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Abstract

Next-Generation Data Centers: Experimental Analysis of Topologies

and Algorithms for Next-Generation Data Centers

Abdeltif Azzizi

In recent years, data center networks (DCNs) have faced growing pressure from Al
and ML workloads with intensive communication patterns and stringent latency re-
quirements. Traditional hierarchical architectures like Clos (Fat-Tree) increasingly
struggle with scalability bottlenecks, operational complexity, and congestion under
bursty traffic. To address these challenges, this work explores the Structured Re-
Arranged Topology (STRAT), which combines expander-graph-inspired path diver-
sity with deterministic structure to enable efficient, scalable, and fault-tolerant de-
signs. Unlike rigid designs, STRAT supports incremental growth, reduced cabling
complexity, and better load distribution. This thesis evaluates STRAT not only in
simulation but also on real programmable-switch hardware, demonstrating its practi-
cal viability. A key contribution is DEALER, a congestion-aware, data-plane-friendly
forwarding algorithm leveraging programmable switches. DEALER uses a distributed
distance-vector protocol and local queue occupancy to balance load among equal-cost
and slightly longer paths, achieving significant improvements over ECMP in high-
load scenarios while running at line rate on commercial ASICs. To further enhance
STRAT, this work integrates a hybrid electrical-optical fabric with Optical Circuit
Switching (OCS) links, guided by proactive, ML-based flow classification. An XG-
Boost model predicts elephant flows early, enabling their diversion to pre-configured
optical paths with minimal control overhead. Simulations show reductions in tail
latency and improved throughput. Together, these contributions offer a practical,
holistic redesign for DCNs, uniting scalable graph-based topologies, programmable
forwarding logic, and ML-guided optical hybridization to meet the performance, effi-

ciency, and scalability demands of modern AI and cloud workloads.
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Chapter 1

Introduction

1.1 Background

As the digital economy expands, the demand for more efficient and scalable data
center topologies continues to rise. Modern data centers must not only handle large
volumes of data but also provide the infrastructure necessary for rapid data process-
ing and retrieval. This demand is fueled by the proliferation of cloud services, big
data analytics, and artificial intelligence. The exponential growth in artificial intel-
ligence (AI) applications significantly impacts data center operations. Al workloads,
characterized by intensive data processing and the need for real-time analytics, re-
quire data centers to be exceptionally responsive and adaptable. Addressing these
needs is crucial for maintaining system efficiency and ensuring that the infrastructure
can manage the increasing complexity and volume of both traditional and Al-driven

tasks, while being constrained by cost, space and power.

1.2 Motivation

Modern data centers are the backbone of the digital economy, powering applications
in cloud computing, big data, and artificial intelligence. However, the exponential in-
crease in computation and data traffic has revealed significant challenges in traditional
data center designs. Issues such as scalability bottlenecks, high energy consumption,
complex management, and the need for predictable performance under diverse work-

loads are increasingly critical [15,39,42]. These problems are amplified by the shift



toward service-oriented architectures and the growing diversity of applications run-
ning on virtualized platforms [27,37]. Additionally, evolving architectural trends
such as full disaggregation, programmable infrastructure, and Al-driven automation
are reshaping how data centers are built and operated [30,41].

To address these challenges, there is a growing emphasis on rethinking network
topologies, integrating intelligent routing algorithms, and leveraging hybrid electrical-
optical fabrics. This thesis is motivated by the urgent need to explore and evaluate
novel data center network designs that can meet the scalability, performance, and
energy-efficiency demands of next-generation workloads. By focusing on experimen-
tal validation of expander-based architectures and machine-learning-enhanced hybrid
switching, this work contributes toward bridging the gap between theoretical innova-

tion and practical deployment.

1.3 Thesis Contributions

Building upon the motivation outlined in the preceding section, this thesis makes the
following key contributions to the advancement of scalable, resilient, and cost-effective

data center network architectures:

1.3.1 Experimental Evaluation and Validation of Expander-

Based STRAT Topologies

Chapter 2 presents a comprehensive experimental and simulation-based evaluation of
STRAT, an expander-graph-inspired flat topology, positioned as a practical alterna-
tive to conventional Clos architectures in data center networks. First, we construct
a real-world testbed using commercial off-the-shelf Broadcom Trident4 switches to
model both STRAT and Clos topologies at scale. This testbed enables rigorous
performance evaluation under realistic conditions. Second, we conduct architectural
and metric-based comparisons through OMNeT++ simulations and hardware test-
ing. STRAT consistently outperforms Clos in key metrics such as throughput (up to
43% improvement), switch count (about 40% fewer), and traffic distribution under
load. Finally, we introduce DEALER—a lightweight, programmable routing algo-
rithm tailored for STRAT—which leverages expander path diversity and local queue



awareness. DEALER achieves significantly lower drop ratios and better load balanc-
ing compared to traditional ECMP routing, and is validated both in simulation and

on hardware.

1.3.2 A Hybrid Optical-Electrical STRAT Architecture with
ML-Driven Flow Classification

Chapter 3 proposes a novel hybrid architecture that augments STRAT with a sparse
overlay of Optical Circuit Switching (OCS) links to enhance throughput and man-
age long-lived flows more effectively. Inspired by communication patterns found in
distributed deep learning, we overlay structured optical rings that offload elephant
flows while retaining mice flows within the electrical STRAT fabric. To support this
design, we incorporate an XGBoost-based classifier trained on the UNIV1 dataset to
distinguish mice from elephant flows using early packet-level features. The model gen-
eralizes well across workloads, achieving an F1 score of approximately 0.91-0.93, and
enables real-time traffic steering. The hybrid STRAT architecture is implemented and
evaluated in OMNeT++4, demonstrating significant improvements in latency, packet
delivery, and throughput under diverse traffic conditions compared to purely electrical

designs.

1.4 Thesis Organization

This thesis is structured as follows. Chapter 1 introduces the background and moti-
vation, detailing the limitations of current hierarchical and electrical-only data cen-
ter architectures, and presenting the case for exploring flat and hybrid alternatives.
Chapter 2 focuses on the design, implementation, and evaluation of STRAT, show-
casing its architectural benefits and validating its performance through both physical
testbed experiments and simulations. Chapter 3 builds upon this by introducing a
hybrid STRAT variant enhanced with optical links and machine learning-based flow
classification, with results from extensive OMNeT++ simulations. Finally, Chapter 4
concludes the thesis by summarizing key findings and outlining directions for future

research in scalable, programmable data center networking.



Chapter 2

Experimental Evaluation and
Validation of Expander-Based
STRAT Topologies

2.1 Introduction

This chapter presents an experimental and simulation-based evaluation of two data
center network (DCN) topologies: the widely adopted hierarchical Clos architecture
and STRAT, a flat, expander-based topology designed around passive optical inter-
connects. While Clos offers proven scalability and performance, it incurs hardware
complexity and suffers from congestion in oversubscribed scenarios. STRAT, by con-
trast, eliminates aggregation and spine layers entirely—using only Top-of-Rack (ToR)
switches interconnected via static optical patch panels—to reduce cost, simplify de-
ployment, and enhance path diversity. Our goal is to assess these topologies based
on their inherent architectural properties—namely throughput, congestion resilience,
scalability, and cost—without relying on congestion control protocols or centralized
traffic engineering. To this end, we adopt simple forwarding schemes based purely
on local information: ECMP for Clos, and ECMP with Dynamic Group Multipath
(DGM) for STRAT. We evaluate both topologies on a physical testbed built from
commercial Ethernet switches and further validate scalability through packet-level
simulations of networks with up to 256 switches and 1,024 hosts using OMNeT++.
We also introduce DEALER, a lightweight routing algorithm tailored to STRAT’s



topology, and evaluate its effectiveness in dynamic conditions. Our results show that
STRAT achieves up to 43% higher throughput and requires approximately 40% fewer
switches than a comparable Clos topology. These gains are further supported by Load

Area Under Curve (LAUC) analysis and congestion hotspot visualizations.

2.2 Related Works

In data center network design, Jellyfish [44] topology has been proposed as an in-
novative alternative to a conventional fat-tree. Jellyfish utilizes a random regular
graph, which proves to be cost-effective but introduces several challenges, particu-
larly in routing and scalability. Routing in Jellyfish is complex due to its random
structure, making common strategies like shortest path routing and equal-cost multi-
path routing (ECMP) ineffective. Enhanced routing can be achieved using k-shortest
path routing (KSP) with heuristics such as randomization and edge-disjointness to
improve path diversity [4]. Scalability, while generally better than fat-trees, poses is-
sues for smaller systems where fat-trees may be more effective due to their structured
design [60]. Additionally, handling link failures in Jellyfish requires sophisticated algo-
rithms to ensure robust backup paths to maintain connectivity, further complicating
its deployment.

VL2 [18] is a network architecture tailored for dynamic resource allocation within
data centers, facilitating both agility and cost efficiency by supporting large server
pools. This architecture introduces a uniform high capacity between servers, per-
formance isolation, and adheres to Ethernet layer-2 semantics. Despite these bene-
fits, VL2 faces several challenges, including a complex setup due to its reliance on
flat addressing and Valiant Load Balancing (VLB), which can complicate network
management. Additionally, VL2’s functionality hinges significantly on end-system
modifications for address resolution, potentially restricting network flexibility and in-
creasing administrative overhead. Furthermore, the deployment of VL2 may involve
substantial costs and specific high-speed hardware requirements, which may not be
feasible for all data centers to implement immediately [17].

DCube [21] is a network architecture for connecting servers in containerized data



centers using dual-port servers and low-end switches. It forms a hypercube-like struc-
ture, improving throughput and resilience to server or switch failures. While it re-
duces infrastructure costs, DCube excels mainly for specific traffic patterns compared
to BCube. DCell [20], a scalable and fault-tolerant architecture, improves capacity,
load balancing, and fault tolerance. However, its complexity increases with scale,
leading to management challenges, traffic imbalances, and congestion issues. Addi-
tionally, high node degrees and complex routing protocols complicate implementation
and maintenance [12].

FIConn [31] is a data center networking topology that utilizes both Ethernet ports
on servers — traditionally one for active connections and the other for backup — to
create a scalable, cost-effective network structure. However, it has notable limitations,
including challenges in network expansion and higher costs as the scale of operations
increases. Moreover, FIConn’s design limits server node degrees to two, which can
restrict performance in large-scale deployments due to insufficient connectivity and
fault tolerance. More advanced alternatives like BCCC [33] have been shown to of-
fer better expandability and efficiency, highlighting areas where FIConn could be
improved [32]. The Dragonfly+ [43] topology is a hierarchical network architecture
designed to improve upon the scalability and efficiency limitations of traditional Fat
Tree and original Dragonfly networks. It organizes routers into groups, where intra-
group connectivity follows a bipartite structure between leaf and spine routers, while
inter-group connectivity forms a completely connected graph through global links.
This hybrid approach combines the benefits of flattened topologies with structured
routing, reducing the number of required global links and enhancing path diversity.
Dragonfly+ uses a novel routing algorithm called Fully Progressive Adaptive Routing
(FPAR), which dynamically chooses between minimal and non-minimal paths based
on local queue lengths and congestion status. Additionally, Dragonfly+ improves
deadlock avoidance by using just two virtual lanes (VLs), compared to three or more
in previous designs, which helps reduce buffer fragmentation and simplifies hardware
requirements. Analytically, Dragonfly+ achieves better scalability, supporting up to
105,000 hosts using 36-port routers, and delivers at least 50% bi-sectional bandwidth
utilization for arbitrary traffic patterns. It also maintains a low network diameter
(typically 3 hops), ensuring low latency across a wide range of workloads. However,

its effectiveness depends heavily on balanced inter-group connectivity and careful



traffic engineering. Drawbacks include increased complexity in routing management
due to the need for VL remapping, congestion notifications, and adaptive decision-
making at each router. Physical deployment can also be intricate due to the global
link design and the need to maintain full bi-sectional bandwidth across all groups,
making wiring and layout planning more challenging in large-scale environments. The
HyperX [38] topology is a direct network derived from the hypercube, designed to
leverage high-radix switches for scalable and low-latency communication in datacen-
ter and high-performance computing environments. HyperX arranges switches in a
multi-dimensional lattice, where each node is identified by a coordinate vector and
is connected to other switches that differ by a single coordinate. This geometric
structure enables rich path diversity and fault tolerance, as multiple link-disjoint and
node-disjoint paths can be established between any two nodes. The topology sup-
ports both shortest and near-shortest paths, which can be used adaptively to balance
load or recover from failures. In failure scenarios, HyperX facilitates both protection
(precomputed backup paths) and restoration (on-the-fly rerouting) schemes, ensuring
high survivability even under multiple link faults.

HyperX is characterized by its high path redundancy, low average hop count, and
strong resilience to link and switch failures. The number of available shortest paths
between two nodes is given by Al where A is the number of dimensions in which
their coordinates differ. This extensive path diversity allows robust multipath routing
and enhances load balancing capabilities. However, a key drawback of HyperX is
the increased routing complexity: computing and maintaining large sets of disjoint
paths requires significant overhead, especially in dynamic or large-scale networks.
Additionally, its physical implementation is nontrivial due to the multidimensional
layout, which leads to non-intuitive cabling and potentially higher latency if the
dimensions are not uniformly populated.

The fat-tree based on a Clos topology, widely used in high-performance com-
puting and data center networks, offers uniform high capacity and efficient adaptive
routing. However, it has significant limitations in scalability and complexity. Its phys-
ical layout requires many switches and complex wiring, increasing costs and power
consumption. As the network scales, the switch radix does not keep pace with the
growth in endpoints, leading to longer paths and higher latency for sensitive applica-

tions [36]. Additionally, managing fault tolerance becomes more difficult as network



size increases, with more components prone to failure [23].

2.2.1 STRAT: STructured Re-Arranged Topology

STRAT [14] introduces a fundamentally different approach to data center network de-
sign compared to traditional hierarchical and flattened topologies such as Clos, Drag-
onfly, Dragonfly+, HyperX, and Flattened Clos. Unlike these architectures—which
typically rely on multi-tiered designs with dedicated aggregation and spine layers—STRAT
eliminates the hierarchy entirely by using only Top-of-Rack (ToR) switches. Each ToR
in STRAT serves a dual role: it multiplexes local server traffic and forwards transit
traffic for other ToRs, effectively functioning as both an edge and core switch. The
core of STRAT’s innovation lies in its use of static, passive optical patch panels to
directly interconnect ToRs in a highly meshed expander-like topology. This design
eliminates the need for active optical circuit switching or high-radix central routers
seen in Dragonfly-class architectures. As a result, STRAT reduces the entire network
hardware footprint to a single ToR switch model, dramatically simplifying procure-
ment, deployment, and operational complexity. In contrast to Clos and Dragonfly-like
topologies that require extensive cabling, complex fan-out, and high-radix switches to
scale, STRAT enables port aggregation into large bundles, reducing transceiver count
and fiber complexity. Its passive optical fabric also scales linearly by adding loopback
plugs to preinstalled patch panels—without requiring reconfiguration or new switch-
ing layers—making it uniquely amenable to incremental scaling from small clusters to
thousands of nodes. Furthermore, STRAT is designed for compatibility with off-the-
shelf Ethernet ASICs and full packet-based forwarding, without reliance on circuit-
switching or traffic reconfiguration. Its rich path diversity and expander connectivity
confer strong resilience to congestion and failure, while maintaining cost and energy
efficiency. This architectural simplicity, passive scalability, and full deployability with
commodity hardware set STRAT apart from prior work, offering a practical and high-
performance alternative to hierarchical and semi-hierarchical designs in modern data
center networks.

Altogether, STRAT’s design focuses on optimizing data center performance and
operational efficiency while ensuring scalability, cost-effectiveness, and resilience, mark-

ing a significant advancement in network architecture. The work presented in [14]
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Figure 2.1: Trident4-X11C Architecture

was conducted primarily through simulations, demonstrating its potential data cen-
ter environments. However, to extend and validate these findings, here we investigate
various STRAT topologies against their Clos counterparts using a physical testbed.
By transitioning from simulations to physical experimentation, we provide evidence
and insights into the real-world performance and practical implications of the STRAT
topology. This approach offers a more comprehensive understanding of its efficacy,
scalability, and applicability in actual data center deployments and using commercial
off-the-shelf Ethernet switching ASICs.

2.3 Trident4®-Based Testbed: Architecture

The advent of Software-Defined Networks (SDN) has fundamentally transformed net-
work architecture. In contrast to traditional networks, where decision-making and
data transmission were closely linked, SDN established a distinct separation between
the control plane, which handles decision-making, and the data plane, focused on
data forwarding. This clear division paved the way for programmable data planes
(PDPs), a notable advancement that allows network device functionality to be cus-

tomized. With PDPs, networks gain greater intelligence and flexibility, enabling
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Figure 2.2: Unfolding a 2-layer Clos

enhanced adaptability. To streamline our network modeling, we harness the cutting-
edge capabilities of these PDPs, opting for Broadcom’s latest off-the-shelf technology,
the TD4® programmable switch. Tailored for high-performance Ethernet operations
in both data center and enterprise environments as depicted in Fig. 2.1 [10], the TD4®
switch represents a significant leap forward. Noteworthy features include 32x400G
ports, adaptable telemetry options, extensive forwarding databases customizable to
specific application needs, and seamless integration with modern data center proto-
cols. Before we can implement our network topologies, we must tackle the issue of
unidirectional switch links. This characteristic necessitates the unfolding of the struc-
ture to ensure their alignment with industry standards when deployed on physical
switches. Unfolding involves redrawing the topology to accommodate the unidirec-
tional flow of data packets, thereby facilitating an accurate representation of network
configurations.

For instance, consider the conventional representation of a 2-Tier Clos topology de-
picted in Fig. 2.2. Initially conceptualized with bidirectional links, this portrayal fails
to acknowledge the unidirectional nature of switch internal communication. Through
unfolding, the topology is redrawn to accurately reflect the unidirectional links present
in real-world networking scenarios. This transformation ensures that our network de-

signs are not only theoretically robust but also operationally feasible, adhering to

10
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established industry standards and practices.

2.4 Testbed Architecture & Design

Our testbed architecture, depicted in Fig. 2.3, is structured hierarchically to facilitate

efficient network configuration. The components of the testbed are as follows:

e Controller: At the core of the system is a script that functions as the controller,
operating at an abstract level to manage configuration tasks and generate net-
work topologies. This controller accepts inputs such as adjacency matrices
or similar representations, along with additional parameters like the number
of hosts per network switch and routing preferences. Since our setup uses a
single physical switch, the controller divides it into multiple virtual switches.
Leveraging the TD4 capability to support numerous VLANSs, each switch in
the topology is represented by a VLAN, with the controller assigning the ap-
propriate ports to each virtual switch. To enable each switch to maintain its
own routing table (RT) and routing policies, we utilize Virtual Routing and

Forwarding (VRF') identifiers. This allows multiple routing instances to coexist

11



on the same physical switch, ensuring that independent virtual switches have

distinct routing policies and traffic isolation.

e Topology Builder: This component is a code module generated by the con-
troller, responsible for implementing all the logic defined during the controller’s
setup. It contains a suite of helper functions required to model the network
topology. One key function it performs is setting all switch ports to loopback
mode, ensuring that when a packet exits a port, it re-enters the same port as
though it had been transmitted from a different switch. This behavior enables
the virtual switches to communicate with each other as if they were distinct
physical switches, fully utilizing the queues assigned to each port. In addi-
tion to managing loopback operations, the topology builder creates interfaces
to facilitate communication between VLANSs. It also establishes the necessary
Ingress and Egress objects, which are utilized by the routing and forwarding

protocols to direct traffic through the virtual network.

e Routing Algorithm: The controller triggers the designated routing algo-
rithm’s script, which operates on the network’s topology data to generate rout-
ing tables for every node in the network. These routing tables are subsequently
forwarded as input to the Routing Tables Generator. We will cover in detail

the routing algorithm used in the next few sections.

e Routing Tables Generator: After receiving the routing tables generated
by the Routing Algorithm component, the Routing Tables Generator proceeds
to create all essential routes required to establish connectivity to every switch
within the network. Each route is assigned either an egress object or an Equal-
Cost Multipath (ECMP) group containing egress objects. This component op-

erates based on the routing preferences that were given to the controller.

e Statistics Collection: This component is responsible for enabling and collect-
ing the various statistics/metrics that we will be using to compare all of our

topologies.

These components then communicate with the BCM API to execute this code on
TD4® hardware and allow for the creation of an internal topology and the routing

chosen for it.
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2.5 Investigated Topologies

Our key goal is to compare network topologies and their inherent throughput and
resilience against congestion, without the confounding variable of congestion man-
agement protocols. Thus, we assume simple forwarding protocols, which make for-
warding decisions purely on the basis of local information and with minimum (or
none) parameter tuning (ECMP for Clos and ECMP with Dynamic Group Multi-
path for STRAT as we will discuss in the next section). In order to keep comparison
fair, we enforce 2 rules. As much as possible, networks are constructed using switches
with the same number of ports. Also, networks service the same number of hosts
(traffic sources and sinks).

TD4® accommodates 144 logical ports, which places a limit on the size of inves-
tigated topologies. Additionally, the chosen topologies should be sufficiently large to
provide meaningful insights across configurations. This rationale guided our selection

of the following topologies:

STRAT 14 and its 3-Tier Clos counterpart

We will evaluate a 3-layer Clos topology that fits within 144 ports. Our 3-Layer Clos
has 27 servers, 9 TORs, 9 Aggregation and 5 Spine switches (23 switches total with 6
ports each) as shown in Fig. 2.8. This Clos can be compared to a STRAT topology,
such as one with a 2:4 (host:network) port configuration requiring 14 switches (TORs)
and supporting 28 servers.

We will also evaluate a 2-layer Clos topology with 12 8-port virtual switches
(4 spine switches and 8 TORs), as illustrated in Fig. 2.7. A comparable STRAT
topology with a 2:6 (host:network) port configuration would require 16 8-port virtual
switches (TORs) and support the same number of 32 servers as depicted in Fig. 2.6.
Additionally, a STRAT topology with a 3:6 (host:network) port configuration would
need 11 switches (TORs) and support 33 servers, as shown in Fig. 2.4 .

Table 2.1 represents a general summary of graph metrics for each of these topolo-
gies. The 3-Tier Clos network stands out with the highest number of nodes (23)
and edges (54), making it the most complex and interconnected topology. However,
this complexity comes with a penalty of increased cost and power, as well as lower
density (0.213) and longer average shortest path length (2.285), compared to STRAT
14. The larger diameter (4) and higher average eccentricity (3.391) of the 3-Tier
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Figure 2.4: STRAT 11 Figure 2.5: STRAT 14

Figure 2.6: STRAT 16

Clos suggest that network communication latency is increased, potentially leading to
slower performance. Additionally, the 3-Tier Clos has the highest global betweenness
centrality (0.061), suggesting that certain nodes may become critical bottlenecks in
the network. On the other hand, STRAT 14, while less complex with fewer nodes
(14) and edges (28), achieves better efficiency. Its density (0.308) is higher than that
of the 3-Tier Clos, indicating a more tightly connected network, which contributes to
its shorter average shortest path length (1.692) and smaller diameter (2). The lower
average eccentricity (2.0) in STRAT 14 suggests faster communication across the net-
work, and its lower global betweenness centrality (0.058) indicates a more balanced
distribution of traffic, reducing the likelihood of bottlenecks.

When comparing STRAT 11 and STRAT 16 together with the 2-Tier Clos, these
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Figure 2.8: 3-Tier Clos

topologies also demonstrate superior efficiency and connectivity. Both STRAT 11
and STRAT 16 maintain a high average degree (6.0) and low diameter (2), similar to
STRAT 14, but with even better average shortest path lengths (1.4 and 1.6, respec-
tively). Their lower density values (0.4 and 0.6) compared to 2-Tier Clos suggest they
are optimized for scalability without compromising performance. The 2-Tier Clos,
although having a slightly higher average neighbor degree (6.667), also shows efficient
connectivity with a small diameter (2) and low average shortest path length (1.515).
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Table 2.1: Topology Metric Comparison and Summary

Metric 2-Tier Clos | STRAT 16 | STRAT 11 | 3-Tier Clos | STRAT 14
Switches 12 16 11 23 14
Switch Ports 8 8 9 6 6
Number of Hosts 32 32 33 27 28
Edges 32 48 33 54 28
Density 0.4848 0.4 0.6 0.213 0.308
Average Degree 5.333 6.0 6.0 4.696 4.0
Diameter 2 2 2 4 2
Avg. Shortest Path 1.515 1.6 1.4 2.285 1.692
Global Betweenness 0.052 0.043 0.044 0.061 0.058
Average Eccentricity 2.0 2.0 2.0 3.391 2.0
Core Number 4 6 6 3 4
Avg. Neighbor Degree 6.667 6.0 6.0 5.348 4.0

2.6 DEALER Algorithm

2.6.1 Background & Motivation

Expander topologies have shown great potential, often surpassing traditional topolo-
gies even when using current routing algorithms [14,45,49]. However, these algorithms
do not fully exploit the unique capabilities of Expanders [25,62], particularly in terms
of leveraging their multiplicity of paths. The Equal-Cost Multi-Path (ECMP) rout-
ing algorithm improves load balancing and network redundancy but has drawbacks,
including uneven traffic distribution from random flow hashing, especially in environ-
ments with large flows [26,54,58,62]. It also neglects downstream congestion, leading
to poor performance in asymmetric networks or during frequent link failures [3]. In
contrast, MultiPath TCP (MPTCP) enhances throughput by splitting a single TCP
connection into multiple subflows [6]. However, it can cause MPTCP incast issues,
where multiple servers overwhelm a receiver’s buffer with bursty traffic, leading to
packet drops and reduced goodput [56]. FastPass [34] is a centralized load balancer
that improves network utilization by scheduling packet transmissions to reduce queu-
ing. However, its centralized arbiter creates scalability challenges in large data cen-
ters, struggling with high traffic volumes and becoming a single point of failure. The
additional round-trip latency for scheduling can hinder performance in low-latency
environments. Moreover, FastPass requires specialized hardware and is less adapt-
able to changing network conditions, resulting in suboptimal performance in dynamic
settings. Other algorithms, such as Flare [24], LocalFlow [40], and DRILL [16], use
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state-unaware load balancing, where each hop performs flowlet switching to route
small packet bursts across multiple paths. These methods are praised for their sim-
plicity, scalability, and compatibility with existing hardware. However, they fail to
account for downstream congestion and path utilization, which can lead to inefficient
load balancing and decreased performance [3,25,26]. Additionally, their reliance on
inter-packet gaps for defining flowlets makes them vulnerable to changes in network
conditions, traffic loads, and transport protocols. CONGA [3] is a congestion-aware
load balancing system that uses custom switch ASICs to monitor congestion along
paths and shares this information with other switches via specialized packets. Each
switch maintains a congestion feedback table to assist in destination ToR routing
decisions. However, CONGA has limitations [8, 25, 26], including high memory re-
quirements for path information, potential latency inaccuracies due to reliance on
remote feedback, and limited adaptability from its dependence on customized ASICs.
To address these issues, HULA [26] employs programmable data planes to track con-
gestion on the best path to a destination using periodic probes for network utilization
data. Despite being designed for Fat-tree topologies, which support a single ECMP
group, HULA does not fully leverage the multiple paths available in Expander-based

networks [8].

2.6.2 Proposed Routing Algorithm

In this section, we mention a new routing algorithm that was previously introduced
which takes full advantage of the path diversity in Expander topologies [14, 45,48,
49]. We first test its feasibility using a virtual environment and then confirm its
viability through tests on a physical setup, demonstrating its suitability for modern
data centers. Our analysis is based on the premise that all network links are capable
of bi-directional communication and that a single routing table (RT) entry suffices
for each distinct edge in the graph representation of the network. We initiate our
discussion with the PINGing algorithm, which facilitates the construction of routing
tables. We will then elaborate on the forwarding algorithm that operates within the
data plane. For clarity, we emphasize that each unique graph edge corresponds to a
single routing table entry and that bi-directional communication is supported across
all network links. We will then be creating a new variation of this routing algorithm

which will be implemented on TD4.
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Constructing Shortest Path Routing Tables (SP RT)

During the initialization phase, we utilize the PINGing algorithm to construct the
routing table. Each network node starts by setting all possible routes to potential
destinations through its interfaces to an initial value of infinity, except for the route
to itself, which is set to zero. The node designated as the destination then announces
its presence to nearby neighbors by sending a PING packet. This packet contains the
node’s identifier and a metric of zero, which can represent parameters such as hop
count or delay.

The processing of PING packets follows a “no reply” policy, meaning that nodes do
not resend PING packets through the same interface from which they were received.

Each node that receives a PING packet executes the following steps:

1. Incoming Interface Registration: The node records the interface through
which the PING was received.

2. Metric Update: The node increases the metric reflecting the distance to the

sender based on the received metric.

3. Metric Comparison and Update: Depending on the chosen options (Option
1 and Option 2 discussed below), the node assesses the relationship between the
newly incremented metric and the currently stored metric to determine if an

update is necessary.

4. PING Resend or Termination: If the stored metric is updated, the node
retransmits the PING packet with the new metric; if not, it concludes the

process.

The initialization phase effectively sets up a complete view of the network by using
the PINGing process, allowing nodes to gather metrics about their neighbors quickly.
This minimizes the time required to establish routes.

The algorithm introduces several configurations to strike a balance between rapid
convergence and the integration of off-shortest path (OSP) entries within the routing

table. These configurations are outlined below:

1. Option 1: In this approach, the algorithm updates the metric for the destination

and broadcasts a revised PING to neighboring nodes if the new metric is lower
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Figure 2.9: 8-node expander network

than those associated with all other interfaces. Additionally, if the new metric
is equal to the existing one but is received through a different interface, the
PING is also resent. If neither of these conditions is met, the PING process
stops at that node without any updates. This method guarantees the creation
of routing table entries for shortest paths (SP), while OSP entries can later
be established by referencing the distance vectors (DVs) of neighboring nodes.
Any healthy interfaces can serve as a fallback for packet forwarding instead of

dropping them.

. Option 2: This configuration is similar to the first, where the algorithm records
the updated metric for the destination and re-broadcasts the PING to nearby
nodes. However, it resends the PING only if the new metric is less than that of
the interface receiving it (unlike Configuration 1, which checks all interfaces). If
this condition is not satisfied, the PING terminates at the current node, and no
updates occur. This results in routing tables containing both guaranteed SP and

OSP entries, eliminating the need to reference the DVs of neighboring nodes.
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Healthy interfaces can still be utilized as a fallback for forwarding packets.

3. An enhancement to Option 2 which allows for the establishment of reliable
metric entries for all remaining last resort (LR) interfaces by ensuring loop-free
PING propagation. This enables the selective forwarding of packets through

LR interfaces, utilizing their reliable metric values.

To demonstrate our PINGing algorithm we will apply it on the 8 nodes network as
depicted in Fig. 2.9 with varying bandwidths across specific links. The connections
between nodes 2 and 3, as well as between nodes 6 and 7, each have a bandwidth
of 10G. Meanwhile, the links between nodes 1 and 8, and between nodes 4 and 5,
support a higher bandwidth of 100G. The remaining connections between nodes have
a bandwidth of 25G. To quantify bandwidth, we use a metric based on the inverse of
the actual bandwidth, normalized by the highest available bandwidth (100G). In this
network, each node has three interfaces, corresponding to three links connecting them
to their adjacent neighboring nodes. The links are color-coded as follows: interface 1
is blue, interface 2 is green, and interface 3 is red. This topology is now represented as
an undirected weighted graph, where the integer weights correspond to a composite

metric derived from the bandwidth.

Figure 2.10: PING 2 propagation

Fig. 2.10 illustrates the propagation of the PING originating from node 2, referred
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to as PING2. In the first PING iteration, the PING2 packet is sent to the nearest
neighboring nodes adjacent to node 2. Node 3 updates its metric to 10 via interface 1,
which is later improved to 8 through interfaces 2 and 3 in the second PING iteration.
The algorithm prioritizes two-hop routes with better metrics over single-hop routes
with worse metrics. After the second iteration, PING2 is terminated at nodes 1 and 4
because it carries a higher metric of 14, worse than what was received in the previous
iteration. Similarly, in the third iteration, PING2 reaches nodes 1, 2, and 4, where it
is terminated due to worse metrics. By the fourth iteration, all PING transmissions
are terminated, as all SP routes are fully established within the network’s three-hop
diameter. Consequently, the fourth iteration is marked as terminal, indicated by

dashed lines.

D S2 D S2
1 o 00 1 14 12
2 0 0 0 2 0 0 0
3 00 3 10
4 0o 00 4 14 12
5 oo oo 5 15 13
6 oo 6 19
7 00 7 19
8 oo 00 8 15 13
Table 2.2: SP RT Node 2 Table 2.3: OSP RT Node 2
D s1 D s1
1 0 0 0 1 0 0 0
2 oo 12 2 14 12
3 oo 12 3 14 12
4 10 4 10
5 5
6 13 13 6 13 13
7 13 13 7 13 13
8 00 00 8 17 17
Table 2.4: OSP RT Opt. 1 Table 2.5: OSP RT Opt. 2 (loop-less)

Figure 2.11: Routing tables for various optimization scenarios
Fig. 2.2 is the SP RT for node 2 after PINGing, which depicts the PING messages

received by node 2 initially from all the other nodes as they also PING to broadcast

their presence carrying and updating the specified metric as needed.
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Constructing OSP RTs With Already Established SP RTs

We can acquire OSP RTs while SP RTs are already established. The entries within

the tables obtained are categorized into two distinct types.

1. The first type, OSP1, pertains to the interface connecting to neighbor S2 of the
source node S. It is applicable when S2’s SP metric to destination M(S2—D)
does not exceed the metric from node S to destination M(S—D) plus the metric
M(S2—S) to reach S2 from S. OSP1 entries in the OSP RT ensure that packets
forwarded through this OSP1 interface can reach the destination using only the
SP RT. The discovered OSP1 entry is the sum of M(S—52) and M(S2—D).

2. The second type, OSP2, relates to the interface connected to neighbor S4 from
the source node S. It is relevant when S4’s shortest path (SP) metric to destina-
tion M(S4—D) is the same as the metric from node S to destination M(S—D)
plus the metric M(S4—S) to get from S4 to S. However, this only applies if
there is another alternative SP path from neighbor S4 to destination D with
the same metric M(S4—D). The OSP2 entry is essentially the sum of M(S—54)
and M(S4—D).

Fig. 2.3 shows the presence of SP RT entries (highlighted in green) alongside
OSP1 and OSP2 entries (in blue and red, respectively). Unlike the OSP RT of
Option 1 Fig. 2.4, the OSP RT of Option 2 (Fig. 2.5) was derived without the need
to consult the DVs of neighboring nodes. The primary trade-off with this approach
is the possibility of introducing a few additional hops, although the exact number
depends on the particular configuration of the network topology. Despite this, the
method simplifies routing calculations by eliminating the need for inter-node DV
consultations, offering a more streamlined approach with minimal impact on overall
network performance. Option 2’s OSP RT differs from Option 1’s in that it replaces
infinite metric values with finite ones. For both options, all entries corresponding to
SP, OSP1, and OSP2 in the OSP RTs are the result of loopless PING propagation,
ensuring perfect accuracy. Under a "no reply” policy, the smallest possible loop would
introduce 3 additional hops to any loopless PING path, which would result in a metric
greater than OSP2’s. However, LR entries in the OSP RT's can be affected by PINGs
that loop en route. Despite the different ways in which LR interface metrics are

represented in Option 1 and Option 2, their behavior in RT's remains identical.
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2.6.3 PathPort & Updating Routing Tables:

To eliminate loops from the network, we ensure that packets do not visit any node
more than once on their way to the destination. This is achieved by providing the
packet with a PathPort, which records the nodes already visited and prohibits packet
forwarding through any interface that connects to a previously visited node. Although
this approach increases complexity, it significantly improves overall performance in
individual packet forwarding.

For initializing the network and making updates (whether scheduled or triggered
by link status changes), a new copy of the RT is created with initial values set to
infinity. PathPort information for every PING, both in the initialization and update
processes, is timestamped to distinguish between scheduled and triggered updates.
This timestamp prioritizes the more recent PING events and discards older RTs.
The timestamping procedure prevents issues similar to ”counting to infinity” that
can be encountered in Distance Vector (DV) routing protocols by ensuring that two
concurrent PING events started by different events do not overlap in time and interfere
with RT construction. Each RT is associated with the timestamp when the PINGing
process began. This RT is continuously constructed by PINGs with matching time
stamps, and a hold-off timer is reset with every new PING arriving at a node. When
PINGing stops naturally, the hold-off timer in a node will expire, and the newly
constructed RT is copied into the active FT state. In the event of link failures, the
efficient and robust forwarding protocol ensures that packets originally meant to be
routed through the failed interface have ample opportunities for re-routing through
alternative interfaces. This may result in slightly more hops to reach the destination
but maintains network reliability. Both scheduled and triggered updates can re-
build the RTs from scratch in a few hops, generally a few more than the network’s
diameter. The robust forwarding protocol lessens the urgency in accommodating

failures, making the network resilient and efficient.

2.6.4 Forwarding Protocol: Dynamic Expander Algorithm
for Load-Effected Routing

Once the RT's have been constructed by performing PINGing, the Dynamic Expander
Algorithm for Load-Effected Routing (DEALER) depicted in Fig. 2.12 is used to
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Figure 2.12: DEALER Algorithm
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efficiently route packets within the data plane. When a packet is received at a TOR,
it checks if the destination host is at that TOR; if it is, the packet is immediately
delivered. If the current TOR does not host the destination host it assesses the
available interfaces that have not been visited by the packet meaning the interfaces
that lead to a TOR that has been visited before. From these available interfaces
we pick the optimal one if it exists. By optimal we mean the least loaded interface
amongst the available ones. Then the packet is forwarded to the next TOR using this
optimal interface and we stamp the PathPort of the packet with the current TOR
to mark it as visited. From this algorithm, you get the sense of how we leverage the

diversity of paths by using local congestion awareness.

2.7 Routing Validation in P4 & Simulation Results

To initially validate the routing algorithm and assess its feasibility for deployment on
a PDP, we utilized the P4 programming language alongside Behavioral Model version
2 (BMv2), the advanced successor to the original P4 software switch. BMv2 served
as the backbone of our experiments, allowing for smooth implementation and testing
of the routing protocol. However, it is essential to highlight that virtual testbeds like
BMv2 have limitations when compared to physical testbeds. Differences in hardware
capabilities, performance characteristics, and control over network elements can lead
to significant variations between the two environments. We will illustrate some of
these differences in the following section and suggest potential implementations.
Our initial experiments [2] were carried out on a STRAT topology consisting of
16 switches and 16 hosts, with each switch connected to a single host. The topology
exhibited a diameter of 2, indicating that the longest shortest path between any
pair of nodes required at most two hops. The average shortest-path length was 1.6,
demonstrating efficient connectivity. These results confirm the implementability of

the design on virtual programmable data planes (PDPs).

2.8 Routing Implementation in TD4®

Implementing this proposed routing on TD4® comes with some internal programma-

bility limitations and design considerations that we need to accommodate for and we
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have to change the algorithm as discussed below.

As can be seen in Fig. 2.12, our forwarding algorithm relies on local congestion
awareness to properly forward packets on the least-loaded path. TD4® allows con-
figuring ECMP groups in various modes. We will be focusing on the one that is of

interest to the proposed forwarding algorithm.

e Dynamic Group Multipath: DGM is a TD4® programable feature that
divides the ECMP group into two sets of egress ports: Primary and Alterna-
tive. The Primary set contains the preferred ports used for normal traffic flow,
while the Alternative set consists of backup ports that are used only if Pri-
mary ports are congested. One can define what this congestion is by assigning
weights to how much the load and queue occupancy should contribute to the
overall congestion metric. Once this metric exceeds a certain threshold DGM
will recognize the Primary ports as congested. At this point, it will begin rout-
ing traffic through the Alternative ports to alleviate congestion and maintain

efficient network performance.

Since the forwarding algorithm partitions all the paths into Shortest Path (SP),
SP + 1, SP + 2 till last resort paths. Implementing it on TD4® poses challenges
due to its support only for Primary and Alternative ports within DGM groups, as
previously noted. To address these constraints, we propose an adaptation of the

forwarding algorithm that accommodates these limitations and challenges.

D1 2 3 D|1 2 3 4
15 3 1] x A
213 2 3 2 | X A X
3|4 3 4 31X A X
4 3 4 4 A X
55 2 5 X A X
6 | 4 2 2 6 | X A A
7 7| X
8 5 4 8 X A A
9 |4 9 | x A
Table 2.6: Routing Table Table 2.7: RT ECMP Mapping

Consider the RT displayed in Fig. 2.6 that is generated after performing PINGing
on some topology where we color code the SP in green, SP+1 in blue and SP+2 in
red. We proceed by translating this RT into ECMP associations as shown in Fig. 2.7.
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Primary Alternative

Figure 2.13: Primary & Alternative Members Mapping in TD4®

In this table, SP paths are designated as Primary (P), SP+N paths as Alternative
(A), and any remaining entries are unused. One way to also translate this configu-
ration into TD4® is by grouping all SP, SP+1 and SP + 2 in one Primary group
with fractional weights to favor SP, SP+1 then SP+2 and the remaining paths as
Alternative. Fig. 2.13 illustrates this mapping where W, W,, W, represent fractional
weights that would be given to each member in the primary group. Here, ensuring
W, > W, > W, guarantees that SP is prioritized for selection. Since we are using
DGM, we are ensuring that the Alternative ports will only be chosen once the Pri-
mary ECMP group exceeds a local congestion metric meaning the routing has a local
congestion awareness. This metric can be set by giving weights and a threshold to
the metric we wish to rely on. In our case, our metric is the queue-occupancy of
an interface. Fig. 2.14 illustrates this approach using the 8-node STRAT topology
in Fig.2.9. Here, We compare ECMP with a random seed, various permutations of
DGM, and DGM + WCMP in terms of packet drop rates, confirming the findings
from our simulations in the previous section. The results show that DGM + WCMP
effectively capitalizes on the diversity of paths in Expander-based topologies, espe-
cially as network load increases, allowing throughput to degrade more gracefully. By
including more options in both primary and alternate port groups, the system can
better manage rising load, offering more routes for traffic to balance and maintain

performance, especially when one favors the primary paths with the given weights.
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Figure 2.14: Different ECMP grouping over a small 8-node STRAT

2.9 Experimental Results

The statistics block in our testbed (Fig. 2.3) programs a dedicated counter for every
(switch V| port E;) pair. The Broadcom TD4® field processor tags each packet with
the matching pair and increments the corresponding counter in hardware, giving loss-
free per-port rates, queue depths, and drop events. Because every interface of every
switch is monitored, we can reconstruct end-to-end flow trajectories and diagnose

congestion anywhere in the fabric.

2.9.1 Aggregate Delivery Under Uniform Traffic

Figures 2.15-2.16 and Table 2.8 summarise packet-delivery rate (PDR) as load rises
from 0.1 to 1.0.

e Higher steady-state reliability. STRAT 14 sustains a mean PDR of 98.2 %
and never drops below 91.8 %; the 3-tier Clos falls to 72.6 % at peak load. The
Load-Area-Under-Curve (LAUC) further confirms this gap: 0.886 (STRAT 14)
vs. 0.826 (Clos-3), i.e. a flatter degradation profile.

e Graceful collapse. The linear-fit gradient over the heavy-load region (I €
[0.7,1.0]) is —23.5 for STRAT 14 but —53.1 for Clos-3, indicating a much steeper
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throughput cliff for the hierarchical design.

e Consistency across scales. STRAT 11 and STRAT 16 likewise outperform
the 2-tier Clos, delivering ~ 10 pp higher mean PDR while cutting the run-out-
of-fuel (ROF) loss fraction by more than half (Table 2.8, col. 5).

2.9.2 Congestion hotspots

Heat maps (Fig. 2.18, 2.17) reveal fundamentally different pressure points:

e Clos-3: drops concentrate on the spine layer, where every packet merges onto
one deterministic downward path; once a spine queue backs up, all traversing

flows suffer.

e STRAT: losses distribute over many ToR-ToR links; DEALER can steer around

any blocked port, so no single interface dominates the drop budget.

Hierarchical fabrics therefore rely on transport-level mechanisms (e.g. DCQCN,
PFC) to throttle sources—mechanisms that are notoriously hard to tune and merely
shift delay to the edge. STRAT removes that complexity by absorbing bursts inside

the network.
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Figure 2.17: Hotspots map for
STRAT 14 Figure 2.18: Hotspots map for Clos 3-Tier

2.9.3 Cost—Performance Trade-off

Fig. 2.19 shows that STRAT eliminates ~ 40 % of the switches required by an
equivalent Clos. Despite the smaller footprint, STRAT still delivers ~ 44 % more
throughput at 95 % load, proving that a flat optical mesh can improve performance

and reduce cost.

2.9.4 Key Take-aways

Across every reliability metric (mean PDR, LAUC, ROF, collapse slope) and at equal
radix, STRAT is both cheaper (fewer devices, less fibre) and more scalable (higher
sustainable load, milder degradation) than its Clos counterparts. Because these gains
are fabric-intrinsic and do not depend on end-host rate control, STRAT is well-suited
for the burst-prone, ever-growing traffic demands of modern large-scale data-centre
workloads. Generally, Clos networks are susceptible to congestion, especially promi-
nent at higher layers of the network topology where there is a unique path down to
the final destination. The industry introduced a number of protocols to deal with
congestion, such as DCQCN | PFC [64], and many others. The aspects they all
share is obtaining some measure of network congestion and an attempt to mitigate it
by slowing down source sending rate. Such protocols have many tuning parameters
which are notoriously difficult to optimize, and simply shift the problem to delay-
ing (buffering) data at the source. More recently, Ultra Ethernet Consortium [47]
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Figure 2.19: Network Load at 95% Throughput vs Network Cost

has started an effort to augment Ethernet with Infiniband-like features, particularly
targeting demanding Al cluster networks. At a high level, the proposed approach
sprays data packets across all available ECMP paths, and implements transmitter
side buffering controlled by credits issued by the receiver. Potential packet misorder

is also fixed at the receiver.

Table 2.8: Reliability metrics

Topology Avg PDR % | Min PDR % | AUC | LAUC | ROF % | Load >95% | Slopef
STRAT14 98.15 91.82 0.886 0.0144 1.47 0.8 -23.48
STRAT16 97.83 88.74 0.884 0.0161 1.64 0.8 -33.01
STRAT11 96.68 87.17 0.873 0.0268 2.75 0.7 -32.54
Clos3 (3-tier) 91.27 72.62 0.826 0.0736 7.95 0.6 -53.10
Clos2 (2-tier) 88.95 69.55 0.805 0.0953 10.5 0.5 -42.60

Linear-fit gradient over [ € [0.7,1.0]; more negative means a steeper collapse in heavy
load.

2.9.5 Distributed DNN training Traffic Pattern

In [53], the authors analyze traffic patterns in distributed deep neural network (DNN)

training workloads and show that the underlying network communication follows a
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distinct ring pattern. This behavior stems from the widespread use of ring-AllReduce
collectives in large-scale DNN training systems, which enable efficient gradient ag-
gregation across multiple GPUs. Their traffic heatmaps confirm the emergence of
a predictable, periodic structure due to this ring-like data transfer pattern, a di-
rect consequence of parallelization strategies employed in production-grade training
setups.

Motivated by these findings, our goal is to evaluate whether STRAT can serve as a
viable and efficient alternative to traditional topologies—such as Clos—in supporting
the intensive and structured traffic demands of distributed DNN training. To this
end, we subject both STRAT and Clos to a ring traffic pattern emulating the struc-
ture identified in [53], as illustrated in Fig. 2.25. Our results, shown in Figures 2.24,
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2.20, and 2.21, reveal that STRAT maintains over 95% throughput with only a slight
performance degradation (around 6%) under ring traffic compared to an all-to-all sce-
nario. Furthermore, Fig. 2.23 highlights STRAT’s superior performance relative to
Clos under the same conditions. While Clos exhibits noticeable degradation, STRAT
sustains high throughput and consistent delivery, demonstrating resilience even un-
der structured and directed traffic. This robustness under realistic DNN training
workloads illustrates STRAT’s design efficiency and underscores its suitability for
AT training clusters where performance and stability are critical. These results af-
firm STRAT as a compelling topology choice for supporting the high-bandwidth,
low-latency demands of modern machine learning infrastructure.

Analyzing the reliability and throughput metrics across the evaluated topologies
reveals distinct trends in Table 2.8 and Fig. 2.22. STRAT14 exhibits the best perfor-
mance, achieving the highest Area Under the Curve at 0.8856, the lowest LAUC at
0.0144, and the smallest retransmission overhead (ROF) of 0.01465. It also features a
mild tail-slope of —23.48, indicating a gradual decline under heavy loads. STRAT16
performs similarly with slightly higher LAUC and ROF values, while STRAT11 shows
increased degradation but remains better than the Clos networks. In contrast, Clos3
and Clos2 suffer from higher LAUC (0.0736 and 0.0953, respectively) and much
steeper tail-slopes (—53.10 and —42.60), highlighting severe instability as load in-
creases. Throughput analysis shows that STRAT14 also achieves the highest peak
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delivered throughput at 0.918 of the line rate, with STRAT16 and STRAT11 follow-
ing, while Clos3 and Clos2 peak much lower, at only 0.726 and 0.695 respectively.
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2.10 Conclusion

This chapter presented an in-depth experimental and simulation-based evaluation of
STRAT, an expander-inspired flat topology, as a scalable and cost-effective alternative
to the conventional Clos architecture. Through the construction of a programmable
Trident4 testbed and large-scale OMNeT++ simulations, STRAT was shown to out-
perform Clos in key performance metrics such as throughput, packet delivery ratio,
and congestion resilience—while requiring fewer switches and offering simpler deploy-
ment. The analysis demonstrated that STRAT’s expander properties provide higher
path diversity and more uniform load distribution, particularly under high traffic con-
ditions. Additionally, the proposed DEALER routing algorithm successfully exploited
STRAT’s structural advantages by using localized queue awareness and path history
to reduce packet drops and balance load adaptively. These results position STRAT as
a practical and deployable topology for next-generation data center networks, laying
the groundwork for further enhancements in hybrid integration and dynamic traffic

engineering explored in the following chapter.
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Chapter 3

ML-Driven Optical-Electrical
Expander Fabrics for Low-Latency
Data-Center Networks

This chapter presents the detailed design of Hybrid-STRAT, a data center archi-
tecture that fuses the structural efficiency of a STRAT expander topology with a
machine-learning-driven hybrid switching mechanism. By integrating optical circuit
switches over a flat electrical base, Hybrid-STRAT dynamically adapts to traffic de-
mands, offloading elephant flows onto high-bandwidth optical paths while retaining
mice flows in the packet-switched electrical mesh.

Unlike traditional Clos-based hybrids, Hybrid-STRAT leverages STRAT’s uni-
form connectivity and low-diameter structure to minimize optical setup costs and
reduce average packet delay. A lightweight XGBoost classifier makes early flow pre-
dictions using packet-level features, enabling fast, accurate routing decisions that

optimize network performance under bursty and heterogeneous loads.

3.1 Introduction

Modern data center networks are under immense pressure to support increasingly
demanding and diverse workloads. Applications such as real-time cloud services, ma-
chine learning model training, high-performance data analytics, and distributed stor-

age systems generate large volumes of traffic with distinct communication patterns.
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These patterns typically fall into two categories: (1) short-lived, latency-sensitive
flows often referred to as mice, and (2) long-lived, high-throughput elephant flows.
Traditional electrical packet-switched (EPS) data center topologies are being pushed
to their design limits in terms of throughput, energy consumption, and manageability,
especially under such heterogeneous and dynamic traffic conditions. In this chapter,

we present Hybrid—-STRAT, a proactive, congestion-aware DCN architecture that

overlays one of three optical circuit-switch (OCS) permutations onto a Structured
Re-Arranged Topology (STRAT) expander fabric. An XGBoost classifier, trained
on production flow traces, predicts flow type within the first few packets and dy-
namically steers elephants to the optical layer while leaving mice in the electrical
packet-switch (EPS) mesh. The design is realised in OMNeT++ with modular C++
components for topology construction, traffic generation, hybrid routing, and queue
management. Under all-to-all traffic from 10-100% line rate, Hybrid-STRAT low-
ers mean packet latency from 1.045 ps to 1.160 us (11% growth), versus 1.035 us
to 1.244 us (20% growth) for pure-EPS STRAT, and cuts 99"'-percentile delay by
25-35% (42.3 pus vs. 57.1 us at full load). Average hop count remains nearly constant
(~1.76), showing that gains arise from queue suppression rather than path stretch.
By fusing expander-graph path diversity, optical bandwidth efficiency, and machine-
learning-driven traffic engineering, Hybrid—-STRAT delivers a scalable, energy-aware,

and traffic-adaptive solution for next-generation Al-centric DCNs.

3.2 Related Works

The increasing demand for low-latency and high-throughput communication in data
centers has accelerated research into hybrid electrical /optical architectures. A key
challenge lies in managing the complexity of flow aggregation and switching to ac-
commodate diverse traffic patterns. Zhao and Shi [63] explore this issue by proposing
machine learning-assisted aggregation schemes for optical cross-connects, demonstrat-
ing improvements in throughput and latency via localized, edge-node ML deployment.
This motivates our design, which leverages XGBoost classifiers to steer flows dynam-
ically in a STRAT-based hybrid topology. The necessity of differentiating traffic
flows based on their characteristics was earlier addressed by Lee and Choi [28], who

proposed a flow-level classification framework for hybrid switching networks. Their
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classification of short-lived versus long-lived flows laid the conceptual groundwork for
our approach to proactive flow steering using machine learning. They highlight the im-
portance of application-aware configuration in all-optical data center interconnects,
particularly for distributed machine learning workloads. Their findings reinforce our
hybrid design philosophy, where optical overlays are dynamically configured to sup-
port high-volume, latency-tolerant elephant flows. Traffic offloading strategies also
play a crucial role in hybrid architectures. The work of Ye et al. [59] introduces
a threshold-based offloading mechanism for burst traffic, demonstrating that local-
ized decision-making at the ToR level reduces operational overhead. which inspires
our own distributed control mechanism, integrated with machine learning classifiers,
to improve adaptability in the STRAT fabric. Ben-Itzhak et al. [7] present a flat
hybrid packet/circuit architecture with orchestration and dynamic optical routing.
To balance performance and cost, Feng et al. [13] propose the Blocking Loss Curve
(BLOC) model, highlighting the importance of jointly considering traffic partitioning
and resource allocation. This motivates our hybrid STRAT approach, which aims
to maximize efficiency by selectively offloading traffic while preserving EPS resources
for short, latency-sensitive flows. Finally, the need for fast reconfiguration in hybrid
data center networks is addressed by Zhang et al. [61], who formulate a topology
reconfiguration problem as a minimum cost flow model. Their results underscore the

necessity of minimizing reconfiguration overhead.

3.2.1 Limitations of Electrical Packet-Switched Architectures

Current data center networks (DCNs) predominantly rely on hierarchical, electrical
packet-switched (EPS) architectures such as Fat-Tree [29], Leaf-Spine, and BCube [19].
These designs are widely favored due to their scalability, ease of implementation, and
compatibility with commodity switching hardware. Nevertheless, despite their preva-
lence, EPS-based architectures exhibit several significant limitations that constrain
their effectiveness and scalability, especially given today’s rapidly evolving data center
demands.

Firstly, the reliance on high-radix switches introduces inherent scalability chal-
lenges. High-radix switches, essential for providing high port densities, face physical
and thermal limitations as switch ASICs scale [22,35]. These constraints inhibit

network growth, limiting bandwidth expansion and the number of achievable ports
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within a single device, consequently creating scalability bottlenecks.

Secondly, hierarchical EPS structures frequently lead to congestion at upper-tier
switches due to oversubscription. This limitation becomes particularly pronounced
during intensive inter-rack communications, a scenario frequently encountered in
cloud computing environments and parallel processing tasks [13,57]. The result is
uneven bandwidth distribution and increased latency, adversely impacting overall
network performance.

Thirdly, EPS-based systems exhibit substantial inefficiencies in energy consump-
tion. Each packet undergoes multiple stages of processing through successive switches,
resulting in significant cumulative energy usage. These repeated packet-handling
steps contribute to increased operational costs and environmental impacts [11, 35].
Recent studies suggest hybrid architectures integrating optical components could sub-
stantially mitigate these inefficiencies.

Lastly, the static nature of traditional EPS routing strategies limits their adapt-
ability to dynamic, bursty traffic patterns characteristic of modern workloads such
as machine learning and cloud-native applications [50]. Static routing schemes are
unable to respond quickly and effectively to fluctuations in network traffic, resulting
in suboptimal utilization of available resources.

In response to these intrinsic challenges, current research is actively exploring
alternative network architectures. These novel designs aim to separate forwarding
and transport functions, reduce overall hop counts, and enhance energy efficiency, all
while maintaining scalability and robust performance to better accommodate modern

data center workloads.

3.2.2 Hybrid Optical-Electrical DCNs: Toward Scalable and

Energy-Efficient Interconnects

To address the inefficiencies of purely electrical networks, researchers have investi-
gated hybrid DCNs that combine optical switching with electrical packet forwarding.
These designs seek to unite the programmability and low latency of EPS with the
high throughput and energy efficiency of OCS. Typically, short-lived "mice” flows
remain on the EPS layer for flexible handling, while high-volume ”elephant” flows are
routed through dedicated optical paths.

Prototypes like c-Through and Helios illustrate the viability of dynamic optical
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circuit allocation based on traffic demands, with Helios achieving over 35% through-
put gains and reduced cooling costs compared to EPS-only setups. More advanced
architectures such as HIFOST utilize nanosecond-scale fast optical switches and flow-
controlled buffering to minimize packet loss and enhance energy savings in large-scale
environments [55]. These hybrid architectures represent a promising direction for fu-
ture data centers by balancing scalability, energy efficiency, and low latency. However,
to the best of our knowledge, no prior work has explored the integration of expander
topologies within hybrid architectures to evaluate their effectiveness.

To the best of our knowledge, no prior work has explored a hybrid data center
topology that integrates a structured expander graph—specifically, the STRAT ar-
chitecture—with both optical circuit-switching (OCS) and electrical packet-switching
(EPS). Our proposed design leverages STRAT’s uniform node degree, low path diam-
eter, and high path diversity to support an efficient dual-layer forwarding model. By
combining the energy efficiency and bandwidth advantages of OCS with the flexibil-
ity and fine-grained control of EPS, Hybrid-STRAT offers a scalable, resilient, and
low-latency solution for modern data center traffic dominated by a mix of short-lived
and high-volume flows.

This chapter is organized as follows:

e STRAT Architecture: We begin by introducing the Structured Re-Arranged
Topology (STRAT), a flat, deterministic expander topology that offers strong con-
nectivity and low-diameter paths using uniform ToR-to-ToR links. Its expander
properties provide multiple disjoint paths, improving resilience and enabling effi-

cient traffic distribution without reliance on hierarchical switching.

e Machine Learning Model: We briefly present the machine learning framework
used to classify flows. Specifically, we employ an XGBoost classifier trained on
early-packet features to distinguish between mice and elephant flows. This model
enables real-time flow steering by providing fast, accurate predictions that guide

traffic onto the most suitable switching layer.

e Hybrid STRAT Architecture: We then detail the proposed hybrid architec-
ture, where three optical overlays are embedded atop the STRAT electrical fab-
ric. These overlays correspond to carefully selected permutations that facilitate

high-throughput optical paths for elephant flows. The architecture also includes
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dynamic scheduling and routing mechanisms that adapt to real-time traffic con-

ditions.

e Virtual Testbed Environment: Next, we describe the OMNeT++-based sim-
ulation testbed used to evaluate our design. The testbed includes modular compo-
nents for topology generation, traffic injection, hybrid routing, queue simulation,
optical circuit management, and flow-level metrics collection. This environment

enables comprehensive performance analysis under varying load conditions.

e Results and Evaluation: Finally, we present quantitative results comparing
Hybrid-STRAT to a baseline EPS-only STRAT configuration. Metrics include
average and tail packet delay, hop count, and queue behavior under all-to-all
traffic patterns. The results demonstrate significant gains in latency reduction

and queue suppression, validating the effectiveness of our hybrid design.

3.3 STRAT: A Structured Expander Topology for
Flat, Resilient DCNs

Expander-based topologies have emerged as a promising alternative to traditional
multi-tier DCNs. Unlike hierarchical designs, expanders provide a flat architecture
composed of uniformly connected ToR switches, forming graphs with high connec-
tivity and low diameter. Among these, the Structured Re-Arranged Topology
(STRAT) has been shown to outperform other expander designs like Jellyfish and
Xpander in both robustness and performance metrics [1] [14]. STRAT combines the
flexibility of expanders with a more deterministic layout, making it easier to imple-
ment in practice while preserving desirable expander properties such as high algebraic
connectivity and large spectral gap. These structural benefits make STRAT a strong
candidate for hybrid augmentation, where optical links can complement electrical
connectivity by providing high-bandwidth shortcuts for bulk traffic. While STRAT
delivers exceptional performance as an all-electrical topology, it has not yet been ex-
plored as a hybrid platform. We argue that STRAT is particularly well-suited for
hybridization due to its flat architecture, consistent node degrees, and uniform path

diversity. Unlike Clos-based hybrids that require coordination across tiers and rely on
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high-radix core switches, a hybrid STRAT design can exploit direct ToR-to-ToR, op-
tical paths to establish low-latency, high-throughput connections without significant
architectural overhauls.

The reduced average path length in STRAT minimizes the setup and teardown
delays associated with circuit-switching, making dynamic optical scheduling more
feasible. Additionally, STRAT’s uniform connectivity provides multiple candidate
paths for rerouting elephant flows, increasing resilience and simplifying flow schedul-
ing decisions. By introducing OCS overlays across the STRAT fabric, we can enable
a dual-tier forwarding model: mice flows are handled within the EPS fabric, while
elephants are rerouted through fast, energy-efficient optical circuits.

This hybrid STRAT architecture aims to leverage the best of both technologies:
the agility and fine-grained control of EPS and the bulk transport and energy savings

of optical switching.

3.4 Machine Learning for Flow Classification and

OCS Scheduling

A critical component of any hybrid DCN is the accurate and timely classification of
flows. Traditional approaches use static thresholds based on flow size or duration to
identify elephant flows, but these techniques are often brittle and unable to adapt
to dynamic traffic conditions. To address this, recent work has turned to machine
learning models that can infer flow characteristics from early packet-level features.
Studies demonstrate that machine learning techniques such as decision trees, Naive
Bayes classifiers, and deep reinforcement learning can significantly enhance flow classi-
fication accuracy and enable smarter optical circuit scheduling [46,51]. These models
allow for real-time decision-making under dynamic traffic loads, enabling adaptive
scheduling that reduces average delay and packet loss. For instance, Flow Splitter,
a deep reinforcement learning-based scheduler, adapts to runtime network condi-
tions and effectively separates elephant and mice flows, improving flow completion
times [46]. Other works have shown the promise of auto-regressive neural networks
in predicting server traffic patterns, enabling optical circuits to be pre-allocated for
large flows with high accuracy [5]. These predictive capabilities help ensure that over

80% of data, often carried by fewer than 20% of flows, is routed through optimized
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Figure 3.1: Operations of optical switch

optical paths.

Integrating such ML-based classifiers into hybrid architectures allows real-time,
adaptive flow steering. Mice flows are immediately forwarded through the EPS fabric,
while elephant flows are diverted via OCS based on predicted size, duration, and path

requirements.

3.5 Hybrid-STRAT: Hybrid Expander Topology

3.5.1 Methodology

To attempt to mitigate the issues that pure OCS and EPS topologies suffer from
in this chapter we will propose, build and evaluate a data center architecture that
combines a STRAT-based expander topology, providing low-diameter, resilient, and
uniform connectivity, with a sparse overlay of optical circuit switches to dynamically
carry elephant flows across ToRs. Our architecture incorporates a machine learning-
based flow classification system that predicts flow types using early packet features

and an integrated routing and scheduling framework that adaptively assigns traffic to
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EPS or OCS paths based on traffic characteristics and network state. In particular,
we design and evaluate a hybrid STRAT topology that integrates both OCS and EPS
switching technologies to manage data center traffic efficiently. To classify elephant
and mice flows early in their lifecycle, we employ a machine learning classifier based on
the XGBoost algorithm. This classifier is trained and tested using a modified version
of the UNI1 dataset [9], referred to as UNIV1. The simulation is implemented in
OMNeT++ using a modified version of the OBS Module to support hybrid switching
behavior and traffic control. We provide a comprehensive performance comparison
between a fully EPS-based STRAT and our proposed hybrid STRAT design. This
architecture aims to address the dual challenge of scalability and performance in
modern DCNs by blending the path diversity of STRAT, the energy efficiency of
optics, and the intelligence of ML-based traffic engineering. Our approach provides a

scalable, robust, and cost-effective solution for future-ready data center networking.

3.5.2 Hybrid-STRAT: Expander Upgrade

STRAT itself can be modelled as a network with optical switches that operate as
demonstrated in Fig. 3.1 where traffic is first directed through a single port and
subsequently through another distinct port. When the queue on the first port grows,
a second channel is activated; once both the first and second queues become busy, a
third channel is employed. As the packet switch detects that the associated ECMP
group is nearing exhaustion—an indication that all links share identical endpoints and
already have an entry in the forwarding table (which is populated incrementally)—it
pinpoints the congested port (e.g., a 25 Gbps link) and propagates an updated ECMP-
to-port association to the affected packet switches, leaving the forwarding table itself
unchanged, Which resembles DEALER algorithm that was described in the previ-
ous chapter. An example of STRAT based on optical switches is displayed in Fig.
3.2. The design of our Hybrid=STRAT is informed and inspired by key observa-
tions in TOPOOPT [52], which demonstrates the benefits of co-designing topology
and communication patterns for distributed machine learning workloads. In partic-
ular, TOPOOPT introduces a method to optimise AllReduce communication by
constructing demand-aware ring overlays atop a direct-connect topology. The most

relevant findings motivating our work are summarised below:

1. AllReduce Topological Flexibility. The AllReduce primitive is inherently
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Figure 3.2: STRAT based on optical switches

topology-agnostic with respect to ring permutations, allowing communication to
proceed over any ring structure without correctness loss. This flexibility opens
the door for optimising performance by choosing permutations that balance

path diversity and communication efficiency.

. Efficient Permutation Selection. The authors propose a group-theoretic
algorithm, TotientPerms, to generate a family of ring permutations with de-
sirable topological properties—specifically, disjoint paths and minimal overlap.
Through evaluation, they show that selecting just three carefully chosen per-
mutations (e.g., with offsets +1, +3, +7) suffices to achieve near-optimal load

balancing and throughput across a variety of ML workloads.

. Empirical Performance Gains. Using this three-permutation design, the
authors of [52] report significant speedups (up to 3.4x) in DNN training iter-
ations over conventional Fat-Tree and Clos-based designs, without increasing

network cost.
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Application to Hybrid—STRAT. Building on these insights, we extend the STRAT
architecture by introducing a hybrid electrical /optical variant, Hybrid—=STRAT, which
leverages a circuit-switched optical layer to accommodate high-volume, latency-tolerant
elephant flows. Inspired by TOPOOPT, we instantiate three OCS overlays corre-
sponding to the ring permutations (+1), (+3), and (+7). These overlays form a
low-diameter, high-throughput backbone that complements STRAT’s expander-based
EPS.

This design offers several advantages. First, the optical permutations ensure path
diversity and reduce congestion by offloading long flows from the electrical fabric.
Second, the limited number of permutations (three) adheres to practical constraints,
such as the number of transceivers per ToR switch, mirroring the d = 4 node de-
gree adopted in the original TOPOOPT evaluation. Finally, the hybrid structure
preserves STRAT’s cost-efficiency and scalability while improving its suitability for
ML workloads with structured communication patterns. Overall, our hybrid design
is a principled response to the challenges of flow classification and path allocation in

modern data centers, particularly under DNN-driven traffic.

3.6 Experimental Testbed

3.6.1 Simulation Components

The custom OMNeT++ testbed is built entirely from modular C++ blocks that
correspond one-to-one with NED modules. Each block has a single, well-defined re-
sponsibility so that individual pieces can be swapped or extended without recompiling
the entire simulator. Below we expand on the role of every major component in the

setup:

e Network—Topology Builder
At start-up this module parses a pair of simple text files: nodes.conf (servers,
EPS switches, OCS switches) and links.conf (bandwidth, delay, buffer size). It
then instantiates the corresponding NED objects, wires their gates together, and
propagates global parameters such as queue length and routing mode to every

sub-module.

e Generator— Traffic Generator
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Deployed on each server, the generator draws new flows from a pre-computed traf-
fic matrix. Separate statistical distributions are maintained for mice and elephant
flows, allowing independent control of inter-arrival time and flow size. Packet
bursts are emitted at line rate until either the flow finishes or a queue tail-drops
the packet.

e Classifier—Packet Router

Upon receiving the first packet of any new five-tuple, the classifier as shown in
Fig. 3.3 performs three actions in quick succession: (i) extracts lightweight header
features, (ii) invokes an offline-trained XGBoost model to label the flow as mice
or elephant, and (iii) installs a per-flow forwarding rule. Mice are forwarded over
electrical packet switching (EPS), whereas elephants are diverted to the optical
circuit switch (OCS) overlay. Path selection itself may follow shortest-path, k-
shortest path, or ECMP hashing.

Classifier

Queue

[
[
i OMNET Custom Classifier
|

Figure 3.3: OMNeT++ Custom Classifier

e QueueBuilder—OQOutput Buffer
Attached to every switch port, this component allocates a finite egress queue,
timestamps each enqueue, and updates queue-length statistics on every dequeue.

Packets that arrive to a full buffer are dropped and marked with an over-flow flag
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so the logger can attribute latency spikes or completion-time tail events.

e SinkArch—Flow Logger
Every server hosts a SinkArch process that records a concise summary for each
completed flow: end-to-end delay, hop count, reordering depth, and final delivery
status. The logger writes separate CSV files for mice and elephant traffic so that

per-class metrics can be analysed off-line (see Fig. 3.4).

this sink is basically a way for us to simulate an actual host! in OMNET this
translated as a NED module which allows the packets to sink and we also use it

collect statistics . Classification is basically occuring when a packet is received -
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Figure 3.4: OMNeT++ Custom Host

e PacketConstructor—Message Format
All data and control messages inherit from a single Pkt base class defined here.
The header contains source/destination IDs, flow ID, hop count, TTL, and a small
scratchpad for future metadata. Using one unified format across the simulator

simplifies instrumentation and post-processing

e 0CSController.cc—Circuit Scheduler
This centralised controller maintains a global view of current traffic demand and
periodically allocates time-slotted optical circuits. After computing a matching,
it broadcasts lightweight control messages that reconfigure every OpticalSwitch

in the fabric.

e OpticalSwitch.cc—OCS Crossbar
Each optical switch is a bufferless, non-blocking crossbar whose state is a permu-

tation matrix loaded by the 0CSController. The hardware-accurate cut-through
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model forwards incoming packets immediately if a circuit is active; packets arriv-

ing during reconfiguration are dropped, reflecting real-device behaviour.

e (0CSChannel .ned—Optical Link
Finally, high-capacity inter-rack links are instantiated with this channel type.
In addition to standard OMNeT++ parameters (data rate, propagation delay)
the channel exposes a configurable setupDelay field to emulate the hardware

reconfiguration time of the underlying optical technology.

3.6.2 ML Classifier Training Data

The eXtreme Gradient Boosting algorithm is a natural fit for our flow—classification

task:

1. Tabular, Heterogeneous Features. Early-life flow descriptors (first—burst
size, inter-arrival variance, packet-size moments, etc.) are low-dimensional, nu-
meric, and non-linear. Gradient-boosted decision trees model such tabular data
without heavy preprocessing, capturing both sharp thresholds (e.g., the 10 KB

mice/elephant cut-off) and higher-order feature interactions.

2. Class Imbalance and Robustness. Elephant flows form < 5% of all con-
nections yet dominate byte volume. XGBoost offers built-in instance weighting
and scale _pos_weight tuning, reducing bias toward the majority (mice) class
and delivering the high F; scores reported below. The ensemble is also tolerant

of outliers and sporadic missing values common in packet traces.

3. Efficiency and Interpretability. Training on ~1.2 M labelled flows finishes
in seconds and supports incremental updates, allowing periodic retraining with
new traces. Feature-importance diagnostics consistently highlight burst size,
early RT'T, and packet-size variance as dominant predictors—insights that can

inform future traffic-engineering heuristics.

Deep neural networks demand larger feature sets and longer training, while linear
models underfit the strongly non-linear boundary between mice and elephant flows.
XGBoost therefore strikes the optimal balance of accuracy, speed, and operational

transparency for our hybrid STRAT scheduler. This machine-learning classifier that
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Table 3.1: Training dataset statistics.

DC Type # Sites Trace Sites Servers Devices

University 3 3 1740 59
Enterprise 2 1 3088 196
Cloud 5 0 57000 2791
Total 10 4 61 828 3046

steers flows toward the EPS or OCS fabrics was trained on the public trace corpus
collected and described in [9]. The corpus covers ten production data-centers (3
university, 2 private—enterprise, 5 cloud) and combines SNMP link statistics (10-30 s
granularity, >10 days each), complete Layer-2/3 topologies, and 12-hour packet-level
captures taken from representative edge switches (1-4 sniffers per site) as described
in 3.1. Across the traces we observe fewer than 10000 concurrently active flows per
rack, heavy-tailed flow inter-arrival times, and a clear dichotomy between mice (<10
KB, <100 ms) and elephant flows (tens of MB, multi-second). These characteristics
make the data set ideal for supervised training of a binary routing decision: features
such as initial burst size, inter-arrival variance, and early-life packet size distribution
reliably separate mice and elephant traffic classes.

During preprocessing we down-sampled SNMP counters to 1-s intervals, parsed
PCAP files into flow records, labelled flows as mice or elephants using the 10 KB
cut-off suggested by the authors, and balanced the classes via stratified sampling
before feeding features into an XGBoost classifier. Five-fold cross-validation on the
university /enterprise subset yields an F; score of 0.93, and testing on unseen cloud
traces confirms robust generalisation (F; = 0.91), indicating that the model effectively

captures vendor- and workload-independent flow signatures.

3.7 Results and Evaluation

Average-delay evolution Fig. 3.5 tracks the mean per-packet latency as offered
load rises from 10 % to 100 % of line-rate. For the hybrid STRAT-64 fabric the delay
climbs gently from 1.045 us to 1.160 pus—an 11 % increase that is almost linear with
load. The EPS variant starts at a comparable 1.035 us but reaches 1.244 us at full

load, i.e. a 20 % rise overall and 7—8 % slower than the hybrid in the saturation
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regime. The widening gap confirms that optical bypass in the hybrid path suppresses
queuing delay more effectively once buffers begin to fill.

Figure 3.6 complements the average view with the worst packet delay recorded.
Hybrid STRAT-64 grows from 24.6 us to 42.3 us (=~ 72% inflation), while EPS
rises from 33.8 us to 57.1 us. Across the entire load range EPS max-delay remains
25-35 % higher than the hybrid—evidence that electronic queues occasionally spike
much deeper when every hop is a store-and-forward switch. The hybrid’s flatter curve
indicates tighter tail-latency control: the optical bypass limits queue build-up to a

few outlier packets even under full utilisation.

Net effect. Taken together, the two figures show that STRAT-64’s hybrid fabric
not only keeps mean latency lower but also reins in the worst-case delay, delivering
a narrower latency distribution as load approaches line-rate. EPS maintains parity
only at very light loads; beyond ~ 30 % utilisation its purely electronic path incurs a

steadily increasing penalty in both average and tail latency.

Delay—hop analysis for STRAT-64 (EPS vs. Hybrid). Figure 3.7 fixes the

average hop count on the abscissa and overlays the average packet delay for both

forwarding schemes across all offered-load points. Because STRAT-64 has a two-
hop diameter, the measured hop count remains essentially constant at ~ 1.762 for

every load level and for both the pure-electronic and the optical-electronic hybrid

variants. Consequently, any vertical spread between the two marker sets reflects
per-hop processing and queuing differences rather than longer routes.

At light loads (< 20% of line rate) the two curves almost coincide: EPS is
marginally faster (by < 1%), indicating that its purely electronic path handles sparse
traffic with negligible contention. From about 30% load upwards the hybrid begins to
outperform EPS, and the gap widens monotonically. By 50% load the EPS delay is al-
ready ~2.5% higher; at 80-100% load the penalty reaches 6-8% (1.244 us vs. 1.160 us
at full load). Since hop count never changes, this vertical separation implies that the
hybrid’s optical bypass absorbs queue build-up more gracefully: each hop contributes
the same propagation time, but fewer packets contend for the residual electronic
buffers inside the hybrid path. In short, STRAT-64 guarantees a fixed hop budget,
and within that budget the hybrid variant delivers lower and more load-resilient per-

hop latency, whereas EPS accrues additional microseconds as its electronic switches
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Delay vs hop count: Hybrid vs EPS (STRAT-64)
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saturate.

3.8 Conclusion

Hybrid-STRAT fuses the path diversity of the STRAT expander fabric, the band-
width efficiency of optical circuit switching, and the adaptivity of machine-learning-
driven traffic engineering into a single, flat data-centre architecture. By steering
elephant flows onto three pre-computed OCS permutations and retaining mice flows
in the electrical mesh, our design achieves up to 8 % lower mean latency and
25-35 % lower 99*'-percentile delay than a pure-EPS STRAT of identical cost,
without increasing hop count or sacrificing resilience. An XGBoost classifier, trained
on real production traces, enables per-flow decisions with an F; score above 0.9 and
executes fast enough for on-path deployment. These results demonstrate that ex-
pander graphs are well-suited to hybridisation: their uniform node degree and low
diameter minimise optical set-up overhead while preserving multiple fallback paths
for congestion control. More broadly, our study shows that carefully co-designing
topology, optical overlays, and data-driven scheduling can unlock substantial latency
and energy gains in Al-centric DCNs.

Future work will (i) port Hybrid-STRAT to a hardware testbed with MEMS
OCS, (ii) extend the classifier to predict flow deadlines and QoS tiers, and (iii) explore
joint optimisation of optical permutation count, circuit duration, and power budgets.

We believe these steps will further consolidate hybrid expander fabrics as a practical
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blueprint for next-generation, scale-out cloud infrastructures.
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Chapter 4
Conclusion

This thesis presents a comprehensive experimental and architectural rethinking of
data center networks, with an emphasis on addressing the limitations of hierarchi-
cal Clos-based architectures in the face of modern workload demands. Our work
makes three core contributions that together advance the state-of-the-art in scalable,
resilient, and energy-efficient data center design.

First, we proposed and implemented STRAT, a structured expander-based topol-
ogy that removes the traditional aggregation and core layers by using only Top-of-
Rack switches connected via passive optical patch panels. This topology was eval-
uated through both simulations and physical testbed experiments built on commer-
cial Broadcom Trident4 switches. STRAT demonstrated significant gains in scala-
bility, cost-effectiveness, and congestion resilience, outperforming Clos topologies in
throughput (up to 43% improvement) while requiring roughly 40% fewer switches.
These gains were achieved without relying on transport-level congestion control or
complex traffic engineering.

Second, we introduced DEALER—a data-plane-compatible, congestion-aware
forwarding algorithm optimized for expander-like networks such as STRAT. DEALER
uses local queue occupancy and distributed distance-vector logic to make dynamic
routing decisions. Unlike ECMP, DEALER maintains high throughput under load
imbalances and supports multi-path forwarding with minimal control-plane overhead.
Its feasibility was demonstrated through a P4-based prototype and a TD4 hardware
implementation, showcasing how practical expander routing can be brought to pro-

grammable commercial ASICs.
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Third, we extended STRAT into a hybrid optical-electrical architecture by overlay-

ing a sparse set of Optical Circuit Switching links and employing machine learning for

proactive flow classification. A lightweight XGBoost model was trained to identify

elephant flows using the early packet signature, enabling their redirection to high-
bandwidth optical paths. This ML-driven hybrid STRAT fabric achieved lower tail

latencies and improved throughput while maintaining deployment feasibility through

structured ring permutations and low control overhead.

Future Work. While our results establish STRAT as a promising candidate for

next-generation DCNs, several avenues remain open for exploration:

Scalability beyond testbed constraints: Our current evaluation was limited
by the number of virtual switches supported by a single TD4 instance. Scaling
the STRAT topology to thousands of nodes across multiple physical switches,
and integrating a control plane for distributed coordination, presents a practical

next step.

Fine-grained flow steering: Future work could explore integrating per-flow
telemetry and reinforcement learning to make more nuanced forwarding deci-
sions beyond binary flow classification. This would enable STRAT to handle
diverse workloads, including mixed latency-sensitive and throughput-intensive
traffic.

Integration with emerging Ethernet standards: The rise of initiatives
such as the Ultra Ethernet Consortium calls for STRAT to be evaluated within
newer protocols that provide credit-based flow control, receiver-side reordering,

and hardware-based packet spraying, to further improve reliability.

Energy-aware forwarding: As sustainability becomes critical, incorporat-
ing energy-efficiency metrics into routing decisions—such as shutting down idle
paths or prioritizing low-power optical links—could yield additional operational

gains.

End-host stack compatibility: While STRAT and DEALER operate trans-
parently within the network, further integration with NIC-level capabilities
(e.g., RDMA, programmable NICs) may enhance performance, particularly in
Al and HPC workloads.
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Overall, this thesis bridges the gap between theoretical expander-based designs
and practical, high-performance network deployments. By unifying scalable topolo-
gies, programmable forwarding, and intelligent hybridization, we present a holistic
architecture capable of meeting the stringent demands of next-generation data cen-

ters.
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