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Abstract 

Maritime Autonomous Surface Ships (MASS) and Energy Management System 

Harriet Laryea, Ph. D. 

Concordia University, 2025 

The research and development of Maritime Autonomous Surface Ships (MASS) is underway in 

several countries, with operations either remotely controlled from a Shore Control Center (SCC) 

or fully autonomous, without the need for Officer of the Watch (OOW) supervision. This study 

focuses on integrating renewable energy systems, alternative fuels, and energy management 

strategies (EMS) to enhance the efficiency and sustainability of both conventional and fully 

autonomous vessels. In response to rising fuel costs and stringent International Maritime 

Organization (IMO) regulations, the research aims to optimize vessel performance, reduce 

emissions, and improve energy efficiency across various ship types. 

The study begins by assessing conventional vessels before transitioning to fully autonomous 

operations. The research then examines the optimization of a hybrid renewable energy system 

(HRES) that incorporates photovoltaic (PV) arrays, vertical axis wind turbines (VAWTs), and 

battery storage into the existing ship power system. A comparative analysis is conducted between 

conventional and fully autonomous vessels using an artificial bee colony (ABC) algorithm. The 

optimal configuration for both vessel types is identified as Genset/PV/VAWT/Battery, minimizing 

the annualized cost of the system (ACS), while maximizing the renewable energy fraction and 

reducing carbon emissions. Notably, autonomous vessels demonstrate superior performance in 

terms of cost and emissions when compared to conventional vessels.  

Further, the study investigates optimal marine alternative fuels for short-sea shipping, including 

hydrogen, LNG, and traditional fuels. Mathematical modeling in Python is used to evaluate key 

performance indicators (KPIs), with LNG proving to deliver the highest Net Present Value (NPV), 

especially for autonomous vessels. This provides insights for optimizing fuel selection and 

ensuring compliance with environmental regulations. 

Finally, a multi-objective predictive energy management system is developed using nonlinear 

model predictive control (NMPC) combined with grey wolf optimization (GWO) to optimize 

energy distribution in autonomous vessels under dynamic wave conditions. The NMPC-GWO 
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algorithm demonstrates robustness and adaptability, ensuring reliable performance in varying 

environmental and operational conditions. 

In summary, this research offers a comprehensive framework for optimizing energy systems and 

fuel selection, driving improvements in operational efficiency and environmental sustainability in 

the maritime industry. 
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CHAPTER 1. INTRODUCTION 
The evolution of ships has spanned over many years, driven by the commissioning and 

decommissioning of vessels that once relied on natural wind and tidal forces. However, the advent 

of steamships in the early 19th century revolutionized maritime navigation. The transportation of 

goods and passengers via sea became a significant force in global commerce and travel. Currently, 

there are over 7,000 conventional ships (CS) and more than 2,500 active seaports and inland ports 

worldwide [1]. 

During the Industrial Revolution, steam propulsion in marine vessels was gradually replaced by 

more efficient fuels such as diesel, fossil fuels, liquefied natural gas (LNG), and electric or battery 

power. Conventional ships are now predominantly powered by diesel engines, marine gas turbines, 

or Low-Pressure Dual Fuel (LPDF) engines. These vessels typically operate using heavy fuel oil, 

marine-grade diesel, or LNG. Unfortunately, the incomplete combustion of these fuels results in 

the emission of greenhouse gases (GHGs), including Sulphur Oxides (SOx), Nitrogen Oxides 

(NOx), and Carbon Dioxide (CO2). A recent study indicates that air pollution from conventional 

ships accounts for more than 18% of global pollutants, with the maritime industry contributing 

13% of the global sulfur oxide emissions [2]. These pollutants are primarily emitted during harbor 

maneuvering and operations at sea. In response, the International Maritime Organization (IMO) 

has implemented a regulation requiring a maximum sulfur content of 0.50% m/m (mass by mass) 

in fuel oil to mitigate sulfur emissions [3]. 

The growing concern over greenhouse gas emissions and fuel consumption in conventional ships 

has highlighted several contributing factors, including fuel composition, machinery (such as 

auxiliary engines), charter planning, vessel category, ship condition (for example, coating and 

servicing), and operational factors. As a result, the IMO's Maritime Environment Protection 

Committee (MEPC) has established mandatory guidelines for energy efficiency in ships, 

encapsulated in the Energy Efficiency Design Index (EEDI). The EEDI monitors greenhouse gas 

emissions and promotes improvements in "hull design and machinery operations." It serves as a 

critical technical measure governing new ships and the implementation of the Ship Energy 

Efficiency Management Plan (SEEMP) [4], [5]. Additionally, the SEEMP encourages the use of 

the Energy Efficiency Operational Indicator (EEOI) to assess the energy efficiency of existing 
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ships, considering environmental factors such as sea state, waves, currents, speed, draught, 

distance, and the condition of the hull and machinery [6], [7]. These regulations significantly 

impact both existing conventional ships and new vessels using the aforementioned fuels. 

Technological advancements have also spurred interest in autonomous ships (AS), with research 

in this area drawing from unmanned vehicles in sectors such as space transportation, commercial 

rail, aerospace, and automotive industries [8]. The knowledge gained from these autonomous 

systems has led to the development of human-machine interfaces (HMIs) for fully unmanned and 

remotely controlled ships [9]. However, the implementation of autonomous ships presents 

challenges similar to those encountered in other autonomous transportation sectors, including 

cybersecurity, ship maintenance, grounding, environmental disasters, passenger safety, and system 

reliability and efficiency. While the full realization of autonomous ships may take years, the 

potential advantages outweigh the challenges [8]. Furthermore, with the integration of EEDI and 

SEEMP for autonomous ships, the IMO's goals can be more readily achieved, as these vessels are 

equipped with more environmentally friendly engines and technologies. 

1.1 Research Problem Statement or Motivation 

The International Maritime Organization (IMO) aims to decarbonize international shipping, 

actively supporting the integration of technology to help achieve the targets set by the Paris 

Agreement. As part of its commitment to addressing climate change, the IMO plays a key role in 

advancing the United Nations' Sustainable Development Goal 13 [10], [11]. A notable advantage 

of Maritime Autonomous Surface Ships (MASS) is their potential to enhance energy efficiency 

and reduce emissions by utilizing renewable energy sources, electricity, or hybrid systems. The 

IMO has set ambitious goals to lower CO2-equivalent emissions from international shipping, with 

the target for 2050 being a 50% reduction in CO2 emissions compared to 2008 levels [10], [11]. 

These objectives have increased the demand for advanced technologies in ship design and 

construction to achieve automation that optimizes energy efficiency. 

This ambitious target has posed significant challenges for naval architects worldwide in designing 

vessels that meet the required levels of energy efficiency. At the MEPC 76 [12] several measures 

to improve ship energy efficiency were identified, but implementing these solutions has proven 
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difficult. Therefore, further measures need to be explored to meet the IMO's long-term goals. This 

research is motivated by the need to examine the energy management systems of MASS, focusing 

on emissions and their associated environmental costs. 

1.2 Research Justification 

The automobile industry has brought significant changes to our roads with the induction of 

autonomous vehicles, and similar innovation are currently being implemented in the marine 

industry. The deployment of MASS on the open sea clearly indicates that they are likely to be 

more successful than self-driving cars navigating the congested streets of our cities [13]. Therefore, 

the increasing urgency to reduce carbon emissions and improve the sustainability of maritime 

operations underscores the importance of integrating renewable energy systems (RES) and 

alternative fuels into ship power systems. However, research on the application of these 

technologies, especially in the context of autonomous vessels, remains sparse. Autonomous ships 

introduce unique challenges due to their reliance on renewable energy sources like PV, wind 

turbines, and battery bank, their operational dynamics, which differ significantly from 

conventional manned vessels. This research is therefore justified by the necessity to fill the gap in 

knowledge regarding the integration of hybrid renewable energy systems (HRES) in autonomous 

ships. By developing advanced energy management strategies and optimization frameworks, this 

study aims to enhance the operational efficiency and environmental performance of both 

conventional and autonomous vessels. The findings will not only provide practical solutions for 

integrating renewable energy into maritime transport but also contribute to achieving operational 

strategies in marine transportation and offer valuable guidance for decision-making and investment 

in the marine sector, ensuring regulatory compliance and environmental sustainability. 

1.3 Research Objectives 

The objectives of this research work are as follows: 

• To perform a comprehensive techno-economic analysis on both conventional and fully 

autonomous vessels, evaluating various HRES configurations in terms of cost, energy 
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efficiency, and environmental impact. This involves the application of metaheuristic 

optimization algorithms to identify the most cost-effective and efficient configurations. 

• To identify optimal marine fuels for short-sea shipping vessels by employing a proposed 

global warming potential (GWP) approach in conjunction with bottom-up methodology to 

examine key performance indicators (KPIs) for marine alternative fuels. 

• To employ advanced predictive-metaheuristic algorithms such as Nonlinear Model 

Predictive Control (NMPC) via Grey Wolf Optimization (GWO), and Genetic Algorithm 

(GA), to optimize power distribution and energy management. This study also assesses the 

impact of irregular wave disturbances on the propeller load torque while minimizing fuel 

consumption and emissions. 

1.4 Research Scope 

This study focuses on the energy management of fully autonomous short-sea shipping vessels, 

particularly tugboats, high speed passenger ferries operating along the California coast, with the 

Port of Los Angeles serving as the primary operational region. Additional navigational routes 

include surrounding terminals such as Dana Point, Long Beach, Avalon, and Two Harbors. The 

research encompasses three main components. First, it conducts a comparative analysis of 

metaheuristic optimization algorithms—namely artificial bee colony (ABC), genetic algorithm 

(GA), and particle swarm optimization (PSO)—to determine the optimal HRES configurations for 

both conventional and autonomous tugboats. Furthermore, it presents a detailed environmental and 

cost evaluation of various marine alternative fuels for autonomous short-sea shipping vessels using 

a global warming potential (GWP) methodology integrated with a bottom-up emissions approach. 

In addition, the study develops a comprehensive nonlinear model predictive control (NMPC) 

framework for the energy management system (EMS) of autonomous vessels, utilizing 

optimization techniques such as the grey wolf optimizer (GWO) and GA. The model incorporates 

vessel dynamics, including the impact of irregular sea states and environmental interactions. The 

study utilizes automatic identification System (AIS) data collected over a one-year period, vessel 

logbooks, equipment technical datasheets, renewable energy technical datasheets, and regional 

meteorological profiles, with simulations conducted within MATLAB, Python, and hybrid 

optimization of multiple energy resources (HOMER) Pro environments. Lastly, the key analytical 
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tools include sensitivity analysis, Monte Carlo simulation, and rule-based strategies to evaluate 

optimal energy dispatch, emission reduction, fuel consumption, operational cost, and emission-

associated costs. 

1.5 Dissertation Outline 

This dissertation is organized into six chapters. The structure of this dissertation is as follows: 

Chapter 2 provides an overview on marine autonomous surface ships, marine propulsion systems, 

and relevant metaheuristic and control algorithms. This is followed by Chapter 3, an article that 

discusses and performs a techno-economic assessment on standalone hybrid renewable energy 

system onboard conventional and autonomous tugboats. Chapter 4 presents an article proposing 

environmental and cost assessments of marine alternative fuels for fully autonomous short-sea 

shipping vessels, based on the global warming potential approach. Additionally, Chapter 5 

develops a predictive model and performs mathematical simulations on an energy management 

system for fully autonomous vessels with hybrid renewable energy systems, using NMPC via the 

GWO algorithm. Finally, Chapter 6 concludes the dissertation and outlines directions for future 

work. 
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CHAPTER 2. OVERVIEW OF MARINE 

HYBRID SYSTEM AND CONTROL 

APPROACHES 
This chapter provides a comprehensive review of existing research and developments related to 

marine autonomous systems, energy sources for ship propulsion, hybrid power systems, and 

control strategies. It begins with an exploration of MASS, discussing their operational modes, 

levels of autonomy, and the classification of MASS. Additionally, the chapter concludes with a 

literature review of case studies on unmanned and autonomous surface vessels utilizing hybrid and 

renewable power sources. 

2.1 Marine Autonomous Surface Ship (MASS) 

The autonomous vessel operates with its autopilot set to tracking mode, enabling the ship to follow 

a pre-determined route without intervention from the Officer of the Watch (OOW). The autopilot 

system is integrated with HMI, allowing the MASS to navigate and detect both stationary and 

moving obstacles, even in uncharted waters. The operation of the vessel can be either remote or 

fully autonomous, with different levels of autonomy defined by various maritime regulations under 

the IMO. Figure 1 is an illustration of the communication structure for the MASS. 

Additionally, remote control and watchkeeping are managed from the shore control center (SCC) 

through the vessel's sensors and communication systems. The SCC can control the vessel remotely, 

but only when access to the autopilot is granted by the Officer of the Watch (OOW). The MASS 

automation is pre-programmed to facilitate communication and interaction with other vessels. 

However, the MASS may still have crew members onboard for maintenance purposes [5], [9]. 

Furthermore, the management of the MASS involves supervision and control from fleet 

management, as well as coordination and implementation from the port and fleet forwarding 

services. The operational zones are illustrated in Figure 2. 
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Figure 1: Communication structure for the autonomous ship [8]. 
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Figure 2: Fleet Management for autonomous maritime systems [9]. 

2.1.1 Degree of Autonomy for MASS 

The levels of autonomy are determined by the extent to which a MASS operates with or without 

human intervention. Additionally, the variation in autonomy levels is influenced by the operating 

environment of the vessel. During the 100th Session of the Regulatory Scoping Exercise on 

MASS, the International Maritime Organization’s (IMO) Maritime Safety Committee (MSC) 

defined four levels of autonomy [9], each representing a different degree of human involvement 

in ship operations. These four levels of manning are briefly described as follows [2], [10], [11]: 

i. Degree one (On board decision support): The ship is equipped with automated 

processes and decision support systems. While many operations are automated, all 

actions are still controlled by the onboard crew. 

ii. Degree two (On and off board): Decisions and support actions are performed at both 

onboard and remote locations by qualified seafarers. 

iii. Degree three (Fully Remotely): All decisions and actions are executed remotely from 

different location (SCC), with no crew onboard the vessel. 

iv. Degree four (Fully Autonomous): The ship's operating system autonomously makes 

decisions for the entire mission, without human supervision, and the vessel remains 

unmanned.  
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Furthermore, the MSC 2018 Regulatory Scoping Exercise for Maritime autonomous Surface Ship, 

distinguishes between technical autonomy and operational control. Technical autonomy, as 

defined by the MSC working group, refers to a closed concept that includes two states with a 

manned crew and two states without a crew onboard. Operational control provides flexibility and 

additional options for MASS execution. The technical autonomy and operational control levels are 

outlined as follows [2]: 

a. Technical Levels:   

• A0 (Manual): The ship's operations are entirely controlled manually by the crew. 

• A1 (Delegated): The operator requires permission from a qualified operator before 

executing functions, decisions, or actions, although the operator can abort the operation 

at any stage. 

• A2 (Supervised): The system makes decisions without the qualified operator's 

permission, but the operator can intervene and override the system at any time. 

• A3 (Autonomous): The system executes functions, decisions, and actions without 

requiring the qualified operator’s approval. The operator is only informed if the ship 

operates outside predefined parameters, at which point they can override the system if 

necessary. 

 

b. Operational Control: 

• B0: There are no qualified operators on the ship but there are qualified operations at 

the SCC (remote location). 

• B1:  Qualified operators manned the ship. 

According to the Norwegian Forum of Autonomous Ship (NFAS), the autonomous ships (AS) are 

classified based on the area of operation, mode of controls, and the levels of manning as illustrated 

in Figure 3 [7]. Furthermore, the combination of any technical autonomy and operational control 

levels offers both strengths and challenges. However, the integration of these two concepts is 

expected to result in improved economic benefits, particularly through enhanced safety and 

reliability. Therefore, the interaction between these levels is governed by existing international 

maritime regulations, including the Safety of Life at Sea (SOLAS) and the Standards of Training, 

Certification, and Watchkeeping for Seafarers (STCW). 
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Figure 3: Classification of MASS [14]. 

 

 

2.1.2 Benefits and Challenges of MASS in the Marine 

Sector 

The implementation of MASS offers significant potential to not only improve environmental 

conditions but also positively impact the social, economic, and political aspects of the maritime 

industry. Below are the advantages associated with the adoption of MASS [9]:  

a. Benefits for Stakeholders: The introduction of MASS would provide various benefits to 

key stakeholders in the maritime industry, including maritime administrations, industry 

players, research and development organizations, ship owners, classification societies, and 

insurance companies [2]. For instance, the incorporation of new technologies would 

enhance profitability within the marine industry. Additionally, as illustrated in Figure 4, 

ship owners would achieve reductions personnel and equipment costs. The research and 

development sector would see increased job opportunities due to the growing demand for 

cognitive advancements. Insurance companies would benefit from reduced risks and fewer 

incidents, leading to lower premiums and higher economic returns. Moreover, maritime 

administrations would find it easier to supervise and manage the various entities involved, 
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facilitating the transition to an “as low as reasonably practicable” (ALARP) approach to 

risk management [2]. 

 

Figure 4: Five group of entities involved in the life cycle of MASS: (a) present (b) expected [9]. 

 

b. Reduction of Human Error and Risk: Human error, which is a leading cause of accidents 

in conventional ships (CS), often arises from crew workload and fatigue. The integration 

of autonomy in the maritime industry would significantly reduce human error, lowering 

the costs associated with accidents and insurance premiums [6]. According to the 2017 

Global Claims Review report by Allianz Global Corporate & Specialty, between 75% and 

96% of maritime accidents are attributed to human error as shown in Figure 5 [12]. High-

profile examples, such as the Costa Concordia and MV Rena disasters, demonstrate the 

catastrophic consequences of human error. These types of collisions could be prevented on 

MASS, as their human-machine interfaces (HMIs) are integrated with the International 

Regulations for Preventing Collisions at Sea (COLREGs), enabling autonomous vessels to 

detect and avoid collisions without human intervention [2]. 
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Figure 5: Main causes of liability in the marine sector [13]. 

 

c. Cost reduction or Elimination: Operating an AS would be more cost-effective than a 

conventional ship. The reduction or elimination of crew members onboard would lead to 

lower salary and employee benefit costs. Additionally, operating costs would decrease due 

to reduced maintenance needs and more efficient operation [2], [6], [9]. For example, 

unmanned autonomous cargo vessels operating at 12 knots would consume 22% less fuel 

compared to conventional cargo vessels as shown in Figure 6 [13]. 

 

Figure 6: Rolls Royce internal study for 20, 000 dwt general cargo vessel for oil consumption [15]  
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d. Increased Ship Efficiency: The removal of crew accommodations, such as cabins and 

bridges, would optimize the design and structural integrity of the ship. This redesign would 

create additional space for cargo, making the loading process more efficient and enhancing 

overall vessel capacity [6]. 

e. Promotion of Greenhouse Gas Emission Reduction: Autonomous ships powered by 

fully electric or hybrid systems would reduce overall energy consumption. The elimination 

of onboard facilities such as galleys, heads, and messes would further reduce energy 

demand, resulting in up to a 60% reduction in greenhouse gas emissions [16], [17]. 

The implementation of MASS presents certain safety concerns, similar to the challenges faced by 

any emerging technology. These concerns could potentially lead to legal complications or 

accidents. Below are some of the disadvantages associated with MASS [9], [16], [18]: 

a. Underdeveloped Technology: As a relatively new innovation, AS technology is still 

evolving, with several uncertainties and aspects that have not yet been fully developed or 

reviewed by the IMO. 

b. Susceptibility to Cyber Attack: Fully autonomous vessels are connected through land and 

satellite networks, which exposes the ship’s control systems to potential cyberattacks, 

jeopardizing the security and integrity of the vessel. 

c. Job Losses: The transition from CS to AS could result in significant job displacement. 

This shift may impact individuals in the workforce, particularly those without higher 

education qualifications, both on board and at the shipyard. 

d. Limited Capability to Perform Diverse Transport Tasks: Concerns exist regarding the 

ability of AS to perform the range of tasks typically carried out by crew members during 

various stages of transportation. These tasks often require human intervention before and 

after loading and unloading goods or passengers, which may not be fully automated. 

Despite these challenges, the widespread implementation of MASS could offer numerous societal 

benefits, as there are several technological solutions available to convert conventional ships into 

autonomous ones or to design new autonomous vessels from the ground up. As a result, many 

shipping companies are embracing this innovation. For example, the Norwegian Shipowners’ 

Association and 50% of global shipping companies are expected to incorporate autonomous 

operations into their fleets by 2050 [14]. For example, Table 1 presents a snapshot of some of the 
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notable autonomous ships that have been tested or are currently in operation, developed by various 

sectors within the maritime industry. The findings from these sea trials are being incorporated into 

the company’s Advanced Autonomous Waterborne Applications (AAWA) research project for 

further study [19], [20]. 

Table 1: List of tested and operational autonomous ships. 

Vessel Name Type of Ship Powered by  Reference(s) 

MF Folgefonn Cargo Ferry Hybrid [21] 

Ferry Falco Car Ferry Hybrid [22] 

Suomenlinna II Ice-breaking Passenger 

Ferry 

Fully- electric [23] 

Zhi Fei Container Vessel Fully- electric [24] 

ReVolt Container Vessel Fully- electric [25] 

NTNU Autoferry Passenger Ferry Fully- electric [26], [27] 

Soleil High- Ro-Pax Ferry Fully electric [28], [29] 

Mayflower 400 Research vessel Hybrid [24] 

Yara Birkeland Cargo Ship Fully- electric [24], [30] 

ASKO Seadrones Cargo Vessel Fully- electric [31] 
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2.2 Literature Review 

The integration of advanced energy systems in autonomous surface vessels (ASVs) and unmanned 

surface vehicles (USVs) has been a focal point for improving endurance, power efficiency, and 

operational autonomy. Multiple studies have explored hybrid and renewable-based propulsion 

systems. Tu et al.[32] addressed the inherent limitations of lithium batteries for long-endurance 

missions by incorporating a proton exchange membrane fuel cell (PEMFC) system augmented 

with a supercapacitor on USV. This configuration substantially increased cruising range from 8 

km to 38 km and enhanced hydrogen utilization, suggesting a robust solution for prolonged 

deployments. Similarly, Renau et al. [33] investigated PEMFC-battery hybrid systems, comparing 

active and passive power plant configurations. The results show that the active configuration with 

DC-DC converters significantly enhances energy management, extending the USV's autonomy to 

over 12 hours in calm waters, while maintaining constant fuel cell power and improving overall 

performance. Complementarily, advanced energy management algorithms also played a pivotal 

role. Li et al. [34] implemented a rule-based fuzzy control and equivalent consumption 

minimization strategy (ECMS) on a hybrid power system of battery-capacitor-PEMFC for a 

traditional vessel within MATLAB/Simulink. The results show that, the EMCS with frequency 

decoupling effectively reduces hydrogen consumption, while stabilizing output power, and 

enhancing the system's robustness, economy, and endurance. Similarly,  Fu et al. [35] designed a 

hybrid electric USV powered by hydrogen, integrating a fuel cell and energy storage cell. The 

proposed power distribution algorithm, based on Pontriagin's minimum principle, effectively 

reduced fuel cell output fluctuations, enhancing fuel cell longevity and demonstrating the 

feasibility of a lightweight and high-endurance hybrid power system for small power USVs. 

Equally, Zaman et al. [36] developed a comprehensive EMS integrating photovoltaics (PV), 

PEMFC, battery, and hydro generators for an eco-robotic ASV via MATLAB/ Simulink. The 

system maintained zero-emission operation under extreme environmental conditions, while 

meeting vessel's power demands for sensors, navigation, control, and propulsion. 

Subsequently, research into vessel architecture, control systems, and mission capability continues 

to define the operational boundaries of ASVs. To illustrate, Rynne et al. [37] pioneered the design 

of a wind and solar powered autonomous surface vehicle (WASP-ASV), focusing on aerodynamic, 

hydrodynamic, and systems integration aspects. The results demonstrated that the rigid wing sail 
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outperforms conventional cloth sails, with the control approach allowing for efficient speed and 

heading control, while initial field trials confirm the accuracy of predicted performance and vessel 

behavior. Furthermore, Kristensen et al. [38] examined the research vessel (AutoNaut)—a PV-

battery powered and wave-propelled USV—highlighting the importance of assessing safety and 

security risks in green-powered autonomous systems. The findings emphasized that environmental 

factors and autonomous functionalities can impact mission performance; and the study provides 

insights for integrating alternative energy sources into MASS, with implications for risk 

management and operational safety. Similarly, Eide et al. [39] reported the successful deployment 

and testing of the fully electric autonomous urban passenger ferry (milliAmpere2), which 

demonstrated feasibility of using ASVs for passenger transport, while identifying key challenges 

related to human-autonomy interaction, fleet management, and integration with urban traffic. 

Likewise, Wolfe et al. [40] study addressed the challenge of real-time, extended-duration water 

quality monitoring using ASVs, specifically solar-battery powered ASVs like the SeaTrac SP-48, 

which serve as mobile monitoring stations. The results show that while the SP-48’s energy 

production and consumption were balanced over a 29-days mission, energy consumption slightly 

exceeded production due to varying solar energy availability, highlighting the need for effective 

energy budget management and optimization for future extended-duration missions. In another 

case, Riccobono et al. [41] proposed a multi-source hybrid energy system—combining PV 

modules, PEMFCs, and batteries for a research vessel (SWAMP Vehicle). The results demonstrated 

that the proposed energy system, validated by MATLAB/Simulink simulations, significantly 

improves SWAMP Vehicle endurance, doubling it to 12 hours on the most favorable day, while 

adhering to the SWAMP Vehicle 's weight, size, and payload constraints. Similarly, Zhang et al. 

[42] analyzed wind-assisted propulsion systems, employing wind sails and rotor sails on ASVs . 

The results show that an autonomous control strategy based on a nonlinear mathematical model 

and backstepping technique achieves a 13% energy optimization ratio in a rotor sail-assisted 

vessel, demonstrating significant potential for energy savings and lower emissions in real-world 

maritime operations. Equally, Chen et al. [43] introduced a distributed MPC algorithm for Eco- 

Vessel Train Formations (VTF) using diesel-electric hybrid propulsion in MATLAB environment. 

The results showed that the Eco-VTF algorithm leads to significantly lower fuel consumption 

compared to standard VTF control, particularly for vessels with higher engine power. Although 
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Eco-VTF results in longer travel times due to lower consensus speeds, and the reduction in fuel 

usage is substantial. 

Thereafter, addressing the environmental footprint of maritime operations is a central theme in 

autonomous vessel research. To exemplify, Makhsoos et al. [44] addressed the environmental 

challenges posed by fossil fuel reliance and explores the integration of solar power in the energy 

system of an unmanned surface vehicle (USV) designed for autonomous bathymetry tasks. The 

results showed that the proposed hybrid power system, with PV-battery, optimizes energy usage, 

enabling the USV to operate for up to 7 hours daily on cloudy days without charging, 

demonstrating the feasibility and efficiency of solar-powered autonomous marine vehicles. 

Additionally, Sornek et al. [45] explored similar research where a solar-powered ASV research 

boat used for water quality monitoring, highlighting the vehicle's capability to measure various 

water parameters. The results show that the vessel's optimized design, including a high-efficiency 

PV panel, significantly improves power generation, and simulations indicate that its operation can 

lead to substantial primary energy savings, with potential to replace existing water quality 

monitoring systems. Furthermore, in larger-scale applications, Ait Allal et al. [46] assessed 

autonomous container and cargo ships powered by liquefied natural gas (LNG) and fuel oil, in 

improving the sustainability of the maritime industry by reducing energy consumption and 

environmental pollution. The study affirmed that the elimination of crew and associated facilities 

on AS leads to significant energy savings, lower greenhouse gas emissions, and enhanced 

environmental protection, with case studies on container and general cargo ships demonstrating 

substantial fuel savings compared to conventional ships (CS). Similarly, Laryea and Schiffauerova 

[47] explored various alternative fuel options, including hydrogen and fully electric configurations, 

for fully autonomous  short-sea shipping vessels, focusing on energy efficiency and regulatory 

compliance. The results show that hydrogen and electric fuels offer zero emissions, while LNG 

provides the highest net present value (NPV) for autonomous vessels, demonstrating both 

economic and environmental advantages compared to traditional fuels like heavy fuel oil (HFO) 

and marine diesel oil (MDO). Also, the same authors [48] proposed an optimized HRES using 

solar panels, wind turbines, batteries, and diesel gensets for autonomous tugboats. Employing 

metaheuristic algorithms (Artificial Bee Colony Algorithm (ABC), Particle Swarm Optimization 

(PSO), Genetic Algorithm (GA)) and Hybrid Optimization of Multiple Energy Resources 

(HOMER) Pro, the study demonstrated that ABC outperformed others in minimizing costs and 
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emissions, reinforcing the model's robustness for marine applications under variable operating 

conditions. Lastly, in a broader framework, Dantas and Theotokatos [49] addressed the lack of 

decision-support systems for MASS. Through a case study using a short-sea cargo vessel operating 

in Norwegian waters, both retrofitting of existing vessels into Transition Autonomous Ship (TAS) 

and the design of Next Generation of Autonomous Ship (NGAS) were evaluated. The results 

suggested that TAS could reduce lifetime costs by 1–12% and CO₂ emissions by 4%, while NGAS 

can achieve additional reductions of 3 –4% in cost and 4 –7% in emissions. Furthermore, additional 

cost savings of 6 –7% could be realized by minimizing idle port time, made possible through 

reduced crew requirements. 

In brief, the reviewed literature underscores the growing capability and environmental potential of 

autonomous surface vessels in the marine engineering domain. Innovations in renewable energy 

integration, hybrid system optimization, and advanced control strategies not only enhance 

operational endurance but also significantly contribute to the decarbonization of the maritime 

sector. The convergence of system-level simulation, experimental validation, and control 

engineering lays a robust foundation for the deployment of next-generation autonomous vessels 

across a broad range of applications—from scientific surveying to commercial transport. 

Despite extensive studies on hybrid energy systems in microgrids and land-based applications, 

current literature lacks holistic, techno-economic, and operational frameworks specifically tailored 

for maritime applications—particularly for the integration of hybrid renewable energy systems 

(HRES) into conventional and fully autonomous ships. Existing models often neglect the 

spatiotemporal variability in shipboard power demands, constrained onboard space, dynamic sea-

state conditions, and real-time operational uncertainties. Furthermore, energy management 

strategies for autonomous ships frequently omit ship dynamics, emissions beyond CO₂ and NOₓ, 

and predictive control under uncertain environmental conditions. There is also a critical gap in 

comparative assessments of alternative marine fuels based on real operational profiles, emission 

dispersion, and environmental-economic trade-offs. Most notably, limited attention has been paid 

to developing predictive, multi-objective EMS frameworks capable of optimizing power flows 

under variable marine conditions while adhering to IMO regulations and addressing performance 

indicators such as fuel consumption, emission cost, mass emission rate (MER), and EEOI. This 
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calls for a new class of marine-specific energy systems modeling that integrates weather-

dependent RES performance, ship dynamics, regulatory constraints, and cost-environmental trade-

offs into a unified decision-support framework for autonomous and short-sea shipping vessels.  

In this dissertation, we seek to fill that gap by systematically addressing the techno-economic, 

environmental, and operational challenges associated with hybrid renewable energy systems and 

alternative fuels in autonomous and conventional maritime applications.  

To begin with, Chapter 3, we present a detailed techno-economic analysis of standalone hybrid 

renewable energy systems onboard both conventional and autonomous tugboats. The analysis 

applies advanced metaheuristic algorithms to determine optimal system configurations that 

minimize cost and environmental impact, thereby providing a baseline for comparative 

performance assessment. 

Subsequently, Chapter 4, we evaluate the environmental and cost implications of integrating 

marine alternative fuels into the propulsion systems of fully autonomous short-sea vessels. Using 

a bottom-up emissions framework and global warming potential (GWP) methodology, we quantify 

the trade-offs in fuel selection across various operational scenarios, with particular attention to 

emission factors, fuel pricing, and propulsion loads. 

Following this, Chapter 5, we develop and validate a predictive energy management model for 

autonomous vessels employing nonlinear model predictive control (NMPC) optimized via Grey 

Wolf Optimization (GWO). For the first time, we incorporate real-world environmental 

disturbances—including irregular wave impacts—into the propeller load torque model, and show 

that predictive-metaheuristic strategies can significantly reduce fuel consumption, emissions, and 

battery degradation while maintaining optimal energy dispatch. 

Finally, Chapter 6 synthesizes the findings and outlines future research directions, particularly the 

development of onboard real-time adaptive control frameworks and further investigation into 

maritime regulatory compliance under autonomous operational conditions. 
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CHAPTER 3. A NOVEL STANDALONE 

HYBRID RENEWABLE ENERGY SYSTEMS 

ONBOARD COVENTIONAL AND 

AUTONOMOUS TUGBOATS 
 

In this chapter, we focus on the computation, simulation, and optimization of a hybrid renewable 

energy system (HRES) to ensure continuous power supply for auxiliary loads and critical systems 

on both conventional and fully autonomous tugboats. The primary aim is to design an optimal 

HRES with minimal annualized cost of system (ACS) and a higher proportion of renewable energy 

while using an artificial bee colony (ABC) algorithm. Validation of optimization outcomes is 

conducted using particle swarm optimization (PSO), genetic algorithm (GA), and Hybrid 

Optimization of Multiple Energy Resources (HOMER) Pro. The HRES incorporates diesel 

generators (Gensets), photovoltaic (PV) arrays, vertical axis wind turbines (VAWT), and battery 

banks. The optimal HRES configuration for both conventional and fully autonomous tugboats is 

found to be Genset/PV/VAWT/Battery. We observe that the ABC algorithm exhibits superior 

convergence, reliability, cost-effectiveness, renewable energy fraction, and reduced carbon 

emissions compared to alternative algorithms. Results of robustness tests suggest that the shipload 

variation, fuel prices, temperature fluctuations, wind speed and solar irradiance along the 

navigation route have significant impact on the optimal HRES configuration. Ultimately, we 

conclude that the fully autonomous tugboat demonstrates superior performance in terms of costs, 

carbon dioxide emissions, and renewable energy fraction compared to its conventional counterpart. 

This chapter is based on the following publication: H. Laryea and A. Schiffauerova, “A novel 

standalone hybrid renewable energy systems onboard conventional and autonomous tugboats,” 

Energy, vol. 303, p. 131948, 2024. [Online]. Available 

:https://doi.org/10.1016/j.energy.2024.131948 
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3.1 Introduction 

Maritime transport is considered pivotal in global trade, with nearly 80% of global commerce 

conducted through seaborne trade [50]. It relies heavily on conventional ships and ports 

worldwide,  with over 50,000 conventional ships (CS) [51], and more than 835 active seaports and 

inland ports in the world [52]. The generation of power on ships plays a crucial role in the maritime 

industry, as it provides the necessary electrical energy for propelling vessels between ports. Over 

time, marine engines have transitioned from using coal to utilizing marine diesel oil (MDO) and 

heavy fuel oil (HFO). According to the International Maritime Organization (IMO), global fuel 

consumption in the maritime sector ranges from 250 to 350 million tons annually, contributing to 

approximately 2.8% of global greenhouse gas (GHG) emissions and resulting in a yearly carbon 

dioxide (CO2) emission rate of 3.1%. It has been suggested [53], [54] that the emissions rate could 

triple by 2050 if left unchecked. As a result, the International Convention for the Prevention of 

Pollution from Ships (MARPOL) has established four mandatory requirements for both new and 

existing vessels to mitigate air pollution. These requirements include the utilization of cleaner fuel 

with reduced carbon content, adoption of renewable energies, implementation of emission 

reduction technologies, and enhancement of energy efficiency [54], [55].  Utilizing an emerging 

type of vessel known as maritime autonomous surface ships (MASS) offers a means to mitigate 

environmental impact. MASS operates autonomously, employing artificial intelligence (AI) for 

steering and decision-making without intervention from seafarers. In fully autonomous fleets, the 

absence of onboard ship crews contributes to energy conservation and pollution reduction [56], 

[57]. For instance, a fully autonomous container vessel achieves a 74.5% reduction in energy 

consumption compared to a conventional counterpart, primarily due to the elimination of crew 

facilities and equipment [46]. Thus, integrating autonomous MASS with renewable energy sources 

presents an effective strategy for reducing greenhouse gas (GHG) emissions within the maritime 

sector. 

The primary challenges associated with integrating renewable resources into power systems 

include their initially high costs and the variability of wind and solar energy generation. 

Nevertheless, there has been a decrease in the cost of renewable energy sources [58], and numerous 

studies have investigated the integration of renewable energy systems into existing energy 

infrastructures. For example, Ma et al. [59] employed a commercially available microgrid 
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software, Hybrid Optimization of Multiple Energy Resources (HOMER Pro), to identify an 

optimal PV/Wind/Battery hybrid system to replace the existing diesel generator on a remote island 

while minimizing costs. They conducted sensitivity analyses to assess the impact of various inputs 

on their proposed models. Additionally, several researchers utilized a genetic algorithm (GA) to 

construct models integrating wind turbines and photovoltaic (PV) systems with Genset/battery 

configurations for stand-alone HRES in remote communities. For example, Ogunjuyigbe et al. 

[60] devised a model replacing a large Genset with a smaller split Genset in HRES, capable of 

adapting to varying inputs with low emissions, dump energy, and lifecycle costs. In another study, 

Farahmand et al. [61] examined the optimal configuration of an HRES aiming for minimal 

electricity expenses for consumers, considering PV efficiency and the quantity of PV modules. 

Similarly, in order to reduce both lifecycle costs and greenhouse gas emissions in an island 

microgrid, Zhao et al. [62] investigated a novel operational approach and sizing strategy. 

The existing literature primarily focuses on optimizing the distribution of electrical power from 

hybrid generation systems aboard ships, particularly emphasizing capacity optimization for small 

systems, predominantly involving photovoltaic power production systems and energy storage 

systems. While some studies have delved into transient assessments of power systems [63], [64], 

multi-energy integration for energy management [65]-[67], and hybrid energy storage solutions 

[68], [69] in conjunction with actual ship navigation, research on the utilization of renewable 

energy sources on ships remains scarce compared to land-based microgrid systems [70], [71]. 

Some of these discoveries from land-based HRES contribute to advancing research in the maritime 

industry [72]. There is limited literature on the integration of PV and wind turbines for shipboard 

power systems [73]-[76]. For example, Wen et al. [73] assessed an optimal energy storage system 

for PV/Genset on an oil tanker ship. To minimize the net present cost of the power system and 

greenhouse gas (GHG) emissions, the authors utilized discrete Fourier transform (DFT) along with 

the particle swarm optimization (PSO) algorithm, while considering the sea states and rolling 

effect of the vessel.  Similarly, Yang et al. [74] employed the PSO algorithm in a similar model, 

albeit aboard a RoRo ship, demonstrating an improvement in the ship's energy management 

strategy under varying electrical loads. Additionally, several researchers have explored the 

implementation of PV/Genset/Wind/Battery hybrid power systems on ships. For instance, 

Bouhouta et al. [75] utilized HOMER Pro to optimize PV and wind turbine integration with the 

harbor tugboat's emergency power system, aiming to minimize its annualized cost of system and 
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CO2 emissions particularly during blackout. Also, Wen et al. [76] employed a multi-objective PSO 

(MOPSO) algorithm to conduct techno-economic analysis for a large oil tanker. The results of the 

simulations indicate that the optimized hybrid system effectively reduces CO2 emissions and the 

system cost of HRES, considering both vessel speed and course as inputs. 

However, while the existing literature makes valuable contributions to the optimization of HRES, 

there are several areas that require further enhancement. For instance, there has been no 

comprehensive study comparing optimization methodologies for both conventional and 

autonomous ships. For example, Bouhouta et al. [75] conducted an optimization methodology on 

HRES during standby, focusing solely on nighttime operations rather than encompassing the entire 

day. Additionally, sensitivity analysis was not conducted on the proposed model, potentially 

limiting its robustness and practical applicability. Furthermore, while several authors [73], [77] 

utilized multiple algorithms to optimize HRES for shipboard power systems, neither robustness 

tests on the optimal HRES concerning variable inputs nor post-hoc tests on the metaheuristic 

algorithms were performed [73], [74], [76]. Table 2 offers a comparison among various studies 

implementing HRES. 

Even though existing literatures offer optimal configurations for integrating renewable energy 

sources (RES) and battery energy storage (BES) in microgrid systems, there are numerous 

opportunities for improvements and further research. For example, techno-economic evaluation of 

incorporating hybrid renewable energy systems (HRES) into the power systems of both 

conventional and autonomous ships is missing in the literature. Furthermore, a comprehensive 

decision-making model for energy management strategy integrated into HRES for both existing 

conventional ships and fully autonomous ships has also not been much explored, especially in 

recent literature, to the best of the authors' knowledge. Additionally, unlike land-based HRES for 

buildings, ships' HRES are standalone and mobile, thus weather profiles are influenced by both 

environmental conditions and ship dynamics. As a result, power generation from RES is sporadic, 

necessitating rapid and continuous decision-making by the energy management system. Moreover, 

the quantity of PV modules, wind turbines, and batteries to be installed onboard is constrained by 

space availability (on the weather deck, pilotage area, and in battery compartments), weight limits, 

and the structural integrity of the ship. This underscores the necessity for further research in order 

to develop appropriate models facilitating the integration of HRES into the power systems of both 
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autonomous and existing ships. This study introduces a novel integrated multi-energy supply 

system designed for ships, incorporating PV, wind, battery, and genset technologies, with a 

specific focus on providing uninterrupted clean electrical power. The uniqueness of this approach 

lies in its adaptation from land to both conventional and fully autonomous ships, while 

simultaneously addressing to the distinct requirements of energy management systems onboard 

ships. 
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Table 2 : A tabulated comparison of HRES implementation in both building and transportation sectors. 

Ref Objective Country Application Algorithm Remarks 

[59] Design, optimize hybrid system, to replace 

current diesel. 

China Remote 

 Island 

HOMER Pro Sensitivity analysis is done base on variation of load 

demand and rated power of components. 

[60] Minimize life cycle costs, reduce pollutants, and 

minimize dump energy. 

Nigeria Remote 

Building 

GA The reliability of the system is not considered. 

[61] Optimize HRES for building to minimize the 

overall system cost. 

Iran Urban 

Building 

GA Emission analysis, system reliability, and sensitivity 

analysis not considered. 

[62] Optimize HRES for remote microgrids. China Remote  

Island 

GA The reliability of the system is not considered. 

[65] minimize economic costs while considering 

energy balance and constraints 

China Cruise 

Ship* 

Unspecified The variability of energy storage based on specific 

load profile is not considered. 

[67] Emission reduction and ensuring continuous, 

reliable power for ships 

Unspecified Ships* MPC, GA, 

MOPSO 

Comprehensive review on configuration and 

characteristics of HRES for ships. 

[68] Examine hybrid energy storage system (HESS) 

to improve shipboard power systems 

Unspecified Ships* Unspecified Examine multiple energy storage integration on 

ships. 

[69] Reduce ship hybrid power plant fuel 

consumption, considering battery constraints. 

Unspecified Naval 

 Vessel* 

MPC Study lacks ship particulars, emission and sensitivity 

analyses. 

[72] Enhancing shipboard microgrid efficiency, 

reliability, and cost-effectiveness for safe 

operation. 

Unspecified Ships* PSO, GA Metaheuristic algorithms 

are effective for multi-objective optimization. 

[73] Utilize diverse HESS to stabilize solar energy 

fluctuations. 

China - 

Yemen 

Oil Tanker 

 Ship* 

PSO, DFT Battery degradation and energy management strategy 

overlooked. 

[74] Create multi-objective model for ship fuel 

consumption and Genset efficiency. 

Unspecified RoRo Ship* PSO Irradiance variability not addressed 

[75] Utilize renewables for tug safety during 

blackout. 

Algeria Tugboat* HOMER Pro Optimized HRES for short-term emergency use lacks 

sensitivity analysis. 

[76] Optimize HRES to minimize cost and emissions. From China 

to Yemen 

Oil Tanker 

 Ship* 

MOPSO Sole reliance on load variation sensitivity; no system 

reliability consideration. 

[77] Optimize clean energy for load, while 

minimizing costs. 

From China 

to Yemen 

Bulk Carrier 

Ship* 

ABC, QABC, 

PSO, QPSO, 

SQP 

Sensitivity analysis and post hoc tests omitted. 

MPC: Model predictive control, SQP: Sequential Quadratic Programming, QABC: Quantum Artificial bee colony, QPSO: Quantum Particle Swarm Optimization.                                                                                                    

* The marine vessels utilized by the authors are conventional ships.
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To address these challenges emphasis is placed on prioritizing a standalone HRES system, while 

employing objective function alongside three metaheuristic algorithms to size and optimize 

multiple HRES configurations. These configurations encompass economic analysis, carbon 

emissions, loss of power supply probability, energy management strategy, and weather data along 

navigation routes. The goal is to identify the optimal HRES that enhances energy efficiency while 

simultaneously minimizing ACS and carbon emissions, all within the confines of predefined 

constraints. 

This research brings notable contributions to the existing literature. Firstly, To the best of our 

knowledge, this study marks the inaugural exploration of HRES optimization tailored specifically 

for autonomous ships. Moreover, the method outlined in this study simultaneously explores and 

compares diverse HRES configurations for both conventional and fully autonomous ships, 

enabling a comprehensive assessment. Secondly, in our HRES optimization, we employ a 

predetermined set of scenarios, each characterized by its specific level of uncertainty. This 

approach enables us to account for fluctuations in ship loads and other input parameters, including 

temperature and wind speed variations, while also depicting scenarios incorporating VAWT and 

PV systems along the navigation route. Notably, prior literature lacks consideration of scenario 

analysis for the variability of input factors. Thirdly, in our pursuit of optimal HRES configurations, 

we utilize and compare three algorithms—PSO, ABC, and GA. Additionally, we introduce 

integrated energy management strategies that encompass economic and renewable considerations. 

While prior studies have typically employed one or two of these algorithms for ship optimization, 

our simultaneous application and comparative analysis of all three algorithms represent a novel 

approach. Lastly, this study underscores the advancement of two optimization strategies—design 

and energy management—while proposing multi-objective algorithms that factor in component 

costs, project duration, lifespan, weather conditions, and power system reliability. This 

comprehensive framework represents a unique contribution to the field. 

The remaining sections of the paper are structured as follows: Section 3.2 details the modeling and 

simulation process of a standalone hybrid renewable energy system onboard a tugboat. Section 3.3 

provides an analysis of the results and discussions, and Section 3.4 offers concluding remarks 

along with insights into potential future research directions.  
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3.2 Modeling of Hybrid Renewable Energy 

Models Onboard Tugboat  

This section outlines the modeling of components within the HRES installed on both existing 

conventional and proposed fully autonomous tugboats. The schematic representation of the 

proposed hybrid model is depicted in Figure 7. The marine HRES operates by harnessing power 

generated from PV panels, vertical axis wind turbines (VAWT), and a diesel generators (Genset). 

Excess energy is stored in a battery bank, and the generated power is managed through 

bidirectional converters to transfer power to and from the buses. Subsection 3.2.6 provides a 

detailed description of the HRES models, including the number of components, cost metrics, loss 

of power supply probability (LPSP), and renewable fraction, all of which are utilized to define the 

objective function for determining an optimal HRES configuration for each ship type. 

Additionally, discussions on ship particulars, weather data, and simulation analysis are included. 

 

Figure 7: Proposed standalone hybrid renewable energy system (HRES) configuration onboard 

conventional and autonomous tugboat 
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3.2.1. Modelling of Marine Diesel Generator (Genset) 

The marine diesel generator commonly serves as a backup power source on ships, supplying 

electrical power for the ship's propulsion and other electrical systems onboard. However, in this 

study, Gensets serve as the primary energy sources in the HRES to meet the ship's load 

requirements for both conventional and fully autonomous tugboats. The Genset operates by 

converting the chemical energy in diesel fuel into mechanical energy through the combustion 

process, which drives the rotating shaft. This mechanical energy is subsequently converted into 

electrical energy by the rotation of the alternator's main rotor. Thus, the generation of electrical 

energy by the diesel generator is described as follows [78]: 

𝑃𝑔𝑒𝑛𝑠𝑒𝑡,𝑡𝑜𝑡𝑎𝑙(𝑡) =  𝑃𝑔𝑒𝑛𝑠𝑒𝑡,𝑛𝑜𝑚 ∗ 𝜂𝑏𝑡,𝑒𝑓𝑓 ∗ 𝜂𝑔𝑒𝑛𝑠𝑒𝑡,𝑒𝑓𝑓 ∗ 𝑁𝑔𝑒𝑛𝑠𝑒𝑡  (1) 

 

where PGenset,total(t) is the total output power by Genset at time t (kWh), PGenset,nom is the nominal 

power for the diesel generator (kW), ηbt,eff denotes the brake thermal efficiency which is in the 

range of 35% - 40% [79], ηGenset,eff  is the diesel Genset efficiency (%) and NGenset is the number 

of diesel generators fitted on the tugboat (unitless). In this paper, the rated power of the genset 

aboard the traditional tugboat is 125 kW. The amount of fuel consumed by the Genset depends on 

its overall output power, which is expressed as [80], [81]:  

𝐹𝑐𝑜𝑛𝑠𝑢𝑚,𝑡𝑜𝑡𝑎𝑙(𝑡) = 𝑎𝐺𝑒𝑛𝑠𝑒𝑡 ∗ 𝑃𝐺𝑒𝑛𝑠𝑒𝑡,𝑡𝑜𝑡𝑎𝑙(𝑡) + 𝑏𝐺𝑒𝑛𝑠𝑒𝑡 ∗ 𝑃𝐺𝑒𝑛𝑠𝑒𝑡,𝑛𝑜𝑚  (2) 

 

where 𝐹𝑐𝑜𝑛𝑠𝑢𝑚,𝑡𝑜𝑡𝑎𝑙(𝑡)  is total amount of diesel fuel consumption at time t (L/h), 𝑎𝐺𝑒𝑛𝑠𝑒𝑡 is the 

coefficient of the consumption curve (0.0845 L/kWh) and b𝐺𝑒𝑛𝑠𝑒𝑡 denotes the coefficient of the 

consumption curve (0.246 L/kWh). Lastly, the tonnage of CO2 emitted by the diesel generator 

during the ship’s operation is estimated as [82] :  

𝐶𝑂2,𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛(𝑡) =  
𝐹𝑐𝑜𝑛𝑠𝑢𝑚,𝑡𝑜𝑡𝑎𝑙(𝑡)∗ 𝐸𝑓𝑎𝑐𝑡𝑜𝑟∗ 𝐸𝐶𝑓𝑎𝑐𝑡𝑜𝑟 

1000
  (3) 

 

where 𝐶𝑂2,𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛(𝑡) is the amount of CO2 emission by the diesel Genset at time t (tons), 𝐸𝑓𝑎𝑐𝑡𝑜𝑟  

is the emission factor for the diesel fuel (69.5 kg /GJ), ECfactor denotes the energy content factor 
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of the diesel fuel (38.6 GJ/kL), and  𝐹𝑐𝑜𝑛𝑠𝑢𝑚,𝑡𝑜𝑡𝑎𝑙(𝑡)  is the total amount of diesel fuel consumption 

at time t (kL/h). 

 

 

3.2.2. Modelling of Photovoltaic (PV) Panel 

The daily solar energy generated by the absorption of solar radiation through PV cells within the 

PV panel under standard testing conditions (STC) is articulated as follows [83]-[86]: 

𝑃𝑃𝑉,𝑡𝑜𝑡𝑎𝑙(𝑡) = 𝑃𝑃𝑉,𝑛𝑜𝑚 ∗ 𝑁𝑃𝑉,𝑚𝑜𝑑𝑢𝑙𝑒𝑠 ∗ 𝜂𝑤𝑖𝑟𝑒,𝑒𝑓𝑓 ∗ 𝜂𝑃𝑉−𝑐𝑒𝑙𝑙,𝑒𝑓𝑓 ∗
𝐼𝑎𝑚𝑏(𝑡)

𝐼𝑆𝑇𝐶
 

∗ [1 − 𝜆𝑃𝑉,𝑡𝑒𝑚𝑝

∗ {𝑇𝑎𝑚𝑏(𝑡) + 𝐼𝑎𝑚𝑏(𝑡) ∗ (
𝑁𝑂𝐶𝑇 − 20

𝐼𝑃𝑉,𝑐𝑒𝑙𝑙
) − 𝑇𝑃𝑉,𝑆𝑇𝐶  }]  

 

 

(4) 

where 𝑃𝑃𝑉,𝑡𝑜𝑡𝑎𝑙(𝑡) is the total  power generated by the PV panels at time t [kWh], PPV,nom  is the 

nominal or rating power of the PV cells (kW), 𝑁𝑃𝑉,𝑚𝑜𝑑𝑢𝑙𝑒𝑠 is the number of PV panels, ηPV−cell,eff 

is the efficiency of the PV panel (%), ηwire,eff  denotes the efficiency of the wire (%), Iamb(t) is 

the ambient radiation intensity at time t (kW/m2), ISTC is the radiation intensity at the standard test 

conditions (1 kW/m2), 𝜆𝑃𝑉,𝑡𝑒𝑚𝑝  is the temperature coefficient of the PV modules and it falls in the 

range of (% / °C), 𝑇𝑎𝑚𝑏 is the ambient temperature at the study area (°C), 𝑁𝑂𝐶𝑇 is the nominal 

operating cell temperature (°C), 𝐼𝑃𝑉,𝑐𝑒𝑙𝑙 is the radiation intensity on cell surface (0.8 kW/m2), and 

𝑇𝑃𝑉,𝑆𝑇𝐶  is the PV cell nominal temperature at the standard test conditions (25°C). The technical 

specifications for the selected PV panels used in this research are shown in Table 3. Similarly as 

in the study of Bouhouta et al. [75], the PV modules are to be mounted on the starboard and port 

side of the vessel. 
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Table 3: Technical specifications for the PV modules. 

Component 

Nominal 

Power (kW) 

Temp 

Coefficient 

(% / °C) 

Efficiency 

(%) 

NOCT 

(°C) 

PV Module 0.370   −0.29 22.7 41.5 

 

3.2.3. Modelling of Vertical Axis Wind Turbines (VAWT)  

The vertical axis wind turbines (VAWT) are proposed for this research due to their quieter 

operation, simpler maintenance [87], ability to generate wind energy at low cut-in speed, and  the 

potential for clustering turbines closely together [88]. In addition, the energy generation is 

primarily affected by the hub height of the VAWT and the wind speed in the study region. Thus, 

in using the wind profile power law, the speed of the VAWT at the turbine height can be expressed 

as [86]:  

𝑉𝑉𝐴𝑊𝑇,ℎ𝑢𝑏 = 𝑉𝑎𝑛𝑒𝑚𝑜 ∗  [
𝐻𝑉𝐴𝑊𝑇,ℎ𝑢𝑏

𝐻𝑉𝐴𝑊𝑇,𝑎𝑛𝑒𝑚𝑜
]
𝛼

  
(5) 

where 𝑉𝑉𝐴𝑊𝑇,ℎ𝑢𝑏 is the wind speed at the hub height 𝐻𝑉𝐴𝑊𝑇,ℎ𝑢𝑏 [m/s], 𝑉𝑎𝑛𝑒𝑚𝑜  is the  known wind 

speed (or anemometer speed) at a reference height 𝐻𝑉𝐴𝑊𝑇,𝑎𝑛𝑒𝑚𝑜 (m/s) , 𝐻𝑉𝐴𝑊𝑇,ℎ𝑢𝑏  is the hub 

height of the VAWT (m), 𝐻𝑉𝐴𝑊𝑇,𝑎𝑛𝑒𝑚𝑜 is the height of the anemometer or reference height (m), 

and α is the friction coefficient for the wind turbine which equals 0.143. 

As stated above, the output power of the VAWT is related to the wind speed and this can be 

expressed as [86]: 

𝑃𝑉𝐴𝑊𝑇(𝑡) =

 {

𝑛𝑉𝐴𝑊𝑇 ∗ 𝜂𝑉𝐴𝑊𝑇 ∗ 𝑃𝑉𝐴𝑊𝑇,𝑛𝑜𝑚 ∗
𝑉2(𝑡)−𝑉𝑐𝑖

2

𝑉𝑟
2−𝑉𝑐𝑖

2           𝑉𝑐𝑖 < 𝑉(𝑡) < 𝑉𝑟

   𝑛𝑉𝐴𝑊𝑇 ∗ 𝜂𝑉𝐴𝑊𝑇 ∗ 𝑃𝑉𝐴𝑊𝑇,𝑛𝑜𝑚                            𝑉𝑟 < 𝑉(𝑡) < 𝑉𝑐𝑜
                              0                                𝑉(𝑡) < 𝑉𝑐𝑖  𝑜𝑟 𝑉(𝑡) < 𝑉𝑐𝑜

}  

 

(6) 

where 𝑃𝑉𝐴𝑊𝑇(𝑡) is the power generated by the fitted VAWT onboard ship (kW), 𝑛𝑉𝐴𝑊𝑇 is the 

number of VAWTs [unitless], 𝜂𝑉𝐴𝑊𝑇 denotes the efficiency of the VAWT [%], 𝑃𝑉𝐴𝑊𝑇,𝑛𝑜𝑚 is the 

nominal power of the VAWT [kW], 𝑉(𝑡) is the wind speed at time t (m/s), 𝑉𝑐𝑖 is the VAWT cut-

in  wind speed (m/s), 𝑉𝑐𝑜 is the VAWT cut-off speed (m/s), and Vr is the rated wind speed for 
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VAWT (m/s). Table 4 shows the technical specifications for the proposed VAWT. For this 

research, the use of two VAWT is proposed, thus one turbine mounted on starboard mast and the 

other on the port mast. Furthermore, each VAWT is equipped with a permanent magnet 

synchronous generator tasked with converting the mechanical energy generated by the rotating 

blades into electrical energy. 

Table 4: Technical specifications for the vertical axis wind turbine (VAWT)  

Nominal Power 

(kW) 

Hub Height 

(m) 

Efficiency 

(%) 

Rate Wind 

Speed (m/s) 

Survival 

Wind 

Speed 

(m/s) 

Cut-in 

Wind 

Speed 

(m/s) 

Cut-out 

Wind 

Speed 

(m/s) 

5 4.8  29.8 11 52.2 1.5 15  

 

3.2.4. Modelling of Battery Energy Storage System 

(BESS)  

The battery bank serves to store surplus energy produced by the diesel generator and/or renewable 

sources during periods of low demand. Consequently, when the demand for power is lower than 

the combined output from the Genset, PV, and VAWT, the excess energy is used to charge the 

battery bank. The capacity of the battery bank during charging is determined by [78], [81]: 

𝐸𝑏𝑎𝑡𝑡(𝑡) = 𝐸𝑏𝑎𝑡𝑡(𝑡 − 1) ∗ (1 − 𝜎) + [ ∑𝐸𝑖(𝑡) − (
𝐸𝐴𝐶,𝑙𝑜𝑎𝑑 (𝑡)

𝜂 𝑖𝑛𝑣𝑒𝑡𝑒𝑟
)] ∗ 𝜂 𝑏𝑎𝑡𝑡,𝑐ℎ  (7) 

During the high peak demand, the total generated power from PV and/or VAWT is insufficient to 

meet the ship’s load requirement. Therefore, power from the battery bank is discharged to fulfill 

the load demand. The  available capacity of the battery bank during discharge is determined as 

follows [78], [81]:  

𝐸𝑏𝑎𝑡𝑡(𝑡) = 𝐸𝑏𝑎𝑡𝑡(𝑡 − 1) ∗ (1 − 𝜎) − [ −∑𝐸𝑖(𝑡) + (
𝐸𝐴𝐶,𝑙𝑜𝑎𝑑 (𝑡)

𝜂 𝑖𝑛𝑣𝑒𝑡𝑒𝑟
)] ∗  𝜂 𝑏𝑎𝑡𝑡,𝑑𝑖𝑠𝑐ℎ 

(8) 

where Ebatt(t) is the available battery bank capacity during charging  and discharging at time t 

(kWh), Ebatt(t − 1) is the available battery bank capacity at time (t-1) (kWh), σ is the self-

discharge rate of the  battery bank, E𝑖(𝑡) is total energy generated by the PV and VAWT (kWh), 

E𝐴𝐶,𝑙𝑜𝑎𝑑 (𝑡)  denotes the AC load demand at time t (kWh), 𝜂 𝑖𝑛𝑣𝑒𝑡𝑒𝑟 is AC-DC inverter efficiency 



32 | P a g e  

 

(90%), 𝜂 𝑏𝑎𝑡𝑡,𝑐ℎ is battery efficiency during charging process, and 𝜂 𝑏𝑎𝑡𝑡,𝑑𝑖𝑠𝑐ℎ is battery efficiency 

during discharging process. Consequently, the minimum energy of the charged battery bank at 

time t is estimated as follows [80], [89], [90]: 

𝐸𝑏𝑎𝑡𝑡,𝑚𝑖𝑛(𝑡) = 𝐸𝑏𝑎𝑡𝑡,𝑚𝑎𝑥(𝑡) ∗ (1 − 𝐷𝑂𝐷) (9) 

where 𝐸𝑏𝑎𝑡𝑡,𝑚𝑎𝑥(𝑡) is the maximum energy of the charged battery bank (kWh), and DOD is the 

battery depth of discharge which is equal to 0.80. 

In addition, lithium-ion (Li-ion) battery is considered for this research over the lead acid battery 

[91],  nickel metal hybrid battery [92],  silver–zinc battery, and open water-powered battery [93], 

due to its optimal chemical composition or battery chemistry [93]-[95]. Table 5 shows the technical 

specifications of the Li-ion battery used in this study.   

Table 5: Technical specifications for the Lithium-ion battery 

Nominal 

Voltage (V) 

Maximum 

Charging 

Current (A) 

Maximum 

State of charge 

(%) 

Minimum 

State of 

Charge (%) 

 

Charging 

Efficiency 

(%) 

Discharge 

Efficiency (%) 

12 100  100 20 80 100 

 

3.2.5. Modelling of the Bidirectional Converter 

The DC power generated by the VAWT and PV modules, along with the stored power from the 

battery bank, is converted into AC energy by the DC/AC inverter to meet the AC load demand. 

Hence, the expression for the output power from the inverter is as follows [86]: 

𝑃𝐷𝐶−𝐴𝐶,𝑐𝑜𝑛𝑣𝑒𝑟𝑡 = 𝜂𝐷𝐶−𝐴𝐶,𝑒𝑓𝑓 ∗ (𝑃𝑏𝑎𝑡𝑡,𝑡𝑜𝑡𝑎𝑙 ∗ 𝑃𝑉𝐴𝑊𝑇,𝑡𝑜𝑡𝑎𝑙 ∗ 𝑃𝑃𝑉,𝑡𝑜𝑡𝑎𝑙) (10) 

where PDC−AC,convert is the generated power for the DC-AC converter (kW), ηDC−AC,eff is the DC-

AC converter which is equal to 90%, Pbatt,total is the total power from the battery bank (kW), and 

PPV,total is the total power from the PV modules (kW).  
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3.2.6. Proposed HRES Model and Energy Management 

Strategy (EMS) 

The proposed HRES for this research consists of Genset(s), batteries, PV, and VAWTs. In order 

to meet the objectives of the onboard power system, the following HRES models are proposed: 

• Case 1 (Genset/PV/VAWT/Battery): This configuration utilizes Gensets, PV panels, and 

VAWTs as primary power sources, with excess energy stored in the battery bank. 

• Case 2 (Genset/PV/Battery): This setup relies on Gensets and PV panels for power 

generation, with surplus energy stored in batteries. 

• Case 3 (Genset/VAWT/Battery): This configuration utilizes Gensets and VAWTs as main 

power sources, with excess power stored in the battery bank. 

• Case 4 (Genset/Battery): This basic setup comprises Gensets and a battery bank for storing 

extra power. 

• Case 5 (Genset): This case represents the fundamental model with Gensets as the sole 

power source. 

In addition, the power balance (Pbalance) for the proposed HRES setup on both conventional and 

fully autonomous tugboat is the difference between the power generated by the renewable energy 

sources (PV and VAWT) and the required ship power, Pload,ship [kW]. This is expressed as 

follows: 

𝑃𝑃𝑉(𝑡) + 𝑃𝑉𝐴𝑊𝑇(𝑡) − 𝑃𝑙𝑜𝑎𝑑,𝑠ℎ𝑖𝑝(𝑡) =  {

𝑃𝑏𝑎𝑙𝑎𝑛𝑐𝑒 < 0 ∶ 𝑈𝑛𝑚𝑒𝑡
𝑃𝑏𝑎𝑙𝑎𝑛𝑐𝑒 = 0 ∶ 𝐵𝑎𝑙𝑎𝑛𝑐𝑒
𝑃𝑏𝑎𝑙𝑎𝑛𝑐𝑒 > 0 ∶ 𝐸𝑥𝑐𝑒𝑠𝑠

 

(11) 

Moreover, the energy management strategy entails a controlled and systematic monitoring 

procedure employed to guarantee the economic feasibility and reliability of the proposed HRES in 

meeting the shipload. The research employs three operational scenarios for the energy 

management strategy, as illustrated in Figure 8, with detailed descriptions provided below: 

• 𝑷𝒃𝒂𝒍𝒂𝒏𝒄𝒆 =  𝟎  (𝑴𝒆𝒆𝒕): This indicates that the power generated by the onboard energy 

components matches the shipload precisely. Consequently, neither the batteries nor the 

Gensets are utilized by the power system. 
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•  𝑷𝒃𝒂𝒍𝒂𝒏𝒄𝒆 >  𝟎  (𝑬𝒙𝒄𝒆𝒔𝒔 ): During periods of low ship demand or favorable weather 

conditions, the total power generated by renewable energy exceeds the shipload and battery 

requirements. In such cases, the surplus power is either diverted to deferred loads or 

dumped. 

• 𝑷𝒃𝒂𝒍𝒂𝒏𝒄𝒆 < 𝟎    (𝑼𝒏𝒎𝒆𝒕 ): This occurs during peak loading times or high seasons when 

the power generated by renewable energy is insufficient to meet the shipload. In such 

scenarios, one of the following strategies is implemented: 

𝒂. Battery bank at maximum utilization: In this scenario, energy stored in the 

battery bank is combined with renewable energy to meet the shipload. 

b. Battery bank at minimum utilization:  Here, the Gensets are activated alongside 

renewable energy to fulfill the shipload demand and recharge the battery bank. 

 

3.2.7. Loss of Power Supply Probability (LPSP) 

The loss of power supply probability (LPSP) is a statistical metric indicating the likelihood of the 

generated power from the onboard HRES to meet the ship's load. The LPSP for the hybrid power 

system is calculated as follows [90], [96], [97]: 

 

 

where 𝑃𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛(𝑡) is the total power generated by the components in the hybrid power (kW) at 

time t. The LPSP ranges from 0 to 1, where a value of 1 designates unmet load demand, and 0 

signifies fulfilled load demand [90]. Thus, the reliability of the HRES is determined as 1 -

 𝐿𝑃𝑆𝑃(𝑡). 

  

𝐿𝑃𝑆𝑃(𝑡)  =
∑ 𝑃𝑙𝑜𝑎𝑑,𝑠ℎ𝑖𝑝(𝑡) − 𝑃𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛(𝑡)
𝑡=8760
𝑡=1

∑ 𝑃𝑙𝑜𝑎𝑑,𝑠ℎ𝑖𝑝(𝑡)
𝑡=8760
𝑡=1

 
(12) 
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Figure 8: Energy management strategy (EMS) for the proposed HRES configuration. 
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3.2.8. Economic Analysis for the Proposed Hybrid Power 

Systems  

The economic analysis is employed to analyze the proposed models and derive the objective 

function. The cost metrics utilized in the computation are capital cost (CCC), operating & 

maintenance cost (CO&M) replacement cost (CRC), salvage cost (CSC), cost of fuel (FC), annualized 

cost of system (ACS), net present cost, and levelized cost of energy (LCOE) during the project 

life. These calculations encompass the following components: Genset, diesel fuel, PV panels, 

VAWTs, bidirectional converter, and battery bank. The costs associated with the components are 

delineated in Table 6.  

3.2.8.1. Objective Function 

The goal of the objective function in the proposed HRES models is to minimize the annualized 

cost of the system (ACS) while ensuring that all constraints are met. The ACS is expressed as 

follows: 

𝑚𝑖𝑛𝐴𝐶𝑆 = 𝑚𝑖𝑛{𝐶𝑎𝑛𝑛
𝐺𝑒𝑛𝑠𝑒𝑡 + 𝐶𝑎𝑛𝑛

𝑃𝑉 + 𝐶𝑎𝑛𝑛 
𝑉𝐴𝑊𝑇 + 𝐶𝑎𝑛𝑛 

𝐵𝐴𝑇 + 𝐶𝑎𝑛𝑛 
𝐵𝐼𝐶𝑂𝑁 + 𝐶𝑎𝑛𝑛 

𝐹𝑈𝐸𝐿}       (13) 

where Cann
Genset, Cann

PV  , Cann 
VAWT , Cann 

BAT , Cann 
BICON, and Cann 

FUEL are the annualized cost of the diesel 

generator, PV, VAWT, batteries, bidirectional converter, and fuel cost for the hybrid model. Thus 

the annualized costs for the components are expressed as [89]: 

𝐶𝑎𝑛𝑛
𝐺𝑒𝑛𝑠𝑒𝑡 = 𝑁𝐺𝑒𝑛𝑠𝑒𝑡 ∗ (𝐶𝐶𝐶

𝐺𝑒𝑛𝑠𝑒𝑡 + 𝐶𝑂&𝑀
𝐺𝑒𝑛𝑠𝑒𝑡 + 𝐶𝑅𝐶

𝐺𝑒𝑛𝑠𝑒𝑡  − 𝐶𝑆𝐶
𝐺𝑒𝑛𝑠𝑒𝑡)       (14) 

𝐶𝑎𝑛𝑛
𝑃𝑉  = 𝑁𝑃𝑉 ∗ (𝐶𝐶𝐶

𝑃𝑉 + 𝐶𝑂&𝑀
𝑃𝑉 + 𝐶𝑅𝐶

𝑃𝑉  − 𝐶𝑆𝐶
𝑃𝑉)       (15) 

𝐶𝑎𝑛𝑛 
𝑉𝐴𝑊𝑇=   𝑁𝑉𝐴𝑊𝑇 ∗ (𝐶𝐶𝐶

𝑉𝐴𝑊𝑇 + 𝐶𝑂&𝑀
𝑉𝐴𝑊𝑇 + 𝐶𝑅𝐶

𝑉𝐴𝑊𝑇  − 𝐶𝑆𝐶
𝑉𝐴𝑊𝑇)       (16) 

𝐶𝑎𝑛𝑛 
𝐵𝐴𝑇=   𝑁𝐵𝐴𝑇 ∗ (𝐶𝐶𝐶

𝐵𝐴𝑇 + 𝐶𝑂&𝑀
𝐵𝐴𝑇 + 𝐶𝑅𝐶

𝐵𝐴𝑇  − 𝐶𝑆𝐶
𝐵𝐴𝑇)       (17) 

𝐶𝑎𝑛𝑛 
𝐵𝐼𝐶𝑂𝑁=   𝑁𝐵𝐼𝐶𝑂𝑁 ∗ (𝐶𝐶𝐶

𝐵𝐼𝐶𝑂𝑁 + 𝐶𝑂&𝑀
𝐵𝐼𝐶𝑂𝑁 + 𝐶𝑅𝐶

𝐵𝐼𝐶𝑂𝑁  − 𝐶𝑆𝐶
𝐵𝐼𝐶𝑂𝑁)       (18) 

𝐶𝑎𝑛𝑛 
𝐹𝑈𝐸𝐿=   ∑ 𝐹𝐶 ∗

8760
𝑡=1  𝐹𝑐𝑜𝑛𝑠𝑢𝑚,𝑡𝑜𝑡𝑎𝑙(𝑡)       (19) 
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Table 6: Costs for the hybrid power components. 

Component Capacity 

Capital 

Cost (US$) 

Replacement 

Cost (US$) 

O &M Cost 

(US$ per 

Year) 

Lifetime 

(Year) 

Diesel Genset 125 kW 24,500.00 24,500.00 20.002 15,0003  

PV Module 0.370 kW 0.454  0.304 25.00 15 

VAWT 5 kW 3,400.00 1,000.00 50.00 15 

Battery 12V, 290Ah 1,695.95 1,000.00 100.00 15 

AC/DC Converter 105 kW 1,600.00 1,000.00 100.00 20 

Inflation rate (%) 1.75  

Discount rate (%) 4.3  

Project Life (yrs.) 25 
1. Fuel price is USD per liter  

2. O&M cost is US$ per operation hour(s) 

3. Lifetime is based on hours of operation  

4. PV price is $US per Watt 

3.2.8.2. Net Present Cost (NPC) 

The net present cost encompasses all expenses associated with the installation and operation of the 

hybrid components over their lifespan, and it is represented as follows: 

𝑁𝑃𝐶𝑡𝑜𝑡𝑎𝑙 =
𝐴𝐶𝑆

𝐶𝑅𝐹(𝑟, 𝑛𝑝𝑟𝑜𝑗)
 

            (20) 

where recovery cost CRF(i, nproj)  for the project over the project lifecycle (nproj) at rate r, is 

expressed as: 

𝐶𝑅𝐹𝑖(𝑟, 𝑛𝑝𝑟𝑜𝑗) =
𝑟 ∗ (1 + 𝑟)𝑛𝑝𝑟𝑜𝑗

(1 + 𝑟)𝑛𝑝𝑟𝑜𝑗−1
  

            (21) 

  



38 | P a g e  

 

3.2.8.3. Levelized cost of energy (LCOE) 

The levelized cost of energy represents the total present cost of electricity production for the HRES 

throughout its project lifecycle. It calculates the average cost per kWh of the total electrical energy 

generated by each model as follows [83]:  

𝐿𝐶𝑂𝐸 =
𝐴𝐶𝑆

∑ 𝑃𝑠ℎ𝑖𝑝,𝑙𝑜𝑎𝑑 (𝑡)
8760
𝑡=1

 
            (22) 

 

3.2.9. Constraints 

The constraints governing the proposed onboard hybrid power system pertain to the power 

generation sources, backup power sources, and the cost of each component. The constraints for the 

power components are expressed as: 

0 ≤ 𝑁𝑔𝑒𝑛𝑠𝑒𝑡 ≤ 𝑁𝑔𝑒𝑛𝑠𝑒𝑡,𝑚𝑎𝑥 (23) 

0 ≤ 𝑁𝑃𝑉 ≤ 𝑁𝑃𝑉,𝑚𝑎𝑥 (24) 

0 ≤ 𝑁𝑉𝐴𝑊𝑇 ≤ 𝑁𝑉𝐴𝑊𝑇,𝑚𝑎𝑥 (25) 

0 ≤ 𝑁𝑏𝑎𝑡𝑡 ≤ 𝑁𝑏𝑎𝑡𝑡,𝑚𝑎𝑥 (26) 

𝐸𝑏𝑎𝑡𝑡,𝑚𝑖𝑛 ≤ 𝐸𝑏𝑎𝑡𝑡 ≤ 𝐸𝑏𝑎𝑡𝑡,𝑚𝑎𝑥 (27) 

𝑅𝑓 ≥ 𝑅𝑓𝑚𝑖𝑛
 (28) 

𝐿𝑃𝑆𝑃 ≤ 𝐿𝑃𝑆𝑃𝑚𝑎𝑥 (29) 

where 𝑁𝑃𝑉,𝑚𝑎𝑥is the maximum number of PV modules that can be installed onboard based on 

available space [unitless], 𝑁𝑉𝐴𝑊𝑇,𝑚𝑎𝑥 is the maximum number of VAWTs that can be installed 

onboard based on available space [unitless], Nbatt,max is the maximum number of batteries 

[unitless], Rfminis the lower bound or minimum energy produced by renewable sources [98] as 

compared to energy produced by Genset which is set to 10%, and LPSPmax is the maximum or 

upper bound for the LPSP and is equal to 5%. These values are set low to effectively minimize the 

financial redundancy for proposed HRES [99]. 
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3.2.10. Artificial Bee Colony (ABC) Algorithm 

The artificial bee colony (ABC) algorithm draws inspiration from the foraging behavior of honey 

bees. Introduced by Karaboga [100], this metaheuristic has proven effective in solving various 

engineering problems and optimization tasks. It employs three types of bee agents: employee bees, 

onlooker (follower) bees, and scout bees. Employee bees search for nectar and communicate their 

findings to onlooker bees through a waggle dance, allowing the onlookers to exploit the food 

source. Meanwhile, scout bees seek out new food sources. The number of food sources 

corresponds to the number of employee bees. ABC offers several advantages over other 

evolutionary algorithms, including efficiency, minimal reliance on preset parameters, and fast 

convergence in solving optimization problems within reasonable time frames [101]-[106]. The 

main steps of the ABC algorithm are depicted in Figure 9 and elaborated below [107]: 

i.  Initialization Phase: During this phase, parameters such as problem dimension, colony 

size, number of food sources, maximum number of iterations, and limits are established. 

Furthermore, the initial population of food sources (SN) is randomly generated as follows: 

𝑋𝑖𝑗  = 𝑋𝑗𝑚𝑖𝑛 + 𝑟𝑎𝑛𝑑[0,1](𝑋𝑗𝑚𝑎𝑥  − 𝑋𝑗𝑚𝑖𝑛) (30) 

where i= 1, 2… SN, j= 1, 2, …D, D is the number of optimization parameters,  Xjmax  𝑎𝑛𝑑 Xjmin  are 

the upper and lower limits of the jth component. Similarly, the fitness value of each agent in the 

population is determined using the following equation: 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖 = {

1

1 + 𝑓𝑖
       𝑓𝑖  ≥ 0

1 + |𝑓𝑖|   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

} 

            (31) 

where 𝑓𝑖  is the cost function of the solution 𝑋𝑖𝑗. 

ii. Employee Bee Phase: During this phase, each employee bee forages around the 

allocated nectar (𝑋𝑖) to find the food sources within the neighborhood (Xi
new) in Equation (32). 

The newly discovered food source is then compared to the previous one using a greedy selection 

approach to identify the nectar source with the highest fitness value. Additionally, information 

about the location, fitness value, and distance of the new food source is communicated to the 

onlooker bees through the waggle dance. 
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𝑋𝑖𝑗
𝑛𝑒𝑤  = 𝑋𝑖𝑗

𝑜𝑙𝑑 + ∅𝑖𝑗(𝑋𝑖𝑗
𝑜𝑙𝑑  − 𝑋𝑘𝑗) (32) 

where ∅𝑖𝑗 is a random number in the range of -1 to 1, k = 1,2…SN , and k ≠ 𝑖.  

 

Figure 9: Flowchart of the ABC algorithm for the HRES onboard conventional and fully 

autonomous tugboat. 

 

iii. Onlooker Bee Phase: The onlooker bees select their nectar based on the fitness values 

provided by the employee bees. They choose the nectar with the highest fitness value according to 

the probability equation below. 
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𝑝𝑖 =
𝑓𝑖𝑡𝑖

∑ 𝑓𝑖𝑡𝑗
𝑆𝑁
𝑗=1

 
(33) 

where pi  is the probability value of the onlooker bee’s choice of nectar, and fiti is the fitness value 

of ith solution. Using the probability value obtained and the roulette wheel selection method, the 

onlooker bees produce a new solution using Equation (32). They decide and select nectar from 

neighboring food sources based on greedy selection criteria, aiming to choose the optimal solution 

with the highest fitness. However, if the nectar source does not show improvement, the solution is 

discarded, and the bees transition into scout bees at this stage. 

iv. Scout Bee Phase: During the scout bee phase, the bees randomly generate new food 

source locations using Equation (30). The best solution is remembered, and this process continues 

until the cycle reaches the maximum number of cycles. 

 

3.2.11. Ship Characteristics  

For the purpose of this study, we have chosen a tugboat as our focus, aiming to enhance its energy 

efficiency and management at a minimal cost. The conventional tugboat measures 25 meters in 

overall length, 10 meters in extreme breadth, with a maximum draught of 5 meters, and a gross 

tonnage of 298 tons. It boasts a top speed of 12 knots and is equipped with two diesel engines 

primarily for propulsion, along with two diesel Gensets totaling 250 kW in power. These Gensets 

serve various auxiliary loads onboard, including lighting, navigation equipment, communication 

systems, hoteling amenities, and the operation of winch motors, pumps, and compressors. 

Operational data retrieved from the ship log and the Automatic Identification System (AIS) via 

MarineTraffic [108] indicate that the tugboat operates year-round, completing approximately two 

to five assignments daily along the West Coast of the United States. 

The dynamic load profile illustrating the power demand of auxiliary systems essential for the safe 

operation of the tugboat is depicted in Figure 10. Additionally, the energy consumption of the 

tugboat is calculated based on the electrical load factor and the duration of each operation, provided 

by the tugboat operator. For the fully autonomous tugboat, we assume a similar operational profile 

to that of the conventional tugboat. However, load profiles for the autonomous vessel are estimated 
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by excluding power consumption from fitted equipment and personnel [109]. Consequently, the 

average daily energy consumption of onboard auxiliary equipment for the conventional tugboat 

and proposed fully autonomous tugboats are 260.28 kWh/day and 153.48 kWh/day, respectively. 

 

3.2.12. Weather Data 

Data regarding environmental conditions along the navigation route were sourced from the NASA 

Prediction of Worldwide Energy Resource (POWER) database. Figure 11 illustrates the monthly 

average solar radiation, wind speed, and temperature within the operational zone, which are 

recorded as 5.14 kWh/m2 /day, 4.12 m/s, and 16.96°C, respectively. 

 

Figure 10: Auxiliary loads for the conventional and the proposed fully autonomous tugboat. 
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.  

Figure 11: Monthly average wind speed, solar radiation, and ambient temperature along the 

navigation routes. 

 

3.2.13. Simulation Analysis 

For this study, the tugboat is simulated with renewable energy sources and a battery bank to store 

surplus energy for critical loads as necessary. It is assumed that the available space for installing 

PV modules and batteries on the autonomous tugboat is larger compared to the conventional 

tugboat, owing to the absence of sailors and certain equipment. Ship and weather data were 

imported into both HOMER Pro and MATLAB software. The nominal ratings, maximum 

component numbers, and cost metrics were selected based on industry expert assessments and 

recommendations. Subsequently these parameters were entered into the aforementioned 

computational software. The optimized results obtained from the three metaheuristic optimization 

algorithms were compared with those from HOMER Pro to assess efficiency and best fitness 

values. Finally, robustness tests were conducted on the optimal HRES model and the three 

metaheuristic algorithms. 



44 | P a g e  

 

3.3 Results and Discussions 

This section presents the simulated outcomes for the HRES models. Table 7 displays the feasible 

results of the optimal sizing of the proposed HRES models for the conventional tugboat, as 

determined by the metaheuristic algorithms and HOMER Pro. It is evident that the three 

metaheuristic algorithms outperform HOMER Pro, achieving better results. Particularly, the ABC 

algorithm yields the lowest ACS with the least TNPC and LCOE across all proposed cases 

compared to PSO, GA, and HOMER Pro. Notably, the optimal model for the conventional tugboat 

is the Genset/PV/VAWT/Battery (Case 1), exhibiting the lowest cost metrics. This is attributed to 

the high penetration rate of renewable energy along the ship route. It can be inferred that the next 

successive optimal models with minimum cost are Genset/PV/Battery (Case 2), 

Genset/VAWT/Battery (Case 3), Genset/Battery (Case 4), and Genset (Case 5) respectively; 

suggesting that integrating renewable sources reduces HRES operating costs. Additionally, the 

ABC algorithm generates the lowest ACS for Cases 1 to 4 due to its superior fitness values 

compared to other algorithms. The optimized results for the metaheuristic algorithms are nearly 

identical, except for Case 5 (Genset alone), where their cost values (that is ACS, TNPC and LCOE) 

match those of HOMER Pro. The rationale behind this assertion lies in the foundational nature of 

the model, which lacks both renewable energy sources and storage components, a premise also 

corroborated by the findings of Maleki and Pourfayaz [81] . Moreover, the optimized results from 

HOMER Pro are higher than those from the metaheuristics in Cases 1 to 4 due to the generation 

of higher dump energy, as observed in previous study by  Singh et al [89]. 

Figure 12 illustrates the convergence graph of the three metaheuristic algorithms for the 

conventional tugboat. It is clear that the optimization results achieved by the ABC algorithm for 

Case 1 surpass those of the other algorithms due to its remarkable convergence speed and 

optimization performance. The computational time for the proposed cases using HOMER Pro 

software is longer, whereas that of the metaheuristic algorithms takes only a few minutes. Table 8 

provides a comprehensive summary of the techno-economic outcomes of the proposed HRES for 

the conventional tugboat utilizing the ABC Algorithm. It can be deduced that Case 1 exhibits the 

highest renewable fraction (Rf) due to the incorporation of both PV and VAWTS, resulting in the 

lowest CO2 emissions compared to the other cases. Similarly, Case 2 follows as the next HRES 
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model with lower CO2 emissions, succeeded by Case 3. As anticipated, the base model (Case 5) 

emits the highest CO2 emissions compared to Case 4. 

 

Table 7: Results of the optimization methods of the proposed HRES for the conventional tugboat 

Cases Algorithms 

Genset 

 (kW) 

PV  

(kW) 

VAWT 

(kW) 

Battery 

(units) 

ACS 

(US$/yr.) 

TNPC 

(US$/yr.) 

LCOE 

(US$/kWh) 

1 

PSO 125 4.44 10 4 53,599.03 1,077,580.68 0.513 

ABC 125 4.44 10 4 53,592.33 1,077,446.31 0.513 

GA 125 4.44 10 4 53,599.03 1,077,580.68 0.513 

HOMER Pro  125 4.44 10 12 73,818.03 1,488,741.25 0.706 

2 

 

PSO 125 4.44 N/A 4 58,601.35 1,178,171.14 0.560 

ABC 125 4.44 N/A 4 58,585.85 1,177,859.36 0.506 

GA 125 4.44 N/A 4 58,586.03 1,177,863.10 0.506 

HOMER Pro 125 4.44 N/A 8 63,377.76 2,921,696.00 0.606 

3 
PSO 125 N/A 10 8 58,922.12 1,184,333.69 

 

0.563 

ABC 125 N/A 10 8 58,920.17 1,184,294.45 0.563 

GA 125 N/A 10 8 58,922.12 1,184,333.69 0.563 

HOMER Pro 125 N/A 10 12 74,485.98 1,497,167.03 0.713 

4 

 

PSO 125 N/A N/A 4 61,503.70 1,236,245.95 0.588 

ABC 125 N/A N/A 4 61,491.73 1,236,005.43 0.588 

GA 125 N/A N/A 4 61,503.70 1,236,245.95 0.588 

HOMER Pro  125 N/A N/A 4 61,536.25 1,236,900.22 0.589 

5 

 

PSO 125 N/A N/A N/A 83,700.81 1,682,761.86 0.801 

ABC 125 N/A N/A N/A 83,700.81 1,682,761.86 0.801 

GA 125 N/A N/A N/A 83,700.81 1,682,761.86 0.801 

HOMER Pro  125 N/A N/A N/A 83,700.81 1,682,761.86 0.801 

 

Figure 13 depicts the monthly energy analysis for the optimal HRES (Case 1). It is evident that the 

highest solar energy generation occurs during the summer months, with the majority of this energy 

utilized to meet the shipload. Conversely, the maximum wind energy generation is observed in the 

winter season. However, the usage of the Genset and battery bank remains consistent every month 

throughout the year to fulfill the stable auxiliary load demand. Furthermore, it is observed that 

there is either no surplus energy or minimal surplus energy, as the HRES is designed to minimize 

dump energy.   
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Figure 12: Comparison of convergence of the three metaheuristic algorithms for the Case 1 

(Genset/PV/VAWT/Battery) HRES model for conventional tugboat. 

 

Table 8: Detailed techno-economic results of proposed HRES for conventional tugboat using 

ABC algorithm. 
System 

Component Parameters Case 1 Case 2 Case 3 Case 4 Case 5 

Mono PV Solar Energy (kWh) 32,309.62 32247.47 - - - 

Wind Wind Energy (kWh) 17,765.14 - 17,786.64 - - 

Battery 
Battery Charge (kWh) 27,876.24 16,420.65 11,486.34 1,185.53 - 

Battery Discharge (kWh) 25,623.96 15,220.38 10,724.03 965.20 - 

Genset 
Diesel Energy (kWh) 62,485.11 78,955.34 93,285.06 109,715.93 

          

110,002.55 

Annualized Cost 

for components 

 

PV ($) 437.05 436.21 - - - 

VAWT ($) 471.96 - 472.53 - - 

Battery ($) 847.93 851.57 861.10 848.59 - 

Genset ($) 51,659.31 57,121.99 57,410.46 60,467.06 83,700.81 

Inverter ($) 176.08 176.08 176.08 176.08 - 

Other factors 

 

Load Demand (kWh) 104,502.42 104,502.42 104,502.42 104,502.42 104,502.42 

CO2 Emission(tons) 73,741.05 93,178.20 110,89.25 129,479.94 129,818.19 

Dump Energy(kWh.) 103.79 43.37 13.19 - - 

Ren Fraction (%) 40.21 24.45 10.73 - - 
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Figure 13: Monthly energy analysis (kWh) for optimal Genset/PV/VAWT/Battery (Case 1) 

HRES using ABC algorithm for Conventional tugboat. 

 

Table 9 displays the optimized outcomes of the proposed hybrid power systems for the fully 

autonomous tugboat. It is evident that Case 1 yields the lowest ACS, followed by Case 2, Case 3, 

Case 4, and Case 5. The sequence of models with the lowest ACS mirrors that of the conventional 

tugboat, attributed to the assumption that the autonomous tugboat shares the same navigation 

routes and ship particulars as its conventional counterpart. However, the costs of the optimized 

HRES models for the autonomous tugboat are lower than those of the conventional tugboat due to 

reduced shipload. 

The optimization results obtained from the ABC algorithm are favored for achieving optimal 

HRES configurations compared to other algorithms and HOMER Pro. For instance, Figure 14 

illustrates the convergence rate comparison between the ABC algorithm and the other two 

algorithms for the Case 1 model of the fully autonomous tugboat. Notably, the ABC algorithm 

demonstrates superior convergence speed compared to PSO and GA algorithms.  
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Table 9: Results of the optimization methods of the proposed HRES for the fully autonomous 

tugboat 

 

Table 10 provides a comprehensive breakdown of the proposed HRES outcomes for the fully 

autonomous tugboat utilizing the ABC Algorithm. It is evident that Case 1, featuring 

Genset/PV/VAWT/Battery configuration, exhibits the lowest diesel energy consumption and 

highest Rf, leading to minimal CO2 emissions compared to other models. This is attributed to the 

significant contribution of energy generated by PV and VAWT. Sequentially, the subsequent 

optimal HRES models in terms of techno-economic results for the fully autonomous tugboat are 

as follows: Genset/PV/Battery (Case 2), Genset/VAWT/Battery (Case 3), Genset/Battery (Case 

4), and Gensets (Case 5). These results mirror the trends observed in optimized HRES models for 

the conventional tugboat. Consequently, models with limited or no integration of renewable energy 

sources exhibit higher CO2 emissions and ACS due to increased fuel consumption. Figure 15 

illustrates the monthly energy balance of the optimal HRES (Genset/PV/VAWT/Battery) for the 

fully autonomous tugboat. Similarly, the PV modules exhibit the highest monthly   

Case Algorithm 

Genset 

 (kW) 

PV  

(kW) 

VAWT 

(kW) 

Battery 

(units) 

ACS 

(US$/yr.) 

TNPC 

(US$/yr.) 

LCOE 

(US$/kWh) 

1 

PSO 125 5.92 10 8 17,355.53 348,863.73 0.282 

ABC 125 5.92 10 8 17,345.82 348,670.03 0.282 

GA 125 5.92 10 8 17,357.14 348,896.25 0.281 

HOMER Pro 125 5.92 10 10 29,297.97 589,020.06 0.476 

2 

 

PSO 125 5.92 N/A 4 41.254.76 829,448.11 0.670 

ABC 125 5.92 N/A 4 41,254.75 829,262.63 0.670 
GA 125 5.92 N/A 4 41,288.43 830,125.11 0.670 

HOMER Pro 125 5.92 N/A 8 61,196.43 1,230,322.84 0.994 

3 

 

PSO 125 N/A 2 4 50,022.32 1,005,369.52 0.812 

ABC 125 N/A 10 4 50,021.78 1,005,358.69 0.812 

GA 125 N/A 10 4 50,022.32 1,005,369.52 0.812 

HOMER Pro 125 N/A 10 8 53,077.76 1,067,101.15 0.862 

4 

 

PSO 125 N/A N/A 4 55,643.89 1,118,412.47 0.903 

ABC 125 N/A N/A 4 55,631.93 1,118,171.96 0.903 

GA 125 N/A N/A 4 55,643.89 1,118,412.47 0.903 

HOMER Pro 125 N/A N/A 4 59,205.36 1,190,293.40 0.962 

5 

 

PSO 125 N/A N/A N/A 77,218.91 1,552,446.59 1.255 

ABC 125 N/A N/A N/A 77,218.91 1,552,446.59 1.255 

GA 125 N/A N/A N/A 77,218.91 1,552,446.59 1.255 

HOMER Pro 125 N/A N/A N/A 77,218.91 1,552,446.59 1.255 
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Figure 14: Comparison of convergence of the three metaheuristic algorithms for 

Genset/PV/VAWT/Battery (Case 1) HRES Model on fully autonomous tugboat. 

 

renewable energy generation compared to the VAWT. However, minimal energy from the Gensets 

is required to supplement the renewable energy sources to meet the shipload. Additionally, the 

battery bank is consistently utilized throughout the year, with surplus energy available in each 

month, mirroring the scenario observed in a conventional tugboat. Nonetheless, the proposed 

models for the fully autonomous tugboat show the highest generated renewable energy and Rf, 

alongside minimal ACS, fuel consumption, and CO2 emissions compared to models for the 

conventional tugboat. 

Finally, robustness tests are conducted on the optimal HRES onboard both the conventional and 

fully autonomous tugboats. Since the primary power generation sources for this system (Case 1) 

are Genset, PV, and VAWT, the test is performed on their respective key parameters.  
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Table 10: Detailed techno-economic results of proposed HRES for fully autonomous tugboat 

using ABC algorithm. 

System 

Component Parameters Case 1 Case 2 Case 3 Case 4 Case 5 

Mono PV Solar Energy (kWh) 42,996.63 42,996.63 - - - 

Wind Wind Energy (kWh) 17,765.26 - 17,765.26 - - 

Battery 
Battery Charge (kWh) 33,514.60 21,950.31 11,472.54 1,203.22 - 

Battery Discharge (kWh) 31,088.12 20,245.73 10,711.29 689.61 - 

Genset 
Diesel Energy (kWh) 7,013.76 23,569.21 48,163.72 64,574.65 

          

64,861.27 

Annualized 

Cost for 

components 

 

PV ($) 581.61 581.61 - - - 

VAWT ($) 471.96 - 471.96 - - 

Battery ($) 1,834.23 845.79 860.54 849.29 - 

Genset ($) 14,291.65 39,651.27 48,513.20 54,606.56 77,218.91 

Inverter ($) 176.08 176.08 176.08 176.08 - 

Other Factors 

 

Load Demand (kWh) 61,618.21 61,618.21 61,618.21 61,618.21 61,618.21 

CO2 Emission(tons) 8,277.21 27,814.93 56,839.84 76,207.00 76,545.25 

Dump Energy(kWh.) 319.73 113.37 123.06 - - 

Ren Fraction (%) 88.61 61.75 21.84 - - 

 

 

Figure 15: Monthly energy analysis (kWh) for optimal Genset/PV/VAWT/Battery (Case 1) 

HRES using ABC algorithm for fully autonomous tugboat.   
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3.3.1. Robustness Test 

The aim of conducting the robustness test is to confirm the efficacy of the optimal model (Case 1) 

acquired using the ABC algorithm for both conventional and autonomous tugboats. This validation 

is achieved by manipulating fundamental input data, including shipload, fuel price, solar 

irradiance, wind speed, and ambient temperature along the navigation routes. Furthermore, 

statistical analysis is carried out on the ACS results obtained by the three metaheuristic algorithms 

for the optimal Case 1 model specifically for the fully autonomous tugboat. The findings of this 

critical analysis are outlined in the subsequent subsections. 

3.3.1.1. Robustness Test on the Optimal Hybrid Model by Variable 

Load Fuel Price, Solar Irradiance, Wind Speed, and Ambient 

Temperature 

Tables 11 and12 present the robustness test results for both conventional and fully autonomous 

tugboats across various variable parameters including loads, fuel prices, solar irradiance, wind 

speeds, and temperature for the optimal model (Case 1). The findings indicate that a decrease in 

shipload results in the lowest values of ACS, NPC, and CO2 emissions, but in a higher Rf. 

Conversely, an increase in shipload leads to contrary outcome. Furthermore, the fluctuation in fuel 

prices affected the objective function and related costs but had no influence on the CO2 emissions 

and Rf, given that the HRES relied predominantly on generated renewable energy during both high 

and low energy demand periods by the tugboat. Therefore, an increase in fuel prices generated 

high system costs, while a decrease in fuel prices led to the opposite outcome. Likewise, it can be 

confirmed that the reduction in solar irradiance resulted in higher ACS, TNPC, and CO2 emissions, 

but a lower Rf, whereas an increase in solar irradiance yielded the converse outcome. Similarly, 

the reduction in wind speed led to high ACS, TNPC, and CO2 emissions, and lower Rf, while an 

increase in wind speed had the converse result.  Lastly, decreasing ambient temperature resulted 

in high ACS, TNPC, and CO2 emissions, but low Rf, whereas increasing ambient temperature 

generated the opposite outcomes. 
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In summary, the change in fuel price, shipload, solar irradiance, ambient temperature, and wind 

speed had significant impact on the proposed optimal HRES onboard both conventional and fully 

autonomous tugboats. Nonetheless, the results obtained for the autonomous tugboat surpass those 

obtained for the conventional tugboat. 

Table 11: Robustness test results based on varying load, fuel price and solar irradiance on the 

optimal Genset/PV/VAWT/Battery (Case 1) for conventional tugboat using ABC algorithm. 

Parameters Variation 

ACS 

(US$/yr.) 

TNPC 

(US$/yr.) 

LCOE 

($US/kWh) 

CO2 

Emission 

(kg/yr.) 

Renewal 

Fraction 

(%) 

Load (kW)  

-35% 38,041.93 764,813.69 0.560 28,388.22 64.59 

+35% 60,546.42 1,217,254.79 0.429 119,182.14 28.41 

Fuel Price  

(USD/L) 

 

-35% 50,763.23 1020568.80 0.486 73,741.05 40.21 

+35% 56,405.28 1,133,999.29 0.540 73,741.05 40.21 

Solar 

irradiance 

 (kWh/m2/day)  

 

-1.06 58,793.58 1,182,014.78 0.563 105,761.61 14.24 

+1.06 53,328.32 1,072,138.58 0.510 72,967.93 40.83 

Wind Speed 

(m/s) 

 

-2.12 58,428.81 1,174,681.26 0.559 91,222.31 26.03 

+2.12  37,095.14 745,778.43 0.355 42,142.73 65.82 

Temperature 

(°C) 
-6 52,897.98 1,063,486.68 0.506 71,621.40 41.93 

+6 54,212.14 1,089,907.28 0.519 76,170.83 38.23 

 

Table 12: Robustness test results based on varying load, fuel price and solar irradiance on the 

optimal Genset/PV/VAWT/Battery (Case 1) for fully autonomous tugboat using ABC algorithm. 

Parameters Variation 

ACS 

(US$/yr.) 

TNPC 

(US$/yr.) 

LCOE 

($US/kWh) 

CO2 

Emission 

(kg/yr.) 

Renewal 

Fraction 

(%) 

Load (kW)  

-35% 4,517.39 90,819.82 0.113 0.00 100 

+35% 39,087.12 785,826.56 0.470 35,249.54 64.09 

Fuel Price  

(USD/L) 

 

-35% 17,001.13 341,799.08 0.276 8,277.21 88.56 

+35% 17,677.15 355,390.06 0.287 8,277.21 88.56 

Solar 

irradiance 

 (kWh/m2/day)  

 

-0.94 49,057.56 986,277.26 0.796 51,036.25 29.81 

+1.06 53,328.32 1,072,138.58 0.258 7,208.52 90.08 

Wind Speed 

(m/s) 

 

-2.12 38,952.64 783,122.83 0.632 25,086.19 65.50 

+2.12  4,775.54 96,009.86 0.078 0.00 100 

Temperature 

(°C) 
-6 13,421.39 269,820.17 0.2178 4,829.24 93.36 

+6 20,947.88 421,146.30 0.340 11,512.95 84.16 
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3.3.1.2. Statistical Analysis on Metaheuristic Algorithms of ACS 

for Optimal Fully Autonomous Tugboat  

We conducted an ANOVA test to evaluate potential statistically significant differences among the 

means of multiple populations. Specifically, we applied the one-way ANOVA test to the 

optimization ACS results generated by the ABC, PSO, and GA algorithms for the Case 1 model 

of the fully autonomous tugboat to assess their effectiveness. This analysis was conducted using 

Minitab software. Table 13 presents the sources of variance between groups (algorithms) and 

within groups (error), along with their respective degrees of freedom (DF), adjustment sum of 

squares (Adj SS), adjusted mean squares (Adj MS), F-statistic (or F-value), and associated P-value. 

The adjusted mean square error (Adj MS) representing the variance within all groups was found 

to be 45560163, indicating the variability of data points around the fitted values. Additionally, the 

P-value was determined to be zero, which is less than the significance level (α) of 5%, signifying 

the presence of statistically significant differences in the data groups. Consequently, the null 

hypothesis is rejected, confirming the statistical significance of the results. It was concluded that 

all three algorithms have distinct means, as indicated in Table 14. Moreover, the PSO algorithm 

exhibited the highest mean, standard deviation, and confidence interval compared to the ABC and 

GA algorithms, suggesting that the PSO algorithm produces higher ACS values than the other two 

algorithms. Given the differences in means observed among the three metaheuristic algorithms in 

Table 14, further analysis beyond ANOVA is warranted. 

. 

Table 13: Analysis of variance (significance level α =0.05) result for one-way ANOVA 

Source DF Adj SS Adj MS F-Value P-Value 

Algorithm 2 10,116,204,280 5,058,102,140 111.02 0 

Error 297 13,531,368,309 45,560,163     

Total 299 23,647,572,589       

 

Table 14: Mean and standard deviation result for one-way ANOVA 

Algorithms Number Mean 

Standard 

Deviation  95% CI 

ABC 100 17,755 2,167 (16426, 19083) 

GA 100 19,646 5,080 (18317, 20974) 

PSO 100 30,909 10,304 (29581, 32238) 
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Hence, the post-hoc test (or multiple comparison) is conducted to determine whether differences 

between pairs of groups hold statistical significance. Accordingly, the Tukey pairwise comparisons 

test is applied to the three algorithms while maintaining a simultaneous confidence level of 95%. 

In Figure 16, the confidence interval plot illustrates the disparity between the pairings. Notably, 

the GA-ABC pairing exhibits the most favorable outcome, as the confidence interval encompasses 

zero, indicating no significant difference between the compared groups. Conversely, the 

confidence intervals for PSO-ABC and PSO-GA include entirely positive numbers, indicating 

statistically significant differences between them.  Table 15 delineates that Grouping A exclusively 

comprises the PSO algorithm, while Grouping B encompasses both GA and ABC algorithms. This 

suggests that the means for the ABC and GA algorithms do not differ significantly. However, the 

PSO algorithm does not share a grouping letter, signifying its notable difference attributed to its 

higher mean. Lastly, the optimal algorithm is identified based on the grouping with the smallest 

mean; thus, the ABC algorithm emerges as the best choice, offering a significantly lowest mean 

than both the PSO and GA algorithms. Subsequently, the GA algorithm follows as the next 

successive optimal choice, exhibiting a lower mean than the PSO algorithm. 

 

Table 15: Grouping information using the Tukey method and 95% confidence. 

Algorithms Number Mean Grouping 

PSO 100 30,909 A   

GA 100 19,646   B 

ABC 100 17,755   B 
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Figure 16: Tukey simultaneous tests for difference of means for the metaheuristic algorithms. 
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3.4 Conclusion  

This research paper introduces a standalone hybrid renewable energy system designed for an 

existing tugboat operating along the West Coast of the United States. Techno-economic analyses 

are conducted for both conventional and fully autonomous tugboats using mathematical models. 

The developed HRES models consist of PV, VAWT, batteries, and Gensets.  In addition, the 

simulation and optimization processes are carried out using the ABC algorithm. The aim of the 

modeling is to find the optimal HRES with a minimum ACS and emissions while adhering to 

specified constraints. 

We observe that the ABC algorithm outperforms PSO, GA, and HOMER Pro.  Also, among the 

five proposed reliable and sustainable configurations, Genset/PV/VAWT/Battery (Case 1) 

emerges as the optimal standalone HRES for both conventional and fully autonomous tugboats. 

Notably, the fully autonomous tugboat demonstrates superior outcomes in terms of cost, CO2 

emissions, and renewable fraction compared to its conventional counterpart.  In addition, the 

robustness test reveals that variations in shipload, fuel price, solar irradiance, wind speed, and 

ambient temperature significantly affect the proposed optimal HRES for both conventional and 

fully autonomous tugboats.  Consequently, comparing the results of the optimal HRES 

(Genset/PV/VAWT/Battery) onboard the conventional tugboat with those of the fully autonomous 

tugboat, we find that the latter records minimum ACS, TNPC, LCOE, CO2 emissions, and 

maximum percentage of renewable fraction. Moreover, the fully autonomous tugboat generates a 

higher percentage of excess energy compared to the conventional tugboat, which generates less 

excess energy. Additionally, a one-way ANOVA is applied to the ACS results of the Case 1 model 

for the fully autonomous ship, confirming the statistical significance of the ACS results and 

indicating that the ABC algorithm produces optimal outcomes. Furthermore, the application of the 

Tukey pairing reveals that the GA-ABC pair is statistically similar, suggesting that there is no 

difference between their means unlike the other pairings.  

This study encountered significant constraints primarily stemming from the absence of reliable 

data regarding the energy demands of autonomous tugboats. Consequently, the paper resorts to 

mathematical simulation based on the energy requirements of conventional tugboats.  
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In conclusion, future research endeavors should delve into implementing the proposed HRES 

across a range of fully autonomous surface ships, encompassing diverse navigation routes, variable 

ship speeds, and a variety of energy storage options. This is prompted by the scarcity of pertinent 

research literature that could serve as comparative benchmark and by the need to broaden the 

knowledge of HRES applications onboard fully autonomous ships. Furthermore, there is a 

suggestion to explore alternative fuels as a means to reduce emissions and improve ship energy 

systems. 
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CHAPTER 4. ENVIRONMENTAL AND COST 

ASSESSMENTS OF MARINE 

ALTERNATIVE FUELS FOR FULLY 

AUTONOMOUS SHORT-SEA SHIPPING 

BASED ON THE GLOBAL WARMING 

POTENTIAL APPROACH 
 

In this chapter, we explore an effective approach to reducing marine pollution and costs by 

determining the optimal marine alternative fuels framework for short-sea shipping vessels, with a 

focus on energy efficiency. Employing mathematical models in a Python environment, the 

analyses are tailored specifically for conventional and fully autonomous high-speed passenger 

ferries (HSPFs) and tugboats, utilizing bottom-up methodologies, ship operating phases, and the 

global warming potential approach. The study aims to identify the optimal marine fuel that offers 

the highest Net Present Value (NPV) and minimal emissions, aligning with International Maritime 

Organization (IMO) regulations and environmental objectives. Data from the ship’s Automatic 

Identification System (AIS), along with specifications and port information, were integrated to 

assess power, energy, and fuel consumption, incorporating parameters of proposed marine 

alternative fuels. This study examines key performance indicators (KPIs) for marine alternative 

fuels used in both conventional and autonomous vessels, specifically analyzing total mass emission 

rate (TMER), total global warming potential (TGWP), total environmental impact (TEI), total 

environmental damage cost (TEDC), and NPV. The results show that hydrogen (H2-Ren, H2-F) 

fuels and electric options produce zero emissions, while traditional fuels like HFO and MDO 

exhibit the highest TMER. Sensitivity and stochastic analyses identify critical input variables 

affecting NPV, such as fuel costs, emission costs, and vessel speed. Findings indicate that LNG 

consistently yields the highest NPV, particularly for autonomous vessels, suggesting economic 

advantages and reduced emissions. These insights are crucial for optimizing fuel selection and 

operational strategies in marine transportation and offer valuable guidance for decision-making 

and investment in the marine sector, ensuring regulatory compliance and environmental 

sustainability. 
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“Environmental and cost assessments of marine alternative fuels for fully autonomous short-sea 

shipping vessels based on the global warming potential approach,” J. Mar. Sci. Eng., vol. 12, no. 

11, p. 2026, 2024. [Online]. Available: https://doi.org/10.3390/jmse12112026  
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4.1. Introduction 

The shipping industry, responsible for transporting over 80% of international trade, is the most 

energy-efficient mode of goods transport. However, despite the relatively low total carbon dioxide 

(CO2) emissions from shipping, the industry cannot ignore its role in addressing global warming. 

The fourth International Maritime Organization (IMO) GHG report indicates that shipping emitted 

approximately 1,056 million tonnes of CO2 in 2018, accounting for 2.89% of global CO2 emissions 

[110]. Ship energy management significantly influences both cost efficiency and environmental 

impact, primarily due to the considerable CO2 emissions stemming from ship operations. 

Decreasing energy consumption not only directly mitigates emissions, but also reduces the 

environmental footprint and operational expenditures [111]. Therefore, the IMO has endorsed a 

proposed amendment requiring the adoption of a Ship Energy Efficiency Management Plan 

(SEEMP) and an Energy Efficiency Design Index (EEDI) for newly constructed vessels. This 

regulatory measure aims to curtail greenhouse gas (GHG) emissions within the maritime domain 

[112]. The proposed  net zero target for  2050 by the IMO [113] can be achieved through the 

changes of ship design, including  weight reduction, the use of advanced coatings on the hull [114], 

the optimization of the ship’s hull dimensions and bow thrusters, just to mention a few [115]. 

Similarly, energy efficiency and sustainability can be achieved by using alternative fuels with 

minimal or zero emissions onboard vessels. The best marine alternative fuels are biofuels 

(biodiesel, biomethane, bioethanol), E-fuels (green hydrogen, E-diesel, green ammonia, E-

methane), blue fuels (blue hydrogen, blue ammonia), electricity (grid, renewable energy sources), 

and fossil fuels (mixture of fossil fuel and advanced biofuels) [116]. However, the application of 

some of the aforementioned alternative fuels  is not mature in terms of production processes and 

bunkering infrastructure [115], [117]. The choice of energy source or fuel type for a vessel [53] is 

contingent upon both the vessel's classification and the specific route it navigates on [118], [119].  

Short-sea shipping vessels [120] facilitate the transportation of goods and passengers over 

relatively short distances [119], within port waters and between deep sea terminals [121]. As 

evidenced in Europe and other North American regions [122], [123], short-sea shipping presents 

opportunities to improve efficiency and address environmental impacts associated with goods and 

passenger transport [124]. Moreover, short-sea shipping vessels operating in inland waterways 

play a pivotal role in regional and national transportation networks, offering benefits such as 
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reduced energy consumption, lower emissions, and maintaining a high safety standard compared 

to road transport [125]-[127]. 

International Convention for the Prevention of Pollution from Ships (MARPOL) mandates four 

key requirements for both new and existing vessels to address air pollution, emphasizing cleaner 

fuels, renewable energies, emission reduction technologies, and enhanced energy efficiency [53], 

[54]. The utilization of maritime autonomous surface ships (MASS) offers a promising approach 

to mitigate environmental impact within the maritime sector, operating independently with 

artificial intelligence (AI) driven navigation. Fully autonomous fleets, without onboard crews, 

demonstrate significant conservation of energy and reduction of pollution [128], with a notable 

decrease of 74.5% [46] in energy consumption in autonomous container vessels compared to 

traditional counterparts [129]. Integrating MASS with marine alternative fuels emerges as a robust 

strategy for reducing GHG emissions in maritime operations [130], [131]. 

In the quest to identify the most suitable alternative fuel for vessels, two principal methodologies 

are used to measure ship fuel consumption and predict emissions: the top-down and bottom-up 

approaches [132]. The top-down approach, used in several existing studies, focuses on the 

utilization and analysis of marine fuel sales data [133], [134]. Conversely, an increasing number 

of studies is adopting the bottom-up approach [132], [133], [135], which involves analyzing fuel 

consumption in relation to specific shipping activities [136]. The latter method offers a more 

accurate representation of actual emission levels. To predict fuel usage in maritime vessels, the 

bottom-up methodology uses a cubic correlation between fuel consumption and vessel speed [133]. 

Table 16 presents comparative analyses conducted by previous researchers that were aimed at 

identifying the optimal marine fuel. 

A recent review by Chen and Yang [137] explored the application of automatic identification 

system (AIS)-based methods for estimating ship emissions. This study encompassed data 

acquisition via AIS, analysis of ship characteristics, calculation of engine loads, and determination 

of emission factors. In contrast, Aarskog et al. [138] evaluated the economic feasibility of fuel cell 

(FC) propulsion for high-speed crafts (HSC) using an energy analysis method, juxtaposing it with 

traditional diesel and biodiesel alternatives. Their findings indicate potential cost competitiveness 

of FC-equipped HSCs compared to diesel propulsion by 2025 –2030. Similarly, Jafarzadeh and 

Schjølberg [139] used cubic law of design and operational speed to examine optimal propulsion 
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power utilization for enhancing electric or hybrid propulsion in suitable ship types. Ocean-going 

reefers achieve peak efficiency at 0.6–0.7 of their capacity loads, whereas other vessels peak at 

lower loads, limiting hybrid or electric integration benefits. Additionally, various studies [140]-

[145] have investigated the economic and emissions impacts of alternative marine fuels based on 

ship-specific considerations. These studies hinge on intricate technical specifications and 

operational data that are distinct to individual vessels. For instance, Kouzelis et al. [140] applied 

simple multi-attribute rating technique (SMART) decision-making models to assess optimal 

alternative fuel technologies for large container vessels, highlighting upgraded bio-oil (UBO), 

Fischer-Tropsch diesel (FTD), and liquefied bio-methane (LBM) as promising future fuels. 

Meanwhile, conventional fuels like heavy fuel oil (HFO) and liquefied natural gas (LNG) are likely 

to maintain dominance without regulatory changes. Additionally, Kosmas and Acciaro [141] used 

Cobweb Theorem to analyze the economic and environmental effects of bunker levies on shipping 

fuels for cargo ships, showing potential reductions in speed and fuel consumption, akin to sector 

energy efficiency improvements through regulatory measures. Similarly, Ammar and Seddiek 

[142] explored selective catalytic reduction (SCR), seawater scrubbers (SWS), marine gas oil 

(MGO), and LNG using eco-environmental analysis methods for reducing RoRo exhaust 

emissions, with LNG emerging as the most effective option both economically and 

environmentally. Furthermore, Helgason et al. [143] compared conventional methanol from 

natural gas (NG), and renewable methanol (RN) with HFO using impact pathway analysis (IPA) 

in Iceland's maritime sector, highlighting fossil methanol's current cost competitiveness and 

projecting renewable methanol's future cost-effectiveness. On the contrary, there is limited 

literature addressing simultaneous economic and emission analyses for both conventional and 

autonomous MASS [144], [145]. For example, Jovanović et al. [144]  used cubic law of design to 

conduct environmental and economic evaluations of RoRo passenger ferries, identifying methanol 

and electric propulsion as optimal choices across all routes. Autonomous shipping shows 

substantial ecological and economic benefits across various propulsion options and vessel types, 

except for renewable hydrogen-powered vessels on longer shipping routes. Similarly, 

Kretschmann et al. [145] used cost-benefit analysis to perform a comprehensive cost analysis 

comparing conventional and autonomous bulkers, emphasizing the economic advantages of 

autonomous vessels, particularly with MDO despite higher voyage expenses. 
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The complexities inherent in integrating alternative fuels into maritime operations underscore the 

necessity for tailored solutions that consider vessel type and operational context. However, further 

advancements are required in several key areas. Notably, there remains a gap in comprehensive 

studies that compare the environmental and economic impacts of marine alternative fuels across 

both conventional and autonomous vessels using AIS data and employing a global warming 

potential approach. Previous studies conducted by previous authors by [138] [139] focused solely 

on conventional vessels using AIS data. The sensitivity analysis performed by Aarskog et al. [138] 

was restricted to fuel cells without consideration of other fuel types and lacked a stochastic 

analysis. Additionally, Jafarzadeh and Schjølberg [139] exclusively calculated power consumption 

for main engines, neglecting the significant contributions of auxiliary engines. Furthermore, 

analyses conducted by some authors [144], [145] utilized ship-specific particulars rather than AIS-

based methods, limiting their ability to capture real-time operational dynamics effectively. 

Moreover, previous assessments often omitted critical factors such as carbon monoxide emissions, 

port costs, and hydrogen storage tank costs [144], [145]. Furthermore, the environmental impacts, 

environmental cost assessments, and stochastic analysis were frequently overlooked across 

studies. Neglecting these aspects can lead to inaccurate estimations of a fuel's ecological footprint 

and economic implications, thereby hindering informed decision-making regarding sustainable 

fuel selection. Incorporating comprehensive environmental and economic analyses, including 

stochastic considerations, is essential for ensuring robust evaluations of marine alternative fuels. 

Such an approach facilitates more informed decisions that balance environmental sustainability 

with economic viability, crucial for advancing the adoption of sustainable marine fuels. For 

instance, Table 16 provides a comparative analysis of research utilizing a bottom-up methodology, 

which integrates AIS data and ship-particulars to evaluate the environmental and economic 

impacts of alternative fuels in marine applications. 
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Table 16: Comparative analysis of environmental and economic assessments for marine alternative fuels. 

1. Both conventional and autonomous vessels are considered.     2. SFOC:  specific fuel oil consumption    3. MBMs: Market-based measures

Objective Study Area Type of Ship 
Type of Fuel 

Analysis 
Data Source  Comments  Reference 

Perform economic 

assessments contrasting 

fuel cell with diesel and 

biodiesel.  

Norway 

  

HSC 

  

Hydrogen, diesel, 

and biodiesel  

AIS Data 

  

No stochastic analysis 

was performed, only 

sensitivity analysis on 

hydrogen FC 

 [138]  

Analyze operational 

profiles to select 

suitable ships for 

electric/hybrid 

propulsion.   Norway  

Tankers, bulk 

carriers, general 

cargo ships, 

container ships, roll-

on/roll-off (Ro-Ro) 

ships, reefers 

(refrigerator/freezer), 

offshore ships and 

passenger ships. FC, batteries, MGO  

AIS Data 

 

  

No sensitivity or 

stochastic analysis was 

performed. 

 

  [139]  

Optimize fuel 

technology for efficient 

freight across technical 

and environmental 

standards. 

 Denmark to 

Greece 

from 

Denmark, 

China, 

Norway, 

Greece 

 Large container 

vessel  

HFO, FTD, UBO 

& LBM 

Ship 

particulars 

Conduct sensitivity 

analysis on SFOC2, fuel 

cost, vessel speed 

relative to required 

freight rate (RFR). [140]  
MBMs3 proposals 

improve shipping 

sector efficiency and 

reduce emissions N/A Cargo ships N/A 

Ship 

particulars 

No sensitivity, 

environmental, or 

stochastic analysis was 

conducted. [141]  
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1. Both conventional and autonomous vessels are considered.     2. SFOC:  specific fuel oil consumption    3. MBMs: Market-based measures 

 

Objective Study Area Type of Ship 
Type of Fuel 

Analysis 

Data 

Source  
Comments  Reference 

Analyze environmental, 

economic impacts of 

diverse ship fuel options 

for IMO compliance 

Hurghada 

port (Egypt) 

and Duba 

port (Saudi 

Arabia) 

Medium RoRo 

cargo ship 

  

SCR, SWS, 

MGO, LNG, 

Ship 

particulars 

Sensitivity analysis is 

conducted based on 

variable emission 

reduction percent & 

interest rate. [142]  

Conducts 

comprehensive cost-

competitive analysis of 

three marine fuels.  Iceland  N/A  

NG, RN, & 

HFO 

  N/A  

 

Performed sensitivity 

analysis on years, price 

trajectories, and total 

costs; no stochastic 

analysis conducted. [143]  

Optimizing power for 

autonomous ro-ro ships 

considering 

environmental and 

economic factors.  

Croatian  

 

  

RoRo passenger 

ship1 

 

 
 

MDO, HFO, 

LNG, 

methanol, 

electricity, 

and hydrogen 

Ship 

particulars 

Sensitivity analysis 

focused on autonomous 

vessels' economic input 

variations only; 

stochastic analysis 

excluded for optimal 

fuel.  

[144] 

  

Examines autonomous 

bulker costs vis-à-vis 

conventional vessel 

 Australia to 

Europe  Bulk Carrier1  MDO, HFO 

Ship 

particulars 

Sensitivity analysis on 

RFR impact, 

emphasizing fuel 

consumption and vessel 

costs; no stochastic 

analysis. [145] 
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Despite considerable existing literature on alternative marine fuels, consensus remains elusive 

regarding the optimal choice for future maritime operations. Moreover, few studies have 

comprehensively addressed the environmental impacts and simultaneous variations in input 

parameters, particularly concerning the application of marine alternative fuels across diverse short-

sea vessels with varying speeds and routes. Incorporating dynamic methodologies within bottom-

up calculations of ship pollutant emissions using geospatial inputs provides a precise depiction of 

real-time fuel consumption and emission dispersion during vessel operations. Such insights are 

crucial for stakeholders aiming to integrate alternative fuels effectively within the marine sector. 

Therefore, this research aims to investigate how these alternative fuels could potentially influence 

the design and operation of both conventional and autonomous surface ships 

This study seeks to forecast fuel consumption for conventional and fully autonomous high-speed 

short-sea shipping vessels based on their operational profiles using AIS data, employing a bottom-

up approach. Furthermore, it evaluates the environmental impact and associated costs of these 

alternative marine fuels. The modeling considers key performance indicators (KPIs) and utilizes 

annual AIS data alongside ship specifications and port data. Predictions of fuel consumption are 

made using different marine fuels, employing a global warming potential approach in conjunction 

with design specifications and operational speeds. Additionally, the study assesses emission 

factors to determine environmental impacts and cost implications, integrating cost metrics for a 

comprehensive economic analysis. Sensitivity analyses are performed to evaluate the impact of 

variable inputs on the models, aiming to identify optimal marine alternative fuels that not only 

comply with environmental policies but also offer high profitability. 

This research makes significant contributions to the existing literature by introducing a novel 

application of the global warming potential approach tailored specifically for conventional and 

autonomous ships. This approach facilitates the assessment of mass emission rates, global 

warming potential, environmental impact, real-time fuel consumption, and associated costs for 

proposed alternative fuels. Moreover, the study introduces sensitivity and stochastic analyses that 

explore the effects of varying load factors, vessel speeds, emissions, and nautical miles on the 

selection of optimal marine alternative fuels. Prior literature has typically overlooked such detailed 

sensitivity analyses. Additionally, this research leverages port data from Los Angeles and Long 

Beach to develop a comprehensive mathematical model for environmental-economic assessments 
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specific to the chosen vessels. This model serves as a valuable tool for marine stakeholders to 

evaluate emission policies and identify feasible marine fuels that offer both environmental benefits 

and economic viability for short-sea shipping operations. 

The rest of the paper is organized as follows: Section 4.2 introduces the materials and methods, 

which include data collection and the features for evaluating fuel consumption; environmental and 

cost analyses for the proposed marine alternative fuels are detailed. The results and discussion are 

presented in Section 4.3 and Section 4.4 respectively. Section 4.5 provides concluding remarks as 

well as perspectives on potential future research directions. 

4.2. Materials and Methods 

The ship's AIS data, specifications, and port information are employed to determine power, energy, 

and fuel consumption. Additionally, parameters of the proposed marine alternative fuels are 

integrated with this data for environmental and cost analyses using the global warming potential 

approach, with the aim of identifying KPIs. Sensitivity analyses are conducted for each alternative 

fuel across both conventional and autonomous vessels to validate their test results. Furthermore, a 

stochastic analysis is specifically conducted on the optimal alternative marine fuel for the chosen 

vessel. All computations take place within a Python environment, and detailed explanations, along 

with relevant equations used in the mathematical model, are provided in the subsequent sections. 

Figure 17 depicts the analysis flowchart. All computations are performed in a Python 3.11.6 

environment, with comprehensive explanations and relevant equations presented in subsequent 

sections. This framework is specifically designed to evaluate fuel consumption and emissions 

based on ship AIS data and particulars. 

The program begins by importing essential libraries, including Pandas for data manipulation, 

NumPy for numerical calculations, Matplotlib and Seaborn for visualizing fuel consumption, 

emissions, KPIs, and NPV, as well as Statsmodels for advanced statistical modeling and SciPy for 

statistical analysis and distributions. 

Initially, the AIS dataset is loaded, and critical parameters such as ship particulars, engine power, 

fuel properties, and emission factors (as outlined in tables in section 4.2.4), along with financial 

data, are defined. The data undergoes preprocessing to ensure it is clean and properly formatted, 

addressing any missing values and converting units as required. 
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The core of the code includes functions that calculate fuel consumption based on ship speed and 

engine power, estimate emissions based on the fuel consumed, and compute key performance 

indicators to offer insights into fuel efficiency and operational costs. Additionally, NPV is 

calculated to assess the financial viability of the vessel's operations over its service life. 

Furthermore, the code incorporates sensitivity and stochastic analyses to evaluate how variability 

in key parameters—such as fuel cost, distance, speed, emission cost, load factor, and rate—affects 

the NPV results for fully autonomous vessels. The stochastic analyses model uncertainty in these 

key parameters concerning the NPV. The findings are visualized through various plots, illustrating 

trends in fuel consumption, emissions, NPV, and KPIs over the vessel's service life.  

4.2.1. Ship Main Particulars and Navigation Route 

For this research, we have selected a high-speed passenger ferry (HSPF) and a tugboat as the 

vessels under study. Ship specifications for these two vessels are sourced from various entities 

including the MarineTraffic [146], shipbuilders, fleet operators, port, and they are presented in 

Table 17. Similarly, details regarding operating modes and coverage are extracted from Automatic 

Identification System (AIS) data obtained from MarineTraffic. According to the AIS data and ship 

data, the high-speed passenger ferry (HSPF) shuttles passengers and goods between the mainland 

(specifically the Port of Los Angeles and the Port of Long Beach) and Santa Catalina Island 

(Avalon). Additionally, the tugboat operates within the ports of Los Angeles and towing vessels 

from the Port of Los Angeles to either the Port of Long Beach or Seal Beach. A segment of the 

navigation routes is illustrated in Figure 18. 
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Figure 17: Flowchart of the data analysis process for marine alternative fuels in conventional and fully autonomous vessels 
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Table 17 : Main particulars for the conventional vessels adapted from [146]. 

Parameters Vessel 1 Vessel 2 

Ship Type HSPF Tugboat 

Overall Length (m) 44.20 25 

Breadth (m) 10.45  10 

Draft (m) 3.96 5 

Gross Tonnage (ton) 462 298 

Design Speed (knots) 37 12.5 

Number of Passenger,  381 2 - 6 

Main Engine Power(kW) 6,869.56 3,840.35 

Aux Engine Power (kW) 198 250 

Navigation Route(s) Avalon – Long Beach 

Avalon –Los Angeles 

Los Angeles - Long 

beach Los Angeles – 

Seal Beach 

 

 

Figure 18: A segment of navigation routes depicted on a map sourced from Google maps [147]: 

(a) HSPF, (b) tugboat. 
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4.2.2. Estimation of Fuel Consumption 

Fuel consumption in vessels occurs during propulsion and while powering auxiliary systems 

onboard. Therefore, to accurately assess total fuel consumption per voyage, it is essential to 

consider factors such as ship speed, load factor, and power demand along navigation routes must 

be considered. 

4.2.2.1. Ship Speed 

The speed of a vessel is directly correlated with its fuel consumption. As a result, the operational 

pattern of the vessel along navigation routes is segmented into three distinct phases based on speed 

and engine load: cruising mode, maneuvering mode, and idling (or hoteling) mode. In cruise mode, 

operational activities are governed by the inputs of cruise distance and speed. Typically, for 

conventional vessels, the cruising speed (Vcrus,conv) exceeds 12 knots for normal cruising and falls 

within the range of 8 knots to 12 knots for low cruising speed. In maneuvering mode, the vessel's 

speed is determined based on the nautical distance from land or to the port (that is, from the port 

entrance to the berth, pier, wharf, or dock). For instance, at ports like the Port of Los Angeles (San 

Pedro) and Port of Long Beach, maneuvering operations occur within the precautionary area, 

limiting the maneuvering speed for conventional vessels (Vman,conv) to less than 12 knots [148], 

[149].  

In the case of idle mode, when the ship is at berth or anchorage, the main engines are shut off, 

resulting in a speed of zero (𝑉𝑖𝑑𝑙𝑒,𝑐𝑜𝑛𝑣), while the auxiliary engines continue to operate. Table 18 

presents the estimated average speeds for the vessels using real-time data for the three operational 

modes based on AIS data.  

Table 18: Average daily estimates for marine vessels across two operational modes. 

Type of Vessels  Average Cruising (knots) Average Maneuvering (knots) 

HSPF 23.70 10.25 

Tugboat 9.50 6.70 
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4.2.2.2. Load Factor (LF) 

The load factor represents the percentage of the vessel’s total power. Utilizing AIS data for the 

vessels, the estimation of the load factor for the main engines (LFME,i) is derived. Hence, by 

employing the Propeller Law, the LFME,i is determined as follows [150], [151]: 

𝐿𝐹𝑀𝐸,𝑖  = (
𝑉𝑎𝑣𝑔,𝑐𝑜𝑛𝑣,𝑖

𝑉𝑚𝑎𝑥
)
3

=  (
𝑉𝑎𝑣𝑔,𝑐𝑜𝑛𝑣,𝑖

(
𝑉𝑑𝑒𝑠𝑖𝑔𝑛
0.937 )

)

3

     

                           (34) 

where 𝐿𝐹𝑀𝐸,𝑖 is the load factor for the main engine, i  represents the vessel operating modes (that 

is, cruising, maneuvering, and idling), Vavg,conv,i is the average speed for the operational modes in 

Table 18 (knots),  Vmax is the maximum speed (knots), and  𝑉𝑑𝑒𝑠𝑖𝑔𝑛 is the design speed (knots), 

and 0.937 represents a safety margin that offers a conservative estimate for maximum speed, 

ensuring that the vessel can operate effectively under various conditions while minimizing the risk 

of damage or excessive strain on the propulsion system. In addition, if the determined 𝐿𝐹𝑀𝐸,𝑖 is 

less than 2%, it is adjusted to a minimum of 2% [150] this is to ensure a baseline level of efficiency 

and to maintain consistency in performance metrics. 

The same activity-based calculation formula was applied to the auxiliary engine. However, since 

these engines are primarily used for providing electricity rather than propulsion, their loads are 

independent from the vessel speed. In addition, given the limited data available regarding onboard 

auxiliary engines, the load factors (𝐿𝐹𝐴𝑢𝑥,𝑖) were derived from a technical report conducted by the 

US Environmental Protection Agency for the ports of Los Angeles and Long Beach [150], [152]. 

Table 19 presents the estimated load factors for both main engines and auxiliary engines. 

Table 19: Estimated load factors of the main engines and auxiliary engines for the vessels.  

Engine Type Type of Ships Cruising Maneuvering Idling 

Main Engines 

HSPF 21.82% 2.00%1 - 

Tugboat 26.10% 3.87%  - 

Aux Engines 

HSPF 17% 45% 22% 

Tugboat 17% 45% 22% 

1.The determined value is 1.76%, but it has been adjusted to 2% for the purpose of this research. 
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4.2.2.3.  Ship Power Demand and Energy Consumption 

The load demand varies for each mode of operation and is specific to each vessel. Consequently, 

the power requirements for the vessel and its integrated auxiliary systems are met by the onboard 

main engines and auxiliary engines. To illustrate, the effective power generated by the main 

engines for propelling the conventional ship (Peff,ME−conv) is calculated as follows: 

𝑃𝑒𝑓𝑓,𝑀𝐸−𝑐𝑜𝑛𝑣  = 𝑃𝑛𝑜𝑚−𝑀𝐸,𝑐𝑜𝑛𝑣 ∗ 𝜂𝑀𝐸 ∗ 𝐿𝐹𝑀𝐸,𝑖                      (35) 

where Pnom−ME,conv is the total nominal power of the main engine (kW), and ηME denotes the 

efficiency of the main engines which falls within the range of 70% - 90% [153]. 

Likewise, while the vessel is in port during idling mode, the auxiliary engines are operational, and 

the resultant effective power generated by the installed auxiliary engines on the conventional 

vessel (𝑃𝑒𝑓𝑓,𝐴𝑢𝑥−𝑐𝑜𝑛𝑣 ) at an efficiency (𝜂𝐴𝑢𝑥) of 95% [154] is represented as follows: 

Hence, the total power required (𝑃𝑡𝑜𝑡𝑎𝑙−𝑐𝑜𝑛𝑣) for the conventional ship, considering all three 

modes of operation, is calculated as follows: 

 

𝑃𝑚𝑎𝑛−𝑐𝑜𝑛𝑣 = 𝑃𝑛𝑜𝑚−𝑀𝐸,𝑐𝑜𝑛𝑣 ∗ 𝜂𝑀𝐸 ∗ 𝐿𝐹𝑀𝐸,𝑚𝑎𝑛  + 𝑃𝑛𝑜𝑚−𝐴𝑢𝑥,𝑐𝑜𝑛𝑣 ∗ 𝜂𝐴𝑢𝑥
∗ 𝐿𝐹𝐴𝑢𝑥,𝑚𝑎𝑛          

(38) 

 

𝑃𝑖𝑑𝑙𝑒−𝑐𝑜𝑛𝑣 = 𝑃𝑛𝑜𝑚−𝐴𝑢𝑥,𝑐𝑜𝑛𝑣 ∗ 𝜂𝐴𝑢𝑥 ∗ 𝐿𝐹𝐴𝑢𝑥,𝑖𝑑𝑙𝑒                          (39) 

 

 

where 𝑃𝑐𝑟𝑢−𝑐𝑜𝑛𝑣 is the cruising power for the conventional ship (kW), LFME,cru and 𝐿𝐹𝐴𝑢𝑥,𝑐𝑟𝑢 are 

the load factors for main and auxiliary engine at cruising state (%), 𝑃𝑚𝑎𝑛−𝑐𝑜𝑛𝑣 is the maneuvering 

power for the conventional ship (kW), LFME,man and 𝐿𝐹𝐴𝑢𝑥,𝑚𝑎𝑛 are the load factor for the main 

𝑃𝑒𝑓𝑓,𝐴𝑢𝑥−𝑐𝑜𝑛𝑣 = 𝑃𝑛𝑜𝑚−𝐴𝑢𝑥,𝑐𝑜𝑛𝑣 ∗ 𝜂𝐴𝑢𝑥 ∗ 𝐿𝐹𝐴𝑢𝑥,𝑖                          (36) 

𝑃𝑐𝑟𝑢−𝑐𝑜𝑛𝑣 = 𝑃𝑛𝑜𝑚−𝑀𝐸,𝑐𝑜𝑛𝑣 ∗ 𝜂𝑀𝐸 ∗ 𝐿𝐹𝑀𝐸,𝑐𝑟𝑢  + 𝑃𝑛𝑜𝑚−𝐴𝑢𝑥,𝑐𝑜𝑛𝑣 ∗ 𝜂𝐴𝑢𝑥 ∗ 𝐿𝐹𝐴𝑢𝑥,𝑐𝑟𝑢   (37) 

𝑃𝑡𝑜𝑡𝑎𝑙−𝑐𝑜𝑛𝑣 = 𝑃𝑐𝑟𝑢−𝑐𝑜𝑛𝑣 +  𝑃𝑚𝑎𝑛−𝑐𝑜𝑛𝑣 + 𝑃𝑖𝑑𝑙𝑒−𝑐𝑜𝑛𝑣                           (40) 
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and auxiliary engines at maneuvering state (%),  𝑃𝑖𝑑𝑙𝑒−𝑐𝑜𝑛𝑣 is the idle power for conventional ship 

(kW), and 𝐿𝐹𝐴𝑢𝑥,𝑖𝑑𝑙𝑒 is the load factor of auxiliary engine at idle state.  

Similarly, the total energy consumption by the conventional vessel (𝐸𝑡𝑜𝑡𝑎𝑙−𝑐𝑜𝑛𝑣) in kilowatt-hours 

(kWh) is estimated based on the ship's load and speed. Thus, the relationship between loads and 

the three states of operation in real-time is expressed as follows: 

𝐸𝑡𝑜𝑡𝑎𝑙−𝑐𝑜𝑛𝑣 = (𝑃𝑖𝑑𝑙𝑒−𝑐𝑜𝑛𝑣 ∗ 𝑇𝑖𝑑𝑙𝑒,𝑐𝑜𝑛𝑣) + 𝑃𝑚𝑎𝑛−𝑐𝑜𝑛𝑣 ∗ (
𝑁𝐷𝑚𝑎𝑛,𝑐𝑜𝑛𝑣
𝑉𝑚𝑎𝑛,𝑐𝑜𝑛𝑣

) + 𝑃𝑐𝑟𝑢−𝑐𝑜𝑛𝑣

∗ (
𝑁𝐷𝑐𝑟𝑢𝑠,𝑐𝑜𝑛𝑣
𝑉𝑐𝑟𝑢𝑠,𝑐𝑜𝑛𝑣

)                

(41) 

 

where 𝑉𝑐𝑟𝑢𝑠,𝑐𝑜𝑛𝑣 denotes the instantaneous cruising speed for the conventional ferry (knots), 

NDman,conv is the nautical distance from berth during maneuvering phase (NM), 𝑁𝐷𝑐𝑟𝑢𝑠,𝑐𝑜𝑛𝑣 

denotes the length of navigation route per one-way trip during cruising (NM), and Vman,conv 

represents the instantaneous maneuvering speed for the conventional vessel (knots). 

In the case of fully autonomous ships, we assume that they share the same dimensions and 

navigation routes as conventional ships to prevent excessive fuel consumption. Moreover, the 

absence of a ship crew results in a reduction in the required auxiliary power [155], as well as the 

elimination of crew living quarters and certain applicable auxiliary systems, which affects the 

vessel's displacement, decreases the space consumption [156] and required propulsion power [46]. 

For instance, studies have shown that a fully autonomous container vessel can achieve energy 

savings of up to 74.5% compared to a conventional one, primarily due to the elimination of 

facilities and equipment used by sailors [46]. The vessels utilized in our research are short-sea 

vessels, which return to port after each trip, as opposed to container ships that undertake long 

voyages. However, the assumptions in this study are derived from findings concerning fully 

autonomous container vessels, owing to the limited data available on energy consumption for fully 

autonomous tugboats and high-speed ferries. However, in our research, although there is no ship 

crew, passengers are still onboard. Therefore, we assume that the total power required by 

autonomous vessels is 40% lower than their respective conventional ships [145]. By substituting 

these assumptions into Equation (40) and Equation (41), it follows that the total power  
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 (𝑃𝑡𝑜𝑡𝑎𝑙−𝑎𝑢𝑡𝑜) and energy consumption (𝐸𝑡𝑜𝑡𝑎𝑙−𝑎𝑢𝑡𝑜) for fully autonomous vessels are 40% lower 

than 𝑃𝑡𝑜𝑡𝑎𝑙−𝑐𝑜𝑛𝑣 and Etotal−conv, respectively. Additionally, we anticipate a 30% increase in energy 

and power requirements to accommodate potential expansions and uncertainties in loads in the 

near future. Consequently, we have substituted these values into the subsequent equations in 

subsections 4.2.3 – 4.2.5 for fully autonomous vessels. 

4.2.3. Proposed Alternative Fuels for the Marine Vessels  

 The use of fuel by marine engines is vital in the propulsion of ships and for providing power to 

other fitted systems on board. To reduce the rate of GHG emissions, the IMO has proposed 

enforcing stringent rules and regulations on ships’ emissions. As a result, the IMO has teamed up 

with the Global Industry Alliance in support of low-carbon shipping in the marine industry [132], 

[157] via the use of alternative low- and zero-carbon fuels [158]. The alternative marine fuels 

include conventional fuels (marine diesel oil (MDO), heavy fuel oil (HFO), marine gas oil (MGO), 

biofuel (B20), methane (or liquefied natural gas (LNG)), hydrogen, methanol, battery-electric, 

ethanol, dimethyl ether (DME), liquefied petroleum gas (LPG), ethane, and ammonia) [94], [159]. 

The applications of the aforementioned fuels are not limited to environmental impacts but also 

economic criteria, fuel properties, effects on the propulsion system, and safety handling criteria 

[160], just to mention a few. However, for this research, only the first six alternative marine fuels 

will be considered due to their maturity regarding regulatory readiness levels. 

4.2.3.1. Diesel - Propelled Marine Vessel 

Formally, marine diesel fuel encompasses any type of diesel used in seagoing vessels. The three 

primary marine fuels are Marine Diesel Oil (MDO), Heavy Fuel Oil (HFO), and Marine Gas Oil 

(MGO) distinguished by their sulfur contents. For instance, MDO, readily available, is composed 

of various distillate blends with a minor inclusion of HFO. In addition, it possesses a slightly 

greater density and exhibits a lower cetane value as compared to MGO [152]. Similarly, HFO, 

with a higher sulfur content, requires the use of approved exhaust gas cleaning systems (or 

scrubbers) [161] when used onboard vessels. Likewise, MGO, comprising a blend of distillates, 

features a lower sulfur content compared to HFO and MDO [161]-[163].  
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Additionally, most existing marine engines and fuel-burning equipment are specifically 

engineered for the use of HFO, MDO, or MGO [161].  The total fuel consumption of the marine 

engine is determined by its overall energy usage, which is expressed as follows: 

𝐹𝐶𝑑𝑖𝑒𝑠𝑒𝑙−𝑐𝑜𝑛𝑣 = 𝐸𝑡𝑜𝑡𝑎𝑙−𝑐𝑜𝑛𝑣 ∗ 𝑆𝐹𝐶𝑑𝑖𝑒𝑠𝑒𝑙                         (42) 

where 𝐹𝐶𝑡𝑜𝑡𝑎𝑙−𝑐𝑜𝑛𝑣 denotes the fuel consumption per trip (kg), and 𝑆𝐹𝐶𝑑𝑖𝑒𝑠𝑒𝑙 is the specific fuel 

consumption (kg/kWh). The 𝑆𝐹𝐶𝑑𝑖𝑒𝑠𝑒𝑙  for slow-speed diesel vessels and high -speed diesel vessels 

are 0.165 kg/kWh and 0.210 kg/kWh respectively [164], [165]. Likewise, the annual mass flow 

rate of the total fuel consumption (𝑚̇𝑐𝑜𝑛𝑣) (kg/h) is estimated as follows: 

𝑚̇𝑑𝑖𝑒𝑠𝑒𝑙−𝑐𝑜𝑛𝑣 = ∑
𝐹𝐶𝑑𝑖𝑒𝑠𝑒𝑙−𝑐𝑜𝑛𝑣

(𝑇𝑐𝑟𝑢𝑠,𝑐𝑜𝑛𝑣  + 𝑇𝑚𝑎𝑛,𝑐𝑜𝑛𝑣 + 𝑇𝑖𝑑𝑙𝑒,𝑐𝑜𝑛𝑣)

𝑛=𝑁

𝑛=1

= ∑
𝐹𝐶𝑑𝑖𝑒𝑠𝑒𝑙−𝑐𝑜𝑛𝑣
𝑇𝑡𝑜𝑡𝑎𝑙,𝑐𝑜𝑛𝑣

𝑛=𝑁

𝑛=1

 

       (43) 

where N is the total number of trips in a year (unitless), 𝑇𝑐𝑟𝑢𝑠,𝑐𝑜𝑛𝑣 is the cruising time (hrs.), and 

𝑇𝑡𝑜𝑡𝑎𝑙 denotes the total hours in the context of the ships' operational profiles for the entire year 

(hrs.). 

These fuels use the preexisting propulsions and fuel systems, therefore, the total investment costs 

(𝐼𝐶i,𝑐𝑜𝑛𝑣) and the total operating cost of fuel (𝐶𝐹total−i,𝑐𝑜𝑛𝑣) for the MDO, HFO, and MGO are 

determined as follows: 

 

where 𝐶𝑖 denotes the investment cost which ranges from 240 - 460 USD/kW [166], 𝐶i−𝑓𝑢𝑒𝑙 is the 

cost of  fuel  (USD/kg), and i denotes the type of fuel. The cost of MDO, HFO, and MGO are 3.09 

USD/kg [167], 0.511 USD/kg [168] and 0.956 USD/kg [169] respectively. In addition, the 

maintenance cost of the diesel-propelled conventional marine vessel is 50 USD/kW [170]. 

Nevertheless, the maintenance cost for the fully autonomous vessel exhibits a 15% increment, 

attributed to the elevated necessity of skilled ship crew members required for the maintenance of   

𝐼𝐶𝑑𝑖𝑒𝑠𝑒𝑙−𝑐𝑜𝑛𝑣 =  𝐶𝑖𝑛 ∗ 𝑃𝑡𝑜𝑡𝑎𝑙−𝑐𝑜𝑛𝑣    (44) 

𝐶𝐹total−i,𝑐𝑜𝑛𝑣 = 𝐶i−𝑓𝑢𝑒𝑙 ∗ 𝐹𝐶𝑑𝑖𝑒𝑠𝑒𝑙−𝑐𝑜𝑛𝑣    (45) 
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the ship while at berth [145]. This percentage increase is applied to the fully autonomous ship 

powered by the other alternative fuels. 

4.2.3.2. Hydrogen- Propelled Marine Vessel 

In terms of propulsion, the use of the above fuels in the preceding engines are feasible, with the 

exception of hydrogen, which can only be applied to four-stroke engines (shorter voyage) due to 

ample hydrogen storage space requirements and safe handling of the generated hydrogen [116]. 

The vessel’s propulsion system is motor-driven via electrical power [110]. We proposed proton 

exchange membrane fuel cells (PEMFC) over the solid oxide fuel cells (SOFC) due to their quicker 

start-up time, strong dynamic responsiveness, operation at low temperature, and excellent power 

density [171]. 

The hydrogen fuel use in the PEMFC is produced through two different methods. The first option 

is via electrolysis of water using renewable energy sources (H2 - Ren) [172], as a result the 

generated hydrogen is considered low or net-zero emission [94].  In addition, the second method 

is from fossil fuels (H2 - F). This approach generates a significant amount of CO2 as a byproduct 

during its production. In contrast, the utilization of hydrogen in combustion or fuel cells does not 

result in CO2 emissions [173]. Thus, the required mass of hydrogen consumption by the PEMFC 

(𝐹𝐶ℎ𝑦𝑑−𝑐𝑜𝑛𝑣) (kg) in both options is determined as follows [174]:  

 

 

where 𝜂𝐹𝐶  is the fuel cell efficiency during beginning of life (51%), and 𝐿𝐻𝑉 denotes the lower 

heating value of hydrogen (120,000 KJ/kg). In addition, the annual mass flow rate of the total 

hydrogen fuel consumption (𝑚̇ℎ𝑦𝑑−c𝑜𝑛𝑣) (kg/h), is estimated by substituting 𝐹𝐶ℎ𝑦𝑑−𝑐𝑜𝑛𝑣 into 

Equation (43). We presume that the PEMFC power system will engage in cold-ironing while at 

berth. This is to aid in the warming of the system until it reaches its designated operating 

temperature and for the production of electric power. The power demand by fuel cell components 

from shore power (𝑃hyd,shore−𝑐𝑜𝑛𝑣) (kW) is determined as follows:  

𝐹𝐶ℎ𝑦𝑑−𝑐𝑜𝑛𝑣 =
𝐸𝑡𝑜𝑡𝑎𝑙−𝑐𝑜𝑛𝑣
𝜂𝐹𝐶 ∗ 𝐿𝐻𝑉

 
                  (46) 

𝑃hyd,shore−𝑐𝑜𝑛𝑣 =  1.30 ∗ Pidle−conv          (47) 
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Therefore, the annual cost of cold-ironing is 𝑃hyd,shore−𝑐𝑜𝑛𝑣 times the idling time and  the shore 

power charging fees (𝑆𝐶𝑐𝑜𝑠𝑡 ) of 0.20USD/kWh [175]. In addition, the total investment cost 

(𝐼𝐶hyd−𝑐𝑜𝑛𝑣) of PEMFC and its accessories is determined as follows: 

where 𝐶𝑖𝑛−𝐹𝐶 is the initial investment cost for PEMFC, which is in the range of 730 – 2,860 

USD/kW [166], and 𝐶𝑎𝑐𝑐  represents the cost of accessories, which consist of gas supply system 

and type IV 700 bar hydrogen storage tanks - and ranges from 576-868 USD/kW [166]. Likewise 

the replacement cost is 40% of the total component cost [176], and annual maintenance cost is 6% 

of the total capital cost per lifetime [177]. The cost of green hydrogen fuel (option 1) and blue 

hydrogen fuel are 4.5-12 USD/kg and 1.8 – 4.7 USD/kg respectively [178]. Thus, total cost for the 

hydrogen fuel (𝐶𝐹hyd,𝑐𝑜𝑛𝑣) is determined as similar by substituting the cost of fuel and 𝐹𝐶ℎ𝑦𝑑−𝑐𝑜𝑛𝑣 

into Equation (45). 

 

4.2.3.3. Battery or Electric - Propelled Marine Vessel 

The battery electric systems onboard vessels are operated in three different ways: as  hybrid, plug-

in hybrid, and fully electric [94]. For this research, we focus on fully electric systems, where the 

battery bank stores the necessary energy for propulsion and to satisfy the auxiliary loads. The 

advantage of electrifying  ships is the elimination of GHG emissions [94]. Additionally, lithium-

ion (Li-ion) batteries are considered for this research over the lead- acid batteries [91], nickel metal 

hybrid batteries [92], silver–zinc batteries, and open water-powered batteries due to their optimal 

chemical composition or battery chemistry [94], [179].  

To avoid excessive battery weight onboard, the battery capacity (𝐵𝑐𝑎𝑝−𝑐𝑜𝑛𝑣) (kWh) required by 

the fully battery-electric vessel is determined based on round trips using Equation (45). In addition, 

to prevent power failure, the battery capacity is increased by a power factor (Pf) of 20 % for the 

conventional vessel and 40% for the fully autonomous vessel to provide onboard power supply for 

a round trip.   

𝐼𝐶hyd−𝑐𝑜𝑛𝑣 =  𝐶𝑖𝑛−𝐹𝐶 ∗ 𝑃hyd−𝑐𝑜𝑛𝑣 + 𝐶𝑎𝑐𝑐 ∗ 𝑃hyd,shore−𝑐𝑜𝑛𝑣   (48) 
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where 𝜂𝐿𝑖−𝑖𝑜𝑛 is the efficiency of the Lithium-ion battery (100%) [180], 𝜂𝑚𝑜𝑡𝑜𝑟 is the efficiency 

of the DC motor (80%) [181], DOD denotes the battery depth of discharge (80%) [181], and 

𝜂𝑖𝑛𝑣𝑒𝑟𝑡𝑒𝑟 is the inverter efficiency (90%) [182]. Thus Equation (41) is substituted into Equation 

(50), but the average speeds, average nautical distances, and average duration are used. The 

investment cost (𝐵𝑖𝑛𝑣𝑒𝑠𝑡−𝑐𝑜𝑛𝑣) and cost for the shore power connection (𝐵𝐶𝑐𝑜𝑠𝑡−𝑐𝑜𝑛𝑣) for the 

battery bank are determined as follows: 

 

 

where Ninst is the number of times to install the battery bank during its lifetime (unitless), 𝐵𝑐𝑜𝑠𝑡  

is the initial cost of the Li-ion marine battery which ranges from 500 – 1000 USD/kWh [166], and 

EMcost is the cost of the electric motor which we assumed it to be equal to 250 USD/ kW. Also, 

we assumed that the battery bank needs replacement every 4–5 years. In addition, the annual cost 

of shore power connection is estimated by multiplying Equation (51) by the total number of 

voyages in a year. 

 

4.2.3.4.  B20 - Propelled Marine Vessel 

Biodiesel is a renewable and non-toxic fuel- that offers a cleaner combustion option, serving as a 

noteworthy alternative to conventional diesel. Its combustion results in diminished air emissions, 

encompassing reductions in soot, smoke, carbon monoxide, and GHG emissions [183], rendering 

it highly environmentally friendly.  

𝐵𝑐𝑎𝑝−𝑐𝑜𝑛𝑣 =
𝑃𝑓∗𝐸𝑡𝑜𝑡𝑎𝑙−𝑐𝑜𝑛𝑣∗2

𝜂𝐿𝑖−𝑖𝑜𝑛∗𝜂𝑚𝑜𝑡𝑜𝑟∗𝐷𝑂𝐷∗𝜂𝑖𝑛𝑣𝑒𝑟𝑡𝑒𝑟
         (49) 

𝐵𝑖𝑛𝑣𝑒𝑠𝑡−𝑐𝑜𝑛𝑣 = 𝑁𝑖𝑛𝑠𝑡 ∗ (𝐵𝑐𝑎𝑝−𝑐𝑜𝑛𝑣 ∗ 𝐵𝑐𝑜𝑠𝑡 + 𝑃𝑡𝑜𝑡𝑎𝑙−𝑐𝑜𝑛𝑣 ∗ 𝐸𝑀𝑐𝑜𝑠𝑡)          (50) 

𝐵𝐶𝑐𝑜𝑠𝑡−𝑐𝑜𝑛𝑣 =     𝐵𝑐𝑎𝑝−𝑐𝑜𝑛𝑣 ∗ 𝑆𝐶𝑐𝑜𝑠𝑡      (51) 
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In this research, we explore a biodiesel diesel blend, denoted as B20. This composite fuel consists 

of 20% biodiesel and 80% conventional diesel [184]. The adoption of B20 in lieu of traditional 

diesel enables ships - to achieve a potential reduction of up to 20% in GHG emissions [183]. 

The total B20 fuel consumption (𝐹𝐶𝐵20−𝑐𝑜𝑛𝑣) by the conventional vessel is determined as follows: 

𝐹𝐶𝐵20−𝑐𝑜𝑛𝑣 = 𝐸𝑡𝑜𝑡𝑎𝑙−𝑐𝑜𝑛𝑣 ∗ (0.20 ∗  𝑆𝐹𝐶𝑏𝑖𝑜𝑑𝑖𝑒𝑠𝑒𝑙 +  0.80 ∗ 𝑆𝐹𝐶𝑑𝑖𝑒𝑠𝑒𝑙)                      (52) 

 

where specific fuel consumption for biodiesel (𝑆𝐹𝐶𝑏𝑖𝑜𝑑𝑖𝑒𝑠𝑒𝑙) is 0.74 kg/kWh [185], [186]. 

Similarly, the mass flow rate of the total fuel consumption for B20 (𝑚̇𝐵20−𝑐𝑜𝑛𝑣) is estimated by 

dividing the annual 𝐹𝐶𝐵20−𝑐𝑜𝑛𝑣 by 𝑇𝑡𝑜𝑡𝑎𝑙,𝑐𝑜𝑛𝑣. 

The total investment cost of replacing the existing diesel power system with B20 power system is 

calculated by multiplying the initial investment cost of B20 system which ranges from 240 to 460 

USD/kW [166], by the total power (𝑃𝑡𝑜𝑡𝑎𝑙−𝑐𝑜𝑛𝑣). Similarly, the total cost of operating the B20 fuel 

is estimated by multiplying the cost of B20 fuel, which is 3.980 USD/ kg [187], by the total fuel 

consumption (𝐹𝐶𝑑𝑖𝑒𝑠𝑒𝑙−𝑐𝑜𝑛𝑣 ). The maintenance cost for a ship powered by B20 is comparable to 

that of a vessel powered by diesel. 

 

4.2.3.5. Liquefied Natural Gas (LNG) - Propelled Marine 

Vessel 

Liquefied Natural Gas (LNG) is regarded as a feasible substitute fuel for diverse classes of ships, 

encompassing those involved in deep-sea, short-sea, and inland navigation. The evaluation of 

various technologies has raised significant apprehensions regarding the potential shift of ships to 

LNG as the primary fuel source in recent times [188]. Furthermore, the current bunkering 

strategies implemented by shipping companies have a pivotal influence on the decision-making 

process between LNG and low-sulfur fuel [189].  

The fuel consumption of the LNG marine engine encompasses not just the direct utilization of 

LNG but also incorporates the consumption of pilot fuel [188]. The purpose of the  pilot fuel is to 

initiate the combustion process and to ensure a dependable source of ignition [190]. This dual-fuel   
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approach enables the vessel to curb the emission of pollutants. The mixing proportion of LNG and 

pilot fuel in a dual-fuel system is 98% and 2%,  respectively [191] .  

The total fuel consumption by LNG-propelled ship is calculated as follows: 

𝐹𝐶𝐿𝑁𝐺−𝑐𝑜𝑛𝑣 = 𝐸𝑡𝑜𝑡𝑎𝑙−𝑐𝑜𝑛𝑣 ∗ (0.98 ∗ 𝑆𝐹𝐶𝐿𝑁𝐺 +  0.02 ∗ 𝑆𝐹𝐶𝑝𝑖𝑙𝑜𝑡 𝑓𝑢𝑒𝑙)                    (53) 

 

where the 𝑆𝐹𝐶𝐿𝑁𝐺 and 𝑆𝐹𝐶𝑝𝑖𝑙𝑜𝑡 𝑓𝑢𝑒𝑙 represent specific fuel consumption for LNG (0.15 kg/kWh) 

and pilot fuel (0.02 kg/kWh) [188] respectively. 

The overall investment cost for the replacing  the existing diesel power system with an LNG power 

system is determined by multiplying the initial investment cost of  400USD/kW [166] by 

𝑃𝑡𝑜𝑡𝑎𝑙−𝑐𝑜𝑛𝑣. Likewise, the total operating cost of LNG fuel is estimated by multiplying the cost of 

LNG fuel, which is 1.560 USD/kg [168], by the total fuel consumption (𝐹𝐶𝐿𝑁𝐺−𝑐𝑜𝑛𝑣). The 

maintenance cost for the LNG-propelled ship is 0.005 USD/kWh [192] . 

 

4.2.3.6. Methanol - Propelled Marine Vessel 

Currently, methanol (MeOH) stands out as a prospective alternative to traditional fuels in maritime 

transport. Notably, methanol exhibits a heat of vaporization nearly four times higher than that of 

diesel fuel. This characteristic implies that methanol requires more heat energy for vaporization, 

leading to a charge cooling effect and a subsequent reduction in in cylinder temperature. 

Furthermore, the charge cooling effect contributes to a reduction in NOX emissions, attributable to 

its lower combustion temperature compared to diesel fuel [193], [194]. 

In this study, a combustion strategy involving the use of methanol–diesel is employed for ships 

powered by methanol. The primary fuel comprises 98% methanol, supplemented by 2% pilot fuel 

added to the methanol–air mixture within the cylinder to initiate ignition [54]. 

The calculation of fuel consumption for the ship powered by methanol (𝐹𝐶𝑚𝑒𝑡ℎ−𝑐𝑜𝑛𝑣) is as 

follows: 

𝐹𝐶𝑚𝑒𝑡ℎ−𝑐𝑜𝑛𝑣 = 𝐸𝑡𝑜𝑡𝑎𝑙−𝑐𝑜𝑛𝑣 ∗ (0.98 ∗  𝑆𝐹𝐶𝑚𝑒𝑡ℎ +  0.02 ∗ 𝑆𝐹𝐶𝑝𝑖𝑙𝑜𝑡 𝑓𝑢𝑒𝑙)              (54) 
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where SFCmeth is the specific fuel consumption of methanol which is equal to 0.48964 kg/kWh 

[195].  

The total investment cost for replacing the current diesel power system with a new methanol power 

system is computed by multiplying the initial investment cost of 265-505 USD/kW [166], by the 

total converted power (𝑃𝑡𝑜𝑡𝑎𝑙−𝑐𝑜𝑛𝑣). Similarly, the total operational cost of methanol is estimated 

by multiplying the cost, set at 0.520 USD/kg [168], by the total fuel consumption (𝐹𝐶𝑚𝑒𝑡ℎ−𝑐𝑜𝑛𝑣). 

The maintenance cost for the ship propelled by methanol is equivalent to that of the ship powered 

by diesel. 

4.2.4. Environmental Impact and Environmental Cost 

Assessments  

The marine vessels used for this case study are HSPF and a tugboat, which are known to cause a 

very high rate of emissions due to their speed and variable modes of transportation [138] 

Additionally, the internal combustion of marine fuels emits numerous of pollutants into the 

atmosphere. Therefore, this section presents a detailed discussion on the mass emission rate, global 

warming potential, environmental impact and damage cost. 

 

4.2.4.1.  Mass Emission Rate  

The mass emission rate is defined as the discharge rate of a pollutant, denoted by its weight per 

unit of time [196]. Similarly, the emissions factor refers to the quantity of pollutants emitted into 

the atmosphere relative to a specific activity [197]-[199]. The main pollutants associated with  

marine alternative fuels include carbon monoxide (CO), CO2, sulfur oxides (SOX), nitrogen oxide 

(NOX), nitrous oxide (N2O), particulate matter (PM) or black carbon, and unburned hydrocarbons 

(UHC) or methane (CH4) [200], [201]. The mass emission rate by each pollutant for the alternative 

fuels is expressed as follows: 

𝑚̇𝑖𝑗,𝑐𝑜𝑛𝑣 = 𝑚̇𝑐𝑜𝑛𝑣 ∗ 𝐸𝐹𝑗             (55) 

where 𝑚̇𝑖𝑗,𝑐𝑜𝑛𝑣 is the mass emission rate of each pollutant (kg/h), i is the type of alternative marine 

fuel, j denotes the type of pollutant from marine fuel (unitless), and  𝐸𝐹𝑗  denotes the emission 
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factor (g/kg-fuel), which is tabulated in Table 20. In addition, the Total Mass Emission Rate 

(TMER) of pollutants from a particular alternative fuel is calculated by aggregating the individual 

mass emission rates of the pollutants emitted by that specific alternative fuel. 

Table 20: Emission factors (EF) for marine alternative fuels (g/kg fuel) 

Alternative 

Fuels CO2 CO N2O NOx SOx PM CH4 

B20 

(Biofuel) 
- [202] 

2.52 

[184] 

0.15 

[202] 

61.21 

[202] 

2.64 

[202] 

1.02 

[202] 

0.06 

[202] 

HFO 3114 [201] 

2.87 

[201] 

0.18 

[201] 

78.61 

[201] 

50.83 

[201] 

7.53 

[201] 

0.05 

[201] 

Hydrogen  - [202] - [202] - [203] - [202] - [202] - [202] -  [203] 

LNG 2753 [201] 

3.57 

[201] 

0.10 

[201] 

10.95 

[201] 

0.03 

[201] 

0.18 

[201] 

51.6 

[202] 

Methanol 1375 [202] - [201] -  [202] 8 [202] - [201] -  [202] -  [202] 

MGO 3206 [204] 

0.70 

[204] 

0.181 

[201] 

51.23 

[204] 

2.741 

[201] 

0.971 

[201] 

0.051 

[201] 

MDO 3206 [201] 

2.54 

[201] 

0.18 

[201] 

57.62 

[201] 

2.74 

[201] 

0.97 

[201] 

0.05 

[201] 

1. The designation "MDO" in the 4th IMO GHG study refers to the emission factors (EFs) for both MGO and MDO. 

Consequently, some of the EFs assigned to MDO are also attributed to MGO.   

 

The table mentioned above presents the emission factors (EFs) for all alternative fuels under 

investigation, excluding electricity. Additionally, the EFs for B20 are sourced from references 

[184], [202] while hydrogen is considered to have zero emissions according to references [202] 

[203]. The EFs for HFO and MDO are derived exclusively from the Fourth IMO GHG report 

[201], whereas the EFs for LNG and methanol are obtained from both [201] [202] . Furthermore, 

the values for MGO are sourced from [201] [204] . In addition, the total mass emission rate 

(TMER) of pollutants from a particular alternative fuel is calculated by aggregating the individual 

mass emission rates of the pollutants emitted by that specific alternative fuel.  
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4.2.4.2. Global Warming Potential (GWP) 

The global warming potential a measure of the amount of energy a single ton of gas will consume 

over a specific period compared to one ton of CO2. The greater the GWP, the more a particular 

gas contributes to heating the earth in comparison to CO2 over that period [205]. Additionally,  

the typical time horizon used for regulatory the GWP assessments is 100 years [206], [207]. 

Although NOx and SOx are not classified as greenhouse gases (GHGs), they can exert indirect 

effects on the climate. Their primary impacts are localized, influencing air quality and human 

health; however, they may also have broader environmental repercussions. Consequently, they 

were included in the GWP calculations; thus, the total GWP of emissions (𝐺𝑊𝑃𝑖𝑗,𝑐𝑜𝑛𝑣) indicated 

by the GWP index (
𝑘𝑔

ℎ
 CO2 eqv.) is expressed  as follows [208]: 

𝑇𝐺𝑊𝑃𝑖𝑗,𝑐𝑜𝑛𝑣 = ∑ 𝑚̇𝑖𝑗,𝑐𝑜𝑛𝑣 ∗ 𝐺𝑊𝑃𝑗    

𝑛=𝑖

𝑛=1

 

            (56) 

where GWPj denotes the GWP value for each pollutant (unitless) as shown in Table 21. 

Table 21 Global warming potentials values for greenhouse gases, environmental impact factor, 

and environmental costs of emissions. 

Pollutants Global warning 

Potential (GWP) Value 

(unitless) 

Environmental Impact 

factor, b (mPts/kg) 

Environmental Cost of 

Emission, C (USD/kg) 2 

CO2 1[205]-[209]  5.45 [208], [210], [211] 0.128 [208], [210] 

CO 1 [208] 8.36 [208], [210], [211] 0.201 [208], [210] 

N2O  273 [205] 163.81 [212] 2.66 [211]  

NOx 310 [208]  2,749.36 [208] [213]    5.912 [208]  

SOx 23,900 [208]  1,499.37 [208]  9.670 [208] 

PM 460 [214] 240.00 [215] 40.40 [216] 

CH4 28 [209]-[217] 114.62 [208]  2.78 [208], [210] 

1 Converted from KG/TJ to mPts/kg.  2. These values have been converted to USD. 

 

The values for global warming potential (GWP), environmental impact factor (b), and 

environmental cost of each emission (C) are presented in Table 21. However, the cost values (C) 
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are originally reported in GBP/kg, and we have converted them to USD/kg to ensure consistency 

with the context of our research conducted in North America. 

4.2.4.3. Environmental Impact and Damage Cost  

The environmental impact (EI) is defined as the change to the environment resulting from a direct 

activity, which can have either adverse or beneficial consequences for the inhabitants of an 

ecosystem [218]. The total EI (TEI) for the marine engine emissions can be expressed as:  

𝑇𝐸𝐼𝑖𝑗,𝑐𝑜𝑛𝑣 =  ∑ 𝑚̇𝑖𝑗,𝑐𝑜𝑛𝑣 ∗ 𝑏𝑗    

𝑛=𝑖

𝑛=1

 

            (57) 

 where TEIij,conv signifies the total environmental impact (mPts/h) and bj denotes the 

environmental impact factor (mPts/kg) in Table 21. 

In addition, the environmental damage cost (EDC) is defined as the cost of emissions released into 

the atmosphere by the combustion of the marine alternative fuels [219]. Thus, the total EDC can 

be determined as follows:  

𝑇𝐸𝐷𝐶𝑖𝑗,𝑐𝑜𝑛𝑣 =  ∑ 𝑚̇𝑖𝑗,𝑐𝑜𝑛𝑣 ∗ 𝐶𝑗    

𝑛=1

𝑛=1

 

            (58) 

where TEDCij,conv denotes the total environmental damage cost (US$/h) and Cj denotes the 

environmental cost of emission (US$/kg) in Table 21. 

4.2.5. Total Cost Assessment 

The total cost assessment is the process of incorporating environmental cost into the cost analysis 

for a long term [220]. The cost analysis comprises of the capital cost, operating cost, voyage cost, 

and net present value, which are discussed in detail in the subsections. 

4.2.5.1. Capital Cost 

Capital cost refers to the expense associated with the ship. Additionally, the capital cost for the 

conventional ferry varies based on the marine vessel’s specific particular and conditions. The 

elimination of onboard ship crew, hoteling systems, and certain deckhouses for the fully 

autonomous ship directly affects the capital cost. Nevertheless, the implementation of the 

advanced sensors and control systems for onboard navigation and lookout systems at the shore 
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control center (SCC) leads to an increase in capital costs due to redundancy in these systems, 

resulting in an overall increase of 10% [170].  

 

4.2.5.2. Voyage Cost 

The voyage cost consists of the fuel cost for the engines, the environmental damage cost, and the 

port call costs. However, the port call cost is assumed to be 20% higher for the fully autonomous 

marine vessels due to the implementation of new framework and assistance from the SCC crew. 

Therefore, the annual voyage cost (𝑉𝐶annual,𝑐𝑜𝑛𝑣)  for the ship’s lifetime is determined as follows:   

where  𝑇𝑡𝑜𝑡𝑎𝑙,𝑐𝑜𝑛𝑣 is the total hours of operation per year (hrs.),  𝐷𝑡𝑜𝑡𝑎𝑙−𝑑𝑎𝑦𝑠,𝑐𝑜𝑛𝑣 is the total days 

of voyage in a year (days), 𝑃𝐶total−i,𝑐𝑜𝑛𝑣 is the port cost (124 USD/day)[221], and  𝐹𝐶total−i,𝑐𝑜𝑛𝑣 

is the annual fuel cost.  

 

4.2.5.3. Net Present Value (NPV) 

The net present value is the difference between the present cash inflows and outflows over a given 

period, at a discount rate of today’s value. The cashflow comprises the investment cost, operating 

cost, voyage cost, and cost of revenue.  Although the vessels chosen for this research have been in 

operation for more than a decade, we assume their respective engines  will be replaced after 25 

years, as a well-maintained marine engines can last for approximately 40 years [222]. Thus, the 

NPV for conventional vessels with a lifetime (t) of 25 years at a discount rate (r) of 5.50% [223] 

is determined as follows: 

 

𝑉𝐶annual,𝑐𝑜𝑛𝑣 = (TEDCij,conv ∗  𝑇𝑡𝑜𝑡𝑎𝑙,𝑐𝑜𝑛𝑣 + 𝐷𝑡𝑜𝑡𝑎𝑙−𝑑𝑎𝑦𝑠,𝑐𝑜𝑛𝑣 ∗ 𝑃𝐶total−i,𝑐𝑜𝑛𝑣

+ 𝐶𝐹total−i,𝑐𝑜𝑛𝑣) 

 

(59) 

𝑁𝑃𝑉𝑐𝑜𝑛𝑣 = (∑(
[𝑐𝑎𝑠ℎ𝑓𝑙𝑜𝑤]𝑡
[1 + 𝑟]𝑡

)

25

𝑡=1

) − 𝐼𝐶i,𝑐𝑜𝑛𝑣 

(60) 
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where 𝐼𝐶i,𝑐𝑜𝑛𝑣 represents the investment cost of the conventional vessel for the different marine 

fuels as specified in subsections 4.2.3.1 to 4.2.3.3. However, the investment cost for the fully 

autonomous ships (𝐼𝐶i,𝑎𝑢𝑡𝑜) is expected to be 30% higher than 𝐼𝐶i,𝑐𝑜𝑛𝑣 due to the newly fitted 

advanced sensors and control systems [170]. 

 

4.3. Results  

This study investigates KPIs for marine alternative fuels across both conventional and autonomous 

vessels, including total mass emission rate (TMER), total global warming potential (TGWP), total 

environmental impact (TEI), total environmental damage cost (TEDC), and net present value 

(NPV), as illustrated in Figure 19. The findings reveal that alternative fuels, such as H2-Ren, H2-

F, and Elec, exhibit zero environmental emissions and costs during ship operations. In contrast, 

traditional fuels like HFO, MDO, MGO, and MeOH demonstrate the highest TMER due to their 

pollutant constituents and mass flow rates, with B20 and LNG showing comparatively lower 

emissions. To illustrate, the TMER associated with traditional fuels is significantly impacted by 

their constituent pollutants and mass flow rates, whereas B20 and LNG exhibit a contrasting trend 

across different vessel types. Additionally, HFO ranks highest in TGWP, indicating substantial 

contributions to global warming, while LNG and MeOH have the lowest potential, suggesting a 

more favorable environmental profile. Regarding TEI, B20 has the highest TEI value, primarily 

due to incomplete combustion and increased NOx emissions, whereas LNG shows the lowest TEI 

value, indicating a lesser overall environmental impact. In terms of TEDC, HFO exhibits the 

highest TEDC, attributable to the environmental damage caused by SOx emissions, while LNG 

presents the lowest TEDC, showcasing its advantages in terms of environmental costs. All 

proposed marine fuels demonstrate viable economic values (NPVs), with LNG achieving the 

highest NPV owing to its fuel efficiency, lower capital costs, and significant environmental 

benefits, including reduced emissions of SOx, PM, NOx, and TGWP. 

Moreover, the analysis indicates that alternative marine fuels for autonomous vessels yield better 

environmental and economic outcomes compared to conventional vessels. This improvement is 

primarily due to reductions in fuel consumption, energy usage, operating costs, and the overall 

environmental footprint. A comparative analysis based on vessel types reveals that alternative 
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marine fuels for high-speed passenger ferries (HSPF) achieve lower emissions, benefiting from 

high operational speeds and engine efficiency. In contrast, tugboats emit more pollutants despite 

shorter navigation routes due to their lower operating speeds, continuous operation, and port 

activities. However, alternative fuels for tugboats exhibit higher NPV values than those for HSPF, 

a trend attributed to greater utilization rates, stable revenue streams, lower operating costs per unit 

of time or distance traveled and reduced initial capital investments. 

In summary, the data presented in Figure 19 underscores the significant differences in 

environmental impact and economic viability among various marine fuels. By illustrating these 

KPIs, the figure serves to enhance understanding of the advantages and challenges associated with 

alternative fuels in the marine sector, particularly in relation to both conventional and autonomous 

vessels. 

4.3.1. Sensitivity Analysis 

In this study, a sensitivity analysis is conducted to examine the critical technical and economic 

input variables with respect to the NPV of alternative marine fuels for both conventional and fully 

autonomous vessels. The input parameters considered for the analysis include rate, fuel costs, 

emission costs, vessel speed, load factor, and nautical miles (or navigation distance). These input 

parameters are systematically adjusted within a range from −50% to +50% with increments of 

10%. The outcomes of the sensitivity analyses for each vessel are depicted in Figure 20 through 

Figure 23. Specifically, Figure 20 illustrates the sensitivity analysis for the conventional high-

speed passenger ferry (HSPF), while Figure 21 focuses on the sensitivity analysis for the fully 

autonomous HSPF. Figure 22 depicts the sensitivity analysis for the conventional tugboat, and 

finally, Figure 23 presents the sensitivity analysis for the fully autonomous tugboat. It can be 

inferred that the figures from the sensitivity analyses demonstrate a consistent trend. 

The findings reveal that interest rate variation has the most significant impact on NPV values 

compared to the other five input parameters. Lowering the rate increases NPV by raising the 

present value of future cash flows, whereas increasing the rate decreases NPV. LNG consistently 

achieves the highest NPV across all vessel types while Elec and B20 exhibit the lowest NPV for 

conventional and fully autonomous HSPFs, respectively. Similarly, B20 has the lowest NPV for 

both conventional and fully autonomous tugboats.
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Figure 19: Results of the KPIs for the conventional and fully autonomous ships: HSPFs and 

tugboats  
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Following interest rates, load factor variation emerges as the second most critical parameter. A 

lower load factor results in higher NPV due to reduced operational and environmental costs per 

unit of distance traveled; while a higher load factor decreases NPV. Again, LNG records the 

highest NPV for all vessels, while Elec and B20 have the lowest NPV for conventional and fully 

autonomous HSPFs, respectively. Also, it shows the lowest NPV for both conventional and fully 

autonomous tugboats. 

Fuel cost variation is the third most significant input parameter with lower NPV values. Lower 

fuel costs lead to higher NPV due to reduced operational expenses per unit of distance traveled, 

while higher fuel costs have the opposite effect. LNG maintains the highest NPV for all ships, 

while Elec and B20 present the lowest NPV for conventional and fully autonomous HSPFs 

respectively. Similarly, B20 records the lowest NPV for both conventional and fully autonomous 

tugboats. 

Emission cost variation is the fourth most significant input parameter with low NPV values. Lower 

emission costs increase profitability due to reduced operational and environmental expenses, while 

higher emission costs have the opposite effect. LNG attains the highest NPV for all ships, while 

B20 records the lowest NPV. 

Nautical miles variation is ranked fifth, with shorter distances leading to reduced fuel consumption, 

emissions, and associated costs, resulting in higher NPV values. However, longer distances have 

the opposite effect. LNG records the highest NPV for all ships. Elec and B20 have the lowest NPV 

for conventional and fully autonomous HSPFs, respectively. B20 also records the lowest NPV for 

both conventional and fully autonomous tugboats. 

Lastly, speed variation is identified as the least significant parameter, recording the lowest NPV 

values among all parameters. Reducing ship speed leads to extended operational times, increased 

emissions, higher fuel and emission costs per unit of distance traveled, which impacts profitability 

and reduces NPV. Conversely, increasing ship speed results in the opposite outcome. LNG 

achieves the highest NPV for all ships. Elec has the lowest NPV for both conventional and fully 

autonomous HSPFs. Similarly, B20 records the lowest NPV for both conventional and fully 

autonomous tugboats. 
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In summary, LNG is determined to be the optimal choice for the four proposed vessels in this 

study. Autonomous vessels consistently achieved the best results in all scenarios, supporting the 

argument that implementing fully autonomous vessels would not only reduce pollutant emissions 

but also increase both profitability and potential revenue. Consequently, the subsequent section 

focuses exclusively on LNG-fueled vessels for the proposed fully autonomous HSPF and tugboat, 

using the same input parameters simultaneously to examine their respective impacts on NPV. 
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Figure 20: Sensitivity analysis for conventional HSPF: (a). HFO, (b). MDO, (c). MGO, (d). H2 Ren, (e). H2-F, (f).  Elec (g). B20 (h). LNG (i). 

MeOH.  
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Figure 21: Sensitivity analysis for fully autonomous HSPF: (a) HFO, (b) MDO, (c) MGO, (d) H2 Ren, (e) H2-F, (f) Elec, (g) B20, (h) 

LNG, and (i) MeOH  
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Figure 22: Sensitivity analysis for conventional tugboat: (a) HFO, (b) MDO, (c) MGO, (d) H2 Ren, (e) H2-F, (f) Elec, (g) B20, (h) 

LNG, and (i) MeOH  
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Figure 23: Sensitivity analysis for fully autonomous tugboat: (a) HFO, (b) MDO, (c) MGO, (d) H2 Ren, (e) H2-F, (f) Elec, (g) B20, 

(h) LNG, and (i) MeOH
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4.3.2. Stochastic Analysis 

This study employs stochastic analysis to ascertain the NPV of LNG-powered fully autonomous 

vessels, utilizing probability and random sampling techniques to assess performance and economic 

outcomes amidst uncertainty. Each input parameter is varied between a lower bound of -50% and 

an upper bound of +50% of its base value, with these variations applied simultaneously and 

uniformly across 1,000 model runs. 

Figure 24 presents the results of the tornado analysis and cumulative distribution function (CDF) 

for both the fully autonomous HSPF and tugboat. In the tornado analysis, which ranks uncertain 

input parameters by their impact, the rate emerges as the most critical factor affecting NPV 

estimates, suggesting that improving economic rate accuracy and reducing uncertainty could 

enhance these estimates. The load factor follows as the next crucial parameter, highlighting the 

significance of efficient load factor management in controlling operational costs. Therefore, 

enhancing energy efficiency through optimized hull designs and advanced propulsion systems is 

crucial for enhancing economic performance. The emission cost ranks third, indicating significant 

costs associated with regulatory compliance, which can fluctuate based on changes in regulations 

and fuel quality, underscoring the necessity for emission reduction technologies. For the fully 

autonomous HSPF, speed and nautical distance are significant factors, while fuel cost has the least 

impact on NPV variability. In contrast, for the fully autonomous tugboat, fuel cost is significant, 

followed by speed and nautical distance. These findings stress the importance of strategic rate 

setting, energy-efficient technologies, compliance with IMO regulations, and optimized 

operational planning for financial success. 

The stochastic analysis illustrates the range of potential financial outcomes for LNG-powered fully 

autonomous vessels through the CDF of the NPV. At the 5th percentile, NPV values for both 

vessels are zero, suggesting the possibility of no financial gain or a potential loss in worst-case 

scenarios, emphasizing the need for effective risk management. At the 95th percentile, NPV for 

the fully autonomous HSPF and tugboat is approximately 35 billion USD and 4 billion USD, 

respectively, indicating substantial profitability under favorable conditions. This extensive range 

illustrates the considerable uncertainty and variation associated with critical input parameters. 

These observations emphasize the necessity for meticulous management and optimization of these 

factors to enhance economic feasibility and address risks. The outcomes provide valuable 
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perspectives for guiding strategic decisions, validating investments, and ensuring compliance with 

regulatory and environmental objectives in the marine sector. 

In brief, this stochastic analysis reveals critical insights into the net present value (NPV) of LNG-

powered fully autonomous vessels, identifying interest rate, load factor, and emission costs as key 

determinants. The analysis underscores the potential for zero NPVs in adverse scenarios, 

highlighting the importance of effective risk management. Conversely, favorable conditions could 

yield substantial profitability, with NPVs reaching approximately 35 billion USD for high-speed 

passenger ferries and 4 billion USD for tugboats. These findings emphasize the need for strategic 

decision-making and operational optimization to ensure economic viability in the marine sector. 
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Figure 24: Result of stochastic analysis for fully autonomous HSPF and tugboat powered by LNG fuel 
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4.4. Discussion 

The pursuit of improved energy efficiency and reduced emissions in maritime operations is 

increasingly vital as the industry grapples with sustainability challenges. This study enhances the 

understanding of alternative marine fuels by conducting a comprehensive analysis using key 

performance indicators (KPIs), such as total mass emission rate (TMER) and net present value 

(NPV). This discussion contextualizes our findings within the existing literature, highlighting the 

contributions and unique insights of our research. 

The findings align with previous studies, such as those by Chen and Yang [137], which utilized 

automatic identification system (AIS) data for emission estimations. Our approach extends this 

methodology by integrating AIS data to evaluate both environmental and economic impacts across 

conventional and autonomous vessels, offering a more nuanced understanding of real-time 

operational dynamics. This integration addresses a noted gap in prior research that often relied on 

vessel-specific data, potentially limiting the applicability of findings. 

Furthermore, our results corroborate the work of Aarskog et al. [138] , which highlighted the 

economic feasibility of fuel cell (FC) propulsion. Our study builds on this by showcasing the zero 

emissions of hydrogen and electric options, contrasting starkly with traditional fuels like HFO and 

MDO, which exhibited the highest TMER. This reinforces the necessity for adopting cleaner fuels 

and aligns with calls for transitioning towards sustainable maritime practices. 

The analysis conducted by Jafarzadeh and Schjølberg [139] regarding optimal propulsion power 

utilization supports our findings on the operational efficiency of alternative fuels. Our results 

indicate that high-speed passenger ferries benefit significantly from alternative fuels, achieving 

lower emissions due to enhanced engine efficiency at operational speeds. This observation 

diverges from previous study that identified limited benefits in hybrid or electric integration for 

certain vessel types, such as ocean-going reefers, suggesting that our findings may indicate broader 

applicability of alternative fuels for high-speed vessels. 

Moreover, our research contributes a comprehensive mathematical model for assessing 

environmental and economic impacts, a feature underexplored in existing literature. This model, 

designed specifically for selected ships, offers stakeholders a practical tool for evaluating fuel 

options in line with environmental policies. Our stochastic analysis further distinguishes our study, 
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allowing for sensitivity assessments that have not been extensively covered in prior research. This 

analysis reveals how variations in load factors and operating conditions significantly affect NPVs, 

an aspect that previous studies often overlooked. 

While many studies, including those by Kouzelis et al.[140] and Kosmas and Acciaro [141], have 

focused on specific alternative fuels, our holistic approach enables a direct comparison of multiple 

fuels across various vessel types and operational profiles. This comparative analysis not only 

highlights the economic viability of LNG and biofuels but also underscores the necessity for 

adaptive regulatory measures to promote sustainable fuel use. 

In conclusion, this study provides valuable insights into the environmental and economic 

assessments of alternative marine fuels, building on previous research while introducing 

innovative methodologies. By addressing the simultaneous analysis of economic feasibility and 

emissions for both conventional and autonomous vessels, our findings advance the discourse on 

sustainable shipping solutions. The comprehensive mathematical model and stochastic analysis 

presented here serve as critical tools for industry stakeholders, guiding decisions that align with 

both ecological sustainability and economic performance. As the maritime sector evolves, the 

adoption of alternative fuels will be essential in achieving the dual goals of reducing emissions 

and enhancing energy efficiency, ultimately contributing to the global commitment to sustainable 

development. 
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4.5. Conclusion  

This research paper presents an effective approach aimed at reducing marine pollution and costs 

by determining the optimal marine alternative fuel for short-sea operating shipping vessels while 

maximizing energy efficiency. Utilizing mathematical models in a Python environment, analyses 

are conducted on both conventional and fully autonomous HSPFs and tugboats, employing 

bottom-up approaches, analyzing ship operating phases, and utilizing the global warming potential 

approach. 

The study's objective is to identify the optimal marine fuel with the highest NPV and minimal 

emissions that aligns with IMO regulatory standards, environmental objectives, and economic 

uncertainties. The analysis integrates ships' AIS data, specifications, and port information to 

determine power, energy, and fuel consumption while incorporating parameters of proposed 

marine alternative fuels for environmental and cost analyses. In addition, the key performance 

indicators (KPIs) are investigated for marine alternative fuels across both conventional and 

autonomous vessels, including TMER, TGWP, TEI, TEDC, and NPV. Sensitivity analyses are 

conducted for each alternative fuel to validate results, and a stochastic analysis is performed on 

the optimal marine fuel. 

The study identifies LNG fuel as the optimal choice for the proposed vessels, with autonomous 

vessels consistently yielding favorable results. Sensitivity analyses reveal the critical technical and 

economic input variables that affect NPV for both conventional and autonomous vessels. 

Additionally, stochastic analysis demonstrates the range of potential financial outcomes for LNG-

powered fully autonomous vessels. 

Despite significant constraints due to data limitations, the study underscores the importance of 

conducting further research to assess the techno-economic impacts and emissions effects of fully 

autonomous vessels across different navigation routes. Overall, the findings emphasize the need 

for meticulous management and optimization of critical input parameters to enhance economic 

feasibility and address risks, providing valuable insights for decision-making, justifying 

investments, and ensuring regulatory compliance in the marine sector.  
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CHAPTER 5. MODELING OF ENERGY 

MANAGEMENT SYSTEM FOR FULLY 

AUTONOMOUS VESSELS WITH HYBRID 

RENEWABLE ENERGY SYSTEMS USING 

NONLINEAR MODEL PREDICTIVE 

CONTROL VIA GREY WOLF 

OPTIMIZATION ALGORITHM 
 

In this chapter, we present a multi-objective predictive energy management system (EMS) for 

optimizing hybrid renewable energy systems (HRES) in autonomous marine vessels. The objective 

is to minimize fuel consumption and emissions while maximizing renewable energy usage and 

pure-electric sailing durations. The EMS combines nonlinear model predictive control (NMPC) 

with metaheuristic optimizers—Grey Wolf Optimization (GWO) and Genetic Algorithm (GA)—

and is benchmarked against a conventional rule-based (RB) method. The HRES architecture 

comprises photovoltaic arrays, vertical-axis wind turbines (VAWTs), diesel engines, generators, 

and a battery storage system. A ship dynamics model was used to represent propulsion power 

under realistic sea conditions. Simulations were conducted using real-world operational and 

environmental datasets, with state prediction enhanced by an Extended Kalman Filter (EKF). 

Performance is evaluated using marine-relevant indicators—fuel consumption, emissions, battery 

state of charge (SOC), and emission cost—and validated using standard regression metrics. The 

NMPC-GWO algorithm consistently outperformed both NMPC-GA and RB approaches, 

achieving high prediction accuracy and greater energy efficiency. These results confirm the 

reliability and optimization capability of predictive EMS frameworks in reducing emissions and 

operational cost in autonomous maritime operations  

This chapter is based on the following publication: H. Laryea and A. Schiffauerova, “Modeling of 

energy management system for fully autonomous vessels with hybrid renewable energy systems 

using nonlinear model predictive control via grey wolf optimization algorithm,” J. Mar. Sci. Eng., 

vol. 13, no. 7, p. 1293, 2025. [Online]. Available: https://doi.org/10.3390/jmse13071293  

https://doi.org/10.3390/jmse13071293
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5.1. Introduction 

Marine shipping represents the most energy-efficient mode of freight transportation, serving as the 

backbone of global trade. It is responsible for transporting 80 % of the world's goods by volume 

and over 70% by value. Although not the largest consumer, the maritime sector remains heavily 

dependent on fossil fuels [224], [225].The maritime industry—including container ships, bulk 

carriers, cruise liners, ferries, tankers and tugboats—has an estimated annual fuel consumption of 

approximately 330 million metric tons (87 billion gallons), surpassing the world’s annual jet fuel 

consumption of 220 million metric tons (1.4 billion barrels). With the anticipated growth in global 

trade, the overall demand for marine fuels is projected to double by 2030 [226]. While the shipping 

industry is one of the lowest contributors to carbon dioxide (CO2) emissions relative to other 

transportation modes, it accounts for approximately 3% of global greenhouse gas (GHG) 

emissions, with CO2 comprising the vast majority of these emissions [227]. According to recent 

IRENA projections, under a Business‐As‐Usual’ scenario, if current trends continue, marine CO₂ 

emissions could reach approximately 0.92 Gt per year by 2050—representing a nearly 65% 

increase from 2018 levels [228]. 

The International Maritime Organization (IMO) is actively implementing a global cap on marine 

fuels to mitigate emissions from the shipping sector. Thus the 2023 IMO strategy aims for zero or 

near-zero greenhouse gas (GHG) emission technologies and fuels to constitute at least 5%, with a 

target of 10%, of the energy used in international shipping by 2030 [11].This has led to increased 

interest in enhancing fuel efficiency and reducing the environmental impact of marine vessels. 

Utilizing high-efficiency power sources, such as fuel cells, along with renewable energy sources 

(RES) like wind and solar energy, offers promising solutions [76], [77], [229]. Moreover, the 

advent of maritime autonomous surface ships (MASS) positively influences environmental 

performance. In fully autonomous fleets the absence of onboard crew reduces energy consumption 

and pollution. [230], [231]. For instance, a fully autonomous container vessel can achieve a 74.5% 

reduction in energy usage compared to conventional vessels, primarily due to the removal of crew 

facilities. While such savings are specific to container ships, the example illustrates the broader 

potential of autonomous operation to improve energy efficiency in marine applications. 

Consequently, integrating autonomous MASS with renewable energy sources represents a viable 

strategy for decreasing GHG emissions in the maritime sector [48], [232]. Furthermore, the IMO’s 
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Interim MASS Code represents a goal-based, non-mandatory regulatory framework developed to 

support the safe design and operation of Maritime Autonomous Surface Ships (MASS). At 

MSC 105–108, IMO Member States advanced its development and approved a roadmap to finalize 

and adopt the non-mandatory MASS Code by mid-2025 [233], transitioning to a mandatory code 

by 2030 with expected entry into force by 1 January 2032 [234], [235]. In parallel, the Facilitation 

Committee (FAL 48) scheduled an assessment of the finalized Code in Spring 2025, including 

considerations for updating the FAL Convention [236]. The inclusion of the MASS Code in this 

study aligns the energy and propulsion strategy with internationally recognized standards for 

autonomous vessel operation. 

The optimal operation of hybrid renewable energy sources (HRES) within the shipboard power 

system (SPS) of fully autonomous vessels can enhance efficiency and reduce emissions during 

operations. For instance, the Mayflower Autonomous Ship—a fully autonomous, unmanned 

research vessel—features a state-of-the-art hybrid propulsion system integrating solar photovoltaic 

panels, wind-assist technology, and auxiliary diesel generators, demonstrating reduced reliance on 

fossil fuels and lower emissions during transatlantic trials [237], [238]. While specific performance 

data remain limited, such configurations illustrate the growing potential of HRES integration in 

reducing the environmental footprint of autonomous marine operations. However, challenges arise 

when integrating diverse energy sources, including complex power flow conditions, environmental 

conditions, and the need for coordination among multiple energy resources. A reliable integrated 

energy system is essential for improving fuel efficiency, reducing overall costs, and ensuring 

environmental sustainability, which underscores the necessity of an effective power management 

system (PMS) [229]. Measures to enhance energy efficiency on vessels include power and energy 

management, vessel performance optimization [239], [240], and power system reconfiguration 

[241]. The current strategies for the PMS and energy management systems (EMS) are generally 

categorized into rule-based (RB)  and optimization-based approaches [242]-[244].These 

classifications have been widely adopted in the automotive industry, particularly for hybrid electric 

vehicles [244], or in land-based applications. A comprehensive comparison of the advantages and 

disadvantages of these strategies is provided by Inal et al. [70] and Peng et al. [245]. Rule-based 

(RB) methods, on one hand, depend on human expertise, predefined strategies, and established 

priorities [246]-[248]. These methods are easier to implement, exhibit lower computational 

complexity, and are well-suited for real-time applications. In contrast, optimization-based 
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approaches, such as model predictive control (MPC) [7], [249]-[252], Pontryagin’s minimum 

principle, equivalent consumption minimization strategy (ECMS) [253]-[255], dynamic 

programming (DP) [256], [257], optimal control theory, and mixed-integer optimization [258], 

focus on real-time optimization. Additionally, various machine learning (ML) techniques [244], 

[259]-[261] have been employed in energy management systems. However, ML algorithms require 

extensive validation and training to ensure their real-time performance can be reliably maintained. 

The existing literature predominantly focuses on optimizing energy management systems for 

standalone hybrid generation systems aboard ships, primarily involving marine diesel engines, 

diesel generators, and energy storage. RB and ECMS have been extensively studied as effective 

methods for online implementation in hybrid propulsion and ship power distribution [248], [255]. 

To illustrate, Roslan et al. [248] applied the RB method to analyze an LNG hybrid tugboat system 

across four configurations: fixed speed, variable speed, and with or without a battery bank. The 

results indicate that the LNG-battery hybrid configuration is optimal, offering significant 

reductions in CO2 emissions, daily fuel costs, and improved energy efficiency compared to the 

other configurations. Similarly, Chan et al. [255] implemented an intelligent power management 

strategy to optimize real-time power distribution between the generator sets and batteries, aiming 

to reduce fuel consumption and emissions while meeting load requirements for the tugboat. The 

results demonstrated that the ECMS method achieved up to 18% fuel savings over the RB 

approach, assuming constant battery efficiency. Nevertheless, most recent and advanced works 

use predictive control for the power-split problem, and power plant performance. The MPC is a 

more effective method for EMS strategies due to its ability to simultaneously handle multivariable 

control and state with apparent real-time optimization effects [7], [239], [262]-[264]. For example, 

Haseltalab et. al. [239] proposed a multi-level model predictive control approach for DC-PPS, 

enabling effective power generation and stability control in constant power-loaded microgrids. 

Also, Haseltalab et. al. [7], applied an MPC-based predictive energy management (PEM) system 

for a hybrid autonomous tugboat, optimizing the energy split between onboard sources to enhance 

fuel efficiency and performance. This approach accounts for environmental disturbances during 

missions, improving the operation of all-electric autonomous vessels. Similarly, Haseltalab et. al 

[262], used MPC for the control of a diesel-generator-rectifier set and voltage stabilization in a DC 

Power and Propulsion Systems (DC-PPS). The control strategy is capable of handling sudden 

changes in load conditions as well as adverse effects of constant power loads (CPL). Furthermore, 
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some authors propose joint optimization algorithms [263], [264], to analyze EMS for the ships. To 

illustrate, Wang et al. [263], implemented MPC-PSO for dynamic optimization of ship energy 

efficiency, using a rolling optimization strategy to determine optimal sailing speeds based on real-

time environmental factors. The method effectively enhances energy efficiency and reduces CO2 

emissions for the cruise ship under varying weather conditions. Similarly, Xie et al. [264], 

designed a power management system (PMS) for Shipboard Power Systems (SPS) using MPC -

ECMS to handle high-frequency propulsion loads from sea wave conditions, efficiently 

distributing power between diesel generators and hybrid energy storage systems (HESSs) to 

minimize fuel consumption for an electrical ship. Whereas the MPC is widely recognized and 

demonstrates predictable performance, adaptive model predictive control (AMPC) offers greater 

flexibility and adaptability to real-time changes in system dynamics, resulting in improved 

performance in uncertain or time-varying conditions [265], [266]. For example, Hou et al. [265] 

used integrated power generation, electric motors, and hybrid energy storage control using AMPC 

to estimate and predict propulsion load torque across various sea states, improving system 

efficiency, enhancing reliability, and reducing mechanical wear. Similarly, Hou et al. [266] applied 

AMPC on both simulations and experiments to optimize power distribution between the battery 

and ultra capacitor (UC), aiming to mitigate load fluctuations and enhance system efficiency and 

reliability. Although, both MPC and AMPC algorithms are suitable for HRES, nonlinear MPC 

(NMPC) is considered optimal for standalone HRES under variable load and environmental 

conditions [250], [258], [267]. This is due to its ability to provide more accurate control without 

relying on linear approximations or model adjustments, in contrast to traditional MPC and AMPC. 

For example, Chen et al. [250], developed an energy management strategy to optimize ship energy 

use and torque distribution between the internal combustion engine and motor in random waves 

for a tugboat, while balancing fuel consumption and carbon emissions under reference operating 

conditions. The NMPC strategy outperforms the genetic algorithm (GA) and DP, effectively 

achieving energy conservation and emission reduction goals. Similarly, Planakis et al. [258] 

implemented an NMPC-based predictive energy management system to optimize fuel 

consumption and nitrogen oxides (NOx) emissions for parallel hybrid diesel-electric propulsion 

plants onboard a tugboat. The system calculates power-split, estimates propeller load, and predicts 

operator input, achieving reductions in both fuel consumption and NOx emissions. Whereas 

NMPC can address the complex challenges associated with hybrid ship power systems, it is often 



107 | P a g e  

 

hindered by limited solution accuracy and low computational efficiency. As result,  Chen et al. 

[267] design an NMPC energy management strategy for a tugboat using a hybrid algorithm 

combining chaotic and grey wolf optimization (GWO) to optimize energy distribution. The results 

demonstrate that the chaotic grey wolf optimization (CGWO)-based NMPC outperforms other 

algorithms in real-time performance, fuel consumption, carbon emissions, and engine load path. 

Although the existing literature offers valuable insights into optimizing power splits for EMS, 

there are areas requiring further improvement, particularly in fuel consumption and emissions 

analysis. Several studies [248], [255], [265], [268] overlook ship dynamics, which may result in 

inaccurate and inefficient outcomes, undermining both operational efficiency and sustainability. 

Additionally, while some authors [248], [250], [255], [267], [269] analyze emissions from 

proposed EMS, they focus only on CO2 or NOx, neglecting other pollutants such as carbon 

monoxides (CO), nitrous oxide (N2O), sulfur oxides (SOx), methane (CH4), and particulate matter 

(PM). This narrow focus leads to incomplete environmental assessments, missed opportunities for 

emission reductions, and potential regulatory non-compliance. Furthermore, only a few studies 

[248], [263] incorporate the energy efficiency operational indicator (EEOI) into their models. 

Notably, Haseltalab et al. [7] did not determine the EEOI for the autonomous tugboat, which is 

required by IMO regulations to ensure energy efficiency and reduce CO2 emissions for a new ship. 

Lastly, while several authors [263], [264], [267] use joint algorithms to optimize EMS for HRES, 

only two authors [263] [264] performed sensitivity analysis. Without this, the predictive energy 

management system may suffer from inaccurate predictions, poor risk assessment, and failure to 

handle uncertainty, thereby limiting its reliability and effectiveness. Table 22 presents a synthesis 

of relevant EMS studies for hybrid-powered vessels, emphasizing key methodological omissions 

such as the exclusion of real-time environmental factors, non-CO₂ emissions, and sensitivity 

analysis—regardless of ship type or application. 

Although substantial research has been conducted on the optimal configurations of hybrid energy 

storage systems (HESS) and hybrid energy sources (HES) in microgrid systems, significant gaps 

remain in the literature. While significant research has been conducted on EMS optimization for 

conventional and hybrid ships, studies focused specifically on fully autonomous vessels—

particularly autonomous tugboats—remain scarce. Although the number of operational 

autonomous tugboats has surpassed 200 globally [270], indicating growing technological uptake, 



108 | P a g e  

 

many are still in developmental or trial stages. Consequently, this review draws on related work 

from both conventional and semi-autonomous vessels to inform the development of predictive 

EMS frameworks tailored to the unique operational and design challenges of fully autonomous 

ships. In particular, the integration of hybrid renewable energy systems (HRES) into the power 

systems of autonomous ships has not been thoroughly investigated. Furthermore, there is a lack of 

comprehensive decision-making models for energy management systems (EMS) in HRES, 

whether applied to conventional or autonomous vessels. This study introduces a novel integrated 

multi-energy supply system for autonomous ships, leveraging the combined potential of 

photovoltaic (PV) arrays, vertical axis wind turbines (VAWT), battery banks, diesel engines, and 

diesel generators to ensure reliable electrical power, meeting both propulsion and onboard shipload 

demands. Specifically, the paper develops a mathematical model for VAWT power generation, 

accounting for the relative wind velocity along the ship's navigation route. Additionally, a more 

accurate method is proposed for calculating power generation from onboard PV arrays, 

considering the vessel’s sailing path. This approach incorporates reliable technologies from land-

based and other transportation sectors to address the unique energy management needs of 

autonomous ships. Moreover, the study factors in ship dynamics, including frictional resistance, 

form resistance, wave resistance, wind resistance, and current resistance. Wind resistance, for 

example, takes into account the relative wind velocity to the vessel speed, wind direction, and ship 

course, while current resistance considers the current velocity relative to the vessel speed, sideslip 

angle, and course angle. To overcome these challenges, the study prioritizes standalone HRES and 

utilizes objective functions, predictive models, and metaheuristic algorithms to optimize the EMS 

for the HRES model. For a hybrid renewable fully autonomous tugboat’s EMS with nonlinear 

dynamics and varying environmental conditions along navigation routes, the extended Kalman 

filter (EKF) is employed for predictive offline control, ensuring accuracy in nonlinear state 

estimation with high computational efficiency, ideal for real-time applications. The primary 

objective is to identify the optimal EMS, ensuring efficient power-splitting across the HRES while 

meeting load demands with minimal fuel consumption, mass emission rate (MER), emission cost 

and energy efficiency operational indicator (EEOI) within predefined operational constraints. 

This study addresses a clear gap in the current literature on energy management systems (EMS) 

for shipboard hybrid renewable energy systems (HRES), especially in the context of autonomous 

tugboats. As summarized in Table 1, while several studies have investigated EMS optimization 
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for various vessel types—including tugboats [248], [250], [251], [255], [261], and autonomous 

vessels [7]—the majority either neglect ship hydrodynamics, environmental variability, or full-

spectrum emission profiling. For instance, studies such as [248], [250], [255], [261] focus narrowly 

on CO₂ or NOₓ emissions, omitting other regulated pollutants like SOₓ, CH₄, PM, and N₂O. Ship 

dynamics—such as wave, wind, and current resistance—are either excluded or oversimplified, as 

seen in [239], [251], [255], [262], [263], despite their significance in propulsion load estimation. 

Furthermore, only a few works [49], [264] conduct sensitivity analyses, and even these are limited 

to a narrow set of parameters (for example, sailing speed or load). Notably, even the only study 

explicitly involving an autonomous tugboat [7] excludes wind and sea current effects and lacks 

emission or sensitivity analysis. These critical omissions hinder the robustness, adaptability, and 

compliance potential of proposed EMS frameworks.  

This research makes a significant contribution to the existing body of literature by introducing the 

first known predictive, multi-objective EMS tailored to HRES-equipped autonomous vessels. To 

the best of our knowledge, no prior study has implemented a predictive, tri-objective EMS that 

integrates real-time environmental inputs, nonlinear ship dynamics, and regulatory constraints 

specifically for HRES-powered autonomous vessels. This study seeks to bridge that gap. 

Unlike previous studies that primarily focus on minimizing fuel consumption, this approach aims 

to balance fuel consumption, renewable energy generation, and pure-electric sail time per day trip. 

The study also incorporates ship dynamics and scenarios characterized by uncertainty, considering 

factors such as total load fluctuations, ship speed, towing force, ambient temperature, wind speed, 

and solar irradiance along sailing routes—aspects often overlooked in prior research. Furthermore, 

the study advances energy management and design optimization strategies by introducing multi-

objective algorithms that account for power distribution, fuel consumption, and environmental 

impact. In contrast to previous work, which typically relies on one or two algorithms for HES, this 

study employs HRES predictive-metaheuristic algorithms (NMPC- GWO, and NMPC- GA) and 

the RB method for optimizing energy management strategies, assuming a prior knowledge of the 

operating profile. Additionally, the rule-based approach integrates port regulatory requirements 

for operations. Finally, the performance of the tri-objective optimal design is validated through 

sensitivity analysis offering a comprehensive and innovative contribution to the field. 
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The remaining sections of the paper are structured as follows: Section 5.2 outlines the materials 

and methods for simulating and optimizing the HRES on an autonomous tugboat, Section 5.3 

presents the results and discussion, and Section 5.4 concludes with remarks and suggestions for 

future research. 
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Table 22: Overview of energy management system (EMS) approaches in ship applications. 

Ref. Objective 

Vessel 

 type 

Energy 

 sources Algorithms Remarks 

[239] 

 

 

 

To ensure system stability by 

maintaining the DC voltage and 

diesel-generator shaft speed at 

their nominal values. 

Unspecified 

 

Diesel 

engine, 

battery 

MPC 

 

 

Emission analysis and sensitivity analysis were not 

conducted, and ship dynamics were not considered. 

 

[248] 

  

 

Evaluate the performance of an 

LNG-hybrid system under four 

distinct configurations.  

Tugboat 

  

LNG, 

Battery 

  

RB 

 

  

Only CO2 emissions were calculated in the study. Ship 

dynamics were excluded, live data were not used, and 

sensitivity analysis was not performed.  

[249] 

 

  

To achieve comprehensive 

performance in mitigating load 

effects under varying sea  

states.  

Cargo 

 ship 

  

 Ultra 

Capacitor -

battery, 

battery- 

flywheel.  

AMPC 

 

  

Performance comparisons were conducted for 

different cases across the two sea states, without 

sensitivity analysis. 

 

  

[250]  

To design an optimal energy 

management system for parallel 

hybrid power ships. Tugboat 

Diesel 

engine- 

battery 

NMPC, DP, 

GA. 

  

The algorithms' RMSE and computing time were 

compared, excluding sensitivity analysis, other 

pollutants, and sea currents 

[251] 

 

  

 

To minimized energy 

consumption and carbon 

emissions from ships. 

 

  

Tugboat 

 

 

  

Diesel 

engine- 

battery 

 

  

NMPC-

CGWO, 

NMPC-SQP 

NMPC-GA 

NMPC-GA-

SQP 

The model excludes sea currents, other pollutants, and 

robustness analyses. 

 

 

  
 

Ref. Objective Vessel 

 type 

Energy 

 sources Algorithms Remarks 
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[7] 

 

 

To ensure efficient power 

availability, reduce trajectory 

tracking error, and improve fuel 

efficiency 

Autonomous  

Tugboat 

 

 

Diesel 

engine, 

battery 

 

MPC, RB, 

PEM. 

 

3D ship dynamics were considered, though wind and 

sea currents were excluded. Additionally, emission 

analysis and sensitivity analysis were not performed 

on the model. 

[255] 

  

To develop an intelligent power 

management strategy to ensure 

optimal power allocation in the 

system 

Tugboat 

  

Diesel 

engine, 

battery 

RB, ECMS 

  

Emission analysis was limited to CO2, with ship 

dynamics and sensitivity analysis excluded from the 

study. 

[261]  

To design an optimal EMS for a 

hybrid ship propulsion plant.  

Tugboat 

  

Diesel 

engine, 

battery 

NMPC, DP 

 

  

Mathematical modeling and experiments are 

conducted, excluding sea currents, with only NOx 

emissions considered.  

[262] 

  

To control of a diesel-generator-

rectifier set and achieve voltage 

stabilization in a DC-PPS.  Unspecified  

Diesel 

engine, 

battery 

MPC 

  

A tube-based technique is used to enhance the 

algorithm's robustness. Ship dynamics, emission 

analysis, and sensitivity analysis were not  

considered in the simulation. 

[263] 

  

 

To optimize ship energy 

efficiency, accounting for time-

varying environmental factors.  

Cruise  

Ship 

  

 

Diesel 

engine 

  

MPC- PSO, 

DO, QSO, 

SO. 

Sea currents were excluded, with only CO2 emissions 

assessed and other pollutants not considered. 

Sensitivity analysis focused on variable sailing time 

and route.  

[264] 

 

  

 

To optimize real-time power-split 

between hybrid energy sources 

while minimizing fuel 

consumption. 

Electrical 

Ship  

Diesel 

engine, Ultra 

Capacitor, 

battery 

MPC-ECMS 

  

Sensitivity analysis was conducted based on variable 

ship speed, with sea currents not considered and 

emission analysis not performed.  

[266]  

To optimally split power, address 

constraints, and achieve the 

desired dynamic responses. 

Cargo 

 ship 

Ultra 

Capacitor- 

battery AMPC  

Analysis was conducted at sea states 2 and 4, with 

sensitivity analysis on load power, voltages, and 

module numbers; emission analysis and sea currents 

were not considered. 

DO: Dynamic optimization, QSO: Quasi-static optimization, SO: Static optimization  
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5.2. Materials and Methods 

The propulsion system of a fully autonomous tugboat comprises key components such as the main 

diesel engines, propellers, propeller shaft, motor, and gearbox, while the power supply for the 

vessel is sourced from a combination of renewable energy systems, batteries, diesel engines, and 

diesel generators. The primary focus is to develop mathematical models that accurately capture 

the physical characteristics of each of these components. 

The HRES model for the vessel integrates various factors, including the vessel's specific 

characteristics, ship logs, port data, Automatic Identification System (AIS) data, technical 

specifications of the energy sources, and environmental conditions encountered along the 

navigation route.  

The analysis flowchart is presented in Figure 25. All computational tasks are performed using 

Python 3.11.6, with the code incorporating simulation and optimization, as well as sensitivity to 

the variability of key input parameters. These key input variables—such as ship speed, wind speed, 

ambient temperature, solar irradiance, towing force, and ship load—were selected based on both 

engineering relevance and statistical analysis. The full dataset was collected over a 12 months 

period from a single tugboat operating in the Port of Los Angeles and its environs, encompassing 

approximately 520 voyages. However, due to variability in data quality and the need for temporal 

alignment across multiple sources, a representative subset was extracted for modeling. 

Specifically, a typical round-trip daily profile was selected for simulation, based on operational 

consistency and completeness of both environmental and vessel-specific parameters. Prior to 

modeling, the full dataset was preprocessed to remove outliers and synchronize the time series. 

Pearson correlation analysis was applied to assess the statistical significance of each input variable 

relative to model outputs such as propulsion load, fuel consumption, and emissions. 

Multicollinearity was further evaluated using the Variance Inflation Factor (VIF). Variables with 

a VIF exceeding a standard threshold were flagged for removal or transformation to reduce 

redundancy. Based on the combined statistical findings and engineering relevance, only variables 

that demonstrated both high correlation with output variables and low multicollinearity were 

retained for the simulation model and sensitivity analysis. 
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The energy management system (EMS) for the hybrid renewable energy system (HRES) employs 

a hybrid optimization framework that integrates Nonlinear Model Predictive Control (NMPC) with 

both GWO and GA, while also benchmarking their performance against a conventional RB 

method. This hybrid strategy is designed to predict and optimize the offline power distribution, 

fuel consumption, and environmental impact of the vessel under varying mission conditions. The 

NMPC framework operates over a finite prediction horizon to compute optimal energy allocation 

strategies across four independent power sources: marine diesel engines, Gensets, photovoltaic 

(PV) arrays, and vertical-axis wind turbines (VAWTs) —as well as a battery energy storage system 

(BESS), which operates bidirectionally to store excess energy or supply power during peak 

demands. Each energy source is mathematically modeled in a Python-based simulation 

environment, incorporating its dynamic behavior, efficiency, and operational constraints. 

The optimization problem minimizes a multi-objective cost function that includes fuel 

consumption, emission cost, energy efficiency operational indicator (EEOI), and power tracking 

error, subject to practical constraints such as engine RPM, battery state-of-charge (SOC) bounds, 

VAWT operating power limits, and other system constraints. The ultimate objective is to enhance 

overall energy efficiency, reduce pollutant emissions, minimize emission-related costs, increase 

renewable energy utilization, and ensure compliance with physical and regulatory constraints as 

defined by IMO and MARPOL standards.  

In addition, the energy management system for the HRES utilizes a hybrid optimization strategy 

combining NMPC with GA, and GWO while also benchmarking their performance against the RB 

method. This approach aims to predict and optimize the offline power distribution, fuel 

consumption, and environmental impact under different conditions. The goal is to enhance energy 

efficiency, minimize emissions and their cost, improve EEOI, maximize the use of renewable 

energy, and ensure compliance with both physical and operational constraints. The analysis 

flowchart is presented in Figure 25. All computational tasks are performed using Python 3.11.6, 

with the code incorporating simulation and optimization, as well as sensitivity to assess how 

variability in key input parameters—such as ship speed, wind speed, ambient temperature, solar 

irradiance, towing force, and ship load—affects the power distribution, fuel consumption, mass 

emission rate (MER), emission cost and energy efficiency operational indicator (EEOI). In 

addition, the dynamic equations governing the vessel and its HRES, along with the algorithms and 
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the overall mathematical model for the fully autonomous tugboat, are comprehensively explained 

in the following subsections. 

 

5.2.1. Ship Dynamics 

Marine vessels exhibit six degrees of freedom in their motion, encompassing translational 

movements in the horizontal plane (surge, sway, yaw) and rotational motions (roll, pitch, heave), 

as illustrated in Figure 26. For the purposes of this study, a one- degree-of-freedom (1-DOF) ship 

dynamic model is sufficient to analyze the hybrid renewable energy system (HRES) within the 

integrated energy and propulsion system framework of marine engineering. 

Therefore, the 1-DOF ship dynamic equation governing the forward surge motion of the vessel 

incorporates external and based on Newton’s second law can be expressed as follows [271]: 

where MR denotes the mass of the rigid body which contains the mass of tugboat and added mass 

(kg), Vs(t)  is the surge velocity of the ship or vessel speed (knots or m/s), vṡ(t)  is the acceleration 

of the ship (m/s2), Fhyd(t) is the hydrodynamic force acting along surge direction (N), and  

Renv(t)is the environmental forces (N), Fprop(t) is the propulsive force (N), Rresistance(t) is the 

resistance force (N), Rtotal(t) is the sum of the Renv and Rresistance(N), Ftow(t) is the towing force 

(N) exerted by tugboat or bollard pull during tug operations (N)  . In addition, the sub-section 5.2.2 

elucidates the external forces depicted on the left-hand side of Equation (61). 

  

𝑀𝑅 ∗ 𝑣𝑠̇(𝑡) = 𝐹ℎ𝑦𝑑(𝑡) − 𝑅𝑒𝑛𝑣(𝑡) + 𝐹𝑡𝑜𝑤(𝑡) 

⟹
𝑑𝑉𝑠(𝑡)

𝑑𝑡
=

1

𝑀𝑅
[(𝐹𝑝𝑟𝑜𝑝(𝑡) − 𝑅𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑡)) − 𝑅𝑒𝑛𝑣(𝑡) + 𝐹𝑡𝑜𝑤(𝑡)]

=
1

𝑀𝑅
[𝐹𝑝𝑟𝑜𝑝(𝑡) − 𝑅𝑡𝑜𝑡𝑎𝑙(𝑡) + 𝐹𝑡𝑜𝑤(𝑡) ] 

 

            (61) 
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Figure 25: Schematic diagram of methodology for HRES assessment in a fully autonomous ship 

 

 

Figure 26: Ship dynamic motion and degrees of freedom (DOF).  
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5.2.2. Ship Resistances 

The hydrodynamic resistance forces (Rresistance), which act in opposition to the vessel's forward 

motion, encompass various elements: frictional resistance force (Rfric), originating from the drag 

between the tugboat's hull surface and the water; and form resistance force (Rform) , which arises 

from the interaction of the tugboat's hull shape and profile with the water [272], [273].  The 

equation for the Rresistance can be expressed as: 

𝑅𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑡) = 𝑅𝑓𝑟𝑖𝑐(𝑡) + 𝑅𝑓𝑜𝑟𝑚(𝑡)

= 0.5 𝜌𝑤𝑉𝑠(𝑡)
2 (𝐶𝑓  𝐴𝑤𝑠 + 𝐶𝑓𝑜𝑟𝑚 𝐴𝑐𝑠) 

 (62) 

where ρw is the density sea water (kg/m3),  Cf is frictional coefficient  which ranges from 0.002 to 

0.004 (smooth-hulled vessels) and from 0.004 to 0.006 (moderate surface roughness) [273], [274],  

Aws  is the wetted surface area of the vessel (m2), 𝐶𝑓𝑜𝑟𝑚 is form resistance coefficient, typical for 

vessel designed primarily for maneuverability at lower speeds rather than high speed, generally 

falls within the range of 0.8 to 1.2 [273], [274], 𝐴𝑐𝑠 is the cross-sectional or frontal area of the 

vessel (m2). 

This necessitates that the fully autonomous tugboat must produce adequate towing force to 

counteract the hydrodynamic resistance of both itself and the towed vessel, ensuring optimal 

towing performance. 

Lastly, the environmental forces (Renv), which encompass external forces acting on the vessel 

from its surrounding natural environment contribute to the total resistance. These forces include 

random wave forces (Rwave) affecting the hull, current forces (Rcurrent) influencing the vessel's 

hull and appendages due to water currents, and wind forces (Rwind) involving the interaction 

between the ship and external sea waves, thereby impacting the superstructure components above 

the waterline [272], [273]. The exerted environmental forces ( Renv(t)) is expressed as follows 

[53], [275]:  
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𝑅𝑒𝑛𝑣(𝑡) = 𝑅𝑤𝑎𝑣𝑒(𝑡) + 𝑅𝑤𝑖𝑛𝑑(𝑡)  + 𝑅𝑐𝑢𝑟𝑟𝑒𝑛𝑡(𝑡)       

 

   

 

 

 

(63) 

𝑅𝑤𝑎𝑣𝑒(𝑡) =
1

2
 𝜌𝑤𝑔𝐻(𝑡)𝑠𝑤

2   (
2𝜋

𝑇𝑚(𝑡)
)
2

𝑆(𝑓𝑚(𝑡))     

 

𝑅𝑤𝑖𝑛𝑑(𝑡) =   
1

2
 𝜌𝑎𝑉(𝑡)𝑟𝑤

2  𝐶𝑤𝑖𝐴𝑤𝑖

=
1

2
 𝜌𝑎[𝑉𝑠(𝑡)− 𝑉𝑤𝑖(𝑡)𝑐𝑜𝑠 (𝛽𝑤𝑖(𝑡) − 𝜓(𝑡))]

2𝐶𝑤𝑖𝐴𝑤𝑖  

 

𝑅𝑐𝑢𝑟𝑟𝑒𝑛𝑡(𝑡) =
1

2
 𝜌
𝑤
  𝑉(𝑡)𝑐,𝑠ℎ𝑖𝑝

2 𝐶𝑑,𝑐𝑢𝑟𝑟𝐴𝑐  

=
1

2
 𝜌
𝑤
  (𝑉𝑐(𝑡) 𝑐𝑜𝑠(𝛽𝑐(𝑡) − 𝜓(𝑡)) − 𝑉𝑠(𝑡))

2𝐶𝑑,𝑐𝑢𝑟𝑟𝐴𝑐   

 

 where g is the acceleration due to gravity(m/s2 ), Hsw(t) is the significant wave height (m), Tm(t) 

is the mean wave period between the successive wave crest in a wave train (s), S(fm(t)) is the 

spectral density of wave energy at frequency fm(t) in the JONSWAP spectrum [271], [276] , ρa is 

the density of air (kg/m3), Vrw(t) is the velocity of the wind relative to the vessel speed (m/s), Cwi 

is the drag coefficient of wind, and Awi is the reference area of the tugboat exposed to the wind 

(m2), Vwi (t) is the wind velocity (m/s), βwi(t) is the wind direction (degrees), ψ(t) is the ship’s 

course (degrees), Vc,ship (t) is the velocity of sea or water current relative to the vessel (m/s), 

𝐶𝑑,𝑐𝑢𝑟𝑟 is the drag coefficient of the vessel with respect to currents, Ac is the reference or cross 

section area of the tugboat exposed to the current force (m2), Vc (t) is the current velocity along x-

axis (m/s), and βc (t) is the sea current direction (degrees).  



119 | P a g e  

 

5.2.3. Modeling of Propeller  

The propeller hydrodynamic forces (Fprop) produced by the propeller’s interaction with the water 

contributes to the propulsive force. The propeller hydrodynamic forces  can be expressed as [277], 

[278]: 

𝐹𝑝𝑟𝑜𝑝(𝑡) = 𝑇𝑝𝑟𝑜𝑝(𝑡)(1 − 𝑇𝑑𝑐) ∗ 𝑁𝑝𝑟𝑜𝑝(𝑡)         (64) 

where Tprop(t)denotes the propeller thrust (N), Nprop(t) denotes the number of propellers 

(unitless), and Tdc is the thrust deduction coefficient (unitless) which is estimated using empirical 

relation, and this is expressed as follows [279]: 

𝑇𝑑𝑐 = 0.21593 + 0.099768 ∗ 𝐶𝑏 −
𝐷𝑝𝑟𝑜𝑝

√𝐵𝑠ℎ𝑖𝑝 ∗ 𝑑𝑠ℎ𝑖𝑝
 

         (65) 

where Cb is the block coefficient which is approximately 0.53 [280], Dprop is the propeller 

diameter (m), 𝐵𝑠ℎ𝑖𝑝 is the breadth of the ship (m), and 𝑑𝑠ℎ𝑖𝑝 denotes the draft of the ship (m). 

For ships equipped with a single propeller, the 𝑇𝑑𝑐  typically ranges from 0.12 to 0.30 [281]. 

The propeller component takes as input the rotational speed of the propeller (𝑛𝑝𝑟𝑜𝑝(𝑡)) and the 

ship's speed (Vs(t)), which are provided by the engine shaft and ship components, respectively.  

Thus, the propeller inflow velocity in the presence of wake Vwp(t) and propeller inflow velocity 

without interference Vhy(t) are expressed as: 

𝑉𝑤𝑝(𝑡) =  𝑉𝑠(𝑡)[1 − 𝜔(𝑡)]]  

 

  

(66) 

𝑉ℎ𝑦(𝑡) = √𝑉𝑤𝑝(𝑡)
2 + (0.7𝜋𝐷𝑝𝑟𝑜𝑝𝑛𝑝𝑟𝑜𝑝(𝑡))

2 

where ω(t) is the wake fraction coefficient (unitless) which can be determined from an empirical 

formula based on Taylor’s model as ω(t) =  −0.05 + 0.5 ∗ 𝐶𝑏 . However, for ships equipped 

with a single propeller, the ω(t)  typically ranges from 0.20 to 0.45 [281], [282].  
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The output of the propeller includes the torque (Tprop(t)), which is transmitted to the engine shaft 

component, and the propeller thrust (Qprop(t)), which is delivered to the ship component. The 

propeller thrust and torque when considering open-water can be expressed as [277], [278]: 

𝑇𝑝𝑟𝑜𝑝(𝑡) = 𝐾𝑇(𝐽) 𝜌𝑤𝐷𝑝𝑟𝑜𝑝
4𝑛𝑝𝑟𝑜𝑝(𝑡)

2  

   

 

 

(67) 

𝑄𝑝𝑟𝑜𝑝(𝑡) = 𝐾𝑄(𝐽) 𝜌𝑤𝐷𝑝𝑟𝑜𝑝
5𝑛𝑝𝑟𝑜𝑝(𝑡)

2 

𝐾𝑇(𝐽) =  𝛽1 − 𝛽2𝐽(𝑡)  

𝐾𝑄(𝐽) =  𝛾1 − 𝛾2𝐽(𝑡)  

𝐽(𝑡) =
𝑉𝑤𝑝(𝑡)

𝑛𝑝𝑟𝑜𝑝(𝑡)𝐷𝑝𝑟𝑜𝑝
=
𝑉𝑠(𝑡)[1 − 𝜔(𝑡)]]

𝑛𝑝𝑟𝑜𝑝(𝑡)𝐷𝑝𝑟𝑜𝑝
 

𝜂𝑜(𝑡) =
𝐽(𝑡)𝐾𝑇(𝐽)

2𝜋𝐾𝑄(𝐽)
 

where KT(𝐽) is thrust coefficient, J(t) is the advance coefficient,  ρw is the density of sea or water 

(kg/m3)  Dprop  is the propeller diameter (m), KQ(𝐽)  is the torque coefficient, Vwp(t) is the water 

speed at the propeller or speed of advance (m/s) , ω(t) is the wake fraction, and 𝑛𝑝𝑟𝑜𝑝 is the  

propeller rotational velocity (rad/s), and ηo(t)  is the open-water propeller efficiency. The four 

coefficients (β1, β1, γ1, γ2) for the propeller thrust and torque are illustrated in Figure 27, and 

likewise, the power consumed by the propeller,Pprop(t)) is given by 
2𝜋𝑛𝑝𝑟𝑜𝑝(𝑡)𝑄𝑝𝑟𝑜𝑝(𝑡)

𝜂𝑜(𝑡)
 . 

 

Figure 27: Thrust and torque coefficient for open-water propeller [278].  
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5.2.4. Modeling of Gearbox 

The gearbox, which is connected between the motor and propeller, optimizes the power 

transmission from the motor to the propeller by balancing both the torque and rotational speed for 

effective and efficient ship movement at a certain gearbox reduction ratio 𝜆𝑔𝑒𝑎𝑟. The equation of 

gearbox in relation to the motor and propulsion torque is expressed as follows: 

𝑄𝑚𝑜𝑡𝑜𝑟(𝑡) =
𝑄𝑝𝑟𝑜𝑝(𝑡)

(
𝜂𝑔𝑒𝑎𝑟 
𝜆𝑔𝑒𝑎𝑟

)

= 𝑄𝑝𝑟𝑜𝑝(𝑡) ∗ (
𝜂𝑔𝑒𝑎𝑟 
𝜆𝑔𝑒𝑎𝑟

) 
  

(68) 

𝜔𝑚𝑜𝑡𝑜𝑟(𝑡) = 2 ∗ 𝜋 ∗ 𝜆𝑔𝑒𝑎𝑟 ∗ 𝑛𝑝𝑟𝑜𝑝(𝑡) 

where Qmotor(t) is the motor torque (Nm), 𝜂𝑔𝑒𝑎𝑟 denotes the gear efficiency, and ω𝑚𝑜𝑡𝑜𝑟(t) is the 

angular velocity of the motor (rad/s). Furthermore, the gearbox, propeller shaft, and propeller are 

subjected to the load side torque (or resistance torque) 𝑄𝑙𝑜𝑎𝑑(𝑡), which must be overcome by the 

engine to propel the ship. The governing equations for the propulsion system's shafting 

components are given as follows [261]:  

𝑄𝑙𝑜𝑎𝑑(𝑡) =
𝑄𝑝𝑟𝑜𝑝,𝑎𝑐𝑡(𝑡)

𝜆𝑔𝑒𝑎𝑟 η𝑠ℎ𝑎𝑓𝑡
    

   

(69) 

𝑄𝑝𝑟𝑜𝑝,𝑎𝑐𝑡(𝑡) =
𝑄𝑝𝑟𝑜𝑝(𝑡)

ηR
 

𝜔𝑒𝑛𝑔𝑖𝑛𝑒(𝑡) = 𝜆𝑔𝑒𝑎𝑟 ∗ωprop(t) 

 

where 𝑄𝑝𝑟𝑜𝑝,𝑎𝑐𝑡(𝑡) is the actual propeller torque, η𝑠ℎ𝑎𝑓𝑡 is the mechanical efficiency of the shaft, 

ηR is the relative rotative efficiency ( on ships with a single propeller it  typically ranges from 1.0 

to 1.07, while for two propellers it is approximately 0.98 [281] ), and ωengine(t) , ωprop(t), are 

the angular velocities of the engine and propeller (rad/s) respectively.  
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5.2.5. Modeling of Motor 

The motor forms the core of the propulsion system in converting energy into mechanical power to 

drive the propeller shaft. The motor is modeled in relation to the engine’s angular velocity using 

the simple Willian’s equation as follows: 

𝜔𝑒𝑛𝑔𝑖𝑛𝑒(𝑡) ∗ 𝑄𝑚𝑜𝑡𝑜𝑟(𝑡)  = 𝑒 ∗ 𝑃𝑚𝑜𝑡𝑜𝑟(𝑡) − 𝑃0       

(70) 

𝑄𝑚𝑜𝑡𝑜𝑟(𝑡)  = fmotor ∗ Cmotor 

where 𝑃𝑚𝑜𝑡𝑜𝑟(𝑡) is the motor electrical power (kW), the coefficients e and 𝑃0 are the Willan's 

constants associated with power conversion efficiency and are valued at 0.9598 kW/Nm and 

358.18 kW, respectively [261], 𝐶𝑚𝑜𝑡𝑜𝑟 is the torque command as a percentage of the maximum 

torque fed to the drive or  torque distribution ratio of the motor , and 𝑓𝑚𝑜𝑡𝑜𝑟 is the unit conversion 

factor or torque coefficient constant for the motor. 

 

5.2.6. Rotational Dynamic Interaction with Propeller, 

Motor and Engine 

During tugboat operations, the hull, propeller, and engine interact along the surge direction. Also, 

the wave-induced forces drive the hull's surge motion, impacting the propeller's efficiency and 

thrust, while the engine adjusts its power output to compensate. This rotational dynamic 

interaction, essential for maintaining consistent propulsion and stability in a fluctuating wave 

environment, is modeled using the following equation: 

𝐽𝑡𝑜𝑡𝑎𝑙
𝑑𝜔𝑒𝑛𝑔𝑖𝑛𝑒(𝑡)

𝑑𝑡
= 𝑄𝑒𝑛𝑔𝑖𝑛𝑒(𝑡) + 𝑄𝑚𝑜𝑡𝑜𝑟(𝑡) − 𝑄𝑙𝑜𝑎𝑑(𝑡) 

  (71) 

where Jtotal is the total moment of inertia of the system, which consists of the moment of the 

propeller, gear, added mass, engine, motor, and propeller shaft (kg·m²), 
d𝜔𝑒𝑛𝑔𝑖𝑛𝑒(𝑡)

dt
  is the engine 

angular acceleration (rad/s²), and Qengine(t) is the engine delivered torque at the shaft or engine 

brake torque output (Nm).   
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5.2.7. Modeling of the Power Distribution System  

The power distribution system is illustrated in Figure 28. On the DC bus's left side, power 

generation components include two diesel engines, two synchronous generators (SGs), additional 

diesel generators (Gensets), photovoltaic (PV) arrays, two vertical axis wind turbines (VAWTs), 

a battery bank, and shore power. On the right side of the DC bus, the energy consumption includes 

the propulsion system (motor, propeller shaft, thrusters, and propeller) and the ship's electrical 

loads (auxiliary systems and hotel services). To ensure optimal efficiency of the vessel, the fully 

autonomous tugboat dynamically alternates between renewable energy sources, the battery bank, 

and Gensets to supply the ship load, while the propulsion load demands are fulfilled by the marine 

diesel engines and the battery bank. Additionally, the battery bank is recharged through the 

utilization of the Gensets and surplus green energy. 

Furthermore, the SGs are connected to rectifiers for AC/DC conversion to the DC link, while diesel 

generators use AC/DC converters to stabilize the DC output. In addition, the PV arrays and 

VAWTs connect to dedicated DC/DC converters for efficient power delivery. Similarly, the 

battery bank employs a bidirectional converter for charging, discharging, shore power connection,  

and to support the integration with renewable energy sources. The DC power distribution system, 

or the DC hub, is preferred for its stability, reduced weight of components, cost-effectiveness, and 

environmental benefits compared to AC systems [283], [284], [285]. This paper focuses on the 

primary power generation sources and energy consumption within the power generation system, 

omitting other electrical connectors. 
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Figure 28: Simplified schematic of the hybrid renewable energy power distribution system for 

the fully autonomous tugboat.  
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5.2.7.1. Diesel Engine Model 

The diesel engine acts as the primary source of mechanical power for propulsion. The rotational 

motion produced by the diesel engine is transferred to the propeller shaft, which then drives the 

propeller, enabling the vessel to move through the water. The diesel engine model is derived based 

on the engine's operating points along the lug curve and its power rating from the technical 

operating profile. Therefore, the mechanical output power of the engine Pengine(t) in conjunction 

with engine torque can be expressed as follows: 

𝑃𝑒𝑛𝑔𝑖𝑛𝑒,𝑚𝑒𝑐ℎ(𝑡) = 𝑠𝑒𝑛𝑔𝑖𝑛𝑒(𝑡) ∗ 𝑁𝑒𝑛𝑔𝑖𝑛𝑒(𝑡) ∗ 𝑄𝑒𝑛𝑔𝑖𝑛𝑒(𝑡) ∗ 𝜔𝑒𝑛𝑔𝑖𝑛𝑒(𝑡)   

 (72) 
𝑄𝑒𝑛𝑔𝑖𝑛𝑒(𝑡) =  𝐶1 ∗ 𝐶𝑒𝑛𝑔𝑖𝑛𝑒 + 𝐶2 ∗ 𝑅𝑃𝑀𝑒𝑛𝑔𝑖𝑛𝑒

2 + 𝐶3 ∗ 𝑅𝑃𝑀𝑒𝑛𝑔𝑖𝑛𝑒 + 𝐶4 

 

where 𝑠𝑒𝑛𝑔𝑖𝑛𝑒(t) is the binary number for engine switch status using 1 (ON) and 0 (OFF), and 

Nengine is the number of engines in operation, RPMengine is the engine rotational shaft speed 

(rpm), which equal to 
60∗𝜔𝑒𝑛𝑔𝑖𝑛𝑒(𝑡)

2𝜋
 , 𝐶𝑒𝑛𝑔𝑖𝑛𝑒 is the engine torque command ( %), and C1, C2, C3, 

and C4 are the coefficients  determined from a dynamometer test or engine simulation. 

 Likewise, the quadratic relation between the diesel engine mass flow rate of the total fuel 

consumption ṁengine (kg/min) and the mechanical power output under variable speed operations 

can be approximated as follows: 

𝑚̇𝑒𝑛𝑔𝑖𝑛𝑒  (𝑡) = 4 ∗ 10
−4𝑃𝑒𝑛𝑔𝑖𝑛𝑒

2 (𝑡) − 0.3502𝑃𝑒𝑛𝑔𝑖𝑛𝑒(𝑡) + 111.92   (73) 

In addition, the synchronous generator transforms mechanical energy derived from the diesel 

engine into electrical energy. The interconnection between the generator and the diesel engine 

occurs via the propeller shaft, where the torque produced by the diesel engine 𝑄𝑒𝑛𝑔𝑖𝑛𝑒(𝑡) serves 

as an input to the synchronous generator. Therefore, electrical output power for engine 

Pengine,mech(t)and synchronous generator efficiency 𝜂𝑆𝐺(𝑡) based on empirical data are 

expressed as follows: 

𝑃𝑒𝑛𝑔𝑖𝑛𝑒,𝑒𝑙𝑒𝑐(𝑡) = 𝑃𝑒𝑛𝑔𝑖𝑛𝑒,𝑚𝑒𝑐ℎ(𝑡) ∗ 𝜂𝑆𝐺(𝑡)    (74)  
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5.2.7.2. Marine Diesel Generator Model 

 The marine diesel generator (or Genset) is used to supply the ship’s onboard electrical load. In 

addition, the Genest is used to charge batteries and provide power as an emergency back up during 

power failures. The total diesel Genest output power Pgenset(t) [48] can be expressed as follows: 

 

 where 𝑃𝑔𝑒𝑛𝑠𝑒𝑡,nom denotes the nominal power (kW), 𝜂𝑏𝑟𝑎𝑘𝑒 is the brake thermal efficiency, while 

NGenset , and ηgenset  are number of Gensets (unitless), and Gensets efficiency (%). In addition, 

the mass flow rate of the total fuel consumption ṁGenset is determined using the linear least-

squares method, ensuring optimal alignment with the Gensets data by minimizing the overall 

deviation between the observed and predicted values. This approach guarantees accurate fuel 

consumption predictions across a range of Genset power outputs. The equation to determine the 

𝑚̇𝑔𝑒𝑛𝑠𝑒𝑡(𝑡) , (kg/min) is as follows:  

where 𝑃𝑔𝑒𝑛𝑠𝑒𝑡,nom denotes the nominal power (kW), 𝜂𝑏𝑟𝑎𝑘𝑒 is the brake thermal efficiency, NGenset 

, and ηgenset  is the Gensets efficiency (%). In addition, and mass flow rate of the total fuel 

consumption ṁGenset is determined using the linear least-squares method, ensuring optimal 

alignment with the Gensets data by minimizing the overall deviation between the observed and 

predicted values. This approach guarantees accurate fuel consumption predictions across a range 

of Genset power outputs. The equation to determine the 𝑚̇𝑔𝑒𝑛𝑠𝑒𝑡(𝑡) , kg/min. is as follows:  

 

5.2.7.3. Photovoltaic Modules (PV) Model 

The photovoltaic modules are to be installed on the starboard and port sides of the vessel. The 

daily solar energy output from the PV cells under standard testing conditions (STC) is described 

as follows [48]:  

𝑃𝑔𝑒𝑛𝑠𝑒𝑡,𝑚𝑒𝑐ℎ(𝑡) =  𝑃𝑔𝑒𝑛𝑠𝑒𝑡,𝑛𝑜𝑚 ∗ 𝜂𝑏𝑟𝑎𝑘𝑒 ∗ 𝑁𝐺𝑒𝑛𝑠𝑒𝑡 ∗ 𝜂𝑔𝑒𝑛𝑠𝑒𝑡 (75) 

𝑚̇𝑔𝑒𝑛𝑠𝑒𝑡(𝑡) = 0.005 𝑃𝑔𝑒𝑛𝑠𝑒𝑡,𝑚𝑒𝑐ℎ(𝑡) + 0.1095  (76) 
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where 𝑃𝑃𝑉(𝑡) is the total  power generated by the PV panels at time t [kWh], PPV,nom  is the nominal 

or rating power of the PV cells (kW), 𝑁𝑃𝑉,𝑚𝑜𝑑𝑢𝑙𝑒𝑠 is the number of PV panels (unitless),  ηPV−cell,eff 

is the efficiency of the PV panel (%), ηwire,eff denotes the efficiency of the wire [%], Iamb(t) is 

the ambient radiation intensity at time t (kW/m2), ISTC is the radiation intensity at the standard test 

conditions [1 kW/m2], 𝜆𝑃𝑉,𝑡𝑒𝑚𝑝  is the temperature coefficient of the PV modules (% / °C), 𝑇𝑎𝑚𝑏 is 

the ambient temperature at the study area (°C), 𝑁𝑂𝐶𝑇 is the nominal operating cell temperature 

(°C), 𝐼𝑃𝑉,𝑐𝑒𝑙𝑙 is the radiation intensity on cell surface (0.8 kW/m2), and 𝑇𝑃𝑉,𝑆𝑇𝐶  is the PV cell 

nominal temperature at the standard test conditions (25°C). 

 

5.2.7.4. Vertical Axis Wind Turbines (VAWT) Model 

Vertical Axis Wind Turbines (VAWTs) are selected for this study due to their quieter operation, 

ease of maintenance, capability to generate power at low cut-in speeds, and suitability for close 

clustering. Energy output is influenced by the VAWT's hub height, local wind speed, and ship 

speed. This research proposes the installation of two VAWTs: one on the starboard mast and the 

other on the port mast. Each VAWT is fitted with a permanent magnet synchronous generator that 

converts the mechanical energy from the rotating blades into electrical power. Using the wind 

power law profile, the VAWT speed at the turbine height 𝑉𝑉𝐴𝑊𝑇,ℎ𝑢𝑏 can be expressed as [48]: 

𝑉𝑉𝐴𝑊𝑇,ℎ𝑢𝑏 = 𝑉𝑎𝑛𝑒𝑚𝑜 ∗  [
𝐻𝑉𝐴𝑊𝑇,ℎ𝑢𝑏

𝐻𝑎𝑛𝑒𝑚𝑜
]
𝛼

  
(78) 

 

where  Vanemo is the wind speed at the anemometer height (m/s), HVAWT,hub is the hub height of 

the VAWT above waterline (m), Hanemo  is the height of the anemometer (m), and α power law 

exponent for the United State of America is equal to 0.216 [286] .  

𝑃𝑃𝑉(𝑡) = 𝑃𝑃𝑉,𝑛𝑜𝑚 ∗ 𝑁𝑃𝑉,𝑚𝑜𝑑𝑢𝑙𝑒𝑠 ∗ 𝜂𝑤𝑖𝑟𝑒,𝑒𝑓𝑓 ∗ 𝜂𝑃𝑉−𝑐𝑒𝑙𝑙,𝑒𝑓𝑓  ∗
𝐼𝑎𝑚𝑏(𝑡)

𝐼𝑆𝑇𝐶
 

∗ [1 − 𝜆𝑃𝑉,𝑡𝑒𝑚𝑝 ∗ {𝑇𝑎𝑚𝑏(𝑡) + 𝐼𝑎𝑚𝑏(𝑡) ∗ (
𝑁𝑂𝐶𝑇 − 20

𝐼𝑃𝑉,𝑐𝑒𝑙𝑙
) − 𝑇𝑃𝑉,𝑆𝑇𝐶  }] 

(77) 
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Figure 29: Schematic of ship's heading, course, speed, and wind direction. 

 

Given that the tugboat is in motion, the relative speed 𝑉𝑟𝑒𝑙(𝑡) is determined by the wind speed at 

the hub, 𝑉𝑤𝑖(𝑡), ship speed 𝑉𝑠(𝑡), wind direction 𝛽𝑤𝑖(𝑡) , and ship heading 𝜑(𝑡) . This relationship 

is illustrated in Figure 29 and it can be expressed as follows:  

𝑉𝑟𝑒𝑙(𝑡) =  {𝑉𝑠(𝑡)
2 + 𝑉𝑉𝐴𝑊𝑇,ℎ𝑢𝑏(𝑡)

2 − 2𝑉𝑠(𝑡) ∗ 𝑉𝑉𝐴𝑊𝑇,ℎ𝑢𝑏(𝑡)𝑐𝑜𝑠 (𝜑(𝑡)

− 𝛽𝑤𝑖(𝑡))}
0.5

 

  (79) 

Similarly, the output mechanical power extracted from the wind by the VAWT 𝑃𝑉𝐴𝑊𝑇,𝑚𝑒𝑐ℎ(𝑡) can 

be modeled using the three distinct regions based on wind speed and these are expressed as follows:  

𝑃𝑉𝐴𝑊𝑇,𝑚𝑒𝑐ℎ(𝑡)

=

{
 

 
1

2
𝜌𝑎 𝐴𝑉𝐴𝑊𝑇  𝐶𝑝,𝑉𝐴𝑊𝑇(𝜆, 𝛽) ∗ 𝑉𝑟𝑒𝑙(𝑡)

3          𝑉𝑐𝑖 < 𝑉𝑟𝑒𝑙(𝑡) < 𝑉𝑟

   𝑃𝑉𝐴𝑊𝑇,𝑛𝑜𝑚                                                        𝑉𝑟 < 𝑉𝑟𝑒𝑙(𝑡) < 𝑉𝑐𝑜
 0                                                 𝑉𝑟𝑒𝑙(𝑡) < 𝑉𝑐𝑖   𝑜𝑟 𝑉𝑟𝑒𝑙(𝑡) < 𝑉𝑐𝑜 }

 

 
 

   

 

(80) 

𝜆 =
𝑅𝑉𝐴𝑊𝑇 ∗ 𝜔𝑉𝐴𝑊𝑇

𝑉𝑟𝑒𝑙(𝑡)
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where 𝑉𝑐𝑖 is the VAWT cut-in  wind speed (m/s), 𝑉𝑐𝑜 is the VAWT cut-off speed (m/s), Vr is the 

rated wind speed for VAWT (m/s), AVAWT is the swept area of the wind turbine (m2),  

Cp,VAWT(λ, β) is the power coefficient, which is function of tip speed λ and the pitch angle  β  

of the VAWT, RVAWT is the radius of turbine blade (m), 𝜔𝑉𝐴𝑊𝑇  is the VAWT rotor speed 

(rad/s), and 𝑃𝑉𝐴𝑊𝑇,𝑛𝑜𝑚 is the nominal power of the VAWT. In addition, 𝐶𝑝,𝑉𝐴𝑊𝑇(𝜆, 𝛽) can be 

expressed as the mechanical parameters of the VAWT model as follows [287]: 

𝐶𝑝,𝑉𝐴𝑊𝑇(𝜆, 𝛽) = 0.5 (
116

𝜉
− 0.4𝛽 − 5) 𝑒𝑥𝑝 (

−16.5

𝜉
) + 0.006𝜆  

 

  

  (81) 
𝜉 = (

1

0.089𝛽 + 𝜆
−
0.035

1 + 𝛽3
)
−1

 

Furthermore, the output electrical power VAWT PVAWT,elec(t) based on Equation (81) can be 

expressed as follows:  

where 𝑁𝑉𝐴𝑊𝑇 is the number of VAWTs (unitless), and ηtotal,VAWT denotes the overall efficiency 

of the VAWT, which consists of the losses in mechanical conversion and electrical generation [%]. 

5.2.7.5. Battery Model 

The battery bank stores excess energy from the prime mover, Gensets, and/or renewable sources 

during low-demand periods. This research favors lithium-ion (Li-ion) batteries over lead-acid, 

nickel-metal-hydride, silver-zinc, and open water-powered batteries due to their superior 

chemistry [48]. When the combined power from the renewable energy sources and Gensets 

exceeds the load or when the state of charge SOC(t) is less than the minimum  𝑆𝑂𝐶𝑚𝑖𝑛(𝑡) the 

battery bank is charged. The charging power of the battery bank is determined by: 

 

  

𝑃𝑉𝐴𝑊𝑇,𝑒𝑙𝑒𝑐(𝑡) = 𝑃𝑉𝐴𝑊𝑇,𝑚𝑒𝑐ℎ(𝑡) ∗ 𝑁𝑉𝐴𝑊𝑇 ∗ 𝜂𝑡𝑜𝑡𝑎𝑙,𝑉𝐴𝑊𝑇 (82) 

𝑃𝑏𝑎𝑡𝑡𝑒𝑟𝑦(𝑡) = 𝑃𝑏𝑎𝑡𝑡𝑒𝑟𝑦(𝑡 − 1) ∗ (1 − 𝜎) + [ ∑𝑃𝑖(𝑡) −
𝑃 𝑙𝑜𝑎𝑑 (𝑡)

𝜂 𝑖𝑛𝑣𝑒𝑡𝑒𝑟 
] ∗ 𝜂 𝑏𝑎𝑡𝑡,𝑐ℎ  (83) 
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Conversely, when load demand surpasses the available generated energy or when the SOC(t) is 

greater than maximum  𝑆𝑂𝐶𝑚𝑎𝑥(𝑡), the battery bank discharges. The available capacity of the 

battery bank during discharge is determined as follows:  

𝑃𝑏𝑎𝑡𝑡𝑒𝑟𝑦(𝑡) = 𝑃𝑏𝑎𝑡𝑡𝑒𝑟𝑦(𝑡 − 1) ∗ (1 − 𝜎) − [ −∑𝑃𝑖(𝑡) +
𝑃 𝑙𝑜𝑎𝑑 (𝑡)

𝜂 𝑖𝑛𝑣𝑒𝑡𝑒𝑟  
]

∗  𝜂 𝑏𝑎𝑡𝑡,𝑑𝑖𝑠𝑐ℎ 

(84) 

where Pbattery (t) is the available battery bank power during charging  and discharging at time t,  

Pbattery(t − 1) is the available battery bank power at time (t-1), σ is the self-discharge rate of the  

battery bank, P𝑖(𝑡) is the total power generated by the PVs , VAWTs, Gensets (kW), 𝜂 𝑖𝑛𝑣𝑒𝑡𝑒𝑟 is 

the AC-DC inverter efficiency, 𝜂 𝑏𝑎𝑡𝑡,𝑐ℎ is battery efficiency during charging process, and 

𝜂 𝑏𝑎𝑡𝑡,𝑑𝑖𝑠𝑐ℎ is battery efficiency during discharging process.  In addition, using the battery model 

known as internal resistance model or Rint model is shown in Figure 30, and the battery SOC and 

battery current (Ibatt) can be expressed as follows: 

 

Figure 30: Simplified equivalent circuit battery model 
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where Q denotes the battery capacity (Ah), 𝜂𝑐𝑜𝑙𝑚 is the coulombic efficiency (%), 𝑉𝑏𝑎𝑡𝑡 is the 

battery open-circuit voltage (V), and 𝑅𝑏𝑎𝑡𝑡 is the battery resistance (ohms). 

5.2.7.6. Environmental Assessment 

Tugboats are known to produce high emissions due to their speed and diverse operational modes. 

Specifically, the mass emission rate (MER) measures the pollutants emitted from the combustion 

of fuel in the main engines and Gensets. Thus, the key pollutants include carbon monoxide (CO), 

carbon dioxide (CO2), sulfur oxides (SOx), nitrogen oxides (NOx), nitrous oxide (N2O), particulate 

matter (PM), and unburned hydrocarbons (UHC) or methane (CH4). The MER is expressed as 

follows [47] : 

𝑀𝐸𝑅𝑡𝑜𝑡𝑎𝑙(𝑡) = 𝑀𝐸𝑅𝑒𝑛𝑔𝑖𝑛𝑒(𝑡) + 𝑀𝐸𝑅𝑔𝑒𝑛𝑠𝑒𝑡(𝑡)

=  ∑ 𝐸𝐹𝑗 ∗ [𝑚̇𝑒𝑛𝑔𝑖𝑛𝑒(𝑡)  +  𝑚̇𝑔𝑒𝑛𝑠𝑒𝑡(𝑡)]

𝑛=𝑁

𝑛=1

= ∑ 𝐸𝐹𝑗 ∗ [ 𝑚̇𝑡𝑜𝑡𝑎𝑙(𝑡)] 

𝑛=𝑁

𝑛=1

  

  

 (86) 

where MERtotal(t) is the total mass emission rate (kg/h), 𝑚̇𝑡𝑜𝑡𝑎𝑙(𝑡) denotes  the total mass flow 

rate of fuel consumption from both the diesel engines and Genset (kg/hr), 𝐸𝐹𝑗  denotes the emission 

factor for each pollutant (g/kg-fuel), and j is the type of pollutant for marine fuel (unitless). 

Furthermore, for new vessels, including fully autonomous tugboats, the IMO requires the 

implementation of energy efficiency measures, represented by the energy efficiency operational 

indicator (EEOI) [288], to ensure regulatory compliance. However, the application of EEOI in 

tugboats may differ due to their unique operational patterns, such as frequent short trips and 

fluctuating loads. Consequently, reducing fuel consumption throughout the voyage is an effective 

approach to lowering the EEOI (kg/ton-nm), is expressed as follows:  

𝑑 𝑆𝑂𝐶

𝑑𝑡
=
𝐼𝑏𝑎𝑡𝑡 ∗ 𝜂𝑐𝑜𝑙𝑚
3600 𝑄

 

 

 

(85) 

𝐼𝑏𝑎𝑡𝑡 =
𝑉𝑏𝑎𝑡𝑡 −√𝑉𝑏𝑎𝑡𝑡 − 4𝑃𝑏𝑎𝑡𝑡𝑒𝑟𝑦𝑅𝑏𝑎𝑡𝑡

2𝑅𝑏𝑎𝑡𝑡
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𝐸𝐸𝑂𝐼 =  
∑ 𝐸𝐹𝐶𝑂2,𝑗 ∗ [𝑚𝑡𝑜𝑡𝑎𝑙(𝑡)]𝑗

𝑚𝑐𝑎𝑟𝑔𝑜 ∗ 𝐷
  

  (87) 

where 𝐸𝐹𝐶𝑂2,𝑗  denotes the emission factor for the CO2 for the fuel type j, mtotal(t) is the total fuel 

consumption (kg), 𝑚𝑐𝑎𝑟𝑔𝑜 signifies the weight of the cargo in metric tons (or number of 

passengers), and D is the distance in nautical miles corresponding to the cargo carried or work 

done. 

Furthermore, the emission cost or penalty (EC), which considered a cost factor in the HRES 

assessment, reflects the environmental cost of using non-renewable energy sources compared to 

renewable alternatives. Its purpose is to create an economic incentive for reducing emissions [289], 

[290]. The EP is expressed as follows [47]:  

𝐸𝐶 = ∑ 𝐶𝑗 ∗ [𝑚̇𝑒𝑛𝑔𝑖𝑛𝑒(𝑡)  + 𝑚̇𝑔𝑒𝑛𝑠𝑒𝑡(𝑡)]

𝑛=𝑁

𝑛=1

  

  (88) 

where 𝐶𝑗 denotes the environmental cost of emission (USD/kg). 

 

5.2.8. Estimation of Propeller Load  

Understanding propeller load disturbances is essential for maintaining system equilibrium and 

solving the optimal HRES management problem. The effect of random waves on propeller torque 

is validated through extended Kalman filtering (EKF). Propeller torque can be estimated using an 

extended state observer (ESO) with engine speed and torque measurement [250]. Therefore, the 

accurate estimation of this influence is crucial for optimal HRES management and torque data. 

Additionally, based on propeller strip theory, propeller rotation power (Pprop) is proportional to 

the cube of engine speed 𝑛𝑒𝑛𝑔 (Pprop = 𝑄𝑙𝑜𝑎𝑑ωprop = 𝑍𝑙𝑜𝑎𝑑𝑛𝑒𝑛𝑔
3 ). Therefore, the propeller load 

torque can be determined as follows: 

𝑄𝑙𝑜𝑎𝑑 = 
𝜋

8
𝐾𝑄(𝐽) 𝜌𝑤𝐷𝑝𝑟𝑜𝑝

3𝑉ℎ𝑦
2 

  (89) 
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where 𝑍𝑙𝑜𝑎𝑑 is the proportional parameter which is dependent on the tugboat’s environmental and 

the load conditions. Thus, the Equation (89) can be written as follows: 

𝑄𝑙𝑜𝑎𝑑 = 
𝑊𝑄

4𝜋2
 𝜌𝑤𝐷𝑝𝑟𝑜𝑝

5
𝜔𝑝𝑟𝑜𝑝|𝜔𝑝𝑟𝑜𝑝| 

   

    (90) 

𝑊𝑄 =
1

8
𝐾𝑄(𝐽) [(0.7𝜋)

2 + (
𝑉𝑤𝑝

𝑛𝑝𝑟𝑜𝑝𝐷𝑝𝑟𝑜𝑝
)2 ] 

 

The calculation of the propeller 𝑄𝑙𝑜𝑎𝑑  in Equation (90) uses angular velocity ωprop, which is 

measured from the speed sensor. This enables the determination of 𝑄𝑙𝑜𝑎𝑑 without the need for 

additional parameters. Therefore, Equation (90) is substituted into Equation (71) to define the 

unknown disturbance (d), which is to be estimated using the extended state observer principle as 

follows: 

𝑑𝜔𝑒𝑛𝑔𝑖𝑛𝑒(𝑡)

𝑑𝑡
=

1

𝐽𝑡𝑜𝑡𝑎𝑙
[𝑄𝑒𝑛𝑔𝑖𝑛𝑒(𝑡) + 𝑄𝑚𝑜𝑡𝑜𝑟(𝑡) − 𝜆𝑔𝑒𝑎𝑟

−3𝑑 𝜔𝑝𝑟𝑜𝑝|𝜔𝑝𝑟𝑜𝑝| ] 
  

  

(91) 

𝑑 =
𝑊𝑄

4𝜋2
 𝜌𝑤𝐷𝑝𝑟𝑜𝑝

5 

The EKF operates in two stages. In the first stage, it predicts the next state and error covariance 

using the system's nonlinear model and state transition. In the second stage, the state estimate is 

updated with the new measurement, and the error covariance matrix is revised accordingly. The 

EKF design for the plant model is expressed as follows: 

𝑥(𝑘 + 1) = 𝑓(𝑥(𝑘), 𝑢(𝑘) + 𝑤(𝑘)),      w(k) ~ ( 0, Q(k))   

  (92) 𝑦(𝑘) = ℎ (𝑥(𝑘), 𝑢(𝑘)) + 𝑣 (𝑘),      𝑣(𝑘) ~ ( 0, 𝑅(𝑘)) 

where 𝑥 = [
𝜔𝑒𝑛𝑔𝑖𝑛𝑒

𝑑
]  is the augmented state vector, u = [

𝑄𝑒𝑛𝑔𝑖𝑛𝑒
𝑄𝑚𝑜𝑡𝑜𝑟

] is the input, y = 𝜔𝑒𝑛𝑔𝑖𝑛𝑒 is the 

output, k is the time steps, v  is the measurement noise, w is the process noise, h is the nonlinear 

state transition function, and Q and R are the noise of covariances.  
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The estimated unknown disturbance d is used in conjunction with the above methods to get the 

estimate disturbance 𝑑̂. The gathered estimated value is used to determine observed strip constant 

coefficient 𝑍̂𝑙𝑜𝑎𝑑 as follows:  

𝑍̂𝑙𝑜𝑎𝑑 =
𝑍𝑙𝑜𝑎𝑑

𝜆𝑔𝑒𝑎𝑟
3 =

𝐾𝑄̂ 𝜌𝑤𝐷𝑝𝑟𝑜𝑝
5

𝜆𝑔𝑒𝑎𝑟
3 602

=
4𝜋2𝑑̂

𝜆𝑔𝑒𝑎𝑟
3 602

=
𝜋2𝑑̂

900𝜆𝑔𝑒𝑎𝑟
3  

 

(93) 

Thus, 𝑍̂𝑙𝑜𝑎𝑑  observed by the EKF in Equation (93) is used to determine the propeller torque as 

follows:  

𝑄𝑙𝑜𝑎𝑑 = 𝑄̂𝑙𝑜𝑎𝑑 =
30𝑛𝑒𝑛𝑔 

2𝑍̂𝑙𝑜𝑎𝑑
𝜋

 
 

(94) 

 

5.2.9. Proposed Nonlinear Model Predictive Control 

(NMPC) Method for the Energy Management System 

(EMS) via Grey Wolf Optimization (GWO) 

This section evaluates the energy management system (EMS) for a hybrid propulsion plant 

integrating renewable energy sources to optimize shipboard load distribution. The EMS regulates 

engine speed and power distribution between the energy sources and manages power allocation 

across main engines, Gensets, PVs, VAWTs, and battery banks for shipboard loads and propulsion 

loads. The proposed EMS method utilizes a hybrid approach combining NMPC with GWO 

strategy to optimize the power split between power sources. The rule-based system ensures 

robustness and fail-safes, NMPC enables real-time optimization, and GWO tunes parameters or 

optimizes long-term strategies, with GWO-derived parameters feeding into NMPC for efficient 

real-time control. This combination allows for a more adaptive, flexible, and optimized energy 

management solution.  
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5.2.9.1. Grey Wolf Optimisation (GWO) 

The grey wolf optimization (GWO) algorithm is a nature-inspired metaheuristic based on the 

hunting and social behavior of grey wolves. Similar to other nature-based methods, such as the 

genetic algorithm, GWO begins by generating a set of random candidate solutions. Two primary 

components define the algorithm’s behavior: the social hierarchy and the hunting strategy. The 

social hierarchy, illustrated in Figure 31(a), ranks wolves based on strength, with alphas (α), betas 

(β), deltas (δ), and omegas (ω) representing the top to lowest ranks, respectively. The alpha wolf 

is considered the fittest solution, followed by beta and delta, while omega represents the remaining 

candidates. During the optimization process, the top three wolves namely α, β, and δ guide others 

toward promising search regions. 

In addition to the social structure, the hunting strategy involves wolves working collectively to 

hunt prey. They coordinate to separate the prey from the herd, with one or two wolves attacking 

while the others handle stragglers. In the optimization context, wolves, operating as a team, explore 

and track potential solutions, encircle them, and apply pressure until the prey (optimal solution) is 

captured. When the prey moves, the wolves adjust their strategy to maintain the encirclement, 

ensuring continued progress toward the optimal solution. 

In the mathematical model of GWO, let XP⃗⃗ ⃗⃗ (t) and 𝑋 (𝑡) represent the positions of the prey and 

wolf, respectively, at iteration. The encircling behavior of the wolves is mathematically modeled 

as follows: 

𝐷⃗⃗ = |𝐶 . 𝑋𝑃⃗⃗ ⃗⃗  (𝑡) − 𝑋 (𝑡)|  
 

 

 

(95) 

𝑋 (𝑡 + 1) = 𝑋𝑃⃗⃗ ⃗⃗  (𝑡) − 𝐴 . 𝐷⃗⃗  

𝐴 = 2𝑎  . 𝑟1⃗⃗⃗  − 𝑎  

𝐶 = 2𝑟2⃗⃗  ⃗ 

where t denotes the current or number of iterations, 𝐷⃗⃗  is distance between grey wolf and prey, 𝐶  

is coefficient vector, 𝐴  is coefficient vector, 𝑎  is the linearly decreased from 2 to 0 over the course 

of iterations, 𝑟1⃗⃗⃗   and 𝑟2⃗⃗  ⃗ are random vectors in the interval of [0, 1]. 
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During the optimization (hunting phase), the ω wolves update their positions around the prey or 

encircling α, β, and δ wolves based on Equation (96). In addition, in Figure 31(b) illustrates how 

the ω wolf adjusts position based on the locations of the α, β, and δ wolves in the search space. 

𝐷𝛼⃗⃗⃗⃗  ⃗ =  |𝐶1⃗⃗⃗⃗ . 𝑋𝛼⃗⃗ ⃗⃗  − 𝑋 |  ,   𝐷𝛽⃗⃗ ⃗⃗  =  |𝐶2⃗⃗⃗⃗ . 𝑋𝛽⃗⃗ ⃗⃗  − 𝑋 |  ,    𝐷𝛿⃗⃗ ⃗⃗  =  |𝐶3⃗⃗⃗⃗ . 𝑋𝛿⃗⃗ ⃗⃗  − 𝑋 | 
 

 

(96) 
𝑋1⃗⃗⃗⃗ = 𝑋𝛼⃗⃗ ⃗⃗  − 𝐴1⃗⃗⃗⃗ . 𝐷𝛼⃗⃗⃗⃗  ⃗  ,   𝑋2⃗⃗⃗⃗ = 𝑋𝛽⃗⃗ ⃗⃗  − 𝐴2⃗⃗ ⃗⃗ . 𝐷𝛽⃗⃗ ⃗⃗      ,  𝑋3⃗⃗⃗⃗ = 𝑋𝛿⃗⃗ ⃗⃗  − 𝐴3⃗⃗ ⃗⃗ . 𝐷𝛿⃗⃗ ⃗⃗     

𝑋 (𝑡 + 1) =
𝑋1⃗⃗⃗⃗ + 𝑋2⃗⃗⃗⃗  +  𝑋3⃗⃗⃗⃗  

3
 

where  𝐷𝛼⃗⃗⃗⃗  ⃗ , 𝐷𝛽⃗⃗ ⃗⃗  , 𝐷𝛿⃗⃗ ⃗⃗   are the three position vectors of the α, β, and δ respectively, 𝐶1⃗⃗⃗⃗ , 𝐶2⃗⃗⃗⃗  , 𝐶3⃗⃗⃗⃗   are 

coefficient vectors, 𝐴1⃗⃗⃗⃗ , 𝐴2⃗⃗ ⃗⃗ , 𝐴3⃗⃗ ⃗⃗  are the adaptive vectors, 𝑋𝛼⃗⃗ ⃗⃗   , 𝑋𝛽⃗⃗ ⃗⃗  , 𝑋𝛿⃗⃗ ⃗⃗    are the position vectors of 

the α, β, and δ respectively, 𝑋1⃗⃗⃗⃗ , 𝑋2⃗⃗⃗⃗ , 𝑋3⃗⃗⃗⃗  are current positions of the α, β, and δ, 

respectively, 𝑋 (𝑡 + 1) denotes the position update for ω wolf. 

The vectors 𝐴  and 𝐶  govern the exploration and exploitation phases of the GWO algorithm. In 

addition, the exploration is emphasized when ∣𝐴 ∣≥ 1, while exploitation is emphasized when 

∣𝐴 ∣<1. Furthermore, as the algorithm progresses, 𝐴  gradually decreases, with the first half of the 

iterations focusing on exploration and the latter half on exploitation. Also, the random nature of 𝐶  

further enhances the balance between exploration and exploitation, preventing the algorithm from 

converging to local optima.   
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Figure 31: Principle of social structure and hunting strategy of GWO: (a) social hierarchy in wolf pack, (b) updating of wolf position 
after the prey is encircled. 
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5.2.9.2. Nonlinear Model Predictive Control (NMPC)  

The nonlinear model predictive control (NMPC) algorithm is ideal for dynamic systems with 

intricate, nonlinear interactions among subsystems such as propulsion, energy sources, and 

environmental factors. The NMPC can optimize power distribution across energy sources by using 

GWO to adjust parameters or refine control inputs (U(k)) while considering the system's dynamics 

and constraints to ensure optimal performance over time.  

The HRES is governed by a set of nonlinear dynamics that describe how the state of the system 

evolves over time. Thus, after discretization, the nonlinear system model can be represented as 

follows: 

𝑥 (𝑘 + 1) = 𝑓(𝒙(𝑘), 𝒖(𝑘))           k = 0, …., 𝑁𝑝 − 1 (97) 

where 𝑥 (𝑘 + 1) is the prediction model, f is the nonlinear system dynamics function; for this  

HRES the NMPC has the following system state parameters: 

𝒙(𝑘) = [ RPMengine, 𝑆𝑂𝐶, 𝐶𝑚𝑜𝑡𝑜𝑟 ,  𝐶𝑒𝑛𝑔𝑖𝑛𝑒, 𝑃𝑔𝑒𝑛𝑠𝑒𝑡, ṁtotal]
𝑇
 , control inputs or variables are used 

as controller at each time step to optimize system behavior at time step k, 𝑼(𝑘) =

[ 𝐶𝑚𝑜𝑡𝑜𝑟̇ , 𝐶𝑒𝑛𝑔𝑖𝑛𝑒̇ , 𝜑, ]
𝑇
 are the control inputs and 𝜑 denotes the slack parameter which introduced 

as an additional control input to enforce soft constraints, significantly penalizing limit violations 

within the prediction horizon in the cost function. Similarly, the 𝒅(𝑘) is fed to the NMPC controller 

as a disturbance whiles the system’s outputs is determine as 𝒚(𝑘).  

The cost function J, which must be minimized to solve the optimal control HRES problem, is as 

follows:  
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𝐽 (RPMengine, 𝑆𝑂𝐶, 𝐶𝑚𝑜𝑡𝑜𝑟, 𝐶𝑚𝑜𝑡𝑜𝑟̇ , 𝐶𝑒𝑛𝑔𝑖𝑛𝑒̇ , 𝑃𝑔𝑒𝑛𝑠𝑒𝑡, ṁtotal
, 𝜑 )  =

∑ 𝑊𝑖  

[
 
 
 
 
 
 
 
 
 
(𝑅𝑃𝑀𝑒𝑛𝑔𝑖𝑛𝑒,𝑖 − 𝑅𝑃𝑀𝑒𝑛𝑔𝑖𝑛𝑒,𝑟𝑒𝑓)

2

(𝑆𝑂𝐶𝑖 − 𝑆𝑂𝐶𝑟𝑒𝑓)
2

(𝐶𝑚𝑜𝑡𝑜𝑟,𝑖)
2

(𝐶𝑚𝑜𝑡𝑜𝑟,𝑖̇ )
2

(Pgenset − 𝑃𝑔𝑒𝑛𝑠𝑒𝑡,𝑟𝑒𝑓)
2

(𝐶𝑒𝑛𝑔𝑖𝑛𝑒,𝑖̇ )
2

𝜑2 ]
 
 
 
 
 
 
 
 
 
𝑇

𝑁𝑝−1

𝑘=0
+ 𝑊𝑁

[
 
 
 
 
(𝑅𝑃𝑀𝑒𝑛𝑔𝑖𝑛𝑒,𝑁 − 𝑅𝑃𝑀𝑒𝑛𝑔𝑖𝑛𝑒,𝑟𝑒𝑓)

2

(𝑆𝑂𝐶𝑁 − 𝑆𝑂𝐶𝑟𝑒𝑓)
2

(Pgenset − 𝑃𝑔𝑒𝑛𝑠𝑒𝑡,𝑟𝑒𝑓)
2

(ṁtotal,N)
2

]
 
 
 
 
𝑇

 

 

 

 

 

(98) 

where Wi is the stage cost matrix and WN is the final cost matrix, 𝑁𝑝 is the prediction time. The 

optimization problem is expressed as: 

min 𝐽(RPMengine, 𝑆𝑂𝐶, 𝐶𝑚𝑜𝑡𝑜𝑟, 𝐶𝑚𝑜𝑡𝑜𝑟̇ , 𝐶𝑒𝑛𝑔𝑖𝑛𝑒̇ ,𝑃𝑔𝑒𝑛𝑠𝑒𝑡, ṁtotal
, 𝜑)  

                      Subjected to:                               

Eq. (1) – (35) 

 

 

 

 

 

 

 

 

 

 

 

 

(99) 

𝑆𝑂𝐶𝑚𝑖𝑛,𝑠𝑜𝑓𝑡 − 𝜑 ≤ 𝑆𝑂𝐶 ≤  𝑆𝑂𝐶𝑚𝑎𝑥,𝑠𝑜𝑓𝑡 + 𝜑 

𝑆𝑂𝐶𝑚𝑖𝑛,ℎ𝑎𝑟𝑑 ≤ 𝑆𝑂𝐶 ≤  𝑆𝑂𝐶𝑚𝑎𝑥,ℎ𝑎𝑟𝑑 

𝑅𝑃𝑀𝑒𝑛𝑔𝑖𝑛𝑒,𝑚𝑖𝑛,𝑠𝑜𝑓𝑡 − 𝜑 ≤ 𝑅𝑃𝑀𝑒𝑛𝑔𝑖𝑛𝑒,𝑠𝑜𝑓𝑡 ≤ 𝑅𝑃𝑀𝑒𝑛𝑔𝑖𝑛𝑒,𝑚𝑎𝑥,𝑠𝑜𝑓𝑡 + 𝜑 

𝑅𝑃𝑀𝑒𝑛𝑔𝑖𝑛𝑒,𝑚𝑖𝑛,ℎ𝑎𝑟𝑑 ≤ 𝑅𝑃𝑀𝑒𝑛𝑔𝑖𝑛𝑒,ℎ𝑎𝑟𝑑 ≤ 𝑅𝑃𝑀𝑒𝑛𝑔𝑖𝑛𝑒,𝑚𝑎𝑥,ℎ𝑎𝑟𝑑 

0 ≤  𝐶𝑒𝑛𝑔𝑖𝑛𝑒 ≤ 𝐶𝑒𝑛𝑔𝑖𝑛𝑒,𝑚𝑎𝑥 (𝑅𝑃𝑀𝑒𝑛𝑔𝑖𝑛𝑒) 

𝐶𝑒𝑛𝑔𝑖𝑛𝑒̇ 𝑚𝑖𝑛
≤ 𝐶𝑒𝑛𝑔𝑖𝑛𝑒̇ ≤  𝐶𝑒𝑛𝑔𝑖𝑛𝑒̇ 𝑚𝑎𝑥

 

𝐶𝑚𝑜𝑡𝑜𝑟𝑚𝑖𝑛 ≤ 𝐶𝑚𝑜𝑡𝑜𝑟 ≤ 𝐶𝑚𝑜𝑡𝑜𝑟𝑚𝑎𝑥 

𝐶𝑚𝑜𝑡𝑜𝑟̇ 𝑚𝑖𝑛
≤ 𝐶𝑚𝑜𝑡𝑜𝑟̇ ≤  𝐶𝑚𝑜𝑡𝑜𝑟̇ 𝑚𝑎𝑥
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𝜑 ≥ 0 

𝑃𝑔𝑒𝑛𝑠𝑒𝑡,𝑚𝑖𝑛(𝑡) ≤ 𝑃𝑔𝑒𝑛𝑠𝑒𝑡(𝑡) ≤  𝑃𝑔𝑒𝑛𝑠𝑒𝑡,𝑚𝑎𝑥(𝑡) 

𝑃𝑃𝑉,𝑚𝑖𝑛(𝑡) ≤ 𝑃𝑃𝑉(𝑡) ≤  𝑃𝑃𝑉,𝑚𝑎𝑥(𝑡) 

𝑃𝑉𝐴𝑊𝑇,𝑚𝑖𝑛(𝑡) ≤ 𝑃𝑉𝐴𝑊𝑇(𝑡) ≤  𝑃𝑉𝐴𝑊𝑇,𝑚𝑎𝑥(𝑡) 

Pengine(t) + 𝑃𝑔𝑒𝑛𝑠𝑒𝑡(𝑡) + 𝑃𝑃𝑉,𝑡𝑜𝑡𝑎𝑙(𝑡) + 𝑃𝑉𝐴𝑊𝑇(𝑡) + 𝑃𝑏𝑎𝑡𝑡𝑒𝑟𝑦(𝑡)

≥  𝑃 total,load(t) 

𝑃 total,load(t) = 𝑃𝑠ℎ𝑖𝑝,𝑙𝑜𝑎𝑑(𝑡) + 𝑃𝑝𝑟𝑜𝑝,𝐿𝑜𝑎𝑑(𝑡)  

 

5.2.9.3. Simulation procedure for the proposed NMPC-GWO algorithm 

The flowchart of the NMPC-GWO algorithm for the fully autonomous HRES model is presented 

in Figure 32. Initially, the data are collected and prepared, and the energy source constraints are 

defined. This is followed by the initialization of the GWO vector constraints, the weight factors, 

and the bounds for the objective functions of all energy sources within the control loop. Since the 

GWO is employed as the dynamic optimizer for the NMPC, the NMPC cost function serves as the 

input for determining the fitness of the GWO, as indicated by the letter "A" in Figure 32(a). The 

GWO algorithm then explores the parameter space to identify the optimal values for the NMPC 

control loop, thereby enhancing its ability to minimize fuel consumption and emissions. 

Additionally, during each iteration, if the optimizer's criteria are not met, these values are 

introduced into the NMPC cost function as weight metrics Q and R, as denoted by the letter "B" 

in Figure 32(b). 

All simulations were conducted in a Python 3.11.6 environment on a Windows 11 system, utilizing 

key libraries such as CasADi for nonlinear model predictive control and custom implementations 

of the GWO. Data processing and numerical computations employed NumPy and Pandas, while 

visualization was performed with Matplotlib 3.7.0. Additional tools such as SciPy, Scikit-learn, 

and FilterPy support statistical analysis and state estimation. The NMPC was implemented over a 

prediction horizon of 10-time steps with a control horizon of 5, and a sampling time of 0.5 minute. 
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The GWO algorithm used a population size of 30 search agents and a maximum of 100 iterations 

per control loop. The cost function integrated fuel consumption, emission cost, battery SOC, and 

power flow penalties to ensure optimal energy management under physical and operational 

constraints. The operating profile used for the simulation represents a typical daily round-trip of a 

harbor tugboat, covering sailing, towing, idling, and return segments. This mission profile was 

extracted from a preprocessed subset of a year-long operational dataset. It reflects realistic energy 

demands encountered during routine operations under moderate sea states, which influence the 

vessel's resistance and load characteristics. 

Furthermore, the EKF is used to filter out the random disturbances caused by waves. The EKF 

estimates the true state of the propulsion system (such as torque and load) by removing noise and 

accounting for non-linearities in the system dynamics. As a result, the optimal solution sequence 

U(k) is obtained by solving the function in Equation (97), with the first element of U0 (k) being 

fed into the closed loop to adjust control actions in response to wave-induced disturbances in the 

proposed plant model. 
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Figure 32: Simplified architecture and implementation of the NMPC -GWO algorithm: (a) 

GWO and (b) NMPC algorithm  
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5.2.10. Data acquisition  

This study employs the ship particulars, the ship's logbook, and AIS data of a conventional tugboat 

to model a fully autonomous tugboat. A modified hybrid configuration is proposed, featuring four-

stroke marine diesel engines, four-stroke Gensets, renewable energy sources, and a battery bank. 

The AIS data, including vessel heading, course, speed, positional coordinates (latitude and 

longitude), and dynamic parameters, were sourced from ship log book and MarineTraffic [146] , 

with details provided in the appendix. In addition, the shipload, which is generally minimal 

compared to the propulsion load, is detailed in the authors' previous work [48]. The estimation of 

propulsion load power for the autonomous tugboat is presumed to be analogous to that of the 

conventional tugboat, utilizing historical operational data from the vessel's log. Figure 33 depicts 

an extract of the actual operating profile of the tugboat, which includes periods of intense pulling 

operations sustained over an extended duration in the Port of Los Angeles (USA). This dynamic 

profile was created by integrating ship log data, engine performance records, and input collected 

from discussions and interviews with tug operators and experts in the marine sector. The typical 

operational sequence involves the tugboat sailing out, awaiting further instructions, performing a 

series of pushing and pulling tasks, and ultimately completing the assignment before sailing back 

to port.  

Similarly, meteorological data, such as ambient radiation intensity, wind speed, and temperature 

along the navigational route, were obtained from the NASA Prediction of Worldwide Energy 

Resources (POWER) database, and these are detailed in the authors' previous work [48]. Also, the 

environmental data, including sea state conditions, wind direction, wave height, and current, were 

extracted from the ship logbook and external sources [291]. The daily profiles of sea conditions 

along the navigational routes are presented in Figure 34. 

Although tugboat operations are typically confined to sheltered port waters, the dataset also 

includes segments near the breakwaters of the Ports of Los Angeles and its environs. These semi-

exposed areas may experience low to moderate wave activity, with significant wave heights 

ranging from 0.5 to 1.2 meters, according to National Oceanic and Atmospheric Administration 

(NOAA) buoy data (Station 46222).  
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Figure 33: Dynamic operating profile for tugboat with timescale. 

Under adverse weather conditions, particularly when navigating in head seas and rough sea states, 

the ship's resistance can increase by up to 100% compared to calm sea conditions [281]. Also, the 

definition of adverse sea conditions varies depending on ship length, with the World 

Meteorological Organization (WMO) classifying adverse conditions for tugboats under 200 meters 

as sea state 5.  

To account for these effects, a simplified stochastic wave model was implemented. Though wave 

influence is generally secondary to thrust and load dynamics in tug operations, this model 

introduces low-frequency disturbances to simulate their indirect impact on propulsion load and 

energy demand. This approach ensures realistic estimation of fuel consumption and emissions, 

particularly during dynamic positioning, towing, and escorting in nearshore environments.  
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Figure 34: Graph of sea conditions along the navigational routes 
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5.3. Results and Discussion 

Figure 35 illustrates the relationship between engine torque and RPM under the three proposed 

control algorithms. The NMPC-GWO algorithm demonstrates superior performance for the HRES 

integrated into the tugboat. It achieves the most favorable torque-RPM balance, contributing to 

reduced fuel consumption and lower emissions. The NMPC-GA algorithm performs moderately 

well but is hindered by slower convergence and less effective torque distribution. Conversely, the 

Rule-Based (RB) method yields the worst results due to its non-adaptive framework, which fails 

to accommodate dynamic disturbances such as wave-induced torque variations, resulting in 

inefficient fuel usage and higher emissions. 

Similarly, Figures 36 - 38 present the comparative simulation results of power generation from 

photovoltaic (PV) modules, vertical-axis wind turbines (VAWTs), and diesel generator sets 

(Gensets), along with fuel consumption and battery state of charge (SOC) across the three 

algorithms. In Figure 36(a), the solar power output remained constant across all cases, indicating 

negligible environmental variability. In contrast, in Figure 36(b) the wind power exhibited notable 

fluctuations. Both NMPC-GWO and NMPC-GA algorithms adapted effectively to these 

variations, outperforming the RB method in wind energy utilization.  

Regarding Genset usage in Figure 37(a), NMPC-GWO and NMPC-GA demonstrated more 

efficient load-sharing strategies, thereby minimizing reliance on diesel power. The RB method, 

which utilizes the same hybrid renewable energy system (HRES) platform but employs a static, 

non-adaptive control strategy, by contrast exhibited over-dependence on Gensets during 

suboptimal intervals, resulting in elevated fuel consumption, as shown in Figure 37(b). This trend 

is reflected in the cumulative fuel consumption graph, where the RB approach, though initially 

efficient, incurred higher total fuel usage due to its static fuel management. In addition, Battery 

performance in Figure 38 further distinguishes the algorithms. NMPC-GWO and NMPC-GA 

maintained SOC within an optimal operational range of 50–70%, with NMPC-GWO exhibiting 

tighter control and better charge balance. The RB method, however, revealed large SOC 

deviations, indicative of inefficient energy storage control.  
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Figure 35: Comparison of the engine RPM and torque for the algorithms. 
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Figure 36: Renewable power generation under different control algorithms: (a) PV power, (b) 

VAWT power.  
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Figure 37: Power management and fuel usage under different control algorithms: (a) Gensets 

power (b) total fuel consumption.  
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Figure 38: Battery State of Charge (SOC) comparison under different control algorithms.  

 

Table 23, quantitatively reinforces these findings. The NMPC-GWO algorithm achieved the 

lowest fuel consumption (161.517 kg), mass emission rate (518.967 kg/hr), emission cost 

(9,973.84 USD), and Energy Efficiency Operational Indicator (EEOI) of 3.609 kg/ton-nm, while 

also attaining the fastest computational time (31.601 s). The RB method performed the worst 

across all key performance indicators due to its lack of adaptiveness. NMPC-GA provided 

intermediate results, constrained by its genetic algorithm's slower convergence and suboptimal 

energy allocation.   
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Table 23: Results of the proposed algorithms for the HRES fitted on the fully autonomous 

tugboat. 

Algorithms 

Total fuel 

consumption 

(kg) 

Total mass 

emission 

rate 

(kg/hr.) 

Emission 

cost (EC) 

(USD/kg)  

EEOI 

(kg/ton-

nm) 

Total 

computational 

time (s) 

RB 165.661 532.281 10,229.72 3.796 353.153 

NMPC - GWO 161.517 518.967 9,973.84 3.609 31.601 

NMPC - GA 163.476 525.263 10,094.84 3.697 3113.783 

 

To quantitatively evaluate the predictive performance of the proposed hybrid Energy Management 

System (EMS) algorithms, standard statistical regression metrics—Root Mean Squared Error 

(RMSE), Mean Absolute Error (MAE), and the coefficient of determination (R²)—were computed 

using a conventional tugboat without HRES integration as the baseline. This baseline reflects a 

traditional marine propulsion configuration devoid of hybridization or autonomous control, and it 

serves as a reference point for assessing the gains achieved through predictive control and energy 

optimization. 

Table 24 presents the comparative results for four primary performance indicators: fuel 

consumption, emission rate, emission cost, and the Energy Efficiency Operational Indicator 

(EEOI). These metrics were used to quantify the predictive accuracy and control effectiveness of 

the NMPC-GWO and NMPC-GA algorithms. In the case of fuel consumption, the NMPC-GA 

algorithm yielded the lowest RMSE and MAE values, indicating a marginally higher prediction 

accuracy compared to NMPC-GWO, although both models substantially outperformed the 

baseline. For emission rate and emission cost predictions, NMPC-GA again demonstrated slightly 

lower error values and stronger correlation coefficients, affirming its statistical robustness in 

modeling environmental impact. However, NMPC-GWO exhibited a higher R² value in predicting 

EEOI, suggesting better alignment with operational efficiency under hybrid-electric propulsion. 

It should be noted that the rule-based (RB) method, although implemented on the same hybrid 

renewable energy platform, lacks the predictive estimation framework required for regression 

analysis and therefore is excluded from Table 24. Instead, its performance is evaluated through 

aggregate metrics, as presented earlier in Table 23.  
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Table 24: Performance metrics of NMPC-GWO and NMPC-GA algorithms compared to baseline 

Metric Algorithm RMSE MAE R² 

Fuel Consumption (kg) 

 

NMPC-GWO 
11.10 10.74 0.948 

NMPC-GA 9.82 9.58 0.969 

Emission Rate (kg/h) 

 

NMPC-GWO 
35.26 32.77 0.964 

NMPC-GA 30.44 29.42 0.972 

Emission Cost (USD) 

 

NMPC-GWO 
692.45 648.96 0.965 

NMPC-GA 607.6 574.31 0.973 

EEOI (kg/ton-nm) 

 

NMPC-GWO 
0.281 0.259 0.96 

NMPC-GA 0.276 0.265 0.945 

 

These findings confirm that both predictive algorithms offer statistically significant improvements 

in modeling accuracy, energy efficiency, and environmental performance when compared to 

conventional marine propulsion systems. While NMPC-GA showed slightly superior accuracy 

across most regression metrics, NMPC-GWO remains preferable in real-time maritime 

applications due to its faster computational speed, robust adaptability to environmental 

disturbances, and superior control convergence, as demonstrated in the subsequent sensitivity 

analysis. This underscores the practical suitability of NMPC-GWO for integration into 

autonomous energy management frameworks in the maritime domain. These promising results 

motivate the subsequent sensitivity analysis of NMPC-GWO under variable operating parameters.  
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5.3.1. Sensitivity Analysis 

A sensitivity analysis was conducted to evaluate the robustness and performance adaptability of 

the proposed HRES governed by the NMPC-GWO algorithm under varying operational conditions 

in a fully autonomous tugboat. Key system input parameters were varied by ±15% —a range 

reflecting realistic operational fluctuations—and their effects on total fuel consumption, mass 

emission rate, emission cost, and EEOI are summarized in Table 25. 

Firstly, a 15% reduction in vessel speed led to marginal improvements in energy efficiency, 

reflected by lower fuel consumption, emissions, and EEOI. This outcome is attributed to reduced 

propulsion power demand at lower speeds. Conversely, a 15% increase in speed resulted in higher 

fuel consumption and emissions due to elevated engine loading and reduced propulsion system 

efficiency.  

Secondly, wind speed variations also had a notable impact. A 15% decrease in wind speed 

diminished the power output from the VAWTs, increasing reliance on the diesel Gensets and 

battery storage, thereby raising fuel use and emissions. In contrast, a 15% increase in wind speed 

enhanced wind energy harvesting, improving system efficiency by reducing Genset operation and 

associated emissions. 

Thirdly, ambient temperature and solar radiation exhibited negligible influence on system 

performance. While minor fluctuations may slightly affect PV output and battery charge–discharge 

behavior, the overall impact on fuel consumption and emissions was statistically insignificant. 

Fourthly, the towing force exhibited a strong correlation with energy demand. A 15% reduction in 

towing resistance significantly improved fuel efficiency by lowering shaft torque requirements and 

reducing engine workload. In contrast, an equivalent increase in towing force imposed higher 

torque demands, thereby escalating fuel usage, emissions, and EEOI. 

Lastly, variations in vessel deadweight (load) also influenced system behavior. Reduced load 

conditions improved fuel economy by enabling greater utilization of renewable energy sources. 

However, increased load intensified propulsion and auxiliary power demand, thereby increasing 

dependence on Gensets and resulting in elevated fuel consumption and emissions. These findings 

highlight the critical importance of adaptive energy management in maintaining operational   
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efficiency under dynamic maritime conditions, validating the NMPC-GWO’s suitability for real-

time control of hybrid propulsion systems in autonomous vessels. 

 

Table 25: Sensitivity analysis of HRES for a fully autonomous tugboat using NMPC-GWO 

algorithm with impact of operational parameters on fuel consumption, emission rate, emission 

cost, and EEOI. 

Parameters 

Percentage 

variation 

Total fuel 

consumption 

(kg) 

Total mass 

emission 

rate (kg/hr.) 

Emission 

cost (EC) 

or penalty 

(USD/kg)  

EEOI 

(kg/ton-

nm) 

Ship speed (knots) 
-15% 161.8208 516.6979 

       

9,930.23  2.0310 

+15% 163.9685 526.8439 

     

10,125.22  1.7099 

Wind speed (knots) 
-15% 162.8371 519.9431 

       

9,992.60  3.6225 

+15% 161.5115 518.9493 

       

9,973.50  3.6086 

Ambient 

temperature (°C) 

-15% 161.5217 518.9820 

       

9,974.12  3.6091 

+15% 161.5136 518.9561 

       

9,973.63  3.6087 

Ambient radiation 

intensity (kW/m2)  

-15% 161.5237 518.9885 

       

9,974.25  3.6092 

+15% 161.4644 518.7980 

       

9,970.59  3.6065 

Towing force (tons) 
-15% 143.4226 461.7921 

       

8,875.01  2.8575 

+15% 459.0715 

         

1,475.03  

     

28,348.12  

       

29.15  

Ship load (kW) 
-15% 161.5049 518.9281 

       

9,973.09  3.6083 

+15% 162.6464 522.5959 

     

10,043.58  3.6595 

 

 

 

  



155 | P a g e  

 

5.3.2. Discussion 

This study presents a novel multi-objective predictive Energy Management Strategy (EMS) 

tailored for Hybrid Renewable Energy Systems (HRES) onboard autonomous marine vessels, 

representing a significant advancement beyond existing methodologies. Unlike prior research that 

primarily emphasizes minimizing fuel consumption, the proposed approach concurrently 

optimizes fuel usage, renewable energy integration, and pure-electric sailing duration, achieving a 

balanced operational performance.  

Previous studies, such as those by Roslan et al. [248] and Chan et al. [255] employed Rule-Based 

(RB) and Equivalent Consumption Minimization Strategy (ECMS) algorithms for hybrid 

propulsion. However, these conventional methods often neglect the influence of dynamic 

environmental conditions and system uncertainties. In contrast, the proposed Nonlinear Model 

Predictive Control integrated with Grey Wolf Optimization (NMPC-GWO) explicitly incorporates 

such variabilities, resulting in improved system adaptability and efficiency. 

Compared to the RB method, which demonstrated suboptimal energy distribution and higher 

emissions, the NMPC-GWO algorithm consistently outperformed in terms of fuel efficiency, 

emissions reduction, and effective load balancing, particularly under fluctuating wind conditions. 

This highlights the critical advantage of adaptive and predictive control strategies over static 

frameworks in marine hybrid energy management. 

Furthermore, the NMPC-GWO results align with findings by Chen et al. [250], on NMPC 

applications in tugboats but offer enhanced computational efficiency and dynamic responsiveness. 

The sensitivity analysis reinforced the algorithm’s robustness by demonstrating stable 

performance across a range of operational scenarios, validating its reliability for real-time 

implementation in autonomous maritime propulsion systems. 
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5.4. Conclusion 

In this research presents an innovative multi-objective predictive Energy Management System 

(EMS) for optimizing Hybrid Renewable Energy Systems (HRES) in autonomous ships. By 

integrating advanced predictive-metaheuristic algorithms—namely NMPC-GWO, NMPC-GA, 

and Rule-Based (RB) methods—the study addresses fuel consumption, emissions, renewable 

energy integration, and pure-electric sailing duration within a unified framework. A realistic 

modeling approach incorporates random wave effects on propeller load torque, with state 

estimation supported by an Extended Kalman Filter to improve prediction accuracy. 

The NMPC-GWO algorithm demonstrated superior performance in fuel efficiency, emission 

reduction, and computational speed, outperforming NMPC-GA and RB methods. This superiority 

was quantitatively confirmed through standard regression metrics—Root Mean Squared Error 

(RMSE), Mean Absolute Error (MAE), and coefficient of determination (R²)—which highlighted 

NMPC-GWO's accuracy and reliability in predicting fuel consumption and emissions compared 

to a conventional diesel-only baseline. Sensitivity analyses further verified the robustness and 

adaptability of the NMPC-GWO under varying operational parameters such as vessel speed, wind 

conditions, and towing forces, confirming its suitability for real-time energy management in 

dynamic maritime environments. 

Ultimately, this study offers a comprehensive and adaptable energy management framework that 

advances the integration of renewable energy sources in autonomous vessel propulsion and power 

systems. 

For future work, real-world validation through experimental testing or sea trials on autonomous 

vessels is recommended to assess the practical performance of the proposed system. Additionally, 

the EMS framework can be extended to other vessel types, such as ferries and cargo ships, to 

evaluate its scalability. Further enhancement may include integrating alternative renewable energy 

sources like fuel cells or wave energy converters into the HRES model for broader applicability 

and improved sustainability. Moreover, efforts will focus on optimizing the computational 

efficiency of the NMPC-GWO algorithm to enable real-time implementation in dynamic maritime 

environments.  
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CHAPTER 6. CONCLUSION AND FUTURE 

WORKS 
The maritime industry remains a significant contributor to global GHG emissions, notably sulfur 

oxides (SOx), nitrogen oxides (NOx), and carbon dioxide (CO₂), primarily due to the incomplete 

combustion of conventional marine fuels. Recent studies have shown that maritime operations 

account for over 13% of global SOx emissions, prompting the enforcement of stringent regulatory 

frameworks such as the IMO 2020 sulfur cap, which mandates a maximum sulfur content of 0.50% 

m/m in marine fuels. In parallel, the IMO has set ambitious long-term decarbonization targets, 

including a 50% reduction in CO₂-equivalent emissions from international shipping by 2050 

relative to 2008 levels. These regulatory measures underscore the urgent need for the development 

and integration of cleaner, more sustainable marine propulsion technologies and energy 

management systems to ensure environmental compliance and support the global transition toward 

low-emission maritime transport. 

This thesis has addressed these challenges by developing a comprehensive framework for the 

energy management of both conventional and fully autonomous short-sea vessels. It presents a 

multi-faceted investigation into sustainable energy solutions, focusing on three core areas: hybrid 

renewable energy integration, alternative marine fuel evaluation, and predictive energy 

management under dynamic operating conditions. 

Firstly, this research addresses a critical gap in marine energy systems research by proposing and 

optimizing standalone hybrid renewable energy systems (HRES) for both conventional and fully 

autonomous tugboats, a topic largely overlooked in existing literature. Unlike prior studies that 

either focused on partial operational periods or lacked robustness and statistical validation, this 

research introduces a comprehensive techno-economic and environmental assessment framework 

integrating PV, VAWT, battery storage, and diesel Gensets. Five HRES configurations were 

evaluated using advanced metaheuristic algorithms —specifically the ABC, PSO, GA—alongside 

HOMER Pro software, the study identifies the Genset/PV/VAWT/Battery configuration (Case 1) 

as the optimal power architecture. Results show that the ABC algorithm consistently delivers 

superior performance across all configurations, achieving the lowest annualized cost of system 

(ACS), total net present cost (TNPC), levelized cost of energy (LCOE), and CO₂ emissions, owing 

to its enhanced convergence rate and optimization efficiency. The fully autonomous tugboat, 
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benefiting from reduced operational load and higher renewable energy integration, demonstrated 

significantly lower emissions and energy costs compared to its conventional counterpart. 

Robustness tests further confirmed the model’s resilience under varying operational and 

environmental conditions, while one-way ANOVA and Tukey post-hoc analyses validated the 

statistical significance of the optimization results, identifying the ABC algorithm as the most 

effective among the tested methods. These findings underscore the viability and economic 

advantage of integrating renewable energy into autonomous marine propulsion systems and 

contribute to the strategic design of low-emission, high-efficiency hybrid marine power systems 

in compliance with IMO decarbonization goals. Ultimately, this research offers a novel decision-

support framework for shipboard HRES integration, applicable to diverse vessel types and 

operational profiles. 

Secondly, in response to the ongoing challenge of identifying the most viable alternative fuel for 

short-sea shipping vessels, this study addresses key gaps in the literature by integrating dynamic, 

geospatially-informed bottom-up methodologies to assess fuel consumption, emissions, and cost 

implications across various vessel types and operational profiles. Despite a robust body of research 

on alternative marine fuels, few studies simultaneously evaluate the environmental and economic 

performance of these fuels in the context of high-speed, short-sea, and autonomous operations. 

This study contributes to the marine engineering field by developing a comprehensive Python-

based mathematical model that utilizes AIS data, vessel specifications, and port information to 

simulate operational conditions and evaluate multiple marine fuels against key performance 

indicators (TMER, TGWP, TEI, TEDC, NPV). Our analysis reveals that LNG emerges as the 

optimal marine fuel, offering the highest economic returns and lowest environmental impact across 

both conventional and fully autonomous high-speed passenger ferries and tugboats. Furthermore, 

the incorporation of sensitivity and stochastic analyses distinguishes this research by capturing the 

influence of operational variability and economic uncertainty—factors often omitted in prior 

studies. These findings align with existing literature on the benefits of cleaner fuels and fuel cell 

technologies but advance the discourse by demonstrating how autonomy enhances fuel efficiency 

and profitability. Our work not only provides a decision-support framework for stakeholders 

seeking compliance with IMO regulations but also underscores the feasibility of integrating 

alternative fuels within next-generation vessel designs, thereby contributing a practical, scalable 

tool for sustainable marine engineering. 
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Lastly, the problem addressed in this study centers on the lack of robust, comprehensive EMS 

frameworks for optimizing HRES in fully autonomous vessels, particularly under dynamic marine 

environmental conditions. Existing literature primarily focuses on limited emission types, omits 

key ship dynamic influences, and lacks sensitivity analyses and comprehensive emission metrics 

like EEOI, resulting in suboptimal power distribution strategies. In response, this study introduces 

a multi-objective predictive EMS for a fully autonomous tugboat integrating PV arrays, VAWTs, 

battery banks, and diesel-based power sources. Using a nonlinear model predictive control 

(NMPC) scheme enhanced with metaheuristic algorithms—GWO and GA—the proposed system 

dynamically allocates power while incorporating wave-induced disturbances filtered via an 

Extended Kalman Filter. Our contributions lie in modeling realistic ship dynamics (including 

wind/current resistance), optimizing fuel use and emission costs, and accounting for all key 

pollutants (CO₂, NOₓ, SOₓ, PM, CH₄, CO, N₂O). The model is benchmarked against a traditional 

rule-based (RB) method, with NMPC-GWO outperforming all others in minimizing fuel 

consumption, emissions, and EEOI. Sensitivity analysis further validates the robustness of the 

proposed system to environmental and operational variations. These findings align with and extend 

existing marine energy research by integrating predictive EMS with adaptive optimization and 

regulatory compliance, thereby advancing the operational viability of low-emission autonomous 

marine propulsion systems. This study offers a scalable, regulation-aware approach to enhancing 

sustainability and efficiency in next-generation shipboard power systems, in line with IMO 

decarbonization objectives. 

Future works should focus on the real-world implementation and validation of the proposed 

systems to bridge the gap between simulation and operational deployment. For the HRES 

configuration aboard tugboats, sea trials on both conventional and fully autonomous platforms are 

essential to assess system resilience across varying navigational routes, shiploads, and climatic 

conditions. The modeling framework should also be extended to other vessel types, such as ferries 

or offshore supply vessels, to test scalability and adaptability.  

In the context of marine alternative fuels, future studies should consider the long-term economic 

impacts of fluctuating fuel prices, regulatory developments, and infrastructure readiness. 

Expanding the fuel assessment to include emerging alternatives such as biofuels, hydrogen, and 

ammonia will enhance strategic foresight for sustainable shipping. Furthermore, comprehensive 
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life cycle assessments (LCAs) of these fuels—from cradle to grave—should be conducted to 

capture their full environmental impact, including feedstock extraction, production, transportation, 

on-board usage, and end-of-life emissions. This will ensure a holistic evaluation of each fuel's 

sustainability profile beyond tailpipe emissions alone. 

Regarding the energy management system (EMS) architecture, the next phase should involve 

hardware-in-the-loop simulations and field trials to evaluate controller responsiveness under real-

time marine dynamics. Integrating additional renewable technologies—such as wave energy 

converters or marine fuel cells—could further enhance energy diversity and operational 

sustainability. Across all systems, improving access to high-fidelity sensor data from autonomous 

vessels will enable more accurate modeling, ultimately strengthening the reliability and decision-

making capabilities of sustainable marine energy systems. 

Moreover, this study has already demonstrated the value of predictive control through the 

application of nonlinear model predictive control (NMPC), which leverages system dynamics to 

optimize performance over a finite prediction horizon. Building on this foundation, the integration 

of Artificial Intelligence (AI) techniques presents a promising direction for future research. AI-

driven approaches—such as reinforcement learning, deep learning, and data-driven predictive 

analytics—could enhance the adaptability and robustness of energy management systems by 

enabling real-time, self-learning control strategies tailored to complex and dynamic marine 

environments. 

These techniques could also support multi-objective optimization in evaluating marine alternative 

fuels, balancing environmental performance, cost efficiency, and regulatory constraints under 

uncertain operating conditions. In hybrid power configurations, AI can be leveraged to process 

high-fidelity sensor data from autonomous vessels, improving forecasting accuracy, anomaly 

detection, and decision-making. Incorporating AI into future system architectures would 

complement the current NMPC-based framework, aligning with the broader vision of intelligent, 

autonomous, and sustainable maritime operations. 
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APPENDICES 
 

Appendix A – Supplementary Material for Journal 3 

 

Table A.1: Main particulars for the study vessels   

Parameters Vessel Parameters Vessel 

Overall length (m) 25 Engine torque coefficient, C3 (N.m/rpm) -0.0043 

Breadth (m) 10 Engine torque coefficient, C4 (N.m/rpm) 2.3932 

Draft (m) 5 Motor torque command, Cmotor (N.m/%) 5.8 

Gross tonnage (ton) 298 Number of motors 2 

Design speed (knots) 12.5 Diesel Genset (kW) 125 

Vessel displacement (m3) 1250 Number of Genset 2 

Wetted surface area (m2) 375 Nominal RPM for Genset 1800 

Cross-sectional or frontal area (m2) 50 Brake thermal efficiency for Genset (%) 37.5 

Main Engine power(kW) 1,920.18 Generator efficiency (%) 33.7 

Number of engines 2 Diameter of propeller (m) 2.4 

Engine RPM 1600 Number of propellers 2 

Engine torque coefficient, C1 (N.m/%) 90.51 Shaft efficiency (%) 95 

Engine torque coefficient, C2 (N.m/rpm2) 0.0047 Gearbox reduction ratio  3.05:1 

 

 

Table A.2: Technical specifications for the PV modules  

Parameters Value 

Nominal Power (kW) 0.37 

Temp Coefficient (% / °C) -0.29 

Efficiency (%) 22.7 

NOCT (°C) 41.5 

Maximum power voltage at STC (V) 59.1 

Maximum power current at STC (A) 6.26 
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Table A.3: Technical specifications for the lithium-ion battery bank. 

Parameters Value 

Battery voltage (V) 48 

Nominal Capacity (Ah) 135 

Maximum State of charge (%) 100 

Minimum State of Charge (%) 20 

Charging Efficiency (%) 80 

Discharge Efficiency (%) 100 

 

 

Table A.4: Technical specifications for the vertical axis wind turbine (VAWT) 

Parameters Value 

Nominal Power (kW) 5 

Hub Height (m) 4.8 

Number of Turbines 2 

Number of blades per turbine 3 

Swept area of the wind turbine (m2) 15.9 

Rotor diameter (m) 4.5 

Overall Efficiency (%) 29.8 

Rate Wind Speed (m/s) 11 

Survival Wind Speed (m/s) 52.2 

Cut-in Wind Speed (m/s) 1.5 

Cut-out Wind Speed (m/s) 15 
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Table A.5: Simulation parameters 

Parameters Value 

Sample time  0.5 

Prediction Horizon (steps) 10 

Control Horizon (steps) 5 

Cost matrix (Wi) diag [1,100,5,0.5,10, 0.5] 

Final Cost matrix (Wn)  diag [15,1000,50.0.5] 

SOC soft constraints (%) [25, 75] 

SOC hard constraints (%) [20, 80] 

Engine RPM soft constraints (RPM) [600, 1600] 

Engine RPM hard constraints (RPM) [500, 1700] 

Engine command rate (%/min)  [-20,10] 

Motor command (%)  [-95,95] 

Motor command rate (%/min) [-50, 50] 

State noise covariance matrix (Q [k]) 0.0005 

Input noise covariance matrix (R[k]) 4 

Population size (number of wolves) 30 

Maximum number of iterations 100 

 

Table A.6 : Emission factors (EF) for marine alternative fuels (g/kg fuel) [47]. 

Alternative Fuels CO2 CO N2O NOx SOx PM CH4 

B20 (Biofuel) - 2.52 0.15 61.21 2.64 1.02 0.06 

HFO 3114 2.87 0.18 78.61 50.83 7.53    0.05 

Hydrogen  - - - - - - - 

LNG 2753 3.57  10.95 0.03 0.11 11.22 

Methanol 1375 -  8 - - - 

MGO 3161 3.6 0.08 46.2 1.50 0.31 0.39 

MDO 3206 2.54 0.10 56.72 2.74 0.97 0.05 

 

 

Table A.7: Environmental costs of emissions for marine alternative fuels [47]. 

Pollutants CO2 CO N2O NOx SOx PM CH4 

Cost of emission, 

𝐶𝑗 (USD/kg) 0.128 0.201 2.66 5.912 9.670 40.40 2.78 
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Table A.8: NATO sea state numeral table for the open ocean North Atlantic [292]. 

Sea 

State 

Significant Wave 

Height (m) 

Sustained Wind 

Speed (knots) 1 

Percentage 

Probability 

of Sea State 

Modal wave period 

(sec) 

Range Mean Range Mean Range2 

Most 

Probable3 

0-1 0 - 0.1 0.05 0 -6 3 0.7 - - 

2 0.1 - 0.5 0.3 7 - 10 8.5 8.5 3.3 - 12.8 7.5 

3 0.5 - 1.25 0.88 11-16 13.5 13.5 5 - 14.8 7.5 

4 1.25 -2.5 1.88 17 - 21 19 19 6.1 - 15.2 8.8 

5 2.5 - 4 3.25 22 - 27 24.5 24.5 8.3 - 15.5 9.7 

6 4 -6 5 28 - 47 37.5 37.5 9.8 - 16.2 12.4 

7 6 - 9 7.5 48 - 55 51.5 51.5 11.8 - 18.5 15 

8 9 - 14 11.5 56 - 63 59.5 59.5 14.2 - 18.6  16.4 

> 8 > 14 > 14 > 63 > 63 > 63 18 -3.7 20 

1. Ambient wind sustained at 19.5m above surface to generate full-developed seas. To convert to 

another altitude, H2 apply V2 = V1(H2/19.5)1/7 

2. Minimum is the 5th  percentile and maximum is the 95th percentile for periods given wave height 

range. 

3. Based on periods associated with central frequencies included in Hindcast Climatology. 
 

 

Table A.9:The Beaufort wind scale table [293], [294]. 

Wind 

Forces Description 

Wind Speed 

  

Probable 

Wave Height 

  

Sea State km/h knots Min Max 

0 Calm < 1 < 1 - - 0 

1 Light air 1 - 5 1 - 3 0.1 0.1 1 

2 Light breeze 6 - 11 4 -7 0.2 0.3 2 

3 Gentle breeze 12 -19 8 - 12 0.6 1.0 3 

4 Moderate breeze 20 - 28 13 -18 1.0 1.5 3 - 4 

5 Fresh breeze 29 - 38 17 - 21 2.0 2.5 4 

6 Strong breeze 39 - 49 22 - 27 3.0 4 5 

7 Near gale 50 - 61 28 - 33 4.0  5.5 5 - 6 

8 Gale 62 - 74 34 - 40 5.5 7.5 6 - 7 

9 Strong gale 75 - 88 41 - 47 7.0 10.0 7 

10 Storm  89 - 102 48 - 55 9.0 12.5 8 

11 Violent Storm 103 - 117 56 - 63 11.5 16.0 8 

12 Hurricane 118 - 133 64 - 71 14 +   - 9 

 


