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Abstract

Evaluating the Use of LLMs for Automated Resolution of Web Performance Issues

Gideon Peters

Concordia University, 2025

Users demand fast, seamless webpage experiences, yet developers often struggle to meet these expectations
within tight constraints. Performance optimization, while critical, is a time-consuming and often manual
process. One of the most complex tasks in this domain is modifying the Document Object Model (DOM),
which is why this study focuses on it. Recent advances in Large Language Models (LLMs) offer a promising
avenue to automate this complex task, potentially transforming how developers address web performance
issues. This study evaluates the effectiveness of nine state-of-the-art LLMs for automated web performance
issue resolution. For this purpose, we first extracted the DOM trees of 15 popular webpages (e.g., Facebook),
and then we used Lighthouse to retrieve their performance audit reports. Subsequently, we passed the
extracted DOM trees and corresponding audits to each model for resolution. Our study considers 7 unique
audit categories, revealing that LLMs universally excel at SEO & Accessibility issues. However, their efficacy
in performance-critical DOM manipulations is mixed. While high-performing models like GPT-4.1 delivered
significant reductions in areas like Initial Load, Interactivity, and Network Optimization (e.g., 46.52% to
48.68% audit incidence reductions), others, such as GPT-40-mini, notably underperformed, consistently.
A further analysis of these modifications showed a predominant additive strategy and frequent positional
changes, alongside regressions particularly impacting Visual Stability. Our study highlights LLMs’ clear
feasibility in web performance engineering workflows, particularly for semantic concerns. However, it
critically underscores the need for careful model selection, understanding their specific modification patterns,

and robust human oversight to ensure reliable web performance improvements.
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Chapter 1

Introduction and Research Statement

1.1 Introduction

Web applications have become one of the primary ways users consume content on the internet [1]].
Therefore, the importance of performant web applications cannot be overemphasized [2]. A webpage’s
performance is a core nonfunctional requirement, as it impacts the overall user experience, engagement, and
conversion ratios [34]]. As such, web performance engineering remains an unnegotiable component of the
web development process. It requires a deep understanding of both the browser engine and application use
cases [S]]. Performance optimization involves various considerations including hardware (CPU and memory
usage), server (API response times), and client-side factors (DOM size, image optimizations, on-demand
loading, and omni-channel experience) [6} [7].

This thesis focuses on the client-side, specifically the Document Object Model (DOM), which is central
to how browsers interpret, render, and interact with webpages [I8,19]. The DOM also significantly impacts
hardware and server performance—complex DOM structures increase CPU and memory usage, slowing
performance—especially on resource-limited devices. Additionally, large DOM payloads can strain server
response times [6, (7, [10]. Optimizing the DOM is challenging [[11], requiring detailed analysis and targeted
modifications to balance functionality and performance. Traditionally, addressing DOM inefficiencies has
relied on manual interventions and automated tools with limited scope [12]. However, the growing complexity
of web applications demands more sophisticated solutions [1]].

Large Language Models (LLMs) present a promising approach to address these challenges. They have

transformed numerous software engineering tasks by leveraging their ability to understand and generate human-



like text [13} 14} [15]. Trained on massive corpora, including HTML documents from public repositories,
LLMs are uniquely positioned to tackle challenges in web development [[16, [17]]. Their applications extend
beyond code generation to include tasks like web security [[18]], automated testing [[19]], and accessibility
improvements [20]. However, the effectiveness of LLMs for web performance optimization, particularly in
modifying the DOM to address performance issues, has not yet been systematically explored.

To fill this knowledge gap, we aim to explore the usefulness and challenges of using LLMs for automating
web performance resolutions. For this purpose, we extract the DOM trees of 15 popular webpages, and we
generate audit reports for these extracted DOM trees. We then assess the effectiveness of nine state-of-the-art
LLMs, including GPT-4.1, Claude 3.7 Sonnet, DeepSeek R1 & V3, and GPT-40-mini—to resolve these
audits by passing the audit along with the DOM tree to the model. Finally, we generate new audit reports for
the modified DOM trees and compare the prevalence of the initial audits before and after modification. In

summary, we aim to answer the following research questions:

RQ1: How effective are LLMs for resolving web performance issues in the DOM? Performance
optimization can be tedious, requiring web developers to run performance tests, and implement
required fixes [21} [22]. We explore the ability of LLMs to resolve performance issues identified by
Lighthouse audits across 15 webpages. Our findings indicate that LLMs achieved a 100% reduction in
SEO & Accessibility issues. However, for performance-critical issues, effectiveness was mixed and
highly model-dependent, with some models showing significant gains while others notably introduced

regressions, particularly impacting visual stability.

RQ2: What is the nature of changes made by LLMs for automated web performance issue resolution?
To understand how LL.Ms modify the DOM, we analyzed differences between the original and LLM-
modified HTML pages for nine state-of-the-art models across 15 webpages. We identified modifications
including element and attribute additions, removals, type changes, and positional shifts. Most LLMs
used a predominantly additive strategy, with GPT-40-mini uniquely removing more elements than it

added. Frequent positional changes also occurred, typically at shallower DOM depths.

This thesis highlights various insights for web developers, LLM providers, and the web development
research community on the task of automating web performance issues resolution. By focusing on the
DOM-—a language-agnostic structure that all frameworks must adhere to for browser rendering, we address

performance bottlenecks at their core, independent of specific languages or frameworks. This approach enables



broader applicability and ensures solutions can be integrated into the CI/CD pipeline before production,
improving both user experience and developer efficiency by reducing iterative optimization cycles, thus saving

time for other meaningful tasks [[19].

1.2 Research Statement

Motivated by the complexity and iterative nature of web performance optimization—and the critical
importance of performance for user experience and accessibility—the goal of this MASc thesis is to investigate
whether large language models (LLMs) can reliably automate the resolution of performance issues in

real-world webpages. We state our research statement as follows:

e N
Web performance optimization is a time-consuming process requiring specialized expertise to diagnose

issues and implement precise modifications in complex DOM structures. This thesis systematically
evaluates the ability of LLMs for the automated resolution of web performance issues. Specifically,
it examines whether LLMs can resolve these issues measured by standardized audits across diverse

webpages, characterizes the types and patterns of their modifications, and assesses their reliability for

integration into automated optimization workflows.

1.3 Thesis Overview

In this section, we provide an overview of the work presented in this thesis and highlight the main themes

of each chapter.

Chapter 2: Background and Related Work

This chapter introduces key concepts and technologies foundational to this work. We begin by explaining
the Document Object Model (DOM)), its hierarchical structure, and how different node types—such as tags,
text, scripts, and stylesheets—contribute to the complexity and performance characteristics of webpages.
We discuss how DOM depth and size impact rendering efficiency and responsiveness. We then describe
the role of performance audits, focusing on Lighthouse as our primary evaluation tool. Lighthouse audits

produce structured reports with scores, descriptions, and actionable details on performance, accessibility, and



SEO. Finally, we survey prior research applying large language models to HTML understanding, web content

generation, and automated optimization, identifying gaps that motivate our research.

Chapter 3: Methodology

To rigorously evaluate whether LLMs can automate the resolution of web performance issues, we develop
a comprehensive study design. This chapter details the construction of a dataset comprising 15 production
webpages selected from the Alexa Top 500 list, reflecting diverse structures and performance profiles. We
describe our extraction of complete DOM trees, their division into manageable chunks to accommodate LLM
output constraints, and our validation process ensuring reassembly fidelity using Tree Edit Distance. We
present the criteria used to select nine diverse LLLMs varying in architecture, model size, and token limits.
Additionally, we outline our Lighthouse configuration, including filtering of audits to focus on actionable
performance issues across seven defined categories. Finally, we explain our use of the Audit Incidence Ratio

(AIR) to benchmark improvements and regressions resulting from model-generated modifications.

Chapter 4: Results

This chapter presents our quantitative assessment of LLM performance across multiple audit categories.
We find that all models demonstrate strong semantic understanding, achieving a 100% reduction in SEO
and accessibility-related issues. However, performance outcomes vary significantly across other categories.
High-performing models, such as Qwen2.5-32B-Instruct and GPT-4.1, achieve substantial improvements in
latency and resource usage, while GPT-40-Mini consistently introduces regressions in runtime and visual
stability. These results illustrate both the promise and the variability of LLMs in addressing complex
performance bottlenecks.

Additionally, to understand why different models produce divergent outcomes, this chapter analyzes the
specific DOM modifications each LLM performs. We categorize changes using structured diffs, reporting
frequencies of additions, removals, type changes, and positional reordering. We define metrics such as
the Element Addition-to-Removal Ratio (EATRR) and Positional Change Dominance (PCD) to quantify
modification strategies. Our findings show that most models adopt an additive strategy, introducing new
elements to improve performance, while GPT-40-Mini stands out for its disruptive reordering of existing

nodes. High-performing models concentrate modifications on textual changes and shallow DOM levels,



correlating with greater improvements in load times and resource efficiency.

Chapter 5: Discussion

This chapter discusses the implications of our findings for both research and practice. We first highlight
that LLMs exhibit strong capabilities in semantic enhancements, particularly for SEO and accessibility
improvements, suggesting their immediate utility for automated compliance tasks. However, we identify
pervasive challenges in maintaining visual stability, as many models inadvertently introduce layout shifts
through duplications or aggressive reordering. Our analysis shows that additive modification strategies can
contribute to DOM bloat, especially when duplicating assets like SVG paths, while disruptive strategies lead
to costly browser reflows and degraded performance. The most effective models rely on targeted textual
modifications and shallow-depth changes, such as adding defer and async attributes to script elements.
These findings underscore the need for hybrid approaches combining LLM-driven suggestions with automated
validation in CI/CD pipelines. We recommend that practitioners deploy LLMs selectively, focusing on
scenarios where their strengths are well established, and complement them with safeguards for more sensitive
performance areas. Finally, we outline opportunities for future work to enhance spatial reasoning in LL.Ms

and refine prompt engineering strategies to better control the scope of modifications.

Chapter 6: Threats to Validity

We outline limitations inherent to this thesis. Internally, model performance is sensitive to prompt
design, and our chunking approach—while necessary to fit model constraints—may result in some loss of
global context. We mitigated these risks through standardized prompts and rigorous structural validation of
reassembled DOMs. Externally, while our dataset spans diverse popular webpages and our evaluation includes
nine state-of-the-art models, results may not generalize to all types of web applications or future model
releases. Additionally, reliance on Lighthouse as the primary audit tool does not capture all user-experience

factors, suggesting the need for complementary assessments in future research.

Chapter 7: Conclusion and Future Work

Finally, this chapter summarizes the contributions of the thesis and suggests directions for continued

exploration. We conclude that LLMs show significant promise for automating aspects of web performance



optimization but require careful integration, targeted deployment, and robust validation to avoid unintended
regressions. Future work should focus on developing hybrid systems combining LLM reasoning with
deterministic checks, improving modelsaAZ hierarchical and spatial understanding of the DOM, and expanding

evaluation frameworks to incorporate direct user experience metrics and deployment considerations.

1.4 Thesis Contributions
The main contributions of this thesis are as follows:

* We conducted extensive experiments using nine LLMs on DOM trees from 15 popular webpages,
providing a comprehensive evaluation of their effectiveness in automated web performance issue

resolution.

* We provide a token-aware chunking strategy for DOM trees based on a predefined token threshold to

enable processing by LLMs for the task of web performance issue resolution.

* We identified seven distinct audit categories, and provide a detailed quantitative analysis of LLM

changes implemented with respect to these audits.

* We synthesize actionable insights and implications for web developers, LLM providers, and the research
community, guiding future development towards more robust and reliable Al-driven web performance

optimization.

» To promote the reproducibility of this thesis and facilitate future research on this topic, we publicly

share our scripts and dataset online [23]].

1.5 Related Publications

The work presented in this thesis has been submitted to the following venue for review:

* Gideon Peters, SayedHassan Khatoonabadi, and Emad Shihab. Evaluating the Use of LLMs for
Automated Resolution of Web Performance Issues. Submitted to International Conference on Software

Engineering 2026 (ICSE’26).



1.6 Thesis Organization

The rest of the thesis is organized as follows. Chapter 2] provides the necessary background for this thesis
as well as a review of related works relevant to this thesis. Then, Chapter [3| present our methodology, detailing
our quantitative evaluation of how effectively different LLMs resolve web performance issues across multiple
audit categories, and examining the nature and patterns of DOM modifications performed by these models to
understand the underlying factors contributing to their observed performance outcomes. Chapter {] highlights
our results and corresponding findings. Chapter [5|discusses the implications of this work. Chapter [6|outlines

the limitations of the thesis. Chapter [7]summarizes the thesis and discusses the key directions for future work.



Chapter 2

Background and Related Work

In this chapter, we provide an overview of the concepts and studies relevant to this thesis. First, we
introduce the fundamental principles and technologies of the DOM and web performance audits. Then, we
review related work on applying large language models (LLMs) to HTML understanding, content generation,
and automated optimization. At the end of each section, we explain how our thesis contributes to the body of

knowledge.

2.1 Document Object Model (DOM)

The Document Object Model (DOM) represents a webpage’s structure and content as a tree-like hierarchy
of nodes, where each node corresponds to an HTML element, attribute, or text [24]. This hierarchy enables
programmatic access and manipulation of webpage elements. The DOM is fundamental to web development,
allowing dynamic updates and interaction with web content. Through DOM manipulation, developers can:
(i) dynamically alter webpage structure, style, and content, and (ii) respond to user interactions. Figure
illustrates a DOM tree, showing its HTML code representation on the left and its hierarchical structure on the
right.

Key characteristics of a DOM tree include:

* Root Node: The tree begins with the <html> element as its root, which has <head> and <body> as

children.

* Parent-Child Relationships: Elements are hierarchically organized, with parent nodes containing



<html>
<head>
<title> DOM Example </title>
</head>
<body>

<head>
<header>

<hl>Welcome to My Simple
Page</hl>

</header> [
<main>

<title> ] [ <header> ] [ <main> ] [ <footer> ]

<p>This is a simple DOM
example.</p>

<a href="#" »yn
class="button">Click Me</a> [ DOM Example ] [ <hl> ] [ <p> ] <a href="# <p>
</main> class="putton”

<footer>
<p>&copy; 2025 Simple

Page</p> Welcome to My This is a simple Click Me &copy; 2025
</footer> K
</body> Simple Page DOM example Simple Page
</html>
index.html Document Object Model(DOM)

Figure 2.1: Example structure of a DOM tree

child nodes (e.g. <body> contains <header>, <main>, and <footer>).

 Sibling Relationships: Nodes at the same hierarchical level are siblings (e.g. <p> and <a> within

<main>).

Furthermore, there are various element types present in DOM trees. These element types include:

* Text: Represents textual content within HTML elements (e.g. "Hello, world!" in <p>Hello,

world!</p>).

* Comment: HTML comments, enclosed within <!- ->, provide additional context or documentation

but are not rendered in the browser.

» Tag: These are the core elements of the DOM structure, representing HTML tags like <div>, <a>,
or <table>. Each tag may have attributes (e.g., <a href="example.com">Link</a> is an element

with a href attribute that has the value example. com).
* Script: Embeds or references JavaScript (e.g. <script src="app.js"> </script>).

» Stylesheet: Represents CSS rules for styling (e.g., inline <style>p { color: red; }</style>

or externally <link rel="stylesheet" href="styles.css">).

These element types are combined in various ways across webpages [25]. In performance optimization,

DOM tree size and complexity significantly impact load time and responsiveness, as larger and more deeply



nested trees require greater computational resources [26, 27].
Our thesis leverages this understanding of the DOM to assess how LLMs can modify these structures to

address performance bottlenecks.

2.2 Performance Audits and Lighthouse

Performance audits systematically evaluate webpages to assess their performance, identify bottlenecks,
and recommend improvements [28]]. These audits aim to ensure sites meet performance goals critical to user
experience, search rankings, and business outcomes [21]].

Our work utilizes Lighthouse, an open-source Chromium-based tool developed by Google for the
measurement and improvement of webpage performance 29,130, 31]]. We selected Lighthouse due to its
extensibility and widespread community adoption [21} 2} [32]]. It analyzes webpages, generating actionable
reports on performance, accessibility, SEO, and progressive web apps. Lighthouse offers numerous
configuration flags allowing tailored audits for specific use cases, environments, or requirements.

Lighthouse audit reports include key performance metrics like First Contentful Paint (FCP), Largest
Contentful Paint (LCP), and Cumulative Layout Shift (CLS) [33} 2, 21]]. Each audit highlights an issue or
suggestion based on standard practices and is keyed by its name. An example audit structure is shown in

Listing [2.1] with the following properties:

* id: A unique identifier identical to the audit key.
* title: A brief summary of the audit’s purpose.
 description: A detailed explanation of what the audit assesses and its significance.

e score: A numeric or categorical value indicating the audit’s result (e.g. pass, fail, or needing

improvement).

* scoreDisplayMode: Denotes how the score is interpreted (e.g. informative, notApplicable,
manual, or error). We exclude audits with notApplicable, manual, and informative, or binary
scores of 1 as it indicates as a pass and these audits do not require any resolution in the DOM [33]]

unlike a binary score of 0 which indicates a needed resolution.

* displayValue: A contextual measurement supplementing the score (e.g., "2.5s" for loading time).

10



* details: Provided when an audit fails, offering insight into the issue and potential resolutions. This
may include responsible element types, value headings, or affected items like specific DOM elements,
location parameters, resource URLs, or data points. Audits with these location parameters are termed

location-specific, while those without are location-non-specific.

{
"is-on-https": {
"id": "is-on-https",
"title": "Does not use HTTPS",
"description": "All sites should be ...",
"score": O,
"scoreDisplayMode": "binary",
"displayValue": "1 insecure request found",
"details": {
"type": "table",
"headings": [{
"key": "url",
"valueType": "url",
"label": "Insecure URL"
11,
"items": [{
"url": "http://ajax.googleapis...."
]
}
1,
}TF
}

Listing 2.1: Example structure of a single Lighthouse performance audit

This thesis uses Lighthouse audits both as a benchmark to measure improvements and as a structured

reference for guiding LLM modifications.

11



2.3 LLMs for HTML Understanding

LLMs are increasingly used for HTML understanding, parsing raw HTML for tasks like web-based
automation and browser-assisted retrieval [34, |35, [19]. This capability hinges on an LLM’s understanding
of HTML’s semantic structure, tag-based syntax, and hierarchical organization (forming the DOM tree).
Beyond basic comprehension, LLLMs have demonstrated proficiency in diverse applications, including
information extraction from web pages (e.g., identifying product details or contact information) 36} [37]],
content summarization [38]], and even generating or correcting HTML snippets based on natural language
prompts [39]. Their ability to process and interpret the complex, nested structure of HTML enables them to
perform tasks that previously required specialized parsers or human intervention.

Notably, Gur et al. [34] showed that LLMs pre-trained on natural language can readily transfer to
HTML understanding, requiring minimal preprocessing for tasks like semantic classification and description
generation. This transferability underscores the generalizable pattern recognition capabilities of LLMs across
different structured data formats. However, challenges persist, particularly concerning the scalability of
processing very large and complex HTML documents within typical LLM context windows, and their inherent
limitation in directly interpreting visually dynamic content rendered by JavaScript. While LLMs excel at
understanding the static HTML structure, integrating real-time visual rendering information remains an area
of ongoing research.

This thesis builds on this by assessing how LLMs, using raw HTML, not only comprehend its structure
and semantics but also apply this understanding to resolve web performance issues. This requires a deeper,
actionable interpretation of HTML elements in context, moving beyond mere classification to resolving
performance bottlenecks like render-blocking resources or inefficient asset loading strategies. For instance,
an LLM might analyze the attributes of an <img> tag and its surrounding context to suggest optimal image
formats or lazy loading, or identify superfluous <script> tags that negatively impact page load times. This
level of interpretation demands a nuanced understanding of how individual HTML elements contribute to the
overall web rendering process and user experience.

While this prior work predominantly focuses on classification, comprehension, and general HTML
manipulation, our thesis extends this line by examining whether LLMs can translate their HTML understanding
into targeted, actionable performance optimizations, addressing a critical gap in current web development

practices.

12



2.4 LLMs for Web Customization

LLMs have emerged as powerful tools for customizing web content, extending their utility beyond mere
content generation to active manipulation of web interfaces. This capability leverages their deep understanding
of natural language combined with their ability to interpret and generate structured code like HTML, CSS,
and JavaScript.

Prior work has demonstrated several key applications in this domain. Calo and De Russis [39]] pioneered
the use of LLMs to facilitate entire website creation directly from natural language descriptions, showcasing
their robust HTML comprehension by accurately translating high-level design intents into functional web
pages. This indicated LLMs’ capacity to not only understand HTML’s structure but also to synthesize it
coherently. Similarly, Li et al. [40] explored the application of LLMs for on-the-fly User Interface (UI)
customization, enabling style-related Document Object Model (DOM) changes through intuitive natural
language commands. Their work highlighted the potential for LLMs to democratize web design, allowing
users without technical expertise to modify visual elements like colors, fonts, and layouts. Beyond visual
styles, LLLMs are also being explored for more intricate web content personalization, tailoring information or
recommendations based on user profiles, and even for improving web accessibility by generating modifications
that comply with standards like WCAG [20]].

However, a significant challenge in LLM-driven web customization lies in ensuring that the generated
modifications are not just syntactically valid or aesthetically pleasing, but also performant. While LLMs can
readily produce DOM changes, the subtle interplay of these changes with browser rendering engines, network
conditions, and user device capabilities often goes unaddressed. For instance, an LLM might suggest adding a
complex shadow effect to many elements, which, while visually appealing, could introduce significant reflows
and repaints, thereby degrading user experience. The ability to identify render-blocking resources, optimize
image loading, or streamline CSS delivery from raw HTML requires an understanding of web performance
best practices that extends beyond typical language or code generation tasks.

This thesis goes a step further by focusing specifically on web performance optimization within the
context of customization. We evaluate how well LLMs can modify the DOM to ensure faster style changes for
subsequent UI customizations, or more broadly, to improve overall web performance. This demands a critical
shift from merely producing desired outputs to generating computationally efficient ones. It involves training

or prompting LL.Ms to understand the performance implications of various HTML and CSS constructs, such

13



as the impact of inline styles versus external stylesheets, the efficiency of different image formats and loading
attributes, or the cascading effects of DOM manipulations on rendering pipelines.

We build on this foundation by evaluating whether LLMs can produce not just syntactically valid but
performance-improving DOM changes, aiming to bridge the gap between Al-driven web customization and

robust web performance engineering.

2.5 LLMs for Web-Based Automation and Information Extraction

The application of LL.Ms has significantly advanced the fields of web-based automation and information
extraction. These domains heavily rely on an the models’ ability to accurately understand and interact with
web interfaces, often represented by the DOM.

In web automation, LLMs have proven instrumental in enhancing the robustness and flexibility of various
tasks, from automated testing to repetitive data entry. Nass et al. [[19]] notably demonstrated how LLMs can
drastically improve web element identification within Graphical User Interface (GUI) test automation. By
leveraging their deep contextual awareness, LLMs can localize web elements not just by their explicit IDs
or XPaths, but by understanding their semantic role and relationship to surrounding elements within the
HTML structure, even in the presence of dynamic content or minor structural changes. This capability moves
beyond brittle, hard-coded selectors to more intelligent, natural language-driven element targeting, paving the
way for more resilient automation scripts [41]. Other work in this area includes LLMs generating browser
automation scripts from natural language descriptions of desired actions, simplifying complex web workflows
for non-programmers [39].

Simultaneously, LLMs have made substantial inroads into information extraction from web pages. While
traditional methods often relied on rule-based systems or supervised machine learning with extensive feature
engineering, LLMs can directly process raw HTML. Research like WebFormer by Wang et al. [42] highlights
the critical importance of not only analyzing text content but also extensively leveraging HTML’s structural
and layout information for accurate data extraction. LLMs can discern intricate relationships between
elements, understand table structures, and extract specific entities (e.g., product details, event times, addresses)
even from unstructured or semi-structured web content [36, [37]]. This allows for more adaptable and less
labor-intensive information retrieval across diverse websites. However, most of these applications typically

involve a read-only interaction with the DOM, focusing on understanding or identifying rather than actively

14



modifying the underlying structure for specific goals beyond extraction.

This thesis expands these applications by evaluating LLMSs’ capacity to make actionable DOM modifi-
cations, specifically to resolve complex, performance-related issues. Unlike existing work that uses LLMs
for element identification or data retrieval, our approach pushes the boundary towards prescriptive changes.
This requires the LLM to not just understand the HTML, but to resolve performance issues from an audit by
implementing concrete structural or attribute changes within the DOM that directly address those issues. This
involves a much deeper level of actionable interpretation and problem-solving.

Our thesis extends these capabilities by systematically investigating whether LLMs can autonomously
modify DOM structures to resolve performance issues identified by audits, bridging the gap between passive

HTML understanding and active web optimization.

2.6 Chapter Summary

This chapter introduced the core principles of DOM representation, performance auditing with Lighthouse,
and prior work showing that LLMs can parse, generate, and manipulate web content. However, while these
studies validate the feasibility of LLMs for HTML comprehension and generation, their ability to perform
precise, performance-targeted DOM modifications remains unexplored. To address this gap, this thesis
systematically evaluates whether LLLMs can improve real-world webpage performance across multiple metrics

while maintaining structural integrity.
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Chapter 3

Methodology

In this chapter, we present the study design of our thesis, including the selection of real-world webpages,

our methodology for conducting performance audits and LLM modifications, and the evaluation metrics used.

3.1 Study Design

This section describes our dataset, the performance audits, the environment configurations, considerations

for our LLM selection, the chunking strategy, and the evaluation metric used in this thesis.

3.1.1 Dataset

To conduct our work, we first select 15 real-world webpages at random from the Alexa Top 500 list [43],
which features top-ranked webpages on the web. We chose this list due to its popularity and prior use in
research [44, 45, 146]. Each webpage selected is a homepage, the main entry point for users. Since homepages
typically receive the highest traffic [47, 48\ 49], optimizing their performance is particularly relevant to this
thesis.

Our dataset comprises webpages from four different categories: Shopping webpages (4), Professional
webpages (2), Social webpages (6), and Entertainment webpages (3). Table [3.1] details these selections
sorted in order of their Alexa ranking, alongside their Lighthouse Scores(LHS). We also show the number
of location-specific audits for each site (Audits w/ Location) and location-non-specific audits (Audits w/o
Location). Additionally, it highlights the total number of chunks each webpage was divided into for our

experiments. More details on the chunking strategy used are provided later in Chapter 3]
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Table [3.2] presents descriptive statistics for the webpages in our dataset. DOM Tree Depth, the maximum
depth of nested HTML elements, ranging from 4 to 32, indicates diverse structural complexity. The number
of chunks (# chunks), varying from 2 to 17, reflects varied content modularity across webpages. Total Audits
averaged 25.5 from 18 to 39, providing substantial per-page data. Finally, LHS (Lighthouse Score) averaged

44.7%, ranging from 12% to 90%, highlighting significant variability in webpage performance.

Table 3.2: Descriptive Statistics of the Webpages in Our Dataset

Statistic Mean Minimum Maximum
DOM Tree Depth 18 4 32
# Chunks 5.2 2 17
Total Audits 25.5 18 39
LHS (%) 44.7 12 90

Figure shows the entire workflow for our experiments. For each webpage, it comprises the following

Six main stages:

1. DOM Extraction: We begin by extracting original DOM trees from the webpage. Python’s requests
package was used to fetch webpages, and their DOM trees were then extracted and parsed with

BeautifulSoup [50].

2. DOM Chunking: To accommodate the LLMs’ context window and output token limitations, we split

the DOM tree into smaller chunks to obtain the original DOM chunks.

3. Initial Audit Report Generation: The extracted DOM tree is then passed to Lighthouse to generate

initial audit reports, which establish a benchmark for issues to be resolved by the LLMs.

4. LLM Modification: Each chunk is then provided to the LLLM, along with the corresponding audit
reports, instructing it to make modifications to resolve the identified issues. This process is applied to

every chunk with the LLM returning the modified DOM chunk in every iteration.

5. Re-assembly: After all original chunks are processed, the modified chunks are reassembled into a

complete modified DOM tree.

6. Post-Modification Audit Report Generation: A subsequent audit report is generated from this

reassembled tree to capture the audits after LLM modification. This allows for a quantitative comparison
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Figure 3.1: Overview of our experiment workflow

between the initial audit reports and those obtained from the modified DOM trees to assess the LLM’s

effectiveness.

The subsequent sections provide a detailed explanation of this workflow and our considerations.

3.1.2 LLM Selection

To evaluate the potential of LLMs in automating web performance issue resolution, we selected a diverse
set of state-of-the-art LLMs that vary in reasoning capability, architecture, context window limits, max output
tokens, and model size. Table [3.3]provides a detailed list of the models and their specifications. Our goal is to

compare how different LLMs process DOM trees in conjunction with performance audits, and to understand
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how model characteristics influence the types and quality of generated modifications, thereby enhancing the

generalizability of our findings.

Table 3.3: LLM Models Evaluated and Their Specifications

Model Reasoning Max O.T. Context Window Size
Claude 3.7 Sonnet (R) Yes 128K 200K -
Claude 3.7 Sonnet No 128K 200K -
DeepSeek V3 No 32K 131K 671B
DeepSeek R1 Yes 32K 128K 685B
LlaMA3.3 70B No 40K 128K 70B
GPT-4.1 No 32K IM+ -
04-mini Yes 100K 200K -
GPT-40-mini No 16K 128K -
Qwen2.5 32B-Instruct No 128K 131K 32B

3.1.3 DOM Chunking

To accommodate the varying output token limits of the LLMs in our evaluation, we employ a conservative
chunking strategy. This approach is based on the model with the smallest maximum output size, specifically
GPT-40-mini, which has an output token limit of 16K [S1]]. This ensures all models can process identical
DOM chunks for a consistent and fair comparison.

We implement this by limiting DOM chunks to 15K tokens, reserving 1K tokens for LLM-induced
modifications. Token counts are estimated using OpenAI’s Tiktoken package [52]. Chunks exceeding 15K
tokens are recursively split to ensure all webpage elements are assessed.

This strategy prevents token truncation, incomplete responses, resource inefficiencies during inference,
and error propagation in downstream evaluations. Our approach traverses the DOM tree in a depth-first search,
grouping nodes into chunks that never exceed the 15K threshold. This is done with attention to semantic

structure and element types; for example, specific preservation strategies were applied to certain element

types:

» Text Nodes: We preserved these text elements as-is, explicitly excluding them from any splitting or

chunking operations to maintain the integrity of inline text content.

* Comment: HTML comments were left untouched to avoid losing useful annotations or developer

metadata. We applied no chunking or transformations to these nodes.
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» Tag: Before splitting, we stored all initial tag attributes for comparison and use during reassembly,
ensuring tags and their associated attributes remained intact. The split was then performed recursively,
accurately representing every element and its descendants. Each chunk was uniquely identified by a

UUID to ensure accurate reassembly.

* Script: We also stored script elements before chunking, reincorporating them during HTML reassembly.

This preserved the logic and interactivity defined by scripts.

* Stylesheet: Similarly, style rules were stored before chunking and merged back during reassembly.

Preserving these styles maintains the visual fidelity of the webpage.

Algorithm | outlines our token-aware HTML chunking strategy, which recursively traverses the DOM
and segments content into context-constrained units. The algorithm takes an HTML document (D) and a
maximum token limit (7Ti,x) as input, aiming to produce a list of chunks (C).

The process begins by calling Sp1itHTML (D) (line 4), which iterates through the document’s head and
body sections, initiating the chunking process for each via ProcessSection (line 6). The core logic resides
within the ProcessNode (e) function (line 15), which recursively traverses the DOM tree.

For comment or text nodes (line 16), the algorithm calculates their token length (z.). If adding this to
the current chunk’s token count (#) would exceed Ty« (line 18), a StartNewChunk () operation is triggered
(line 18), ensuring no chunk surpasses the limit. The node is then appended to the current chunk (c), and ¢ is
updated (line 19).

For tag nodes (line 20), the algorithm first checks if the opening and closing tag bounds alone (fopen+close)
would push the current chunk over Ty,« (line 22). If so, a new chunk is started. The opening tag is appended
(line 23), and then ProcessNode is recursively called for each of the tag’s children (line 24), preserving the
hierarchical structure. Finally, the closing tag is appended (line 25).

The StartNewChunk(name) function (line 29) handles the creation of new chunks. It first calls
FinishChunk () to finalize any existing chunk (line 30), then initializes a new empty chunk (c¢) with a unique
UUID and its token count (#) reset to O (lines 31-32). This UUID ensures faithful reassembly by allowing us
to accurately track and reintegrate elements like scripts, styles, and tag attributes during reconstruction. The
FinishChunk () function (line 35) simply appends a completed chunk to the final list C if it contains content.
This recursive and token-aware splitting ensures that each chunk’s estimated token length does not exceed our

predefined 15K tokens threshold.
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Algorithm 1 HTML Chunking Algorithm

Require: HTML document D, token limit Ti,x
Ensure: List of chunks C

: C«—[],c < None,t <0
: function SpLiITHTML(D)
for all s € {D.head, D.body} do
if 5 # None then ProCcESSSECTION(s, section name)
end if
end for
FinisHCHUNK
return C
end function
function PrRocESsSECTION(s, name)
STARTNEWCHUNK (name)
for all e € s.children do
ProceEssNoODE(e)
end for
: end function
: function ProcessNoODE(¢)
if ¢ is comment or text then
t. < token length of e
if 1 +t, > Thax then STARTNEWCHUNK
end if
Append e to ¢, update ¢
else if ¢ is tag then
Topen+close <— token length of tag bounds
if 7 + fopensclose > Tmax then STARTNEWCHUNK
end if
Append opening tag to ¢
for all child € e.children do PrRocEssNoDE(child)
end for
Append closing tag to ¢
end if
: end function
: function STARTNEwWCHUNK (name)
FinisHCHUNK
¢ « new chunk with UUID, label name, empty content
t—20
: end function
: function FiNisHCHUNK
if ¢ # None and c.content # () then
Append c to C
end if
. end function
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During reassembly, we reintegrate the stored scripts, styles, and attributes into their placeholders,
reconstructing the original HTML with its semantic and functional integrity preserved. While the reassembly
process is not part of the chunking algorithm, it is available in our replication package. To validate the
integrity of our chunking and reassembly, we reassembled all chunks before any modifications, confirming
that the structure and content remained unchanged.

To validate the integrity of our chunking strategy, we reassembled all chunks before any modifications,
confirming that the structure and content remained unchanged. To ensure there are no unintended alterations,
we checked a popular metric known as Tree Edit Distance to quantify the difference between the original
and reassembled DOMs [53,54]]. For all webpages processed, we observed a Tree Edit Distance of 0. This
indicates that the reassembled DOMs were identical to the original DOMs, with no structural or content

alterations.

3.1.4 Performance Audits

To create an initial benchmark for what issues we attempt to resolve, we generate Lighthouse audit
reports for the DOM trees before they are modified by the LLMs. We also generate audit reports for the
LLM-modified DOM trees. These are used in our quantitative analysis. For the audit generation process, we

make use of the following Lighthouse configuration flags:

* headless: Allowing Chrome to operate without a Graphical User Interface (GUI) and ensuring lower
consumption of CPU and memory resources. Consequently, it facilitates the automation of the

Lighthouse analysis limiting any interactions with the webpages during the process.

* no-sandbox: This disables the sandbox feature in Chrome which isolates web content and process.
This is useful for our research as it bypasses security restrictions that may come up in our environment

that could affect how pages are rendered.

* disable-gpu: Forcing the browser to render pages using the CPU instead of the GPU. This is to ensure

consistency of results based on the allocated CPU resource in our environment.

From the audit reports generated, we exclude audits with scoreDisplayMode values of notApplicable,
manual, and informative, or binary scores of 1 as it indicates a pass, and these audits do not require any

resolution in the DOM [33]], unlike a binary score of 0, which indicates a needed resolution. This resulted in
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67 unique audits, each of these audits as well as their descriptions can be found in our replication package [23].
All of these audits were manually analyzed, and a classification was agreed upon by two authors, and any
conflicts were resolved by the third author. This resulted in the establishment of seven audit categories. The

categories are as follows:

* Initial Load Performance: Describes how quickly a page’s essential content loads, e.g., "First

Contentful Paint" measures the time it takes for the first text or image to appear on the screen.

* Interactivity Performance: Focuses on how responsive the page is to user interactions, e.g., "Time to
Interactive” measures when the page becomes fully interactive, indicating when a user can reliably

interact with the page.

* Runtime Performance: Assesses how efficiently JavaScript and other resources are executed during
runtime. e.g., "JavaScript Execution Time" measures the duration of JavaScript operations and their

impact on page speed.Ai

* Resource Optimization: Evaluates the effectiveness of resource usage such as scripts, images, and
stylesheets, e.g., "Unminified JavaScript" flags large, uncompressed JavaScript files that could be

optimized to reduce their size and improve performance.

* Network Optimization: Measures the efficiency of network requests, including the number of requests
and their size, e.g., "Reduce Server Response Time" focuses on reducing latency and optimizing server

performance to decrease load time.

* Visual Stability: Focuses on preventing unexpected layout shifts during page load, e.g., "Cumulative

Layout Shift" tracks the unexpected shifting of elements as the page loads, impacting the user experience.

"

* SEO & Accessibility: Covers audits related to SEO and accessibility, e.g., "Accessibility Improvements
flags issues that affect the usability of the website for users with disabilities, such as missing aria labels.
These audits are relevant from a semantic point of view as opposed to the hierarchical context of the

DOM [55].
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3.1.5 Environment Configurations

To ensure the reproducibility and consistency of our performance audits, we utilized a Docker-isolated
environment [56]]. This approach mitigates variability stemming from diverse hardware configurations (CPU,
RAM, GPU, etc.) by providing a standardized execution context, a common practice in web development for
consistent builds.

Our Docker environment was hosted on a MacBook Pro 2018 featuring a 2.3GHz Quad-Core Intel Core i5
processor and 16GB of RAM. Key software versions used include Docker v27.0.3, Node v21.5.0, Lighthouse
12.2.0, and the python:3-9-slim Docker image runtime. The Docker container was allocated 1GB of shared

memory to ensure sufficient resources for the Chromium browser used by Lighthouse.

3.1.6 Benchmarking & Evaluation Metric

To calculate the distribution of performance issues across our dataset, we introduce the derived audit
incidence ratio (AIR) metric. It is a practical adaptation of reporting practices in tools like Lighthouse, which
summarize how often specific audits are detected across sites to inform optimization priorities [29]. The AIR
of an audit provides a quantitative measure of the extent to which it is observed in the dataset. A higher ratio
indicates that the audit is more prevalent and affects a larger portion of the webpages, suggesting it could be a
critical area to address for overall performance improvement. In contrast, a lower AIR suggests that the issue

affects fewer webpages. We define it as follows:

W,
Wtotal

AlIR =

3.1

where W, is the number of unique webpages containing audit a, and Wy, is the total number of webpages
in the dataset.

To benchmark our approach, we compare the original AIR for the extracted DOM trees with the AIRs
observed after applying modifications implemented by the LL.Ms. We call this comparison the percentage

change in AIR, calculated as follows:

M-0

% change in AIR = x 100 3.2)

where M is the AIR after LLM modification and O is the original AIR. This metric quantifies the effectiveness

25



of LLMs in resolving identified performance issues. A negative percentage change indicates an improvement

(i.e., a reduction in the incidence of an audit), while a positive change suggests a degradation in performance.
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Chapter 4

Results

In this chapter, we present the results of our thesis. For each research question, we include the motivation

behind it, describe our approach, and report the corresponding findings.

4.1 RQI1: How effective are LLMs for resolving web performance issues in

the DOM?

4.1.1 Motivation.

The iterative and time-consuming nature of web performance optimization presents a significant challenge
for developers and negatively impacts user experience when performance is poor [21) 146, [1), 157, 58]].
Investigating how LLLMs emergent capabilities could automate the resolution of these issues offers a promising
avenue for significant advancement in web development; our work specifically validates their ability to resolve

web performance issues by making necessary changes to the DOM.

4.1.2 Approach.

To assess the effectiveness of LLMs in resolving web performance issues in the DOM, we utilized the
audits generated for the originally extracted webpages (see Chapter [3). Subsequently, each webpage is split
into chunks to address LLMs’ output token limitation, as detailed in our study design Chapter 3)). For each
webpage, we then iteratively pass each chunk and the performance audits to the LLMs. Through zero-shot

prompting [S9], we instruct the LLMs to make the necessary changes to resolve contributing factors to these
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issues. Our prompt includes the audit key, title, description, and details (if any).
The prompt utilized can be found in Section [7.2.4] It is specifically tailored to guide the LLMs in
understanding complex DOM structures and performance audit requirements, considering their unique

processing characteristics. It incorporates the following considerations:

* To address LLMs’ inherent output token limitations, we designed our input strategy to feed the DOM in
chunks, ensuring the LLM understood the incremental nature of the content and avoided changes that

could disrupt the hierarchical DOM structure.

* We explicitly requested the LLM to specify modified sections and describe the changes, a crucial step

for validating LLM-generated modifications and facilitating easy identification of affected areas.

* We provide some context to the LLM about the possibility that the DOM tree being processed is likely
to be minified, uglified, or compressed as it is from a production website [60]. This is important as it
lets the LLM know that some styles or scripts are already processed, hence further similar processing

should be avoided to preserve the functionality of the webpage.

* We explicitly instruct the LLM to avoid any changes to the order, styles, and functionalities of the

scripts present. This is done to preserve the core functionalities of the webpage.

* We constrain the LLMs to use the right formatting of modification comments in the respective sections,
e.g., the HTML comment formatting for regular HTML elements and the style comment formatting for

style scripts. This is done to avoid any parsing or build issues when the DOM tree is reassembled.

All modified chunks are then reassembled and a final audit report is generated on the updated webpage.
This step helps to determine if the issues identified in the initial audit report have been resolved. To present
this clearly, we conducted a quantitative analysis, comparing the audit reports of the original webpage with

those of the modified webpage by calculating the % change in AIR.

4.1.3 Results

Table {.1] highlights the percentage change in AIRs after LLM modification of the webpages in our
dataset. It presents the various audit categories (see Chapter [3), the different models evaluated, and the

percentage change in AIR after modification. Negative percentages indicate successful issue resolutions and
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positive percentages suggest a regression of webpage performance. To easily identify performance, the worst
regressions in each audit category are colored red, and the best are green. Our findings are detailed below:

Finding 1: LLMs universally excel at semantic understanding, resolving all SEO & Accessibility
issues. As shown in Table all LLMs achieved a 100.00% reduction for SEO & Accessibility audits.
These types of issues typically do not rely on a comprehensive DOM context but rather on the semantic
clarity and structural correctness of elements. This finding highlights the ability of LLMs to effectively
understand and manipulate the semantic structure inherent within DOM elements, thus identifying and
resolving issues crucial for SEO and web accessibility. This proficiency suggests that LLMs can be reliably
employed to automate the correction of semantic markup, alt attributes for images [61}, 20], ARIA roles,
and other accessibility-related improvements without the need for exhaustive context. These capabilities are
particularly valuable for maintaining compliance with accessibility standards and improving discoverability
through search engines, aligning with prior research that emphasizes automated semantic validation and
enhancement [61}, |62]].

Finding 2: High-performing LLMs (e.g., Qwen2.5-32B-Instruct, GPT-4.1) deliver significant,
broad latency and optimization gains. Models such as Qwen2.5-32B-Instruct and GPT-4.1 consistently
demonstrated substantial improvements across multiple performance dimensions, positioning them as highly
effective optimizers. These models, alongside claude 3.7 sonnet(R), llama3.3-70b, deepseek-r1, deepseek-
v3, and o4-mini largely contributed to uniform decreases across all three latency audits, by substantial margins
(Initial Load: from -18.57% to -64.36%0; Interactivity: from -5.00% to -64.99%; Runtime: from -11.11% to
-88.65%0). While Runtime performance saw the most significant individual reductions (up to -88.65% for
Qwen2.5-32B-Instruct), the variability in improvements was notably higher (standard deviation o = 40.3)
compared to Initial Load (o0 = 22.8) and Interactivity (o = 24.1), indicating that even among improving
models, the degree of enhancement varied.

Beyond latency, these high-performing LLMs also delivered significant gains in web asset delivery
and transfer efficiency. Our analysis reveals a largely positive trend with consistent improvements in
Network Optimization. All evaluated LLMs demonstrated an ability to improve Network Optimization, with
the reductions in AIR ranging from -14.35% (claude 3.7 sonnet and claude 3.7 sonnet(R)) to -64.68%
(Qwen2.5-32B-Instruct). For Resource Optimization, most LLMs also delivered positive changes, with
reductions ranging from -4.94% (gpt-40-mini) to -55.26% (Qwen2.5-32B-Instruct). While claude 3.7

sonnet(R) showed a slight increase of +4.23%, the overall trend for the majority was positive. These findings
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underscore that LLMs largely possess the capability to enhance web asset delivery and transfer efficiency,
demonstrating their advanced ability to generate DOM modifications that lead to more efficient asset delivery
and consumption.

Finding 3: GPT-40-Mini presents a unique case of performance regression, particularly for user-
facing latency and resource efficiency. In stark contrast to other LLMs, gpt-40-mini consistently introduced
significant overhead, leading to a notable regression in crucial user-facing latency metrics and resource
efficiency. Specifically, gpt-4o-mini increased the AIR for all three user-facing speed audits: Initial Load
(+24.84%0), Interactivity (+7.88%), and dramatically for Runtime Performance (+58.97%). These increases
represent the "Worst regression” cases for each of the audit categories. Manual inspection revealed these
setbacks were primarily due to duplicated SVG path data that inflated payload size and paint cost, as well
as the addition of new elements that bloat page sizes, indicating specific challenges this LLM faced in
maintaining DOM integrity while optimizing. Furthermore, gpt-40-mini contributed to increased visual
instability (+28.33%), reinforcing its tendency to introduce unintended DOM changes that degrade user
experience. These outcomes highlight that while larger LLMs can translate performance optimization prompts
into tangible latency savings, smaller LLMs may introduce new bottlenecks rather than eliminate existing
ones. Accordingly, any production pipeline that relies on automated web issue resolution should pair model
selection with post-hoc validation to prevent unintended speed/latency regressions.

Finding 4: Visual stability remains a significant challenge for most LL.Ms, with a majority
introducing regressions. The Visual Stability audit captures unexpected layout shifts that harm perceived
smoothness and can lead to frustrating user experiences. While some LLMs demonstrated proficiency in
optimizing load times and network efficiency, the ability to maintain or improve Visual Stability proved to be
a pervasive challenge for the majority of LLMs. As shown in Table[d.1] a clear trend emerged: most of the
LLMs evaluated introduced some visual instability. Most notably, deepseek-r1 showed the most substantial
regression in this category. Manual inspection revealed that many of these regressions stem from seemingly
minor insertions or attribute changes that inadvertently alter element dimensions or flow. Common culprits
include duplicated assets or scripts, changes in class names tied to cascading style sheet (CSS) styles, and the
removal of scripts necessary for proper rendering. These issues highlight the inherent complexity of DOM
manipulation and the difficulty LLMs currently face in consistently understanding spatial relationships within
a webpage.

In contrast, four models achieved significant reductions in visual instability. The success of these
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models, particularly llama3.3-70b with its nearly 40% reduction, suggests that careful, targeted chunk-level
modifications by certain LLM architectures may preserve or even enhance visual stability. However, their
performance stands as an exception rather than the norm in this evaluation. These findings strongly underscore
the critical need for robust post-processing checks whenever LL.Ms are employed for any form of DOM

modification.

e N
Answer to RQ1: LLMs universally excel at semantic web issues, achieving a 100.00% reduction in

SEO & Accessibility issues. For other audit categories, high-performing models (e.g., Qwen2.5-32B-
Instruct, GPT-4.1) deliver significant gains, while notably, GPT-40-Mini consistently increased latency.
The majority of LLMs introduced visual instability, underscoring the need for rigorous post-hoc

validation for reliable web performance improvement.

4.2 RQ2: What is the nature of changes made by LL.Ms for automated web

performance issue resolution?

4.2.1 Motivation.

Building on RQ1’s quantitative analysis of LLM effectiveness, RQ2 aims to understand the nature of
changes LLLMs make to the DOM. We saw LLMs achieve mixed results, with most improving performance
while some introduced regressions ranging from increased latency to visual instability. This prompts a
deeper dive into how LLMs modify the DOM and why specific outcomes occur. Investigating their DOM
manipulations offers crucial insight into LLM’s "black box," explaining effectiveness, revealing patterns, and

informing future development, validation, and trust in automated web solutions.

4.2.2 Approach.

To understand the nature of the LLM modifications, we parsed the DOM trees into structured JSON
formats, we then generated detailed diffs between each original DOM tree and its modified version. This was
done for the entire dataset. We used the open-source Python package Deepdiff, a robust tool for quantifying
and classifying differences in hierarchical data like JSON DOM trees [63]]. This systematic approach allowed
us to identify and categorize the specific modifications introduced by each LLM, offering fine-grained insights

into their interventions. The primary categories of changes defined by Deepdiff that we extracted for our
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analysis were:

* dictionary_item_added/dictionary_item_removed: These identify the addition or removal

of attributes (e.g., id, class, src) on an HTML element.

* iterable_item_added/iterable_item_removed: These signify the addition or removal of child
elements or text nodes within a parent element’s content, often referred to as "element-level" or

"node-level" changes.

* type_changes: This category flags instances where the fundamental type of a DOM node (e.g., <p>

node to a text node) was altered.

* values_changed: This captures modifications to the content or properties of existing items that

remain in place. This category provides further detail:

attr_changes: Specific changes to the values of existing attributes (e.g., width="100" to

width="50").

tag_changes: Alterations to an element’s HTML tag name (e.g., <div> to <p>).

text_changes: Modifications to the textual content within an HTML element or a standalone

text node.

positional_changes: This critical metric quantifies changes in the order or relative placement

of items within a sequence, capturing reordering or shifts due to additions/deletions.

4.2.3 Results.

For each LLM, we extracted the changes from all modified webpages, then grouped these changes by
type, and finally summed the counts of each change type. We also report the depth of changes performed by
the LLMs across the dataset, as specified by Deepdiff. Table[d.2] highlights the categories of DOM changes;
Attributes quantify Added (new attributes) and Removed (deleted attributes) on HTML elements; Elements
summarize node-level modifications, covering Added and Removed elements; Types Changed indicate
instances where a DOM node’s fundamental type was altered; Change Depth reports the Min, Max, and
median (Med) depth of change within the DOM tree for all modifications; and Values Changed break down
modifications to existing DOM elements by specific type: Attr (attribute value changes), Tag (HTML tag

name changes), Pos (positional changes), and Text (text content modifications).
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Table 4.2: Summary of Deepdiff Results by LLM Model with Calculated Ratios (including Depth stats)

Model EATRR | PCD Attributes Elements Types Change Depth Values Changed
Added Removed | Added Removed | Changed | Min Max Med | Attr Tag Pos Text
Claude 3.7 Sonnet(R) 0.89 0.42 2 1 90 11 4 1 12 4 10 7 57 24
Claude 3.7 Sonnet 0.88 0.52 3 1 7 11 4 1 12 6 12 7T 66 27
Deepseek R1 0.50 0.31 4 7 37 37 7 1 37 4 13 8 371 32
Deepseek V3 0.85 0.53 1 1 106 18 3 1 12 4 10 7 88 31
GPT-4.1 0.89 0.48 2 1 111 14 4 1 12 4 10 8 79 31
GPT-40-mini 0.44 0.77 2 8 22 28 4 1 12 4 10 8 66 26
LlaMA3.3 70B 0.67 0.40 3 3 90 45 4 1 24 6 10 8 74 41
04-mini 0.86 0.39 4 1 133 21 4 1 12 6 14 9 76 29
Qwen2.5 32B-Instruct 0.74 0.47 2 1 70 25 4 1 24 6 10 g8 70 45

To quantify modification patterns, we introduce two metrics: the Element Addition-to-Removal Ratio
(EATRR), which indicates potential DOM bloat (> 0.5) or simplification (< 0.5) by comparing added versus
removed elements; and Positional Change Dominance (PCD), which measures the proportion of value
changes attributed to reordering elements, highlighting disruption to spatial relationships. Our findings are
detailed below:

Finding 5: Most LLLMs predominantly employ an additive DOM modification strategy. As shown in
the EATRR column of Table4.2] nearly all evaluated LLMs (except GPT-40-mini and Deepseek R1) show
a tendency to add significantly more elements than they remove. For instance, high-performing models
like Claude 3.7 Sonnet(R), Deepseek V3, GPT-4.1, and 04-mini exhibit EATRRs ranging from 0.85 to
0.89. This implies that these models, in their pursuit of performance optimization, frequently introduce new
elements, rather than primarily refactoring or simplifying the existing DOM. While Deepseek R1 presents a
more balanced approach with an EATRR of 0.50, the overall inclination towards element addition suggests
that these LLMs’ optimization often involves enriching the DOM.

Finding 6: GPT-40-mini’s exhibits a unique DOM modification strategy; removing more elements
than it adds, coupled with the highest positional changes. Among all evaluated models, GPT-40-mini
exhibits a distinctly unique DOM modification strategy. This strategy is characterized by the lowest EATRR
at 0.44, suggesting a tendency to remove or simply maintain existing element counts rather than an additive
approach for optimization. Crucially, this is coupled with the highest PCD at 0.77, indicating that a substantial
majority of its modifications involve reordering or shifting existing elements. While other high-performing
LLMs predominantly employ an additive strategy for optimization, GPT-40-mini’s distinct profile means
it frequently attempts optimization through extensive and disruptive changes in element positioning. Such
large-scale positional changes are known to be costly, often triggering expensive browser reflows and repaints,

which directly contribute to visual instability and a poor Cumulative Layout Shift (CLS) score [64} 65]. In
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contrast, models like Deepseek R1 (PCD 0.31, EATRR 0.50) and 04-mini (PCD 0.39, EATRR 0.89) exhibit
different balances of positional changes and additive strategies. This unique combination of high, disruptive
positional changes and a non-additive element strategy is a hallmark of GPT-40-mini’s behavior, which could
explain its poor performance in Finding 3.

Finding 7: LLMs operate across varying DOM depths, often concentrated at shallower levels. While
LLMs make changes at various depths within the DOM tree, the median change depth across most models as
shown in Table ¥.2|ranges from 4-6, with minimum depths consistently at 1, and maximums ranging from 12
to 37. Depths over 32 are generally considered excessive for performance [65]]. This indicates that LLMs
are not just making superficial changes at the root level but are capable of intervening deeper within the
DOM structure. However, they do not consistently reach the deepest possible levels. The variability in Depth
Max (e.g., Deepseek R1 at 37 vs. GPT-4.1 at 12) suggests differences in how deeply models traverse and
modify complex, nested structures. This overall pattern of intervention across various depths is a fundamental
characteristic of LLM DOM manipulation.

Finding 8: Textual modifications are a primary driver of performance and Visual Stability gains
for effective LLLMs. High-performing LL.Ms, such as Qwen2.5 32B-Instruct (PCD: 0.47) and GPT-4.1
(PCD: 0.48), demonstrate that their success in improving performance metrics is strongly tied to the
extent of their textual modifications. A very strong negative correlation exists between Values Changed
Text and all three latency performance categories: Initial Load (o = —0.74), Interactivity (o = —0.96),
and Runtime (p = —0.97), as well as Network Optimization (o = —0.80) and Resource Optimization
(p = —0.84). This quantitatively suggests that LLMs making more textual changes are associated with
greater performance improvements, indicating beneficial optimizations like minification of inline scripts or
styles [64]. Furthermore, a strong negative correlation of p = —0.90 between Values Changed Text and
Visual Stability for better-performing models in that audit category indicates these textual modifications also

contribute to improved visual stability.
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Answer to RQ2: Most of the LLMs evaluated primarily used an additive strategy for DOM
modifications. The effective LLMs achieve performance gains via extensive textual modifications
and at shallower DOM depths. In contrast, GPT-40-mini shows a unique strategy, removing more

elements than it adds, coupled with high positional changes. This is observed alongside its consistent

performance regressions in RQ1.
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Chapter 5

Discussion

Our evaluation details the strengths and limitations of LLMs in automated web performance resolution,
highlighting their effective applications and challenges for DOM manipulation. In the following, we discuss

the key implications for research and practice.

5.1 Proficiency in Semantic Understanding vs. The Pervasive Challenge of

Visual Stability

The most consistent finding across all LLMs is their semantic understanding of the DOM (Finding 1).
This proficiency underscores the LLMs’ ability to grasp the semantic clarity and structural correctness of
web elements, aligning with prior research on automated semantic validation and enhancement [61}, [62].
The implication here is profound; LLMs can be helpful when integrated into automated workflows for
critical web development tasks that primarily involve semantic markup, alt attributes, ARIA roles, and other
accessibility-related improvements, as well as for SEO considerations [66]. Some examples of related LLM
changes we identified through manual inspection include adding alt descriptions to image elements [67]] and
introducing additional meta elements [68]].

This can significantly reduce the manual effort and expertise required to maintain compliance with
necessary web standards [69, [70]. For developers and organizations, this translates into a powerful tool for
proactive maintenance and adherence to best practices, potentially democratizing access to high-quality,
accessible web content.

Despite their semantic prowess, a significant and widespread challenge identified in this thesis is the
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consistent struggle of most LLMs to maintain or improve Visual Stability (Finding 4). A majority of
models introduced visual instability. Manual inspection revealed this largely stemmed from seemingly minor
insertions or attribute changes that inadvertently altered element dimensions or flow, e.g., duplicated assets or
scripts and prevalent changes in class names tied to CSS styles. This highlights a critical current limitation in
LLMs’ hierarchical and spatial understanding of the DOM. While they can semantically understand elements
and generate code, they frequently fail to accurately predict the cascading visual effects of their modifications
on page layout and rendering.

This limitation poses a substantial barrier to the full automation of web performance resolution, as visual
stability is a critical component of performant websites [64]]. Future research must, therefore, intensively
focus on enhancing LLMSs’ spatial reasoning and visual prediction capabilities within the context of DOM

manipulation.

5.2 Unpacking LLM Modification Strategies: Additive vs. Disruptive Ap-

proaches

Our analysis of DOM modification types revealed distinct strategies employed by the LLMs in this thesis,
which are primarily additive. Most LLMs predominantly employ an additive DOM modification strategy
(Finding 5), introducing significantly more elements than they remove. While this approach can facilitate
semantic enhancements or performance-critical additions, it carries the inherent risk of contributing to DOM
bloat. Manual inspection revealed that a common cause of this bloat was the duplication of already existing
SVG paths, which can counteract performance gains in other areas. Furthermore, while LLMs operate across
varying DOM depths (Finding 7), some models like Deepseek R1 showed extreme maximum depths of change
(up to 37), exceeding the advised maximum depth of 32 to mitigate increased memory usage caused by large
DOMs [65]. This indicates that while LLMs are capable of deep interventions, such extreme depth changes,
even if related to positional shifts, warrant caution due to potential performance overhead.

In contrast to this additive trend, GPT-40-mini exhibited a uniquely disruptive strategy, characterized
by removing more elements than it adds, coupled with the highest PCD (Finding 6). This frequent reordering
and shifting of elements, without a corresponding reduction in overall element count, is a likely contributor
to its consistent performance regressions observed in RQ1 (Finding 3), especially for user-facing latency

and visual stability. Such large-scale positional changes are known to be computationally expensive, often
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triggering costly browser reflows and repaints, which directly degrade overall user experience [65].
Conversely, the success of high-performing LLMs like Qwen2.5-32B-Instruct and GPT-4.1 in improving
performance metrics is strongly tied to their extensive textual modifications (Finding 8). These models
excel when optimizations can be expressed primarily through textual manipulation, often at shallower, more
impactful DOM levels. Manual inspection confirmed this, showing these models adding performance-critical
attributes (e.g., defer and async for faster script loading times) to 1ink, and script elements often found
in the head section of webpages, closer to the DOM root. This strategic placement and modification of

existing attributes directly contribute to improved load and runtime performance [65].

5.3 Overall Implications for Automated Web Performance Resolution

The findings collectively paint a nuanced picture of LLMs as powerful, yet currently incomplete, tools for
fully automated web performance resolution. Their strong performance in semantic understanding makes
them helpful for a significant subset of web optimization tasks, especially for SEO & Accessibility. However,
for more complex performance issues, particularly visual stability, a more discerning and nuanced approach is

required. The key implications are:

* Hybrid Approaches are Essential: Given the mixed results, a hybrid approach combining LLM-
driven optimization with robust post-processing validation and potentially human oversight is crucial.
Automated pipelines should incorporate CI/CD checks for performance metrics, especially visual

stability and latency, to catch and rectify any regressions introduced by LLLM modifications.

» Targeted LLM Deployment: Organizations can strategically deploy LLMs for specific, well-defined
web performance tasks where their strengths are proven, such as semantic optimization. For more
sensitive performance areas, careful model selection and rigorous testing are paramount. As demon-
strated by the contrast between high-performing models and GPT-40-Mini, not all LLMs are created
equal for web performance tasks. Characterizing a model’s typical DOM modification patterns (e.g.,
EATRR, PCD, depth of changes) can be predictive of its performance outcomes and should inform

model selection.

* Need for Enhanced LLLM Capabilities: Future research should focus on addressing the identified

limitations, particularly in LLMs’ hierarchical and spatial understanding of the DOM to improve
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visual stability. This might involve developing new architectures that incorporate more sophisticated
representations of the layout and spatial relationships during training. Furthermore, exploring prompt

engineering techniques that explicitly guide LLMs to consider visual impacts could be beneficial.

In conclusion, LL.Ms hold immense promise for revolutionizing web performance optimization by
automating complex and tedious tasks. However, realizing this potential requires a clear understanding of their
current strengths and weaknesses, necessitating a thoughtful integration into existing development workflows

and continued research to bridge the existing gaps in their capabilities.
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Chapter 6

Threats to Validity

In this chapter, we discuss threats to the validity of our research and explain how we addressed potential

limitations in our study design. We categorize these threats as internal and external validity.

6.1 Internal Validity

The internal validity of our thesis is primarily affected by two factors.

First, the performance of LLMs is inherently sensitive to prompt engineering and input design. Different
prompt formulations can lead to substantially different outputs. To mitigate this threat, we carefully crafted
standardized zero-shot prompts that explicitly described the optimization goals and provided clear instructions
for modifications, as described in Chapter [3] We applied identical prompt structures across all evaluated
LLMs to minimize variability caused by prompt inconsistencies.

Second, processing large and complex DOM trees necessitated a chunking strategy to fit within LLM
context window limitations. This approach could theoretically lead to context loss between chunks, potentially
affecting the quality and consistency of modifications. We mitigated this threat by designing a conservative,
token-aware chunking strategy that preserved structural integrity, stored metadata for reassembly, and ensured
logical divisions that respected semantic boundaries. To further validate the correctness of the chunking and
reassembly process, we computed Tree Edit Distances between the original and reconstructed DOM trees
prior to any modifications [|53}154], consistently observing a distance of zero. This provides confidence that
our approach maintained the original structure without unintended alterations.

Future work could explore alternative chunking techniques (e.g., hierarchical context caching or retrieval-
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augmented generation) to further mitigate any remaining risk of context fragmentation during optimization

tasks.

6.2 External Validity

The external validity of our thesis relates to the extent to which our findings can be generalized to other
web applications, LLMs, and performance audit tools. We identify three primary factors:

First, our evaluation focused on a set of 15 real-world webpages sampled from the Alexa Top 500 list [43]].
While this dataset was intentionally diverse in structure, content, and purpose, it may not fully capture all
types of web applications, such as highly dynamic single-page applications or sites using unconventional
rendering strategies. To mitigate this, we selected webpages across multiple categories (shopping, social,
entertainment, professional) and ensured a range of DOM depths, chunk counts, and performance profiles.

Second, while we evaluated nine state-of-the-art LLMs with diverse architectures, reasoning capabilities,
and token limits, our findings represent a snapshot of these models at the time of our experiments. As newer
LLMs are released, their performance characteristics may differ in important ways, including improved
reasoning about hierarchical structures or increased context capacity. Although we expect our findings
on strengths (e.g., semantic optimization) and weaknesses (e.g., visual stability regressions) to remain
relevant, their frequency and magnitude may shift. Future work can explore how these trends evolve with
next-generation models and fine-tuned variants.

Third, this thesis exclusively used Lighthouse as the audit framework to generate performance reports
before and after LLM modification [29]]. While Lighthouse is widely adopted and considered the industry
standard, other tools (e.g., WebPageTest, PageSpeed Insights) may surface different issues or weight metrics
differently. To mitigate this limitation, we adopted Lighthouse’s recommended configuration flags to ensure
consistent and reproducible results and to align our metrics with prior research [2, [71] 4]]. However, our
evaluation did not directly measure end-user experience in production environments (e.g., computational cost,
inference latency, perceived rendering smoothness) [72, [73]]. These dimensions remain important and should
be considered in future studies combining automated DOM optimization with user experience assessments

and real-world deployment benchmarks.
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Chapter 7

Conclusion and Future Work

In this chapter, we present a summary of the thesis and contributions to the field of web performance
optimization through automated DOM manipulation using Large Language Models (LLMs). We also discuss

directions for future research at the end of the chapter.

7.1 Conclusion

Our evaluation details the strengths and limitations of LLMs in automated web performance resolution,
highlighting their effective applications and challenges for DOM manipulation.

We evaluated nine state-of-the-art LLMs for automated web performance issues resolution. The models
demonstrated universal proficiency in SEO & Accessibility optimization, leveraging strong semantic and
structural DOM understanding for such issues. This aligns with prior research on automated semantic
validation and enhancement [61} [62]], suggesting LLMs are powerful tools for tasks like adding alt attributes
or meta elements, thereby reducing manual effort in maintaining web standards.

However, their impact on other performance-critical issues (latency, network, resource) was highly
variable; most models introduced visual instability due to a limited hierarchical and spatial understanding of
the DOM. This limitation poses a significant barrier to full automation, as seemingly minor insertions or
attribute changes can inadvertently alter element dimensions or flow, e.g., duplicated assets or scripts and
prevalent changes in class names tied to CSS styles. This highlights a critical current limitation in LLMs’
hierarchical and spatial understanding of the DOM. While they can semantically understand elements and

generate code, they frequently fail to accurately predict the cascading visual effects of their modifications
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on page layout and rendering. This limitation poses a substantial barrier to the full automation of web
performance resolution, as visual stability is a critical component of performant websites [[64]].

We observed LLMs predominantly employ an additive DOM modification strategy, sometimes leading to
DOM bloat due to the introduction of more elements than they remove (e.g., duplicated SVG paths). This can
counteract performance gains. Notably, GPT-40-mini exhibited a unique and disruptive strategy, characterized
by removing more elements than it adds, coupled with a high percentage of changes in depth (PCD). This
frequent reordering and shifting of elements, without a corresponding reduction in overall element count,
is a likely contributor to its consistent performance regressions observed, especially for user-facing latency
and visual stability. Such large-scale positional changes are known to be computationally expensive, often
triggering costly browser reflows and repaints, which directly degrade overall user experience [65].

Conversely, the success of high-performing LLMs like Qwen2.5-32B-Instruct and GPT-4.1 in improving
performance metrics is strongly tied to their extensive textual modifications. These models excel when
optimizations can be expressed primarily through textual manipulation, often at shallower, more impactful
DOM levels. Manual inspection confirmed this, showing these models adding performance-critical attributes
(e.g., defer and async for faster script loading times) to 1ink, and script elements often found in the
head section of webpages, closer to the DOM root. This strategic placement and modification of existing
attributes directly contribute to improved load and runtime performance [63].

In conclusion, LLMs are powerful, yet currently incomplete, tools for fully automated web performance
resolution. Their strong performance in semantic understanding makes them helpful for a significant subset
of web optimization tasks, especially for SEO & Accessibility. However, for more complex performance
issues, particularly visual stability, a more discerning and nuanced approach is required. This necessitates a
nuanced LLM deployment approach, prioritizing enhancements in visual stability and precise, depth-aware
modifications. Until these advancements, robust post-hoc validation and potentially human oversight are
crucial. The ideal future involves hybrid human-Al approaches where LLMs augment developers, automating

where they excel and ensuring precision elsewhere for a faster, more accessible web.

7.2 Future Work

This thesis represents a foundational step into the automated resolution of web performance issues using

Large Language Models (LLMs). Our findings illuminate several promising avenues for future research,
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building upon the capabilities and challenges identified in this work.

7.2.1 Enhancing Visual Stability and Spatial Understanding

The challenges observed in maintaining visual stability following LLM-generated modifications underscore
a critical area for improvement. Future research could investigate novel architectural designs for LLMs
or advanced prompt engineering techniques specifically aimed at enhancing their hierarchical and spatial
understanding of the Document Object Model (DOM). This might involve explicitly guiding LLMs to consider
the visual impact of their proposed modifications on page layout and rendering. Potential avenues include
incorporating visual feedback loops during the optimization process or developing training methodologies
that leverage datasets augmented with visual difference metrics. Such approaches would enable LLMs to
better anticipate and mitigate negative visual side effects, ensuring that performance optimizations do not

compromise user experience.

7.2.2 Promoting Efficient DOM Modification Strategies

Our findings highlighted the prevalence of additive DOM modification strategies and, in some instances,
the issue of DOM bloat, particularly through the duplication of assets. This indicates a clear need for LLMs
that can employ more efficient and less disruptive modification strategies. Future work could explore methods
to encourage LLMs to prioritize modifications that inherently minimize DOM size, reduce unnecessary
reflows and repaints, and promote resource reuse. This could potentially be achieved by integrating DOM
tree size, complexity metrics, or even performance audit scores directly into the LLMs’ objective functions
during fine-tuning or reinforcement learning. Encouraging more parsimonious and intelligent modifications

would lead to cleaner, more maintainable, and truly optimized web code.

7.2.3 Assessing Developer Utility and Real-World Impact

While this thesis rigorously evaluates the quality of LLM-generated modifications through quantitative
metrics like audit incidence ratios and qualitative manual inspection, it does not fully assess their practical
utility for developers in real-world debugging or ongoing maintenance tasks. Future research could conduct
comprehensive user studies involving web developers to evaluate the practical impact of LLM-generated

optimizations on their workflows, debugging efficiency, and overall website maintainability. This includes
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assessing whether the automatically suggested modifications truly lead to a better developer experience,
reduce manual effort, and contribute to more robust and easily manageable web applications in production
environments. Such studies would provide invaluable insights into the adoption and real-world applicability

of LLM-driven performance tools.

7.2.4 Exploring Multi-Modal Approaches for Holistic Understanding

Finally, exploring the potential of multi-modal LLMs that can process both code (such as the DOM
structure, HTML, CSS, and JavaScript) and visual representations of webpages could significantly enhance
their ability to reason about complex issues like visual stability and layout changes. Such advanced models
could bridge the current gap between semantic understanding of code and visual comprehension of its rendered
output. By simultaneously analyzing the underlying code and the visual appearance of a page, multi-modal
LLMs could potentially offer a more holistic understanding of web performance, enabling more accurate
diagnoses and more effective, visually aware performance optimizations. This direction holds promise for
addressing the most challenging aspects of web optimization that involve the interplay of code and visual

rendering.

46



Bibliography

[1]

(2]

[6]

Enrico Bocchi, Luca De Cicco, and Dario Rossi. Measuring the quality of experience of web users.

ACM SIGCOMM Computer Communication Review, 46(4):8-13, 2016.

Thomas McGill, Oluwaseun Bamgboye, Xiaodong Liu, and Chathuranga Sampath Kalutharage.
Towards improving accessibility of web auditing with google lighthouse. In 2023 IEEE 47th An-
nual Computers, Software, and Applications Conference (COMPSAC), pages 1594-1599, 2023.
doi:10.1109/COMPSACS57700.2023.00246.

Shailesh Kumar Shivakumar. 3 - optimizing performance of enterprise web application. In
Shailesh Kumar Shivakumar, editor, Architecting High Performing, Scalable and Available Enter-
prise Web Applications, pages 101-141. Morgan Kaufmann, Boston, 2015. ISBN 978-0-12-802258-0.
doi:https://doi.org/10.1016/B978-0-12-802258-0.00003-2. URL https://www.sciencedirect.com/science/
article/p1i/B9780128022580000032.

Muhammad Arif Faizin, Muhammad Nevin, and Umi Laili Yuhana. Indonesia e-government website
performance and accessibility evaluation using automated tool lighthouse. In 2024 2nd International
Conference on Software Engineering and Information Technology (ICoSEIT), pages 210-215, 2024.
doi:10.1109/1CoSEIT60086.2024.10497521.

Jasper van Riet, Ivano Malavolta, and Taher A. Ghaleb. Optimize along the way: An industrial case
study on web performance. Journal of Systems and Software, 198:111593, 2023. ISSN 0164-1212.
doi:https://doi.org/10.1016/}.jss.2022.111593. URL https://www.sciencedirect.com/science/article/pii/
S0164121222002692.

Morgan Persson. Javascript dom manipulation performance: Comparing vanilla javascript and leading

javascript front-end frameworks, 2020.

47


https://doi.org/10.1109/COMPSAC57700.2023.00246
https://doi.org/https://doi.org/10.1016/B978-0-12-802258-0.00003-2
https://www.sciencedirect.com/science/article/pii/B9780128022580000032
https://www.sciencedirect.com/science/article/pii/B9780128022580000032
https://doi.org/10.1109/ICoSEIT60086.2024.10497521
https://doi.org/https://doi.org/10.1016/j.jss.2022.111593
https://www.sciencedirect.com/science/article/pii/S0164121222002692
https://www.sciencedirect.com/science/article/pii/S0164121222002692

[7]

[10]

[11]

[12]

[13]

[14]

Dariusz Che¢ and Ziemowit Nowak. The performance analysis of web applications based on virtual dom
and reactive user interfaces. In Engineering Software Systems: Research and Praxis, pages 119—-134.

Springer, 2019.

Lauren Wood, Arnaud Le Hors, Vidur Apparao, Steve Byrne, Mike Champion, Scott Isaacs, lan Jacobs,
Gavin Nicol, Jonathan Robie, Robert Sutor, et al. Document object model (dom) level 1 specification.

W3C recommendation, 1, 1998.

Kartik Bajaj, Karthik Pattabiraman, and Ali Mesbah. Dompletion: Dom-aware javascript code
completion. In Proceedings of the 29th ACM/IEEE International Conference on Automated Software
Engineering, ASE 14, page 434AS$54, New York, NY, USA, 2014. Association for Computing Machinery.
ISBN 9781450330138. doi;10.1145/2642937.2642981. URL https://doi.org/10.1145/2642937.2642981.

Utkarsh Goel, Stephen Ludin, and Moritz Steiner. Web performance with android’s battery-saver mode.

arXiv preprint arXiv:2003.06477, 2020.

BM Subraya and SV Subrahmanya. Object driven performance testing of web applications. In

Proceedings First Asia-Pacific Conference on Quality Software, pages 17-26. IEEE, 2000.

Sevval Seray Macakoglu and Serhat Peker. Web accessibility performance analysis using web content
accessibility guidelines and automated tools: a systematic literature review. In 2022 international
congress on human-computer interaction, optimization and robotic applications (hora), pages 1-8.

IEEE, 2022.

Xinyi Hou, Yanjie Zhao, Yue Liu, Zhou Yang, Kailong Wang, Li Li, Xiapu Luo, David Lo, John Grundy,
and Haoyu Wang. Large language models for software engineering: A systematic literature review.

arXiv preprint arXiv:2308.10620, 2023.

Vassilka D. Kirova, Cyril S. Ku, Joseph R. Laracy, and Thomas J. Marlowe. Software engineering
education must adapt and evolve for an llm environment. In Proceedings of the 55th ACM Technical
Symposium on Computer Science Education V. 1, SIGCSE 2024, page 666€1AS672, New York, NY, USA,
2024. Association for Computing Machinery. ISBN 9798400704239. doi:10.1145/3626252.3630927.
URL https://doi.org/10.1145/3626252.3630927.

48


https://doi.org/10.1145/2642937.2642981
https://doi.org/10.1145/2642937.2642981
https://doi.org/10.1145/3626252.3630927
https://doi.org/10.1145/3626252.3630927

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

Muhammad Usman Hadi, Qasem Al Tashi, Abbas Shah, Rizwan Qureshi, Amgad Muneer, Muhammad
Irfan, Anas Zafar, Muhammad Bilal Shaikh, Naveed Akhtar, Jia Wu, et al. Large language models:
a comprehensive survey of its applications, challenges, limitations, and future prospects. Authorea

Preprints, 2024.

Tommaso Cald and Luigi De Russis. Leveraging large language models forAiend-user website generation.
In Lucio Davide Spano, Albrecht Schmidt, Carmen Santoro, and Simone Stumpf, editors, End-User

Development, pages 52—61, Cham, 2023. Springer Nature Switzerland. ISBN 978-3-031-34433-6.

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Sam Stevens, Boshi Wang, Huan Sun, and Yu Su.
Mind2web: Towards a generalist agent for the web. Advances in Neural Information Processing Systems,

36, 2024.

Rebeka Téth, Tamas Bisztray, and Laszl6 Erdodi. Lims in web-development: Evaluating llm-generated

php code unveiling vulnerabilities and limitations. arXiv preprint arXiv:2404.14459, 2024.

Michel Nass, Emil Alégroth, and Robert Feldt. Improving web element localization by using a large

language model. Software Testing, Verification and Reliability, page €1893, 2023.

Juan-Miguel L6pez-Gil and Juanan Pereira. Turning manual web accessibility success criteria into

automatic: an llm-based approach. Universal Access in the Information Society, pages 1-16, 2024.

Tjasa Hericko, Bostjan Sumak, and Sasa Brdnik. Towards representative web performance measurements
with google lighthouse. In Proceedings of the 2021 7th Student Computer Science Research Conference,

page 39, 2021.

Thomas McGill, Oluwaseun Bamgboye, Xiaodong Liu, and Chathuranga Sampath Kalutharage. Towards
improving accessibility of web auditing with google lighthouse. In 2023 IEEE 47th Annual Computers,
Software, and Applications Conference (COMPSAC), pages 1594-1599. IEEE, 2023.

Anonymous. Automated resolution of web performance issues using 1lms: A case study of gpt-4o-mini,

January 2025. URL https://doi.org/10.5281/zenodo.14785704.

Lauren Wood, Gavin Nicol, Jonathan Robie, Mike Champion, and Steve Byrne. Document object model

(dom) level 3 core specification, 2000.

49


https://doi.org/10.5281/zenodo.14785704

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

World Wide Web Consortium et al. Document object model (dom) level 3 core specification. 2004.

Andreas B Gizas and Sotiris P Christodoulou. Performance-optimized pages’ architecture, navigation
and images techniques for jquery mobile sites. In Proceedings of the 19th Panhellenic Conference on

Informatics, pages 371-377, 2015.

Simo Kuparinen. Improving web performance by optimizing cascading style sheets (css): literature

review and empirical findings. Helsinki University Library, 1(2), 2023.

Shailesh Kumar Shivakumar. Modern web performance optimization. Methods, Tools, and Patterns to

Speed Up Digital Platforms, 2020.

Chrome for Developers. Lighthouse overview, 2016. URL https://developer.chrome.com/docs/lighthouse/
overview. Accessed: 2024-09-04.

Justin Scherer. Hands-on JavaScript High Performance: Build Faster Web Apps Using Node. js, Svelte.
Js, and WebAssembly. Packt Publishing Ltd, 2020.

Google for Developers. Pagespeed insights, 2016. URL https://pagespeed.web.dev. Accessed: 2024-09-
04.

Raimundo N.V. Diniz-Junior, Caio CAlsar L. Figueiredo, Gilson De S.Russo, Marcos Roberto G.
Bahiense-Junior, Mateus V.L. Arbex, Lanier M. Dos Santos, Raimundo F. Da Rocha, Renan R. Bezerra,
and Felipe T. Giuntini. Evaluating the performance of web rendering technologies based on javascript:
Angular, react, and vue. In 2022 XVLIII Latin American Computer Conference (CLEI), pages 1-9, 2022.

doi:10.1109/CLEIS6649.2022.9959901.

Google Chrome. Lighthouse - understanding the results, 2024. URL https://github.com/GoogleChrome/

lighthouse/blob/main/docs/understanding-results.md.

Izzeddin Gur, Ofir Nachum, Yingjie Miao, Mustafa Safdari, Austin Huang, Aakanksha Chowdhery,
Sharan Narang, Noah Fiedel, and Aleksandra Faust. Understanding html with large language models.

ArXiv, abs/2210.03945, 2022. URL https://api.semanticscholar.org/CorpusID:252780086.

Aman Ahluwalia and Suhrud Wani. Leveraging large language models for web scraping. arXiv preprint

arXiv:2406.08246, 2024.

50


https://developer.chrome.com/docs/lighthouse/overview
https://developer.chrome.com/docs/lighthouse/overview
https://pagespeed.web.dev
https://doi.org/10.1109/CLEI56649.2022.9959901
https://github.com/GoogleChrome/lighthouse/blob/main/docs/understanding-results.md
https://github.com/GoogleChrome/lighthouse/blob/main/docs/understanding-results.md
https://api.semanticscholar.org/CorpusID:252780086

[36] Prateek Sancheti, Kamalakar Karlapalem, and Kavita Vemuri. Llm driven web profile extraction for

identical names. In Companion Proceedings of the ACM Web Conference 2024, pages 1616-1625, 2024.

[37] Zixuan Li, Yutao Zeng, Yuxin Zuo, Weicheng Ren, Wenxuan Liu, Miao Su, Yucan Guo, Yantao Liu,
Xiang Li, Zhilei Hu, et al. Knowcoder: Coding structured knowledge into 1lms for universal information

extraction. arXiv preprint arXiv:2403.07969, 2024.

[38] CP Afsal and KS Kuppusamy. Websumm: A chrome extension for summarizing web content using llms

for visually impaired users. SN Computer Science, 6(2):1-15, 2025.

[39] Tommaso Calod and Luigi De Russis. Leveraging large language models for end-user website generation.

In International Symposium on End User Development, pages 52—61. Springer, 2023.

[40] Amanda Li, Jason Wu, and Jeftfrey P Bigham. Using llms to customize the ui of webpages. In Adjunct
Proceedings of the 36th Annual ACM Symposium on User Interface Software and Technology, UIST *23
Adjunct, New York, NY, USA, 2023. Association for Computing Machinery. ISBN 9798400700965.
doi:10.1145/3586182.3616671. URL https://doi.org/10.1145/3586182.3616671.

[41] Brian Tang and Kang G Shin. Steward: Natural language web automation. arXiv preprint

arXiv:2409.15441, 2024.

[42] Qifan Wang, Yi Fang, Anirudh Ravula, Fuli Feng, Xiaojun Quan, and Dongfang Liu. Webformer: The
web-page transformer for structure information extraction. In Proceedings of the ACM Web Conference

2022, pages 3124-3133, 2022.

[43] Amazon. Amazon alexa top sites. URL https://www.alexa.com/topsites.

[44] Kwame Chan-Jong-Chu, Tanjina Islam, Miguel Morales Exposito, Sanjay Sheombar, Christian Val-
ladares, Olivier Philippot, Eoin Martino Grua, and Ivano Malavolta. Investigating the correlation
between performance scores and energy consumption of mobile web apps. In Proceedings of the 24th

International Conference on Evaluation and Assessment in Software Engineering, pages 190-199, 2020.

[45] Sonai Mahajan, Negarsadat Abolhassani, Phil McMinn, and William GJ Halfond. Automated repair of
mobile friendly problems in web pages. In Proceedings of the 40th international conference on software

engineering, pages 140-150, 2018.

51


https://doi.org/10.1145/3586182.3616671
https://doi.org/10.1145/3586182.3616671
https://www.alexa.com/topsites

[46] Frolin S Ocariza Jr, Karthik Pattabiraman, and Benjamin Zorn. Javascript errors in the wild: An
empirical study. In 2011 IEEE 22nd International Symposium on Software Reliability Engineering,
pages 100-109. IEEE, 2011.

[47] Gary L Geissler, George M Zinkhan, and Richard T Watson. The influence of home page complexity on

consumer attention, attitudes, and purchase intent. Journal of Advertising, 35(2):69-80, 2006.

[48] Zizi Papacharissi. The self online: The utility of personal home pages. Journal of Broadcasting &

Electronic Media, 46(3):346-368, 2002.

[49] Surendra N Singh, Nikunj Dalal, and Nancy Spears. Understanding web home page perception. European
Journal of Information Systems, 14(3):288-302, 2005.

[50] PyPI. Python beautifulsoup library. URL https://pypi.org/project/beautifulsoup4.
[51] OpenAl. Gpt-4o, 2024. URL https://platform.openai.com/docs/models/gpt-4o.
[52] OpenAl. tiktoken, 2024. URL https://github.com/openai/tiktoken. Accessed: 2024-10-14.

[53] Kilho Shin, Taichi Ishikawa, Yu-Lu Liu, and David Lawrence Shepard. Learning dom trees of web pages
by subpath kernel and detecting fake e-commerce sites. Machine Learning and Knowledge Extraction, 3

(1):95-122, 2021.

[54] Manuel Leithner and Dimitris E Simos. Domdiff: Identification and classification of inter-dom
modifications. In 2018 IEEE/WIC/ACM International Conference on Web Intelligence (WI), pages
262-269. IEEE, 2018.

[55] Hamza Salem, Hadi Salloum, Osama Orabi, Kamil Sabbagh, and Manuel Mazzara. Enhancing news
articles: Automatic seo linked data injection for semantic web integration. Applied Sciences, 15(3):

1262, 2025.

[56] Dirk Merkel et al. Docker: lightweight linux containers for consistent development and deployment.

Linux j, 239(2):2, 2014.

[57] Anita Crescenzi, Diane Kelly, and Leif Azzopardi. Impacts of time constraints and system delays on
user experience. In Proceedings of the 2016 acm on conference on human information interaction and

retrieval, pages 141-150, 2016.

52


https://pypi.org/project/beautifulsoup4
https://platform.openai.com/docs/models/gpt-4o
https://github.com/openai/tiktoken

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

Marcus Basalla, Johannes Schneider, Martin Luksik, Roope Jaakonméki, and Jan Vom Brocke. On
latency of e-commerce platforms. Journal of Organizational Computing and Electronic Commerce, 31

(1):1-17, 2021.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large language
models are zero-shot reasoners. Advances in neural information processing systems, 35:22199-22213,

2022.

Hernédn Ceferino Véazquez, Alexandre Bergel, Santiago Vidal, JA Diaz Pace, and Claudia Marcos.
Slimming javascript applications: An approach for removing unused functions from javascript libraries.

Information and software technology, 107:18-29, 2019.

Shaomei Wu, Jeffrey Wieland, Omid Farivar, and Julie Schiller. Automatic alt-text: Computer-generated
image descriptions for blind users on a social network service. In proceedings of the 2017 ACM

conference on computer supported cooperative work and social computing, pages 1180-1192, 2017.

Jiayang Wu, Wensheng Gan, Zefeng Chen, Shicheng Wan, and Hong Lin. Ai-generated content (aigc):

A survey. arXiv preprint arXiv:2304.06632, 2023.

Zepworks. Deepdiff. URL https://zepworks.com/deepdift/current/diff.html.

Google Developers. Understanding core web vitals and google search results. URL https://developers!

google.com/search/docs/appearance/core-web-vitals.

Google Developers (Lighthouse). Avoid an excessive dom size. URL https://developer.chrome.com/

docs/lighthouse/performance/dom-size.

Giovanni Delnevo, Manuel Andruccioli, and Silvia Mirri. On the interaction with large language models
for web accessibility: Implications and challenges. In 2024 IEEE 21st Consumer Communications &

Networking Conference (CCNC), pages 1-6. IEEE, 2024.

Tahani Alahmadi and Steve Drew. Evaluation of image accessibility for visually impaired users. Journal

of Accessibility and Design for All, 8(2):125-160, 2018.

Konstantinos I Roumeliotis and Nikolaos D Tselikas. An effective seo techniques and technologies

guide-map. Journal of web engineering, 21(5):1603-1649, 2022.

53


https://zepworks.com/deepdiff/current/diff.html
https://developers.google.com/search/docs/appearance/core-web-vitals
https://developers.google.com/search/docs/appearance/core-web-vitals
https://developer.chrome.com/docs/lighthouse/performance/dom-size
https://developer.chrome.com/docs/lighthouse/performance/dom-size

[69] Accessibility Guidelines Working Group. Web content accessibility guidelines (wcag) 2.1. |https:

/Iwww.w3.0rg/TR/IWCAG21/, June 2018. Recommendation of the Web Accessibility Initiative (WAI).

[70] MDN contributors. <meta>: The metadata element, June 2025. URL https://developer.mozilla.org/

en-US/docs/Web/HTML/Reference/Elements/meta. MDN Web Docs.

[71] Darius Saif, Chung-Horng Lung, and Ashraf Matrawy. An early benchmark of quality of experi-
ence between http/2 and http/3 using lighthouse. In ICC 2021-IEEE international conference on

communications, pages 1-6. IEEE, 2021.

[72] Bill Albert and Tom Tullis. Measuring the user experience: Collecting, analyzing, and presenting UX

metrics. Morgan Kaufmann, 2022.

[73] Nikolas Wehner, Monisha Amir, Michael Seufert, Raimund Schatz, and Tobias Hof3feld. A vital
improvement? relating google’s core web vitals to actual web qoe. In 2022 14th international conference

on quality of multimedia experience (QoMEX), pages 1-6. IEEE, 2022.

54


https://www.w3.org/TR/WCAG21/
https://www.w3.org/TR/WCAG21/
https://developer.mozilla.org/en-US/docs/Web/HTML/Reference/Elements/meta
https://developer.mozilla.org/en-US/docs/Web/HTML/Reference/Elements/meta

Appendices

Audit definitions and Categories

Table A.1: Audit names grouped by category

Category

Audit Name

SEO & Accessibility

crawlable-anchors
link-text
is-crawlable
meta-description
hreflang
aria-prohibited-attr
aria-hidden-focus
image-alt
aria-allowed-attr
listitem

list
aria-dialog-name
label-content-name-mismatch
input-button-name

html-lang-valid

Continued on next page
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Category

Audit Name

aria-tooltip-name

link-name

Network Optimization

uses-rel-preconnect
uses-http2
third-party-cookies
is-on-https
total-byte-weight
uses-text-compression
uses-long-cache-ttl

redirects

Initial Load Performance

charset

Icp-lazy-loaded
offscreen-images
render-blocking-resources
first-contentful-paint
speed-index
largest-contentful-paint-element
prioritize-lcp-image

largest-contentful-paint

Visual Stability

viewport
meta-viewport
image-size-responsive

image-aspect-ratio

Continued on next page
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Category

Audit Name

font-size

color-contrast
target-size

dom-size
unsized-images
font-display
cumulative-layout-shift

layout-shifts

Runtime Performance

valid-source-maps
inspector-issues
errors-in-console
deprecations

bootup-time
mainthread-work-breakdown
third-party-summary

no-document-write

Resource Optimization

duplicated-javascript
modern-image-formats
legacy-javascript
unminified-css
uses-optimized-images
unused-css-rules
uses-responsive-images

unused-javascript

Continued on next page
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Category

Audit Name

unminified-javascript

Interactivity Performance

uses-passive-event-listeners

total-blocking-time

ma-potential-fid

interactive

Table A.2: Audit data overview

S/N | Audit Name Audit Description | Count | Websites Coverage
1 first-contentful- First  Contentful | 15 airbnb, aliexpress, 100.0
paint Paint marks the ebay, facebook,
time at which the github,  linkedin,
first text or image is medium,  netflix,
painted pinterest,  quora,
reddit, twitch,
twitter,  walmart,
youtube
2 speed-index Speed Index shows | 15 airbnb, aliexpress, 100.0

how quickly the con-
tents of a page are

visibly populated

ebay, facebook,
github,  linkedin,
medium, netflix,
pinterest,  quora,
reddit, twitch,
twitter,  walmart,
youtube

Continued on next page
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is the amount of
time it takes for
the page to become

fully interactive

ebay, facebook,
github, linkedin,
medium, netflix,
pinterest,  quora,
reddit, twitch,
twitter,  walmart,
youtube

S/N | Audit Name Audit Description | Count | Websites Coverage
3 total-blocking-time | Sum of all time | 15 airbnb, aliexpress, 100.0
periods  between ebay, facebook,
FCP and Time to In- github,  linkedin,
teractive, when task medium, netflix,
length  exceeded pinterest,  quora,
50ms, expressed in reddit, twitch,
milliseconds twitter,  walmart,
youtube
4 ma-potential-fid The maximum po- | 15 airbnb, aliexpress, 100.0
tential First Input ebay, facebook,
Delay that your github, linkedin,
users could experi- medium,  netflix,
ence is the duration pinterest,  quora,
of the longest task reddit, twitch,
twitter,  walmart,
youtube
5 interactive Time to Interactive | 15 airbnb, aliexpress, 100.0

Continued on next page
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S/N | Audit Name Audit Description | Count | Websites Coverage
6 unused-javascript Reduce unused | 15 airbnb, aliexpress, 100.0
JavaScript and de- ebay, facebook,
fer loading scripts github,  linkedin,
until  they are medium, netflix,
required to decrease pinterest,  quora,
bytes consumed by reddit, twitch,
network activity twitter,  walmart,
youtube
7 largest-contentful- | This is the largest | 14 airbnb, aliexpress, 93.33
paint-element contentful element ebay, facebook,
painted within the github, linkedin,
viewport netflix, pinterest,
quora, reddit,
twitch, twitter,
walmart, youtube
8 largest-contentful- | Largest Contentful | 14 airbnb, aliexpress, 93.33
paint Paint marks the time ebay, facebook,
at which the largest github, linkedin,
text or image is netflix, pinterest,
painted quora, reddit,
twitch, twitter,

walmart, youtube

Continued on next page
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S/N | Audit Name Audit Description | Count | Websites Coverage
9 errors-in-console Errors logged to the | 14 airbnb, aliexpress, 93.33
console indicate un- ebay, facebook,
resolved problems github,  linkedin,
medium, pinterest,
quora, reddit,
twitch, twitter,
walmart, youtube
10 | uses-text- Text-based re- | 14 airbnb, aliexpress, 93.33
compression sources should ebay, facebook,
be served with github, linkedin,
compression (gzip, medium,  netflix,
deflate or brotli) pinterest,  quora,
to minimize total reddit, twitch,
network bytes walmart, youtube
11 | legacy-javascript Polyfills and trans- | 13 airbnb, aliexpress, 86.67

forms enable legacy
browsers to use new

JavaScript features

ebay, facebook,

linkedin, medium,

netflix, pinterest,
quora, twitch,
twitter,  walmart,
youtube

Continued on next page
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S/N | Audit Name Audit Description | Count | Websites Coverage
12 | third-party- Third-party code | 13 airbnb, aliexpress, 86.67
summary can significantly ebay, github,
impact load perfor- linkedin, medium,
mance netflix, pinterest,
quora, reddit,
twitch,  walmart,
youtube
13 | mainthread-work- | Consider reducing | 12 airbnb, aliexpress, 80.0
breakdown the time spent pars- ebay, github,
ing, compiling and linkedin, medium,
executing JS netflix, pinterest,
reddit, twitch,
walmart, youtube
14 | bootup-time Consider reducing | 11 aliexpress,  ebay, 73.33
the time spent pars- github,  linkedin,
ing, compiling, and medium, netflix,
executing JS pinterest,  reddit,
twitch,  walmart,
youtube
15 | unused-css-rules Reduce unused | 11 airbnb, aliexpress, 73.33
rules from ebay, github,
stylesheets and linkedin, netflix,
defer CSS not used pinterest,  quora,
for above-the-fold reddit, walmart,
content to decrease youtube

bytes consumed by

network activity

Continued on next page
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S/N | Audit Name Audit Description | Count | Websites Coverage
16 | inspector-issues Issues logged to | 10 airbnb, aliexpress, 66.67
the ‘Issues® panel ebay, linkedin,
in Chrome Devtools medium, netflix,
indicate unresolved twitch, twitter,
problems walmart, youtube
17 | render-blocking- Resources are block- | 9 airbnb, ebay, 60.0
resources ing the first paint of facebook, github,
your page linkedin, medium,
netflix, reddit,
youtube
18 | uses-long-cache-ttl | A long cache life- | 9 aliexpress,  ebay, 60.0
time can speed up linkedin, medium,
repeat visits to your netflix, pinterest,
page reddit, twitch,
walmart
19 | third-party-cookies | Support for third- | 7 aliexpress,  ebay, 46.67
party cookies will linkedin, medium,
be removed in a twitch, twitter,
future version of walmart
Chrome
20 | deprecations Deprecated APIs | 7 aliexpress,  ebay, 46.67

will eventually be
removed from the

browser

facebook, pinterest,
twitch,  walmart,

youtube

Continued on next page
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S/N | Audit Name Audit Description | Count | Websites Coverage
21 | uses-responsive- Serve images that | 7 aliexpress,  ebay, 46.67
images are appropriately- github, pinterest,
sized to save cellu- reddit, twitch,
lar data and improve walmart
load time
22 | dom-size A large DOM will | 7 airbnb, aliexpress, 46.67
increase memory ebay, github, pinter-
usage, cause longer est, reddit, youtube
[style calcula-
tions](https://developgrs
23 | is-on-https All sites should | 7 aliexpress,  ebay, 46.67
be protected with linkedin, medium,
HTTPS, even ones quora, walmart,
that don’t handle youtube
sensitive data
24 | target-size Touch targets with | 6 ebay, facebook, 40.0
sufficient size and github, pinterest,

spacing help users
who may have
difficulty targeting

small controls to

activate the targets

reddit, twitter

Continued on next page
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S/N | Audit Name Audit Description | Count | Websites Coverage
25 | modern-image- Image formats like | 6 ebay, github, 40.0
formats WebP and AVIF linkedin, pinterest,
often provide better reddit, twitch
compression than
PNG or JPEG,
which means faster
downloads and less
data consumption
26 | offscreen-images Consider lazy- | 6 aliexpress,  ebay, 40.0
loading offscreen github, linkedin,
and hidden images netflix, pinterest
after all critical
resources have
finished loading
to lower time to
interactive
27 | unsized-images Setan explicit width | 6 aliexpress,  ebay, 40.0
and height on image facebook, github,
elements to reduce quora, twitch
layout shifts and im-
prove CLS
28 | cumulative-layout- | Cumulative Layout | 6 aliexpress,  ebay, 40.0
shift Shift measures the github, pinterest,

movement of visi-
ble elements within

the viewport

twitch, walmart

Continued on next page
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S/N | Audit Name Audit Description | Count | Websites Coverage
29 | color-contrast Low-contrast textis | 5 aliexpress,  ebay, 33.33
difficult or impossi- facebook, medium,
ble for many users twitter
to read
30 | font-display Leverage the ‘font- | 5 netflix, pinterest, 33.33
display‘ CSS fea- reddit, twitch, twit-
ture to ensure text ter
is user-visible while
webfonts are load-
ing
31 | font-size Font sizes less than | 5 facebook, netflix, 33.33
12px are too small quora, twitch,
to be legible and youtube
require mobile visi-
tors to AAIJpinch to
zoomAAT in order to
read
32 | uses-passive-event- | Consider marking | 5 linkedin, pinterest, 33.33

listeners

your touch and
wheel event listen-
ers as ‘passive’ to
improve your page’s

scroll performance

reddit, twitch,

youtube

Continued on next page

66




S/N

Audit Name

Audit Description

Count

Websites

Coverage

33

total-byte-weight

Large network pay-
loads cost users
real money and
are highly corre-
lated with long load

times

aliexpress,  ebay,

github,

youtube

pinterest,

33.33
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Prompt for HTML Performance Optimization

You are a web performance expert and your task is to optimize the HTML code for

performance issues.

## Task

Due to the huge token size of HTML files,

You are given the HTML in chunks, one at a time.

You are also given the performance issue(s) detected by Lighthouse to resolve, in the
following format:

Please modify each HTML code chunk to resolve the performance issue(s) given below.

Return the modified HTML code alone, making only necessary changes for performance

optimization.

## Instructions

Make sure you:

- Remember the code is split into chunks and you are only receiving one chunk at a
time, there might be some unclosed or cut elements, do not worry about that.

- Consider that a chunk might be a part of a larger element, so the code might not be
complete.

- Consider that the HTML as a whole is from production and might be minified, uglified
or compressed.

- DO NOT modify class names

- Do not change chunk IDs ie the prop values for data-chunk-uuid, and chunk_style_[
uuid]

- DO NOT remove any comments already in the code.

- DO NOT change any styles or functionalities of the code.

- DO NOT change the structure of the code.

- DO NOT change the order of the code.

- DO NOT remove critical elements.

- If any optimizations are made, return ‘<!-- Optimized by LLM -->‘ at the beginning
point of only the modified portion

and ‘<!-- End of Optimization: {{audit_key of issue being resolved}} => {{one line
short description of elements/things resolved}} -->‘ at the end of the changed
portion.
Do not indicate any resolution outside of the End of Optimization comment, where

there are multiple resolutions being made, seperate them with commas within the End
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of optimization comment.

- If you cannot make an optimization due to the above reasons but can provide a very

brief suggestion, do so by adding a comment at the end of the chunk, starting with

‘<l-- Suggestion: {{audit_key of issue being addressed}} and ending with -->

Prioritize optimizations above suggestions where you can.

Return ONLY the modified HTML code, no long notes.

Making only necessary changes for performance optimization.

If no optimizations are possible, return the original code.

Never add any additional comments to the code besides the ones for describing where
optimizations were made by you.

If the change is within a ‘<style>‘ tag, replace the HTML comment with a CSS comment

## Original HTML Chunk

““‘html

{{content}}

## Performance Issues

{{audit_issues}}

Listing 7.1: Prompt for HTML Performance Optimization

Additional results for LLLM modifications

Table A.3: Consistency of model improvements across latency audits.

Audit Models improved ~Worst regression o

Initial Load 8/9 +24.8% 22.8
Interactivity 7/9 +7.9% 24.1
Runtime 8/9 +58.9% 40.3
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