
Evaluating the Use of LLMs for
Automated Resolution of Web Performance Issues

Gideon Peters

A Thesis

In the Department

of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements

For the Degree of

Master of Applied Science (Software Engineering)

at Concordia University

Montréal, Québec, Canada

July 2025

© Gideon Peters, 2025

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By:

Entitled:

and submitted in partial fulfillment of the requirements for the degree of

complies with the regulations of the University and meets the accepted standards with

respect to originality and quality.

Signed by the final examining committee:

Chair of Department or Graduate Program Director

______________________________________ Chair

 ______________________________________ Examiner

 ______________________________________ Examiner

______________________________________ 7KHVLV Supervisor�V�

_______________________________________ Thesis Supervisor(s)

Approved by __

'eDQ oI

Gideon Peters

Evaluating the Use of LLMs for Automated Resolution of Web Performance Issues

Master of Applied Science (Software Engineering)

Dr. Juergen Rilling

Dr. Jinqiu Yang

Dr. Emad Shihab

Dr. Denis Pankratov

Dr. Mourad Debbabi Gina Cody School of Engineering and Computer Science

Abstract

Evaluating the Use of LLMs for Automated Resolution of Web Performance Issues

Gideon Peters

Concordia University, 2025

Users demand fast, seamless webpage experiences, yet developers often struggle to meet these expectations

within tight constraints. Performance optimization, while critical, is a time-consuming and often manual

process. One of the most complex tasks in this domain is modifying the Document Object Model (DOM),

which is why this study focuses on it. Recent advances in Large Language Models (LLMs) offer a promising

avenue to automate this complex task, potentially transforming how developers address web performance

issues. This study evaluates the effectiveness of nine state-of-the-art LLMs for automated web performance

issue resolution. For this purpose, we first extracted the DOM trees of 15 popular webpages (e.g., Facebook),

and then we used Lighthouse to retrieve their performance audit reports. Subsequently, we passed the

extracted DOM trees and corresponding audits to each model for resolution. Our study considers 7 unique

audit categories, revealing that LLMs universally excel at SEO & Accessibility issues. However, their efficacy

in performance-critical DOM manipulations is mixed. While high-performing models like GPT-4.1 delivered

significant reductions in areas like Initial Load, Interactivity, and Network Optimization (e.g., 46.52% to

48.68% audit incidence reductions), others, such as GPT-4o-mini, notably underperformed, consistently.

A further analysis of these modifications showed a predominant additive strategy and frequent positional

changes, alongside regressions particularly impacting Visual Stability. Our study highlights LLMs’ clear

feasibility in web performance engineering workflows, particularly for semantic concerns. However, it

critically underscores the need for careful model selection, understanding their specific modification patterns,

and robust human oversight to ensure reliable web performance improvements.

iii

Acknowledgments

Completing my MASc. degree has been an incredibly rewarding journey, one shaped by the guidance,

collaboration, and support of many remarkable people.

First and foremost, I am deeply grateful to my supervisor, Dr. Emad Shihab, for his constant encouragement,

patience, and insightful feedback. His mentorship has been invaluable in helping me grow both as a researcher

and as a person.

I would also like to thank my postdoc, Dr. SayedHassan Khatoonabadi, whose exceptional collaboration

and thoughtful guidance have been a steady source of inspiration throughout this work.

My sincere appreciation goes to my colleagues in the DAS Lab. Your camaraderie and generosity made

the lab a place where ideas could flourish. A special thank you to Mayra, Samuel, Caren, Alor, Jasmine, and

Chaima for your advice, encouragement, and all the thoughtful conversations that made this journey brighter.

I am also grateful to the CREATE program for supporting my research and professional development, and

to Lori, the program coordinator, for her kind assistance and guidance every step of the way.

Finally, I owe my deepest gratitude to my parents, siblings and friends for their unwavering love and belief

in me. Your support has been the foundation that carried me through every challenge.

iv

Dedication

To my beloved parents, Dr. Omale Peters and Major. Grace Peters, for their sacrifices, unwavering support

and guidance. And to my siblings, Favour and Isaiah Peters, for pushing me to defy boundaries every time.

v

Table of Contents

List of Figures viii

List of Tables ix

1 Introduction and Research Statement 1

1.1 Introduction . 1

1.2 Research Statement . 3

1.3 Thesis Overview . 3

1.4 Thesis Contributions . 6

1.5 Related Publications . 6

1.6 Thesis Organization . 7

2 Background and Related Work 8

2.1 Document Object Model (DOM) . 8

2.2 Performance Audits and Lighthouse . 10

2.3 LLMs for HTML Understanding . 12

2.4 LLMs for Web Customization . 13

2.5 LLMs for Web-Based Automation and Information Extraction 14

2.6 Chapter Summary . 15

3 Methodology 16

3.1 Study Design . 16

vi

4 Results 27

4.1 RQ1: How effective are LLMs for resolving web performance issues in the DOM? 27

4.2 RQ2: What is the nature of changes made by LLMs for automated web performance

issue resolution? . 32

5 Discussion 37

5.1 Proficiency in Semantic Understanding vs. The Pervasive Challenge of Visual Stability 37

5.2 Unpacking LLM Modification Strategies: Additive vs. Disruptive Approaches . . . 38

5.3 Overall Implications for Automated Web Performance Resolution 39

6 Threats to Validity 41

6.1 Internal Validity . 41

6.2 External Validity . 42

7 Conclusion and Future Work 43

7.1 Conclusion . 43

7.2 Future Work . 44

Bibliography 47

Appendices 55

vii

List of Figures

2.1 Example structure of a DOM tree . 9

3.1 Overview of our experiment workflow . 19

viii

List of Tables

3.1 Webpages and original Lighthouse performance summary 17

3.2 Descriptive Statistics of the Webpages in Our Dataset . 18

3.3 LLM Models Evaluated and Their Specifications . 20

4.1 Percentage change in audit incidence ratio results (-ve values indicate reductions in incidents

and represent improvements; +ve values indicate increases in incidents and represent regressions). 30

4.2 Summary of Deepdiff Results by LLM Model with Calculated Ratios (including Depth stats) 34

A.1 Audit names grouped by category . 55

A.2 Audit data overview . 58

A.3 Consistency of model improvements across latency audits. 69

A.4 Correlation for all Models . 70

A.5 Correlation of Better Performing Models . 71

A.6 Correlations for regressing LLMs . 72

ix

List of Algorithms

1 HTML Chunking Algorithm . 22

x

Listings

2.1 Example structure of a single Lighthouse performance audit 11

7.1 Prompt for HTML Performance Optimization . 68

xi

Chapter 1

Introduction and Research Statement

1.1 Introduction

Web applications have become one of the primary ways users consume content on the internet [1].

Therefore, the importance of performant web applications cannot be overemphasized [2]. A webpage’s

performance is a core nonfunctional requirement, as it impacts the overall user experience, engagement, and

conversion ratios [3, 4]. As such, web performance engineering remains an unnegotiable component of the

web development process. It requires a deep understanding of both the browser engine and application use

cases [5]. Performance optimization involves various considerations including hardware (CPU and memory

usage), server (API response times), and client-side factors (DOM size, image optimizations, on-demand

loading, and omni-channel experience) [6, 7].

This thesis focuses on the client-side, specifically the Document Object Model (DOM), which is central

to how browsers interpret, render, and interact with webpages [8, 9]. The DOM also significantly impacts

hardware and server performance—complex DOM structures increase CPU and memory usage, slowing

performance—especially on resource-limited devices. Additionally, large DOM payloads can strain server

response times [6, 7, 10]. Optimizing the DOM is challenging [11], requiring detailed analysis and targeted

modifications to balance functionality and performance. Traditionally, addressing DOM inefficiencies has

relied on manual interventions and automated tools with limited scope [12]. However, the growing complexity

of web applications demands more sophisticated solutions [1].

Large Language Models (LLMs) present a promising approach to address these challenges. They have

transformed numerous software engineering tasks by leveraging their ability to understand and generate human-

1

like text [13, 14, 15]. Trained on massive corpora, including HTML documents from public repositories,

LLMs are uniquely positioned to tackle challenges in web development [16, 17]. Their applications extend

beyond code generation to include tasks like web security [18], automated testing [19], and accessibility

improvements [20]. However, the effectiveness of LLMs for web performance optimization, particularly in

modifying the DOM to address performance issues, has not yet been systematically explored.

To fill this knowledge gap, we aim to explore the usefulness and challenges of using LLMs for automating

web performance resolutions. For this purpose, we extract the DOM trees of 15 popular webpages, and we

generate audit reports for these extracted DOM trees. We then assess the effectiveness of nine state-of-the-art

LLMs, including GPT-4.1, Claude 3.7 Sonnet, DeepSeek R1 & V3, and GPT-4o-mini—to resolve these

audits by passing the audit along with the DOM tree to the model. Finally, we generate new audit reports for

the modified DOM trees and compare the prevalence of the initial audits before and after modification. In

summary, we aim to answer the following research questions:

RQ1: How effective are LLMs for resolving web performance issues in the DOM? Performance

optimization can be tedious, requiring web developers to run performance tests, and implement

required fixes [21, 22]. We explore the ability of LLMs to resolve performance issues identified by

Lighthouse audits across 15 webpages. Our findings indicate that LLMs achieved a 100% reduction in

SEO & Accessibility issues. However, for performance-critical issues, effectiveness was mixed and

highly model-dependent, with some models showing significant gains while others notably introduced

regressions, particularly impacting visual stability.

RQ2: What is the nature of changes made by LLMs for automated web performance issue resolution?

To understand how LLMs modify the DOM, we analyzed differences between the original and LLM-

modified HTML pages for nine state-of-the-art models across 15 webpages. We identified modifications

including element and attribute additions, removals, type changes, and positional shifts. Most LLMs

used a predominantly additive strategy, with GPT-4o-mini uniquely removing more elements than it

added. Frequent positional changes also occurred, typically at shallower DOM depths.

This thesis highlights various insights for web developers, LLM providers, and the web development

research community on the task of automating web performance issues resolution. By focusing on the

DOM—a language-agnostic structure that all frameworks must adhere to for browser rendering, we address

performance bottlenecks at their core, independent of specific languages or frameworks. This approach enables

2

broader applicability and ensures solutions can be integrated into the CI/CD pipeline before production,

improving both user experience and developer efficiency by reducing iterative optimization cycles, thus saving

time for other meaningful tasks [19].

1.2 Research Statement

Motivated by the complexity and iterative nature of web performance optimization—and the critical

importance of performance for user experience and accessibility—the goal of this MASc thesis is to investigate

whether large language models (LLMs) can reliably automate the resolution of performance issues in

real-world webpages. We state our research statement as follows:

Web performance optimization is a time-consuming process requiring specialized expertise to diagnose

issues and implement precise modifications in complex DOM structures. This thesis systematically

evaluates the ability of LLMs for the automated resolution of web performance issues. Specifically,

it examines whether LLMs can resolve these issues measured by standardized audits across diverse

webpages, characterizes the types and patterns of their modifications, and assesses their reliability for

integration into automated optimization workflows.

1.3 Thesis Overview

In this section, we provide an overview of the work presented in this thesis and highlight the main themes

of each chapter.

Chapter 2: Background and Related Work

This chapter introduces key concepts and technologies foundational to this work. We begin by explaining

the Document Object Model (DOM), its hierarchical structure, and how different node types—such as tags,

text, scripts, and stylesheets—contribute to the complexity and performance characteristics of webpages.

We discuss how DOM depth and size impact rendering efficiency and responsiveness. We then describe

the role of performance audits, focusing on Lighthouse as our primary evaluation tool. Lighthouse audits

produce structured reports with scores, descriptions, and actionable details on performance, accessibility, and

3

SEO. Finally, we survey prior research applying large language models to HTML understanding, web content

generation, and automated optimization, identifying gaps that motivate our research.

Chapter 3: Methodology

To rigorously evaluate whether LLMs can automate the resolution of web performance issues, we develop

a comprehensive study design. This chapter details the construction of a dataset comprising 15 production

webpages selected from the Alexa Top 500 list, reflecting diverse structures and performance profiles. We

describe our extraction of complete DOM trees, their division into manageable chunks to accommodate LLM

output constraints, and our validation process ensuring reassembly fidelity using Tree Edit Distance. We

present the criteria used to select nine diverse LLMs varying in architecture, model size, and token limits.

Additionally, we outline our Lighthouse configuration, including filtering of audits to focus on actionable

performance issues across seven defined categories. Finally, we explain our use of the Audit Incidence Ratio

(AIR) to benchmark improvements and regressions resulting from model-generated modifications.

Chapter 4: Results

This chapter presents our quantitative assessment of LLM performance across multiple audit categories.

We find that all models demonstrate strong semantic understanding, achieving a 100% reduction in SEO

and accessibility-related issues. However, performance outcomes vary significantly across other categories.

High-performing models, such as Qwen2.5-32B-Instruct and GPT-4.1, achieve substantial improvements in

latency and resource usage, while GPT-4o-Mini consistently introduces regressions in runtime and visual

stability. These results illustrate both the promise and the variability of LLMs in addressing complex

performance bottlenecks.

Additionally, to understand why different models produce divergent outcomes, this chapter analyzes the

specific DOM modifications each LLM performs. We categorize changes using structured diffs, reporting

frequencies of additions, removals, type changes, and positional reordering. We define metrics such as

the Element Addition-to-Removal Ratio (EATRR) and Positional Change Dominance (PCD) to quantify

modification strategies. Our findings show that most models adopt an additive strategy, introducing new

elements to improve performance, while GPT-4o-Mini stands out for its disruptive reordering of existing

nodes. High-performing models concentrate modifications on textual changes and shallow DOM levels,

4

correlating with greater improvements in load times and resource efficiency.

Chapter 5: Discussion

This chapter discusses the implications of our findings for both research and practice. We first highlight

that LLMs exhibit strong capabilities in semantic enhancements, particularly for SEO and accessibility

improvements, suggesting their immediate utility for automated compliance tasks. However, we identify

pervasive challenges in maintaining visual stability, as many models inadvertently introduce layout shifts

through duplications or aggressive reordering. Our analysis shows that additive modification strategies can

contribute to DOM bloat, especially when duplicating assets like SVG paths, while disruptive strategies lead

to costly browser reflows and degraded performance. The most effective models rely on targeted textual

modifications and shallow-depth changes, such as adding defer and async attributes to script elements.

These findings underscore the need for hybrid approaches combining LLM-driven suggestions with automated

validation in CI/CD pipelines. We recommend that practitioners deploy LLMs selectively, focusing on

scenarios where their strengths are well established, and complement them with safeguards for more sensitive

performance areas. Finally, we outline opportunities for future work to enhance spatial reasoning in LLMs

and refine prompt engineering strategies to better control the scope of modifications.

Chapter 6: Threats to Validity

We outline limitations inherent to this thesis. Internally, model performance is sensitive to prompt

design, and our chunking approach—while necessary to fit model constraints—may result in some loss of

global context. We mitigated these risks through standardized prompts and rigorous structural validation of

reassembled DOMs. Externally, while our dataset spans diverse popular webpages and our evaluation includes

nine state-of-the-art models, results may not generalize to all types of web applications or future model

releases. Additionally, reliance on Lighthouse as the primary audit tool does not capture all user-experience

factors, suggesting the need for complementary assessments in future research.

Chapter 7: Conclusion and Future Work

Finally, this chapter summarizes the contributions of the thesis and suggests directions for continued

exploration. We conclude that LLMs show significant promise for automating aspects of web performance

5

optimization but require careful integration, targeted deployment, and robust validation to avoid unintended

regressions. Future work should focus on developing hybrid systems combining LLM reasoning with

deterministic checks, improving modelsâĂŹ hierarchical and spatial understanding of the DOM, and expanding

evaluation frameworks to incorporate direct user experience metrics and deployment considerations.

1.4 Thesis Contributions

The main contributions of this thesis are as follows:

• We conducted extensive experiments using nine LLMs on DOM trees from 15 popular webpages,

providing a comprehensive evaluation of their effectiveness in automated web performance issue

resolution.

• We provide a token-aware chunking strategy for DOM trees based on a predefined token threshold to

enable processing by LLMs for the task of web performance issue resolution.

• We identified seven distinct audit categories, and provide a detailed quantitative analysis of LLM

changes implemented with respect to these audits.

• We synthesize actionable insights and implications for web developers, LLM providers, and the research

community, guiding future development towards more robust and reliable AI-driven web performance

optimization.

• To promote the reproducibility of this thesis and facilitate future research on this topic, we publicly

share our scripts and dataset online [23].

1.5 Related Publications

The work presented in this thesis has been submitted to the following venue for review:

• Gideon Peters, SayedHassan Khatoonabadi, and Emad Shihab. Evaluating the Use of LLMs for

Automated Resolution of Web Performance Issues. Submitted to International Conference on Software

Engineering 2026 (ICSE’26).

6

1.6 Thesis Organization

The rest of the thesis is organized as follows. Chapter 2 provides the necessary background for this thesis

as well as a review of related works relevant to this thesis. Then, Chapter 3 present our methodology, detailing

our quantitative evaluation of how effectively different LLMs resolve web performance issues across multiple

audit categories, and examining the nature and patterns of DOM modifications performed by these models to

understand the underlying factors contributing to their observed performance outcomes. Chapter 4 highlights

our results and corresponding findings. Chapter 5 discusses the implications of this work. Chapter 6 outlines

the limitations of the thesis. Chapter 7 summarizes the thesis and discusses the key directions for future work.

7

Chapter 2

Background and Related Work

In this chapter, we provide an overview of the concepts and studies relevant to this thesis. First, we

introduce the fundamental principles and technologies of the DOM and web performance audits. Then, we

review related work on applying large language models (LLMs) to HTML understanding, content generation,

and automated optimization. At the end of each section, we explain how our thesis contributes to the body of

knowledge.

2.1 Document Object Model (DOM)

The Document Object Model (DOM) represents a webpage’s structure and content as a tree-like hierarchy

of nodes, where each node corresponds to an HTML element, attribute, or text [24]. This hierarchy enables

programmatic access and manipulation of webpage elements. The DOM is fundamental to web development,

allowing dynamic updates and interaction with web content. Through DOM manipulation, developers can:

(i) dynamically alter webpage structure, style, and content, and (ii) respond to user interactions. Figure 2.1

illustrates a DOM tree, showing its HTML code representation on the left and its hierarchical structure on the

right.

Key characteristics of a DOM tree include:

• Root Node: The tree begins with the <html> element as its root, which has <head> and <body> as

children.

• Parent-Child Relationships: Elements are hierarchically organized, with parent nodes containing

8

Figure 2.1: Example structure of a DOM tree

child nodes (e.g. <body> contains <header>, <main>, and <footer>).

• Sibling Relationships: Nodes at the same hierarchical level are siblings (e.g. <p> and <a> within

<main>).

Furthermore, there are various element types present in DOM trees. These element types include:

• Text: Represents textual content within HTML elements (e.g. "Hello, world!" in <p>Hello,

world!</p>).

• Comment: HTML comments, enclosed within <!– –>, provide additional context or documentation

but are not rendered in the browser.

• Tag: These are the core elements of the DOM structure, representing HTML tags like <div>, <a>,

or <table>. Each tag may have attributes (e.g., Link is an element

with a href attribute that has the value example.com).

• Script: Embeds or references JavaScript (e.g. <script src="app.js"> </script>).

• Stylesheet: Represents CSS rules for styling (e.g., inline <style>p { color: red; }</style>

or externally <link rel="stylesheet" href="styles.css">).

These element types are combined in various ways across webpages [25]. In performance optimization,

DOM tree size and complexity significantly impact load time and responsiveness, as larger and more deeply

9

nested trees require greater computational resources [26, 27].

Our thesis leverages this understanding of the DOM to assess how LLMs can modify these structures to

address performance bottlenecks.

2.2 Performance Audits and Lighthouse

Performance audits systematically evaluate webpages to assess their performance, identify bottlenecks,

and recommend improvements [28]. These audits aim to ensure sites meet performance goals critical to user

experience, search rankings, and business outcomes [21].

Our work utilizes Lighthouse, an open-source Chromium-based tool developed by Google for the

measurement and improvement of webpage performance [29, 30, 31]. We selected Lighthouse due to its

extensibility and widespread community adoption [21, 2, 32]. It analyzes webpages, generating actionable

reports on performance, accessibility, SEO, and progressive web apps. Lighthouse offers numerous

configuration flags allowing tailored audits for specific use cases, environments, or requirements.

Lighthouse audit reports include key performance metrics like First Contentful Paint (FCP), Largest

Contentful Paint (LCP), and Cumulative Layout Shift (CLS) [33, 2, 21]. Each audit highlights an issue or

suggestion based on standard practices and is keyed by its name. An example audit structure is shown in

Listing 2.1, with the following properties:

• id: A unique identifier identical to the audit key.

• title: A brief summary of the audit’s purpose.

• description: A detailed explanation of what the audit assesses and its significance.

• score: A numeric or categorical value indicating the audit’s result (e.g. pass, fail, or needing

improvement).

• scoreDisplayMode: Denotes how the score is interpreted (e.g. informative, notApplicable,

manual, or error). We exclude audits with notApplicable, manual, and informative, or binary

scores of 1 as it indicates as a pass and these audits do not require any resolution in the DOM [33]

unlike a binary score of 0 which indicates a needed resolution.

• displayValue: A contextual measurement supplementing the score (e.g., "2.5s" for loading time).

10

• details: Provided when an audit fails, offering insight into the issue and potential resolutions. This

may include responsible element types, value headings, or affected items like specific DOM elements,

location parameters, resource URLs, or data points. Audits with these location parameters are termed

location-specific, while those without are location-non-specific.

{

"is-on-https": {

"id": "is-on-https",

"title": "Does not use HTTPS",

"description": "All sites should be ...",

"score": 0,

"scoreDisplayMode": "binary",

"displayValue": "1 insecure request found",

"details": {

"type": "table",

"headings": [{

"key": "url",

"valueType": "url",

"label": "Insecure URL"

}],

"items": [{

"url": "http://ajax.googleapis...."

}]

}

},

}TF

}

Listing 2.1: Example structure of a single Lighthouse performance audit

This thesis uses Lighthouse audits both as a benchmark to measure improvements and as a structured

reference for guiding LLM modifications.

11

2.3 LLMs for HTML Understanding

LLMs are increasingly used for HTML understanding, parsing raw HTML for tasks like web-based

automation and browser-assisted retrieval [34, 35, 19]. This capability hinges on an LLM’s understanding

of HTML’s semantic structure, tag-based syntax, and hierarchical organization (forming the DOM tree).

Beyond basic comprehension, LLMs have demonstrated proficiency in diverse applications, including

information extraction from web pages (e.g., identifying product details or contact information) [36, 37],

content summarization [38], and even generating or correcting HTML snippets based on natural language

prompts [39]. Their ability to process and interpret the complex, nested structure of HTML enables them to

perform tasks that previously required specialized parsers or human intervention.

Notably, Gur et al. [34] showed that LLMs pre-trained on natural language can readily transfer to

HTML understanding, requiring minimal preprocessing for tasks like semantic classification and description

generation. This transferability underscores the generalizable pattern recognition capabilities of LLMs across

different structured data formats. However, challenges persist, particularly concerning the scalability of

processing very large and complex HTML documents within typical LLM context windows, and their inherent

limitation in directly interpreting visually dynamic content rendered by JavaScript. While LLMs excel at

understanding the static HTML structure, integrating real-time visual rendering information remains an area

of ongoing research.

This thesis builds on this by assessing how LLMs, using raw HTML, not only comprehend its structure

and semantics but also apply this understanding to resolve web performance issues. This requires a deeper,

actionable interpretation of HTML elements in context, moving beyond mere classification to resolving

performance bottlenecks like render-blocking resources or inefficient asset loading strategies. For instance,

an LLM might analyze the attributes of an tag and its surrounding context to suggest optimal image

formats or lazy loading, or identify superfluous <script> tags that negatively impact page load times. This

level of interpretation demands a nuanced understanding of how individual HTML elements contribute to the

overall web rendering process and user experience.

While this prior work predominantly focuses on classification, comprehension, and general HTML

manipulation, our thesis extends this line by examining whether LLMs can translate their HTML understanding

into targeted, actionable performance optimizations, addressing a critical gap in current web development

practices.

12

2.4 LLMs for Web Customization

LLMs have emerged as powerful tools for customizing web content, extending their utility beyond mere

content generation to active manipulation of web interfaces. This capability leverages their deep understanding

of natural language combined with their ability to interpret and generate structured code like HTML, CSS,

and JavaScript.

Prior work has demonstrated several key applications in this domain. Calò and De Russis [39] pioneered

the use of LLMs to facilitate entire website creation directly from natural language descriptions, showcasing

their robust HTML comprehension by accurately translating high-level design intents into functional web

pages. This indicated LLMs’ capacity to not only understand HTML’s structure but also to synthesize it

coherently. Similarly, Li et al. [40] explored the application of LLMs for on-the-fly User Interface (UI)

customization, enabling style-related Document Object Model (DOM) changes through intuitive natural

language commands. Their work highlighted the potential for LLMs to democratize web design, allowing

users without technical expertise to modify visual elements like colors, fonts, and layouts. Beyond visual

styles, LLMs are also being explored for more intricate web content personalization, tailoring information or

recommendations based on user profiles, and even for improving web accessibility by generating modifications

that comply with standards like WCAG [20].

However, a significant challenge in LLM-driven web customization lies in ensuring that the generated

modifications are not just syntactically valid or aesthetically pleasing, but also performant. While LLMs can

readily produce DOM changes, the subtle interplay of these changes with browser rendering engines, network

conditions, and user device capabilities often goes unaddressed. For instance, an LLM might suggest adding a

complex shadow effect to many elements, which, while visually appealing, could introduce significant reflows

and repaints, thereby degrading user experience. The ability to identify render-blocking resources, optimize

image loading, or streamline CSS delivery from raw HTML requires an understanding of web performance

best practices that extends beyond typical language or code generation tasks.

This thesis goes a step further by focusing specifically on web performance optimization within the

context of customization. We evaluate how well LLMs can modify the DOM to ensure faster style changes for

subsequent UI customizations, or more broadly, to improve overall web performance. This demands a critical

shift from merely producing desired outputs to generating computationally efficient ones. It involves training

or prompting LLMs to understand the performance implications of various HTML and CSS constructs, such

13

as the impact of inline styles versus external stylesheets, the efficiency of different image formats and loading

attributes, or the cascading effects of DOM manipulations on rendering pipelines.

We build on this foundation by evaluating whether LLMs can produce not just syntactically valid but

performance-improving DOM changes, aiming to bridge the gap between AI-driven web customization and

robust web performance engineering.

2.5 LLMs for Web-Based Automation and Information Extraction

The application of LLMs has significantly advanced the fields of web-based automation and information

extraction. These domains heavily rely on an the models’ ability to accurately understand and interact with

web interfaces, often represented by the DOM.

In web automation, LLMs have proven instrumental in enhancing the robustness and flexibility of various

tasks, from automated testing to repetitive data entry. Nass et al. [19] notably demonstrated how LLMs can

drastically improve web element identification within Graphical User Interface (GUI) test automation. By

leveraging their deep contextual awareness, LLMs can localize web elements not just by their explicit IDs

or XPaths, but by understanding their semantic role and relationship to surrounding elements within the

HTML structure, even in the presence of dynamic content or minor structural changes. This capability moves

beyond brittle, hard-coded selectors to more intelligent, natural language-driven element targeting, paving the

way for more resilient automation scripts [41]. Other work in this area includes LLMs generating browser

automation scripts from natural language descriptions of desired actions, simplifying complex web workflows

for non-programmers [39].

Simultaneously, LLMs have made substantial inroads into information extraction from web pages. While

traditional methods often relied on rule-based systems or supervised machine learning with extensive feature

engineering, LLMs can directly process raw HTML. Research like WebFormer by Wang et al. [42] highlights

the critical importance of not only analyzing text content but also extensively leveraging HTML’s structural

and layout information for accurate data extraction. LLMs can discern intricate relationships between

elements, understand table structures, and extract specific entities (e.g., product details, event times, addresses)

even from unstructured or semi-structured web content [36, 37]. This allows for more adaptable and less

labor-intensive information retrieval across diverse websites. However, most of these applications typically

involve a read-only interaction with the DOM, focusing on understanding or identifying rather than actively

14

modifying the underlying structure for specific goals beyond extraction.

This thesis expands these applications by evaluating LLMs’ capacity to make actionable DOM modifi-

cations, specifically to resolve complex, performance-related issues. Unlike existing work that uses LLMs

for element identification or data retrieval, our approach pushes the boundary towards prescriptive changes.

This requires the LLM to not just understand the HTML, but to resolve performance issues from an audit by

implementing concrete structural or attribute changes within the DOM that directly address those issues. This

involves a much deeper level of actionable interpretation and problem-solving.

Our thesis extends these capabilities by systematically investigating whether LLMs can autonomously

modify DOM structures to resolve performance issues identified by audits, bridging the gap between passive

HTML understanding and active web optimization.

2.6 Chapter Summary

This chapter introduced the core principles of DOM representation, performance auditing with Lighthouse,

and prior work showing that LLMs can parse, generate, and manipulate web content. However, while these

studies validate the feasibility of LLMs for HTML comprehension and generation, their ability to perform

precise, performance-targeted DOM modifications remains unexplored. To address this gap, this thesis

systematically evaluates whether LLMs can improve real-world webpage performance across multiple metrics

while maintaining structural integrity.

15

Chapter 3

Methodology

In this chapter, we present the study design of our thesis, including the selection of real-world webpages,

our methodology for conducting performance audits and LLM modifications, and the evaluation metrics used.

3.1 Study Design

This section describes our dataset, the performance audits, the environment configurations, considerations

for our LLM selection, the chunking strategy, and the evaluation metric used in this thesis.

3.1.1 Dataset

To conduct our work, we first select 15 real-world webpages at random from the Alexa Top 500 list [43],

which features top-ranked webpages on the web. We chose this list due to its popularity and prior use in

research [44, 45, 46]. Each webpage selected is a homepage, the main entry point for users. Since homepages

typically receive the highest traffic [47, 48, 49], optimizing their performance is particularly relevant to this

thesis.

Our dataset comprises webpages from four different categories: Shopping webpages (4), Professional

webpages (2), Social webpages (6), and Entertainment webpages (3). Table 3.1 details these selections

sorted in order of their Alexa ranking, alongside their Lighthouse Scores(LHS). We also show the number

of location-specific audits for each site (Audits w/ Location) and location-non-specific audits (Audits w/o

Location). Additionally, it highlights the total number of chunks each webpage was divided into for our

experiments. More details on the chunking strategy used are provided later in Chapter 3.

16

Ta
bl

e
3.

1:
W

eb
pa

ge
sa

nd
or

ig
in

al
Li

gh
th

ou
se

pe
rfo

rm
an

ce
su

m
m

ar
y

W
eb

pa
ge

C
at

eg
or

y
R

an
ki

ng
A

hr
ef

s
#

C
hu

nk
s

A
ud

its
w

/o
Lo

ca
tio

n
A

ud
its

w
/L

oc
at

io
n

To
ta

lA
ud

its
LH

S
(%

)

Yo
ut

ub
e

En
te

rta
in

m
en

t
2

2
3

20
9

29
30

Fa
ce

bo
ok

So
ci

al
5

4
2

13
5

18
90

X
(e

x.
Tw

itt
er

)
So

ci
al

7
17

2
13

5
18

42
Li

nk
ed

in
Pr

of
es

si
on

al
12

35
4

14
12

26
78

Re
dd

it
So

ci
al

13
5

9
18

9
27

32
G

ith
ub

Pr
of

es
si

on
al

27
99

9
13

12
25

47
A

lie
xp

re
ss

Sh
op

pi
ng

40
24

7
25

14
39

14
Pi

nt
er

es
t

So
ci

al
47

4
2

15
13

28
26

Eb
ay

Sh
op

pi
ng

49
93

17
19

16
35

12
N

et
fli

x
En

te
rta

in
m

en
t

54
27

2
14

11
25

34
Q

uo
ra

So
ci

al
58

38
4

12
9

21
54

Tw
itc

h
En

te
rta

in
m

en
t

84
17

0
2

16
10

26
37

M
ed

iu
m

So
ci

al
13

2
33

2
12

8
20

75
W

al
m

ar
t

Sh
op

pi
ng

17
1

89
3

15
10

25
49

A
irb

nb
Sh

op
pi

ng
27

7
12

10
15

6
21

51

17

Table 3.2 presents descriptive statistics for the webpages in our dataset. DOM Tree Depth, the maximum

depth of nested HTML elements, ranging from 4 to 32, indicates diverse structural complexity. The number

of chunks (# chunks), varying from 2 to 17, reflects varied content modularity across webpages. Total Audits

averaged 25.5 from 18 to 39, providing substantial per-page data. Finally, LHS (Lighthouse Score) averaged

44.7%, ranging from 12% to 90%, highlighting significant variability in webpage performance.

Table 3.2: Descriptive Statistics of the Webpages in Our Dataset

Statistic Mean Minimum Maximum

DOM Tree Depth 18 4 32
Chunks 5.2 2 17
Total Audits 25.5 18 39
LHS (%) 44.7 12 90

Figure 3.1 shows the entire workflow for our experiments. For each webpage, it comprises the following

six main stages:

1. DOM Extraction: We begin by extracting original DOM trees from the webpage. Python’s requests

package was used to fetch webpages, and their DOM trees were then extracted and parsed with

BeautifulSoup [50].

2. DOM Chunking: To accommodate the LLMs’ context window and output token limitations, we split

the DOM tree into smaller chunks to obtain the original DOM chunks.

3. Initial Audit Report Generation: The extracted DOM tree is then passed to Lighthouse to generate

initial audit reports, which establish a benchmark for issues to be resolved by the LLMs.

4. LLM Modification: Each chunk is then provided to the LLM, along with the corresponding audit

reports, instructing it to make modifications to resolve the identified issues. This process is applied to

every chunk with the LLM returning the modified DOM chunk in every iteration.

5. Re-assembly: After all original chunks are processed, the modified chunks are reassembled into a

complete modified DOM tree.

6. Post-Modification Audit Report Generation: A subsequent audit report is generated from this

reassembled tree to capture the audits after LLM modification. This allows for a quantitative comparison

18

Figure 3.1: Overview of our experiment workflow

between the initial audit reports and those obtained from the modified DOM trees to assess the LLM’s

effectiveness.

The subsequent sections provide a detailed explanation of this workflow and our considerations.

3.1.2 LLM Selection

To evaluate the potential of LLMs in automating web performance issue resolution, we selected a diverse

set of state-of-the-art LLMs that vary in reasoning capability, architecture, context window limits, max output

tokens, and model size. Table 3.3 provides a detailed list of the models and their specifications. Our goal is to

compare how different LLMs process DOM trees in conjunction with performance audits, and to understand

19

how model characteristics influence the types and quality of generated modifications, thereby enhancing the

generalizability of our findings.

Table 3.3: LLM Models Evaluated and Their Specifications

Model Reasoning Max O.T. Context Window Size

Claude 3.7 Sonnet (R) Yes 128K 200K –
Claude 3.7 Sonnet No 128K 200K –
DeepSeek V3 No 32K 131K 671B
DeepSeek R1 Yes 32K 128K 685B
LlaMA3.3 70B No 40K 128K 70B
GPT-4.1 No 32K 1M+ –
o4-mini Yes 100K 200K –
GPT-4o-mini No 16K 128K –
Qwen2.5 32B-Instruct No 128K 131K 32B

3.1.3 DOM Chunking

To accommodate the varying output token limits of the LLMs in our evaluation, we employ a conservative

chunking strategy. This approach is based on the model with the smallest maximum output size, specifically

GPT-4o-mini, which has an output token limit of 16K [51]. This ensures all models can process identical

DOM chunks for a consistent and fair comparison.

We implement this by limiting DOM chunks to 15K tokens, reserving 1K tokens for LLM-induced

modifications. Token counts are estimated using OpenAI’s Tiktoken package [52]. Chunks exceeding 15K

tokens are recursively split to ensure all webpage elements are assessed.

This strategy prevents token truncation, incomplete responses, resource inefficiencies during inference,

and error propagation in downstream evaluations. Our approach traverses the DOM tree in a depth-first search,

grouping nodes into chunks that never exceed the 15K threshold. This is done with attention to semantic

structure and element types; for example, specific preservation strategies were applied to certain element

types:

• Text Nodes: We preserved these text elements as-is, explicitly excluding them from any splitting or

chunking operations to maintain the integrity of inline text content.

• Comment: HTML comments were left untouched to avoid losing useful annotations or developer

metadata. We applied no chunking or transformations to these nodes.

20

• Tag: Before splitting, we stored all initial tag attributes for comparison and use during reassembly,

ensuring tags and their associated attributes remained intact. The split was then performed recursively,

accurately representing every element and its descendants. Each chunk was uniquely identified by a

UUID to ensure accurate reassembly.

• Script: We also stored script elements before chunking, reincorporating them during HTML reassembly.

This preserved the logic and interactivity defined by scripts.

• Stylesheet: Similarly, style rules were stored before chunking and merged back during reassembly.

Preserving these styles maintains the visual fidelity of the webpage.

Algorithm 1 outlines our token-aware HTML chunking strategy, which recursively traverses the DOM

and segments content into context-constrained units. The algorithm takes an HTML document (𝐷) and a

maximum token limit (𝑇max) as input, aiming to produce a list of chunks (𝐶).

The process begins by calling SplitHTML(D) (line 4), which iterates through the document’s head and

body sections, initiating the chunking process for each via ProcessSection (line 6). The core logic resides

within the ProcessNode(e) function (line 15), which recursively traverses the DOM tree.

For comment or text nodes (line 16), the algorithm calculates their token length (𝑡𝑒). If adding this to

the current chunk’s token count (𝑡) would exceed 𝑇max (line 18), a StartNewChunk() operation is triggered

(line 18), ensuring no chunk surpasses the limit. The node is then appended to the current chunk (𝑐), and 𝑡 is

updated (line 19).

For tag nodes (line 20), the algorithm first checks if the opening and closing tag bounds alone (𝑡open+close)

would push the current chunk over 𝑇max (line 22). If so, a new chunk is started. The opening tag is appended

(line 23), and then ProcessNode is recursively called for each of the tag’s children (line 24), preserving the

hierarchical structure. Finally, the closing tag is appended (line 25).

The StartNewChunk(name) function (line 29) handles the creation of new chunks. It first calls

FinishChunk() to finalize any existing chunk (line 30), then initializes a new empty chunk (𝑐) with a unique

UUID and its token count (𝑡) reset to 0 (lines 31-32). This UUID ensures faithful reassembly by allowing us

to accurately track and reintegrate elements like scripts, styles, and tag attributes during reconstruction. The

FinishChunk() function (line 35) simply appends a completed chunk to the final list 𝐶 if it contains content.

This recursive and token-aware splitting ensures that each chunk’s estimated token length does not exceed our

predefined 15K tokens threshold.

21

Algorithm 1 HTML Chunking Algorithm
Require: HTML document 𝐷, token limit 𝑇max
Ensure: List of chunks 𝐶

1: 𝐶 ← [], 𝑐 ← None, 𝑡 ← 0
2: function SplitHTML(𝐷)
3: for all 𝑠 ∈ {𝐷.head, 𝐷.body} do
4: if 𝑠 ≠ None then ProcessSection(𝑠, section name)
5: end if
6: end for
7: FinishChunk
8: return 𝐶

9: end function
10: function ProcessSection(𝑠, name)
11: StartNewChunk(name)
12: for all 𝑒 ∈ 𝑠.𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 do
13: ProcessNode(𝑒)
14: end for
15: end function
16: function ProcessNode(𝑒)
17: if 𝑒 is comment or text then
18: 𝑡𝑒 ← token length of 𝑒
19: if 𝑡 + 𝑡𝑒 > 𝑇max then StartNewChunk
20: end if
21: Append 𝑒 to 𝑐, update 𝑡
22: else if 𝑒 is tag then
23: 𝑡open+close ← token length of tag bounds
24: if 𝑡 + 𝑡open+close > 𝑇max then StartNewChunk
25: end if
26: Append opening tag to 𝑐

27: for all 𝑐ℎ𝑖𝑙𝑑 ∈ 𝑒.𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 do ProcessNode(𝑐ℎ𝑖𝑙𝑑)
28: end for
29: Append closing tag to 𝑐

30: end if
31: end function
32: function StartNewChunk(𝑛𝑎𝑚𝑒)
33: FinishChunk
34: 𝑐 ← new chunk with UUID, label 𝑛𝑎𝑚𝑒, empty content
35: 𝑡 ← 0
36: end function
37: function FinishChunk
38: if 𝑐 ≠ None and 𝑐.content ≠ ∅ then
39: Append 𝑐 to 𝐶

40: end if
41: end function

22

During reassembly, we reintegrate the stored scripts, styles, and attributes into their placeholders,

reconstructing the original HTML with its semantic and functional integrity preserved. While the reassembly

process is not part of the chunking algorithm, it is available in our replication package. To validate the

integrity of our chunking and reassembly, we reassembled all chunks before any modifications, confirming

that the structure and content remained unchanged.

To validate the integrity of our chunking strategy, we reassembled all chunks before any modifications,

confirming that the structure and content remained unchanged. To ensure there are no unintended alterations,

we checked a popular metric known as Tree Edit Distance to quantify the difference between the original

and reassembled DOMs [53, 54]. For all webpages processed, we observed a Tree Edit Distance of 0. This

indicates that the reassembled DOMs were identical to the original DOMs, with no structural or content

alterations.

3.1.4 Performance Audits

To create an initial benchmark for what issues we attempt to resolve, we generate Lighthouse audit

reports for the DOM trees before they are modified by the LLMs. We also generate audit reports for the

LLM-modified DOM trees. These are used in our quantitative analysis. For the audit generation process, we

make use of the following Lighthouse configuration flags:

• headless: Allowing Chrome to operate without a Graphical User Interface (GUI) and ensuring lower

consumption of CPU and memory resources. Consequently, it facilitates the automation of the

Lighthouse analysis limiting any interactions with the webpages during the process.

• no-sandbox: This disables the sandbox feature in Chrome which isolates web content and process.

This is useful for our research as it bypasses security restrictions that may come up in our environment

that could affect how pages are rendered.

• disable-gpu: Forcing the browser to render pages using the CPU instead of the GPU. This is to ensure

consistency of results based on the allocated CPU resource in our environment.

From the audit reports generated, we exclude audits with scoreDisplayMode values of notApplicable,

manual, and informative, or binary scores of 1 as it indicates a pass, and these audits do not require any

resolution in the DOM [33], unlike a binary score of 0, which indicates a needed resolution. This resulted in

23

67 unique audits, each of these audits as well as their descriptions can be found in our replication package [23].

All of these audits were manually analyzed, and a classification was agreed upon by two authors, and any

conflicts were resolved by the third author. This resulted in the establishment of seven audit categories. The

categories are as follows:

• Initial Load Performance: Describes how quickly a page’s essential content loads, e.g., "First

Contentful Paint" measures the time it takes for the first text or image to appear on the screen.

• Interactivity Performance: Focuses on how responsive the page is to user interactions, e.g., "Time to

Interactive" measures when the page becomes fully interactive, indicating when a user can reliably

interact with the page.

• Runtime Performance: Assesses how efficiently JavaScript and other resources are executed during

runtime. e.g., "JavaScript Execution Time" measures the duration of JavaScript operations and their

impact on page speed.Âă

• Resource Optimization: Evaluates the effectiveness of resource usage such as scripts, images, and

stylesheets, e.g., "Unminified JavaScript" flags large, uncompressed JavaScript files that could be

optimized to reduce their size and improve performance.

• Network Optimization: Measures the efficiency of network requests, including the number of requests

and their size, e.g., "Reduce Server Response Time" focuses on reducing latency and optimizing server

performance to decrease load time.

• Visual Stability: Focuses on preventing unexpected layout shifts during page load, e.g., "Cumulative

Layout Shift" tracks the unexpected shifting of elements as the page loads, impacting the user experience.

• SEO & Accessibility: Covers audits related to SEO and accessibility, e.g., "Accessibility Improvements"

flags issues that affect the usability of the website for users with disabilities, such as missing aria labels.

These audits are relevant from a semantic point of view as opposed to the hierarchical context of the

DOM [55].

24

3.1.5 Environment Configurations

To ensure the reproducibility and consistency of our performance audits, we utilized a Docker-isolated

environment [56]. This approach mitigates variability stemming from diverse hardware configurations (CPU,

RAM, GPU, etc.) by providing a standardized execution context, a common practice in web development for

consistent builds.

Our Docker environment was hosted on a MacBook Pro 2018 featuring a 2.3GHz Quad-Core Intel Core i5

processor and 16GB of RAM. Key software versions used include Docker v27.0.3, Node v21.5.0, Lighthouse

12.2.0, and the python:3-9-slim Docker image runtime. The Docker container was allocated 1GB of shared

memory to ensure sufficient resources for the Chromium browser used by Lighthouse.

3.1.6 Benchmarking & Evaluation Metric

To calculate the distribution of performance issues across our dataset, we introduce the derived audit

incidence ratio (AIR) metric. It is a practical adaptation of reporting practices in tools like Lighthouse, which

summarize how often specific audits are detected across sites to inform optimization priorities [29]. The AIR

of an audit provides a quantitative measure of the extent to which it is observed in the dataset. A higher ratio

indicates that the audit is more prevalent and affects a larger portion of the webpages, suggesting it could be a

critical area to address for overall performance improvement. In contrast, a lower AIR suggests that the issue

affects fewer webpages. We define it as follows:

AIR =
𝑊𝑎

𝑊total
(3.1)

where 𝑊𝑎 is the number of unique webpages containing audit 𝑎, and 𝑊total is the total number of webpages

in the dataset.

To benchmark our approach, we compare the original AIR for the extracted DOM trees with the AIRs

observed after applying modifications implemented by the LLMs. We call this comparison the percentage

change in AIR, calculated as follows:

% change in AIR =
𝑀 −𝑂
𝑂

× 100 (3.2)

where 𝑀 is the AIR after LLM modification and 𝑂 is the original AIR. This metric quantifies the effectiveness

25

of LLMs in resolving identified performance issues. A negative percentage change indicates an improvement

(i.e., a reduction in the incidence of an audit), while a positive change suggests a degradation in performance.

26

Chapter 4

Results

In this chapter, we present the results of our thesis. For each research question, we include the motivation

behind it, describe our approach, and report the corresponding findings.

4.1 RQ1: How effective are LLMs for resolving web performance issues in

the DOM?

4.1.1 Motivation.

The iterative and time-consuming nature of web performance optimization presents a significant challenge

for developers and negatively impacts user experience when performance is poor [21, 46, 1, 57, 58].

Investigating how LLMs emergent capabilities could automate the resolution of these issues offers a promising

avenue for significant advancement in web development; our work specifically validates their ability to resolve

web performance issues by making necessary changes to the DOM.

4.1.2 Approach.

To assess the effectiveness of LLMs in resolving web performance issues in the DOM, we utilized the

audits generated for the originally extracted webpages (see Chapter 3). Subsequently, each webpage is split

into chunks to address LLMs’ output token limitation, as detailed in our study design Chapter 3). For each

webpage, we then iteratively pass each chunk and the performance audits to the LLMs. Through zero-shot

prompting [59], we instruct the LLMs to make the necessary changes to resolve contributing factors to these

27

issues. Our prompt includes the audit key, title, description, and details (if any).

The prompt utilized can be found in Section 7.2.4. It is specifically tailored to guide the LLMs in

understanding complex DOM structures and performance audit requirements, considering their unique

processing characteristics. It incorporates the following considerations:

• To address LLMs’ inherent output token limitations, we designed our input strategy to feed the DOM in

chunks, ensuring the LLM understood the incremental nature of the content and avoided changes that

could disrupt the hierarchical DOM structure.

• We explicitly requested the LLM to specify modified sections and describe the changes, a crucial step

for validating LLM-generated modifications and facilitating easy identification of affected areas.

• We provide some context to the LLM about the possibility that the DOM tree being processed is likely

to be minified, uglified, or compressed as it is from a production website [60]. This is important as it

lets the LLM know that some styles or scripts are already processed, hence further similar processing

should be avoided to preserve the functionality of the webpage.

• We explicitly instruct the LLM to avoid any changes to the order, styles, and functionalities of the

scripts present. This is done to preserve the core functionalities of the webpage.

• We constrain the LLMs to use the right formatting of modification comments in the respective sections,

e.g., the HTML comment formatting for regular HTML elements and the style comment formatting for

style scripts. This is done to avoid any parsing or build issues when the DOM tree is reassembled.

All modified chunks are then reassembled and a final audit report is generated on the updated webpage.

This step helps to determine if the issues identified in the initial audit report have been resolved. To present

this clearly, we conducted a quantitative analysis, comparing the audit reports of the original webpage with

those of the modified webpage by calculating the % change in AIR.

4.1.3 Results

Table 4.1 highlights the percentage change in AIRs after LLM modification of the webpages in our

dataset. It presents the various audit categories (see Chapter 3), the different models evaluated, and the

percentage change in AIR after modification. Negative percentages indicate successful issue resolutions and

28

positive percentages suggest a regression of webpage performance. To easily identify performance, the worst

regressions in each audit category are colored red, and the best are green. Our findings are detailed below:

Finding 1: LLMs universally excel at semantic understanding, resolving all SEO & Accessibility

issues. As shown in Table 4.1, all LLMs achieved a 100.00% reduction for SEO & Accessibility audits.

These types of issues typically do not rely on a comprehensive DOM context but rather on the semantic

clarity and structural correctness of elements. This finding highlights the ability of LLMs to effectively

understand and manipulate the semantic structure inherent within DOM elements, thus identifying and

resolving issues crucial for SEO and web accessibility. This proficiency suggests that LLMs can be reliably

employed to automate the correction of semantic markup, alt attributes for images [61, 20], ARIA roles,

and other accessibility-related improvements without the need for exhaustive context. These capabilities are

particularly valuable for maintaining compliance with accessibility standards and improving discoverability

through search engines, aligning with prior research that emphasizes automated semantic validation and

enhancement [61, 62].

Finding 2: High-performing LLMs (e.g., Qwen2.5-32B-Instruct, GPT-4.1) deliver significant,

broad latency and optimization gains. Models such as Qwen2.5-32B-Instruct and GPT-4.1 consistently

demonstrated substantial improvements across multiple performance dimensions, positioning them as highly

effective optimizers. These models, alongside claude 3.7 sonnet(R), llama3.3-70b, deepseek-r1, deepseek-

v3, and o4-mini largely contributed to uniform decreases across all three latency audits, by substantial margins

(Initial Load: from -18.57% to -64.36%; Interactivity: from -5.00% to -64.99%; Runtime: from -11.11% to

-88.65%). While Runtime performance saw the most significant individual reductions (up to -88.65% for

Qwen2.5-32B-Instruct), the variability in improvements was notably higher (standard deviation 𝜎 = 40.3)

compared to Initial Load (𝜎 = 22.8) and Interactivity (𝜎 = 24.1), indicating that even among improving

models, the degree of enhancement varied.

Beyond latency, these high-performing LLMs also delivered significant gains in web asset delivery

and transfer efficiency. Our analysis reveals a largely positive trend with consistent improvements in

Network Optimization. All evaluated LLMs demonstrated an ability to improve Network Optimization, with

the reductions in AIR ranging from -14.35% (claude 3.7 sonnet and claude 3.7 sonnet(R)) to -64.68%

(Qwen2.5-32B-Instruct). For Resource Optimization, most LLMs also delivered positive changes, with

reductions ranging from -4.94% (gpt-4o-mini) to -55.26% (Qwen2.5-32B-Instruct). While claude 3.7

sonnet(R) showed a slight increase of +4.23%, the overall trend for the majority was positive. These findings

29

Ta
bl

e
4.

1:
Pe

rc
en

ta
ge

ch
an

ge
in

au
di

ti
nc

id
en

ce
ra

tio
re

su
lts

(-
ve

va
lu

es
in

di
ca

te
re

du
ct

io
ns

in
in

ci
de

nt
s

an
d

re
pr

es
en

ti
m

pr
ov

em
en

ts
;+

ve
va

lu
es

in
di

ca
te

in
cr

ea
se

si
n

in
ci

de
nt

sa
nd

re
pr

es
en

tr
eg

re
ss

io
ns

).

A
ud

it
C

at
eg

or
y

C
la

ud
e

3.
7

so
nn

et
(R

)
C

la
ud

e
3.

7
so

nn
et

D
ee

ps
ee

k
R

1
D

ee
ps

ee
k

V
3

G
PT

-4
.1

G
PT

-4
o-

m
in

i
Ll

aM
A

3.
3

70
B

o4
-m

in
i

Q
w

en
2.

5
32

B
-I

ns
tru

ct

SE
O

&
A

cc
es

si
bi

lit
y

-1
00

.0
0

-1
00

.0
0

-1
00

.0
0

-1
00

.0
0

-1
00

.0
0

-1
00

.0
0

-1
00

.0
0

-1
00

.0
0

-1
00

.0
0

In
iti

al
Lo

ad
Pe

rfo
rm

an
ce

−1
8
.5
7

−1
4
.7
2

−2
3
.9
7

−3
0
.6
7

−4
6
.5
2

24
.8

4
−2

8
.7
1

−2
6
.2
2

-6
4.

36

In
te

ra
ct

iv
ity

Pe
rfo

rm
an

ce
−5

.0
0

6
.0
9

−2
1
.5
8

−2
1
.0
9

−3
5
.6
9

7.
88

−5
4
.6
9

−9
.3
0

-6
4.

99

Ru
nt

im
e

Pe
rfo

rm
an

ce
−1

1
.1
1

−9
.1
3

−3
2
.6
2

−4
7
.5
4

−3
7
.3
8

58
.9

7
−7

6
.1
5

−3
1
.8
3

-8
8.

65

N
et

w
or

k
O

pt
im

iz
at

io
n

−1
4
.3
5

−1
4
.3
5

−3
3
.4
0

−3
0
.0
9

−4
8
.6
8

−1
7
.1
3

−3
5
.0
5

−3
7
.9
6

-6
4.

68

Re
so

ur
ce

O
pt

im
iz

at
io

n
4.

23
−8

.4
7

−3
4
.5
8

−1
1
.3
3

−3
2
.2
8

−4
.9
4

−3
0
.7
0

−2
0
.5
0

-5
5.

26

V
is

ua
lS

ta
bi

lit
y

30
.0
0

21
.6
7

38
.1

3
14

.6
4

−2
2
.0
2

28
.3
3

−3
9
.2
9

−6
.0
3

-3
5.

83

30

underscore that LLMs largely possess the capability to enhance web asset delivery and transfer efficiency,

demonstrating their advanced ability to generate DOM modifications that lead to more efficient asset delivery

and consumption.

Finding 3: GPT-4o-Mini presents a unique case of performance regression, particularly for user-

facing latency and resource efficiency. In stark contrast to other LLMs, gpt-4o-mini consistently introduced

significant overhead, leading to a notable regression in crucial user-facing latency metrics and resource

efficiency. Specifically, gpt-4o-mini increased the AIR for all three user-facing speed audits: Initial Load

(+24.84%), Interactivity (+7.88%), and dramatically for Runtime Performance (+58.97%). These increases

represent the "Worst regression" cases for each of the audit categories. Manual inspection revealed these

setbacks were primarily due to duplicated SVG path data that inflated payload size and paint cost, as well

as the addition of new elements that bloat page sizes, indicating specific challenges this LLM faced in

maintaining DOM integrity while optimizing. Furthermore, gpt-4o-mini contributed to increased visual

instability (+28.33%), reinforcing its tendency to introduce unintended DOM changes that degrade user

experience. These outcomes highlight that while larger LLMs can translate performance optimization prompts

into tangible latency savings, smaller LLMs may introduce new bottlenecks rather than eliminate existing

ones. Accordingly, any production pipeline that relies on automated web issue resolution should pair model

selection with post-hoc validation to prevent unintended speed/latency regressions.

Finding 4: Visual stability remains a significant challenge for most LLMs, with a majority

introducing regressions. The Visual Stability audit captures unexpected layout shifts that harm perceived

smoothness and can lead to frustrating user experiences. While some LLMs demonstrated proficiency in

optimizing load times and network efficiency, the ability to maintain or improve Visual Stability proved to be

a pervasive challenge for the majority of LLMs. As shown in Table 4.1, a clear trend emerged: most of the

LLMs evaluated introduced some visual instability. Most notably, deepseek-r1 showed the most substantial

regression in this category. Manual inspection revealed that many of these regressions stem from seemingly

minor insertions or attribute changes that inadvertently alter element dimensions or flow. Common culprits

include duplicated assets or scripts, changes in class names tied to cascading style sheet (CSS) styles, and the

removal of scripts necessary for proper rendering. These issues highlight the inherent complexity of DOM

manipulation and the difficulty LLMs currently face in consistently understanding spatial relationships within

a webpage.

In contrast, four models achieved significant reductions in visual instability. The success of these

31

models, particularly llama3.3-70b with its nearly 40% reduction, suggests that careful, targeted chunk-level

modifications by certain LLM architectures may preserve or even enhance visual stability. However, their

performance stands as an exception rather than the norm in this evaluation. These findings strongly underscore

the critical need for robust post-processing checks whenever LLMs are employed for any form of DOM

modification.

Answer to RQ1: LLMs universally excel at semantic web issues, achieving a 100.00% reduction in

SEO & Accessibility issues. For other audit categories, high-performing models (e.g., Qwen2.5-32B-

Instruct, GPT-4.1) deliver significant gains, while notably, GPT-4o-Mini consistently increased latency.

The majority of LLMs introduced visual instability, underscoring the need for rigorous post-hoc

validation for reliable web performance improvement.

4.2 RQ2: What is the nature of changes made by LLMs for automated web

performance issue resolution?

4.2.1 Motivation.

Building on RQ1’s quantitative analysis of LLM effectiveness, RQ2 aims to understand the nature of

changes LLMs make to the DOM. We saw LLMs achieve mixed results, with most improving performance

while some introduced regressions ranging from increased latency to visual instability. This prompts a

deeper dive into how LLMs modify the DOM and why specific outcomes occur. Investigating their DOM

manipulations offers crucial insight into LLM’s "black box," explaining effectiveness, revealing patterns, and

informing future development, validation, and trust in automated web solutions.

4.2.2 Approach.

To understand the nature of the LLM modifications, we parsed the DOM trees into structured JSON

formats, we then generated detailed diffs between each original DOM tree and its modified version. This was

done for the entire dataset. We used the open-source Python package Deepdiff, a robust tool for quantifying

and classifying differences in hierarchical data like JSON DOM trees [63]. This systematic approach allowed

us to identify and categorize the specific modifications introduced by each LLM, offering fine-grained insights

into their interventions. The primary categories of changes defined by Deepdiff that we extracted for our

32

analysis were:

• dictionary_item_added / dictionary_item_removed: These identify the addition or removal

of attributes (e.g., id, class, src) on an HTML element.

• iterable_item_added / iterable_item_removed: These signify the addition or removal of child

elements or text nodes within a parent element’s content, often referred to as "element-level" or

"node-level" changes.

• type_changes: This category flags instances where the fundamental type of a DOM node (e.g., <p>

node to a text node) was altered.

• values_changed: This captures modifications to the content or properties of existing items that

remain in place. This category provides further detail:

– attr_changes: Specific changes to the values of existing attributes (e.g., width="100" to

width="50").

– tag_changes: Alterations to an element’s HTML tag name (e.g., <div> to <p>).

– text_changes: Modifications to the textual content within an HTML element or a standalone

text node.

– positional_changes: This critical metric quantifies changes in the order or relative placement

of items within a sequence, capturing reordering or shifts due to additions/deletions.

4.2.3 Results.

For each LLM, we extracted the changes from all modified webpages, then grouped these changes by

type, and finally summed the counts of each change type. We also report the depth of changes performed by

the LLMs across the dataset, as specified by Deepdiff. Table 4.2 highlights the categories of DOM changes;

Attributes quantify Added (new attributes) and Removed (deleted attributes) on HTML elements; Elements

summarize node-level modifications, covering Added and Removed elements; Types Changed indicate

instances where a DOM node’s fundamental type was altered; Change Depth reports the Min, Max, and

median (Med) depth of change within the DOM tree for all modifications; and Values Changed break down

modifications to existing DOM elements by specific type: Attr (attribute value changes), Tag (HTML tag

name changes), Pos (positional changes), and Text (text content modifications).

33

Table 4.2: Summary of Deepdiff Results by LLM Model with Calculated Ratios (including Depth stats)

Model EATRR PCD Attributes Elements Types Change Depth Values Changed
Added Removed Added Removed Changed Min Max Med Attr Tag Pos Text

Claude 3.7 Sonnet(R) 0.89 0.42 2 1 90 11 4 1 12 4 10 7 57 24
Claude 3.7 Sonnet 0.88 0.52 3 1 77 11 4 1 12 6 12 7 66 27
Deepseek R1 0.50 0.31 4 7 37 37 7 1 37 4 13 8 37 32
Deepseek V3 0.85 0.53 1 1 106 18 3 1 12 4 10 7 88 31
GPT-4.1 0.89 0.48 2 1 111 14 4 1 12 4 10 8 79 31
GPT-4o-mini 0.44 0.77 2 8 22 28 4 1 12 4 10 8 66 26
LlaMA3.3 70B 0.67 0.40 3 3 90 45 4 1 24 6 10 8 74 41
o4-mini 0.86 0.39 4 1 133 21 4 1 12 6 14 9 76 29
Qwen2.5 32B-Instruct 0.74 0.47 2 1 70 25 4 1 24 6 10 8 70 45

To quantify modification patterns, we introduce two metrics: the Element Addition-to-Removal Ratio

(EATRR), which indicates potential DOM bloat (> 0.5) or simplification (< 0.5) by comparing added versus

removed elements; and Positional Change Dominance (PCD), which measures the proportion of value

changes attributed to reordering elements, highlighting disruption to spatial relationships. Our findings are

detailed below:

Finding 5: Most LLMs predominantly employ an additive DOM modification strategy. As shown in

the EATRR column of Table 4.2, nearly all evaluated LLMs (except GPT-4o-mini and Deepseek R1) show

a tendency to add significantly more elements than they remove. For instance, high-performing models

like Claude 3.7 Sonnet(R), Deepseek V3, GPT-4.1, and o4-mini exhibit EATRRs ranging from 0.85 to

0.89. This implies that these models, in their pursuit of performance optimization, frequently introduce new

elements, rather than primarily refactoring or simplifying the existing DOM. While Deepseek R1 presents a

more balanced approach with an EATRR of 0.50, the overall inclination towards element addition suggests

that these LLMs’ optimization often involves enriching the DOM.

Finding 6: GPT-4o-mini’s exhibits a unique DOM modification strategy; removing more elements

than it adds, coupled with the highest positional changes. Among all evaluated models, GPT-4o-mini

exhibits a distinctly unique DOM modification strategy. This strategy is characterized by the lowest EATRR

at 0.44, suggesting a tendency to remove or simply maintain existing element counts rather than an additive

approach for optimization. Crucially, this is coupled with the highest PCD at 0.77, indicating that a substantial

majority of its modifications involve reordering or shifting existing elements. While other high-performing

LLMs predominantly employ an additive strategy for optimization, GPT-4o-mini’s distinct profile means

it frequently attempts optimization through extensive and disruptive changes in element positioning. Such

large-scale positional changes are known to be costly, often triggering expensive browser reflows and repaints,

which directly contribute to visual instability and a poor Cumulative Layout Shift (CLS) score [64, 65]. In

34

contrast, models like Deepseek R1 (PCD 0.31, EATRR 0.50) and o4-mini (PCD 0.39, EATRR 0.89) exhibit

different balances of positional changes and additive strategies. This unique combination of high, disruptive

positional changes and a non-additive element strategy is a hallmark of GPT-4o-mini’s behavior, which could

explain its poor performance in Finding 3.

Finding 7: LLMs operate across varying DOM depths, often concentrated at shallower levels. While

LLMs make changes at various depths within the DOM tree, the median change depth across most models as

shown in Table 4.2 ranges from 4-6, with minimum depths consistently at 1, and maximums ranging from 12

to 37. Depths over 32 are generally considered excessive for performance [65]. This indicates that LLMs

are not just making superficial changes at the root level but are capable of intervening deeper within the

DOM structure. However, they do not consistently reach the deepest possible levels. The variability in Depth

Max (e.g., Deepseek R1 at 37 vs. GPT-4.1 at 12) suggests differences in how deeply models traverse and

modify complex, nested structures. This overall pattern of intervention across various depths is a fundamental

characteristic of LLM DOM manipulation.

Finding 8: Textual modifications are a primary driver of performance and Visual Stability gains

for effective LLMs. High-performing LLMs, such as Qwen2.5 32B-Instruct (PCD: 0.47) and GPT-4.1

(PCD: 0.48), demonstrate that their success in improving performance metrics is strongly tied to the

extent of their textual modifications. A very strong negative correlation exists between Values Changed

Text and all three latency performance categories: Initial Load (𝜌 = −0.74), Interactivity (𝜌 = −0.96),

and Runtime (𝜌 = −0.97), as well as Network Optimization (𝜌 = −0.80) and Resource Optimization

(𝜌 = −0.84). This quantitatively suggests that LLMs making more textual changes are associated with

greater performance improvements, indicating beneficial optimizations like minification of inline scripts or

styles [64]. Furthermore, a strong negative correlation of 𝜌 = −0.90 between Values Changed Text and

Visual Stability for better-performing models in that audit category indicates these textual modifications also

contribute to improved visual stability.

35

Answer to RQ2: Most of the LLMs evaluated primarily used an additive strategy for DOM

modifications. The effective LLMs achieve performance gains via extensive textual modifications

and at shallower DOM depths. In contrast, GPT-4o-mini shows a unique strategy, removing more

elements than it adds, coupled with high positional changes. This is observed alongside its consistent

performance regressions in RQ1.

36

Chapter 5

Discussion

Our evaluation details the strengths and limitations of LLMs in automated web performance resolution,

highlighting their effective applications and challenges for DOM manipulation. In the following, we discuss

the key implications for research and practice.

5.1 Proficiency in Semantic Understanding vs. The Pervasive Challenge of

Visual Stability

The most consistent finding across all LLMs is their semantic understanding of the DOM (Finding 1).

This proficiency underscores the LLMs’ ability to grasp the semantic clarity and structural correctness of

web elements, aligning with prior research on automated semantic validation and enhancement [61, 62].

The implication here is profound; LLMs can be helpful when integrated into automated workflows for

critical web development tasks that primarily involve semantic markup, alt attributes, ARIA roles, and other

accessibility-related improvements, as well as for SEO considerations [66]. Some examples of related LLM

changes we identified through manual inspection include adding alt descriptions to image elements [67] and

introducing additional meta elements [68].

This can significantly reduce the manual effort and expertise required to maintain compliance with

necessary web standards [69, 70]. For developers and organizations, this translates into a powerful tool for

proactive maintenance and adherence to best practices, potentially democratizing access to high-quality,

accessible web content.

Despite their semantic prowess, a significant and widespread challenge identified in this thesis is the

37

consistent struggle of most LLMs to maintain or improve Visual Stability (Finding 4). A majority of

models introduced visual instability. Manual inspection revealed this largely stemmed from seemingly minor

insertions or attribute changes that inadvertently altered element dimensions or flow, e.g., duplicated assets or

scripts and prevalent changes in class names tied to CSS styles. This highlights a critical current limitation in

LLMs’ hierarchical and spatial understanding of the DOM. While they can semantically understand elements

and generate code, they frequently fail to accurately predict the cascading visual effects of their modifications

on page layout and rendering.

This limitation poses a substantial barrier to the full automation of web performance resolution, as visual

stability is a critical component of performant websites [64]. Future research must, therefore, intensively

focus on enhancing LLMs’ spatial reasoning and visual prediction capabilities within the context of DOM

manipulation.

5.2 Unpacking LLM Modification Strategies: Additive vs. Disruptive Ap-

proaches

Our analysis of DOM modification types revealed distinct strategies employed by the LLMs in this thesis,

which are primarily additive. Most LLMs predominantly employ an additive DOM modification strategy

(Finding 5), introducing significantly more elements than they remove. While this approach can facilitate

semantic enhancements or performance-critical additions, it carries the inherent risk of contributing to DOM

bloat. Manual inspection revealed that a common cause of this bloat was the duplication of already existing

SVG paths, which can counteract performance gains in other areas. Furthermore, while LLMs operate across

varying DOM depths (Finding 7), some models like Deepseek R1 showed extreme maximum depths of change

(up to 37), exceeding the advised maximum depth of 32 to mitigate increased memory usage caused by large

DOMs [65]. This indicates that while LLMs are capable of deep interventions, such extreme depth changes,

even if related to positional shifts, warrant caution due to potential performance overhead.

In contrast to this additive trend, GPT-4o-mini exhibited a uniquely disruptive strategy, characterized

by removing more elements than it adds, coupled with the highest PCD (Finding 6). This frequent reordering

and shifting of elements, without a corresponding reduction in overall element count, is a likely contributor

to its consistent performance regressions observed in RQ1 (Finding 3), especially for user-facing latency

and visual stability. Such large-scale positional changes are known to be computationally expensive, often

38

triggering costly browser reflows and repaints, which directly degrade overall user experience [65].

Conversely, the success of high-performing LLMs like Qwen2.5-32B-Instruct and GPT-4.1 in improving

performance metrics is strongly tied to their extensive textual modifications (Finding 8). These models

excel when optimizations can be expressed primarily through textual manipulation, often at shallower, more

impactful DOM levels. Manual inspection confirmed this, showing these models adding performance-critical

attributes (e.g., defer and async for faster script loading times) to link, and script elements often found

in the head section of webpages, closer to the DOM root. This strategic placement and modification of

existing attributes directly contribute to improved load and runtime performance [65].

5.3 Overall Implications for Automated Web Performance Resolution

The findings collectively paint a nuanced picture of LLMs as powerful, yet currently incomplete, tools for

fully automated web performance resolution. Their strong performance in semantic understanding makes

them helpful for a significant subset of web optimization tasks, especially for SEO & Accessibility. However,

for more complex performance issues, particularly visual stability, a more discerning and nuanced approach is

required. The key implications are:

• Hybrid Approaches are Essential: Given the mixed results, a hybrid approach combining LLM-

driven optimization with robust post-processing validation and potentially human oversight is crucial.

Automated pipelines should incorporate CI/CD checks for performance metrics, especially visual

stability and latency, to catch and rectify any regressions introduced by LLM modifications.

• Targeted LLM Deployment: Organizations can strategically deploy LLMs for specific, well-defined

web performance tasks where their strengths are proven, such as semantic optimization. For more

sensitive performance areas, careful model selection and rigorous testing are paramount. As demon-

strated by the contrast between high-performing models and GPT-4o-Mini, not all LLMs are created

equal for web performance tasks. Characterizing a model’s typical DOM modification patterns (e.g.,

EATRR, PCD, depth of changes) can be predictive of its performance outcomes and should inform

model selection.

• Need for Enhanced LLM Capabilities: Future research should focus on addressing the identified

limitations, particularly in LLMs’ hierarchical and spatial understanding of the DOM to improve

39

visual stability. This might involve developing new architectures that incorporate more sophisticated

representations of the layout and spatial relationships during training. Furthermore, exploring prompt

engineering techniques that explicitly guide LLMs to consider visual impacts could be beneficial.

In conclusion, LLMs hold immense promise for revolutionizing web performance optimization by

automating complex and tedious tasks. However, realizing this potential requires a clear understanding of their

current strengths and weaknesses, necessitating a thoughtful integration into existing development workflows

and continued research to bridge the existing gaps in their capabilities.

40

Chapter 6

Threats to Validity

In this chapter, we discuss threats to the validity of our research and explain how we addressed potential

limitations in our study design. We categorize these threats as internal and external validity.

6.1 Internal Validity

The internal validity of our thesis is primarily affected by two factors.

First, the performance of LLMs is inherently sensitive to prompt engineering and input design. Different

prompt formulations can lead to substantially different outputs. To mitigate this threat, we carefully crafted

standardized zero-shot prompts that explicitly described the optimization goals and provided clear instructions

for modifications, as described in Chapter 3. We applied identical prompt structures across all evaluated

LLMs to minimize variability caused by prompt inconsistencies.

Second, processing large and complex DOM trees necessitated a chunking strategy to fit within LLM

context window limitations. This approach could theoretically lead to context loss between chunks, potentially

affecting the quality and consistency of modifications. We mitigated this threat by designing a conservative,

token-aware chunking strategy that preserved structural integrity, stored metadata for reassembly, and ensured

logical divisions that respected semantic boundaries. To further validate the correctness of the chunking and

reassembly process, we computed Tree Edit Distances between the original and reconstructed DOM trees

prior to any modifications [53, 54], consistently observing a distance of zero. This provides confidence that

our approach maintained the original structure without unintended alterations.

Future work could explore alternative chunking techniques (e.g., hierarchical context caching or retrieval-

41

augmented generation) to further mitigate any remaining risk of context fragmentation during optimization

tasks.

6.2 External Validity

The external validity of our thesis relates to the extent to which our findings can be generalized to other

web applications, LLMs, and performance audit tools. We identify three primary factors:

First, our evaluation focused on a set of 15 real-world webpages sampled from the Alexa Top 500 list [43].

While this dataset was intentionally diverse in structure, content, and purpose, it may not fully capture all

types of web applications, such as highly dynamic single-page applications or sites using unconventional

rendering strategies. To mitigate this, we selected webpages across multiple categories (shopping, social,

entertainment, professional) and ensured a range of DOM depths, chunk counts, and performance profiles.

Second, while we evaluated nine state-of-the-art LLMs with diverse architectures, reasoning capabilities,

and token limits, our findings represent a snapshot of these models at the time of our experiments. As newer

LLMs are released, their performance characteristics may differ in important ways, including improved

reasoning about hierarchical structures or increased context capacity. Although we expect our findings

on strengths (e.g., semantic optimization) and weaknesses (e.g., visual stability regressions) to remain

relevant, their frequency and magnitude may shift. Future work can explore how these trends evolve with

next-generation models and fine-tuned variants.

Third, this thesis exclusively used Lighthouse as the audit framework to generate performance reports

before and after LLM modification [29]. While Lighthouse is widely adopted and considered the industry

standard, other tools (e.g., WebPageTest, PageSpeed Insights) may surface different issues or weight metrics

differently. To mitigate this limitation, we adopted Lighthouse’s recommended configuration flags to ensure

consistent and reproducible results and to align our metrics with prior research [2, 71, 4]. However, our

evaluation did not directly measure end-user experience in production environments (e.g., computational cost,

inference latency, perceived rendering smoothness) [72, 73]. These dimensions remain important and should

be considered in future studies combining automated DOM optimization with user experience assessments

and real-world deployment benchmarks.

42

Chapter 7

Conclusion and Future Work

In this chapter, we present a summary of the thesis and contributions to the field of web performance

optimization through automated DOM manipulation using Large Language Models (LLMs). We also discuss

directions for future research at the end of the chapter.

7.1 Conclusion

Our evaluation details the strengths and limitations of LLMs in automated web performance resolution,

highlighting their effective applications and challenges for DOM manipulation.

We evaluated nine state-of-the-art LLMs for automated web performance issues resolution. The models

demonstrated universal proficiency in SEO & Accessibility optimization, leveraging strong semantic and

structural DOM understanding for such issues. This aligns with prior research on automated semantic

validation and enhancement [61, 62], suggesting LLMs are powerful tools for tasks like adding alt attributes

or meta elements, thereby reducing manual effort in maintaining web standards.

However, their impact on other performance-critical issues (latency, network, resource) was highly

variable; most models introduced visual instability due to a limited hierarchical and spatial understanding of

the DOM. This limitation poses a significant barrier to full automation, as seemingly minor insertions or

attribute changes can inadvertently alter element dimensions or flow, e.g., duplicated assets or scripts and

prevalent changes in class names tied to CSS styles. This highlights a critical current limitation in LLMs’

hierarchical and spatial understanding of the DOM. While they can semantically understand elements and

generate code, they frequently fail to accurately predict the cascading visual effects of their modifications

43

on page layout and rendering. This limitation poses a substantial barrier to the full automation of web

performance resolution, as visual stability is a critical component of performant websites [64].

We observed LLMs predominantly employ an additive DOM modification strategy, sometimes leading to

DOM bloat due to the introduction of more elements than they remove (e.g., duplicated SVG paths). This can

counteract performance gains. Notably, GPT-4o-mini exhibited a unique and disruptive strategy, characterized

by removing more elements than it adds, coupled with a high percentage of changes in depth (PCD). This

frequent reordering and shifting of elements, without a corresponding reduction in overall element count,

is a likely contributor to its consistent performance regressions observed, especially for user-facing latency

and visual stability. Such large-scale positional changes are known to be computationally expensive, often

triggering costly browser reflows and repaints, which directly degrade overall user experience [65].

Conversely, the success of high-performing LLMs like Qwen2.5-32B-Instruct and GPT-4.1 in improving

performance metrics is strongly tied to their extensive textual modifications. These models excel when

optimizations can be expressed primarily through textual manipulation, often at shallower, more impactful

DOM levels. Manual inspection confirmed this, showing these models adding performance-critical attributes

(e.g., defer and async for faster script loading times) to link, and script elements often found in the

head section of webpages, closer to the DOM root. This strategic placement and modification of existing

attributes directly contribute to improved load and runtime performance [65].

In conclusion, LLMs are powerful, yet currently incomplete, tools for fully automated web performance

resolution. Their strong performance in semantic understanding makes them helpful for a significant subset

of web optimization tasks, especially for SEO & Accessibility. However, for more complex performance

issues, particularly visual stability, a more discerning and nuanced approach is required. This necessitates a

nuanced LLM deployment approach, prioritizing enhancements in visual stability and precise, depth-aware

modifications. Until these advancements, robust post-hoc validation and potentially human oversight are

crucial. The ideal future involves hybrid human-AI approaches where LLMs augment developers, automating

where they excel and ensuring precision elsewhere for a faster, more accessible web.

7.2 Future Work

This thesis represents a foundational step into the automated resolution of web performance issues using

Large Language Models (LLMs). Our findings illuminate several promising avenues for future research,

44

building upon the capabilities and challenges identified in this work.

7.2.1 Enhancing Visual Stability and Spatial Understanding

The challenges observed in maintaining visual stability following LLM-generated modifications underscore

a critical area for improvement. Future research could investigate novel architectural designs for LLMs

or advanced prompt engineering techniques specifically aimed at enhancing their hierarchical and spatial

understanding of the Document Object Model (DOM). This might involve explicitly guiding LLMs to consider

the visual impact of their proposed modifications on page layout and rendering. Potential avenues include

incorporating visual feedback loops during the optimization process or developing training methodologies

that leverage datasets augmented with visual difference metrics. Such approaches would enable LLMs to

better anticipate and mitigate negative visual side effects, ensuring that performance optimizations do not

compromise user experience.

7.2.2 Promoting Efficient DOM Modification Strategies

Our findings highlighted the prevalence of additive DOM modification strategies and, in some instances,

the issue of DOM bloat, particularly through the duplication of assets. This indicates a clear need for LLMs

that can employ more efficient and less disruptive modification strategies. Future work could explore methods

to encourage LLMs to prioritize modifications that inherently minimize DOM size, reduce unnecessary

reflows and repaints, and promote resource reuse. This could potentially be achieved by integrating DOM

tree size, complexity metrics, or even performance audit scores directly into the LLMs’ objective functions

during fine-tuning or reinforcement learning. Encouraging more parsimonious and intelligent modifications

would lead to cleaner, more maintainable, and truly optimized web code.

7.2.3 Assessing Developer Utility and Real-World Impact

While this thesis rigorously evaluates the quality of LLM-generated modifications through quantitative

metrics like audit incidence ratios and qualitative manual inspection, it does not fully assess their practical

utility for developers in real-world debugging or ongoing maintenance tasks. Future research could conduct

comprehensive user studies involving web developers to evaluate the practical impact of LLM-generated

optimizations on their workflows, debugging efficiency, and overall website maintainability. This includes

45

assessing whether the automatically suggested modifications truly lead to a better developer experience,

reduce manual effort, and contribute to more robust and easily manageable web applications in production

environments. Such studies would provide invaluable insights into the adoption and real-world applicability

of LLM-driven performance tools.

7.2.4 Exploring Multi-Modal Approaches for Holistic Understanding

Finally, exploring the potential of multi-modal LLMs that can process both code (such as the DOM

structure, HTML, CSS, and JavaScript) and visual representations of webpages could significantly enhance

their ability to reason about complex issues like visual stability and layout changes. Such advanced models

could bridge the current gap between semantic understanding of code and visual comprehension of its rendered

output. By simultaneously analyzing the underlying code and the visual appearance of a page, multi-modal

LLMs could potentially offer a more holistic understanding of web performance, enabling more accurate

diagnoses and more effective, visually aware performance optimizations. This direction holds promise for

addressing the most challenging aspects of web optimization that involve the interplay of code and visual

rendering.

46

Bibliography

[1] Enrico Bocchi, Luca De Cicco, and Dario Rossi. Measuring the quality of experience of web users.

ACM SIGCOMM Computer Communication Review, 46(4):8–13, 2016.

[2] Thomas McGill, Oluwaseun Bamgboye, Xiaodong Liu, and Chathuranga Sampath Kalutharage.

Towards improving accessibility of web auditing with google lighthouse. In 2023 IEEE 47th An-

nual Computers, Software, and Applications Conference (COMPSAC), pages 1594–1599, 2023.

doi:10.1109/COMPSAC57700.2023.00246.

[3] Shailesh Kumar Shivakumar. 3 - optimizing performance of enterprise web application. In

Shailesh Kumar Shivakumar, editor, Architecting High Performing, Scalable and Available Enter-

prise Web Applications, pages 101–141. Morgan Kaufmann, Boston, 2015. ISBN 978-0-12-802258-0.

doi:https://doi.org/10.1016/B978-0-12-802258-0.00003-2. URL https://www.sciencedirect.com/science/

article/pii/B9780128022580000032.

[4] Muhammad Arif Faizin, Muhammad Nevin, and Umi Laili Yuhana. Indonesia e-government website

performance and accessibility evaluation using automated tool lighthouse. In 2024 2nd International

Conference on Software Engineering and Information Technology (ICoSEIT), pages 210–215, 2024.

doi:10.1109/ICoSEIT60086.2024.10497521.

[5] Jasper van Riet, Ivano Malavolta, and Taher A. Ghaleb. Optimize along the way: An industrial case

study on web performance. Journal of Systems and Software, 198:111593, 2023. ISSN 0164-1212.

doi:https://doi.org/10.1016/j.jss.2022.111593. URL https://www.sciencedirect.com/science/article/pii/

S0164121222002692.

[6] Morgan Persson. Javascript dom manipulation performance: Comparing vanilla javascript and leading

javascript front-end frameworks, 2020.

47

https://doi.org/10.1109/COMPSAC57700.2023.00246
https://doi.org/https://doi.org/10.1016/B978-0-12-802258-0.00003-2
https://www.sciencedirect.com/science/article/pii/B9780128022580000032
https://www.sciencedirect.com/science/article/pii/B9780128022580000032
https://doi.org/10.1109/ICoSEIT60086.2024.10497521
https://doi.org/https://doi.org/10.1016/j.jss.2022.111593
https://www.sciencedirect.com/science/article/pii/S0164121222002692
https://www.sciencedirect.com/science/article/pii/S0164121222002692

[7] Dariusz Chęć and Ziemowit Nowak. The performance analysis of web applications based on virtual dom

and reactive user interfaces. In Engineering Software Systems: Research and Praxis, pages 119–134.

Springer, 2019.

[8] Lauren Wood, Arnaud Le Hors, Vidur Apparao, Steve Byrne, Mike Champion, Scott Isaacs, Ian Jacobs,

Gavin Nicol, Jonathan Robie, Robert Sutor, et al. Document object model (dom) level 1 specification.

W3C recommendation, 1, 1998.

[9] Kartik Bajaj, Karthik Pattabiraman, and Ali Mesbah. Dompletion: Dom-aware javascript code

completion. In Proceedings of the 29th ACM/IEEE International Conference on Automated Software

Engineering, ASE ’14, page 43âĂŞ54, New York, NY, USA, 2014. Association for Computing Machinery.

ISBN 9781450330138. doi:10.1145/2642937.2642981. URL https://doi.org/10.1145/2642937.2642981.

[10] Utkarsh Goel, Stephen Ludin, and Moritz Steiner. Web performance with android’s battery-saver mode.

arXiv preprint arXiv:2003.06477, 2020.

[11] BM Subraya and SV Subrahmanya. Object driven performance testing of web applications. In

Proceedings First Asia-Pacific Conference on Quality Software, pages 17–26. IEEE, 2000.

[12] Şevval Seray Macakoğlu and Serhat Peker. Web accessibility performance analysis using web content

accessibility guidelines and automated tools: a systematic literature review. In 2022 international

congress on human-computer interaction, optimization and robotic applications (hora), pages 1–8.

IEEE, 2022.

[13] Xinyi Hou, Yanjie Zhao, Yue Liu, Zhou Yang, Kailong Wang, Li Li, Xiapu Luo, David Lo, John Grundy,

and Haoyu Wang. Large language models for software engineering: A systematic literature review.

arXiv preprint arXiv:2308.10620, 2023.

[14] Vassilka D. Kirova, Cyril S. Ku, Joseph R. Laracy, and Thomas J. Marlowe. Software engineering

education must adapt and evolve for an llm environment. In Proceedings of the 55th ACM Technical

Symposium on Computer Science Education V. 1, SIGCSE 2024, page 666âĂŞ672, New York, NY, USA,

2024. Association for Computing Machinery. ISBN 9798400704239. doi:10.1145/3626252.3630927.

URL https://doi.org/10.1145/3626252.3630927.

48

https://doi.org/10.1145/2642937.2642981
https://doi.org/10.1145/2642937.2642981
https://doi.org/10.1145/3626252.3630927
https://doi.org/10.1145/3626252.3630927

[15] Muhammad Usman Hadi, Qasem Al Tashi, Abbas Shah, Rizwan Qureshi, Amgad Muneer, Muhammad

Irfan, Anas Zafar, Muhammad Bilal Shaikh, Naveed Akhtar, Jia Wu, et al. Large language models:

a comprehensive survey of its applications, challenges, limitations, and future prospects. Authorea

Preprints, 2024.

[16] Tommaso Calò and Luigi De Russis. Leveraging large language models forÂăend-user website generation.

In Lucio Davide Spano, Albrecht Schmidt, Carmen Santoro, and Simone Stumpf, editors, End-User

Development, pages 52–61, Cham, 2023. Springer Nature Switzerland. ISBN 978-3-031-34433-6.

[17] Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Sam Stevens, Boshi Wang, Huan Sun, and Yu Su.

Mind2web: Towards a generalist agent for the web. Advances in Neural Information Processing Systems,

36, 2024.

[18] Rebeka Tóth, Tamas Bisztray, and László Erdodi. Llms in web-development: Evaluating llm-generated

php code unveiling vulnerabilities and limitations. arXiv preprint arXiv:2404.14459, 2024.

[19] Michel Nass, Emil Alégroth, and Robert Feldt. Improving web element localization by using a large

language model. Software Testing, Verification and Reliability, page e1893, 2023.

[20] Juan-Miguel López-Gil and Juanan Pereira. Turning manual web accessibility success criteria into

automatic: an llm-based approach. Universal Access in the Information Society, pages 1–16, 2024.

[21] Tjaša Heričko, Boštjan Šumak, and Saša Brdnik. Towards representative web performance measurements

with google lighthouse. In Proceedings of the 2021 7th Student Computer Science Research Conference,

page 39, 2021.

[22] Thomas McGill, Oluwaseun Bamgboye, Xiaodong Liu, and Chathuranga Sampath Kalutharage. Towards

improving accessibility of web auditing with google lighthouse. In 2023 IEEE 47th Annual Computers,

Software, and Applications Conference (COMPSAC), pages 1594–1599. IEEE, 2023.

[23] Anonymous. Automated resolution of web performance issues using llms: A case study of gpt-4o-mini,

January 2025. URL https://doi.org/10.5281/zenodo.14785704.

[24] Lauren Wood, Gavin Nicol, Jonathan Robie, Mike Champion, and Steve Byrne. Document object model

(dom) level 3 core specification, 2000.

49

https://doi.org/10.5281/zenodo.14785704

[25] World Wide Web Consortium et al. Document object model (dom) level 3 core specification. 2004.

[26] Andreas B Gizas and Sotiris P Christodoulou. Performance-optimized pages’ architecture, navigation

and images techniques for jquery mobile sites. In Proceedings of the 19th Panhellenic Conference on

Informatics, pages 371–377, 2015.

[27] Simo Kuparinen. Improving web performance by optimizing cascading style sheets (css): literature

review and empirical findings. Helsinki University Library, 1(2), 2023.

[28] Shailesh Kumar Shivakumar. Modern web performance optimization. Methods, Tools, and Patterns to

Speed Up Digital Platforms, 2020.

[29] Chrome for Developers. Lighthouse overview, 2016. URL https://developer.chrome.com/docs/lighthouse/

overview. Accessed: 2024-09-04.

[30] Justin Scherer. Hands-on JavaScript High Performance: Build Faster Web Apps Using Node. js, Svelte.

js, and WebAssembly. Packt Publishing Ltd, 2020.

[31] Google for Developers. Pagespeed insights, 2016. URL https://pagespeed.web.dev. Accessed: 2024-09-

04.

[32] Raimundo N.V. Diniz-Junior, Caio CÃľsar L. Figueiredo, Gilson De S.Russo, Marcos Roberto G.

Bahiense-Junior, Mateus V.L. Arbex, Lanier M. Dos Santos, Raimundo F. Da Rocha, Renan R. Bezerra,

and Felipe T. Giuntini. Evaluating the performance of web rendering technologies based on javascript:

Angular, react, and vue. In 2022 XVLIII Latin American Computer Conference (CLEI), pages 1–9, 2022.

doi:10.1109/CLEI56649.2022.9959901.

[33] Google Chrome. Lighthouse - understanding the results, 2024. URL https://github.com/GoogleChrome/

lighthouse/blob/main/docs/understanding-results.md.

[34] Izzeddin Gur, Ofir Nachum, Yingjie Miao, Mustafa Safdari, Austin Huang, Aakanksha Chowdhery,

Sharan Narang, Noah Fiedel, and Aleksandra Faust. Understanding html with large language models.

ArXiv, abs/2210.03945, 2022. URL https://api.semanticscholar.org/CorpusID:252780086.

[35] Aman Ahluwalia and Suhrud Wani. Leveraging large language models for web scraping. arXiv preprint

arXiv:2406.08246, 2024.

50

https://developer.chrome.com/docs/lighthouse/overview
https://developer.chrome.com/docs/lighthouse/overview
https://pagespeed.web.dev
https://doi.org/10.1109/CLEI56649.2022.9959901
https://github.com/GoogleChrome/lighthouse/blob/main/docs/understanding-results.md
https://github.com/GoogleChrome/lighthouse/blob/main/docs/understanding-results.md
https://api.semanticscholar.org/CorpusID:252780086

[36] Prateek Sancheti, Kamalakar Karlapalem, and Kavita Vemuri. Llm driven web profile extraction for

identical names. In Companion Proceedings of the ACM Web Conference 2024, pages 1616–1625, 2024.

[37] Zixuan Li, Yutao Zeng, Yuxin Zuo, Weicheng Ren, Wenxuan Liu, Miao Su, Yucan Guo, Yantao Liu,

Xiang Li, Zhilei Hu, et al. Knowcoder: Coding structured knowledge into llms for universal information

extraction. arXiv preprint arXiv:2403.07969, 2024.

[38] CP Afsal and KS Kuppusamy. Websumm: A chrome extension for summarizing web content using llms

for visually impaired users. SN Computer Science, 6(2):1–15, 2025.

[39] Tommaso Calò and Luigi De Russis. Leveraging large language models for end-user website generation.

In International Symposium on End User Development, pages 52–61. Springer, 2023.

[40] Amanda Li, Jason Wu, and Jeffrey P Bigham. Using llms to customize the ui of webpages. In Adjunct

Proceedings of the 36th Annual ACM Symposium on User Interface Software and Technology, UIST ’23

Adjunct, New York, NY, USA, 2023. Association for Computing Machinery. ISBN 9798400700965.

doi:10.1145/3586182.3616671. URL https://doi.org/10.1145/3586182.3616671.

[41] Brian Tang and Kang G Shin. Steward: Natural language web automation. arXiv preprint

arXiv:2409.15441, 2024.

[42] Qifan Wang, Yi Fang, Anirudh Ravula, Fuli Feng, Xiaojun Quan, and Dongfang Liu. Webformer: The

web-page transformer for structure information extraction. In Proceedings of the ACM Web Conference

2022, pages 3124–3133, 2022.

[43] Amazon. Amazon alexa top sites. URL https://www.alexa.com/topsites.

[44] Kwame Chan-Jong-Chu, Tanjina Islam, Miguel Morales Exposito, Sanjay Sheombar, Christian Val-

ladares, Olivier Philippot, Eoin Martino Grua, and Ivano Malavolta. Investigating the correlation

between performance scores and energy consumption of mobile web apps. In Proceedings of the 24th

International Conference on Evaluation and Assessment in Software Engineering, pages 190–199, 2020.

[45] Sonai Mahajan, Negarsadat Abolhassani, Phil McMinn, and William GJ Halfond. Automated repair of

mobile friendly problems in web pages. In Proceedings of the 40th international conference on software

engineering, pages 140–150, 2018.

51

https://doi.org/10.1145/3586182.3616671
https://doi.org/10.1145/3586182.3616671
https://www.alexa.com/topsites

[46] Frolin S Ocariza Jr, Karthik Pattabiraman, and Benjamin Zorn. Javascript errors in the wild: An

empirical study. In 2011 IEEE 22nd International Symposium on Software Reliability Engineering,

pages 100–109. IEEE, 2011.

[47] Gary L Geissler, George M Zinkhan, and Richard T Watson. The influence of home page complexity on

consumer attention, attitudes, and purchase intent. Journal of Advertising, 35(2):69–80, 2006.

[48] Zizi Papacharissi. The self online: The utility of personal home pages. Journal of Broadcasting &

Electronic Media, 46(3):346–368, 2002.

[49] Surendra N Singh, Nikunj Dalal, and Nancy Spears. Understanding web home page perception. European

Journal of Information Systems, 14(3):288–302, 2005.

[50] PyPI. Python beautifulsoup library. URL https://pypi.org/project/beautifulsoup4.

[51] OpenAI. Gpt-4o, 2024. URL https://platform.openai.com/docs/models/gpt-4o.

[52] OpenAI. tiktoken, 2024. URL https://github.com/openai/tiktoken. Accessed: 2024-10-14.

[53] Kilho Shin, Taichi Ishikawa, Yu-Lu Liu, and David Lawrence Shepard. Learning dom trees of web pages

by subpath kernel and detecting fake e-commerce sites. Machine Learning and Knowledge Extraction, 3

(1):95–122, 2021.

[54] Manuel Leithner and Dimitris E Simos. Domdiff: Identification and classification of inter-dom

modifications. In 2018 IEEE/WIC/ACM International Conference on Web Intelligence (WI), pages

262–269. IEEE, 2018.

[55] Hamza Salem, Hadi Salloum, Osama Orabi, Kamil Sabbagh, and Manuel Mazzara. Enhancing news

articles: Automatic seo linked data injection for semantic web integration. Applied Sciences, 15(3):

1262, 2025.

[56] Dirk Merkel et al. Docker: lightweight linux containers for consistent development and deployment.

Linux j, 239(2):2, 2014.

[57] Anita Crescenzi, Diane Kelly, and Leif Azzopardi. Impacts of time constraints and system delays on

user experience. In Proceedings of the 2016 acm on conference on human information interaction and

retrieval, pages 141–150, 2016.

52

https://pypi.org/project/beautifulsoup4
https://platform.openai.com/docs/models/gpt-4o
https://github.com/openai/tiktoken

[58] Marcus Basalla, Johannes Schneider, Martin Luksik, Roope Jaakonmäki, and Jan Vom Brocke. On

latency of e-commerce platforms. Journal of Organizational Computing and Electronic Commerce, 31

(1):1–17, 2021.

[59] Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large language

models are zero-shot reasoners. Advances in neural information processing systems, 35:22199–22213,

2022.

[60] Hernán Ceferino Vázquez, Alexandre Bergel, Santiago Vidal, JA Díaz Pace, and Claudia Marcos.

Slimming javascript applications: An approach for removing unused functions from javascript libraries.

Information and software technology, 107:18–29, 2019.

[61] Shaomei Wu, Jeffrey Wieland, Omid Farivar, and Julie Schiller. Automatic alt-text: Computer-generated

image descriptions for blind users on a social network service. In proceedings of the 2017 ACM

conference on computer supported cooperative work and social computing, pages 1180–1192, 2017.

[62] Jiayang Wu, Wensheng Gan, Zefeng Chen, Shicheng Wan, and Hong Lin. Ai-generated content (aigc):

A survey. arXiv preprint arXiv:2304.06632, 2023.

[63] Zepworks. Deepdiff. URL https://zepworks.com/deepdiff/current/diff.html.

[64] Google Developers. Understanding core web vitals and google search results. URL https://developers.

google.com/search/docs/appearance/core-web-vitals.

[65] Google Developers (Lighthouse). Avoid an excessive dom size. URL https://developer.chrome.com/

docs/lighthouse/performance/dom-size.

[66] Giovanni Delnevo, Manuel Andruccioli, and Silvia Mirri. On the interaction with large language models

for web accessibility: Implications and challenges. In 2024 IEEE 21st Consumer Communications &

Networking Conference (CCNC), pages 1–6. IEEE, 2024.

[67] Tahani Alahmadi and Steve Drew. Evaluation of image accessibility for visually impaired users. Journal

of Accessibility and Design for All, 8(2):125–160, 2018.

[68] Konstantinos I Roumeliotis and Nikolaos D Tselikas. An effective seo techniques and technologies

guide-map. Journal of web engineering, 21(5):1603–1649, 2022.

53

https://zepworks.com/deepdiff/current/diff.html
https://developers.google.com/search/docs/appearance/core-web-vitals
https://developers.google.com/search/docs/appearance/core-web-vitals
https://developer.chrome.com/docs/lighthouse/performance/dom-size
https://developer.chrome.com/docs/lighthouse/performance/dom-size

[69] Accessibility Guidelines Working Group. Web content accessibility guidelines (wcag) 2.1. https:

//www.w3.org/TR/WCAG21/, June 2018. Recommendation of the Web Accessibility Initiative (WAI).

[70] MDN contributors. <meta>: The metadata element, June 2025. URL https://developer.mozilla.org/

en-US/docs/Web/HTML/Reference/Elements/meta. MDN Web Docs.

[71] Darius Saif, Chung-Horng Lung, and Ashraf Matrawy. An early benchmark of quality of experi-

ence between http/2 and http/3 using lighthouse. In ICC 2021-IEEE international conference on

communications, pages 1–6. IEEE, 2021.

[72] Bill Albert and Tom Tullis. Measuring the user experience: Collecting, analyzing, and presenting UX

metrics. Morgan Kaufmann, 2022.

[73] Nikolas Wehner, Monisha Amir, Michael Seufert, Raimund Schatz, and Tobias Hoßfeld. A vital

improvement? relating google’s core web vitals to actual web qoe. In 2022 14th international conference

on quality of multimedia experience (QoMEX), pages 1–6. IEEE, 2022.

54

https://www.w3.org/TR/WCAG21/
https://www.w3.org/TR/WCAG21/
https://developer.mozilla.org/en-US/docs/Web/HTML/Reference/Elements/meta
https://developer.mozilla.org/en-US/docs/Web/HTML/Reference/Elements/meta

Appendices

Audit definitions and Categories

Table A.1: Audit names grouped by category

Category Audit Name

SEO & Accessibility

crawlable-anchors

link-text

is-crawlable

meta-description

hreflang

aria-prohibited-attr

aria-hidden-focus

image-alt

aria-allowed-attr

listitem

list

aria-dialog-name

label-content-name-mismatch

input-button-name

html-lang-valid

Continued on next page

55

Category Audit Name

aria-tooltip-name

link-name

Network Optimization

uses-rel-preconnect

uses-http2

third-party-cookies

is-on-https

total-byte-weight

uses-text-compression

uses-long-cache-ttl

redirects

Initial Load Performance

charset

lcp-lazy-loaded

offscreen-images

render-blocking-resources

first-contentful-paint

speed-index

largest-contentful-paint-element

prioritize-lcp-image

largest-contentful-paint

Visual Stability

viewport

meta-viewport

image-size-responsive

image-aspect-ratio

Continued on next page

56

Category Audit Name

font-size

color-contrast

target-size

dom-size

unsized-images

font-display

cumulative-layout-shift

layout-shifts

Runtime Performance

valid-source-maps

inspector-issues

errors-in-console

deprecations

bootup-time

mainthread-work-breakdown

third-party-summary

no-document-write

Resource Optimization

duplicated-javascript

modern-image-formats

legacy-javascript

unminified-css

uses-optimized-images

unused-css-rules

uses-responsive-images

unused-javascript

Continued on next page

57

Category Audit Name

unminified-javascript

Interactivity Performance

uses-passive-event-listeners

total-blocking-time

ma-potential-fid

interactive

Table A.2: Audit data overview

S/N Audit Name Audit Description Count Websites Coverage

1 first-contentful-

paint

First Contentful

Paint marks the

time at which the

first text or image is

painted

15 airbnb, aliexpress,

ebay, facebook,

github, linkedin,

medium, netflix,

pinterest, quora,

reddit, twitch,

twitter, walmart,

youtube

100.0

2 speed-index Speed Index shows

how quickly the con-

tents of a page are

visibly populated

15 airbnb, aliexpress,

ebay, facebook,

github, linkedin,

medium, netflix,

pinterest, quora,

reddit, twitch,

twitter, walmart,

youtube

100.0

Continued on next page

58

S/N Audit Name Audit Description Count Websites Coverage

3 total-blocking-time Sum of all time

periods between

FCP and Time to In-

teractive, when task

length exceeded

50ms, expressed in

milliseconds

15 airbnb, aliexpress,

ebay, facebook,

github, linkedin,

medium, netflix,

pinterest, quora,

reddit, twitch,

twitter, walmart,

youtube

100.0

4 ma-potential-fid The maximum po-

tential First Input

Delay that your

users could experi-

ence is the duration

of the longest task

15 airbnb, aliexpress,

ebay, facebook,

github, linkedin,

medium, netflix,

pinterest, quora,

reddit, twitch,

twitter, walmart,

youtube

100.0

5 interactive Time to Interactive

is the amount of

time it takes for

the page to become

fully interactive

15 airbnb, aliexpress,

ebay, facebook,

github, linkedin,

medium, netflix,

pinterest, quora,

reddit, twitch,

twitter, walmart,

youtube

100.0

Continued on next page

59

S/N Audit Name Audit Description Count Websites Coverage

6 unused-javascript Reduce unused

JavaScript and de-

fer loading scripts

until they are

required to decrease

bytes consumed by

network activity

15 airbnb, aliexpress,

ebay, facebook,

github, linkedin,

medium, netflix,

pinterest, quora,

reddit, twitch,

twitter, walmart,

youtube

100.0

7 largest-contentful-

paint-element

This is the largest

contentful element

painted within the

viewport

14 airbnb, aliexpress,

ebay, facebook,

github, linkedin,

netflix, pinterest,

quora, reddit,

twitch, twitter,

walmart, youtube

93.33

8 largest-contentful-

paint

Largest Contentful

Paint marks the time

at which the largest

text or image is

painted

14 airbnb, aliexpress,

ebay, facebook,

github, linkedin,

netflix, pinterest,

quora, reddit,

twitch, twitter,

walmart, youtube

93.33

Continued on next page

60

S/N Audit Name Audit Description Count Websites Coverage

9 errors-in-console Errors logged to the

console indicate un-

resolved problems

14 airbnb, aliexpress,

ebay, facebook,

github, linkedin,

medium, pinterest,

quora, reddit,

twitch, twitter,

walmart, youtube

93.33

10 uses-text-

compression

Text-based re-

sources should

be served with

compression (gzip,

deflate or brotli)

to minimize total

network bytes

14 airbnb, aliexpress,

ebay, facebook,

github, linkedin,

medium, netflix,

pinterest, quora,

reddit, twitch,

walmart, youtube

93.33

11 legacy-javascript Polyfills and trans-

forms enable legacy

browsers to use new

JavaScript features

13 airbnb, aliexpress,

ebay, facebook,

linkedin, medium,

netflix, pinterest,

quora, twitch,

twitter, walmart,

youtube

86.67

Continued on next page

61

S/N Audit Name Audit Description Count Websites Coverage

12 third-party-

summary

Third-party code

can significantly

impact load perfor-

mance

13 airbnb, aliexpress,

ebay, github,

linkedin, medium,

netflix, pinterest,

quora, reddit,

twitch, walmart,

youtube

86.67

13 mainthread-work-

breakdown

Consider reducing

the time spent pars-

ing, compiling and

executing JS

12 airbnb, aliexpress,

ebay, github,

linkedin, medium,

netflix, pinterest,

reddit, twitch,

walmart, youtube

80.0

14 bootup-time Consider reducing

the time spent pars-

ing, compiling, and

executing JS

11 aliexpress, ebay,

github, linkedin,

medium, netflix,

pinterest, reddit,

twitch, walmart,

youtube

73.33

15 unused-css-rules Reduce unused

rules from

stylesheets and

defer CSS not used

for above-the-fold

content to decrease

bytes consumed by

network activity

11 airbnb, aliexpress,

ebay, github,

linkedin, netflix,

pinterest, quora,

reddit, walmart,

youtube

73.33

Continued on next page

62

S/N Audit Name Audit Description Count Websites Coverage

16 inspector-issues Issues logged to

the ‘Issues‘ panel

in Chrome Devtools

indicate unresolved

problems

10 airbnb, aliexpress,

ebay, linkedin,

medium, netflix,

twitch, twitter,

walmart, youtube

66.67

17 render-blocking-

resources

Resources are block-

ing the first paint of

your page

9 airbnb, ebay,

facebook, github,

linkedin, medium,

netflix, reddit,

youtube

60.0

18 uses-long-cache-ttl A long cache life-

time can speed up

repeat visits to your

page

9 aliexpress, ebay,

linkedin, medium,

netflix, pinterest,

reddit, twitch,

walmart

60.0

19 third-party-cookies Support for third-

party cookies will

be removed in a

future version of

Chrome

7 aliexpress, ebay,

linkedin, medium,

twitch, twitter,

walmart

46.67

20 deprecations Deprecated APIs

will eventually be

removed from the

browser

7 aliexpress, ebay,

facebook, pinterest,

twitch, walmart,

youtube

46.67

Continued on next page

63

S/N Audit Name Audit Description Count Websites Coverage

21 uses-responsive-

images

Serve images that

are appropriately-

sized to save cellu-

lar data and improve

load time

7 aliexpress, ebay,

github, pinterest,

reddit, twitch,

walmart

46.67

22 dom-size A large DOM will

increase memory

usage, cause longer

[style calcula-

tions](https://developers

7 airbnb, aliexpress,

ebay, github, pinter-

est, reddit, youtube

46.67

23 is-on-https All sites should

be protected with

HTTPS, even ones

that don’t handle

sensitive data

7 aliexpress, ebay,

linkedin, medium,

quora, walmart,

youtube

46.67

24 target-size Touch targets with

sufficient size and

spacing help users

who may have

difficulty targeting

small controls to

activate the targets

6 ebay, facebook,

github, pinterest,

reddit, twitter

40.0

Continued on next page

64

S/N Audit Name Audit Description Count Websites Coverage

25 modern-image-

formats

Image formats like

WebP and AVIF

often provide better

compression than

PNG or JPEG,

which means faster

downloads and less

data consumption

6 ebay, github,

linkedin, pinterest,

reddit, twitch

40.0

26 offscreen-images Consider lazy-

loading offscreen

and hidden images

after all critical

resources have

finished loading

to lower time to

interactive

6 aliexpress, ebay,

github, linkedin,

netflix, pinterest

40.0

27 unsized-images Set an explicit width

and height on image

elements to reduce

layout shifts and im-

prove CLS

6 aliexpress, ebay,

facebook, github,

quora, twitch

40.0

28 cumulative-layout-

shift

Cumulative Layout

Shift measures the

movement of visi-

ble elements within

the viewport

6 aliexpress, ebay,

github, pinterest,

twitch, walmart

40.0

Continued on next page

65

S/N Audit Name Audit Description Count Websites Coverage

29 color-contrast Low-contrast text is

difficult or impossi-

ble for many users

to read

5 aliexpress, ebay,

facebook, medium,

twitter

33.33

30 font-display Leverage the ‘font-

display‘ CSS fea-

ture to ensure text

is user-visible while

webfonts are load-

ing

5 netflix, pinterest,

reddit, twitch, twit-

ter

33.33

31 font-size Font sizes less than

12px are too small

to be legible and

require mobile visi-

tors to âĂĲpinch to

zoomâĂİ in order to

read

5 facebook, netflix,

quora, twitch,

youtube

33.33

32 uses-passive-event-

listeners

Consider marking

your touch and

wheel event listen-

ers as ‘passive‘ to

improve your page’s

scroll performance

5 linkedin, pinterest,

reddit, twitch,

youtube

33.33

Continued on next page

66

S/N Audit Name Audit Description Count Websites Coverage

33 total-byte-weight Large network pay-

loads cost users

real money and

are highly corre-

lated with long load

times

5 aliexpress, ebay,

github, pinterest,

youtube

33.33

67

Prompt for HTML Performance Optimization

You are a web performance expert and your task is to optimize the HTML code for

performance issues.

Task

Due to the huge token size of HTML files,

You are given the HTML in chunks, one at a time.

You are also given the performance issue(s) detected by Lighthouse to resolve, in the

following format:

Please modify each HTML code chunk to resolve the performance issue(s) given below.

Return the modified HTML code alone, making only necessary changes for performance

optimization.

Instructions

Make sure you:

- Remember the code is split into chunks and you are only receiving one chunk at a

time, there might be some unclosed or cut elements , do not worry about that.

- Consider that a chunk might be a part of a larger element, so the code might not be

complete.

- Consider that the HTML as a whole is from production and might be minified , uglified

or compressed.

- DO NOT modify class names

- Do not change chunk IDs ie the prop values for data-chunk-uuid, and chunk_style_[

uuid]

- DO NOT remove any comments already in the code.

- DO NOT change any styles or functionalities of the code.

- DO NOT change the structure of the code.

- DO NOT change the order of the code.

- DO NOT remove critical elements.

- If any optimizations are made, return ‘<!-- Optimized by LLM -->‘ at the beginning

point of only the modified portion

and ‘<!-- End of Optimization: {{audit_key of issue being resolved}} => {{one line

short description of elements/things resolved}} -->‘ at the end of the changed

portion.

Do not indicate any resolution outside of the End of Optimization comment, where

there are multiple resolutions being made, seperate them with commas within the End

68

of optimization comment.

- If you cannot make an optimization due to the above reasons but can provide a very

brief suggestion , do so by adding a comment at the end of the chunk, starting with

‘<!-- Suggestion: {{audit_key of issue being addressed}} ‘ and ending with ‘ -->‘.

- Prioritize optimizations above suggestions where you can.

- Return ONLY the modified HTML code, no long notes.

- Making only necessary changes for performance optimization.

- If no optimizations are possible , return the original code.

- Never add any additional comments to the code besides the ones for describing where

optimizations were made by you.

- If the change is within a ‘<style>‘ tag, replace the HTML comment with a CSS comment

.

Original HTML Chunk

‘‘‘html

{{content}}

Performance Issues

{{audit_issues}}

Listing 7.1: Prompt for HTML Performance Optimization

Additional results for LLM modifications

Table A.3: Consistency of model improvements across latency audits.

Audit Models improved Worst regression 𝜎

Initial Load 8/9 +24.8% 22.8

Interactivity 7/9 +7.9% 24.1

Runtime 8/9 +58.9% 40.3

69

A
ud

it
C

at
eg

or
y

A
ttr

ib
ut

es
A

dd
ed

A
ttr

ib
ut

es
Re

m
ov

ed
El

em
en

ts
A

dd
ed

El
em

en
ts

Re
m

ov
ed

Ty
pe

sC
ha

ng
ed

D
ep

th
M

in
D

ep
th

M
ax

D
ep

th
Av

g
Va

lu
es

C
ha

ng
ed

A
ttr

Va
lu

es
C

ha
ng

ed
Ta

g
Va

lu
es

C
ha

ng
ed

Po
s

Va
lu

es
C

ha
ng

ed
Te

xt
SE

O
&

A
cc

es
si

bi
lit

y
–

–
–

–
–

–
–

–
–

–
–

–
In

iti
al

Lo
ad

Pe
rfo

rm
an

ce
0.

07
0.

65
-0

.5
0

0.
06

0.
05

–
-0

.2
7

-0
.3

2
0.

07
-0

.1
0

-0
.2

4
-0

.6
8

In
te

ra
ct

iv
ity

Pe
rfo

rm
an

ce
0.

10
0.

25
-0

.1
8

-0
.4

6
0.

00
–

-0
.4

9
-0

.3
2

0.
34

-0
.2

4
-0

.2
1

-0
.9

4
Ru

nt
im

e
Pe

rfo
rm

an
ce

-0
.0

4
0.

54
-0

.4
6

-0
.2

6
0.

03
–

-0
.4

2
-0

.4
6

0.
06

-0
.1

1
-0

.2
4

-0
.8

2
N

et
w

or
k

O
pt

im
iz

at
io

n
0.

02
0.

27
-0

.2
4

-0
.2

2
-0

.0
3

–
-0

.3
5

-0
.2

9
0.

07
-0

.5
0

-0
.2

5
-0

.8
0

Re
so

ur
ce

O
pt

im
iz

at
io

n
-0

.2
0

0.
05

0.
01

-0
.4

6
-0

.3
1

–
-0

.6
3

-0
.3

7
-0

.0
4

-0
.4

9
0.

02
-0

.8
7

V
is

ua
lS

ta
bi

lit
y

0.
06

0.
44

-0
.4

5
-0

.2
7

0.
36

–
-0

.0
5

-0
.5

8
0.

28
-0

.4
1

-0
.5

5
-0

.7
9

Ta
bl

e
A

.4
:C

or
re

la
tio

n
fo

ra
ll

M
od

el
s

70

A
ud

it
C

at
eg

or
y

A
ttr

A
dd

ed
A

ttr
Re

m
ov

ed
El

A
dd

ed
El

Re
m

ov
ed

Ty
pe

sC
ha

ng
ed

D
ep

th
M

in
D

ep
th

M
ax

D
ep

th
M

ed
ia

n
Va

lu
es

C
ha

ng
ed

A
ttr

Va
lu

es
C

ha
ng

ed
Ta

g
Va

lu
es

C
ha

ng
ed

Po
s

Va
lu

es
C

ha
ng

ed
Te

xt
SE

O
&

A
cc

es
si

bi
lit

y
–

–
–

–
–

–
–

–
–

–
–

–
In

iti
al

Lo
ad

Pe
rfo

rm
an

ce
0.

38
0.

22
-0

.0
1

-0
.1

0
0.

17
–

-0
.1

5
-0

.1
2

0.
42

-0
.3

2
-0

.3
2

-0
.7

4
In

te
ra

ct
iv

ity
Pe

rfo
rm

an
ce

0.
17

0.
01

0.
28

-0
.4

9
0.

10
–

-0
.3

7
-0

.5
2

0.
47

-0
.1

4
-0

.2
1

-0
.9

6
Ru

nt
im

e
Pe

rfo
rm

an
ce

0.
20

-0
.0

3
0.

08
-0

.6
1

0.
14

–
-0

.4
0

-0
.3

6
0.

41
-0

.3
4

-0
.3

1
-0

.9
7

N
et

w
or

k
O

pt
im

iz
at

io
n

0.
02

0.
27

-0
.2

4
-0

.2
2

-0
.0

3
–

-0
.3

5
-0

.2
9

0.
07

-0
.5

0
-0

.2
5

-0
.8

0
Re

so
ur

ce
O

pt
im

iz
at

io
n

-0
.1

1
0.

20
-0

.0
4

-0
.3

2
-0

.3
1

–
-0

.6
2

-0
.2

5
0.

10
-0

.3
4

0.
20

-0
.8

4
V

is
ua

lS
ta

bi
lit

y
0.

60
-0

.5
9

0.
92

-0
.6

5
–

–
-0

.9
0

-0
.1

7
0.

87
0.

87
0.

57
-0

.9
0

Ta
bl

e
A

.5
:C

or
re

la
tio

n
of

B
et

te
rP

er
fo

rm
in

g
M

od
el

s

71

A
ud

it
C

at
eg

or
y

A
ttr

ib
ut

es
A

dd
ed

A
ttr

ib
ut

es
Re

m
ov

ed
El

em
en

ts
A

dd
ed

El
em

en
ts

Re
m

ov
ed

Ty
pe

sC
ha

ng
ed

D
ep

th
M

in
D

ep
th

M
ax

D
ep

th
M

ed
ia

n
Va

lu
es

C
ha

ng
ed

A
ttr

Va
lu

es
C

ha
ng

ed
Ta

g
Va

lu
es

C
ha

ng
ed

Po
s

Va
lu

es
C

ha
ng

ed
Te

xt
SE

O
&

A
cc

es
si

bi
lit

y
–

–
–

–
–

–
–

–
–

–
–

–
In

iti
al

Lo
ad

Pe
rfo

rm
an

ce
–

–
–

–
–

–
–

–
–

–
–

–
In

te
ra

ct
iv

ity
Pe

rfo
rm

an
ce

-1
.0

1.
0

-1
.0

1.
0

–
–

–
-1

.0
-1

.0
1.

0
–

-1
.0

Ru
nt

im
e

Pe
rfo

rm
an

ce
–

–
–

–
–

–
–

–
–

–
–

–
N

et
w

or
k

O
pt

im
iz

at
io

n
–

–
–

–
–

–
–

–
–

–
–

–
Re

so
ur

ce
O

pt
im

iz
at

io
n

–
–

–
–

–
–

–
–

–
–

–
–

V
is

ua
lS

ta
bi

lit
y

0.
75

0.
64

-0
.6

8
0.

62
0.

87
–

0.
73

-0
.3

1
0.

50
0.

69
-0

.9
6

-0
.0

2

Ta
bl

e
A

.6
:C

or
re

la
tio

ns
fo

rr
eg

re
ss

in
g

LL
M

s

72

	List of Figures
	List of Tables
	Introduction and Research Statement
	Introduction
	Research Statement
	Thesis Overview
	Thesis Contributions
	Related Publications
	Thesis Organization

	Background and Related Work
	Document Object Model (DOM)
	Performance Audits and Lighthouse
	LLMs for HTML Understanding
	LLMs for Web Customization
	LLMs for Web-Based Automation and Information Extraction
	Chapter Summary

	Methodology
	Study Design

	Results
	RQ1: How effective are LLMs for resolving web performance issues in the DOM?
	RQ2: What is the nature of changes made by LLMs for automated web performance issue resolution?

	Discussion
	Proficiency in Semantic Understanding vs. The Pervasive Challenge of Visual Stability
	Unpacking LLM Modification Strategies: Additive vs. Disruptive Approaches
	Overall Implications for Automated Web Performance Resolution

	Threats to Validity
	Internal Validity
	External Validity

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography
	Appendices

