33: end for

Then, we calculate AR as follows:

AR =

34: return AR

[ W4
W]

(3.9)

To detect the concept drift, we define thresholds Ay, and Dy, which are used to trigger the

alert and drift levels, respectively. More specifically, when the difference between the ARs
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of the current sliding window ¢ and the sliding window ¢ - Ls exceeds Ayp, the alert level is
activated, prompting the adaptive window to commence the collection of new incoming data
records (lines 5 to 10 of Algorithm 3.3). Similarly, a drift is detected once the difference
between the ARs of the current sliding window ¢ and the sliding window i - L exceeds Dyy,.
At this point, the old learner is retrained on the newly collected records in the adaptive
window (lines 12 to 16 of Algorithm 3.3). Specifically, the system enters the retraining
phase when one of the subsequent criteria is met: If the current state is normal, the system
enters the alert state when the AR of the current sliding window exceeds Ay, X ARWin,;_p ..
If the current state is alert, the system enters the drift state when the AR of the current
sliding window exceeds Dy, x ARWin,;_r,. If the AR of the current window is in either
the alert state or the drift state and it does not exceed its threshold or the maximum
adaptive window size L, is reached, the system switches back to the normal state and
releases the adaptive window. Once the adaptive window is filled with enough new records,
the algorithm retrains an LSTM model on the combined data from the adaptive window
and the fixed sliding window. After retraining, the system switches back to the normal
state, and the adaptive window is released.

To ensure accurate and consistent learning, the adaptive window is designed to continue
collecting records until either of the following conditions is met: (1) the new AR exceeds
the alert threshold Ay, in relation to the starting point of the drift, signifying the
current learner’s inability to handle the new data record and requiring an update, and
(2) the adaptive window reaches its maximum capacity of L,, guaranteeing that real-time
constraints are met. The learner is then updated with the most recent records within the
adaptive window, resulting in increased resilience and restoring the system to its normal
state (lines 23 to 32 of Algorithm 3.3). Conversely, if the sliding window AR ceases to
rise or even drops to the normal level during the alert condition, it is considered as a false
alarm. Upon the release of the adaptive window, the system reverts to its normal state.
This allows for the monitoring of new drift occurrences (lines 18 to 22 of Algorithm 3.3).

In order to achieve optimal performance, the hyperparameters of the LSTM models and
RealTimeOAW must be tuned and optimized. Two categories of hyperparameters require
tuning in the LSTM models: model design and model training hyperparameters. Model
design hyperparameters are set during the model design process and include parameters
such as the number of layers, learning rate, and dropout rate. In contrast, model training
hyperparameters balance training speed and model performance and include parameters
such as batch size and epoch number. It is important to note that these hyperparameters
have a direct impact on the structure, effectiveness, and efficiency of the LSTM models. We
note that four parameters play an essential role in the RealTimeOAW algorithm, A, Dy,
Lg, and L,. The performance of the RealTimeOAW algorithm is directly influenced by these
parameters. In RealTimeOAW, GA is employed to tune these hyperparameters, leading

to the creation of an optimal adaptive learner capable of handling both continuous and
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Table 3.1: Hyperparameter configuration of LSTM and Real TimeOAW on (A) KDDCup99,
(B) IoTID20, and (C) WUSTL-IIoT with Optimal Values.

Model Hyperparameter | Search Range A B C
Number
LSTM of [20, 100] 100 87 100
Epochs
Learning Rate [0.0001, 0.01] | 0.001 | 0.0001 | 0.001
Batch Size [10, 50] 32 45 39
geAa\;,T e A, (0, 0.1) 0.092 | 0.089 | 0.095
Dy, (0, 0.08) 0.03 0.045 | 0.034
L, [100, 600] 270 150 325
L, [400, 4000] 2500 1235 3240

discrete parameters. The Hyperparameter Optimized Algorithm is shown in Algorithm 3.2,
which uses GA to identify the optimal combination of hyperparameters that return the
smallest overall AR. The detected optimal hyperparameters are subsequently fed to the

RealTimeOAW algorithm to build an optimized model to detect anomalies accurately.

3.6 Performance Evaluation

In this section, we conduct a performance evaluation of our proposed SAPDAD method.
After describing our simulation environment, datasets, and evaluation metrics, we present
our findings. Finally, we assess the impact of the anomaly probability threshold T on the

performance.

3.6.1 Experiment Settings

Our evaluations were conducted on a system equipped with a quad-core CPU (model:
Intel Core i7-7700, 3.60 GHz) and 16 GB of RAM. The inference module of our
prediction model was implemented using the Tensorflow-addons platform (V.: 0.14),
while the decomposition module utilized the TSA Decomposition library (V.: 0.4). We
conducted a hold-out validation approach, where the initial model training utilized the
first 10% of the data, while the remaining 90% was reserved for online testing purposes.
The LSTM network structure used for each dataset is based on [#RawFeatures +
#Seasonal Features, TimeStep, #RawFeatures x L]. Three different time steps were
evaluated, where the seasonality length was 24 (daily seasonality length), 72, or 168 (weekly
seasonality length). Dropout was disabled. In order to avoid over-fitting, a weight decay of

6 x 10~% was applied during the training.

Table 3.1 presents the hyperparameters of LSTMs and RealTimeOAWSs, which were
automatically tuned using GA. The experimental setup consisted of a population size of 70,

a crossover rate of 0.7, and a mutation rate of 0.15. Further, we determined the optimal
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threshold for each of the time-series datasets, considering their common properties and
validation data. We consider a set of threshold values for anomaly probability, including
T = {0.55,0.60,0.65,0.70,0.75}. Our simulation results indicate that the optimal threshold
value falls within the range of 0.55 to 0.75 because the large thresholds result in more
false anomalies, whereas the small thresholds prolong the execution time. The values of
prediction horizon L are selected from {10, 15,20, 30}.

3.6.1.1 Description of Datasets:

Our evaluations are carried out on three high-dimensional anomaly detection datasets,
namely, the KDDCup99, IoTID20, and WUSTL-IIoT.

o KDDCup99 [41] is an imbalanced intrusion detection dataset, which includes a variety
of hand-injected anomalies (i.e., network attacks) into the normal network data. The

dataset has 43 dimensions, with an anomaly rate of 1.77%.

o I0oTID20 [83] is an IoT traffic dataset for anomaly detection where the distribution of
records is unbalanced, with 94% categorized as normal and the remaining 6% labeled
as anomalous. The dataset was generated by employing virtual machines representing
both normal network behavior and attack scenarios, mimicking IoT services through
the utilization of the node-red tool. Subsequently, features were extracted using the
Information Security Center of Excellence (ISCX) flow meter program. The reduced
IoTID20 dataset used in this work contains 6253 records, which were randomly

sampled based on the time slot at a rate of one data record per 10 time slots.

o WUSTL-IIoT [84] is a network data of IIoT and it is collected from real-world
industrial systems. This dataset consists of a variety of IIoT components such
as sensors, actuators, Human-Machine Interfaces (HMI), Programmable Logic
Controllers (PLC), data loggers, and alarm systems, all aimed at mimicking actual
industrial operations. The dataset is characterized by 41 distinct features, chosen for
their variability during different attack phases. The types of cyber attacks represented
in this dataset include command injection, Denial of Service (DoS), reconnaissance,

and the use of backdoors.

3.6.1.2 Evaluation Metrics

In the following, we present our evaluation metrics. First, we evaluate the effectiveness of
different detection methods under study by the so-called Area Under Curve (AUC), which
measures the accuracy. A large value of AUC indicates that the model has a better measure
of separability, which is key for anomaly detection to meet our accuracy and drift adaptive
requirements. Second, we consider two Quality of Service (QoS) parameters related to ML

and data analytics, namely, average execution time and processing rate. Average execution
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time is the time required for processing a single data record, including anomaly detection,
drift detection, and model updating. A short execution time is crucial to meet the real-time
and time-efficiency requirements of the anomaly detection system. Moreover, the processing
rate measures the number of processed data records per second. A large processing rate is
essential for scaling the proposed method to a large number of data records, i.e., scalability

requirement.

3.6.2 Evaluation Results

We compare the performance of our proposed SAPDAD anomaly detection algorithm with
several benchmarks, namely, ORUNADA [40], ASTREAM [44], Online RNN-AD [45], and
PDAD-SID [1].

Table 3.2 shows a comparison between our proposed SAPDAD anomaly detection
algorithm and our benchmarks for three datasets. We observe from the table that the
proposed method outperforms all other methods in terms of AUC, achieving a score of
89.71% on the KDDCup99 dataset, 80.66% on the IoTID20 dataset, and 83.08% on the
WUSTL-IIoT dataset. In comparison, ORUNADA [40], ASTREAM [44], Online RNN-
AD [45] have a significantly lower AUC scores of 78.83%, 88.11%, and 77.73% on the
KDDCup99 dataset, 76.72%, 78.91%, and 74.03% on the IoTID20 dataset, and 77.19%,
78.68%, and 76.28% on the WUSTL-IIoT dataset, respectively. The high AUC achieved by
the proposed SAPDAD demonstrates its robustness and also reflects its ability to adapt to
evolving data patterns. Next, AUC vs. the number of records is shown in Fig. 3.5, where
we observe that as the data volume increases, the proposed SAPDAD method maintains a
consistent AUC, indicating its resilience to concept drift. In contrast, other methods such
as Online RNN-AD [45], while efficient in processing rate, show variations in their AUC
performances. According to Fig. 3.5a, although a small drift occurred in the KDDCup99
dataset at the early stage of the experiment, all methods were able to adjust to it, but at
different rates. Our proposed method adapted to all drifts detected at data records 1201,
10854, and 19245, achieving the highest AUC of 89.71%, while the PDAD-SID model’s
AUC dropped to only 82.15% without drift adaptation. Similarly, in the IoTID20 dataset,
as illustrated in Fig. 3.5b, our proposed method achieved an AUC of 80.66% showcasing
its ability to adapt to a subtle concept drift detected at data record 1023. In comparison,
the PDAD-SID model [1] had a slightly lower AUC of 79.28% without drift adaptation.
As illustrated in Fig. 3.5¢, our proposed method achieves an AUC of 83.08% showcasing
its ability to adapt to a concept drift detected at data records 3380, 9000, and 12584. In
comparison, the PDAD-SID method [1] has a slightly lower AUC of 80.31% without any
drift adaptation. Therefore, while the PDAD-SID model [1] shows a comparable efficiency
in terms of execution time, its lower AUC and processing rate suggest a trade-off between
speed and accuracy. This trade-off is evident in Fig. 3.5, where the performance of PDAD-
SID falls below SAPDAD, especially for the IoTID20 and WUSTL-IIoT datasets, which
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Table 3.2: Performance comparison of different anomaly detection methods with drift
adaptation.

Methods KDDCup99 10TID20 ‘WUSTL-IIoT
Avg. Exec. Proc. Rate Avg. Exec. Proc. Rate Avg. Exec. Proc. Rate
AUC (%) Tis’]e (ms) (Rec/Sec) AUC (%) Tingle (ms) (Rec/Sec) AUC (%) Tir%’le (ms) (Rec/Sec)
ORUNADA [40] 78.83 2.3491 427 76.72 1.2369 917 77.19 1.9861 501
ASTREAM [44] 88.11 1.8870 531 78.91 1.0670 1117 78.68 2.2210 450
Online RNN-AD [45] T7.73 3.2433 308 74.03 3.0122 332 76.28 4.2452 235
PDAD-SID [1] 82.15 0.0305 2011 79.28 0.0119 2118 80.31 0.0652 1995
Proposed SAPDAD 89.71 0.0525 1945 80.66 0.0299 2021 83.08 0.0801 1984

present more complex and unbalanced data characteristics.

Table 3.2 also presents the average execution time performance of different algorithms
under consideration. The proposed model outperforms ORUNADA [40], ASTREAM [44],
and Online RNN-AD [45] with significantly shorter average execution times of only 0.0525
ms, 0.0299 ms, and 0.0801 ms, respectively, across the three datasets. The reason for this
is mainly due to PDAD-SID’s efficiency and sliding window strategy. In terms of record
processing rate, ORUNADA [40], ASTREAM [44], and Online RNN-AD [45] outperform the
proposed model. However, their AUC falls significantly short compared to the performance
achieved by our proposed method. Additionally, in contrast to PDAD-SID, the proposed
method demonstrates a significantly improved processing rate of 289, 378, and 302 records
per second in the three datasets. While PDAD-SID exhibits shorter execution times for
each record compared to the proposed model, its AUC is notably lower than the proposed
method. Hence, based on our findings, setting the anomaly probability threshold T" to 0.65,
0.70, and 0.70, and the prediction horizon L to 10, 15, and 15 for KDDCup99, IoTID20,
and WUSTL-IIoT, respectively lead to a suitable accuracy-efficiency trade-off for practical

scenarios (see Table 3.2).

The combination of high AUC scores and the graphical trends in Fig. 3.5 underline
SAPDAD’s superior performance in adapting to concept drifts, a critical aspect in dynamic
environments. The proposed SAPDAD not only achieves a high accuracy (as indicated
by AUC) but also maintains efficiency in terms of execution time, thus making it highly
suitable for real-time applications. The consistent performance of the proposed method
across various datasets, KDDCup99, IoTID20, and WUSTL-IIoT, highlights its robustness
and applicability in a wide range of cloud environments.

In addition to high accuracy, the SAPDAD method demonstrates notable efficiency
in processing data streams. This efficiency is primarily achieved through its unique
architectural design and optimization. Specifically, the use of a lightweight LSTM network
structure coupled with a strategic hold-out validation approach ensures swift data processing
without compromising the ability to learn from complex data patterns. Furthermore, the
application of weight decay during training helps prevent overfitting, thereby maintaining
agility in processing new data. Moreover, the results demonstrate operational efficiency,
which is essential to run real-time anomaly detection in resource-constrained environments.

This is evidenced by the obtained execution times shown in Table 3.2. Additionally, by
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Figure 3.5: AUC of different anomaly detection methods with drift adaptation vs. the
number of records for (a) KDDCup99, (b) IoTID20, and (¢) WUSTL-IIoT datasets.
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Figure 3.6: AUC vs. execution time for  Figure 3.7: Average execution vs. number
different values of the number h of LSTM D of dimensions.
hidden layers.

dynamically adjusting to concept drifts and evolving data patterns, the proposed SAPDAD
method reduces the need for frequent retraining and/or manual intervention, thereby saving
computational resources and time.

Next, we assess the correlation between accuracy and execution time. Fig. 3.6 depicts
AUC vs. execution time for different values of the number h of LSTM hidden layers for
KDDCup99, 10TID20, and WUSTL-IIoT datasets. We observe from the figure that the
AUC exhibits a positive correlation with the number h of hidden layers, which was expected.
More specifically, as h increases, the obtained AUC also increases, which comes at the
expense of a larger execution time. The increased execution time is a direct consequence of
incurring complexity to the underlying LSTM model. Fig. 3.6 is key to help the decision-
makers make a trade-off between accuracy and cost.

Next, we examine the trade-off between AUC and execution time for different values
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Figure 3.8: Average AUC vs. anomaly probability threshold T' for different values of
prediction horizon L in (a) KDDCup99, (b) IoTID20, and (¢) WUSTL-IIoT datasets.

of input parameters of anomaly probability threshold 7', prediction horizon L, and input

dimension D.

(A) AUC: Fig. 3.8 illustrates the AUC of the proposed SAPDAD algorithm for
different values of anomaly probability threshold T" and prediction horizon L. Given that
our proposed algorithm carries out a probabilistic detection rather than classification, we
use AUC as our metric, which offers the advantage of being threshold-independent. The
values of anomaly probability threshold T and prediction horizon L was selected from
{0.55,0.60,0.65,0.70,0.75} and {10,15,20,30}. As shown in Fig. 3.8a, the highest AUC
was achieved for L=10 for a wide range of anomaly probability threshold values. Therefore,
we set the prediction horizon L to 10 in the rest of our evaluations. For a fixed prediction
horizon L, the optimal anomaly probability threshold T" was 0.65 for the KDDCup99 dataset
because it resulted in improved AUC. Hence, we consider the data records with an anomaly
probability of greater than 0.65 as anomalous. For the [oTID20 dataset, as shown in
Fig. 3.8b, L=15 leads to the highest AUC with an anomaly probability threshold T of 0.70.
For the WUSTL-IIoT dataset, as shown in Fig. 3.8c, L=15 leads to the highest AUC with
an anomaly probability threshold 71" of 0.70. We note that a higher anomaly probability
threshold results in fewer false anomalies, whereas a lower threshold increases the false
negatives. Therefore, we determined the anomaly probability threshold T to 0.65, 0.70, and
0.70 in the KDDCup99, IoTID20, and WUSTL-IIoT datasets, respectively.

(B) Execution Time: Fig. 3.9 illustrates the execution time for different values
of anomaly probability threshold T and prediction horizon L. According to Fig. 3.9a,
Fig. 3.9b, and Fig. 3.9¢c, it is evident that the average execution time of the proposed
SAPDAD decreases as the anomaly probability threshold 1" increases for a given prediction
horizon L. This is due to the fact that the frequency of model updates decreases as the
anomaly probability threshold T increases. For a fixed anomaly probability threshold T,

the average execution time grows as the prediction horizon L increases. This is due to the
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Figure 3.9: Average execution time vs. anomaly probability threshold T for different values
of prediction horizon L in (a) KDDCup99, (b) IoTID20, and (¢) WUSTL-IIoT datasets.

fact that increasing the prediction horizon L makes it more difficult to satisfy the criteria

for model updates.

(C) Scalability: Next, we examine the scalability of the proposed algorithm. To
ensure a fair comparison, Fig. 3.7 illustrates only the results of SAPDAD for different
dimensions. The reason is that the execution time of the existing methods was well above
a millisecond, even for a small number of dimensions. In the existing methods, as the
number of dimensions increased, the average execution time increased significantly. We
vary the number D of dimensions from 6 to 42, 8 to 32, and 6 to 40 for KDDCup99,
TIoTID20, and WUSTL-IIoT datasets, respectively. Among the existing methods tested on
the KDDCup99 dataset, the proposed SAPDAD method demonstrates the lowest execution
time. More specifically, the obtained execution time is 1.2 ms and 3.6 ms for D=14
and D=42, respectively. Similarly, when applied to the IoTID20 dataset, the proposed
SAPDAD method exhibits the lowest execution time of 1 ms and 2.8 ms for D=6 and D=32,
respectively. For the WUSTL-IIoT dataset, the proposed SAPDAD method exhibits the
lowest execution time of 1.6 ms and 3.1 ms for D=24 and D=40, respectively. We observe
from Fig. 3.7 that the execution time of the proposed SAPDAD method grows linearly with
the number of dimensions in the three datasets. The small execution time in the IoTID20
dataset compared to the KDDCup99 and WUSTL-IIoT datasets can be attributed to two
factors. First, the network traffic patterns in the IoTID20 dataset have less variability and
fluctuation, allowing for faster processing during testing. Second, given that there existed
a smaller number of concept drifts in the IoTID20 dataset, fewer model adaptations were

required during the testing.
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Table 3.3: Contributors to the latency (ms) in the proposed SAPDAD.

phase Module Latency (ms)
KDDCup99 | IoTID20 | WUSTL-1IoT
Offline | Preprocessing 0.091 0.050 0.12
Training and
Prediction 3.110 2.544 3.857
Real- Anomaly
Time Detection 0.011 0.012 0.014
Drift Detection
and 0.041 0.017 0.065

Model Update

Table 3.4: Ablation experiment results for drift adaptation and dimension reduction on
AUC in (A) KDDCup99, (B) IoTID20, and (C) WUSTL-IIoT.

. Drift Dimension
Variant Adaptation | Reduction AUC (%)
A B C
Full System Yes Yes 89.71 | 80.66 | 83.08
No Drift
Adaptation No Yes 85.75 | 76.64 | 79.10
No Dimension Yes No 87.75 | 78.64 | 82.10
Reduction
No Modules No No 82.75 | 73.64 | 77.10

3.6.2.1 Latency of Various Modules in SAPDAD

In order to identify the key factors contributing to latency in the proposed SAPDAD, a
detailed breakdown of the latency for various modules is presented in Table 3.3. This table
provides a comprehensive view of how each phase and module of the approach contributes
to the overall latency across KDDCup99, IoTID20, and WUSTL-IIoT datasets. We observe
from Table 3.3 that the Training and Prediction module is the primary contributor to the
overall latency. This is particularly noticeable in the offline phase, where the latency of this
module is significantly higher than the others, recording 3.110 ms for KDDCup99, 2.544 ms
for IoTID20, and 3.857 ms for WUSTL-IIoT. The Preprocessing module, which is also in
the offline phase, shows a latency of <0.1 ms for various datasets. This indicates a relatively
minor impact on the overall latency, owing to the preprocessing algorithms’ efficiency.
During the real-time phase, both Anomaly Detection and Drift Detection and Model Update
modules demonstrate low latency values. The Anomaly Detection module records latencies
of only 0.011 ms, 0.012 ms, and 0.014 ms for KDDCup99, [oTID20, and WUSTL-IIoT,
respectively, reflecting its low computational complexity and efficient operation. Similarly,
the Drift Detection and Model Update module shows latencies of 0.041 ms, 0.017 ms, and
0.065 ms for KDDCup99, IoTID20, and WUSTL-I1oT, respectively.
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Table 3.5: Comparative analysis of SAPDAD model performance using LSTM, CNN, GRU,
and LSTM-CNN architectures for WUSTL-IIoT.

Model AUC (%) | Execution Time (ms)
SAPDAD with LSTM 83.08 0.0801
SAPDAD with CNN 80.10 0.0676
SAPDAD with GRU 79.95 0.0942
SAPDAD with LSTM-CNN 76.41 0.1452

3.6.2.2 Ablation Study

In the following, we run an ablation evaluation to examine the contribution of different

modules of the proposed SAPDAD to the overall performance.

(A) Impact of drift adaptation and dimension reduction: Table 3.4 presents
the impact of drift adaptation and dimension reduction modules of SAPDAD on the AUC
performance across various datasets. The experiments involve four configurations: (i) full
system with both modules enabled, (ii) system without drift adaptation, (iii) system without
dimension reduction, and (iv) baseline system without any drift adaptation or dimension
reduction. In the full system configuration, the obtained AUCs are the highest among
all configurations, reaching 89.71% for KDDCup99, 80.66% for IoTID20, and 83.08% for
WUSTL-IIoT, which underscore the combined effectiveness of these modules in enhancing
anomaly detection accuracy. When there is no drift adaptation, we observe a noticeable
decline in AUC (85.75% for KDDCup99, 76.64% for IoTID20, and 79.10% for WUSTL-
IIoT), which highlights the importance of this feature in adapting to changes in data over
time. Similarly, the absence of dimension reduction results in decreased AUCs of 87.75%,
78.64%, and 82.10% for the respective datasets, indicating that managing the complexity
of the feature space is crucial for maintaining high detection accuracy. The most significant
impact is observed in the baseline configuration without any drift adaptation or dimension
reduction, where the AUC drops to 82.75%, 73.64%, and 77.10% for KDDCup99, IoTID20,
and WUSTL-IIOT datasets, respectively.

3.6.2.3 Performance comparison of various architectures:

Finally, we evaluate the accuracy of the trained prediction model of SAPDAD, which was
initially implemented using LSTM networks. To explore the effectiveness of different neural
network architectures, we replaced the LSTM network with three alternative configurations:
CNN, GRU, and a hybrid network combining LSTM and CNN (LSTM-CNN). As shown in
Table 3.5, the LSTM configuration achieved the highest AUC of 83.08% with an execution
time of 0.0801 ms, demonstrating its strong predictive capabilities while maintaining
computational efficiency. The CNN model, with an AUC of 80.10%, offers a balance between

accuracy and efficiency, achieving the lowest execution time of 0.0676 ms, making it a
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suitable option for real-time applications with strict latency constraints. The GRU variant,
while maintaining a comparable AUC of 79.95%, exhibits a slightly higher execution time of
0.0942 ms. This aligns with expectations, as GRU is typically more computationally efficient
than LSTM but still incurs additional processing time compared to CNN. In contrast, the
LSTM-CNN hybrid, which integrates both sequential and spatial feature extraction, shows
a lower AUC of 76.41% and an execution time of 0.1452 ms. While this configuration
provides enhanced feature extraction, the increased computational cost suggests that the
combined architecture may introduce additional overhead that does not necessarily translate

into improved predictive performance for this dataset.

3.7 Conclusion

In this chapter, we propose an adaptive model for real-time anomaly detection, which
is accurate and time-efficient. The proposed SAPDAD method combines a novel drift-
handling algorithm (RealTimeOAW), a prediction-driven algorithm (PDAD-SID), and a
hyperparameter method (GA) to dynamically adapt to the continuous changes in data
streams. The proposed SAPDAD method offers a number of advantages for anomaly
detection, including real-time processing capabilities, scalability, adaptability to data
pattern changes, and improved accuracy with its prediction-driven strategy, which make
it an effective solution for handling the dynamic and complex data streams in real-time
cloud environments. The evaluation of the proposed method was conducted using three
real-world anomaly detection datasets, namely, KDDCup99, IoTID20, and WUSTL-IIoT.
Our trace-driven evaluations demonstrate that the proposed algorithm not only outperforms
the existing benchmarks in terms of accuracy but can also detect anomalies in a bounded

time.
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Chapter 4

Distributed Traces in ML-based

Anomaly Detection!

4.1 Introduction

The growing adoption of microservices in cloud environments has introduced new challenges
for anomaly detection, particularly in real-time cloud environments where services operate
with strict latency constraints and dynamic workloads. Unlike monolithic systems,
microservices are highly distributed, often relying on interconnected service instances,
containerized deployments, and auto-scaling mechanisms. These factors make it difficult
to diagnose performance issues, detect anomalies, and ensure system reliability in real
time. A major challenge in microservice anomaly detection stems from the complexity
of distributed traces—the execution paths of service requests across multiple microservices.
These traces are essential for performance diagnosis but are difficult to analyze due to
frequent updates, evolving dependencies, and loosely coupled architectures. Moreover,
existing anomaly detection methods struggle to handle distributed trace data, high data
volumes, and the need for low-latency processing in real-time cloud environments [85].

To address these challenges, this chapter proposes Trace-Driven Anomaly Detection
(TDAD) and an Asynchronous Real-Time Federated Learning (ART-FL) framework.
TDAD leverages a Graph Neural Network (GNN) to learn vector representations of traces
and employs Positive and Unlabeled (PU) learning to train an anomaly detection model
with partially labeled data. Building on this, ART-FL enables continuous computation and
communication by allowing global model updates without waiting for lagging clients. It

integrates logs and traces to capture intra-service behaviors, providing a holistic view of

!This chapter is based on two published papers: [3] Mahsa Raeiszadeh, A. Ebrahimzadeh, A. Saleem, R. H.
Glitho, J. Eker, and R. A. Mini, “Real-time anomaly detection using distributed tracing in microservice cloud
applications,” in Proc. IEEE Cloud Networking (CloudNet), pp. 36-44, 2023, and [4] Mahsa Raeiszadeh,
A. Ebrahimzadeh, R. H. Glitho, J. Eker, and R. A. Mini, “Asynchronous Real-Time Federated Learning
for Anomaly Detection in Microservice Cloud Applications,”[EEE Transactions on Machine Learning in
Communications and Networking (TMLCN), vol. 3, no. 6, pp. 176 - 194, 2025.
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microservice anomalies. Furthermore, ART-FL incorporates dynamic learning techniques
to optimize local and global model convergence, ensuring efficient and timely anomaly
detection.

The rest of this chapter is organized as follows. First, we present an illustrative use
case followed by the system model and our proposed method and its components. Next,
we detail the evaluation process and compare our approach with state-of-the-art methods.

Finally, we summarize the key findings and contributions.

4.2 TIllustrative Use case

To illustrate the challenges of anomaly detection in distributed traces within real-time
cloud, we consider the TrainTicket booking system [85], a cloud-native application built
using microservices and containerized environments (Fig. 4.1). This system enables end-
users to interact with various services, such as train schedules, ticket booking, and payment
processing. Anomalies in the system can manifest as service disruptions, degraded user
experience, or security issues, originating from misconfigurations, resource bottlenecks,
configuration errors, or communication failures between services. Anomaly detection models
aim to identify these anomalies promptly to enable preventive or corrective actions.

This use case highlights the challenges of real-time cloud. While not all services in
TrainTicket require real-time processing, critical components such as ticket reservations,
payment processing, and live seat availability demand low-latency execution to maintain
service reliability and meet user expectations. Any anomaly—whether a performance
bottleneck, misconfiguration, or inter-service failure—risks violating SLAs, degrading user
experience, and causing financial losses. The TrainTicket use case exemplifies the challenges
of anomaly detection in real-time cloud-native applications. Microservices—essential
for scalability, modularity, and distributed execution—also introduce complexity due to
asynchronous communication, high inter-service dependencies, and dynamic workload
variations. These challenges are further amplified in real-time cloud environments, where
strict latency constraints demand timely anomaly detection and mitigation.

As shown in Fig. 4.2a, a trace is an array of spans arranged in a tree-like hierarchy,
where each span represents a service invocation. Traces and spans are uniquely identified
by their IDs. A span records information about the caller and callee, including an operation
name that specifies the action performed, such as “GET /api/vl/auth/login" in a REST
call. Except for the root, each span is linked to a parent span that initiates its invocation.
For example, Span 001 triggers two parallel synchronous calls to Spans 002 and 003, as
illustrated in Fig. 4.2a. Fig. 4.2b depicts the timeline of the spans (shown in Fig. 4.2a).
Spans 002 and 003, both originating from Span 001, are executed in parallel, leading to
a temporal overlap in their execution timelines. Meanwhile, Span 005, an asynchronous

invocation initiated by Span 003, is completed after the completion of Span 003.
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Figure 4.1: Illustrative use case of a TrainTicket microservice cloud application
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Figure 4.2: (a) Illustration of trace, spans, and logs within the TrianTicket microservice
application (b) Timeline of Spans in (a).

Current trace anomaly detection methods [50, 51, 52] view traces as service interaction

sequences, and log anomaly detection methods [61, 69, 70] treat them as log event series.

However, applying these methods effectively in microservices is challenging due to several

reasons. First, detecting anomalies requires aggregating logs from multiple services, but

existing trace methods overlook log data, limiting their detection capabilities to anomalies

within trace structures alone. Fig. 4.2a highlights a log-level anomaly where Span 003’s logs

indicate no food request for a train ticket, yet Span 005’s logs show a food order for that

ticket. Detecting such anomalies necessitates merging logs from both Spans 003 and 005.
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Second, traces have complex structures, including hierarchical, parallel, and asynchronous
calls, which are not fully captured by sequential representations. This simplification misses
the causal relationships and the temporal dynamics within and across spans. For instance,
in the sequence-based representation, two adjacent log events within Span 001 may appear
distant due to the insertion of log events from Span 001’s descendant spans. Furthermore,
traces often involve parallel or asynchronous service calls. Figs. 4.2a and 4.2b show a
trace with an asynchronous (Span 005) and two parallel calls (Spans 002 and 003). This
setup leads to the interleaving of log events from Spans 002, 003, and their children, as
well as between Span 005 and Span 003, in varied sequences. Merging these events into
a single chronological sequence obscures the unique aspects of parallel and asynchronous
calls, emphasizing the need to maintain trace structure in log integration.

Although traces are commonly used in anomaly detection [50, 51, 52], they are found to
be inadequate for identifying all potential anomalies. They primarily provide a broad view
of the system and record interactions across microservices. This high-level data allows for
basic, coarse-grained queries but lacks detailed intra-service data. For example, granular
details like memory usage, critical for assessing the internal state of a service, are absent in
trace data. This limitation underlines the fact that network-related issues, such as latency,

cannot wholly encapsulate anomalies associated with resource constraints.

4.3 System Model

In large-scale industrial microservice systems, thousands of microservices across distributed
machines generate billions of runtime data points daily, including traces and logs. Our
system model involves two main entities, (i) participants, who act as clients, and (ii) a
cloud server. Let £ = {1,..., K} represent the set of K clients, where each client has a
distinct dataset Dy and represents ny = |Dg| to be the number of samples on client k.
We denote N = "5 | |D.| as the total number of samples in K clients. Each client k
independently trains a local model wj, using its dataset Dy. Notably, only the local model
parameters are transmitted to the cloud server. This process deviates from traditional
centralized training, where datasets are aggregated, D = Ugcx Dy, before model training.
The local models, represented by wy, collectively contribute to the generation of a global
model wg through aggregation at the server. In this system, clients act as collaborative
participants, working together to train an ML model, which is coordinated by an aggregate

server. The symbols used in the following sections are summarized in Table 4.1 for reference.

4.4 Problem Formulation

In a large-scale system comprising M microservices, each microservice aggregates logs and

traces separately. As previously discussed, there are K clients, each running an application
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Table 4.1: Summary of main notations.

Symbol Definition
w3 Global model parameters
Wy, Local model parameters for client &
Tp Class prior probability of anomalous traces
T, Candidate threshold for anomaly detection
Qij Attention coefficient from node j to i in the graph
o Standard deviation
N Total number of samples
li(zi,yi; wi) | Loss function for the data point
i Learning rate at iteration ¢
A Regularization parameter
r Decay coefficient
T9 Initial threshold for anomaly detection
F(wg) Global objective function
&k Gradients computed during local updates
T Multiplier for dynamic learning rate
Ui Output of the MLP for a given instance 3.
Qi Anomaly probability for instance 4.
T, Anomaly detection threshold.
M Updated candidate threshold in refinement.
d Step size for candidate threshold generation.
Cy Cluster assigned by K-means.
Q Set of all anomaly probabilities.
F K-means clustering function.
C Set of all clusters.
Q4 Subset of anomaly probabilities above the threshold.
On Subset of anomaly probabilities below the threshold.

with M microservices. This means that there are multiple instances of the application, each
managed by a different client. In an observation window of length T (where data collected
in this window forms a sample), we define multi-source data as X = {(an,X%)}M_ ,
where L represents the collection of log events from all microservices. Therefore, X%_%s
specific to the microservice m and denotes the log events associated with it. 7 indicates
the collection of trace records from all microservices. Therefore, XZ; represents the trace
records for the microservice m during the observation window 7.

Let us define wy as the local model for client k. We assume that for any k # k', we

have Dy N Dy = (). The local empirical loss for client k is then given by:

fulwy) & ! > liwi,yis wi), (4.1)

L 1€Dy,

where wy, is the local model parameter and ¢;(x;, y;; Wy ) represents the loss function for the

49



° Log and Trace Embedding e Graph Building e Model Training

Trace z?‘so Semantic : Semantic Time Status Code Log Seq. nnPU Optimizer
-3 H ]
#3 .  Embedding 11 11 11 11
<> Semantic _______J . DX X i1y eee XX 1y eees X 10X kidone 5 X X nstpens] i
.- Information L 3 2 2 B 2 2 2 2 H
— g H ) L |
—b—o — (-C- Time ® 34 DX e X X ey XX e X X nipen] i Pooling
4 ) ° E i
][] le] n - Embedding ol — 5 H
| m om m om m om m om H
nf "“ef : 8 XX e Xt XX e X X 1] :
Log nformation — 3 >8 H
\ - Status Code | ® ¥ v
200 . ®
o Emheddlns ° o
LOG HTTP Code : © Anomaly Detection

Information

0 e Normal ﬁi
>T, —
e 9 | Anomalous Ves )

Figure 4.3: Overview of the local model method for the edge clients.

= Pre

Log Parsing ;——) Q processing
: —_—
H Log Sequence

Graph Structure

data point {z;,y;}. The global objective function is obtained as follows:

E fe(we), (4.2)

2|2

K
F(wg) = Z
k=1

where wg is the aggregated global model. The overall goal is to find the model w{, that
minimizes F(wg):

wg = argmin F'(wg). (4.3)

With these considerations in mind, the goal at the local client is to solve the problem

of determining whether X(;.y/] is an anomaly or not in real time.

4.5 Proposed Solution

Fig. 4.3 illustrates an overview of our proposed method, which is called Microservice
Federated Learning Anomaly Detection (MS-FLAD). Our proposed MS-FLAD method
comprises four main components: (i) Log and Trace Embedding, (ii) Graph Building,
(iii) Model Training, and (iv) Anomaly Detection. First, log parsing involves processing
the incoming logs to extract log events from the messages they contain. Then, a vector
representation, including semantic information, is generated for each span through the
process of Span Embedding. Second, Graph Building creates an SCG for each trace,
capturing the relationships between spans and logs within the trace. Third, Model Training
leverages GNN and PU learning for trace-based anomaly detection, enabling the generation
of vector representations for each trace based on its SCG. PU learning allows the model
to train with a limited set of labeled anomalous traces, estimating empirical risk from the
data available. Next, the trained model processes the SCG and utilizes non-parametric
unsupervised learning to determine the threshold. MS-FLAD then provides a prediction
regarding the presence of anomalies. In the following, we describe each component in more
detail.
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Figure 4.4: Log Embedding

4.5.1 Log and Trace Embedding

In this section, we describe the log embedding process, which parses raw log messages. Next,
semantic vectorization turns these messages into fixed-dimension vectors. Then, we focus
on tracing embedding, which is essential for understanding system causal relationships and

extracting vectors for each span.

4.5.1.1 Log Embedding

Given that raw log messages have an unstructured nature, automated log analysis
encounters challenges. Unstructured log messages introduce difficulties in parsing and
extracting meaningful information, attributed to the lack of standardization. The inherent
variability, limited searchability, and reduced readability further compound these challenges,
hindering the efficiency of log analysis processes. To address this, a log parsing strategy is
employed to abstract the parameters within each log message. This transforms the data into
a structured format, facilitating subsequent analysis. We adopt the so-called Drain [86],
a technique known for its high parsing accuracy and efficiency in processing unstructured
log data in real-time streams. To facilitate an integrated analysis with trace data, we first
identify and capture the span ID and trace ID linked to each log message before initiating
the parsing process. Following the parsing step, both the trace ID and span ID are appended
to every extracted log event.

Fig. 4.4a presents a log data example from the TrainTicket application, simplifying some
fields for clarity [85]. Log messages, shown on the console, include a consistent log event
and a variable log parameter, the latter capturing attributes like contact ID and balance
value. Log parsing, as executed by Drain, extracts log events from messages, facilitating
their conversion into structured sequences, as depicted in Fig. 4.4a a log sequence consists

of log events that track a specific task’s execution flow. Each event in the sequence shares
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the same task ID, allowing for their chronological association.

4.5.1.2 Semantic Vectorization

Semantic vectorization extracts semantic information from log events, transforming it into
a fixed-dimension vector, known as a semantic vector. This transformation takes place
independently of the log event’s previous occurrences. The semantic vectorization workflow
is depicted in Fig. 4.4b and encompasses three key steps: log events pre-processing, word

vectorization, and TF-IDF-based aggregation, which are explained in more detail next.

(A) Log Events Pre-processing: To determine the semantics of log events, we
treat each log event F as a natural language sentence, expressed as S = [t1,t2,...tN],
where token i is represented by t;, Vi € [1,N] and N indicates the total length of
the log event sentence. Although most tokens are valid English words, log events may
contain non-character tokens and various variable names. The pre-processing for each log
event sentence involves several steps. First, we eliminate all non-character tokens from
sentences S, including delimiters, operators, punctuation, and numerical digits. Then, we
discard common stop words such as “a" and “the". Finally, we split composite variable
names in log events into their basic components, e.g., "TypeDeclaration" becomes "type"
and "declaration", and "isCommitable" splits into "is" and "Commitable". This method

deconstructs compound tokens into their elemental parts.

(B) Word Vectorization: After pre-processing, each log-event sentence S is
converted into a semantic vector V. This transformation leverages pre-trained word vectors
from FastText to capture the semantic meaning of log events, including semantic similarity
among words. FastText assigns each word a D-dimensional vector, with D = 300 for its
word vectors. Consequently, a log-event sentence S is transformed into a list of word vectors
U = [ug,us,...,uy|, where each word is replaced by its corresponding vector. The word
vector for t; is represented as u; € R%,i € [1, N], and N represents the total number of

tokens in the log-event sentence.

(C) TF-IDF Aggregation: To ensure a fixed-dimensional representation for log
events, which may vary in word count NV, we aggregate the N word vectors in U into a D-
dimensional vector. This method guarantees the uniform D for all semantic vectors, even
with different NV values. In log events, not all words carry the same level of significance.
Commonly occurring words, such as “api' and “get", are less crucial compared to less
frequent words like “food" and “submit" in the context of log embedding. Therefore, we
apply weighted aggregation using the Term Frequency-Inverse Document Frequency (TF-

IDF) [87]. This technique allows for precise weighting of words based on their significance,
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where the TF for a word is defined as:

Frequency of word in S

TF(word) = ~

(4.4)

Moreover, to account for words like "block" that may appear in all log events and thus
have reduced distinctiveness, we integrate the Inverse Document Frequency (IDF) metric,
defined as IDF(word)= log (L,L

word

is the number of log events containing the word. The TF-IDF weight for each word is then

), where L' is the total number of log events and L, 4

determined by TF(word) x IDF(word), where X represents the multiplication operation.
Finally, by adding up the word vectors in U according to TF-IDF weights (w), the semantic

vector U € R? that corresponds to a specific log event can be obtained as follows:

N
U= Zwi 7 (4.5)
i=1

where the dot operation represents scalar multiplication and NN is the total number of
words in the log event. This semantic vector effectively identifies log events with semantic

similarities while distinguishing between different log events.

4.5.1.3 Trace Embedding

A trace consists of multiple spans that illustrate the causal relationships between different
service calls. Each span corresponds to a specific service invocation and captures information
such as the service and operation names, start time, duration, and status code. Span
embedding refers to the process of capturing and encoding these invocation details to
generate a trace graph representation. This involves encoding service and operation
names, start and duration times, and status codes individually. These elements are then
combined into a vector format for each span, providing a foundation for further analysis
and interpretation of the trace data. Span embedding is carried out in three primary stages:
(i) Semantic Embedding, (ii) Time Embedding, and (iii) Status Code Embedding, which

are described in more detail next.

(A) Semantic Embedding: The semantic embedding component is responsible
for producing a vector representation for each span in a trace by combining the
service name and operation name. To start, we split these names into individual
words using common delimiters found in microservices, such as “/”, “-”, and “".
All words are then converted to lowercase, and non-alphabetical symbols, including
punctuation marks and numbers, are removed. For example, the name “ts-travel-
service/POST: /api/v1/travelservice/travelPlan/cheapest” is segmented into “ts”, “travel”,

9

“service”, “post”, “api”, “v1”, “travelservice”, “travelplan”, and “cheapest”. To manage

the dynamic and variable nature of service and operation names in microservices, we apply
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the WordPiece tokenization algorithm [88], which divides words into smaller tokens based
on character sequences. This technique helps handle out-of-vocabulary (OOV) words. For
instance, “traveldate” and “trainnumber” are tokenized into “travel”, “date”, “train”, and
“number”. Using the token sequence obtained from this process, we then utilize a pre-trained
BERT model [89], a transformer-based language representation model, to generate vector
embeddings. Specifically, we use the BERT-Base model [89], which includes 12 transformer
encoder layers and has a hidden layer size of 768 dimensions. This model generates a 768-
dimensional vector for each span, capturing the semantic details of both the service and
operation names. Leveraging the BERT-Base model’s 12-layer transformer architecture and
its 768-dimensional hidden layer has proven effective for comprehending complex language

patterns and enhancing performance in tasks requiring detailed semantic understanding.

(B) Time Embedding: Each span in the system records crucial details about a
service invocation, such as the start time and duration of the interaction between the caller
and callee. To improve the detection of time-related anomalies, we extract four key time-
based attributes from these timestamps: (1) duration time, representing the total time of
the span; (2) waiting time, which is the period the callee waits for a response from other
services; (3) local execution time, referring to the time taken by the callee to complete the
current invocation, excluding the waiting time; and (4) relative start time, which measures
the time difference between the start of the span and the start of the relevant parent span.

With the BERT-Base model, each span is represented by a 768-dimensional vector
that captures the embedding of both the service and operation names. However, if time
features are limited to just one dimension within this 768-dimensional vector, there is a
risk that the time-related characteristics could be underrepresented in the span’s overall
embedding. Moreover, the significant variation in time durations across different traces
(ranging from just a few milliseconds to several thousand) complicates the process of weight
convergence and reduces the model’s training efficiency. To address these issues, we project
a single-dimensional time feature ¢t into a 768-dimensional vector space denoted by Eijnpe.
Subsequently, we use the softmax function to create a soft one-hot encoding, where each
element lies between 0 and 1 and the sum of all elements is equal to 1. The soft one-hot

encoding vector s is obtained as follows:
s=T1(tW +b), (4.6)

where 7(+) is the softmax function, W € RP is the weight matrix, and b € RP? is the bias.
Next, we project the vector s into a vector space specifically designed for time embeddings.
The soft one-hot encoding s is multiplied by the time embedding vector E, € RP*4 which

results in p-dimensional vector Eijne as follows:

Eiime =50 Es; (47)
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Figure 4.5: An Example of an SCG in TrainTicket application.

where ® denotes the element-wise multiplication of two vectors of the same length.
Finally, to create a comprehensive representation of the time-related attributes within a
span, we concatenate the four time embedding vectors, i.e., duration time, waiting time,
local execution time, and relative start time (which are defined above). This combined
representation effectively captures and encodes the temporal information associated with

the span.

(C) Status Code Embedding: The HTTP/1.1 standard [90] defines a total of 63
status codes, organized into five main categories. We apply one-hot encoding to represent
these status codes, where each status code is mapped to a 63-dimensional vector. In this
representation, each dimension corresponds to a specific status code. For example, a status
code of 200 is encoded as a vector with a value of 1 in the 5th dimension and 0 in all other
dimensions, while a status code of 404 is encoded with a value of 1 in the 28th dimension
and 0 in all other dimensions. This method of encoding status codes enables an efficient
analysis of HT'TP traffic.

4.5.2 Graph Building

Traces have a hierarchical structure consisting of service invocations, known as spans. In
our proposed MS-FLAD method, this hierarchical structure is efficiently modeled using an
SCG, a directed acyclic graph. In this graph, each node corresponds to a span within the
trace, while the edges represent the parent-child relationships between spans. A directed
edge from Span 1 to Span 2 signifies that Span 1 is the parent of Span 2. The vector
representation of each span is assigned as an attribute to the corresponding graph node
to capture its specific characteristics. Fig. 4.5 illustrates an example of an SCG, which
corresponds to the trace shown in Fig. 4.3. In this figure, each rectangle represents a span,
and each edge signifies a causal relationship between two spans. For instance, Span 1
represents the root span of the trace, and Spans 2 and 3 are child spans of Span 1. Each
span’s vector representation comprises four components, i.e., semantic, time, status code,

and log sequence.
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4.5.3 Model Training

In our proposed approach, trace-based anomaly detection is formulated as a PU learning
problem, leveraging historical knowledge of anomalous traces while minimizing the number
of labeled traces used for training. PU learning involves training a binary classifier with
a small set of positive samples (i.e., anomalous traces) and a larger set of unlabeled
samples. Traces are represented as SCGs, where span and log embeddings are used as node
attributes. To derive meaningful trace representations, we utilize a Graph Neural Network
(GNN) known as the Graph Attention Network (GAT), which incorporates the multi-head
self-attention mechanism [91]. We selected GAT because it is well-suited to the graph
structure of trace data, enabling it to learn vector representations of traces while capturing
complex relationships and dependencies within the graph. These GNNs produce vector
representations of the traces, as illustrated in Fig. 4.3. For training the binary classifier in
trace-based anomaly detection, we adopt the non-negative risk estimator (nnPU) algorithm
[92], which is known for its robustness against overfitting.

Let g =V, A, X represent an SCG, where V' is the collection of nodes, A is the adjacency
matrix that defines the edges, and X is the set of attributes for each node, with h; denoting
the vector representation of each node. In an SCG, the GAT layer computes attention scores
for neighboring nodes, highlighting their relative importance. We obtain the attention score

e;j from node j to node ¢ as follows:
eij = (a” - (Why||Why)) (4.8)

where ¢(-) is the LeakyRelu activation function, || represents concatenation, h; and h;
denote the vector representations of node ¢ and node j, respectively. The weight matrix
W e RF'XF corresponds to a shared linear transformation, where F is the dimensionality
of the input node features and F” is the dimensionality of the transformed features. a is a
learnable attention vector. To calculate the attention coefficients «;; from node j to node

i, a softmax function is used to normalize the importance across all neighboring nodes of i:

exp (e;5)

Seen xD (€ic)’ (4.9)

Oéij =
where N; represents the neighborhood of node i. The GAT utilizes multi-head attention
to enhance the stability of the attention mechanism’s learning process. The attention

coefficients are used to compute the output node representation h; as follows:

B, =[S0 [ 3 afWehy | | (4.10)
JEN;

where C denotes the number of attention heads involved. Each attention head, represented

¢,

7j» has its own attention score. The weight matrix W¢ corresponds to the linear

by «
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transformation for attention head c. o(-) refers to the activation function.
After executing the computations through m GAT layers, MS-FLAD generates vector
representations for each node. The overall graph representation, vy, is derived by averaging

the vectors across all nodes as follows:

_ 1 S h/™ 4.11
Vg = Fg ;::1 n o (4.11)
where N, denotes the number of nodes in graph g. The vector representation h)/" represents
the output of node n from the embeddings of GAT layer m.

During the training phase, our proposed MS-FLAD utilizes non-negative risk estimation
from the nnPU algorithm [92], a large-scale PU learning technique, to iteratively optimize
the GAT parameters. In each epoch, the training dataset is split into /N mini-batches, and
MS-FLAD updates the GAT parameters based on the risk estimation for each mini-batch.
Consider a two-layer perceptron (MLP) function f with a single output dimension, and
let L represent the sigmoid loss function. Each mini-batch contains n, labeled anomalous
traces, where p denotes positive (anomalous) data, and u refers to the unlabeled data. The

estimated risk }A%; associated with labeled anomalous traces is obtained as follows:

Ry = LSO L(Fh),+). (412)
Mp i

Similarly, the estimated risk E; associated with misclassifying labeled positive (anomalous)

traces as negative is obtained as follows:

By = 2 SCL(F0), ). (113)

Lo e

We calculate the estimated risk ﬁé; for unlabeled traces by treating them as normal as

follows:

U 5

Ry == YL, (1.14)
=1

where n, is the number of unlabeled traces. Finally, the empirical risk estimation ﬁpu is
given by:
Ry, = mpRY + Ry — mp Ry, (4.15)
where the hyperparameter m, denotes the class prior probability of anomalous traces.
Let 8 be the hyperparameter which ensures the risk is non-negative. If E; —7rp]§; > —0,
MS-FLAD uses Adam [93] optimization to minimize R, and optimize GAT parameters;

otherwise, Adam is used to minimize T, R, — E; and optimize the GAT parameters.
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4.5.4 Anomaly Detection

The anomaly detection component is responsible for generating the final outcome. To detect
anomalies, we apply the sigmoid function to the output of the MLP. Let y; be the output
of the MLP for f (v;). The anomaly probability q; is given by:

1

m7 (4.16)

qi =0 (yi) =

To detect anomalies, a threshold T is considered; if ¢; > T¢, an anomaly is detected.

4.5.4.1 Initial threshold setting

We build a set of anomaly probabilities @ = {q1,q2,...,qg|}, where ¢; € Q, Vi €
{1,...,|Q|} and we define K-means clustering function F(g¢;) that maps each ¢; to a cluster
C, € C, as follows:

Flg) = Cy, Vi {1,...,|O]}, Yo e {1,....[C]}. (4.17)

Depending on the value of g;, the system can fall in one of the following states: (i) normal,
(ii) transitive, or (iii) anomalous. We set the initial cluster centers to 0, the average of
all ¢; in @, and the maximum ¢; value in Q for normal, transitive, and anomalous states,
respectively. Let Q, be the set obtained for the anomalous cluster. The initial threshold
T? is then obtained as follows:

T? = min(Q,). (4.18)

4.5.4.2 Threshold calculation

To refine the anomaly detection, we generate a series of candidate thresholds T, as:
T. =T +2xd, V2€{0,..., Zmax} (4.19)

where z is the smallest integer such that T, > maz(Q), and d is the step size. Large values
of d may increase false positives, while smaller values of d may increase the execution time
of the algorithm. For each candidate threshold T, the set Q is divided into two subsets,
Ov={q€Q| ¢ <T.}and Q4 ={¢q; € Q| ¢ > T.}. The updated T7 is then calculated

for each T, as follows:

/ J(Q) 1
T — =
o(On) " T2al’

where o(+) represents the standard deviation. The optimal threshold T, is determined by

(4.20)

selecting the candidate T, that maximizes T, as follows:

T, = arg H%Fax(Tz'). (4.21)
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Figure 4.6: ART-FL overview.

4.5.5 Global Model Aggregation and Update

Up until now, we have explained the entire process of the anomaly detection model at the
edge client. This model is then extended for use in an FL framework. We propose an
asynchronous real-time FL, where the server updates the global model w¢g as soon as it
receives updates from any client, without waiting for the others. Each client maintains a
local copy of w¢, which may differ from those of other clients due to asynchronous updates.
The server’s task includes not only aggregating these updates but also performing feature
learning to extract and enhance cross-client feature representations, thereby improving the
overall model performance. Fig. 4.6 shows the update process of the ART-FL method.
The server aggregates the updates from the clients as they arrive and conducts feature
learning on the aggregated parameters to create a cross-client feature representation. The
updated global model w¢ is then sent to clients that are prepared for the next iteration. As
clients collect new data samples, we implement a decay coefficient to balance the previous
and current local gradients through a repetitive local computation process. Algorithm 4.1
depicts the pseudocode of the proposed ART-FL method. Learning on the cloud server is
shown in lines 2-7 of the Algorithm 4.1, which involves aggregating and processing data
received from the local clients. Learning on local clients is described in lines 8-15 of the
Algorithm 4.1, where the focus is on updating local models based on individual client data
and the aggregated information received from the cloud server. As shown in Fig. 4.6, when
the server receives updates from slower clients (e.g., Client 2), it may have already performed
multiple updates to the global model wg. This asynchronous updating issue, which occurs
due to data heterogeneity and network delays, is typical in real-world scenarios. To cope
with this, we develop a global feature representation on the server and implement a dynamic

step size to train local clients.
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Algorithm 4.1: ART-FL

Require: multiplier r, learning rate 7, regularization parameter X\ , decay coefficient T'.
Ensure: Updated global model wg
1: Initialize: kY = hy =0, vy = 0, r}, = max {1,log (d},) } where dj, = %Zi:l dr.
2: [Procedure at Cloud Server]
3: for t =1,2,...,T (global iterations) do
4:  compute wi, /* get the update on wl, */ > [Eq.(4.22)]
5. apply feature learning to updated wt, > [Eq.(4.23)]
6
7
8
9

: end for

: [Procedure of Local Client ]

: receive wi, from the server

: Compute Vs, = V fi,(wWh) + M(wh — wk)
10: Set hf = hy,
11: Update gradient V(j, < Vs — Vsh + h}
12: Update local model wit! « wi — rt V¢,
13: Update hy =Thi + (1 — T)vy
14: Compute v, = Vsg(wh; wh)
15: upload WZH to the server

4.5.5.1 Learning on the Cloud Server

Each update cycle on the server begins by aggregating updates from client k as follows:

Wi = wh — 1 (wh — wi)
= wly 1 (wh— (wh - 9 (wE))) (4.22)
= wg — ng?\zjvgk (WtG> ,

where 7! is the learning rate of client k at iteration ¢, n}, represents the number of new data
received from client k, N’ is the updated total number of samples across all clients, and V(j
denotes the gradient of the loss function for client k. Following this aggregation, the server
applies feature representation learning techniques to address any potential performance
issues arising from asynchronous updates. We perform feature extraction on the first layer
(e.g., GAT) to generate the feature representation and denote the parameters of this layer
as Wzr)l. For each element Wzr)l [i, 7] in column Wfl) [7] of w%l), the updated w'éf)l is obtained

as follows:

Wity [0 4] = o) [i ) x wiy i, ), (4.23)

where ozﬁr)l [i, 7] is computed through a softmax function over the absolute values of the

weights as follows:
exp (’wfl)[i,j]‘)
S5 e ([wiy 1))

i, ] +

(4.24)
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4.5.5.2 Learning on Local Clients

Local clients aim to align their models closely with the global model by addressing local
deviations and incorporating regularization. The local objective function s, which penalizes

large deviations between local and global models, is given by:

si(w) = filwi) + 5w — wall? (4.25)

where fi(wy) is the local loss function for client k£ and X is the regularization parameter.
Given that the data continues arriving at local clients during the training process, each
client is required to perform real-time learning. Each client retrieves the latest global model
th from the cloud server and updates it with new local data. This requires balancing the
impact of the previously learned parameters with the newly updated data using a decay
coefficient I'. At each global iteration ¢, client k receives the global model w, from the
server. Let Vst denote the gradients computed during the previous update at client k.
The optimization process at client k during this iteration involves adjusting the local model
based on the new gradients and a decay mechanism to blend historical gradient influences
with current data as follows:
V¢ + Vs, — Vst +hh (4.26)

where Vs is the gradient of the local objective function for client k and h} is initialized
to zero and updated each iteration to balance the old and new gradients using the decay

coefficient I" as follow:
W = I‘hg +(1- F)ng (4.27)

The learning rate 7}, is employed to apply these adjustments to the local model. The local
t+1

model w; ™" is then updated as follows:
wi = wi — Vi (w'),

t t t p p t t (4'28)
= wy, — NE(Vfr(Wg) — Vs + hy + AMwy, — w')),

where A is a regularization parameter that helps mitigate overfitting by penalizing large
deviations from the global model.

Variability in client update frequencies due to factors such as bandwidth, network delays,
and data heterogeneity can affect model training. To cope with this, we implement a
dynamic learning step size. If a client has a larger data volume or faces communication
issues, its activation rate will be low, so we increase its learning step size accordingly.
This dynamic adjustment is represented by rf, which is calculated to reflect the activation
frequency and network conditions of client k at iteration ¢. Initially, all clients start with a
baseline learning rate i}, = 77. Thus, Eq. (4.28) for client k’s model at iteration ¢ is updated
as follows:

Wi = wi = V(W) (4.29)

61



Anomaly Injection Anomaly
Containerized Microservice Injection

Cloud (Containers) Module

Service A

Model le—i— Jaeger and

Workload Module

Generator Service B

Anomaly Injection :__
Service C

e
Raw Trace and

log Data

nnnnnnnn

At A
Microservice f==2Ff

(b) Load generation and data collection

(a) Lab setup for evaluation from the testbed

Figure 4.7: Experimental testbed for distributed traces in ML-based anomaly detection.

where rf = max{1,log(d})} and d}, = 13'_, df is the average delay over the past ¢
iterations. V( includes contributions from the gradient of the loss function and any
regularization terms, adjusted dynamically by rf. This dynamic adjustment helps mitigate
the impact of asynchronous updates based on past communication delays and varying data

distributions across clients, ensuring more stable and efficient convergence.

4.6 Performance Evaluation

In this section, we describe the implementation details, present the findings, and conclude

with a discussion.

4.6.1 Experiment Settings

We present a summary of our experimental setup, detailing the benchmark application
used, the load generation and trace collection methods, the specifications for anomaly
injection, and the parameter configurations and coding environment employed to implement

the proposed solution.

4.6.1.1 Benchmark Application

In our evaluations, we utilized TrainTicket [85], a dynamic real-world benchmark designed
specifically for microservices. TrainTicket simulates the core functions of a train ticket
booking system, including ticket searches, reservations, payments, modifications, and user
notifications. It adheres to microservice architecture principles and supports different
interaction modes, such as synchronous and asynchronous calls, as well as message
queues. The system consists of 41 business logic microservices (excluding database and
infrastructure services) and is specifically developed to enable testing and experimentation

with microservices and cloud-native technologies.
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4.6.1.2 Experimental Testbed

Fig. 4.7a depicts our lab setup, which consists of a lab testbed environment established
within Ericsson Research’s private cloud, also known as Xerces. Xerces is powered by an
infrastructure that includes approximately 300 servers, all orchestrated by an Infrastructure-
as-a-Service (IaaS) platform based on OpenStack. Our test setup consists of a Kubernetes
cluster comprising four sub-clusters with a total of 10 VMs operating on Ubuntu 20.04. The
central cluster houses one VM designated as the Kubernetes master node. In each of the
three edge clusters, two VMs are serving as Kubernetes worker nodes, along with a master
node. These virtual machines’ specifications are listed in Table 4.2. For monitoring and
trace gathering within these Kubernetes clusters, we utilized Jaeger?. Additionally, Apache
SkyWalking?® is employed as our distributed tracing platform for log collection. Each cluster
is equipped with one instance of both Jaeger and SkyWalking. The TrainTicket application
is deployed on all master nodes. Kubernetes Cluster Federation (Kubefed) is used to
streamline application deployment processes, such as setting up Jaeger and SkyWalking
services across various clusters. Kubefed offers a centralized approach to manage and
configure multiple Kubernetes clusters through a single API set, operating from the central

site in our configuration.

Table 4.2: Configuration parameters and settings for the lab setup.

Site Parameter Value
Number of VMs 1 VM
CPU 4 cores (core i7-8700)
Cloud Server RAM 16 CB
HDD 40G
Number of VMs 9 VMs
Edge CPU 4 cores for each VM
RAM 8 GB for each worker VM
16 GB for master VM
HDD 40 GB for each VM

4.6.1.3 Load Generation and Data Collection

Fig. 4.7b illustrates our approach for generating workloads and collecting data from
Kubernetes clusters. As explained in Section 4.6.1.2, we deploy a container-based
application on three Kubernetes clusters. In Fig. 4.7b, a container is defined as a grouping
of one or multiple containers forming a complete microservice, aligning with the Kubernetes
concept of a pod. To enhance the diversity of collected data, we incorporate an anomaly
injection module, injecting various anomalies into the containers. Each Kubernetes cluster

comprises multiple nodes (hosts), with each node accommodating several containers. In our

*https://www.jaegertracing.io/
Shttps://skywalking.apache.org/
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setup, each container hosts a specific microservice, and a microservice can be concurrently
deployed across multiple containers. We employ a distributed tracing module, utilizing
Jaeger and SkyWalking, on every VM to trace request flows within microservices. A
workload generator is deployed to emulate real user requests. We simulate a range of
user behaviors to generate realistic workloads, from basic tasks like visiting the homepage
and searching for train schedules to more complex actions such as user authentication
and purchasing tickets. Furthermore, we implement a dynamic scaling mechanism for
the simulated user base, tailoring the frequency of each user behavior over time. This
methodology facilitates the creation of a dynamic, varied mix of requests, effectively
simulating real-life web traffic. For the generation of these synthetic workloads, we deploy
the Performance Testing-based Application Monitoring (PPTAM) framework [94], which
delineates five unique user profiles. Minor adjustments were made to PPTAM to allow for
real-time variation in the user distribution across different types of requests. The generation
of workload was evenly distributed across various request categories to ensure comprehensive
coverage of all microservice benchmarks, as illustrated in Fig. 4.7b. From this setup, we

successfully gathered 189,486 execution traces within the microservice architecture.

Table 4.3: List of injected anomalies into TrainTicket.

Object Anomaly Injection Operation

CPU Overload: Inject a sudden spike in CPU usage in a VM.

Memory Leak: Gradually consume more memory in a VM to mimic a memory leak.
Network Congestion: Introduce network congestion by limiting bandwidth.

Slow Query Processing: Drop indexes from some tables.

Deadlock Problem: Connections lock tables, causing deadlocks.

Data Flushing Fault: Truncate a table, slowing down insertions due to a storage engine bug.
Unauthorized Access: Incorrect password for database access.

Access Configuration Error: Incorrect user access authentication.

Service Access Failure: Incorrect path set for microservices.

Service Invocation Failure: Error in service implementation leading to inaccurate responses.
Pause Container: Use Docker’s "PAUSE" command on a container.

Error Hang: Trigger an error hang in a microservice container.

CPU Load Increase: In a container, increase CPU load to 100%.

Disable Pod: Randomly disable a specific pod.

Physical

Database

Application

Pod

4.6.1.4 Anomaly Injection

We implemented an anomaly injector with configurable options for selecting injection
targets, anomaly types, injection timing, duration, and intensity. This injector is designed to
be packaged as a file-system layer within microservice containers, enabling remote activation
during the training phase. It includes different types of anomalies that have the potential
to violate the SLOs, as shown in Table 4.3. Every service instance receives uniform random
injections of anomalies of various kinds with tunable injection timing and intensity. We first
chose a physical resource, database, application, and pod randomly and then applied the

corresponding injection strategy randomly to the microservice. Every anomaly type has an
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injection intensity randomly chosen from the range [0, 1]. Each anomaly injection in our
experimentation has a duration of 3 minutes. To minimize the potential cross-influence of
different injection operations, we ensure that the interval between successive injections is
greater than 6 minutes, while the anomaly type and intensity are chosen randomly. 28.7%

of the entire trace data consists of anomalous traces.

4.6.1.5 Parameter Setting and Coding Environment

The proposed MS-FLAD method was developed with PyTorch 1.10 and Python 3.10.9,
employing PyTorch Geometric 2.2 for the GAT and adapting the nnPU algorithm [92] for PU
learning. We incorporated semantic analysis using the pre-trained BERT-Base model [89]
and WordPiece tokenizer [88], with time features embedded into 100 dimensions. The MS-
FLAD method features a three-layer GAT with the first two layers using three attention
heads and the final layer using one. Batch normalization followed each layer, and training
parameters included a batch size of 128, a prior probability 7, of positive data of 0.15, and
hyperparameter [ set to 0. The training ran for 50 epochs with an Adam [93] optimizer
learning rate of 0.001. Data was divided into training, validation, and testing sets in a 3:1:6
ratio, with ~ 10% of anomalous traces in the training set labeled as positive, making up
about 2% of the training data. To evaluate the detection performance, we also conduct
training using a centralized variant of our proposed approach called Microservice-Anomaly
Detection (MS-AD), where all the data is processed centrally without the constraints of
data distribution and privacy concerns. As for the centralized MS-AD implementation, we

utilize the complete original dataset for training on the cloud server in our testbed.

4.6.1.6 Evaluation Metrics

We consider precision, recall, and Fj-score to evaluate the performance of different anomaly
detection methods under study. A large value of precision, recall, and Fi-score indicates
that the model is efficient at flagging true anomalies while minimizing false alarms and
missed anomalies, which is key for anomaly detection to meet the accuracy requirement.
Considering anomalies as the positive condition, these metrics provide a comprehensive
assessment of each method’s ability to correctly detect True Positives (TP) while minimizing
False Positives (FP) and False Negatives (FN).

Precision measures the proportion of correctly identified anomalous data sequences to all
flagged anomalies (see Eq. 4.30), whereas recall captures the proportion of actual anomalous
data that were correctly detected (see Eq. 4.31). The Fj-score represents the harmonic
mean of precision and recall (see Eq. 4.32), providing a balanced score of the accuracy
performance. These three metrics range from 0 to 1, where higher values indicate better

performance. Note that precision focuses on reducing FP and recall on minimizing FN.

65



Table 4.4: Performance comparison for anomaly detection.

Methods Effectiveness(%) Tirpe Efﬁciency‘
Recall | Precision | Fi-score Trammg Detectlon
time (m) | time (ms)
Microscope [52] 39.6 94.3 55.7 450 4.7
TraceAnomaly [50] 65.9 58.0 61.5 30 137
Multimodal Trace [51] | 60.1 96.0 73.8 30.4 148
TDAD [3] 87.1 93.0 80.8 35 0.1
Seer [47] 67.8 | 938 787 32 08
FedAnomaly [64] 99.9 86.4 92.6 890 12
FL-SmartGrid [66] 96.2 87.5 91.7 82.1 2.2
MS-AD 95.0 87.1 90.9 67.1 0.7
Proposed MS-FLAD 98.7 94.0 96.3 21 0.4

TP
Precision = ———— 4.30
recision = ;s (4.30)
TP
=" 4.31
Recall TP EN (4.31)

2 x Precision x Recall
F- = 4.32
1-score Precision + Recall (4.32)

Moreover, time efficiency is measured using detection time, which is the time required
to process a single trace of data, including the time needed for anomaly detection. A
short detection time is crucial to meet the real-time and time-efficiency requirements of the
anomaly detection system. Training time refers to the total time taken to train the model
across all iterations until convergence. Moreover, scalability is evaluated in terms of how the
response time of our anomaly detection model changes as trace size (i.e., number of events)
increases. Finally, resource overhead is an important metric for ensuring cost-efficient
communication and computation between edge clients and the cloud server. Communication
overhead measures the amount of data exchanged between clients and the cloud server, while
computation overhead refers to the processing time consumed by the clients to locally train

the model before synchronization.

4.6.2 Evaluation Results

In this section, we present our evaluation results, which are categorized into two main
sections. The first section presents the performance of anomaly detection in terms of
effectiveness, time efficiency, communication overhead, and scalability. The second section
examines the impact of parameter configuration on performance, along with an ablation

study.
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4.6.2.1 Anomaly Detection Results

(A) Effectiveness: We compare our proposed MS-FLAD anomaly detection
algorithm with existing works, including Microscope [52], TraceAnomaly [50], Multimodal-
Trace [51], TDAD [3], Seer [47], FedAnomaly [64], and FL-SmartGrid-AD [66]. Among these
methods, FedAnomaly [64] and FL-SmartGrid-AD [66] are FL-based models, whereas the
others are centralized methods, which are compared to the centralized variant MS-AD of our
proposed method. Microscope [52], TraceAnomaly [50], MultimodalTrace [51], TDAD [3]
rely on tracing data, LogAnomaly [70] only relies on log data and FedAnomaly [64], and
FL-SmartGrid-AD [66] rely on metric data for anomaly detection. Table 4.4 illustrates the
obtained results of recall, precision, and F}-score for different anomaly detection solutions.
The proposed MS-FLAD achieves a recall of 98.7%, precision of 94%, and an F}j-score of
96.3%. It is evident that our proposed MS-FLAD and MS-AD outperform other methods
that depend solely on a single data source and utilize a centralized approach. This is
because incorporating log messages and trace data in MS-FLAD, representing intra-service
and inter-service behaviors, respectively, enables more timely and accurate detection of
anomalies. Moreover, the proposed MS-FLAD and MS-AD outperform Seer [47], even
though they utilized multiple source data (trace and metric). While Seer [47] focuses on
detecting response time and invocation path anomalies in a unified manner, it does not
consider the graph-based structure of traces and anomalies in resource usage. Our proposed
MS-FLAD outperforms in precision, recall, and the Fj-score when compared to TDAD [3],
Microscope [52], TraceAnomaly [50], and MultimodalTrace [51]. These methods are based
on sequence-based trace representation, which is not suitable for capturing the causal
connections among spans. The TraceAnomaly [50] only takes into account the response
time and service sequences seen in traces. MultimodalTrace [51] only uses the operation
sequences of traces to train an LSTM-based model. Additionally, these trace-based anomaly
detection methods do not account for intra-service behavior. In contrast, our proposed
MS-FLAD method considers the intra-service behavior of service instances. Therefore, MS-
FLAD outperforms FedAnomaly [64] and FL-SmartGrid-AD [66] by achieving up to a 96.3%
Fy-score. This is also because MS-FLAD incorporates GNN and PU learning to inherit the
anomaly detection benefits of SCG.

(B) Time-Efficiency: Table 4.4 illustrates the training time and detection time
for various methods under consideration. We observe from the table that our proposed
MS-FLAD method, in comparison to trace-based methods such as TraceAnomaly [50],
MultimodalTrace [51], shows a slower pace in model training, though it outperforms other
methods in terms of detection time. Also, MS-FLAD is notably faster than all compared
approaches in terms of detection time. We also observe from the table that the centralized

variant MS-AD of our proposed method achieves a higher training time compared to
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Figure 4.8: Resource overhead analysis: (a) Communication overhead vs. learning accuracy
and (b) learning accuracy vs. computation overhead.

other trace-based methods, but a lower detection time. This happens because the MS-
AD method considers logs as well as traces, which incurs additional training time. This
efficiency is attributed to the anomaly detection model being fully characterized by its
network parameters 6, eliminating the need to store data for anomaly detection. Given
that MS-FLAD is an FL approach, it is faster in training than the centralized approaches.
Also, since the proposed MS-FLAD allows models to be trained locally, detection can occur
in real time at the edge, where data is generated. This, as a result, minimizes the time
it takes to detect anomalies. LogAnomaly [70], which is a log-based method, splits the
event sequences into several subsequences for testing and training by using sliding windows.
Each subsequence in this method utilizes count vector sequences, the dimensions of which
are based on the number of log events. With our dataset containing over 800 log and
span events, this approach encounters the curse of dimensionality. This issue is common in
microservice systems with a large number of log or span events, rendering traditional log
anomaly detection methods less effective in such environments. FL-SmartGrid-AD [66] is
slower in training and testing than our proposed MS-FLAD while using a simpler sequence
representation for traces and logs. This is due to the fact that GNNs treat each event
in the graph as a network unit, allowing for concurrent message passing, while GRUs in
FL-SmartGrid-AD [66] process each event in a long sequence serially, resulting in slower
performance. Given that the FL approach shares computational resources with clients,
the total time is notably reduced, even when factoring in the additional time required for
FL averaging. Multiple computing instances from various clients sharing computational
resources and parallel computing contribute to a reduction in the overall training time

required to achieve optimal performance.

68



—*— Proposed MS-FLAD \
14 + FedAnomaly T T 98 4N \ 777777777777777777777777
S N S A A7 N .\A\«
m 96
£
L I A e 9
£ T
L T R VA S R F— 8
wn
g WY
§ B *
4
90
4 \/*/“ 77777 i
l_/*_._ai —#*— Proposed MS-FLAD
2 AR = S S S 88 1 FedAnomaly |\
200 400 600 800 200 400 600 800 1000
Trace Size Number of application users
(a) (b)

Figure 4.9: Scalability of the proposed MS-FLAD and FedAnomaly: (a) Response time of
prediction vs. trace size, (b) Fi-score vs. the number of application users.

(C) Resource Overhead: Fig. 4.8a compares the communication overhead in
gigabytes (GB) between MS-AD, FedAnomaly [64], and the proposed MS-FLAD at
three distinct learning accuracy levels. MS-FLAD consistently maintains the lowest
communication overhead, reducing it by approximately 3x to 4x compared to MS-AD,
demonstrating its superior efficiency in minimizing communication costs while achieving
high accuracy. Fig. 4.8b illustrates the comparison of the proposed MS-FLAD algorithm,
FedAnomaly [64], and MS-AD in terms of learning accuracy as a function of computation
overhead (iteration). The proposed MS-FLAD achieves the highest accuracy with faster

convergence compared to the other methods.

(D) Scalability: Next, we examine how response time is affected by trace size,
which is the total number of span and log events in the trace. Fig. 4.9a depicts trace size vs.
response time. In our evaluations, we divided the range of event numbers from 0 to 900 into
nine equal-size distinct groups, each spanning 100 events, and then randomly selected 100
traces from each group. For each trace, the anomaly detection model was run 300 times to
determine the average response time for making a prediction. The evaluation focuses on the
comparison of average response times between MS-FLAD and Fed Anomaly [64] across traces
of different sizes. This comparison was chosen due to the unique performance characteristics
of each method, as previously detailed. Specifically, FedAnomaly [64] outperforms in
detection accuracy, achieving a higher Fj-score than competing methods. Fig. 4.9a shows a

linear increase in response time with trace size for both methods. Significantly, MS-FLAD
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Figure 4.10: Performance evaluation of MS-FLAD: (a) Recall, precision, and Fj-score across
different anomaly types, and (b) Fj-score comparison across methods.
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Figure 4.11: Performance evaluation of MS-FLAD: (a) Impact of prior probability, 7, on
the performance, and (b) Fj-score vs. different training data rates.

maintains quicker response times in comparison to FedAnomaly [64].

Moreover, we evaluate the proposed MS-FLAD scalability under varying numbers of
application users. We systematically increased the number of users from 200 to 1000 to
simulate diverse scenarios of user engagement. As shown in Fig. 4.9b, the proposed MS-
FLAD consistently maintained the Fj-score above 95%, even with the growing number
of application users. This robust performance illustrates the method’s reliability and
scalability. When compared to the FedAnomaly [64] approach, our proposed MS-FLAD
demonstrates superior performance across all user group sizes. Particularly, the gap in F}-

score between the two methods becomes more noticeable as the number of users increases.
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4.6.2.2 Impact of Configuration Parameters on the Performance

The experimental results outlined in Fig 4.10a illustrate the effectiveness of our approach in
detecting anomalies with high precision, recall, and Fj-score across various anomaly types.
The results are categorized into four groups, namely anomalies related to physical resources,
databases, applications, and pods. Furthermore, we conduct a comparative analysis against
MS-AD and FedAnomaly [64], utilizing the Fij-score as a comprehensive metric capturing
both precision and recall as shown in Fig. 4.10b. The average Fj-score across all anomaly
types is presented. Our proposed MS-FLAD outperforms FedAnomaly [64] by 2% and
outperforms MS-AD by 7%.

Fig. 4.11a illustrates performance vs. the prior probability m, of anomalous traces as
described in Eq. (4.15). The prior probability m, represents an estimation of the proportion
of anomalous traces within the dataset, which directly affects the effectiveness of the nnPU
risk estimator during training. As shown in Fig. 4.11a, we can observe the influence of m,
on the performance of MS-FLAD, including precision, recall, and Fj-score. Generally, as
mp increases, recall tends to rise while precision decreases. This behavior is attributed to
the model’s inclination to predict more traces as anomalous with higher values of 7,. When
mp is approximately 15%, which closely matches the actual proportion of anomalous traces
in the dataset (15.4%), MS-FLAD achieves its highest F}j-score. Furthermore, MS-FLAD
consistently maintains high performance, with Fj-scores close to or exceeding 0.9, when
mp falls within the range of 2.5% to 25%. Consequently, MS-FLAD demonstrates strong
performance when 7, falls within a reasonable range, with its optimal performance occurring
when 7, aligns closely with the actual proportion of anomalous traces in the dataset.

To evaluate the incremental real-time learning process, we examined how the
performance changes as the amount of training data grows. This is illustrated in Fig. 4.11b,
where we conducted experiments using different proportions of the clients’ training data.
The results show that ART-FL consistently performs the best as more data becomes
available. In contrast, FedAnomaly [64] shows significant fluctuations in performance due
to the instability of synchronous approaches when local data increases. Compared to the
MS-AD model, our asynchronous ART-FL approach maintains more stable performance as

data grows.

4.6.2.3 Ablation Study

We perform an ablation study to assess the effects of different FL approaches on the
model. We compare the proposed MS-FLAD with both synchronous and asynchronous
FL approaches. The synchronous model, As shown in Table 4.5, the synchronous model,
FedAvg, aggregates updates using a simple averaging method [95], resulting in a training
time of 45. Despite this slower training, it achieves a recall of 55%, precision of 87%,
and an Fj-score of 66%, indicating its challenges in efficiently managing distributed

data. Conversely, the asynchronous model, FedProx [96], employs a weighted average

71



Table 4.5: Ablation performance of MS-FLAD with different FL. approaches.

. Recall | Precision | Fj-score | Training
MS-FLAD Variant (%) (%) (%) Time (m)
with FedAvg [95] 55 87 66 45
with FedProx [96] 65 84 72 26
with proposed ART-FL 98.7 94 96.3 21

to accommodate updates as they arrive, leading to a training time of 26. This model
demonstrates better performance with a recall of 65%, precision of 84%, and an F}-score of
72%, but still underperforms our ART-FL model. Lastly, our ART-FL model demonstrates
a processing time of 21. It significantly enhances both speed and accuracy with a recall of
98.7%, precision of 94%, and an Fj-score of 96.3%, making it a competitive alternative that

nearly rivals the performance of the global model.

4.7 Conclusion

In this chapter, we proposed an asynchronous FL method called ART-FL for detecting
anomalies in trace and log data of microservice cloud applications. ART-FL enhances
computational efficiency by allowing the cloud server to aggregate updates without waiting
for slower clients. Our proposed method for edge clients combines GNN and PU learning for
the accurate detection of anomalous traces. The training process in our proposed method
involves the use of a small number of labeled anomalous traces as well as a relatively large
number of unlabeled traces. Our trace-driven evaluations on a microservice benchmark
demonstrate that the proposed method outperforms the existing anomaly detection methods
by 4% in terms of Fj-score and by 5x in terms of detection time. Compared to other
asynchronous methods, ART-FL delivers superior performance, particularly in managing
local streaming data. Time efficiency assessments indicate that ART-FL operates faster

than traditional synchronized FL approaches.
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Chapter 5

Contextual Logs in ML-based

Anomaly Detection!

5.1 Introduction

Log anomaly detection plays a crucial role in maintaining system reliability, identifying
security threats, and enabling failure prediction. This is particularly vital in real-time
cloud, where services operate under strict latency constraints and must process massive
volumes of log data efficiently [71, 97, 98]. Effective anomaly detection in logs requires
handling high-velocity data streams, adapting to dynamic system behavior, and reducing
false positives, all while ensuring timely detection and mitigation. Despite its significance,
log-based anomaly detection in real-time cloud faces challenges. First, frequent system
updates and code modifications introduce dynamic variations in log data, making traditional
ML models struggle with unseen patterns [99]. Second, the inherent class imbalance caused
by the rarity of anomalies biases models toward common patterns, often overlooking critical
rare events [100]. Finally, supervised methods heavily depend on labeled datasets, which are
costly and time-consuming to generate, while semi-supervised and unsupervised approaches
often trade reduced labeling requirements for diminished accuracy [74, 75].

To overcome these challenges, this chapter introduces Adaptable Log-based Self-
supervised method to Catch Anomalies (ALogSCAN). ALogSCAN uses a dual-network
architecture comprising an Auto-Encoder (AE) teacher model and an Encoder-Only (EO)
student model, leveraging Knowledge Distillation (KD) for efficient anomaly detection.

Dynamic Frequency-based Log Filtering (DFLF') adapts to evolving log data by prioritizing

!This chapter is based on one published and one paper under second-round review: [5] Mahsa Raeiszadeh,
F. Estrada-Solano, R. H. Glitho, J. Eker, and R. A. Mini, “A Data-Driven Approach for Adaptive Real-
Time Log Parsing in Cloud Environments,” in Proc. IEEFE International Mediterranean Conference on
Communications and Networking (Meditcom), 2024, and [6] Mahsa Raeiszadeh, F. Estrada-Solano, R. H.
Glitho, J. Eker, and R. A. Mini, “ALogSCAN: A Self-Supervised Dual Network for Adaptive and Timely Log
Anomaly Detection in Clouds,” Submitted to IEEE Transactions on Machine Learning in Communications
and Networking (TMLCN), 2025
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infrequent patterns, while self-supervised learning eliminates the need for labeled data by
using input data as its own supervision.

The rest of this chapter is organized as follows. First, we present a motivating
scenario followed by the system model and the problem formulation. Next, we present the
proposed method and its components. Next, we evaluate ALogSCAN against state-of-the-
art baselines and detail the experimental results. Finally, we summarize the contributions

and findings.

5.2 Motivating Scenario

Since real-time clouds require timely anomaly detection to prevent service disruptions, the
instability of logs introduces additional challenges for ML-based anomaly detection. Real-
time cloud logs evolve dynamically and unpredictably, requiring ML models to continuously
adapt without retraining delays. Frequent log changes introduce additional uncertainty,
making anomaly detection even more challenging. ML models trained on historical logs
often struggle to generalize to evolving log formats, leading to missed or misclassified
anomalies, which can delay corrective actions.

To illustrate the impact of these challenges, consider an OpenStack-managed video
streaming service that dynamically scales based on demand (Fig. 5.1). In this scenario,
real-time performance is critical for ensuring seamless service delivery. Neutron must
dynamically reconfigure network bandwidth in response to surges in streaming traffic. Nova
must rapidly provision new virtual machines (VMs) when auto-scaling is triggered to handle
increased demand. Anomaly detection must adapt instantly to changes in log patterns to
prevent service degradation. During normal operation, Nova, Neutron, and Cinder generate
structured logs for compute provisioning, networking, and storage tasks. However, if traffic
spikes unexpectedly, OpenStack may auto-scale compute resources by launching new VMs,

triggering a surge in log activity. This results in:
o New log templates from additional VMs with previously unseen status messages.
e Modified log structures as Neutron dynamically reconfigures network bandwidth.

e Deprecated error messages as Nova updates its logging mechanism for compute

failures.

To quantify the impact of log instability on anomaly detection performance, we
conducted an empirical study to investigate the issue of log instability using private data
from the Ericsson Research Data Center (ERDC), which relies on OpenStack to deploy and
manage the cloud infrastructure. The ERDC dataset covers approximately 4 million log
entries collected over a three-month period. First, we took 50% of the log data and analyzed

whether the log templates changed or not in the remaining 50% of data, finding that only
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Figure 5.1: Overview of an OpenStack-managed real-time cloud infrastructure.

10.1% remained unchanged. In addition, Fig. 5.2a shows how dissimilar log templates
in the ERDC dataset affect the accuracy performance of two classical anomaly detection
methods: LogRobust [69] and LogAnomaly [70]. We identify dissimilar log templates from
any previously observed one if the cosine similarity of their semantic vectors falls below a
0.5 threshold. Of the 1,532 unique log templates identified during the study, 720 (more
than 45%) emerged as dissimilar. We trained the anomaly detection methods on 70% of

the data and tested them on the remaining 30%, which was divided into five subsets to vary
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Figure 5.2: (a) Accuracy performance of two baseline anomaly detection methods while
varying the number of dissimilar log templates in an OpenStack-based log dataset. (b)
Accuracy performance of a two-layer LSTM while varying the class imbalance ratio in an
HDFS log dataset.

The results in Fig. 5.2a reveal a gradual decrease in Fj-score of both LogRobust and
LogAnomaly as the number of dissimilar log templates increases. In particular, the drop of
the Fi-score is considerable when the number of dissimilar log templates is 200 (i.e., 13%

of all log templates), showing that the prevalence of dissimilar log templates negatively
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Figure 5.3: Illustration of the biased normal pattern problem and solution. (b) shows
how frequent templates can obscure anomalies. (c) and (d) demonstrate how the solution
addresses the issue by contrasting networks that prioritize (c) infrequent log templates and
(d) frequent log templates.

impacts the performance of anomaly detection methods. The accuracy reduction is likely
due to the methods’ reliance on the semantic meanings of log templates, which become less
effective when many dissimilar templates exist.

Another challenge in cloud infrastructure environments is dealing with the imbalance
of classes since the number of normal logs far outweighs the number of abnormal logs.
For example, in the Hadoop Distributed File System (HDFS), logs capturing routine
operations like writing or deleting blocks are far more frequent than rare failures in network
communication or storage errors. Fig. 5.2b depicts the impact of class imbalance ratio in
real-world HDF'S log data [101] on the accuracy results (Fj-score, precision, and recall) of a
simple two-layer LSTM classification model. Since the class imbalance ratio represents the
number of normal logs divided by the number of abnormal logs, we vary the class imbalance
ratio by removing abnormal logs from the dataset. The results in Fig. 5.2b show that as
the class imbalance ratio increases, the accuracy performance decreases. Note the accuracy
metrics dramatically decline for class imbalance ratios larger than five, dipping to zero for
imbalance ratios of 20 and beyond. These results demonstrate how traditional classification
models struggle to detect anomalies in highly imbalanced datasets.

Fig. 5.3 deeps into the challenge of biased normal patterns. Given a set
© = {01,02,...,0j0} of log templates generated by a parsing method [5], let S =
{S1, 52, ... ;5 5‘} represent a set of log template sequences. Each S; € S describes an
ordered list of |S;| log templates S; = [0, ..., 0] V04,0, € ©. As depicted in Fig. 5.3a, the
motivating example consists of six normal sequences, S; through Sg, and one anomalous
sequence, S7. Sequences Sy to S contain a common frequent log template, 05, whereas
sequences S7 and Sg consist of distinct log templates. The anomalous sequence S7 shares
three log templates with S; (01, 62, and #3) and includes an infrequent anomalous log
template, 0y.

Fig. 5.3b shows the latent space representation learned by OC-SVM, a simple anomaly

detection model, for the set of log template sequences. Note the log template sequences S, to
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S5, consisting of frequent log templates 65, heavily influence the model’s latent space, leading
to a biased normal pattern. This representation impedes correctly distinguishing the normal
sequences S; and Sg from the anomalous sequence S7, as the three share similarities and
diverge from the normal pattern. In contrast, Figs. 5.3c and 5.3d overview our approach to
mitigate this issue. We use a dual-network architecture, where AE focuses on the infrequent
log templates and EO on the frequent ones. Note the latent space from AE (see Fig. 5.3c)
differs from that from EO (see Fig. 5.3d), enabling a proper distinction between normal and

abnormal log sequences.

5.3 System model

As depicted in Fig. 5.4, we consider a system model for prompt anomaly detection
by processing logs originating from one or multiple services that compose the system.
For example, OpenStack-based cloud infrastructures deploy different services (e.g., Nova,
Neutron, and Cinder) that continuously generate log data. Log collector agents constantly
capture and transmit such log data for model training and online processing.

First, for model training, log collector agents communicate historical logs to a log
repository that chronologically aggregates and maintains log data, constructing an ordered
list of logs L = [ly,...,1,], where each I; € L represents a single log entry from a given
service. A log parsing method, such as AdapLog [5], executes an offline process to analyze
the list of historical logs and generate a set of log templates © = {6y, ..., 0‘@|} representing
the parsed logs. Using the set of log templates O, the offline log parsing builds an ordered
list of log templates £ = [0, ...,0,] Vb,,0, € ©. Note the log templates in £ correspond
to each log in L; therefore, 8, and 6, represent the log templates for I; and [,,, respectively.
Subsequently, a log sequence slicer partitions the full list of log templates £ into sequences
either by sessions or windows (see Section 5.4), generating a set of log template sequences
S = {51,...,8¢}. Each S; € S defines an ordered list S; = [0,,...,05] V0,,0, € ©.
Assuming a function p : § — Z that returns the index position of the log template in the
ordered list £, then p(6,) < p(6.) < p(6y) < p(6y). Finally, the set of log template sequences
S feeds the training process of the anomaly detection model.

In online processing, log collector agents continuously transmit online logs I; captured
at time ¢ to the log parsing method (e.g., AdapLog [5]). The online log-parsing process
relies on the set of log templates ©, constructed during the offline process, to produce
the log template 6. € © for each online log [;. A log sequence arranger chronologically
aggregates online log templates (either by sessions or windows) up to a quantity or a time
T to build log template sequences St = [0,...,04] V0.,04 € ©. Note the log templates
in St correspond to the online logs, therefore, 6. and 6, represent the log templates for I,
and l;1 7, respectively. Finally, the trained anomaly detection model analyzes log template

sequences St to identify deviations and flag potential anomalies for further investigation.
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Figure 5.4: System model

5.4 Problem Formulation

Given a training set of log sequences S, let N' C S be the subset of normal log sequences
and A C S the subset of anomalous log sequences, where || > | A|. Furthermore, Sys € N/
represents a normal log sequence, whereas Sy € A refers to an abnormal log sequence.
Therefore, we aim to learn an anomaly scoring function f : S; — R such that for an online
log sequence St we have |f(St;6) — f(Sar;0)| > | f(ST;0) — f(S4;0)| if St is anomalous.
Note 0 parametrizes the scoring function f as each log sequence S; = [0, ..., 0], where
04,0, € O represent any log template and |S;| denotes the total count of log templates in
the log sequence. Furthermore, each log template 0, € © defines an ordered list of tokens
0o = [W],... ,w‘a@a‘], where each token wf designates a wildcard or a valid word in a pre-
defined vocabulary [5]. Using a word embedding technique [3], we map each token w$ as a
vector representation z§ € R™ to enable learning the semantic relationships across tokens.
In this thesis, template sequences refer to the groups of standard log templates of
chronologically consecutive log messages that capture the system execution flow. Template
sequences are partitioned either by sessions or windows. Session-based partitioning relies on
log identifiers to form sequences of related operations. Window-based partitioning defines
a fixed time or entry amount. Fixed time windows group logs within consistent time
frames (e.g., 15 minutes, 1 hour); therefore, sequence lengths vary depending on the system

workload. Fixed entry windows set an entry number (e.g., 60, 100), providing uniform
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Figure 5.5: ALogSCAN architecture

sequence lengths.

5.5 Proposed Solution

Fig. 5.5 introduces ALogSCAN, a log anomaly detection method that leverages self-
supervised learning, KD, and frequency filtering techniques to operate with unlabeled,
unstable, and imbalanced log data and accurately and promptly identify anomalous log
sequences. ALogSCAN implements a dual-network architecture: an AFE teacher model
and an EO student model. The AFE teacher model operates with complete log sequences
and focuses on reconstructing infrequent log templates, whereas the EO student model
handles sequences with frequent log templates. ALogSCAN distills knowledge from the AE
teacher model to the EO student model and introduces a DFLF technique that dynamically
categorizes infrequent and frequent log templates in log sequences. This dual-network
architecture operates in two phases: training and analysis. Error losses from the AE’s
infrequent-based reconstruction and the representations of the two models (i.e., AE and
EO) guide the training phase. In the analysis phase, representation errors between the
AE teacher and EO student models enable ALogSCAN to timely detect anomalous log

sequences. Algorithms 5.1 and 5.2 depict the training and analysis phases, respectively.
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Algorithm 5.1: ALogSCAN’s training phase

input : set of log sequences S = {51, 5,...,5n}

output: updated Auto-Encoder AFE and Encoder-Only EO
1 begin on processing S
// Log template filtering
2 7 < DFLF.INFREQUENT__FILTERING(S);
F < DFLF . FREQUENT_FILTERING(S);
// AE model
Z + AE.enconder LATENT__REPRESENTATION(S);
S’ + AE.decoder RECONSTRUCTION(Z);
7' + DFLF.INFREQUENT__FILTERING(S');
L < RECONSTRUCTION__LOSS(Z,Z");
L¢c < ONECLASS__ CLASSIFICATION _L0OSs(Z);
// EO model
9 Z' < EO.LATENT REPRESENTATION(F);
10 Lp + PrREDICTION__Lo0Ss(Z, Z');
// Models update
11 L + ToraL_Loss(Lgr,Lc, Lp);
12 update AE < AE.BACKPROPAGATION(L);
13 update EO < EO.BACKPROPAGATION(L);
14 update EO.encoder < AE.encoder KD();
15 return AF and FEO;

w
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5.5.1 Training phase

As illustrated in Fig. 5.5, ALogSCAN’s training phase involves the complete dual-network
architecture. Algorithm 5.1 details ALogSCAN’s training phase. The training phase
executes multiple epochs and operates with batches that divide the full training set of log
sequences. For simplicity, we denote a batch of N log sequences as the set S = {S1,...,Sn}
since the training process works the same at each epoch and for each batch.

As shown in lines 2-3 in Algorithm 5.1, ALogSCAN uses DFLF to perform infrequent
and frequent filtering on each S? € S to generate the corresponding sets of filtered sequences
Z=A{L,....,In} and F = {Fi,...,Ly}. I; € T preserves the infrequent log templates in
log sequences S* € S, whereas the frequent ones remain in F; € F. DFLF dynamically
adjusts the filtering frequency ratio, as detailed in Section 5.5.3.

Considering the example in Fig 5.3a, infrequent filtering removes the frequent log
template 05 and preserves the infrequent log templates 6, to 04 and 6g. Therefore, the
infrequent-filtered log sequences I; modify the log sequences S, to Sg (e.g., I2 = [61,0,0,0]),
whereas I; and I7 contain the same log templates as S; and Sy, respectively. In contrast,
frequent filtering retains the frequent log template 05 and discards the infrequent log
templates 61 to 04 and 6g. Therefore, the frequent-filtered log sequences F; change for
all the log sequences S to S7 (e.g., F; = [0,05,05,05] Vi € [2 — 5]).

As depicted in lines 4-5 in Algorithm 5.1, the AE teacher model operates with the
unfiltered log sequences S; € S to produce a set of latent representations Z = {Z3,..., Zn}

from its encoder function (a.k.a., bottleneck layer) and the corresponding set of log sequence
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reconstructions 8" = {S},..., Sy} from its decoder function. Subsequently, ALogSCAN
performs infrequent filtering (i.e., DFLF) on the reconstructions S; € S’ to generate the
set of infrequent-filtered log sequence reconstructions Z' = {I1, ..., Iy} (Algorithm 5.1, line
6). Like filtered log sequences, I/ € I’ preserves the infrequent log templates in the log
sequence reconstructions S} € §'.

ALogSCAN uses the infrequent-filtered sets of log sequences (Z) and of log sequence
reconstructions (Z') to compute a reconstruction loss Lr (Algorithm 5.1, line 7). Lp drives
the AE teacher model to improve the reconstruction of the infrequent templates in the
filtered log sequences I; € Z, as described in Section 5.5.4. Consequently, the AE teacher
model develops latent representations Z; € Z that emphasize the infrequent templates
within the input log sequences S; € S. As shown in line 8 in Algorithm 5.1, ALogSCAN
calculates a one-class classification loss Lo from the deviations of the latent representations
Z; € Z from its mean Z. Lc promotes the clustering of latent representations in the AE
teacher model. Section 5.5.6 details the equations to compute the reconstruction (Lg) and
classification (L¢) losses.

As described in line 9 in Algorithm 5.1, the EO student model works with frequent-
filtered log sequences F; € F to produce a set of latent representations 2’ = {Z1,..., Z}}.
Considering that the EO student model’s design reflects the AE teacher model’s encoder
function and that its input data F disregards infrequent templates, EO’s encoder function
learns the latent representations of frequent log templates within a log sequence S; €
S. Afterward, ALogSCAN computes a prediction loss Lp by comparing the latent
representations Z; € Z and Z, € Z' generated by the AE teacher and EO student
models, respectively (Algorithm 5.1, line 10). Lp optimizes the similarity between the
latent representations to ensure they align for normal log sequences. ALogSCAN combines
the reconstruction (Lpg), classification (L), and prediction (Lp) losses to construct the
total loss L (Algorithm 5.1, line 11). Section 5.5.6 details the equations to compute the
prediction (Lp) and total (L) losses. Finally, as denoted in lines 12-14 in Algorithm 5.1, the
AE teacher and EO student models execute backpropagation using the total loss function
L to update their model parameters, and the AE teacher model distills knowledge to the
EO student model. Section 5.5.5 further describes the KD technique.

5.5.2 Analysis phase

As depicted in Fig. 5.5, ALogSCAN’s analysis phase involves only the encoder from the AE
teacher model and the EO student model. Algorithm 5.2 describes ALogSCAN’s analysis
phase. In contrast to the training phase, the analysis phase operates with an online log
sequence S at a time for prompt anomaly detection. First, ALogSCAN only performs DFLF
frequent filtering on S to generate the corresponding filtered log sequence F' (Algorithm 5.2,
line 2). Note F preserves the frequent log template from the log sequence S.

As shown in lines 3-4 in Algorithm 5.2, the AE teacher model’ encoder uses the log
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Algorithm 5.2: ALogSCAN’s analysis phase
input : online log sequence S, trained Auto-Encoder AF, trained Encoder-Only EO
output: anomaly score Lp

1 begin on processing S

// Log template filtering
2 F + DFLF .FREQUENT__FILTERING(S);
// AE model
3 7 + AE.enconder LATENT__REPRESENTATION(S);
// EO model
4 7' + EO.LATENT__REPRESENTATION(F);
// Anomaly score
5 Lp «+ PREDICTION__LO0Ss(Z, Z');
6 return Lp

sequence S to produce the latent representation Z, whereas the EO student model employs
the frequent-filtered log sequence F' to generate the latent representation Z’. ALogSCAN
then computes the prediction loss Lp from the difference between the latent representations
Z and Z' (Algorithm 5.2, line 5). Lp denotes the anomaly score indicating the abnormality
of the online log sequence S (Algorithm 5.2, line 6). If the latent representations deviate
significantly from the normal data distribution, the log sequence S gains a high anomaly
score.

Let’s consider the example in Fig 5.3a. For a normal sequence like Sg, the representations
Zg and Z{;, from the AE teacher and EO student models, respectively, align closely with
the normal pattern in the latent space, as shown in Figs. 5.3c and 5.3d. Consequently,
the difference between these two latent representations (i.e., the anomaly score Lp)) is
low. Conversely, for an abnormal sequence like S7, the representations Z; and Z, diverge.
The EO student model’s representation Z/ remains close to the normal pattern since the
infrequent (and abnormal) template 09 was masked to zero during the DFLF frequent
filtering. However, the AE teacher model’s representation Z; deviates from the normal
pattern due to its inability to reconstruct the abnormal template 9. This divergence
results in a high anomaly score Lp for S7, enabling the prompt detection of the anomalous

log sequence.

5.5.3 Dynamic Frequency-based Log Filtering

DFLF introduces a filtering technique based on log template frequency. In ALogSCAN,
DFLF calculates template occurrence frequencies for each batch of log sequences to define
a frequency rate threshold . DFLF categorizes log templates as infrequent and frequent if
their frequency rate is less than and more than s, respectively. The frequency threshold
enables establishing either a fixed value or a ratio of unique templates within a batch, serving
as a hyperparameter. In particular, ALogSCAN dynamically selects a unique filtering ratio

for each batch. We randomly sample the frequency threshold  from a set K = {ky,... kx| 1,
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where each k; € K represents a possible value for x. This sampling provides randomization
during the DFLF process to promote variability and robustness during training, helping the
model to focus on infrequent events.

DFLF defines two filtering processes: infrequent and frequent. Infrequent filtering
preserves infrequent log templates and removes the frequent ones from the log sequences. In
contrast, frequent filtering maintains frequent log templates and discards the infrequent ones
from the log sequences. As illustrated in Fig. 5.5, ALogSCAN applies infrequent filtering to
the input log sequences S and AE’s reconstructions S’ for computing the reconstruction loss
L. This approach enables the calculation of the reconstruction loss based on the infrequent
log templates, driving the AE teacher model to learn their reconstruction. Conversely,
ALogSCAN implements frequent filtering on the input log sequences S to feed the EO
student model. This frequent-filtered input F allows EO to learn representations of &
without information from the infrequent log templates. Leveraging this DFLF combination
of infrequent and frequent filtering, ALogSCAN effectively learns less biased normal patterns
in the latent representations of the AE teacher and EO student models, prioritizing

infrequent log templates.

5.5.4 Frequency-based reconstruction

The AE teacher model in ALogSCAN relies on DFLF to perform reconstruction based
on the frequency of log templates. This frequency-based reconstruction differs from the
traditional Reconstruction with Complete Input (RCI). As shown in Fig. 5.6a, RCI utilizes
the entire input of log sequences to feed the AE model and computes the reconstruction
loss by comparing all log templates in the original and reconstructed log sequences.

In contrast, frequency-based reconstruction introduces two techniques: Infrequent-based
Reconstruction with Frequent Input (IRFI) and Infrequent-based Reconstruction with
Complete Input (IRCI). As depicted in Figs. 5.6b and 5.6¢, both IRFI and IRCI calculate
the reconstruction loss by comparing only the infrequent log templates from the original and
reconstructed log sequences. In particular, IRFI preserves only the frequent log templates in
the input of log sequences, guiding the AE model to focus on frequent events. In contrast,
IRCI uses all the log templates in log sequences to feed the AE model, leveraging their
entire range to reconstruct infrequent log templates accurately. Consequently, the AE
model prioritizes the reconstruction of infrequent log templates rather than attempting to
rebuild the complete log sequence. ALogSCAN relies on IRCI to improve the anomaly

detection accuracy, as demonstrated in Section 5.6.2.

5.5.5 Knowledge Distillation

After the AE teacher model trains the encoder, it can transform input data into latent
representations that capture important patterns and features. Therefore, the EO student

model leverages KD and deploys only the AE’s encoder for anomaly detection instead
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Figure 5.6: Auto-Encoder (AE) reconstruction techniques: (a) Reconstruction with
Complete Input (RCI), (b) Infrequent-based Reconstruction with Frequent Input, and (c)
Infrequent-based Reconstruction with Complete Input (IRCI).

of using the full AE teacher model, which would require reconstruction errors to detect
anomalies. During the training phase, the AE teacher model learns from the encoder and
decoder, whereas the EO student model focuses only on the encoder’s output. Leveraging
KD, the EO student model learns to compress data into meaningful latent representations,
aiming to match those generated by the AE teacher model’s encoder. During the analysis
phase, ALogSCAN identifies an anomaly when an EQ’s latent representation fails to align
well with the AE’s latent representation. We add a classifier to the EO student model that
operates on the latent representations to predict whether the log sequence represents an

anomaly directly.

5.5.6 Self-supervised learning

ALogSCAN defines a dual-network architecture incorporating self-supervised learning to
guide model optimization effectively. The dual-network architecture consists of two neural
network models: AE and EO. Both models use Convolutional Neural Networks (CNN) to
implement the corresponding encoders and decoders. To optimize the models during the
training phase, ALogSCAN defines a total loss function L that combines three losses from
self-supervised learning techniques: reconstruction loss (Lg), one-class classification loss
(L¢), and prediction loss (Lp).

Reconstruction loss (Lr): Following the frequency-based reconstruction technique (see
Section 5.5.4), ALogSCAN uses the infrequent-filtered log sequences I; € Z and their
corresponding infrequent-filtered reconstructions I € 7' to compute the reconstruction loss
Lg (see Equation 5.1). Since Z and Z’ derive from infrequent filtering (see Section 5.5.3),
the reconstruction loss Lr focuses on infrequent log templates in the log sequences S; € S.

We employ the Mean Square Error (MSE) to calculate the reconstruction loss Ly as follows:

2
Lr

(5.1)

/
]

2

where z;;, argj € R? denote the d-dimensional semantic features of the j-th log template in
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the i-th log sequence of the set of infrequent-filtered log sequences Z and reconstructions 7’
(i.e., I; and I}, respectively). In addition, M; is the total number of infrequent log templates
in the given log sequence S; € &, N is the total number of log sequences in the batch S,
and ||H§ refers to the squared Ly norm.

One-class classification loss (Lc): We adopt a one-class classification technique to
govern the distribution of learned representations in the latent space generated by the AE’s
encoder. To facilitate the convergence of representations for normal log sequences in the
training set, ALogSCAN continually updates the central representation ¢ by computing the
mean of the generated representations in each epoch. Consequently, the training process
aims to minimize the one-class classification loss L. This leads the AE’s encoder to produce
latent representations of normal log sequences that closely align with the center ¢, and
latent representations of abnormal log sequences that exhibit a substantial distance from
this central reference point. In addition, Lo benefits the convergence of the reconstruction
loss L by shrinking the space that contains the log sequences’ latent representations. The

one-class classification loss L¢ is defined as follows:
1
2
Lo =~ 17— dl (5.2)
N3

where Z; € R! denotes the I-dimensional latent representation generated by the AE’s encoder
for the i-th log sequence (i.e., S; € S), ¢ represents the center representation of log sequences,
calculated as ¢ = % SN, Z;, and N is the total number of log sequences in the batch S.
Prediction loss (Lp): In alignment with KD principles, ALogSCAN utilizes the AE
model’s encoder to process entire log sequences S; € S, generating latent representations
Z; € Z. The EO student model distills knowledge from the AE teacher model and processes
frequent-filtered log sequences F; € F to generate latent representations Z, € Z’. This
setup enables the AE teacher model to gain more insights into normal patterns than the
EO student model. Therefore, EO’s latent representations Z; € Z’ aim at predicting AE’s
latent representations Z; € Z. We use MSE to compute the prediction loss Lp between EO

and AE’s latent representations, as follows:

N
Ly= o S 17 - 2 53)
PN & 2

where Z;, Z! € R! denote the [-dimensional latent representation of the i-th log sequence
(i.e., S; € S) generated by the AE’s encoder and EO models, and N is the total number of
log sequences in the batch S. Note NV = 1 in the analysis phase since ALogSCAN processes
one log sequence S at a time.

Finally, Eq. (5.4) defines the objective loss function L for training ALogSCAN. This loss

function L includes a hyper-parameter o that balances the reconstruction loss L with the
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other two losses: one-class classification loss Lo and prediction loss Lp. In particular, «

controls the relative contribution of Li compared to the other terms in the latent space.

L=oaLr+ Lo+ Lp (5.4)

5.6 Performance Evaluation

This section presents a performance evaluation of the proposed ALogSCAN method in terms
of accuracy and time. We describe the datasets, the prototype implementation, the baseline

methods, the evaluation metrics, and the findings.

5.6.1 Experiment Settings
5.6.1.1 Datasets

Our evaluation employed two public log datasets, HDF'S and BGL, and a private log dataset,
ERDC. The public datasets [101] have been widely recognized in log analysis research due to
their real-world origin and comprehensive labeling. In particular, the HDFS dataset collects
logs of executing Hadoop-based MapReduce jobs on over 200 Amazon EC2 nodes. HDFS
logs were manually labeled via handcrafted rules to identify anomalies. The BGL dataset
provides logs from the BlueGene/L supercomputer, equipped with 131,072 processors and
32,768 GB of memory. BGL logs contain alert and non-alert messages identified by alert
category labels.

The private ERDC dataset collects operational log data from hardware and software
systems within the Ericsson Research Data Center in Lund, Sweden. The log data originates
from Xerces, a private cloud service deployed on ERDC. The ERDC infrastructure involves
approximately 300 servers orchestrated by the OpenStack cloud platform. The logs cover
various OpenStack subsystems, each responsible for specific cloud functions, including Nova,
Neutron, Swift, Cinder, Horizon, and Keystone.

We employed a chronological approach and followed a 60/20% batch decomposition for
dividing the datasets into training and test datasets. Furthermore, we grouped logs into
sequences using either session- or window-based partitioning. In HDFS, we applied session-
based partitioning to group logs by BlockID. In BGL and ERDC, we used fixed entry
windows of 20, 60, and 100 logs to evaluate the balance between detection performance and
storage efficiency. We preferred fixed entry window partitioning over fixed time windows

since the former provides uniform sequence lengths.

5.6.1.2 Prototype implementation

Log template sequences represent ALogSCAN’s input data (see Fig. 5.5). We rely on
AdapLog [5] for building the log template sequences generated by the offline and online log
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parsing processes (see Fig. 5.4). Regarding frequent and infrequent filtering of log template
sequences, our DFLF implementation dynamically selects the frequency threshold s from
the set K = {0.05,0.1,0.15,0.2,0.3}.

We used convolution modules from PyTorch 1.12.0 [102] to implement ALogSCAN’s
dual-network architecture (i.e., AE and EO). Our model implementation extracts 32-
dimensional semantic embeddings from each log template sequence. The encoder model
in AE and EO deploys a 2-dimensional (2D) convolution layer that employs the semantic
embeddings as input data with 1 channel and generates data representations with 128
channels. The AE’s decoder model implements a 2D transposed convolution layer that
receives the encoder’s data representations with 128 channels as input and produces data
reconstructions with 1 channel. We varied the kernel size of both convolution layers among
[3, 4, 5] to find the best feature extraction. The results presented in this thesis (see Section
5.6.2) use a convolving kernel of 4.

The training process of the encoder and decoder models uses AdamW optimizer, with
a polynomial learning rate schedule starting at 1 x 1072 and decaying to 1 x 1074, In
addition, model training implements a mini-batch size of 64 and runs for up to 100 epochs,
with early stopping if no improvement is observed over 20 consecutive iterations. Finally,
after several tests, we fixed the reconstruction loss weight a to 100 as it provided the best

balance between the loss terms in the objective loss function (see Equation 5.4).

5.6.1.3 Baseline methods

We compare ALogSCAN with six state-of-the-art log anomaly detection methods:
LogRobust [69], AE+IF [72], LogAnomaly [70], DeepLog [73], PLElog [74], and
LogBERT [75]. As described in Section 2.3.4, these methods involve different neural
network architectures, including GRU, LSTM, BiLSTM, Transformer, and CNN models.
The implementations of the selected methods are publicly available in code repositories [101],
facilitating reproducibility and consistency in our evaluation. We adhered to the original
configuration parameters established by the authors in their implementations. Each log
anomaly detection method, including ALogSCAN, was executed three times on each dataset.
This thesis reports the average results between the executions to ensure robustness. Finally,
we conducted all the experiments on a Linux server running Ubuntu 20.04, equipped with
an AMD Ryzen 3.5GHz CPU and 32 GB RAM.

5.6.1.4 Evaluation metrics

We evaluate the accuracy performance of ALogSCAN and the baseline anomaly detection
methods using metrics derived from the confusion matrix: precision, recall, Fj-score, and the
Matthews Correlation Coefficient (MCC). Considering anomalies as the positive condition,

these metrics provide a comprehensive assessment of each method’s ability to correctly
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detect True Positives (TP) while minimizing False Positives (FP) and False Negatives (FN).
See Section 4.6.1.6 for the corresponding formula.

MCC evaluates the overall prediction quality by considering all the values from the
confusion matrix to provide a measure ranging from -1 to +1 (see Eq. 5.5). As MCC
approaches +1, the log anomaly detection method becomes more accurate. MCC values
between 0 and -1 indicate that the method is less accurate than random guessing.

TPxTN —FP x FN

Mee = J(TP+ FP)(IP + FN)(IN + FP)(IN + FN) (5:5)

In addition, we measure the training and analysis time of the anomaly detection methods
to evaluate their timely detection capabilities. The training time monitors the time to train
the ML model until convergence. The analysis time measures the time required to process
online log sequences to detect anomalies (if any). The shorter the analysis time, the better
the anomaly detection method for taking preventive actions.

Finally, we introduced an instability ratio to evaluate the adaptability of the anomaly
detection methods. The instability ratio indicates the proportion of log sequences containing
synthetic modifications (e.g., random deletions, repetitions, or shuffling). We measured the
change in Fij-score per different instability ratio values to assess how well the anomaly
detection methods adapt to real-world log instability. A comparison of the accuracy
performance at various levels of instability enables evaluating the methods’ robustness and

adaptability to real-world log data where instability is present.

5.6.2 Evaluation Results

This section discusses our evaluation results broken into three parts. First, a performance
evaluation of ALogSCAN and the baseline anomaly detection methods regarding accuracy,
time, and adaptability. Second, an ablation study of the reconstruction and filtering
techniques of ALogSCAN. Third, we assess the impact of ALogSCAN configuration

parameters on the accuracy performance.

5.6.2.1 Anomaly detection performance

(A) Accuracy: Table 5.1 presents the accuracy performance comparison of
ALogSCAN and six baseline methods across HDF'S (session-based), BGL (100-log window),
and ERDC (100-log window) datasets. The results show that ALogSCAN consistently
achieved the highest MCC, Fj-score, precision, and recall across all datasets. In the
HDFS dataset, ALogSCAN achieved an Fj-score of 95.83%, surpassing all baseline methods.
PLELog performed comparably well with an Fj-score of 94.55%, while LogRobust ranked
second overall. LogAnomaly exhibited the highest precision (99.85%) but suffered from
a significantly lower recall (58.56%), indicating a high false-negative rate. For the BGL
dataset, ALogSCAN significantly outperformed all baselines, achieving an MCC of 0.9483
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Table 5.1: Accuracy performance of ALogSCAN and the baseline anomaly detection
methods on HDFS, 100-log BGL, and 100-log ERDC datasets.

Dataset Metric Methods
LogRobust [69] AE+IF [72] LogAnomaly [70] DeepLog [73] PLELog [74] LogBERT [75] ALogSCAN
MCC 0.9156 0.7570 0.7524 0.9393 0.9447 0.7479 0.9559
HDFS Fy-score 94.55 74.94 73.82 90.17 95.83 72.56 96.32
Precision 94.05 84.45 99.85 97.16 96.17 94.35 95.87
Recall 90.54 67.35 58.56 84.11 92.99 58.94 95.80
MCC 0.6827 0.5761 0.6320 0.6059 0.8122 0.7419 0.9483
BGL Fi-score 71.91 61.92 64.05 63.64 82.51 76.56 96.32
Precision 66.30 74.50 69.52 67.67 74.41 84.08 96.00
Recall 78.55 52.97 59.38 60.06 92.59 70.28 96.64
MCC 0.3331 0.4001 0.4412 0.3975 0.5283 0.4117 0.8957
ERDC Fy-score 43.87 36.51 46.21 46.94 54.96 42.66 89.74
Precision 36.48 30.53 4291 40.81 43.22 32.36 83.86
Recall 55.02 45.41 50.07 55.23 75.44 62.59 96.50

The best and second-best accuracy results are in bold and underlined, respectively.

and an Fi-score of 96.32%. PLELog ranked second with an MCC of 0.8122 and an Fj-
score of 82.51%, showing strong recall (92.59%) but lower precision (74.41%) compared to
LogBERT (84.08%). In the ERDC dataset, ALogSCAN achieved the highest gains, with
an MCC of 0.8957 and an F}-score of 89.74%. PLELog was the second-best method, with
an MCC of 0.5283 and an F}j-score of 54.96%.

Regarding the baseline methods, PLELog ranked as the second-best accurate method
across most datasets, indicating that combining probabilistic label estimation and semi-
supervised learning is highly effective for log anomaly detection. LogBERT performed
well on the BGL and ERDC datasets, outperforming other methods such as LogRobust,
AE+IF, Log LogAnomaly, and DeeplLog. However, LogBERT still falls short of
ALogSCAN’s accuracy performance across all metrics and datasets. AE4IF exhibited a
weak performance, particularly on the ERDC dataset, where it failed to correctly distinguish
anomalies from normal log sequences. This suggests that global reconstruction approaches
struggle to capture subtle log patterns in large-scale cloud environments.

In conclusion, the results show that ALogSCAN’s CNN-based architecture outperformed
all other methods based on neural networks, including BiLSTM (AE+IF), LSTM
(PLELog, DeepLog, LogAnomaly), and Transformers (LogRobust, LogBERT). Note that
Transformer-based methods like LogRobust and LogBERT generally performed better than
LSTM-based methods such as DeepLog and LogAnomaly. Nevertheless, PLELog (an
LSTM-based method) achieved better results than the Transformer-based counterparts in
most metrics and datasets. This behavior demonstrates that, in addition to the neural
network architecture, the underlying anomaly detection techniques (e.g., reconstruction,
one-class classification, and probabilistic label estimation) play a critical role in detection

performance.

(B) Time efficiency: We evaluated the time efficiency of ALogSCAN and the six
baseline methods during model training and log sequence analysis. The training time

measures the time the ML model takes to converge. The analysis time computes the time to
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Figure 5.7: Training time of anomaly detection methods in (a) HDFS, (b) 100-log window
BGL, and (c) 100-log window ERDC datasets.

process online log sequences and detect anomalies (if any). We conducted the experiments to
evaluate the time efficiency using three datasets: session-based HDFS and 100-log window
BGL and ERDC.

Fig. 5.7 depicts each anomaly detection method’s average training time per epoch. The
results reveal that LogAnomaly and PLELog consistently exhibited the longest training
times, displaying the highest computational demands during training. LogAnomaly reached
a peak training time of 200 seconds per epoch in the HDFS dataset, reflecting its
heavy computational requirements when processing extensive logs during model training.
Similarly, PLELog maintained approximately 90 seconds per epoch across all datasets. This
consistent overhead reflects PLELog’s complexity in handling large log sequences, leading
to significant computational costs.

LogBERT and DeepLog reduced the training time of the two previous methods but their
performance varied depending on the dataset. LogBERT achieved a short training time in
HDFS (39 seconds) but increased in the other two datasets, reaching up to 60 seconds per
epoch in ERDC. This increment is due to the complexity of LogBERT’s random masking
and sequence prediction mechanisms. In contrast, Deeplog produced a short training time
in BGL and ERDC datasets (39 seconds on average) but incremented to 50 seconds per
epoch in HDFS. This increase in a large dataset such as HDFS is due to DeepLog’s need to
break longer sequences into smaller segments during training to maintain performance.

The training time of LogRobust, ALogSCAN, and AE+IF remained consistently short
across the three datasets, with an average value of 36, 32, and 26 seconds per epoch,
respectively. Note that AE+IF exhibited superior training efficiency, highlighting its
lightweight architecture. However, as shown in Table 5.1, this lightweight architecture
produced poor anomaly detection in the three datasets. In contrast, ALogSCAN ranked as
the second-fastest method in training time and provided the most accurate performance,
demonstrating the advantage of our proposal in handling large-scale log datasets with
minimal computational overhead during training.

Continuing with the time efficiency evaluation, Fig. 5.8 shows the average analysis time
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Figure 5.8: Analysis time of anomaly detection methods in (a) HDFS, (b) 100-log window
BGL, and (c) 100-log window ERDC datasets.

per log sequence each anomaly detection method takes. The analysis time is measured
in milliseconds (ms) and reflects the method’s efficiency for timely detection. The results
indicate that LogAnomaly and LogBERT performed the slowest analysis, both requiring
between 34 and 45 ms per log sequence across the three datasets. These values reflect
the complexity of LogAnomaly and LogBERT’s prediction mechanisms, making them
unsuitable for strict time conditions. DeepLog and LogRobust produced minor and more
consistent values than the previous methods, requiring an average analysis time of 32
and 25 ms, respectively. However, these two methods still present challenges for prompt
anomaly detection. Similarly, PLELog maintained a consistent analysis time across the
three datasets, taking around 19, 20 and 23 ms to analyze each log sequence. Although
PLELog performed faster than the previous methods, it is still far from the fastest analysis
times of AE4+IF and ALogSCAN.

AE+IF produced an excellent analysis time in the HDFS dataset, requiring only 1 ms per
log sequence. Considering that AE+IF’s accuracy performance in HDFS was acceptable
(i.e., Fi-score of 74.94% as shown in Table 5.1), this time value indicates its suitability
for systems operating with data similar to HDFS and requiring rapid detection and quick
response times. Nevertheless, if the requirement is high accuracy and timely anomaly
detection, the results suggest that ALogSCAN is the best method. In HDFS, ALogSCAN
achieved the best accuracy (i.e., Fj-score of 96.32%) while taking only 2 ms more than
AE+IF to analyze each log sequence. In fact, ALogSCAN maintained this outstanding
performance in terms of accuracy and analysis time in the other two datasets. ALogSCAN
provided the most accurate anomaly detection method in the BGL and ERDC datasets and
requires an analysis time of only 3 and 4 ms per log sequence, respectively. These time
values are comparable and less than the analysis time produced by AE+IF in BGL and
ERDC, respectively. Therefore, the results demonstrate ALogSCAN’s capacity to detect

anomalies with minimal delay.
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Table 5.2: Steps to generate unstable log sequences.

Original log sequence | 0 — 0y — 03 — 64 — 05
Deletion in sequence | 61 — 0y — 03 — 04 — 05
Shuffle in sequence 01 — 04 — 03 — 03 — 05
Insertion in sequence | 61 — 0y — 03 — 05 — 04 — 05

(C) Adaptability: We conducted two experiments to evaluate the adaptability of
the anomaly detection methods in dynamic environments: (i) log instability via synthetic
log injections and (ii) the impact of anomalies in the test data. This evaluation compared
ALogSCAN with LogRobust [69] and DeepLog [73] in the HDFS dataset. We analyzed
LogRobust as it addresses log instability and handles variations in log patterns. DeeplLog,
on the other hand, provides a log key-based approach, serving as a valuable representation
of traditional methods.

For the first experiment, we generated unstable log sequence data as depicted in
Table 5.2. We followed four steps to replicate unstable log sequences. First, we randomly
removed a few log templates from the original sequences. Second, we shuffled sub-sequences
within the log templates. Third, we randomly chose a non-critical log template and repeated
it multiple times within the sequence. Finally, synthetic logs were then randomly inserted
into the original HDFS dataset. We trained the anomaly detection methods using the
original dataset and then tested them on the modified data, including the injected synthetic
logs.

Figure 5.9a describes the accuracy performance (i.e., Fj-score) of the anomaly detection
methods while varying the proportion of synthetic log sequences injected into the dataset
(i.e., injection ratio). The results show that sentence embedding methods, such as
ALogSCAN and LogRobust, performed significantly better than DeepLog when injecting
synthetic log sequences. For example, only at a 5% injection ratio, DeepLog reduced
its Fi-score by 22%, whereas ALogSCAN and LogRobust suffered a decrease of 4% and
7%, respectively. This large reduction in DeepLog’s accuracy is because its log key-based
technique treats changed log events as entirely new templates, resulting in more false
positives. In contrast, ALogSCAN and LogRobust’s sentence embedding is more robust
to log changes as it encodes log templates into multi-dimensional vectors.

Note both ALogSCAN and LogRobust experienced a decline in their accuracy
performance as the injection ratio increased. However, ALogSCAN’s accuracy decreased
with a less steep, maintaining a higher Fj-score. For example, at a 30% injection
ratio, ALogSCAN achieved an F}j-score above 90%, whereas LogRobust dropped to 84%.
ALogSCAN’s consistent accuracy performance is due to the use of BERT encoders that
capture contextual information and encode variations in logs with similar vectors, making
it more resilient to log changes.

For the second experiment, we simulated real-world conditions by introducing anomalies
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Figure 5.9: Accuracy performance of anomaly detection methods while varying (a) the
proportion of injected synthetic log sequences and (b) the anomaly rate.

directly into the test subset of HDFS. This experiment evaluated the robustness of the
anomaly detection methods while randomly injecting anomalies at different rates from 1%
to 10%. Fig. 5.9b depicts the methods’ accuracy performance (i.e., Fj-score) while varying
the proportion of injected anomalies (i.e., anomaly rate). The results show the superior
resilience of ALogSCAN as the number of anomalies increased. At an intermediate anomaly
rate of 5%, the Fj-score of DeepLog and LogRobust dropped to 63% and 76%, respectively.
Furthermore, as the anomaly rate increased to 10%, the accuracy of DeepLog and LogRobust
further deteriorated up to producing an Fj-score around 40%. In contrast, ALogSCAN
demonstrated robust accuracy performance by maintaining an Fj-score above 90% for all

the range of the anomaly rate.

5.6.2.2 Ablation study

This section presents the ablation study of ALogSCAN, analyzing the contributions of
its core components: network architecture, reconstruction techniques, and filtering. We

conducted the experiments on three datasets: session-based HDFS and 100-log window
BGL and ERDC.

(A) Network architecture and reconstruction techniques: Table 5.3 reports
ALogSCAN’s accuracy performance (i.e., Fij-score and MCC) using two network
architectures (i.e., single-network and dual-network) and the three reconstruction
paradigms: RCI, IRFI, and IRCI (see Section 5.5.4). The results show that ALogSCAN
using the dual-network architecture consistently achieves higher accuracy than the single-
network architecture across all datasets and reconstruction techniques. This behavior

demonstrates that the self-supervised prediction task in the dual-network design enhances
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Table 5.3: ALogSCAN’s accuracy performance using different network types and
reconstruction techniques.

Reconstruction HDFS 100-log BGL 100-log ERDC

Network tochni }
echnique Fi-score MCC  Fj-score MCC Fi-score MCC
RCI 78.58 78.80 91.52 91.26 79.49 78.01
Single Network IRFI 71.43 71.22 89.39 90.95 88.46 87.69
IRCI 92.13 91.53 95.96 95.34 89.21 89.30
RCI 92.62 92.71 91.66 91.84 88.36 89.13
Dual Network IRFI 75.97 76.88 92.81 94.18 88.86 88.12
IRCI 95.83 95.59 94.83 94.83 89.57 89.54

* Reconstruction with Complete Input (RCI), Infrequent-based Reconstruction with Frequent
Input (IRFI), and Infrequent-based Reconstruction with Complete Input (IRCI).

ALogSCAN’s capacity to learn patterns from log sequences, leading to accurate anomaly
detection. Regarding the reconstruction techniques, the results show that IRCI provides the
best accuracy performance in the three datasets. Therefore, IRCI effectively captures more
complex log patterns than the other reconstruction techniques. The importance of selecting
the appropriate reconstruction technique is evident, as it directly affects ALogSCAN’s
ability to generalize and detect anomalies. We advocate for careful consideration when

selecting reconstruction techniques to prevent potential information loss.

(B) Network architecture and filtering: Table 5.4 presents ALogSCAN’s
accuracy performance (i.e., Fj-score and MCC) using the two network architectures (i.e.,
single-network and dual-network) and with and without applying DFLF, the introduced
filtering technique (see Section 5.5.3). The results show that DFLF significantly improves
ALogSCAN’s accuracy performance, providing higher and more stable accuracy values than
without filtering across all datasets. This behavior is because DFLF enables the ML model
to focus on rare log events, which is critical for effective anomaly detection. In contrast,
when ALogSCAN skips filtering, the results highly varied due to the inclusion of noisy or

irrelevant patterns.

5.6.2.3 Impact of configuration parameters

(A) Impact of reconstruction loss weights: The previous evaluation experi-
ments used a reconstruction loss weight a = 100 in the objective loss function L (see
Eq. 5.4). We conducted a series of tests to understand better the impact of this hyper-
parameter in the accuracy of ALogSCAN by varying o from 1073 to 10* in steps of 10x. As
shown in Fig. 5.10a, ALogSCAN’s Fi-score increased from 82% to 94% as « incremented,
with a fluctuation between 1072 to 10! and a minimum accuracy reduction for o > 100.

These results suggest that giving high importance to the reconstruction enables ALogSCAN
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Table 5.4: ALogSCAN'’s accuracy performance using different network types, with and
without filtering.

HDFS BGL ERDC
Network Filtering* Fi-score MCC Fj-score MCC Fi-score MCC
Sinelo Nepwop  No Filtering 3805 3872 8226 8357 3340  33.35
16 NEIWOrk  pprp 90.67 91.01  92.64 93.39 80.12  80.32
Dual Netwope | No Filtering — 41.20 4223 83.71 8382 3420  35.77
h VOIS DFLF 95.83  95.59  97.16  94.83  89.57  89.54

* Dynamic Frequency-based Log Filtering (DFLF)

50
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Reconstruction loss weight a Filtering Ratio (%)
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Figure 5.10: ALogSCAN’s accuracy performance while varying (a) the reconstruction loss
weight « and (b) the DFLF’s filtering ratio.

to distinguish between normal and anomalous log sequences. However, focusing only on
reconstruction can lead to ALogSCAN’s performance degradation. Based on this empirical

analysis, we set o = 100 as the optimal setting in our experiments.

(B) Impact of filtering ratio: We examined the effect of the DFLF’s filtering
ratio on ALogSCAN’s anomaly detection performance. This experiment evaluated two
types of filtering ratios: fixed and random. The fixed filtering ratio ranged from 0.05
to 0.9, whereas the random filtering ratio sampled a value from an empirically defined set
K =1{0.05,0.1,0.15,0.2,0.3}. As depicted in Fig. 5.10b, the random filtering ratio generally
enables ALogSCAN to achieve a higher Fij-score than the fixed filtering ratio. Therefore,
the random filtering ratio provides high accuracy and flexibility in hyper-parameter tuning
across different datasets, allowing ALogSCAN to handle diverse log event frequencies and
adapt to different log structures. Consequently, our experiments adopted the random

filtering ratio to improve generalization.
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5.7 Conclusion

In this chapter, we presented ALogSCAN, a self-supervised approach for log anomaly
detection. ALogSCAN integrates three key components: DFLF filtering, IRCI
reconstruction, and a dual-network architecture supported by three self-supervised learning
techniques. The DFLF filtering strategy prioritizes learning normal patterns from infrequent
log templates. The IRCI reconstruction approach reconstructs rare events by leveraging all
templates in a log sequence. The dual-network architecture, enhanced by reconstruction,
one-class classification, and KD, effectively captures less biased, discriminative normal
patterns from infrequent log templates. This combination enables ALogSCAN to distinguish
anomalous log sequences from those containing rare but normal templates with higher
accuracy.

Our extensive experiments on three datasets demonstrated the significant performance
gains of ALogSCAN over baseline anomaly detection methods. Across all datasets,
ALogSCAN achieves an accuracy improvement of up to 79% (i.e., MCC and Fj-score),
outperforming existing methods like PLELog and LogRobust. In addition, ALogSCAN
excels in time efficiency, reducing the analysis time by up to 15x compared to methods like
LogAnomaly and LogBERT. AE+IF exhibited a faster analysis time than ALogSCAN in
the HDF'S dataset, though by only 2 ms per log sequence. However, AE+IF suffered from
poor accuracy, limiting its applicability in real-world scenarios where the trade-off between
accuracy and analysis time is critical. In contrast, ALogSCAN consistently maintained an
analysis time of 3-4 ms per log sequence while achieving the best accuracy performance.
Therefore, our proposal provides the optimal balance between high accuracy and short

analysis latency, suitable for timely anomaly detection tasks.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

Detecting anomalies in real-time cloud environments using ML provides a proactive
approach to enhance system reliability and efficiency. However, building and maintaining
accurate ML models in such dynamic and heterogeneous environments is challenging. Key
issues include concept drift, the interconnected and distributed nature of cloud services,
and the evolution of log data formats, all of which degrade the performance of ML models
over time and necessitate robust real-time adaptation mechanisms.

This thesis addresses these challenges by proposing algorithms to adapt ML models for
anomaly detection in real-time cloud environments and overcome limitations related to data
evolution and distribution changes. The main contributions are summarized as follows:

In Chapter 3, we introduced a real-time concept drift adaptation algorithm to tackle the
challenges of sequential metric data in dynamic real-time cloud environments. Our approach
leverages sliding and adaptive window-based methods combined with a performance-driven
mechanism to effectively detect and adapt to concept drift in real-time. By integrating
multi-source prediction and optimizing the model with a Genetic Algorithm, our proposed
method achieves superior accuracy and time efficiency while ensuring scalability and
adaptability.

In Chapter 4, we addressed the challenges of analyzing distributed traces in RT cloud
systems for anomaly detection. We proposed a federated learning algorithm designed for
asynchronous, real-time model updates, accommodating the distributed nature of cloud
services. This approach minimizes communication and computation overhead, enabling
timely anomaly detection with improved detection accuracy. Experimental evaluations
demonstrated significant improvements in detection timeliness, effectiveness, and resource
efficiency.

In Chapter 5, we tackled the complexities of working with contextual log data, such
as unstable log formats, class imbalance, and reliance on labeled data. We proposed a

robust, adaptive solution that accommodates evolving log structures and prioritizes rare
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patterns, enabling accurate and efficient anomaly detection real-time. Comprehensive
evaluations highlighted the effectiveness of our approach in improving detection performance

and reducing dependency on labeled datasets.

6.2 Future Work

While this thesis introduced significant advancements in ML-based anomaly detection for
real-time clouds, several research directions remain open. Future work should focus on
further improving detection efficiency, interpretability, and adaptability while ensuring low-

latency anomaly detection and mitigation in real-time cloud infrastructures.

6.2.1 Interpretable and Actionable ML-Based Anomaly Detection

While current research on ML-based anomaly detection primarily focuses on improving
detection accuracy, developing interpretable and actionable models is equally criti-
cal—especially in real-time cloud environments, where fast and informed decision-making
is essential for minimizing service disruptions. Operators must not only detect anomalies
but also understand their causes instantly to ensure rapid mitigation.

Recent studies have explored anomaly explanation techniques by identifying key features
that contribute most to an anomaly. Model-agnostic approaches, such as feature attribution
and attention-based methods, can help explain why a model detects an event as anomalous.
However, these methods often lack deep insights into how ML models make decisions in
evolving real-time cloud environments, which can reduce their practical effectiveness for
real-time troubleshooting and automated mitigation.

Future research should focus on integrating real-time feature attribution and actionable

knowledge discovery directly into ML models for anomaly detection. Specifically:

o Real-Time Anomaly Explanation: Develop ML models that instantly identify
and highlight key features responsible for anomalies, ensuring that cloud operators

can respond promptly.

e Context-Aware Interpretability: Design models that correlate anomalies across
multiple cloud layers (logs, traces, metrics) in real time, enabling faster root-cause

analysis.

e Automated Impact Quantification: Develop methods that assess how anomalies
affect service reliability, performance, and user experience, allowing systems to

prioritize mitigation actions dynamically.

By embedding interpretability directly into anomaly detection models, real-time cloud
systems can achieve faster response times, reduced operational overhead, and improved

service reliability.
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6.2.2 Holistic Anomaly Detection: Multi-Source Data Fusion in Real-
Time Clouds

A promising direction for ML-based anomaly detection in real-time cloud environments
is the development of a unified system that integrates and analyzes multiple data types,
including metrics, traces, and logs. Existing approaches often rely on a single data source,
which may cause models to miss critical cross-layer correlations that provide a complete
picture of cloud failures.

For example, an anomaly detected in system metrics (e.g., a sudden spike in CPU
usage) may be linked to trace anomalies (e.g., delayed API response times) and further
contextualized by logs indicating an error or misconfiguration. Without a holistic view,
anomaly detection models may misinterpret symptoms as isolated issues rather than part
of a larger system failure. Developing a real-time multi-source anomaly detection system

requires advancements in:

e Low-Latency Data Integration: Designing architectures that synchronize logs,
traces, and metrics in real time, allowing anomaly detection models to process events

as they occur.

e Multi-Modal Learning for Anomaly Correlation: Implementing ML techniques
that learn dynamic relationships between different data sources, enabling better

detection of complex, multi-layer anomalies.

e Adaptive Feature Fusion for Concept Drift Handling: Since real-time
cloud behaviors evolve, anomaly detection must continuously adjust to new data

relationships without requiring frequent retraining.

By integrating multi-source real-time data, cloud anomaly detection systems can achieve

higher accuracy, reduced false positives, and faster failure diagnosis.

6.2.3 Reinforcement Learning for Adaptive Anomaly Detection and
Resource Optimization

Reinforcement Learning (RL) offers significant potential for adaptive anomaly detection
and cloud resource optimization, particularly in real-time environments where workloads
and failure patterns change dynamically. Unlike traditional ML models, RL learns optimal
responses over time, making it well-suited for the complex, dynamic nature of real-time
cloud infrastructures.

In real-time cloud systems, RL could continuously adapt to evolving workloads and
new anomaly patterns by learning from real-time interactions with cloud components. This
capability could address critical challenges, such as minimizing anomaly detection latency

to meet real-time SLA requirements, ensuring continuous learning despite evolving cloud
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workloads, and optimizing cloud resource allocation to balance performance and cost in
dynamic cloud environments.

Despite its potential, RL for real-time cloud is underexplored due to challenges in
scalability, execution latency, and training environments. Future research should focus

on:

e Fast RL-Based Anomaly Detection: Designing lightweight RL models that can

detect and respond to anomalies in real-time with minimal computational overhead.

e Adaptive RL for Evolving Cloud Conditions: Using meta-learning and transfer
learning to allow RL agents to quickly adapt to new cloud environments without

extensive retraining.

e Simulation Environments for RL in Real-Time Clouds: Developing high-
fidelity real-time cloud simulators where RL models can learn under realistic cloud

workload conditions.

e Energy-Aware RL for Cloud Resource Optimization: RL can be leveraged to
balance system performance and cost by dynamically adjusting resource allocation

based on anomaly severity and real-time cloud demands.

By advancing RL-based adaptive anomaly detection and resource optimization, cloud
systems can become more resilient, efficient, and capable of handling dynamic operational

challenges in real-time.
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