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Abstract

Machine Learning based Memory Load Approximation

Alain Aoun, Ph.D.

Concordia University, 2025

Modern computing applications demand ever-increasing performance and energy
efficiency. However, conventional processor architectures frequently stall while waiting
for data retrieval from memory, creating a bottleneck known as the memory wall.
Over the past decades, various approaches such as speculative prefetching, load value
prediction, and hardware caching have been proposed to mitigate this limitation.
While these techniques yield moderate gains, they often rely on rigid hardware logic
or simple pattern matching, which struggle with the irregular, data-driven workloads
typical of contemporary multimedia and machine learning applications.

This thesis propose to use Machine Learning (ML) to speculate load values and
reduce memory accesses. The proposed method is grounded in the principles of
Approximate Computing (AC), where minor inaccuracies are accepted in exchange for
improvements in performance or efficiency. To this end, we introduce an ML-based
Load Value Approximation (ML-LVA) approach, which predicts the values of memory
loads to reduce access latency. The ML-LVA is trained offline to generate a compact
predictor that captures patterns in image and audio data, enabling accurate value

prediction during runtime without the need for continual retraining. By learning

il



spatial correlations among adjacent data values, the proposed ML-LVA effectively
anticipates memory contents, thereby reducing stalls and improving overall system
performance in online deployment.

We have implemented the proposed ML-LVA framework both in software and
hardware. The software variant targets existing processors lacking reconfigurability,
as well as systems with tight area or power constraints that prohibit adding custom
hardware. It operates as a callable subroutine designed for seamless integration
without modifying the processor architecture. The software implementation was tested
on an x86 processor in the GEMb5 simulator. On the other hand, the hardware-based
implementation integrates the proposed ML-LVA as a dedicated accelerator accessed
via a custom instruction, offering tighter pipeline integration, lower latency, and
enhanced efficiency for newly designed systems. The hardware-based ML-LVA was
implemented in CVA6, which is an open source RISC-V processor. The synthesis results
conducted in Cadence Innovus showed that the overhead of the added accelerator is
marginal.

Experimental results conducted on audio and image processing workloads
demonstrate that the proposed ML-LVA accelerates memory access by over 6x,
resulting in application speedups up to 2.45x. Additionally, even when predicting up
to 95% of loads, the output fidelity remains within perceptual thresholds. Subsequently,
the proposed ML-LVA outperforms state-of-the-art LVAs in terms of performance and
quality. The ML-LVA achieves these results with only a 5% area overhead and less

than 1% power increase in silicon.
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Chapter 1

Introduction

1.1 Motivation

The relentless pursuit of performance in computer architecture has always been linked
to the challenge of memory latency, and the critical delay between a processor’s
demand for data and its eventual retrieval. This latency is not just a technical obstacle
but a fundamental consequence of the von Neumann architecture [1], conceived in the
mid-20th century, which tightly couples computation and memory. Early systems,
such as the IBM 704 (1954), delivered a delicate equilibrium between processor speed
and memory access times. However, the advent of Moore’s Law in 1965 disrupted this
balance, where the transistor densities began doubling roughly every 18-24 months
leading to exponential gains in clock frequencies and instruction throughput. On the
other hand, memory subsystems—constrained by the analog physics of charge storage
and the resistive-capacitive delays of interconnects—could not keep pace. This gap in
performance of memory led to slowing down computers. For instance, early processors
when faced with a single cache miss or data dependency could halt the entire processor

for dozens of cycles. For example, the Intel 8086’s 6-stage pipeline, running at 5



MHz, could stall for more than 20 cycles (approximately 4 ps) on a memory access
miss, a stark contrast to its average instruction throughput of roughly 200 ns. By the
1990s, this growing gap had been crystallized into what Wulf and McKee famously
termed the “memory wall” [2]. This gap is a result of Central Processing Unit (CPU)
performance improvements that far outstripped reductions in memory latency, leaving
even the most advanced processors chronically starved for data. This phenomenon
of memory wall still holds in the modern days. Figure 1.1 shows the performance
improvement of the computational units, i.e., processors, Dynamic Random-Access
Memory (DRAM) memory and processor-memory interlink bandwidth since the mid-
90s. The improvement of Floating Point Operations per Second (FLOPS) of the
computations units have increased at rate of 6000x in the last 20 years compared to
a much smaller 100x in DRAM Bandwidth (BW). Subsequently, we can conclude an
increasingly widening gap between performance improvement of the computational

units and the one of the memory.
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Figure 1.1: Normalized Performance over the Years [3]



To overcome the widening gap in performance, architects have redirected their
interest to advancements in microarchitecture of computers to mitigate the memory
wall. For instance, out-of-order execution aims at reordering instructions on the fly to
hide the latency of long instructions. Architectures such as the Intel P6 [4] and AMD’s
K7 [5] further advanced this concept by integrating larger Reorder Buffers (ROBs)
and employing register renaming to eliminate false dependencies, namely, write-
after-read and read-after-write hazards. For instance, the AMD K7 utilized a 72-
entry ROB along with multiple reservation stations, enabling dynamic reordering of
loads, stores, and arithmetic operations. Modern CPUs offer more than 500 ROBs,
however, on Last-Level Cache (LLC) misses, the ROBs can easily get saturated
causing the CPU to stall [6]. Speculative techniques [7] further extend the benefits
of these microarchitectural innovations. Hardware prefetchers, such as the stride-
based mechanism in AMD’s Zen 3 microarchitecture [8], work to anticipate sequential
memory accesses. Additionally, Machine Learning (ML) [9] driven prefetchers such as
DeepPrefetcher [10], leverage ML techniques to improve prefetching. For instance, the
authors of [10] used deep neural networks to predict memory access patterns more
accurately. However, over-aggressive prefetching can yield to cache pollution and
increased miss rates yielding to overall performance degradation [11]. In a different
approach to improve memory performance, AMD’s 3D V-Cache [12] demonstrated
that vertically stacking cache layers can effectively increase capacity and reduce the
apparent access latency.

Nevertheless, even with all these advancements in microarchitecture, modern
processors cannot fully address the memory wall. For instance, the developer of
Blosc [13], a high performance data compressor, studied the performance improvement

when the number of threads increases [13]. Figure 1.2 shows the memory bandwidth
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usage when increasing the number of threads used on the Intel Xeon E3-1245 v5
4-Core processor [14]. It highlights that when using uncompressed data, the bandwidth
scalability does not scale linearly, i.e., ideal scalability. Consequently, the threads do
not achieve maximum throughput, resulting in idle periods caused by data starvation.
On the other hand, when the data is compressed with LZ4HC-9 compressor [15], a
single thread requires less bandwidth, improving scalability as more threads are used.
However, when operating with eight threads, the CPU receives 35% (12GB/s) less
bandwidth than expected under ideal scalability, where no memory wall exists. Thus,
even software techniques that aim to complement the advanced microarchitectural
techniques do not fully address the memory wall. In the face of these persistent
challenges, emerging paradigms such as Processing-In-Memory (PIM) [16] have been
proposed to bridge the gap between processor speed and memory performance. PIM
shifts repetitive computations, e.g., multiply and accumulate operations, from the CPU
to memory or its vicinity to reduce data movement [17]. Although PIM minimizes

processor-memory traffic, its computational speed is hindered by the slow access time



in a Random Access Memory (RAM). This fundamental limitation makes PIM a
relatively slow process. In a different approach, researchers have explored the concept
of load value speculation (LVS) [7] which involves adding a unit to the processor that
predicts the value to be loaded from the memory, with minimal modifications to the
Von Neumann architecture. Similar to branch prediction, if the LVS is wrong, the
CPU reverts to its state before the prediction and flushes the pipeline. However,
all LVS techniques aim to hide memory access delays while requiring a check to the
correctness of the predictions. Thus, the bandwidth usage is not reduced but rather
the latency is hidden. Another disadvantage of the LVS is the costly roll-back on a
wrong speculation.

In a different approach, Approximate Computing (AC) [18] has reemerged as a
pragmatic technique to further improve the performance of computers. Recognizing
that many modern applications can tolerate minor inaccuracies, e.g., multimedia
processing, machine learning and video games, AC intentionally relaxes precision
requirements in order to reduce computational overhead, lower latency, and conserve
energy. AC represents a paradigm shift from traditional exact computation by
deliberately introducing controlled inaccuracies to boost energy efficiency, throughput,
and overall system performance. AC is tailored for applications that can tolerate small
deviations without significantly affecting perceived output quality. The underlying
principle is to define error margins through rigorous analysis and quality-of-service
guarantees so that performance gains outweight the slight loss in accuracy. For example,
the work in [19] exploits the principle of AC to relax LVS. The costly roll-back in LVS
can be avoided in error-tolerant applications by accepting the wrong (approximate)
value predicted. The approximate version of the LVS is commonly referred to as Load

Value Approzimation (LVA). A drawback of existing LVA is the hardware overhead,



e.g., lookup table, in addition to the computation needed to compute indexing/hash
values used by the predictor. Additionally, the existing LVA requires continuous access
to the memory in order to maintain good quality.

Given that existing methods have failed to fully address the memory wall, in this
thesis we aim to address this challenge by using ML and AC. The solution we propose
can be a software- or hardware-based implementation. The predictor used in the
proposed LVA is static and hence reduces the overhead of operating the predictor.
In the rest of this chapter, we will present the evaluation techniques of AC designs.
Thereafter, we present the state-of-the-art that is most relevant to our work, followed
by a discussion on the limitations of existing methods. We then introduce the proposed

methodology followed by the thesis contributions and the thesis organization.

1.2 State-of-the-Art

Various studies in the literature have investigated methods to address memory
bottlenecks. Prior to approximate computing gaining popularity in recent years,
researchers have focused on exploiting the localities in order to address this challenge.
In the sequel, we will restrict the discussion of related work to those methods that are
most relevant to the proposed solution in this thesis. We will present the approximate
memory that aims to improve memory latency and energy consumption. We will
also cover the Machine Learning (ML) based prefetcher which aims to predict the
subsequent load value and hence improving the hit rate in the cache. Thereafter we
present Load Value Speculation (LVS), a technique that aims to predict the load value
and hence hide the latency. We conclude this section with the presentation of Load
Value Approximation (LVA), a technique that improves the performance of LVS by

tolerating error.



1.2.1 Approximate Memory

Approximate Memory consists of modifying the conventional exact memory where data
can be stored approximately. For instance, the work in [20] explores an implementation
of approximate DRAM. The authors of [20] propose the storage of data in a transposed
fashion. Furthermore, they investigate the implementation of variable refresh rate
where rows storing Least Significant Bits (LSBs) are refreshed less frequently compared
to the rows storing the Most Significant Bits (MSBs). The variable refresh rate results
in energy saving. In order to address the memory bottlenecks, the authors of [20]
propose the load of a limited number of rows. When deploying this approach, the
MSBs of multiple data elements are retrieved concurrently. Hence, more elements are
retrieved faster. Furthermore, if only 16 rows out of 32 are loaded, i.e., loading the 16
MSBs and truncating the other 16 LSBs, the bandwidth would be reduced by 50%.
Another approach of approximate memory in [21] proposes the compression of error-
tolerant data in DRAMs. Compression and decompression in distinct memory regions
define varying accuracy levels, that are controlled by a software-hardware integration.
While both methods present compelling strategies for leveraging approximation in
memory to reduce energy consumption and improve bandwidth efficiency, they also
introduce notable limitations. For instance, in [20], the use of transposed storage and
variable refresh rates is applied at the region level, allowing critical data to reside in safe,
fully refreshed regions. This mitigates the risk of corruption and side channel attacks in
precision-sensitive applications. However, the selective loading of only MSBs and the
reduced refresh of the LSB regions may still affect the data quality in regions marked as
approximate, and the complexity of managing transposed access patterns and refresh
schedules introduces additional hardware overhead. Additionally, the introduction of

approximate regions opens potential security vulnerabilities. However, malicious code



could exploit relaxed refresh policies or compressed representations to manipulate data
silently by inducing bit flips in approximate regions. Similarly, the compression-based
approach in [21] imposes latency and control challenges due to the need for dynamic
decompression and region management. Its reliance on software-hardware coordination
for setting approximation levels requires accurate workload characterization and tight
system integration, which may limit portability and scalability. Both methods would
benefit from more adaptive, runtime-aware control mechanisms that can fine-tune

approximation levels based on observed application behavior and quality constraints.

1.2.2 ML-based Prefetching

Memory prefetching is a technique that predicts and loads data into the cache before it
is needed, reducing access latency and improving processor performance. The authors
of [10] developed DeepPrefetcher, a method that leverages ML to enhance memory
access efficiency by intelligently predicting future data requests. DeepPrefetcher
harnesses deep learning to identify complex correlations within memory access
sequences. By analyzing execution traces, it learns nuanced dependencies that
conventional prefetchers often overlook, allowing it to anticipate future accesses
more effectively. This approach involves training a deep learning model on program
memory traces, capturing both short-term and long-term relationships between memory
accesses. DeepPrefetcher continuously refines its predictions by updating the model
with new data, adapting dynamically to evolving workloads. This adaptability makes
it particularly effective in scenarios where memory access patterns are irregular,
non-repetitive, or workload-dependent. By leveraging its learned understanding of
execution behavior, DeepPrefetcher reduces cache misses and improves data availability,

leading to enhanced overall system performance. It is especially beneficial for modern



applications with complex memory access patterns, where conventional prefetching
strategies struggle to keep pace. However, a common challenge among prefetchers
is their potentially incorrect predictions, which can lead to cache pollution, i.e., the
eviction of useful data by unnecessary prefetched data, and ultimately increase miss
rates [11]. As a result, prefetchers can sometimes be counterproductive, as a higher
number of incorrect prefetches may degrade the performance rather than improve it.
Another drawback of DeepPrefetcher is its reliance on online learning, where the model
must be continuously trained in real-time to maintain accurate predictions. This
process requires dedicated computational resources, leading to additional hardware

overhead and increased energy consumption.

1.2.3 Load Value Speculation

Load Value Speculation (LVS) aims to hide the memory latency by predicting the
value to be loaded. In one of the earliest work in this area, the authors of [7] introduced
the idea of wvalue locality. The authors suggest that values stored in adjacent memory
addresses are comparable in magnitude. For instance, the adjacent pixels of an image
stored in memory are alike in value. Subsequently, the authors present a dynamic
lookup table that speculates the value of a load with the aim of hiding the memory
access latency. In case of wrong speculation, the processor rolls back and flushes the
pipeline. Moreover, the lookup table is updated after every memory access. This
concept was widely investigated by implementing other speculation techniques such
as the work in [22] and [23]. Among the common techniques used in LVS are 7) last
value prediction, i) stride-based prediction, ) context-based prediction, v) hybrid
prediction, and v) perfect confidence [23]. Last value prediction assumes that a memory

load instruction will retrieve the same value as in its most recent execution. On the



other hand, stride-based prediction estimates the next load value by identifying a
consistent difference (stride) between successive values of a particular load instruction.
Additionally, context-based prediction relies on the past four observed values of a load
instruction to determine the most likely next value. Hybrid prediction dynamically
selects the most accurate predictor between context-based and stride-based methods.
Finally, perfect confidence utilizes the hybrid predictor but only applies the predicted
value when it is certain to be correct, simulating an ideal confidence mechanism.

All LVS techniques access the memory to confirm the correctness of the speculation

and roll-back in case of wrong speculation.

1.2.4 Load Value Approximation

Since roll-backs in LVS are expensive in terms of hardware requirement and loss in clock
cycles, some researchers have proposed the idea of Load Value Approximation (LVA).
These techniques speculate a value without a roll-back in case of a wrong prediction
which results in approximation. For instance, the work in [19] proposed a load value
approximation which relies on a dynamic predictor. The accuracy of the predictor can
be improved by providing the value of the recent loads, which saves in bandwidth and
energy for a cost in quality. The authors of [19] use a predictor with a Global History
Buffer (GHB) to record recent load values and an approximator table indexed by a
hash derived from the GHB along with the load instruction address to generate an
estimated value on a cache miss. Additionally, the predictor includes a Local History
Buffer (LHB), which records the sequence of recent values following patterns detected
in the Global History Buffer (GHB). The approximator then estimates a value by
averaging entries in the LHB, and thus allowing the processor to continue execution

while the actual value is fetched in the background to train the predictor future
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estimations. Unlike traditional value predictors that require an exact match and trigger
rollbacks if even a slight discrepancy occurs, this approach uses a relaxed confidence
window to tolerate minor differences, thereby eliminating rollbacks and enhancing
energy efficiency. Furthermore, the design incorporates an approximation degree, which
determines how many subsequent load misses can reuse the same predicted value
before the actual data is fetched for retraining, thus effectively balancing accuracy with
reduced memory fetches even when value delays occur. Although the LVA proposed
in [19] introduces a solution that aims to address the memory wall, however it has the
drawback of using a complex hardware to predict the load value. For instance the
work in [19] requires the calculation of complex indexes and keeping track of LHB and
GHB. Furthermore, it uses a dynamic predictor that requires a continuous memory
access to maintain an acceptable low quality.

Rollback-Free Value Prediction (RFVP) [24] is an LVA technique designed for
Graphics Processing Units (GPUs). RFVP reduces memory latency by predicting
values for cache misses and selectively discarding some predictions. When a load is
not discarded, the actual value retrieved from the memory updates the predictor used
in the RFVP, improving its accuracy. The predictor relies on a value history table
indexed using a hash derived from the program counter of the load instruction. Each
entry stores three key elements, namely, the most recent value loaded from memory
and two stride values that capture how the load value has changed over time. RFVP
predicts a new load value by adding the last loaded value to one of the observed
strides. To enhance stability, the predictor updates the stride entry only when the
new stride is consistent with past patterns. Because GPU threads within a warp may
not execute simultaneously, some threads can be inactive during a cache miss but

may later request the same data. RF'VP anticipates these accesses by precomputing
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predictions for inactive threads, ensuring they receive meaningful approximations
rather than outdated or random values. This approach maintains consistency and
prevents errors due to unpredictable data. Similar to the LVA proposed in [19],
RFVP uses of a dynamic predictor that updates through memory access to sustain
an acceptable output quality. Furthermore, the REFVP predictor has a computation
overhead, e.g., computation of a hash index, to approximate the load value while also

requiring a lookup table that uses a complex updating method.

1.3 Problem Statement

Researchers have long investigated options to improve the performance of computers,
e.g., out-of-order execution. However, most modern computers face a significant
challenge in gaining speedup due to the memory wall. A limited number of
researchers have explored approximation or prediction-based solutions to address
memory bottlenecks. The most prominent techniques in approximating the load value
are the work in [19, 24]. Existing LVA techniques rely heavily on memory access to
update the predictor and hence maintain an acceptable quality. Moreover, existing
methods of LVA require complex hardware that has substantial resource usage and/or
require the computation of values needed to index/guide the predictor.

Alternatively, some researchers have shifted their focus towards exploring
approximate memory to address the memory wall, e.g., the work in [20]. However, the
approximate memory could potentially disrupt the functionality of the error correction
code (ECC) in the memory. Additionally, an approximate memory has an increased
complexity of the memory controller, which could yield in a significant overhead and
a delay.

Given these limitations, we believe that an approach approach with minimal
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overhead is better suited to achieve meaningful speedups while preserving a small
hardware footprint. A key enabler for this is the use of a static predictor, which
would avoid the need for continuous updates and complex runtime mechanisms. A
statically designed model significantly reduces implementation complexity and allows
for faster predictions, thereby decreasing latency and energy consumption. With the
recent progress in ML algorithms and the increasing availability of high-performance
computation resources, ML-based LVA solutions would offer a compelling alternative.
Lightweight ML models, such as small neural networks or decision trees, can be trained
offline to learn patterns in memory load value, enabling accurate approximations that
do not require dynamic adaptation or rollbacks.

An advanced ML model can be trained once using representative workloads and a
statically trained predictor used solely for runtime prediction that operates efficiently
during execution. This approach eliminates the need for re-training at runtime and
ensures consistent prediction performance. Such models can generalize across various
applications, offering broader adaptability than traditional heuristic-based predictors.
However, ML models are inherently resource-intensive, often requiring significant
memory and computation. If not carefully designed, their demands can further burden
the already strained memory system, thereby worsening the memory wall problem.
To fully realize the benefits of ML in this context, it is essential to develop compact,
statically trained models tailored for hardware efficiency, enabling low-overhead with

minimal performance trade-offs.

1.4 Proposed Methodology

The objective of this thesis is to address the memory wall by using Machine

Learning (ML) and Approximate Computing (AC). We argue that this challenge can
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be addressed with a solution that satisfies three key criteria: i) improve performance,
it) maintain an acceptable quality, and 7i7) efficient usage of resources. Towards this
goal, an ML model is trained to learn the patterns in the load values while recognizing
that perfect accuracy is unfeasible. Thereafter, the trained ML model is used to
predict the load value. Given the inherent inaccuracy of ML models, we accept the
predicted value as-is resulting in an approximately computed load value. Subsequently,
the ML model is trained to achieve a controlled quality that is deemed acceptable.
We propose to develop a static predictor, where the ML model undergoes a single
training phase and then is reused indefinitely. The proposed ML-based Load Value
Approximator (ML-LVA) can be integrated into existing off-the-shelf hardware through
a software implementation, or implemented as a dedicated unit in newly designed
hardware. The proposed ML-LVA can be applied to any domain in which the principle
of walue locality holds. In this thesis, we focus on its implementation in multimedia
applications, as these applications naturally exhibit value locality. For example, in an
image, a given pixel typically has neighboring pixels with similar values. Subsequently,
the proposed model in this thesis can be deployed in video games, augmented and
virtual reality systems where performance is a key necessity while a slight loss due to
approximation is tolerable. The details of the proposed methodology for developing
and using a ML-LVA are depicted in Figure 1.3. The methodology consists of Offline
and Online phases. The Offline phase is used to build the LVA predictor, while the
Online phase represents the application’s execution stage. The Offline phase requires
three inputs: ) an Error Tolerant Application, i) a Training Multimedia Dataset,
and 7i7) an Approximation Level (n). Using these three inputs, the Offline stage
produces an approximated error tolerant application as an output, which will be

used by the Online phase to generate as an output the approximated multimedia
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Figure 1.3: Methodology of the Proposed ML-LVA

result. The Offline phase consists of four main steps. In Step (1) the error tolerant
application is profiled to determine the “safe-to-approximate” load instructions. This
is a critical step in the process since approximating load values that do not tolerate
error could lead to catastrophic scenarios. For instance, loading a loop boundary or
memory addresses cannot be approximated. On the other hand, loading multimedia
data, e.g., pixel of an image, is error-tolerant and thus can be determined as “safe-
to-approximate”. The identification of safe-to-approximate load instructions can be
performed at either the high-level programming or low-level (assembly) code. For
applications written in a high-level language, the programming language must provide
a mechanism to explicitly declare variables as safe-to-approximate, and the compiler
must be extended to recognize these declarations and generate the corresponding
approximations. Alternatively, when the application is provided as assembly code, the

analysis can be performed directly at the instruction level. Although in this thesis
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the identification of safe-to-approximate load instructions is performed manually,
this process could be automated in the future using, for example, some machine
learning technique, which can evaluate the impact of approximation and automatically
determine the safe-to-approximate instructions. In parallel, in Step (2) we perform a
data preprocessing on the training multimedia dataset. This step is crucial as raw
data cannot be fed to an ML model to perform training. Additionally, in this step, we
split the data into training and testing data in order to validate the quality of the
ML model. Thereafter, we perform the ML training in Step (3). The trained model
will serve as the load value predictor, i.e., the ML-LVA. In Step (4), we integrate the
ML-LVA into the error-tolerant application, where a portion of the safe-to-approximate
load instructions is replaced. The ratio of replacement is defined by the approximation
level (n), meaning that we retain 1 out of n + 1 instructions as exact while the others
are approximated. Every approximated instruction becomes a call to a subroutine,
invoking a custom instruction that can be implemented in software or in hardware.
In the software-based approach, this custom instruction is realized as a conventional
function call to a software routine that performs load value prediction using the trained
ML model. This solution is intended for deployment in existing off-the-shelf hardware
platforms, where hardware modifications are either impractical or impossible. As
such, it enables the integration of approximate load value prediction without requiring
architectural changes. To evaluate this method, the software-based implementation of
the ML-LVA was deployed in GEM5 [25], simulating an x86-based architecture. In this
evaluation, the “ Timing Simple CPU” [26] was used, and various CPU frequencies,
cache settings and DRAM configurations were tested to assess the impact of the memory
hierarchy on performance gains. In contrast, in the hardware-based implementation,

the custom instruction is backed by a dedicated hardware accelerator that executes the
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Figure 1.4: Deployment Framework for the Proposed Methodology

ML prediction logic directly in silicon. This accelerator acts as a coprocessor integrated
into a newly designed processor pipeline. In this thesis, the hardware ML-LVA was
implemented within the CVAG6 design [27], a RISC-V processor [28], extending its
instruction set architecture (ISA) to include a custom opcode. When the approximated
instruction is encountered during execution, it triggers the custom instruction, which
routes the request to the ML-LVA accelerator. This tightly coupled design eliminates
software overhead and significantly reduces latency, making it suitable for high-
performance systems where hardware design flexibility is available. By supporting
both software and hardware realizations, the ML-LVA framework offers flexibility
for deployment across a wide spectrum of systems—from commodity platforms to
next-generation processor designs. In both the software and hardware implementations,
we investigate the ML-LVA framework for 8-bit applications. Nonetheless, certain
design choices have been made to ensure that the methodology can scale effectively to
larger designs, such as 16-bit or 32-bit applications.

The proposed methodology can be deployed by a user as shown in Figure 1.4. First,
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the back end developer creates multiple versions of the same approximated application
with each version corresponding to a specific approximate level (n). Subsequently, in
the front end, the user selects the desired quality from an option menu, similar to how
a user selects video quality, such as Standard Definition (SD), High Definition (HD),
or 4K, in a streaming service. Additionally, the user provides the input multimedia to
the application. A selector function in the back end then picks the application variant
from the library that best matches the user’s chosen quality level. For instance, the
user might select SD to prioritize performance at the cost of reduced output quality.
Internally, the developer maps this SD setting to, for example, an approximation level
of 4, i.e., n = 4, which corresponds to an 80% approximation. Finally, the selected
application processes the input multimedia to produce the output. The deployment,
shown in Figure 1.4, could be further improved by compiling a single version of the
application into an executable file —commonly referred to as the binary or binary code—
and then passing the approximate level (n) dynamically. For example, instead of
compiling a separate binary for each approximation level, a single application binary
code can be compiled to accept the approximation level (n) as a runtime argument.
This value can be passed via the argument vector, i.e., argv, when launching the
application. At runtime, the program retrieves this argument to determine how
aggressively to approximate. The mechanism for accessing the argument may vary
depending on the underlying architecture. For instance, on x86 it may be fetched
from the stack, while on RISC-V it may be accessed through a register.

To validate the quality and effectiveness of the proposed ML-LVA methodology
we evaluate it using a diverse set of multimedia applications. These include image
processing, i.e., image blending, image inversion, and image binarization, as well as

audio processing tasks such as audio blending, audio inversion, and audio binarization.
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These applications were selected due to their error-tolerant nature and their dependence
on memory-intensive operations, making them ideal benchmarks for assessing the
impact of approximate load value prediction. Experimental results indicate that
the trained ML-LVA was able to achieve a quality that outperforms state-of-the-art.
Similarly, both the software- and hardware-based implementations of proposed ML-
LVA outperform existing LVA techniques where substantial speedups both application

overall as well as in memory loads were measured.

1.5 Thesis Contributions

The main contribution of this thesis is overcoming the memory wall by leveraging
Machine Learning (ML) and Approximate Computing (AC) for memory load value
approximation. The proposed methodology addresses this challenge by reducing the
memory bandwidth needed by a given application and approximating (predicting)
the values that were not loaded from the memory. The predictor used in thesis is
generated by training an ML model. The key contributions of this work are outlined
below, with references to relevant publications included in the Biography section at

the end of the thesis:

e A methodology for machine learning-based load value approximator (ML-LVA)
which presents a complete design and deployment framework that includes
identifying “safe-to-approximate” load instructions, performing offline training
of an ML model to predict these values, and integrating the predictor into
error-tolerant applications. The output quality is controlled via a tunable
approximation level. The methodology supports both software- and hardware-
based realizations and enables quality-performance trade-offs through user-

configurable settings [Bio-Cf4].
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o A static machine learning model that predicts unfetched memory load values to
reduce access latency. By adopting a static approach, the proposed ML-LVA
eliminates the deployment overhead of a dynamic predictor. The proposed
ML-LVA consistently produced high-quality results across six multimedia
applications, with output errors typically below 10%. In some cases, the output
was indistinguishable from the original. For classification based-applications,
accuracy and precision exceeded 98% at 50% approximation and remained above

80% even at 95% approximation [Bio-Cfl, Bio-Cf5].

o A software-based implementation of the proposed methodology deploying the ML-
LVA as a callable subroutine on commercial hardware. Safe-to-approximate load
instructions are replaced with subroutine calls to enable approximate execution
via the trained ML model. We evaluate this solution on six diverse multimedia
applications using the GEM5 simulator configured for an x86 architecture. The
implementation delivered overall application speedups of up to 1.23x, and more

than 6x faster value loading in multiple cases [Bio-Jrl].

o A hardware-based implementation integrating the ML-LVA predictor as an
accelerator within the CVA6 RISC-V processor [27] using a custom instruction.
Implemented in the form of a lightweight ROM, this design enables fast, low-
overhead inference without complex logic operations. We evaluate this approach
on four multimedia applications, achieving overall speedups up to 1.21x and
memory load gains of 1.47x. Synthesis results show that incorporating ML-
LVA into CVAG incurs modest overheads: area increases by 5.09% and power

consumption rises by only 0.79% [Bio-Jr3].
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1.6 Thesis Organization

The rest of this thesis is organized as follows: in Chapter 2, we introduce the preliminary
notions needed to ease the understanding the remainder of this thesis. This chapter
focuses on defining the key evaluation metrics used throughout the work, including
quality metrics for assessing the effectiveness of the ML-LVA, and performance metrics
for analyzing its impact on resource usage. Additionally, we present the mathematical
background underlying the target applications, along with an explanation of how the
ML-LVA influences their behavior.

In Chapter 3, we present the dataset used along with the training process and the
quality of the proposed ML-LVA. We also provide the details of the input needed by
the ML-LVA to predict the load value along with the prediction method. Furthermore,
we evaluate the quality of the ML-LVA when simulated in audio and image blending
applications. Thus, in Chapter 3 we will expand and present Steps (2) and (3) of the
proposed methodology shown in Figure 1.3.

In Chapter 4, we present Steps (1) and (4) of the proposed methodology, namely,
the software-based implementation of the proposed ML-LVA. We present in details how
we determine a safe-to-approximate instructions. Furthermore, we expand the work
in Step (4) by outlining the process of transforming the ML model into an optimized
software solution. Furthermore, we present the measuring environment used to evaluate
the efficiency of the software-based implementation which consists of simulating an
x86 processor in GEM5 with various cache and DRAM configurations. Thereafter, we
present the speedup achieved in memory access operations as well as the application
when the software-based implementation is deployed. The performance analysis was
performed using six multimedia applications, namely, image blending, image inversion,

image binarization, audio blending, audio inversion and audio binarization.
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Chapter 5 describes how Step (4) of the proposed methodology shown in Figure 1.3
can be adopted for a hardware-based implementation. In this chapter, we present the
RISC-V CPU used and the modifications performed in order to integrate the ML-LVA.
We present the custom assembly instructions that were added to the Instruction Set
Architecture (ISA) permitting the usage of the ML-LVA. Furthermore, we evaluate
the benefits of these new instructions in terms of speedup in memory access and
application performance using multimedia applications. We provide experimental
results on multimedia applications, including image blending, image inversion, audio
blending and audio inversion.

We conclude this thesis in Chapter 6, where we provide closing remarks and future

directions.
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Chapter 2

Preliminary

2.1 Introduction

This chapter describes the metrics used to evaluate the proposed Load Value
Approximation (LVA) techniques. Rather than presenting empirical results, the
chapter focuses on defining the evaluation methodology and contextualizing the
approximation within practical application domains. The aim is to lay the foundation
for the detailed analysis that follows in the subsequent chapters.

We first introduce the mathematical formulations of the metrics used to assess
the impact of LVA. These include measures related to performance, accuracy, and
resource efficiency. By formalizing these concepts, the section ensures a consistent
and precise basis for analyzing the effectiveness of the proposed LVA across various
implementation contexts, whether hardware or software. We then present the
six multimedia applications selected as representative case studies for applying
LVA. This chapter describes the structure of each application and highlights the
specific mathematical operations that are suitable candidates for approximation.

Understanding the underlying operations permits the reader to understand how they
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tolerate imprecision and how their approximation can be leveraged by the ML-LVA to
enhance performance. Together, these preliminaries provide the necessary background

for interpreting the evaluation results presented in later chapters.

2.2 Evaluating Approximate Computing

The proposed ML-LVA relies on Approximate Computing (AC). Therefore, it is
important to understand the assessment methods used to identify the quality and gains
of an AC design. In this section, we will delve into the evaluating techniques of AC.

The usability of an AC design can be determined if the delivered quality falls within
an acceptable range of tolerable error. The generated quality of an AC design can be
measured using different metrics that can broadly be classified into two categories:
i) arithmetic error metrics that quantify the numerical deviation, and #7) classification

metrics that assess correctness in binary decisions. Some of these metrics include [29]:

o Error Distance (ED) is the arithmetic distance between the exact value (FE,)
and the approximate value (A4,) by a given set of inputs. Hence the ED can be
written as:

ED =E, — A, (1)

« Relative Error Distance (RED) is the ratio of the relative E'D with respect

to the exact value (E,):
RED = ED
- E

v

(2)

e« Mean Absolute Error (MAE) is the average of the absolute values of all

ED in space, i.e., n number of instances:
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o Normalized Mean Absolute Error (NMAE) is measured to have a better
analysis for the worst-case scenario error. NMAFE is normalized using ED, 4z,
the maximum FED in space, e.g., ED,,.., = 255 for 8bit applications, and

computed as:
MAFE

NMAE =
EDTTL(ICL’

(4)

« Mean Squared Error (MSE) is the average of the ED squared:

S ED?
n

MSE =

« Root Mean Squared Error (RMSE) is the square root of MSE:

RMSE =vMSE (6)

« Normalized Root Mean Squared Error (NRMSE) is computed in a similar

fashion to NMAE:
RMSE
EDmax

NRMSE = (7)

« Peak Signal-to-Noise Ratio (PSNR) evaluates the quality of an image or
video by comparing the original signal to the noise introduced by the new design.
For 8-bit applications, the PSNR is computed as [30]:

2

« Bit-Error Rate (BER) is the percentage of faulty bits in the output. The
BER is different from all previously discussed error metrics since it disregards

the arithmetic error. The BER can be expressed in terms of False Negative (FN),
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False Positive (FP), True Negative (TN) and True Positive (TP) as:

FN + FP
BER =
R FN+FP+TN+TP )

Accuracy is the overall proportion of correct predictions made out of all
predictions. Similar to BER, the accuracy also does not measure arithmetic

error. Accuracy can be computed as:

TN+TP

A —1-BER=
ceuracy R= FNTFPLTN+TP

(10)

Precision is the fraction of predicted positive instances that are indeed correct,
emphasizing the accuracy in making positive predictions. Similar to BER and
the accuracy metrics, precision does not measure arithmetic error. Precision is
computed as:

TP

Precision = ————— 11
recision = o5 s (11)

The selection criterion of the error metric is driven by the type of application. For

instance, in a system that generates a true or false response, the classification metrics

are the suitable ones.

In addition to error metrics, physical design metrics are essential when evaluating

the practicality and efficiency of an AC design. These metrics capture the tangible

costs of implementing a design in hardware and are typically expressed in terms of

area (A), delay (D), and power (P). While an approximate design may tolerate some

degradation in output quality, it must still offer meaningful gains in one or more

physical dimensions, otherwise, the trade-off is unjustified.

To assess the overall hardware efficiency and compare different designs fairly,
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composite metrics are often employed. These metrics combine multiple resource
constraints into a single value, helping designers analyze trade-offs and identify

optimal points along the performance-cost spectrum [31]:

« Power-Area-Delay Product (PADP): This metric captures the overall
hardware cost by multiplying the three primary physical factors. It is particularly
useful when all three resources—power (P), area (A), and delay (D)—are equally

important in the target application.

PADP=Px AxD (12)

« Energy-Delay Product (EDP): This metric evaluates the trade-off between
energy consumption (E) and performance. It is especially relevant in battery-
powered and energy-sensitive systems, where reducing both energy and execution
time is critical. Since energy is the product of power and time (E = P x D),

EDP can be rewritten as:

EDP=FE x D =P x D? (13)

The choice between PADP, EDP, or other derived metrics often depends on the
specific goals and constraints of the system being designed. For instance, in mobile
and embedded devices, minimizing energy and latency is often prioritized, making
EDP a suitable metric. In contrast, for high-performance computing systems where
throughput is more critical, delay (execution time) or PADP might be emphasized
more. Moreover, when approximation is applied at the software level, execution

time becomes an even more significant factor. Faster execution not only improves
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responsiveness but can also indirectly reduce total energy consumption, especially
in systems where power scales with utilization. Therefore, speedup, defined as the
ratio of execution time between the exact and approximate versions, is a key metric
in these contexts. It provides a direct measure of how much computational efficiency
is gained through approximation.

Ultimately, the effectiveness of an AC design must be evaluated in terms of
both quality loss using error metrics and resource savings by analyzing the physical
metrics. A good approximation strikes the right balance between these two aspects,
delivering meaningful hardware and performance benefits while keeping the output

within acceptable quality bounds.

2.3 Multimedia Applications

To evaluate the applicability of LVA in practical scenarios, six multimedia applications
have been selected as representative case studies in this thesis. These applications
span both image and audio processing tasks, relying on simple yet computationally
relevant operations. Each is well-suited to approximate computing due to the inherent
error tolerance in human perception. Multimedia workloads often tolerate minor
deviations in data values without significantly degrading the perceived quality of the
output, making them ideal for exploring trade-offs between performance and accuracy.
Moreover, multimedia applications frequently process large volumes of data in parallel,
which amplifies the performance benefits of techniques like LVA that reduce memory
latency and computational effort. By covering a diverse set of operations—ranging
from arithmetic-heavy blending to memory-bound thresholding and inversion—this

selection offers a comprehensive and realistic benchmark for assessing the effectiveness
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of LVA in real-world, error-resilient domains. In the sequel, we outline the applications
and their corresponding mathematical operations. The multimedia applications used

in this thesis are:

1. Image Blending [32]
Image blending combines two images by multiplying their corresponding pixel
values, optionally scaled by a blending factor. This operation is common in
graphics design and visual effects. For example, for 8-bit images, the blending

operation is defined as:

Tyiena(z,y) = o - \/[1(93,?/) Iy(z,y) (14)

where [; and I, are the input images, (z,y) denotes the spatial coordinates
of a pixel in the image, and « € [0,1] is a blending coefficient. The square
root operation ensures that the resulting values remain within the 8-bit range.
Since this operation requires the calculation of the square root —a computation
intensive operation— the overall speedup in the application is expected to be
significantly less compared to the one in the memory access since a smaller

portion is spent on the memory load.

2. Ring Modulation (Audio Blending) [33]
Ring modulation blends two audio signals by pointwise multiplication of their
8-bit unsigned sample values that ranges from 0 to 255. The formula for this

operation, similar to image blending, is:

Smod(t) = a-1/s1(t) - s2(t) (15)
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where s; and sy are the two audio streams, ¢ denotes the discrete time index,
and « is the scaling factor applied to control the intensity of the effect. Similar
to image blending, this operation involves two back-to-back loads, one for each
audio signal. The approximation could help accelerate the processing of long
audio signals by reducing the cost of these loads, leading to a reduced execution
time. However, similar to the image blending, as the operation includes the
calculation of the square root, the speedup achieved in the application due to
the LVA is expected to be significantly less than the one observed in the memory

access.

. Image Thresholding (Image Binarization) [34]
Image thresholding simplifies a grayscale image by converting it to a binary

image using a fixed intensity threshold:

255, I(z,y)>T
Ithresh(xa ?J) = (16)
0, Iy <T

where [ is the input image, (z,y) denotes the spatial coordinates of a pixel in
the image, and T is the selected threshold. This operation only requires a single
load per sample followed by a simple comparison, making it more dependent on
memory access compared to image blending or ring modulation. Thus, while
approximating, a higher speedup in the memory access will have a higher impact

on the performance improvement observed at the application level.

. Infinite Clipping (Audio Binarization) [35]
Infinite clipping transforms an audio signal by reducing each sample to a binary

representation of its polarity. Given that the samples are 8-bit unsigned, they
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are first centered around zero. The operation is defined as:

where s is the audio stream t denotes the discrete time index, and 7' is the
threshold. The resulting values are either 0 or 255, depending on the comparison.
Similar to image thresholding, this operation involves a single load and simple
computation. Thus, the benefit of the LVA reverberates more at the application

level.

. Image Negatives (Image Inversion) [36]
Image negatives transform an image into its negative by subtracting each pixel

value from the maximum intensity:

Ineg(l‘, y) =255 — ](xv y) (18)

where [ is the input image, and (z,y) denotes the spatial coordinates of a
pixel in the image. This operation is visually intuitive and widely employed
in photographic effects and preprocessing. Its reliance on a straightforward
subtraction operation makes it another potential candidate to test the proposed
LVA. Similar to thresholding, image negatives involve a single load followed
by a straightforward subtraction. Consequently, the potential speedup from
LVA is higher, contributing to a larger reduction in the overall execution time,

i.e., higher speedup.
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6. Audio Polarity Inversion [37]
Polarity inversion flips the audio waveform around its midpoint. In the 8-bit

unsigned format, this is implemented by inverting the sample around 128:

Sinv(t) = 255 — s(1) (19)

where s is the audio stream and t denotes the discrete time index. This
operation generates an inverted waveform, which is perceptually indistinguishable
in numerous playback environments, rendering it suitable for evaluating
approximation in subtraction or data loading. Similar to image inversion, polarity
inversion entails a single load and a straightforward subtraction. Consequently,

the speedup observed at the application level will be substantial.

In this thesis, specific parameters were set for each application to align with practical
use cases. For instance, for the blending tasks, the blending factor a was set to 1,
reflecting typical settings in image editing [32] and audio mixing tools [38]. For image
thresholding, the threshold was selected using Otsu’s method [39], a standard approach
in optical character recognition (OCR) to eliminate noise in scanned images [40].
Simple inversion operations, such as image negatives and polarity inversion, also
benefit significantly from LVA due to their minimal arithmetic requirements and
single-load nature. In particular, audio polarity inversion is commonly used in active
noise cancellation (ANC) systems, where inverting the polarity of noise allows it to
destructively interfere with the original signal, thus canceling it out [41].

These applications were selected to represent a broad range of image and audio
processing tasks with varying computational complexity and inherent error tolerance.

Together, they provide a meaningful and practical basis for evaluating the effectiveness
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of the proposed LVA methodology. By covering diverse operations, from simple
inversions to more complex thresholding and blending tasks, the evaluation reflects
the practical implications of LVA on both quality and performance across real-world

scenarios.
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Chapter 3

ML-based Load Value Predictor

3.1 Introduction

This chapter describes the Machine Learning (ML) techniques used to enhance the
predictive capabilities of the Load Value Approximator (LVA) developed in this thesis.
The focus is on a static, pre-trained model designed to operate efficiently during runtime
without requiring continual updates or retraining. The primary role of this model
is to provide load value accurate predictions based on historical patterns, enabling
the system to make informed decisions in real time. Although handcrafted statistical
models may be employed to predict load values, such methods do not scale effectively
to larger design spaces, e.g., 16-bit data widths, due to their inability to generalize for
unforeseen data patterns. In contrast, the ML-based model presented in this thesis
provides a generic methodology that can be applied across different systems, offering
greater adaptability and predictive robustness across diverse application domains.
In many conventional approaches, prediction mechanisms rely on hand-crafted rules
or actively trained models that update dynamically based on new data. While these
methods can adapt to changes over time, they also introduce a number of practical

limitations. Online learning systems require additional computational resources,
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complex hardware and mechanisms to deliver a good quality. Furthermore, due to the
heuristic nature of the online trained system, the prediction of load values can have a
substantial delay. These issues make active online learning methods unsuitable for
systems that must operate under strict latency or energy constraints.

To address these challenges, this work adopts a static machine learning model—a
model trained offline using a carefully curated dataset, then deployed in a fixed form at
runtime. This approach offers several key advantages. First, it decouples the training
process from the system’s operation, allowing the use of powerful offline tools and
computing resources during model development. Second, it ensures consistency and
predictability in the model’s behavior, which is especially valuable in embedded or
real-time environments. Finally, by avoiding runtime training, the system’s complexity
is significantly reduced, making it easier to maintain, verify, and integrate with other
components.

The decision to use a static model is further supported by the nature of the problem
space. In this scenario, the input data patterns exhibit a degree of regularity and
stability, making it possible to train a model that generalizes well across future scenarios.
Extensive profiling and benchmarking during the design phase allowed for the creation
of a representative training dataset that captures the essential characteristics needed
for accurate predictions. As a result, the deployed model maintains high performance
without the need for adaptation or retraining.

In the sequel, we will present the training methodology for the proposed ML-
based LVA, followed by the dataset selection, then the quality assessment of the

trained ML-LVA.
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3.2 Training Method

Existing methods in developing LVA techniques primarily rely on the history of
previously observed values, the program counter (PC), and hash functions, such as
XOR-based schemes, to aid in forming accurate predictions. In [42], we explored
this design space by training a machine learning model based on these principles.
Specifically, the model was provided with the load memory address, the program
counter, and separately computed hash values corresponding to the load memory
address, the program counter, the store values, and the store addresses. Each of these
hash values was supplied as a distinct feature to the model to capture a rich context
for prediction. However, despite the extensive feature set, the model consistently
failed to deliver satisfactory prediction quality across a range of applications. For
instance, when applied to the Canneal benchmark from the Princeton Application
Repository for Shared-Memory Computers (PARSEC) suite [43], the classification
accuracy reached only 36.57%, while the regression-based trained model resulted in
a root mean square error (RMSE) of 59.41. These metrics clearly indicate that the
model was not able to approximate load values effectively. Furthermore, the approach
incurred substantial runtime overhead, largely due to the necessity of computing and
maintaining multiple separate hash values at every load and store operation, adding
complexity and cost to the system.

In light of these limitations, we concluded that an effective LVA prediction
technique should prioritize two fundamental goals: 7) minimize prediction overhead,
and 1i7) achieve acceptable prediction quality across a wide range of applications
without excessive feature engineering. To this end, we developed a more lightweight
and targeted approach, wherein the current load value is predicted solely based on

the previous load value produced by the same instruction. This design choice entirely
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eliminates the need for computing hash values, significantly streamlining the prediction
mechanism and reducing the computational burden at runtime.

To train and evaluate the ML-based LVA we chose to use a multimedia dataset.
The rationale behind this selection lies in the inherent properties of multimedia
applications, where they often exhibit strong value locality, meaning that adjacent
or sequential memory values tend to follow similar patterns or trends. For example,
image processing tasks, such as blending, filtering, or inversion, pixel values that are
spatially or temporally close, typically have correlated magnitudes. By leveraging
this property, we ensure that the predictor is exposed to realistic scenarios, where
value locality is prevalent. Successfully approximating load values in such a context
would indicate that the predictor is capable of handling a broad class of multimedia,
e.g., image and audio applications, and could potentially extend to other domains
with similar locality patterns.

The methodology to generate the ML-LVA is illustrated in Figure 3.1. The
overall process is divided into two primary steps conducted within a simulated
environment. In Step (2), we instrument the load behavior by simulating the execution
of load instructions, capturing the dynamic sequence of load values generated by each
instruction instance. This sequence forms the training dataset, effectively encoding
the load context in terms of past observed values. The output of Step (2) is thus a
structured dataset mapping historical load values to the subsequent target value.

In Step (3), we train the machine learning model using the Extra Trees
algorithm [44]. Extra Trees was selected based on its favorable characteristics for our
task as it offers fast training times, robustness to noisy inputs, and strong predictive
accuracy when using only simple features, such as the previous load value, as input.

Our previous exploration in [45] corroborated the effectiveness of Extra Trees for
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Figure 3.1: Training Method of the Proposed ML-LVA

this prediction setting. The output of Step (3) is a trained ML-LVA. In Step (4),
the application is modified to predict the load value as shown in Figure 3.2. The
example in the figure depicts how the prediction is applied in our proposed LVA where
a square and a circle represent an exact and approximate load value, respectively. The
approximation (prediction) is based on the preceding value regardless of whether it is
exact or approximate. For instance, the first approximate value (A;) predicted by the
LVA is based on the exact value (E) loaded from the memory. Thereafter, the second
approximate value (As) is based on its preceding value A; which is predicted /generated
by the proposed LVA. This prediction sequence is repeated n times, i.e., A; to A,,. After
predicting n approximate values, an exact value (F) is loaded again from the memory
and the sequence is repeated. In this chapter, we test the quality of the proposed
ML-LVA by simulating its behavior in predicting the value of load instructions, without

integrating it into a full application. On the other hand, the details of determining
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the safe-to-approximate load instructions are discussed in Chapter 4. Furthermore,
specifics of the deployment of Step (4) are addressed in Chapter 4 and Chapter 5 for

the software- and hardware-based implementation, respectively.

3.3 Dataset Selection and ML Training

The selection of appropriate datasets plays a critical role in training and evaluating
the ML-LVA developed in this work. Given the objective to design a predictor that
can effectively approximate load values in multimedia applications, it was essential to
choose datasets that not only represent diverse multimedia content but also exhibit
strong value locality characteristics, which is an important property for effective load
value approximation. In this section, we describe the datasets used for training and
evaluation, along with the rationale behind their selection and their relevance to the

predictor’s design goals.

3.3.1 Dataset Selection

Multimedia applications, such as image and audio processing tasks, typically
demonstrate high value locality. That is, adjacent data elements, such as neighboring
pixels in an image or successive audio samples in a sound file, tend to have related or
correlated values. This phenomenon emerges naturally from the physical properties of
the underlying content. For instance, colors in an object or continuous sound waves in

an audio stream change gradually rather than abruptly. Leveraging this observation,
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Figure 3.3: Image Blending: (a) Exact and (b) ML-LVA Model with Poor Training

the dataset selection focused on sourcing multimedia datasets where value locality
is naturally present. This ensures that the training process of the load predictor,
i.e., the ML-LVA, is exposed to realistic patterns commonly encountered in practical
applications and thus improving its generalization to real-world multimedia workloads.

In ML, the choice of the training dataset is a decisive factor in determining the
quality of the resulting model. A dataset that lacks sufficient diversity or representative
features can severely restrict the model’s ability to generalize, leading to degraded
predictions. Figure 3.3 illustrates this effect by comparing an exact image blending
output with the result produced by an ML-LVA model trained on a poorly chosen
dataset. In this example, the benchmark images known as “Set5” (with 5 images) and
“Set14” (with 14 images) [46] are used. The ML-LVA is trained using Set14 and the
testing was performed using Set5. From this example, we can notice that the absence
of representative training data results in noticeable quality loss, underscoring the
importance of careful dataset selection. To ensure robust training, a combination of

three publicly available datasets was selected for the image, namely, the Flowers [47],
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the Cars [48], and the Places [49] datasets. Each dataset was chosen to introduce
different types of images, thus promoting a broad exposure to diverse patterns. The
Flowers dataset consists of 8 189 images of flowers across multiple species, captured
under varying lighting conditions, backgrounds, and compositions. This dataset is
particularly suitable for training purposes because it contains a rich variety of textures
and colors while still maintaining consistent value locality properties at the pixel level.
From this dataset, 4,094 images were used for training the ML model, referred to as
the “ Training Multimedia” as depicted in Figure 3.1, while the remaining 4,095 images
were reserved for evaluation as “Input Multimedia” during the predictor deployment
and testing. This evenly distributed dataset ensures a balanced evaluation, enabling
an assessment of the predictor’s ability to generalize beyond the training set.

To further diversify the “Input Multimedia” during evaluation, two additional
datasets were incorporated. The Cars dataset provides 8,041 images featuring various
types of vehicles captured from different angles and environments. Car images
introduce distinct object contours, color distributions, and background variations
compared to flower images, enabling the evaluation of the predictor’s robustness across
heterogeneous visual patterns. In addition, 16 images were included from the Places
dataset, a large dataset composed of images depicting various indoor and outdoor
scenes. Although only a small subset of the Places dataset was used, these images
introduce further variability in textures, lighting conditions, and spatial arrangements.
This added diversity challenges the predictor to maintain prediction quality when
faced with less predictable or more complex visual structures. By combining these
three datasets, the “Input Multimedia” set spans a wide range of natural imagery,
enhancing the comprehensiveness of the predictor evaluation.

In addition to image datasets, an audio dataset was incorporated to introduce a
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different modality of multimedia content into the training and evaluation pipeline.
Audio streams, like images, exhibit strong value locality, where neighboring audio
samples typically have correlated amplitude values, especially in continuous speech,
background music, or ambient sounds. For this purpose, the Babylon 5 audio
dataset [50] was selected. This dataset consist of 614.45 minutes distributed over 2,436
recordings from the television series “Babylon 5”7 encompassing a variety of audio
types such as dialogues, ambient effects, and music tracks, thus providing a diverse
set of audio patterns for training and evaluation. From this dataset, 1,255 audio files
were used as “ Training Multimedia” (Figure 3.1) to generate load value sequences for
the model training. The remaining 1,181 audio files were used as “Input Multimedia”
for evaluating the predictor. The audio files were split according to the file size to
ensure an even distribution between the training and the application datasets. We
chose this method instead of dividing by the number of audio files, as the lengths of

the audio vary between the files.

3.3.2 ML Training

Separate ML-LVAs were trained for image and audio data, respectively, in order to
specialize the predictor behavior for each type of multimedia content. To clarify the
structure of these models, Tables 3.1 and 3.2 show the mapping of the trained ML
models for image and audio models, respectively, detailing the input features, output
responses, and the delta between input and output values. This mapping highlights
the specific data characteristics each model processes, emphasizing the specialized
nature of the predictors for image and audio workloads. From these tables, we can
notice that the predicted value in an image is close in range compared to the input. On

the other hand, the model trained on audio shows a larger difference in values between
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Table 3.2: Mapping of the Trained ML Model Developed using Audio Data

jok rR¥ | A* Fé Rri A* jok RY A* Fé RrY A*
0 0 0 64 73 9 128 | 128 0 192 | 183 -9
1 2 1 65 73 8 129 | 129 0 193 | 184 -9
2 20 18 66 75 9 130 | 129 -1 194 | 184 | -10
3 26 23 67 75 8 131 | 130 -1 195 | 186 -9
4 21 17 68 76 8 132 | 131 -1 196 | 185 | -11
5 24 19 69 7 8 133 | 132 -1 197 | 188 -9
6 22 16 70 78 8 134 | 133 -1 198 | 187 | -11
7 25 18 71 79 8 135 | 134 -1 199 | 189 | -10
8 23 15 72 80 8 136 | 135 -1 200 | 189 | -11
9 27 18 73 80 7 137 | 136 -1 201 | 191 | -10
10 25 15 74 81 7 138 | 136 -2 202 | 191 | -11
11 29 18 75 82 7 139 | 137 -2 203 | 192 | -11
12 27 15 76 83 7 140 | 138 -2 204 | 194 | -10
13 29 16 7 84 7 141 | 139 -2 205 | 194 | -11
14 28 14 78 85 7 142 | 140 -2 206 | 194 | -12
15 33 18 79 85 6 143 | 141 -2 207 | 196 | -11
16 30 14 80 86 6 144 | 142 -2 208 | 196 | -12
17 33 16 81 87 6 145 | 143 -2 209 | 198 | -11
18 32 14 82 88 6 146 | 143 -3 210 | 198 | -12
19 36 17 83 89 6 147 | 144 -3 211 | 199 | -12
20 34 14 84 90 6 148 | 145 -3 212 | 200 | -12
21 38 17 85 91 6 149 | 146 -3 213 | 202 | -11
22 36 14 86 92 6 150 | 147 -3 214 | 202 | -12
23 39 16 87 92 5 151 | 148 -3 215 | 203 | -12
24 37 13 88 93 5 152 | 149 -3 216 | 202 | -14
25 41 16 89 94 5 153 | 149 -4 217 | 206 | -11
26 38 12 90 95 5 154 | 150 -4 218 | 205 | -13
27 | 42 15 91 96 5 155 | 151 -4 219 | 207 | -12
28 42 14 92 97 5 156 | 152 4 220 | 207 | -13
29 41 12 93 98 5 157 | 153 4 221 | 208 | -13
30 44 14 94 98 4 158 | 154 -4 222 | 209 | -13
31 44 13 95 99 4 159 | 154 -5 223 | 210 | -13
32 46 14 96 100 4 160 | 155 -5 224 | 210 | -14
33 45 12 97 101 4 161 | 156 -5 295 | 212 | -13
34 | 47 13 98 102 4 162 | 157 -5 226 | 212 | -14
35 49 14 99 103 4 163 | 158 -5 227 | 214 | -13
36 49 13 100 | 104 4 164 | 159 -5 228 | 214 | -14
37 | 49 12 101 | 104 3 165 | 160 -5 229 | 215 | -14
38 51 13 102 | 105 3 166 | 161 -5 230 | 217 | -13
39 50 11 103 | 106 3 167 | 161 -6 231 | 215 | -16
40 53 13 104 | 107 3 168 | 162 -6 232 | 219 | -13
41 53 12 105 | 108 3 169 | 163 -6 233 | 217 | -16
42 54 12 106 | 109 3 170 | 164 -6 234 | 220 | -14
43 55 12 107 | 109 2 171 | 165 -6 235 | 218 | -17
44 56 12 108 | 110 2 172 | 166 -6 236 | 222 | -14
45 57 12 109 | 111 2 173 | 167 -6 237 | 221 | -16
46 58 12 110 | 112 2 174 | 167 -7 238 | 224 | -14
a7 58 11 111 | 113 2 175 | 168 -7 239 | 222 | -17
48 59 11 112 | 114 2 176 | 169 -7 240 | 226 | -14
49 59 10 113 | 115 2 177 | 170 -7 241 | 224 | -17
50 61 11 114 | 116 2 178 | 170 -8 242 | 229 | -13
51 61 10 115 | 116 1 179 | 172 -7 243 | 226 | -17
52 62 10 116 | 117 1 180 | 172 -8 244 | 230 | -14
53 64 11 117 | 118 1 181 | 173 -8 245 | 230 | -15
54 65 11 118 | 119 1 182 | 174 -8 246 | 233 | -13
55 65 10 119 | 120 1 183 | 175 -8 247 | 234 | -13
56 66 10 120 | 121 1 184 | 176 -8 248 | 236 | -12
57 67 10 121 | 122 1 185 | 177 -8 249 | 235 | -14
58 68 10 122 | 123 1 186 | 177 -9 250 | 238 | -12
59 68 9 123 | 123 0 187 | 179 -8 251 | 238 | -13
60 70 10 124 | 124 0 188 | 179 -9 252 | 238 | -14
61 70 9 125 | 125 0 189 | 181 -8 253 | 231 | -22
62 71 9 126 | 126 0 190 | 181 -9 254 | 238 | -16
63 72 9 127 | 127 0 191 | 182 -9 255 | 244 | -11

§ Input Feature

iOutput Response
*Delta between Input and Output
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the input feature and output response where the largest difference is 23. By training
distinct models, each predictor is exposed to the unique data characteristics within
its corresponding domain. For the image predictor, the training data exhibits trends,
such as smooth color gradients, and repetitive textures, all of which demonstrate
strong spatial value locality. For the audio predictor, the training data contains
features such as gradual amplitude changes, periodic waveforms, and occasional sharp
transitions, reflecting strong temporal locality. Thus, all selected datasets maintain
the intrinsic value locality necessary for effective load value approximation. By
maintaining separate predictors, the evaluation can more precisely assess the model’s
ability to learn and exploit domain-specific locality patterns. Furthermore, the usage
of dedicated predictors allows for a more focused optimization for each modality,
ensuring that the design and performance tuning of the predictor align with the
distinct requirements of image and audio processing tasks. The datasets used reflect
realistic multimedia application scenarios, where processing tasks often involve either
image or audio content independently. Consequently, the evaluation of these separately
trained predictors provides meaningful insights into the practical deployment of load
value approximation techniques in diverse multimedia workloads.

In summary, the dataset selection strategy was carefully designed to align with the
goals of minimizing prediction overhead while maintaining high-quality approximations
across diverse multimedia applications. By utilizing a mix of image and audio datasets,
partitioning the datasets systematically for training and evaluation, and focusing on
sources with strong value locality, the ML-LVA is trained and evaluated under realistic
and challenging conditions. This strategy forms the foundation for the subsequent
quality analysis discussed in the rest of this chapter and the deployment of the ML-LVA

in software or hardware in the subsequent chapters.
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3.4 Quality Assessment

In this section, we simulate the output quality when using ML-LVA on six multimedia
applications, namely, multiplication-based image blending [32], multiplication-based
audio blending known as Ring Modulation (RM) [33], audio binarization known as
infinite clipping [35], image binarization known as image thresholding [34], polarity
inversion of audio [37], and image inversion known as image negatives [36]. This
section is divided into subsections for each multimedia application, where we analyze
the quality of the results in terms of common quality metrics, including PSNR,
NMAE, NRMSE, accuracy, and precision. Additionally, we discuss how approximation

affects each application differently, considering their specific nature and requirements.

3.4.1 Image Processing
The first set of experiments focuses on image processing applications, which are
fundamental in many areas, such as photography, medical imaging, and computer
vision. These applications often involve operations that manipulate pixel values, such
as blending, inversion, and binarization. In the context of approximation, the goal is
to test the impact of reduced computational load through LVA on image quality.
Each image processing experiment is evaluated across a range of approximation
levels, from n = 1 to n = 19, where n corresponds to an approximation percentage
of load value ranging from 50% to 95%. The experiments involve different types of
image transformations, each of which has different computational requirements and

quality impacts.

3.4.1.1 Image Blending
The quality metrics observed when experimenting with the multiplication based image

blending are shown in Figure 3.4. From Figure 3.4(a), we can notice that the PSNR
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ranges from 16.13 dB to 33.08 dB where for a smaller n, i.e., less approximation, a
higher PSNR was achieved. Researches evaluated human perception of quality in
relation to PSNR values. They categorized the quality as Fzcellent when the PSNR
exceeds 37 dB, Good between 31 dB and 37 dB, Fair from 25 dB to 31 dB, and Poor
when PSNR falls between 20 dB and 25 dB. Any value below 20 dB is classified as Bad
quality [51, 52]. Based on this classification, the PSNR results obtained across the
three image datasets remain within acceptable quality levels, particularly within the
Fair to Good range, for the initial approximation levels. As the approximation level
increases from 1 to 19, the PSNR values show a gradual decline. Nevertheless, when
the ML is tested on the Flowers dataset, the PSNR delivered an acceptable quality
even when the approximate level reached 15. On the other hand, when blending Cars
or Cars with Places, up to an approximate level of 4 or 5, i.e., 80% approximation,
the PSNR consistently stays above 20 dB, indicating that the visual quality remains
within acceptable bounds. This suggests that modest levels of approximation can be
safely applied without significantly degrading perceptual quality. Subsequently, as n
increases, the PSNR decreases, but still maintains acceptable quality for most use
cases. The NMAE and NRMSE follow a similar trend, with increasing errors at higher
approximation levels. From Figure 3.4(b), we can notice that the NMAE was as low
as 1.8% and slightly surpassed 10% in few cases only. Furthermore, from Figure 3.4(c),
we can notice that the NRMSE ranged from 4% to 15.6%.

When comparing the quality of the blending images from the Cars dataset with
the blending of the one with the Flowers, we can notice the blending quality slightly
differs. From Figure 3.4, we notice that the quality when applied to images from the
Flowers dataset, the measured metrics had a linear trend while the one with the Cars

had a logarithmic trend. Moreover, we can notice that for a lower approximate level,
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i.e., less approximation, the quality of blending images from the Cars dataset was
better compared to the one from the Flowers dataset. This can be attributed to the
distinct nature of the images in the Cars dataset, which might have different contrast
and texture compared to the Flowers dataset. Additionally, since the ML-LVA was
trained using a portion of the Flowers dataset while achieving on average a better
quality with the Cars dataset, this demonstrates the extensibility of the trained model
to any image, even if they do not resemble the one used in the training phase.

To further investigate the quality of the trained model, we test 16 images from

(a) (b)

(d)

Figure 3.5: Image Blending Example 1: (a) Exact, (b) 50% Approximation (n=1),
(c) 80% Approximation (n=5), and (d) 90% Approximation (n=9)
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Figure 3.6: Image Blending Example 2: (a) Exact, (b) 50% Approximation (n=1),
(c) 80% Approximation (n=5), and (d) 90% Approximation (n=9)
the Places dataset and 129 images from the Cars dataset, where the quality is shown
in Figure 3.4, i.e., Places & Cars. The results demonstrate that even when mixing
contexts of images, the quality was similar to the one of blending Cars only.
Analyzing the quality objectively, we can notice from Figures 3.5 and 3.6 that
for various approximate levels, the pixels are in general predicted accurately, i.e., the
color of the pixels are predicted accurately. Additionally, we can notice that for a
higher approximation, sharp edges that consist of significant color changes could

be less accurately approximated, whereas less sharp edges and shapes are predicted
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accurately. Finally, we notice that for a 50% approximation, the quality loss is barely
noticeable. At 80% approximation, the reduction in quality can still be deemed
acceptable in scenarios where systems operate under limited memory bandwidth. In
such cases, the additional performance gains achieved through approximation outweigh
the minor perceptual loss, providing a favorable trade-off between efficiency and output
fidelity. However, at 90% approximation the quality loss becomes more visible yet still

consumable if the performance gain is the ultimate goal.

3.4.1.2 Image Inversion

The quality analysis of image inversion is shown in Figure 3.7. Compared to image
blending, image inversion is more resilient to approximation, as demonstrated by the
consistently higher PSNR values across all approximation levels where the quality is
in the Fair to Ezcellent ranges. Moreover, we can notice that the inversion of images
from the Flowers dataset attained a better quality compared to the other datasets.
Nonetheless, the resulting quality is comparable among the various sets.

From Figure 3.7(a), PSNR values range from 29.07 dB to 39.85 dB. This suggests
that image inversion, being a less complex operation, is less sensitive to approximation
and retains a high quality even with a large reduction in computational load. On
the other hand, the NMAE and NRMSE values for image inversion are also lower
than those for image blending, as shown in Figures 3.7(b) and 3.7(c), respectively.
The NMAE ranged from 0.5 to 6.0 and the NRMSE from 1.1 to 3.5, where a lower
approximation level achieved a lower error. Subsequently, compared to image blending,
the image inversion delivered superior results in terms of PSNR, NMAE and NRMSE.
Finally, when analyzing the quality subjectively, we can notice from Figure 3.8 that

similar to image blending, at 50% the quality loss is barely noticeable and at 80%
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Figure 3.8: Image Inversion Example: (a) Exact, (b) 50% Approximation (n=1),
(c) 80% Approximation (n=4), and (d) 90% Approximation (n=9)

the quality can be considered acceptable. For a 90% approximation the quality is

drastically reduced, however the output is still consumable.

3.4.1.3 Image Binarization

In the context of image binarization, where the output is a binary value consisting solely
of two possible pixel values, the usage error-rate based error metrics, i.e., accuracy
and precision, as evaluation metrics is more appropriate than magnitude-based error
metrics such as PSNR, NMAE, or NRMSE. The accuracy and precision of the binarized
images are shown in Figure 3.9. The accuracy drops to 84.8% and precision drops to
80.8% for an approximation of 95%, i.e., n = 19, as shown in Figures 3.9(a) and 3.9(b),

respectively. However, at the 50% approximation, i.e., n = 1, both accuracy and
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precision are high at 98.8% and 98.3%, respectively. Subsequently, with a quality
loss of less than 2% with a 50% approximation, the trade-off in quality is deemed
acceptable. Furthermore, since for a 95% approximation, i.e., n = 19, the quality loss
was less than 20%, which can be also deemed acceptable.

From the example of image binarization shown in Figure 3.10, we can notice a
similar trend in quality to the previous applications. Finally, we can suggest from all the
examples presented throughout the various applications, that a higher approximation

level, e.g., more than 80% approximation, can be used if the performance is the
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Figure 3.9: (a) Accuracy, and (b) Precision for Various Image Binarization Sets
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Figure 3.10: Image Binarization Example: (a) Exact, (b) 50% Approximation (n=1),
(c) 80% Approximation (n=4), and (d) 90% Approximation (n=9)
ultimate goal, given that at high approximation, the human perception can easily

identify the quality loss.

3.4.2 Audio Processing

The second set of experiments involves audio processing applications, which are integral
in fields like music production, speech recognition and headphones design. Audio
processing typically requires operations that manipulate sound waves, such as blending,
inversion, and binarization. The impact of deploying the proposed ML-LVA on these
operations is investigated in this section, using the same range of n values as in the

image processing experiments.

55



3.4.2.1 Audio Blending

In this experiment, a Ring Modulation (RM) was employed to blend two audio signals
under varying levels of approximation. The results are presented in Figure 3.11.
The corresponding PSNR values range from 34.67 dB at the lowest approximation
level (n = 1), i.e., 50% of load values are approximated, to 25.97 dB at the highest
level (n = 19), where approximately 95% of the load values were predicted, as
shown in Figure 3.11(a). Notably, even under substantial approximation, e.g., 95%
approximation of load values, the PSNR consistently remains above the 25 dB threshold,
which is typically considered indicative of acceptable quality [53]. This demonstrates
that similar to image blending, the audio blending has a significant tolerance to high
levels of approximation without significant perceptual degradation when using the
proposed ML-LVA.

The change in NMAE and NRMSE for the various approximation levels is depicted
in Figures 3.11(b) and 3.11(c), respectively. Both metrics exhibit a gradual increase
with rising approximation, with NMAE varying from 0.7% to 3.0% and NRMSE
increasing from 1.6% to 4.6%. Despite this growth, since the error values remain
less than 5%, this further supports the observation that the perceived audio quality
remains largely unaffected even at elevated approximation levels.

When compared to image blending, audio blending appears marginally more
resilient to approximation. This may be due to the inherent characteristics of audio
signals, which exhibit greater nuance and better value locality, enabling more accurate
prediction with the trained ML-LVA. The temporal continuity and smoother transitions
in audio data also help maintain prediction accuracy, reducing the impact of using

the ML-LVA and allowing for improved performance with minimal degradation.
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3.4.2.2 Audio Inversion

The results of applying the proposed ML-LVA to audio inversion are presented in
Figure 3.12. As the approximate level (n) increases, a gradual reduction in PSNR
and an increase in NMAE and NRMSE is observed. Nevertheless, the performance
remains within acceptable bounds across all the tested approximate levels. As shown
in Figure 3.12(a), the PSNR declines from 40.10 dB at minimal approximation,
i,e., n =1, to 33.11 dB at the highest approximation level, i.e., n = 19, reflecting
a controlled deterioration of signal fidelity under approximation. Importantly, the
PSNR consistently remains well above the 31 dB threshold (Good quality), indicating
that the core structure of the binarized signal is preserved even under a significant
approximate level, e.g., 95% approximation.

On the other hand, the NMAE and NRMSE, exhibit a modest increase with
higher approximation levels. The NMAE rises from 0.5% to 1.8%, while the NRMSE
varies from 1.1% to 2.3% as shown in Figures 3.12(b) and 3.12(c), respectively. These
increments are gradual and relatively minor, further confirming that the approximation
introduces limited distortion into the binarized audio representation. Notably, with
90% approximation of load values, i.e., n = 19, both NMAE and NRMSE remain
low, i.e., less than 3%, highlighting the robustness of the inversion process against
intermediate levels of approximation.

Overall, the results of this experiment demonstrate that the ML-LVA can effectively
predict the load values in the audio inversion task. While increasing the approximation
level introduces a slight increase in approximation errors, the overall quality of the
inverted audio signal remains high across all levels. These findings validate that
the proposed ML-LVA is a viable technique for reducing the resources needed when

performing an audio inversion, ensuring minimal degradation in signal quality even
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at higher approximation levels. Thus, the experiment successfully highlights the
practical applicability of ML-LVA in audio processing tasks requiring accurate load

value prediction.

3.4.2.3 Audio Binarization

For audio binarization, where the output signal is reduced to just two discrete amplitude
levels, it is more meaningful to assess performance using error-rate based metrics such
as accuracy and precision rather than relying on magnitude-based error measures used
in the previous audio applications, i.e., PSNR, NMAE, or NRMSE. The results of the
audio binarization are depicted in Figure 3.13. These results reflect the performance of
the binarization process across varying levels of approximation, from n =1 to n = 19.
As the approximation level increases, both accuracy and precision gradually decrease,
which is expected due to the introduction of approximation errors. For the least
approximation level (n = 1), i.e., 50% approximation, the accuracy is 97.3%, and the
precision is 97.9%, indicating a high level of fidelity between the original and binarized
signals. As the approximation level increases, we observe a steady decline in both
metrics. At n = 2, the accuracy diminishes to 95.4%, and precision decreases to 96.4%,
indicating that even at elevated approximation level, i.e., 66.67% approximation, a
noticeable reduction in quality is observed. Nonetheless, the accuracy and precision
indicate that the error in the output is still tolerable. As the approximation level
continues to increase, the accuracy reaches 89.3% and the precision 89.8% for n = 19.

Despite this decrease in both accuracy and precision as the approximation level
approaches its maximum, the performance remains within an acceptable range. The
accuracy and precision metrics exhibit a clear, consistent trend of degradation as

the approximation level increases, but the values do not drop to levels that would
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undermine the overall quality of the binarized output. This behavior suggests that
the audio binarization method remains robust and can tolerate higher levels of
approximation without significant loss in quality and hence suitable for usage with

the proposed ML-LVA.

3.4.3 Comparison with Related Work

We compare the proposed ML-LVA to the state-of-the-art LVA proposed in [19, 24].

Since these related work use different error metrics, we will compare to each of
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these work separately. For instance, the authors of [19] used the NMAE as an
error metric when analyzing the effect of their LVA when applied to the PARSEC
benchmark [43]. We compare the average prediction quality of the proposed ML-LVA
across all applications and datasets evaluated in the previous section with the average
quality reported for the applications studied in [19]. The comparison is summarized
in Table 3.3. We can notice that the NMAE of the work in [19] is more than double
for the various approximate levels. Since the proposed LVA delivers a better quality
than the LVA proposed in [19] for the various approximate levels, we can conclude

that the LVA we propose is superior.

Table 3.3: Comparison of NMAE of the Proposed ML-LVA with [19]

| Approximate Level (n) | LVA [19] | Proposed ML-LVA |

1 5.81% 1.98%
3 7.25% 3.17%
5 8.97% 3.98%
9 11.06% 5.01%
17 13.78% 6.30%

To further establish a common reference, we evaluate the quality of the proposed
ML-LVA using the same input data as the PARSEC multimedia applications,
specifically the simlarge dataset [43]. Subsequently, the simlarge input data for
three PARSEC multimedia applications, namely BodyTrack, Ferret and x264, are
used as input to the applications chosen in this thesis, i.e., Blending, Binarization
and Inversion of images. BodyTrack and Ferret operate on image inputs, whereas
x264 processes video streams. Since the applications used in this thesis do not directly
handle video content, we extracted individual frames from the x264 input and applied
them as image data to our workloads. This adaptation ensures that our evaluation

remains consistent with the datasets used in related work while staying aligned with
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Table 3.4: Comparison of NMAE of the Proposed ML-LVA with [19] when using the
simlarge Dataset

| Approximate Level (n) | LVA [19] | Proposed ML-LVA |

1 10.52% 1.81%
3 10.90% 3.32%
5 11.87% 4.42%
9 12.64% 6.02%
17 13.79% 7.75%

the scope of the chosen applications. This allows for a direct comparison under
identical data conditions. Table 3.4 compares the average quality obtained for the
three PARSEC multimedia applications evaluated in [19] with the prediction quality
achieved by the proposed ML-LVA when applied to the simlarge input using the
chosen multimedia applications in this thesis. From Tables 3.3 and 3.4 it becomes
clear that the prediction accuracy of the proposed ML-LVA remains stable across
datasets, with no significant fluctuations between different inputs. This deterministic
behavior contrasts with the variability reported in [19], where prediction quality could
vary considerably from one application set to another. Thus, beyond providing higher
accuracy, our proposed ML-LVA ensures predictable performance regardless of the
input dataset.

The authors of [24] proposed the Rollback Free Value Predictor (RFVP) and used
the NRMSE as an error metric when evaluating their method on selected applications
from the Rodina [54], Mars [55] and Nvidia SDK [56] benchmarks. The comparison
with the proposed LVA is summarized in Table 3.5. Even though the authors of [24]
targeted GPU architectures with different approximate levels, we can fairly compare
the quality results of their proposed model and the LVA we propose. In fact, the
quality will only vary based on the percentage of instances that are approximated,
e.g., if 50% of load values are approximated sequentially on a CPU or in parallel on a

GPU the proposed LVA will yield the same quality. Table 3.5 shows the normalized
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Table 3.5: Comparison of NRMSE of the Proposed ML-LVA with [24]

| Approximate Level (n) | REVP [24] | Proposed ML-LVA |

1 12.21% 4.00%
3 18.65% 5.81%
4 23.46% 6.45%
9 31.25% 8.21%

root mean squared error (NRMSE) for the various approximate levels. From Table 3.5
we can notice that for any approximate level, our model provides at least 3.75x better

quality and hence outperforms the work in [24].

3.5 Summary

In this chapter, we presented a comprehensive framework for the ML-LVA tailored
to multimedia applications, with a focus on image and audio data. The design and
evaluation of the proposed LVA were structured around two main objectives: ensuring
efficient load value approximation, i.e., a predictor that requires minimal overhead
to operate, while maintaining high-quality performance across a diverse range of
multimedia content. To support this, we curated a dataset suite comprising three
image datasets—Flowers, Cars, and Places, and one audio dataset, Babylon 5. These
datasets were chosen for their strong value locality, enabling effective model training
and robust predictor performance tailored to the characteristics of image and audio
domains. This diversity helped ensure that the LVA generalized well to real-world
workloads.

In our quality evaluation, the ML-LVA was applied to six multimedia tasks, namely,
image blending, audio blending, image inversion, audio inversion, image binarization
and audio binarization. Across all tasks, we assessed the output quality using metrics

such as PSNR, NMAE, NRMSE, accuracy, and precision. The results demonstrated
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that even at high approximation levels, our LVA preserves an acceptable quality. Image
tasks showed minimal degradation at moderate levels, while audio tasks were especially
resilient, maintaining perceptual quality under more aggressive approximation. The
experiments also revealed varying tolerance across applications. For instance, image
inversion was more robust to approximation than image blending, and audio blending
tolerated approximation with very little quality loss. Despite a predictable decline in
accuracy with higher approximation, the multimedia applications remained usable,
validating the practical effectiveness of ML-LVA.

Overall, the ML-LVA achieves a strong balance between computational efficiency
and output quality. This efficiency is achieved through the use of a lightweight
history-based prediction mechanism, which avoids the added complexity and hardware
overhead used in prior work. Its adaptability to both image and audio domains,
combined with its performance under approximation, makes it a compelling solution
for real-time or resource-constrained multimedia systems. While these results are
more conceptual for the quality of the trained model and generated predictor, an
integration of this load predictor with the target application is mandatory to assess
the impact on the performance.

In the subsequent chapters, we will therefore explore in detail how the proposed ML-
LVA can be integrated into both software- and hardware-based systems. In particular,
the next chapter will provide an in-depth examination of the ML-LVA implementation
within a software runtime environment. Understanding the deployment details of the
ML-LVA is crucial for assessing its real-world compatibility, overhead, and scalability.
While this chapter focused on prediction accuracy, the next chapter will provide a
comprehensive performance analysis, including speedup effects and workload behavior

under actual execution conditions.

65



Chapter 4

Software Implementation of the

ML-LVA

4.1 Introduction

Following the development of the machine learning (ML) model that is capable of
predicting the load value and testing its accuracy through simulation, this chapter
presents its practical realization through a software-based implementation. The
objective of this phase is to transform the conceptual design of the ML-LVA into
a fully operational system capable of functioning within real-world environments.
The software implementation integrates the key components of the ML-LVA into a
cohesive framework, designed to meet the requirements of efficiency, scalability, and
adaptability.

A software-based implementation offers several important advantages. Foremost
among them is the ability to deploy the proposed ML-LVA model onto existing
hardware platforms, e.g., off-the-shelf processors, without necessitating modifications

to the underlying hardware. In this work, we evaluate the ML-LVA on an x86
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platform using the GEM5 simulator [25]. The x86 architecture was chosen due to
its widespread adoption, its compatibility with GEMS5, and its use in previously
proposed LVA [19]. Furthermore, x86 provides a stable and well-documented ISA,
making it a suitable baseline for evaluating new design concepts such as the ML-
LVA. Additionally, the GEM5 simulator was selected for its cycle-accurate modeling
capabilities, extensive configurability, and widespread use in academic research,
allowing for detailed architectural analysis and reproducible experimentation.

In addition to its relevance for general-purpose platforms, a software-based
deployment is also highly beneficial in the context of application-specific integrated
circuits (ASIC) or other custom hardware environments, where available silicon area
is often constrained, and the addition of new dedicated hardware units is either
impractical or impossible, the integration of the ML-LVA through software provides a
viable and efficient solution. This approach ensures that the benefits of the ML-LVA
can be realized with minimal disruption to existing system architectures, thereby
enhancing system flexibility and reducing development time and cost.

The rest of this chapter is structured as follows. First, we present the methodology
employed to achieve the software-based implementation, with an emphasis on the
translation process of the ML model into a modular and integrable software structure.
Additionally, we present in details how the “safe-to-approximate” load instructions
are identified giving its importance in achieving a software-based implementation of
the proposed ML-LVA. Subsequently, we present the testing environment, highlighting
the configurations used to evaluate the impact of the software integration on system
behavior. Thereafter, we present a comprehensive performance analysis, examining
the operational efficiency, resulting from the software-based implementation of the

ML-LVA when deployed in six multimedia applications.
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4.2 Proposed Methodology

This section describes the methodology used to integrate the ML-LVA model discussed
in the previous chapter into software. Building on the training and design details
previously presented, we focus here on translating the trained model into a form
suitable for implementation within the system’s software stack. Key considerations
include model representation, and the mapping of decision logic to software constructs
for efficient execution. Additionally, we explain how the set of load instructions that are
safe-to-approximate is determined, forming the basis for applying LVA selectively and
effectively. With both the determination of safe-to-approximate instructions and the
translation from high-level model to optimized software, a complete implementation
of the application can be generated. Thus, in this section, we present Steps (1) and (4)
of the methodology shown in Figure 1.3.

Figure 4.1 depicts the process of determining the safe-to-approximate load
instructions and how we integrate in software the trained model within the error
tolerant application. In Step (1), we perform the first step towards determining the safe-
to-approximate load instructions by profiling the load instructions and determining
the effect on the program. Thereafter, in Step (2), we determine the control flow
independent load instructions. This is a crucial step since if the control flow is
affected by the approximation, e.g., approximating (predicting) the loop boundary
read from the memory, could result in crashes, such as segmentation faults, infinite
loops, execution of unintended code, stack corruption and/or breaking the logic of
the program. Thus, based on Step (2), we determine the safe-to-approzimate load
instructions by determining those that are not part of the control flow.

Furthermore, as shown in Figure 4.1, in Step (5), we compile the high level

description of the ML model into an optimized assembly code. Optimizing the
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Figure 4.1: Methodology to Implement the Proposed LVA in Software

implementation of an ML-model in assembly is not a straightforward task. For instance,
in a tree-based prediction, the tree will consist of if-else conditions that translate to
conditional branching in assembly. However, branching can consume a large number of
cycles and cause the predictor to require a substantial number of clock cycles to predict.
On the other hand, since in this thesis the proposed LVA targets a 1-byte load, the
predicted value can be from 0 to 255, i.e., 256 unique values. Subsequently, we choose
to implement the predictor in a subroutine that uses an unconditional branch. Since
the predictor is static, for a given history value, i.e., preceding value, the predicted
value will always be the same. Subsequently, we extract the 256 possible predictions
from the ML model in order to implement it in assembly. The implementation in
assembly consists of using the history value, i.e., preceding value, as a multiplier
for the jump address. Although the predictor could be implemented as a lookup

array, we adopt a subroutine-based implementation since it scales more effectively for
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applications that operate on larger data widths, e.g., 16-bit and 32-bit inputs. For
instance, in a 16-bit application, an array-based design may introduce conflict misses
in the data cache, which would undermine the purpose of the ML-LVA, as its objective
is to alleviate memory bottlenecks. In contrast, a subroutine resides in the instruction
cache, which is read-only and therefore experiences lower traffic and simpler access
patterns compared to the data cache, which must handle both reads and writes. As a
result, the subroutine-based approach reduces the likelihood of cache conflicts allowing
the scalability to larger data width. It is noteworthy that the extension of the proposed
implementation will lead to a larger size of the code since the instances that need
to be covered by the subroutine are much larger. Finally, in Step (6) we replace the
safe-to-approximate load instructions with a call to the subroutine. The replacement
is done by hand since a new program has to be generated where its flow requires an
attentive modifications. In the future, compilers could be adapted to accept the list of

safe-to-approximate load instructions, allowing this process to be fully automated.

4.3 Implementation of the Predictor

To evaluate the practical feasibility of the proposed ML-LVA, we implement and test
it on an x86-based platform. The choice of x86 is motivated by several factors. First,
x86 remains one of the most widely adopted ISA, making it highly relevant for both
academic research and industry applications. Its mature ecosystem and widespread
use across desktop, server, and embedded domains allow for results that are more
broadly applicable. Second, x86 is fully supported by the GEMb5 simulator, which we
use in this work to conduct detailed cycle-accurate simulation and gain system-level
insight into predictor behavior. Although the proposed ML-LVA could be implemented

on alternative ISAs such as ARM or RISC-V, in this work we limit our scope to x86
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Listing 4.1: Assembly Subroutine of the ML-based Predictor for x86 Architecture

predictor:
imul
lea
jmp

vals:
mov
ret
mov
ret
mov
ret

mov
ret
mov
ret
mov
ret

ecXx

ecXx

ecXx

ecXx

ecXx

ecXx

ecXx

eCcX

ecXx

, ecx, 6
, [vals +

, 108

, 238
, 240

, 220

ecx]

; if history wvalue
; ©f history wvalue

; 1f history wvalue

skipped portion of the code>

; if history wvalue
; f history wvalue

; tf history wvalue

; ECX contains the history wvalue, t.e.,~the preceding value.

; Multiply ECX~(history value) by 6 since MOV and RET are 6 bytes
; Jump to Base Address~(vals) + ECX
; Move the predicted value to ECX and exit the subroutine

253
254

255

due to its widespread popularity, its extensive support in GEM5, and its prior use

in related work on load value prediction [19]. By targeting x86, we ensure that the

ML-LVA can be realistically evaluated in a widely recognized and practical computing

context, thereby enhancing the relevance and comparability of our results.

The implementation of the predictor subroutine in x86 assembly is shown in

Listing 4.1. In this snippet it is assumed that the history value, i.e., preceding value,

to be used for the prediction is available in the ecx register. In this snippet, if the

history value is 0, we must execute the instructions on lines #10 and #11 to predict a

value of 41 and exit the subroutine. Alternatively, if the history value is 254, we must
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execute the code shown on lines #21 and #22 to predict a value of 240 and exit the
subroutine. Since the instruction mov ecx,#Pred_Val and ret are 5 and 1 byte(s),
respectively, we must skip 6 bytes multiplied by the history value, i.e., 6 X ecx, to
branch to the targeted portion of the code and predict the load value. Subsequently,
the history value in ecx is multiplied by 6 and the resulting value is stored in ecx.
Thereafter, we add the address of the label vals to the value in ecx, i.e., which is 6x
history value, where the resulting value is used as a jump address in jmp ecx.
Subsequently, we use the optimized compilation of the ML-based predictor in
Step (5) as shown in Figure 4.1 to integrate the predictor in the application by
replacing the safe-to-approximate load instructions with a call to the optimized
subroutine. This will generate an application that can be utilized in the online phase
where it will perform a partial memory read, i.e., reading 1 out of n 41 element, where
the rest is predicted using the incorporated predictor. Subsequently, this application

will generate the approximated output multimedia.

4.4 Testing Environment

To evaluate the performance impact of the proposed ML-LVA when deployed in
software, we use the GEM5 simulator [25] a widely adopted, open-source platform that
offers detailed cycle-accurate simulation of processor microarchitectures. By running
the assembly codes in GEMS5, we ensure that measurements are isolated and unaffected
by any background processes or system-level disturbances that could otherwise interfere
with timing accuracy. This level of fidelity is essential for our analysis, as it allows
us to precisely measure changes in execution timing and microarchitectural behavior
resulting from the integration of the proposed ML-LVA—particularly at the memory

and application levels, where small variations in load latency can significantly affect the
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overall speedup. Although several alternatives exist for simulating processor behavior
they generally lack features or does not provide cycle-accurate analysis. One commonly
used alternative is QEMU [57], a high-performance functional emulator capable of
running full system software stacks. However, QEMU focuses primarily on functional
correctness and emulation speed rather than timing accuracy. It does not model
pipeline behavior, cache hierarchies, or memory access latency at a cycle-accurate
level, making it unsuitable for evaluating fine-grained architectural modifications or
microarchitectural optimizations such as the ML-LVA. Other lightweight simulators
or instruction set emulators fall into a similar category as they can validate program
behavior but lack the timing detail required for precise performance analysis.

Another option is hardware prototyping using platforms such as FPGAs or
dedicated emulation systems. While these can provide very high fidelity and even
cycle-accurate execution, they often require significant design effort, time, and access to
sophisticated commercial platforms such as Cadence Protium [58] and Palladium [59].
These systems offer advanced capabilities for hardware emulation but come with
high costs and complex setup procedures, making them less accessible for early-stage
architectural exploration. Additionally, implementing a full out-of-order processor
pipeline and memory hierarchy on FPGAs or emulators can be challenging, potentially
limiting the scope or realism of the simulation.

In contrast, GEM5 strikes an effective balance between accuracy and flexibility. It
supports a range of CPU models, including detailed in-order and out-of-order pipelines,
and allows full control over cache configurations, memory types, e.g., DDR3 [60] and
DDR4 [61], and CPU frequency settings. These capabilities are critical for our study,
as they enable us to simulate a range of system configurations that reflect current

commercial processor trends. In this thesis the CPU configuration used in GEM5
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is based on the most recent trends in commercially available computers. We apply
the proposed LVA when varying the cache settings, the type of DRAM, e.g., DDR3
and DDR4, and the frequency of the CPU. For instance, the latest generation of
Intel processors [62] has mainly two cache configurations, where low to medium-
end processors have the same cache settings while high-end models differentiate in
their cache settings [62]. Furthermore, all Intel processors have efficient (E) and
performance (P) cores where the cache hierarchy is also different. The cache settings
of the various Intel processors and cores are summarized in Table 4.1 [62].

In this thesis, we use an acronym to reference the cache configuration of the E
cores of the Low-end Intel processor as LE cache. We apply a similar format to all
three other configurations, namely, LP, HE and HP. On the other hand, GEMb5
only accepts cache sizes and associativity that are of the power of two. Subsequently,
the LP and HP caches cannot be modeled in GEMS5. For this purpose, we created
variations based on the Intel cache configurations, which sizes are power of two. The
various cache settings used in this thesis are summarized in Table 4.2. For instance,
we created LPO and LP1 which are variations of the LP where the 10-way set
associativity is modified to 8-way and the 1.25MB L2 cache is transformed to 1MB.

Furthermore, since the L1 Data cache is 48KB which is a middle value between two

Table 4.1: Cache Settings of the Intel Processor [62]

‘ Description ‘ L1 Data ‘ L1 Instruction ‘ L2 ‘
Low/Medium-End Intel Processor — E Cores (LE) 32KB G4KB 2MB
8-way 8-way 16-way
High-End Intel Processor — E Cores (HE) S2KB G4KB AMB
S-way 8-way 16-way
Low/Medium-End Intel Processor — P Cores (LP) A8KD S2KB L.25MB
12-way 12-way 10-way
: 48KB 32KB 2MB
High-End Intel Processor — P Cores (HP) 19-way 19-way 16-way
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Table 4.2: Cache Configurations used to Test the Proposed LVA

’ Description \ L1 Data \ L1 Instruction \ L2 ‘

LE 32KB 64KB 2MB
8-way 8-way 16-way
HE 32KB 64KB 4MB
8-way 8-way 16-way
32KB 32KB 1MB
LPO 16-way 16-way 8-way
64KB 32KB 1MB
LP1 16-way 16-way 8-way
32KB 32KB 2MB
HPO 16-way 16-way 16-way
64KB 32KB 2MB
HP1 16-way 16-way 16-way

powers of two values, i.e., 32KB and 64KB, the two variations LP0O and LP1 are
chosen accordingly to avoid biased configuration. Similarly, we created variations
based on the HP cache configuration named HPO and HP1. In addition to the
variations in cache configurations, we tested the proposed LVA while varying the
frequency of the CPU from 1 GHz to 4 GHz. These values are chosen based on
the base frequencies of the latest generation of Intel processors. Finally, we add a
layer of variations in our CPU configuration in GEM5 where we select two types of
DRAM, namely, “DDR3_1600_8x8” and “DDR4_ 2400 _8x8”. Subsequently, with six
cache configurations, four frequencies and two DRAM types, we were able to generate
48 hardware configurations that cover all possible combinations. Furthermore, the
configurations used in GEM5 use the “x86 Timing Simple CPU”[26], where we opt for

an architecture that has L1 (separate) and L2 (unified) caches only.
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4.5 Performance Analysis

For the various multimedia application, the 48 hardware configurations are tested
at two levels, the application level, where we measure the overall speedup as well
as at the level of the memory load operations only. For the performance analysis,
we tested the six multimedia applications using 16 and 129 images from the Places
and Cars dataset, respectively. Additionally, we selected 65 audio files to analyze the
performance of the audio processing applications when implementing the proposed
ML-LVA. With 19 different levels of approximation, 48 hardware configurations and
the image and audio combinations, we base our analysis in the sequel on 4,381,440
experiments that were conducted on a machine with two 32-cores AMD EPYC 7001
series CPUs and 200GB of RAM.

The simulation process in GEMS5 is inherently time-consuming due to its detailed,
cycle-accurate modeling of hardware components. This level of precision significantly
increases the runtime for each individual simulation. Given the extensive parameter
space in our study, the total number of potential simulation combinations is enormous.
Even with High-Performance Computing (HPC) resources capable of large-scale
parallelization, a full sweep of all combinations would be computationally excessive.
Consequently, the need to balance comprehensive performance analysis with available
computational resources motivated the decision to limit our experiments to a
representative subset of 4,381,440 simulation instances. This subset was carefully
selected to provide meaningful insights into system behavior while keeping the total
runtime feasible.

Figure 4.2 depicts the average speedup in the memory operation achieved when
varying one hardware configuration at a time. From Figures 4.2(a) and 4.2(b), we

can notice that the variations in the cache and DRAM configurations result in a
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minimal impact on the speedup achieved. On the other hand, we can notice in
Figure 4.2(c) that for a higher frequency, the proposed LVA achieves a higher speedup.
The various cache and DRAM configurations achieved a similar trend in speedup as
these variations affect the execution of the exact and approximate models in the same
ratio. Alternatively, a higher frequency achieved a higher speedup since the proposed
LVA runs at CPU speed while conventional loads are limited by the memory wall.
Subsequently, the proposed LVA achieves a higher performance gain at higher CPU

frequencies.

4.6 Experimental Results

In this section, we will present a detailed analysis of the performance characteristics of
the proposed LVA technique when applied to six representative multimedia applications,
namely, multiplication-based image blending [32], multiplication-based audio blending
known as Ring Modulation (RM) [33], audio binarization known as infinite clipping [35],
image binarization known as image thresholding [34], polarity inversion of audio [37],
and image inversion known as image negatives [36] when varying the frequency and the
approximate level (n). The aim of this section is to evaluate how ML-LVA influences
computational performance, specifically execution time across both image and audio
processing domains. To this end, we measure and compare the execution speedup
on two levels, namely, the application and the memory. Performance is analyzed by
computing the speedup factor achieved when using the proposed ML-LVA as opposed
to the baseline execution without the ML-LLVA, across varying system frequencies and
approximate levels (n). Due to the large number of simulation instances, we will limit
the presentation to the average speedups achieved when varying the frequency.

The remainder of this section is organized into two main categories: image
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processing, and audio processing, which are further broken down into three core
operations: blending, inversion, and binarization. For each application, we examine the
average, the best- and worst-case scenarios, i.e., minimum and maximum, speedup and

how performance is impacted by changes in processor frequency and the approximate

level (n).

4.6.1 Image Processing

We analyze the performance of image processing tasks when executed on the memory
processor using the proposed ML-LVA, compared to their execution on a conventional
execution. The evaluated tasks include image blending, image inversion, and image
binarization, each representing a distinct class of operations with varying computational

complexity and memory access patterns.

4.6.1.1 Image Blending

The performance results for image blending are shown in Figure 4.3 and reveal
clear trends in both application overall and memory load speedups as the operating
frequency increases from 1 GHz to 4 GHz. A detailed examination shows that while
both speedup types generally benefit from increased frequency, the gains are more
pronounced in the memory speedup domain, particularly under higher approximate
levels.

At 1 GHz, as shown in Figure 4.3(a), we notice that the application overall speedups
for image blending range from a minimum of 1.23x to a maximum of 1.46x, with
an average speedup across all approximate levels of 1.41x. In contrast, we notice
from Figure 4.3(b) that the speedup in memory load operations at this frequency

demonstrate a slightly wider variation, with minimum values around 1.45x, peaking
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at 3.58x, and averaging close to 2.95x. These initial results highlight that even at
the lowest frequency tested, the memory speedup is substantially higher compared to
the one achieved at the application level.

As the frequency increases to 2 GHz, the overall speedups show a modest
improvement, with values ranging from 1.27x to 1.62x, and an average speedup of
1.54x as shown in Figure 4.3(a). Memory speedups, however, scale more aggressively,
reaching up to 4.56x, with a minimum near 1.56x, and averaging 3.63x. The
increasing advantage of memory load speedup suggests that, as the system clock
rate increases, the memory access patterns and cache behavior become increasingly a
significant performance factors in image blending workloads.

At 3 GHz, the trend continues with overall speedups fluctuating between 1.31x
and 1.77x, producing an average of 1.67x. The memory speedups at this frequency
are even more notable, ranging from 1.65x to 5.51x, and averaging 4.21x. Finally,
at the highest tested frequency, i.e., 4 GHz, the overall speedups reach their peak
range for image blending, from 1.35x to 1.89x, yielding an average of 1.76x. Memory
speedups also peak at this level, with values spanning from 1.70x to 6.25x, and an
average speedup of 4.68x. These figures confirm the cumulative benefit of frequency
scaling when deploying the proposed ML-LVA in software.

Finally, as illustrated in Figure 4.3(a), we observe that the speedup curve
begins to exhibit a flattening trend once the approximation level exceeds n = 10.
This behavior can be attributed to the mathematical nature of the approximation
scheme employed in the ML-LVA, where the fraction of load instructions subject to

approximation is given by As n increases, the incremental change in this fraction

AT
diminishes, asymptotically approaching an upper bound of 1, i.e., 100% approximation.

Consequently, the proportion of approximated loads increases rapidly at lower values
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of n, but the rate of increase slows significantly as n continues to grow. This saturation
effect limits the additional performance gains achievable at higher approximation
levels, resulting in the observed plateau in the speedup curve. Thus, while smaller
values of n yield noticeable improvements, the marginal benefits become progressively
smaller beyond n = 10, highlighting a point of diminishing returns in terms of speedup.

In summary, the results for image blending indicate a consistent, frequency-
dependent improvement both overall and memory load speedup However, the rate of

improvement is greater on the memory side, with the gap widening as frequency
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increases. This suggests that for high-performance image blending operations,
especially on systems operating at or above 3 GHz, memory load optimization
techniques offer more substantial performance gains compared to application level

techniques alone.

4.6.1.2 Image Inversion

The performance results shown in Figure 4.4 for image inversion exhibit clear trends
in both application overall and memory load speedups as the operating frequency
increases from 1 GHz to 4 GHz. Similar to the other image blending tasks, memory
load speedups outperform overall speedups, particularly as the frequency rises. This
suggests that image inversion, while computationally intensive, benefits greatly from
improvements in memory access and cache management.

At 1 GHz, we notice from Figure 4.4(a) that the overall speedups for image
inversion range from a minimum of 1.25x to a maximum of 1.81x, with an average
speedup of around 1.68x. In comparison, memory load speedups show a slightly wider
variation, ranging from 1.54x to 4.17x, and averaging 3.36x as shown in Figure 4.4(b).
These results suggest that at the lowest frequency tested, speedups in the memory
operation are significantly higher than the overall speedups when tested in the image
inversion tasks.

When the frequency is increased to 2 GHz, the overall speedups improve slightly,
ranging from 1.33x to 2.06x, with an average speedup of 1.88x. Memory load
speedups also improve, ranging from 1.64x to 5.17x, with an average of 4.02x. The
widening gap between memory loads and overall speedups at this frequency emphasizes
the growing influence of memory access patterns and cache behaviors on the overall

performance of image inversion, especially as the clock rate increases.
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At 3 GHz, the overall speedups range from 1.37x to 2.25x, yielding an average
of 2.03x. Memory load speedups continue to show a more pronounced improvement,
ranging from 1.70x to 6.70x, with an average of 4.57x. This further confirms the trend
that memory load optimizations are the key driver of performance gains as frequency
increases, especially for operations that involve intensive pixel-level manipulation,
such as image inversion.

At the highest frequency of 4 GHz, the overall speedups reach their peak range,
from 1.41x to 2.43x, with an average speedup of 2.16x. Memory load speedups
also peak at this frequency, ranging from 1.75x to 6.77x, with an average of 5.01x.
These results clearly demonstrate the cumulative benefits of frequency scaling when
deploying the proposed ML-LVA.

Similar to the behavior observed in the image blending task, Figure 4.4(a) shows
that for all four frequencies the overall speedup in image inversion begins to exhibit a
flattening trend beyond approximation level n = 10. This pattern arises from the
approximation ratio which approaches 1 as n increases, leading to reduced performance
gains at higher as n increases. However, unlike image blending, image inversion
continues to show a modest increase in speedup even beyond this point, indicating

that the performance benefits of further approximation, are still present.

4.6.1.3 Image Binarization

Figure 4.5 depicts the performance results of the image binarization when deploying
the proposed ML-LVA and varying the frequency from 1 to 4 GHz. The performance
results for image binarization also illustrate a clear trend in both application overall
and memory load speedups as the operating frequency increases from 1 GHz to 4 GHz.

Notably, similar to the other image processing tasks, the memory load speedup show
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more substantial improvements than application overall speedups, particularly at
higher frequencies. This indicates that binarization, being a memory-bound operation,
benefits significantly from improvements in memory access patterns and caching
efficiency.

From Figure 4.5(a), we notice that at 1 GHz, the overall speedups for image
binarization range from a minimum of 1.26x to a maximum of 1.85x, with an average
of 1.71x across all approximate levels. Furthermore, from Figure 4.5(b), we notice

the memory load speedups at this frequency show a wider range, with a minimum
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value of 1.54x, peaking at 4.17x, and an average of 3.36x. When the frequency is
raised to 2 GHz, the overall speedups show a moderate increase, ranging from 1.32x
to 2.08x, with an average of 1.89x. In contrast, the memory load speedups expand
further, with values ranging from 1.64x to 5.17x and averaging 4.02x.

At 3 GHz, the overall speedups range from 1.36x to 2.29x, yielding an average
of 2.04x. Meanwhile, the memory load speedups continue to scale more aggressively,

ranging from 1.70x to 6.07x, with an average of 4.56x. At 4 GHz, the overall speedups
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reach a peak range of 1.41x to 2.45x, with an average of 2.17x. Furthermore, the
memory load speedups achieve the highest values, ranging from 1.75x to 6.77x, with
a mean of 5.00x. The clear separation between the overall and the memory speedups
reinforces the view that image binarization, much like other pixel-based operations,
is increasingly bottlenecked by memory access as the frequency increases, making it
highly sensitive to memory load optimization techniques.

The flattening trend observed in image binarization closely resembles that of image
inversion across the four tested frequencies, as shown in Figure 4.5(a). Although higher

approximation levels continue to yield performance improvements, the rate of increase

_n_

becomes less significant. This behavior is attributed to the approximation ratio ;%5

approaching 1, which has a reduced impact on the percentage of load instructions
approximation as n increases.

In summary, the results for image binarization reinforce the benefit of deploying the
proposed ML-LVA to reduce the execution time of image binarization. The performance
gains from the application overall speedups are steady but limited, while memory load
improvements lead to more significant and consistent performance improvements. As

frequency increases, the gap between application and memory speedups widens.

4.6.2 Audio Processing

We now present the performance evaluation of audio processing tasks executed on the
processor, where the input data is fetched from memory through load operations. The
objective is to assess the performance benefits of using the proposed ML-LVA. Unlike
image processing, audio processing involves continuous-time data that is typically
processed in frames or windows, making latency and throughput critical metrics.
These tasks also vary in their degree of arithmetic and branching complexity, which

directly impacts how well they benefit from near-memory execution. As with the

86



image processing tasks, we evaluate performance at multiple operating frequencies,
namely, 1 GHz, 2 GHz, 3 GHz and 4 GHz.

The performance results are analyzed in terms of average speedup, as well as
minimum and maximum observed values, to capture both the overall effectiveness
and the consistency of the proposed architecture. Additionally, we discuss how the
processor frequency influences performance scaling in each task and examine which
types of operations yield the most substantial gains under LVA-enabled memory
execution. This analysis helps to identify trends in audio processing workloads that

are best suited when deploying the proposed ML-LVA in software.

4.6.2.1 Audio Blending

The performance results for audio blending, shown in Figure 4.6, depict a similar
trend to those observed in image processing tasks, with clear improvements in both
application overall and memory load speedups as the operating frequency increases
from 1 GHz to 4 GHz. However, audio blending, being an audio-specific operation,
exhibits more variability in performance based on the frequency and optimization
level.

Figure 4.6(a) depicts the application overall speedups. We notice from this figure
a flattening pattern as n surpasses 10. This trend closely mirrors the one observed
in the image blending task. Additionally, we can notice from Figure 4.6(a) that at a
frequency of 1 GHz, the overall speedups for audio blending range from a minimum
of 1.24x to a maximum of 1.47x, with an average of 1.42x. From Figure 4.6(b), we
notice that the memory load speedups show a broader range, from 1.45x to 3.57x,
averaging 2.94x. As the frequency increases to 2 GHz, the overall speedups show a

slight improvement, ranging from 1.28x to 1.63x, with an average of 1.55x. The
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memory load speedups also scale up, ranging from 1.56x to 4.55x, with an average of
3.62x%.

At 3 GHz, the overall speedups range from 1.31x to 1.78x, with an average of
1.67x. The memory load speedups show further scaling, with values ranging from
1.65x% to 5.51x, and an average of 4.21x. The consistent growth in memory load
speedups with higher frequencies suggests that optimized memory access plays a larger
role in performance. This trend reflects the intensive memory and processing needs of

audio blending.
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At the highest tested frequency of 4 GHz, the overall speedups range from 1.35x
to 1.90x, with an average speedup of 1.77x. The memory load speedups continue
to increase at a higher pace, reaching values from 1.70x to 6.25x, with an average
of 4.67x. Overall, the results for audio blending show a consistent trend, where
increasing the frequency leads to a higher performance when deploying the proposed
ML-LVA in software.

Similar to the previously presented applications, increasing the approximation
level leads to a saturation in speedup, shown by a flattening curve. At the memory
level, this flattening occurs in fewer patterns and affects lower CPU frequencies more,

while higher frequencies are less impacted.

4.6.2.2 Audio Inversion

Figure 4.7 depicts the speedup in the memory load operation and the application
for the audio inversion task. The performance results for audio inversion show clear
improvements in both application overall and memory load speedups as the operating
frequency increases from 1 GHz to 4 GHz. However, similar to other computationally
intensive tasks, the speedup at the level of memory loads is substantially higher
compared to the one at the application level, particularly as the frequency rises. This
suggests that audio inversion, a process involving transformation of signal amplitudes,
is also highly sensitive to memory access speeds and cache efficiency.

At 1 GHz, the overall speedups for audio inversion range from a minimum of 1.25x
to a maximum of 1.81x, with an average speedup of 1.68x as shown in Figure 4.7(a).
In comparison, from Figure 4.7(b), we notice a wider range of speedups in the memory
load operation, with minimum values 1.54x, peaking at 4.17x, and averaging 3.36x.

When the CPU operates at 2 GHz, the overall speedups show a modest improvement,
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ranging from 1.33x to 2.06x, with an average speedup of 1.88x. Memory load
speedups also scale up, ranging from 1.64x to 5.17x, with an average of 4.02x.

At 3 GHz, the overall speedups range from 1.37x to 2.25x, with an average of
2.03x. Memory load speedups continue to improve significantly, ranging from 1.70x to
6.07x, with an average of 4.56x. When increasing the CPU frequency to the highest
tested setting, i.e., 4 GHz, the overall speedups reach a range of 1.41x to 2.43x, with
an average speedup of 2.16x. The memory load speedups peak at this frequency,

ranging from 1.75x to 6.66x, with an average of 5.00x. These results emphasize the
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importance of memory subsystem performance in audio inversion tasks, especially at
higher frequencies, where memory load optimizations provide significant improvements
over application level optimizations. In summary, similar to the other applications,
the results for audio inversion demonstrate a consistent trend where memory load
speedups are more significant than application level improvements, particularly at
higher frequencies.

The speedup trend at the application level for audio inversion depicted in
Figure 4.7(a), is consistent across all four tested frequencies and closely resembles the
patterns observed in image inversion and binarization. In all cases, the speedup curve
shows a gradual flattening as the approximation level increases, reflecting the reduced

marginal gains at higher levels of approximation.

4.6.2.3 Audio Binarization

The performance results for audio binarization reveal notable trends in both application
overall and at the level of memory loads speedups as the operating frequency increases
from 1 GHz to 4 GHz. The speedup results are shown in Figure 4.8. As with other
audio and image processing tasks, speedup in the memory load operation continue
to provide larger speedup compared to the overall application, particularly. From
the overall speedups shown in Figure 4.8(a), we observe a strong resemblance to the
trends seen in image inversion, image binarization, and audio inversion. Across all four
frequencies, the speedup curves gradually flatten as the approximation level increases.
Nonetheless a slight and steady increase in speedup is still maintained.

When testing with the slowest frequency, i.e., 1 GHz, we notice from Figure 4.8(a)
that the overall speedups for audio binarization range from a minimum of 1.26x to a

maximum of 1.85x, with an average speedup of 1.71x. The memory load speedups at
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this frequency show a broader range, from 1.54x to 4.17x, with an average of 3.36x
as shown in Figure 4.8(b). At 2 GHz, the overall speedups improve slightly, ranging
from 1.33x to 2.08x, with an average of 1.89x. The memory load speedups also
show a more substantial increase, ranging from 1.64x to 5.17x, with an average of
4.02x. At 3 GHz, the overall speedups range from 1.36x to 2.27x, with an average of
2.04x. The memory load speedups continue to scale, ranging from 1.70x to 6.07x,

with an average of 4.56x. When the frequency is increased to 4 GHz, the overall
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Figure 4.8: Average Speedups for Audio Binarization: (a) Overall, and (b) Memory
Loads
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speedups ranges from 1.41x to 2.45x, with an average of 2.17x. The memory load
speedups peak at this frequency, ranging from 1.75x to 6.77x, with an average of
5.01x. Similar to the earlier applications, a rise in approximation level results in
speedup saturation, which is reflected by the flattening of the curve in Figure 4.8.
In conclusion, the results for audio binarization reflect a consistent pattern of
greater performance gains from memory load optimizations, particularly as frequency

increases.

4.6.3 Comparison with Related Work

Evaluating new techniques against existing solutions is essential to understand their
relative strengths and weaknesses. In this section, we present a detailed comparison
between the software-based implementation of the ML-LVA and the LVA proposed
in [19], focusing on performance improvements and practical applicability within
memory-centric architectures. By benchmarking against prior work, we aim to highlight
the advantages offered by ML-LVA in accelerating multimedia processing workloads
on CPU-based systems, thus providing a clear perspective on its potential impact and
feasibility for real-world deployment.

We limit the comparison to this work since the authors of [24] targeted GPU
architectures while the proposed ML-LVA targets CPU architectures. From Table 4.3,
we can notice that the proposed LVA provides a much higher speedup for each of
the approximate levels when compared to the one proposed in [19]. For instance, for
n = 17, the LVA proposed in [19] achieved an average speedup of 1.08 over all the
experiments conducted. In contrast, for the same approximate level, our proposed
LVA achieved a speedup of 1.98 over all the experiments, i.e., average of all hardware

configurations and all audio and image applications. This trend can be noticed
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throughout all approximate levels where the proposed ML-LVA outperforms the LVA
proposed in [19]. Since the proposed LVA delivers a better quality and a higher
speedup than the LVA proposed in [19] for the various approximate levels, we can

conclude that the LVA we propose is superior.

Table 4.3: Speedup Comparison of the Proposed Software-based ML-LVA with [19]

| Approximate Level (n) | LVA [19] | Proposed ML-LVA |

1 1.08 1.29
3 1.07 1.49
5) 1.08 1.57
9 1.08 1.62
17 1.08 1.68

4.7 Summary

This chapter detailed the software-based implementation of the ML-LVA, transitioning
the conceptual framework into a practical system suitable for deployment on off-
the-shelf existing hardware hardware. The implementation was tested using the x86
architecture, leveraging its widespread adoption, compatibility, and stable ISA. All
experiments are conducted through cycle-accurate simulation in GEM5. We presented
the methodology which involves a careful profiling of load instructions with the aim
of identifying those that are “safe-to-approximation, ensuring no disruption to control
flow. We presented how the trained machine learning model is translated into highly
optimized x86 assembly code, designed to minimize branching overhead. This is
achieved through a branchless, jump-table-based predictor subroutine, which enables
fast and efficient predictions during execution.

The presented testing environment is comprehensive as we evaluated the

implementation across 48 different hardware configurations varying cache sizes, DRAM
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bandwidth, and CPU frequencies. GEMS5 was chosen for its balanced combination
of simulation accuracy and flexibility, offering advantages over alternatives such as
QEMU or FPGA emulation. Performance analysis includes a vast experimental set of
over 4.3 million runs covering six multimedia applications involving image and audio
processing tasks such as blending, inversion, and binarization. The results revealed
that increasing CPU frequency significantly improves speedup, as ML-LVA benefits
primarily from CPU speed, whereas conventional load instructions remain bound by
memory access latency. In contrast, variations in cache and DRAM configurations
showed minimal influence on speedup, which scales predominantly with frequency.
Furthermore, the analysis identified reduced gain in speedup at high approximation
level of ten, reflecting an asymptotic trend in the approximation ratio.

Speedup measurements demonstrated substantial gains, with application overall
speedups reaching up to 2.45 times in audio binarization at 4 GHz, and
memory load speedups peaking at 6.77 times in image inversion at the same
frequency. When compared to prior state-of-the-art LVA, the proposed ML-LVA
implementation outperforms significantly, achieving an average speedup of 1.98x at
an approximation level of 17, compared to 1.08x. These findings confirm that the
software implementation of ML-LVA is both feasible and efficient, delivering superior
performance particularly in memory-intensive multimedia workloads. The results
underscore the potential for real-world adoption in both general-purpose processors
and resource-constrained environments such as ASICs, notably without requiring any
hardware modifications.

Following the comprehensive discussion of the software-based implementation of
the proposed ML-LVA in this chapter, it is important to acknowledge the inherent

limitations of the software solution. While effective in demonstrating feasibility and
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based on existing off-the-shelf hardware, the software implementation suffers from
higher latency and limited throughput, which may constrain performance improvements
in data-intensive and latency-sensitive applications. These constraints highlight the
necessity to explore a hardware-based implementation that can better meet the
demands of modern computing systems and provide more accurate evaluation of the
proposed ML-LVA.

The primary objective of transitioning to a hardware solution is to translate the
predictive capabilities of the ML-LVA into a more computationally efficient form
that can be tightly integrated within newly developed computer architectures. This
shift is motivated by the growing need for low-latency, high-throughput systems
capable of mitigating the memory access bottlenecks that often limit performance
in contemporary workloads. A hardware-centric approach offers several advantages,
including the potential to exploit parallelism, ensure pipeline compatibility, and
leverage architectural specialization to accelerate load value prediction. Furthermore,
hardware implementation can more effectively support aggressive speculative execution
strategies widely adopted in current microarchitectural designs. In the next chapter, we
thoroughly evaluate the hardware-based ML-LVA to assess its feasibility, performance

gains, cost-effectiveness, and practical viability.
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Chapter 5

Hardware Implementation of the

ML-LVA

5.1 Introduction

A hardware-centric approach offers the potential to deliver significantly higher
performance through parallelism, pipeline compatibility, and architectural
specialization. Moreover, such an implementation is better suited to support
aggressive speculative execution strategies commonly employed in contemporary
microarchitectural designs. Therefore, evaluating the ML-LVA in hardware is essential
for thoroughly assessing its feasibility, performance, cost-effectiveness, and overall
viability when deployed in real-world hardware platforms. The deployment of the
ML-LVA in a hardware implementation arises a variety of technical challenges that are
distinct from those encountered in the software development. A critical consideration
is the need to maintain a delicate balance between the hardware resource overhead
incurred by the predictor and the efficiency gains it is expected to provide. The

design has to conform to constraints such as limited logic gates, finite memory block
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availability and stringent timing requirements imposed by clock frequency ceilings.
These constraints necessitate a deliberate process of simplification, optimization, and
architectural tailoring to ensure that the implementation remains both lightweight and
effective. Furthermore, the hardware-based ML-LVA is required to integrate smoothly
with existing processor infrastructure, particularly with the processor pipeline where
timing and latency considerations are prominent. In this context, it is imperative
that the predictor produces outputs within a constrained number of clock cycles to
avoid introducing pipeline stalls, which would undermine the intended performance
improvements. These requirements, in conjunction with the need for generalizability
across various computer architectures, play a pivotal role in shaping the hardware
architecture described in the subsequent sections of this chapter.

We propose to implement the hardware-based ML-LVA as an accelerator of the
CVAG6 architecture, which is a RISC-V processor. This choice is motivated by
several factors relevant to achieving an efficient hardware implementation. Primarily,
the CVAG6 is an open-source, industry-grade RISC-V core that offers complete
architectural transparency, enabling extensive customization and seamless integration
of novel hardware modules such as the ML-LVA. Its open-source nature permits
thorough examination and modification of the processor pipeline, which is essential
for incorporating the ML-LVA as a custom accelerator with minimal integration
overhead. Furthermore, the widespread adoption of the RISC-V instruction set and
the modular design principles of the CVA6 make it a suitable platform to demonstrate
the generalizability and scalability of the proposed hardware-based implementation.
The CVAG6 includes separate Level 1 instruction and data caches connected via an
AXI4 bus to a shared Level 2 cache and external DDR4 memory, providing a realistic

environment to evaluate the impact of the hardware implementation of the proposed
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ML-LVA. Using this setup, we observed application overall speedups above 1.08x
and memory operation speedups up to 1.73x, confirming the effectiveness of the
hardware-based ML-LVA.

In the sequel, we will first introduce the methodology to realize a hardware
implementation of the proposed ML-LVA, outlining the design process and rationale
behind key architectural decisions. We then describe how the machine learning model,
originally trained in a software environment, was systematically translated into a
modular, synthesizable hardware block and integrated into the CVAG6 general-purpose
processor as a custom accelerator. Following the integration, we detail the construction
of the complete testbench environment used to enable both functional validation
and performance evaluation. This includes a comprehensive explanation of the
experimental setup, as well as the tools and testing infrastructure employed throughout
the assessment process. Thereafter, we present a comprehensive performance analysis,
evaluating the effectiveness of the hardware-deployed ML-LVA across a range of
multimedia workloads. These include four representative applications that vary in
computational characteristics and memory behavior, thereby offering a robust basis

for assessment.

5.2 Proposed Methodology

This section outlines the approach taken to integrate the ML-LVA model, introduced
in Chapter 3, into a hardware implementation. Rather than focusing on software
translation, the discussion here centers on adapting the trained model for synthesis
and deployment within a hardware design flow. Particular attention is given to how
the ML-LVA is integrated in a processor and how the applications will make use of

the new hardware. Accordingly, this section elaborates on Step (4) of the methodology
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illustrated in Figure 1.3 when integrated in a hardware environment.

For the hardware-based solution of the proposed ML-LVA, we propose the
methodology shown in Figure 5.1. Steps (1) to (4) shown in this figure remain the same
as in the software implementation. For instance, a load instruction that was determined
to be “safe-to-approximate” would still be considered as such in a hardware-based
implementation. Similarly, an ML predictor that delivers an acceptable quality would
uphold the same quality when deployed in a hardware solution. Subsequently, the key
differences in delivering the hardware-based implementation are the tasks highlighted
in Steps (5) and (6). Thus, we limit the explanation in this section to the key elements
that have not been previously discussed, i.e., Steps (5) and (6) shown in Figure 5.1.

In Step (5), we implement the ML-based Load Predictor within the hardware
domain. A pragmatic and computationally efficient solution is achieved through the

use of a lookup table. This approach is particularly suitable for the ML-LVA model
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developed in this thesis, as it is designed to predict one byte per load operation.
Accordingly, the complete predictor can be encapsulated in a lookup structure
comprising 256 entries, with each entry occupying a single byte. Thus, the total
memory footprint required for the predictor is merely 256 bytes. To store this table,
a Read-Only Memory (ROM) structure is selected due to its minimal area and
power overhead relative to more complex alternatives such as Static Random Access
Memory (SRAM). Furthermore, the immutable nature of ROM enhances security by
safeguarding against unauthorized modifications, such as those introduced by malware
aiming to manipulate prediction outcomes for malicious purposes. Nonetheless, a
ROM presents a significant limitation: its contents are fixed post-fabrication, thereby
precluding updates or reprogramming. To address this constraint, an Electrically
Erasable Programmable Read-Only Memory (EEPROM) can be utilized as a more
flexible alternative. EEPROM offers a favorable trade-off between hardware simplicity,
resilience to tampering, and the ability to update the predictor post-deployment,
thereby extending the hardware’s applicability to a broader range of workloads and
future enhancements.

Following the integration of the predictor into hardware via a lookup table, Step (6)
involves modifying the processor microarchitecture to enable a seamless communication
between the software layer and the newly instantiated hardware predictor. This
necessitates augmenting the processor’s Instruction Set Architecture (ISA) to include
custom instructions capable of invoking the ML-LVA functionality. Such modifications
are feasible in many processor designs, particularly those based on extensible ISAs.
A notable example is the RISC-V architecture [28], which explicitly reserves certain
opcode spaces—specifically the Custom-0 and Custom-1 instruction groups—for user-

defined extensions [63]. This architectural feature permits the addition of bespoke
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instructions without interfering with existing ISA semantics. Once these custom
instructions have been integrated into the ISA, the application code is revised such
that load instructions previously marked as “safe-to-approximate” are substituted
with the newly added load value prediction instructions. During the application
runtime, these instructions trigger the predictor to estimate load values using the
precomputed lookup table, thereby eliminating the need for conventional memory
access and reducing memory latency. This marks a fundamental shift in execution
behavior, with the processor relying on predictive computation in place of deterministic
memory retrieval for selected operations.

To enable a seamless interaction with the hardware-embedded ML-LVA predictor,
two new R-type custom instructions have been introduced: AzAU (Approximate Audio
Load) and AzIM (Approximate Image Load). These instructions are specifically crafted
to invoke the ML-LVA predictor directly within the processor pipeline, facilitating
efficient prediction of load values without engaging in conventional memory access.
Although the R-type instruction format traditionally requires two source operands
along with a destination register, the semantics of these new instructions diverge
intentionally from this norm to better suit the operational characteristics of the
ML-LVA. In both AzAU and AxzIM, only the first source operand is meaningful which
represents the “history value” or previously loaded data. This value serves as the
index into a dedicated ROM. Notably, AzAU and AxIM access separate ROMs, one
specifically allocated for audio prediction data and the other for image prediction
data, in order to deploy the two ML-LVA developed in Chapter 3. Additionally, the
second source operand, while still encoded in the instruction to preserve structural
compatibility with the R-type format, is effectively ignored during execution and does

not influence the instruction’s behavior.

102



When executed, the instruction uses the first operand to access the corresponding
entry in the appropriate ROM, retrieving the predicted approximation generated by
the ML-LVA model. This predicted value is then written directly into the destination
register, effectively substituting the traditional load operation. By leveraging a
low-latency ROM lookup instead of accessing the main memory, these instructions
substantially reduce load latency and improve execution throughput. By adhering
to the RISC-V custom instruction specification, particularly leveraging the reserved
opcode spaces for user-defined extensions, these instructions maintain broad portability
across RISC-V-based cores that support ISA customization. This strategic alignment
enhances the scalability and applicability of the ML-LVA accelerator, allowing future
designs to incorporate these instructions with minimal modification while preserving
the benefits of load value approximation in latency-critical workloads such as real-time

image and audio processing.

5.3 Hardware Implementation

To accurately evaluate the performance impact of the hardware implementation of
the ML-LVA, a detailed integration and a realistic hardware simulation environment
were required. This section outlines the processor core into which the ML-LVA was
integrated, as well as the testing infrastructure used for performance analysis, including
the surrounding memory hierarchy and external DRAM model that enabled realistic
system-level evaluation. Each component was selected or developed to reflect practical
design constraints and to enable cycle-accurate simulation of the full system. In
this thesis, the hardware in which the ML-LVA was integrated consists of a RISC-V
processor called CVA6 [27] which has L1 cache, an L2 cache and a DRAM as shown

in Figure 5.2. All components are connected via the Advanced Microcontroller Bus
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Architecture (AMBA) Advanced eXtensible Interface version 4 (AXI4) protocol [64].
In the rest of this section, we will present the details of each of these components and

the reasoning for their selection.

L2
Cache

Figure 5.2: Hardware Implementation Environment

5.3.1 CVAG6 Processor

At the core of the testing environment is the CVA6 processor, a 64-bit in-
order RISC-V core [27]. The CVAG features a six-stage pipeline architecture,
as illustrated in Figure 5.3. The CVAG6 supports in-order instruction issue,
out-of-order execution and write-back, and an in-order commit stage, and thus
preserving the original execution order of the program.  The core of the
CVAG6 implements the Integer (I), Multiplication/Division (M), Atomic (A), and
Compressed (C) extensions, as defined in [63], along with [65]. Additionally,
the CVA6 supports three privilege levels—Machine (M), Supervisor (S), and
User (U)—enabling compatibility with Unix-based operating systems. It incorporates
several advanced features, including a configurable microarchitecture, dedicated
translation lookaside buffers (TLBs), a hardware page table walker, and branch
prediction mechanisms such as a branch target buffer and a branch history table.

A notable architectural feature of the CVAG is its decoupled frontend pipeline.
In this design, the instruction fetch and decode stages operate independently of the
backend execution stages. This decoupling allows the frontend to continue fetching and

decoding instructions even when the backend is stalled, thereby improving instruction
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Figure 5.3: Architecture of the CVA6 [27]

throughput and overall pipeline efficiency. By buffering instructions between the
frontend and backend, this architecture helps mitigate memory latency and enhances
the performance of branch prediction and instruction prefetching.

The CVAG6 also includes separate Level-1 (L1) instruction and data caches, both
of which offer configurable associativity and replacement policies. Furthermore, it
supports the AXI4 protocol [64] for memory and peripheral interfacing, enabling
seamless integration with second-level (L.2) caches. The processor also provides
infrastructure for integrating tightly coupled accelerators via custom instruction
support. This feature permits the definition of new opcodes that directly interface

with user-defined hardware modules. We chose the CVAG in this thesis due to its
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modular and extensible architecture, open-source availability, and robust support for
custom instructions. These characteristics make it an ideal platform for integrating
hardware accelerators. Additionally, its support for modern microarchitectural features,
such as out-of-order execution and advanced branch prediction, further enhances
its suitability for architectural exploration and the implementation of cutting-edge
processor techniques. The primary reason for selecting the CVA6 processor is its open-
source nature, which ensures that its design and implementation are publicly accessible.
This transparency allows unrestricted access to the core’s architectural details, enabling
comprehensive study and use without licensing constraints. In contrast, widely used
architectures such as ARM and x86 are proprietary and closed-source. Their designs
are not made publicly available, limiting the ability to examine or modify them freely.
Therefore, in the hardware-based implementation we switch from the x86 architecture
to the CVA6 RISC-V processor.

To preserve a conventional execution model, the custom instruction implementing
the ML-LVA was integrated into the CVAG6 using its accelerator extension interface.
In this integration, the accelerator does not operate as an independent co-processor
with a separate fetch mechanism, private registers, or parallel data-management
capabilities. Instead, it is tightly coupled within the Execute stage of the pipeline,
reusing existing datapath resources of CVA6. This design results in a simpler datapath
with fewer conflicts between parallel paths, while also reducing the verification
complexity. By avoiding the need for advanced features such as dual-fetch mechanisms
or cache-coherence protocols typically required for external accelerators, the proposed
integration maintains consistency with the baseline processor pipeline [66]. Accordingly,
we modified the source codes of “cvab__accel first pass_decoder _stub” [67] and

“acc__dispatcher” [68] blocks. Subsequently, the modified codes affect the Instruction
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Decode (ID) and Execute stages shown in Figure 5.3. Furthermore, the decoder is
updated to support two new custom instructions for predicting load values in audio and
image applications, respectively. These instructions are encoded as R-type instructions
using the “ACCEL” opcode as defined in the ariane package [69], with the funct3 field
set to 3’b000 for audio and 3’b001 for image predictions. Subsequently, the code of
the “cvab__accel_first _pass_decoder _stub” is extended to decode these newly added
instructions. In parallel, the logic for the predictor (ML-LVA ROM and its indexing
mechanism) was added to the “acc_dispatcher” block, where the predicted values are
produced in a single clock cycle. Additionally, we set the parameters of L1 caches to:
i) 4-way set associative organization, ii) cache lines of 64 bytes each, and i) total size
of 65,536 Bytes. This cache configuration was chosen to simulate the L1 cache of the
ARM Cortex-A720 [70]. The data cache was configured as an OpenPiton cache [71]
with a write through policy. Finally, the simulation environment for the modified
CVAG6 was developed in SystemVerilog [72] to run the custom chip at 3 GHz, providing
a robust framework for functional validation and waveform inspection during the

design and integration of the ML-LVA accelerator.

5.3.2 AXI Last Level Cache

To complement the memory hierarchy of the CVA6-based testing platform, the AXI
Last Level Cache (LLC) [73] is employed as a unified Level-2 (L2) cache. The AXI LLC
is a configurable, open-source developed within the Parallel Ultra-Low Power (PULP)
platform [74]. Tt is designed to interface seamlessly with AXI4-compliant masters
and slaves, making it highly suitable for integration into RISC-V-based architectures,
specifically, the CVA6 adopted in this thesis.

The AXI LLC functions as a shared L2 cache that sits between the private L1 data
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and instruction caches of the CVA6 and the off-chip memory system. By providing a
high-bandwidth, low-latency intermediary, the LLC significantly reduces the frequency
of expensive memory accesses to external DRAM, thereby improving both application
level performance and energy efficiency. The cache supports multiple configurable
parameters, including cache size and associativity, allowing for tailored optimization
depending on system-level requirements and workload characteristics.

Architecturally, the AXI LLC is designed to operate under a write-back cache
policy, meaning that modified cache lines are only written back to main memory
when they are evicted from the cache. This approach reduces the frequency of write
operations to memory, thereby minimizing memory traffic and enhancing overall
system bandwidth. Such a policy is well-suited to systems where reducing latency and
conserving memory bandwidth are critical performance goals.

In our hardware implementation, the LLC is integrated into a CVAG6-based and
configured with specific parameters tailored to balance capacity, associativity, and
access granularity. The LLC is configured to replicate the L2 of a recent ARM Cortex
AT20 processor [70]. We chose to adopt this approach as ARM is a popular RISC
architecture that is widely used in the industry and thus serves as a representative
reference point for modern RISC-based designs. In alignment with the Cortex-A720,
the LLC is implemented as an 8-way set-associative cache. The data width of the LLC,
denoted as DataWidthFull, is determined by the AXI interface and set to 64 bits.

Since the Cortex-A720 uses a 64-byte cache line, the number of data blocks (Npp) per

64 bytes

o1 e = 8. To maximize the number of cache lines (Ney),

line is calculated as Npg =
we adhere to a constraint imposed by the AXI LLC design [73], which requires that
log,(Npp) does not exceed the width of the AXI len t signal. Given that len tis 8

bits wide, this constraint leads us to select Noy, = 256. Based on this configuration,
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the total size of the LLC can be calculated using the following formula:

DataWidthFull
Size_ LLC = SetAssociativity X Ngog, X Npg X ata ; Y (20)

Substituting the appropriate values, we compute the cache size as:
. 64
Size. LLC' =8 x 256 x 8 x g = 131,072 (21)

This results in a total cache size of 131,072 bytes, or 128 KB. The size of this L2
aligns with one of the possible 1.2 configuration of the ARM Cortex-A720. Such a
configuration yields a relatively large and highly associative L2 cache, well-suited for
workloads with strong spatial and temporal locality. The high associativity reduces
the likelihood of conflict misses, while the presence of multiple blocks per line enhances
data reuse across sequential accesses, improving overall cache efficiency. The L2 cache
further employs an aggressive prefetch mechanism that anticipates sequential memory
accesses, proactively fetching data before it is explicitly requested.On a single miss,
the L2 is able to perform a sequential prefetch in burst mode, fetching up to 256
consecutive cache lines, each consisting of 64 bytes, for a total of 16 KB of data.
By exploiting spatial locality, this mechanism reduces the number of individual miss
penalties and sustains high bandwidth utilization. With the 4-way set associativity
of the cache, up to 64 KB of memory can be mapped without conflicts, thereby
mitigating contention and improving throughput. Such a configuration is particularly
advantageous for multimedia and signal-processing workloads, where spatial locality
is of paramount importance and large contiguous memory regions must be accessed
efficiently.

From a system integration perspective, the AXI LLC is instantiated as a standalone,
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modular component that connects directly to the AXI interconnect without requiring
changes to the internal pipeline or memory interface of the CVA6 core. Its
parameterizable structure allows for easy adaptation to different performance, area,
and power constraints. In the context of PULP-based systems, the LLC offers a scalable
and efficient method to extend the memory hierarchy, supporting high-throughput

and bandwidth-sensitive applications with minimal design effort.

5.3.3 Micron DDR4 Model

To complete the memory hierarchy of the testing platform, a DRAM memory based
on the publicly available DDR4 Verilog simulation model [75], provided by Micron
Inc, is connected to the AXI LLC. This memory model serves as the off-chip main
memory and provides a realistic behavioral representation of DDR4 memory timing
and operation. It supports a configurable range of data rates, spanning from 1066 to
4000 mega transfers per second (MT/s), where each transfer represents the movement
of data on both the rising and falling edges of the clock signal, as is characteristic of
double data rate (DDR) memory. For the purpose of this evaluation, a data rate of
3200 MT /s—corresponding to a clock cycle time (tCK) of 0.625 nanoseconds—was
selected to reflect a high-performance memory configuration. In order to facilitate
seamless communication with the rest of the AXI-based system, an AXI-compatible
memory interface and DRAM controller were developed and integrated into the testing
platform.

The DRAM model itself, obtained from Micron, offers cycle-accurate behavioral
modeling of DDR4 memory, including command timing, burst access behavior, bank
management, and timing constraint such as Row to Column Delay (tRCD), Row

Precharge Time (tRP), and Column Address Strobe (CAS) latency, as defined by
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the DDR4 standard [61]. However, the original model is not directly compatible
with the AXI protocol, which is used throughout the testing platform developed to
test the proposed ML-LVA. To bridge this gap, we design a custom AXI-to-DRAM
controller to translate AXI4 memory transactions into appropriate DDR4 command
sequences, while adhering to the timing and ordering constraints imposed by the
DRAM specification.

The AXI interface operates as a slave connected to the AXI interconnect fabric,
accepting read and write transactions from the AXI LLC. Upon receiving a request, the
controller schedules and issues the corresponding DDR4 commands, such as activate,
read, write, and precharge to the DRAM model. It also handles address translation
and manages multiple open row policies across banks to improve memory throughput.
This setup ensures accurate timing emulation and provides a representative evaluation
of how real DRAM would behave under the memory access patterns generated by the
CVAG processor and its attached accelerators.

From a system-level perspective, the inclusion of the DRAM model allows the
testing platform to approximate the latency and bandwidth characteristics of real
hardware deployments more closely. It introduces realistic memory delays and access
contention scenarios that would not be captured by idealized memory models. This
is particularly valuable when evaluating the performance impact of the ML-LVA
accelerator, as it provides insights into how memory traffic interacts with cache
behavior and custom instruction execution under realistic memory access patterns.

The integration of the DRAM controller and AXI interface was carried out without
modifying the existing AXI LLC or CVA6 processor design, thus preserving the
modular architecture of the system. This decoupled approach facilitates independent

development, testing, and reuse of each subsystem. Overall, the external DRAM
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model serves as a critical component to validate the end-to-end memory hierarchy
of the platform and supports comprehensive functional and performance evaluation

under realistic memory access conditions.

5.4 Experimental Results

This section presents a detailed performance evaluation of the proposed ML-LVA
technique using a full-system simulation environment composed of the CVA6 processor,
the AXI LLC acting as a L2 cache, and an external DDR4 DRAM model based on
Micron’s Verilog simulation package. The objective of this analysis is to assess the
impact of the proposed ML-LVA on execution performance when integrated into a
realistic hardware memory hierarchy:.

To explore the applicability of ML-LVA in multimedia processing, four
representative applications were selected from both the image and audio domains,
namely, image blending [32], image inversion [36], audio blending [33], and audio
inversion [37]. These applications were chosen to cover a spectrum of memory access
behaviors and computational patterns, providing a meaningful evaluation of ML-LVA’s
effectiveness across different workloads.

Performance measurements are carried out by quantifying the speedup achieved
when employing the ML-LVA compared to a baseline execution without approximation.
The evaluation considers two distinct performance levels: overall application speedup,
which captures the end-to-end impact on total execution time, and memory load
speedup, which focuses specifically on the duration of memory load operations. The
analysis spans multiple operating frequencies and approximation levels (n), where
each level controls the aggressiveness of value approximation in load instructions. The

performance analysis was performed using Siemens Questasim 2024.1 [76].
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The structure of this section follows a task-specific organization, grouped into
two categories based on processing modality: image and audio. Each category is
further divided into two application subtypes: blending and inversion. For each
individual application, we analyze the effect of varying the approximate level (n) on
the performance. By employing a cycle-accurate simulation platform with realistic
memory modeling, this evaluation provides practical insights into the trade-offs
introduced by the ML-LVA mechanism. The results underscore the performance
benefits and limitations of using ML-based value approximation in a memory-
centric architecture and demonstrate the potential of such techniques in accelerating
multimedia workloads under modern processor-memory system designs. Thereafter, we
compare the performance of the design proposed in this thesis with the state-of-the-art,
followed by an analysis of the synthesis results to assess the overhead of the proposed

ML-LVA when implemented in hardware.

5.4.1 Image Processing

This subsection presents a performance analysis of image processing tasks executed on
the memory processor enhanced with the proposed ML-LVA, in comparison to their
execution using a conventional baseline. The tasks under evaluation, i.e., image
blending and image inversion, represent distinct categories of operations, each
characterized by different levels of computational complexity and memory access

behavior.

5.4.1.1 Image Blending

The image blending application, which merges two input images by computing a per-

pixel weighted average, benefits substantially from ML-LVA-based approximation due
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to its consistent memory access patterns. The performance improvements measured at
both memory and application levels show a robust upward trend as the approximation
aggressiveness increases, i.e., increasing n. The application overall and memory level
speedups are shown in Figure 5.4.

From Figure 5.4(a), we notice that for the overall application, the performance
trends are more subdued but still meaningful. At the lowest setting of approximate
level, i.e., n = 1, the speedup is slightly under 1 at 0.992 %, indicating a minor overhead,
possibly due to hardware instruction routing. When the approximate level increases,
the overall speedup rises to 1.013x and reaches 1.029x when n = 3. The trend
continues with incremental gains, hitting 1.057x and 1.065x for n = 10 and n = 15,
respectively. The highest recorded speedup is 1.068x, i.e., 6.8% speedup, for the
highest tested approximate level, i.e., n = 19. This relatively slower improvement is
expected since memory access acceleration translates into broader application speedup
only partially, especially in workloads that are not fully memory-bound. Nonetheless,
the positive correlation, across all levels, demonstrates that the ML-LVA leads to
a stable and scalable performance advantage even when used as a tightly coupled
accelerator within a general-purpose processor.

From Figure 5.4(b), we notice that at the memory level, the speedup begins at
a baseline of 1.00x for n = 1. Nonetheless, as the approximate level increases to
n = 2, the average speedup rises to 1.14x. This early gain signals that even limited
prediction of load values can significantly reduce memory latency in such structured
workloads. As the approximation level increases, this improvement continues almost
linearly up to approximate level 10, where the speedup reaches 1.58x. Beyond n = 10,
the curve begins to flatten, though the gains do not vanish. The speedup continues

to rise in a slower pace, reaching 1.66x at approximate level 15 and culminating in
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a peak of 1.69x at the highest approximate level, i.e., n = 19. The marginal gains
beyond n = 15, i.e., increase from 66% to 69%, indicate that most of the exploitable
redundancy is captured by this point, as the percentage of load that are approximated

is calculate as ;%5 which has a flattening pattern as it increases.

5.4.1.2 Image Inversion

The speedups achieved in the image inversion are given in Figure 5.5. For the

application overall speedup, we notice from Figure 5.5(a) that the effect of ML-LVA is
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also strong. Similar to the image blending, the speedup at approximate level 1 is below
1 and was measured to be 0.999x. As the approximation increases, the performance
quickly improves, where we measured a speedup of 1.08x, 1.19x and 1.24x for n = 2,
n = 4 and n = 6, respectively. When the approximate level is increased to 10, the
speedup reaches 1.30x, with further increments taking it to 1.34x at n = 16 and
peaking at 1.348x for the highest approximate level.

From the results shown in Figure 5.5(b), we notice that at the memory level the

gains are both steep and sustained. Starting from a speedup of 1.00x for n =1 and
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rises to 1.14x for n = 2. The growth in speedup continues with: 1.27x, 1.43x and
1.56x for the approximate levels 3, 5 and 8, respectively. This consistent acceleration
shows that prediction remains effective even as more speculative loads are deployed.
Unlike image blending, where speedup gains tapered off around approximate level 15,
image inversion continues to benefit across all tested levels. At approximation level 14,
the speedup reaches 1.67x, and achieves a maximum speedup of 1.73x for n = 19.
Interestingly, while the image blending’s overall speedup flattens early, image
inversion continues to show small but steady gains well into the higher approximation
levels. This sustained growth suggests that image inversion is more tightly bound
by memory latency, and therefore more responsive to approximative memory load
acceleration. This trend of deviation in the flattening of the overall speedup
results between blending and inversion tasks was also observed in software-based

implementation of the ML-LVA.

5.4.2 Audio Processing

This subsection presents the performance evaluation of audio processing tasks executed
on the hardware platform integrating the proposed ML-LVA accelerator. In contrast
to image processing, which operates on spatial data, audio processing deals with
time-continuous signals typically handled in discrete frames or windows. This framing
makes throughput and latency especially critical for maintaining real-time performance.
Furthermore, audio workloads differ in their computational characteristics, with
varying levels of arithmetic intensity and control flow complexity, which influences
how effectively they benefit from acceleration near memory. The evaluation focuses on
the observed speedups measured when executing audio tasks with the ML-LVA. We

analyze how different classes of audio operations respond to hardware-level load value

117



approximation and identify the greatest performance gains. These results provide
insight into the suitability of the adapted CVAG6 to integrate the ML-LVA in its

architecture when accelerating audio tasks.

5.4.2.1 Audio Blending

The speedup results of the audio blending, depicted in Figure 5.6, show an increased
gain as the approximate level n increases. From Figure 5.6(a), we notice that for the

overall application, the improvements are more modest, reflecting the fact that not all
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parts of the audio blending process are equally memory-bound. Starting from 1.0005x
at approximate level of 1, the speedup reaches 1.050x when n = 4 and continues
upward in small but consistent steps. By the approximate level 10, the overall speedup
is 1.073x, and it gradually climbs to 1.0799x when the approximate level reaches
15. The final speedup at level 19 is 1.0819x. The tight clustering of these values in
the later stages demonstrates the onset of saturation, where memory latency is no
longer the principal bottleneck. Still, the gain of over 8% in execution time at high
approximation levels is significant for embedded or real-time systems, where energy or
throughput constraints are tight. The results confirm that audio blending is a strong
candidate for approximate memory techniques, delivering high memory load gains
and consistent application level improvements.

At the memory level, we notice from Figure 5.6(b) that the benefits of
approximation are immediate and substantial. The speedup grows from the baseline
of 1.00x for n = 1 to 1.14x when n = 2 and reaches 1.34x when n is increased
to 4. The steepness of this growth continues through approximate levels 5 to 10,
reaching a speedup of 1.56x. Beyond level 10, the growth becomes more incremental,
yet it remains steady. The maximum speedup achieved is 1.66x at level 18, with
level 19 maintaining this value. This consistency suggests that even at aggressive

approximation levels, the ML-LVA performs reliably.

5.4.2.2 Audio Inversion

The ML-LVA delivers solid gains when tested in audio inversion as shown in Figure 5.7.
The results of application overall speedup shown in Figure 5.7(a), reflects a more
striking improvements. Beginning from a near-unity value of 1.0003x at approximate

level 1, the speedup surges to 1.15x and 1.22x for the approximate levels 3 and 5,
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respectively. This rapid climb indicates a high dependence on memory performance.
The growth continues with 30% and 33%, i.e., 1.30x and 1.33x, at levels 10 and
15, respectively. At level 19, the maximum overall speedup is 1.34x. With a 34%
improvement in the overall performance, the hardware-based implementation of the
ML-LVA achieved a notable result demonstrating its practicality. These results are
among the best observed in the study, suggesting that the ML-LVA not only accelerates
memory operations but also significantly reduces the execution time of the entire

application. The monotonic increase across all approximation levels indicates that the

1.35 !

1.05 4

7 8 9 10 11 12 13 14 15 16 17 18 19
Approximate Level (n)

(a)

1.7 .

1 2 3 4 5 6

1.6 q
15r 1

141 1

Speedup

13 q
12¢ 1

1.1r i

7 8 9 10 11 12 13 14 15 16 17 18 19
Approximate Level (n)
(b)

Figure 5.7: Average Speedups for Audio Inversion: (a) Overall, and (b) Memory Loads

1

1 2 3 4 5 6

120



load values in audio inversion, remain within a predictably learnable range for the
model.

From Figure 5.7(b), we notice that at the memory level, the speedup begins at
1.00x, rising to 1.26x at level 3 and 1.41x at level 5. The increase continues smoothly
with speedups of 1.56 x and 1.63x for approximate levels of 9 and 13, respectively. By
approximation level 19, the memory speedup peaks at 1.69x. The absence of slowed
gain at extreme approximation levels suggests that the ML-LVA manages to maintain
improved performance when deployed in image inversion for the various approximate

levels tested.

5.4.3 Comparison with Related Work

We compare the hardware implementation of the ML-LVA with the state-of-the-art
LVA proposed in [19]. We omit the comparison with the LVA proposed in [24] since
their work targets a GPU while the one we propose in this thesis aim to approximate
the load value in a CPU. Table 5.1 shows the average speedup achieved for the various
approximate levels among the various applications. From Table 5.1, we can notice that
the LVA proposed in [19] deliver a higher speedup for a 50% approximation, i.e., n = 1.
However, at approximate level 3 and higher, i.e., more than 75% approximation, the

proposed LVA outperforms the state-of-the-art, where our model delivered an increased

Table 5.1: Speedup Comparison of the Proposed Hardware-based ML-LVA with [19]

| Approximate Level (n) | LVA [19] | Proposed ML-LVA |

1 1.08 1.00
3 1.07 1.09
5 1.08 1.14
9 1.08 1.18
17 1.08 1.21
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speedup when n increases, while the one proposed in [19] delivered a constant speedup.
Subsequently, we conclude that the hardware-based ML-LVA also outperforms the

LVA proposed in [19].

5.4.4 Overhead Measures

In order to analyze the resource usage overhead of incorporating the ML-LVA in the
CVAG6, we synthesized the original CVA6 and the version with the ML-LVA using
Cadence Innovus [77]. The synthesis is performed using a Cadence Generic Process
Design Kit (GPDK) based on the 45nm CMOS technology node. The results of the
synthesis are summarized in Table 5.2. From these results, we can notice that the
area and power increases in rate of 5.09% and 0.79%, respectively, when the ML-LVA
is added to the CVA6. Nonetheless, this is expected since an additional hardware was
added to the processor. However, with a speedup in memory load value surpassing

70% in multiple cases, the measured overhead can be deemed acceptable.

Table 5.2: Synthesis Results of the CVA6

\ Metric | CVA6 | CVA6 w/ ML-LVA | Increase |
Area (um?) | 167,986.64 176,529.11 5.09%
Power (mW) 344.15 346.87 0.79%

5.5 Summary

This chapter presented the hardware implementation and evaluation of the ML-LVA
within the CVAG6, a RISC-V processor. The ML-LVA was integrated into the processor
pipeline as an accelerator. The resulting hardware was synthesized using Cadence

Innovus with a 45nm GPDK CMOS process. To ensure realism, the implementation
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was tested under practical execution conditions using a CPU clocked at 3GHz and
paired with a 3200MT /s DDR4 memory subsystem. The focus was on media processing
workloads involving image and audio applications.

The implementation tackled several key challenges, including minimizing resource
overhead, maintaining timing closure, and integrating seamlessly with the processor’s
out-of-order pipeline. CVA6 was selected as the host platform due to its modular,
open-source architecture, which facilitated straightforward hardware augmentation.
The ML-LVA employed a lightweight predictor realized as a lookup table, stored in
ROM. To enable efficient invocation of the ML-LVA, two custom RISC-V R-type
instructions called AzAU and AzIM were introduced, specifically tailored to image and
audio load prediction. Support for these custom instructions required modifications to
the instruction decoder and execution pipeline of the CVA6. Each instruction accesses
a dedicated ROM storing prediction tables for its respective data type.

The memory subsystem used to analyze the performance of the proposed
implementation featured a configurable hierarchy with L1 and L2 caches which
are modeled after an ARM Cortex-A720 design to mirror modern embedded
processors. Additionally, the memory subsystem was complemented with a DDR4
DRAM to provide a complete memory hierarchy. An AXI-to-DDR4 to bride the
connection between the Micron DDR4 DRAM and the L2 cache. Subsequently, the
hardware implementation was tested in a cycle-accurate simulation environment using
SystemVerilog and Questasim.

The performance evaluation demonstrated that the ML-LVA delivers notable
speedups across a range of media applications. Speedup values reached up to 1.08x at
the application level and up to 1.73x in memory operations, confirming the ability of

the implemented ML-LVA to alleviate memory bottlenecks. The most significant gains
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were observed in the audio inversion workload. Importantly, the ML-LVA maintained
and even increased its performance benefits as approximation levels rose. This marks
a significant improvement over the existing LVA such proposed in [19], which tend to
plateau even at modest levels of approximation.

The synthesis results confirm that these benefits come at an acceptable cost. The
ML-LVA introduced just 5.09% area and 0.79% power overhead. Given the substantial
improvements in memory latency—exceeding 70% in certain cases—these overheads
are a justified trade-off. The hardware prototype thus validates the practicality of
integrating machine learning-based speculative approximation into modern processors.

In summary, the ML-LVA offers a robust, efficient, and scalable approach to
load value approximation near memory. Its strong performance, especially at high
approximation levels, and modest resource footprint position it as a compelling
enhancement for future processors aiming to reduce memory access latency and

improve throughput in energy-constrained environments.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

The widening disparity between processor speeds and memory latency, commonly
referred to as the memory wall, continues to constrain the performance of modern
computing systems. In this thesis, we have addressed this fundamental bottleneck
by proposing a Machine Learning-based Load Value Approximator (ML-LVA), a
novel approach that leverages the principles of approximate computing to intelligently
speculate memory load values with minimal overhead. By shifting from conventional
memory-bound execution models to speculative, error-tolerant alternatives, the ML-
LVA presents a compelling solution for accelerating data-intensive applications without
sacrificing output quality.

The proposed methodology to develop the ML-LVA comprises two main phases:
an Offline phase and an Online phase. During the Offline phase, the target application
is profiled to identify load instructions that can tolerate approximation without
compromising correctness. Concurrently, training data is preprocessed and partitioned

to train and validate an ML model, which is subsequently integrated into the
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application. The approximation level, defined by a user-specified parameter, determines
the proportion of load instructions replaced by approximate predictions. The Online
phase corresponds to the runtime execution of the approximated application producing
outputs. The ML-LVA framework supports both software- and hardware-based
implementations. The software approach realizes load value prediction as a function
call to a subroutine, enabling deployment on existing hardware platforms without
architectural modifications. Conversely, the hardware implementation incorporates a
dedicated accelerator within the processor pipeline, triggered via a custom instruction,
to minimize latency and overhead. This dual-mode design ensures flexibility for
deployment across a wide range of systems, from commodity hardware to custom
processor architectures.

A detailed analysis of quality of the proposed ML-LVA was performed across six
representative audio and image processing tasks. These tasks include multiplication-
based blending, inversion, and binarization operations. Quality evaluation employed
established metrics including Peak Signal-to-Noise Ratio (PSNR), Normalized Mean
Absolute Error (NMAE), Normalized Root Mean Squared Error (NRMSE), as well
as accuracy and precision for classification-oriented tasks. Across six real-world
multimedia applications, namely, image and audio blending, inversion, and binarization,
the ML-LVA consistently demonstrated adaptability, robustness, and performance
scalability. Notably, applications exhibiting temporal or spatial locality, such as audio
inversion, maintained PSNR values above 33.11 dB even at high speculation rates,
affirming their resilience to approximation delivered by the trained ML-LVA. The
static nature of the predictor, where runtime training is eliminated, makes it attractive
for both general-purpose and resource-constrained platforms. When compared to

existing techniques such as dynamic value predictors and rollback-free speculation,

126



the ML-LVA offered compelling advantages, delivering up to 3.75x lower normalized
root mean squared error (NRMSE) and 1.98x higher performance, thereby achieving
a well-calibrated balance between speed and quality.

The proposed technique was comprehensively validated through both software and
hardware implementations. On the software side, the ML-LVA was integrated into
conventional CPU-based workflows as a subroutine, yielding substantial performance
enhancements across a suite of multimedia benchmarks. In tasks such as image
inversion and audio binarization, speedups in memory operations reached up to 6.77x,
while the speedup in the application peaked at 2.45x under high approximation levels.
Crucially, these gains were achieved with minimal quality degradation, as evidenced by
PSNR values consistently exceeding 86 dB at 95% approximation. The performance
benefits scaled with processor frequency, highlighting the relevance of the ML-LVA in
latency-bound environments.

In the hardware implementation, the ML-LVA was deployed as an accelerator
in the form of a static ROM-based predictor within a RISC-V processor, CVAG.
Despite its minimal hardware footprint requiring just 256 bytes of storage and
completing predictions within a single cycle, the accelerator delivered up to 1.73x
reduction in memory access latency and 1.34x increase in application throughput in
representative workloads such as audio inversion. This integration not only underscores
the practicality of the ML-LVA in modern out-of-order processor pipelines, but also
demonstrates its compatibility with emerging microarchitectures.

The proposed Machine Learning-based Load Value Approximator (ML-LVA)
demonstrates clear superiority over state-of-the-art LVAs from [19] and [24]. Compared
to the LVA in [19], the proposed ML-LVA achieves more than a twofold reduction in

error across various approximation levels, while delivering substantially higher speedups
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on CPU-based systems—for instance, an average speedup of 1.98x at approximation
level n = 17 compared to 1.08x reported in [19]. Although [24] targets GPUs while
the proposed ML-LVA targets CPU architectures, we are able to fairly compare the
quality of the two models since the quality is irrelevant of the underlying architecture.
The proposed ML-LVA attained at least 3.75x better prediction quality across all
approximation levels, confirming its effectiveness.

Hardware synthesis on a 45nm CMOS node using Cadence Innovus reveals only
modest overheads—5.09% area and 0.79% power increase—when integrating ML-
LVA into the CVAG6 processor, which are justified by memory load value prediction
speedups exceeding 70% in several cases. Overall, these results establish ML-LVA as a
high-quality, efficient load value predictor with practical applicability for accelerating

CPU-centric workloads.

6.2 Future Work

While this thesis has demonstrated the viability and benefits of the ML-LVA in
multimedia processing pipelines, its broader implications extend to a wide spectrum
of approximate computing use cases. Future research can build upon this foundation
in several directions. A promising extension involves applying the ML-LVA framework
to domains where value locality hold such as wireless sensor networks and edge
Al—contexts where controlled approximation is both acceptable and advantageous. For
example, speculative reads in Internet of Things (IoT) environments could significantly
reduce memory bottlenecks and power consumption without impairing application
correctness.

Another rich area for exploration involves increasing the adaptability of the ML-

LVA. Although the current predictor benefits from its static, low-overhead design,
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incorporating elements of runtime adaptivity, such as periodic retraining, online fine-
tuning, or lightweight reinforcement learning, could make the system more responsive
to non-stationary workloads. Hybrid prediction schemes that blend static learning
with dynamic calibration may yield better performance-quality trade-offs in real-world
deployments. Furthermore, closer integration with the memory hierarchy via coupling
with prefetchers, compression algorithms, Approximate Memory or Processing-in-
Memory (PIM) subsystems could enable more synergistic optimizations, effectively
creating a layered approximation stack that addresses latency, bandwidth, and energy
constraints in concert.

Since the ML-LVA loads one value and subsequently predicts the following n values,
a prefetcher could be made approximation-aware by recognizing the approximation
level (n). This would allow the cache to selectively fetch only the values that are
explicitly required, while omitting those that are to be predicted by the ML-LVA.
Such an approach would reduce unnecessary cache line fills, lower memory bandwidth
consumption and improve energy efficiency. Moreover, a cooperative design between
the ML-LVA and the prefetcher could provide a more fine-grained control of memory
traffic, ensuring that approximation not only accelerates execution but also optimizes
the utilization of the memory hierarchy, while also providing higher speedup when the
two techniques are combined.

Integrating ML-LVA with Approximate Memory enables a layered approximation
approach, where the predictor and memory-level approximation can work together
to optimize system behavior. Among the key advantages, this combination can
amplify performance and energy benefits by reducing memory access latency, lowering
bandwidth usage, and decreasing energy consumption. Additionally, it allows for fine-

tuning of approximation: the ML-LVA can selectively avoid predictions in cases where
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the Approximate Memory has already provided sufficiently accurate results, thereby
preserving the best quality from either mechanism. At the same time, this integration
introduces several challenges. The system becomes more delicate, as errors in one layer
can influence the other, requiring careful calibration and monitoring. Approximation
errors may also compound across layers, potentially degrading computational accuracy
if not controlled. Moreover, integrating the two approaches increases the complexity
of the system, as additional hardware or logic may be needed to track quality, limit
cumulative errors, and ensure that multiple approximation layers do not lead to
excessive degradation of application-level correctness.

Exploring the proposed software-based implementation of the ML-LVA on RISC-V
and ARM architectures rather x86 architecture developed in this thesis, presents a
compelling opportunity for several reasons. Both RISC-V and ARM architectures are
increasingly prominent in embedded, mobile, and edge computing domains, where
power efficiency and customized hardware-software co-design are critical. Investigating
ML-LVA on these platforms could reveal unique interactions between the LVA and
the more streamlined, energy-aware instruction sets. Exploring ML-LVA on RISC-V
and ARM architectures could unlock new avenues for performance and efficiency gains
that are not as readily accessible on traditional x86 platforms, ultimately broadening
the applicability and impact of the proposed ML-LVA.

Extending the ML-LVA to support larger data widths could enable its
deployment across a broader range of application domains. From a hardware
perspective, the primary challenge lies in the exponential growth of the
lookup table, which significantly increases storage requirements and access

complexity. To mitigate this overhead, techniques such as pipelined ROM
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lookups [78] combined with approximate arithmetic can be employed, reducing imple-
mentation complexity while preserving overall performance.

The identification of safe-to-approximate load instructions is performed manually
in this thesis. While effective, this approach is time-consuming and does not scale
well to complex applications. An artificial intelligence-based method could automate
this process by analyzing program behavior and memory access patterns to identify
instructions that can be safely approximated. This detection could be further improved
if applied in real time, dynamically selecting load instructions that both create memory
bottlenecks and tolerate approximation. However, integrating artificial intelligence
has drawbacks. The accuracy depends on training data and model quality, and
misclassification of critical instructions could cause fatal errors. Safeguards are
therefore necessary, such as maintaining fallbacks to exact execution. Additionally
the model has to be lightweight so its overhead does not outweigh performance gains
achieved by the usage of the proposed ML-LVA.

In addition, the development of runtime control mechanisms to dynamically
modulate the approximation level n in response to workload characteristics or user-
defined quality thresholds offers another valuable avenue. In this thesis, we specifically
explored a scheme in which one exact load is followed by n approximated loads. An
alternative direction would be to investigate different ratios of exact to approximated
values fetched from memory, e.g., two exact load followed by n approximation. Such
systems could, for instance, escalate speculation during high-memory-pressure phases
or reduce it when critical computations demand higher fidelity, thereby ensuring
optimal trade-offs at runtime. Nevertheless, these techniques must be designed with
care, as an imprudent choice of the number of exact loads or approximation level

could diminish the bandwidth savings that approximation is meant to achieve.
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Lastly, as with all approximation-based methods, security and reliability warrant
careful attention. While the static, deterministic nature of ML-LVA provides some
resistance to adversarial manipulation, future iterations should incorporate advanced
verification techniques to prevent error propagation and ensure robust behavior in
safety-critical contexts. Extending the ML-LVA to embedded real-time systems—such
as automotive controllers or medical devices—will necessitate guarantees around
worst-case latency, bounded error rates, and fault tolerance, all of which represent

meaningful future work.
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