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Abstract 

Evolutionary Strategies Against Antimicrobial Resistance 

Farhan Rahman Chowdhury, PhD 

Concordia University, 2025 

 

 

Antibiotic resistance threatens to undo many of the advancements of modern medicine. A slow 

antibiotic development pipeline makes it impossible to outpace bacterial evolution, making 

alternative strategies essential to combat resistance. In this study, I use large scale experimental 

evolutions powered by the soft agar gradient evolution (SAGE) platform to investigate the 

evolutionary trade-offs associated with antibiotic resistance, and how they can be leveraged to 

combat the emergence of resistance. 

 

The study begins with the finding that a chloramphenicol (CHL) resistant Escherichia coli (E. coli) 

mutant exhibits a markedly reduced rate of resistance evolution against other antibiotics. I show 

that this slow adaptation is linked to the fitness costs associated with resistance, which bacteria 

often readily overcome through compensatory evolution. Further screening identifies fitness costs 

which cannot be easily compensated for, highlighting an opportunity to exploit these trade-offs to 

slow down the emergence of resistance. However, the translatory potential of the findings from 

SAGE to the clinic remained unclear.  

 

To test the utility and clinical relevance of SAGE, I first expand its applicability to a broader range 

of antibiotics by supplementing the evolution medium with xanthan gum. Xanthan gum is a water-

binding polysaccharide that significantly reduces synaeresis of the agar-based medium, enhancing 

evolution in SAGE. To demonstrate its capacity to uncover resistance mechanisms I use this 

modified platform to characterize the evolution of resistance to the lipopeptide tridecaptin A1—an 
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antibiotic previously thought to be impervious to resistance. I then assess the clinical applicability 

of the evolutionary trade-offs observed in SAGE-derived mutants by comparing outcomes from 

SAGE to those obtained using other widely used laboratory evolution platforms, as well as clinical 

bacterial datasets. These analyses reveal that SAGE more accurately reproduces clinically relevant 

patterns of fitness trade-offs than the alternative platforms tested. One such trade-off, collateral 

sensitivity (CS), has recently been proposed to be useful in mitigating resistance in sequential 

antibiotic therapies, where antibiotics are applied one after the other. But large-scale evolutionary 

studies to determine its role and effectiveness in sequential regimens were missing. 

 

I use over 450 evolution experiments to test the role of CS in resistance mitigation in four proposed 

drug pairs. I find that resistance to both drugs evolves readily, and that collateral sensitivity does 

not hinder the evolution of multidrug resistance or promote resensitization. However, if resistance 

to drug B reduces susceptibility to A in an A-B drug sequence, a phenomenon I term backward 

CS, resistance to A can be reduced. As an example, I demonstrate that β-lactam resistant E. coli 

cells frequently lower their resistance to β-lactams upon aminoglycoside resistance acquisition due 

to conflicting modifications to the proton motive force and efflux pumps. This suggests that the 

levels of resistance evolved can be kept in check by leveraging backwards CS to resensitize cells 

as antibiotic resistance evolves. However, the levels of resensitization achieved were two-fold on 

average, often not sufficient to reduce resistance below clinical breakpoints. 

 

Finally, I introduce sequential antibiotic regimens composed of three drugs or “tripartite loops” to 

contain resistance within a closed drug cycle. Through 424 discrete adaptive laboratory evolution 

experiments I show that as bacteria sequentially evolve resistance to the drugs in a loop, they 
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continually trade their past resistance for fitness gains, reverting back to sensitivity via four-to-

eight-fold reductions in resistance on average. Through fitness and genomic analyses, I find that 

tripartite loops guide bacterial strains towards evolutionary paths that mitigate fitness costs and 

reverse resistance to component drugs in the loops, driving levels of resensitization not achievable 

through previously suggested pairwise regimens. I then apply this strategy to reproducibly 

resensitize or eradicate four multidrug-resistant clinical isolates over the course of 216 

evolutionary experiments. Resensitization occurred even when bacteria adapted through plasmid-

bound mutations instead of chromosomal changes, showing the robustness of this strategy. 

 

In conclusion, this work demonstrates that the evolutionary trade-offs accompanying antibiotic 

resistance can be strategically exploited to limit or reverse resistance evolution. I highlight the 

importance of studying the evolutionary aspect of antibiotic resistance to inform rational treatment 

strategies and restore efficacy of existing antibiotics. As the pace of novel antibiotic discovery 

continues to lag behind resistance evolution, such evolution-based approaches may be essential 

for extending the lifespan of our current antimicrobial arsenal.  
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Chapter 1. Introduction 

Since their introduction in 1945, antibiotics have revolutionized medicine, turning once-fatal 

infections into manageable conditions. They are essential in treating a wide range of illnesses—

from common infections like strep throat to severe diseases such as meningitis [1]. Modern 

medical procedures, including cancer therapies, organ transplants, and open-heart surgeries would 

be nearly impossible without effective antibiotics [2,3]. For vulnerable groups such as individuals 

with weakened immune systems, these drugs are critical for preventing and managing life-

threatening bacterial infections [4,5]. Their use in the clinic contributed to a dramatic 20–30 year 

increase in life expectancy across the developed world according to data from 2016 [2,6]. But 

today, poor antibiotic stewardship, inadequate drug regulations and widespread misuse in livestock 

have created one of the greatest challenges in modern healthcare: antimicrobial resistance (AMR) 

[7–10]. In 2021 alone, AMR was directly responsible for over 1.1 million deaths and contributed 

to an estimated 4.7 million more. Projections suggest that by 2050, annual AMR-related deaths 

could exceed 8 million  [11,12].  

 

Beta-lactams are some of the most widely used antibiotics, with them sharing a common β-lactam 

ring in their structure [13]. They work by binding penicillin-binding proteins in bacteria and 

disrupting the synthesis of peptidoglycan, a key component in bacterial cell wall. This class can 

be further divided into subclasses: penicillins, cephalosporins, carbapenems, and monobactams 

[13]. Penicillin is the first true antibiotic discovered in 1928 by Alexander Fleming, produced by 

the mold Penicillium notatum [13]. Cephalosporins were discovered through research on a 

Cephalosporium fungus in 1948 [14]. They are structurally similar to penicillin and hence have a 

similar mechanism of action but contain a seven-membered dihydrothiazine ring instead of the 
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five-membered thiazolidine ring found in penicillin [15]. Most clinically used cephalosporins are 

semisynthetic, with modifications made to broaden its spectrum of activity against bacterial 

pathogens and to evade resistance mechanisms [15]. The first carbapenem, thienamycin, was 

discovered in 1976 from the bacterium Streptomyces cattleya [16]. More stable synthetic variants 

like imipenem and meropenem were then developed that were viable for clinical use [16]. They 

contain a β-lactam ring which, unlike in penicillin, is fused to a five-membered ring, and the sulfur 

atom at position 1 in penicillin is replaced with a carbon atom [16]. Again, these modifications 

allow these molecules to bypass resistance mechanisms in bacteria that evolved against penicillins 

[16]. Monobactams were discovered in the 1980s, characterized by a monocyclic beta-lactam ring, 

unlike the bicyclic structure found in penicillins and cephalosporins [17]. They were first isolated 

from bacteria like Chromobacterium, Gluconobacter, Acetobacter, Pseudomonas, Agrobacterium, 

and Flexibacter, and chemical modifications led to the first potent monobactam called aztreonam, 

active against Gram-negative bacteria [18]. Aztreonam is known to be stable against a variety of 

β-lactamases, enzymes that can degrade β-lactams to confer resistance in bacteria [18].  

 

Aminoglycosides, another class of broad-spectrum antibiotics characterized by a core structure of 

amino sugars linked to a dibasic aminocyclitol, were first discovered in 1944 with the isolation of 

streptomycin from Streptomyces griseus [19]. Further research led to the discovery of other 

aminoglycosides like neomycin, kanamycin, gentamicin, and tobramycin, either from 

Streptomyces or Micromonospora species or through chemical modifications [19]. They inhibit 

protein synthesis by binding to the 30S ribosomal subunit and are active against various Gram-

positive and Gram-negative organisms [19].  
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Tetracyclines, derivatives of the polycyclic naphthacene-carboxamides were discovered as natural 

products from Streptomyces in 1948 [20]. They inhibit protein synthesis by binding to the 30S 

ribosomal subunit and exhibit activity against both Gram-positive and Gram-negative bacteria 

[20]. Tetracyclines are commonly used to treat various bacterial infections including acne, 

chlamydia, and respiratory tract infections [20]. 

 

The development of quinolone antibiotics began with the discovery of an antibacterial compound 

from the antimalarial drug chloroquine, which led to the creation of the first quinolone, nalidixic 

acid in 1962 [21]. While nalidixic acid was only effective for urinary tract infections (UTIs) and 

led to rapid resistance, it served as a foundational model for future developments [21]. By 

modifying its structure, researchers introduced a fluorine at position 6 and a piperazine ring at 

position 7, leading to a major breakthrough with norfloxacin [21]. This compound was the first 

fluoroquinolone and exhibited a broader spectrum of activity improved absorption, but it was still 

not ideal for systemic use [21]. Further research rapidly produced compounds like ciprofloxacin 

and levofloxacin which were well-absorbed and effective against a wider range of systemic 

infections [21].  

 

The first macrolide, erythromycin, was discovered in 1950 from a Streptomyces strain [22]. 

Further research led to the development of semi-synthetic macrolides like azithromycin and 

clarithromycin, with improved properties like better absorption and fewer side effects compared 

to erythromycin [22]. Macrolides are protein synthesis inhibitors, targeting the 50S ribosomal 

subunit of bacteria [22]. They exhibit a broad spectrum of activity, effective against many Gram-

positive bacteria and some Gram-negative bacteria [22]. 
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Lipopeptides like the polymyxins were first discovered in 1947, isolated as a secondary metabolite 

from a flask of fermenting Paenibacillus polymyxa var. colistinus [23]. Another lipopeptide, 

daptomycin, was discovered in 1983 making it one of the newer antibiotics to enter clinical use 

[23]. Their precise mechanism of action is still debated. Polymyxins, such as colistin, primarily 

target lipopolysaccharide in the outer membrane of gram-negative bacteria, displacing stabilizing 

cations and causing destabilization [23]. This allows the antibiotic to traverse the outer membrane 

and disrupt the cytoplasmic membrane [23]. In contrast, daptomycin targets phosphatidylglycerol 

in the membranes of Gram-positive bacteria [23]. With the help of calcium ions, daptomycin 

inserts into the membrane, disrupting its integrity, which leads to a loss of essential ions and ATP 

[23]. While membrane disruption is a key factor, daptomycin's action may also involve inhibiting 

cell wall synthesis by interfering with enzymes and precursors located in the membrane [23].  

 

Glycopeptides inhibit the synthesis of the bacterial cell wall in a different way than β-lactams. The 

first glycopeptide, vancomycin, was isolated in 1953 from the soil bacterium soil bacterium 

Amycolatopsis orientalis [24]. They primarily inhibit bacterial cell wall synthesis by binding to 

the peptidoglycan precursor, lipid II, preventing its incorporation into the cell wall [24]. This 

binding, which involves hydrogen bonding to the d-alanyl-d-alanine terminus of lipid II, sterically 

hinders the activity of enzymes involved in cell wall construction [24]. Glycopeptides are generally 

active against Gram-positive bacteria, and vancomycin, the most well-known of this class is 

clinically used to treat serious Gram-positive infections [24]. 

 

About 75% of all antibiotics in use today and discussed above are natural products or are based on 

natural products derived from bacteria or fungi [26]. These organisms produce antibiotics to carve 
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out a niche of their own and defend it against invaders and predators [27,28]. Producers of these 

compounds are often intrinsically resistant to their effects, but in time, other microorganisms 

evolved the ability to resist these antimicrobials and compete with the producers. As such, the 

evolution of antibiotic resistance is ancient and a natural consequence of the interactions between 

microorganisms and their environment [29]. However, it was not until the introduction of 

antibiotics in the clinic in the 1940s that antibiotic resistance mechanisms became widespread in 

bacterial pathogens [25]. Today, resistance has been seen to all antibiotics developed [25].  

 

Bacteria can evolve resistance against antibiotics via a number of different mechanisms [30]. They 

can produce enzymes like β-lactamases and aminoglycoside-modifying enzymes that break down 

or modify the antibiotic of interest, rendering them ineffective [31,32]. They can reduce the net 

uptake of antibiotics by disrupting the permeability of their cell or outer membranes e.g., by 

altering their porin channels [33], and/or use efflux pumps, transmembrane proteins that use energy 

to transport toxins like anitibiotics out of the cell [34]. They can also directly modify the cellular 

components or proteins that antibiotics target, preventing effective binding interactions [35]. All 

this can be accomplished through either mutation of chromosomal DNA or acquisition of mobile 

genetic elements like plasmids, changing bacterial phenotypes far more rapidly than new drugs 

can be developed [36]. 

 

Discovery of new antibiotics has slowed down since the golden age of antibiotics in the 1950s to 

1970s, due to scientific challenges in identifying unique bacterial targets, lengthy and expensive 

development processes, regulatory complexities, and diminishing financial returns for 

pharmaceutical companies [37]. A mere 12 antimicrobials have been approved since 2017, and 
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only three novel classes of antibiotics were introduced in the last three decades (oxazolidinones, 

cyclic lipopeptides, and the triazaacenaphthylene gepotidacin) [38–40]. Worse, of the roughly 50 

new antibiotics currently in clinical trials, only three are active against Gram-negative bacteria 

[40,41]. These bacteria are inherently more resistant to antibiotics, and WHO’s critical priority list 

of pathogens that require new antibiotics is composed entirely of Gram-negative pathogens 

[42,43].  

 

To keep up with AMR, innovative strategies to combat resistance are required. Bacterial evolution 

is at the center of the AMR crisis, but attempts at understanding and modulating bacterial evolution 

to manage AMR has been underexplored [44]. My research in the Findlay lab seeks to address this 

gap by applying an eco-evolutionary perspective to AMR. The key motivation for my work is the 

concept that evolutionary gains often come at a cost, or trade-off [61]. These trade-offs are well-

documented in fields like cancer biology [62], but they remain poorly understood in the context of 

antibiotic resistance management. In this thesis, I describe my work on studying the evolution of 

resistance and its associated trade-offs and leveraging these trade-offs to design sustainable 

antibiotic therapies that are resilient against AMR. 

 

1.1. Laboratory tools to study antibiotic resistance evolution 

Studying evolution in natural environments presents considerable challenges, due to the inherent 

complexity of the environment and a multitude of interacting variables that are difficult to isolate 

and control [45]. Laboratory evolution, also known as adaptive laboratory evolution (ALE), offers 

a powerful and tractable approach to overcome these limitations. Advances in ALE, especially 

involving microorganisms like bacteria, have massively improved our understanding of the 
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principles of evolution because the short microbial generation times offer access to long 

evolutionary timescales [46]. By establishing controlled experimental conditions, researchers can 

directly observe and manipulate evolution of bacterial populations, shedding light onto the 

fundamental mechanisms driving adaptation.  

 

Probably the most well-known microbial evolution experiment is the long‐term evolution 

experiment (LTEE) [46]. The LTEE has been tracking the evolution of 12 replicate populations of 

E. coli since 1987, and has provided invaluable insights into the dynamics of adaptation by natural 

selection [45]. The LTEE has shown that bacterial populations can continue to adapt and gain 

fitness in the same environment even after >60,000 generations, contrary to earlier assumptions 

that fitness plateaus after just a few thousand generations. [45]. Another key finding from this 

experiment has been the evolution of the ability to utilize citrate as a carbon source in E. coli, an 

organism that was known to be unable to utilize citrate in the presence of oxygen [45,46].  

 

The LTEE experiment utilizes batch culturing, where a bacterial population is grown in a fixed 

volume of nutrient medium until resources are depleted or at a fixed time point, after which the 

experiment is restarted with a fresh batch of medium and a subset of the evolved population (the 

transfer population) [47]. As bacteria grow in the medium, mutants with alleles that are better 

adapted to growth and survival may arise. If an allele confers a significant selective advantage, 

they can “sweep” and replace the existing allele in the population to get ”fixed” before the next 

transfer. If not, the transfer of the bacterial population imposes a selection bottleneck, the size of 

which is determined by the size (volume) of the transfer. This bottleneck introduces genetic drift, 
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where random alleles are selected to start the next batch of culture and the process of selection 

restarts [46,47].  

 

Batch culturing has been adapted to rapid serial transfer-based methods of ALE, where two-fold 

antibiotic dilution gradients in growth medium are set up to study the evolution of antibiotic 

resistance. Bacteria are transferred after they reach a fixed population size (often measured as 

OD600 of the growth medium) or at a fixed time point into increasingly higher concentrations of 

antibiotics [48]. Robotics have allowed automation of at least parts of serial transfer-based ALEs, 

increasing throughput and minimizing user intervention [49]. This method has also been adapted 

to solid media based methods, where bacteria are streaked on a petri dish and allowed to grow 

overnight, after which a single randomly selected colony is restreaked onto another dish containing 

a higher concentration of an antibiotic [45]. A variation of this method, the gradient plating-based 

method, involves streaking bacterial populations onto agar plates that contain a gradient of 

antibiotic concentration ranging from low to high from one end of the plate to another. Bacteria 

are streaked or spread throughout entire plates, and the bacteria growing closest to the side of the 

plate with the highest concentration of the antibiotic is restreaked over the same plate [50,51]. This 

method circumvents the need to perform different dilutions of antibiotics in agar since a single 

dilution can be used to prepare all the gradient plates. Many studies have used these platforms to 

probe bacterial evolution against different stressors, including antibiotics, because of their 

simplicity and low cost [52–56]. 

 

Another ALE platform, called the morbidostat, uses continuous culturing instead of batch 

culturing and enables real-time monitoring of microbial adaptation to antibiotics [57]. Unlike 



 

9 

 

traditional setups that expose bacteria to fixed drug concentrations, the morbidostat continuously 

tracks microbial growth rates and dynamically modulates drug levels to maintain a steady 

inhibition assessed via optical density measurements. The platform is fully automated and can be 

controlled using computer programs with minimal user intervention, and hence may be ideal for 

long-term evolution studies [57]. However, continuous culture methods are more complex and 

costly to set up and maintain than batch cultures, and they carry a higher risk of contamination 

[58–60]. Additionally, the number of replicate evolution experiments that can be carried out in 

morbidostats is limited, reducing throughput [45,57]. 

 

Microfluidic devices have now been designed to study bacterial evolution. These devices provide 

precise control over the supply of media and supplements to cell cultures, and are useful to study 

evolution at the single-cell level [61]. Since cells can attach to surfaces with some population 

turnover, microfluidic platforms are an excellent choice for studying biofilms [62]. However, they 

have limitations in terms of throughput and scalability, and the setup and operation can be 

technically complex [63]. 

 

In 2016, the microbial evolution and growth arena (MEGA) plate [64] gained widespread media 

attention for its striking demonstration of real-time bacterial evolution and the development of 

antibiotic resistance [65–68]. MEGA plates are rectangular plates layered with agar containing a 

gradient of antibiotic concentrations, overlaid by soft agar to permit bacterial movement. Bacteria 

introduced at one end migrate outward, with only resistant mutants able to colonize areas with 

higher drug levels. Bacteria can be harvested from the end of the plates to collect resistant mutants 

for analysis, or from different areas of the plate to reconstruct the mutational paths adopted by the 
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bacteria to evolve resistance [64]. The MEGA plate captures a key aspect of bacterial evolution in 

nature and clinical settings: the ability of bacteria to migrate between areas with different selective 

pressures. When selection is spatially structured, evolutionary dynamics change such that a 

successful mutant simply needs to be the first to reach and persist in a new, unoccupied area instead 

of outcompeting neighboring cells for resources, accelerating resistance evolution [64]. MEGA 

also requires minimal user involvement after setup and inoculation [64], but the large size (~50 x 

20 inches) of the plates makes handling and scale up impractical. 

 

The ALE platform used in all evolution experiments described in this thesis is the soft agar 

gradient evolution (SAGE) platform [69]. SAGE operates on the same foundational principles as 

the MEGA plate but utilizes standard rectangular lab dishes (Figure 1.1), preserving the key 

advantages of MEGA while massively enhancing scalability and ease of use [69]. Its capacity to 

generate resistance to all major classes of antibiotics against Gram-negative bacteria has been 

previously reported [69]. The smooth, continuous antibiotic gradient in SAGE instead of the two-

fold increments of the serial transfer based methods popularly used [70,71] allows sequential 

acquisition of small-effect mutations towards high-level resistance, a phenomenon commonly seen 

in clinical settings [72,73]. In chapters three and four, I detail my contributions on optimizing the 

SAGE platform further and provide experimental and clinical evidence supporting its use for 

antibiotic resistance evolution studies. 
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Figure 1.1 The SAGE platform.  

(A) To prepare SAGE plates, soft-agar is poured into 4-well plates raised on one side using P1000 pipette tips. After 

gelling, the supports are removed and a second agar layer is poured to an even depth. Plates are rested at room 

temperature overnight to allow diffusion between the two layers. Detailed methodology on preparing a SAGE plate 

can be found in chapter 3. (B) Evolution of antibiotic resistance in SAGE wells. As bacteria grow and deplete resources 

around their inoculation zone, they move down the plate to access nutrients and space. But as they move down, they 

face an increasing antibiotic challenge, and resistant mutants are selected for. As mutants arise, they leave their 

sensitive counterparts behind to move towards the end of the plate. 

 

1.2. Leveraging fitness penalties of resistance to combat resistance evolution 

The evolution of antibiotic resistance in bacteria often carries a biological cost. [74–76]. This cost 

can come in different forms, including slower growth rates, reduced motility, and increased 

sensitivity to stressors [75,77–79]. For example, when exposed to a class of antibiotics called 

aminoglycosides, bacteria frequently acquire mutations in key components of the electron 

transport chain, leading to reduced cellular respiration. Since aminoglycoside uptake across the 

inner membrane depends on a threshold membrane potential generated by the electron transport 
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chain [80], lowering this activity can make cells resistant to aminoglycosides [81]. However, this 

adaptation imposes a significant trade-off, as diminished respiration compromises bacterial growth 

rates [82].  

 

Multiple studies have now shown that fitness costs imposed on resistant mutants can allow their 

wild type counterparts to outcompete and replace them when the antibiotic pressure is removed, 

resensitizing the population to the initial antibiotic applied (Figure 1.2) [83–85]. This, in theory, 

can allow an antibiotic to be reused during therapy. However, during therapy ceasing antibiotic 

application is not practical, necessitating a switch to a different antibiotic. Switching antibiotics 

can sometimes still give the wild type bacteria enough time to expand and replace the resistant 

population before antibiotic concentrations hit inhibitory levels in the target site [86]. Application 

of one antibiotic after another, often called a sequential antibiotic therapy, has been proposed to 

limit resistance evolution and resensitize bacteria to antibiotics [52,87]. Sequential therapies may 

be crucial for long-term antibiotic treatments [88–91] where the chances of resistance evolution 

are high [92,93].  

 

Sequential therapy is less explored than other modalities like combination therapy, where more 

than one antibiotic is applied at a time (the standard of care for diseases like tuberculosis) [94]. 

Although combination therapy has been suggested to counteract resistance [95], it has been 

repeatedly shown to accelerate resistance evolution [87,96–98]. A few clinical studies have shown 

sequential therapy to be comparable or superior over combination therapy against H. pylori 

infections [99–102]. However, sequential therapy still remains underutilized [94], partly because 

it is not well understood and is thus unpredictable. For instance, we do not fully understand what 
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happens to the population that is resistant to the previous antibiotic (pink bacteria in Figure 1.2) 

when a new antibiotic is applied. While one study proposed a possible dynamic for antibiotic 

resensitization in a mixed experimental population (Figure 1.2) [52], we do not know what happens 

if an antibiotic therapy completely eradicates the susceptible population and leaves behind only 

the resistant subpopulation. Prolonged antibiotic therapies during the treatment of cystic fibrosis, 

chronic liver disease and respiratory infections, and recurring urinary tract infections can clear 

wild type or low-level resistant populations completely, eliminating competition for resistant cells 

[103–106]. Can sequential therapy still be useful in mitigating resistance in these conditions?  

 

 

Figure 1.2 Fitness costs can be leveraged to restore antibiotic susceptibility in a population. 

When bacteria are exposed to an antibiotic, rare mutants that can resist the antibiotic expand to form the majority of 

the population despite their reduced growth rates, since the wild type bacteria are killed by the antibiotic. But if the 

antibiotic pressure is removed, any remaining wild type bacteria can outcompete the resistant mutants due to their 

improved ability to grow, consume nutrients and occupy space. 
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The usefulness of sequential therapy to counter resistance evolution hinges on the presence of 

fitness costs of resistance. These costs frequently appear in laboratory evolution experiments [83–

85,107], but apparent ‘cost-free’ mutants commonly appear in the clinic [108–111]. The presence 

of these cost-free mutations can be explained almost entirely by compensatory evolution, which 

occurs when the fitness costs carried by resistance mutations are mitigated or compensated for by 

other mutations occurring elsewhere in the genome [110–113]. For example, bacteria lose or 

reduce the number of outer membrane porins to become resistant to a number of drugs, 

concurrently  limiting their ability to take in nutrients. The resulting impairment in growth can be 

rapidly compensated for through mutations that upregulate phosphate acquisition—an essential 

process for growth and survival [114]. To date, studies that explored sequential evolution could 

not fully account for compensatory evolution [52,83,115–117]. Given the tremendous potential of 

compensatory evolution to shape the fitness landscape of resistance evolution, attempts should be 

made to directly account for it during evolution studies to avoid inflating the benefits of sequential 

therapies. 

 

In chapter 2, I set out to tackle these problems by investigating the effects of antibiotic resistance 

in clonal populations of Escherichia coli (E. coli) on fitness and evolution. In this thesis, a bacterial 

strain is defined as resistant to an antibiotic when the minimum inhibitory concentration (MIC) of 

an antibiotic, the concentration required to inhibit bacterial growth completely, is above the clinical 

resistance breakpoint for that antibiotic set by the European Committee on Antimicrobial 

Susceptibility Testing (EUCAST) [63] or by the Clinical & Laboratory Standards Institute (CLSI) 

[64] when EUCAST breakpoints are unavailable. Unlike arbitrary resistance cut-offs, clinical 
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breakpoints take into account achievable tissue concentrations when a patient or animal is given a 

standard antibiotic dose [118].  

 

First, I describe a novel parameter, the rate of movement of bacterial fronts in SAGE plates [43] 

as an easily trackable measure of the rate of resistance evolution. Using this, I show that resistance 

to chloramphenicol, a protein synthesis inhibitor antibiotic, imposes severe fitness costs in the 

form of reduced growth and motility, and impairs their ability to further evolve resistance to 

secondary antibiotics like streptomycin, an aminoglycoside, and nitrofurantoin, a nitrofuran. I find 

that this impairment is not dependent on the identity of the antibiotic evolved to or the evolving 

bacterial strain, but on the presence of a fitness cost of resistance. In line with this, I show that 

low-cost resistant mutants are not impaired in their evolution rates. This suggests that sequential 

application of carefully chosen antibiotics can slow down subsequent resistance evolution.  

 

Next, I incorporate experimental compensatory evolution to test the stability of these impairments. 

Compensatory evolution experiments are often tedious to perform, requiring month-long serial 

passages [112,113,119]. Leveraging the limited intermixing of populations in soft agar, I develop 

a soft agar-based platform called “flat plates” which allowed compensatory evolution within a 

week. Using these plates, I show that chloramphenicol-resistant mutants can rapidly improve their 

fitness, jumping back to levels comparable to wild type bacteria. Mitigation of fitness costs leads 

to restoration of wildtype-level adaptation rates against nitrofurantoin, but interestingly, fails to 

improve adaptation rates against streptomycin, suggesting that this impairment is difficult to 

overcome. Together, this study provides a framework for the identification of antibiotics whose 
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resistance mechanisms impose impairments stable against compensatory evolution to design 

sequential antibiotic therapies that are less prone to resistance. 

 

1.3. Sequential antibiotic therapies and collateral sensitivity 

The fitness costs of resistance may slow down the evolution of resistance in sequential therapies, 

but they don’t stop multidrug resistance from emerging. In fact, in chapter 2, I report several 

fitness-impaired, chloramphenicol-resistant E. coli that go on to evolve multidrug resistance. This 

may not be surprising since, given enough time, bacteria can probably overcome most antibacterial 

challenges [120]. This implies that in a long enough antibiotic therapy, the component drugs of a 

sequential regimen may all fail due to resistance evolution [121]. In the next phase of research I 

determined if  antibiotic resensitization could be reliably achieved in clonal bacterial populations 

during sequential therapy, forestalling or preventing the evolution of multidrug resistance. 

 

This work was driven by prior research on collateral sensitivity (CS) a form of evolutionary trade-

off where evolution of resistance to one antibiotic comes at the cost of increased sensitivity 

(sometimes termed as hypersensitivity, and this term will be used interchangeably with CS in this 

thesis) to another antibiotic [122]. CS can occur via a number of different mechanisms: certain 

mutations evolved to resist one antibiotic can improve the net uptake of another, increase the 

chemical activation of a prodrug, change the cellular functions and regulatory pathways to increase 

toxicity, or modify the target structure to improve binding of another antibiotic [123].  
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1.3.1. Mechanisms of collateral sensitivity 

Before the proposed benefits of CS in sequential therapy are discussed, a brief understanding of 

the mechanisms of CS described so far may be helpful. Experimental data on CS mechanisms are 

still rare [123]. The most well-known example of CS is perhaps the increased net uptake of β-

lactams in aminoglycoside resistant bacteria. E. coli reduce their electron transport chain activity 

and the proton motive force (PMF) it generates to become resistant to aminoglycosides [124], but 

this reduction also weakens efflux pumps like AcrAB-TolC, which are driven by the energy of the 

PMF [124]. Since bacteria rely on these proteins to pump out β-lactams and other antibiotics, 

decreasing efflux increases their sensitivity to these antibiotics [124].  

 

Nitrofurantoin CS in mecillinam-resistant bacteria provides an example of CS due to increased 

chemical activation. E. coli exposed to the β-lactam mecillinam can gather mutations in the 

stringent response regulator spoT, which in turn can increase expression of the nitroreductase 

enzyme NfsB [125]. NfsB is one of the two enzymes responsible for converting the prodrug, 

nitrofurantoin, into its active antibacterial form, and increased abundance of NfsB increases 

nitrofurantoin sensitivity [125]. 

  

Some resistance mechanisms can increase the toxicity of antibiotics. The absence of the Lon 

protease in tigecycline resistant bacteria can spare efflux regular proteins from degradation, 

increasing expression of genes that mediate resistance like acrAB [126]. However, deactivation of 

Lon has widespread effects, one of which is the failure to degrade other toxic proteins. 

Nitrofurantoin exposure causes DNA damage which induces the production of the cell replication 

regulator SulA [125]. SulA stops growth to allow DNA repair, and needs to be degraded by the 
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Lon protease to allow growth to resume [125]. SulA accumulation halts cell division, contributing 

to increased nitrofurantoin toxicity [125]. 

 

Enzymes like β-lactamases can adapt to improve binding of a β-lactam at the cost of another. The 

β-lactamase CTX-M-15 can evolve to better resist mecillinam but can lose effectiveness against 

other β-lactams like cefotaxime due to altered antibiotic binding [127].  

1.3.2. Collateral sensitivity and cyclic antibiotic therapies 

The idea of sequential antibiotic therapies that leverage CS was first introduced in 2013 by 

Imamovic et al [52]. In this study, the authors first identified a number of pairwise reciprocal CS 

interactions. The reciprocity of CS is an important idea in this field of research. Suppose that 

evolution of resistance to antibiotic A in bacteria renders cells hypersensitive to B ( 

Figure 1.3, left panel), and evolution of resistance to antibiotic B also induces CS to A ( 

Figure 1.3, right panel). The drug pair A-B would then be said to exhibit reciprocal CS. It may be 

intuitive to assume that the changes in resistance levels occur in the same bacterial population, i.e., 

it might appear that resistance to antibiotic A in a bacterial population X makes it hypersensitive 

to B, and subsequent evolution of resistance to B in the same population renders it sensitive to A. 

This is sequential evolution of resistance in a bacterial population, and is not how reciprocal CS is 

defined. A drug pair A-B is considered to exhibit reciprocal CS if a bacterial population X resistant 

to A exhibits CS to B, and another bacterial population Y (isogenic to X) exhibits hypersensitivity 

to antibiotic A as resistance to antibiotic B evolves. 
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Figure 1.3 Reciprocal CS. 

As resistance to antibiotic A increases in population X, cells become more sensitive to antibiotic B at the same time. 

Resistance to B in another isogenic population Y induces collateral sensitivity to A, making A-B a reciprocal drug 

pair. The horizontal dotted lines in the graphs represent wild type resistance levels. 

 

Imamovic et al [52] identified a number of reciprocal CS interactions. From there, they focused 

on the pair gentamicin and cefuroxime for their experimental evolution experiments. First, they 

raised gentamicin resistant E. coli via experimental evolution. Then they created an experimental 

bacterial population composed of 1:1 gentamicin resistant:wild type cells and exposed this 

population to cefuroxime. Since the gentamicin resistant cells were hypersensitive to cefuroxime, 

these cells were preferentially killed over the wild type, resensitizing the population to gentamicin. 

The remaining WT cells were then exposed to cefuroxime. Once these cells evolved resistance to 

cefuroxime, they were mixed 1:1 with naive WT cells and exposed to gentamicin. Since the 

cefuroxime resistant cells were hypersensitive to gentamicin, this time they were preferentially 

killed over the naive cells, resensitizing the population to cefuroxime. Essentially, due to CS, the 
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antibiotic-resistant populations died out, i.e., went extinct before the wild type, susceptible cells 

and treatment could be limited to a pairwise, A-B cycle in an experimental setting. An A-B 

pairwise cyclic therapy is, in principle, a type of sequential antibiotic therapy where drugs A and 

B are cycled one after the other. In this thesis, the term ‘loop’ is used multiple times 

interchangeably with ‘cycle’ to refer to drug sequences where resensitization to an antibiotic in a 

sequence is targeted or achieved. 

 

This design solves an important problem with ‘conventional’ sequential therapy, where fitness 

cost-free resistance can jeopardize the success of sequential therapy due to the ability of resistant 

populations to compete in growth with the susceptible population. CS, in theory, adds another axis 

that can be used to select against resistant bacteria, independent of growth rates. Suppose in Figure 

1.2, the pink population evolved growth rates comparable to that of the WT and the antibiotic 

pressure is removed. While the susceptible, wildtype population cannot outcompete the resistant 

one, if an antibiotic is applied to which the pink population is hypersensitive, the number of pink 

bacteria will now drop faster than the wildtype, allowing the teal bacteria to take over and reach 

the same end point in Figure 1.2. 

 

But what happens if the susceptible population is completely eradicated? The CS based cyclic 

approach still depends on the ability of a susceptible population to clear out the resistant one. A 

study from Barbosa et al [128] examined the effects of CS in drug cycling within clonal 

populations of Pseudomonas aeruginosa (P. aeruginosa). They started experiments with eight 

gentamicin resistant clonal populations that all exhibited CS towards carbenicillin. Then, they 

exposed them to carbenicillin and found that the majority of populations showed reduced 
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gentamicin resistance (i.e. they were resensitized to gentamicin) as carbenicillin resistance 

evolved. The gentamicin resistance was partially conferred by mutations in the sensor histidine 

kinase PmrB, which modifies the bacterial membrane to reduce its interaction with cationic 

antibiotics like gentamicin. Carbenicillin-resistant cells gathered mutations in an efflux regulator 

gene nalC, which is known to increase gentamicin susceptibility via unclear mechanisms [129]. 

They concluded that the effects of the nalC mutations counteracted that of pmrB to increase 

gentamicin susceptibility in the carbenicillin resistant cells. But how did CS help achieve this? 

 

The authors suggested that when treatment was switched from gentamicin to carbenicillin, the 

gentamicin resistant cells found themselves against an antibiotic to which they were 

hypersensitive. To allow evolution of resistance to carbenicillin, these cells may have reversed 

their hypersensitivity to carbenicillin, and since the hypersensitivity to carbenicillin is genetically 

tied to gentamicin resistance (by definition of CS), reversing this hypersensitivity also reversed 

gentamicin resistance (Figure 1.4). 
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Figure 1.4 Antibiotic resensitization in clonal bacterial populations. 

As treatment is switched from antibiotic A to antibiotic B of an A-B reciprocal pair, bacterial populations are inclined 

to reverse hypersensitivity to B and their associated resistance to A to allow evolution of resistance to B. 

1.3.3. The pitfalls of collateral sensitivity 

The combined results from the two studies discussed above sparked interest in CS and reciprocal 

CS relationships, leading to the publication of a large number of studies on novel CS interactions 

in different bacterial species [129–136]. However, studies that replicate or advance the idea of CS 

in antibiotic resensitization in cyclic therapies are missing, and some studies have shown that the 

evolution of CS may not be repeatable since it is contingent on evolution itself being repeatable 

[54,133,137]. After all, multiple evolutionary pathways to resistance are available to bacteria, 

many of which may not confer CS [138]. But CS, as with any other evolutionary trade-off, must 

be evolutionarily repeatable to be useful in combating resistance [139]. Most studies that 

discovered CS relationships did not investigate the repeatability (sometimes termed robustness or 

stability) of the interactions. The frequency of CS evolution cannot be reliably inferred from 
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existing studies either because evolutionary replicate numbers ranging from one to eight used in 

most of these studies are insufficient to capture the stochasticity of evolution [54].  

 

The study that proposed the benefits of CS in resensitizing clonal bacterial populations to 

antibiotics [128] did not repeat their resensitization experiments with ‘neutral’ clones. They 

showed that eight replicate populations resistant to drug A and hypersensitive to drug B can be 

resensitized to A when resistance to B evolves. But we do not know if resensitization would occur 

if those eight populations did not start with hypersensitivity to B. In fact, reports have now shown 

that antibiotic switching can affect resistance evolution independently of CS [107,140,141]. 

Overall, it remains unclear if and to what degree CS disrupts evolution and promotes antibiotic 

resensitization during antibiotic cycling. 

 

In this thesis,  two questions will be addressed: i) how repeatable are reported CS interactions, and 

ii) how important is CS for antibiotic resensitization in clonal bacterial populations? To pursue 

answers to these questions, I would require large evolutionary replicate numbers to capture 

repeatable CS evolution, and to do that, I would need a laboratory evolution platform that could 

rapidly generate large numbers of resistant mutants. SAGE has already been proven to be fast and 

high throughput [69]. However, during testing, I found that SAGE struggled with some antibiotics 

like the β-lactam piperacillin and especially the antimicrobial peptide polymyxin B, which is 

known to be difficult to evolve resistance against in the laboratory [69,121,142]. Not willing to 

run into evolution platform-related bottlenecks, I first embarked on a project to improve the SAGE 

platform.  
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1.3.4. An improved SAGE leads to the elucidation of the mechanism of resistance against the 

“evolution proof” antibiotic octyl-TriA1 

In chapter 3, I describe my work on improving SAGE, building a laboratory evolution platform 

that goes on to become crucial for my research. SAGE evolutions depend on the ability of bacteria 

to migrate through antibiotic gradients established in soft agar (0.25% agar) [69]. However, 

synaeresis, the tendency of agar hydrogels to spontaneously shrink over time via continuous 

expulsion of solvent [143], increases the effective agar concentration and restricts bacterial 

motility [144]. First, I showed that synaeresis hindered the evolution of resistance to antibiotics 

like polymyxin B in this platform [145]. To improve the water-retention capacity of the SAGE 

medium, I screened a number of water-binding polysaccharide additives, finding that the addition 

of xanthan gum markedly reduces synaeresis in agar. This reduction in synaeresis allowed SAGE 

gels to retain enough water to support bacteria motility over month-long incubations at 37 °C. 

Additionally, incorporation of xanthan gum lowered the requirement of agar for gelling of the 

media. Since the rate of bacterial motility is a function of agar strength [144], and the rate of 

resistance evolution in SAGE is a function of bacterial motility [145], xanthan gum addition 

significantly sped up SAGE evolutions. With this modification, I showed that polymyxin B is now 

an easily evolvable target in SAGE. 

 

To stress test this media, I challenged it with an “evolution proof” antibiotic—octyl-tridecaptin A1 

(Oct-TriA1)—a compound previously shown to resist the development of bacterial resistance over 

a 30-day evolution experiment [146]. “Evolution-proof” antibiotics have attracted a lot of attention 

recently since developing antibiotics immune to resistance evolution could be groundbreaking in 

the fight against AMR [147]. Using the improved SAGE platform, I demonstrated that resistance 
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to Oct-TriA1 can, in fact, emerge within just nine days, overturning previous assumptions about 

its evolutionary resilience. In collaboration with Laura Domínguez Mercado, a PhD candidate, and 

Katya Kharitonov, an NSERC USRA intern in the Findlay lab at the time of this work, we 

described for the first time the mechanism underlying the de novo evolution of resistance to this 

compound. Identifying resistance mechanisms prior to clinical deployment is essential to inform 

surveillance strategies and extend drug lifespan [148]. As history has repeatedly shown, evolution 

finds ways to bypass antimicrobial action and the true challenge lies in whether we can predict the 

routes it may take. Our approach can help uncover these adaptive paths, even for antibiotics 

previously considered impervious to resistance. 

 

1.3.5. Large scale laboratory evolutions predicts clinical outcomes and leads to the discovery of 

a novel mechanism of collateral sensitivity 

There are a number of different platforms that are available to perform laboratory evolutions like 

the serial transfer based methods, gradient plating based methods, microfluidic chips, and SAGE 

[55]. A laboratory is generally free to choose any one platform for their investigations. Unlike 

many quantitative tools, however, experimental evolution platforms have not been standardized 

[149,150]. Readings from a mercury-based body temperature thermometer should be the same as 

that from an IR thermometer, within margins of error. Do all experimental evolution platforms 

also produce comparable outcomes, or does the choice of the platform affect experimental results? 

Additionally, how clinically relevant are the predictions made from laboratory evolutions? To 

improve the generalisability and clinical relevance of my research, I wanted these questions 

answered before investigating the effects of CS in sequential regimens. 
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In chapter 4, I describe my work in comparing evolution of antibiotic resistance and its collateral 

effects via common evolution platforms [151], done in collaboration with Veronica Banari, a 

Mitacs Globalink Research Intern from FAU Erlangen-Nürnberg in Germany, and Vlada Lesnic, 

a CHEM 450 research student from Concordia. We generated over 130 resistant mutants and made 

540 resistance and CS measurements to show that serial transfer and gradient plating-based 

platforms agree well on the frequencies of CS, cross-resistance (CR) and resistance levels. 

However, SAGE produced substantially lower frequencies of CS and higher incidence of CR when 

compared to the other two platforms. To test the relevance of these CS/CR predictions from the 

different ALE platforms, we analyzed antimicrobial susceptibility data from over 750 clinical 

uropathogenic multidrug resistant (MDR) E. coli strains. We found that CS is almost entirely 

absent, but neutrality or CR is prevalent in clinical data. However, we observed a significant 

association between increasing omadacycline (a third generation tetracycline) resistance and 

reduced colistin (polymyxin E) resistance. Interestingly, out of the four drug pairs screened, SAGE 

showed significant CS in only one of them: a tigecycline (a third generation tetracycline) and 

polymyxin B pair. Using genomics and phenotypic analysis, we described a novel CS mechanism 

by showing that cells resistant to tigecycline deactivate the Lon protease and overproduce 

negatively charged exopolysaccharides, which in turn attracts the polycationic polymyxin B and 

renders cells hypersensitive to the drug. Together, this work provides important insights into the 

evolution of collateral phenotypes from different laboratory evolution platforms, and a framework 

for identifying robust CS with clinical implications. 
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1.3.6. The role of collateral sensitivity in antibiotic resensitization 

With the suitability of the SAGE medium for studying evolution and its collateral effects 

established, I began probing the role of CS in sequential antibiotic therapies and antibiotic 

resensitization. In chapter 5, I describe results from over 450 evolution experiments, testing the 

resilience of four proposed CS-based drug pairs of potential use in sequential therapy. I found that 

the repeatability of previously reported pairwise CS interactions can vary widely, ranging from a 

100% to ~6% chance of evolving CS (from 16 independent evolutionary replicates). Ciprofloxacin 

and gentamicin were previously reported to have CS interactions [152], but exhibit only a ~6% 

chance of evolving CS in my experiments. This shows that large scale evolution experiments are 

required to capture repeatable CS interactions. Next, I investigate pairwise interactions with 

prevalent CS to investigate the role of CS in antibiotic resensitization during sequential therapy. I 

find that even drug pairs with ubiquitous CS fail to significantly reduce resistance or promote 

bacterial extinction, at least when CS is looked at in the way it has been so far.  

 

When we discussed reciprocal CS interactions in section 1.3.2, I explained that a CS interaction in 

an A-B sequential therapy is reciprocal when resistance to A leads to CS to B, and resistance to B 

leads to CS to A (Figure 2). Hence, a reciprocal interaction is composed of CS in two directions 

[136], but the two interactions have not been separately described. In this chapter, I introduce two 

new terms, forward CS and backward CS ( 

Figure 1.5) to describe these interactions. To date, only forward CS has been proposed in sequential 

therapy. When I probed drug pairs that produced significant resensitizations in my dataset, I found 

instead that backward CS is strongly associated with reductions in resistance. For example, a 

gentamicin - piperacillin sequence showed strong forward CS interactions, but sequential 
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evolution against gentamicin - piperacillin showed no significant resensitizations to gentamicin. A 

piperacillin - gentamicin sequence showed prevalent backward CS, and sequential evolution 

against the two drugs produced significant reduction in resistance towards piperacillin. I elucidated 

the mechanism of action of backward CS in this pair, showing that it perturbs the electron transport 

chain to inhibit aminoglycoside entry and consequently impair β-lactam efflux, resulting in 

increased β-lactam susceptibility.  

 

 

Figure 1.5 Forward and Backward collateral sensitivity. 

In an A-B drug pair, where the sequence of antibiotic application is A to B, CS to B upon resistance to A is forward 

CS, while CS to A upon resistance to B is backward CS. The direction of CS is relative to the direction of the antibiotic 

sequence. 

During my screen, I also discovered a drug pair composed of polymyxin B and tigecycline, where 

resistance to tigecycline reduces polymyxin B by 64-folds. This is in stark contrast to the two to 
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four-fold hypersensitivity commonly seen in experimental evolution [123,153]. I show that this 

level of resensitization occurs via a combination of backward CS and compensatory evolution. 

Overall, in this chapter, I provide answers to the two questions I began with: the repeatability of 

CS interactions can vary widely and must be determined via large scale evolutions, and CS may 

help achieve antibiotic resensitizations only when applied in the right direction. These findings 

will be important for designing treatment regimens that are less likely to lead to resistance 

evolution. 

 

1.4. Collateral sensitivity-independent sequential regimens that produce large and 

repeatable resensitizations 

In chapter 5, I showed that forward CS fails to reverse resistance or reduce adaptation rates during 

sequential regimens, and backward CS may be more useful in antibiotic resensitization. However, 

backward CS and the associated reduction in resistance was limited to two-folds on average, which 

may not be sufficient to reduce resistance below clinical breakpoints. Outside the remarkable 

resensitization magnitudes of the polymyxin B - tigecycline antibiotic pair, there was a lack of 

complete antibiotic resensitization in the tested drug pairs. 

 

To develop sequential antibiotic regimens that could reliably resensitize bacteria to antibiotics 

below clinical breakpoints I began with a simple hypothesis: evolving resistance to multiple drugs 

in a sequence can incur ‘stacking’ fitness costs in bacteria, and at one point, they would have little 

left to give. If faced by a new antibiotic challenge, they would then be left with a choice: reverse 

resistance to a drug and win back the fitness costs paid for that resistance to face this new challenge, 

or die ( 
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Figure 1.6). In chapter 5, where I tested drug sequences composed of two drugs, fitness costs may 

not have been large enough for bacteria to trade for resistance. To test this, in chapter 6, I 

investigate extended sequential regimens composed of three drugs, which I call ‘tripartite’ 

sequences.  

 

 

Figure 1.6 Trading resistance for fitness.  

After resistance evolves to antibiotics A and B, resistance to C might require a fitness penalty the bacteria may not be 

able to pay. This can either lead to their death when challenged with C, or resensitization to antibiotic A (or B) to 

regain fitness to pay for the new challenge, C. AU = arbitrary units. 0 AU represents death/extinction. 

 

First, I extend the gentamicin - piperacillin pair into a tripartite sequence composed of gentamicin 

- piperacillin - nitrofurantoin. Through 424 discrete adaptive laboratory evolution experiments I 

find that as bacteria sequentially evolve resistance to the drugs in this tripartite sequence, they 

reliably trade their past resistance for fitness gains, reverting back to sensitivity to gentamicin. I 

show that this loop is invertible, with a nitrofurantoin - piperacillin - gentamicin sequence reliably 

restoring sensitivity to nitrofurantoin. By tracking fitness and genomic changes from each step of 

evolution, I find that loops guide bacterial strains toward evolutionary paths that mitigate fitness 
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costs and reverse resistance to component drugs, driving levels of resensitization not achievable 

through pairwise regimens. I then show that this strategy is robust and not limited to laboratory 

strains by reproducibly resensitizing or eradicating four multidrug-resistant clinical bacterial 

isolates using an identical approach. Resensitizations occur even when evolution was complicated 

via plasmid-bound mutations over chromosomal changes, suggesting that tripartite regimens can 

be a potent new approach to counter antibiotic resistance. 

 

Collectively, my research offers new insights into laboratory evolution and its clinical relevance, 

and the role of evolutionary trade-offs in slowing down evolution and resensitizing bacteria to 

antibiotics. Large-scale laboratory evolutions can be a powerful strategy to discover robust 

evolutionary trade-offs, and sequential regimens of the right order and length can improve the 

clinical longevity of antibiotics. 
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Chapter 2. Fitness costs of antibiotic resistance impede the evolution of 

resistance to other antibiotics 
 

Published record: Chowdhury FR and Findlay BL; ACS Infectious Diseases 2023, 9, 10, 1834–

1845.  

Available at: doi.org/10.1021/acsinfecdis.3c00156 

 

 

2.1. Introduction 

The rapid rise of antibiotic resistance severely burdens healthcare systems worldwide, increasing 

hospital stays and causing increased mortality. A recent study has estimated that infections caused 

by antibiotic-resistant pathogens directly led to 1.2 million premature deaths in 2019 alone[11]. If 

the current increase in the incidence of these infections continues, the WHO estimates that resistant 

pathogens could kill 10 million people and cause more than $1 trillion in losses annually by the 

year 2050[154,155]. 

The current antibiotic resistance crisis is driven by a combination of the incredible speed at which 

bacteria can evolve resistance and a myriad of other factors related to antibiotic stewardship, 

including inadequate drug regulations and the widespread use of antibiotics in livestock[10,156]. 

Critically, the development of new antibiotics has not kept pace with the spread of resistance 

mechanisms: only eight new antibiotics have been approved since 2017, most of which are 

derivatives of existing antibiotics[42]. To maintain the effectiveness of our current therapies we 

urgently need to develop new strategies to combat antibiotic resistant pathogens, and the evolution 

of resistance itself. 

Evolutionary strategies to combat resistance evolution have gained attention in recent years[116]. 

The evolution of resistance often incurs a fitness cost to the bacteria, from increased sensitivity to 

abiotic stressors, to reduced growth rates and motility[157–159]. Reduced growth and movement 
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rates impede the ability of bacterial populations to acquire nutrients and move away from toxic 

compounds[157], while reduced fitness can hinder individual mutants’ ability to compete with 

fitter cells that exhibit lower resistance levels[158,159]. However, prolonged antibiotic therapies 

during the treatment of cystic fibrosis, chronic liver disease, and respiratory infections, and 

recurring urinary tract infections can clear wildtype or low-level resistant populations completely, 

eliminating competition for resistant cells[103–106]. This necessitates switching therapy to a 

different antibiotic to continue effective treatment. Recent studies have highlighted strategies to 

optimize the design of sequential antibiotic therapy for improved infection clearance and limited 

resistance evolution[52,84,160]. Most of these studies leverage collateral sensitivity, a 

phenomenon where resistance to one drug induces hypersensitivity to another, to guide optimal 

antibiotic switches. However, collateral sensitivity is rare, and its application is limited by 

contradictory results on evolutionary repeatability and its generalisability across different genetic 

backgrounds[84,161,162]. 

Hypersensitive bacterial populations are often growth-impaired, and Brepoels et al. recently 

showed that resistance evolution is impaired in hypersensitive bacterial populations independently 

of collateral sensitivity in certain drug sequences[140,163]. Here we show that evolution of 

resistance to chloramphenicol (CHL) in Escherichia coli K-12 substrain MG1655 cripples its 

growth rate and movement through soft agar, which impedes its ability to evolve resistance to 

secondary antibiotics in antibiotic gradients independently of collateral sensitivity. We leveraged 

the high-throughput mutant generation capacity of the Soft Agar Gradient Evolution (SAGE) 

system to evolve 16 independent isogenic populations (referred to here as replicates) of wildtype 

(WT) and CHL-resistant E. coli (OM) separately to two different antibiotics, nitrofurantoin (NIT) 

and streptomycin (STR) in parallel[69]. By tracking distance moved in SAGE plates and observing 
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growth patterns, we found that resistance was delayed by a day in the majority of OM replicates. 

We then verified the role of fitness in the adaptation slowdown by evolving CHL-resistant mutants 

with improved growth and swim rates. These fitter mutants could restore WT-like adaptation rates 

to nitrofurantoin, but the slowdown in STR-adaptation persisted. Genome sequencing revealed 

divergent evolutionary trajectories across the differing genetic backgrounds, with fitness costs 

constraining the available paths to resistance. We suggest that these results are not tied to the 

primary antibiotic or the genetic background, but to the fitness costs of resistance to the primary 

antibiotic. Consistent with this view, resistance is also impaired in a cefazolin-resistant mutant of 

Escherichia coli BW25113. Our findings show that resistance mechanisms that incur heavy fitness 

penalties can serve as an indicator of subsequent evolution impairments which can shape primary 

antibiotic choices, and the SAGE system can be used to track in vitro evolutionary kinetics at high-

throughput. 

2.2. Results 

2.2.1. Evolution of high-level resistance to chloramphenicol via SAGE 

We reported the evolution of resistance in E. coli MG1655 to a number of antibiotics representing 

different classes, including chloramphenicol, via the SAGE system before[69]. WT cells were 

passed through a SAGE plate containing a maximum   [CHL] = 20 μg/mL (WT MIC: 4 μg/mL) 

(Figure 2.1A). Cells extracted from the end of the plate were grown overnight and inoculated in a 

second SAGE plate containing a maximum   [CHL] = 100 μg/mL. Cells evolved from these plates 

exhibited CHL MIC of 256 μg/mL. 
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Figure 2.1 Evolution of chloramphenicol resistance incurs fitness costs. 

(A) Evolution of chloramphenicol resistance via the SAGE system. WT bacterial culture is inoculated in a CHL 

gradient (maximum   [CHL] = 20 μg/mL) set up in soft-agar medium. Bacteria moving down a lane to access nutrients 

and space generate mutants that are able to resist the increasing concentrations of the antibiotic. When cells reach the 
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end of a lane, they are extracted and cultured overnight and used to inoculate a new CHL gradient (maximum   [CHL] 

= 100 μg/mL). Cells from the end of this secondary lane are extracted and their resistance levels determined. Although 

depicted in the same plate, a new plate is used for each SAGE evolution cycle. (B) Growth curves of the WT and OM. 

Area under the curves (AUCs) show the OM to be heavily fitness impaired. 

The WT E. coli MG1655 used in this study had 75 previously-reported nonsynonymous mutations 

(Supplementary data) possibly acquired during the ‘speed-selection’ process, which involves 

selecting for cells that move the quickest through SAGE medium[69]. The original 

chloramphenicol-resistant mutant (OM) acquired 54 nonsynonymous mutations distinct from the 

speed-selected E. coli MG1655 progenitor (Supplementary data), including mutations in multiple 

efflux related genes like acrB (a component of the AcrAB-TolC efflux pump), acrR (the repressor 

of acrAB), marR (the multiple antibiotic resistance repressor, truncated in OM), mprA/emrA 

(repressor of the marRAB operon) and rob (transcriptional regulator of the marA/soxS/rob regulon 

involved in antibiotic resistance). All of these have been previously implicated in chloramphenicol 

resistance[164–167]. Upregulation of efflux systems is a common response to antibiotic stress in 

Gram-negative bacteria[168,169], and efflux pumps are known to confer resistance to a wide range 

antibiotics classes[170]. As expected, we found the OM to be resistant to many first-line agents 

susceptible to efflux (Table 2.1). 

Table 2.1 The OM exhibited a multidrug resistant phenotype. 

Antibiotic Class MIC of WT 

(μg/mL) 

MIC of OM 

(μg/mL) 

Amoxicillin β-lactam 4 16 

Ceftazidime Cephalosporin ≤0.5 4 
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Cefazolin Cephalosporin 1 16 

Chloramphenicol Phenicol 16 256 

Ciprofloxacin Fluoroquinolone 0.0156 4 

Tetracycline Tetracycline 1 64 

Tigecycline Tetracycline ≤0.25 2 

Trimethoprim Folic acid synthesis 

inhibitor 

1 16 

2.2.2. Chloramphenicol resistant cells are fitness impaired 

We observed a slowdown in the movement of OM populations through antibiotic-free soft agar 

when compared to WT. While WT populations were able to traverse half the plate (40mm) in ~6 

h, OM populations required ~24 h to move the same distance (Movie S1). Movement through soft 

agar is dependent on bacterial growth: the faster cells grow, the quicker they populate and deplete 

resources from their surroundings, prompting movement to gain access to new space and nutrients 

via chemotaxis. While the WT quickly formed a high-density band of cells at the leading edge of 

growth, we observed a significant delay in the formation of this band by the OM (Movie S1). 

Comparing the speed of these bands showed the OM to be ~2 times slower than the WT. 

To link this reduction in movement through soft agar to fitness, we used the area under the curve 

(AUC) measurements to quantify bacterial growth[140,141]. AUC incorporates three fitness 

parameters: the lag phase duration, the exponential growth rate, and the yield (maximum cell 

density). The AUC of the WT population was ~8 times higher than that of the OM, showing large 

growth deficits (Figure 2.1B). 
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To confirm that accumulation of growth deficits is not a general outcome of SAGE experiments, 

we also analyzed growth curves for a NIT and a STR-resistant E. coli evolved in SAGE. AUCs of 

both mutants were similar to that of the WT (Figure S2.1). Correspondingly, resistance to STR did 

not significantly impede growth or movement in SAGE (Movie S1). 

Efflux pumps are powered directly by the proton motive force, and are energetically 

costly[171,172]. In addition to changes in efflux pumps, sequencing of the OM also revealed a 

truncation in the flagellar basal‑body rod protein FlgG, which is essential for cell motility[173]. 

Cutting down on energetically expensive motility mechanisms may have allowed the mutant to 

direct more resources towards efflux and growth. A number of other mutations in genes related to 

metabolism, biosynthesis, the electron transport chain, and membrane transport were also 

identified in the OM, including a synonymous mutation in the chemotaxis protein CheW 

(Supplementary data). Together, these data suggest a basis for the fitness and motility defects of 

the OM. 

2.2.3. Fitness costs delay the evolution of resistance and alter evolutionary trajectories 

WT populations in NIT SAGE plates (maximum   [NIT] = 80 μg/mL; WT MIC: 8 μg/mL) evolved 

resistance to NIT in a predictable pattern (Figure S2.2A). All 16 replicates evolved in parallel 

stopped at ~30 mm after 24 h, suggesting that the concentration of antibiotic was growth inhibiting 

at this point (Figure 2.2A, B). By day 2, all replicates broke through this and a subsequent barrier, 

fanning out in cones. By the end of day 4, all replicates reached the end of their lanes. Cells 

extracted from this point had an MIC against NIT of 64 μg/mL (quantified from a randomly 

selected replicate, R3). Genome sequencing suggests that resistance to NIT evolved via mutations 

in the nitroreductase genes nfsA and nfsB, and mprA, repressor of the marRAB operon 
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(Supplementary data). These genes have been commonly associated with nitrofurantoin 

resistance[125,174]. The purpose of the 29 other mutations in this strain is unclear. Many are 

involved in metabolism, and may help compensate for the fitness cost of the resistance-conferring 

mutations. They may also be due to genetic drift, as a number of them were in intergenic regions. 

 

 

Figure 2.2 Tracking movement of bacterial populations in SAGE revealed resistance evolution impairments. 

(A) WT populations in NIT SAGE plates (maximum   [NIT] = 80 μg/mL for the WT, 10 μg/mL for OM and 5X to 

accommodate hypersensitivity) evolve resistance faster than the OM. Alleviation of fitness deficits in the 5X 

population allows restoration of WT-like SAGE kinetics. (B) Stopping points of bacterial fronts indicate inhibitory 
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antibiotic concentrations along the NIT gradient. Cells breaking free from these points indicate emergence of 

resistance mutation(s) that allow movement into higher antibiotic concentrations. All WT replicates reached the end 

of their lanes by the end of day 4. (C) Reduced growth and motility of the OM slows their movement speeds in SAGE, 

but cannot explain the initial delay in distance moved in NIT SAGE plates. Left panel shows a representative lane 

where the OM moved ~30 mm down a SAGE lane containing no antibiotic after 24 h. The right panel shows the OM 

confined to ~10 mm after 24 h in a NIT SAGE lane (maximum   [NIT] = 10 μg/mL). (D) Observing growth patterns 

in SAGE allows prediction of resistance emergence. On day 2 in NIT SAGE plates, only 5/16 replicates broke out 

from the initial stationary bands (left panel), indicating resistance emergence. The rest of the replicates remained as 

stationary bands (right panel), suggesting delayed resistance evolution. MIC measurements of cells from a breakout 

cone and stationary band confirmed these predictions (see text). **p<0.01, ****p<0.0001, two-sample t-test assuming 

unequal variances. Error bars represent the SEM. N = 16 for all SAGE evolutions. 

After a pilot run of OM in NIT SAGE (n=4) showed that the bacteria remained confined to within 

10 mm of the inoculation site after 24 h (data not shown), we tested for collateral sensitivity of the 

OM towards NIT. We found the MIC of NIT against OM to be 8-fold lower (1 μg/mL) compared 

to WT. To our knowledge, collateral sensitivity to nitrofurantoin in chloramphenicol resistant cells 

has not been reported before. We then repeated evolutions with the OM (n=16), adjusting the NIT 

gradient to accommodate this increased sensitivity (maximum   [NIT] = 10 μg/mL), as has been 

previously done to eliminate effects of collateral sensitivity on resistance evolution[140]. In 

contrast to the WT, movement of OM replicates through NIT SAGE plates showed large variation 

(Figure S2.2B). Cells were again confined to within ~10 mm of the inoculation site after 24 h 

(figure 2.2A, C), suggesting that the increased sensitivity to NIT was not the cause behind this 

impaired movement. The stationary phase cell density of the OM was ~5-fold lower than the WT 

(Figure 2.1B). Since population size can affect evolution by altering mutation supply rates[175], 

we also inoculated NIT SAGE plates separately with a 5-fold concentrated inoculum of the OM 

(n = 4). We observed no significant difference in distance moved, except on day 3, where the mean 
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distance moved by the unstandardized OM (overnight culture) was higher than by the standardized 

inoculum (p = 0.047) (Table S2.1). Hence, we decided to conduct subsequent experiments with 

overnight cultures. We also noticed that although fitness deficits in OM impeded the strain’s ability 

to move through soft agar, the movement in NIT SAGE plates at 24 h was ~⅓ the growth in 

antibiotic-free soft agar. This is significantly slower than expected from changes in movement 

speed alone (Figure 2.2C).  

The increased susceptibility of the OM populations may instead be due to their reduced growth 

rates. A recent study described how fast-growing cells avoid the intracellular accumulation of 

antibiotics like macrolides[176]. Although growth rates have not been directly linked to NIT 

susceptibility before, it has been shown that cells that stay locked in a non-dividing state in lon 

mutants resistant to tetracyclines are known to exhibit increased sensitivity towards 

nitrofurantoin[123]. By counting the number of OM replicates that showed visible growth beyond 

the first stopping point (Figure 2.2D), we found that resistance emerged in only 5/16 replicates by 

the end of day 2. The link between position in the SAGE plate and resistance levels was verified 

by probing cells drawn from a randomly selected replicate from each position. The MIC of cells 

(R16) from stationary bands with no signs of ‘breakouts’ was 1 μg/mL, significantly less than that 

of cells extracted from breakout cones (R14, 8 μg/mL). By the end of day 6, all replicates generated 

mutants resistant to nitrofurantoin (MIC (R14): 8 μg/mL), with cells spreading throughout the 

lanes (Figure 2.2A). Of note, the MIC increase, although 8-folds higher than the base MIC of the 

OM (from 1 μg/mL to 8 μg/mL), was equal to the base MIC of the WT. 

Sequencing of the NIT-evolved OM (R14) did not reveal mutations in any of the genes commonly 

associated with NIT resistance (nfsA, nfsB, ribE, oqxA, oqxB, mprA, oxyR, marA, rob, soxS, 

sdsN137)[125,174] (Supplementary data). It showed 9 non-synonymous mutations compared to 
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the OM, most of which were in genes related to metabolism. Interestingly, it also contained a 

second mutation in lolA. The OM strain natively harbored a mutation in the periplasmic chaperone 

protein LolA, which is essential for lipoprotein trafficking through the periplasm to the outer 

membrane and membrane integrity[177]. The outer membrane presents a barrier to a number of 

antibiotics including nitrofurantoin[177,178], and it is hence possible that the mutation in LolA 

increases cellular access to nitrofurantoin, producing the observed collateral sensitivity. LolA 

mutants are also known to be severely growth-challenged[179]. The second mutation in the NIT-

evolved OM could then compensate for the increased membrane permeability and growth defect, 

alleviating the collateral sensitivity towards NIT and allowing these mutants to traverse the SAGE 

plates without acquiring NIT-resistance mutations. This trajectory has the dual advantage of 

improving fitness and bypassing collateral sensitivity towards the antibiotic they were put up 

against. A similar phenomenon was observed in a previous study[163], where during a treatment 

switch from gentamicin to carbenicillin, a drug-pair that shows reciprocal collateral sensitivity, 

resensitization to gentamicin may have been favored over multidrug resistance due to trajectories 

that mitigate both fitness costs and collateral sensitivity. Although we cannot discount the 

possibility of downregulation of the classical genes involved in NIT-resistance, no mutations were 

found in any known transcriptional regulators. 

2.2.4. Evolution against streptomycin 

To test if the delay in resistance evolution is limited to nitrofurantoin, we compared resistance 

evolution to an unrelated antibiotic, the aminoglycoside streptomycin (STR). In WT populations 

subjected to STR SAGE (maximum   [STR] = 160 μg/mL; WT MIC: 16 μg/mL) resistance evolved 

via a clear, repeatable trajectory wherein cells stopped at ~40 mm (Figure 2.3A, Figure S2.2C) 

after 24 h, with mutants breaking free from this stopping point within 48 h. The STR MIC of cells 
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at the first stopping point showed a 2-fold increase (MICs (R14, R15): 32 μg/mL) while by the end 

of day 2, MICs rose to >1024 μg/mL, indicating the emergence of ribosomal mutations (MICs 

from R9 - R16)[180]. The 2-fold increase in STR resistance that appeared on day 1 reverted to WT 

levels after cells were subcultured in antibiotic free medium. This may either indicate selection for 

a heteroresistant population or the emergence of unstable resistance mutations upon which 

ribosomal mutations arise[181,182]. 
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Figure 2.3 STR resistance is delayed in the fitness-impaired OM background.  

(A) WT replicates reached the end of STR SAGE plates (max   [STR] = 160 μg/mL) by the end of day 2, whereas 

significant delays were observed for both the OM and the 5X populations. (B) 13/16 of the OM replicates remained 

at ≤29 mm in STR SAGE lanes at the end of day 2, indicating delayed resistance evolution. (C) The delay in STR 

resistance could not be alleviated via fitness improvements, as 10/16 replicates remained completely stationary at the 

end of day 2 after hitting their inhibitory concentration step on day 1. Resistance level predictions were confirmed by 

MIC measurements from cells sampled from random replicates (see text). **p<0.01, ***p<0.001, ****p<0.0001, two-

sample t-test assuming unequal variances. Error bars represent the SEM. N = 16 for all SAGE evolutions. 

We evolved the OM in SAGE plates using the same parameters used for the WT, since the MIC 

of STR against both the OM and WT populations were equal. The OM again travelled ~half the 

distance covered by the WT in 24 h in STR SAGE plates (Figure 2.3A).  

Increased susceptibility to antibiotics that bind irreversibly to ribosomes like STR in growth-

impaired bacterial populations has been reported before[183]. This repeated slow movement in 

antibiotic gradients may also indicate the importance of bacterial fitness in their intrinsic ability to 

resist antibiotics. The majority of the replicates (13/16) stopped at ≤ 29 mm after 48 h (Figure 

2.3B). Out of the two replicates sampled to quantify STR MIC against cells from this point (R3, 

R8), R8 showed an MIC of 128 μg/mL (with R3 an MIC of 32 μg/mL). This suggested that 

resistance to STR in the OM populations may evolve via alternate trajectories, and encouraged us 

to expand the sample size. Since we did not sample more than two replicates from day 2, and 

attempting to extract mutants that arose on day 2 at a later time point could include higher-order 

mutants that could compromise the MIC results, we instead extracted end-point mutants from a 

total of eight replicates (R1, R5, R7, R8, R9, R12, R13, R16) and compared them with the 8 WT 

end-point mutants. While all WT mutants showed an MIC > 1024 μg/mL, 2 out of the 8 OM 

replicates (R9, R12) showed an MIC of 512 μg/mL, further suggesting the adoption of alternate 
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evolutionary paths to resistance by the OM. Sequencing an STR-evolved WT replicate (R5) 

showed an expected K43R mutation in rpsL, the gene that codes for the S12 protein of the 30S 

subunit of the ribosome, the target for streptomycin[184]. The replicate also evolved 15 additional 

mutations on genes broadly involved in metabolism, membrane transport, and integrity 

(Supplementary data). Mutations in letB (D40G) and rutG (synonymous, A46A), which are 

involved in membrane integrity, may also contribute to mild STR resistance since membrane 

stability and voltage dysregulation are implicated in the bactericidal effects of STR[178,185,186]. 

Although synonymous (A48A), mutations in the outer membrane lipoprotein YaiW have been 

associated with mild STR resistance before by reducing membrane permeability[187]. We also 

sequenced 3 replicates of the STR-evolved OM (R7, MIC: >1024 μg/mL; R9, R12, MIC: 512 

μg/mL) to identify possible differences in their genome that could explain the differences in MIC. 

All the 3 STR-evolved OM replicates contained an rpsL mutation (K88R, K88R, and K43R 

respectively), along with mutations in yqfA, bcsB, and pflD in the same position in all 3 replicates 

(I127V, A390A, P658S respectively). Mutations in these 3 genes were not found in the WT, or in 

any other strain sequenced in this study. YqfA is involved in the maintenance of optimal membrane 

energetics and may hence play a role in STR resistance[185]. BcsB, part of the operon bcsQ, codes 

for a protein with a predicted function in cellulose biosynthesis, but E. coli MG1655 contains a 

stop codon after the first 5 amino acids of the operon[188,189]. Its repeated appearance in all 3 

replicates of the STR-adapted OM may indicate an involvement in either STR resistance or in the 

mitigation of fitness costs, but literature contains no evidence of these. PflD is a putative pyruvate 

formate-lyase, and may be an easily accessible compensatory mutation to mitigate fitness deficits 

via enhancing anaerobic sugar metabolism[190,191]. All 3 replicates also contained a mutation in 

tRNA-gln (identical C→T mutation in glnX in R7 and R12, and a C→T mutation in glnV in R9) 
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which has been reported in STR resistant E. coli before, and may confer a fitness benefit[187]. 

Additionally, R9 harbored another ribosomal mutation in the 30S ribosomal subunit protein S7 

encoded by rpsG. S7 is a translational repressor regulating the synthesis of other gene products 

including S12 (rpsL), and has not been directly linked to STR resistance in E. coli. Multiple 

mutational screens of rpsG in other species like M. smegmatis and B. burgdorferi found no 

evidence of involvement in STR resistance[192,193]. The rest of the non-overlapping mutations 

among these 3 replicates and the STR-evolved WT are mostly in genes involved in metabolism. 

Taken together, these results suggest that mutational paths to resistance to streptomycin in fitness-

impaired E. coli diverges from that taken by WT, and although all the OM-replicates evolved an 

rpsL mutation, MIC measurements suggest that interactions between the non-overlapping 

mutations may be reducing the resistance level below what is expected of rpsL mutants[194]. 

2.2.5. Improving fitness of chloramphenicol-resistant cells restores resistance potential to 

nitrofurantoin but not streptomycin 

To test if alleviating the fitness deficits of the resistant cells improves NIT resistance evolution 

during SAGE, we serially passaged the OM a total of 5 times through “flat” SAGE medium 

containing a constant 100 μg/mL (MIC: 256 μg/mL) of chloramphenicol (Figure 2.4A). Cells that 

reached the end of the lanes were extracted after each pass (denoted 1X - 5X). Growing in a 

constant, permissible concentration of antibiotic, nutrient scarcity and overcrowding becomes the 

primary driver of evolution, driving selection for fitter cells that can quickly move out to access 

nutrients and reach the end of the lanes first[115]. In vitro, this increase in fitness generally arises 

from compensatory mutations that mitigate fitness costs[141]. Growth curves of 1X - 5X showed 

significant improvements in fitness with AUCs ~5-times above the OM, but without much 

difference within the series (Figure 2.4B) (Figure S2.1). The movement speed of 5X through soft 
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agar was also significantly improved, with the strain requiring only 8 h to traverse half the plate 

compared to 24 h by the OM (Movie 1). However, 1X - 5X all maintained their CS towards NIT. 

Genome sequencing of 5X revealed 17 mutations in genes mostly involved in metabolism 

(Supplementary data). Importantly, it removed the loss-of-function mutation (introduction of a 

stop codon) in the flagellar protein FlgG that the OM previously acquired (TAG → TGG). This 

strain also harboured an additional mutation in rpoD, which codes for an RNA polymerase sigma 

factor essential for exponential growth, and may be compensating for an rpoD mutation in the 

OM. A mutation was also identified in the methyl-accepting chemotaxis protein Tsr. These 

mutations may help explain the improved fitness of the 5X. 
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Figure 2.4 Passaging cells through “flat” SAGE lanes improves fitness of the OM. 

(A) OM cells are inoculated in SAGE lanes containing a constant   [CHL] = 100 μg/mL. Fitter cells move out to the 

end of the lanes first, which are then extracted and cultured. These cells are denoted 1X. The 1X is inoculated back 

in a new, identical flat lane to generate 2X. This cycle was repeated until the generation of 5X. Cells were passed on 
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petri plates and bacterial stocks were prepared after each cycle. (B) The 5X shows significant improvement in 

fitness as shown by the AUC. 

We then repeated the NIT SAGE evolutions with 5X (n = 16). The evolutionary kinetics of the 5X 

closely mirrored that of the WT (Figure 2.2A), implicating the fitness cost of chloramphenicol 

resistance to be the principal cause behind the slower adaptation to nitrofurantoin. The NIT MIC 

of cells extracted from one of these plates was 32 μg/mL (R8). Sequencing these cells revealed 

mutations in nfsA and nfsB, albeit in positions distinct from that in the WT (Supplementary data). 

Unexpectedly, the NIT-evolved 5X also showed a large 6279 bp deletion which includes the entire 

marRAB operon, and the genes encoding YdeA (L-arabinose exporter of the major facilitator 

superfamily of transporters)[195], MarC (DNA-binding transcriptional dual regulator SoxR)[196], 

EamA (exporter of metabolites of the cysteine pathway)[197], YdeE (Drug:H+ Antiporter-1 within 

the major facilitator superfamily of transporters)[198], MgtS (involved in intracellular Mg2+ 

accumulation)[199], mgtT (involved in intracellular Mg2+ accumulation)[200], MgrR (negative 

regulator of SoxS)[201], and DgcZ (a diguanylate cyclase that regulates motility and biofilm 

formation)[202]. Mutations in nitroreductase enzymes have been previously linked to growth 

defects[203], and it is possible that nitroreductase mutations are incompatible with overexpression 

of efflux pumps, i.e., the combination may impose debilitating fitness defects. The absence of 

nitroreductase mutations in the NIT-evolved OM also supports this idea. Removal of the marRAB 

operon and the other efflux pumps would then allow curbing the energy costs of the efflux systems, 

allowing access to nitroreductase mutations. To test this hypothesis, we compared the CHL MIC 

and growth curves of the NIT-evolved OM and 5X. CHL MIC of the NIT-evolved 5X showed a 

reduction below the OM-level, while the NIT-evolved OM maintained the same resistance level. 

This reduction in MIC was less than 2-fold, however, as the NIT-evolved 5X exhibited faint 
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growth in the well containing 128 μg/mL of CHL, as opposed to saturated growth at the same drug 

concentration with the NIT-evolved OM. The NIT-evolved 5X also showed a moderate increase 

in AUC (≈ 12) when compared to the NIT-evolved OM (≈ 9.5) (Figure S2.3). Much like the NIT-

evolved WT, the other mutations in the NIT-evolved 5X were mostly in genes involved in 

metabolism and membrane transport, but in genes distinct from that in the WT. We found no 

overlapping mutations between the NIT-evolved OM and the NIT-evolved 5X. 

In STR SAGE plates, the improved fitness of 5X allowed them to move ~1.5 times the distance 

moved by the OM in 24 h. However, 10/16 replicates remained completely stationary at this point 

for an additional 24 h before generating mutants (Figure 2.3C). The STR MIC against cells past 

this point was >1024 μg/mL (MICs quantified from R2, R3, R9, R13). By day 3, there was no 

significant difference between the mean distance moved by the OM and 5X (Figure 2.3A). 

Sequencing of a STR-evolved 5X strain (R3) showed a K88R mutation in rpsL, along with 16 

other non-synonymous mutations (Supplementary data). Outside the rpsL mutations, comparing 

the STR-evolved 5X with the STR-evolved OMs and the STR-evolved WT showed no overlapping 

mutations except for the ones in genes that code for YfaL (a putative adhesin)[204] and RecD (a 

exodeoxyribonuclease V subunit)[205], which were shared between 5X R3 and OM R9 (in distinct 

positions), and in the curcumin reductase CurA between the 5X and the WT (in distinct positions, 

with the mutation in the WT being synonymous). Overall, while fitness-enhancement improved 

the movement speeds of bacterial cells in STR gradients, it could not restore WT adaptation rates 

to STR. Comparison of sequencing data of the STR-evolved WT, OM and 5X end-point mutants 

revealed mutations in different sets of genes (except for the resistance conferring rpsL mutations), 

mostly coding for proteins essential in metabolism. Because the 5X still lagged behind the WT in 

terms of fitness (Figure 2.4B), this could either suggest a certain fitness threshold below which 
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STR resistance is delayed, or that the evolutionary paths to resistance available to a fitness-

impaired background leads to slower adaptation. 

2.2.6. Impaired resistance evolution is not linked to chloramphenicol resistance 

To determine if the reduction in secondary adaptation rates are dependent on the primary antibiotic 

(ie. chloramphenicol), we generated a cefazolin (CFZ) resistant mutant of E. coli K-12 substrain 

BW25113 (CFZR) (MIC > 512 μg/mL). This strain exhibited lower fitness compared to the 

wildtype E. coli BW25113 (WTB), though it was not as fitness impaired as OM (Figure S2.4A), 

able to traverse an entire antibiotic-free plate in 24 h (data not shown). When subject to a NIT 

challenge (maximum   [NIT] = 80 μg/mL; WTB MIC: 8 μg/mL; n = 8), CFZR evolved significantly 

slower than WTB (Figure S2.4B). Similar to the OM in NIT SAGE plates (Figure 2.2D), CFZR 

did not show signs of breakouts in any replicate lanes on day 2, while all WTB replicates broke 

free from their first stopping points. This suggests that the reduced rate of adaptation to NIT is 

independent of the CHL-resistance phenotype and/or the genetic background. This also shows that 

the magnitude of fitness deficit need not be as great as the difference between the OM and the WT 

for adaptation to be significantly impaired.  

In contrast, a STR-resistant E. coli with no detectable fitness deficit (Figure S2.1, Movie S2.1) 

showed no delay in NIT resistance evolution (data not shown). We routinely recovered NIT-

resistant cells from SAGE plates containing max   [NIT] of 80 μg/mL by passing them on standard 

selective agar plates containing 32 μg/mL of NIT (4X MIC). While we were able to recover all 

replicates of the WTB on selective agar plates, we were only able to obtain 3 out of 8 replicates of 

the CFZR, suggesting that the majority of the CFZR replicates, despite evolving under the same 

regime as WTB, developed lower levels of resistance.   
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2.3. Discussion 

Sequential antibiotic therapies that involve changing the antibiotic applied after a duration of 

treatment have been proposed as a strategy to reduce resistance evolution and improve bacterial 

clearance[84]. Our study shows that fitness defects due to evolution of resistance to an initial 

antibiotic can impede the ability of bacteria to adapt to subsequent antibiotics. While growth and 

fitness measurements can indicate fitness deficits that may lead to reduced adaptation rates, the 

utility of these effects is contingent on the repeatability of evolution and the frequency with which 

escape mutants emerge[161]. Large numbers of parallel in vitro evolution experiments are required 

to account for the stochasticity of evolution. We previously reported the ability of the SAGE 

system to generate resistance to antibiotics from every major class effective against Gram-negative 

bacteria[69]. Here, we leverage its ability to run parallel evolutions in the laboratory to show that 

fitness deficits associated with resistance to CHL repeatedly impedes evolution to secondary 

antibiotics (Figure 2.2, 2.3). Because the OM showed a multidrug resistance phenotype, possibly 

due to hyperactive efflux, we investigated adaptation to streptomycin and nitrofurantoin; two drugs 

that are not efficient efflux targets[170]. Both drugs also exhibit predictable and highly repeatable 

evolution kinetics in SAGE.  

We found that the rate of distance moved by bacteria in SAGE plates is a robust indicator of the 

adaptation rates to antibiotics since it integrates the rate at which resistance conferring mutations 

appear with bacterial growth rates and motility. By running 16 replicates in parallel and tracking 

mutants by their distance moved in SAGE and their growth patterns (Figure 2.2, 2.3), we found 

that escape mutants that bypassed this delay arose at low frequencies (5/16 for OM evolving to 

NIT, and 3/16 for OM evolving to STR). MIC values from cells extracted from different positions 

of SAGE plates aligned well with the expected phenotype. 
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The delayed adaptation to antibiotics could not be alleviated by equalizing the number of cells 

added to the SAGE plates (Table S2.1). This may suggest that the increase in mutation supply rate 

that comes with a larger population[175] may not be enough to compensate for the slow cell 

turnover rate[206] and the adoption of suboptimal evolutionary trajectories due to epistatic 

interactions[194] that both reduce antibiotic susceptibility and improve fitness.  

Probing cells from different points of growth from SAGE plates can provide insights into 

evolutionary trajectories. By measuring the MIC of antibiotics against cells from stationary bands 

collected 24 h into the STR evolution studies, we identified unstable resistant mutants upon which 

higher-order, stable mutants arose. This is a phenomenon which, to our knowledge, has not been 

reported for streptomycin before. We also found that 2 out of the 8 STR-evolved OM replicates 

showed higher susceptibility to STR (MIC: 512 μg/mL) than STR-evolved WT replicates (MIC > 

1024 μg/mL for all 8 replicates tested). While the MIC values for these replicates are clearly above 

the clinical breakpoint of STR, it is interesting to note that compensatory mutations that arise to 

mitigate fitness defects can negatively affect the resistance levels conferred by resistance 

conferring mutations. 

Generation of fitter mutants through compensatory mutations generally requires continuous 

subculturing, often for several months[112,113]. A total of five serial passages through soft agar 

over approximately two weeks generated chloramphenicol-resistant mutants (5X) markedly fitter 

than the OM (Figure 2.4), with AUC comparable to the WT (Figure 2.4B). When comparing OM 

and 5X populations adapting to NIT in SAGE plates with identical NIT gradients (maximum   

[NIT] = 10 μg/mL), resistance in the OM replicates was significantly delayed while the 5X levelled 

their rates to the WT (Figure 2.2A). 5X also evolved a higher MIC than the OM, which surpassed 

the maximum concentration of NIT encountered in the plates by about three-fold (OM, R14: 8 
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μg/mL; 5X, R8: 32 μg/mL). This “overshoot” in resistance has been reported before, and has 

important consequences since bacteria encountering sub-lethal concentrations of antibiotics can 

evolve resistance beyond clinical breakpoints[140]. Sequencing revealed that the OM did not 

acquire mutations in any genes implicated in NIT resistance, while the 5X evolved resistance via 

mutations in the nitroreductase enzymes classically known to confer NIT resistance. Together, this 

shows that resistance mechanisms that incur large fitness costs may delay the evolution of 

resistance and favour, at least when subjected to lower concentrations of antibiotics, the adoption 

of evolutionary paths that mitigate existing fitness costs over resistance evolution. Contrary to 

what was observed for NIT, the fitter 5X populations could not restore their STR adaptation 

potential to WT levels, with resistance being delayed by a day in the majority of the replicates 

(10/16 replicates) (Figure 2.3C). Sequencing revealed rpsL mutation in the 5X replicate, with  the 

rest of the mutational profile mostly distinct from that of the STR-adapted WT and OM 

(Supplementary data). The underlying reason behind this slowdown in evolution to STR could not 

be determined, but the inability to alleviate this slowdown even after multiple passes through 

SAGE medium suggests that this may be a stable phenotype. Identification of fitness deficits that 

are stable at the face of fitness-compensation is a major step towards translation of evolutionary 

trade-offs into effective therapy[207].  

The design of sequential antibiotic therapy is not trivial. The primary antibiotic must be selected 

such that the evolutionary pathways impose deficits that impede subsequent adaptation. A STR-

mutant barely exhibits any fitness defects (Figure S2.1), and would not be expected to deviate in 

evolutionary kinetics from that of the WT (we tested the ability of STR-mutants to generate 

resistance to NIT in 4 replicates, and did not observe any significant difference from the WT; data 

not shown). Streptomycin is also antagonized by the bacteriostatic CHL when applied in 
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combination[208]. Sequential application of antagonistic drugs, in the correct direction, may be a 

practical option over combination approaches to slow resistance evolution. 

In sequential antibiotic regimens where an antibiotic is applied for a short period of time, the 

antibiotic may not be able to completely eradicate a population that remains at WT resistance 

levels[209]. Upon cessation of therapy, the WT population may then possess a selective advantage 

over the antibiotic resistant populations that are often growth impaired. A recent publication also 

showed how fast-growing bacterial populations can counteract antibiotic susceptibility to 

dominate bacterial communities independent of specific antibiotic mechanisms[210]. Since not all 

antibiotic resistance mechanisms incur fitness costs[211], resistance mechanisms that do are 

important to identify. 

The mutations conferring resistance to CHL in the bacterial strain used in this study are primarily 

linked to upregulation of non-specific efflux pumps, not to alterations in how CHL binds to its 

target. Since resistance to a wide range of antibiotics is often conferred via mutations in efflux 

pumps, we expect the rate of resistance evolution to decrease when bacteria evolve resistance to 

antibiotics via upregulation of these systems, and potentially via other adaptations with significant 

fitness penalties. This effect may also be independent of the genetic background. To support this 

notion, we showed that the OM is resistant to a variety of antibiotics (Table 2.1), and a 

cephalosporin-resistant mutant of E. coli K-12 subtrain BW25113 that also exhibited significant 

fitness defects also exhibited slower adaptation to NIT (Figure S2.4). Furthermore, the fitness-

impaired CFZR frequently evolved lower resistance levels than the wildtype strain (5/8 replicates). 

Overall, our findings suggest that the fitness costs associated with antibiotic resistance may be 

exploited to slow down resistance evolution, and the SAGE system can be utilized to identify 
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evolutionarily stable impairments at high-throughput. We hope that studies like this can guide 

optimal drug switches to develop sequential antibiotic therapies that are less prone to resistance 

evolution.  

2.4. Materials and methods 

2.4.1. Bacterial strain and growth conditions 

E. coli K-12 substrain MG1655 (WT) and all subsequent resistant mutants were grown in Mueller 

Hinton (MH) media at 37 °C. Growth media was supplemented with appropriate antibiotics when 

growing mutants or extracting mutants from SAGE plates. 

2.4.2. SAGE evolutions 

SAGE plates were prepared as described previously[69]. Briefly, 6 mL of MH media + 0.25% agar 

(MHA) supplemented with appropriate antibiotic was poured into each lane of 4-well dishes 

(Thermo Fisher Scientific, Cat. no. 167063) propped up on one side using p1000 pipette tips. 

Antibiotic concentrations suitable for evolution were determined via prior MIC testing. The 

resulting wedge-shaped media were left to set for ~20 minutes before removing the pipette tips 

and pouring 8 mL of antibiotic free MHA. The plates were left at room temperature overnight to 

allow diffusion to set up the antibiotic gradient. 50 μL of overnight bacterial culture was inoculated 

in a line 1-2 mm below the agar surface in each lane, overlaid with ~2.5 mL of mineral oil to 

reduce drying by evaporation, and incubated at 37 °C. Plates were checked every 24 h to measure 

maximum distance moved by the bacterial fronts. Resistant mutants were extracted by cutting out 

~5x5 mm sections from the end of the plates and dispersing in MH broth (MHB).  For the 
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generation of the OM, these mutants were inoculated back into a second CHL-gradient (Figure 

2.1A). 

2.4.3. Growth measurements 

Absorbance readings at 595 nm of 1/200 dilutions of overnight cultures were recorded using a 

plate reader (Tecan Sunrise™). To reduce fogging of the plates which interferes with absorbance 

readings, plate lids were made hydrophilic by pouring in 3 ml of 0.05% Triton X-100 in 20% 

ethanol and swirling to ensure coverage. After 30 s, excess solution was discarded and lids were 

air dried[212]. Growth curves were fitted to a logistic equation and AUCs were calculated using 

the R package growthcurver[213] (73). 

2.4.4. Fitness improvements via flat-concentration SAGE plates 

~13 mL of MHA was poured in a lane of 4-well dishes containing 100 μg/mL of chloramphenicol. 

Once set, 50 μL of overnight bacterial culture was inoculated as described before. After growth 

reached the end of lanes (16-20 h of incubation for 1X - 5X, ~48 h for OM), cells were extracted 

by cutting out ~5x5 mm sections from the end of plates and dispersing in 5 mL MHB supplemented 

with 100 μg/mL of chloramphenicol. Extracted cells were incubated and used as the inoculum for 

the next flat lane, up to a total of 5 passages to generate the 5X strain (Figure 2.4A). 

2.4.5. MIC assays 

MICs were determined as recommended by CLSI[214]. Briefly, 10 point dilutions of antibiotics 

were made in MHB and inoculated with a 1/200 dilution of 0.5 McFarland standardized inoculum. 

Plates were incubated overnight and MICs were recorded as the minimum concentration of 

antibiotic that resulted in no visible growth. 
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2.4.6. Whole genome sequencing 

Sequencing and variant calling were performed by Seqcenter (USA). Sequencing was performed 

on an Illumina NextSeq 2000, and demultiplexing, quality control and adapter trimming was 

performed with bcl-convert (v3.9.3). Variant calling was carried out using Breseq under default 

settings[215]. NCBI reference sequence NC_000913.3 for E. coli K-12 substrain MG1655 was 

used for variant calling. Sequencing data have been deposited in the NCBI BioProject database 

with accession number PRJNA986536. Sequencing quality information is reported in 

supplementary data.  
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3.1. Introduction 

Antimicrobial resistance (AMR) is a major global health concern that threatens access to basic 

medical interventions. It is estimated that AMR was directly responsible for 1.27 million global 

deaths and contributed to 4.95 million deaths in 2019 [216], and it is currently projected that, if 

left unchecked, AMR will be responsible for 10 million deaths annually by 2050 [217].  

 

Unfortunately, resistance to many potential new antibiotics can be found in bacterial pathogens 

before the drugs’ commercial release, due in part to cross-resistance between similar drug 

molecules [218]. Studies that describe new antibiotics now often include adaptive laboratory 

evolution (ALE) experiments to determine rates of resistance or to elucidate the mechanism of 

action, with some antibiotics showing little to no resistance evolution [219–224]. These latter 

antibiotics have attracted significant interest as promising candidates for next-generation antibiotic 

therapy, and may represent desirable “evolution-proof” or “resistance-proof” agents [225,226]. 

However, the evolutionary resilience of many of these compounds has only been assessed through 

a limited array of ALE experiments, and has generally not been independently verified.   

 

Tridecaptin A1 is one antibiotic against which laboratory evolution experiments have failed to 

describe de novo resistance. Originally isolated from Paenibacillus spp. [227,228], the tridecaptins 

are a group of non-ribosomal lipopeptides that act by selectively binding to the cell wall synthesis 

precursor lipid II of Gram-negative bacteria and dissipating the proton motive force [220]. Their 
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linear structure is readily accessible to solid phase peptide synthesis, allowing facile construction 

of tridecaptin analogues [229,230]. Best studied of these is octyl-tridecaptin A1 (Oct-TriA1), in 

which the chiral lipid tail is replaced with a low-cost octyl equivalent with no significant change 

in antimicrobial activity [231]. Tridecaptins are selective for Gram-negative bacteria, and their 

potent activity against the majority of the WHO’s priority pathogens list [232] makes them exciting 

antibiotic candidates. They have also been reported to be evolutionarily resilient, with Cochrane 

et al. finding no appreciable resistance to Oct-TriA1 following a 30-day laboratory evolution 

experiment [220]. 

 

Gram negative bacteria are notoriously difficult to treat, and some recent efforts have focused on 

targeting the very outer membrane that makes them more resilient. Some examples of such 

antibiotics include compounds that inhibit LPS biosynthesis or transport, like cerastecin [233], 

zosurabalpin [234] and analogs [235], L27-11 [236], murepavadin [237], IMB-881[238]. 

Likewise, antibiotics like darobactin [239] target OM proteins [240]. This strategy seems to confer 

certain selectivity, enabling development of narrow-spectrum antibiotics which may reduce the 

likelihood of developing resistance [233,234,236,237]. These antibiotics are especially interesting 

as their resistance could also lead to loss of virulence, by directly targeting LPS and OM stability 

[239]. 

 

We previously reported the ability of the soft agar gradient evolution (SAGE) system to rapidly 

generate resistance against antibiotics, including ones difficult to evolve in other platforms [241]. 

SAGE uses antibiotic gradients and bacteria’s natural propensity to swim through soft agar to 

select for antibiotic-resistant mutants. Unfortunately, the efficacy of  SAGE is limited by 
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synaeresis, the tendency of agar hydrogels to spontaneously shrink over time via continuous 

expulsion of solvent [242]. In SAGE this hinders bacterial motility [243] and limits experiments 

to ten days or less. We report here a new SAGE medium that is resistant to synaeresis. 

Supplemented with xanthan gum, a  polysaccharide with excellent water binding capacity [244], 

this medium has a reduced agar content and is suitable for month-long evolution experiments. We 

start by showing that resistance to the lipopeptide polymyxin B (PolB), an antibiotic that has 

proven difficult to evolve resistance to in SAGE [241] and in other platforms [245], can now be 

quickly achieved via SAGE. We subsequently use this medium to successfully generate resistance 

against Oct-TriA1 in Escherichia coli through a 27-day, maintenance free, SAGE experiment. 

Whole genome sequencing of evolved strains reveals mutations in phospholipid transport, outer 

membrane (OM) assembly and liopolysaccharide (LPS) biosynthesis. Notably, mutations in the 

lptD gene appeared consistently across resistant strains, implying its importance in resistance to 

Oct-TriA1. We then conduct further investigations into the role of lptD, mlaA and ompC mutations 

through allelic replacement studies, demonstrating their effect on Oct-TriA1 and other antibiotics 

minimum inhibitory concentrations (MICs), as well as their fitness costs.  

 

3.2. Results 

3.2.1. Standard SAGE medium fails to generate resistance to polymyxin B 

To begin testing the ability of SAGE to generate resistance to lipopeptides, we attempted to evolve 

resistance to PolB in Escherichia coli K-12 substr. BW25113.  However, we repeatedly failed to 

evolve resistance greater than 4-fold the initial value of 0.25 μg/mL. At low PolB concentrations 

([PolB]max= 1.25 μg/mL, 5x MIC), cells quickly covered the plate and on isolation gave MICs that 

were 2x-4x that of the wildtype strain. However, the susceptibility of these mutants quickly 
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reverted to wildtype (WT) levels upon subculturing in antibiotic-free media (data not shown), a 

feature consistent with the heteroresistance often observed with polymyxins like PolB and colistin 

[246–248]. Growth in plates with a higher [PolB]max (10 μg/mL, 40x MIC) failed to reach the end 

of the plates (Figure 3.1A, 3.1B). This behaviour is consistent with other ALE platforms, and PolB 

is known to be difficult to evolve resistance to via ALE [245].  

 

 

Figure 3.1 Synaeresis limits SAGE. 

(A) Cells in 0.25% agar-based PolB SAGE plates ([PolB]max= 10 μg/mL) remain stationary ~30 mm from the 

inoculation site. (B) Further incubation results in only small movements of the bacterial front. (C) Xanthan gum 

outperforms all other additives tested for synaeresis-resistance across a range of agar strengths (n= 5). (D) Distance 

moved by bacteria in 0.15% agar medium (0.15%A), 0.15% agar + 0.1% xanthan gum medium (0.15%A + 0.1%X), 

and 0.25% agar medium (0.25%A). Bacteria traverse significantly higher distances in the 0.15%A + 0.1%X medium 

compared to the 0.25%A (n= 3). *p < 0.05, **p < 0,01, *** p < 0.001, ****p < 0.0001, one-way ANOVA with 

Fisher’s LSD test. Error bars represent SD. 
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SAGE evolutions rely on the ability of bacteria to move through the antibiotic gradients set up in 

soft-agar (0.25% agar) [241]. During incubation, synaeresis increases the effective agar 

concentration, reducing bacterial motility. We noticed that the bacterial front in PolB SAGE plates 

incubated for more than a week scarcely moved (Figure 3.1A, 3.1B), and hypothesized that 

synaeresis may be hindering the emergence of chromosomal mutations that confer stable PolB 

resistance. In line with this, a previous study reported that resistance to PolB in E. coli did not 

evolve for ~6 days (in a liquid evolution platform), after which a rapid increase in resistance was 

seen [249]. The authors proposed a two-step trajectory of resistance where heteroresistant bacterial 

populations leverage non-genetic mechanisms to withstand PolB stress at low concentrations, 

accessing stable chromosomal mutations only when the antibiotic concentrations increased [249]. 

We thus set out to develop a SAGE medium more suitable for prolonged experiments. 

3.2.2. Xanthan gum supplementation reduces synaeresis in agar hydrogels 

Polysaccharides like pectin, guar gum, and xanthan gum are able to form hydrogen bonds with 

water molecules, and are widely used as thickening agents in the food industry [244,250]. We 

hypothesized that the addition of these water-binding agents to agar gels may help slow down the 

synaeresis-driven remodeling of the agar matrix by resisting expulsion of water. We first 

confirmed that E. coli cannot utilize these polysaccharides as a carbon source (Supplementary 

Figure 3.1), then evaluated their effect on the synaeretic properties of agar gels. Each agent was 

separately added at 0.25% to agar strengths ranging from 0.25% to 2% (all percentages are in w/v), 

and the extent of synaeresis was evaluated via a modification of the method described by Banerjee 

et al. [251]. Gels supplemented with xanthan gum achieved the highest reduction in water loss at 

all agar strengths tested (Figure 3.1C). While not a gelling agent itself, xanthan gum could replace 
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a proportion of the agar while maintaining gel cohesion and limiting synaeresis (Supplementary 

Figure 3.2), though the medium became viscous at higher xanthan gum strengths. 

 

Next, we tested the effect of addition of xanthan gum on bacterial motility in the SAGE medium. 

Addition of 0.1% xanthan gum to 0.15% agar had no statistically-significant effect on bacterial 

motility when compared to 0.15% agar alone, and both offered significant improvements in 

motility compared to the 0.25% agar medium. (Figure 3.1D, Supplementary Figure 3.3).  

 

3.2.3. Supplementation with xanthan gum enhanced the evolution of polymyxin B resistance 

Moving forward, we opted to use a mixture of 0.2% xanthan gum and 0.15% agar (referred to from 

here on as XAM), a ratio which provided a balance of low viscosity in liquid state and high stability 

in the gel state, in place of the conventional 0.25% agar base used in SAGE. We found no 

difference between diffusion rates of malachite green in 0.25% agar and XAM (Supplementary 

Figure 3.3B), indicating that diffusion rates of antibiotics in XAM should be similar to that in the 

conventional medium.  

 

To test the performance of the medium in SAGE, we set up a PolB SAGE plate with XAM 

([PolB]max in SAGE = 10 μg/mL, 40x MIC). We were able to generate stable PolB resistant 

mutants within 4 days in 2/4 SAGE lanes (MIC: 16 μg/mL, Figure 3.2A). We suspect that the 

increase in bacterial movement speed in xanthan gum-supplemented media (Figure 3.1D) reduced 

the time required for evolution in XAM-SAGE plates by allowing bacteria to reach PolB 

concentration that selects for stable genomic mutations earlier. By the time cells reached this 
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concentration in the conventional medium, the medium may have already been too dry to allow 

movement. 

 

 

 

Figure 3.2 Evolution of antibiotic resistance. 

(A) Resistance to PolB emerged in 2 out of the 4 replicates in SAGE with XAM ([PolB]max= 10 μg/mL). (B) Distance 

moved by bacteria swimming through agar or xanthan gum/agar SAGE plates loaded with Oct-TriA1 at a max 

concentration of 40 μg/mL. Bacteria moved farther and faster in XAM. MIC of samples from several time points are 

labelled, with bacteria in XAM achieving a higher MIC (full list of MICs in Table 3.1). (C) Oct-TriA1 mutants are 

fitness impaired (n= 3). *p<0.05, **p<0.01, ***p<0.001, p<0.0001, one-way ANOVA with Bonferroni correction. 

For statistical comparisons, WT values were compared with XAM-adapted WT, A26, A51, G561S, G561D, GTG, 

ompC and mlaA, and XAM-adapted WT values were compared with XAM34 and XAM CM. Among these 

comparisons, only statistically significant differences are indicated by asterisks. Error bars represent SD. Results 

obtained from 3-9 replicates. 
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3.2.4. Evolution of resistance to Oct-TriA1 

We next sought to evolve resistance to Oct-TriA1 in XAM. We set up two SAGE lanes in parallel 

([Oct-TriA1]max = 40 μg/mL, 10x MIC), one with the conventional 0.25% agar medium, and the 

other with XAM. We followed the evolution of resistance by measuring the maximum distance 

moved by the bacterial fronts every 24 h (Figure 3.2B). Bacteria moved slowly through the 0.25% 

agar medium, traversing only about 60% of the lane (~50 mm) by the end of 25th day and remaining 

stationary for 3 additional days before the experiment was stopped (Figure 3.2B). The small 

distances moved and thinning agar gel made sampling from this medium beyond 7 days 

challenging. In contrast, bacteria in the XAM lane moved large distances after breaking free from 

the initial inhibitory Oct-TriA1 concentration (Day 7), covering the entire lane by the end of day 

17 (Figure 3.2B). The XAM gel also appeared to have retained significantly more water than the 

agar-based gel at the end of the experiment (data not shown). Samples were collected whenever 

significant bacterial movement was detected since cells that continued moving towards higher 

concentration of the antibiotic may have acquired adaptive mutations against Oct-TriA1. We 

sampled 20 μL of gel out of the plates every sampling. While sampling may reduce the population 

size of a mutant on the plate, it is unlikely to alter the evolutionary trajectory. We previously 

showed that varying population sizes in SAGE plates containing nitrofurantoin did not change the 

adaptation rate [252]. We tested the MIC of samples A26, A30, A37, A51, XAM34, XAM45, 

XAM56 and XAM CM (‘A’ and ‘XAM’ in the sample IDs denote samplings from 0.25% agar 

lane and XAM respectively, and the numbers denote the distance in millimeters from the 

inoculation zone to where cells were sampled; CM = cells extracted from the end of lane, ~75 mm) 

(Table 3.1). The MIC of A26 and XAM34, both from the 9th day of incubation, showed that 

resistance emerged early, and appeared to remain constant throughout the rest of the experiment 
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(Table 3.1). This could partly be due to partial flattening of the Oct-TriA1 gradient via diffusion, 

presenting an antibiotic challenge that allowed bacteria to evolve resistance to a level which 

remained sufficient for the rest of the plate. Also, since standard MIC assays are based on 2-fold 

dilution steps, small increases in MIC that might have occurred after the initial increase may not 

have been  resolved via our MIC assays. Overall, mutants from the 0.25% agar-based medium 

exhibited up to 4x increase in MIC, compared to an 8x increase in XAM (Table 3.1). 

 

Table 3.1 Details of Oct-TriA1 mutants sampled from SAGE. 

Strain ID Media in SAGE lane Sampling day Oct-TriA1 MIC 

(μg/mL) 

WT - - 4 

XAM-adapted WT XAM - 4 

A26 0.25% agar 9 16 

A30 0.25% agar 14 16 

A37 0.25% agar 21 16 

A51 0.25% agar 27 16 

XAM34 XAM 9 32 

XAM45 XAM 12 32 

XAM56 XAM 14 32 

XAM CM XAM 20 32 
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Next, we compared the fitness of the early and endpoint Oct-TriA1 mutants to that of the WT 

parent strain (Figure 3.2C). The WT E. coli used for generating mutants from the 0.25% agar lane 

was pre-adapted to this SAGE medium as previously described [241]. To account for any changes 

in fitness due to adaptation to XAM, we also passaged the WT strain through antibiotic-free XAM 

3 times to produce a XAM-adapted WT strain (Materials and Methods). All evolved mutants 

showed longer lag times (though differences with A51 did not reach statistical significance) and 

lower growth rates, yields and AUCs (area under the growth curves), indicating that Oct-TriA1 

resistance imposed a large fitness cost (Figure 3.2C). In general, the XAM-generated mutants 

showed larger fitness deficits, even though the fitness of the XAM-adapted WT was comparable 

to the WT in every metric measured. Interestingly, the XAM CM strain showed a clear diauxic 

growth pattern (Supplementary Figure 3.4). While a delayed release of glucose from degradation 

of xanthan gum could affect growth during our long evolution experiment, the stability of xanthan 

gum makes it unlikely for significant amounts of monomers to be released in the medium at 37 °C 

since it remains stable over multiple years at temperatures above 70 °C and was insufficient to 

maintain bacterial growth [253,254] (Supplementary Figure 3.1). This strain harbored a deletion 

in the nuo operon, which codes for a NADH/ubiquinone oxidoreductase that shuttles electrons 

from NADH into the electron transport chain [255,256]. When cells grow in the presence of 

glucose, they excrete acetate [257].  As cells deplete glucose from media, they switch to uptaking 

acetate [258], shifting from glycolysis to TCA cycle and gluconeogenesis [257]. In nuo mutants, 

high NADH/NAD+ ratios inhibit enzymes involved in the TCA cycle, drastically slowing growth 

and potentially giving rise to the diauxic growth pattern we observed [255,258]. However, what 

causes subsequent resumption of growth during diauxie is unclear [259,260].  
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3.2.5. Genetic analysis of Oct-TriA1-resistant mutants 

We whole genome sequenced four strains from our SAGE evolution experiments: A26, A51, 

XAM34 and XAM CM (Figure 3.3). Mutations in A26 and XAM CM were not complete subsets 

of A51 and XAM CM respectively, showing that different clones were selected along the SAGE 

lanes during these samplings. This suggests mutants that appeared early did not maintain their 

selective advantage, and other mutants that gained an advantage at different time points (and hence, 

at different states of the gradient) surpassed the earlier mutants. XAM34 had an MIC eight times 

that of the wildtype E. coli BW25113 and had eight mutations: three non-synonymous, three 

intergenic, and two frameshift insertions (Table 3.1, Figure 3.3). XAM CM, drawn from later in 

the same SAGE plate, had the same MIC and ten mutations: four non-synonymous, two intergenic, 

three frameshift insertions, and one frameshift deletion. Two of these were identical: a five-base 

deletion in yddW and a E26K mutation in rpoD. A26 had two nonsynonymous mutations and the 

same five-base deletion in yddW, while A51 had four non-synonymous mutations, one intergenic 

mutation, one insertion, and three frameshift mutations (including the five-base deletion in yddW). 
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Figure 3.3 Mutations identified in the evolved strains. 

A26 and A51 represent mutations observed in cells isolated at 26 mm and 51 mm in agar media; XAM 34 and XAM 

CM cells isolated at 34 mm and 75 mm, respectively in xanthan gum media. The highlighted mutations were selected 

for allelic exchange. 

 

To separate possible resistance mutations from those that might be associated with adaptation to 

the ALE conditions, we sequenced the XG-adapted WT for comparison with the XAM-generated 

Oct-TriA1 mutants. Only one mutation overlapped with the antibiotic-exposed samples; an 

intergenic mutation in flhD ← / → uspC that was also found in XAM CM. The XAM evolved 

strain carried a G→T mutation in  ‑261/‑519 while the XAM CM carried a C→A in ‑263/+44. 

flhD is involved in flagellar type II transcription activation and uspC is a universal stress protein. 

Changes in flhD expression may alter swimming speed, enhancing movement through the soft agar 
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plates [261–263]. Other mutations observed were in rpoB, ynfE and polB genes, genes not mutated 

in any of the antibiotic-exposed strains. 

 

All strains with MICs  higher than the wild type carried a single nucleotide polymorphism in lptD, 

creating LptD G561S (A51, XAM 34) or G561D (XAM CM). This was also the only gene to 

contain two mutations, with A51 having a further (GTG)3→2 deletion in nucleotides 705‑707. 

LptD is an integral component of the Lpt complex, which is essential for the assembly and 

transport of LPS to the outer membrane of Gram-negative bacteria [264]. Mutations were also 

observed in two other genes linked to LPS biosynthesis: X34 contained a SNP in gmhA, which 

encodes a phosphoheptose isomerase that produces the D-glycero-D-manno-heptose 7-phosphate 

found in the core of LPS [265], while XAM CM contained a frameshift mutation in waaB, which 

encodes a galactosyltransferase that appends galactose to that core [266]. Similar to polymyxin B 

[245], tridecaptin A1 engages with LPS in the outer membrane to facilitate uptake into the 

intermembrane space and access its target [220], and these mutations strongly suggest that 

tridecaptin resistance is conferred by alterations in LPS structure. 

 

Three other mutations had clear ties to the bacterial outer membrane: mlaA directly regulates outer 

membrane composition and was heavily truncated in XAM CM (MlaA W59*), while the porin 

gene ompC is implicated in both maintenance of outer membrane integrity and drug uptake 

[267,268]. Notably, OmpC was altered both directly through a nonsynonymous ompC SNP (OmpC 

N47S) in A51 and indirectly through a nonsynonymous SNP in the omp regulator envZ (EnvZ 

R253S) in A26. A SNP was also observed in bamA (BamA L501Q; XAM CM), part of the BAM 

complex [269]. BamA is responsible for inserting β-barrel proteins into the OM [269].  Mutations 



 

72 

 

in bamA have been related to resistance to drugs targeting this OM protein [240,270,271]. In the 

case of darobactin, resistance mutations in bamA also result in loss of virulence [272].  

 

Gene ontology enrichment analysis mapped the remaining mutations to several key pathways, 

including those related to respiratory electron transport mechanisms (Supplementary Table 3.1). 

This suggests adaptive changes in electron transport and ATP synthesis, in addition to alterations 

in outer membrane assembly and biosynthesis. 

 

3.2.6. Allelic exchange in genes involved in phospholipid transport and outer membrane 

assembly confirmed their involvement in resistance to Oct-TriA1. 

To investigate the effect of mutations in genes associated with phospholipid transport, we 

introduced the observed mutations in lptD into E. coli BW25113 via allelic exchange. This was 

carried out using CRISPR-Cas9/λ-Red assisted recombineering as previously described [273,274]. 

Concurrently, knockouts in ompC and mlaA were obtained from the Keio collection [275]. The 

effect of these alterations was assessed via MIC assays, revealing that all five alterations increased 

the ancestral strain’s MIC against Oct-TriA1 two-fold (Supplementary Figure 3.5).  

 

Other cationic non-ribosomal peptides (CNRP) like Polymyxin and Brevidicine [276] have a 

similar uptake mechanism [277] [278], Specifically, brevicidine also targets components in the 

inner membrane, namely phosphatidylglycerol and cardiolipin. Given the similarities in their 

mechanisms of action, the mutations related to LPS biosynthesis and transport  conferring 

OctTriA1 resistance may also result in cross-resistance to brevicidine. Although we did not 

observe cross-resistance to Polymyxin B in our study (Supplementary Figure 3.5), it is important 
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to consider broader implications of cross-resistance in antimicrobial strategy development. 

Exploring these targets that haven’t been extensively used in the clinic could provide an advantage 

in delaying the appearance of resistance. 

The effect of the mutations on fitness was more variable. None of the mutations altered lag times 

during growth in MHB, but significant deviations were observed in both growth rates and max OD 

(Figure 3.2C). The effect of the LptD mutations on fitness varied by both site and type of mutation. 

Despite halving susceptibility towards OctTriA1, the extra GTG repeat had no effect on bacterial 

fitness, while the LptD G561D mutation was much more detrimental than the LptD G561S 

mutation. As no single mutation increased resistance or impaired fitness to the levels observed in 

XAM CM, a combination of costly mutations appears to be required for high-level resistance. 

 

3.3. Discussion 

In this study we demonstrate the first de novo evolution of resistance to Oct-TriA1, with the effect 

of putative resistance-conferring mutations confirmed through allelic exchange. Further, we have 

improved the SAGE system through the incorporation of the thickening agent xanthan gum, 

extending the potential duration of experiments from a week to a month and enhancing selection 

rates. This modified system was also much more effective at selecting mutants resistant to 

polymyxin B, an antibiotic that is often difficult to target with other ALE systems.  

 

In line with resistance to other D-amino acid-containing non-ribosomal peptides [279], resistance 

in the native producers of tridecaptins is mediated via hydrolytic D-stereospecific peptidases [280]. 

In contrast, the mutations we have observed are largely in genes coding for LPS biosynthesis and 

outer membrane homeostasis. These pathways are essential to bacterial growth, as well as 
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interactions with the immune system, nutrient acquisition, and toxin susceptibility [281–283]. As 

a result, it is unsurprising that the resistant strains we generated had significantly impaired fitness 

(Figure 3.2C). Similar results have been observed with other membrane-interacting antibiotics, 

like the polymyxins. In many pathogens mutations that confer colistin resistance significantly 

impairs fitness and/or virulence [284], though acquisition of the plasmids encoding colistin 

resistance factor mcr-1 has a much smaller impact [285]. 

 

The factors that underpin widespread, high-level resistance are not fully understood. When 

evaluating evolution potential there has been a strong tendency to focus on the rate by which 

resistance emerges, either through mutation rate studies or ALE [219–221,286–289]. This work 

suggests that the nature of the mutations should also be taken into account. Each of the mutations 

in lptD, mlaA, and ompC altered the octyl-tridecaptin A1 MIC two-fold, with little overlap between 

strains (Figure 3.3, 3.4).  Given the overall change in susceptibility following SAGE was 8-fold, 

high-level resistance likely resulted from a combination of multiple mutations rather than from 

any single mutation. SAGE is well-suited to the serial acquisition of small-impact mutations [241], 

potentially explaining why it was successful when attempts to evolve resistance via serial passage 

through liquid culture failed [220].  

 

Xanthan gum was able to significantly reduce synaeresis and allow SAGE experiments to extend 

beyond their initial limit of 7-10 days, and this media may have utility outside ALE. Syneresis 

causes loss of growth-promoting properties of media when cultivating slow-growing bacteria and 

fungus [242,290,291]. Addition of a water-binding agent like xanthan gum may preserve these 

properties, allowing extension of those experiments as well.  
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Against the rising prevalence of antibiotic resistance, “evolution-proof” or “resistance-proof” are 

very appealing targets [225,226]. Their discovery could greatly alleviate the growing AMR crisis, 

carving a path forward for the use of antibiotics for decades to come. However, since the discovery 

of sulfa drugs, hundreds of antibiotics have entered clinical use, with pathogens evolving resistance 

to each and every one of them [225].  This work underscores the genetic flexibility of bacteria, and 

highlights the need for stringent evolution studies during the development and discovery of new 

antibiotics. If resistance is to emerge, we would do well to study it in vitro before its appearance 

in pathogens. 

 

3.4. Materials and Methods 

3.4.1. Bacterial Strain and Growth Conditions 

E. coli K-12 substr. BW25113 and all subsequent resistant mutants were grown in cation-adjusted 

Mueller Hinton Broth (MHB 2) media at 37 °C. Liquid cultures were shaken at 250 RPM, while 

agar cultures were grown in a static incubator. 

3.4.2. Oct-TriA1 synthesis 

Oct-TriA1 synthesis was performed as described by Cochrane et al. [229], with the following 

modifications. Briefly, in a manual peptide synthesizer 120.5 mg of Wang resin pre-loaded with 

Fmoc-Alanine at a loading of 0.6 mmol/g was swelled in dimethylformamide (DMF). The 

protecting group was cleaved with two twenty-minute treatments of 4:1 DMF:4-methylpiperidine. 

The beads were then washed three times with DMF, once with dichloromethane (DCM), then one 

final time with DMF. The next residue in the series was then added in 3x excess, alongside HATU 
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(3x excess) and diisopropylethylamine (DIPEA) (8x excess). Coupling was carried out for one 

hour, at which point the beads were washed as above and the Fmoc protecting group once more 

cleaved.  This cycle was repeated for each of the peptides, with Fmoc-Glu(OtBu)-OH, Fmoc-D-

Ser(OtBu)-OH, Fmoc-Dab(Boc)-OH, and Fmoc-D-Dab(Boc)-OH used for the residues with 

reactive side chains. The complete peptide was cleaved from the resin with a 95:2.5:2.5 solution 

of trifluoroacetic acid (TFA):deionized water:triisopropylsilane for 2 hours.  The cleavage solvent 

was removed on a rotary evaporator, and the crude material was triturated three times with diethyl 

ether.  The solid residue was then purified to homogeneity on an Agilent 1100 preparative HPLC 

system, using an XBridge BEH C18 OBD prep column (5 µm, 25 x 250 mm) and the following 

water/acetonitrile gradient system. 

 

Time Acetonitrile (%) 

0 5 

1 5 

3 20 

23 55 

31 95 

36 95 

 

Peaks eluting around 13.2 min across multiple runs were pooled, and the identity of the peptide 

was confirmed via high resolution mass spectrometry on an Orbitrap LTQ Velos.   
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3.4.3. SAGE evolutions 

SAGE plates were prepared and inoculated as described previously [241]. For SAGE plates made 

with XAM, MH media + 0.15% agar was first stirred in a flask on a hot plate and stirrer on high 

for 5-10 minutes. 0.2% xanthan gum was then slowly added to the stirring liquid and the mixture 

was allowed to stir for 2-3 minutes before autoclaving. This medium was melted on demand prior 

to use in SAGE plates. We checked on the plates every day to measure distance moved by the 

bacterial front, and we extracted bacteria only when the bacterial front moved significantly from 

the previous measurement. Bacteria were extracted from the point where they moved the farthest 

from the inoculation site. Cells were extracted from SAGE plates by pipetting up 20 μL of the gel 

and transferring it into 5 mL MH media for culturing. Overnight growth was streaked on MH 

plates and single colonies were used to prepare glycerol stocks. 

3.4.4. MIC Assays 

MICs were determined via broth microdilution, following CLSI guidelines [292]. Briefly, 

antibiotics were serially diluted in 96-well plates and mixed with bacteria at a final concentration 

of 5 x 105 CFU/mL. Plates were incubated at 37 °C without shaking for 16-20 h, and the MIC was 

recorded as the lowest concentration that visibly inhibited growth. 

3.4.5. Synaeresis tests 

Water loss from different gel mixtures was measured as described by Banerjee et al. [251] with 

the following modifications. Agar concentrations ranging from 0.2-2% were first stirred in a flask 

on a hot plate for 5-10 minutes. 0.25% xanthan gum, guar gum or pectin was then slowly added to 

the stirring liquid, which was allowed to stir for 2-3 minutes. Flasks were transferred to a 37 °C 
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shaker and shaken overnight at 250 rpm to produce a smooth, homogenous mixture. The flasks 

were then autoclaved, and 20 ml of each liquid was transferred to 50 mL centrifuge tubes. Tubes 

were allowed to cool at room temperature, then stored at 4 °C overnight. Initial masses of the tubes 

were recorded (~30 g on average) before centrifugation at 1000 rpm for 30 mins at 25 °C. 

Centrifugation broke the gel structure, making it difficult to decant water out of the tubes without 

losing gel mass. To extract the free liquid, tubes were instead left upright with their caps open, and 

a folded filter paper was used to wick away the water over 30 minutes. The filter papers were then 

carefully removed to minimize the loss of gel mass, and the final tube masses were recorded. Water 

loss was calculated as the difference between the initial and the final masses of the tubes. 

3.4.6. Bacterial Motility tests 

Bacterial migration speeds on different gel compositions were measured as described by Croze et 

al. [243]. The media were prepared as described above. 30 mL of each mixture was then poured 

in separate petri dishes, and the plates were left to set overnight at room temperature. 2 µL of 

overnight bacterial culture was placed on the center of each petri dish, and the inoculum was 

allowed to dry/absorb for an hour. 9 mL of mineral oil was overlaid on each plate, and all plates 

were then incubated at 37 °C without shaking, lid side up. The diameter of growth was measured 

6 h post incubation. 

3.4.7. Generation of the XAM-adapted WT strain 

12 mL of antibiotic-free XAM was poured in a SAGE lane and allowed to cool and solidify. 50 

μL of overnight WT bacterial culture was then inoculated on one side and the inoculum was 

allowed to dry/absorb for 30 minutes. 2.5 mL of mineral oil was overlaid on the gel, and the plate 

was incubated at 37 °C. The next day, cells were extracted from the end of the lane as described 
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above, then grown overnight. These cells were used to inoculate a second antibiotic-free XAM 

lane and the whole process was repeated. Following three consecutive passes, cells were streaked 

on agar, and a single colony was designated as the XAM-adapted WT strain. 

3.4.8. Fitness measurements 

1 μL of overnight bacterial culture was added to 99 μL of MH broth in 96 well plates. Lids were 

treated with 0.05% Triton X-100 in 20% ethanol to reduce fogging [293]. Absorbance readings 

(595 nm) were recorded using a plate reader at 5 min intervals for 24 h (Tecan Sunrise). Area 

under the growth curves were calculated in GraphPad Prism. All other metrics were generated 

using Dashing Growth Curves [294]. 

3.4.9. WGS and variant calling 

Whole genomes were extracted using a bacterial genomic DNA extraction kit following the 

manufacturer’s instructions (Bio Basic Inc, Cat: BS624). Whole genome sequencing was 

performed at SeqCenter using the Illumina NovaSeq X Plus sequencer, which generated 2x151 bp 

paired-end reads. The Breseq v0.37.1 pipeline was used for variant calling with bowtie2 v2.4.5 

and R v4.2.2 [295]. 

3.4.10. Gene ontology enrichment analysis 

Mutations observed in all of the evolved strains were analyzed for enrichment of gene ontology 

groups using the ShinyGO package v0.741 [296]. The p-value cut-off for the False Discovery Rate 

(FDR) was set to 0.05 against E. coli MG1655, a K12 strain. Several previously reported 

differences between MG1655 and BW25113 were identified and excluded from the analysis [297]; 

most notably deletion of the araBAD and rhaDAB operons, replacement of a section of the lacZ 
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gene with four rrnB terminators, and a frameshift mutation in hsdR that causes a premature stop 

codon. 

3.4.11. Allelic exchange mutant generation 

Allelic exchange of the selected mutated genes was carried out using the no-SCAR (Scarless Cas9 

assisted recombineering) method, as previously described [273,274]. In short, retargeting of the 

pKDsgRNA plasmid was constructed for the lptD gene region of interest through CPEC cloning 

in a way that the mutation would disrupt the PAM site or the 12 bp seed region. Cas9 

counterselection was achieved by sequentially transforming pCas9cr4 and the retargeted 

pKDsgRNA and electroporating dsDNA containing the desired mutation. Following induction of  

λ-Red and Cas9, the successful mutants were verified and the plasmids were cured of the plasmids 

to render them susceptible to Chloramphenicol and Spectinomycin. 

 

3.4.12. Keio collection strains Kan cassette curing 

Keio collection strains were cured of the kanamycin resistance cassette through FLP-recombinase-

mediated recombination, using the pCP20 plasmid as previously described [275,298]. Subsequent 

curing of temperature sensitive pCP20 plasmid yielded KanS, AmpS for MIC determination. 

 

3.4.13. Strains 

Strain Genotype Reference 

E. coli BW25113 Δ(araD-araB)567 Δ(rhaD-

rhaB)568 ΔlacZ4787 (::rrnB-

3) hsdR514 rph-1 

[275] 

E. coli BW25113 lptD G561S Δ(araD-araB)567 Δ(rhaD- This study 
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rhaB)568 ΔlacZ4787 (::rrnB-

3) hsdR514 rph-1 lptDG561S 

E. coli BW25113 lptD G61D Δ(araD-araB)567 Δ(rhaD-

rhaB)568 ΔlacZ4787 (::rrnB-

3) hsdR514 rph-1 lptDG561D 

This study 

E. coli BW25113 

lptD(GTG)3→2 

Δ(araD-araB)567 Δ(rhaD-

rhaB)568 ΔlacZ4787 (::rrnB-

3) hsdR514 rph-

1∆lptD(GTG)3→2 

This study 

E. coli BW25113mlaA (vacJ) 

JW2343-1 

F-, Δ(araD-araB)567, 

ΔlacZ4787(::rrnB-3), λ-, 

ΔmlaA754::kan, rph-1, 

Δ(rhaD-rhaB)568, hsdR514 

[275] 

E. coli BW25113 ∆ompC 

JW2203-1 

F-, Δ(araD-araB)567, 

ΔlacZ4787(::rrnB-3), λ-, 

ΔompC768::kan, rph-1, 

Δ(rhaD-rhaB)568, hsdR514 

[275] 
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4.1. Introduction 

 

Antibiotic resistance is spreading at an alarming rate, claiming the lives of over 1.2 million people 

every year [12]. Developing strategies to slow down resistance evolution has become essential to 

combat antibiotic resistance [299]. Sequential antibiotic therapy, where antibiotics are 

administered in a chronological sequence in an individual patient, has emerged as a potential 

strategy to slow down the evolution of resistance [300]. In principle, this strategy interrupts the 

selection of resistant populations by changing the selective pressure via switching treatment to a 

different drug [116]. Evolutionary trade-offs like collateral sensitivity (CS) have been proposed to 

improve the success of such sequential therapies by limiting the rate of bacterial evolution 

[123,128,301]. We now have numerous studies that have described large networks of collateral 

sensitivities in different bacteria [52,128,134,152,302]. However, investigations on their 

evolutionary repeatability via large scale experimental evolution are scarce, but are essential for 

successful clinical application [139]. In addition, different laboratories use different adaptive 

laboratory evolution (ALE) platforms that are difficult to standardize [52,128,152,303,304]. Since 

evolutionary outcomes can vary depending on the bacterial microenvironment [139,305], it is 

important to determine the effect of the choice of the ALE platform on CS evolution.  

 

In this study, we evolve 20-24 lineages of Escherichia coli to screen for CS between four drug 

pairs reported to exhibit CS, using three different ALE platforms widely used to study evolution 
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and CS [55]. We find that serial transfer and gradient plating-based ALE platforms agree well on 

the frequencies of CS, cross-resistance (CR) and resistance levels. However, the soft agar gradient 

evolution (SAGE) platform produces substantially lower frequencies of CS and higher incidence 

of CR compared to the other two platforms. To test the relevance of these CS/CR predictions from 

the different ALE platforms, we analyze antimicrobial susceptibility data from over 750 clinical 

uropathogenic multidrug resistant (MDR) E. coli strains to test for the presence of CS/CR 

relationships. We find that CS is almost entirely absent, but neutrality or CR is prevalent. However, 

we observe a significant association between increasing omadacycline (a third generation 

tetracycline) resistance and reduced colistin (polymyxin E) resistance. Interestingly, out of the four 

drug pairs screened in our ALE experiments, SAGE showed significant CS in only one of them: a 

tigecycline (TIG) (a third generation tetracycline) and polymyxin B (POL) pair. Using genomics 

and phenotypic analysis, we describe, for the first time, the mechanism of polymyxin B CS in 

tigecycline-resistant bacteria. Our results highlight the power of large-scale ALE experiments in 

predicting repeatable CS relationships that hold potential to reduce resistance in MDR bacteria in 

the clinic. 

 

4.2. Results 

4.2.1. SAGE produces lower collateral sensitivities and higher cross resistances compared to 

other ALE platforms 

We evolved 20-24 mutants against tigecycline (TIG) and piperacillin (PIP) separately using three 

different ALE platforms [55]: SAGE [69], serial transfer liquid culture-based method (LQ) [48], 

and gradient plates (GP) [51] (Figure 4.1A). We also investigated CS profiles for nitrofurantoin 

(NIT) and ciprofloxacin (CIP), but were unable to achieve resistance at high enough frequencies 
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in LQ (NIT, CIP) or GP (CIP) to generate the necessary sample sizes (Supplementary Table 4.1). 

SAGE also produced 8-16-fold increases in relative MIC (MIC of evolved lineage/MIC of WT) of 

TIG and PIP, while levels from LQ and GP were limited to 2-4-fold increases (Figure 4.1B, C) 

before incurring frequent extinctions. SAGE presents a smooth continuous gradient of antibiotic 
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Figure 4.1 Evolution of antibiotic resistance using three different ALEs. 

(A) Schematic of the ALE platforms used to evolve resistance in this study. (B) Relative TIG and (C) PIP MICs of 

evolved mutants.  ****p<0.0001, one-way ANOVA with Bonferroni correction. (D) - (G) CS profiles of mutants 

evolved to TIG and PIP. The labels on top show the antibiotics against which resistance was evolved and CS were 

measured. For example, “TIG-POL” denotes the POL CS measurements of TIG resistant mutants. (H) Combined CS, 

N and CR distributions from the three ALE platforms. SG = SAGE. ****p<0.0001, one-way ANOVA with Bonferroni 

correction. Statistical analyses were performed by comparing relative MICs of mutants from each platform. 
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in soft agar instead of the 2-fold stepwise increasing gradients present in the serial transfer-based 

method (LQ) [17]. Because of this, SAGE allows selection of small-effect mutations which may 

not confer resistances high enough to survive in 2-fold increasing gradients [20]. These mutations 

may help explain the higher MICs reached through SAGE. Even in GP, daily passaging of a 

random mutant in the plate introduces a sampling bottleneck which may not select cells with small-

effect mutations. 

 

Next, we screened for CS towards POL and gentamicin GEN in the TIG-resistant lineages [52] 

and NIT and streptomycin (STR) in the PIP-resistant lineages [52,128]. A large proportion of TIG-

resistant lineages exhibited CS to POL: ~86% from LQ, ~96% from GP, and ~39% from SAGE 

(Figure 4.1D) (Supplementary Figure 4.1). We previously reported the presence of reciprocal CS 

between the POL -TIG pair [306]. CS towards GEN was low in all platforms, with LQ and GP 

showing CS in ~26% of lineages and SAGE in only ~4% (Figure 4.1E) (Supplementary Figure 

4.1). Cross resistance (CR) towards POL was almost entirely absent, and CR to GEN was present 

at very low frequencies (Figure 4.1D, E) (Supplementary Figure 4.1).  

 

CS towards NIT was rare in the PIP-resistant lineages, present in only ~17-25% of the LQ and GP 

strains and absent in the SAGE strains (Figure 4.1F) (Supplementary Figure 4.1). By contrast CR 

was common in the SAGE lineages, with ~42% less susceptible to NIT (Figure 4.1F) 

(Supplementary Figure 4.1). About 50% of the PIP-resistant lineages from LQ and GP, and 21% 

from SAGE showed CS towards STR (Figure 4.1G) (Supplementary Figure 4.1). ~20% of the 

SAGE mutants showed CR towards STR, but again this CR was rare in the other two platforms. 

Overall, ~16% of SAGE mutants showed CS compared to 49% and 47% from LQ and GP 
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respectively (Figure 4.1H). Incidence of CR in SAGE mutants was much higher at about 21% than 

the 4-6% in LQ and GP mutants (Figure 4.1H). 

4.2.2. Tigecycline resistance evolves via similar pathways across ALE platforms 

To compare the genomic adaptations of lineages evolved through the three different platforms and 

to identify differences in mutational profiles between strains that evolved CS and strains that did 

not, we whole genome sequenced 29 lineages adapted to TIG: nine from LQ (six with POL CS 

and three neutral), seven from GP (six with POL CS and one neutral) and 13 from SAGE (six with 

POL CS, six neutral, and one with POL CR) (Figure 4.2A). The genome profile of the lineage that 

showed POL CR from SAGE was a complete subset of the mutations appearing in the CS lineages, 

and was excluded from further analysis suspecting a two-fold random variation in MIC [307].  

Lineages acquired ~1.2 mutations per strain from LQ, ~1.7 strain from GP, and ~1.5 mutations per 

strain from SAGE (Figure 4.2A). SAGE generated several mutations unique from the other 

platforms, presumably because it selects for mutants that have improved growth rates and motility 

[145,241] which are often seen as compensatory mutations in antibiotic resistant bacteria [110–

113,119,172]. Strains from all platforms showed mutations in one or more of the following genes 

involved in TIG resistance: lon, acrR, and marR (Figure 4.2A) (Supplementary Figure 4.2A). 

Deactivation of the Lon protease, often achieved via mutations in its promoter region, spares the 

MarA, RamA and SoxS activators from degradation, increasing expression of genes that mediate 

resistance like acrAB [126,308]. Mutations in AcrR and MarR more directly relieve repression of 

the acrAB and marRAB operons, increasing efflux activity to drive TIG resistance [308]. The 

primary method by which TIG resistance evolved is therefore through increased expression of 

efflux pumps, regardless of the evolutionary system.  
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Figure 4.2 Genomic and phenotypic analysis reveals mechanism of POL CS in TIG resistant mutants. 

(A) Venn diagram showing common mutations between TIG mutants evolved from the three different platforms. The 

numbers in brackets denote the total number of mutants sequenced from that platform. (B) Frequency at which a 

mutation in the genes listed on the vertical axis appeared in all 29 mutants sequenced in this study, stratified by POL 

CS and N. “Total” denotes frequencies at which a mutation appeared among all strains. “sodA/kdgT” refers to an 

intergenic mutation between the genes sodA and kdgT. “envY::IS2A” denotes that gene envY was interrupted by the 

insertion element IS2A. “Δicd-icdC” refers to a deletion that affects all genes between and including icd and icdC. 

“yneL/hipA:flxA/intK” refers to a new junction between the intergenic regions of yneL/hipA and flxA/intK. Two 

different flhD mutations: (flhD/uspC) and flhD:IS5 were grouped together and reported as “(flhD/uspC)/flhD:IS5”. 

(C) Toluidine blue-O and Congo red binding assays for four randomly picked Lon mutants and four with Lon intact. 

The strain IDs of the mutants are noted at the top of the panels. Strain IDs contain information about the platform 

used, and the lineage that was picked. For example, “LQ-Δlon-3” = Lon mutant from the LQ platform, with “3” 

denoting that it is the third lineage out of the 22 generated through this platform. “LQ-22” = the 22nd lineage from the 

platform, with no mutation in Lon.  WT = wildtype.  (D) The role of Lon and MarR mutations in POL CS. Left panel: 

WT cells. Lon degrades RcsA, limiting the expression of capsular polysaccharide genes (cps). MarR expression 

negatively regulates AcrAB expression. Middle panel: Lon deactivation to evolve TIG resistance spares RcsA from 
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degradation, allowing expression of cps genes and causing the production of capsular polysaccharides. Increased 

negative charge on the membrane due to these polysaccharides causes increased accumulation of the polycationic 

POL, making cells more susceptible to POL. Right panel: MarR deactivating mutations associated with TIG resistance 

allow increased AcrAB expression, increasing the number of efflux pumps that are able to pump out POL molecules, 

neutralizing POL CS. 

 

4.2.3. Polymyxin collateral sensitivity is linked to Lon protease deactivation 

While POL CS in TIG-resistant E. coli has been previously reported [52,306], the mechanism of 

POL CS remains unknown. Since CS was abundant in strains evolved through all three platforms, 

we hypothesized that mutation(s) that 1) occurred in all three platforms, 2) appeared frequently 

and 3) appeared more frequently in strains exhibiting CS may be responsible for POL CS. We 

tallied the frequencies of each mutation stratified by CS and neutrality (Figure 4.2B) 

(Supplementary Figure 4.2) and found that the lon::IS186 mutation, previously reported to be a 

mutation hotspot [309], was the only mutation that met these criteria (Figure 4.2B) (Supplementary 

Figure 4.2). 

 

Cells that lack Lon activity accumulate the transcriptional regular RcsA, which is a positive 

regulator of capsular polysaccharide (exopolysaccharide) synthesis [310,311]. Increased 

exopolysaccharides has been shown to increase sensitivity to POL by increasing concentration of 

POL around the outer membrane in Klebsiella [312]. We hypothesized that our TIG-resistant Lon 

mutants were overproducing exopolysaccharides, which in turn were making them more 

susceptible to POL. To test this, we randomly picked and grew three strains with the Lon mutation, 

three without the Lon mutation, and one with both the Lon and marR mutations on plates 
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containing toluidine blue-O, congo red and ruthenium red. Toluidine blue-O binds to negatively 

charged polysaccharides, congo red binds to amyloid fibers like curli, and ruthenium red binds to 

acidic exopolysaccharides [313]. The Lon mutants were preferentially stained by toluidine blue-O 

and congo red (Figure 4.2C), confirming that our Lon mutants overproduced exopolysaccharides. 

We did not see any difference between colonies grown on ruthenium red (data not shown). Based 

on these results, we propose that lon::IS186 mutants overproduce negatively charged 

exopolysaccharides which increase POL accumulation around the cells, rendering them 

hypersensitive towards the antibiotic (Figure 4.2D). 

 

4.2.4. MarR deactivation neutralizes Lon deactivation-driven polymyxin collateral sensitivity 

If Lon mutations produced the POL CS phenotype in the TIG resistant cells, resistance to TIG that 

did not confer POL CS must have either occurred via a different pathway, or the CS effect of the 

Lon mutation may have been masked via secondary mutations. Candidate mutations that occurred 

frequently and preferentially in cells that remained neutral to POL were in the efflux regulators 

acrR and marR (Figure 4.2B) (Supplementary Figure 4.2), known to confer resistance to TIG 

[314,315]. This suggests that cells that bypass Lon mutations to achieve resistance via efflux 

upregulation avoid POL CS. 

 

Fifty-five percent of the neutral strains also exhibited the Lon mutation (Figure 4.2B). How do 

strains that carry this mutation mask the CS phenotype? To answer this question, we narrowed our 

analysis to the SAGE mutants where we had an equal distribution of cells with CS and neutral 

phenotype sequenced (Supplementary Figure 4.2). While 100% of the neutral strains had a MarR 

mutation, 67% of them also carried the lon::IS186 mutation. Since deactivation of MarR allows 
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upregulation of TIG and POL efflux [126,308,316], we hypothesized that deactivation of MarR on 

a lon::IS186 background neutralizes the CS phenotype associated with Lon mutants (Figure 4.2D). 

To test this, we constructed the pUC57-marR plasmid and introduced it into four POL-neutral 

strains that showed both the marR and lon::IS186 mutations. Strain 3 showed a 2 bp deletion 

mutation and strain 5 introduced a premature stop codon in marR (Table 4.1) which should both 

significantly reduce or completely abolish marR activity [317]. Mutation in the 104th amino acid 

that changes the glycine carried by strain 4 (Table 4.1) has been associated with reduced marR 

activity [318]. The AAGGCTGG duplication causes a frameshift mutation which should also 

affect marR activity (Table 4.1) [319]. Introduction of pUC67-marR converted three of the four 

strains from neutral to CS to POL, and increased susceptibility in the wildtype strain (Table 4.1). 

This suggested that cells that mutated MarR gained the ability to resist POL at a magnitude large 

enough to neutralize CS due to the lon::IS186 mutation. Reintroduction of MarR on a plasmid then 

reduced efflux levels, reverting the effects of the MarR mutation. 

 

Table 4.1 Changes in POL MIC after introduction of the pUC57-marR plasmid in strains with different 

MarR mutations. 

Strain MarR allele POL MIC (μg/mL) 

WT - 0.25 

TIG-SG-N-3 Δ2 bp coding (428‑429/435 

nt) 

0.25 

TIG-SG-N-4 G104S 0.25 
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TIG-SG-N-5 Q117* 0.25 

TIG-SG-N-7 (AAGGCTGG)1→2 0.25 

WT + pUC57 - 0.25 

TIG-SG-N-3 + pUC57 Δ2 bp coding (428‑429/435 

nt) 

0.25 

TIG-SG-N-4 + pUC57 G104S 0.25 

TIG-SG-N-5 + pUC57 Q117* 0.25 

TIG-SG-N-7 + pUC57 (AAGGCTGG)1→2 0.125 

WT + pUC57-marR - 0.125 

TIG-SG-N-3 + pUC57-marR Δ2 bp coding (428‑429/435 

nt) 

0.125 

TIG-SG-N-4 + pUC57-marR G104S 0.125 

TIG-SG-N-5 + pUC57-marR Q117* 0.125 

TIG-SG-N-7 + pUC57-marR (AAGGCTGG)1→2 0.125 

 

 

MarR mutations cannot completely explain neutrality: a significant number of strains that carried 

marR mutations showed CS towards POL (Figure 4.2B) (Supplementary Figure 4.2). Additional 

mutations in these strains such as HldE (D-beta-D-heptose 7-phosphate kinase), GmhB  (D-
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glycero-beta-D-manno-heptose-1,7-bisphosphate 7-phosphatase) and TamB (translocation and 

assembly module subunit)  (Figure 4.2B) (Supplementary Figure 4.2) involved in LPS biosynthesis 

and maintenance [126,320,321] and may have played a role in POL sensitivity. 

 

4.2.5. Strong intra-class cross-resistance, but not collateral sensitivity, is prevalent in clinical E. 

coli 

The goal of identifying any CS relationship is to ultimately apply it in antibiotic sequences or 

combinations that are resilient against resistance evolution in the clinic. To test for the presence 

of collateral effects of resistance in pathogenic E. coli, we calculated the Pearson correlation 

coefficients between MIC data to serve as a proxy for cross resistances and collateral sensitivities 

from 779 uropathogenic E. coli strains from the CANWARD surveillance study (Supplementary 

Table 4.2) [322]. We identified strong cross-resistance between drugs of the same class, 

particularly between β-lactams (Figure 4.3A). Very little negative correlation (collateral 

sensitivity) was present in the dataset, which appears to be common in clinical datasets [323]. 

The largest negative correlation of -0.05 was seen between omadacycline (OMC) and colistin 

(COL).  

 



 

96 

 

 



 

97 

 

 

Figure 4.3 Uropathogenic E. coli antimicrobial susceptibilities reveal a rare CS relationship predicted by 

laboratory evolution. 

(A) Pearson correlation coefficients between MICs of each antibiotic with every other antibiotic in the dataset. A value 

of 1 denotes a perfect positive correlation (strong CR), 0 denotes no correlation, while a -1 denotes a perfect negative 

correlation (strong CS). (B) - (F) Relationship between resistances to drugs labelled on the x- and y-axes. *p<0.05, 

***p<0.001, ****p<0.0001, one-way ANOVA with Bonferroni correction. (G) Mean resistance levels of antibiotics 

on the x-axis from the whole dataset. 
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4.2.6. CS relationships rarely appear in clinical strains and their prevalence is best predicted by 

SAGE 

We looked more closely at the clinical antibiotic susceptibility data to identify smaller changes in 

resistance. Specifically, we looked at the TIG-GEN, PIP-NIT and TIG-POL relationships to 

compare with our ALE results. PIP-STR was not included since STR was not among the drugs in 

the clinical dataset. Since our ALE adaptations only included chromosomal changes, it was 

important to limit our analysis to resistance conferred by chromosomal mutations instead of mobile 

elements. TIG is unaffected by Tet(M), tet(A), tet(B),tet(C), tet(D), and tet(K) mobile resistance 

determinants [324]. Plasmid-encoded tet(X) genes that code for TIG inactivating enzymes and 

confer high TIG resistance with MICs ranging from 8-16 μg/mL are rare [325,326], and our dataset 

did not contain TIG MICs >2 μg/mL. Chromosomal TIG resistance generally arises from increased 

efflux mediated by AcrAB-TolC in E. coli [308], and to further confirm that TIG resistance was 

largely chromosome mediated in our clinical dataset, we hypothesized that PIT 

(piperacillin/tazobactam) resistance should go up with increasing TIG resistance since PIP is 

susceptible to efflux. As expected, PIT resistance did increase with increasing TIG MIC in the 

clinical strains (Figure 4.3B). 

 

Next, we looked at how GEN MICs varied with increasing TIG MIC. We removed GEN MICs > 

4 μg/mL from the analysis because these MICs were more likely to be conferred by plasmid-borne 

aminoglycoside modifying enzymes [327]. We observed a steady increase in GEN MICs with 

increasing TIG MIC among the remaining isolates (Figure 4.3C). From our ALE experiments, LQ 

and GP showed CS in over 25% of the strains, but SAGE in ~4%, while CR was present in 17% 

of strains (Figure 4.1E) (Supplementary Figure 4.1). 
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NIT MIC changes with PIT resistance did not reach statistical significance, but showed an 

increasing trend up to 8 μg/mL of PIT resistance. From the ALE results, LQ and GP lineages 

showed CS in 17-25% of the strains with none from SAGE (Figure 4.1F) (Supplementary Figure 

4.1). Over 40% of the SAGE lineages were cross-resistant to NIT (Figure 4.1F) (Supplementary 

Figure 4.1). 

 

POL was not included in the clinical antimicrobial susceptibility data, so we examined the TIG-

colistin (COL) relationship instead. Colistin and POL have very similar structures and near-

identical activity in vitro [328]. For the first time in the analysis, we see small but statistically 

insignificant reductions in COL resistance with up to 0.5 μg/mL of TIG MIC (Figure 4.3E). During 

this analysis, we observed that mean COL resistance dropped significantly with resistance to 

another third generation tetracycline, omadacycline (OMC) (Figure 4.3F, G) [329]. As OMC MIC 

increased from 0.5 to 1 μg/mL, COL MIC dropped ~three-fold (Figure 4.3F). ~86-96% of LQ and 

GP lineages and ~39% of SAGE lineages showed CS to POL (Figure 4.1D) (Supplementary Figure 

4.1). 

 

4.3. Discussion 

In this study we investigated the repeatability of CS evolution in four reported drug pairs. With 

large sample sizes of 20-24 lineages we examined three different ALE platforms, testing the 

robustness of CS interactions to changes in evolutionary conditions and identifying possible ALE-

specific biases.  We found that SAGE allowed rapid evolution of high level resistance to antibiotics 

while still producing core resistance-conferring mutations comparable to other ALE platforms 
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(Figure 4.1B, C) (Figure 4.2A) (Supplementary Figure 4.2). SAGE consistently produced lower 

frequencies of CS and higher cases of CR compared to the serial transfer and gradient plating-

based methods (Figure 4.1D-G) in the TIG - GEN, PIP - NIT and PIP - STR drug pairs. This best 

matched antimicrobial susceptibility data from over 750 clinical MDR E. coli strains, in which CR 

and neutrality were abundant but indications of CS relationships were almost entirely absent 

(Figure 4.3A). Importantly, we found no negative correlations between TIG - GEN, PIP - NIT and 

PIP - STR, and instead found evidence of cross-resistance (Figure 4.3C-E). This suggests that 

while CS relationships may regularly appear through laboratory evolutions, their application in the 

clinic needs to be carefully assessed. If the effect of CS is minimal in clinical strains, the usefulness 

of CS relationships elucidated from ALE experiments may be inflated. Out of the four drug pairs 

tested, SAGE produced substantial CS in only one of them, the TIG - POL pair (~39%; Figure 

4.1D, H). From the clinical data, we observed that resistance to COL decreased with another third-

generation tetracycline, omadacyline (Figure 4.3F) [329]. The fact that this CS relationship 

appeared frequently in all three ALE platforms (Figure 4.1D) and held among MDR clinical strains 

suggests that this could be potentially exploitable to select against resistance, and that SAGE may 

be able to predict these important relationships.  

 

We previously showed the presence of reciprocal CS between the TIG-POL drug pair [306], but 

the mechanism of CS was unknown. In this study we showed that tigecycline resistant Lon mutants 

produced increased extracellular polysaccharides, rendering them more susceptible to POL. From 

the ubiquity of the Lon mutations in our data and prior reports, it is likely that this mutation is the 

first step towards clinical TIG resistance [308,330], and hence the COL sensitivity in clinical 

strains may be driven by the same mechanism. Cells may bypass the CS to POL by either 
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increasing efflux through mutations in regulators like MarR, or by acquiring second step efflux 

regulator mutations after Lon deactivation (Figure 4.2B-D), suggesting the observed COL 

sensitivity may be transitory or that increased efflux may have undetected fitness costs. 

 

Second step mutations in efflux regulators AcrR and MarR appeared more frequently in SAGE 

compared to LQ and GP (Supplementary Figure 4.2) and could partly be responsible for the low 

CS in SAGE lineages. In contrast to our findings, one study showed that accumulation of second 

step resistance mutations conferred collateral sensitivity over resistance to antibiotics [133]. 

However, in that study, efflux mutations were the first step mutations, with second step mutations 

conferring the CS they observed [133]. This is in line with our and others’ findings that efflux 

mutations often confer broad-spectrum CR [107,331]. Another study showed how CS varies at a 

population level, with lineages that showed CS early during evolution getting replaced by mutants 

that acquired changes in genes with milder CS effects [134]. Results from this study suggest that 

this can also occur at the strain level. Together, we suggest that the evolutionary timeline of CS 

cannot be generalized and must be studied on a case-by-case basis, possibly at the antibiotic and 

the bacterial species level. 

 

The usefulness of CS has been debated, due in part to its dependence on the repeatability of 

evolution [54]. Our results show that CS can indeed often appear at only low frequencies (Figure 

4.1E-G), and is strongly linked to the specific mechanism by which cells become resistant. Our 

highly repeatable TIG-POL CS relationship was dependent on selection of the same lon::IS186 

mutation across almost all sequenced lineages that exhibited CS. While this limits the number of 

CS interactions that may be worth pursuing, this also offers hope that robust CS that appear in 
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complicated evolutionary landscapes in healthcare may be achieved via targeting collateral effects 

tied to readily accessible mutational hotspots. 

 

From our attempts at evolving large sample sizes against multiple antibiotics via the different 

ALEs, we found that generating large numbers of resistant mutants was easier with SAGE 

(Supplementary Table 4.1), though the number of mutations per strain and the core resistance 

determinants selected for were similar to the other platforms tested (Figure 4.2A). This should 

facilitate ALE experimentation at scale in laboratories that do not have ready access to robotics. 

 

Overall, we discovered a mechanism by which TIG resistance reliably conferred CS to POL by 

leveraging large scale laboratory evolution and showed that these biological effects were observed 

and reproducible in more than 750 clinical MDR E. coli strains. We highlighted the importance of 

large scale ALE experiments to generate robust profiles of collateral effects and showed that SAGE 

better predicts CS relationships that can help reduce antibiotic resistance in the clinic. 

 

4.4. Materials and Methods 

4.4.1. Bacterial strain and growth conditions 

E. coli K-12 substr. BW25113 (WT) was grown aerobically at 37 °C with 250 rpm shaking in 

Muller Hinton (MH) broth. All evolved mutants were grown in MH broth supplemented with 

appropriate concentration of antibiotics. 
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4.4.2. Susceptibility assays 

MICs were performed using the EUCAST standard broth microdilution method [332]. 

 

4.4.3. ALE experiments 

SAGE, serial transfer and gradient plating-based evolutions were performed as described before 

[48,50,51,107,145,306]. To prepare a SAGE plate, MH media with 0.15% agar was stirred and 

heated, followed by slow addition of 0.2% xanthan gum before autoclaving [20]. This liquid was 

supplemented with antibiotics and poured into 4-well plates that were propped up on one side 

using p1000 pipette tips. After this layer was set, a second layer of antibiotic free medium was 

added to create an even surface, and plates were incubated overnight at room temperature to allow 

diffusion. For SAGE, the maximum concentration of antibiotics are listed in the table below. 

Maximum concentrations were determined from experiments to determine suitable concentrations 

that consistently generated mutants above clinical breakpoints. All SAGE plates were incubated 

for a fixed duration of seven days, which we found to be sufficient for cells to reach the end of the 

plates [306,333]. For serial transfers, evolutions were started at 1/8th the WT MIC of the antibiotic 

by transferring 1 μL  of overnight culture of WT bacteria into 99 μL of MH broth containing 

appropriate concentration of the antibiotic. Plates were incubated for 18-20 h, then 1 μL from all 

wells showing growth were transferred onto the 1/4th MIC plate and so on, until the concentration 

listed in the table below was reached (i.e., a total of six transfers). Passaging beyond the listed 

concentration incurred significant loss of strains due to extinctions. For gradient plates, maximum 

antibiotic concentrations are listed below. Plates were made in square dishes (Falcon, Cat. No.: 



 

104 

 

351112) and were streaked towards the higher end of the antibiotic gradient after 18-20 h of 

incubation until growth was observed within the last grid of the plates. 

 

Antibiotic Maximum concentration in SAGE 

TIG 5 μg/mL 

PIP 40 μg/mL 

 

Antibiotic Maximum concentration evolved to during 

serial transfers 

TIG 4x MIC, 1 μg/mL 

PIP 4x MIC, 4 μg/mL 

 

Antibiotic Maximum concentration in 

gradient plates 

Days taken to reach end of 

plates 

TIG 5 μg/mL 5 days 

PIP 80 μg/mL 5-7 days 

 

4.4.4. Whole genome sequencing and analysis 

Genomes were extracted using the Bio Basic genomic DNA kit (Cat. no.: BS624). Sequencing and 

variant calling was performed by Seqcenter (USA), on an Illumina NextSeq 2000. Variant calling 

was carried out using Breseq (80). Reference sequence CP009273.1 was used for variant calling. 
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All mutations reported had a frequency of a 100% over a sequencing depth of ~100-120x. 

Coverage of 99-100% was achieved for all mutants sequenced. WGS data is available under the 

NCBI Sequence Read Archive BioProject: PRJNA1220725NCBI. Figure 4.2 and Supplementary 

Figure 4.2 were built using R and GraphPad Prism. 

 

4.4.5. Exopolysaccharide assay 

MH + 1.5% agar was separately supplemented with 150 µg/ml Congo red, 40 µg/ml toluidine blue 

O or 40 µg/ml ruthenium red (AK Scientific) [313]. All plates also contained 0.5 μg/mL of TIG. 

10 μL of overnight cultures grown in MH broth + 0.5 μg/mL of TIG were spotted onto these plates.  

 

4.4.6. MarR complementation 

The MarR fragment was synthesized based on its sequence available in the NCBI reference 

sequence CP009273.1, and inserted into the pUC57 MCS by Bio Basic Inc. The ligated plasmid 

was sequence verified before use in experiments. Cells were chemically transformed separately 

with the empty vector or pUC57-marR [334]. We determined from separate experiments with this 

plasmid that IPTG induction was not required for sufficient marR production: cells transformed 

with this plasmid showed reduced efflux activity as measured by chloramphenicol resistance [164] 

but increasing concentrations of IPTG did not significantly change this resistance level (data not 

shown). 
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4.4.7. Clinical strains and data analysis 

Antibiotic susceptibility data of 779 uropathogenic E. coli strains was obtained from the 

CANWARD surveillance study [322]. The Pearson correlation coefficients and MIC data 

extraction were performed using custom Python scripts. 

4.4.8. Data and materials availability:  

WGS data is available under the NCBI Sequence Read Archive BioProject: PRJNA1220725.  
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Chapter 5. Sequential antibiotic exposure restores antibiotic susceptibility 
 

Chowdhury FR and Findlay BL; Journal of Antimicrobial Chemotherapy (revisions submitted as 

of writing this thesis). 

Preprint available (under an older version of the title of this paper) at: 

doi.org/10.1101/2024.11.06.622341  

 

5.1. Introduction 

Antibiotic resistance is associated with 4.7 million deaths every year and is projected to claim 40 

million lives by the year 2050 [12,335]. As pathogens are adapting to antibiotics faster than new 

drugs can be developed, alternative strategies to curb resistance are necessary [336]. One proposed 

strategy is to use existing drugs to design sequential or cyclic antibiotic treatment regimens with 

drugs applied one after the other at either defined time intervals or as resistance successively 

emerges [83,107,117]. Rapid switching delays but does not halt the evolution of resistance, and so 

as resistance emerges to drug A the cycle degrades. Proper selection of drug B is proposed to 

increase the time required for multidrug resistance to emerge, or even allow resensitization to A 

[83,123].  

 

A few studies have proposed specific drug pairs for cyclic antibiotic therapy [128,337], but large 

scale evolutionary studies that probe the frequencies at which these pairs successfully hinder 

evolution or reverse resistance (resensitize) are missing. These effects must be evolutionarily 

repeatable to be useful in therapy [139]. In this work, we leverage the soft agar gradient evolution 

(SAGE) platform [69,107] to sequentially evolve resistance against four drug pairs proposed for 

cyclic therapy in 16 replicate populations of Escherichia coli K-12 substr. BW25113. We show 

that the drug pairs gentamicin (GEN) – piperacillin (PIP) and PIP – GEN drive 50% of the 

populations extinct, while the other two: ciprofloxacin (CIP) – GEN and polymyxin B (POL) – 
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tigecycline (TIG) do not hinder resistance evolution. Upon the evolution of resistance to the second 

drug in the cycle the GEN – PIP pair showed no significant GEN resensitization, the PIP – GEN 

and CIP – GEN pairs produced a 2-fold reduction in mean resistance to the first drug, while the 

POL – TIG pair showed a 64-fold reduction in POL resistance in every replicate population tested. 

To date, extinctions and resensitizations in cyclic therapy have been theoretically linked to forward 

collateral sensitivity (CS), where resistance to the first drug A in the cycle causes CS to the second 

drug B. In our data, we find no correlation between forward CS within drugs and extinctions or 

resensitizations. However, we find that if resistance to drug B in naive cells frequently produces 

CS to drug A, cells initially resistant to drug A are often rendered more susceptible to A when 

resistance to B emerges (Figure 1). We term this CS interaction backward CS (Figure 1), since CS 

to A evolves with resistance to B (CS direction: B to A) but antibiotics are applied in a sequence 

of A to B. To elaborate, consider a situation where the sequential treatment regimen is the 

application of antibiotic A, followed by the application of antibiotic B (treatment direction: A to 

B). If, via susceptibility measurements, it is determined that resistance to antibiotic A in naive 

bacteria induces CS to antibiotic B, we would say that this antibiotic sequence exhibits forward 

collateral sensitivity. If, instead, resistance to antibiotic B is known to induce CS to antibiotic A in 

naive bacteria, we would say that this antibiotic sequence exhibits backward collateral sensitivity. 

We find that backward collateral sensitivity helps bring down resistance levels even when bacteria 

sequentially acquire resistance to A and then B. We illustrate the role of forward and backward 

CS this by showing that in the aminoglycoside-β-lactam pair gentamicin and piperacillin, 

gentamicin resistant populations exhibit widespread forward CS towards piperacillin, but 

subsequent exposure of cells with piperacillin CS to piperacillin does not lead to increased 

extinctions or significant gentamicin resistance reduction. However, when we expose PIP resistant 
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bacteria to GEN (PIP – GEN pair; frequent CS in the opposite direction: backward CS), we see a 

2-fold reduction in median PIP resistance. We use whole genome sequencing and efflux 

measurements to show that this reduction is driven by the weakening of PIP efflux in the GEN 

adapted strains. The effects of backward CS extend beyond the GEN – PIP pair, and we find 

polymyxin B (POL) – tigecycline (TIG) to be a pair that highly favors resensitization to POL. Our 

results show the importance of considering the direction of CS and drug switching in designing 

effective cyclic therapies. 
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Figure 5.1 The concept of forward and backward collateral sensitivity. 

5.2. Results 

5.2.1. A SAGE-based evolution platform to test pairwise drug sequences 

We began with four drug pairs proposed for cyclic therapies with reported forward CS between 

either the drugs or the drug classes: gentamicin (GEN) – piperacillin (PIP) [128], PIP – GEN 

[128,337], ciprofloxacin (CIP) – GEN [53], and polymyxin B (POL) – tigecycline (TIG) [337]. 
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First, we used SAGE to generate 16 independent replicates of Escherichia coli K-12 substr. 

BW25113 (WT) that were resistant to the first component of each drug pair at levels above clinical 

breakpoints [69] (Figure 5.2A). The sole exception was POL, where we generated 15 strains. High-

level POL resistance was infrequent, and to generate 15 lineages required 88 starting replicates. 

Next, we passed these mutants through soft agar “flat plates” three times in series (Figure 5.2A). 

These plates contained the antibiotic from the prior challenge, at a concentration equal to half the 

minimum inhibitory concentration (MIC) of the antibiotic following SAGE. We included flat 

plates for three reasons: 1) general growth defects like slow growth rates, common after genomic 

adaptation to antibiotics [75] can appear as false CS during MIC plate readouts [337], 2) there 

were conflicting reports about the stability of CS [128,338], and 3) we wanted to study CS 

interactions that are not easily reverted via compensatory mutations. We previously showed that 

flat plates accelerate movement of chloramphenicol-resistant strains through soft agar, 

significantly improving growth rates in liquid media and allowing for resistance evolution to a 

subsequent antibiotic at near-wildtype frequencies [107]. We find here that the effect is general, 

with similar effects on GEN resistant strains (Figure 5.2B). Replicates were then screened for 

resistance to the challenge antibiotic and for CS towards the second drug in the pair (Figure 5.2C, 

D). After SAGE evolution, the majority of the strains exhibited resistance levels above clinical 

breakpoints [339] for all the antibiotics tested (Figure 5.1C). WT MICs are listed in Table 5.1. 

 

Table 5.1 WT MICs. 

Antibiotic MIC (μg/mL) 

GEN 0.5 



 

112 

 

PIP 1 

CIP 0.0625 

POL 0.25 

TIG 0.25 

 

 

Figure 5.2 A SAGE-based evolution platform to study sequential antibiotic application. 

(A) Bacteria were inoculated in parallel into SAGE lanes containing antibiotic gradients, then incubated to generate 

resistant mutants. After 7 days, mutants were harvested and passed through three successive flat plates containing sub-

inhibitory concentrations of the initial antibiotic. (B) Flat plates improve bacterial fitness in GEN resistant cells, as 
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measured by distance swam (n= 16). (C) Following SAGE bacteria are resistant at or above clinical breakpoints. Red 

lines indicate the resistance breakpoints (n= 15 for POL, n= 16 for all other antibiotics). (D) Heatmap showing CS 

interactions between drugs. Bacteria are resistant to the drug labelled on the top of a column, and the label on the 

bottom shows CS readouts towards that drug. CS and CR are shown on a log2 scale. *p<0.05, ***p<0.001, 

***p<0.0001, two-way ANOVA with Tukey’s multiple comparisons test. 

 

PIP CS in GEN resistant replicates and TIG CS in POL resistant replicates occurred frequently, 

with little to no cross-resistance (CR) (Figure 5.2D). PIP resistant strains showed moderate GEN 

CS, while CIP resistant strains showed GEN CS in only 1/16 replicates. Our GEN – PIP CS results 

reinforce previous reports that aminoglycoside – β-lactam pairs exhibit reciprocal CS [128,337], 

but some reported CS interactions, such as between CIP – GEN [53], may either be infrequent or 

be mitigated via compensatory evolution. 

 

Table 5.2 Mutations in the PIP and PIP-GEN adapted strains that affect efflux and the electron transport 

chain respectively. 

A 

 PIP resistant  

Gene Function Ref. 

mprA Negative regulator of the multidrug transporter operon emrAB. [166] 

acrR Regulator of RND efflux pump components AcrAB. [340] 

marR Repressor of the multiple antibiotic resistance operon marRAB. [165] 

 

B 
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 PIP-GEN resistant  

Gene Function Ref. 

clsC Cardiolipin synthase C, supports respiratory supercomplex organization. [341] 

ubiD Involved in ubiquinone biosynthesis. [342] 

arcB Aerobic respiration control sensor protein, member of the two-component 

regulatory system ArcB/ArcA. 

[343] 

fre NAD(P)H-flavin reductase, involved in transmembrane electron transfer. [344] 

 

5.2.2. Forward CS does not promote extinctions, resistance drops or resensitizations in clonal 

populations 

With a collection of strains with complete CS (POL – TIG), almost no CS (CIP – GEN), and a mix 

of both CS and CR (PIP – GEN and GEN – PIP) we then evaluated whether forward CS improves 

extinction rates and/or promotes resistance drops and resensitizations, by subjecting each resistant 

replicate to the second drug in its series (Figure 5.2A). We considered strains as resensitized to 

antibiotic A when both the following conditions were met: 1) resistance drops at least 4x from 

prior evolved MICs and 2) the MIC reduced to the clinical breakpoint or below. We set a strict 

definition for resensitization to accommodate for possible discrepancies due to random 2-fold MIC 

changes [307]. Strains were considered extinct when cells could not be recovered after extraction 

from within 1.5 cm of the end of the SAGE plates. 

 

We found that both the GEN – PIP and PIP – GEN pairs caused 8/16 of the replicates to go extinct 

(Figure 5.3A), even with significant differences in the prevalence of forward CS (Figure 5.2D). 
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The extinctions occurred despite compensatory evolution in the flat plates, indicating a stable 

hurdle in adaptation to the second drug. The failures were not due to the antibiotic challenge alone, 

as generation of resistance to GEN or PIP in WT populations resulted in no extinctions (Figure 

5.3A). The other two drug pairs did not show any extinctions, including the POL – TIG pair, which 

had ubiquitous forward CS (Figure 5.2D).  

 

To maintain the sample size for subsequent tests with the GEN – PIP and PIP – GEN pairs, extinct 

replicates were re-run using the same SAGE setup. This allowed recovery of 6/8 of the extinct 

replicates in the GEN – PIP pair, but only 1/8 in the PIP – GEN pair, the pair with lower incidence 

of forward CS (Figure 5.3A, 2D). We found no association between the replicates that went extinct 

and their CS status towards drug B in the GEN – PIP and PIP – GEN pairs (Figure 5.3B). This 

suggests that factors outside CS may drive extinctions in a sequential regimen. 
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Figure 5.3 Extinctions, MIC reductions and resensitizations in drug pairs. 

(A) The GEN – PIP and PIP – GEN pairs cause frequent extinctions (n= 16 for both pairs). (B) Extinctions cannot be 

correlated with the incidence of CS (Fisher’s exact test). (C) The GEN – PIP pair does not cause a significant reduction 

in GEN MIC (n= 16 after evolution to GEN, n= 14 after evolution to PIP). (D) and (E) PIP – GEN and CIP – GEN 

cause a 2x reduction in median PIP and CIP resistance, respectively (n= 16 after evolution to PIP and CIP, n= 9 after 

evolution to GEN following PIP and n= 16 after evolution to GEN following CIP resistance). (F) The POL – TIG pair 

causes reliable resensitization and a large POL resistance drop (n= 15). Red lines indicate the resistance breakpoints. 
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(F) and (G) Extinctions cannot be correlated with the incidence of CS (Fisher’s exact test). Resen = resensitizations. 

*p<0.05, ****p<0.0001, Mann-Whitney test. 

 

To test the link between CS and reduced levels of resistance we first measured drug A resistance 

levels after exposure to drug B in the extant replicates. The GEN – PIP pair produced no significant 

drop in median resistance levels following PIP evolution, with 2/14 replicates resensitized to GEN 

(Figure 5.3C). The PIP – GEN and CIP – GEN pairs produced a 2-fold reduction in median drug 

A resistance, and 1/9 and 2/16 resensitizations respectively (Figure 5.3D, E). POL – TIG showed 

a remarkable 64x reduction in median POL resistance, achieving resensitizations in all 16 

replicates (Figure 5.3F).  

 

Next, we looked for associations between forward CS and drug A resistance drops. However, only 

1/16 CIP resistant replicates showed GEN CS in the CIP – GEN pair, while all POL resistant 

replicates were resensitized to POL. Insufficient CS in the CIP – GEN pair,  and the presence of 

only resensitized replicated in the POL – TIG pair made them unsuitable for this analysis. From 

the GEN – PIP and PIP – GEN pairs, we found no associations between the number of strains with 

reduced drug A resistance and forward CS (Figure 5.3G). This suggests forward CS may not play 

a significant role in resistance mitigation in a sequential regimen when clonal populations are 

involved. Overall, we found that the GEN – PIP and PIP – GEN pairs can cause reliable bacterial 

extinctions, with 3/4 drug pairs tested producing significant drug A resistance drops. However, 

extinctions and resistance drops were not associated with drug B CS, and resensitizations remained 

low. 
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5.2.3. Backward CS can drive resistance drops 

First, we showed that removal of antibiotic pressure does not resensitize bacteria to PIP or CIP 

(Supplementary Figure 5.1, supplementary figure 5.2). To explain the mechanism that drove the 

resistance drops we first looked into the PIP – GEN pair, in which 5/9 replicates showed reduced 

PIP MIC after exposure to GEN (Figure 5.3C). GEN resistance is known to partially arise via 

mutations that weaken the proton motive force (PMF) [124] which may disrupt the efflux-driven 

PIP resistance [345]. To test if PIP resistance is driven by efflux in our strains, we first sequenced 

three replicates after PIP exposure from the PIP – GEN pair (Figure 5.2A). Two of the three PIP-

adapted strains showed mutations in genes known to affect efflux: mprA [346], marR [347], or 

acrR [340]  (Figure 5.4A, Table 5.2A). All three strains also displayed CR to the antibiotics 

chloramphenicol (CHL) and tetracycline (TET) and the organic solvent hexanes. (Figure 5.4C, D, 

E). CHL, TET and hexanes are all known substrates of efflux pumps in E. coli, indicating increased 

efflux capacity in the PIP-adapted strains [348–350]. 
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Figure 5.4 GEN resistance disrupts efflux-mediated PIP resistance. 

(A) and (B) Mutations identified in 3 strains. Genes boxed in red are involved in efflux activity or the electron transport 

chain (Table 5.2). (C) and (D) PIP-resistant strains are cross-resistant to CHL and TET, suggesting efflux upregulation 

in these strains. “PIP-GEN” strains that were sequentially adapted to PIP and GEN have on average increased CHL 

and TET susceptibility. (E) Hexanes tolerance test. All strains show good growth under mineral oil. The WT failed to 

grow under hexanes, while PIP resistant strains 2 and 3, and to a lesser extent, strain 1, showed growth on the undiluted 

spots. This ability is almost entirely lost upon GEN adaptation, suggesting efflux disruption. Representative picture 

from 3 independent experiments.  
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To elucidate the effects of GEN resistance, we then sequenced three strains after GEN adaptation 

(Figure 5.2A). All three acquired mutations in fusA (Figure 5.4B), which codes for the elongation 

factor G and is known to confer gentamicin resistance [351]. Additionally, every strain acquired 

mutations in genes involved in the electron transport chain: clsC [341], ubiD [342], arcB [343], or 

fre [344] (Table 5.2B). CHL resistance, TET resistance, and solvent tolerance all dropped 

following GEN adaptation (Figure 5.4C, D, E), showing that these mutations negatively affect 

efflux. The backward CS towards PIP that frequently arises with GEN resistance (Figure 5.2D, 

first column) may hence stem from a reduction in efflux. The median drop in PIP resistance levels 

after exposure to GEN also corresponds to the magnitude of backward PIP CS exhibited by WT 

cells resistant to GEN (Figure 5.2D first column, 5.3D). 

 

To test if backward CS can also explain the resistance drops in CIP – GEN and POL – TIG pairs, 

we separately evolved 16 replicates against GEN and TIG to check the presence of backward CS 

towards CIP and POL respectively. GEN resistance imposed CIP CS in 13/16 strains (2x CS in 

10, 4x CS one and 8x in two) (Figure 5.2D). Efflux is important in CIP resistance [352], and the 

efflux weakening effects of GEN resistance (Figure 5.4 C-E) could also be imparting the CIP CS. 

Again, the increase in CIP sensitivity in the CIP – GEN pair was equal to the magnitude of 

backward CIP CS (Figure 5.3E, Figure 5.2D, second column). Based on these results, we suggest 

that backward CS may disrupt resistance in A – B drug pairs, increasing drug A sensitivity. The 

effect of TIG resistance was more complex.  
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5.2.4. POL resensitization is multifactorial 

TIG resistance caused 2x POL CS in 5/16 strains and ≥4x CS in 2/16 strains (our limit of detection 

was 0.0625 μg/mL; MIC assays with wells clear at 0.0625 μg/mL were recorded as ≥4x CS) 

(Figure 5.2D, sixth column). Reciprocal CS between POL and TIG has been reported in E. coli 

before [337], but the mechanism of CS remains unknown. The resensitizations in the POL – TIG 

pair were generally stronger than the backward CS we observed, and with half of the POL – TIG 

replicates lacking CS (Figure 5.2D), backwards CS alone could not explain the median 64x 

increase in POL susceptibility. As POL MICs were measured after TIG SAGE evolutions and the 

flat plates (step 9 in Figure 5.5), it is possible that the change in susceptibility was due to 

heteroresistance or compensatory mutations [353]. To identify the experimental stage at which the 

POL resensitizations occurred, we first revived four randomly selected POL resistant strains and 

passaged them five times through antibiotic free soft agar plates (Figure 5.5A, Supplementary 

figure 5.1). We measured POL MICs after each passage (Figure 5, 2 to 6), and found a maximum 

2x reduction in POL MICs (Figure 5.5B). Next, we revived the same four lineages from frozen 

stocks, but this time from stages 7 - 10 (Figure 5.5A) and measured their POL MICs. 1 out of the 

4 strains was resensitized to POL during or immediately after evolution against TIG, while the rest 

showed a 0-4x reduction at this stage (Figure 5.5B). POL susceptibility in the other three strains 

was restored over the first TIG flat plate, which caused a 2-128x reduction in POL resistance. 

Subsequent TIG flat plates had no effect (Figure 5.5B). This suggests that cells with both POL and 

TIG resistance take evolutionary paths that promote phenotypic resistance reversion above what 

is achievable through the simple removal of POL selection pressure [123,141]. 
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Figure 5.5 Resensitization of POL resistant strains. 

(A) Scheme showing the steps of POL and TIG sequential resistance evolution. Numbers represent the stages at which 

POL MICs were performed. (B) POL MICs at different stages of evolution. 

 

5.3. Discussion 

In this study we investigated four drug pairs proposed for cyclic therapy, generating 16 

independent replicates of E. coli that were sequentially adapted to each drug in the pair. Owing to 

our large sample sizes, we were able to produce data on the reliability of these cyclic therapies i.e., 

the frequencies at which they drive extinctions and resensitizations and the frequencies they fall 

to escape mutants that generate multidrug resistance. 
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We found varying degrees of extinctions in these pairs. GEN – PIP and PIP – GEN appeared to be 

potent drug pairs since both the pairs drove 50% of the bacterial populations extinct (Figure 5.3A). 

However, other proposed drug pairs like CIP - GEN [53] and POL - TIG [337] exhibited no 

extinctions, highlighting the importance of large scale laboratory evolutions to determine drug 

pairs that hinder resistance. 

 

The GEN - PIP drug pair produced no significant reduction in resistance (Figure 5.3C). Looking 

at the spread of the data, the importance of a large data set becomes clear. While a number of 

strains ended up losing resistance, an almost equal number of strains either retained or gained 

resistance, making small sample sizes vulnerable to biases.  

 

Optimal drug pairs for cyclic therapies are thought to have been ones with forward CS 

[53,128,354]. Contrary to this, we found no significant associations between forward CS and 

bacterial extinction or antibiotic resensitization. Evolution of resistance to GEN led to frequent 

PIP CS (Figure 5.2D) but cells with and without PIP CS were equally likely to have reduced GEN 

resistance following evolution to PIP (Figure 5.3G). While PIP exposure did render half of the 

lineages extinct (Figure 5.3A), extinction was not correlated with the presence or absence of CS 

(Figure 5.3B). In contrast, backward CS appeared to promote reduction resistance levels. Both the 

PIP – GEN and CIP – GEN pairs had high rates of backward CS and reductions in drug A resistance 

following the evolution of resistance to drug B (Figure 5.2D, Figure 5.3D, E). Our genomic 

analyses and efflux activity measurements showed that increased PIP sensitivity in the PIP – GEN 

pair was driven by the disruption of efflux capacity (Figure 5.4, Table 5.2), and may have also 
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played a role in CIP CS. Backward CS was present, but not identified, in a prior study of CS pairs 

with reciprocal CS interactions [128], and our work suggests that backward CS may be partly 

responsible for the resensitizations seen in that study. 

All SAGE evolutions were conducted over a fixed period, with mutants extracted after seven days 

of incubation from within 1.5 cm of the end of the plates. This design allowed us to set a fixed 

benchmark to report adaptation rates and extinctions, but does not allow us to comment on if the 

speed at which resistance evolved was affected by the presence of CS. Future studies that track 

movement in SAGE plates could potentially answer this question. 

The POL – TIG pair showed a 100% rate of POL resensitization, producing an impressive 64x 

drop in median POL resistance levels. While backward CS was also observed in this pair (Figure 

5.2D, first reported by Imamovic et al. as reciprocal CS [337]), the magnitude of POL resistance 

reductions exceeded what would be expected from CS alone. Our results indicated that multiple 

mechanisms contributed to POL resensitization: removal of POL selection, adaptation to TIG, and 

probably most importantly, compensatory evolution in the POL and TIG resistant populations. 

These resensitizations may be especially relevant for chronic diseases in which TIG and either 

POL or the polymyxin B analogue colistin see current use [355], such as cystic fibrosis  [356]. 

Taken together, we suggest that backward, but not forward, CS may play an important role in 

reducing resistance levels in drug pairs. The weakening of efflux mechanisms upon exposure to a 

second antibiotic, as seen in the PIP – GEN, and possibly the CIP – GEN pair, may provide an 

approach for developing more effective sequential drug therapies aimed at reducing resistance. We 

also provide support for the idea that an aminoglycoside – β-lactam pair can frequently promote 

bacterial extinction. Our results highlight the importance of thorough laboratory investigation of 
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drug pairs and of considering the directionality of CS interactions when designing sequential drug 

therapies to build pairs more resilient against bacterial evolution. 

5.4. Materials and Methods 

5.4.1. Bacterial strain and growth conditions 

E. coli K-12 substr. BW25113 and all subsequent resistant mutants were grown in Mueller Hinton 

(MH) media at 37 °C. Growth media was supplemented with appropriate antibiotics when growing 

mutants or extracting mutants from SAGE plates.  

5.4.2. SAGE Evolutions 

SAGE plates were set up to generate resistant mutants as described before [69]. All SAGE plates 

were made with Muller Hinton (MH) media + 0.15% agar + 0.2% xanthan gum (XAM) [71]. 

Antibiotic concentrations are listed in the table below, and were determined from trial SAGE 

experiments to evolve strains with MICs above clinical breakpoints within seven days. All SAGE 

plates were incubated for a fixed duration of seven days. Mutants were extracted from within 1.5 

cm of the end of the lanes by pipetting 20 μL of the gel into Muller Hinton (MH) broth 

supplemented with the challenge antibiotic at a concentration = 2x the WT MIC (Table 5.1). 

Extracts were taken from regions with clear signs of growth. If no growth was apparent, extracts 

were pipetted from a random site within 1.5 cm of the end of the lane. A replicate was considered 

extinct if no growth was visible after overnight incubation in the antibiotic-supplemented MH 

broth.  
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Antibiotic Concentration (μg/mL) 

GEN 5 

PIP 40 

CIP 1 

POL 10 

TIG 5 

 

5.4.3. MIC assays 

MICs were measured using the microdilution method outlined by the CLSI [214]. Dilutions of 

antibiotics were prepared in MH broth and inoculated with bacteria at a final concentration = 1/200 

of 0.5 McFarland standardized inoculum in non-treated 96-well plates. Plates were then incubated 

overnight and the MIC was recorded as the lowest concentration of antibiotic that prevented visible 

bacterial growth. 

5.4.4. Flat plates 

Flat plates were prepared as previously described [107]. First, the MIC of the antibiotic that was 

in prior SAGE plates was determined for all strains that completed their SAGE plates. Next, we 

created flat lanes specific for each strain by pouring ∼12 mL of XAM supplemented with the 

antibiotic at a concentration = ½ the MIC of that strain in a lane of a four-well dish. This allowed 

maintenance of the SAGE-evolved resistance phenotype during compensatory evolution. XAM 

media was used for all flat plates. Plates were inoculated as described before [69]. Each replicate 

passed three consecutive flat lanes (Figure 5.2A, Figure 5.5). The first flat plate was incubated for 
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two days, and the second and the third for one day (Figure 5.2A). The 16 GEN resistant strains 

were used to determine the appropriate flat plate incubation times, and all three passes for these 

strains were incubated for three days instead (Figure 5.3B). Extractions were carried out as 

described in the “SAGE evolutions” section, but were not limited to the 1.5 cm region of the end 

of the lanes. Instead, cells were extracted from where the cells had moved the farthest. 

 

5.4.5. Whole genome sequencing and analysis 

Genomes were extracted from strains revived from frozen stock using the Bio Basic genomic DNA 

kit (Cat. no.: BS624). Sequencing and variant calling was performed by Seqcenter (USA). 

Sequencing was performed on an Illumina NextSeq 2000, and demultiplexing, quality control, and 

adapter trimming was performed with bcl-convert (v3.9.3). Variant calling was carried out using 

Breseq under default settings (80). NCBI reference sequence CP009273.1 for E. coli K-12 substr. 

BW25113 was used for variant calling. Figures showing common mutations in the three strains in 

Figure 5.4A and B were made using the R package ggvenn. For the PIP-GEN resistant strains, 

mutations acquired during PIP adaptation were removed before analysis. 

 

5.4.6. Hexanes tolerance assay 

The solvent tolerance test was performed using a protocol adapted from Ikehata et al [357]. 

Overnight cultures for each strain were diluted 103 and 106 times in MH broth and 5 μL spotted on 

MH agar surface. Spots were allowed to air dry, then the surface was either covered with ~3 mm 

of hexanes (ACS Grade, Caledon Laboratory Chemicals, SKU: 5500-1-40) or mineral oil. Plates 
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were sealed with parafilm and left in the fume hood to incubate for five days at room temperature. 

Plates needed refilling with hexanes every day due to evaporation. 

 

5.4.7. Antibiotic free soft agar plates 

Plates were prepared similarly to the flat plates described before but without antibiotics. Strains 

were inoculated on one end of these plates and were incubated for one day. Strains were then 

extracted, cultured in antibiotic free MH broth and inoculated in a second plate. This process was 

repeated to achieve a total of five passes (Supplementary Figure 5.1).  Broth cultured extracts were 

also streaked on antibiotic free MH petri plates. Cells from petri plates were used to perform MIC 

tests. 
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6.1. Introduction 

 

Bacterial infections claim 7.7 million lives each year, of which 4.95 million are associated with 

antibiotic resistance [335]. The slow pace of antibiotic development is failing to keep up with 

bacterial evolution, pushing us towards a post-antibiotic era [358–360]. Tipping the scales in our 

favor in the fight against antibiotic resistance will require alternative strategies beyond the 

discovery or invention of new drugs to combat antibiotic resistance. One potential approach to 

slow down resistance evolution is to employ existing drugs in a sequence, with drugs administered 

one after the other at either predetermined times or as resistance arises [83,117]. Experimental and 

computational evolution studies indicate that sequential antibiotic regimens can constrain 

resistance evolution [86,128,303,361–363], and incorporation of collateral sensitivity (CS) is 

thought to allow maintenance of sensitivity to the alternating drugs indefinitely [52,84,128,364].  

 

Unfortunately, studies on the effectiveness, importance and repeatability of CS have produced 

mixed results [134]. Some experimental evolution studies report repeatable CS interactions 

[128,152,303], while others show weak reproducibility [54,132,137,140,152]. Reports also 

suggest that sequential antibiotic therapy can constrain resistance evolution independently of CS 

[140,141]. While the effect of CS on resistance evolution is anchored in several excellent studies 

which have identified a number of possible drug pairings, most pairings have been experimentally 

verified using a relatively limited number of evolutionary replicates (2-8 replicates in general) 

[52,128,361]. Reproducibility is critical for the use of CS in the clinic, and the evolutionary trade-
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offs that are at the core of sequential or cyclic regimens must be repeatable. Absent large scale 

experimental evolution studies, it is unclear which drug cycles will fail, how often they will fail, 

and whether those failure rates can be limited. 

 

In a previous study [306], we showed that in a gentamicin (GEN) - piperacillin (PIP) pairwise 

cycle previously suggested for cyclic therapies [52,128], GEN resistant Escherichia coli lineages 

frequently evolved hypersensitivity towards piperacillin (PIP) but subsequent PIP evolution failed 

to reverse resistance or reduce adaptation rates, predominantly producing multidrug resistant 

mutants instead. The repeatability of CS evolution was low even in some previously reported CS-

pairs, and there was a lack of complete antibiotic resensitization in most of the pairs tested [306]. 

This showed that CS interactions often fall apart due to lack of repeatability of evolution, and that 

pairwise cycles often do not achieve the level of resensitization required for cyclic regimens. 

 

In this study, we ask if mutants that fail to be resensitized in a pairwise cycle can be salvaged, with 

susceptibility to one or both of the initial antibiotics restored. Although resistant mutants possess 

strong selective advantages in environments containing the antibiotic of interest, those mutations 

render them less fit in antibiotic free environments [75,107]. Reversion to susceptibility is then 

favoured, either through competition by naive cells or by compensatory mutations that enhance 

fitness but lower resistance levels (phenotypic reversion) [141,194,365]. As it is infeasible to 

prescribe an antibiotic-free period during an ongoing infection, we instead incorporate a third 

antibiotic into the series, creating a tripartite loop (Figure 6.1A). We choose this third drug with a 

mechanism of action distinct from the other two, limiting the potential for cross resistance 

[366,367]. We evolve replicates of Escherichia coli K-12 substr. BW25113 (wildtype, WT; n = 
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16) through experimental tripartite loops using a soft agar gradient evolution (SAGE) based 

platform [69]. The large sample size allows us to capture repeatable evolutionary outcomes. 

Because compensatory evolution can frequently mitigate the effects of evolutionary trade-offs 

[108–111], we include “flat plates” after every evolution step (Figure 1A). Flat plates have been 

previously shown to reveal robust fitness trade-offs [252,306]. Using this setup, we find that 

evolution of nitrofurantoin (NIT) resistance reliably restores GEN susceptibility in bacteria 

resistant to GEN and PIP when bacteria are evolved against drugs in the order GEN-PIP-NIT. This 

loop is effectively bidirectional, with NIT resistant bacteria reliably resensitized through a NIT-

PIP-GEN loop. This effect is not limited to NIT, as a suboptimal drug like doxycycline (DOX), 

against which the majority of the GEN and PIP-resistant strains were cross-resistant, was able to 

reinstate GEN sensitivity. We find that to bypass the fitness loss associated with multidrug 

resistance, cells rewire their metabolic pathways, concurrently restoring susceptibility to the first 

drug in the series. All resensitizations we observe occur independently of CS interactions between 

component drugs in the loop. Extending our strategy to clinical strains, we then restore NIT 

sensitivity in clinical E. coli isolates that were initially resistant to NIT via sequential evolution 

against PIT (piperacill1in/tazobactam) and GEN. Resensitization occurs even when bacteria 

bypass chromosomal PIP adaptations by mutating β-lactamases. Overall, we demonstrate that in 

some cases the multidrug resistance that arises in pairwise loops can be reversed by extending to 

tripartite loops, experimentally validating a path to more effective and more resilient cyclic 

antibiotic therapies.  
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6.2. Results 

6.2.1. Tripartite drug loops that resensitize bacteria to antibiotics 

We previously reported using soft agar gradient evolution (SAGE) to generate 16 independent 

replicates of Escherichia coli K-12 substr. BW25113 (WT) resistant to both GEN and PIP [306], 

a drug pair previously proposed to promote resensitization [52,128]. Out of the 16 strains, two 

strains went extinct during PIP evolution, while the majority of the remaining 14 maintained 

resistance to GEN (Figure 6.1B) (Supplementary Figure 6.1A, F) [306]. In this study, we screened 

for drugs that could resensitize these strains to GEN, extending our experimental design to 

incorporate evolution against a third drug “C” (Figure 6.1A). We used SAGE to evolve resistance 

to antibiotics [241], and after each stage of evolution, resistant lineages entered flat plates 

containing sub-inhibitory concentration of the challenge antibiotic (Figure 1A). We incorporated 

flat plates into our experimental design to prioritize evolutionary trade-offs that are less susceptible 

to compensatory evolution [252,306]. Fitness costs linked to resistance mutations are well-

documented, but “cost-free” mutants frequently emerge in the clinic by offsetting these costs 

through compensatory mutations [108–111]. If laboratory-generated resistance-associated trade-

offs can be readily alleviated, their therapeutic potential may be limited. We previously showed 

that flat plates can generate fitter mutants through compensatory evolution rapidly, ameliorating 

fitness deficits [252,306]. Any trade-offs associated with the evolution of resistance in this study 

are therefore expected to be resilient against compensatory mutations. 
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Figure 6.1 Tripartite loops improve antibiotic resensitization. 

(A) SAGE is used to study three-drug cyclic regimens or tripartite loops. Bacteria were inoculated into soft agar 

containing antibiotic gradients to generate resistant mutants (n = 16). SAGE plates were incubated for a fixed duration 

of 7 days, after which mutants were harvested and passed through three “flat plates” containing the same antibiotic 

from the prior SAGE plate at a concentration = ½ the evolved MIC of the mutants. The incubation period for each flat 

passage is noted in the figure. MIC and CS profiles of mutants were determined after the end of the flat plates. (B) 

GEN MICs of strains that passed through the GEN-PIP-NIT tripartite loop. The y-axis denotes the GEN MICs and 

the x-axis denotes the sequence of antibiotics against which the strains were evolved. For example, the GEN-PIP bar 
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shows the GEN MICs of strains that were sequentially evolved to GEN and PIP (as shown in (A)). (C) NIT MICs of 

strains that passed through the NIT-PIP-GEN loop. Resen = resensitization counts. Dotted red lines indicate the 

clinical breakpoint (EUCAST). Bars represent the median MICs. **p<0.01, ****p<0.0001, Kruskal-Wallis with 

uncorrected Dunn’s test. 

 

Evolution of NIT resistance reduced the GEN resistance of seven out of eleven strains to or below 

the clinical breakpoint, while driving three lineages extinct (Supplementary Figure 6.1A), with a 

median 8-fold drop in GEN MIC (Figure 6.1B, Supplementary Figure 6.1F). To account for 

possible random fluctuations in MIC measurements [307] affecting resensitization counts, we 

defined antibiotic resensitization as a four-fold or greater reduction in MIC compared to levels 

evolved when they first encountered the antibiotic, in addition to reduction at or below the clinical 

breakpoint. Using this definition, NIT resistance resensitized six out of eleven strains to GEN 

(Figure 6.1B). 

 

To determine the effect of subsequent evolution against GEN, we subjected the six strains to GEN 

SAGE plates again, keeping the concentration of GEN equal to their first exposure. Although 

resensitized, the GEN MIC of these strains were 2-4-folds higher than the WT, making this a 2-4-

fold smaller GEN challenge than the one faced by the WT (Supplementary Figure 6.1F). While 

we achieved a 100% evolution rate following the first GEN SAGE plate with WT bacteria 

(Supplementary Figure 6.1A) [306], 3/6 lineages went extinct in this second exposure 

(Supplementary Figure 6.1B).  This shows that not only were these strains resensitized to GEN, 

but their ability to develop GEN resistance was also impaired. 
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When we measured NIT resistance in the three surviving mutants, we observed a 4-fold to 16-fold 

reduction in NIT resistance levels, rendering all three strains resensitized to NIT (Supplementary 

Figure 6.1D). This hinted at a possibility of bidirectionality in this loop, where GEN and NIT 

resistance were mutually exclusive. To test this at scale, we restarted our evolution experiments 

with 16 replicates, this time evolving resistance sequentially to NIT, PIP and then GEN. Following 

evolution against GEN we saw a ~5-fold reduction in median NIT resistance (Figure 6.1C). Nine 

out of 12 strains that completed this challenge fell at or below the NIT resistance breakpoint, with 

7/12 reaching resensitization (Figure 6.1C) (Supplementary Figure 6.1G). There were no 

extinctions on exposure to NIT or PIP, but four strains went extinct during GEN evolution 

(Supplementary Figure 6.1C).  

 

When strains were evolved sequentially to PIP, GEN and NIT, NIT had no significant impact on 

PIP susceptibility (Supplementary Figure 6.1E). This showed that ordering of GEN, PIP and NIT 

was critical for achieving resensitization, but when applied correctly produced significant 

resensitizations. 

 

6.2.2. PIP resistance is important for resensitization 

Stratifying results from each step of the GEN-PIP-NIT loop by final GEN MIC revealed that 

strains which were ultimately resensitized to GEN exhibited decreased GEN resistance following 

PIP adaptation, while those that maintained GEN resistance after NIT were unchanged by 

evolution against PIP (Figure 6.2A, B). Similarly, stratifying NIT resensitized and resistant strains 

from the NIT-PIP-GEN loop revealed that PIP evolution reduced NIT resistance by 2-fold in the 

resensitized strains, but not in the resistant ones (Figure 6.2C, D). Overall, strains evolved through 
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an intervening PIP evolution step exhibited a 4-fold reduction in GEN resistance on NIT exposure, 

as opposed to a 2-fold difference when the PIP step was omitted (Figure 6.1B, 6.2E). This suggests 

that the incorporation of a third drug allows for resensitizations which would not be possible in 

pairwise loops. 
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Figure 6.2 PIP aids resensitization in tripartite loops. 

(A) GEN MICs of GEN-resensitized and (B) GEN-resistant strains that passed through the GEN-PIP-NIT loop. (C) 

NIT MICs of NIT resensitized and (D) resistant strains that passed through the NIT-PIP-GEN loop. *p<0.05, 

**p<0.01, ***<p<0.001, ****p<0.0001, Kruskal-Wallis with uncorrected Dunn’s test. (E) GEN MIC of strains that 

passed through a PIP-GEN-NIT tripartite loop. MICs after the PIP step are not shown. For all graphs, the y-axis 

denotes the MICs and the x-axis denotes the sequence of antibiotics against which the strains were evolved before 

measuring the MICs. For example, the PIP-GEN-NIT bar shows the GEN MICs of strains that were sequentially 

evolved to PIP, GEN and NIT.**p<0.01, Mann Whitney test. Bars represent the median MICs.  

 

6.2.3. Resensitizations are independent of CS and principally mitigate fitness loss 

To identify the driver of GEN resensitizations in the GEN-PIP-NIT loop, we first examined the 

effect of forward CS [306] to NIT. To avoid missing even a weak connection between CS and 

resensitizations we included all strains that showed any reduction in GEN resistance upon NIT 

evolution in the analysis.  

 

We found no correlation between NIT CS in the GEN and PIP multidrug-resistant strains and 

reductions in GEN resistance (Figure 6.3A, B: left column; Supplementary Figure 6.1F: GEN 

MICs panel). To test if backward CS [306] helped resensitize bacteria to GEN, we evolved 16 WT 

strains to NIT (flat plates included) and measured their GEN CS. The concept of forward and 

backward CS in sequential regimens was recently defined [306]. Briefly, in a sequential therapy 

transitioning from GEN to PIP, for example, if resistance to GEN leads to CS to PIP (i.e., CS from 

GEN to PIP), this is referred to as forward CS since the CS aligns with the direction of drug 

switching. If resistance to PIP results in CS to GEN (CS from PIP to GEN) and the sequence of 

drug application remains GEN to PIP, we describe this as backward CS as the CS runs opposite to 
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the direction of evolution. When CS occurs in both directions, the drug pair is said to exhibit 

reciprocal CS [130]. It is important to note that the designation of CS as forward or backward is 

always relative to the direction of drug switching. 

 

Only 6/16 of these strains showed 2-fold CS to GEN (and just one with 2-fold PIP CS) (Figure 

6.3B; Supplementary Figure 6.1G: GEN MICs panel). In contrast, >50% of the strains were 

resensitized to GEN in the GEN-PIP-NIT loop, with a median 4-fold drop in resistance (Figure 

6.1A). This remained true for the NIT-PIP-GEN loop, with few CS interactions between the drugs 

(Supplementary Figure 6.1G). The resensitizations we observed appeared to be largely 

independent of forward CS, and while backward CS may have played a role, it was not strong 

enough to resensitize strains to the extent that we observed.  

 

To test if the specific mechanism that conferred NIT resistance drove GEN resensitization, we 

evolved GEN-PIP multidrug-resistant lineages against doxycycline (DOX), a tetracycline 

antibiotic with a different mechanism of action from NIT, GEN, or PIP [368] (n = 8) . Despite 

most of the eight mutants showing cross-resistance to doxycycline (Figure 6.3C), 5/8 strains 

dropped their GEN resistance to or below the resistance breakpoint, with 3/8 reaching 

resensitization (Figure 6.3D). This provided further support that switching treatment to drugs 

towards which bacteria exhibit CS is not required for resensitization, and indicated factors other 

than specific resistance pathways contributed to the resensitizations we observed.  

 

Next, we hypothesized that the cumulative fitness costs of maintaining multiple drug resistance 

may promote the adoption of evolutionary paths that ameliorate these costs, resulting in phenotypic 
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reversion. To test this, we measured strain fitness after each evolution step in the GEN-PIP-NIT, 

NIT-PIP-GEN and PIP-GEN-NIT tripartite loops, using area under growth curves (AUC) as a 

proxy for fitness (Supplementary Figure 6.2) [107,140]. In the GEN-PIP-NIT loop we found only 

a small drop in average fitness after each evolution step, which did not reach statistical significance 

(Supplementary Figure 6.2A). However, stratifying strains on the basis of resensitization to GEN 

revealed a clear difference in fitness (Figure 6.3E-G). Strains that were resensitized to GEN upon 

NIT evolution either saw small gains or marginal losses in fitness (Figure 6.3E, G), while those 

that retained GEN resistance lost significantly more fitness on average, with none gaining fitness 

(Figure 6.3F, G).  

 

The results of the NIT-PIP-GEN loop were less clear. We observed large fitness losses after every 

step of evolution, with the evolution of GEN resistance in particular producing extremely unfit 

mutants (Supplementary Figure 6.2B). Two of the seven NIT resensitized strains exhibited 

moderate to large fitness gains upon GEN evolution but none of the five NIT resistant strains did 

(Supplementary Figure 6.2D-F). However, the differences in ΔAUC between the resensitized and 

resistant groups did not reach statistical significance (Supplementary Figure 6.2F).  

 

Strains from the PIP-GEN-NIT loop showed a large fitness drop as they moved from PIP to GEN, 

but did not show a significant change in fitness following NIT evolution (Supplementary Figure 

6.2C). Given the increased burden of resistance to three separate antibiotics, we expected that a 

constant AUC would correspond to significant resensitization. However, only one lineage 

exhibited increased PIP susceptibility, and that was following GEN evolution, not NIT 

(Supplementary Figure 6.1E). Looking more closely into the MIC profiles of these strains revealed 
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that while there were no significant changes in PIP susceptibility, 7/8 strains had increased GEN 

susceptibility following NIT exposure (Figure 6.3C). As GEN resistance was consistently 

associated with the largest fitness penalties (Supplementary Figure 6.2), this may have off-set a 

fitness penalty from acquiring NIT resistance, while leaving the less costly PIP resistance 

unchanged. Overall, the tripartite loops led to higher fitness costs and increased resensitization 

compared to pairwise loops. 

 

Figure 6.3 Resensitization does not correlate with CS but mitigates fitness loss. 

(A) Contingency table for the 11 strains which evolved NIT resistance through the GEN-PIP-NIT loop, showing no 

associations between CS and GEN resensitizations. Fisher’s exact test. (B) First column: NIT CS of the GEN and PIP 
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evolved mutants from the GEN-PIP-NIT loop. Second column: GEN and PIP CS of WT bacteria evolved to NIT. CS 

interactions are reported on a log2 scale. (C) DOX MICs of an eight strain subset of the GEN and PIP evolved mutants 

from the GEN-PIP-NIT loop. CS interactions are reported on a log2 scale. The y-axis denotes the ID of the strains 

that were picked for DOX MIC testing. (D) GEN MICs of the subset that passed through the GEN-PIP-DOX loop. 

The x-axis denotes the sequence of antibiotics against which the strains were evolved before measuring GEN MICs. 

For example, the GEN-PIP-DOX bar shows the GEN MICs of strains that were sequentially evolved to GEN, PIP and 

DOX. Dotted red line indicate the clinical breakpoint. Bars represent the median MICs. *p<0.05, Mann Whitney test. 

(E) and (F) AUCs of strains before and after NIT evolution for GEN-resensitized and GEN-resistant strains 

respectively. The x-axis denotes the sequence of antibiotics against which the strains were evolved before measuring 

AUCs. GEN-PIP = before NIT evolution, GEN-PIP-NIT = after NIT evolution. ΔAUC is the average of the difference 

between post and pre NIT AUCs. For the GEN resistant group, we considered every strain that did not meet our 

resensitization criteria as resistant. This resulted in the inclusion of one strain that was below the GEN resistant 

breakpoint but did not reach our resensitization standard. Red arrows indicate the strains that were sequenced. (G) 

ΔAUC of individual strains plotted, grouped by resensitized and resistant. Horizontal lines represent the mean. 

**p<0.01, unpaired t test.  

 

6.2.4. Whole genome sequencing sheds light on resistance and resensitization mechanisms 

To understand the genetic basis of the resistance and resensitization observed, we sequenced the 

genome of six lineages from the GEN-PIP-NIT loop: three that were resensitized to GEN and three 

that remained resistant to GEN after NIT evolution (Supplementary Figure 6.1D). Each lineage 

was sequenced following every evolution experiment (Figure 6.1A), allowing us to reconstruct all 

six evolutionary trajectories (Figure 6.4A-D). 

 

Five of the six lineages acquired their initial GEN resistance through mutations in the translation 

elongation factor G, fusA, mutations that are known to reduce gentamicin’s ability to bind to the 
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ribosome (Figure 6.4A) [369]. Even though both the GEN resensitized and resistant groups 

evolved similar GEN MICs (Supplementary Figure 6.1F), the resensitized strains contained 

multiple additional mutations in genes involved in the electron transport: hemL [370], cydA [371], 

cydD [372], menC [373], and atpG [374] (Figure 6.4A). Mutations in the electron transport chain 

can provide GEN resistance either by disrupting drug uptake or reducing ribosomal protein levels 

[375,376]. 
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Figure 6.4 Tracking genomic changes through the GEN-PIP-NIT loop. 

(A) - (D) Venn diagrams show overlapping and unique mutations in the GEN-resensitized and GEN-resistant strains 

from the three strains sequenced. The label on the left denotes when the strains were sequenced, with the most recent 

evolution step highlighted. Mutations that appeared in one step were carried forward to the next step, but are only 

displayed the first time they appeared in this figure. Strikethroughs denote mutations that appeared in a prior step but 

were not present in the current step. Underlined mutation in D, strain 3 represents a newly acquired mutation absent 

from strain 3 in C. (E) Venn diagram showing all overlapping and unique mutations between the GEN resensitized 

and GEN resistant group, pooled from every step (GEN-PIP-NIT only). (F) and (G). GO term enrichment analysis of 

unique mutations in the GEN resensitized and GEN resistant groups. 
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Five out of the six lineages acquired mutations in the efflux regulators acrR and marR following 

exposure to PIP, changes known to confer β-lactam resistance (Figure 6.4B) [377]. Mutations in 

the resensitized group also included other genes involved in β-lactam resistance such as cpxA and 

cyaA [378,379]; genes involved in carbon, amino acid, and vitamin metabolism: cra [380], leuA 

[381], pdxH and thiH [382,383]; and the ribosomal genes rsmG and rpsM [384,385] (Figure 6.4B). 

The resistant group did not show any clear mutations in genes involved in metabolism or the 

ribosome.  

 

All NIT-resistant mutants acquired mutations in one or more of the genes involved in NIT 

resistance: nfsA, nfsB [386], sulA (essential for NIT resistance in lon mutants) [123], ompR [387] 

and ompC [388,389] (Figure 6.4A). Both GEN-resensitized and GEN-resistant lineages showed 

multiple mutations involved in transmembrane transporters. The resensitized group acquired 

mutations in genes involved in the sugar phosphotransferase transport system: fruB [390] and nagE 

[391], which also have putative roles in aminoglycoside uptake [81], while the resistant strains 

gained mutations in metal ion, amino acid and peptide transporters instead: cusB [392], fepG [393], 

pitA [394], dptB [395], and pheP [396] (Figure 6.4A). A gentamicin uptake assay suggested that 

these transport related mutations in the GEN resensitized strains may have slightly increased GEN 

penetration, but the results did not reach statistical significance (Supplementary Figure 6.3) 

 

To elucidate how differences between the GEN-resensitized and GEN-resistant groups could affect 

their propensity towards resensitization, we first identified overlapping and unique mutations 

between the two groups following NIT evolution (Figure 6.4E). Common mutations were mostly 
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those known to confer resistance to GEN, PIP, or NIT, as discussed above. To categorize the 

remainder, we ran GO term enrichment analyses on the non-overlapping gene sets. Every hit from 

the resensitized group that was above the enrichment FDR cutoff was involved in metabolic 

processes (Figure 6.4F), whereas no significant enrichment was found in the resistant group. 

Manually removing the FDR cutoff (by setting it to 0.99) identified processes involved in transport 

and DNA-binding (Figure 6.4G). Mutations in metabolic processes are often involved in 

compensatory evolution to mitigate fitness costs and phenotypic reversion of resistance [397–400], 

which supports our observation of the little to no loss (but rather a slight increase) in fitness in the 

GEN resensitized strains (Figure 6.3C), in contrast to the significant fitness loss in the resistant 

group (Figure 6.3D). These genomic and fitness outcomes suggest that cells become resistant to 

antibiotics using similar mechanisms, but bifurcate at the level of fitness cost compensation. Cells 

that adopt pathways that help mitigate their fitness losses also reverse their resistance to the earlier 

drugs, strongly suggesting a correlation between the two phenotypes. 

 

Since we also saw a surprising drop in NIT resistance after reacquisition of GEN resistance from 

the GEN-PIP-NIT-GEN series in all three non-extinct lineages, (Supplementary Figure 6.1D), we 

looked at the genome sequence of these NIT resensitized strains (Figure 6.4D). After reacquisition 

of GEN resistance, the genomic profile of the three strains looked almost identical (Figure 6.4C 

and D) except that strain 1 was replaced by a mutant with an intact fruB gene possibly via elevation 

of a low frequency mutant in the population, while strain 2 reverted its nagE mutation (Figure 

6.4D). Both genes are involved in sugar transport. It is unclear how reversion of these mutations 

allowed GEN resistance reacquisition. There are no direct reports of nitrofurantoin being 

transported inside the cell via these transporters, but both nagE and fruB have been reported to 
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carry other drugs like streptozotocin and fosfomycin [401,402]. Since the nagE and fruB mutations 

are the only differences between the GEN-sensitive-NIT-resistant and GEN-resistant-NIT-

sensitive strains (Figure 6.4C and D), it is likely that these mutations play a role in GEN and/or 

NIT resistance levels. 

 

6.2.5. NIT-PIP-GEN loop reduces clinically acquired NIT resistance 

To test if a tripartite loop can reduce clinically acquired drug resistance, we obtained four 

previously reported NIT-resistant uropathogenic E. coli clinical isolates [403]: strains A, B, C and 

D (renamed for this study) (Figure 6.5A). The strains were all resistant to NIT at varying levels 

(Figure 5B-E), and were isolated using sampling criteria designed to avoid repeated collection of 

the same isolates [403]. Next, we started sequential SAGE evolutions with eight replicates for each 

strain (Figure 6.5A). Three of the four strains (A, C, and D) were confirmed to have β-lactamase(s) 

via MIC testing (PIP MIC > 64 μg/mL, PIP/tazobactam MIC ≤ 4/4 μg/mL), so we opted to replace 

the PIP SAGE plates with PIT (PIP/tazobactam) plates which contained the same PIP 

concentrations used in the rest of study in combination with a flat tazobactam concentration of 4 

μg/mL throughout the plate [404]. Subsequent GEN SAGE plates remained the same. These strains 

showed an extinction pattern similar to our NIT-PIP-GEN evolutions using the laboratory strain, 

with PIT evolution not incurring any extinctions and GEN evolution causing a ~31% extinction 

(10/32 strains extinct) comparable to the 25% with the laboratory strain (Supplementary Figure 

6.1C) (Supplementary Figure 6.4A). 
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Figure 6.5 The NIT-PIP-GEN loop reduces clinically acquired NIT resistance. 

(A) Four uropathogenic clinical E. coli strains resistant to NIT were used to start sequential PIT and GEN evolution. 

Each strain started 8 replicates in SAGE. The rest of the experimental evolution design remained identical to the one 

used for the laboratory strain. (B), (C), (D) and (E) NIT MICs of the clinical replicates post GEN adaptation. The 

dotted line represents NIT MICs of the parental strain pre SAGE adaptation. Labels on the x-axis denote the parental 

strain of the replicates for which the MICs are displayed. **p< 0.01, ****p<0.0001, one sample t-test. (F) PIP, PIP 

and PAV MICs of five clinical replicates after PIT exposure. PIT = piperacillin + tazobactam (4 μg/mL), PAV = 

piperacillin + avibactam (4 μg/mL).  The y-axis denotes the strain ID where A5 = the 5th replicate from strain A. 
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Post GEN evolution, strain A showed a 4-fold median reduction in NIT resistance with 5/8 

replicates showing MICs of 128 μg/ML, two dropping to 64 μg/mL (below the NIT clinical 

breakpoint), and one going extinct (Figure 6.5B) (Supplementary Figure 6.4A). Strain B showed 

a 2-fold median reduction in NIT resistance, with 5/8 strains dropping to 128 μg/mL down from 

256 μg/mL of the parent strain and two going extinct (Figure 6.5C) (Supplementary Figure 6.4A). 

5/8 replicates of strain C went extinct (Supplementary Figure 6.4A), and the rest of the replicates 

did not show a significant drop in NIT resistance, and neither did the six surviving replicates of 

strain D (Figure 6.5D, E). 

 

6.2.6. Bypassing chromosomal adaptations against PIP does not abolish resensitizations 

When we measured PIT MICs of the clinical replicates after PIT SAGE plates, we noticed 

resistance levels that were 8-16-folds higher (Supplementary Figure 6.4B) than the PIP resistance 

levels we observed after PIP SAGE plates using our laboratory strain (Supplementary Figure 6.1F, 

G). These high resistance levels were limited to strains A and D, and to a smaller extent C, which 

were also the strains that contained at least one β-lactamase that inactivated PIP. All 8 replicates 

of Strain B, which was originally sensitive to PIP (and hence did not require tazobactam for PIP 

activity) evolved an MIC of 16 μg/mL, similar to the laboratory strain. This led us to hypothesize 

that instead of chromosomal adaptations against PIP during the PIT exposure, the β-lactamase 

bearing strains may have mutated their β-lactamase to resist tazobactam instead.  

 

We picked five of these PIT resistant strains and measured their PIP MICs, but this time in 

combination with the non-β-lactam β-lactamase inhibitor avibactam (at a flat concentration of 4 

μg/mL) (PAV) [405]. Addition of avibactam increased PIP sensitivity by 64-128 folds, returning 
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MICs to within 2-fold of the PIP MICs of the parental strain (Figure 6.5F)  (Supplementary Figure 

6.4B), indicating that the PIP resistance was mediated by a change in the β-lactamase that allowed 

cells to bypass inhibition by tazobactam. Replicate B5 also saw a small 4-fold drop in PIP 

resistance which may be due to the modest antibacterial activity of avibactam against E. coli [406]. 

Despite avoiding chromosomal adaptations to PIP, we still observed almost identical extinction 

frequencies in all four clinical strains (Supplementary Figure 6.1C) (Supplementary Figure 6.4A) 

and frequent and significant resistance drops in strains A and B (Figure 6.5B, C). 

 

6.3. Discussion 

Cyclic antibiotic therapies have been proposed as a way to combat the rise of antibiotic resistance 

[128,303,361–363]. The success of such regimens is thought to hinge on CS interactions between 

the component drugs [52,84,128,364]. However, to date, CS has seen no application in the clinic 

since its first description in 1952 [51] and since its proposed benefits in cyclic therapies, partly 

because of the unreliability and rarity of CS [54,132,137,152]. In a previous study we showed that 

CS, when applied in the correct direction during cyclic therapies, can help resensitize bacteria to 

antibiotics [306]. However, we observed that the repeatability of CS evolution was low even in 

drug pairs with reported CS interactions, typified by small resistance drops and low resensitization 

frequencies, which may readily lead to the emergence of multidrug-resistant mutants [306].  

 

In this study, we explored the potential of extending pairwise regimens to longer “tripartite loops”. 

We found that the tripartite loop GEN-PIP-NIT significantly improved resensitization frequencies 

as compared to the previously proposed GEN-PIP pairwise loop [52,128,306], going from ~14% 

[306] to ~54%  of lineages (Figure 6.1B). The loop was also invertible, with NIT-PIP-GEN reliably 
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resensitizing bacteria to NIT (Figure 6.1C). Resensitizations were independent of CS (Figure 6.3A, 

B) (Supplementary Figure 6.1F, G), and did not appear to be driven by NIT-specific resistance 

mutations. The resensitization was at least partially independent of drug identity, as extending the 

GEN-PIP loop with DOX, against which the bacteria showed cross-resistance, produced GEN-

resensitized strains (Figure 6.3C, D).  

 

When GEN-resensitized strains from the GEN-PIP-NIT loop were subjected to GEN again, we 

found that the antibiotic posed a significant evolutionary challenge, with three out of the six strains 

going extinct during SAGE (Supplementary Figure 6.1B). We did not observe extinctions when 

WT bacteria were exposed to GEN (Supplementary Figure 6.1A), implying that multidrug-

resistant bacteria have constrained evolutionary paths that limit further resistance development. In 

fact, the three mutants that were able to reacquire GEN resistance dropped their NIT resistance in 

the process, showcasing the difficulty in maintaining multiple resistance mechanisms.  

 

Unlike in the laboratory, rapid drug cycling in patients may not be possible due to pharmacokinetic 

factors [86], and the resulting longer evolutionary periods can allow for compensatory evolution 

which can mitigate evolutionary trade-offs like CS [134,137,407]. While this complicates CS-

based cyclic therapies, our study shows that compensatory evolution can be leveraged to drive 

phenotypic reversion of resistance. We tracked fitness of resensitized and resistant bacteria 

throughout our tripartite loops, demonstrating that the sequential adaptation to three antibiotics 

increased fitness penalties compared to pairwise loops (Supplementary Figure 6.2), possibly due 

to the need to carry multiple independent resistance phenotypes. Strains could overcome this 

fitness loss through resensitization, e.g. to GEN (Figure 6.3E, Figure 6.4), or could persist with 



 

152 

 

poor growth (Figure 6.3F) [407]. This interplay was also apparent in the PIP-GEN-NIT loop, again 

through resensitization of GEN (Figure 6.3D). Since GEN evolution imposed the largest penalties 

in our experiments, it appears to be ideal for incorporation into drug cycling protocols. Our GO 

term enrichment analyses also clearly show evidence of metabolic rewiring associated with 

compensatory evolution [397–400] in resensitized strains that are missing from the resistant ones 

(Figure 6.4F, G), and the fitness and genomic analyses taken together suggests a strong association 

between compensatory evolution and resistance reversion.  

 

In further support of longer cyclic regimens, we showed that despite the fact that PIP evolution 

failed to produce significant resensitizations (Figure 6.1B, C) (Supplementary Figure 6.1 F, G) 

[306], it aided in bringing down resistance to the initial drug in both the GEN-PIP-NIT loop and 

NIT-PIP-GEN loops (Figure 6.2A-D), which turned to full resensitizations after evolution against 

the last drug in the series. Additionally, tripartite loops continued to drive bacterial extinction 

(Supplementary Figure 6.1A - C), reinforcing prior work on sequential regimens [128,306]. 

 

When we compared the NIT resistant vs NIT resensitized strains from the GEN-PIP-NIT-GEN 

sequence (Figure 6.4D), we discovered that the genomes of the two groups were almost identical, 

except that the NIT resensitized strains reinstated two sugar transporter mutations.  Elucidation of 

the exact mechanism of NIT resensitization will require further studies, but our data suggests a 

possible, previously unreported role for sugar transporters in NIT resistance (Figure 6.4C, D). 

 

Our results from the evolutions using uropathogenic clinical strains show that our suggested 

tripartite loops may be effective even against diverse genetic backgrounds and when resistance 
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evolution is complicated via plasmid-bound evolution, showing potential for translation into the 

clinic. Overall, we suggest that tripartite loops can improve antibiotic resensitization and allow 

continuation of antibiotic cycling even if pairwise cycles fail, without being limited by CS 

requirements. With our antibiotic development pipeline failing to keep up with resistance 

emergence, such cyclic therapies may prolong the lifespan of our existing antibiotics. 

 

6.4. Materials and Methods 

6.4.1. Bacterial strain and growth conditions 

Escherichia coli K-12 substr. BW25113 and the evolved lineages were cultured in Muller Hinton 

(MH) media at 37 °C. Antibiotics were added to the growth media as needed to grow or isolate 

resistant mutants from SAGE plates. The clinical samples were streaked on tryptic soy agar (TSA) 

plates containing 64 μg/mL of NIT, and pure cultures were obtained by transferring a single colony 

from each strain onto MH agar plates. These were then used for all subsequent experiments. 

 

6.4.2. SAGE evolutions 

Evolutions were performed as previously described [145,306]. SAGE evolved mutants were 

extracted from within 1.5 cm of the end of the plates after seven days of incubation into MH broth 

containing the challenge antibiotic at a concentration = 2x the WT MIC. Strains were considered 

extinct when they could not be recovered after extraction from within 1.5 cm of the end of the 

SAGE plates [306]. Mutants that went extinct were given a second chance at evolution using the 

same parameters as before. This allowed us to maintain a larger sample size through the extinction 

events that occurred at different steps of evolution, and we report both the initial and final 
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extinction counts (Supplementary Figure 6.1A - C). Antibiotic concentrations in SAGE are listed 

below, and were determined from trial SAGE experiments to reliably evolve strains with MICs 

above the clinical breakpoints for each antibiotic [339]. 

 

Antibiotic Concentration (μg/mL) 

GEN 5 

PIP 40 

NIT 80 

 

6.4.3. Susceptibility testing 

Minimum inhibitory concentrations (MIC) of antibiotics were determined using the broth 

microdilution method as described by the CLSI [214]. Antibiotics were diluted in MH broth, then 

serially diluted across 96 well plates. Bacteria were inoculated at a concentration of 1/200 of a 0.5 

McFarland standard. Plates were incubated overnight at 37 °C without shaking, and the MIC was 

recorded as the lowest antibiotic concentration that prevented visible bacterial growth. For PIT 

and PAV MICs, tazobactam or avibactam respectively was added at a fixed concentration of 4 

μg/mL to all the wells in the test plates [404,405]. 

 

6.4.4. Flat plates 

Flat plates were prepared as previously described [306]. First, the evolved MIC of the antibiotic 

used in the preceding SAGE plates was determined for all strains that completed SAGE evolution. 
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Next, specific lanes were created for each strain by pouring approximately 12 mL medium 

supplemented with the antibiotic at half the MIC of that strain into four-well dishes. This allowed 

for the maintenance of the resistance gained from SAGE during compensatory evolution. Each 

replicate underwent three consecutive passages on these flat plates (Figure 6.1A). The first plate 

was incubated for two days, and the second and third plates for one day (Figure 6.1A). Unlike 

during SAGE evolutions, where extractions were limited to within the final 1.5 cm of the plates, 

cells from flat plates were extracted from the farthest point of growth. PIT flat plates contained 

tazobactam at a fixed concentration of 4 μg/mL in combination with appropriate [PIP] [404]. 

 

6.4.5. Fitness measurements 

Growth curves for each strain were made by tracking absorbance readings at 595 nm of 1/100 

dilutions of overnight cultures using a plate reader (Tecan Sunrise) for 24 h. Plate lids were treated 

with 0.05% Triton X-100 in 20% ethanol to reduce fogging [212]. AUCs were calculated using 

GraphPad Prism. 

 

6.4.6. Whole genome sequencing 

Genomic DNA was extracted using the Bio Basic genomic DNA kit (Cat. no.: BS624). Sequencing 

and variant calling were performed by Seqcenter (USA) on an Illumina NextSeq 2000, and 

demultiplexing, quality control, and adapter trimming were performed with bcl-convert (v3.9.3). 

Variant calling was performed using Breseq under default settings [295]. NCBI reference sequence 

CP009273.1 was used for variant calling. Common mutations were identified using custom R 

scripts and Venn diagrams were based on the output of the R package ggvenn.  
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6.4.7. Term enrichment analysis 

To identify pathways affected by the mutations observed, ShinyGO v0.81 

(https://bioinformatics.sdstate.edu/go/) was used. For GEN resensitized strains, the following 

parameters were used: Species: Escherichia coli str. K-12 substr. MG1655 STRINGdb; DB: Go 

Biological processes; FDR: Default of 0.05. Resistant strains produced no result using these 

parameters. These parameters were modified by removing the FDR cutoff to produce the results 

shown in Figure 6.4G. The modified parameters were: DB: GO Molecular Function;  FDR: set to 

0.99. 

 

6.4.8. Gentamicin uptake assay 

Gentamicin uptake was measured using a modified version of a previously reported protocol [408]. 

300 μL of overnight bacterial cultures were transferred into 30 mL of MH broth in conical flasks 

and incubated at 37 °C with 250 rpm shaking until log phase was reached. The log phase of each 

strain was estimated from their growth curves. OD at 600 nm was then measured for each strain, 

and cells were either concentrated or diluted to reach an OD of 0.4. 100 μL of cells were transferred 

into microcentrifuge tubes, and GEN was added at a concentration of 100 μg/mL. Tubes were 

allowed to incubate at 37 °C with 1000 rpm shaking on a heat block for 15 minutes. Tubes were 

then chilled on ice for five minutes, then centrifuged at 12,000 g for two minutes. 5 μL of the 

supernatants were used to spot WT E. coli seeded MH agar plates, and left to air dry. Plates were 

incubated overnight, then photographed from a fixed distance of 29 cm. Images were analyzed by 

fitting circles around the inhibition zones and measuring the area in px2 using ImageJ [409]. 
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Measurements were taken from 6 independent replicates for each strain. The three resensitized 

strains that were sequenced (Supplementary Figure 6.1F) were also used to perform this test. 
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Chapter 7. General Discussion 
 

Antibiotic resistance is fundamentally an evolutionary challenge, requiring solutions grounded in 

evolutionary principles. In this work, I demonstrated how large-scale laboratory evolution can help 

us understand this problem better, and how we can use the knowledge gained to build antibiotic 

therapies that are resilient against evolution. By exploring the dynamics of resistance evolution 

and its associated trade-offs from over a thousand laboratory-generated mutants across various 

drug sequences, I shed light on how fitness costs of resistance shape the outcomes of sequential 

antibiotic regimens.  

 

7.1. Key Findings 

 

A platform for discovering fitness costs of resistance that are resilient against compensatory 

evolution was developed. 

In chapter 2, I showed that growth impairments associated with resistance evolution can impede 

the evolution of subsequent resistance, and that this effect may be applicable in a variety of 

antibiotics and bacteria. Since compensatory evolution is a powerful means by which bacteria 

escape the effects of the fitness costs of resistance, I reported a simple, soft agar gradient evolution 

(SAGE)-based method to discover trade-offs that are stable against compensatory evolution. 

 

Xanthan gum massively reduces synaeresis from agar-based hydrogels. 

Synaeresis, the spontaneous expulsion of water from agar hydrogels, causes significant loss of 

growth-promoting properties of solid growth medium during long incubations, and limits the 

evolution of resistance in SAGE. In chapter 3, I reported that the addition of xanthan gum can 

reduce synaeresis by ~70% in low-strength agar-based media, and can significantly enhance 

resistance evolution in SAGE. 
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“Evolution proof” antibiotics may just be “laboratory-evolution proof”. 

In chapter 3, I described the evolution of de novo resistance to the antibiotic tridecaptin A1 via an 

improved SAGE method, an antibiotic against which resistance evolution was not reported despite 

previous laboratory evolution attempts. Antibiotics such as tridecaptin A1 have been labelled 

“evolution proof”, but my results suggested that failures to generate resistance in the laboratory 

may be more related to the experimental evolution methods used. If history is any guide, evolution 

will continue to find ways to overcome our antibiotics. The real question is whether we can stay 

ahead by predicting the evolutionary paths it might take. 

 

SAGE evolutions better predict clinical collateral phenotypes. 

In chapter 4, I reported results from large scale evolution of antibiotic resistance and collateral 

phenotypes (collateral sensitivity and cross-resistance) using three different evolution platforms: 

serial transfer based, gradient plating-based, and SAGE. Upon comparison, I found that SAGE 

produced very few instances of collateral sensitivity but exhibited cross-resistance and neutrality 

at high frequencies when compared to the other platforms. This resembled collateral interactions 

identified from a clinical dataset of over 750 clinical uropathogenic multidrug resistant E. coli 

strains.  

 

SAGE predicted a collateral sensitivity relationship found in the clinic. 

In chapter 4, I found that SAGE showed significant CS in only one out of the four drug pairs 

investigated: a tigecycline (a third generation tetracycline) and polymyxin B pair. We observed a 

significant association between increasing omadacycline (a third generation tetracycline) 
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resistance and reduced colistin (polymyxin E) resistance in a clinical dataset of multidrug resistant 

E. coli strains.  

 

A novel mechanism of collateral sensitivity was discovered. 

In chapter 4, I explained how resistance to tigecycline can make cells hypersensitive to polymyxin 

B. I showed that tigecycline-resistant cells inactivate the Lon protease, leading to overproduction 

of negatively charged exopolysaccharides and enhancing binding of the polycationic antibiotic 

polymyxin B, rendering cells hypersensitive to it. 

 

Large scale evolutions are essential for accurate prediction of repeatable collateral sensitivity. 

In chapter 5, I found that reported collateral sensitivity interactions can have very low repeatability. 

A ciprofloxacin - gentamicin pair with reported collateral sensitivity produced only ~6% collateral 

sensitivity when 16 independent evolutionary replicates were probed. Repeatability is essential for 

application of evolutionary strategies in the clinic to combat resistance. My experimental design 

provides a platform for large scale screening for the evolution of repeatable collateral phenotypes. 

 

Forward and backward collateral sensitivities were defined for the first time, revealing that only 

backward collateral sensitivity plays a critical role in resensitization. 

I broke down reciprocal collateral sensitivity into forward and backward collateral sensitivities in 

reference with the direction of sequential therapy in chapter 5. Forward collateral sensitivity was 

found to not be significantly associated with antibiotic resensitizations, while backward collateral 

sensitivity appeared to play a major role. 
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Tigecycline resistance causes a dramatic 64-fold polymyxin B-resensitization. 

In chapter 5, I discovered that polymyxin B resistant E. coli were completely resensitized to 

polymyxin B when tigecycline resistance developed. Every one of the 16 evolutionary replicates 

were resensitized, with an average 64-fold drop in polymyxin B resistance. In addition with the 

tigecycline - polymyxin B relationship I reported in chapter 4, this drug pair appears to be a potent 

drug pair with strong reciprocal CS interactions with potential for clinical application. 

 

A novel, collateral sensitivity-independent sequential regimen termed “tripartite loop” was 

described that exploits cumulative fitness costs to repeatably guide bacteria towards 

resensitization. 

In chapter 5, I showed that complete antibiotic resensitizations below clinical breakpoints are rare 

in pairwise sequential regimens. In chapter 6, I developed extended sequential antibiotic regimens, 

termed “tripartite loops”, designed to resensitize bacteria by exploiting cumulative fitness costs. I 

described tripartite loops composed of the clinically relevant drugs gentamicin, piperacillin and 

nitrofurantoin and showed that sequential evolution of resistance through these sequences 

repeatably resensitized bacteria to antibiotics below clinical breakpoints. This strategy proved 

more effective than pairwise regimens and was successful in multidrug-resistant clinical isolates, 

even when evolution was complicated via plasmid-bound mutations. 

 

7.2. Limitations 

 

Before investigating the role of collateral sensitivity in sequential antibiotic therapies, I dedicated 

significant effort, detailed in chapters three and four, to developing the SAGE platform and 

validating its clinical relevance. While SAGE offers important insights into resistance and 

collateral phenotypes, it remains an in vitro model and cannot fully replicate the complexities of 
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real infections. Advancing towards more physiologically relevant experimental evolution 

platforms will be important to test the broader applicability and translational potential of these 

findings. 

 

One of the primary goals of this study was to bring to light evolutionary trade-offs that appear 

frequently and are generalizable across different genetic backgrounds of E. coli. This was done 

through inclusion of a large number of independent evolutionary replicates and different clinical 

isolates. Since evolution is highly dependent on the genetic background [410,411], extending these 

results to other bacterial pathogens will require further validation. 

 

Results from this work showed that the accumulating fitness burden of acquiring multiple drug 

resistances was associated with antibiotic resensitizations. Further experimental work will be 

necessary to establish a causal relationship between fitness penalties and antibiotic resensitization. 

 

Chromosomal mutations are a major driver of antibiotic resistance [412–414] and formed the 

primary focus of this thesis. However, horizontal gene transfer of mobile genetic elements 

(MGEs), such as plasmids, also plays a significant role in the spread of resistance. Understanding 

how MGEs influence the outcomes of sequential antibiotic treatments will be an important 

direction for future research. 

 

 

7.3. Future Work 

 

Specialized culture media that mimic infection environments like the cystic fibrosis lung [415] and 

intracellular vacuoles of macrophages [416] have been developed to better reflect in vivo 
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conditions. In fact, some excellent work has been done recently on developing mice as in vivo 

models of evolution [417]. However, conducting large-scale evolution experiments directly in in 

vivo models will be challenging and impractical for early-stage discovery of robust evolutionary 

trade-offs. A more feasible and powerful approach will be to integrate physiologically relevant 

media into platforms like SAGE, enabling high-throughput screening under infection-mimicking 

conditions. Promising candidates identified through this strategy can then be advanced to in vivo 

validation, an essential next step to confirm their relevance in real-world infections and move them 

closer to clinical application. 

 

WHO’s critical and high-risk bacterial pathogens list includes Acinetobacter baumannii, multidrug 

resistant Enterobacterales, Salmonella Typhi, Shigella spp, Enterococcus faecium, Pseudomonas, 

aeruginosa, Neisseria gonnorrhoeae and Staphylococcus aureus. This study focused on E. coli, a 

representative of multidrug-resistant Enterobacterales. The evolutionary and sequential antibiotic 

strategies developed here can serve as a blueprint for tackling other clinically significant pathogens 

on this list. 

 

In chapter 2, I described an experimental framework to discover evolutionary trade-offs that are 

stable against compensatory evolution. Identifying such trade-offs is essential since trade-offs in 

the clinic are often neutralized via compensatory evolution. Expanding the search for discovering 

more robust trade-offs can improve the availability of optimal antibiotic sequences for wider 

application. 
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In chapters 4 and 5, I identified the polymyxin–tigecycline pair as a powerful reciprocal drug 

combination capable of driving dramatic antibiotic resensitization, with promising potential for 

clinical application in resistance management. While chapter 5 explores key contributors to this 

effect, the exact mechanism remains unclear. A multiomics approach applied on the large number 

of mutants produced in this work can help shed light into the mechanism of this exciting drug pair. 

 

SAGE evolution experiments in this study were carried out over a fixed seven-day period. This 

standardized experimental design enabled consistent benchmarking of adaptation rates and 

extinction events. However, it limited our ability to assess whether the presence of collateral 

sensitivity influenced the speed of resistance evolution. Future studies that track bacterial 

movement across the SAGE plates could provide valuable insights into how CS shapes 

evolutionary kinetics. 

 

Chapter 6 described the identification of a novel, invertible tripartite antibiotic loop composed of 

the clinically relevant antibiotics gentamicin, piperacillin and nitrofurantoin that produced 

antibiotic resensitizations and drove bacterial extinction even when tested against clinical bacterial 

isolates. The experimental design reported in this chapter can be used, possibly with additional 

SAGE media modifications to mimic infection specific conditions, to discover additional tripartite 

loops which can limit resistance during long antibiotic exposures.  

 

The genomic tracking of evolutionary trajectories in chapter 6 uncovered interesting leads, most 

notably, a potential role for the sugar phosphotransferase transport system in modulating resistance 

and hypersensitivity to gentamicin and nitrofurantoin. The system’s ubiquitous presence in 
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bacteria and complete absence in eukaryotes makes it an attractive target for the development of 

new antimicrobials. Uncovering the roles of the mutations in this pathway may open new avenues 

for antibiotic development or antibiotic resensitization strategies. 

 

The described tripartite loop showed exciting potential to resensitize nitrofurantoin resistant 

clinical E. coli isolates. Whole genome sequencing of these mutants to uncover the genetic changes 

and their evolutionary trajectories can provide important information on how resistance reversion 

in clinical strains compares to that observed in laboratory-evolved strains. Such comparisons can 

help us understand the underlying genetic factors that cause bacteria to “phenotypically converge” 

towards antibiotic resensitization and ultimately design evolutionary strategies that repeatably 

hinder resistance evolution. 

 

Acquisition of resistance-conferring plasmids can bypass the need for chromosomal mutations 

[418], potentially avoiding the fitness costs associated with those mutations. However, carrying 

resistance plasmids often imposes its own fitness burden on bacteria [419]. I showed that the 

presence of resistance-coding plasmids in clinical E. coli isolates did not significantly compromise 

the efficacy of tripartite loops. A more detailed investigation into how the fitness costs associated 

with plasmids can be leveraged to manage the spread of resistance, and the influence of plasmids 

on sequential therapies will be important to build robust treatment strategies.  

 

 

7.4. Conclusion 

 

My work advances our understanding of antibiotic resistance evolution and presents the 

importance of the integration of evolutionary principles into the design of antibiotic therapies. 
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Through refinement of the SAGE platform [69], I reported a high-throughput experimental 

evolution platform capable of capturing robust fitness trade-offs that shape bacterial adaptation. 

Leveraging this platform, I showed how resistance-associated fitness costs can slow subsequent 

adaptation, disrupt pathways to resistance evolution and drive resensitization to antibiotics.  

 

A xanthan gum-supplemented SAGE medium massively improved the water-retention capacity of 

the system, improving its resistance generation potential. Using this platform, I challenged the 

notion of “evolution-proof” antibiotics proposed to resist the emergence of resistance. I was able 

to generate mutants resistant to Oct-TriA1, a lipopeptide previously believed to be refractory to 

resistance evolution [146], within nine days. In collaboration with Laura Domínguez Mercado, we 

identified for the first time the genetic mechanism underlying de novo resistance to this compound. 

This finding suggests that no antibiotic is immune to evolution and highlights the need for 

platforms like SAGE to proactively predict resistance mechanisms before clinical deployment. 

Identifying such escape routes early is crucial for guiding preclinical development, surveillance 

planning, and therapy design [218]. 

 

I discovered a clinically relevant collateral sensitivity interaction through the largest experimental 

comparison of laboratory evolution platforms to date. SAGE predicted a rare but robust collateral 

sensitivity between third-generation tetracyclines (tigecycline and omadacycline) and the last-

resort polymyxin-class antibiotics (polymyxin B and colistin). I also explained a previously 

unknown mechanism of collateral sensitivity between these drugs. I showed that resistance to 

tigecycline induced hypersensitivity to polymyxins via Lon protease deactivation and consequent 

overproduction of negatively charged exopolysaccharides, enhancing binding of the cationic 
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drugs. This finding provides one of the few mechanistically supported examples of collateral 

sensitivity with translational potential and highlights the importance of scale and platform choice 

in predicting clinically actionable collateral interactions. 

 

Contrary to prior assumptions, I showed that collateral sensitivity is not a universally reliable 

phenomenon; its repeatability and impact on resistance evolution are highly context-dependent. 

Through a thorough analysis of sequential regimens and dissection of reciprocal collateral 

sensitivity into forward and backward CS, I demonstrated that only backward CS, where resistance 

to the second drug increases susceptibility to the first, consistently contributes to meaningful 

resensitization. However, even these effects were modest in magnitude, prompting a pivot toward 

strategies beyond CS alone. 

 

This led to the development of tripartite antibiotic loops: sequential regimens composed of three 

clinically relevant drugs. I showed that these loops exploit the cumulative fitness burden of 

evolving multiple resistances, forcing bacteria into evolutionary paths that either reverse previous 

resistance or lead to extinction. The loops proved not only repeatable but also robust across diverse 

clinical isolates, including those carrying plasmid-borne resistance determinants. This represents 

a significant advancement in designing evolutionarily resilient therapies capable of resensitizing 

or eliminating multidrug-resistant pathogens. 

 

Collectively, this work highlights the potential of using evolutionary constraints to limit resistance 

evolution. Large-scale experimental evolution can help discover predictable resistance pathways, 

identify stable evolutionary bottlenecks, and guide the rational design of antibiotic regimens that 
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are both durable and translatable. As we face an era of dwindling antibiotic innovation [420], this 

evolution-based framework offers a path ahead for extending the lifespan of our existing drugs 

and restoring their utility against multidrug resistant bacterial pathogens. 
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Appendices 
 

Supplementary Materials for Chapter 2 

 

 
Figure S2.1: Additional growth curves. A STR and a NIT-resistant (NITr and STRr, evolved on 

the wildtype background) strain showed little difference in their growth curves when compared to 

the WT, indicating cost-free resistance mechanisms. 1X - 5X represent the OM cells after 1-5 

passes through flat [CHL] SAGE lanes. Multiple passages through flat [CHL] SAGE lanes did not 

result in significant improvement in fitness, showing that the majority of fitness gains are realized 

after the primary pass. 
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Figure S2.2: (A) WT populations showed little variation in evolution of NIT-resistance in SAGE. 

(B) OM replicates showed large variation in evolution of NIT-resistance in SAGE. (C) Resistance 

to STR evolved in WT populations via a highly repeatable pattern in SAGE. Variation along the 

horizontal axis is random jitter added to separate overlapping points. N = 16 for all SAGE 

evolutions. 
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Figure S2.3: A NIT-evolved 5X (5X-NITr) replicate showed a moderate increase in fitness 

compared to a NIT-evolved OM replicate (OM-NITr). 

 

Table S2.1: We observed no significant difference between the distance moved by the OM in NIT 

SAGE plates inoculated with either stationary phase OM or OM with inoculum size expanded to 

match that of the WT, except for a small statistical significance on day 3. p values are from two-

sample t-tests assuming unequal variances.  

Day Distance moved by 

OM (mm) (overnight 

culture, n = 16) 

Distance moved by OM 

(mm) (inoculum 

standardized, n = 4) 

p value 

1 10.2 10.3 0.919 

2 24.4 23.3 0.556 

3 41.9 33.8 0.047* 
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4 58.5 52.5 0.363 

5 73.2 66.3 0.505 

6 78.6 78.7 0.939 

All other supplementary materials are available here: 

https://pubs.acs.org/doi/10.1021/acsinfecdis.3c00156?goto=supporting-info 

Supplementary Materials for Chapter 3 

 

 
 

Supplementary Figure 3.1: Growth on gelling agents. No growth was observed when E. coli 

cells were streaked on plates made with M9 + 1.5% agar (M9A) or M9A supplemented with 

xanthan gum, guar gum, or pectin at 0.25% w/v following 24 h of incubation. M9A supplemented 

with 1 g/L of glucose showed clear growth. 
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Supplementary Figure 3.2: Synaeresis at various xanthan gum concentrations. Increasing the 

amount of xanthan gum added to 0.15% agar medium reduces water loss, with diminishing returns 

at higher xanthan gum concentrations. A = agar. X = Xanthan gum. *p < 0.05, **p < 0,01, *** p 

< 0.001, ****p < 0.0001, one-way ANOVA with Fisher’s LSD test. 
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Supplementary Figure 3.3: Motility and diffusion assays. (A) Cells swimming through 0.15% 

agar laced with 0.1% xanthan gum show increased motility relative to 0.25 % agar. Representative 

pictures from three independent replicates are shown. (B) Diffusion rate of malachite green in 

0.25% agar and 0.15% agar + 0.1% xanthan gum are similar. 2 μL of malachite green was 

impregnated in the center of each plate (60 x 15 mm) made with 10 mL of media. Measurements 

were taken after 8 h. 
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Supplementary Figure 3.4: Growth of XAM CM in MHB. Cells show a diauxic growth curve. 

The mean of three independent replicates is shown. Error bars indicate standard deviation. 
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Supplementary Table 3.1. Mutations observed in SAGE isolates. 

Strain Position Mutation Annotation Gene Description 

A26 1563034 IS2 (–) +5 bp 

coding 

(43‑47/1320 

nt) yddW ← 

liprotein, glycosyl 

hydrolase homolog 

A26 3206481 G→A 

E26K 

(GAG→AAG) rpoD → 

RNA polymerase, 

sigma 70 (sigma D) 

factor 

A26 3528471 G→T 

R253S 

(CGC→AGC) envZ ← 

sensory histidine 

kinase in 

two‑component 

regulatory system 

with OmpR 

A51 55429 C→T 

G561S 

(GGT→AGT) lptD ← 

LPS assembly OM 

complex LptDE, 

beta‑barrel 

component 

A51 56403 (GTG)3→2 

coding 

(705‑707/2355 

nt) lptD ← 

LPS assembly OM 

complex LptDE, 

beta‑barrel 

component 

A51 572569 (T)6→7 

intergenic 

(‑288/‑285) 

nmpC ← / → 

essD 

DLP12 prophage; 

truncated outer 

membrane porin 

(pseudogene);IS, 

phage, Tn; Phage or 

Prophage Related; 

outer membrane porin 

protein; locus of qsr 

prophage/DLP12 

prophage; putative 

phage lysis protein 
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Strain Position Mutation Annotation Gene Description 

A51 1563034 IS2 (–) +5 bp 

coding 

(43‑47/1320 

nt) yddW ← 

liprotein, glycosyl 

hydrolase homolog 

A51 1999224 T→A 

W11R 

(TGG→AGG) fliT → 

putative flagellar 

synthesis and 

assembly chaperone 

A51 2306089 T→C 

N47S 

(AAC→AGC) ompC ← 

outer membrane porin 

protein C 

A51 2399791 IS2 (–) +5 bp 

coding 

(326‑330/939 

nt) lrhA ← 

transcriptional 

repressor of flagellar, 

motility and 

chemotaxis genes 

A51 3206481 G→A 

E26K 

(GAG→AAG) rpoD → 

RNA polymerase, 

sigma 70 (sigma D) 

factor 

A51 3775555 +A 

coding 

(368/822 nt) cysE ← 

serine 

acetyltransferase 

A51 3931636 C→T 

T17I 

(ACA→ATA) rbsR → 

transcriptional 

repressor of ribose 

metabolism 

X34 55429 C→T 

G561S 

(GGT→AGT) lptD ← 

LPS assembly OM 

complex LptDE, 

beta‑barrel 

component 

X34 240136 T→C 

L36P 

(CTG→CCG) gmhA → 

D‑sedoheptulose 

7‑phosphate 

isomerase 

X34 391960 C→A 

intergenic 

(‑217/‑135) 

ampH ← / → 

sbmA 

D‑alanyl‑D‑alanine‑ 

carboxypeptidase/end

opeptidase; 

penicillin‑binding 
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protein; weak 

beta‑lactamase/microc

in B17 transporter 

Strain Position Mutation Annotation Gene Description 

X34 1563034 IS2 (–) +5 bp 

coding 

(43‑47/1320 

nt) yddW ← 

liprotein, glycosyl 

hydrolase homolog 

X34 1605138 C→A 

intergenic 

(‑201/+26) 

uxaB ← / ← 

yneF 

altronate 

oxidoreductase, 

NAD‑dependent/putat

ive membrane‑bound 

diguanylate cyclase 

X34 3206481 G→A 

E26K 

(GAG→AAG) rpoD → 

RNA polymerase, 

sigma 70 (sigma D) 

factor 

X34 3512437 IS5 (+) +4 bp 

intergenic 

(‑14/+384) 

aroK ← / ← 

hofQ 

shikimate kinase 

I/DNA catabolic 

putative fimbrial 

transporter 

X34 4390177 +T 

coding (73/309 

nt) hfq → 

global sRNA 

chaperone; HF‑I, host 

factor for RNA phage 

Q beta replication 

XAM CM 20771 C→A 

intergenic 

(‑263/+44) 

insA ← / ← 

rpsT 

IS1 repressor 

TnpA/30S ribosomal 

subunit protein S20 

XAM CM 55428 C→T 

G561D 

(GGT→GAT) lptD ← 

LPS assembly OM 

complex LptDE, 

beta‑barrel 

component 

XAM CM 195916 T→A 

L501Q 

(CTG→CAG) bamA → 

BamABCDE complex 

OM biogenesis outer 

membrane 
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pore‑forming 

assembly factor 

Strain Position Mutation Annotation Gene Description 

XAM CM 1563034 IS2 (–) +5 bp 

coding 

(43‑47/1320 

nt) yddW ← 

liprotein, glycosyl 

hydrolase homolog 

XAM CM 1972967 IS5 (+) +4 bp 

intergenic 

(‑513/‑264) 

flhD ← / → 

uspC 

flagellar class II 

regulon 

transcriptional 

activator, with 

FlhC/universal stress 

protein 

XAM CM 2394241 Δ7,687 bp   

[nuoF]–

[alaA] 

[nuoF], nuoE, nuoC, 

nuoB, nuoA, lrhA, 

[alaA] 

XAM CM 2458311 C→T 

W59* 

(TGG→TAG) mlaA ← 

ABC transporter 

maintaining OM lipid 

asymmetry, OM 

lipoprotein 

component 

XAM CM 3206481 G→A 

E26K 

(GAG→AAG) rpoD → 

RNA polymerase, 

sigma 70 (sigma D) 

factor 

XAM CM 3674947 +CA 

coding 

(354/1497 nt) yhjJ ← 

putative periplasmic 

M16 family 

chaperone 

XAM CM 3797305 IS5 (–) +4 bp 

coding 

(190‑193/1080 

nt) waaB ← 

UDP‑D‑galactose:(glu

cosyl)lipopolysacchar

ide‑1, 

6‑D‑galactosyltransfer

ase 

  

Strain Position Mutation Annotation Gene Description 
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XAM_WT 65,196 +C 

coding 

(585/2352 nt) polB ← DNA polymerase II 

XAM_WT 1,652,589 C→A 

Y88* 

(TAC→TAA) ynfE → 

putative selenate 

reductase, periplasmic 

XAM_WT 1,972,715 G→T 

intergenic 

(‑261/‑519) 

flhD ← / → 

uspC 

flagellar class II 

regulon 

transcriptional 

activator, with 

FlhC/universal stress 

protein 

XAM_WT 4,171,661 A→T 

K163N 

(AAA→AAT) rpoB → 

RNA polymerase, 

beta subunit 

 

 

Supplementary Table 3.2: Gene ontology groups from all of the identified mutations of the 

evolved strains determined with ShinyGo v0.741. 

 

Enrichment 

FDR 

N1 Pathwa

y Genes 

Fold 

Enrichme

nt 

Pathway URL Genes 

1.9515679044

1107E-05 

5 16 41.602822

5806452 

Respiratory chain 

complex i 

http://amigo.geneo

ntology.org/amigo/

term/GO:0045271 

nuoF nuoE 

nuoC nuoB 

nuoA 

1.9515679044

1107E-05 

5 16 41.602822

5806452 

Plasma 

membrane 

respiratory chain 

complex i 

http://amigo.geneo

ntology.org/amigo/

term/GO:0045272 

nuoF nuoE 

nuoC nuoB 

nuoA 

1.9515679044

1107E-05 

5 14 47.546082

9493088 

Quinone   nuoF nuoE 

nuoC nuoB 

nuoA 

http://amigo.geneontology.org/amigo/term/GO:0045271
http://amigo.geneontology.org/amigo/term/GO:0045271
http://amigo.geneontology.org/amigo/term/GO:0045271
http://amigo.geneontology.org/amigo/term/GO:0045272
http://amigo.geneontology.org/amigo/term/GO:0045272
http://amigo.geneontology.org/amigo/term/GO:0045272
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Enrichment 

FDR 

N1 Pathwa

y Genes 

Fold 

Enrichme

nt 

Pathway URL Genes 

2.0626349788

9355E-05 

5 17 39.155597

7229602 

NADH 

dehydrogenase 

complex 

http://amigo.geneo

ntology.org/amigo/

term/GO:0030964 

nuoF nuoE 

nuoC nuoB 

nuoA 

9.7016944712

2268E-05 

5 25 26.625806

4516129 

Quinone binding http://amigo.geneo

ntology.org/amigo/

term/GO:0048038 

nuoF nuoE 

nuoC nuoB 

nuoA 

9.7016944712

2268E-05 

5 24 27.735215

0537634 

Plasma 

membrane 

respirasome 

http://amigo.geneo

ntology.org/amigo/

term/GO:0070470 

nuoF nuoE 

nuoC nuoB 

nuoA 

9.7016944712

2268E-05 

5 25 26.625806

4516129 

Respiratory chain 

complex 

http://amigo.geneo

ntology.org/amigo/

term/GO:0098803 

nuoF nuoE 

nuoC nuoB 

nuoA 

0.0001143852

96756409 

4 12 44.376344

0860215 

Quinone   nuoF nuoE 

nuoB nuoA 

0.0001143852

96756409 

5 27 24.653524

4922342 

Respirasome http://amigo.geneo

ntology.org/amigo/

term/GO:0070469 

nuoF nuoE 

nuoC nuoB 

nuoA 

0.0001479219

74039749 

4 13 40.962779

1563275 

Ubiquinone   nuoF nuoE 

nuoC nuoA 

0.0004383166

41715869 

4 17 31.324478

1783681 

NADH 

dehydrogenase 

(ubiquinone) 

activity 

http://amigo.geneo

ntology.org/amigo/

term/GO:0008137 

nuoF nuoC 

nuoB nuoA 

       

http://amigo.geneontology.org/amigo/term/GO:0030964
http://amigo.geneontology.org/amigo/term/GO:0030964
http://amigo.geneontology.org/amigo/term/GO:0030964
http://amigo.geneontology.org/amigo/term/GO:0048038
http://amigo.geneontology.org/amigo/term/GO:0048038
http://amigo.geneontology.org/amigo/term/GO:0048038
http://amigo.geneontology.org/amigo/term/GO:0070470
http://amigo.geneontology.org/amigo/term/GO:0070470
http://amigo.geneontology.org/amigo/term/GO:0070470
http://amigo.geneontology.org/amigo/term/GO:0098803
http://amigo.geneontology.org/amigo/term/GO:0098803
http://amigo.geneontology.org/amigo/term/GO:0098803
http://amigo.geneontology.org/amigo/term/GO:0070469
http://amigo.geneontology.org/amigo/term/GO:0070469
http://amigo.geneontology.org/amigo/term/GO:0070469
http://amigo.geneontology.org/amigo/term/GO:0008137
http://amigo.geneontology.org/amigo/term/GO:0008137
http://amigo.geneontology.org/amigo/term/GO:0008137


 

209 

 

Enrichment 

FDR 

N1 Pathwa

y Genes 

Fold 

Enrichme

nt 

Pathway URL Genes 

0.0005138818

18946486 

4 18 29.584229

390681 

NADH 

dehydrogenase 

(quinone) 

activity 

http://amigo.geneo

ntology.org/amigo/

term/GO:0050136 

nuoF nuoC 

nuoB nuoA 

0.0007432115

09090046 

4 20 26.625806

4516129 

Ubiquinone, and 

fumarate 

reductase 

complex 

  nuoF nuoE 

nuoB nuoA 

0.0008480425

80787152 

4 21 25.357910

906298 

NADH 

dehydrogenase 

activity 

http://amigo.geneo

ntology.org/amigo/

term/GO:0003954 

nuoF nuoC 

nuoB nuoA 

0.0016381721

3050132 

4 25 21.300645

1612903 

Oxidative 

phosphorylation 

  nuoF nuoE 

nuoB nuoA 

0.0024469429

8116853 

4 28 19.018433

1797235 

Oxidoreductase 

activity, acting 

on nad(p)h, 

quinone or 

similar 

compound as 

acceptor 

http://amigo.geneo

ntology.org/amigo/

term/GO:0016655 

nuoF nuoC 

nuoB nuoA 

0.0040019759

6550932 

5 62 10.736212

2788762 

Oxidoreductase 

complex 

http://amigo.geneo

ntology.org/amigo/

term/GO:1990204 

nuoF nuoE 

nuoC nuoB 

nuoA 

0.0063920060

7085923 

7 160 5.8243951

6129032 

Membrane 

protein complex 

http://amigo.geneo

ntology.org/amigo/

term/GO:0098796 

bamA 

ompC nuoF 

nuoE nuoC 

nuoB nuoA 

http://amigo.geneontology.org/amigo/term/GO:0050136
http://amigo.geneontology.org/amigo/term/GO:0050136
http://amigo.geneontology.org/amigo/term/GO:0050136
http://amigo.geneontology.org/amigo/term/GO:0003954
http://amigo.geneontology.org/amigo/term/GO:0003954
http://amigo.geneontology.org/amigo/term/GO:0003954
http://amigo.geneontology.org/amigo/term/GO:0016655
http://amigo.geneontology.org/amigo/term/GO:0016655
http://amigo.geneontology.org/amigo/term/GO:0016655
http://amigo.geneontology.org/amigo/term/GO:1990204
http://amigo.geneontology.org/amigo/term/GO:1990204
http://amigo.geneontology.org/amigo/term/GO:1990204
http://amigo.geneontology.org/amigo/term/GO:0098796
http://amigo.geneontology.org/amigo/term/GO:0098796
http://amigo.geneontology.org/amigo/term/GO:0098796


 

210 

 

Enrichment 

FDR 

N1 Pathwa

y Genes 

Fold 

Enrichme

nt 

Pathway URL Genes 

0.0073435512

0593817 

5 72 9.2450716

8458781 

Translocase   nuoF nuoE 

nuoC nuoB 

nuoA 

0.0112586016

181981 

6 125 6.3901935

483871 

Cell outer 

membrane 

http://amigo.geneo

ntology.org/amigo/

term/GO:0009279 

lptD bamA 

yddW 

ompC mlaA 

hofQ 

0.0113650604

47705 

4 44 12.102639

2961877 

Respirasome, and 

nitrate 

assimilation 

  nuoF nuoE 

nuoB nuoA 

0.0148326303

699135 

6 135 5.9168458

781362 

Outer membrane http://amigo.geneo

ntology.org/amigo/

term/GO:0019867 

lptD bamA 

yddW 

ompC mlaA 

hofQ 

0.0148326303

699135 

6 136 5.8733396

5844402 

External 

encapsulating 

structure 

http://amigo.geneo

ntology.org/amigo/

term/GO:0030312 

lptD bamA 

yddW 

ompC mlaA 

hofQ 

0.0148326303

699135 

6 135 5.9168458

781362 

Macromolecule 

localization 

http://amigo.geneo

ntology.org/amigo/

term/GO:0033036 

lptD bamA 

sbmA 

ompC mlaA 

hofQ 

0.0169037765

170519 

4 52 10.240694

7890819 

Oxidoreductase 

activity, acting 

on nad(p)h 

http://amigo.geneo

ntology.org/amigo/

term/GO:0016651 

nuoF nuoC 

nuoB nuoA 

http://amigo.geneontology.org/amigo/term/GO:0009279
http://amigo.geneontology.org/amigo/term/GO:0009279
http://amigo.geneontology.org/amigo/term/GO:0009279
http://amigo.geneontology.org/amigo/term/GO:0019867
http://amigo.geneontology.org/amigo/term/GO:0019867
http://amigo.geneontology.org/amigo/term/GO:0019867
http://amigo.geneontology.org/amigo/term/GO:0030312
http://amigo.geneontology.org/amigo/term/GO:0030312
http://amigo.geneontology.org/amigo/term/GO:0030312
http://amigo.geneontology.org/amigo/term/GO:0033036
http://amigo.geneontology.org/amigo/term/GO:0033036
http://amigo.geneontology.org/amigo/term/GO:0033036
http://amigo.geneontology.org/amigo/term/GO:0016651
http://amigo.geneontology.org/amigo/term/GO:0016651
http://amigo.geneontology.org/amigo/term/GO:0016651
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Enrichment 

FDR 

N1 Pathwa

y Genes 

Fold 

Enrichme

nt 

Pathway URL Genes 

0.0169037765

170519 

6 142 5.6251703

7710132 

NAD   uxaB nuoF 

nuoE nuoC 

nuoB nuoA 

0.0169037765

170519 

5 92 7.2352734

9228612 

Cell outer 

membrane 

  lptD bamA 

ompC mlaA 

hofQ 

0.0192931642

820252 

6 147 5.4338380

5134957 

Catalytic 

complex 

http://amigo.geneo

ntology.org/amigo/

term/GO:1902494 

nuoF nuoE 

nuoC nuoB 

nuoA cysE 

0.0215782433

841346 

2 6 44.376344

0860215 

Phospholipid 

transport 

http://amigo.geneo

ntology.org/amigo/

term/GO:0015914 

ompC mlaA 

0.0215782433

841346 

2 6 44.376344

0860215 

Regulation of 

organelle 

assembly 

http://amigo.geneo

ntology.org/amigo/

term/GO:1902115 

flhD fliT 

 

Supplementary Table 3.3: Gene ontology groups, high level GO categories, from all of the 

identified mutations of the evolved strains determined with ShinyGo v0.74. 

 

N1 High level GO 

category 

Genes 

27 Cellular process insA1 rpsT lptD bamA gmhA ampH sbmA essD yddW uxaB 

yneF flhD uspC fliT ompC nuoF nuoE nuoB lrhA alaA mlaA 

rpoD aroK hofQ envZ cysE waaB 

21 Binding rpsT gmhA ampH sbmA yneF flhD ompC nuoF nuoE nuoC 

nuoB nuoA lrhA alaA rpoD aroK hofQ envZ yhjJ rbsR hfq 

http://amigo.geneontology.org/amigo/term/GO:1902494
http://amigo.geneontology.org/amigo/term/GO:1902494
http://amigo.geneontology.org/amigo/term/GO:1902494
http://amigo.geneontology.org/amigo/term/GO:0015914
http://amigo.geneontology.org/amigo/term/GO:0015914
http://amigo.geneontology.org/amigo/term/GO:0015914
http://amigo.geneontology.org/amigo/term/GO:1902115
http://amigo.geneontology.org/amigo/term/GO:1902115
http://amigo.geneontology.org/amigo/term/GO:1902115
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N1 High level GO 

category 

Genes 

21 Metabolic process insA1 rpsT gmhA ampH yddW uxaB flhD nuoF nuoE nuoC 

nuoB nuoA lrhA alaA rpoD aroK hofQ envZ yhjJ cysE 

waaB 

16 Catalytic activity gmhA ampH yddW uxaB yneF nuoF nuoE nuoC nuoB nuoA 

alaA aroK envZ yhjJ cysE waaB 

16 Cellular metabolic 

process 

insA1 rpsT gmhA uxaB flhD nuoF nuoE nuoB lrhA alaA 

rpoD aroK hofQ envZ cysE waaB 

15 Membrane lptD bamA ampH sbmA yddW yneF ompC nuoF nuoE nuoC 

nuoB nuoA mlaA hofQ envZ 

15 Primary metabolic 

process 

insA1 rpsT gmhA ampH uxaB flhD lrhA alaA rpoD aroK 

hofQ envZ yhjJ cysE waaB 

15 Organic substance 

metabolic process 

insA1 rpsT gmhA ampH uxaB flhD lrhA alaA rpoD aroK 

hofQ envZ yhjJ cysE waaB 

15 Cell periphery lptD bamA ampH sbmA yddW yneF ompC nuoF nuoE nuoC 

nuoB nuoA mlaA hofQ envZ 

15 Organic cyclic 

compound binding 

rpsT ampH sbmA yneF flhD nuoF nuoC lrhA alaA rpoD 

aroK hofQ envZ rbsR hfq 

15 Heterocyclic 

compound binding 

rpsT ampH sbmA yneF flhD nuoF nuoC lrhA alaA rpoD 

aroK hofQ envZ rbsR hfq 

13 Intracellular rpsT gmhA uxaB flhD uspC fliT nuoC alaA rpoD aroK cysE 

waaB hfq 

12 Nitrogen compound 

metabolic process 

insA1 rpsT ampH flhD lrhA alaA rpoD aroK hofQ envZ yhjJ 

cysE 
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N1 High level GO 

category 

Genes 

12 Ion binding gmhA ampH sbmA yneF ompC nuoF nuoE nuoB alaA aroK 

envZ yhjJ 

10 Protein-containing 

complex 

rpsT lptD bamA ompC nuoF nuoE nuoC nuoB nuoA cysE 

10 Biological regulation rpsT ampH yneF flhD fliT lrhA rpoD envZ rbsR hfq 

9 Regulation of 

biological process 

ampH yneF flhD fliT lrhA rpoD envZ rbsR hfq 

9 Response to stimulus lptD sbmA uspC ompC alaA rpoD aroK envZ cysE 

9 Cellular component 

organization or 

biogenesis 

rpsT lptD bamA gmhA ampH yddW flhD fliT mlaA 

9 Plasma membrane ampH sbmA yneF nuoF nuoE nuoC nuoB nuoA envZ 

9 Biosynthetic process rpsT gmhA flhD lrhA alaA rpoD aroK cysE waaB 

9 Cellular component 

organization 

rpsT lptD bamA gmhA ampH yddW flhD fliT mlaA 

8 Localization lptD bamA sbmA fliT ompC nuoB mlaA hofQ 

8 Small molecule 

binding 

ampH sbmA yneF nuoF nuoC alaA aroK envZ 

8 Regulation of cellular 

process 

yneF flhD fliT lrhA rpoD envZ rbsR hfq 

7 Establishment of 

localization 

lptD bamA sbmA ompC nuoB mlaA hofQ 
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N1 High level GO 

category 

Genes 

7 Membrane protein 

complex 

bamA ompC nuoF nuoE nuoC nuoB nuoA 

6 Oxidoreductase 

activity 

uxaB nuoF nuoE nuoC nuoB nuoA 

6 Transferase activity yneF alaA aroK envZ cysE waaB 

6 Outer membrane lptD bamA yddW ompC mlaA hofQ 

6 External encapsulating 

structure 

lptD bamA yddW ompC mlaA hofQ 

6 Intrinsic component of 

membrane 

bamA sbmA yneF ompC nuoA envZ 

6 Envelope lptD bamA yddW ompC mlaA hofQ 

6 Macromolecule 

localization 

lptD bamA sbmA ompC mlaA hofQ 

6 Carbohydrate 

derivative binding 

gmhA sbmA yneF nuoF aroK envZ 

5 Regulation of 

metabolic process 

flhD lrhA rpoD rbsR hfq 

5 Cellular component 

biogenesis 

rpsT lptD bamA gmhA flhD 

5 Respirasome nuoF nuoE nuoC nuoB nuoA 

5 Oxidoreductase 

complex 

nuoF nuoE nuoC nuoB nuoA 
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N1 High level GO 

category 

Genes 

4 Molecular function 

regulator 

rpsT lrhA rpoD rbsR 

4 Response to stress uspC ompC alaA rpoD 

4 Hydrolase activity ampH yddW envZ yhjJ 

4 Response to chemical lptD sbmA alaA aroK 

4 Positive regulation of 

biological process 

flhD lrhA rbsR hfq 

4 Negative regulation of 

biological process 

yneF fliT lrhA hfq 

4 Cellular response to 

stimulus 

uspC ompC alaA envZ 

4 Regulation of 

molecular function 

rpsT lrhA rpoD rbsR 

3 Biological adhesion bamA yneF ompC 

3 DNA-binding 

transcription factor 

activity 

lrhA rpoD rbsR 

3 Catabolic process ampH uxaB hofQ 

3 Response to abiotic 

stimulus 

uspC rpoD cysE 

3 Metal cluster binding nuoF nuoE nuoB 
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N1 High level GO 

category 

Genes 

2 Transporter activity sbmA ompC 

2 Protein binding gmhA envZ 

2 Cell adhesion bamA yneF 

2 Transmembrane 

transporter activity 

sbmA ompC 

2 Regulation of cellular 

component biogenesis 

flhD fliT 

2 Interspecies 

interaction between 

organisms 

essD ompC 

2 Regulation of 

biological quality 

ampH hfq 

2 Cell wall organization 

or biogenesis 

ampH yddW 

2 Side of membrane bamA envZ 

1 Cell killing essD 

1 Structural molecule 

activity 

rpsT 

1 Signaling envZ 

1 Locomotion fliT 

1 Organelle rpsT 
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N1 High level GO 

category 

Genes 

1 Cell aggregation yneF 

1 Structural constituent 

of ribosome 

rpsT 

1 Protein folding fliT 

1 Drug binding ampH 

1 Response to external 

stimulus 

uspC 

1 Carbon utilization hofQ 

1 Isomerase activity gmhA 

1 Toxin transmembrane 

transporter activity 

sbmA 

1 Cytolysis essD 

1 Enzyme regulator 

activity 

rpsT 

1 Killing of cells of 

other organism 

essD 

1 Regulation of 

localization 

yneF 

1 Amide binding ampH 

1 Regulation of 

locomotion 

yneF 
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N1 High level GO 

category 

Genes 

1 Periplasmic space yhjJ 

1 Xenobiotic 

transmembrane 

transporter activity 

sbmA 

1 Non-membrane-

bounded organelle 

rpsT 

1 Intracellular organelle rpsT 

1 Adhesion of symbiont 

to host 

ompC 

1 Regulation of response 

to stimulus 

envZ 

1 Cell motility fliT 

1 Regulation of 

developmental process 

ampH 

1 Cellular localization bamA 

1 Localization of cell fliT 

1 Intraspecies 

interaction between 

organisms 

yneF 

1 Molecular adaptor 

activity 

uspC 
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N1 High level GO 

category 

Genes 

1 Aggregation of 

unicellular organisms 

yneF 

1 Sulfur compound 

binding 

ampH 

1 Ribonucleoprotein 

complex 

rpsT 

1
 N = number of genes. 

Genomic data: Available under BioProject: PRJNA1131392 

 

Supplementary Materials for Chapter 4 

 

 

Supplementary Figure 4.1: CS, N and CR distributions of the four antibiotic pairs tested, 

from each ALE platform. SG = SAGE. *p<0.05, ***p<0.001, ****p<0.0001, one-way ANOVA 
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with Bonferroni correction. Statistical analyses were performed by comparing relative MICs of 

mutants from each platform. 

 

Supplementary Figure 4.2: Frequency at which a mutation in the genes listed on the vertical 

axis appeared in each platform. Label on top denotes the platform while (6:3) = 6 CS strains and 

3 N strains. For a detailed explanation of the x-axis and gene annotations, see the legend of Figure 

2 (B). SG = SAGE. 

 

Supplementary Table 4.1: Frequencies at which each platform generated resistant mutants 

against the different antibiotics used in the study. 

 

 



 

221 

 

Antibiotics ALE platform Resistance frequency 

TIG SAGE 24 out of 24 evolutions 

LQ 22 out of 24 evolutions 

GP 23 out of 24 evolutions 

PIP SAGE 24 out of 24 evolutions 

LQ 20 out of 24 evolutions 

GP 24 out of 24 evolutions 

NIT SAGE 24 out of 24 evolutions 

LQ 3 out of 80 evolutions 

GP 24 out of 24 evolutions 

CIP SAGE 23 out of 44 evolutions 

LQ 2 out of 24 evolutions 

GP Pilot plate showed no 

significant growth after 5 

restreaks 
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Supplementary Materials for Chapter 5 

 

 
 

Supplementary Figure 5.1: Schematic for antibiotic free soft agar passages. After the 5th pass 

strains have undergone 5x antibiotic free soft agar passages, 5x culturing in liquid without 

antibiotics, and 5x cultures on antibiotic-free solid media before being MIC tested. Numbers 1-6 

represent stages at which MICs were performed. Stage 1 represents MICs of strains post resistance 

evolution. 
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Supplementary Figure 5.2: Neither PIP or CIP MICs dropped significantly when passaged 

through antibiotic free medium. Passage schematic and stage numbers are on supplementary 

figure 5.1. Four strains that showed reduced MICs from PIP-GEN and CIP-GEN pairs were 

randomly selected for these tests. 

 

Genomic data: Available under BioProject: PRJNA1207050.  
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Supplementary Materials for Chapter 6 
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Supplementary Figure 6.1: (A) Number of non-extinct strains following each step of the GEN-

PIP-NIT loop. (B) Non-extinct strains following the GEN-PIP-NIT-GEN loop. Only strains 

resensitized to GEN after teh GEN-PIP-NIT loop are included in the analysis. (C) Non-extinct 

strains following each step of the NIT-PIP-GEN loop. Purple stacked bars denote strains that went 

extinct on the initial pass, but survived a second attempt. (D) NIT MICs of the three non-extinct 

after the GEN-PIP-NIT-GEN sequence. *p<0.05, unpaired t-test (E) PIP MICs of strains that 

passed through the PIP-GEN-NIT loop. Bars represent the median MICs. *p<0.05, Kruskal-Wallis 

with uncorrected Dunn’s test. (F) and (G) MICs of every strain evolved in the GEN-PIP-NIT and 

NIT-PIP-GEN loops. Green and red circles indicate the sequenced GEN-resensitized and GEN-
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resistant strains that were sequenced, respectively. The x-axes indicate the drugs against which 

bacteria were evolved, with the MIC antibiotic listed at the top of each panel. 

 

 

 
 

Supplementary Figure 6.2: AUC data of strains passed through (A) GEN-PIP-NIT, (B) NIT-PIP-

GEN, and (C) PIP-GEN-NIT loops. The red dotted line denotes the fitness of the WT strain. Bars 

represent the mean with 95% CI. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001, one-way 

ANOVA with Fisher’s LSD test. (D) and (E) AUCs of strains before and after GEN evolution for 
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NIT-resensitized and NIT-resistant strains, respectively. The x-axes denotes the sequence of 

antibiotics against which the strains were evolved before measuring AUCs. (F) ΔAUC of 

individual strains plotted, grouped by resensitized and resistant; unpaired t test used to test 

significance. Means indicated by horizontal lines. 

 

 
Supplementary Figure 6.3: Results from the gentamicin uptake assay. GEN was incubated with 

bacteria (n = 3), and then centrifuged to pellet the cells. The supernatant was used to spot E. coli 

seeded plates (more details in Materials and Methods). The lower the GEN uptake, the more GEN 

remaining in the supernatant after centrifugation and hence, the larger the ZOI. Error bars represent 

SD. *p<0.05 one-way ANOVA with Fisher’s LSD test. 
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Supplementary Figure 6.4: (A) Number of non-extinct strains following each step of the (NIT)-

PIT-GEN loop. NIT is omitted since the clinical strains were already NIT resistant. The different 

colored bars represent strain A, B, C or D. (B) PIT and GEN MICs of the clinical replicates 

following PIT and GEN adaptation respectively. 

 

Genomic data: Available under BioProject: PRJNA1254677 

 

 

 


