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Abstract

The Impact of Structured Practice on Fifth Grader’s Fraction Knowledge
Richard Drapeau

The present study investigated whether Grade 5 students, who are learning a procedure
for a whole number by a fraction using repeated addition, would develop conceptual knowledge
of fractions. The study aimed to answer three questions: 1 — Does practicing a procedure to
multiply a whole number by a fraction through repeated addition result in acquiring greater
procedural accuracy in fraction multiplication? 2 - Does practicing a procedure to multiply a
whole number by a fraction through repeated addition result in greater conceptual knowledge?
and 3 - Does self-explaining contribute to developing conceptual knowledge when practicing a
procedure to multiply a whole number by a fraction through repeated addition?

For this pretest-intervention-posttest study, 56 Grade 5 students were selected from two
schools located in the greater Montreal area (two classes from each school) Three randomly-
selected groups were created within each class. Two groups received instruction on how to use
the procedure: one was prompted while the other was not. The third group explored geometry
notions without receiving any instruction on fractions.

As expected, the results demonstrate that after the 4-week intervention period, practicing
exercises involving the multiplication of whole numbers by fractions enhanced procedural
accuracy, whereas those who did not receive such instruction did not. In contrast to
expectations, students' conceptual understanding of fraction magnitude was not enhanced by
practicing a procedure for multiplying whole number by fractions. To clearly identify the

mechanisms that would facilitate this transfer, more research is necessary.
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The Impact of Structured Practice on Fifth Grader’s Fraction Knowledge

Mathematical proficiency is said to be composed of five strands acting in a mutually
reinforcing fashion, with no single strand being more important than the other (Kilpatrick et al.,
2001). The components of this intertwined relationship are adaptive reasoning, strategic
competence, conceptual understanding, a productive disposition, and procedural fluency. Such
an interconnected relationship comes with many nuances and interpretations, which becomes a
potential source of tension between those who promote the development of conceptual
understanding prior to procedural understanding and those who promote approaching
instruction through a procedural lens.

Fortunately, a growing number of studies have supported the iterative and bidirectional
relationship that unites conceptual and procedural knowledge (Hansen et al., 2017; Rittle-
Johnson et al., 2017). A consensus is slowly emerging, and the question has evolved from “if’
the two types of knowledge interact to “how” conceptual and procedural knowledge interact, and
how they develop (Rittle-Johnson, 2017). Nonetheless, researchers have predominantly
focused their attention on the impact of conceptual knowledge on procedural knowledge, and
far fewer have researched the impact from the opposite direction (Rittle-Johnson & Schneider,
2015; Star, 2005). If procedural knowledge is to be considered as a key component of
mathematical proficiency, more research is required and would assist in moving closer to an
optimal sequence of instruction that has not yet been found (Rittle-Johnson et al., 2017).

This is not to deny the importance of conceptual knowledge. As its presence in the
definition of mathematical proficiency shows (Kilpatrick et al., 2001), conceptual knowledge is
important and is key to developing a profound understanding of mathematics. As we combine
more pieces of information or add new pieces to existing ones, we build concepts (Hiebert &
Lefevre, 1986). The importance of concepts, and by extension conceptual knowledge, is not
disputed. However, procedures provide something that concepts do not; without the presence of

procedures, concepts would not be visible (Hiebert & Lefevre, 1986). Because of this, the path
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to better conceptual understanding may, at times, begin with procedures (Rittle-Johnson et al.,
2015). Therefore, we need to focus more research on studying and assessing procedural
knowledge (Star, 2005) and its impact on conceptual knowledge. Not doing so would be a
mistake (Rittle-Johnson, 2015).

Multiple approaches have supported procedural instruction to promote conceptual
understanding (Canobi, 2009; McNeil et al., 2012). Research has demonstrated the efficiency of
sequencing practice problems, supporting self-explanation, and providing prompts in developing
conceptual knowledge from procedural work. In essence, using approaches that more clearly
link the procedures to their underlying concepts may be as effective as conceptual instruction
alone (Rittle- Johnson & Alibali, 1999).

The goal of every math teacher is to bring their students as close to mathematical
proficiency as possible in the time they are afforded within the classroom. It is therefore
important for teachers to possess the tools and the knowledge to address the needs of each
individual learner. To do so, they must be equipped with all of the supported research, as
children will only learn when they are provided with the opportunity to do so (Hiebert & Grouws,
2007).

My interest in math instruction lies in clarifying and deepening the understanding of the
relationship between conceptual and procedural knowledge to impact both student learning and
teacher instructional strategies. The purpose of the following study will focus on the latter aspect
of math instruction and answer the following question: Can students performing repeated
procedural work with and without reflective prompts develop greater conceptual understanding?
To achieve this, the students participating in this study were assigned to one of three conditions.
The first focused on an instructional method proposed by Rittle-Johnson and Schneider (2015)
— prompting for self-explanation during procedural instruction. | hope to show that combining
reflection with procedural work will lead students to develop a greater conceptual understanding
of fractions. The students in the second condition will receive the same treatment as the first,

2



except that no reflective prompts will be made. The results will help to indicate if doing repeated
procedural work on its own still leads to greater conceptual understanding or if reflection is a
key component of the process. Finally, the students in the third condition will serve as the
control group and will not participate in mathematics activities related to fractions but will take
part in activities that will engage their spatial sense.
Literature Review

In 2001, the National Research Council (NRC) published Adding it Up: Helping Children
Learn Mathematics (Kilpatrick et al., 2001). To describe what it means to do mathematics, and
to encompass all the intricacies required to teach math, the authors settled on the term
“mathematical proficiency.” More specifically, Kilpatrick et al. (2001) defined mathematical
proficiency as being composed of five distinct strands: conceptual understanding, procedural
fluency, strategic competence, adaptive reasoning, and productive disposition. To represent
these ideas, the authors proposed to view mathematical proficiency as a combination of
intertwined strands producing one single rope. Through this metaphor, Kilpatrick et al. (2001)
clearly established that mathematical proficiency could only be as strong as its individual
strands and supported that its interwoven status served to strengthen each of its parts as well
as the whole. In other words, all strands must be present and strong for maximum math
proficiency. Note that even though an individual may have, and probably does have, a “weaker”
strand, it does not prevent individuals from attaining high levels of mathematical understanding
as each strand simply assists in making that understanding deeper and prepares the mind for
greater mathematical explorations.

To investigate each of these relationships would require a much larger study than the
scope of this research allows. The focus will therefore be placed squarely on the relationship
between two of its five strands - conceptual and procedural knowledge. The groundwork of
this study will first be established by describing the historical evolution of the relationship
between these two strands of mathematical proficiency and will be followed by a review of

3



the theoretical components justifying the present research. As such, the theoretical
framework will be divided into five sections: Defining conceptual and procedural knowledge,
the development of conceptual and procedural knowledge, the role of fractions in
mathematics, organizing arithmetic practice, and developing conceptual understanding

through procedural activities.

Historical Background

Prior to Kilpatrick et al. (2001), the conversation in academic settings focused on the
relationship between the conceptual and procedural components of mathematical
understanding. Hiebert and Lefevre (1986) reported an on-going tug-of-war between
conceptual and procedural knowledge, citing sources that placed emphasis on one or the
other strand dating back as far as 1895. However, the authors noted that “due to the new
language of cognitive science” (p. 2), the dialogue evolved as research considered
conceptual and procedural knowledge less as individual and separate notions, but rather as
existing in a mutually-dependent relationship. Research has continued to evolve since
Hiebert and Lefevre’s (1986) work, and a growing number of studies now underline the
bidirectional (i.e., each affects the other) and iterative (i.e., gains occur gradually over time)
nature of the relationship between the two types of knowledge (Canobi, 2008; DeCaro,
2016; Fyfe et al., 2014; Rittle-Johnson et al., 2015).

As more research into the relationship between these two strands of mathematical
proficiency developed and a greater understanding of their relationship was unveiled, data
supporting its bidirectional and iterative relationship emerged. However, most of the
research on the relationship between the two strands has been from the conceptual-first
point-of-view and few studies have been pursued from a procedural-first point of view. Much
research is needed from this other perspective (Rittle-dJohnson et al., 2016; Star, 2005).

When tasked with teaching mathematics, teachers come to the table with varying degrees

of knowledge, abilities, and experience, much in the same way that students do. Kilpatrick et al.
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(2001) showed that multiple pathways exist to achieve mathematical understanding and have
unveiled some of them. Perhaps there are more, but these five strands of mathematical
proficiency have the virtue of being the primary ones identified so far.

Pasteur once said that “chance favours the prepared mind” (“La chance ne sourit qu’aux
esprits bien préparés” (LeFigaro, n.d.)). | offer that for individuals (and here | refer to both
students and teachers) to become proficient in mathematics, they must explore its multiple
layers to be well prepared for learning and teaching. | believe that this is exactly what Kilpatrick
et al. (2001) were referring to when they speak about the five strands of mathematical
proficiency — the multiple layers of mathematics. Understanding the relationship between
conceptual and procedural knowledge, how they are related, and how the development of one
impacts the development of the other has yet to be completely understood (Star, 2005; Rittle-
Johnson et al, 2015). As research in this field increases and common definitions of its primary
terms are developed, it is likely that more effective instructional approaches will be developed.

So, how can the mind be prepared to develop and integrate mathematical knowledge?
Besides the five strands of mathematical proficiency, Sweller's Cognitive Load Theory (CLT)
might help explain how we learn and remember general knowledge, including math knowledge
(Lovell, 2020). The mind’s ability to acquire knowledge is limited by its working memory. To
retain information, the knowledge being absorbed must be broken down and stored in its long-
term memory. CLT tells us that the retention of knowledge can be improved by looking at
similar, or worked-out, examples (Lovell, 2020, p. 104) that would lessen cognitive load and
allow for understanding to follow. It also proposes that knowledge can be strengthened through
a learned algorithm that develops an automated approach, reducing the load on the working
memory, consequently allowing the learner to develop greater understanding. Combining CLT
and the development of mathematical proficiency as described by Kilpatrick et al. (2001)
suggests that the intertwined and interdependent nature of mathematical proficiency can be

strengthened.



Defining Conceptual and Procedural Knowledge

Star and Stylianides (2013) raised an important aspect of research on conceptual and
procedural knowledge. They underlined the need to clearly define what one means when
referring to either conceptual or procedural understanding in their research. This is required as
the terminological framework used in one study may not be the same as in another, potentially
leading to a misleading comparison. For example, are the studies referring to conceptual and
procedural knowledge as “types” of knowledge (i.e., what is known) or as “qualities” of
knowledge (i.e., how well something is known)? The accuracy of the terms used and a shared
understanding of what conceptual and procedural knowledge mean are very important for
building on what is learned from earlier research. Therefore, a definition of conceptual and
procedural knowledge is warranted and provides a solid footing to allow “other researchers [to]
use, test and build on existing findings” (Star & Stylianides, 2013, p. 180). The definition of
conceptual knowledge and procedural knowledge used in this paper, albeit not unique, will
hopefully have the virtue of being clear and actionable.

Prior to providing definitions, a clarification on their origins may be warranted. Hiebert and
Lefevre’s (1986) seminal work provided a definition that was foundational to many studies that
followed (e.g., Fyfe et al., 2014; Osana & Pitsolantis, 2013; Rittle-Johnson & Schneider, 2015;
Star & Stylianides, 2013). Hiebert and Lefevre (1986) defined conceptual knowledge as “...
characterized most clearly as knowledge that is rich in relationships” (p. 3) and procedural
knowledge as “the formal language, or symbol representation system of mathematics” and as
“algorithms, or rules, for completing mathematical tasks” (p. 6).

In a research commentary, Star (2005) proposed a reconceptualization of procedural
knowledge. It is important to note that Star did not claim that procedural knowledge was more
essential than conceptual knowledge but merely underlined the notion that little research had
focused on the true impact of procedural knowledge on mathematical proficiency. He continued

by observing that an individual may have both a deep and a superficial knowledge of different
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concepts, just as they may have a deep or superficial knowledge of various procedures. In a

later article, Star and Stylianides (2013) remarked on the ongoing confusion created by the lack

of distinction between knowledge type and knowledge quality, as noted by Star (2005).
Rittle-Johnson and Schneider (2015) provided a definition of conceptual and

procedural knowledge that may satisfy Star and Stylianides’ (2013) call for clarity on “which

aspect(s) of conceptual and procedural knowledge we are focusing on” (p. 180) and is

clearly grounded in the “common usage of procedural knowledge” (Star, 2005, p. 408) where

the knowledge quality is superficial. Rittle-Johnson and Schneider thus defined conceptual

knowledge “as knowledge of concepts” (p. 1119) and procedural knowledge as “the ability to

execute action sequences (i.e., procedures) to solve problems” (p. 1120). It will be with these

definitions in mind that these two terms will be used in the present study.

The Role of Fractions in Mathematics

As high school teachers will make it clear to anyone willing to listen, one of the greatest
challenges teachers face in teaching mathematics is to have their students develop a clear
understanding of fractions. This is true because understanding fractions is hard (Braithwaite &
Siegler, 2017; Siegler et al., 2012). One of the reasons that fractions are challenging comes
from the fact that whole numbers, which are learned from a very young age, and fractions
behave differently. For example, in the addition algorithm for whole numbers, the sum is found
by simply adding each number, so 4 + 4 = 8. However, when adding two fractions with the same
denominator, that rule no longer applies (e.g., 1/4 + 1/4 # 2/8). Similarly, when whole numbers
are multiplied, their product is always larger than either of the factors (e.g., 2 x 4 = 8). This may
not always be the case with fractions (e.g., 1/4 x 3/4 = 3/16). These examples illustrate some of
the challenges inherent in teaching fractions. However, it is important to note that bridging the
gap between whole numbers and fractions involves a uniting property: their respective

magnitudes can be located on a number line.

Fraction magnitude has typically been evaluated by using both fraction number line and
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fraction magnitude comparison activities (Bailey et al., 2012; Bailey et al., 2017; Schneider et
al., 2017). When a child is asked to place a fraction on a number line, they have to identify
where it should appear on the number line. For example, if a child is asked to place the fraction
1/4 on a 0—1 number line, they would place the fraction approximately 1/4th of the distance
between 0 and 1 away from 0. When a child participates in a fraction magnitude activity, they
simply determine which of the two fractions is the larger of the two. Using either of these
approaches is deemed to be a valid way to evaluate magnitude (Schneider et al., 2017)
Research on the development of mathematical understanding has revealed the
importance of learning fractions (Bailey et al., 2012; Braithwaite & Siegler, 2017; Hamdan &
Gunderson, 2017; Siegler et al., 2011; Siegler et al., 2012). Fraction knowledge at the
elementary level has been shown to be predictive of a student’s ability to understand
mathematical notions at the secondary level and beyond, including algebraic understanding
(Booth et al., 2015; Siegler et al., 2012). Further, research has shown that developmental trends
in mathematical understanding begin with whole number line understanding (i.e., successfully
locating where a whole number should appear on a number line) and slowly move towards
fraction line understanding (i.e., successfully locating where a fraction number should appear on
a fraction number line), which affects how they develop their understanding of fraction
magnitude (Siegler et al., 2011). Even though improvements in understanding occur throughout
elementary school and into high school, the challenges linked to the understanding of fractions
have been observed throughout adulthood (Fazio et al., 2016). Consequently, the place of
fractions in mathematics and its importance in the development of more advanced mathematical

knowledge make it a rich—and critical-concept to study.

The Bidirectional Relationship of Conceptual and Procedural Knowledge
Now that conceptual and procedural knowledge have been defined, consider how
they are developed and how their development is mutually impactful. Rittle-Johnson and

Alibali (1999) observed a causal effect between the two types of knowledge in children in
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Grades 4 and 5. Their study analyzed whether students understood the meaning of the
equal sign in equivalence addition and multiplication equations. The authors studied non-
standard equivalence problems of the forma + b + ¢ =a + _. The goal of the study was to
determine if either conceptual or procedural instruction would lead to an increase in the other
type of knowledge. Conceptually speaking, did the children understand that the purpose of
the equal sign is not to simply indicate where the “answer” is located, but rather to
understand that both sides of an equation represent the same amount? From the procedural
perspective, did they apply the procedure correctly to solve non-standard equivalence
problems? The results revealed a causal effect between the two types of knowledge that
further supports an iterative view of their relationship. Specifically, a better understanding of
the concept of equivalence improves the understanding of its procedures and inversely, a
better understanding of the procedures involved improves its conceptual understanding.

In a later study performed with Grade 5 and Grade 6 students, Rittle-Johnson et al.’s
(2001) observations further supported the iterative relationship between conceptual and
procedural knowledge. The authors evaluated the students’ conceptual understanding of five
decimal fraction concepts: relative magnitude, relations to fixed values, continuous
quantities, equivalent values, and plausible addition solutions. The overall conclusions of
these experiments showed that conceptual and procedural knowledge developed in a
bidirectional and iterative fashion. It is also important to note that the authors added that the
development of one type of knowledge to the detriment of the other may lead to incomplete
understanding of the target mathematical notion because both types of knowledge are
“mutually supportive” (p. 358).

A study by Hecht and Vagi (2010) also showed support for the bidirectional
development of conceptual and procedural knowledge in the domain of fractions, which,
together with Rittle-dJohnson’s et al.’s (2001) study, is central to the present research. The
fourth- and fifth-grade students (N = 181) in this study were met at two time points. The

9



authors used three fraction skills measures targeting procedural knowledge - a fraction
computation test (adding and multiplying fractions), a word problem test (writing the correct
equation that would result in the correct answer to the problem), and a fraction estimation
test (identifying the nearest whole number to a fraction addition). The conceptual knowledge
measures consisted of four tasks. The picture-symbol/symbol-picture tasks were used to
assess part-whole understanding in which students had to either shade in a figure given a
fraction or write a fraction that represented a shaded figure.

The third task required students to identify which of two fractions was the larger
fraction. The last task required students to add pictorial representations of fractions and
provide the sum using a similar drawing. The results further supported a bidirectional
relationship between the researchers’ conceptual and procedural measures. Further
supporting the bidirectional relationship, Rittle-Johnson et al. (2015) noted that the evidence
supporting such a claim was clear. As noted by others before (e.g., Canobi, 2008; Star,
2005), much work is needed to understand the relationship between these two strands of
mathematical proficiency.

Rittle-Johnson et al. (2015) made two observations that provided support for further
research into procedural knowledge that are worthy of noting, despite having some
members of the research community posit that conceptual knowledge must always precede
procedural knowledge (Boaler, 2016, p.71). The first, as mentioned earlier, is the lack of
clarity in the terminology used in describing these two strands of knowledge. The second is
the belief that starting instruction with procedural knowledge will bring us back to “old ways”
of teaching.

To associate deep understanding with conceptual knowledge and the simple
application of an algorithm to procedural knowledge can be misleading (Rittle-Johnson et
al., 2015). Such an association takes away the possibility that procedural knowledge can be
rich and meaningfully complex. Essentially, Rittle-Johnson et al. (2015) proposed that both
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types of knowledge be seen as continuously evolving and growing. Consequently, the
concept-first view can lead to “misunderstandings and myths” and to a false belief that
procedural knowledge does not lead to conceptual knowledge (Rittle-Johnson et al., 2015,
p. 594). As a mounting number of studies confirming the iterative relationship between
conceptual and procedural knowledge is being published (Canobi, 2009; Hecht & Vagi,
2010, McNeil et al., 2015), the authors concluded that an optimal order of instruction,
conceptual first or procedural first, probably does not exist placing the emphasis on its
iterative nature. As such, they proposed that more research in the effectiveness of ordering

instruction is warranted.

Combining Instructional Approaches with Procedural Knowledge

In spite of their low number, the studies that have focused on the impact of
procedural knowledge on the development of conceptual knowledge have produced
interesting results but have done so by using different approaches. Structuring arithmetic
practice in a way that supports conceptual connections (McNeil et al., 2012; McNeil et al.,
2015), sequencing practice problems in line with the target concept (Canobi, 2009),
supporting self-explaining (Fuchs et al., 2016; Rittle-Johnson, 2006), and providing students
with prompts to reflect during procedural instruction (Lobato et al., 2005) have all
demonstrated a positive effect of procedures on the understanding of the concepts attached
to those procedures. Further, the aforementioned studies have shown that the more
procedural knowledge is developed, the greater its impact on conceptual knowledge. Each
approach is reviewed below.

Canobi (2009) observed the impact of conceptually sequencing addition practice
worksheets. In her study, 72 children aged between 7 and 8 years old were assigned to
one of three addition and subtraction practice groups: conceptually-sequenced practice,
randomly- ordered practice, and no-practice. Prior to treatment, all students completed a

pretest on a computer to assess their procedural knowledge and took part in a puppet
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game to assess their conceptual knowledge of addition and subtraction. The conceptually-
sequenced practice problems consisted of five addition and five subtraction questions
grouped in conceptually sequenced pairs (e.g., 1+2=_;2+ 1= _). The randomly-
ordered practice group saw the same problems but not conceptually sequenced and the
no-practice group received nonmathematical activities. The results obtained supported
Canobi’s (2009) predictions and showed that procedural practice improved performance
on procedures (assessed by measuring accuracy on practiced problems) but, more
importantly, that practice using conceptually-sequenced problems positively impacted
conceptual understanding of the principles of addition and subtraction, such as
commutativity.

In a study evaluating performance on addition problems, McNeil et al. (2012) also
considered the role of practice in the development of mathematical equivalence using
addition practice. The authors recruited 104 Grade 2 and Grade 3 students who were
randomly assigned to three conditions. Children in the first condition received practice on
solving canonical (i.e., standard) addition problems (a + b = _) that were grouped by
equivalent sums (i.e., 2+ 3= _; 1+ 4 =), hypothesized to support a relational
understanding of the equal sign (e.g., 2 + 3 = 1 + 4). The students in the second condition
also practiced problems, but these were grouped iteratively with the same first addend but
with different sums, not reinforcing the notion of equivalence or sum as in the first condition
(i,e.,2+3=_;2+4 =) Finally, the students in the control group received no extra
practice. The results showed that grouping practice questions by equivalent sums provided
children with a better understanding of mathematical equivalence than either the random
approach or the no-practice approach and that organizing practice problems conceptually
made the conceptual underpinnings of equivalence salient.

Emphasizing mathematical equivalence through intentionally structured procedural
work was further supported by the same authors in a later study (i.e., McNeil et al., 2015), in
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which 166 second-grade children were randomly assigned to one of two groups. One group
received instruction using a modified workbook to target the development of math
equivalence understanding while the control group received instruction using a standard
workbook in which addition problems were presented in canonical form. The modified
workbook contained three distinct features not seen in the regular workbook. The problems
had most operations on the right side of the equal sign, some equal signs were replaced by
their word equivalents (i.e., “is equal to” or “is the same amount as”), and some of the
problems were organized by equivalent sums such that the same sum appeared in several
problems in a row. The results showed that children who practiced using the modified
workbook performed better than the children in the control group on all of the reported
equivalence measures. Among other observations, the children in the modified-workbook
group showed better understanding of non-canonical addition problems, solved equations
more successfully, made fewer conceptual errors, and were able to define the equal sign
relationally. In conclusion, the study serves to support the idea that well-crafted procedural
activities can develop conceptual knowledge in children without explicit conceptual
instruction.

Fuchs et al. (2016) distinguished three types of self-explaining: spontaneous self-
explaining (i.e., when a student simply makes sense of the problem at hand without being
prompted); elicited self-explaining (i.e., when a student is prompted to self-explain without
any guidance); and finally, supported self-explaining (i.e., when the student is prompted to
self-explain using rich explanations that were modeled for them and that they practiced). For
their study, the authors decided to focus on the last type of self-explaining defined; that is,
supported self-explaining.

The design of their study, in which 212 Grade 4 students participated, was composed
of two intervention groups, an intervention with explanation group, an intervention with word-
problem group, and a control. The instruction was delivered by tutors. The control group
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received classroom instruction that did not target any specific explanation process.

The instruction delivered in both intervention groups was divided between procedural
work (about 40% of the time) and conceptual work (about 60% of the time). The intervention
with explanation group focused on providing supported self-explanation through a four-step
analysis process. The first step required students to identify if fractions had common
denominators, common numerators, or had different numerators and denominators. The
second step required students to comment on the quality of a drawing representing fractions
(e.g., same size parts, correct number of parts shaded). In the third step, students had to
identify the image of a fraction with its numerical value and describe if the fractions drawn
had same-size parts or not, thus indicating that the fraction with fewer parts had the largest
parts. Finally, the fourth step consisted of having students provide a written explanation
indicating why one fraction was larger than another. The intervention with word-problem
group received instruction consisting of word problems designed to introduce fraction
concepts. The students were first taught to identify word problems according to two
schemas - either a division story (e.g., cutting fruits into pieces) or a grouping story (e.g.,
what is the total length of string needed if a character in the story wants to make 5
necklaces that are each 1/3 of a meter long?). Students were also shown a series of steps
to help structure and solve the questions. However, they were not prompted or taught to
reflect on the work completed. Fuchs et al. (2016) found that the students who engaged in
supported self- explaining significantly improved their accuracy of fraction magnitude
comparisons and the quality of their explanations, outperforming the word-problem
intervention group.

In another study on the impact of self-explanation on learning, Rittle-Johnson (2006)
evaluated if providing prompts to self-explain improved procedural learning, procedural
transfer, and conceptual understanding of equivalence, and if self-explanation had a lasting
effect. Forty-two children from Grade 3 to Grade 5 were recruited for the study. They were
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randomly divided into 4 groups: direct instruction with or without explanation or discovery
learning with or without explanation. The direct-instruction groups received explicit
instruction on how to add and subtract numbers, while the discovery-learning groups
received none. For the self-explain groups, the children were asked to explain verbally how
an answer was found and why it was, or was not, correct. The no-explanation groups were
simply provided with the answer.

The intervention questions consisted of equivalence problems of the forma+b + ¢ =
a+ (eg.,2+3+4=2+ )oratb+c=_+c(e.g.,,2+3+4=_+4). The pretest and
posttest questions contained two equivalence problems similar to the intervention questions
to assess the learned procedure. To assess procedural transfer, two problems with no
repeated addends were given (e.g.,4+3+6=9+ _;7+9+3=_+6), another two with
the unknown on the left side of the equation were given (e.g., 9+ _=4+3+6;_+6=7+
9 + 3), and two more where subtraction was included (e.g.,2+4-3=2+ ;2+3-4=_-
4). Rittle-dJohnson’s (2006) results showed that self-explaining had a positive effect on
learning and transfer and that combining direct instruction with self-explaining had a greater
impact on procedural learning than the other conditions. Self-explaining was found to make
learning correct procedures easier, facilitate the transfer of the procedure to other problems,
allow for the application of the procedure to new problems, and enhance retention of the
procedure.

Finally, Lobato et al. (2005) proposed another pathway to elicit conceptual
understanding through procedural activities by readdressing what it means to “tell.” In their
article, the authors proposed that telling is not an ill-fated process that takes away from
constructivism, but one that can be used to stimulate thought by introducing new ideas
within the mathematics conversation. Telling needs to be viewed as a combination of a
teacher’s intention in presenting information, a student’s interpretation of this new
information, the conceptual nature of the new information, and how the action of telling is
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combined with other pedagogical interventions (Lobato et al., 2005).

The teaching act is not unidirectional. It requires two parties to interact, and these
interactions can lead to greater understanding as they can serve to bring ideas together. In
their article, Lobato et al. (2005) reported their interactions with 17 high school students
from Grades 8 to 10 and analyzed three different teaching actions. The mathematical target
for all lessons was to teach students the notion of rate of change, but the purpose of the
three instructional sessions was to analyze the function of telling during instruction. As such,
the authors redefined telling as the actions that trigger student engagement in mathematics
by introducing new ideas through instruction. During the three teaching sessions, the
teacher either initiated reflection about the notion being taught by describing a new concept,
provided new information by summarizing the student’s work, or provided information that
would allow the students to test their understanding of the concept taught. During these
interventions, the teacher sometimes tried to elicit information on the student’s
understanding of the concept presented and at other times, initiated reflection by asking
questions that served to elicit the underlying concept creating a type of initiating-eliciting
framework. Although limited in scope, the resulting analysis of the teacher-student
interactions showed that a teacher’s intentions and actions in telling, and the students’
interpretations of these actions prompted student reflection on the procedures used that
could bridge the procedural and conceptual divide.

In conclusion, evidence exists to show that students will not develop conceptual
knowledge through procedures alone or without some form of prompting (Rittle-Johnson et
al., 2015). The research described in this section demonstrated that students need to be
prompted in some way — either implicitly or explicitly — to think about the concepts that
underlie the procedures they practice. This can be done through conceptual sequencing
(Canobi, 2009) or explicit prompts to reflect (think about why a procedure works or on the
conceptual meaning of procedures) and self-explain (in this case, verbalising their thinking)
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(Fuchs et al., 2016; Lobato et al., 2005).

When Procedural Knowledge of Fractions Leads to Conceptual Understanding

In sum, the leading question of the current research is: Can repeated procedural
activities with fractions lead to the development of the procedure’s underlying concepts
and in essence make students understand why they work? The following two research
papers will assist in making the case for studies that considered the impact of procedural
knowledge of fractions on the development of conceptual knowledge.

Bailey et al. (2015) proposed that fraction arithmetic proficiency (i.e., procedural
knowledge) is a factor that predicts the ability to place fractions on a number line (i.e.,
conceptual knowledge). Their study involved 44 Grade 6 and 39 Grade 8 students from
China, and 24 Grade 6 and 24 Grade 8 students from the U.S. These two countries were
selected because whole number knowledge in Chinese students had been shown to be
greater than that of American students, especially where procedural knowledge was
concerned (Siegler & Mu, 2008). The authors hypothesized that, for these two countries, if
the discrepancy holds for whole numbers, then it should persist when it comes to fractions
as well. This led the authors to hypothesize that, compared to American children: (a)
Chinese children would have greater procedural and conceptual knowledge of fraction
procedures; (b) the greater knowledge of fractions would be moderately to highly correlated
with overall mathematics achievement; and (c) the difference in conceptual knowledge
between the two groups would be mediated by their procedural knowledge. The authors
also predicted that for both countries, fraction knowledge would be greater between low
achieving and average students.

The Chinese children performed the tasks individually on a computer in a quiet room
while the American children’s data were collected in a previous study (Siegler & Mu, 2008).
The procedural tasks consisted of adding, subtracting, multiplying, and dividing fractions.

There were three fraction conceptual knowledge tasks consisting of two fraction line
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estimation tasks (i.e., a 0—1 and a 0-5 number line) and a fraction magnitude comparison
task where eight fractions were compared to 3/5.

The results supported four of the five hypotheses and showed that Chinese students
had greater procedural and conceptual knowledge of fractions than their American peers,
with the difference being largest for procedural knowledge. Bailey et al. (2015) also found
that the difference in conceptual knowledge of fractions between the two countries was fully
mediated by their procedural knowledge of fractions. Also, the results provided correlational
evidence that fraction arithmetic knowledge mediated the students’ conceptual knowledge of

fractions.

In Bailey et al. (2017), the authors investigated the path linking fraction arithmetic
skills and fraction magnitude understanding. To do so, they used the state-trait model
(based on Steyer, 1987) where trait (e.g., socioeconomic status, attention span, etc.) and
status (e.g., how previous mathematical knowledge impacts future mathematical knowledge)
to statistically analyse the data they gathered at four time points from which they developed
their own model of fraction magnitude and fraction arithmetic skills. Specifically, their
objective was to determine if and how much transfer takes place between fraction arithmetic
knowledge and fraction magnitude knowledge as children progressed from Grade 4 to
Grade 6. They proposed that the simple act of practicing arithmetic exercises could help
students to make links between the fraction magnitudes they already understand and the
arithmetic problems they are performing. For example, if students were asked to add 1/2
and 2/3, the sum would have to be greater than 1 but less than 2. A student who learns the
procedure to add fractions would get a total of 7/6, which in turn, would contribute to their
current knowledge of fraction magnitude (i.e., that 7/6 would be reasonable as a sum for %2
and %5).

The authors measured student fraction arithmetic knowledge using a pencil-and-

paper assessment containing fraction addition and subtraction items with like and unlike
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denominators (adapted from Hecht, 1998). Fraction magnitude was measured using a well-
known Fraction Number Line estimation task (Siegler et al., 2011). The data gathered were
part of a larger longitudinal study of mathematics containing several other measures of
fraction arithmetic skill and fraction magnitude understanding in children and were collected
at four time points between the fourth and sixth grade: spring of Grade 4; fall of Grade 5;
spring of Grade 5; and winter of Grade 6. The authors found that fraction arithmetic skills
predicted fraction magnitude understanding in the second half of the study, between fall and
spring of Grade 5, and again between spring of Grade 5 and winter of Grade 6.

The Present Study

The purpose of the present study was to further clarify the path between procedural and
conceptual knowledge. It investigated whether teaching procedures alone can improve
students’ procedural accuracy in fraction multiplication, as well as enhance their conceptual
understanding of fractions. It also examined whether encouraging students to reflect on the
procedures they used would lead to a deeper conceptual understanding of fractions compared
to simply practicing the multiplication procedure without reflection. Specifically, students in the
reflection group were asked to compare and observe the difference between the fraction at the
beginning of the equation and their final answer. They were also asked to determine which of
the two fractions was greater and to justify their response. These reflective questions were not
addressed to the practice intervention without reflection group.

Through repeated procedural fraction multiplication activities combined with reflective
prompts (prompting participants to reflect on the size of the product relative to the original
fraction in the problem), | hoped to show that combining reflection with procedural work would
lead those students to develop a greater conceptual understanding of fractions. As stated
above, the second group was treated similarly to the first but did not receive any reflective
prompts. The results helped to determine if doing repeated procedural work on its own still led
to greater conceptual understanding or if reflection is a key component of the process. Finally, a

19



third group of participants served as the control group by engaging in mathematics activities that
did not involve fractions. The activities they participated in targeted the development of their
spatial sense through geometry activities.

The study followed a three-group pretest-intervention-posttest design. Grade 5 students
were randomly assigned to each group and met with the researcher or his assistants three
times a week over a period of four weeks. The measures | administered evaluated the
participants’ fraction multiplication knowledge, their fraction number line estimation knowledge
(Siegler et al., 2011), and their fraction magnitude knowledge by analyzing the fraction
magnitude strategies they used along with the quality of their justifications (Fazio et al., 2016) to
justify why they identified one fraction as larger than the other. All measures were pencil-and-
paper tests. Except for the Fraction Multiplication task, which | developed, the other measures
were adapted from earlier studies (Bailey et al., 2012; Fazio et al., 2016; Hansen et al., 2017,
Siegler et al., 2011).

Three research questions follow:

1. Will practicing a procedure to multiply a whole number by a fraction (i.e., performing
repeated addition) result in acquiring greater procedural accuracy in fraction multiplication
(as measured by the accuracy of their answers)?

2. Will practicing a procedure to multiply a whole number by a fraction (i.e., performing
repeated addition) result in greater conceptual knowledge of fraction magnitude, as
measured by the accuracy of their answers on two fraction lines (0—1 and 0-2), and a
fraction magnitude comparison activity which measured the accuracy of the answers
provided and the quality of the students’ justifications?

3. Will reflecting on how multiplying a whole number by a fraction (i.e., performing repeated
addition) result in greater conceptual knowledge of fraction magnitude than those who do
not reflect on their multiplication, as measured by the accuracy of their answers on two
fraction lines (0—1 and 0-2), and a fraction magnitude comparison activity which measured
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the accuracy of the answers provided and the quality of the students’ justifications?

Hypotheses

Practicing repeated fraction multiplication exercises will improve the accuracy of the
students’ procedure when multiplying a whole number by a fraction. Practicing a procedure for
multiplying a whole number by a fraction will support the children’s development of conceptual
knowledge of fraction magnitude. Prompting students to reflect on how multiplying a whole
number by a fraction affects the magnitude of a fraction will further augment the children’s
conceptual knowledge of fraction magnitude. Practicing a procedure for multiplying a whole
number by a fraction, with or without prompting, will have a greater impact on conceptual
knowledge of fraction magnitude than no procedural practice at all.

| hypothesized that the students who took part in the fraction multiplication intervention,
with or without reflection prompts, would develop greater conceptual knowledge than the control
group. | also predicted that the practice group that was prompted to reflect on the procedure
would gain greater conceptual knowledge than the group that did not receive any prompts.
Finally, | predicted that the students who patrticipated in the control group would not develop
either their procedural or their conceptual knowledge of fractions.

It is my hope that this research will serve to build on the work of those who have studied
the iterative relationship between procedural and conceptual knowledge and will assist teachers

in moving students closer to acquiring mathematical proficiency.

Method
Participants
Participants were 57 Grade 5 participants (Mage= 10.97 years; SDage = 0.49 years) from
four different classrooms (two classrooms in each school) within two schools (School 1 and
School 2) located in a suburb of a large metropolitan area (population < 50,000) in the province

of Quebec, Canada. Of these, 31 (54.4%) were girls and 26 (45.6%) were boys. Prior to the
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beginning of the study, the school board, schools, and teachers gave me permission to
approach parents/guardians to seek their participation in the study. As such, | secured informed
consent from the parents/guardians and assent from the participants. One (1) male participant
withdrew from the study after the pretest, bringing the final number of participants to 56 (31 girls
and 25 boys). For the purpose of this study, because one of the classes in one of the schools
provided only four students, | integrated those few students within the other class from the same
school (of that group of four, two were randomly selected for the PI+ group, and two for the
Control group).

The socioeconomic status of the population in the two participating schools, as reported in
the “Indices de défavorisation” document published by the Ministry of Education of Quebec
(MEQ, 2024), each had decile ranks of 6 out of a maximum of 10. A ranking of 10 identifies
children from the most underprivileged areas of the province. These rankings are obtained by
combining the rank of each child based on the mother’s education level and the parents’
employment status. Consequently, a school whose population has a lower economic status
would have a higher decile rank. Schools are considered to be located in an underprivileged
area when their ranking varies between 7 and 10. Therefore, a ranking of 6 places the
participating schools in the top half of the scale, suggesting that the schools are located in a
moderately to highly underprivileged area.

Each school in the study followed the same provincial mathematics program. The
provincial program for elementary mathematics is competency-based and was published in
2001 (Québec Education Program [QEP], Ministére de I'Education du Québec [MEQ], 2001).
The competencies are called: “To solve a situational problem. To reason using mathematical
concepts and processes [and] To communicate by using mathematical language” (p. 141). The
mathematical content of the program is divided into five branches of mathematics: arithmetic,

geometry, measurement, statistics, and probability.
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Design

The study used a three-group pretest-intervention-posttest design (See Figure 1). The
same four measures were used at both pretest and posttest and administered in the same
order. One test targeted the participants’ procedural understanding of fraction multiplication and
required them to multiply a single-digit whole number by a fraction. The other three tests
targeted the participants’ conceptual understanding of fractions. Two of these tests required
participants to place selected fractions on a number line, while the third consisted of comparing
two fractions and identifying the larger of the two and justifying their choice using words or
drawings. The practice interventions required participants to multiply a whole number by a
fraction through repeated addition.
Figure 1

Phases of the Study

Pretests Intervention Posttests
Fraction Number Lines Pl+ Fraction Number Lines
(0-1, 0-2) (0-1, 0-2)
Fraction Magnitude PI- Fraction Magnitude
Comparison Comparison
Fraction Multiplication No training Fraction Multiplication

9 class periods
4 weeks
“«—>»

Note. PI+ (Practice Intervention with Reflection Prompts), PI- (Practice Intervention without
Reflection Prompts).

Participants within each school and each class were randomly assigned to one of three
conditions: Practice Intervention with Reflection Prompts (PI+), Practice Intervention without
Reflection Prompts (PI-), and Control (see Table 1). Random assignment within each class was
performed using Excel's random number assignment function. First, each student was given a
randomly-assigned number. The students were then ranked in numerical order from low to high
and divided evenly, when possible, among the three groups from the lowest to highest number.

For example, in a group of 18, the top six would be selected for the Pl+ group, the following six
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for the PI- group, and the final six for the Control group. This was repeated for each class. This
resulted in an overall distribution of 20 participants in the PI+ group, 19 in the PI- group, and 17
in the Control group (see Table 1). In one situation (Class B1), a participant remained in the
classroom where the Pl+ group met for the second day of the intervention without a research
assistant noticing. He was kept with that group for the remainder of the interventions.

Table 1

Distribution of Participants by Intervention and Class.

Groups Class A1 Class B1 Class B2 Total
Pl+ 4 9 7 20
PI- 4 8 7 19
Control 4 7 6 17
Total 12 24 20 56

Note. Students in class A1 were from School 1. Students in classes B1 and B2 where from

School 2.
Intervention

The three experimental conditions were: (1) Practice Intervention with Reflection Prompts

(PI+), (2) Practice Intervention without Reflection Prompts (Pl-), and (3) Control. In the PI+
condition, participants were taught how to multiply a whole number by a fraction using a
repeated addition procedure and were prompted to reflect on what the impact of the procedure
was on the fraction being multiplied (i.e., how is the magnitude of a fraction affected when you
multiply whole number by a fraction) will further augment the children’s conceptual knowledge of
fraction magnitude. Participants in the PI- condition were also shown how to multiply fractions
using the same repeated addition procedure but were not asked to reflect on their answers.
Participants in the Control condition did not receive fraction multiplication training; instead, they
completed geometry activities that did not involve fractions and were instructed on labelling the
parts of solids (ex., faces, edges, vertices, apex), along with being shown how to construct

solids and their nets. This was achieved through worksheets and guided activities obtained from
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an Ontario-based math program (JUMP Math, 2019) whose content was similar to the program
used in the province of Quebec and with which participants were familiar.

Working within the constraints of school-based research, each group participating in the
intervention (PI+, PI-) completed nine intervention sessions at a rate of two to three sessions
per week over a period of four weeks. Five research assistants participated in the intervention
sessions. All received individual training and were provided with a strict script to follow (see
Appendix A). The research assistants were instructed to follow the script, with periodic
reminders provided throughout the intervention sessions. Strict adherence to the
implementation script could not be fully ensured, as | was actively involved in the intervention.
Both intervention groups, Pl+ and PI-, completed their respective activities in separate rooms
under my supervision or that of one of the research assistants, and completed their activity
sheets individually (see Appendix B).

During the first three of the nine intervention sessions. participants in the Pl+ and the PI-
groups practiced multiplying a whole number by a fraction after observing a demonstration
performed by me or the research assistant assigned to the group. To support learning, | (or the
research assistant) began each of the first three sessions with the same two examples before
the participants practiced the procedure on their own (the examples are provided in the
procedures section below). In the first example, | or the assigned research assistant, showed
participants how to multiply a whole number by a fraction through repeated addition. In a
second example, a fourth step that required simplifying the product was introduced. That is,
participants were shown how to reduce the fraction to its simplest form by dividing the
numerator and denominator by a common factor whenever possible. Participants were informed
that simplification of fractions would only involve dividing by 2, 3, 4, or 5 and were allowed to
use a multiplication chart if they found it necessary.

Following the demonstration, participants completed two practice exercises, one requiring
simplification and the other not. During this time, | or the research assistant, circulated to ensure

25



proper execution of the procedure. Once all participants completed the practice exercises, they
were asked to complete the activity sheets containing 10 multiplication problems similar to the
examples students had just seen. The questions found in the activity sheets contained fractions
that were selected to elicit three specific strategies that can be used to compare fractions (Fazio
et al., 2016) — the larger fraction is the fraction with the larger numerator when they have
common denominators; the larger fraction is the fraction with the smaller denominator when the
numerators are the same; and the larger fraction is the fraction that has both the larger
numerator and the smaller denominator when the other fraction has both a smaller numerator
and a larger denominator. Each activity sheet was composed of three fractions from each
fraction type,(i.e., three Common Denominators (CD) types, three Common Numerators (CN)
types, and three Larger Numerator/Smaller Denominator (LNSD) types), plus another fraction
that did not fit in the other three groups. All questions were randomly selected from a bank of
questions | developed, for a total of 10 questions per worksheet (see Appendix C).

I, or the research assistant, picked up the activity sheets after the participants confirmed
they were finished. From the fourth intervention onward, the same two examples were
demonstrated to remind participants of the procedure (no support or feedback was provided).
The answers to the questions they had just performed were then written on the board without
explanations. The activity was untimed because time taken to completion was not of interest in
this present study. On average, participants took between 30 to 40 minutes to complete the
activity sheets and by the end of the intervention, participants took less than 30 minutes. In
total, participants completed 9 intervention activity sheets each with a total of 10 practice
exercises. Participants therefore completed 96 fraction multiplication exercises over the course
of the nine intervention sessions, six during the introductory phase (Sessions 1 to 3) and 90 on
the activity sheets (Sessions 4 to 9). All interventions were conducted in separate rooms under
my supervision or that of one of the research assistants.

While the PI+ and PI- groups were practicing their fraction multiplication exercises on their
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activity sheets, the students in the Control group were learning notions of geometry through
worksheets and guided activities in a separate room. At no time during the intervention periods
were concepts or procedures related to fractions discussed.
Measures

Three measures were administered at pretest and posttest. They were selected to assess
if fraction magnitude understanding (FNL 0—1, FNL 0—2 and FMC) had developed and assess if
their ability to properly execute the procedure taught during the intervention had improved. |
alternated with the five research assistants throughout the intervention period to ensure result
objectivity and reliability.
Fraction Multiplication

The Fraction Multiplication task assessed the participants’ ability to multiply a whole
number by a fraction (see sample questions in Figure 2). There were five fraction multiplication
questions on the pretest and four similar questions on the posttest. A printing error on the
posttest required the removal of one of the questions. An accuracy score was calculated using
the mean correct score for the task. The fractions were randomly selected from the same bank
of questions used during the intervention portion of the study (see Appendix C).
Figure 2

Sample Questions for the Fraction Multiplication Task

1) 4x2/10 Show your work.

2) 3x4/7 Show your work.

Fraction Number Line Tasks
The Fraction Number Line tasks (FNL; with subscale 1 [0 to 1 number line], and subscale
2 [0 to 2 number line]), adapted from Bailey et al. (2012), assessed participants’ conceptual

knowledge of fraction magnitude. Specifically, it measured participants’ accuracy in locating a
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given fraction on a number line between 0 and 1 (booklet 1) and 0 and 2 (booklet 2). A number
line is a linear visual representation where numbers are positioned according to their
magnitude, with greater values placed further to the right of zero (see Figure 3; Schneider et al.,
2017). The task required participants to understand the relation between fractions on a ratio
scale level; that is, where on the number line are each fraction located given the range of the
line. Based on previous work (Bailey et al., 2012; Fazio et al., 2016; Hansen et al., 2017; Siegler
et al., 2011), two booklets were created for that purpose. The Fraction Number Line 0—1 (FNL
0-1) booklet contained nine items, each of which presented a 0 to 1 number line with a fraction
placed above and centered on the number line. The participants placed a hash mark on the
number line to represent where the fraction was located. The items in the FNL 0—1 booklet
were: 1/5, 13/14, 2/13, 3/7, 5/8, 1/3, 1/2, 1/19, and 5/6. The second booklet, FNL 0-2, consisted
of 11 items. Each item was presented in the same way as for the 0—1 number line except that
the line ranged from 0 to 2. The students placed a hash mark on the number line to represent
where the fraction was located (see Figure 3 for demonstration samples). The 11 questions
required placement of the following fractions: 1/3, 7/4, 12/13, 1 11/12, 3/2, 5/6, 5/5, 1/2, 7/6, 1

2/4,1,3/8,15/8, 2/3,11/5,7/9, 1/19, 1 5/6 and 4/3.
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Figure 3

Demonstration Fractions for the Fraction Number Line Tasks for Each Subscale

Subscale 1
1
8
o ®
0 1
Subscale 2
L 1
8
° °
0 2

Scoring for both Fraction Number Line tasks (Subscales 1 and 2) was obtained by
calculating the degree of precision of the participant’s placement of the fraction on the number
line as related to its actual position on the number line called the Percent Absolute Error (PAE).
The PAE is calculated by finding the absolute difference between the actual location of the
fraction on the number line (in cm) and the position estimated by the participant (in cm) and
dividing the absolute value of the result by the total length of the line (in cm) and multiplying the

quotient by 100. The closer the PAE is to zero, the more accurate the participant's estimate.

Fraction Magnitude Comparison

The Fraction Magnitude Comparison task (FMC) is another task that also assessed the
participant’s conceptual understanding of fraction. The FMC contained 18 items (see Table 2)
and required participants to identify which of two fractions was the larger fraction and then
justify their selection. Three types of fractions were presented, 6 fractions for each fraction type:
(1) fractions that had equal denominators but different numerators (e.g., 2/5 and 3/5), (2)
fractions with equal numerators but different denominators (e.g., 4/7 and 4/9), (3) and fractions
where the numerator of one fraction was larger, but its denominator was smaller than the

fraction it was being compared to (ex.: 4/5 vs 3/7). The fractions in this measure served to elicit
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three conceptually-based strategies of fraction magnitude. First, when comparing fractions that
have a common denominator, the fraction with the greater numerator is the larger fraction.
Second, when comparing fractions with a common numerator, the fraction with the smaller
denominator is the larger fraction. And last, when fractions have different numerators and
denominators, the fraction with the larger numerator and the smaller denominator is the larger
fraction. The pairs of fractions were randomly distributed in the booklet such that the larger
fraction appeared on the right side eight times, and on the left side 10 times.

Table 2

Fraction Types for Magnitude Comparison

Large Numerator and

Equal Denominators Equal Numerators Small Denominator
4/9 and 2/9 3/4 and 3/5 2/9 and 3/7
2/7 and 3/7 7/9 and 7/8 3/8 and 2/9
3/5 and 4/5 1/4 and 1/3 5/9 and 7/8
3/19 and 9/19 4/15 and 4/13 10/13 and 9/14
9/14 and 13/14 13/14 and 13/17 2/15 and 3/11
9/17 and 13/17 2/13 and 2/17 10/17 and 13/15

Note. All values obtained from Fazio et al., 2016.

Quantitative and qualitative data were obtained from the Fraction Magnitude Comparison
task (see Figure 4). First, the proportion of correct responses was calculated by counting the
number of times the bigger fraction was properly identified by the participant and dividing the
answer by 18, the number of questions in the task. Second, the quality of the participants’
strategies used to justify their choice was analyzed (see Table 3). To do so, | adapted a scale
developed by Fazio et al. (2016), which has four levels of strategy quality: logical necessity,
intermediate steps, usually correct, questionable (Fazio et al., 2016, pp. 46-47), to which |

added an uninterpretable category because some answers provided by participants where
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unclear or offered circular logic (e.g., explaining that the identified fraction was the larger
fraction simply because it is the larger fraction). To determine if participants improved the quality
of their responses from pretest to posttest, these five levels of strategy quality were rank
ordered (see ranking in Table 3) and points were assigned to each response based on the rank.
A greater number of points were assigned to more conceptually complete strategies. For
example, participants who used a strategy identified as Logical Necessity would receive 4
points, while participants who used a Usually Correct strategy would receive a score of 2. A
quality score was computed for each participant by taking the mean number of points assigned

across all six items for each fraction type.
Figure 4

Demonstration Fractions for the Fraction Magnitude Comparison Task

3

7

NN

Explain why you think the circled fraction is bigger.

The distinction between all five levels rests on the strength of the strategy and its relation
to conceptual understanding of fractions. To be identified as a Logical Necessity strategy, the
participant had to show that the numerator, the denominator, and the relationship between the
two were considered. For Intermediate Steps, the participant adequately compared the fraction
to another known fraction (ex.: 0, 72, or a whole). Participants who used the Usually Correct
strategy only considered the relationship between the denominators and the numerators of the
two fractions or attempted to explain their choice through drawings or number lines. When the
Questionable strategy was used, participants typically identified the larger fraction by using

aspects of a fraction that are true only in particular situations, like picking the fraction in which
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the difference between the numerator and the denominator is the greatest. Finally,

Uninterpretable strategies did not allow for a conclusion about the strategy used, such as,

simply indicating that the selected fraction was the bigger fraction.

Table 3

Fraction Magnitude Comparison Strategies and Scoring

General Strategy Group

Scoring Strategies

Strategy Description

Included
Logical necessity: 4 Equal If both fractions have equal
Strategy  vyields correct denominators denominators, the fraction with the
answer on all applicable larger numerator is larger.
problems.
Equal If both fractions have equal
numerators numerators, the fraction with the
smaller denominator is larger.
Larger numerator The larger fraction has a larger
and smaller numerator and a smaller
denominator denominator.
Intermediate steps: 3 Halves reference The larger fraction is greater than %
Strategy  vyields correct and the smaller fraction is smaller
answer on all applicable than Y%.
problems if intermediate General Compare one or both fractions to a
steps are executed magnitude nearby known magnitude, such as
correctly. reference 0, Y2, or 1.
Usually correct: 2 Visualization Using a pie chart, number line or
Strategies that yield better other visual representation of a
than chance results, but do fraction to compare magnitudes.
not guarantee  correct
answers.
Smaller The larger fraction has a smaller
denominator denominator.
Difference The difference between the
between numerator and denominator of the
numerator and larger fraction is smaller than the
denominator difference between the numerator
within each and denominator of the smaller
fraction is smaller fraction.
The larger fraction has a larger
Larger numerator numerator.
Questionable: 1 Larger The larger fraction has a larger

Strategies do not guarantee
to vyield above chance
performance.

denominator
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General Strategy Group Scoring Strategies
Included

Strategy Description

Larger numerator
and denominator
Smaller
numerator
Difference
between
numerator and
denominator

within each
fraction is larger
Uninterpretable: 0 Drawing
The strategy wused is
inadequately explained and
does not allow to conclude
which of the two fractions is
the larger fraction
Number line
Words
Nothing

The larger fraction has a larger
numerator and denominator.

The larger fraction has a smaller
numerator.

The difference between the
numerator and the denominator of
the larger fraction is larger than the
difference between the numerator
and the denominator of the smaller
fraction.

The drawing used does not identify
which of the two fractions is the
larger fraction (i.e., both fractions
are not represented within the
drawing)

The number line drawn does not
identify which of the two fractions is
the larger fraction (i.e., both
fractions do not appear on the
number line)

The explanations are incomplete or
do not make sense (i.e., this
fraction is bigger because it is

bigger.)

No answer provided

Note. Adapted from Fazio et al., 2016

Procedure

| administered the two Fraction Number Line tasks (Subscales 1 and 2), the Fraction

Magnitude Comparison task, and the Fraction Multiplication task at pretest, with the help of a

research assistant. The participants in each class completed the pretests together in their

respective classroom settings or in a cafeteria. | provided the instructions to the students on

how to answer the test questions to all three classes at pretest and posttest. All tasks were

pencil-and-paper tests. Pretests and posttests were identical and administered in the same

order at both time points.
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Pretest

To begin the first estimation task, | showed the participants a fraction (1/8) on the
Smartboard or bristle board. | began by saying, “Today we’re going to play a game using
fraction number lines. Open your activity book called Fraction Number Line Activity — to page 1.
Notice there is a line with 0 on the left end and 1 on the right end, and a fraction above it in the
center. Now look at the Smartboard (or board). The same line and fraction appear here [I
pointed the board]. Next, | will ask you to mark where you think the fraction is on the number
line. Here is an example [I showed Figure 3, Subscale 1] | will place a hash mark where | think
1/8 goes on the number line. [I placed a hash mark near the 1/8" position on the number line
and confirmed that all participants had understood what he had done]. Now it is your turn. Turn
to page 2. On the page in front of you, there is a line with 0 on the left end and 1 on the right
end. Above it, in the center, is the fraction 1/4. Place a hash mark where you think 1/4 goes on
the number line.”

| waited for the children to place their hash mark and provided feedback on their

performance, with the help of a research assistant, as the participants showed them their
answers. The participants were told that the rest of the workbook had similar problems and were
instructed to answer every question in the booklet (the example [1/4] completed by the students
was not included in the analysis). Participants completed the booklet at their own pace.
Participants were provided with reading material or crossword puzzles to avoid disrupting those
who needed more time to complete the task if they finished early. From this time forward, all
information provided to the children aimed to clarify administrative aspects of the task only and
did not address the underlying conceptual components of the activity, nor were any strategies to
answer the questions provided. As the participants completed their booklets, the research
assistant and | verified that all questions were answered and that the booklets were properly
identified. If a booklet was not completed, it was given back to the participant, and they were
asked if they could complete it.
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After completing the 0—1 number line booklet, | demonstrated a similar procedure for the
0—2 number line booklet: The participants watched as | placed 1/8 and then 1 1/8 on the 0-2
fraction line (see Figure 3 — Subscales 1 and 2). As before, | provided the participants with a
practice item asking them to place 2 on the 0—2 number line. Again, no feedback was provided
except to confirm that the participants understood the task. Following the practice item, |
provided the same instructions as for the activity with the Fraction Number Line 0—1 and then
testing began.

For the third booklet, the Fraction Magnitude Comparison task, | began by saying, “This
third booklet has a different look from the first two [| showed an image like the one in Figure 4].
As you can see on page 1, there are two fractions separated by a dark line above a box.”

| continued by saying, “For this activity, | will ask you to circle the fraction that you believe
is the biggest fraction of the two. Once this is done, you will write down, or draw, why you think it
is the biggest of the two fractions in the box below the fractions”. To practice, | demonstrated
comparing 3/7 and 2/7 and instructed the participants to circle the bigger fraction. | said, “Now, |
would circle whichever of these two fractions | predict to be the bigger fraction of the two”. | then
pointed to the box below the fractions and said, “this is where | would like you to explain why
you circled the fraction that you did. You can do this by writing words, using a number line, or
drawing. Make sure that you clearly identify which of the two fractions is the biggest one”. | did
not fill in the box on the demonstration item.

The participants were given a practice question where they compared 1/3 and 2 and were
asked to justify their answer. Following the practice item, participants were reminded to justify
their answers and began the test. | again provided reading material and crosswords to keep the
participants occupied if they finished early. If a booklet was not properly completed, it was given
back to the participants, and they were asked to complete it.

The final task on the pretest was the Fraction Multiplication task. | began by saying, “This
last task will be a little trickier than the other three. | will give you a sheet on which there are five
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fraction multiplication questions. | know you may not have learned how to multiply fractions yet,
and that’s okay. | just need you to try your best. What | need you to do is to show how you think
you can get to the answer. It doesn’t matter how you do it. If you are really stuck, you can write
a question mark where the answer goes, but you can'’t leave it blank.” Participants then received
the activity sheets on which the five multiplication tasks appeared. Access to reading material
and crosswords was again provided. Activity sheets that were not properly identified or
completed were handed back to the participants to be completed. If students confirmed they
were done, the activity sheets were retrieved.
Intervention Phase

Five trained researcher assistants (RA1 to RA5) met with the intervention and control
groups for a total of nine sessions. Due to scheduling issues, school 1 completed the pretest 11
days before beginning the sessions. Students were met two to three times a week over a four-
week period every second school day. School 2 completed the pretests four days before the
beginning of the sessions. Students from both classes in school 2 were met on alternating days
and, as for school 1, were tested over four weeks every second school day. For both schools,
posttests were completed 5 days after the last intervention session (see Figure 5). The same
research assistant (RA1) and | were present during both pre- and posttests. All three groups
(PI+, PI-, Control) from each class completed their activities in their respective classrooms and

at the same time.
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Figure 5

Research Project Schedule

Intervention School Date of Research Team Members and Conditions
Types session Pl+ PI- Control
School 1 Oct. 17 Researcher / RA1

Pretest School 2 82: 2‘51 Researcher / RA1
School 1 Oct. 28 Researcher RA1 RA3
Session 1 Oct. 28 Researcher RA1 RA2
School 2 5559 | Researcher RA1 RA2
School 1 Oct. 30 RA1 RA3 Researcher
Session 2 Oct. 30 RA1 RA2 Researcher
School 2 Oct. 31 RA1 RA2 Researcher
School 1 Nov. 1 RA3 Researcher RA1
Session 3 School 2 Nov. 1 RA2 Researcher RA1
Nov. 4 RA2 Researcher RA1
School 1 Nov. 5 Researcher RA1 RA3
Session 4 Nov. 5 Researcher RA1 RA2
School 2 Nov. 6 Researcher RA1 RA2
School 1 Nov. 7 RA5 RA3 Researcher
Session 5 Nov. 7 RA5 RA2 Researcher
School 2 Nov. 8 RA1 RA2 Researcher
Intervention School Date of Research Team Members and Conditions
Types session Pl+ PI- Control
School 1 Nov 12 RA3 Researcher RA4
Session 6 Nov 12 RA2 Researcher RA4
School 2 Nov. 13 RA2 Researcher RA1
School 1 Nov. 14 Researcher RA1 RA4
Session 7 Nov. 14 Researcher RA1 RA2
School 2 Nov. 15 Researcher RA1 RA2
School 1 Nov. 18 RA1 RA3 Researcher
Session 8 Nov. 18 RA1 RA2 Researcher
School 2. 5y 19 RAT RA2 Researcher
School 1 Nov. 20 RA3 Researcher RA1
Session 9 Nov. 20 RA2 Researcher RA1
School 2 5y 21 RA2 Researcher RA1
School 1 Nov. 25 Researcher / RA1
Posttest School 2 Nov. 25 Researcher / RA1
Nov. 26

Note. One Researcher and five different Research Assistants (RA1 to RA5) took part in the data collection and
intervention. Only one research assistant (RA1) was present during the pretest and posttest sessions.
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Participants in the Pl+ group completed the practice exercises for multiplying fractions.
Participants were prompted at the beginning and at the end of the interventions to reflect on the
relationship between the fraction in the problem and the fraction obtained following the solution
(i.e., the product). Specifically, participants were taught how to multiply a whole number by a
fraction using a repeated addition procedure and were prompted to reflect on how the fraction in
the problem and the product compared. Three reflection prompts were asked, “When you
multiply ‘a by b/c’ (e.g., 5 x 1/2) and find the product to be ‘ab/c’ (e.g., 5/2), what do you notice
that is different between the fraction at the beginning of the equation (i.e., 1/2) and the final
answer (i.e., 5/2)? Which of the two fractions is greater (or larger)? Think about why that might
be.”

The first three practice sessions began with two demonstration problems, which were
completed by me or a research assistant. In the first demonstration, participants were shown
how to multiply 3 x 1/7 by performing repeated addition on a Smartboard (or a blackboard) in
front of the class (see Figure 6).

Figure 6

Procedure Taught for Multiplying a Whole Number by a Fraction

Example problem Explanation
1
Step 1 = =
p 3 X 7
1 I i 1 . th 2 &
Step2 3 x .= -4 2 + 1 Multiplying 3 by 1/7" is like adding 1/7" 3 times

1 When adding fractions, when the denominator

Step3 3 x-=-+4+=-+4+=-= is the same (and we will only work with
7 denominators that are the same for now), all we

have to do is add the numerators together.

|
N -
N -
N w

In the second demonstration, 4 x 2/6, a fourth step was introduced where the product
would need to be simplified (see Figure 7). For Step 3, the answer obtained was 8/6 (e.g.,

2/6+ 2/6 + 2/6 + 2/6 = 8/6). Participants were shown that, whenever possible, the
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simplest fraction needs to be found by dividing the numerator and denominator by a common
factor. In this case, both the numerator and denominator can be divided by 2 to get 4/3 (e.g., (8
+ 2)/ (6 + 2) = 4/3; Step 4). The participants in the two practice conditions were told that
simplification of fractions could be performed by dividing by 2, 3, 4, or 5. They were also asked
to practice the following two exercises on their own: 3 x 2/7 (no simplifying needed) and 3 x 5/10
(with simplifying) one at a time, using the script presented below. Each of the first three
sessions ended at this point.

Figure 7

Procedure taught for Multiplying a Whole Number by a Fraction and Simplifying

Step 1: 4 X % =
Step 2: 4 x % = % + % + % + % Multiplying 4 by 2/6% is like adding 2/6™ 4 times
Step 3: 4 x 2_2,2,2,2_%8 When adding fractions, when the denominator
6 6 6 6 6 6 is the same, all we have to do is add the
numerators together.
Step 4: 4 x 2_2,2,2,2_%82_1 Sometimes you have to simplify the answer
6 6 6 6 6 6+2 3

you get by dividing it by a common factor. We
will only use 2, 3, 4, or 5. So here, what
number can we use to simplify the fraction? |
will try 2. If | divide 8 by 2 and 6 by 2, what do
| get?

For the remaining six practice sessions (i.e., from the fourth practice session onward), the
two original procedural demonstrations (e.g., 3 x 1/7 and 4 x 2/6) were rewritten on the board at
the beginning of each session. Verbal support was limited to the mechanics of the procedure
required to solve the problems such that when questions were raised, the answers were limited
to how to perform the procedure. At no point was any conceptual notion addressed. Unlike the
first three sessions, no practice problem was provided. Participants were reminded that they
would only need to simplify using 2, 3, 4, or 5 for the rest of the exercises. Each practice
session ended when all participants had completed their activity sheets.

Participants in the control group took part in guided activities and lessons that introduced
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geometric vocabulary associated to 3-shapes (cubes, prisms, pyramids), their construction, and
their nets. These activities did not require any knowledge of fraction concepts or procedures. All
participants met with me or one of the research assistants approximately three times a week
over a three-week period, for a total of nine sessions. Each practice session lasted
approximately 30 minutes.
Posttests

The posttests followed the 3-week intervention with all participants completing identical
versions to the four pretests. Participants in each class performed the posttests again in their
respective classroom settings or in the cafeteria. The same research assistant and |, who were
present at pretest, were again present at posttest. All administration procedures were identical
to those implemented at pretest. Later that same week, | tested the individuals who had missed
the posttest intervention in the library. The following week, two more students were tested by
their teacher in their own classrooms.
Analysis Plan

Three different one-way ANOVAs were conducted on the gain scores (posttest - pretest)
from the procedural knowledge measure (the Fraction Multiplication task) and the conceptual
knowledge measures (the number line estimation tasks, subscales 1 and 2). Fisher’s Least
Significant Difference (LSD) post hoc pairwise comparisons (Levin et al., 1994) were used to
decompose any main effects of condition. Specifically, for each significant effect of condition,
three pairwise comparisons were used to answer the research questions: (a) Practice
Intervention with Prompt (PI+) vs Control, (b) Practice Intervention without Prompt (PI-) vs
Control, and (c) Practice Intervention with Prompt (PI+) vs Practice Intervention without Prompt
(PI-).

A mixed ANOVA was performed on the gain scores (posttest — pretest) from the fraction
magnitude measure (the Fraction Magnitude Comparison task) on accuracy and the quality of
the participants’ justifications for their responses. | evaluated the quality of the strategies applied

40



for three categories of fractions (CD, CN, LNSD) to ascertain whether conditions were a
contributing factor. Fisher’s Least Significant Difference (LSD) post hoc pairwise comparisons
(Levin et al., 1994) were used to decompose any main effects of condition. For each significant
effect of condition, three pairwise comparisons were used to answer the research questions: (a)
Practice Intervention with Prompt (PI+) vs Control, (b) Practice Intervention without Prompt (PI-)
vs Control, and (c) Practice Intervention with Prompt (PI+) vs Practice Intervention without
Prompt (PI-).
Results
The research questions that guided the analyses are threefold: (1) Will practicing a

procedure to multiply a whole number by a fraction (i.e., performing repeated addition) result in
acquiring greater procedural accuracy in fraction multiplication (as measured by the accuracy of
their answers)? (2) Will practicing a procedure to multiply a whole number by a fraction (i.e.,
performing repeated addition) result in greater conceptual knowledge of fraction magnitude (as
measured by the accuracy of their answers on two fraction lines (0—1 and 0-2) activities, a
fraction magnitude comparison activity which measured the accuracy of their answers, and the
quality of the students’ justifications)? (3) Will reflecting on how the magnitude of a fraction is
affected when multiplying a whole number by a fraction develop greater knowledge of fraction
concepts compared to practicing the multiplication procedure without reflection (measured in the
same way as for question 2)?
Fraction Multiplication

To address the first research question, a one-way analysis of variance (ANOVA) was
conducted to determine if there were any condition differences on participants’ accuracy when
performing the multiplication procedure. The dependent variable was mean proportion correct at
posttest and the independent variable was condition with three levels. The three levels were
practice intervention with reflection prompts (Pl+), practice intervention without reflection
prompts (PI-), and control. Pretest scores were not used because participants were at floor at
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pretest. The ANOVA revealed a statistically significant main effect of condition, F(2, 53) =
1270.29, p <.001, n3 = .98).

Post hoc comparisons using the Fisher’s Least Significant Difference (LSD) test indicated
that both the P+ group (M = .98, SD = .08) and the PI- group (M = .99, SD = .06) scored
significantly higher than the Control group (M = .01, SD = .06), p <.001. No significant difference
was observed between the Pl+ and PI- groups (p = .58). The results indicate that performing
fraction multiplication activities through regular practice results in higher accuracy than no
practice, whether they reflect on their actions or not. Examples of typical answers for the three
conditions can be seen in Figure 8
Figure 8

Sample Student Multiplication Solutions at Posttest.

Practice with Intervention

6
2 X E = ; : b ) 4 X 1 — :
i £ -" 2_ ‘.‘ & ) I J
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Note. The samples were selected from all three conditions and are examples of the
vast variations of answers collected. No notable differences were observed between
the two intervention groups.
The following three ANOVA analyses were conducted to answer the remaining two
research questions: Will practicing a procedure to multiply a whole number by a fraction result in

greater conceptual knowledge of fraction magnitude? Will reflecting on how the magnitude of a

fraction is affected when multiplying a whole number by a fraction help students to develop
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greater knowledge of fraction concepts compared to practicing the multiplication procedure
without reflection?
Fraction Number Line 0-1

The Percent Absolute Error (PAE) means and gains scores of the two subscales of the
fraction estimation tasks (at pre- and posttest are presented as a function of condition in Table 4
and the gains in PAE mean scores in Table 5. A one-way ANOVA examined the effect of the
interventions on the participants’ abilities to properly locate a given fraction on a 0—1 number
line. To account for the small sample size, gain scores were computed and used in the
analyses. The dependent variable was Percent Absolute Error (PAE; a lower score indicates a
more accurate response), and the independent variable was condition with the same three
levels as named above (Pl+, Pl-, and Control). The ANOVA revealed no statistically significant
effect of condition, F(2, 53) =0.32, p =.73

Table 4

Percent Absolute Error Mean Scores on the Fraction Number Line Tasks

Pretest Posttest Pretest Posttest

FNL 0-1 FNL 0-1 FNL 0-2 FNL 0-2
Condition M SD M SD M SD M SD
Pl+ 21 12 .23 .15 .23 10 24 A1
PI- 15 14 .18 .18 27 .08 .23 .09
Control .23 13 .22 .15 27 .09 .23 .09

Note. N=56 (n = 20 for Pl+, n = 19 for PI-, n = 17 for Con). Pl+ = Practice Intervention with
Reflection Prompts; PI- = Practice Intervention without Reflection Prompts (PI-); Control; FNL
= Fraction Number Line (Subscales 1 and 2).

Table 5

Gains in Percent Absolute Error Mean Scores on the Fraction Number Line Tasks

FNL 0-1 FNL 0-2
Condition M SD M SD
Pl+ .02 12 .01 .08
PI- .03 A1 -.03 .08
Control .00 A3 -.04 .06
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Note. N=56 (n = 20 for Pl+, n = 19 for PI-, n = 17 for Con). Pl+ = Practice Intervention with

Reflection Prompts; PI- = practice Intervention without Reflection Prompts (PI-); Control; FNL

= Fraction Number Line (Subscales 1 and 2).
Fraction Number Line 0-2

Here again, the Percent Absolute Error (PAE) means and gains scores of the fraction

estimation tasks (Subscale 2) at pre- and post-test are presented as a function of condition in
Table 4, and the gains in PAE mean scores in Table 5. This one-way ANOVA was conducted to
examine the effect of the interventions on the participants’ abilities to properly locate a given
fraction on a 0—2 number line. The dependent variable remained PAE, and the independent
variable was condition with the same three levels as named above (Pl+, PI-, Control). No

statistically significant main effect of condition was revealed, F (2, 53) = 2.19, p = .12.

Fraction Magnitude Comparison

The means and gains scores of the Fraction Magnitude Comparison task at pre- and post-
test are presented as a function of condition in Table 6 and 7. This mixed-design ANOVA was
conducted to examine the effect of the intervention on the participants’ abilities to improve the
quality of their justification for selecting the larger of the two fractions. The test was a 3
(condition: PI+, PI-, Control) x 3 (fraction type: CD, CN, LNSD) mixed design ANOVA on the
mean gain strategy score. As in the previous ANOVA, the between-subject variable was
condition and the within-subjects variable was fraction type with three levels (CD, CN, and
LNSD). The dependent variable was the gain strategy score. The higher the mean gain score
observed, the greater the improvement in the quality of the participants’ response. A negative
number indicates that the participants’ score at pretest was greater than at posttest. The

analysis revealed no statistically significant main effect of condition, F (2, 52) = 0.20, p = .82.
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Table 6

Fraction Magnitude Mean Strategy Scores

CD CD CN CN LNSD LNSD
Pretest Posttest Pretest Posttest Pretest Posttest
Condition M SO M SO M SO M SO M SO M SD
Pl+ 163 0.72 128 087 121 074 117 0.79 137 081 131 1.07
PI- 1.37 080 146 0.79 113 079 105 083 129 0.75 1.29 0.87
Control 1.88 062 169 084 149 054 152 068 148 0.70 157 0.82

Note. N=55 (n = 20 for PI+, n = 18 for PI-, n = 17 for Con). Pl+ = Practice Intervention with
Reflection Prompts; Pl- = Practice Intervention without Reflection Prompts (PI-); Control; CD
= common denominators; CN = common numerators; LNSD = large numerator and small
denominator.

Table 7

Gains in Fraction Magnitude Strategy Scores

Condition CD CN LNSD

M SD M SD M SD
PI+ -.34 1.02 -.04 1.02 -.06 1.12
PI- A2 0.97 -.04 0.90 -.02 0.91
Control -.20 0.97 .03 0.67 .10 0.87

Note. N=55 (n = 20 for Pl+, n = 18 for PI-, n = 17 for Con). Pl+ = Practice Intervention with
Reflection Prompts; PI- = practice Intervention without Reflection Prompts (PI-); Control; CD
= common denominators; CN = common numerators; LNSD = large numerator and small
denominator
Changes in Justification Types at Pretest and Posttest
Common Denominator
To evaluate the trends in justification types within and between the conditions over time
for fractions with common denominators, a stacked bar graph was used to compare the mean
proportion of each strategy type in the three conditions at pretest and posttest (see Figure 9).
Five justification types were identified for this study: logical necessity (LN), intermediate steps
(IS), usually correct (UC), questionable (Q; Fazio et al., 2016) and uninterpretable (UN; see

Table 3). The predominant strategy used at pretest for all conditions was the Usually Correct

strategy (PI+ [M = .75], PI- [M = .67], Control [M = .76]). Even though the most used strategy
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justification type remained UC at posttest, other justification types shifted to the UN strategy.
For example, the mean proportion of the UN strategy in the reflection with prompts group (Pl+)

grew from a proportion of 7% at pretest to 34% at posttest (see a student example in Figure 10).

Figure 10

Example of a Student’s Justification on the Fraction Magnitude Task

Pretest — Student A
" Question 5

3 9

19 9

Explain why you think the circled fraction is bigger. 9 15 9fedoy  thon 2
l{ '\ \’\{’ A{’ nom; r\(‘,\*{)( 16 H’)f’ Aﬁ()\ﬂ\(’,. ‘

Posttest — Student A

Question 5
: @
19
Explain why you think the circled fraction is bigger. "\ U/Mé& (el 0 14
gre oter

Note. Both examples were collected from the same student.
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Figure 9

Mean Proportions of Justification Types for Fractions with Common Denominators
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Pl+ Pl+ Pl- Pl- Control Control
Pretest Posttest Pretest Posttest Pretest Posttest

Condition by Time

Note. LN = Logical Necessity; IS = Intermediate Steps; UC = Usually Correct; Q = Questionable;
UN = Uninterpretable (UN).
Common Numerators

To evaluate the trends in use of the justification types within and between the conditions
at pretest and posttest for fractions with common numerators, a stacked bar graph was used to
compare the mean proportion of each strategy type in the three conditions (see Figure 11). The
predominant strategy used at pretest for the practice with and without reflection groups was

again the Usually Correct strategy, with respective mean proportions of 41% and 43%. The
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preferred strategy in the control group at pretest was the Questionable strategy (M = 0.42). All
three conditions saw an increase in the mean proportion of the Uninterpretable strategy from
pretest (Pl+ [M = .08], PI- [M = .18], Control [M = .07]) to posttest (Pl+ [M = .34], PI- [M = .34],
Control [M = .16]).

Figure 11

Mean Proportions of Justification Types for Fractions with Common Numerators
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Pl+ Pl+ Pl- PI- Control Control
Pretest Postiest Pretest Postiest Pretest Postiest

Condition by Time

Note. LN = Logical Necessity; IS = Intermediate Steps; UC = Usually Correct; Q =
Questionable; UN = Uninterpretable (UN).
Large Numerators and Small Denominators

To evaluate the trends in the use of justification types within and between the conditions
over time for fractions with a large numerator and a small denominator, a stacked bar graph

was used to compare the mean proportion of each strategy type in the three conditions (see
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Figure 12). The predominant strategy used at pretest for all conditions was once again the
Usually Correct strategy (Pl+ [M = .52], PI- [M = .63], Control [M = .51]). The most commonly
used strategy justification type remained UC at posttest but, as observed with the fractions with
common denominators, many justification types shifted to the UN strategy. For example, the
mean proportion of justification type for the reflection with prompts group grew from a mean
proportion of 9% at pretest to 33% at posttest.

Figure 12

Mean Proportions of Justification Types for Fractions with Large Numerators and Small

Denominators
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Note. LN = Logical Necessity; IS = Intermediate Steps; UC = Usually Correct; Q = Questionable; UN =
Uninterpretable (UN).
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Discussion

Objectives of the Study

The main objective of this study was to investigate whether Grade 5 students, who are
learning a procedure for multiplying a whole number by a fraction using repeated addition,
would develop conceptual knowledge of fractions, and if self-explaining, which cannot take
place without reflection, was a contributing factor. First, | considered whether practicing a
procedure to multiply a whole number by a fraction, on its own, would improve students'
learning of the procedure taught. Second, | investigated the impact of practice on the
development of conceptual understanding of fraction magnitude. Finally, | measured whether
reflecting on how the multiplication procedure modified the product improved the students’
conceptual understanding of fraction magnitude. The interventions were performed without the
students receiving any instruction on the conceptual nature of the procedure.

According to Schneider et al. (2017), number line and magnitude comparison activities are
deemed to be complementary in their analysis of fraction magnitude on two scales as they
assess related but different aspects of magnitude understanding. Number lines do so in a
spatial fashion, enabling students to visually locate the number they seek, in this case a
fraction, using relational factors or landmark strategies that are part of the number line. On the
other hand, magnitude comparison activities do so on an ordinal level, where the size of the
numbers involved is considered. For those reasons, | decided to use both magnitude
assessment activities to measure students’ fraction magnitude understanding before and after
the intervention in three ways.

First, | assessed students’ ability to locate a fraction on a 0 to 1 number line, and then
again on a 0 to 2 number line. Second, | assessed their ability to choose the larger fraction from
a pair of fractions. Third, | measured the students’ accuracy on this measure, but also whether
they had learned three key concepts of fraction magnitude. Students were asked to determine:

which of two fractions was the larger when they had a common denominator (the fraction with
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the greater numerator is the larger fraction; when they had common numerators (the fraction
with the smaller denominator is the larger fraction); and when one fraction had a larger
numerator but a smaller denominator than the other (the fraction that has the larger numerator
and the smaller denominator is the larger fraction).

To investigate if repeated practice of fraction multiplication procedures can affect learning
these concepts, students met with me or a research assitant two to three times per week over a
four-week period. Three groups were randomly formed for this study. One group received
instruction to on a fraction multiplication procedure and then practiced the procedure over the
four-week period with reflective prompts; that is, students in this condition were prompted to
reflect on the initial fraction and the product obtained. In the other condition, the students did not
receive any reflective prompts. Student in both instructional conditions practiced the procedure
on over 90 fraction multiplication questions. In the control condition, students engaged in
geometry activities and were not exposed to any concepts of fractions or fraction multiplication
procedures.

Predictions

As predicted, my results showed that practicing exercises on multiplying a whole number
by a fraction resulted in improved accuracy over the 4-week intervention period. As an
experienced teacher such a high degree of success (nearing 100%) for a group of students
randomly selected was quite surprising, notwithstanding the fact that this result is supported by
other similar findings indicating that repeated practice allows students to master the procedure
taught (Canobi, 2009; McNeil et al., 2012; Osana & Pitsolantis, 2013). None of the students in
the control group learned the procedure, which was expected because they did not receive any
instruction on how to multiply a whole number by a fraction.

Contrary to what was expected, practicing a procedure for multiplying a whole number by
a fraction did not support the students in developing their conceptual knowledge of fraction
magnitude. Performance on both Fraction Number Line tasks and the Fraction Magnitude
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Comparison task reported no significant differences among the three conditions. In essence, the
repeated procedural activities performed in this study did not lead students to develop greater
conceptual understanding of fractions.

This result supports what had been reported by Rittle-Johnson (2006) who had also
observed that self-explanation had not improved conceptual knowledge when students were
encouraged to self-explain when learning about mathematical equivalence. As in this present
study, elicited self-explanation had a positive impact on learning procedures but not on
conceptual knowledge. Furthermore, her study showed that students who had acquired the
procedure with self-explanation were also able to apply it in various, new situations and self-
explanation also enabled longer retention of the procedure. These other findings were not
replicated within this study as it went beyond the scope of my research.

Because reflection is an invisible process, determining its impact can only be confirmed
when differences between two distinct groups, one being prompted to reflect and the other not,
express different behaviors on similar tests. Given the lack of differences observed between the
two intervention groups related to their conceptual understanding, and despite the reflection
questions provided, it is difficult to determine whether the lack of a self-explanation effect
resulted from an inability to reflect, a lack of motivation, or even not engaging in self-explanation
at all. Even more surprising is that the students in the intervention group (PI+ and PI-) did not
perform any better than the control group who never received any procedural instruction on
fraction multiplication, thus supporting the idea that the procedure learned had little effect on the
students’ conceptual development in the short term. The lack of difference between the three
groups on the fraction magnitude tasks was observed through the descriptive analysis of
students’ application of the three specific concepts, assessed through their justifications on the
fraction magnitude measure, as no significant differences were observed between the three
groups.

The cause for such little difference between all three groups may stem from the students’
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lack of familiarity with the justification process. In their study, Fuchs et al. (2016) found that
supporting self-explanation improved the students’ fraction magnitude comparisons and the
quality of their explanations. This finding is critical as it distinguishes the self-explaining
approach used in this present study, elicited self-explaining, from the one used by Fuchs: The
students in her study were taught how to self-explain through a four-step process. Students had
to identify if fractions had common denominators, common numerators, or different numerators
and denominators; comment on the quality of a drawing representing fractional quantities;
associate an image of a fraction with its numerical value and describe if the fractions drawn had
same-size parts or not; and provide a written explanation indicating why one fraction was larger
than another. Such an approach was not possible in this current study, as the line between
conceptual and procedural knowledge would have been blurred. That is, using Fuchs et al.’s
(2016) approach would have potentially introduced conceptual notions during the instructional
activity inadvertently introducing a confounding variable. To ensure that self-explaining occurred
without providing conceptual knowledge to the students, | used elicited self-explaining
(prompting a student by asking them a chosen question). Given that students were not familiar
with this type of activity, perhaps it would have been more beneficial to develop self-explaining

within another procedural-conceptual framework instead of the one that was used in this study.

Contributions

This study adds further evidence to the existing literature supporting the value of
developing procedural skills in children through practice, as evidenced by the students in my
study acquiring procedural mastery after four weeks of practice and also supports Rittle-
Johnson (2016)’s finding on the impact of elicited self-explaining on the development of
procedural learning. It demonstrates the effectiveness of repeatedly practicing activities with
minimal guidance and its contribution towards the development of mathematical proficiency, as
demonstrated in other studies (Canobi, 2009; McNeil et al., 2012; Osana & Pitsolantis, 2013).

However, our results did not show, as in Bailey et al. (2015), that practicing arithmetic exercises
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assisted in linking the arithmetic problems they performed and fraction magnitude. As such,
conceptual development appears to require a more explicit approach, beyond elicited self-
explaining, to connect it to procedural knowledge. The supported self-explaining approach used
by Fuchs et al. (2016) may sit on the cusp of conceptual and procedural learning and enable
students and teachers alike to bridge that divide.

My results show that the students did not improve in their knowledge of the three concepts
as the instances of justification types observed from pretest to posttest did not change. The
students' explanations often lacked clarity, which posed a key issue in understanding their
justifications. This may be the result of what Star (2005) referred to as a “superficial knowledge
of procedures.” Students can do the procedure but do not know why the procedure works and
cannot explain how multiplying a whole number by a fraction changes the magnitude of the
resulting fraction.

One element of the experimental protocol that may have impacted the results of the study
is my suggestion to the students in all condition to use drawings to justify their answers. At
pretest, students were instructed to use any means to justify their answers, such as drawings
(e.g., number lines, pie charts, etc.), and many used the same strategy at posttest because
students often rely on the same strategy when faced with more demanding cognitive challenges
(Lovell, 2020). This process may have resulted in the Usually Correct strategy (in which
drawings were included) becoming the dominant strategy used by the students at both time
points. Perhaps having the opportunity to ask the students to clarify their answers in a one-on-
one interview would have resolved the issue and provided clearer information before the data
were coded. An unexpected consequence of both the lack of clarity of the students’ responses
and the coding used can be seen in the following example. A student in the practice with
reflection prompts group identified 9/19 as being larger than 3/19, at pretest, with the following
justification “9 is greater than three, if the denominater (sic) is the same”. However, at posttest
for the same question, he wrote “numerator is greater”. The first answer was coded as Logical
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Necessity with an associated scoring of 4 but was coded as Usually Correct with a scoring of 2
for his posttest answer. This resulted in a drop in the quality of justification for that student as
the scoring fell from 4 to 2 which would erroneously indicate a drop in conceptual knowledge. |
speculate that the second answer was of a lesser score because the student inferred that |
knew what he meant. Had the opportunity to clarify his answer been present, perhaps his
second answer would have been more complete.

Strengths and limitations

First, to enhance internal validity, student selection for the three groups, Pl+, Pl- and
Control, was randomized within each classroom. Second, to control for experimenter bias,
supervision of the students during the study was structured such that no one individual
supervised any group on a regular basis (see Figure 5); | alternated between all three groups
with the research assistants throughout the study. The only times the same individuals
supervised the three groups was during the administration of the measures at pre- and posttest
to limit bias and improve the credibility of the results. A third element of the data collection
process that aimed to strengthen the conclusions was including a justification component to the
fraction magnitude comparison task. The purpose was to understand why students selected one
fraction over another and move beyond the simple accuracy component of the task. Even
though this may not have provided the anticipated clarity to the results obtained, it did reveal
that this extra step should be incorporated in the research process to truly understand the
quality of student thinking as explained above.

The study's lack of power, duration, and coding system may have contributed to its
limitations. The number of students who participated in this study was far below the required
number to achieve 80% power. Fifty-six students participated in the study (N = 56) but a power
analysis determined that 53 participants per group (N = 159) were required to achieve 80%
power with a medium effect size. The number of students | was able to recruit therefore limits
the confidence with which conclusions can be drawn from this study, as the risk of Type Il errors
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was increased. Unfortunately, the lack of responses from potential participants limited the
sample size to 56.

Another weakness of this study is that the intervention phase only lasted nine days
which may not have been long enough for transfer of understanding to take place between
procedural and conceptual knowledge. Comparatively, Fuchs et al.’s (2016) study included a
12-week intervention period and consisted of a total of 36 intervention sessions. This span of
time is significantly longer than the four weeks and nine interventions performed in this study. |
speculate that the short duration of the intervention in the present study contributed to limiting
the effect of the procedure on the development of the students’ conceptual knowledge.

As mentioned earlier, the coding system used to identify the quality of the justification
strategies used may have underreported any positive impacts of the interventions and
especially missed the differences between the two practice intervention groups. To improve the
quality of the qualitative information gathered, working directly with the students to clarify their
answers would have helped reduce unclear responses and yield data that more accurately
reflected their thinking. Despite the limitations mentioned above, the results of this study offer an
interesting insight into the development of procedural knowledge in children. The findings can
also serve as a starting point for further investigation into the relation between procedural and

conceptual knowledge and the tools needed to clarify this relation.

Educational implications

An important implication of this study is that when students are taught a procedure and
are allowed to practice it on a regular basis, they will develop procedural proficiency over a
relatively short period of time. In other words, “practice makes perfect.” It does not, however,
mean that they will automatically develop an understanding of the underlying concepts
supporting the procedure or explain why it works. It appears to be the responsibility of the
teacher to bridge the gap between procedures and concepts. To act on this responsibility is

important if we want as this study shows that students require procedural work, repetition, and
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proper teacher guidance to move towards mathematical proficiency. As such, teachers
themselves need procedural knowledge, but they also need to understand the concepts that
underlie them and how to assist students in connecting procedures to the concepts behind
them. Students do not appear to connect procedural knowledge to conceptual understanding on
their own (Rittle-Johnson, 2006), so teacher training should include instructional strategies that
develop teaching techniques encouraging student thinking and help bridge the gap between
these two types of knowledge.

Another observation resulting from this study is the significance of whole-number bias in
students' transition from numerical knowledge to the comprehension of fractions and may be
pertinent for teachers who are tasked to introduce fractions concepts as it can help them identify
the difficulties that students are facing in understanding them. The whole-number bias has been
well researched and has been described as having an adverse effect on learning fractions
(Siegler et al., 2012; Braithwaite & Siegler, 2017). This bias may have had an undue and
unfortunate influence on the results of this study. | chose three fraction types to trigger the
development of fraction concepts in students in the creation of the multiplication activities used
during the interventions. The students compared fractions that had common denominators or
common numerators or fractions where one fraction had a larger numerator but a smaller
denominator than the other. It is possible that when comparing fractions with common
denominators, students would pick the correct answer, that is, the fraction with the larger
numerator, simply because it is the larger of the two numerators without truly understanding
why. In essence, students with a whole-number bias might simply ignore the denominator
because they do not recognize the purpose of the number “below” the numerator. Replicating
that analysis with fractions that have different numerators and denominators, without
consideration for the size of the denominator, would yield the same result and students would
correctly identify the larger fraction simply by finding the larger numerator and disregarding the
denominator. As for fractions with common numerators, if whole number bias were at play,
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children would systematically be incorrect in their selection of the greater fraction as they would
select the fraction with the largest denominator. It is unclear if whole number bias had any role
in the students’ accuracy on the fraction magnitude measure, but such a bias may have affected

the transferability of knowledge from procedure to concepts.

Despite limitations resulting from such things as a small sample size, the short
intervention period, and potential effects of whole-number bias, the findings offer important
implications for mathematics instruction. For students to reach mathematical proficiency,
educators must intentionally connect procedures to concepts and employ teaching strategies
that foster this connection (Fuchs et al., 2016; Hansen et al., 2015; Rittle-Johnson & Schneider,
2014). This research suggests that while “practice makes perfect” in terms of procedural
fluency, meaningful conceptual understanding of mathematics requires targeted instructional
support and careful attention to operational abilities, like the students’ abilities to clearly express
their thinking, as well as cognitive challenges, like whole-number bias. Future studies should
further explore effective ways to support the development of conceptual knowledge, ensuring
that procedural mastery is accompanied by genuine mathematical understanding.

Conclusion

This study aimed to further clarify the path between procedural and conceptual
knowledge in mathematics education among Grade 5 students. My results showed that
repeated practice with fraction multiplication procedures significantly improved students’
procedural mastery, but that there was no corresponding development in their conceptual
understanding of fraction magnitude. Further, adding reflective prompts did not result in
noticeable improvements in the students’ conceptual knowledge, suggesting that procedural
proficiency alone does not naturally lead to a deeper understanding of underlying mathematical
concepts. The lack of transfer between practiced procedures and conceptual knowledge in this

study does not negate the results observed in previous research (Hansen et al., 2017; Rittle-
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Johnson et al., 2017) but underscores the need for further research to clarify the relation that

exists between procedures and concepts.
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Appendix A
Script for the Research Assistants

Treatments 1, 2 and 3 - Practice Intervention with Reflection Prompts (Pl+)
(Remember nothing conceptual can be hinted to. You are NOT allowed to use drawings to help

the students. Students are allowed to use multiplication tables to reduce fractions, if needed.)

Example 1: 3 x 1/7

Researcher: Today we will be learning how to multiply fractions by a whole number. | will do two
examples first, and two others with you and then you will practice on your own on with the
worksheet you are given.

Researcher: Here is your first example, so look at the board. For now, | just want you to watch

and listen. [The researcher writes...]:
3x <=
7
Researcher: Multiplying 3 by 1/7" is like adding 1/7™ 3 times [The researcher writes...]:

3xi=2142142
7 7 7 7
Researcher: When adding fractions, when the denominator is the same (and we will only work

with denominators that are the same for now), all we have to do is add the numerators together.

[The researcher writes...]:

1 1 1 1 3
3x-=-+-+-=2
7 7 7 7 7

Researcher: Notice that the denominator does not change. It stays the same.
FOR THE PROMPT WITH REFLECTION GROUP ONLY

Now | want you to pay attention to a few things. When you multiply 3 and 1/7 and find the
product to be 3/7. What do you notice that is different between the fraction at the beginning of
the equation (i.e.: 1/7) and the product obtained (i.e.: 3/7)? Which of the two fractions is greater

[or larger/bigger]? Think about why that might be.”

Example 2: 4 x 2/6
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Researcher: Now, let’s try it with 4 x 2/6. Look at the board. For now, | just want you to watch

and listen. [The researcher writes...]:
4x2=
6

Researcher: Multiplying 4 by 2/6" is like adding 2/6™ 4 times. [The researcher writes...]:

2 2 2 2 2
X T e T et e s
Researcher: When adding fractions, when the denominator is the same (and we will only work

with denominators that are the same for now), all we have to do is add the numerators together.

[The researcher writes...]:

2 2 2 2 2 8
4xZ=4++4=-=
6 6 6 6 6 6

Researcher: Sometimes you have to simplify the answer you get by dividing it by a common
factor. We will only use 2, 3, 4, or 5. So here, what number can we use to simplify the fraction? |
will try 2. If | divide 8 by 2 and 6 by 2, what do | get?

[The researcher writes...]:

Do you think | can make 4/3 into even smaller whole numbers? No, so that is our simplified

answer.
FOR THE PROMPT WITH REFLECTION GROUP ONLY

Researcher: Now | want you to pay attention to a few things again. When you multiply 4 and 2/6
and find the product to be 4/3. What do you notice that is different between the fraction at the
beginning of the equation (i.e.: 2/6) and the product obtained (i.e.: 4/3)? Which of the two
fractions is greater [or larger/bigger]? Think about why that might be.”

Researcher: Now | will let you practice two questions on your own and we will go over them
together. [The researcher presents the equations 3 x 2/7 (no simplifying needed) and 3 x 5/10
(with simplifying) one at a time using the script presented above; he tells the students that, for
all the exercises we do from now on, if they need to simplify, they will only need to divide by 2,
3,4,0r5]
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FOR THE PROMPT WITH REFLECTION GROUP ONLY

[For both exercises, remind the students to pay attention to a few things. Ask them, “What do
you notice that is different between the fraction at the beginning of the equation and the final
answer? Which of the two fractions is greater [or larger/bigger]? Think about why that might be.”
NO ANSWERS ARE PROVIDED.

Treatments 1, 2 and 3 — Practice Intervention without Reflection Prompts (PI-)
(Remember nothing conceptual can be hinted to. You are not allowed to use drawings to help

the students. Students are allowed to use multiplication tables to reduce fractions, if needed.)

Example 1: 3 x 1/7

Researcher: Today we will be learning how to multiply fractions. | will do two examples first, and
two others with you and then you will practice on your own on with the worksheet you are given.
Researcher: Here is your first example, so look at the board. For now, | just want you to watch

and listen. [The researcher writes...]:
3xi=
7

Researcher: Multiplying 3 by 1/7" is like adding 1/7™" 3 times. [The researcher writes...]:

1

1 1
3X;—;+—

1
777

Researcher: When adding fractions, when the denominator is the same (and we will only work
with denominators that are the same for now), all we have to do is add the numerators together.

[The researcher writes...]:
1, 1_3

1 1
3x7=7+7+3773

Researcher: Notice that the denominator does not change. It stays the same.

Example 2: 4 x 2/6
Researcher: Now, let’s try it with 4 x 2/6. Look at the board. For now, | just want you to watch

and listen. [The researcher writes...]:
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2
4x==
6

Researcher: Multiplying 4 by 2/6" is like adding 2/6™ 4 times. [The researcher writes...]:

2 2 2 2 2
dXeTe et et
Researcher: When adding fractions, when the denominator is the same (and we will only work

with denominators that are the same for now), all we have to do is add the numerators together.

[The researcher writes...]

Researcher: Sometimes you have to simplify the answer you get by dividing it by a common
factor. We will only use 2, 3, 4, or 5. So here, what number can we use to simplify the fraction? |
will try 2. If | divide 8 by 2 and 6 by 2, what do | get?

[The researcher writes...]:

Do you think | can make 4/3 into even smaller whole numbers? No, so that is our simplified

answer.
Researcher: Now | will let you practice two questions on your own and we will go over them
together. [The researcher presents the equations 3 x 2/7 (no simplifying needed) and 3 x 5/10
(with simplifying) one at a time using the script presented above; he tells the students that, for
all the exercises we do from now on, if they need to simplify, they will only need to divide by 2,
3,4,0r5]

Control Group (CG)

No restrictions exist in what the researcher says to the students, but do not discuss anything

about fractions.

Treatment 4 onwards — Practice Intervention with Reflection Prompts (Pl+)
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(Remember nothing conceptual can be hinted to. You are NOT allowed to use drawings to help

the students. Students are NOT allowed to use multiplication tables.)

From now on we will limit ourselves to the following description of the task with some visual

support:

Researcher says: “Now, we have been multiplying fractions by a whole number for a few days. |
will review with you how to do that. Watch as | go through the steps for you again. [The bolded
portions of the equations are added at each step. There is no need to rewrite the entire

equations each time.]

Researcher says, “Step 1, and writes”: 3 X % =
Researcher says, “Step 2, and writes”: 3 X % = % + % + %
Researcher says, “Step 3, and writes”: 3 X % = % + % + %z %

Researcher says, “Sometimes that is the final step, but if you can, you divide the numerator and
the denominator by the same number (either 2, 3, 4, or 5) to simplify your answer. [The bolded
portions of the equations are added at each step. There is no need to rewrite the entire

equations each time.] Here is an example:

Researcher says, “Step 1, and writes”: 4 x % =

S
X
|
Il
IS
+
o N
+
o N
+
|

Researcher says, “Step 2, and writes”:

Researcher says, “Step 3, and writes”: 4x2=2424242_8
6 6 6 6 6 6
Researcher says, “Step 4, and writes”: 4x2=242 4242 E =2
6 6 6 6 6+2 3

Don’t forget to show all your work so we can see if you make any mistakes.”

Remind the students to pay attention to a few things by asking, “What do you notice that is
different between the fraction at the beginning of the equation and the final answer? Which of

the two fractions is greater [or larger/bigger]? Think about why that might be.”
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NO ANSWERS ARE PROVIDED.

“Okay, you may begin.”

IMPORTANT NOTE

Remind the students to compare the first and final fraction as you see them completing the first
page, and again mid way during the second page. When they are done, ask them to take the
time to do the comparison again and repeat the questions, “What do you notice that is different
between the fraction at the beginning of the equation and the final answer? Which of the two

fractions is greater [or larger/bigger]? Think about why that might be.”

Treatment 4 onwards — Practice Intervention without Reflection Prompts (PI-)
(Remember nothing conceptual can be hinted to. You are NOT allowed to use drawings to help

the students. Students are NOT allowed to use multiplication tables.)

From now on we will limit ourselves to the following description of the task with some visual

support:

Researcher says: “We have been multiplying fractions by a whole number for a few days. | will
review with you how to do that. Watch as | go through the steps for you again. [The bolded
portions of the equations are added at each step. There is no need to rewrite the entire

equations each time.]

Researcher says, “Step 1, and writes”: 3 X % =
Researcher says, “Step 2, and writes”: 3 X % = % + % + %
Researcher says, “Step 3, and writes”: 3 X % = % + % + %z %

Researcher says, “Sometimes that is the final step, but if you can, you divide the numerator and
the denominator by the same number (either 2, 3, 4, or 5) to simplify your answer. [The bolded
portions of the equations are added at each step. There is no need to rewrite the entire

equations each time.] Here is an example:
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Researcher says, “Step 1, and writes”: 4 x % =

Researcher says, “Step 2, and writes”: 4 xX== % + % + %
Researcher says, “Step 3, and writes”: 4 X % = % + % + %
Researcher says, “Step 4, and writes”: 4 X % = % + % + %

“Researcher says, “Don’t forget to show all your work. You may begin.”
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Appendix B

Sample Multiplication Activity Sheet

(Questions were provided on two pages, back to front)

1) 4 x 2/4 Show your work.

2) 4 x 2/10 Show your work.

3) 3 x4/7 Show your work.
4) 3 x4/9 Show your work.
5) 2x3/4 Show your work.
6) 4 x1/4 Show your work.

7) 4 x 3/10 Show your work.

8) 2 x8/9 Show your work.

9) 4 x 8/10 Show your work.

10) 2x4/8 Show your work.
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Appendix C

Bank of Questions for the Multiplication Activities

Multiplier | Fraction | Product Type .Of Multiplier | Fraction | Product Type .Of
comparison comparison
2 1/3 2/3 CD 2 57 10/7 CD
4 1/3 4/3 CD 3 5/7 15/7 CD
2 2/3 4/3 CD 4 5/7 20/7 CD
4 2/3 8/3 CD 2 6/7 12/7 CD
2 1/4 2/4 CD 3 6/7 18/7 CD
3 1/4 3/4 CD 4 6/7 24/7 CD
2 3/4 6/4 CD 3 1/8 3/8 CD
3 3/4 9/4 CD 3 3/8 9/8 CD
2 1/5 2/5 CD 3 5/8 15/8 CD
3 1/5 3/5 CD 3 7/8 21/8 CD
4 1/5 4/5 CD 2 1/9 2/9 CD
2 2/5 4/5 CD 4 1/9 4/9 CD
3 2/5 6/5 CD 2 2/9 4/9 CD
4 2/5 8/5 CD 4 2/9 8/9 CD
2 3/5 6/5 CD 2 4/9 8/9 CD
3 3/5 9/5 CD 4 4/9 16/9 CD
4 3/5 12/5 CD 2 5/9 10/9 CD
2 4/5 8/5 CD 4 5/9 20/9 CD
3 4/5 12/5 CD 2 7/9 14/9 CD
4 4/5 16/5 CD 4 7/9 28/9 CD
3 1/6 3/6 CD 2 8/9 16/9 CD
2 1/7 207 CD 4 8/9 32/9 CD
3 1/7 37 CD 3 1/10 3/10 CD
4 1/7 4/7 CD 3 3/10 9/10 CD
2 207 4/7 CD 3 7/10 21/10 CD
3 207 6/7 CD 3 9/10 27110 CD
21/9 =
4 217 8/7 CD 3 7/9 7/3 CD
2 37 | e cD 3 g9 | 2427 | cp
3 3/7 or7 CD 3 1/3 11 CN
4 317 12/7 CD 3 2/3 2/1 CN
2 4/7 8/7 CD 4 1/4 4/4 =1 CN
3 4/7 12/7 CD 4 2/4 8/4 CN
4 a7 | 1607 cD 2 6 | 20 CN
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Multiplier | Fraction | Product co-g;):riz,gn Multiplier | Fraction | Product Igr?ﬁ)g;son
2 26 | CN 4 26 | 807 | LD
3 3 | 0" CN 3 a8 | 28| LisD
2 g | 28" CN 2 e;8 | 2°7 | LnisD
4 R CN 3 o/8 | 1957 | LNisD

112
2 s | 8T CN 4 39 | 4P| Lnisp
4 3 | 125" CN 2 o9 | 207 | wLnisD
2 s;8 | 198" CN 4 69 | “¥27 | LD
4 s;8 | 22 CN 3 ano | 0071 Lisp
2 7 | 148" CN 4 ano |00 1 Lisp
4 7 | 295" CN 3 50 | P07 LNisD
3 9 | 9= CN 3 610 | 18107 | LNisD
3 29 | °D> CN 4 610 |20 LisD
3 a9 | 1297 CN 4 7o | 280071 LNisD
3 si9 | 1997 CN 3 g0 [ 240071 LisD
2 1o | #1097 CN 4 g0 | %2701 LNisD
2 2110 | 10° CN 4 o0 |01 LisD
2 30 | OR" CN 2 24 | 4/4=1| One
2 ano | ®19° CN 3 o6 |66=1| One
2 7110 14;}2 =l coN 2 3% |66=1| One
2 g0 | 10007 on 4 )8 | 8/8=1| One
2 6/10 12(/5}2 =l coN 2 48 |88=1| One
2 oo | 180T cn 3 39 | 90" One
3 24 | %0 | LnisD 2 s0 | %107 one
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Multiplier | Fraction | Product Type o f Multiplier | Fraction | Product Type Of.
comparison comparison

24/8 = _

4 6/8 | 6/2= | Three 3 69 | 189 Two

2/1
3/1

12/6 = 20/10 =

4 3/6 6/3 = 2 Two 4 5/10 21 Two
16/8 =

4 4/8 2/1 Two
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