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Abstract

Tramba: A Hybrid Architecture for Table Understanding

Md. Sayeed Abid

The increasing complexity and density of document images—particularly in scientific and industrial

contexts—have posed significant challenges for traditional transformer-based models, due to their

quadratic attention complexity and reliance on extensive computational resources. In response,

this thesis proposes a novel hybrid vision architecture that integrates the Vision Mamba encoder

with the Detection Transformer (DETR) framework to address the tasks of table detection and

structure recognition. Leveraging Mamba’s state space modeling, which reduces computational

complexity from O(N2) to O(N), the proposed architecture retains competitive representational

power while improving scalability and training efficiency. Vision Mamba is a state space sequence

model designed for vision tasks, offering linear-time computation and efficient long-range depen-

dency modeling through a bidirectional convolutional structure. DETR, in contrast, is an end-to-

end object detection framework that formulates detection as a direct set prediction problem using

a transformer-based encoder-decoder and learnable object queries. In our hybrid model, we replace

DETR’s standard transformer encoder with a Mamba-based encoder stack, preserving the core

object query mechanism while enabling lightweight and efficient sequential processing. Through

extensive experiments on the PubTables-1M dataset, which is one of the largest datasets for table

extraction tasks, we demonstrate that our model outperforms Faster R-CNN on both detection and

structure recognition tasks, and approaches the performance of full DETR models—despite using

only one-third of the encoder-decoder layers and fewer training epochs. These results highlight the

architecture’s efficiency and adaptability, offering strong performance under constrained training

budgets. Beyond empirical gains, the modular design of the model facilitates extensibility, including

integration with large language models (LLMs) for advanced multimodal tasks such as document

question answering, layout-based information retrieval, and regulatory content parsing. Finally, the

lightweight nature of the Mamba encoder makes the model well-suited for deployment in enterprise-

scale document processing systems, where throughput and latency are critical. This thesis thus

introduces a promising direction for rethinking vision transformers through hardware-efficient se-

quence modeling, contributing meaningfully to the advancement of document AI and structured

visual understanding. The source code is available at: github.com/SayeedAbid/Tramba
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Chapter 1

Introduction

In this chapter, we present the motivation behind this research, formally define the problem ad-

dressed, review relevant literature, and summarize the key contributions of the thesis. Specifically,

we focus on the task of extracting structured information from visually complex tables in documents,

a problem that involves accurately detecting tables and recovering their underlying structure from

raw visual data. The literature review section provides an overview of existing approaches to table

detection and explores recent developments in hybrid modeling strategies for document understand-

ing, particularly those that integrate state space models and transformer-based architectures.

1.1 Motivation and Background

1.1.1 Motivation

The advent of transformer-based models has led to significant breakthroughs in visual under-

standing tasks, including image classification, object detection, and table structure recognition.

One such instance is the PubTables-1M framework, which leverages a transformer-based detection

pipeline to extract and parse complex tabular structures from scientific documents accurately [80].

While transformer architectures such as ViT and DEIT have demonstrated exceptional performance,

their computational inefficiency due to the quadratic complexity of self-attention severely limits their

scalability, especially in tasks that require processing large image sequences or dense visual layouts.

Recently, State Space Models (SSMs) have emerged as a compelling alternative due to their abil-

ity to model long-range dependencies with linear computational complexity. Among them, Mamba, a

hardware-aware, input-dependent variant of SSMs, has achieved performance comparable to trans-

formers on sequential modeling tasks while significantly reducing memory and compute require-

ments [31]. However, the application of Mamba in computer vision is still nascent and faces unique
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challenges due to the nature of visual data, which is spatial rather than purely sequential.

Motivated by the limitations of transformers and the potential of Mamba, this thesis investi-

gates the replacement of transformer components in the PubTables-1M pipeline with Mamba-based

modules. The goal is to evaluate whether Mamba can match or exceed transformer performance in

table structure recognition while significantly improving computational efficiency. The inspiration to

pursue this hybridization stems from recent work that integrates Mamba with vision backbones in in-

novative ways[31, 91, 12], which have shown promising results in bridging the performance-efficiency

gap.

This work thus aims to push the frontier by answering a simple yet powerful question: Can a

purely transformer-based vision pipeline be re-architected with Mamba while preserving task perfor-

mance and improving computational throughput?

1.1.2 Background

End-to-End Object Detection with Transformers (DETR)

Traditional object detection systems rely heavily on complex pipelines, incorporating hand-

engineered components like anchor generation, region proposal networks, and non-maximum sup-

pression. DETR, introduced by Facebook AI, redefines this process by framing object detection

as a direct set prediction problem. This novel approach eliminates the need for duplicate removal

or anchor-based heuristics, offering a cleaner, fully end-to-end formulation [7]. At its core, DETR

employs a transformer encoder-decoder architecture that globally models object interactions and

contextual cues across an image. It processes CNN-extracted image features alongside a fixed num-

ber of learned object queries, producing all bounding box predictions simultaneously.

Unlike conventional methods that treat object detection as a classification-regression problem

over a dense set of proposals, DETR leverages a bipartite matching loss to ensure one-to-one corre-

spondence between predictions and ground truth objects. This enables the model to avoid redundant

detections and post-processing steps. While DETR demonstrates strong performance on large ob-

jects, its reliance on global attention introduces inefficiencies in modeling fine-grained details of

smaller objects. Furthermore, training DETR requires longer schedules and higher data augmenta-

tion due to its lack of inductive biases.

Despite these challenges, DETR achieves competitive results with established detectors like Faster

R-CNN and shows extensibility to tasks such as panoptic segmentation—underscoring its potential

as a general-purpose detection framework.
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Deep Learning for Table Detection and Structure Recognition

Table detection (TD) and table structure recognition (TSR) are foundational components of

table extraction, aiming to localize tabular regions and interpret their internal grid-like structure,

comprising rows, columns, and cells. Early approaches relied heavily on handcrafted rules and

visual heuristics, which often failed to generalize across documents with diverse layouts and complex

formatting.

The emergence of deep learning, particularly transformer-based object detection frameworks,

revolutionized this field by enabling more robust and scalable modeling. The PubTables-1M dataset

exemplifies this progress, offering a large-scale, richly annotated corpus of one million tables from

scientific literature, supporting all three subtasks of TD, TSR, and functional analysis. The use of

DETR-style transformer architectures in this work unified these subtasks under a shared encoder-

decoder framework, producing state-of-the-art results without the need for handcrafted features.

However, the deployment of such transformer-based models remains computationally intensive due

to their quadratic attention complexity, which becomes a critical bottleneck in real-time or large-scale

document processing scenarios [80].

Mamba and the Emergence of Linear-Time Sequence Models

Recent advances in State Space Models (SSMs) have introduced new directions for efficient

sequence modeling. One such innovation is Mamba, which builds on the structured state space

sequence model (S4) and employs a selective scan mechanism to process sequences in linear time.

Unlike transformers that scale poorly with input length due to their attention mechanism, Mamba

is designed to retain long-range contextual understanding while significantly reducing the computa-

tional footprint [12].

Originally tailored for natural language processing, Mamba’s autoregressive and input-dependent

design proves well-suited for sequential tasks. However, this same sequential bias poses challenges

when applied to vision tasks, where data is inherently spatial and two-dimensional. Early efforts such

as VMamba, Vision-Mamba, and EfficientVMamba attempted to adapt Mamba for vision applica-

tions, but struggled with global context modeling and spatial feature extraction limitations. These

issues highlight the need for further architectural innovation to fully harness Mamba’s efficiency in

vision domains [31] [54].

Toward Hybrid Architectures: Combining Mamba with Transformers

To overcome the respective shortcomings of pure transformer and pure Mamba architectures,

several recent studies have proposed hybrid models that strategically integrate both paradigms.
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These models aim to combine the high-throughput, linear scalability of Mamba with the powerful

global modeling capabilities of self-attention.

MambaVision is a pioneering hybrid vision backbone that incorporates transformer blocks

in the final stages of a Mamba-based network. This selective integration enables the model to

recover long-range spatial dependencies lost in purely sequential Mamba processing, while preserving

superior throughput and accuracy trade-offs. The model achieves strong performance across multiple

vision benchmarks, demonstrating that Mamba and transformers can be jointly optimized for visual

perception tasks [31].

Similarly, TranMamba introduces a lightweight architecture for single-image super-resolution

(SISR) by alternating between Mamba and transformer blocks. This architectural interleaving bal-

ances local feature extraction with global context modeling, leading to state-of-the-art results with

fewer parameters and reduced computational costs [91].

Building on this momentum, TransMamba tackles the challenge of architectural transition

by enabling cross-architecture knowledge distillation—transferring representational knowledge from

pretrained transformer models to Mamba-based networks. Using feature alignment and adaptive

bidirectional distillation, TransMamba accelerates Mamba training while enhancing performance

across vision and multimodal tasks such as image classification, VQA, and text-video retrieval [12].

Synthesis and Research Opportunity

Collectively, these developments signal a convergence in architectural design: transformer models

offer expressive power but are computationally expensive, while Mamba introduces a pathway toward

efficient yet capable alternatives. Hybrid designs, as explored in MambaVision, TranMamba, and

TransMamba, illustrate that these paradigms are not mutually exclusive but complementary.

Yet, despite these promising directions, no work has yet explored replacing the full transformer

encoder-decoder stack in a DETR-based structured vision model such as PubTables-1M with a

Mamba-driven counterpart.

This gap presents a unique research opportunity. In this thesis, we aim to develop and evaluate

a novel hybrid architecture that substitutes the transformer blocks in DETR with a Mamba-based

encoder-decoder framework, addressing the limitations of attention-based models in terms of effi-

ciency, while assessing the viability of Mamba in complex structured vision tasks.

1.2 Research Gap

Despite the theoretical and empirical promise of Mamba, very few have attempted a full-scale re-

placement of transformers in a complex vision pipeline like table structure recognition. While hybrid

4



models exist, they often retain transformer layers due to concerns over Mamba’s spatial modeling

limitations. This thesis takes a bolder step by modifying the DETR pipeline and integrating Mamba

as the primary sequential processor, replacing attention-based components.

In doing so, this research addresses the following gaps:

• Scalability of Mamba in Document Understanding: Can Mamba handle spatially com-

plex layouts like tables?

• Architectural Efficiency: What are the trade-offs in computational performance versus

accuracy?

• Transferability of Learning: Can pre-trained transformer models guide Mamba-based mod-

els through knowledge distillation?

1.3 Overview and Thesis Contribution

This section presents an overview of each chapter and the entire thesis:

1.3.1 Background and Literature Review

This chapter provides foundational context and a comprehensive background necessary for un-

derstanding the advancements discussed throughout this report. The primary aim of this chapter

is to offer an in-depth overview of existing literature and key methodologies relevant to the sub-

sequent development and analysis presented in later chapters. It systematically explores crucial

aspects such as object detection, vision backbone architectures, state space models (SSMs) tailored

specifically for visual applications, and the innovative approaches adopted towards hybrid architec-

tures. In the Literature Review section, the chapter begins with an extensive analysis of object

detection methodologies. It provides insights into classical and modern approaches, outlining signif-

icant contributions and advancements, such as the role of convolutional neural networks (CNNs) and

Transformer-based models, and highlighting state-of-the-art techniques and their applications across

various visual tasks. Subsequently, the Architecture for Vision Backbone section delves deeply into

the frameworks that have shaped contemporary vision models. This includes a discussion on the

evolution from traditional CNN architectures, through the advent and dominance of Vision Trans-

formers, to the recent innovations in SSM-based vision backbones. Each architectural paradigm is

assessed for its strengths, limitations, and specific application scenarios. In addressing the State

Space Model for Visual Application, the chapter highlights recent breakthroughs in adapting tra-

ditional SSM techniques to complex visual processing tasks. Key studies such as the Structured

State Space (S4) model and its extensions to multi-dimensional visual data are thoroughly reviewed.
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This section emphasizes how these models effectively capture temporal and spatial dependencies, ad-

dressing previously challenging computational constraints and improving performance across diverse

visual tasks. Further, the Modeling Approach section provides a detailed examination of method-

ologies employed to integrate these diverse architectures into cohesive, high-performing systems. It

highlights critical developments in model fusion techniques, attention mechanisms, and strategies for

efficiently combining features from different sources. The focus is placed on identifying and explain-

ing methodological innovations crucial for advancing model performance and scalability. Finally,

the chapter explores Approaches towards Hybrid Architecture, underscoring recent and innovative

strategies that leverage the complementary advantages of different model families, such as Trans-

formers and SSMs. Various hybrid models, including the Jamba and Block-State Transformer (BST),

are discussed, demonstrating their ability to enhance model performance by integrating short-range

contextual modeling with long-range dependencies. Overall, this chapter sets the stage for the de-

tailed methodologies and experimental evaluations presented in subsequent chapters, ensuring that

readers are well-equipped with the theoretical and practical context needed for understanding the

contributions and implications of this report.

1.3.2 Tramba: A Hybrid Architecture for Table Understanding

This chapter introduces Tramba, our proposed hybrid architecture, and thoroughly discusses its

methodology, detailed algorithmic structure, and technical intricacies. This chapter provides a clear

exposition of the design principles underlying Tramba, highlighting how it combines Transformer

and Mamba-based architectures into a cohesive model. The methodology section outlines the specific

innovations introduced in Tramba, such as the incorporation of Mamba-based layers for capturing

extensive temporal dependencies and Transformer layers for precise local feature extraction. The

algorithmic framework section meticulously describes Tramba’s model architecture, elucidating each

layer’s functionalities, interactions, and integration within the broader network. Technical details

include the architectural composition of hybrid layers, gating mechanisms, optimization strategies,

and parameter configurations. Additionally, this chapter provides comprehensive equations and

pseudocode, clearly defining input-output transformations at each computational step, facilitating

deeper technical understanding. Moreover, the chapter addresses implementation specifics, including

training procedures, loss functions, hyperparameter tuning, and computational efficiency considera-

tions. The detailed technical exposition ensures clarity regarding Tramba’s innovative approach to

hybrid modeling, serving as a cornerstone for evaluating its performance in subsequent experimental

analyses and comparative studies outlined in later chapters.
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1.3.3 Experiments

This chapter presents an extensive experimental evaluation of the proposed Tramba architecture.

It outlines a detailed description of experimental setups, datasets employed, and evaluation metrics

utilized to assess the performance of the hybrid model comprehensively. This chapter systematically

reports experimental results, providing quantitative and qualitative analyses and visualizations to

elucidate the performance gains achieved by Tramba. Comparative studies are thoroughly presented,

benchmarking Tramba against established models and hybrid architectures, clearly illustrating its

strengths and areas of improvement. These evaluations provide robust evidence for the effectiveness

of Tramba, offering insights into its scalability, accuracy, and computational efficiency.

1.3.4 Conclusion and Future Work

This chapter concludes the report by summarizing the primary findings and contributions made

throughout the study. It highlights the significance of the proposed Tramba architecture and its

potential implications in advancing visual and multimodal modeling. Additionally, the chapter

identifies and discusses limitations encountered during the research and outlines concrete avenues

for future exploration. Prospects for subsequent research, focusing on further optimization, broader

applications, and innovative extensions of the Tramba model, are clearly delineated, providing di-

rection for continued investigation and advancement in hybrid modeling frameworks.

1.4 Thesis Organization

The rest of this thesis is organized as follows: Chapter 2 discusses the literature review and back-

ground studies of this thesis. Chapter 3 presents our hybrid architecture and it’s overall methodology

Chapter 4 describes the results of our architecture. Chapter 5 concludes the thesis and discusses the

potential research doors for future work.
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Chapter 2

Background and Literature Review

In this chapter, we begin by introducing the fundamental concepts underlying object detection,

including vision backbone architectures and the application of state space models in visual tasks.

We then outline the modeling strategies employed in hybrid architectures that integrate these com-

ponents. Furthermore, a comprehensive review of existing literature is provided to contextualize the

proposed work, identify prevailing methodologies, and highlight the limitations and research gaps

that this thesis seeks to address.

2.1 Literature Review

2.1.1 Object Detection

Object detection has undergone significant evolution over the past decade, transitioning from

handcrafted feature methods to deep learning architectures that achieve remarkable accuracy. Mod-

ern approaches typically predict bounding boxes and class labels for objects within images, with two-

stage detectors like Faster R-CNN [74] pioneering region proposal networks (RPNs) that generate

candidate regions before refinement [74, 6]. These methods rely heavily on handcrafted components,

including anchor generation and non-maximum suppression (NMS) to manage duplicate predictions

and encode spatial priors.

In contrast, single-stage detectors like SSD (Single Shot MultiBox Detector) [53] and the YOLO

(You Only Look Once) series [72] predict object locations and classes directly from dense grids or

anchor points. YOLOv3 [71] introduced multi-scale predictions using anchor boxes, while YOLOv4

further optimized backbone architectures and training strategies. These approaches streamline de-

tection but still depend on heuristics for matching predictions to ground truth and post-processing.

CenterNet [96] later reimagined detection by treating objects as points in a heatmap, enabling
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efficient keypoint-based localization.

Recent research has simplified pipelines by reframing detection as direct set prediction, eliminat-

ing many hand-designed components. The DETR (DEtection TRansformer) model [7] exemplifies

this shift with its transformer-based encoder-decoder architecture that predicts a fixed set of detec-

tions in parallel. Using bipartite matching loss, DETR enforces unique prediction-to-ground-truth

assignments. This approach removes the necessity for NMS and anchor generation, as the model

learns to output non-redundant, globally consistent predictions. Deformable DETR [97] enhanced

this approach with deformable attention mechanisms, improving convergence speed and small-object

detection.

Multi-stage refinement architectures like Cascade R-CNN [6] address quality limitations through

progressive detection refinement across sequential stages. This approach demonstrates how complex

pipelines can improve high-precision detection despite increased computational demands.

The evolution highlights three key trends:

• Reduced handcrafting through end-to-end learning [7, 97]

• Efficiency optimizations in single-stage models [72, 53]

• Specialized architectures for quality or speed tradeoffs [6, 95]

In summary, the evolution of object detection has moved from complex, hand-engineered pipelines

toward more streamlined, end-to-end models that leverage advances in deep learning architectures.

While transformer-based models capture global context effectively through self-attention, challenges

remain in training efficiency and small-object detection. Nevertheless, the trajectory continues to-

ward unified architectures that minimize inductive biases while maintaining competitive performance

across benchmarks like COCO.

2.1.2 Architecture for Vision Backbone

The development of generic vision backbones has undergone significant paradigm shifts, tran-

sitioning from convolutional networks to transformer-based models and exploring new state-space

approaches. Early computer vision systems relied on convolutional neural networks (ConvNets)

pioneered by [42], which became the de facto standard through architectures like AlexNet [41],

VGGNet [79], and ResNet [32]. These models leveraged spatial inductive biases for efficient fea-

ture extraction, with later innovations like EfficientNet [83] optimizing accuracy-efficiency trade-offs

and RegNet [69] systematically scaling model dimensions. The landscape transformed with Vision

Transformers (ViT) [22], which treated images as sequences of patch tokens and applied pure trans-

former architectures. ViT demonstrated that global self-attention could outperform ConvNets at
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scale, particularly with large datasets. Some approaches enhance ViT architectures by embedding

2D convolutional priors to inject local inductive biases [87, 21]. This sparked hybrid approaches

like CvT [88] and ConViT [24], which integrated convolutional priors into transformers. Con-

currently, pyramid structures like PVT [86] enabled multi-scale feature extraction, while Swin

Transformer [55] introduced shifted-window attention for hierarchical representation. In response,

modern ConvNet revitalization emerged through works like ConvNeXt [56], which reinterpreted

ResNet with transformer-inspired training techniques, achieving ViT-level performance. RepLKNet

[20] further demonstrated that scaling kernel sizes to 31×31 could enhance long-range modeling in

pure ConvNets. Although numerous subsequent works have achieved strong performance and im-

proved efficiency on benchmarks like ImageNet [17] and various downstream vision tasks [50, 94]

by incorporating 2D inductive priors into vision transformers, the resurgence of vanilla transformer

architectures has become increasingly evident. This shift is largely driven by the rapid growth of

large-scale visual pretraining techniques [64, 25, 8] and the widespread adoption of multi-modal

learning frameworks [68, 47, 52, 37]. These standard transformer models are once again gaining

prominence due to their expansive capacity, compatibility with unified multi-modal representations,

and strong alignment with self-supervised learning objectives. However, a significant challenge re-

mains: the quadratic complexity of the self-attention mechanism imposes practical limits on the

number of visual tokens, thereby restricting model scalability. While numerous studies have pro-

posed solutions to mitigate this bottleneck [15, 40, 14, 19, 66], the majority focus on general-purpose

or language-specific settings. Only a limited subset of this research directly targets vision-specific

adaptations for efficient attention computation.

However, the rise of large-scale pretraining [64, 26] and multimodal applications [67, 37] renewed

focus on transformer-based models due to their unified representation capabilities. A critical lim-

itation persisted: the quadratic complexity of self-attention constrained sequence length. Efficient

transformers addressed this via:

• Low-rank approximations

• Sparse attention

• Dilated mechanisms

Recently, state-space models (SSMs) like Mamba [28] offered linear-time sequence modeling, in-

spiring pure-SSM vision backbones. These architectures promise to retain ViT’s modality-agnostic

benefits while enabling extreme-sequence processing—critical for high-resolution medical imaging

[85] and video understanding. Current research explores balancing architectural biases: ConvNets

offer spatial efficiency, transformers excel at global context, and SSMs enable long-sequence model-

ing. The field increasingly favors task-adaptive backbones, with quantization (P2-ViT) and pruning

10



(XGB-based Pruner) enabling deployment across edge devices and data types (RGB, depth, multi-

modal). This evolution highlights that no single architecture dominates universally; instead, optimal

backbones emerge from synergistic integration of complementary paradigms.

2.1.3 State Space Model for Visual Application

State space models (SSMs) have recently gained significant advancement in visual tasks due to

their capability to efficiently model long-range dependencies, an area traditionally dominated by

Transformers and convolutional neural networks (CNNs). Initially, Islam et al. [35] utilized a 1D

Structured State Space (S4) model to manage temporal dependencies in video classification tasks

effectively, highlighting the suitability of SSMs in sequence modeling. Building upon this foundation,

[60] expanded the capabilities of 1D S4 to encompass multi-dimensional data structures, including

both 2D images and 3D videos, showcasing a broader applicability and enhanced modeling capability

in more complex visual scenarios. Further innovations emerged from the hybridization of SSMs with

other established methodologies. Islam et al proposed TranS4mer [36], a sophisticated hybrid model

that integrates the structural advantages of S4 with self-attention mechanisms, setting new bench-

marks in tasks such as movie scene detection. This hybrid approach combines the attention-driven

representation of Transformers with the long-range context modeling of SSMs, yielding superior per-

formance. Concurrently, Li et al developed a novel selectivity mechanism within the S4 framework

designed specifically for long-form video understanding tasks [47]. This enhancement significantly

reduced the computational footprint of traditional S4, addressing the challenge of modeling extensive

video data with lower memory usage. Another important step was introduced by Yan et al, who

replaced traditional attention-based backbones with an SSM-centric architecture [89]. Their model

demonstrated strong capabilities in generating high-resolution imagery and extracting fine-grained

features, particularly beneficial for resource-limited environments requiring scalable computation.

Expanding these into biomedical domains, Ma et al introduced U-Mamba [58], an innovative hybrid

architecture combining CNNs with SSM components to handle intricate dependencies in biomedical

image segmentation tasks. This hybrid model notably improved segmentation accuracy by effec-

tively capturing long-range spatial contexts. These diverse yet interrelated works illustrate either

specialized applications of SSM or hybrid models integrating SSM with convolutional or attention

mechanisms. Liu et al introduced VMamba [54], leveraging multi-directional scanning and hierar-

chical structures within Mamba for visual recognition tasks. And Zhang et al [90], distinctively

emphasizes visual sequence modeling, providing a cohesive and versatile representation framework

suitable for multimodal data processing.
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2.1.4 Modeling Approach

The hybridization of Transformer and State Space Models (SSM), particularly the Mamba archi-

tecture, has recently emerged as an influential direction in sequence modeling research, promising

significant advancements in both natural language processing (NLP) and multimodal applications.

The Transformer model, initially proposed by Vaswani et al [84], revolutionized NLP by introducing

a purely attention-based mechanism capable of modeling dependencies irrespective of their distance

within sequences. This self-attention mechanism enabled Transformers to establish new state-of-the-

art results across numerous NLP benchmarks such as machine translation [16, 62], text summariza-

tion [43], and sentiment analysis [18]. Building upon the fundamental Transformer architecture,

numerous extensions have proliferated, demonstrating diverse strategies to enhance context mod-

eling and computational efficiency. Notably, BERT (Bidirectional Encoder Representations from

Transformers) leveraged bidirectional pre-training techniques utilizing masked language modeling

and next sentence prediction tasks, significantly enhancing contextual understanding and perfor-

mance on multiple NLP tasks [18]. The subsequent Generative Pre-trained Transformer (GPT)

series, including GPT-2 [67] and GPT-3 [5], expanded the scope by excelling in text generation

tasks, employing autoregressive training methods and large-scale datasets. Concurrently, research

into multimodal Transformers such as Vision Transformer (ViT) [24] and multimodal Transformers

[68, 44] demonstrated the adaptability of the Transformer architecture to visual and multimodal

tasks, achieving significant breakthroughs in image classification and cross-modal representation

learning. Despite these advancements, Transformers encounter computational bottlenecks due to

their quadratic complexity concerning sequence length, prompting the exploration of alternative

architectures. State Space Models, historically utilized for modeling temporal dynamics and con-

trol systems [38, 23], have re-emerged as promising candidates due to their capability to efficiently

capture long-range temporal dependencies with linear complexity. The Structured State Space (S4)

model proposed by [30] significantly revitalized interest in state space approaches by presenting a

structured parameterization of continuous-time state spaces. This approach exhibited impressive

results on sequence modeling benchmarks by efficiently handling long-range dependencies without

the computational burden associated with traditional Transformer architectures. Further enhanc-

ing the efficacy of state space modeling, the Mamba architecture [28] emerged as an advanced

variant building directly upon S4’s structured foundations. Mamba incorporates dynamic system

principles within a neural network context, utilizing advanced gating mechanisms and specialized

parameterizations that allow superior modeling of temporal sequences with notable computational

efficiency. Recent empirical evaluations of Mamba across NLP and vision tasks illustrate its capac-

ity to outperform traditional Transformer architectures on long-range dependency tasks, especially

those requiring extensive context modeling capabilities [28, 54]. Inspired by these complementary
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strengths, a growing body of research has begun investigating hybrid models combining Transform-

ers and Mamba-like SSM architectures. Notably, Jamba [49] interleaves Transformer and Mamba

layers to leverage the local attentiveness of Transformers and the global, efficient context modeling

of Mamba architectures. By introducing mixture-of-experts (MoE) layers, Jamba further enhances

its modeling capacity without significantly inflating computational requirements. This combined

modeling approach demonstrated enhanced performance on diverse NLP benchmarks, validating

the efficacy of leveraging complementary architectural strengths. Extending this paradigm, recent

models such as Block-State Transformer [34] have refined this concept by explicitly separating short-

term and long-range contextualization within dedicated sublayers. BST employs block-based Trans-

former sublayers to capture local short-range dependencies, coupled with dedicated SSM sublayers

specifically designed to encode long-range sequential information efficiently. Such explicit separation

has proven highly effective, achieving significant performance improvements on sequence modeling

and multimodal tasks, indicating a potent area of exploration for future hybrid architectures. In-

tegral to the success of these hybrid architectures is the effective fusion of features from disparate

layers and modules. Feature fusion techniques initially rooted in attention mechanisms [84, 16]

have evolved significantly, particularly within multimodal learning contexts. Recent advancements

propose sophisticated integration methods combining convolutional neural networks (CNNs) with

Transformers for enhanced multimodal representation learning. Cross-attention mechanisms within

Transformer decoders have become pivotal for effectively merging visual and linguistic features, as

evidenced in successful multimodal architectures such as CLIP [68] and ViLT [39]. Given these

advancements, current research increasingly focuses on designing architectures that optimally com-

bine Transformer and state space modeling, specifically through Mamba-based frameworks, aiming

to harness both local and global sequence processing efficiencies. Hybrid models present a com-

pelling direction for further research, offering significant potential to address the computational and

representational limitations encountered by pure Transformer architectures. The development of

these hybrid approaches thus underscores a broader trend towards sophisticated, adaptable models

capable of integrating and exploiting diverse computational paradigms effectively.

2.2 Approaches towards Hybrid Architecture

The evolution of deep learning in computer vision has been characterized by a constant tension

between performance and efficiency. Vision Transformers (ViTs), with their powerful self-attention

mechanisms, have achieved state-of-the-art (SOTA) results across diverse visual tasks by modeling

global dependencies effectively. However, this performance often comes at the cost of quadratic

computational complexity with respect to input size, making ViTs less practical for high-resolution
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imagery or resource-constrained environments [31, 55].

Among SSM-based models, Mamba has emerged as a highly efficient alternative, capable of

linear-time processing while capturing long-range dependencies. Originally introduced for sequence

modeling in NLP, Mamba has since been adapted for vision tasks due to its hardware-friendly design

and ability to model temporal or spatial dependencies with selective scanning mechanisms [28].

However, pure Mamba-based vision backbones still face challenges when it comes to preserving

spatial richness and global receptive fields, which are crucial for vision tasks such as object detection

or semantic segmentation [31].

To bridge this gap, a new class of hybrid architectures has been proposed—most notably Mam-

baVision [31] and Contrast [11]—which integrate SSM modules like Mamba in early or intermediate

layers, and self-attention-based Transformer blocks in deeper layers. This architectural strategy

offers the best of both worlds: the linear efficiency and long-range modeling of Mamba, coupled

with the rich spatial understanding and global context capture of Transformers. In MambaVision,

for instance, CNN-based layers are used in the initial stages for high-resolution feature extraction,

followed by a hybrid stack of Mamba mixers and self-attention layers. The inclusion of attention

layers at later stages significantly improves global modeling capabilities while maintaining a new

Pareto frontier in accuracy vs. throughput trade-offs on ImageNet-1K [31].

Empirical results strongly validate this architectural direction. MambaVision variants outperform

competitive baselines like Swin Transformers and ConvNeXt models not only in classification but

also in downstream tasks such as object detection on MS COCO and semantic segmentation on

ADE20K. For instance, MambaVision-B achieves higher top-1 accuracy with lower GFLOPs and

higher throughput compared to VMamba and FastViT variants [31]. Similarly, Contrast, a tri-

modal hybrid model combining CNN, Transformer, and Mamba blocks, shows strong gains in super-

resolution and dense prediction tasks [11].

Notably, this hybrid approach has shown particular strength in robotic vision tasks where long-

term temporal understanding and real-time inference are essential. Hybrid Mamba-Transformer

backbones deployed in robotic manipulation pipelines, such as grasp detection and scene parsing,

demonstrate increased robustness and spatial precision, outperforming standalone Transformer or

SSM architectures [82].

From a theoretical perspective, this integration is grounded in how Mamba’s implicit recurrence

models sequential patterns efficiently, while self-attention explicitly captures all pairwise token in-

teractions. In tasks where localized details (e.g., object boundaries) and global coherence (e.g., table

layout) are both vital, neither approach is sufficient alone. The hybrid paradigm addresses this by

decoupling early-stage low-level extraction from late-stage semantic fusion.

Key advantages of these hybrid architectures can be summarized as follows:
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• Computational Efficiency: Mamba’s linear-time complexity provides efficient handling of

long sequences or high-resolution images, improving over the quadratic scaling of attention [28,

31].

• Flexible and Rich Feature Representation: The synergy of sequential modeling (via

SSM) and token-level attention enables more expressive and generalizable feature embed-

dings [11, 82].

• Cross-Domain Versatility: These models perform competitively in classification, segmen-

tation, restoration, and robotic control, underscoring their adaptability [31, 82].

In conclusion, the convergence of State Space Models like Mamba and Transformer-based archi-

tectures in a hybrid framework represents a pivotal advancement in vision backbone design. This

hybridization not only resolves the trade-offs between performance and efficiency but also enables

broader applicability across real-world vision tasks. Future research will likely explore further au-

tomation in layer-wise composition, architecture search, and broader applications in multimodal

settings.
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Chapter 3

Tramba: A Hybrid Architecture for

Table Understanding

Table detection and table structure recognition are critical tasks in structured document analysis,

which enable accurate parsing of complex layouts. Despite the visual clarity of tables to humans,

extracting tabular regions and understanding their structural organization—such as rows, columns,

and cell relationships—remains a challenging problem for machine learning models. This challenge

becomes especially significant in real-world documents where formatting inconsistencies, spanning

cells, and missing grid lines are common, yet reliable table understanding is crucial for tasks like

data mining, automated form processing, and digital archiving.

Traditional transformer-based architectures have shown strong performance but often struggle

with computational efficiency and long-range dependencies. In this work, we propose a hybrid archi-

tecture that combines Vision Mamba, a state-space model (SSM) designed for long-range sequence

modeling, with a transformer-based approach to enhance table detection and structure recogni-

tion. By leveraging the efficiency of Vision Mamba to capture global dependencies and the localized

representation power of transformers, our method achieves superior accuracy while maintaining com-

putational efficiency. We evaluate our approach on one of the largest table detection datasets and

demonstrate that it outperforms previous state-of-the-art models, including the baseline transformer-

based model DETR, achieving higher accuracy in both detection and recognition tasks. Our results

highlight the effectiveness of integrating SSMs with transformers for structured document analysis,

paving the way for more efficient and scalable solutions in document AI.
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3.1 Introduction

Tables are a fundamental modality for conveying structured data across a broad spectrum of doc-

ument formats, including scientific literature, medical reports, financial statements, and web-based

content. Their two-dimensional grid layout facilitates compact and interpretable representations

of relational information, making them indispensable in automated document understanding work-

flows. However, the presence of a visual layout alone does not guarantee machine-readable structure.

In many real-world cases, tables are visually well-formed but lack explicit logical annotations such as

row-column hierarchies, spanning semantics, or cell-type roles. This disconnect between visual layout

and underlying logical structure introduces significant ambiguity for downstream parsing systems.

Figure 1 illustrates such an example, where the table’s appearance is visually coherent—clearly

demarcating rows, columns, and text regions—but lacks any semantic markup to differentiate be-

tween headers, data cells, or complex spanning relationships. Without these logical cues, even state-

of-the-art models face difficulty in accurately reconstructing the structure necessary for semantic

interpretation.

This challenge is particularly pronounced in large-scale document-related tasks where tables

appear in diverse formats with inconsistent layouts, missing grid lines, multi-row headers, and non-

rectangular cell groupings. The inability to robustly detect and structurally parse such tables renders

much of the embedded information inaccessible to automated pipelines. Consequently, document AI

systems risk overlooking critical information or introducing structural noise during extraction.

The core problem this work addresses is the joint task of table detection—localizing tabular re-

gions within complex document images—and table structure recognition, which involves identifying

the fine-grained structural relationships between constituent elements (rows, columns, and cells)

within each detected table. As noted in the PubTables-1M benchmark dataset [80], accurate struc-

ture recognition is a non-trivial and underexplored challenge, particularly when table boundaries are

noisy or when visual cues are insufficient to resolve logical relationships.

By focusing on visually structured but semantically unannotated tables, this research targets a

real and impactful gap in current document understanding systems—bridging the divide between

appearance and structure in complex visual documents.

The process of interpreting and restructuring these visually presented tables into machine-

readable formats is known as table extraction (TE). TE generally involves three main subtasks:

table detection, structural recognition, and functional analysis [27]. Each of these tasks presents

its own challenges, stemming from the wide variability in table design—differences in alignment,

spanning cells, headers, styles, and layout configurations [33, 61, 74, 92]. Furthermore, complex vi-

sual ambiguities such as misaligned gridlines or inconsistent fonts add additional complexity, making

rule-based heuristics unreliable in general scenarios.
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Figure 1: Examples of visually well-structured tables extracted from real-world documents that lack

explicit logical annotations.

Historically, TE has been approached using rule-based systems and heuristic algorithms [13,

78], which encoded handcrafted rules specific to visual or layout features. However, such methods

tend to be brittle and fail to generalize across diverse domains and noisy data distributions. In

response, recent years have witnessed a significant paradigm shift toward data-driven approaches

powered by deep learning (DL) techniques [65, 74]. Deep neural networks, particularly those

utilizing convolutional and transformer-based architectures, have demonstrated superior robustness

and scalability, enabling them to handle a wide range of presentation styles with minimal manual

intervention.

Among these approaches, transformer-based architectures have gained significant traction, largely

due to their performance in modeling long-range dependencies and their modality-agnostic nature.

For instance, methods like Detection Transformer (DETR) propose an end-to-end object detection

framework that reframes detection as a set prediction problem, where object queries are directly

matched with ground truth objects through bipartite matching, eliminating the need for traditional

modules such as anchor generation or non-maximal suppression [7]. These models predict bounding

boxes and class labels for all objects simultaneously, streamlining the training process while main-

taining competitive accuracy. Autoregressive RNN-based decoding approaches [63, 73, 76, 77, 81]

have also been explored in the context of TE, but transformers have largely outpaced them in terms

of scalability and modeling capacity.

One of the key advantages of transformers lies in their capacity to treat visual data as sequences

of non-overlapping patches, thereby eliminating the reliance on 2D structural inductive biases. This
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property makes transformers highly attractive for multimodal learning scenarios where input modali-

ties—such as images, text, or layout metadata—need to be processed jointly [2, 45, 51]. Additionally,

transformers excel at large-scale self-supervised pretraining, providing strong visual representations

that transfer well across downstream tasks.

Despite these strengths, transformers are not without limitations. Their self-attention mechanism

suffers from quadratic time and memory complexity, making it computationally expensive and less

feasible for long-sequence modeling or processing high-resolution documents where global context is

crucial. In such cases, attention may become bottlenecked, and the network struggles to maintain

long-range dependencies over extended inputs, especially in resource-constrained environments.

To address these inefficiencies, the research community has recently turned its attention to alter-

native architectures. Mamba, a state-space model (SSM) based sequence modeling framework, has

emerged as a promising alternative to transformers, particularly for long-context tasks. Originally

developed for language modeling, Mamba leverages structured state-space dynamics to model tem-

poral and sequential relationships with linear time complexity. The Structured State-Space Sequence

(S4) model introduced by [29] laid the groundwork for Mamba by proposing a parameterization

that supports efficient sequence modeling while retaining memory of long-range patterns.

Mamba’s primary architectural distinction lies in its implicit recurrence: rather than explicitly

modeling pairwise token interactions as in transformers, it propagates state information using con-

volutional and recurrent mechanisms. This introduces an inductive bias toward sequential structure,

enabling strong performance in language modeling tasks with fewer parameters and less computa-

tional overhead. Given that many vision problems—particularly those in document understanding

such as OCR, table parsing, or layout analysis—also exhibit sequential or grid-structured properties,

it is compelling to consider whether these advantages can be transferred from language to vision.

Nonetheless, Mamba also has limitations that constrain its applicability in complex visual set-

tings. Most notably, its unidirectional modeling restricts the ability to reason over bidirectional

spatial dependencies, which are essential for comprehending the layout of tables. Furthermore,

while transformers employ learned positional embeddings to aid in spatial reasoning, Mamba lacks

explicit positional encoding, potentially hampering its ability to localize and align content in struc-

tured documents.

To bridge the gap between Mamba’s efficiency and transformer’s structured reasoning capabil-

ity, we propose a novel hybrid architecture for table extraction. In this design, we replace the

transformer encoder in the DETR framework with a Vision-Mamba encoder, while retaining the

original transformer decoder. This architecture harnesses the strengths of both models: Mamba

acts as a lightweight and efficient encoder that processes image features with global context and

recurrence bias, while the transformer decoder performs object-level matching and alignment via
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cross-attention. The result is a model that achieves both computational efficiency and structured

precision in a unified pipeline.

The proposed hybrid model offers several key benefits:

• It achieves linear encoding complexity via Mamba while maintaining the transformer decoder’s

strong object localization performance.

• It introduces recurrence-based inductive biases through Mamba, complementing the trans-

former’s flexible query-based decoding.

• It improves training speed and memory utilization, especially beneficial in document scenarios

where input resolution and sequence length are high.

This work aims to demonstrate the effectiveness of this hybrid design in table extraction tasks,

where both high-level global understanding and fine-grained object alignment are critical. Through

comprehensive experimentation and evaluation, we show that this approach improves over baseline

DETR and Vision Transformer models in both accuracy and efficiency, setting a new benchmark for

document intelligence tasks.

3.2 Methodology

In this thesis, we propose a novel architecture for object detection by integrating the Vision

Mamba (Vim) encoder into the DETR (DEtection TRansformer) framework. This approach aims

to enhance computational efficiency, addressing limitations inherent to the traditional Transformer

encoder through bidirectional selective state-space modeling (SSM). The core innovation is substi-

tuting the original Transformer encoder with Vision Mamba, improving scalability and performance

on complex visual datasets.
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3.2.1 Algorithmic Summary

Algorithm 1 Hybrid Table Extraction with Vision-Mamba Encoder

Input: Document image I

Output: Predicted table bounding boxes and structure annotations

Step 1: Feature Extraction

Extract visual features: F0 = CNN_Backbone(I)

Flatten F0 to a sequence of tokens X0 ∈ R
N×d

Step 2: Vision-Mamba Encoding

for l = 1 to L do

Xl = VisionMambaEncoderl(Xl−1)

end

Set Z = XL

Step 3: Object Query Decoding (Transformer Decoder)

Initialize object queries Q ∈ R
M×d

Decode predictions: Y = TransformerDecoder(Q,Z)

Step 4: Prediction Head

foreach yi ∈ Y do

Class label: ĉi = Linearcls(yi)

Bounding box: b̂i = MLPbox(yi)

end

Step 5: Loss Computation

Match (ĉi, b̂i) with (cj , bj) using bipartite matching

Compute:

Lcls = CrossEntropy(ĉi, cj)

Lbox = ℓ1(b̂i, bj) + GIoU(b̂i, bj)

Ltotal = Lcls + ¼ · Lbox

Step 6: Inference

Retain predictions where ĉi ̸= No-Object and score exceeds threshold

return final predicted bounding boxes and class labels

The overall training and inference procedure includes:
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1. Feature extraction via CNN backbone.

2. Projection into token embeddings.

3. Encoding using Vision Mamba blocks.

4. Decoding via learned queries.

5. Object classification and bounding box prediction.

6. Training using the Hungarian set prediction loss.

3.2.2 Proposed Architecture

FFN
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FFN
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box

class,
box

no
object
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CNN
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object queries
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Figure 2: The proposed hybrid architecture comprises three main components: (1) a CNN backbone,

(2) a Mamba encoder block, and (3) a Transformer decoder. The CNN backbone learns a 2D

representation of an input image. The model flattens it and supplements it with a positional encoding

before passing it into the Mamba encoder. The resulting token sequence is passed into the Mamba

encoder block, which processes the sequence in both forward and backward directions, incorporating

both contextual dependencies. Then, a Transformer decoder takes as input a small fixed number of

learned positional embeddings, referred to as object queries. These queries attend to the output of

the Mamba encoder through a cross-attention mechanism. Each output embedding from the decoder

is then passed through a shared feed-forward network (FFN), which predicts object detections in

the form of bounding boxes.

Figure 2 clearly illustrates the integrated hybrid architecture, highlighting the interaction be-

tween components and the flow of data through the system. The proposed model is designed to
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process documents containing visually complex tables and predict their spatial and structural lay-

out. The input to the system is a document page—typically in PDF format—rendered as an image

containing one or more tables with varying structures. The output is the same image annotated

with bounding boxes that localize detected tables as well as their fine-grained structural elements,

such as rows, columns, and cells.

The hybrid object detection architecture follows a modular pipeline that transforms the input

image into structured predictions. First, a CNN backbone extracts a two-dimensional feature map

encoding spatial and semantic information from the raw image. This feature representation serves

as the foundation for downstream processing. The feature map is then flattened into a sequence of

tokens, each corresponding to a spatial location in the image. Positional encodings are added to

retain spatial order information, ensuring that the model remains sensitive to the layout of visual

elements.

This tokenized sequence is fed into a Mamba encoder block—a bidirectional state space model

that efficiently captures both short-range and long-range dependencies within the sequence. The

encoder outputs a globally contextualized sequence of embeddings that encode the document’s visual

content with fine-grained awareness.

A transformer decoder then operates on a fixed number of learned object queries, each serving

as a proxy for a potential object in the image. Using a cross-attention mechanism, the decoder

enables each query to interact with the encoder outputs and gather relevant contextual features.

These refined query embeddings are subsequently passed through a shared feed-forward prediction

head, which classifies the presence of an object and regresses its bounding box coordinates.

The final output of the model is a set of object-level predictions corresponding to tables and

their internal structural elements, accurately localized within the document image.

3.3 Model Components

This section introduces three state-of-the-art deep learning models that form the core components

of our proposed hybrid architecture: Vision-Mamba, DEtection TRansformer (DETR), and ResNet.

Each model contributes a distinct functionality within the overall pipeline, and the subsequent

subsections provide detailed descriptions of their roles and implementation.

3.3.1 Vision Mamba

Recent advances in sequence modeling have brought renewed attention to State Space Models

(SSMs) as a powerful alternative to traditional recurrent and attention-based architectures. Building
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Figure 3: The Vision Mamba encoder processes a sequence of embedded image patches through

a structured bidirectional pipeline. The sequence is then split and processed in two directions:

forward and backward. In the forward path, the sequence is passed through a Conv1D layer to

project the tokens into a latent space, followed by a forward State Space Model (SSM) layer that

captures long-range dependencies efficiently in the time-forward direction. Simultaneously, in the

backward path, the sequence is also processed via a separate Conv1D layer and a backward SSM,

which models context in the reverse temporal direction. The outputs from the forward and backward

SSMs—denoted as hforward and hbackward—are then aggregated or fused to form the final encoded

sequence Z, which contains rich bidirectional contextual information. This figure is from [48]

on foundational work such as the Kalman Filter [10], modern SSMs have demonstrated a remark-

able ability to capture long-range dependencies while supporting parallelizable training workflows.

Notable contributions in this area include the Linear State-Space Layer (LSSL) [3], the Structured

State-Space Sequence Model (S4) [1], the Diagonal State Space (DSS) model [9], and S4D [4].

These models are specifically designed to handle sequential data efficiently across a broad range of

modalities and tasks, offering scalable mechanisms to learn extended-range dependencies.

One of the key advantages of SSMs lies in their ability to process extremely long input sequences

using near-linear time complexity, often implemented through convolutional operations. This com-

putational efficiency has led to their integration into vision tasks, where two-dimensional data must

be modeled with both local and global spatial dependencies. For example, models like ConvSSM

[29] successfully combine the structural benefits of SSMs with convolutional and transformer-based

components to efficiently model image and video data.
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More recently, the introduction of Mamba has further advanced the capabilities of SSMs by in-

troducing time-varying parameterization and a hardware-efficient implementation. Mamba achieves

significant improvements in both training and inference speed, positioning itself as a competitive—if

not preferable—alternative to transformer architectures for long-range language modeling tasks.

However, despite these advancements, the integration of SSMs as a foundational backbone for vision-

centric architectures—capable of fully leveraging visual information embedded in both images and

videos—remains an open research direction.

In our work, we replace the traditional Transformer encoder with a Vision Mamba Encoder

Figure 3, which enhances computational efficiency while preserving global context modeling [48].

Unlike standard attention mechanisms, the Vision Mamba processes token sequences in both forward

and backward directions, allowing for bidirectional flow of information. This dual-path architecture

improves the encoder’s ability to capture spatial dependencies in visual data, making it especially

suitable for structured vision tasks such as table detection and layout analysis.

3.3.1.1 Input Preparation and Tokenization

The encoder first applies a CNN backbone to the input image and produces a feature-map

f ∈ R
H×W×C .

We then partition f into J non-overlapping spatial patches {f j
p}

J
j=1, each of size (P ×P ×C). Each

patch is flattened,

tjp = vec(f j
p ) ∈ R

P 2C ,

and linearly projected into a D-dimensional embedding via a weight matrix W ∈ R
(P 2C)×D. We

prepend a learnable classification token tcls ∈ R
D and add positional embeddings Epos ∈ R

(J+1)×D,

yielding

T0 =
[

tcls; t
1
pW ; t2pW ; . . . ; tJpW

]

+ Epos, (1)

where

f CNN feature-map of size H ×W × C,

f j
p jth patch of f , flattened to tjp,

W projection matrix,

tcls learnable “class” token,

Epos positional embeddings.
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3.3.1.2 State Space Model (SSM)

The Vision Mamba encoder utilizes a bidirectional selective SSM, with equations represented as:

Continuous form:

h′

t = Aht +Bxt, yt = Cht (2)

Discrete form (after Zero-Order Hold discretization):

ht = Aht−1 +Bxt, yt = Cht, (3)

where A, B, C are learned parameters, and ht denotes hidden states.

3.3.1.3 Vision Mamba Block

Vision Mamba blocks process sequences through forward and backward convolutions:

h(forward)∗t+ 1 = Ã(A(forward)ht+B(forward)xt), h(backward)∗t− 1 = Ã(A(backward)ht+B(backward)xt),

(4)

The combined output from both directions provides comprehensive visual encoding:

yt = C(forward)h
(forward)
t + C(backward)h

(backward)
t , (5)

where Ã is typically the GELU activation function.

3.3.2 Detection Transformer (DETR)

The DEtection TRansformer (DETR) model, introduced by Carion et al. [7], marked a signifi-

cant paradigm shift in the object detection landscape by framing detection as a direct set prediction

problem. Departing from traditional object detection pipelines that rely on a combination of re-

gion proposal mechanisms, anchor boxes, and non-maximum suppression (NMS), DETR employs a

transformer-based encoder-decoder architecture to directly map an input image to a fixed-size set of

objects in a fully end-to-end manner. Its innovative approach eliminates hand-crafted components,

leading to a streamlined and conceptually elegant detection framework.

3.3.2.1 Architectural Overview

At a high level, DETR consists of three main components Figure 4: (1) a convolutional backbone

for feature extraction, (2) a transformer encoder-decoder for global reasoning and query-based object

localization, and (3) a feed-forward prediction head for classification and bounding box regression.
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Figure 4: The overview of DETR architecture. This figure is from [7]

1. CNN Backbone. The DETR pipeline begins with a convolutional neural network (typically

a ResNet-50 or ResNet-101) [32] to extract high-level visual features from the input image. Let the

input image be denoted by I ∈ R
H×W×3. After processing through the CNN backbone, the image

is transformed into a lower-resolution feature map F ∈ R
C×H′

×W ′

, where H ′ = H/32, W ′ = W/32,

and C is typically 256.

To prepare the feature map for the transformer, F is flattened and reshaped into a sequence of N

tokens, where N = H ′×W ′, and each token corresponds to a spatial patch. Positional encodings are

added to this sequence to preserve spatial information, which is otherwise absent in the transformer

architecture.

2. Transformer Encoder-Decoder. DETR adopts the standard transformer architecture [84]

to globally model relationships between all spatial tokens. The encoder processes the entire feature

sequence in parallel using self-attention and feedforward layers, enabling it to capture rich contextual

information across the image.

The decoder is the most distinctive element of DETR. Rather than relying on region proposals

or sliding windows, the decoder takes as input a fixed set of M learnable object queries, denoted

Q ∈ R
M×d, where d is the model’s hidden dimension (typically 256), and M is the maximum number

of objects the model can predict (usually set to 100). Each object query is expected to specialize in

detecting one object.

Through multiple layers of multi-head attention, the decoder learns to associate each query with

an object present in the image or to assign it as a “no object” prediction. The decoder attends to

both the encoder outputs and the object queries, yielding a sequence of decoder outputs Y ∈ R
M×d.

3. Prediction Heads. Each decoder output yi is passed through a shared prediction head com-

prising a linear layer for classification and a multi-layer perceptron (MLP) for bounding box regres-

sion. Specifically:

ĉi = Linearcls(yi), b̂i = MLPbox(yi)
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where ĉi is the class probability distribution (including a “no object” class), and b̂i ∈ [0, 1]4

represents normalized bounding box coordinates in the format (center_x, center_y, width, height).

3.3.2.2 Loss Function and Set-Based Matching

A key innovation in DETR is the use of bipartite matching between predicted and ground-truth

objects. Traditional detectors rely on IoU-based heuristics and NMS to resolve overlapping boxes,

which are brittle and non-differentiable. In contrast, DETR leverages the Hungarian algorithm

to perform a one-to-one matching between predictions and targets based on a matching cost that

combines classification and localization errors.

The loss function is defined over the matched pairs and includes:

• Cross-entropy loss for object classification.

• ℓ1 loss and Generalized IoU (GIoU) [75] for bounding box regression.

Ltotal = ¼cls · LCE + ¼ℓ1 · Lℓ1 + ¼giou · LGIoU

This set-based loss formulation ensures that each object query is trained to specialize in a unique

detection task, resulting in diverse and non-redundant predictions.

3.3.2.3 Efficiency and Benefits

While DETR was initially criticized for slow convergence (e.g., requiring 500 epochs on COCO

with ResNet-50), subsequent work has introduced various improvements to address this issue. No-

tably, Deformable DETR [97] and Conditional DETR [59] accelerate training through dynamic

attention mechanisms and better query initialization.

Despite the early drawbacks, DETR offers several compelling advantages:

• Simplicity: The model eliminates region proposal networks, anchor generation, and NMS,

reducing engineering complexity.

• End-to-End Optimization: The entire model is trained jointly with a single loss function,

making it easier to tune and more stable to optimize.

• Global Context Reasoning: Transformers allow each token (patch) to attend to all others,

leading to better object disambiguation in complex scenes.

• Fixed-Size Output: DETR always predicts a fixed number of object slots, simplifying post-

processing and making it suitable for structured output tasks.
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These properties make DETR particularly suitable for structured vision tasks like table detection,

document layout analysis, and scene parsing, where spatial reasoning and semantic alignment are

crucial.

3.3.2.4 Relevance to Our Work

In our proposed hybrid architecture, we retain the DETR decoder and prediction head compo-

nents while replacing the original transformer encoder with a Vision-Mamba encoder. This design

allows us to maintain the structured set-based decoding strengths of DETR while improving encoder-

side efficiency and long-range dependency modeling via state-space representations. As a result, we

achieve better computational scalability and training stability, especially for high-resolution docu-

ment images with complex tabular structures.

By integrating the DETR decoding mechanism with a more efficient encoder, our model preserves

the architectural elegance of DETR while adapting it to modern efficiency-optimized modules, mak-

ing it well-suited for document understanding and table extraction tasks.

3.3.3 ResNet

Our model initially employs a CNN backbone, such as ResNet-18, to extract spatial features from

input images. ResNet-18 is a member of the Residual Network (ResNet) family, introduced by He

et al. [32], which addresses fundamental challenges in training deep convolutional neural networks,

particularly the degradation of performance with increased depth.

Figure 5: Architectural overview of ResNet-18. This figure is from [70]

Unlike traditional convolutional networks where deeper models may suffer from increased train-

ing error, ResNets leverage residual learning by introducing shortcut connections that bypass one or

more layers Figure 5. This allows the network to learn residual mappings instead of attempting to

directly learn unreferenced transformations, facilitating more stable and effective gradient flow dur-

ing backpropagation. In the case of ResNet-18, the architecture is composed of 18 layers including
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convolutional blocks, batch normalization, and ReLU activations, structured with residual connec-

tions after every two convolutional layers. Formally, given an image I ∈ R
3×H0×W0 , the backbone

outputs feature maps f ∈ R
C×H×W , where C represents the number of channels, and H,W indicate

spatial dimensions.

One of the main advantages of using ResNet-18 is its balance between model complexity and

representational capacity. Compared to deeper variants like ResNet-50 or ResNet-101, ResNet-18 is

significantly lighter in terms of parameters and computational cost, making it particularly suitable

for document-level vision tasks where high throughput and efficient processing are essential. Despite

its relatively shallow depth, ResNet-18 is capable of capturing rich hierarchical features necessary

for downstream tasks such as object detection, segmentation, and table structure recognition.

Furthermore, its modular design and widespread use in vision tasks make it a robust and well-

understood choice for use as a backbone in hybrid architectures. When integrated with modern

architectures like Vision-Mamba and DETR, ResNet-18 provides a strong and efficient feature base,

enabling the higher-level components to focus on long-range context modeling and structured rea-

soning.

3.4 Conclusion

This section has presented the core methodology underlying our hybrid architecture for table

detection and structure recognition. The proposed model builds upon the DETR framework by

integrating a Vision Mamba encoder in place of the traditional transformer encoder, paired with

a ResNet-18 convolutional backbone for efficient visual feature extraction. This design aims to

leverage the strengths of state-space modeling and transformer-based decoding in a unified, end-to-

end trainable architecture optimized for document image understanding.

We began by revisiting the architectural challenges inherent in traditional transformer-based vi-

sion models, particularly those related to computational inefficiencies and the quadratic complexity

of self-attention in handling high-resolution inputs or long-range dependencies. To address these

limitations, we introduced Vision Mamba, a recent state-space model that offers bidirectional pro-

cessing capabilities with near-linear computational complexity. Its ability to model sequential data

efficiently and retain long-range spatial dependencies makes it a compelling encoder alternative for

vision tasks, particularly in structured document analysis.

The encoder’s output is consumed by the original DETR decoder, which remains a central

component of the architecture. With its fixed set of learnable object queries and cross-attention

mechanisms, the decoder facilitates set-based prediction and object-level alignment without relying

on region proposals or non-maximum suppression. The DETR decoder, in this context, plays a
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crucial role in learning structured associations between encoded visual representations and semantic

table components.

To support lightweight yet expressive feature extraction, we employ ResNet-18 as the backbone.

Its residual blocks enable stable gradient flow, even in deep architectures, and serve as a reliable mod-

ule for producing spatially rich token embeddings suitable for Mamba-based sequence modeling. The

simplicity and efficiency of ResNet-18 also ensure that the overall pipeline remains computationally

tractable, making it viable for high-resolution document processing scenarios.

Together, these components form a hybrid system that balances architectural efficiency with

modeling precision. The combination of Mamba’s recurrence-style encoding, ResNet’s lightweight

feature abstraction and DETR’s structured decoding allows our model to process complex table

layouts while maintaining scalability and generalizability.

This section serves to bridge the conceptual underpinnings of our proposed architecture with

the experimental results that follow. In the next section, we detail the implementation workflow,

training setup, and evaluation methodology. We also present comparative results against established

baselines, offering insights into the model’s real-world applicability and its capacity to generalize

across diverse document formats.
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Chapter 4

Experiments

4.1 Introduction

This section presents a comprehensive evaluation of our proposed hybrid architecture, which

integrates a Vision-Mamba encoder into the DETR framework for table structure recognition and

detection. The goal of these experiments is to rigorously assess the effectiveness, robustness and

efficiency of the model under various conditions, and to compare its performance against state-of-

the-art methods.

We begin by outlining the experimental setup, including dataset usage, training schedule, and

evaluation protocol. This is followed by a summary of the datasets, with a focus on PubTables-

1M as our primary benchmark. We then present the baseline models used for comparison, briefly

describing their relevance to our task.

Next, we provide key implementation details, including model configuration, hyperparameters,

and the training environment, to support reproducibility. Finally, we describe our loss functions,

optimization strategy, and inference process used throughout the experiments.

Following this, we present experimental results on a variety of metrics and conditions. We

explore the impact of different hyperparameters and a head-to-head comparison with transformer-

based baselines. These results are analyzed both quantitatively and qualitatively to understand how

our hybrid model handles challenges such as long-range dependencies, complex table layouts, and

ambiguous structures.

Finally, we conclude this section by distilling key insights gained from the experiments. These

include an analysis of trade-offs between model complexity and accuracy, the efficiency gains achieved

through Vision-Mamba encoding, and the overall effectiveness of the hybrid design in balancing

structured reasoning with computational scalability.
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4.2 Experimental Setup

Dataset: In this work, we utilize the PubTables-1M dataset to train and evaluate our proposed

hybrid architecture for table detection and structure recognition. It was introduced by Microsoft

Research to address the limitations of previous datasets, which were either small in size, lacked

detailed annotations, or were limited in domain diversity.

Dataset Input Modality # Tables Cell Topology Cell Content Cell Location Row & Column Location Canonical Structure

TableBank [46] Image 145K ✓ ✓

SciTSR [13] PDF* 15K ✓ ✓ ✓

PubTabNet [92, 93] Image 510K ✓ ✓ ✓ ✓

FinTabNet [92] PDF* 113K ✓ ✓ ✓ ✓

PubTables-1M PDF* 948K ✓ ✓ ✓ ✓ ✓

Table 1: Comparison of crowd-sourced datasets for table structure recognition. This data was taken

from [80]

PubTables-1M is currently one of the largest and most comprehensive datasets for document-

based table extraction tasks Table 1. It provides high-quality annotations for both structural and

functional aspects of tables, enabling end-to-end training and evaluation of table extraction pipelines

across multiple subtasks. The dataset comprises over 947,000 annotated tables extracted from

approximately 460,000 document pages, making it one of the most expansive and reliable benchmarks

for evaluating deep learning models in document understanding.

Property Value

Total document pages 460,000+

Total annotated tables 947,000+

Total cells (including empty) 35 million+

Tables with structural annotations 100%

Tables with functional labels 100%

Average rows per table 9.2

Average columns per table 5.8

Average non-empty cells per table 37.1

Table 2: Summary statistics of the PubTables-1M dataset. This data was taken from [80]

Given the reliance of our model on capturing both global layout and fine-grained cell structure,

PubTables-1M enables a realistic and challenging testbed to validate the architecture’s ability to

handle high variability in table styles, as found across academic documents Table 2.
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Baseline Methods: To evaluate the effectiveness of our proposed hybrid architecture, we com-

pare it against two strong baseline methods commonly used in table detection and structure recog-

nition tasks:

Faster R-CNN and DETR. Faster R-CNN is a two-stage object detection framework that first pro-

poses candidate regions using a Region Proposal Network (RPN), followed by a second-stage classifier

and regressor for object recognition and bounding box refinement.

DETR (DEtection TRansformer) is a transformer-based end-to-end object detection model that

replaces hand-crafted components with a set-based prediction approach. It eliminates the need for

region proposals and post-processing steps such as non-maximum suppression by learning a direct

mapping between object queries and targets through bipartite matching.

DETR serves as a natural baseline for our hybrid model, as we retain its decoder while replacing

the transformer encoder with a Vision-Mamba encoder. These baselines enable a fair comparison in

terms of both detection accuracy and computational efficiency, allowing us to isolate the contribu-

tions of our encoder modification.

Implementation Details: All experiments were conducted on a Linux workstation equipped

with two NVIDIA RTX A4500 GPUs (20 GB VRAM each) and 256 GB of system RAM. To ensure

a fair comparison, we adhered to the official dataset splits and experimental configurations used

by baseline models. The PubTables-1M dataset is partitioned into three subsets: a training set

containing approximately 900K tables extracted from 420K pages, a validation set with 24K tables,

and a test set comprising 23K tables.

Our hybrid model was implemented using the PyTorch framework. The encoder consists of two

layers of Vision-Mamba, each with a hidden dimension of 256. We trained the model for 20 epochs

using the AdamW optimizer [57], with a learning rate of 1e-4 and a weight decay of 1e-4. A dropout

rate of 0.1 was applied uniformly across all datasets and model layers.

For supervision, we employed a combination of loss functions: cross-entropy loss for classification

and a composite loss for bounding-box regression, consisting of L1 loss and generalized intersection

over Union (GIoU) loss. These losses are combined using the set-based matching strategy from

DETR, enabling effective end-to-end optimization.

4.3 Experiments and Results

Motivation. While transfer learning via pre-training and fine-tuning has become a widely adopted

strategy in computer vision and document understanding tasks, its effectiveness is often contingent

on the alignment between the pre-training domain and the downstream task. In the context of table

structure recognition, many existing pre-trained models are either trained on natural image datasets
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(e.g., ImageNet) or general document layouts, which may not capture the unique structural patterns,

layout semantics, and visual grammar inherent in scientific tables extracted from PDF documents.

The PubTables-1M dataset provides a large-scale annotated corpus specifically curated for table

structure recognition. Its high-quality annotations include cell-level boundaries, content, and logi-

cal structure—offering a comprehensive supervision signal tailored to the nuances of tabular data.

Training our model architecture from scratch on this domain-specific dataset ensures that the model

learns inductive biases and feature representations directly from the task-relevant distribution, with-

out being constrained by the potentially misaligned pre-training objectives or architectures designed

for unrelated domains.

Moreover, our proposed hybrid architecture introduces novel design elements—such as the inte-

gration of state space models with vision-specific encoders—that differ significantly from conventional

transformer-based or CNN-based backbones. Relying on pre-trained weights from fundamentally dif-

ferent architectures may impede convergence or lead to suboptimal performance. By training from

scratch, we allow the model to fully exploit the design space of our architecture and adapt it specif-

ically to the characteristics of the PubTables-1M dataset, leading to better generalization on table

parsing tasks.

Ultimately, training from scratch offers the dual advantage of architecture-aligned representation

learning and dataset-specific optimization, enabling a fair and principled evaluation of our proposed

model’s capabilities in extracting table structure information from complex, real-world documents.

Metrics. Since our task is table detection and table structure recognition, we use the metrics

Average Precision (AP) and Average Recall (AR) to evaluate our model’s performance.

In the context of table detection, these metrics assess how accurately the model can identify

and localize entire tables within a document. AP50 serves as a tolerance-based indicator of correct

detection, while AP75 requires stricter alignment, ensuring that the predicted bounding boxes closely

match the ground truth.

For structure recognition, where the task involves identifying and localizing fine-grained compo-

nents such as rows, columns, and cells, AR becomes particularly important. A high recall indicates

that the model successfully captures the majority of table structure elements, which is crucial for

downstream tasks like table parsing and reconstruction.

Using AP and AR metrics allows us to comprehensively evaluate both the precision and com-

pleteness of detections across varying levels of strictness, enabling fair comparison with existing

models and robust benchmarking on PubTables-1M and similar datasets.

Average Precision (AP)

Average Precision (AP) measures the area under the precision-recall curve, summarizing the

trade-off between precision and recall across varying confidence thresholds. It is defined as:
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AP =

∫ 1

0

p(r) dr

where p(r) is the precision as a function of recall r. In practice, AP is often approximated using

discrete recall levels and computed using either 11-point interpolation or COCO-style evaluation,

which averages precision at multiple Intersection over Union (IoU) thresholds.

AP@50 (AP50) and AP@75 (AP75)

AP@50 and AP@75 are specific instances of AP computed at fixed IoU thresholds:

• AP@50 evaluates the average precision at an IoU threshold of 0.50, indicating a moderate

match between predicted and ground-truth boxes.

• AP@75 uses a stricter threshold of 0.75, requiring more precise localization of detected regions.

Formally, for a given IoU threshold Ä :

AP@Ä =
1

N

N
∑

i=1

Precisioni where IoUi g Ä

Average Recall (AR)

Average Recall (AR) measures the mean recall across a range of IoU thresholds and detection

limits. It provides insight into the model’s ability to detect all relevant objects. It is calculated as:

AR =
1

T

∑

Ä∈T

Recall(Ä)

where T is the set of IoU thresholds, typically from 0.50 to 0.95 in increments of 0.05. Higher

AR values indicate the model’s effectiveness in capturing all relevant structural components within

tables.

4.3.1 Performance Analysis

4.3.1.1 Quantitative Results: Table Detection Task

The table detection task forms a foundational step in document parsing pipelines, as accurate

localization of tabular regions is a prerequisite for downstream structure recognition and content

extraction. In this section, we present a detailed quantitative evaluation of our proposed hybrid

model against two widely adopted baselines—DETR and Faster R-CNN—using standard detection

metrics: Average Precision (AP), AP at IoU thresholds 0.5 (AP50) and 0.75 (AP75), and Average

Recall (AR). All models are evaluated on the PubTables-1M benchmark dataset under identical

conditions to ensure fairness.
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Model AP AP50 AP75 AR

Faster R-CNN 0.825 0.985 0.927 0.866

DETR 0.966 0.995 0.988 0.981

Tramba 0.962 0.995 0.992 0.977

Table 3: Performance comparison on the table detection task.

Metric-Wise Comparison Table 3 summarizes the performance of the three models on the table

detection task. Our model achieves an overall AP of 0.962, which is on par with DETR (0.966) and

significantly outperforms Faster R-CNN (0.825). While DETR slightly edges out our model on the

AP metric, the difference is marginal (0.004 absolute). Notably, at AP75—a stricter criterion for

localization precision—our model achieves the highest score of 0.992, surpassing both DETR (0.988)

and Faster R-CNN (0.927). This highlights our model’s superior ability to tightly align predicted

bounding boxes with ground truth annotations.

In terms of recall, our model records an AR of 0.977, again closely matching DETR (0.981)

and outperforming Faster R-CNN (0.866) by a significant margin. High AR scores indicate the

model’s capability to detect nearly all table instances with minimal false negatives, a critical factor

for ensuring completeness in document parsing pipelines.

Interestingly, all models converge at AP50, achieving a near-perfect score of 0.995 (DETR and

our model) and 0.985 (Faster R-CNN). This suggests that while coarse localization is handled well

across models, the differentiating factor lies in fine-grained precision, where our model demonstrates

competitive, if not superior, performance.

Model Behavior under IoU Thresholds The behavior of a detection model under varying

Intersection over Union (IoU) thresholds is indicative of its localization robustness. A model that

performs well at lower thresholds may still struggle with precise alignment, whereas a high AP75

implies that predictions are tightly bound to the actual table regions.

In this regard, our model, Figure 6 demonstrates exceptional performance, with an AP75 of

0.992—the highest among all three. This suggests that our Vision Mamba-based encoder contributes

positively to modeling long-range visual dependencies and spatial context, enabling more precise

boundary estimation. DETR also performs well at AP75 (0.988), benefiting from its transformer-

based global reasoning. However, Faster R-CNN trails notably, reinforcing that region-based meth-

ods may falter in complex document layouts where contextual cues play a larger role.

The negligible gap between AP and AP75 in our model (0.962 vs. 0.992) is particularly notewor-

thy. It implies that a large fraction of our detections are not just correct, but also highly accurate
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Figure 6: Evaluation metrics on detection task

in terms of spatial overlap—a desirable trait when tight box alignment is critical for downstream

structural segmentation.

Efficiency Level Comparison In addition to accuracy, the efficiency of a model—both in terms

of training convergence and architectural complexity—is essential for real-world deployment. Table 4

presents an ablation of our model’s performance across different training epochs. At just 10 epochs,

our model already achieves an AP of 0.950 and an AR of 0.970, with strong AP75 performance

(0.988). By 20 epochs, the model converges to 0.956 AP and 0.977 AR—values that are nearly

indistinguishable from the results of full baseline models.

Model (Epoch) AP AP50 AP75 AR

Tramba (10 epochs) 0.950 0.985 0.988 0.970

Tramba (15 epochs) 0.952 0.990 0.990 0.973

Tramba (20 epochs) 0.962 0.995 0.992 0.977

Table 4: Epoch-wise convergence of our model on the detection task.

What makes this convergence particularly significant is the architectural configuration. While

DETR and Faster R-CNN were trained with 6 encoder and 6 decoder layers, our model was trained

using only 2 encoder and 2 decoder layers, yet it manages to achieve near-equivalent or superior
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detection performance. This not only indicates better learning efficiency but also reflects the archi-

tectural advantages introduced by the Vision Mamba encoder, which leverages bidirectional State

Space Models for efficient long-range sequence modeling.

The rapid convergence of our model within just 20 epochs and with reduced model depth demon-

strates a favorable accuracy-efficiency trade-off. It implies that our approach can be trained faster,

deployed with lower memory overhead, and scaled more easily—all without sacrificing detection

quality. In high-throughput document processing systems, where inference time and compute cost

are bottlenecks, such lightweight yet high-performing models are invaluable.

4.3.1.2 Quantitative Results: Table Structure Recognition Task

Table structure recognition poses a considerably greater challenge than table detection. While

detection is primarily concerned with identifying and localizing bounding boxes around tabular

regions, structure recognition requires fine-grained understanding of the internal organization of

these tables — including rows, columns, and cell boundaries. This task becomes more complex

when dealing with varied document layouts, cell spanning behavior, and implicit structural cues

(e.g., alignment, whitespace, visual dividers). In this section, we evaluate the performance of our

hybrid model on this task, comparing it with two established baselines: Faster R-CNN and DETR,

using Average Precision (AP), AP at IoU thresholds of 0.5 (AP50) and 0.75 (AP75), and Average

Recall (AR) as evaluation metrics.

Model AP AP50 AP75 AR

Faster R-CNN 0.722 0.815 0.785 0.762

DETR 0.912 0.971 0.948 0.942

Tramba 0.774 0.940 0.852 0.845

Table 5: Performance comparison on the table structure recognition task.

Structural AP/AR Metrics As presented in Table 5, our model achieves an AP of 0.774 and

an AR of 0.845 on the structure recognition task. This is a clear improvement over Faster R-CNN,

which achieves an AP of 0.722 and AR of 0.762. Our model also demonstrates significantly stronger

localization precision, recording an AP75 of 0.852 — notably higher than Faster R-CNN’s 0.785.

This gap suggests that our architecture is better suited for capturing nuanced table structures,

especially in documents with complex or less regular layouts.

However, DETR remains the top-performing model in this task, achieving an AP of 0.912 and

an AR of 0.942. Its high AP75 (0.948) indicates strong capability in precise boundary alignment for
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structure components. Our model, while competitive, does fall short of matching DETR’s absolute

performance. This performance gap is attributable to several important factors. Most significantly,

our model was trained with only 2 encoder and 2 decoder layers, while DETR was trained

with 6 encoder and 6 decoder layers, giving it a much deeper capacity for feature abstraction

and spatial reasoning.

Furthermore, the table structure recognition dataset used in this task is considerably larger

and more complex than the detection dataset. This magnifies the impact of architectural depth

and training resources. While our model demonstrates strong generalization and outperforms a

traditional detection-based pipeline like Faster R-CNN, it does not yet fully close the performance

gap with DETR in structure-level parsing.

Model Strengths in Fine-Grained Detection Despite being constrained in architectural depth,

our model shows considerable strength in localizing fine-grained table components. The Vision

Mamba encoder, with its bidirectional state-space modeling capability, contributes significantly to

this performance by efficiently capturing long-range contextual dependencies in both forward and

backward directions. This allows the model to better understand structural patterns in documents,

such as aligned rows, equally spaced columns, and hierarchical cell groupings.
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Figure 7: Evaluation metrics on structure recognition task

This capability becomes particularly valuable in cases involving spanning cells, nested tables, or

soft layout cues (e.g., white space-based cell separation). Figure 7 the AP75 of 0.852 — substantially

higher than Faster R-CNN — reflects this ability to localize structure elements with high precision.

Additionally, the relatively small drop from AP50 (0.940) to AP75 (0.852) further suggests that a
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majority of the structure predictions made by our model are not just correct in terms of coverage

but also tightly aligned with ground truth annotations.

Even though DETR outperforms our model across all structure metrics, our results affirm that

Vision Mamba’s sequence modeling architecture holds promise for fine-grained layout understanding,

especially given that our model achieves these results using one-third of the layers and a fraction of

the training compute.

Cross-Task Performance and Correlation The relationship between detection quality and

structure recognition performance is also evident in our results. In the previous section, we showed

that our model performs strongly in table detection (AP = 0.962), indicating that it provides reliable

input regions for structure parsing. This high detection accuracy clearly contributes to robust

performance in the structure task, with AR reaching 0.845.

That said, structure recognition does not solely depend on detection quality. While good bound-

ing boxes are essential, structure recognition requires additional modeling of intra-table relationships.

Our results suggest that even with high detection performance, limitations in model depth restrict

the ability to fully parse structural components, especially in long or irregular tables. Nonetheless,

the consistency in AP/AR progression across both tasks indicates that the Vision Mamba backbone

is capable of learning transferable features that benefit both detection and structure segmentation.

Moreover, the fact that our model performs relatively well despite having significantly fewer

parameters and shallower architecture demonstrates that performance improvements in structure

recognition are not purely tied to model size. This opens up an important avenue for further

exploration: scaling Vision Mamba-based models with deeper encoders and decoders, or hybridizing

Mamba with attention-based modules to better handle varying table configurations.

Training Convergence and Efficiency To understand the convergence behavior of our model,

we present its epoch-wise performance in Table 6. At just 10 epochs, the model achieves an AP of

0.685 and AR of 0.720. By 15 epochs, the AP climbs to 0.772 and AR to 0.846 — effectively nearing

the final 20-epoch performance. At 20 epochs, the model plateaus at an AP of 0.774 and AR of

0.845.

Epoch AP AP50 AP75 AR

Tramba (10 Epochs) 0.685 0.782 0.754 0.720

Tramba (15 Epochs) 0.772 0.938 0.846 0.846

Tramba (20 Epochs) 0.774 0.940 0.852 0.845

Table 6: Epoch-wise convergence of our model on structure recognition.
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This rapid convergence reinforces the strength of the underlying Mamba encoder in learning

document structure patterns with relatively few training iterations. Importantly, even by epoch 15,

the model is already outperforming Faster R-CNN across all metrics, showing that with sufficient

architectural design, shallow models can outperform deeper but less context-aware baselines.

The relatively early convergence also points to computational efficiency, making our approach

suitable for deployment in low-resource environments or large-scale document processing systems.

Given that the model achieves near-peak performance within 15 epochs and without extensive ar-

chitectural depth, it can serve as a strong foundation for further fine-tuning, multi-task integration,

or semi-supervised extensions.

In summary, our hybrid Vision Mamba-based model achieves robust performance in the table

structure recognition task, outperforming Faster R-CNN significantly and showing promising results

when compared to DETR. The bidirectional context modeling of Mamba enables strong structural

alignment, especially at higher IoU thresholds. However, due to resource limitations, we trained a

smaller model which limited the full realization of its potential.

The current findings suggest that even a shallow Vision Mamba encoder can deliver competitive

structure recognition performance. With deeper configurations and additional training compute, it

is plausible that this architecture could surpass DETR in structure-level tasks. Future work will

focus on scaling the model depth, introducing architectural enhancements like multi-scale fusion or

attention-SSM hybrids, and evaluating performance on more diverse real-world document collections.

4.3.1.3 Qualitative Analysis and Visual Comparisons

Visual Examples To better illustrate the comparative behavior of our model and the DETR

baseline, we present a set of qualitative results on a shared document sample. The examples include

visualizations from both the table detection and table structure recognition tasks.

In the DETR output image Figure 8, we observe that the model performs strong table localiza-

tion, correctly identifying the bounding box around the tabular region with tight alignment. Also,

the structure recognition part classifies the complex table structures correctly, making it a strong

benchmark for such comparisons.

In our work, the table detection output Figure 9, from our model, shows equally accurate bound-

ary localization. The detected bounding box tightly encloses the table, with high spatial fidelity to

the ground truth. Also, it can successfully detect multiple tables on a page.

More importantly, our model’s structure recognition output, Figure 10, demonstrates cleaner

segmentation. Rows are consistently aligned, and columns are distinctly partitioned without visible

overflow. The model captures spanning cells effectively, preserves hierarchical structure, and avoids

collapsing neighboring cells. This suggests that the bidirectional state-space modeling offered by
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Figure 8: DETR results on real-world cases. This figure was taken from [80]

Figure 9: Detection results of our model on real-world cases

43



the Vision Mamba encoder helps encode both fine-grained local cues and long-range structural

dependencies.

Figure 10: Structure recognition results of our model on real-world cases

These qualitative examples affirm that despite having a shallower architecture, our model is

capable of producing cleaner and more coherent structural segmentation in certain real-world cases,

especially where layout complexity and cell variability are high.

Failure Cases While our model demonstrates strong performance across both detection and struc-

ture recognition tasks, it is not without limitations. A closer examination of certain failure cases,

Figure 11, reveals areas where the model underperforms, particularly in the structure recognition

task. As illustrated in the examples above, one consistent pattern involves the model’s difficulty

in accurately localizing column headers — especially in tables with complex multi-row headers or

irregular alignment.

In the first failure case, although the overall table is correctly detected and most cells are properly

segmented, the column header rows are either partially missed or merged into a single bounding

box. This results in downstream mislabeling of column positions and can significantly impact table

interpretation, especially in scientific documents where headers convey categorical hierarchies.

In contrast, DETR Figure 8 appears to handle such scenarios more gracefully. Its transformer-

based encoder, with deeper contextual modeling, is able to separate column header regions with

better granularity. This allows DETR to assign cleaner and more distinct boundaries to multilevel

headers, which our model sometimes merges due to its reduced depth and lack of explicit multi-scale

reasoning.

These cases highlight the limitations of shallow architectures when dealing with hierarchical
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Figure 11: Failed cases in some real-world scenarios

structure. They suggest a potential future direction involving adaptive scaling or specialized header-

aware modules to better handle structured semantic zones within tables.

4.3.2 Overall Summary and Experimental Outcome

Our experimental analysis provides a multifaceted understanding of how architectural modifi-

cations — specifically the integration of a Vision Mamba encoder into a DETR-style pipeline —

influence performance across document-level table detection and structure recognition tasks. The

results reveal a nuanced performance landscape shaped by trade-offs between model depth, structural

precision, and training efficiency.

From a holistic standpoint, our model demonstrates that substantial performance gains can be

achieved even with shallower architectures, as long as the inductive biases are closely aligned with

the structure of the task. By leveraging the bidirectional sequence modeling capabilities of Vi-

sion Mamba, our hybrid architecture delivers high-quality table detection and structure recognition

results. Notably, it surpasses the performance of Faster R-CNN and achieves results competitive

with full DETR models, while utilizing only one-third of the encoder-decoder layers and requiring

significantly fewer training epochs. This efficiency highlights the model’s suitability for resource-

constrained environments where deploying full-scale transformer stacks is impractical, without com-

promising on accuracy or generalization.

In structure recognition, while DETR maintains its advantage due to greater representational

depth, our model consistently outperforms traditional region-based frameworks such as Faster R-

CNN. More importantly, it achieves this while remaining robust to layout noise and variable struc-

tural patterns — an essential trait for real-world deployment. This outcome affirms the architectural

45



value of Mamba’s state-space formulation, especially in modeling the hierarchical and long-range re-

lationships intrinsic to table layouts.

Qualitative results further support this view, highlighting the model’s strengths in preserving row-

column integrity, while also exposing areas such as column header parsing that remain challenging.

These insights do not point to fundamental flaws but instead serve as informed boundaries —

indicating where future research can yield the most impact.

Taken together, our experiments underscore the viability of moving beyond attention-centric

models in vision-based document understanding. By coupling lightweight yet expressive encoders

with modular detection-decoder pipelines, we open up a design space that balances precision, gener-

alization, and efficiency. The strong empirical foundation laid by our work provides ample direction

for future research, particularly in scaling Mamba-based hybrids, integrating hierarchical priors, and

advancing table parsing toward end-to-end semantic extraction.
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Chapter 5

Conclusion and Future Work

In this chapter, we summarize the contributions made by the thesis, analyze its limitations, and

outline potential avenues for future research. The research presented in this thesis addresses the

growing demand for computationally efficient yet effective deep learning architectures for structured

document understanding. By exploring hybridization between transformer-based models and state-

space models like Vision Mamba, the proposed work demonstrates a promising direction in rethinking

the backbone of modern vision architectures. The conclusions drawn are based on extensive empirical

evaluation and architectural innovations, and they collectively form a foundation for further studies

in this evolving space.

5.1 Contributions of the Thesis

This thesis proposes and evaluates a novel hybrid architecture for table understanding tasks,

specifically targeting table detection and table structure recognition. The central contribution lies

in the integration of Vision Mamba into the Detection Transformer (DETR) pipeline, replacing

the conventional transformer encoder with a Mamba-based encoder-decoder framework. Through

this architectural shift, we examine the potential of state-space models in structured vision tasks

traditionally dominated by attention mechanisms.

To assess the effectiveness of the proposed framework, a series of experiments were conducted

on the PubTables-1M dataset. The experiments demonstrate that the Mamba-based model achieves

performance that rivals transformer-based counterparts like DETR while significantly outperforming

classical architectures such as Faster R-CNN. For the table detection task, our model trained with

only 10 epochs achieves an Average Precision (AP) of 0.950 and Average Recall (AR) of 0.970,

exceeding the performance of Faster R-CNN (AP: 0.825, AR: 0.866) and closely matching DETR

(AP: 0.966, AR: 0.981). Furthermore, with 20 epochs of training, the AP and AR metrics for
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the Mamba model reach 0.956 and 0.977, respectively—essentially indistinguishable from DETR’s

results.

In the table structure recognition task, although the Mamba-based model does not surpass

DETR, it still yields competitive results while outperforming Faster R-CNN. Specifically, a 20-

epoch Mamba model achieves an AP of 0.774 and AR of 0.845, in comparison to DETR’s AP of

0.912 and AR of 0.942. This suggests that even with reduced model depth and limited training

epochs, the proposed hybrid architecture remains highly competitive.

Importantly, our Mamba-enhanced DETR architecture utilizes only 2 encoder and decoder layers,

in stark contrast to the 6 layers employed by the original DETR configuration. This structural

simplification, along with faster convergence observed during training, signifies the computational

efficiency gained through the Vision Mamba integration. Notably, our architecture achieved near-

saturation performance with just 10 training epochs, suggesting that Mamba’s input-dependent and

hardware-efficient design can enable quicker training and inference cycles.

Beyond empirical results, this thesis contributes to the theoretical understanding of integrating

state-space models into transformer-style pipelines for vision tasks. We demonstrate that Mamba’s

ability to model long-range dependencies through linear-time recurrence mechanisms can be syn-

ergistically combined with the decoder-based object query formulation from DETR. This hybrid

approach leverages the strengths of both paradigms—efficient sequence modeling from Mamba and

global object reasoning from transformers.

The research also presents a new perspective on designing scalable vision architectures. Rather

than relying exclusively on deep and complex transformer stacks, our work showcases that shallow

Mamba-based encoders can achieve comparable results, indicating a promising direction for building

more efficient vision models with fewer parameters and lower computational costs.

5.2 Limitations

Despite the encouraging outcomes, the proposed framework has several limitations that merit

critical reflection. These limitations not only delineate the boundaries of our current implementation

but also illuminate directions for future work.

First, due to limited computational resources, our model was trained using only 2 encoder and

decoder layers, whereas the standard DETR architecture typically utilizes 6 layers in both encoder

and decoder stacks. While the results with 2 layers were competitive, it is reasonable to hypothesize

that performance could further improve with deeper architectures, particularly in the structure

recognition task where DETR still holds a significant advantage.

Second, although our model converged faster—achieving strong performance within 10 epochs—the
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inability to conduct extended training schedules due to computational constraints might have hin-

dered the architecture’s full potential. Training the model for more epochs or incorporating a more

extensive hyperparameter sweep could lead to better generalization and improved performance across

tasks.

Third, the evaluation was limited to the PubTables-1M dataset and focused solely on table de-

tection and structure recognition tasks. While these tasks are representative of structured document

understanding, the generalizability of the proposed hybrid architecture to other visual document un-

derstanding tasks (e.g., form field extraction, key-value pair detection) remains unverified. Future

work must evaluate the adaptability of the proposed model across diverse document understanding

benchmarks to validate its robustness and versatility.

Fourth, although Mamba offers linear-time complexity in theory, its implementation remains non-

trivial and still exhibits considerable computational overhead in practice. Specifically, the operations

involved in selective scanning and input-dependent parameterization, while more efficient than self-

attention, are still resource-intensive when scaled to high-resolution inputs. This challenges the

perception of Mamba as a lightweight model and calls for further engineering optimization to make

it truly deployable in low-resource or real-time environments.

Additionally, the current model does not address dynamic or streaming visual inputs. Vision

Mamba and DETR were originally designed for static images, and extending this work to handle

temporally evolving data (e.g., document sequences or videos) would require architectural modifi-

cations and temporal consistency mechanisms. This represents another avenue where the model’s

applicability is currently constrained.

Interpretability also remains a concern. Like many deep learning architectures, the decision-

making process of the proposed hybrid model lacks transparency. Understanding which components

contribute most to prediction outcomes, and under what circumstances, remains a challenge. This is

particularly important for sensitive applications in domains like finance, healthcare, or legal analysis,

where model decisions must be interpretable and auditable.

Finally, while this work successfully demonstrates a proof-of-concept for integrating Vision Mamba

into the DETR pipeline, it stops short of establishing a full theoretical framework or formal analysis.

A more rigorous theoretical characterization of how Mamba’s state-space dynamics interact with the

attention mechanisms of the DETR decoder could uncover deeper insights and lead to even more

optimized hybrid architectures.

These limitations, while notable, do not undermine the value of the proposed research. Instead,

they offer fertile ground for future exploration and refinement. As discussed in the next section,

extending the model’s depth, breadth of evaluation, and architectural sophistication holds promise
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for advancing both the performance and applicability of hybrid vision models in document under-

standing.

5.3 Future Work

While the proposed hybrid architecture demonstrates promising results in table detection and

structure recognition, several directions remain unexplored that could further enhance its capabil-

ities and broaden its applicability. Future work will focus on integrating vision-language modeling

through Large Language Models (LLMs), extending the architecture to complex domains like medical

document processing, and deploying the model in real-world applications that demand multimodal

reasoning and robust generalization. These avenues offer the potential to elevate both the semantic

understanding and practical impact of hybrid architectures. Several interesting research directions,

motivated by this thesis, are discussed below:

5.3.1 Hybrid Vision-Language Architectures with LLM Integration

The convergence of computer vision and large language models (LLMs) has given rise to a new

class of hybrid architectures capable of performing complex multimodal reasoning. These models

combine the visual perception capabilities of deep vision encoders with the generative and semantic

understanding strengths of LLMs, enabling systems to process, interpret, and respond to richly

structured visual and textual data. This fusion has proven especially beneficial in domains like

document analysis, robotics, medical diagnostics, and scientific literature understanding, where high-

level reasoning must be grounded in visual evidence.

Building upon the modularity of our proposed DETR-Mamba hybrid architecture, integrating

an LLM component into the decoding pipeline presents a promising extension. In this configura-

tion, the Vision Mamba encoder could extract rich spatial and structural representations from input

documents or images, while the LLM could generate textual outputs such as captions, summaries,

answers to queries, or relational inferences. This architecture would allow for natural language inter-

faces over structured visual content, enabling intuitive and interpretable downstream applications

such as visual question answering (VQA), document grounding, or regulatory compliance checking.

Beyond enhanced expressiveness, the modular hybrid design offers advantages in training ef-

ficiency and adaptability. Vision components can be fine-tuned on domain-specific visual tasks,

while the language model remains pretrained and fixed, reducing compute cost and overfitting risk.

Moreover, aligning transformer-free models like Mamba with transformer-based LLMs opens new

opportunities for latency-aware deployment, especially in edge or cloud environments where compute

constraints vary. This synergy sets a compelling precedent for developing scalable, intelligent, and
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language-accessible AI systems.

5.3.2 Medical Document Processing and Multimodal Reasoning

Recent advances in vision-language modeling have significantly improved the capacity to extract

structured information and enable domain-specific reasoning from complex multimodal data. No-

tably, the Med-R1 framework introduces a reinforcement learning-enhanced VLM capable of high

generalization across diverse medical imaging modalities such as CT, MRI, and Ultrasound, and

across tasks like lesion grading and anatomy identification. Instead of relying on large-scale super-

vised fine-tuning, Med-R1 employs Group Relative Policy Optimization (GRPO), enabling scalable

reward-guided learning even in the absence of high-quality Chain-of-Thought annotations. This

approach reduces reliance on costly expert annotations while boosting clinical coherence and inter-

pretability.

This line of work aligns well with the possibilities explored in our research. Specifically, our

hybrid DETR-Mamba-based architecture provides a foundation for extending structured information

extraction beyond visual tasks into multimodal domains like healthcare, where visual content (e.g.,

medical scans, histopathology images) must be fused with textual descriptions or EHR narratives.

Integrating reinforcement-driven optimization into our framework could enhance generalization in

clinical settings, particularly for downstream tasks such as form parsing, patient case triaging, and

anomaly detection in longitudinal medical records.

Furthermore, by drawing inspiration from Med-R1’s strategy of “No-Think” inference—which

emphasizes direct, high-confidence predictions without verbose reasoning—we may adapt our sys-

tem for medical scenarios where interpretability and reliability are paramount. Combining our

encoder-decoder vision architecture with lightweight RL-driven language modules opens a path-

way for efficient multimodal document parsing and VQA in digital health, providing a compelling

direction for real-world medical AI systems.

5.3.3 Applications

The hybrid architecture proposed in this thesis opens up several promising avenues for real-world

deployment and integration across various industries. One significant direction is the extension of

this model into a vision-language architecture by incorporating large language models (LLMs). This

integration would enable multimodal understanding of complex documents, facilitating tasks such

as key information extraction, natural language summarization of tabular data, and end-to-end

document question answering systems. Such capabilities are especially valuable in legal, financial,

and healthcare sectors where structured and unstructured data coexist.
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Moreover, the lightweight yet powerful nature of the proposed architecture makes it suitable for

processing large volumes of industrial documents at scale. Enterprises dealing with massive data

streams—such as manufacturing companies, logistics providers, and data centers—can leverage this

model for automated document classification, invoice parsing, and intelligent form analysis, thereby

improving operational efficiency.

Other potential applications of this work include integration into edge devices for on-site docu-

ment processing, deployment within smart OCR pipelines in enterprise-level software, and real-time

document analytics in cloud-based platforms. In collaboration with ERA Environmental Soft-

ware Solutions, this architecture is being explored for industrial use in automating complex doc-

ument workflows, such as regulatory compliance and material safety data extraction. With further

refinement, the proposed hybrid model has the potential to serve as a foundational component for the

next generation of document AI systems—offering a compelling combination of scalability, efficiency,

and cross-modal reasoning. We also plan to publish this work in a computer vision or document

intelligence conference, further contributing to the academic and applied research communities.
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