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ABSTRACT

Robot-Supervised Intelligent Workload Reallocation Based on Stress-Aware Human

Performance Monitoring in Human-Robot Teams

Rukiye Kirgil Budakli, Ph.D.

Concordia University, 2025

The integration of humans and artificial intelligence-based robotic systems in collaborative
environments is transforming teamwork across domains. These human-robot teams, which include
both physically embodied robots and intelligent virtual agents, require careful coordination to
ensure effective task performance. A critical factor is the dynamic allocation of workload, which
must consider the distinct characteristics of humans and robots. Human performance, influenced
by stress and other physiological states, contrasts with the algorithmic and cognitive nature of
robotic behavior. This disparity highlights the need for adaptive workload allocation strategies that

safeguard human well-being while sustaining overall team efficiency.

This research investigates a robot-supervised, stress-aware workload allocation framework that
continuously monitors human stress levels and reallocates tasks in real time to maintain optimal
performance. Leveraging advancements in wearable technology and affective computing, the
study explores multiple physiological (EEG, f-NIRS, ECG, EDA, EOG) and behavioral (facial
expressions, speech, eye movement) indicators to assess stress. It further considers contextual

factors such as task complexity, time of day, and individual differences in skills and knowledge.

The central contribution is a stress-sensitive reallocation algorithm that enables robots to adapt
task assignments when stress affects human performance. The scope of this thesis is intentionally
limited to single-human, single-robot, single-task scenarios to provide a controlled foundation for
stress-aware workload redistribution. This focused scope allows a systematic investigation of how
human stress influences task execution and how robots can intervene effectively. Within this
boundary, the thesis offers a generic stress-sensitive framework and a structured methodological

approach validated through simulation.
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1. INTRODUCTION

Humans and intelligently developed computerized systems, commonly known as robots, have
recently been forming hybrid teams for collaborative tasks. These robots can either be physically
present in human-robot collaborations, such as surgical robots, socially assistive robots, and
humanoid robots, or they can be intelligent, software-based programs, such as chatbots, large
language models, and virtual Al tools. As humans and Al-assisted robots are expected to
collaborate in completing tasks, the careful consideration of their workload allocation—and by

extension, their collaborative performance—is essential.

A key element in this collaboration is interaction, which can be viewed as an evolved form of
communication. Interaction plays a pivotal role in effective teamwork. However, the nature of
interaction between humans and robots differs significantly. While human interaction is
emotionally driven, influenced by affective states and stress, robot interaction is cognitive,
grounded in computer programming, statistical models, and Al algorithms. As such, defining
distinct interaction modes with unique features is crucial to ensuring that the right tasks are
assigned to the appropriate partner. Once these modalities are established, it is essential to assess
the suitability of tasks for each partner based on their individual characteristics. This should be
followed by an examination of the dynamics of workload allocation, leading to the final step of

task assignment, taking into account the factors that influence human-robot collaboration.

In addition to task allocation, it is vital to continuously monitor human emotional states
throughout the collaboration, particularly after tasks are assigned. This is necessary because
fluctuations in human performance can occur. Should a human's performance decline for any
reason, the robot partner must investigate the cause and intervene, ensuring that the human remains

in optimal conditions for effective collaboration.

According to Yerkes-Dodson’s law (1908), human performance peaks when stress levels are
moderate. If stress deviates from this optimal range—either increasing or decreasing beyond
predefined thresholds—human performance deteriorates. Therefore, maintaining the human's
stress level within its optimal range is critical for sustaining effective performance. However, stress

is not the sole factor that may influence performance. Time-related factors such as circadian



rhythms, sleep patterns, and the time of day have been shown to significantly impact human
performance in human-robot collaborations (Kalanadhabhatta et al., 2021; Razavi et al., 2023).
Additionally, the knowledge and skillset of the human assigned to the task can play a crucial role
(Nguyen and Zeng, 2017).

Recent developments in technology allow for the assessment of human stress through various
physiological measurements. These include the analysis of brain signals using
electroencephalography (EEG) (Al-Shargie et al., 2016; Perez-Valero et al., 2021; Katmabh et al.,
2021; Attar, 2022; Hemakom et al., 2023), the tracking of oxygenated and deoxygenated
hemoglobin in brain tissue via functional near-infrared spectroscopy (f-NIRS) (Al-Shargie et al.,
2016; Mirbagheri et al., 2019), heart rate evaluation using electrocardiography (ECG) (Behinaein
et al.,, 2021; Hemakom et al., 2023), skin resistance or electrical potential changes through
electrodermal activity (EDA) (Awada et al., 2024; Dao et al., 2024; Pop-Jordanova & Pop-
Jordanov, 2020; Rahma et al., 2022), and the analysis of cornea-positive potential through
electrooculography (EOG) (Mocny-Pachonska et al., 2021; Das et al., 2023; Dao et al., 2024) using

skin electrodes near the canthi during horizontal eye movements.

In addition to these physiological measures, behavioral indicators, such as facial expression
recognition (Jabon et al., 2010; Zhu et al., 2017), image and speech recognition (Fahn et al., 2022),
head pose estimation (Murphy-Chutorian & Trivedi, 2008), and eye movement recognition
(Lachance-Tremblay et al., 2025; Gazetta et al., 2023; Mocny-Pachonska et al., 2021), can also

provide insights into human emotions.

Given that stress is a dominant emotional factor in human-robot collaboration, this research
primarily focuses on monitoring and adjusting human stress levels to optimize workload
management. As outlined earlier, such adjustments necessitate a well-structured interaction system
and dynamic workload allocation principles to facilitate timely and effective interventions. The
following sections will delve into the specific problem addressed in this thesis, explain how the
research objectives respond to this issue, identify the basic assumptions and limitations, and

provide an overview of the steps that will be covered throughout the thesis.



1.1.Problem Statement

Advancements in artificial intelligence have enabled robots to collaborate with humans in a
manner similar to human-to-human collaboration. Recent technological developments allow
robots to understand human intentions and behaviors through emotion and stress detection
algorithms, establishing feedback-based interaction between both partners. While humans are
expected to perform according to predefined standards, their performance can fluctuate over time.
Therefore, monitoring human performance plays a critical role in dynamically reallocating tasks
between humans and robots to maintain the expected level of human performance. This dynamic
task allocation must consider precedence, prioritization, and task compatibility for both humans

and robots (Alirezazadeh and Alexandre, 2022).

Although stress recognition and dynamic task allocation have been extensively studied, the
development of a human stress-aware task reallocation algorithm designed to maximize the
collaborative performance of a human-robot team has not been sufficiently addressed. This
research aims to fill this gap by proposing solutions to address fluctuations in human performance

within a human-robot team, ultimately enhancing collaborative performance.
1.2.Research Objective

This research aims to enhance the productivity of human-robot teams through a robot-assisted,
stress-aware workload allocation algorithm. The underlying hypothesis is that maintaining human
stress levels within optimal ranges can maximize individual performance, thereby improving the
overall efficiency and effectiveness of the human-robot collaboration. With advancements in
technology, robots are now capable of detecting fluctuations in human stress. Accordingly, this
study posits that human stress can be quantified, continuously monitored by robots, and used as a
basis for timely intervention. Through this approach, workload can be dynamically and adaptively

reallocated to optimize team performance in real time.

According to the research objective outlined above, the main research question is first identified,
followed by ten sub-research questions developed around it. This structured approach guides the

systematic presentation of the proposed model. These questions are listed below.



Main Research Question: How can the collaborative performance of a human-robot team be
improved through robot-supervised decision mechanism for workload allocation based on

fluctuations in human stress levels?

e Sub-Research Question 1: What is the structure of human-robot systems, and how do

humans and robots interact within this framework?

e Sub-Research Question 2: What are the task zones in human—robot collaboration?

e Sub-Research Question 3: What are the interaction channels through which humans and

robots collaborate?

e Sub-Research Question 4: What are the dynamics of task reallocation when determining

the feasible set of tasks?

e Sub-Research Question 5: What constitutes the performance of a human-robot team?

e Sub-Research Question 6: What are the optimal conditions under which humans

perform at their best?

e Sub-Research Question 7: What factors influence human stress levels and performance?

e Sub-Research Question 8: How can human stress levels be measured, and is there a

reliable method to quantify them?

e Sub-Research Question 9: How does the robot determine the appropriate moment to

intervene in task allocation?

e Sub-Research Question 10: How can robots effectively determine when and how to

reallocate tasks based on real-time human performance and human stress data?

The following section outlines the key assumptions established for this research.



1.3.Basic Assumptions

e Since this research focuses on human—robot collaboration, it is essential to clearly define
the term robot. In this study, robots are considered Al-based, intelligent, adaptive,
computerized systems.

e Tasks are categorized based on the capability of each partner: some tasks can be performed
exclusively by humans, others solely by robots, and some collaboratively. Additionally,
certain tasks may be performed by either humans or robots independently, or jointly
through human-robot collaboration, forming intersecting task domains.

e Human stress can be measured and quantified using wearable devices that capture
physiological biosignals.

e Human stress can serve as a decision checkpoint to support performance optimization.

e Control charts can be utilized to detect irregularities or deviations in human performance
over time.

e Task-specific stress levels can be quantified by considering the following parameters:

o Perceived workload (WP). The workload subjectively experienced by the human

at time ¢.

o Task complexity (C): The inherent difficulty level of the assigned task.

o Time of day (T): The temporal context that may affect human cognitive and

physical effectiveness.

o Actual workload (W%): The pre-defined workload assigned to the human at the
beginning of the project.

o Affective state (A): The human’s emotional or mood-related condition at a given

time.

e If the task being pursued lies on the project’s critical path and the human’s stress level
exceeds acceptable thresholds, the task cannot be delayed or paused. In such cases, the task
should be reassigned to another human collaborator capable of completing it. If the task is
not on the critical path, it may be swapped with another task from the human’s to-do list to

mitigate the impact of stress.



1.4.Thesis Organization

This thesis presents a comprehensive literature review in Section 2 to illuminate the evolution of

human-robot collaboration, the tools and techniques used within this context, the concept of

collaborative performance in human-robot teams, the influence of human stress levels on

collaboration, and current implementations of robot-supervised human-—robot systems. To

systematically address these topics, guiding questions are posed for each section and subsection of

the literature review. This structured approach is designed to ensure the inclusion of relevant

interdisciplinary literature and to support the reader’s understanding of the review's flow. The

questions used to guide the literature analysis are listed in Table 1.

Table 1: Key Questions Addressed in the Literature

LITERATURE LITERATURE QUESTIONS ADDRESSED
SECTIONS SUBSECTIONS
2.1 EVOLUTION OF 2.1.1. System’s How has human-robot
THE HUMAN- Evolution: From Human- collaboration evolved from
ROBOT to-Human Interaction to human-to-human interaction to
SYSTEMS System-to-System system-to-system interaction?

Interaction

In what ways has the inclusion
of systems changed the nature of
human work in collaborative
environments?

2.1.2. Evolution of
Human-Robot

Collaboration: From I.  What are the driving factors

Coexistence to Proactive behind the evolution of human-

Collaboration robot collaboration from
coexistence to active
collaboration?

2.1.3. From II. How are communication,

Communication/Interacti interaction, and collaboration

on to Collaboration defined within human-robot

between Humans and teams?

Robots III.  What leads human-robot

interaction to become
collaboration?




2.1.4. Human Factor in V.

Human-Robot
Collaboration

What are the key human factors
influencing the success of
human-robot collaboration?

2.1.5. Robot Factor in V.

Human-Robot

What are the defining factors
that contribute to a robot's

Collaboration effectiveness in human-robot
collaboration?

2.2 TOOLS AND 2.2.1. Behavioral VI.  What behavioral metrics are
TECHNIQUES Measurements in Human- used to assess human responses
USED IN Robot Systems in human-robot collaborations?
HUMAN-ROBOT
SYSTEMS 2.2.2. Physiological VII.  What physiological metrics are

Measurements in Human- used to assess human responses
Robot Systems in human-robot collaborations?

2.3 PERFORMANCE, 2.3.1. Human-Robot VIII.  What factors influence the
STRESS AND System Performance overall performance of human-
TASK robot systems in collaborative
ALLOCATION tasks?

FACTORS IN
HUMAN-ROBOT 2.3.2. The Effect of
SYSTEMS Human Stress in Human- IX.  How does human stress impact
Robot System the performance and efficiency
Performance of human-robot systems?
2.3.3. Task Allocation in X.  What factors should be
Human-Robot Systems considered when allocating tasks
between humans and robots in
collaborative systems?

XI.  How does the human factor
influence task allocation in
human-robot systems?

24 ROBOT- 2.4.1. Robots’ Decision- ~ XII. ~ What are the decision-making
SUPERVISED Making in Human-Robot algorithms used by robots in
HUMAN-ROBOT Systems collaborative human-robot
SYSTEMS systems?

2.4.2. Implementations of XIII.

Robot-Supervised
Human-Robot Systems

What are the current real-world
applications of robot-supervised
human-robot systems, and how
do they perform in different
industries?




Following the methodology presented in Section 3, the implementation of the proposed model is

detailed in Sections 4 through 7. These sections correspond to the sub-research questions outlined

in Section 1.2. The mapping of each section to the respective research questions is provided below.

Table 2: Mapping of Thesis Sections to Sub-Research Questions

Thesis Sections

Thesis Subsections

Sub-Research Questions of the Thesis

4. The Human-Robot
System Framework in
The Proposed Model

4.1. System Components
in Human-Robot Systems

4.2. Interactions in
Human-Robot Systems

Question 1: What is the structure of
human-robot systems, and how do humans
and robots interact within this framework?

5. Interaction Modalities
Across Task Zones in
the Proposed Human-
Robot Collaboration
Model

5.1. Definition of Task
Zones

Question 2: What are the Task zones in
human-robot collaboration?

5.2. Classification of
Interaction Modes

Question 3: What are the communication
channels used in different interaction
modes for human-robot collaboration?

5.3. Integration of
Interaction Modes with
Task Zones

Question 2: What are the task zones in
human-robot collaboration?

Question 3: What are the communication
channels used in different interaction
modes for human-robot collaboration?

5.4. Dynamic Task
Reallocation Algorithm
Based on Task Zones

Question 4: What are the dynamics of task
reallocation when determining the feasible
set of data?

5.5. Case Study: Dynamic
Task Reallocation
Management for
Optimized Performance in
Human-SAP System
Collaboration

Question 2: What are the task zones in
human-robot collaboration?

Question 3: What are the interaction
channels through which humans and robots
collaborate?

Question 4: What are the dynamics of task
reallocation when determining the feasible
set of data?

6. Performance
Evaluation of the
Proposed Human-Robot
Collaboration Model

6.1. Formulating Human-
Robot System
Performance as a Function
of Human Stress

Question 5: What constitutes the
performance of a human—robot team?
Question 6: What are the optimal




conditions under which humans perform at
their best?

6.2. Identification of
Parameters Influencing
Human Stress and
Performance

Question 7: What factors influence human
stress levels and performance?

6.3. Measuring Human
Stress Levels Using
Wearable Devices

Question 8: How can human stress levels
be measured, and is there a reliable method
to quantify them?

6.4. Quantifying Task-
Specific Human Stress:
Development of
Conceptual Formula

Question 8: What methods can be used to
quantify task-specific human stress, and
how can a conceptual formula be
developed to measure it accurately?

7. Robot-Supervised
Intelligent Workload
Reallocation based on
Stress-Aware Human
Performance Monitoring
in Human-Robot Teams

7.1. Process Flow of
Robot-Supervised
Workload Allocation

Question 9: How does the robot determine
the appropriate moment to intervene in task
allocation?

7.2. Intervention-Based
Task Reallocation Model
for Robots

Question 10: How can robots effectively
determine when and how to reallocate
tasks based on real-time human
performance and human stress data?

7.3. Monte Carlo
Simulation: Intervention-
Based Task Reallocation
Model

Question 9: How does the robot determine
the appropriate moment to intervene in task
allocation?

Question 10: How can robots effectively
determine when and how to reallocate
tasks based on real-time human
performance and human stress data?

Sections 4 through 7 address the core inquiries of this study. The research findings are then

discussed in Section 8, followed by a presentation of the study’s limitations in Section 9. Although

the thesis offers a significant contribution to the field, certain constraints—outlined in Section 9—

limit its applicability in fully replicating the complexity of real-world implementations. Future

directions for extending and validating the proposed model are discussed in Section 10. Finally,

Section 11 provides the overall conclusion.



2. LITERATURE REVIEW

This section provides a comprehensive examination of the transition from traditional human—
human interaction to the development of intelligent, next-generation human—robot systems within
collaborative work environments. It begins by tracing the evolution of these systems, emphasizing
how technological advancements have transformed interaction dynamics in the workplace.
Subsequently, the review explores contemporary tools and techniques used to support and optimize
human-robot collaboration. Particular emphasis is placed on the central theme of this research: the
relationship between human stress and performance within collaborative systems. Accordingly,
this section also examines how these factors have been conceptualized, measured, and addressed
in recent studies. Finally, given the thesis’s focus on robot-supervised decision-making—
especially for workload reallocation—the review investigates current implementations of such

systems and the mechanisms they employ to enable task-level intervention.

To structure the review and inform the development of the proposed model, thirteen targeted
research questions were formulated. These questions, introduced in the previous section, are

systematically addressed in the subsections that follow.
2.1.Evolution of the Human-Robot Systems

This section focuses on the evolution of human-robot systems and the contribution of human and

robot partners.

2.1.1. System’s Evolution: From Human-to-Human Interaction to System-to-System

Interaction

As technology continues to advance, system-to-system interaction has increasingly replaced
traditional human-to-human interaction within collaborative work environments. This shift is
driven by the promise of faster, more effective, and more efficient automated solutions. The term
"systems" here encompasses machines, computerized systems, robots, and Internet of Things (IoT)
devices. However, these automated systems cannot operate entirely independently, as many work
processes still require human oversight, creativity, and adaptability. As a result, humans must

remain an integral part of these systems although their roles have been changed by the CPSs
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(Horvath et al., 2017). To address this integration, the concept of Cyber-Physical Systems (CPSs)
has emerged. CPSs refer to systems in which physical components—such as humans, machines,
robots, and IoT devices—interact with cyber components, including sensors, wireless sensor
networks (WSNs), actuators, and software-based programs. These systems operate in a closed-
loop manner, enabling real-time monitoring and feedback-based control (Lee, 2008; Marculescu
& Bogdan, 2010; Shi et al., 2011; Sanislav et al., 2016). CPSs exhibit cross-domain functionality,
distributed control, and heterogeneous components, giving rise to what Liu et al. (2011) describe

as organizational intelligence within these systems. Figure 1 illustrates the structure of the CPSs.

Human-Robot Interaction
through cyber components
(sensors, actuators, software...)

Machine-Machine
Interaction

40
CYBER-PHYSICAL
SYSTEM

Physical component Physical Component

Figure 1: The Structure of Cyber Physical Systems

The evolution toward system-to-system interaction has also been explored through the lens of
Machine-to-Machine (M2M) communication. Researchers such as Yan et al. (2012) have noted
the close relationship among M2M, IoT, WSNs, and CPSs, while Wan et al. (2013) argue that
CPSs represent an advanced generation of M2M systems. However, Wan et al. also highlight
challenges, including the overwhelming volume of data generated by M2M systems, which places
new demands on human operators who must be trained to interpret and manage this information.
As Anton-Haro et al. (2013) observe, the M2M research focus has evolved over time—from early
studies on access and scheduling algorithms to more recent concerns around energy efficiency and
system optimization—reflecting the increasing complexity of human involvement in automated

environments.
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In addition to advancements in machine technology, Kim et al. (2009) emphasize that the evolution
of knowledge within intelligent systems introduces the concept of cooperation as a defining feature
of these technologies. As intelligent systems grow more autonomous and context-aware, their
ability to collaborate with other agents—both human and machine/robot—becomes increasingly
essential. Building on this idea, Marculescu and Bogdan (2010) highlight workload optimization
among diverse physical components as a key driver in the development and functioning of cyber-
physical systems. This optimization ensures that tasks are dynamically allocated based on the
capabilities and current states of each component, contributing to the overall efficiency and

adaptability of the system.

Finally, Mois et al. (2016) emphasized that CPSs should not be viewed solely as part of
Information and Communication Technology (ICT), despite their connection to it. This distinction
arises from the unique demands placed on CPSs, including adaptability, functionality, usability,
efficiency, and autonomy. Sanislav et al. (2016) further reinforced these requirements by
highlighting additional system attributes such as security, interoperability, predictability, and
sustainability. These evolving requirements have undeniably transformed the roles of both humans

and robots, a transformation that is further explored in the following subsection.

2.1.2. Evolution of Human-Robot Collaboration: From Coexistence to Proactive

Collaboration

As discussed in the previous section, the working environment has progressed from a phase with
no systems involved to one characterized by extensive automation, largely due to advancements
in Cyber-Physical Systems (CPSs). Within CPSs, Horvath et al. (2017) identify four distinct
subsystems that must be considered separately due to their diverse characteristics: human—human
interaction, human—system interaction, system—human interaction, and system—system interaction.
Given that this thesis focuses on human-robot collaboration, particular attention is paid to the
human—system and system—human subsystems. When the term human—robot systems is used

throughout this work, it specifically refers to these two types of interaction within CPSs.

Horvath et al. (2017) further explain that the level of automation plays a key role in shaping system
behavior, ranging from "no system in the loop" to "no human in the loop." This progression—

illustrated in Figure 2—demonstrates a central driving factor in the evolution of human—-robot
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collaboration: the increasing automation and intelligence of systems, which gradually shift human

roles from coexistence to active collaboration with robotic agents.

LEVELS OF AUTOMATION AND HUMAN/SYSTEM ROLES

System role | [ Levels of Automation | Human Role | No Human
- - in the Loop
- System closes the loop of operations Systems H -P| Strategic Planner
- Only system components are taking part in control le— ﬁ
- Human may start or stop operation
- System-system interaction is self-organized Supervlsur\
Systems Humans - -
- Systems is largely used for automation Controller
- Human or system closes the loop of operations T
- tofm'n] is pm\-lfied pmfim\]mnnll) .b} s}'stem Executive
- System-human interaction is IEFTE\EIIL‘MI\(‘ Syslems l-[“ mans —— .
— - Controller
- System presents limited automation
- Human closes the loop of operations T
- Human performs control of system actions System-ASS isted
- Human-system interaction is typical Humans - Task Performer
- System is not considered for automation N
- Human executes the necessary operations
erectlies e ery op : Direct Task No System
- Control i provided prodominantly by human Humans _— ¢ in the L
- Human-human interaction only Performer in the Loop

Figure 2: Levels of Automation in Cyber-Physical Systems (adapted from Horvath et al., 2017)

Li et al. (2023) evaluated this system evolution in the context of human—robot relationships by
categorizing it into six distinct phases: Human—Robot Coexistence (1979-1985), Human—Robot
Interaction (1986—-1996), Human—Robot Cooperation (1997-2007), Human—Robot Collaboration
(2008-2015), Symbiotic Human—Robot Collaboration (2016-2020), and Proactive Human—Robot
Collaboration (2020—present). Initially, robots were merely used as tools. Over time, they began
interacting with human operators, then progressed to cooperating—working on related tasks in
parallel but not simultaneously on the same task. Eventually, robots became capable of true
collaboration, jointly working with humans on common tasks in real time. This collaboration has
continued to evolve, shaped by technological advancements, into forms such as standard (or

normal), symbiotic (Wang et al., 2021), and proactive collaboration (Li et al., 2021).

Although collaboration represents an advanced form of interaction, this thesis places significant
emphasis on interaction as a distinct concept. Interaction establishes the foundation for reciprocal
communication between humans and machines, upon which collaboration is built. Therefore, the
next subsection explores the definitions and relationships among communication, interaction, and

collaboration in greater detail.
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2.1.3. From Communication/Interaction to Collaboration between Humans and Robots

Communication plays a crucial role in human life, both in affective socialization and cognitive
work. It helps human teams understand each other’s intentions, meet each other’s requirements,
and thereby collaborate toward a shared goal. Given this foundational role, a similar
communication method is necessary between humans and robots. Claude Elwood Shannon (1948),
a foundational figure in information theory, proposed that communication is essentially a statistical
process, where senders offer multiple messages for receivers to select from. Additionally, Shannon
and Weaver (1949) identified three levels of communication problems: technical, semantic, and
effectiveness. Although originally developed for human-to-human communication, this
framework has been extended to various communication forms, including human-robot

communication.

Before discussing how communication evolves into collaboration, it is important to clarify the
distinctions and overlaps between communication, interaction, and collaboration. McNeil et al.
(2000) studied how to facilitate communication, interaction, and collaboration between students
and online courses, and thus defined these terms and their boundaries clearly. They described
communication as the exchange of ideas regardless of whether the receiver provides feedback,
whereas interaction involves reciprocal communication between both parties. Based on this,
interaction encapsulates communication, as it requires a reciprocal exchange between agents. On
the other hand, collaboration refers to joint work shared by collaborators—such as humans and

robots in human-robot systems—toward a common goal.

In terms of communication, Bergman et al. (2019) discussed that current robotics advancements
have yet to fully replicate human physical and cognitive communication abilities. Floridi (2020)
emphasized that although machines may outperform humans in certain tasks, they do so through
fundamentally different mechanisms. Therefore, communication theory needs to adapt to hybrid
environments composed of both humans and intelligent computerized systems. Addressing this,
McNeese et al. (2021) conducted an experiment comparing collaboration in various team
compositions: human-only, human-human-Al, human-AI-Al, and Al-only teams. They observed
that team cognition was highest in human-only teams. This demonstrates that, because

communication is more structured among humans, their intentions and requirements can be
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conveyed more effectively than in hybrid or fully automated teams. Nass et al. (1996) also found
that humans tend to prefer interacting with other humans. Similarly, Merritt et al. (2011) reported
that participants enjoyed collaborating more with partners they believed to be human, even when
the partners were Al. These findings suggest that becoming comfortable communicating with
robots—comparable to communicating with human partners—takes time, especially until humans

feel as fully understood by robots as they do by other humans.

When it comes to interaction, multi-agent learning was studied by Tuyls and Weiss (2012) to
develop optimal solutions under dynamically changing conditions, involving many agents with
different characteristics. To support this, Maeda et al. (2017) proposed an innovative interaction
learning approach based on action recognition and human-robot movement coordination. These
learning approaches in human-robot communication support the development of interaction by
incorporating partner feedback. In addition, shared control has been proposed as a method to
enhance interaction between humans and robots. For instance, Abbink et al. (2018) argued that
shared control provides a more comfortable and intuitive way for both human and robotic agents

to contribute to a task simultaneously, enabling effective human-robot interaction.

Collaboration, as the final stage of this continuum, requires reciprocal communication, mutual
understanding, and joint intention. It represents a coordinated effort between human and robotic
partners to achieve a shared objective. Damacharla et al. (2018) conceptualized Human-Machine
Teams (HMTs) as collaborative systems that aim to improve overall performance through shared
goals, highlighting the importance of mutual contribution. As collaboration has matured over time,
proactive methods have been developed to enable both humans and robots to understand each
other’s intentions and act accordingly—even before a need or issue arises. For example, Broo
(2022) emphasized the necessity of adopting a futuristic mindset in human-robot collaboration
within complex and ambiguous smart systems to anticipate unknown unknowns and provide
solutions in advance. Moreover, Cruz et al. (2021) developed explainable robotic systems that
allow robots to communicate their intentions transparently to human collaborators. Likewise, Li
et al. (2021) introduced Proactive HRC, a framework based on inter-collaboration cognition that

promotes bi-directional empathy between humans and robots.
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Based on the literature regarding communication, interaction, and collaboration, Figure 3 below
illustrates the conceptual differences and relationships among these terms. According to the logic
presented in Figure 3, interaction and communication intersect when there is a reciprocal
exchange; however, communication alone does not imply reciprocity and can occur in a one-way
manner. On the other hand, interaction does not always include communication, as communication
typically involves verbal or non-verbal information exchange. For example, two agents may
interact—such as by physically touching—without necessarily engaging in any meaningful
communication. Collaboration is represented at the intersection of interaction and communication,
where reciprocal exchange and mutual understanding co-occur. Yet, not every interaction
involving two-way communication leads to collaboration. For collaboration to emerge, the agents
must also share a common goal, which transforms communicative interaction into purposeful joint

action.

RECIPROCAL? SHARED GOAL?

COMMUNICATION

COMMUNICATION COLLABORATION INTERACTION

INTERACTION

COLLABORATION

Ideal zone of mutual understanding
and adaptive behavior

Figure 3: Conceptual Relationship among Communication, Interaction, and Collaboration

2.1.4. Human Factor in Human-Robot Collaboration

Human-robot systems have been evolving from supervised models toward more autonomous,
unsupervised approaches (Horvath and Wang, 2015). This shift raises concerns about whether
humans are being removed from the decision-making loop. However, research strongly

emphasizes that human involvement remains essential; the goal is not to eliminate humans from
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these systems but rather to leverage their cognitive, experiential, and sociocultural contributions
(Wang et al., 2010; Liu et al., 2011). Despite the uncertainties inherent in human behavior
(Yalginkaya et al., 2023), humans enrich these technical systems by transforming them into

socially embedded and behaviorally adaptive environments through interaction (Horvath, 2014).

Studies have identified several scenarios where human contribution is indispensable. For example,
Kosa et al. (2023) explored the application of robots in intensive care units for the elderly, driven
by staffing shortages. Their findings confirmed that even in technologically advanced healthcare
systems, human involvement remains critical. Similarly, Borges et al. (2021) examined ways to
reduce work-related musculoskeletal disorders in industrial settings. Their research demonstrated
that when handling small or delicate parts, human input is crucial, as robots may lack the required

dexterity or sensitivity.

Beyond direct participation, human feedback plays a critical role in enhancing the performance of
human-robot systems. Roveda et al. (2023) proposed a preference-based optimization algorithm
that integrates qualitative user input, emphasizing its importance in refining system behavior. In a
similar vein, Humann et al. (2023) designed a graphical user interface capable of identifying the
optimal configuration and proportion of heterogeneous agent types, tailored to the user's trade-off
preferences. Additionally, Kirtay et al. (2023) highlighted the potential of human cognitive
strengths—particularly creativity and intuitive judgment—to reduce the computational burden on
robotic systems. Collectively, these studies underscore that despite growing automation
capabilities, humans continue to be indispensable in the loop, serving as both contributors to and

beneficiaries of intelligent systems.

A key consideration for ensuring effective human-robot collaboration is the transparency and
intelligibility of robotic capabilities. Boy (2017), for instance, advocated for a human-centered
design approach, emphasizing the limited utility of intelligent systems—such as autonomous
vehicles—when users are unable to understand their functionalities or resolve system failures.
Consequently, although intelligent robotic components provide undeniable support within human-
robot teams, they may also function as constraints, particularly when their complexity impedes
user comprehension or system transparency (Sha et al., 2008). To address these challenges,

researchers have introduced BCI-Augmented Reality (AR) and virtual reality interfaces to
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facilitate more realistic and comprehensible interactions between humans and robots. These
interfaces aim to clarify human expectations in collaborative contexts by enhancing users’
understanding of robotic behavior and capabilities (Perrin et al., 2010; Ji et al., 2021; Lei et al.,
2023). Complementing these efforts, researchers have also proposed the development of more
human-like cognitive models for robots to improve mutual understanding and coordination
(Anzalone et al., 2015; He et al., 2021). Also, Gombolay et al. (2017) investigated the role of
human situational awareness in collaborative performance, while Nikolaidis et al. (2017)
introduced computational frameworks that support mutual adaptation between humans and robotic

partners.

This concept of mutual adaptation is foundational for effective collaboration. Rather than imposing
rigid task divisions, systems should facilitate bi-directional learning—allowing both humans and
robots to adjust to one another's strategies. Yun et al. (2016) distinguished autonomous learning
from direct learning, proposing that the former enables humans to generate hypothetical
knowledge by integrating insights from multiple experiences. This capacity for abstract and
integrative thinking marks a key advantage of human intelligence. In line with this, Rozo et al.
(2016) introduced a learning framework demonstrating how humans can teach robots, further

enabling adaptive, collaborative behavior.

In conclusion, human-robot collaboration must prioritize the human factor—not only as a practical
necessity but as a guiding principle. Since humans are the ultimate beneficiaries and users of these
systems, collaboration should be grounded in human cognitive models, enriched by their feedback,
and measured by their satisfaction. No matter how advanced robotic technologies become,
preserving the human-in-the-loop approach is essential for fostering meaningful, efficient, and

ethical collaboration.

2.1.5. Robot Factor in Human-Robot Collaboration

As mentioned in the previous subsection, learning from each other enhances human-robot
collaboration. The contribution of robots in collaborative systems largely stems from their ability
to learn and adapt based on human input and environmental data. Central to this capability is the
Learning from Demonstration (LfD) approach, which enables robots to replicate human actions

and develop new skills by observing task execution (Sosa-Ceron, 2022). Building on this, some
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researchers have proposed more advanced frameworks—such as imitation learning (Hussein et al.,
2017), task-parameterized LfD for intelligent robots (Zaatari et al., 2022), and collaborative
intelligence-based models incorporating fine-grained human digital twins—to enhance robots’
contextual understanding and personalization in task execution (Zheng et al., 2023). Raziei and
Moghaddam (2021) further extended robot learning through a hyper-actor model that links lessons
learned from past tasks to future operations, thereby creating a knowledge-transfer mechanism that
improves robot preparedness. These learning paradigms reflect a broader trend in robotics, where
machines are no longer static executors but dynamic participants capable of adapting to changing
contexts. In this direction, Parisi et al. (2019) emphasized the importance of lifelong learning
frameworks that enable autonomous computational agents to incrementally accumulate knowledge
throughout their operational lifetime. As highlighted by di Fiore and Schneider (2017), modern
robots refine their cognitive and functional capabilities through continuous analysis of complex
datasets, striving to emulate the subtleties of human intelligence. Complementing this view, Soori
et al. (2023) provided an extensive overview of artificial intelligence techniques that underpin
these learning models, showing the breadth of methods through which robots contribute

intelligently and proactively in human-robot collaboration.

After learning the way of handling tasks, robots play a critical role in supporting collaborative
work environments, particularly through task sharing and physical assistance. There are many
virtual and physical human-robot examples in today’s world. Riedelbauch et al. (2023), for
instance, investigated novel methods for enabling humans and robots to work side by side, with a
focus on handling tasks, collaborative assembly, and broader industrial applications. Their study
also emphasized safety concerns, which are essential when integrating robotic systems into shared
workspaces. In line with this, numerous studies have examined the physical contribution of
collaborative robots in complex and potentially hazardous environments. Many of these works
highlight how robots enhance safety and operational efficiency, especially when functioning in
close proximity to humans during assembly tasks in smart manufacturing contexts (Merlo et al.,
2023; Lopez-de-Ipina et al., 2023; Yonga Chuengwa et al., 2023; Zanchettin et al., 2022; Pereira
et al., 2022; Prendergast et al., 2021; Darvish et al., 2021). Beyond task execution, robots also
support system reliability and operator awareness. For example, Polenghi et al. (2024) proposed a

predictive maintenance framework that enables cobots to detect and respond to anomalous motion
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patterns, allowing human operators to address issues proactively. Last but not least, Dahl et al.
(2021) explored the deployment of two types of robots in collaborative environments: one group
focused on mounting tasks, while another was designed for flexible material transportation. These
examples demonstrate that robot contributions extend beyond isolated functions, supporting both

safety and operational adaptability in dynamic work settings.

In addition to physical assistance and safety functions, robots increasingly contribute to the
proactive management of system reliability and human-centered interaction. Park et al. (2021)
presented a programmable motion-fault detection method aimed at enhancing predictive
maintenance strategies by identifying potential equipment failures before they escalate. This
approach enables more efficient upkeep and reduces unexpected downtime in collaborative
environments. Complementing this, Dutta and Zielinska (2021) emphasized the need for early
detection of two key abnormalities in robotics: information faults and system failures. Their work
underscores the importance of anticipating such disruptions and implementing safeguards in
advance to maintain system continuity and safety. Beyond technical diagnostics, the role of robots
in adapting to human intentions has also gained attention. Lemaignan et al. (2017) explored
human-aware task planning through a multi-modal dialogue system supported by a cognitive
architecture. Their framework integrates perspective-taking, affordance assessment, situated
language interaction, and logical inference to foster more intuitive and responsive collaborations
between humans and robots in shared workspaces. These developments illustrate that robotic
support is not limited to mechanical functions, but extends into predictive reasoning and socially

aware interaction.

Robots are applied in nearly every field, either physically or virtually; therefore, their contribution
is extensive and continues to grow—especially in understanding human emotions and intentions
in collaborative settings. The following Section 2.2 focuses on how robots perceive and interpret

emotional and behavioral signals through physiological and behavioral data analysis.
2.2.Tools and Techniques Used in Human-Robot Systems

Understanding human intentions is a fundamental aspect of effective human-robot collaboration.
These intentions can be assessed through two primary sources: behavioral data, which reflects

observable actions and expressions, and physiological data, which provides insights into internal
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states such as stress or cognitive load. Both types of data are captured using a variety of tools and
techniques designed to interpret human signals accurately. In this section, the focus begins with
an overview of the tools and techniques used to extract behavioral measurements, followed by a

discussion of those employed for physiological assessments.

2.2.1. Behavioral Measurements in Human-Robot Systems

In human-robot systems, behavioral measurements are essential for understanding human
intentions, emotional states, and engagement levels. These measurements rely on external and
observable cues collected through various interfaces, sensors, and perceptual systems. The
subsections below group the key techniques used for behavioral observation, based on the modality

they represent.

2.2.1.1. Mouse and Keyboard Motion

Mouse and keyboard movements are frequently utilized to infer users’ behavioral responses in
digital environments. Salmeron-Majadas et al. (2014) investigated this method in the context of
cyber-physical learning systems and proposed that such inputs could reveal emotional states,
though they also noted the importance of combining them with other emotional data sources to
improve accuracy. Similarly, Sun et al. (2014) explored the relationship between stress and mouse
motion. Their findings suggest that stress can be triggered by users’ interactions with unfamiliar
or confusing digital interfaces, which manifest as variations in cursor movement or typing

behavior.

2.2.1.2.Facial Expression

Facial expressions have long been regarded as valuable indicators of internal emotional states. A
widely accepted method in this domain is the Facial Action Coding System (FACS), which
identifies emotions based on specific muscle movements (Prkachin & Solomon, 2008). Their study
showed strong correlations between physical pain and a set of facial reactions including brow
lowering and eye closure. This connection between facial indicators and subjective experience
provides a structured approach to interpreting emotional feedback. Building on this, Jabon et al.

(2010) focused on detecting accident risk based on facial changes in drivers moments before a
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collision, proposing systems that can issue warnings or act autonomously. Kaltwang et al. (2012)
applied facial recognition to pain detection, though they highlighted challenges in distinguishing
subtle variations like eye blinks from true pain signals. In another line of work, McDuff et al.
(2014) emphasized the need to differentiate between genuine and posed emotional expressions—
particularly smiles—in order to improve recognition accuracy in natural interactions. Zhu et al.
(2017) expanded this concept by incorporating gesture recognition into facial analysis, employing
LSTM networks to detect meaningful movements. A broader review of technologies for facial
expression and gaze recognition was also provided by Fahn et al. (2022), highlighting recent

developments in perceptual systems.

2.2.1.3.Image Recognition, Speech and Voice Recognition, and Audiovisual Behavior

Descriptors

Multimodal recognition systems that combine visual and auditory cues have gained traction for
their ability to detect emotional and psychological states. For example, Malta et al. (2011)
integrated facial expression, speech analysis, and behavioral cues like gas and brake pedal usage
to detect driver frustration. Their findings suggest that the fusion of multiple inputs strengthens
the reliability of affect detection. In contrast, Kim et al. (2013) employed unsupervised learning
models to classify audiovisual data, which they found to be effective in situations where clear
labeling is not available, such as with unclear speech or ambiguous vocal tones. Further supporting
the multimodal approach, Yang et al. (2013) and Scherer et al. (2014) explored how conditions
like depression or anxiety manifest through voice prosody and visual signals such as gaze
direction, smile behavior, and bodily self-adaptors. Scherer et al. emphasized the challenges in
automating the detection of subtle behaviors—Ilike leg fidgeting or voice tension—due to the lack
of robust automatic descriptors, hence relying on manual annotations for certain features.
Meanwhile, Guo et al. (2018) designed an auditory system for intelligent robots to support
emotional interpretation. These efforts are reinforced by Fahn et al. (2022), who reviewed a wide
range of recognition technologies, highlighting their expanding role in socially intelligent robotic

systems.
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2.2.1.4.Head Pose Estimation and Body Position Analysis

Body language, including posture and head orientation, plays a crucial role in decoding human
intent during interactions. Murphy-Chutorian and Trivedi (2009) emphasized that head pose
estimation can provide insight into social attention and interaction dynamics—for instance,
identifying who a person is speaking to in a group setting. They proposed several design principles
for future systems, including the need for real-time processing, lighting invariance, and
multiperson tracking. Despite progress in this area, they noted that fully capturing nonverbal cues
remains an open challenge. Complementing this perspective, Schmitz (2012) pointed out that
“self-adaptors”—behaviors like fidgeting or hair twirling—are particularly difficult for machines
to interpret due to their subtlety. Recent work by Orsag et al. (2023) demonstrates progress in this
domain by analyzing upper-body motion with LSTM networks to infer human intentions in real-

time.

2.2.2. Physiological Measurements in Human-Robot Systems

In addition to behavioral observations, physiological data offer an objective and often continuous
means to assess human stress levels, cognitive load, and emotional responses in human-robot
collaboration. These data are captured through a range of biosensing technologies that measure
signals such as heart rate variability, eye movement, brain activity, and skin conductivity. This
section outlines key physiological measurement techniques categorized by modality and supported

by current research.

2.2.2.1.Heart Rate and Electrocardiography (ECG)

Heart rate monitoring, particularly through electrocardiography (ECG), has been widely used to
assess emotional and cognitive states during human-robot interaction. Deep learning approaches
have recently been applied to ECG signals for stress recognition, showing robust results across
multiple datasets using end-to-end models with minimal manual feature extraction. These
advancements have positioned ECG as a reliable tool for real-time affective state recognition. For
instance, ECG-based stress detection models have shown promising performance on benchmark

datasets.
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In another application, heart rate monitoring was employed to track cognitive workload during
complex procedures such as endotracheal intubation (ETI) (Gazetta et al., 2023), where
participants were exposed to audiovisual stressors. The integration of heart rate sensors with real-
time tasks demonstrates the growing relevance of physiological data in high-stress training and
evaluation scenarios (Behinaein et al. 2021). Interestingly, non-contact methods for measuring
heart rate have also emerged—Poh et al. (2010) showed that specially designed cameras could

monitor the heart rates of multiple individuals simultaneously without physical sensors.

2.2.2.2.Eye Tracking and Electrooculography (EOG)

Eye tracking is another widely adopted technique for interpreting users’ cognitive and emotional
states in human-robot systems. Huang et al. (2015) demonstrated that gaze behavior could be used
to infer user intent, employing a support vector machine model trained on eye movement patterns.
Other studies have confirmed that eye movements and facial expressions captured through tracking
cameras can effectively reflect human performance and engagement in collaborative tasks (Bitkina
et al., 2021; Behinaein et al., 2021; Del Carretto Di Ponti E Sessam, 2023; Gazetta et al., 2023;
Hemakom et al., 2024; Awada et al., 2024).

Electrooculography (EOG), which captures the eye’s corneal-retinal potential via electrodes near
the canthi, has also proven useful in detecting horizontal gaze direction (Mocny-Pachonska et al.,
2021; Das et al., 2023; Dao et al., 2024). These techniques help identify attention shifts and
cognitive workload in real time. In high-pressure environments, such as simulation-based training
sessions, metrics derived from eye tracking have been used to distinguish between relaxed and
cognitively strained states with high accuracy—up to 83% binary classification between relaxed

and stressed conditions during tasks like the Stroop and N-Back tests.

Complementing these findings, wearable technologies like wristbands have gained popularity due
to their non-intrusive nature and ability to monitor multiple physiological signals, including heart
rate, skin temperature, and electrodermal activity. Their ease of use and reliability make them
attractive alternatives to head-mounted systems, especially in applied workplace settings (Gjoreski
et al., 2017; Nath & Thapliyal, 2021; Mitro et al., 2023; Bello-Orgaz & Menéndez, 2023; Awada
et al., 2024). For instance, Lachance-Tremblay et al. (2025) employed eye-tracking data to manage

drivers’ workload by redirecting their attention back to critical tasks when distraction was detected.
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2.2.2.3.Electroencephalography (EEG) and Functional Near-Infrared Spectroscopy (f-NIRS)

Brain activity provides direct insight into cognitive processes and mental workload.
Electroencephalography (EEG) has been extensively applied to capture neural responses during
human-robot collaboration (Al-Shargie et al., 2016; Perez-Valero et al., 2021; Katmah et al., 2021;
Attar, 2022; Hemakom et al., 2023). For example, Zhao et al. (2024) used EEG to monitor pilots’
mental states in a virtual training environment, marking a significant move toward quantitative
cognitive measurement. However, EEG sensors often involve intrusive hardware that can limit
natural movement during tasks. This concern has been echoed by Sugiono et al. (2022), who noted

that while EEG offers precision, it can compromise ergonomics and user comfort.

Functional near-infrared spectroscopy (f-NIRS) presents a less intrusive alternative, capable of
tracking hemodynamic responses by measuring the levels of oxygenated and deoxygenated
hemoglobin in brain tissue (Al-Shargie et al., 2016; Mirbagheri et al., 2019). Both EEG and f-
NIRS have shown promise in advancing cognitive-state recognition in collaborative systems,
although each comes with trade-offs related to usability and signal reliability in real-world

applications.

2.2.2.4.Electrodermal Activity (EDA)

EDA is a widely used physiological marker for assessing arousal and emotional intensity,
particularly in stress detection. It is measured through sensors that detect changes in skin
conductance, which are influenced by sweat gland activity. Numerous studies have validated the
effectiveness of EDA as a standalone indicator of stress (Pop-Jordanova & Pop-Jordanov, 2020;
Rahma et al., 2022; Dao et al., 2024). Awada et al. (2024), through a comparative study of
physiological indicators, found that EDA yielded the strongest results in stress classification when

compared to other biosignals.

Wearable devices capable of measuring EDA—along with related signals such as blood volume
pulse (BVP), skin temperature (ST), and motion acceleration—have proven particularly valuable
due to their ergonomic design and suitability for extended monitoring in work environments
(Gjoreski et al., 2017; Nath & Thapliyal, 2021; Mitro et al., 2023; Bello-Orgaz & Menéndez,

2023). These tools offer over 90% classification accuracy in stress detection tasks, making them
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highly reliable for human-robot collaboration studies where user performance and well-being are

critical.

These tools and techniques are applied in contexts where human stress levels directly influence
both individual and system performance. Section 2.3 explores how the concepts of stress and

performance are defined and integrated within human-robot systems.
2.3. Performance, Stress and Task Allocation Factors in Human-Robot Systems

After exploring the evolution of human-robot systems and the tools and techniques used to assess
human affective states—such as stress levels and emotional responses—this section shifts the
focus to three key factors that shape the success of collaboration: performance, stress, and task
allocation. These elements are not only interconnected but also critical for maintaining balance
and efficiency within human-robot teams. The following subsections examine these aspects in
detail, beginning with an overview of system performance, followed by an analysis of how human
stress impacts collaborative outcomes, and concluding with a discussion on task allocation

strategies in human-robot environments.

2.3.1. Human-Robot System Performance

Human-robot system performance is shaped by a complex interplay of physiological, cognitive,
temporal, and task-related factors. Human performance within these systems is inherently dynamic

and subject to fluctuation due to both internal and external influences.

One of the earliest insights into human performance variability comes from Kleitman’s (1933,
1938) research on circadian rhythms. His work demonstrated that performance levels rise and fall
in alignment with the body’s internal biological clock. This rhythm leads to periods of heightened
alertness and cognitive capacity, followed by inevitable declines. Building on this,
Kalanadhabhatta et al. (2021) examined both circadian and homeostatic components, concluding
that human cognitive performance peaks between 09:00—16:00 and diminishes during early
morning and late-night hours. Razavi et al. (2023) confirmed that aligning demanding tasks with

these peak periods significantly improves overall task efficiency.
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In parallel, the Cognitive Load Theory emphasizes the role of knowledge and experience in human
performance. Sweller (1988) and Van Merriénboer and Sweller (2010) noted that individuals with
greater expertise perceive tasks as less complex, resulting in more efficient execution. Zeitlhofer
et al. (2024) experimentally supported this idea by showing that participants performed faster
during subsequent attempts at previously complex problems, suggesting that knowledge

acquisition plays a critical role in task performance.

Performance variability, however, is not solely a result of time-of-day or knowledge level. Lee and
McGreevey (2002) argued that every human task involves inherent variability, distinguishing
between natural process variation and deviations that warrant corrective intervention. When
performance deviates significantly from expected levels, interventions may be necessary to restore
consistency (Caulcutt, 2004). Nguyen and Zeng (2012) synthesized multiple contributing
factors—such as ergonomic strain, mental stress, and environmental discomfort—into a
conceptual model describing the stress-performance relationship. Their bell-curve representation
reflects that optimal performance occurs at moderate stress levels, while both under-stimulation
and overload reduce effectiveness. Zhao et al. (2023) adapted this relationship into three
performance zones—Laid-back, Capacity, and Fatigue—which can guide intervention strategies

based on real-time stress levels.

Project management research adds further depth by linking performance to task structure.
According to Wilkinson et al. (2012), Walhout et al. (2017), Guo et al. (2020), and Zhou et al.
(2022), estimated task durations often reflect task complexity, especially when skill requirements
are comparable. In this way, task duration serves as a proxy for workload and can help optimize
individual task distribution. The Project Management Institute (2021) and Mulcahy (2013)
emphasize that accurate time estimation during planning is essential for workload balance and

schedule reliability.

Several studies have demonstrated the effectiveness of statistical tools in monitoring human
performance in both individual and collaborative contexts. Wang et al. (2013) used X-bar control
charts to detect performance drops in supermarket cashiers after prolonged working hours.
Similarly, Yousefi et al. (2019) introduced the Duration Performance Index (DPI) as a time-

efficiency metric in construction projects, using control charts to track performance deviations.
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Their findings reinforced that such tools offer valuable insights into when interventions are

required to prevent inefficiencies.

In safety-critical contexts such as rail transport, Sugiono et al. (2022) incorporated control charts
into their Cognitive Workload Management (CWM) framework. Their system used brain data and
train operation logs to assess workload zones (underload, optimal, overload) and recommend rest
schedules accordingly. This data-driven approach proved effective in supporting real-time

decision-making to maintain operator readiness and safety.

Beyond temporal and cognitive factors, task complexity also plays a crucial role in shaping system
performance. Zahmat Doost and Zhang (2023) categorized tasks into skill-based, rule-based, and
knowledge-based groups and measured mental workload across different scenarios. Their findings
revealed that knowledge-based tasks are the most cognitively demanding, imposing the highest
mental workload during uninterrupted performance at 78.2%, followed by rule-based tasks at
50.2%, and skill-based tasks at 40.5%. However, under distraction, the ranking shifted:
knowledge-based tasks still led with 58.6%, but skill-based tasks (40.4%) slightly exceeded rule-
based tasks (36.9%) in terms of perceived mental workload. This nuanced differentiation
underscores the importance of considering environmental interruptions when allocating task types

in human-robot collaboration settings.

Merlo et al. (2023) approached performance from an ergonomic perspective, emphasizing the need
to avoid assigning high-risk or physically demanding tasks to humans under unfavorable
ergonomic conditions. Tao et al. (2024) expanded this view by comparing different interaction
modalities—such as gesture-based or device-assisted inputs—under varying ergonomic
conditions. They concluded that the choice of interaction type can significantly influence user
performance and comfort, with mid-air interaction resulting in poorer performance and higher

muscle strain, especially in vibration environments.

To ensure consistent and efficient human-robot collaboration, performance should not be treated
as a static measure but rather as a dynamic outcome influenced by stress, fatigue, task complexity,
and temporal rhythms. As Kalanadhabhatta et al. (2021) and others have shown, aligning human

tasks with peak performance windows and continuously monitoring workload conditions can
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significantly enhance system-wide outcomes. To that end, dynamic task scheduling systems that
assess both human capabilities and task demands in real time (Pupa et al., 2021; Alirezazadeh and
Alexandre, 2022) are increasingly seen as necessary components of adaptive human-robot

systems.

2.3.2. The Effect of Human Stress in Human-Robot System Performance

In human-robot collaboration (HRC), human performance is not only influenced by skill or
experience but also by fluctuating mental states—especially stress. Stress plays a dual role: while
a moderate level can enhance alertness and responsiveness, excessive or insufficient stress can
significantly impair human performance. Therefore, understanding and regulating stress levels is

a critical factor in optimizing collaborative system outcomes.

The relationship between stress and performance has long been studied, with foundational work
by Yerkes and Dodson (1908) showing that performance improves with increasing stress up to a
certain point—beyond which it declines. More recently, Awada et al. (2024) reaffirmed this
curvilinear relationship and emphasized the need for quantifying stress accurately to improve
collaborative system performance. Zhao et al. (2023), though focusing on workload rather than
stress, identified a parallel trend: human efficiency increases with workload to a certain threshold
before declining—mirroring the stress-performance bell curve. Their classification of performance
zones—ULaid-back, Capacity, and Fatigue—offers a practical model for identifying when
intervention is needed to restore optimal workload levels. Sickles and Zelenyuk (2019) further
noted that efficiency is both a key driver of and an outcome of performance, reinforcing the

importance of managing human states for improved system outcomes.

The link between stress and performance is further supported by research on creativity and
cognitive capacity. Wilke et al. (1985) and Zhao et al. (2018) emphasized that optimal
performance—particularly in tasks requiring innovation—occurs when stress is balanced. Low
stress may result in disengagement, while high stress can lead to panic or impaired judgment.
Similarly, Nguyen and Zeng (2017) offered a stress formulation (Stress = Workload / Mental
Capability) to explain how cognitive overload occurs when task demands exceed an individual’s

internal resources.
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One of the challenges in leveraging these models in real-world HRC systems is measuring stress
in an accurate yet unobtrusive manner. In this context, Awada et al. (2024) conducted a
comparative study of physiological indicators and concluded that Electrodermal Activity (EDA)
alone offered the most consistent and interpretable results. Wrist-worn sensors capable of
recording EDA, Skin Temperature (ST), Blood Volume Pulse (BVP), and wrist motion have been
validated as ergonomically suitable and reliable tools for in-the-field stress detection (Gjoreski et
al., 2017; Nath & Thapliyal, 2021; Mitro et al., 2023; Bello-Orgaz & Menéndez, 2023). These
technologies enable stress data collection with minimal disruption to the natural flow of human
behavior, making them particularly advantageous for use in collaborative settings. Despite the
technological advances, however, ergonomic limitations and usability concerns still pose barriers

to widespread implementation.

In conclusion, integrating stress-aware task allocation strategies and adopting non-invasive
monitoring tools are essential for achieving balanced and efficient human-robot collaboration.
Wrist-worn devices and contactless sensors represent viable paths forward, offering accurate stress
detection while preserving user comfort. These innovations mark an important step toward more
adaptive and intelligent collaborative systems—where human performance is continuously

supported through real-time, data-driven stress regulation.

2.3.3. Task Allocation in Human-Robot Systems

Humans are efficient elements of human-robot systems, capable of quickly adapting to changing
conditions and adjusting themselves when new missions are introduced. For this reason, the human
factor is expected to play a role in task allocation. However, as the number of robots increases, the
cognitive workload placed on a single human may not be sufficient due to the increased demand
of managing multiple robots. To mitigate this issue, the number of humans involved should also

be increased accordingly (Jo et al., 2024).

As hybrid teams consisting of both humans and robots become more common, the workload should
be allocated by taking the unique characteristics of each into account. Task allocation (Miller et
al., 2002; Hardin and Goodrich, 2009; Khamis et al., 2015) and task scheduling (Gutzwiller et al.,
2015; Creech et al., 2021; Tokadl et al., 2021) have been widely discussed in the literature.

However, the inclusion of multiple humans in multi-robot systems—particularly when human
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affective states are considered—has not been studied extensively. A recent study by Jo et al. (2024)
addressed this gap by integrating human affective states into workload distribution across multiple
humans and robots. This complements earlier research that evaluated human decision-making
ability based on task difficulty or performance metrics without explicitly considering cognitive
workload (IJtsma et al., 2019; Talebpour and Martinoli, 2019). Still, cognitive workload—which
refers to the mental capacity required to complete tasks (Debie et al., 2019)—is one of the key
factors influencing human decision-making mechanisms (Harriott et al., 2015; Heard et al., 2018;

Roy et al., 2020; Biondi et al., 2021).

Le et al. (2024) emphasized that human participation improves situational awareness and provides
flexibility to the team. However, because human affective states—such as emotions and cognitive
load—are inconsistent, and human performance can fluctuate due to both internal and external
factors (Lyons and Stokes, 2012; Hooey et al., 2017; Kolb et al., 2022), systems need to be aware
of and monitor these changes. Accordingly, the allocation of workload should adapt in real time
to help maintain humans at their optimal performance level in collaborative environments (Feigh

and Pritchett, 2014; Barnes et al., 2015; Dahiya et al., 2023).

Therefore, this thesis focuses on how human performance can be sustained at optimal levels
through a robot-supervised intervention algorithm that considers affective states and stress levels.
Finally, the following section presents examples of existing robot-supervised systems that support

this approach.
2.4.Robot-Supervised Human-Robot Systems

As discussed in the previous chapters, recent technological advancements have enabled robots to
take on supervisory roles within human-robot systems. This shift has led to their integration across
a wide range of fields, where they monitor, support, and adapt to human behavior. In this section,
the focus is placed on how robots make decisions in such systems and how these capabilities are

implemented in real-world applications through various examples.
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2.4.1. Robots’ Decision-Making in Human-Robot Systems

As human-robot collaboration becomes increasingly dynamic and task-oriented, the ability of
robots to make context-aware decisions becomes essential for sustaining both efficiency and
human well-being. In robot-supervised systems, the robot is not merely a reactive tool but an
intelligent agent capable of interpreting human behavior, evaluating task demands, and adapting

its responses accordingly.

A foundational approach to robot decision-making lies in the analysis of human behavior across
different time scales. Toniges et al. (2017) outlined a human-centered adaptation framework
consisting of three behavioral analysis layers. In short-term analysis, robots monitor momentary
human actions—such as individual work steps—and detect anomalies or irregularities that may
require immediate response. Medium-term analysis focuses on broader task sequences, enabling
the robot to evaluate ongoing workload and, if necessary, assume control of specific subtasks to
alleviate human strain. Finally, long-term behavioral analysis aims to identify patterns over
extended periods, supporting decisions that align with a more holistic understanding of the user’s

capabilities and working style.

Incorporating human-centered principles into robotic decision-making has also been explored
through cognitive and cloud computing integration. Chen et al. (2018) proposed a computing
model that leverages real-time cognitive inputs alongside distributed computational resources to
enhance the robot’s responsiveness and contextual awareness. This approach supports more
adaptive decision-making by equipping robots with the capacity to interpret not only what the

human is doing but also how and why.

From a health and safety perspective, Borges et al. (2021) introduced a decision-making
framework that prioritizes ergonomic considerations. By assessing the physical demands of
specific tasks and matching them with the human's ergonomic condition, the system aims to reduce
the risk of musculoskeletal disorders while simultaneously optimizing task performance. In this

way, robotic decisions are informed by both physiological and operational parameters.

Machine learning techniques, particularly reinforcement learning, are also gaining traction in

robotic decision systems. Dromnelle et al. (2022) implemented reinforcement learning models to
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train robots in dynamic environments where optimal responses are learned through feedback and
interaction. This enables robots to adapt their decision-making strategies based on the evolving
behavior of their human collaborators and the task context, rather than relying solely on predefined

rules.

Together, these approaches reflect a growing emphasis on making robotic systems more
intelligent, context-sensitive, and aligned with human needs. By analyzing behavior over time,
incorporating ergonomic and cognitive factors, and learning from interaction, robots can make
informed decisions that enhance collaboration, reduce human fatigue, and improve overall system

resilience.

2.4.2. Implementations of Robot-Supervised Human-Robot Systems

Robot-supervised human-robot systems are no longer confined to industrial manufacturing lines;
their applications now span diverse fields—from intelligent tutoring to healthcare, smart mobility,
and immersive virtual environments. The core feature across these domains is the robot’s capacity
to interpret, predict, and respond to human behavior in real time, often underpinned by artificial

intelligence, cognitive computing, and adaptive control mechanisms.

In education, intelligent tutoring systems offer a compelling example of robot-supervised
implementations. D’Mello et al. (2007) emphasized the importance of integrating affective state
recognition into learning environments. Their study proposed that user emotions—such as
confusion, boredom, frustration, and engagement—can be detected using multiple data channels
including facial expressions, posture sensors, and dialogue cues. They argued that adapting
tutoring strategies to these emotional signals can enhance cognitive outcomes. Similarly, Whitehill
et al. (2011) investigated how automated systems could emulate human tutors by detecting student
emotions to adjust their pedagogical approach. Their findings demonstrated that affect-sensitive
systems, powered by data collected through sensor networks, could improve learner engagement

and the overall effectiveness of instruction.

In the healthcare domain, brain-computer interfaces (BCIs) represent another significant
advancement in robot-supervised interaction. Perrin et al. (2010) designed an intelligent

wheelchair system that interprets neural signals to anticipate user needs, enabling the robot to
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propose supportive actions. Carlson and Demiris (2012) built on this concept by implementing a
collaborative control model that allows the robot to detect when users need assistance and step in
accordingly. These systems highlight the value of intention recognition in physically supportive

environments.

Outside of these cognitive and assistive applications, robot-supervised systems have made strides
in industrial settings. Fischer and Pohler (2018) distinguished between automation and tooling
scenarios, pointing out that in modern cyber-physical systems, computer technologies increasingly
act as participants rather than passive tools. Wei and Ren (2018) contributed by focusing on
dynamic path planning for autonomous adaptation, while Ji et al. (2021) integrated augmented
reality to improve situational awareness and human-machine interface clarity in collaborative

environments.

More broadly, robot-supervised systems powered by Al, cognitive computing, and operational
technologies are now used across numerous sectors. Examples include smart manufacturing
systems (Zhang et al., 2023; Johannsmeier and Haddadin, 2016), educational robotics
(Sannicandro et al., 2022), surgical and mobile healthcare robots (Chi et al., 2018; Wan et al.,
2020), wearable and soft robotics (Lee et al., 2020; Xiong et al., 2021), robotic agriculture
(Marinoudi et al., 2019), and robotic systems designed for entertainment or assistive purposes for
children (Van Den Heuvel et al., 2022; Mascarenhas et al., 2022). In each of these
implementations, robots act not as isolated systems, but as context-aware collaborators capable of

adapting their roles based on human needs.

Digital twin modeling further extends the possibilities of robot supervision. Gallala et al. (2022)
developed a mixed-reality framework using 10T, collaborative robots, and Al, allowing a virtual
counterpart of the human-robot system to simulate and predict behavior. Prasad et al. (2024) and
Sreedevi et al. (2022) emphasized the role of cognitive computing and Al in simulating human-
like reasoning for robot decision-making. These frameworks not only support predictive
maintenance and simulation but also enable real-time decision adjustments based on human

activity and context.
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In parallel, machine vision and digital twins have been extensively reviewed as key enablers of
human-robot collaboration (Yonga et al., 2023; Ramasubramanian et al., 2022). When paired with
virtual reality applications, such as those demonstrated by Lei et al. (2023), robot-supervised
systems gain immersive capabilities that enhance task planning, situational awareness, and stress-

free user interaction.

Despite technological progress, research by Kosa et al. (2023) underscores that full autonomy is
not always desirable. Their study on robot support in intensive care units highlights that human
involvement remains critical—especially in high-stakes scenarios where empathy, ethical

judgment, or contextual interpretation is needed.

Finally, implementation efforts have consistently prioritized safety and ergonomic performance.
Numerous studies (e.g., Merlo et al., 2023; Lopez-de-Ipina et al., 2023; Yonga Chuengwa et al.,
2023; Zanchettin et al., 2022; Pereira et al., 2022; Prendergast et al., 2021; Darvish et al., 2021)
have investigated the physical support provided by collaborative robots in tasks requiring close
human-robot proximity, often in environments where ergonomic conditions, safety, and
coordination are critical. These implementations have shown that when robot-supervised systems
are aligned with human comfort, workload, and task complexity, they significantly enhance both

system performance and user satisfaction.

In summary, robot-supervised systems are no longer limited to automation—they are evolving into
intelligent, multi-functional collaborators. Whether in education, healthcare, manufacturing, or
immersive virtual environments, their implementation is increasingly marked by adaptability,

contextual sensitivity, and real-time responsiveness to human needs.
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3. METHODOLOGY

Human performance fluctuates based on both implicit conditions, such as stress level,
physiological conditions like circadian rhythm (which represents sleep patterns), and knowledge
level, as well as explicit conditions such as environmental factors. This thesis proposes that human
stress can be controlled by robot partners in human-robot collaboration when human performance
is impaired due to changing stress levels. To address fluctuations in human performance and stress
level, a robot-supervised intelligent workload reallocation algorithm is introduced. This algorithm
tracks human performance through statistical control charts, analyzes human stress via behavioral
and physiological data, and intervenes in task allocation between robots and humans. The
assumptions underpinning this model are defined in Subsection 1.3. The proposed model executes

the following steps:

1. Initially allocates workload according to task characteristics. Some tasks are exclusive to
humans, some to robots, and others require human-robot collaboration to utilize both
partners' capabilities.

2. The collaborative work is then initiated.

3. The robot begins observing human performance through statistical control charts,
alongside its own tasks assigned at the outset.

4. If human performance becomes unstable, the robot checks whether the human’s stress level
exceeds predefined thresholds to determine if the human is underloaded, overloaded, or
stable, using wearable devices such as smartwatches or wristbands. If the stress level is
stabilized (within predefined thresholds), the robot assesses that irregularities in human
performance may be due to factors such as the human’s knowledge, skills, or sleep
conditions. While identifying the root causes of unstable human performance is important,
investigating this condition is beyond the scope of this thesis. If stress levels are
underloaded or overloaded, the algorithm proceeds with the following steps.

5. The robot calculates the task-specific stress level of the current task and possible tasks for
the human, based on workload allocation zones that represent potential task distributions
according to partners' capabilities.

6. If the wearable device indicates that the human is underloaded, the robot assesses whether

task reallocation will increase stress to reach an optimal stress level and enhance
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productivity. If the human is overloaded, the robot investigates whether task reallocation
will reduce stress, bringing it to the optimal level to boost productivity. This comparison
is made using the conceptual formula developed for task-specific human stress, which
represents the individual effect of a task on human stress. In this case, the robot subtracts
the effect of the current task from the overall stress and adds the potential task’s effect,
using the task-specific stress values to compare the two different conditions.

7. If the expected condition is achieved, the task is reallocated accordingly. If not, new tasks
are tested to determine whether they will achieve the desired condition.

8. The robot continues to monitor human performance after stabilizing human stress, ensuring

that performance remains under control in case it fluctuates again.

Although human-robot collaboration occurs in multi-human, multi-robot systems, this thesis tests
the proposed algorithm in a one-human, one-robot system to assess whether the model yields the
expected results. Following this model logic, subsequent sections provide details of the system, its
components, hypotheses for the proposed model, and elaborations on adopted ideas, flowcharts,
conceptual formulas, and pseudocodes. A case study and a Monte Carlo simulation model are

conducted to evaluate the feasibility of the model.

Section 4 introduces the human-robot system framework, outlining system components and their

potential interactions within the human-robot team.

Section 5 presents the interaction modalities across task zones. First, the concept of workload is
defined by dividing it into distinct zones using a Venn diagram, representing the ability of
collaboration partners to perform tasks. Some tasks require human expertise, others require robot
functionality, and some necessitate the complementary capabilities of both. Second, interaction
modes are identified using the Axiomatic Theory of Design (Zeng, 2002) to illustrate the diverse
communication channels and interactions within the hybrid system. Third, each interaction
modality is mapped onto the classified Venn diagram. Fourth, a dynamic task reallocation
algorithm, considering task zones and human stress levels, is introduced through pseudocode.
Finally, a case study investigates how dynamic task reallocation can optimize performance in
human-SAP system collaboration. This study classifies system workload, identifies relevant

interaction modes and task zones, and provides data to the supervisory controller (the robot). While
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dynamic task allocation is discussed as stress-aware in this section, Section 6 explores how human
stress levels can be measured and quantified, and Section 7 examines how human stress affects the
proposed model in detail. The focus of Section 5 is to identify intervention opportunities based on

task zones and interaction modes.

Section 6 evaluates the performance of the proposed human-robot collaboration model, focusing
on how human stress influences this performance. First, human-robot system performance as a
function of human stress is evaluated mathematically using a disjoint union formula to assess
overall system performance, with a focus on human-related factors. Second, the parameters of
human performance and stress are analyzed through set theory to identify which factors implicitly
and explicitly affect human performance. Third, it is hypothesized, and supported by existing
studies, that human stress can be measured through wearable devices. Fourth, a conceptual formula
is developed to quantify task-specific human stress and adjust stress levels when they exceed
acceptable thresholds. This quantification is crucial because, when stress is monitored through
wearable devices, the robot must adjust task assignments and modify the human's workload as
needed. Mathematical calculations are performed whenever an intervention is made to verify its

effectiveness.

Section 7 introduces the proposed model, building on the foundations established in Sections 4
through 6. First, the process flow of the proposed robot-supervised workload allocation algorithm
is outlined using Microsoft Visio, divided into three steps to explain how and when the robot
intervenes in workload allocation. These steps are explained in detail within this subsection. The
first step focuses on monitoring human performance using statistical process control charts. The
second step centers on measuring human stress, as detailed in Subsections 6.3 and 6.4. The third
step illustrates the detailed operation of the proposed model, highlighting the need for integration

with other systems to ensure proper functionality.

Based on the proposed model’s process workflow, as depicted in Subsection 7.1.3, the model’s
three key phases are discussed in Subsection 7.2. The first phase illustrates a state diagram based
on human stress conditions—underloaded, stabilized, and overloaded. The state diagram triggers
the robot’s intervention in workload reallocation when human stress levels are overloaded or

underloaded. The second phase calculates the effect of each task on human stress to determine

38



which task should be exchanged with the current one. This quantification, as mentioned earlier, is
explained in Subsection 6.4. The third phase introduces pseudocode that guides the robot in
adjusting human stress levels to optimize performance during collaboration, as tested in the
simulation study to evaluate the validity of the proposed model. Finally, Subsection 7.3 presents a

Monte Carlo simulation to validate the proposed model.
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4. THE HUMAN-ROBOT SYSTEM FRAMEWORK IN THE PROPOSED MODEL

Human-robot systems have evolved, as outlined in the literature review, from the use of robots as
tools in human-dominated work environments to collaborative interactions within cyber-physical
systems, where physical components such as humans and robots interact through cyber
components, including sensors, actuators, and software. Since the central theme of this thesis is
human-robot collaboration through interaction, this section first visualizes the key system
components—humans, robots, and their collaboration. It then explains how interaction is

structured within multi-robot, multi-human systems.

4.1.System Components in Human-Robot Systems

In the context of human-robot systems, one system’s output serves as the input for another in a
collaborative setup. Interactions form the foundation of human-robot collaboration through
communication channels. As mentioned in the literature, communication occurs when information
is transferred without expecting feedback. In contrast, interaction involves two-way
communication, where feedback is expected. When the aim is to achieve a shared goal through
this two-way communication, collaboration emerges. Therefore, understanding the interactions

and their interrelations within the system concept is crucial.

Human-robot systems consist of multiple humans and robots, which can form various collaborative
groups. These groups may include human-human collaborations, where individuals work together
to achieve a common goal through human-to-human interactions; robot-robot collaborations,
where robots work together toward a shared goal through robot-to-robot interactions; and human-
robot collaborations, where humans and robots work together toward the same objective through

human-robot interactions.

As each group produces output, these outputs may serve as input for other groups, creating a
continuous cycle of interactions and inputs across the system. This exchange of inputs and outputs
between groups results in the integration of various system components. This integration
mechanism underscores the importance of collaboration among system components. Thus, it is
essential to recognize that system components interact to collaborate and generate output, which

in turn triggers the operations of other systems. This mechanism is illustrated in Figure 4.
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Figure 4: System Components in Human-Robot Systems

4.2.Interactions in Human-Robot Systems

There may be many possible collaboration groups in a human-robot system. The possible
collaboration groups in a multi-human, multi-robot system, including human-human interactions,

robot-robot interactions, and human-robot interactions, are expressed as follows:
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Let n represent the number of humans and m the number of robots. /x is the number of possible
human-human collaboration groups, Iz is the number of possible robot-robot collaboration groups

and /yr is the number of possible human-robot collaboration groups in the human-robot systems,

n
) ,Where x is the number of humans in the collaboration group (1)

o
Il Il
M= I
/N

m
(y) ,where y is the number of robots in the collaboration group (2)
2

=2200)

where x s the number of humans and y is the number of robots

<
Il

3)

in the collaboration group

According to the numbers obtained from the Equations (1)-(3), (I#* Ir) + (Iu* Iur) + (Ir* Iur)
gives the possible interactions between collaboration groups. These interactions may require
integration, as they depend on one group’s output to serve as the input for another group within

the system.

As illustrated by the multi-human, multi-robot system concept, the system is complex, and the
relationships between subsystems are interwoven. Therefore, classifying the communication
channels, integration modes, and collaboration groups at the beginning of the project, and
distributing the workload based on their characteristics, is crucial for maximizing system
performance. The next section explains how such classification can be done, taking into account
communication channels, interaction modes, and the characteristics of the workload to be assigned

to system components such as humans, robots, or their joint collaborations.
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5. INTERACTION MODES ACROSS TASK ZONES IN THE PROPOSED HUMAN-
ROBOT COLLABORATION MODEL

Decomposing collaboration into fundamental building blocks facilitates a clearer understanding of
hybrid team structures, enabling effective identification and resolution of issues based on the
specific needs of each system component. This section outlines how these building blocks are

defined and how the overall mechanism operates.

First, task zones are introduced to classify task types according to the responsible system
component—human, robot, or joint collaboration. This classification supports effective workload
allocation by mapping tasks to the most appropriate actors. Second, interaction modes are
presented, comprising reciprocal communication channels designed to support appropriate
feedback-based interactions among system components. Third, the defined interaction modes are
integrated into the established task zones to demonstrate their operational alignment within the
collaboration framework. Finally, a dynamic task reallocation algorithm is proposed, driven by
intervention opportunities that arise from the task zone structure. While this algorithm incorporates
stress-aware principles, it does not delve into the specifics of stress assessment. A detailed
discussion of human stress measurement is provided in Section 6, followed by stress analysis and
its integration into the model in Section 7. To elaborate on the practical applicability of the
proposed dynamic workload allocation algorithm, a case study on Dynamic Task Reallocation
Management for Optimized Performance in Human-SAP System Collaboration is presented at the

end of this section.

5.1.Definition of Task Zones

In human-robot collaboration, interaction is the key mechanism through which system components
coordinate to achieve shared goals. These interactions—whether between humans, robots, or
both—directly influence the overall performance of the system. Each collaboration group, defined
by its configuration and task responsibility, contributes to system output. Figure 5 presents the
correlation between different types of interactions and their corresponding impact on system

performance.
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System performance is classified into three categories: human performance, robot performance,

and collaboration performance.

e Human performance is influenced by factors such as the human’s perceived workload,
knowledge, skills, affective states (e.g., emotions and mood), the actual workload assigned
to the human, and the time remaining until task deadlines.

e Robot performance is determined by the robot’s skills, knowledge, assigned workload, and
time to deadline.

e C(Collaboration performance reflects the integration of both human and robot contributions.
It depends on the human’s perceived workload and affective states, the joint knowledge

and skills of both agents, the collaborative workload assigned, and time to deadline.

The first parameters in the performance formulations shown in Figure 5 reflect the influence of
human stress on system performance. Work-associated stress (o) is defined as a function of
perceived workload (W), knowledge (K), skills (S), and affective states (A), as shown in Equation
4 below (Nguyen & Zeng, 2017; Yang et al., 2021). When human stress is evaluated using this
formula, all parameters— W', K, S, and A—are considered human-related. However, when the
formula is applied to human-robot collaboration stress, knowledge and skills (K and S) are treated
as collaboration-related parameters, while perceived workload and affective states (W' and A)
remain human-related. This distinction arises because the human is the only emotional component
in the human-robot team, making W” and A the emotion-related parameters in the collaborative

context.

WP

O @

o

Stress can arise from a mismatch between the human’s capacity and workload or from emotional
and cognitive states. Section 6 discusses in detail how different parameters contribute to human

stress and how that stress affects both individual and system-wide performance.
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Figure 5: Connection between performance and collaboration

This thesis argues that enhancing human-robot system performance requires optimizing human
performance, which is closely linked to the human’s stress level. Human stress is primarily

influenced by two factors:

1. Affective states (e.g., mood, anxiety, emotional well-being), which are difficult to control
directly,

2. Actual workload assigned, which can be adjusted dynamically.

Because affective states are not externally controllable, the actual workload assigned to the human
becomes the most practical control variable for managing stress. By adjusting this workload in real
time, it is possible to regulate human stress and maintain it within an optimal range that supports

high performance.

Therefore, workload management is central to this thesis. Classifying tasks according to the most
suitable performer—human, robot, or both—enables the system to allocate workload effectively.
This forms the basis of the task zones, which will be used throughout the model to guide task

assignment and dynamic reallocation.

Subsequently, two lemmas are presented to formally articulate the problem at hand.
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Lemma 1: Given a set of N tasks allocated among humans, robots, or human-robot teams, each
task assigned to a human affects their stress level. Some tasks may increase stress, while
others may reduce it. If the human stress level falls outside the optimal range, task
redistribution among humans and human-robot teams can be employed to bring the stress

level back within the desired boundaries.

Proof: As shown in Equation 4, assuming a planning period too short for significant changes in
knowledge and skills, variations in stress levels can be counterbalanced by modifying the

perceived workload.

Lemma 2: Perceived workload is a controllable parameter, as defined in Equation 4, and can be

regulated through the actual workload.

Proof: Perceived workload, shaped by task assignments, previous performance, and time
availability, can be actively managed by altering the task composition. Drawing on prior
experiences and evaluating the remaining capacity, it is possible to adjust task distribution to

regulate perceived workload effectively.

In a collaborative work environment, tasks are assigned to team members based on their
competencies—specifically, their skills, knowledge, and available capacity. As a result, it is known
which members (whether human, robot, or human-robot teams) are capable of performing each
task. Based on this understanding, tasks can be classified into seven distinct zones, as depicted in

Figure 6.
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Figure 6: Possible task distribution map among team members

5.2.Classification of Interaction Modes

Building upon the task zone classifications presented in the previous subsection, this section
examines the interactions and communication channels within human-robot collaboration. Since
collaborators can accomplish tasks through various interaction modes and communication

pathways, understanding these dynamics is critical.

Environment-Based Design (EBD) theory (Sun et al., 2011; Zeng, 2011) proposes that the world
is shaped by three interconnected environments: the human environment, the natural environment,
and the built environment. In the context of human-robot systems, robots represent the built
environment. Inspired by the Axiomatic Theory of Design (Zeng, 2002), the relationships among
these three environments are interpreted as reciprocal communication channels, which provide a
foundational perspective for modeling interactions in collaborative human-robot systems. Based
on this theoretical grounding, the communication pathways that constitute a human-robot system

are structured into a framework, as shown in Table 3.
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Table 3: Communication Channels and their Application Domains

Collaboration | Interaction | Communication | Definition Traditional
Type Modality Channel Application
Domains
@ HH (H® H) (Hi N Hj) Human-Human Education,
Interaction composed | Psychology, Social
u (H; - H;) o .
of communication Sciences, People
from H; to H; and from | Management, Project
Hjto H; Management, ...
@ RR (R®R) ( R]- N Ri) Robot-Robot Machine-to-Machine
Interaction composed | Communication
of communication Technology,
from Rj to Ri and Wireless Sensor
from R;ito R Networks, Computer
Technology, ...
éd NN (N (0%} N) (Nk - Ni) Human-Human
U ( Ni N Nk) Interaction composed
of communication Natural Sciences
from Ny to Nj and
from Nito N
@ HR (H®R) ( H; > R]-) Human-Human Perceptual
Interaction composed | Processing,
U (Rj - H;) . .
of communication Behavioral
from H; to Rj and from | Processing,
Rjto H; Embodied Cognition,
Artificial

Intelligence, Machine
Learning, Natural
Language Processing,
Voice Recognition,

Image Processing,
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Cognitive

Psychology, ...

® HN

(HQN)

(H; > Ny)
U (N, - Hy)

Human-Nature
Interaction composed
of communication
from H; to Ny and
from Ni to H;

Applied Science,
Economics,

Business, ...

® RN

(RQN)

(Rj ~ Ny)
U (N - R))

Robot-Nature
Communication
composed of
communication from
Rj to Ni and from N
to R;

Applied Science,
Business,

Manufacturing, ...

@ [(HQR)]

(HQR)

(Hi — R;)
n (R; - H;)

Mutual understanding
for a shared goal
involves
communication
between H;, R;: from

H; to R;, from Rjto H;

Applied Al

® [(H; Q@ H})]

(H: ® H))

(Hi ~ Hj)

n(H; - H;)

Mutual understanding
for a shared goal
involves
communication
between H;, Hj: from

H; to H;j, from Hjto H;

Human Science

@ [(R; ® R;)]

(R ® R))

(Rj - R:)

Mutual understanding
for a shared goal
involves
communication
between Rj, R;j: from

Rito R;, from Rjto R;

Computer Science,

Applied Al
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O[(HAR
® N)]

(H®R
® N)

(Hi - R;)

n(R; - H;) n
(H; > N n
(N> Hy) n
(Rj > Ni)n
(Ni = R;)

Mutual understanding
for a shared goal
involves
communication
between Hi, R;, and
Ni: from H; to R,
from R;to Hj, from H;
to Ni from Ny to Hj,
from Rj to Ny and

from Nito R

Applied Al

According to Table 1, communication channels are denoted by the symbol “—”, interactions by

“®”, and collaborations by “@”. As discussed in the Literature Review section, communication

channels constitute interactions when they are bidirectional, and interactions lead to collaborations

when the system components share a common goal. The shared goal is expressed as

“@BI(HYRE®N)]”, indicating that it must involve the intersection of all interaction modes within

the system. This representation reflects the mutual understanding of each component’s

requirements, achievements, capabilities, and limitations, allowing them to compensate for one

another in order to achieve the collective objective. The communication channels outlined in Table

1 provide the foundation for formulating Human-Robot-Nature System Collaboration (@HRNS)

as a function of these interlinked communication pathways:

® HRNS =

[(H: = Hj) U (H; = H)| U [(H: > Hy) 0 (H; = H,)|

[(Rj ~ Ri) v (Ri ~ R)[U[(R; > R)) n (R > Rj)| U
(N = N) U (N; > NOTU[(Ng > N) 0 (N; > Ny U

[(Hi > R;) U (R; > Hi)] U [(H: > Rj) n (R; » H;)] U

[(H;i > N) U[(Ny > H)]U[(H; > Ny) 0 [(Ny > Hp)] U
[(Rj = Ni) U (N > R;)1 U (R; = Ni)n (N~ R;)] U

[(Hi > Rj)n(Rj > H;) n(H; > N) n (N - Hy) n

)
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(Rj = Ni) n (N, — R;)]

@ HRNS = (HRH)U|[(H;>H;)n(H; > H;)]JU(R®QR U[(R; - R;) n
(Ri»R)JUIN®N)U[(N, > N)Nn(N; > N)]U(HRR)U
(H; > R;)n(R; » H;)|]u(H®N) U [(H; > Ni) N [(Ny, » H)] U ©6)
[([RON)U (Rj >N )N (N> R))JU[HR®R) N(HRN) N
(R® N)]

The HRNS formula can be simplified when individual collaborative interactions are organized as

illustrated below:

@G HRNS = DPHHUD (HRXRH)UDRRUD(RRKR)UBNNUD (NRN)U
BHRUD (HRQR)UBHN UBRNUD (RQN)UD [(HR R N)] ™)

While the influence of nature on a human-robot system (HRS) is indisputable, its inherent
complexity leads to its exclusion from the HRS formulation. Therefore, the HRS system

examined in this thesis is defined as follows:

@HRS =PHHUD (HRXH)UDRRUD(RQR)UDPHRUD (HRXR) ®)

As demonstrated in Equation 8, multi-human—multi-robot system collaboration comprises human—
human interaction (€5 HH), robot—robot interaction (¢© RR), human-robot interaction (5 HR),
and their shared understanding of a common objective. Therefore, humans must not only
understand their human partners’ requirements, capabilities, and limitations (60 (H @ H)) but also
those of their robot partners (¢ (H & R)). Similarly, robots must comprehend the needs, abilities,
and limitations of both their robotic counterparts (6 (R @ R))—via automated integration—and

their human collaborators (D (H & R))—through physiological and behavioral analysis.

However, mutual understanding is not meaningful unless it leads to action that compensates for
each other's limitations. At this point, the intersection of human-robot interactions, denoted as 9

(H & R)" plays a crucial role. It represents mutual understanding directed toward a shared goal
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within the human-robot system and captures the decision-making process of system

components—human or robot—when they detect performance-degrading limitations in their
partners.

This interaction can be evaluated in two directions: how humans respond to a robot's inability or
constraint in task execution, and vice versa. This thesis proposes a decision-making algorithm that
enables robots to recognize such limitations and take appropriate action. Consequently, the thesis

centers on the “O (H & R)” component of the collaboration tree defined in Equation 8.
5.3.Integration of Interaction Modes with Task Zones

After understanding task zones and interaction modes, this section matches these terms to show
relationship. This relationship facilitates assigning right tasks to the right task owners while

deploying system components in the human-robot collaboration.

[@HHU@(H@H)]or[(@RRU@(R@R}]U
® (H®R)

ROBOT
Fone-? @ RR UV
lazk zan only bz
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Figure 7: Possible task zones for interchange

Figure 7 emphasizes that Zone 4, Zone 5, Zone 6, and Zone 7 are the only zones where robots can
either change tasks assigned to humans or assign new tasks to them. In these zones, mutual

understanding for a shared goal must be maintained throughout the collaboration, regardless of
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whether the task is performed by a human or a robot. The main objective of conducting task
reallocation in these zones is to optimize human working conditions and enhance their

performance while both human and robot partners work toward a common goal.

Therefore, each member should be aware of their partner’s individual abilities and limitations,
aiming to compensate for each other’s weaknesses during collaboration. When a decrease in a
partner’s performance is detected, an appropriate action should be taken. This behavior represents
the essence of effective and efficient collaboration. This logic is symbolized by the notation
“@[(H®R)]” introduced in the previous subsection, which denotes the need to understand a

collaborator’s state and respond accordingly.

Additionally, identifying the correct interaction modes plays a crucial role in recognizing the active
communication channels based on the task at hand. For example, tasks in Zone 6 can be executed
either by robots alone or through human-robot collaboration. In this case, both (R@QR) and (HQR)
interaction channels should remain active when a task from Zone 6 is undertaken. The robot
continuously monitors the human channel during joint tasks. If the human is overloaded while
performing the task, the robot can take over the task entirely to reduce the human’s workload.
Conversely, if a robot is independently handling a Zone 6 task and observes that the human partner

is underloaded, the task assignment can shift from the (R®QR) channel to the (H®QR) channel.

Such adaptive task exchange mechanisms serve as a foundational component in modeling
intelligent human-robot systems that are responsive to real-time variations in partner performance

and workload.
5.4.Dynamic Task Reallocation Algorithm Based on Task Zones

Effective collaboration depends on establishing a shared cognitive framework among all
participants, which promotes mutual understanding. In human-robot collaboration, this shared
understanding hinges on the robot’s ability to exhibit decision-making capabilities that are
compatible with human reasoning. A key enabler of such intelligent and coordinated behavior is
the implementation of an advanced supervisory control system. In this thesis, the supervisory
controller is embedded directly into the robot systems, enabling them to autonomously monitor,

interpret, and respond to dynamic task environments. This intelligent controller ensures a
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continuous and synchronized exchange of information, drawing from both human performance
data and collaborative task dynamics. Within this adaptive communication environment, the
controller evaluates whether task reallocation is necessary using embedded decision-making
algorithms. When reallocation is required, it efficiently redistributes tasks—either by assigning
responsibilities to human collaborators or autonomously taking over certain tasks—ensuring a

balanced and responsive workload distribution. The structure of this mechanism is presented in

Figure § below.
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Figure 8: Workload reallocation between humans, robots and their collaborations in smart
systems

The intelligent human-robot system utilizes its interaction modes to dynamically manage task
allocation across defined zones, as illustrated in Figure 7, with the primary goal of maintaining

human stress levels within an optimal range. To support this objective, this thesis introduces an
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eight-step methodology designed to regulate human stress and enhance human performance in
collaborative settings. Stress monitoring—explained in detail in Section 6—combined with the
implementation of the algorithm outlined in the pseudo-code below, serves as the foundation of
this approach. For the human-robot system to effectively reallocate tasks, it is essential to identify
communication pathways, foster collaborative interactions, and promptly detect stress in human

partners to enable timely interventions.

An Eight-Step Algorithm for Performance Optimization through Stress Regulation in Smart Robot-

Governed Systems:

1. Apply the Axiomatic Theory of Design to analyze complex interaction structures within
the system.

2. Identify distinct interaction modes: H @ H (human-human), R @ R (robot-robot), and
H @ R (human-robot).

3. Address each interaction mode within the smart system and associate relevant tasks.

4. Define the roles of each system component—humans, robots, and human-robot
collaborations.

5. Determine which roles may be executed by multiple system components, where applicable.

6. Highlight human-involved tasks to prioritize stress monitoring.

7. Develop an algorithm for robots to detect, assess, and respond to human stress by
redistributing workload accordingly. Implement the algorithm via a smart supervisory
controller, which may be embedded within robot systems—as proposed in this thesis—or

supported externally, depending on system capabilities.

The detailed pseudo-code implementing this logic follows below.

Task Reallocation Algorithm:

Inputs:

L. Resources: Set of Human (h € H); Set of Robots/Machines (r € R)
ii. Set of tasks (w € W)
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iii. Capabilities of Human, Robot and Human-Robot team: Distribute tasks

according to resource capabilities as illustrated in Figure 5.

Step 0: t = 0 distribute tasks among Human, Robot, and Human-Robot jointly
WH € (w2, w2, w? w?7}
WR € (w?2, w? w26, w?’ }

WHR € {w?3 w25, w26 w77 }
ct= —_w
Step 1: t = t + 1, assess human stress (O’ = (K7 s A,t,)

Step 2: Task reallocation:

if (0 = ayp):

Human is over-stressed: Transfer tasks from Human to Robot or Human to Human-Robot team

IfWH includes tasks belong to Zone 4 = Transfer tasks to Robot
elseif WH includes tasks belong to Zone 5 = Transfer tasks to Human-Robot team

elseif WH includes tasks belong to Zone 7 = Transfer tasks to Robot or Human-Robot team

elseif if (o < o5):

Human is under-stressed: Transfer tasks from Robot or Human-Robot team to Human
IfWE includes tasks belong to Zone 4 = Transfer tasks to Human
elseif WHR includes tasks belong to Zone 5 = Transfer tasks to Human
elseif WR or WHR includes tasks belong to Zone 7 = Transfer tasks to Human

Subject to following constraints

Z ti + Z ek <T" ©)

kewf! kewfiR

56



Z R+ Z tiR < TR (10)

kewR kewHR
WE =l D Fal KESEY + ) FOel® KELSE KESE) | B, TR |
kewf! kew}R
W -
0= ———F
(K", sH) Af
o5 <6 < oyp (13)

Where:
tHis the estimated completion time when task k is completed by a Human alone
tRis the estimated completion time when task k is completed by a Robot alone
tHRis the estimated task completion time when handled by Human-Robot jointly.
THis the available time (remaining capacity) and the t is the current period.
W{is the estimated perceived workload at period t
BH . is the performance of human (percentage of successful completion of tasks) at the t-1
K, SH and AY are knowledge, skill and the affective state of human at time t;.
ais the estimated stress level at period t;
01 1s the lower bound for desired stress level
Oyg IS the upper bound for desired stress level
else
Continue with the current task assignment
Step 3: Has the job completed?

NO: Go to Step 1
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YES: Go to step 4

Step 4: End intervention

Qutputs:

i. Updated WH, WR and WHR

il. Optimized Human stress (0,5 < 0 < oyg)

8. Optimize human stress levels to achieve overall enhancement of smart system

performance.

The objective of the outlined steps is to maximize the effective use of human and robotic
capabilities, as well as their collaborative synergy. Managing this interaction through well-
established interaction modes (reciprocal communication channels) enables collaborators to
maintain human stress within an optimal range, thereby supporting the attainment of targeted

system productivity.

5.5.Case Study: Dynamic Task Reallocation Management for Optimized Performance

in Human-SAP System Collaboration

This subsection demonstrates how the proposed algorithm, introduced throughout Section 5, can
be applied in a real-world context. The case study focuses on the interaction between humans and
SAP systems within an organizational setting, where the human-robot collaboration control model

is evaluated through the lens of SAP integration.

The implementation of SAP Transportation Management (TM) software is examined by
comparing task allocations and operational outcomes before and after its adoption. Task
assignments across different zones (see Figure 6) are determined based on SAP’s functional
capabilities. Although SAP’s integrated architecture supports smooth coordination with other
enterprise systems, communication conflicts during collaboration may still occur, leading to

reduced efficiency in human-SAP interaction.
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This case study aims to identify both the timing and nature of these conflicts and explores how
they can be addressed through the dynamic task reallocation method presented earlier and

visualized in Figure 8.

5.5.1. Introduction of the System Structure

SAP is a multifaceted system consisting of numerous I'T components that support a wide range of
business processes. This study focuses on eight key SAP modules: S/4 HANA (Cloud ERP),
Transportation Management, Event Management, Extended Warehouse Management, Business
Network Global Track and Trace, Business Network for Logistics, External Geographic
Information Systems, and the VSR (Vehicle and Routing) Optimizer. These modules are
interconnected through a variety of integration technologies, including IDOC, SOAP, REST, RFC,
Proxy, File, EDI, JDBC, and BAPI. Additionally, SAP Process Integration serves as a dedicated
integrator system, specifically designed to facilitate seamless communication across different

platforms.

The primary emphasis is placed on the SAP Transportation Management (TM) module and its
interactions with both direct and indirect collaborators that impact its operational performance.
Evaluating the system's overall efficiency requires an understanding of how these collaborators
contribute to SAP TM’s functionality. Smooth operation of TM processes depends heavily on
input from surrounding systems, which deliver critical data needed to execute logistics tasks

effectively.

To illustrate this, a scenario involving an S/4 HANA side-car configuration is presented,
highlighting the integration of SAP TM with external systems. Lauterbach et al. (2019) offer a
detailed representation of these continuous integrations in the context of such a setup (see Figure
9). Although the case study centers on the adaptation process of logistics service providers to the
SAP Business Network for Logistics (LBN), SAP TM remains the core element—functioning as
the central hub for operational data flow. Figure 10 provides a visual overview of the information

exchange within a SAP TM-centric system.
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To ensure a clear distinction and understanding of roles within the system, robotic components are
labeled as ‘R’ followed by numerical identifiers (e.g., R1, R2, R3), while human personas—such
as users, developers, analysts, consultants, and managers—are represented as ‘H’ with
corresponding numbers (e.g., HI, H2, H3). While existing SAP systems do not yet exhibit
autonomous intelligence or engage in dynamic interaction with human collaborators, it is
anticipated that future advancements will transform these systems into intelligent robotic entities

capable of ongoing cooperation with humans.

Integration technologies form the foundation for communication among robotic systems. In this
context, integration components are also referred to as robots, as they actively facilitate system-
level interactions. Additionally, human contributors responsible for managing these integrations—

particularly through SAP Process Integration (PI)—are recognized as SAP PI consultants.

R4 R7

EXTERNAL GEOGRAPHIC INFORMATION SYSTEMS

SAP EXTENDED WAREHOUSE
MANAGEMENT
SYSTEM

R-R Communication { H-R

a
R 3 ight Order

eation

Freight
voicing

Tenderin,

H1 H3

SAP S/4 HANA

CLOUD ERP SOFTWARE VSR

R-R Communicatio;

=
R8 SAP LBN (Shipper side) R2 H-H SAP|LBN (Carrier Side) 1 R2
akdger
Manual dock Dispute i i
SAP BUSINESS appointment management Mana, Freight Order Dpck Fmg'.'t Frlerght

NETWORK GLOBAL scheduling on the R-R K g ik
TRACK AND TRACE by shipper shipper side i - b

employee on H. 1

behalf of the H6 H6 H7

H3 carriers TE / : H 11
a H-H " ‘
—

Figure 11: Dynamic Collaboration between Human-SAP systems (robots): Navigating the Smart
SAP S/4 HANA Side-Car Ecosystem with human in the loop

61



Given this structure, robotic systems communicate with one another via an intermediary robot that
serves as an integrator, forming the RQR interaction channel. These exchanges are supervised and
coordinated by human collaborators through the H®R channel. Each robotic system also
interfaces with its human users to support their interactions, which also take place through the
H®R pathway. Meanwhile, human-to-human communication occurs through the HQH channel.
The envisioned collaborative ecosystem for a future smart SAP system—where both robots and

humans work together dynamically—is illustrated in Figure 11.

5.5.2. Identifying Tasks and Their Corresponding Zones

To conduct a comprehensive analysis of human-robot collaboration, the first essential step is to
clearly define and map out the communication channels involved, as discussed earlier. Grounded
in the Axiomatic Theory of Design (Zeng, 2011), this approach requires recognizing three core
relational dynamics: human-human, robot-robot, and the crucial bidirectional interactions that
define human-robot collaboration. Based on this framework, tasks within the SAP system are
identified, along with their potential executors—classified into designated zones. As illustrated in
Figure 6, tasks are grouped into seven distinct zones depending on the capabilities of the
collaborators (H, R, or H-R). Table 4 presents the identified tasks alongside their corresponding

zones.

Table 4: Possible Tasks Available for Human, Robot, Human-Robot in the LBN (Business
Network for Logistics) System of SAP S/4 HANA Side-Car Scenario

Tasks that can by

Task Task
Task details Channel

number H R HRC Zone

H18 initiates integration between different

TO1 (H® R) X 3
systems.
H19 designs the RFC (Remote Function Call)

T02 ] (H®R) X 3
interface.

Tl H4 creates deliveries on R3. (H®R) X 3
Deliveries are sent from R3 to R4 and from R3 to

T2 R1 (R®R) X 2
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Transportation units are automatically created on

R4. (Together with the delivery information, those

T3 ; ; (R®R) 2
form the basis for warehouse planning and
execution.)
Freight orders are created by H1 or H2 in
T4 (H®R) 3
collaboration with R1.
The information regarding planned freight orders
T5 (R®R) 2
is sent from R1 to R2 and R1 to R4.
, (R®R)
H6 confirms the freight orders through R2 on the
or
T6 Freight Order Management section, or this process 6
(H®R)
can be automated.
Information regarding freight orders is sent from
T7 (R®R) 2
R2 to R1.
(R®R)
T8 H15 creates the picking warehouse on R4, or this or p
process can be automated. (H®R)
Information regarding warehouse task creation is
sent from R4 to R3 and then R3 to R1. (R1 and R3
T : : : : . | R®R) 2
can be directly integrated. In this case, information
is sent directly from R4 to R1.)
When the freight orders are confirmed on the
Freight Order Management section of R2, they
T10 ; ; (R®R) 2
appear on Dock Appointment Scheduling and
Freight Execution sections of R2.
H7 books appointments for the assigned freight
T11 (H®R) 3
orders.
The driver(s) pick up the freight(s) from the
T12 ; (HQ H) 1
warehouse and transportation(s) start.
When the driver(s) pick up the freight(s) from the
—_ warehouse and transportation(s) start, H§ or H9 (H®R) 3
should report each stop's arrival and departure time
on the Freight Execution section of R2.
When reporting is completed on the Freight
T14 Execution section of R2, invoicing information is (R®R) 2

visible on the Freight Settlement section of R2.
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If there is a dispute that should be created for the

T15 invoice, H10 or H11 creates dispute(s) on the (H®R) 3
Freight Settlement section of R2.
Information regarding dispute(s) is sent from R2
T16 ; ; (R®R) 2
carrier tenant to R2 shipper tenant.
HS resolves the dispute indicated by the carrier on
T17 ) (H®R) 3
the shipper tenant of R2.
Information regarding dispute resolution is sent
T18 from the shipper tenant of R2 to the carrier tenant | (R @ R) 2
of R2.
H10 or H11 confirms the invoices finalized on the
T19 _ _ _ (H®R) 3
carrier tenant of R2 (Freight Settlement section).
T20 Confirmed invoices are sent from R2 to R1. (R®R) 2
T21 Confirmed invoices are sent from R1 to R3. (R®R) 2
R1 users (H1, H2, H3, H4, HS, H13) meet to
T22 (HQ H) 1
allocate tasks.
R2 users (H6, H7, H8, H9, H10, H11, H12) meet
T23 (HQ H) 1
to allocate tasks.
R1 users and R2 users meet to resolve the (H® H)
T24 problems occurred on R2 that lead to setbacks on or 5
RI. (H®R)
H13 meets managers of the other systems to
.| (HQH)
address the problem(s) occurred on R1, whether it
T25 or 5
is because of integration incompatibilities or not.
(H®R)
Other systems' managers meet the consultants, (HQ® H) or
T26 specialists, and developers to find the root cause of | (R ® R) or 7
the problem(s). (HQ®R)
The people in charge of the problematic point(s) of | (H ® H)
T27 the system work on the system components in or 5
collaboration. (H®R)
H17 reports transportation events in collaboration
Tap1 . (H®R) 3
with RS.
Reported events are sent from R5 to R1 (and R1 to
Tap2 (R®R) 2

R2 if needed).
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(R®R)

R6 constantly runs while H1, H2, H3, H4, HS, or
Tap3 . X X 6
H13 run the optimizer on R2. (H®R)

H13 reports events regarding orders and shipments
Tupa RS (H®R) X 3
on R8.

Reported events are sent from R8 to R3 and then
Taps . (R®R) X 2
from R3 to R1 if needed.

H16 creates a company-specific geographic
Tape ) ) (H®R) X 3
information system structure.

The information regarding the GIS structure is sent
Tap7 (R®R) X 2
from R7 to R1.

The next step involves systematically navigating through each task assigned within the respective
zones outlined in Figure 12. This deliberate navigation enables the collaborative robot—or smart
supervisory controller—to detect and intervene where necessary. According to the proposed
framework, the robot’s intervention is limited to the overlapping areas within its designated
operational zones. These intersecting regions represent key opportunities for reallocating tasks, as

they allow transitions between robots, humans, or joint execution depending on situational needs.

Within this shared responsibility structure, the robot or smart supervisory controller can
dynamically adjust task assignments to enhance overall efficiency—either by delegating specific
responsibilities to human collaborators or by taking over certain tasks itself. However, it is
important to highlight that tasks assigned to Zones 1, 2, and 3 are not eligible for cross-component
reassignment; instead, they can only be redistributed internally—for example, transferring tasks

from one human to another in order to mitigate individual stress levels.

The overarching goal is to optimize human stress conditions, beginning with robotic support and
followed by internal reallocation within the same system category. In this context, tasks T6, T8,
T24,T25,T26,T27,and T _AD3 are identified as flexible and dynamic elements that can influence

workload distribution, based on the algorithm introduced earlier in the pseudocode.
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Figure 12: Generating Task Zones for Human, Robot, Human-Robot in the LBN System of SAP
S/4 HANA Side-Car Scenario

The first six steps of the proposed procedure have been carefully implemented up to this point.
The next part of the case study focuses on the detailed process of identifying human stress levels
and enhancing system performance by keeping individuals within optimal emotional ranges. This
section offers an in-depth exploration of methods aimed at fostering emotionally supportive
environments for human collaborators—ultimately contributing to improved efficiency and

stability across the entire system.

5.5.3. Task Reallocation Based on Stress/Workload

As the assigned workload (W) steadily increases, there is a natural escalation in the perceived
workload (W/) experienced by individuals, compounded by the current stressors (o?) they face.
The rise in perceived workload, assuming the task completion time or time-to-deadline (Tp)

remains constant, inevitably leads to a decline in human performance (n). This decrement in
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performance not only impacts the ongoing emotional and psychological states of individuals (A%),
but also serves as a precursor for the level of stress (/1) in the next period. Consequently, this
evolving stress level influences how individuals perceive and respond to the forthcoming workload
assigned to them.
Smart supervisory system’s (robot) primary function within this context is to monitor human stress
levels and correlate them with performance output. Should the estimated stress level deviates from
predetermined  thresholds, both below or above the acceptable range (
o5 <6 < ayg), the robots are tasked with dynamically adjusting workload allocation. This
intervention mechanism is crucial for maintaining human stress within an optimal range conducive
to efficient performance. In our detailed case study, aforementioned task reallocation algorithm is
applied on the case study as:

Task Reallocation Algorithm for SAP S/4HANA Side-Car Scenario (Mathematical

Representation)
if 6 = oyp:
if {T25 v T24 v T27} € WH:
TRANSFER {T25 vV T24 v T27} from WH to WHR
if T26 € WH:
TRANSFER T26 from W to {W/R v W}
elseif T26 € W{E:
TRANSFER T26 from WHR to WR
if {T6 v T8 V T,p3} € WHR:
TRANSFER{T6 V T8 V Taps} from WHR to WR
elseif 6 < o5:
if {T24 v T25 v T27} € WHR:
TRANSFER {T24 v T25 Vv T27} from WHR to W}
if T26 € WE:
TRANSFER T26 from WX to {(WH v WHR}
elseif T26 € W{HE:
TRANSFER T26 from WHR to W}
if {T6 v T8 V Typ3} € WE:
TRANSFER{T6 V T8 V Typ3} from WE to WHR

Repeat while 0,5 < 6 < oyp not TRUE
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The algorithm outlined above for the case study provides a mathematical representation of the

proposed logic, inspired by common problems encountered during system implementation in IT

projects. Below, the details are evaluated and explained verbally:

Task Reallocation Verbal Assessment for SAP S/4HANA Side-Car Scenario:

Inputs:

il

Resources: Set of Human (h € H); Set of Robots/Machines (r € R)

Assuming the presented case study involves 19 humans, 13 robots, and 22 human-
robot (H-R) teams, representing the collaboration between systems and their users.
H: {HI, H2, H3, H4, H5, H6, H7, HS8, H9, H10, H11, HI12, HI3, HI13, HI4, H15,
HIi6, H17, HIS, HI9}

R: {RI, R2, R3, R4, R5, R6, R7, RS, R9, R10, R11, R12, RI3}
HR: {HI-RI, H2-R1, H3-R1, H4-R1, H5-R1, HI3-R1, H6-R2, H7-R2, H8-R2, HY-
R2, HI0-R2, HI1-R2, HI2-R2, H3-R2, H5-R2, H13-RS8, H14-R3, HI5-R4, H16-R7,

HI17-R5, HI8-R9, HI9-R13}

Set of tasks (w € W)

At the start of the project, the work breakdown structure should be clearly defined
for each communication channel. In other words, each task should be specified
along with the corresponding system component capable of undertaking it. This
approach allows robots to first evaluate which communication channels can
facilitate the assigned tasks and map these onto task zones using a Venn diagram.
Once the re-allocatable tasks on the Venn diagram are identified, the robots can
then analyze these tasks to determine alternative communication channels for
possible reassignment. The tasks to be completed using the SAP LBN system are
outlined below:

T:{T1, T2, T3, T4, 75 76, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17,
T18, T19, T20, T21, T22, T23, T24, T25, T26, T27, T4pi, Tap2, Taps, Taps, Taps,
T4aps, Tap7}
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Iii.

Capabilities of Human, Robot and Human-Robot team: Distribute tasks according

to resource capabilities as illustrated in Figure 2.

Systems comprising software-based programs and their users must ensure seamless
collaboration. Users should be adequately trained on the system’s operation and
equipped with strategies to resolve potential blockages effectively. Moreover,
computerized systems must be fully integrated with other digital systems,

functioning smoothly even when users are actively involved in the workflow.

Step 0: t = 0 distribute tasks among Human, Robot, and Human-Robot jointly:

Initially, the tasks were allocated as follows:

WOH € {WZl WZ4- WZS WZ7}

W {T12 (Z1),T13(Z1),T22(Z1),T24(Z5), T25(Z5), T26(Z7),T27(Z5)}

WOR € {WZZ WZ4— WZ6 WZ7}

WR:{T2 (22),T3(Z2),T5(Z2),T7(Z2),T9(Z2),T10(Z2), T14(Z2),T16(Z2),T18(Z2),T20(Z2),

T21(Z2),TADD2(Z2), TADD3(Z6), TADD5(Z2), TADD7(Z2)}
WOHR € {WZ3 WZS WZ6 WZ7}
WER:{T01 (Z3),T02(Z3),T1(Z3),T4(Z3),T6(Z6),T8(Z6),T11(Z3),T13(Z3),T15(Z3),
T17(Z3),T19(Z3), TADD1(Z3), TADD4(Z3), TADD6(Z3) }

ot = ST/
Step I: t =t + 1, assess human stress (0 = (KH,SH)A{’)'

After assessing human stress levels, the robot (assumed to be an intelligent SAP system in our case)
determines that human stress is higher than expected. It also double-checks human performance
outputs, such as whether tasks are completed within the given time frame, to identify any
irregularities. Consequently, the robot reviews the tasks assigned to the human and analyzes how

the workload is distributed, aiming to reduce stress and optimize performance.

Step 2: Task reallocation:

When the human stress level exceeds the upper limit (o = oyg) , the robot should take over some
tasks from the human. Since performance is calculated based on group outputs using the disjoint
union formula, the overall performance of the group must be considered when evaluating an
individual human's performance. Therefore, communication channels are emphasized here rather

than focusing solely on humans, robots, or human-robot teams.
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Following the stress analysis and performance check, the robot detects a blockage caused by
systems communication (RER) that is hindering human performance. While humans attempt to
resolve the encountered issues, they lack sufficient knowledge to overcome them, leading to
increased stress levels and higher perceived workload.

The robot identifies that tasks T26(Z7) and T27(Z5), which belong to zone 7 (representing tasks
that can be undertaken by humans, robots, or through collaboration) and zone 5 (representing
tasks that can be undertaken by humans or through collaboration), were initially assigned to the
(H&9H) communication channel. Since human involvement remains necessary to address the issues
encountered while collaborating with the robot systems, these tasks will be reassigned from the
(HE9H) channel to the (H(EIR) channel to reduce human stress.

However, during the second iteration, the robot determines that this reassignment alone may not
sufficiently lower human stress levels, as humans still retain partial responsibility for these tasks
despite robot involvement. Consequently, the robot further detects that tasks T6(Z6) and T8(Z6),
currently assigned to the (HEOR) channel, can be fully automated and reassigned to the (R ¢9R)
channel. As a result, T6(Z6) and T8(Z6) will be moved from the (H(OR) channel to the (R OR)

channel to further alleviate human workload and stress.

Step 3: Has the job completed?
NO: Go to Step 1
YES: Go to step 4

Step 4: End intervention

Qutputs:

Updated WH, WR and WHR:

WH :{T12 (Z1), T13(Z1), T22(Z1), T24(Z5), T25(Z5), T26(Z7), T27(Z5)}

WR 1 {T2 (22),T3(Z2),T5(Z2), T6(Z6),T7(Z2), T8(Z6),T9(Z2), T10(Z2), T14(Z2),
T16(Z2), T18(Z2), T20(Z2),T21(Z2), TADD2(Z2), TADD3(Z6), TADD5(Z2),
TADD7(Z2)}

WHR:{T01 (Z3),T02(Z3),T1(Z3), T4(Z3), T6(Z6),T8(Z6)-T11(Z3),T13(Z3),T15(Z3),
T17(Z3),T19(Z3),T26(Z7),T27(Z5), TADD1(Z3), TADD4(Z3), TADD6(Z3) }

70



ii. Optimized Human stress (o,p < 0 < oyp):
Ultimately, human stress levels are effectively minimized, leading to enhanced

overall performance and productivity.

Upon completion of the robot’s intervention process—where the system workload is reallocated
across both humans and robots—the aim is to maintain human stress levels within a range that
enables peak performance. This approach not only supports the full utilization of human capacity
but also recognizes the value of human input within the collaboration, even in the presence of the

robot’s virtually boundless capabilities.
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6. PERFORMANCE EVALUATION OF THE PROPOSED HUMAN-ROBOT
COLLABORATION MODEL

System performance has been emphasized throughout the thesis, although the core focus remains
on adjusting human stress levels and understanding their relationship within the dynamic workload
allocation algorithm. As consistently highlighted across the sections and subsections, the aim of
robotic intervention in dynamic workload reallocation is to enhance human performance by
addressing and managing stress levels. Given the significance of this relationship, a detailed
evaluation of both performance and stress is essential. Therefore, these concepts are further
examined through conceptual formulations and supporting analysis in the following subsections:
Subsection 6.1 presents the performance formulation of the human-robot system; Subsection 6.2
explores the relationship between human stress and performance by examining the parameters that
influence stress; Subsection 6.3 reviews existing studies on human stress measurement methods;
and finally, Subsection 6.4 introduces a conceptual formula to express the effect of task-specific

stress on overall human performance.

6.1.Formulating Human-Robot System Performance as a Function of Human Stress

In collaborative environments where humans and robots work toward shared objectives, effective
use of communication tools is essential for sustaining optimal collaboration. However, while
robots rely on structured communication mechanisms, these tools are not yet capable of fully
interpreting the emotional needs of their human partners—who remain the emotional actors in
such systems. This limitation underscores the importance of examining how human emotional

states, particularly stress, relate to performance in human-robot systems.
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Figure 13: Relationship between Stress and Creativity/Performance

Several studies have explored this connection. Building on the Yerkes-Dodson law, Nguyen and
Zeng (2017) demonstrate that human performance is strongly influenced by stress levels, with the
highest levels of performance occurring under moderate stress. Both insufficient and excessive
stress levels have been shown to reduce human performance and creativity as illustrated in Figure

13.

A conceptual model describing this relationship was introduced earlier in Equation 4 (see
Subsection 5.1). In this model, work-associated stress (o) is defined as a function of perceived
workload (W), knowledge (K), skills (S), and affective states (4), as proposed by Nguyen and
Zeng (2017) and supported by Yang et al. (2021). The model suggests that stress is directly
proportional to perceived workload, while it is inversely proportional to an individual’s

knowledge, skills, and affective states.

Since affective states fluctuate in response to changing environmental conditions—even when
knowledge and skill levels remain constant—human stress is inherently variable. When stress
levels move outside the desired range, human performance tends to decline. Within a smart human-
robot collaboration system, it becomes essential for robots to monitor these stress levels and

intervene when necessary to restore balance.
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Before establishing mechanisms to manage human stress within such systems, the human-robot
system performance (n) should be formally defined. It is composed of three main elements: human
performance (n), robot performance (N%) and their collective performance (N*®). This

relationship is expressed as:

n=n"+nf+n" (14)

Each of these components is a function of specific variables. Human performance (n) depends
on the human’s stress level (oy), assigned workload (W), and time allocated for task completion
(T*). Robot performance (NR) is influenced by its knowledge (KF), skillset (S®), assigned
workload (W®), and available execution time (T*®). Collaborative performance (n®) is shaped by
human stress (oy), collective knowledge and skills (KR, SH#R) shared workload (W *R), and the

time allotted for collaborative tasks (T#R):

n.H — f(O'H,WH,TH); n.R — f(KR,SR,WR,TR); and n-HR — f(O'H,KR,SR,WHR,THR) (15)

Assuming robots operate under stable conditions—without significant variations in knowledge or
skill and without encountering mechanical or computational issues—their performance can be
considered steady and predictable during a given planning period. In contrast, human performance
is more variable, as stress levels influence not only task completion times but also the quality of

outputs, particularly for tasks assigned to humans (W) or jointly shared (W),

In collaborative projects, the interplay between humans and robots complicates dynamics,
underscoring the importance of cohesive team performance. Robots are required not only to
interact with individual human partners but also to assess the collective stress level of the team.
This enables them to take appropriate actions—such as reallocating tasks—to enhance
performance and ensure smooth collaboration. Effectively managing such interactions calls for
nuanced, context-aware adjustments. Disjoint union logic is employed to represent the complexity
of these interactions across diverse system components. Through this formulation, the performance

metrics of humans, robots, and their collaborative efforts are expressed, leading to a
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comprehensive evaluation of system performance in scenarios involving multiple humans and

robots working toward a common goal.

Let 7/, n® and 7R be performances of 4 human, * robot and 4" human and " robot interaction

respectively. Accordingly:

w wr K2, SH, AR WA, TH are
"IZ =A{f (m,wf , TH humans'performance parameters (16)
h when they work in (H @ H) collaboration

WR, KR, SR, TR are robots' per formance parameters } (17)

R — R KR r TR
r {f(Wr K ST when they work in (R ® R) collaboration

HR _ {f( wr WHR KR QR THR) performance parameters of H — R teams
M (K + SJ) « A7 Phr > B = when they work in
(HQ R)U (R Q H) Collaboration }

WP, Ki, SH, A, WHR KR, SR, THR gre
(18)

The disjoint union formula for individual sets delineates the performance levels of overall human,

robot, and collaboration group performances as follows

Wff H H) )l P H cH H H H }
= ———, W, T |, h | (W, K}, S A, W, T € H
;]l?lnh LEJ{( ((K}I:_'_S}Ili)*AIg h ho B85 Oh h (19)
f=] [nf = | Jeroms sz, nms k8 sk e Ry 20)
TER TER

wWF, Kk, si, Al e H

WP
e 1] - QU e s HF )
h€H; TeR TER heH hooTh WHR THR e HUR

This thesis adopts a comprehensive approach to measuring performance, defining it as the ratio of
completed tasks to the total number of tasks assigned to each system component. This definition
encompasses multiple performance indicators, including the monetary value generated by the
smart system, the number of clients effectively served, and the completion rate of allocated tasks.
Within this framework, the collective performance of a human group is derived from the combined

contributions of individual members, while the performance of a group of robots is calculated as
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the sum of each robot’s individual output. Similarly, the contribution of collaborative efforts
between humans and robots is evaluated as the cumulative effect of their joint task completions,

reflecting the effectiveness of shared responsibilities within the system.

To accurately assess the level of success, it is essential to normalize performance values by
dividing them by the total number of tasks assigned across all system components—humans,
robots, and collaborative groups. This normalization process enables equitable comparison and
offers meaningful insights into the efficiency and effectiveness of each entity within the system
(see Equation 22). The complete logic described above is now formalized through the following

mathematical expression:

_ Hren nﬁ + rer rlf + Uhen,rer Flf{f
LWy + X WR + X Wik

(22)

Under current conditions, evaluating system performance requires a holistic approach that
integrates the average proficiency of humans, the average capability of robots, and the collective
effectiveness of collaborative efforts. At the core of this evaluation lies human stress, which serves
as a key indicator for robots to assess and maintain balance within the system. Since human
performance is closely tied to stress levels, robots are assigned the critical role of continuously
monitoring and adjusting human performance as needed. The previously introduced formula
captures this qualitative dimension of smart system performance, highlighting the dual
responsibility of robots to regulate human stress while enhancing both individual and collaborative

performance outcomes.

Following the clarification of system performance, the next subsection turns to an in-depth analysis
of the parameters that impact human affective responses, workload perception, and performance—

highlighting stress as the core element influencing human efficiency.
6.2.1dentification of Parameters Influencing Human Stress and Performance

In preceding sections, we delved into the pivotal role of interaction modes and communication
channels in effectively navigating diverse collaboration types. Additionally, we dissected various
collaboration models, shedding light on their intricate dynamics. This discourse underscores the

profound impact of human stress levels on the efficacy of these collaborations. Consequently, this
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section endeavors to formulate qualitative metrics crucial for assessing and quantifying human
stress levels. The precision of these metrics is of paramount importance, as they hold the key to
comprehending and potentially shaping the overarching dynamics of collaborative smart systems.
This formulation operates along three pivotal dimensions: firstly, by measuring human affective
states, which exert a direct influence on human stress levels; secondly, through the assessment of
perceived human workload, intricately intertwined with both the assigned workload and human
stress; and thirdly, by evaluating human performance, which is shaped by factors such as task

completion time and the perceived workload burden.

To establish the parameters governing human stress and performance, Cantor’s (1895) Set Theory
is employed, elucidating the intricate relationships within the realm of human performance
parameters. Assumptions are carefully crafted to enhance the clarity of the proposed model. It is
noteworthy that the parameters in the subsequent formulations are designed to represent an
individual human being. However, when considering a scenario involving a collaborative effort
between a human group and a robot group, the collective human-robot system performance
formula introduced earlier becomes paramount. This collective formula should be utilized to gauge
the collective stress performance levels of the entire group. Hereafter, each of these levels,

accompanied by their respective assumptions, is meticulously examined.

6.2.1. Formula Generation: Human Affective States

The first step in comprehending human performance within the realm of their emotions involves
the measurement of their stress levels. The underlying assumptions guiding the assessment of

human stress levels are elucidated below:

e Human’s initial affective states (A%) are influenced by input parameters of human
performance such as knowledge (Ky) and skills (Su), which are evaluated under the human
capability class.

e  Human initial stress 1s a function of human capability and initial environmental conditions
(Eo).

e Human’s ongoing affective states at time t (A%)) are influenced by output parameters of
human performance such as human’s previous performance (1) and available human

time (T};) at time ¢, which are evaluated under the human achievement class.
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e  Human stress over time is a function of human achievement and environmental conditions

over time (E}).

During human interaction with a smart system, two distinct affective states emerge: initial affective
states and affective states over time. The former is influenced by the combination of human
capabilities, such as skills (Su) and knowledge (Ku), along with the current environmental
conditions (E,), while the latter is determined by past performance (n% ') and the amount of
available human time (T}), in addition to the affective states that evolve over time (E,). Leveraging
Cantor’s Set theory (1895), we can articulate the initial affective states of a human within this

context through the following formulation (Equations 23-26) illustrated in Figure 14:

0 _—
Ay = f1(Sy VU Ky) U f>(Eo) (23)
r--------l Syt Human skills
0 — 1 3
AH *:fl (Sy U KyhV f2(Ep) K}y Human knowledge
- -l
‘,—" “““““ Ejy: Initial Environmental Conditions
o . pmmmme= " S, JE—— T —
A = 107 (Sp \ K M f5 Ky \ Sy Uifo (K N Syl Y f2 (Eo)
___’.’.__—_J I____' ________ ‘1\_——.‘ \

S S AR, S k. S . )

I Human's innate ability fora Human's knowledge of a The conjunction of 1 3 ________ '

I given task irrespective of given task regardless of human talent and I 1 nitial 1

j their knowledge about it. theirinherent talent for it. knowledge. : : Environmental :

| T ¢ Talent F : Familiarity P :Proficiency | | fffect |
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Figure 14: Decomposition of Initial Human Affective States

Expanding on the conceptual foundation of set operations, particularly the union of two sets, it is
expressed as the union of the intersection of those sets and the symmetric difference between them.

This extension of the formula is articulated as follows:

Ay = fi(f7(Sy \ Ki) U fa (K \ Si) U fo(Ky N Sp)) U fo(Eop) (24)

In the expanded formula, f;(S; \ Ky) denotes human talent for the assigned task, f3(Ky \ Sy)
represents human familiarity with the task, and fo(Ky N Sy) signifies human proficiency in

executing the task. The combined influence of these three parameters defines human capability,
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which in turn impacts human affective states. Additionally, it's important to note that initial

environmental conditions also play a significant role in shaping an individual's initial affective

states.
A% = fi(Talent U Familiarity U Proficiency) U f,(Ey) (25)
A% = Human Capability Ef fect U Initial Environmental Ef fect (26)

The experience of initial human stress can be seen as intricately connected to the initial states of
human affectivity, underscoring the profound impact of our emotional well-being on the
manifestation and modulation of stressors. In that case, initial human stress is a function of initial

affective states (Equations 27-30).
0 _ AO (27)
oy = f3(An)

In that case, the expanded formula is as follows:

on = fs(fi(fs(Su \ Ku) U fo(Ky \ Sp) U fo(Ky N Sy)) U f>(Ep)) (23)

o) = f3(fi(Talent U Familiarity U Proficiency) U (29)

f2(Initial Environmental Conditions))
o2 = fs(Human Capability Ef fect U Initial Environmental Ef fect) (30)

The second influential factor affecting overall stress encompasses the ongoing affective states of
individuals. This intricate interplay involves a fusion of previous time’s human performance (n§ 1)
and the availability of human time (T}), and a function of ever-changing environmental conditions
(E¢). The amalgamation of these elements creates a dynamic landscape that significantly
contributes to the overall emotional and psychological well-being of individuals, ultimately

shaping their stress levels (Equations 31-34) illustrated in Figure 15:

Ay = fi(ni P VT U f5(Ey) €1y
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T};: Human available time for task assignment

7} ' : Human performance of the previous assigned task

E}: Environmental conditions over time
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Figure 15: Decomposition of Ongoing Human Affective States

Again, the combination of the intersection of those sets and the symmetric difference between

them is employed to demonstrate the union of two sets.

A;I = f4(f10(771t1_1 \ Ti) U fia (T \ ni Hu fr2(ir 1nTH)) U fs(Ep) (32)

In the expanded formula, fio(n5, '\ T),) represents human capacity, fi;(7/5 \ 75, ") denotes
human availability, and f;, (7}, ' 17}, signifies human excellence. These parameters collectively
contribute to the human achievement effect, which, when combined with environmental conditions

over time, delineates the dynamic affective states.
AL = fi(Capacity U Availability U Excellence) U fs(Ey) (33)
AL = Human Achievement Ef fect U Environmental Effect over time (34)

The ongoing human stress is closely tied to the evolving affective states, highlighting the crucial

role of emotional landscapes in determining stress levels (Equations 35-38).

o = fo(Ah) (35)

The subsequent passage delves into the intricacies of the ongoing stress formula.
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o = fe(fa(f1oi "\ T/ U [ (T \ i H U ) U f5(Er) (36)

o = fe(fa(Capacity U Availability U ) U (37)
fs(Environmental Conditions over time))

o = fs(Human Achievement Ef fect U Environmental Ef fect over time) (38)

Unquestionably, the cumulative human stress (o) comprises both the inherent initial stress (g})

and the persisting ongoing stress (a5) (Equation 39).
oy = oy Uaf = f3(AR) U fe(Ak) (39)

Upon expanding this formula as outlined in Equation 40, each factor contributing to the overall

human stress becomes apparent:

oy = f3(f1(f7(Su \ Kp) U fa(Ky \ Sp) U fo(Ky N Sy)) U f(Ep)) U

(40)
fe(Fa((F1omu \Ty) U f11(Ty \ ny) U ) U f5(Ep))

This formula indicates that the human stress level depends on human talent, familiarity with the
work, proficiency, capacity, availability, excellence, as well as initial and ongoing environmental

conditions. The relationship between the features and the formula is illustrated in Figure 14 and

Figure 15.
oy = f3(fi(Talent U Familiarity U Proficiency) U f,(E; — Initial Environmental Conditions) ) U (41)
fe(fs(Capacity U Availability U ) U fs(E; — Environmental Conditions over time))
oy = f3(Human Capability Ef fect U Initial Environmental Ef fect) U (42)

fo(Human Achievement Ef fect U Environmental Effect over time)

In summary, human stress levels comprise the function of the combined human capability and
initial environmental conditions, as well as the function of human achievement and ongoing

environmental conditions.

6.2.2. Formula Generation: Perceived Human Workload

Tasks are commonly assigned to humans, robots, and their collaborative efforts within smart

systems, yet often, implicit influencing factors such as human affective states and stress levels are
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overlooked. Consequently, the workload allocated to a human may differ significantly from the
workload they subjectively perceive. In this context, the perceived workload is evaluated as a
dynamic function, accounting for both the assigned workload and the individual's stress level. This
implies that humans gauge the workload imposed on them in relation to their current stress levels.
To further elucidate, the following assumptions are outlined below to formulate the perceived

workload of an individual.

o Assigned workload (W) and perceived workload (W,}) are not equal.

e Perceived workload (Wlf ) is a union of assigned workload (W}$) and human stress (g ).
Equation 43 outlines the methodology for measuring perceived workload:
Wy = fis(W§ U ay) (43)
Wy = fis(fra(WF \ o) U fis (o \ W) U ) (44)

In the expanded formula, f;, (W \ o) stands for the initial workload, fi5(oy \ W){) indicates
the level of human stress prior to workload allocation, and f;¢( ) represents the human

stress following workload allocation.

Wlf = fi3(Raw Workload U Stress before workload assignment U

)

(45)

In the exploration of Set Theory-driven expansions within the formula, the perceived workload
emerges as intricately linked to the unalloyed task volume delegated to individuals. Notably, this
connection extends beyond the mere quantitative assessment of raw workload, delving into the
profound impact of stress levels. The holistic framework encompasses stress both preceding and
succeeding workload assignment, unraveling a complex interplay that significantly shapes the
perception of workload. This nuanced relationship finds its visual representation in the elucidating
Figure 16 below, where the dynamic dynamics of workload, coupled with antecedent and

subsequent stress factors, are graphically showcased for clarity and comprehension.
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Assigned workload without Human stress level regardless Human stress level after
thinking human stress level and  of workload assignment (stress workload assignment (stress
emotions level just before workload | just after workload

assignment) assignment)

RW: Raw Workload SBW: Stress before SAW: Stress after
workload assignment workload assignment

Figure 16: Formulation of human workload

6.2.3. Formula Generation: Human Performance

In the realm of human performance evaluation, Set Theory serves as the cornerstone for
formulating a comprehensive understanding. The intricate web of human capabilities is intricately
woven into an assessment that intricately considers perceived human workload and task
completion time as pivotal variables. This formulation operates on certain foundational

assumptions, elucidated below to lend clarity and coherence to the evaluative process.
» Performance is affected by task completion time T, (Time to deadline)
*  Performance is based on human’s perceived workload W}
* Performance is a union of Tp and WIf
In accordance with this data, human performance is articulated below through Equations 46-48:
1 = f7(Wy UTp) (46)

N = fir(fis(W7 \ Tp) U U foo(W N Tp)) (47)
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In the expanded formula, fig(W,} \ Tp) symbolizes the workload perception without time

constraints, fio(

T}) denotes the ideal deadline considering the human's perceived workload.

n = f17(Time — free Perceived Workload U

Optimum Deadline with Human's Perceived Workload)

) describes the deadline devoid of workload assignments, and f,o (/) N

(43)

Following an exhaustive performance analysis, three specific factors that directly impact human

performance were identified:

individual without taking into account time-to-deadline constraints.

the individual's perceived workload.

for optimal performance.

These key factors are visually depicted in Figure 17:

v
Human's perceived workload
without considering time-to-
deadline constraint

TFPW: Time-free
perceived workload

Figure 17: Formulation of human performance

Time-Free Perceived Workload (TFPW): This refers to the workload perceived by the

Assignment-Free Deadline (AFD): This parameter indicates the deadline irrespective of

Optimum Deadline with Human's Perceived Workload (ODW): This signifies the

synchronization between the individual's perceived workload and the deadline necessary
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On the flip side, a myriad of indirect factors intricately shape human performance, exerting a
significant influence on stress levels, perceived workload, and overall efficiency. The following

catalog elucidates these subtle yet impactful parameters of human performance:

e Raw Workload (RW): The workload assigned without considering human stress levels and

emotions.

e Stress before Workload Assignment (SBW): The level of human stress regardless of

workload assignment, representing stress just before task allocation.

e Stress after Workload Assignment (SAW): Human stress level following workload

assignment, indicating stress levels immediately after task allocation.

e Capacity (CP): Human performance on the assigned task without any time constraints,

reflecting inherent ability.

e Availability (AV): The time available for the human without task engagement.

e Excellence (EX): The alignment between human performance and task time requirements

within the limited available time, indicating exceptional execution.
e Talent (T): The situation where a human is not knowledgeable about the assigned workload
but possesses the skills required to accomplish the task.

e Familiarity (F): The scenario where a human is knowledgeable about the assigned

workload but lacks practical skills, possessing theoretical understanding.

e Proficiency (P): The state where a human is either knowledgeable or skilled regarding the

assigned workload.

In Figure 18, a comprehensive overview of all the introduced formulas is presented. This visual
representation underscores the intricate interplay of various elements in the dynamics of human
experience. The demonstration reveals a fascinating cascade of events, where affective states
become the genesis of human stress, forming the foundation for the perceived human workload

when individuals are engaged in a task.

Subsequently, the perceived human workload becomes a pivotal factor influencing human
performance, its efficacy inherently constrained by the task completion time. What adds an

intriguing layer to this process is the cyclical nature of the system dynamics — human
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performance, the tangible output of this intricate dance, serves as the input for subsequent affective

states in the following timeframe.

This recursive relationship establishes an undeniable truth: the system dynamically generates a
loop, perpetually feeding into itself. This holistic understanding sheds light on the complex and

dynamic nature of the human experience within the context of assigned tasks and their temporal

constraints.
A= 1Sy U Ky) U fL(Ey) A%= (MU Ty U f5(E,)
Eh=La4n) = fo(47)
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Figure 18: Overview of the introduced formulas

In summary, smart systems are intricately woven from the threads of human intellect, robots and
the collaborative interplay between them. These system components manifest as communication
channels with distinctive characteristics, dynamically shaping their features during interactions
and collaborations. Collaborative endeavors unfold across these communication channels, each

channel encapsulating diverse attributes.

Consider the ebb and flow of the human-human interaction mode, susceptible to dynamic shifts
influenced by human emotions. In contrast, the robot-robot interaction mode adheres to a stringent
model, devoid of the adaptability inherent in human interactions. Yet, there exists another

interaction mode that facilitates collaborative efforts among system components, allowing them to
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converge towards a shared goal. This channel fosters a profound understanding, mutual support,
and adaptive adjustments, transforming robots into collaborative entities and, consequently,

rendering smart systems collaborative.

Precise definitions for each interaction mode form the bedrock for comprehending the unique
needs of each collaborator, enabling the judicious allocation of tasks within smart system projects.
A heightened awareness of the environment begets greater wisdom in executing tasks. Following
the initial task allocation, robots, functioning as the artificial smart controllers of the system, shift
their focus to discerning human stress dynamics. This acute understanding enables the reallocation
of tasks as needed, given that human emotions constitute dynamic facets within human-robot

teams.

While robots diligently carry out their assigned tasks in support of their human partners and
manage their workload, the smart system undergoes a continuous optimization process. The
anticipation of challenges, coupled with a responsive approach to human emotions, underscores

the adaptability and efficiency intrinsic to these intelligent systems.

In light of the influencing factors of human stress and its effect on performance discussed in this
subsection, the next subsection explores how human stress can be measured using current
technologies in order to quantitatively assess stress levels, enabling robots to observe their human

partners and determine appropriate moments for intervention in their working processes.

6.3. Measuring Human Stress Levels Using Wearable Devices

To support the Yerkes-Dodson law adopted in this thesis for illustrating fluctuations in human
performance, this subsection draws on the findings of Awada et al. (2024) to examine how human
stress levels can be measured using current wearable technologies. Their study involved two
experimental conditions designed to simulate low-stress and high-stress environments. In the low-
stress condition, participants were given 40 minutes to prepare a PowerPoint presentation on a
familiar topic, with no recordings involved. Conversely, the high-stress condition required
participants to prepare a presentation on an unfamiliar topic within 30 minutes, while being

recorded by a university professor using live video, audio, and screen sharing tools.
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Forty-eight participants were equipped with the tools listed in Table 5. The researchers identified

83 measurable features and recorded data every 30 seconds, resulting in a total of 6,720 data points.

Table 5: Tools for Measuring Human Stress (Awada et al., 2024)

Tools used Data Collected

Electrodermal Activity (EDA), Skin Temperature

Empatica E4 Wristband (ST), Blood Volume Pulse (BVP), and x,y,z wrist
acceleration

H10 Polar Chestwrap Heart Rate (HR)

Microsoft Azure Kinect DK Camera Facial expressions

o ‘ o Participants’ activities involving the computer’s
Mini Mouse Macro Logging Application
mouse and keyboard

Participants were prompted with pop-up screens asking them to rate their perceived stress, mood,
and productivity on a scale from 0 to 100. They were also asked to classify their stress as either a
source of pressure or as an opportunity/challenge. To enhance the depth of their analysis, the
researchers used box plots to compare participants' self-assessments across these different stress
interpretations. The findings supported the Yerkes-Dodson law (1908), demonstrating that
performance peaks at moderate levels of stress arousal, while both low and high extremes are

associated with diminished outcomes.

Drawing on the responses from the subjective questionnaires, the researchers utilized the Valencia
Eustress-Distress Appraisal Scale (VEDAS) to categorize participants’ stress perceptions. This
framework allowed them to distinguish among different stress appraisals, including boredom,
eustress (positive stress), distress (negative stress), and the coexistence of both eustress and
distress. The researchers noted that previous studies had largely concentrated on stress arousal
indicators—such as physiological measurements—to assess stress levels. However, appraisal

types like boredom, eustress, and their coexistence with distress had received limited attention in
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earlier work. Addressing this gap, their study incorporated these appraisal categories to enable a

more refined and comprehensive assessment of human stress.

This methodology aligns closely with the research objective of this thesis, which seeks to maintain
human stress within the eustress range to enhance productivity. The classification of stress into
four distinct categories—boredom, eustress, eustress-distress coexistence, and distress—alongside
the principles of the Yerkes-Dodson law, offers valuable direction for refining the approach taken
in this study. Furthermore, the application of the XGBoost machine learning algorithm in their
research demonstrates the potential of wearable and facial data for stress detection, achieving an
accuracy rate of 81.08% when both wristband and facial expression inputs are used, and 73.43%
accuracy when relying solely on wristband data. These results suggest the viability of a comparable
system in which a robot continuously monitors stress levels in a human partner by analyzing data
from a wristband or smartwatch—especially in scenarios where control charts signal an out-of-
control condition. Overall, their findings reinforce the feasibility and practicality of the stress

quantification model proposed in this thesis.

In addition to Awada et al. (2024), Zhao et al. (2023) simulated various human workload
conditions to explore their effect on efficiency. They categorized human affective states into three
workload-based zones: laidback, capacity, and fatigue. Their findings align with this thesis’s
objective of maintaining human stress within the eustress zone—by ensuring workload remains

within the capacity zone—thereby maximizing performance, as illustrated in Figure 19.
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Keep human workload in the capacity zone
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Figure 19: Robot’s Intervention on Human-Robot Workload Allocation to maintain optimum
human stress by keeping human workload in their capacity zone

As illustrated in Figure 19, efficiency is modeled as a function of workload (Zhao et al., 2023),
while stress is represented as a function of performance (Yerkes—Dodson, 1908; Awada et al.,
2024). Since this thesis focuses on the relationship between workload and stress in the context of
system performance, the findings of Sickles and Zelenyuk (2019) offer valuable insight. Although
their research centers on productivity, they highlight that efficiency acts both as a driver and an
outcome of productivity. Interpreted within the scope of this study, where system performance is
the key concern, this relationship suggests that performance and efficiency are closely intertwined.
Based on this understanding, it is assumed that stress can be modeled as a function of workload,
and that stress levels may be modulated through workload adjustment to optimize human

performance.

[Performance = f,,(Stress)] A[Efficiency = f,,(Workload)] A

4
[Efficiency = fy3(Performance)] = [Stress = f,,(Workload)] “49)
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Building on this theoretical framework, the practical measurement and validation of stress are
further explored. In this context, Awada et al. (2024) demonstrated that wearable technologies can
reliably estimate stress levels by analyzing physiological signals. This finding underscores the
importance of physiological monitoring tools for effective stress detection and regulation within
human-robot collaboration systems. Accordingly, stress can be monitored through wearable
devices and modulated by reallocating human workload whenever a deviation from the optimal
stress range is detected. This process is further examined in Subsection 7.1.2, where the stress

analysis is discussed in detail, followed by the presentation of the task reallocation algorithm.

To enable a comparison between stress levels detected by wearable devices and the impact of
individual tasks on overall human stress, it is also necessary to quantify task-specific stress. This
denotes the incremental stress induced by a task when it is allocated to a human. Therefore, the
next section introduces a conceptual formula designed to measure the influence of each task on

human stress levels.

6.4. Quantifying Task-Specific Human Stress: Development of Conceptual Formula

Once the robot determines the appropriate intervention to regulate human stress—guided by the
human state diagram—it must select the most suitable task from a set of feasible options generated
by an external support system. This system provides a dynamic task pool based on various
allocation algorithms, including those that incorporate precedence constraints, critical path
analysis, or the method proposed in Subsection 5.4 of this thesis. Within this framework, the
feasible task set represents a collection of alternative actions the robot may choose from when

anomalies in human performance or deviations in stress levels are detected.

Because the influence of specific tasks on human stress plays a critical role in deciding whether
tasks should be assigned or exchanged, the relationship between task type and stress must be
evaluated through multiple interacting parameters. These include the weighted effect of task
complexity, time of day, individual skills and knowledge, initial task assignments made at the
project's onset, perceived workload, and mood-related affective states. These factors are inherently
interdependent and collectively shape how a task impacts human stress. Among them, task

complexity is examined in particular detail in Subsection 6.4.1 to clarify its role within this
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network of influencing variables and to lay the groundwork for the development of a conceptual

formula that quantifies task-specific human stress.

6.4.1. Task Complexity and Human Workload

In the context of task complexity, Zahmat Doost and Zhang (2023) investigated how different task
types influence human workload and developed a detailed classification system. Their framework
distinguishes among three types of tasks: skill-based tasks, which depend on routine knowledge
retrieved from long-term memory; rule-based tasks, which involve goal-directed behavior guided
by stored propositions and if-then logic; and knowledge-based tasks, which require problem-
solving in unfamiliar contexts lacking predefined solutions. The study also examined how
environmental interruptions—such as hedonic, social, or cognitive distractions—affect mental
workload. Under uninterrupted conditions, knowledge-based tasks resulted in the highest mental
workload (78.2%), followed by rule-based tasks (50.2%) and skill-based tasks (40.5%). However,
in interrupted scenarios, the pattern shifted: knowledge-based tasks remained the most demanding
(58.6%), while skill-based tasks (40.4%) slightly surpassed rule-based tasks (36.9%) in terms of

mental workload.

Despite offering a foundational classification, Zahmat Doost and Zhang’s (2023) model does not
account for other important variables that influence task complexity—namely, human capability
(encompassing knowledge and skills), time of day, and the actual task requirements initially
assigned. Therefore, the subsequent sections expand on these variables, exploring their roles in
shaping task complexity from a human-centered perspective and contributing to the development

of a conceptual formula.

This formula is constructed using mathematical relationships of direct and inverse proportionality;
however, it is not designed to calculate an exact stress level. Rather, its purpose is to provide
directional insight—indicating whether stress is likely to increase or decrease depending on the
combination of influencing parameters. To this end, values inspired by prior research are assigned
to each variable, resulting in an estimated stress level for the task assigned. By normalizing these

values and incorporating stress measurements obtained from wearable devices, the estimated and
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actual stress levels can be compared to assess whether task reallocation leads to a rise or fall in

stress.

Building on the classification proposed by Zahmat Doost and Zhang (2023), this study adopts the
following categorization of task complexity: knowledge-based tasks are considered high-
complexity, skill-based tasks are moderate-complexity, and rule-based tasks are low-complexity.
Given that interruptions are inherent in real-world work environments, the findings under
interrupted conditions are considered more representative. Accordingly, task complexity weights

are assigned—based on the interrupted-condition data—as shown in Table 6.

Table 6: The Weighted Impact of Task Complexity on Human Stress (Zahmat Doost and Zhang,
2023)

Weighted Impact of Task
Complexity
Complexity on Human Stress
Class

(&9)

High-Compexity Knowledge-Based Tasks 59
Moderate-Complexity Skill-Based Tasks 4.0
Low-Complexity Rule-Based Tasks 3.7

The next subsection explores the parameters that influence the perception of task complexity from
a human-centered perspective. These factors form the foundation of the task-specific conceptual

formula and help clarify the interrelationships among them.

6.4.2. _The Influence of Other Parameters on Task Complexity

As human cognitive and affective states fluctuate in response to various implicit and explicit
factors, their perception of task complexity can vary depending on the context. This subsection
examines three key parameters—time of day, human capability (including knowledge and skills),
and actual task requirements—to support the development of a conceptual formula for estimating

task-specific stress.
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Time of Day: The time at which a task is performed significantly influences how complex it is
perceived to be. Kalanadhabhatta et al. (2021) studied the relationship between human cognitive

performance and biobehavioral rhythms, focusing on two major regulatory mechanisms:

e the circadian rhythm, which governs the body's internal biological clock
o the homeostatic process, which regulates sleep pressure based on the need for and quality

of sleep

Their findings showed that cognitive performance peaks between 09:00—12:00 and 12:00-16:00,
decreases slightly between 16:00—20:00, and drops to its lowest between 04:00—08:00 and 20:00—
24:00. Razavi et al. (2023) confirmed that assigning demanding tasks during high-performance

time windows enhances outcomes, especially for cognitively complex activities.

Drawing on Kalanadhabhatta et al.'s (2021) study, this thesis adopts a weighted impact scale for
time-of-day effects, based on relative response time and the number of additions attempted in their

experiment. These weights are presented in Table 7.

Table 7: The Weighted Impact of Time of the Day extracted from Kalanadhabhatta et al. (2021)

Weighted Impact of Time of the Day on Task
Time of the Day

Complexity Perception ( T;)

04:00-08:00 0.23
08:00-12:00 2.63
12:00-16:00 2.53
16:00-20:00 1.33
20:00-24:00 0.11

This weighted scale reflects the expected level of human cognitive performance at different times

of day. Higher weights indicate periods of peak performance, while lower weights reflect
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decreased performance levels. Consequently, tasks assigned during high-performance windows
are likely to be perceived as less complex, whereas those assigned during lower-performance

periods may feel more demanding.

Human Capability: An individual’s perception of task complexity is closely tied to their level of
knowledge and skill. According to Cognitive Load Theory, individuals with greater expertise
experience reduced cognitive load when engaging in a task, thereby perceiving it as less complex.
Conversely, insufficient knowledge or skill increases the perceived difficulty of the same task
(Sweller, 1988; Van Merriénboer & Sweller, 2010). This is further supported by Zeitlhofer et al.
(2024), who found that participants performed more efficiently when reattempting previously
encountered complex tasks, indicating that experience improved their capability and reduced

perceived complexity.

Actual Task Requirement: In project environments, large tasks are broken down to distribute
work effectively among team members. As emphasized in project management guidelines, the
estimated duration of each task must be accurately assessed during the planning phase (Mulcahy,
2013; Project Management Institute, 2021). When tasks require comparable levels of knowledge
and skills, those with longer durations are typically regarded as more complex and demanding
(Wilkinson et al., 2012; Walhout et al., 2017; Guo et al., 2020; Zhou et al., 2022). In this study,
task duration is used as a proxy for actual time-based workload, offering a measurable indicator to

assess and balance complexity across task assignments.

These parameters—time of day, human capability, and actual task requirements—form the
foundation for modeling task complexity from the human perspective. Their integration into a
conceptual formula explained in Subsection 6.4.3 allows for the estimation of task-specific stress

when allocating tasks in human-robot collaboration systems.

6.4.3. Conceptual Formula for Task-Specific Human Stress

Based on the foundations identified so far, Complexity (C) is a function of:

1. Actual Task Requirement (W) — Time-based workload assigned to human

2. Human Capability (§+K) — consisting of skills and knowledge
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3. Time of the Day (T)

In this function, it is proposed that the perception of task complexity is directly proportional to the
Actual Task Requirement (W?), while human capability (S+K) and time of the day (T) are
inversely proportional to the perceived task complexity. Accordingly, a conceptual formula is

established to represent the complexity of each task from the perspective of an individual human

as follows:
Let
Ci = f(Wia, (Sl + Ki),Ti) Vi€ N,Wherel <i<N (50)

be the function that defines the task-related estimated cognitive complexity level for the i* task,

where:

e W;?is the actual workload assigned for task i,

e S represents the human skill level for task i,

e K;represents the human knowledge level for task i,

e the sum (S; + K;) models the human capability for task i,

e Tijis atime-of-day coefficient accounting for temporal cognitive fluctuations,

e and N is the total number of tasks.

Accordingly, the estimated cognitive complexity level for a given task i can be formulated as

follows:

w;? (51)

Ci=c———
(Si + K).T;

In addition to this, Nguyen and Zeng (2017) defined stress (a;) as a function of perceived workload,
human capability, and affective states. Therefore, for a given task i, its contribution to human stress
can be formulated as shown in Equation 52. Considering that each task has a unique contribution

to perceived workload (W;?) and that each individual possesses a unique combination of knowledge
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and skills (S; + K;) in response to task i, the specific contribution of that task to human stress can

be further expressed as shown in Equation 53.
ci=f(Wpr, (Si+Kj), Aj), ViEN, 1 <i<N (52)

Where:

e W/ is the perceived workload for task i

e A is the individual’s affective (emotional) state.

WP (53)

TG+ KA

Given that capability (S; + K;) appears in both the complexity (Equation 51) and stress functions
(Equation 53) presented in Table 8, the task-specific stress can be derived as shown in Equation

54:

we W wfCT G T (54)
= S0 =g = DPIl
; WA A

P
Where, according to Yousefi et al. (2019), Duration-Based Performance Indicator: DPI = %

a
1

Table 8: The Combination of Task Complexity and Stress Formulas

Proposed Conceptual Formula Conceptual Stress Formula

(Nguyen and Zeng, 2017)

oo we W
TS+ KT TS T K)A
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S 4+ K) =
S+ K) =~

Affective State: In this integrated formula, the variable (4) represents a human’s affective state,

encompassing mood-related conditions categorized into five distinct types, as outlined in Table 9.

This classification is adapted from the work of Cittadini et al. (2023) on Affective State Estimation.

As the Yerkes-Dodson law is adopted in this thesis to explain the relationship between stress and

performance, and the affective states defined in their study align with the stress—performance bell

curve, the same mood categories are incorporated into the formula to evaluate their impact on

human stress. Each category is assigned a corresponding weighted impact score, calculated using

the Analytical Hierarchy Process (AHP) method (Saaty, 1977; Saaty, 1980).

Table 9: Weighted Impact of Affective States Estimated Based on Cittadini et al. (2023)

Mood Affective State Weighted Impact of Affective Example

State on Human Stress Emotions

(A)
High Arousal — “Positive and 4.59 pleasure, joy and
High Valence involved state of excitement
(HAHYV) the person”
Low Arousal — “Positive and 2.99 calm, relaxed,
High Valence uninvolved state peaceful
(LAHV) of the person”
Neutral Neutral 1 emotionally

balanced, flat

98



Low Arousal — “Negative and 0.56 boredom, sleep

Low Valence uninvolved state

(LALV) of the person”

High Arousal — “Negative and 0.42 anger, fear,
Low Valence involved state of anxiety
(HALYV) the person”

Equation 54 is developed in this study to support the adjustment of stress levels detected through
wristband data by reallocating feasible tasks. To enable this, it is necessary to quantify the stress
impact associated with each individual task. This allows for the evaluation of changes in human
stress levels when a task is either assigned (i.e., current stress + task-induced impact) or removed
(i.e., current stress — task-induced impact). However, the stress measurements obtained from
wearable devices and the task-specific stress values derived from the conceptual model are based
on different numerical scales. To ensure meaningful comparison and integration, both datasets
must be normalized. Once normalized, they can be combined—for instance, by adding a task's

impact to the current stress level or subtracting it to simulate the effect of task removal.

After presenting the structure of the human-robot system, outlining the communication channels,
interaction modes, and collaboration types, detailing the logic behind the dynamic workload
allocation model, and explaining the factors influencing human stress along with their
interrelationships, Section 7 provides a step-by-step, phase-by-phase explanation of the dynamics

of the proposed model.
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7. ROBOT-SUPERVISED INTELLIGENT WORKLOAD REALLOCATION BASED
ON STRESS-AWARE HUMAN PERFORMANCE MONITORING IN HUMAN-
ROBOT TEAMS

This thesis proposes a human-robot collaboration framework in which robots monitor human
performance by analyzing physiological and behavioral signals, enabling them to manage and
reallocate human workload accordingly—a concept reiterated throughout the study. This section
outlines the step-by-step execution of the proposed model. To assess its feasibility, the section
concludes with a Monte Carlo simulation that validates the model’s effectiveness in dynamic,

stress-aware workload reallocation.

7.1. Process Flow of Robot-Supervised Workload Allocation

The algorithm outlined so far presents an innovative framework for dynamic workload allocation
within human-robot or human-computer collaborative systems. Building on previously established
goals, its primary focus is to manage human stress levels to support optimal performance. This

objective is implemented through a systematic, three-step process:

i. Monitoring human performance using control charts
ii. Analyzing stress and performance correlations using physiological and behavioral data
iii. Reallocating workload to balance stress levels utilizing state diagrams

Figure 20 illustrates the overall structure of the proposed approach. At its core, this framework
relies on the robot’s capacity to monitor the human collaborator through both quantitative metrics
and qualitative observations, and to actively intervene in the work environment—for instance, by
supporting task redistribution. The primary goal is to maintain human stress within an optimal
range—avoiding both underload and overload—to maximize human contribution to system
performance and foster more balanced and efficient human-robot collaboration, a goal reiterated

in earlier sections.
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Figure 20: Role of Robot: Controlling Human Stress through Workload Reallocation

The subsequent third-level subsections provide a detailed explanation of each individual step
within the proposed process. Each step is examined separately to highlight its specific role,

underlying logic, and contribution to the overall framework.
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7.1.1. Step 1: Monitoring Human Performance Using Control Charts

Human performance in collaborative systems naturally fluctuates throughout the workday due to
changes in physical and mental states. While some of these fluctuations are minor and transient,
others may indicate deeper issues that require corrective action (Lee & McGreevey, 2002;
Caulcutt, 2004). As the first step in the proposed supervisory control strategy, this framework
positions the robot as an intelligent observer capable of distinguishing between normal

performance variability and deviations caused by specific stress-related factors.

To facilitate this capability, the robot is equipped with the tools of Statistical Process Control
(SPC), particularly control chart construction and interpretation (Lee & McGreevey, 2002;
Montgomery, 2007; Tague, 2023). Control charts offer a robust method for real-time monitoring
by comparing performance indicators—such as task duration or error rate—against statistically
defined control limits. When these metrics exceed threshold values, the robot is alerted to potential
anomalies and can initiate data-driven interventions (Yousefi et al., 2019). This approach not only
improves process stability but also contributes to enhanced productivity, cost efficiency, and

overall system predictability (Lee & McGreevey, 2002).

In this context, the robot continuously monitors the human partner's performance for signs of
statistical irregularity. When a deviation is detected, it analyzes whether the observed change stems
from normal variability or indicates an abnormal condition. At this stage, no direct intervention
occurs. Instead, the robot functions solely as a diagnostic observer, aiming to determine whether

the deviation may be attributed to fluctuating stress levels or to other underlying factors.

This distinction informs the next phase of the framework, where the source of the deviation—if
linked to stress—is examined in detail and appropriate actions are taken. Accordingly, the

following hypothesis frames Step 1 of the supervisory control strategy:

e Ho: The robot can accurately detect when human performance exceeds statistical control
thresholds.

e Hi: The robot cannot reliably detect such deviations.
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The effectiveness of control charts in monitoring human performance has been validated across
several domains. For instance, Wang et al. (2013) used X-bar control charts to track cashier
scanning durations in supermarkets. When scan times exceeded upper control limits after four
hours, fatigue was inferred, demonstrating the chart's effectiveness in identifying time-induced

inefficiencies.

Yousefi et al. (2019) proposed the Duration Performance Index (DPI)—calculated as the ratio of
earned duration to actual duration—as a metric for assessing task efficiency in construction
projects. A DPI value of 1 indicates adherence to the planned schedule, while values below 1
suggest inefficiency and those above 1 reflect superior performance. Their application of control

charts to monitor DPI variations yielded meaningful insights into temporal performance patterns.

Similarly, Sugiono et al. (2022) integrated control charts into their Cognitive Workload
Management (CWM) framework for train operators. By combining brain simulation models with
data from On-Train Data Recorders (OTDR), they continuously assessed drivers’ cognitive
workload and categorized it into underload, optimal load, and overload states. Control charts were
instrumental in identifying instances where cognitive stress exceeded acceptable thresholds,
thereby supporting the development of rest schedules and the reallocation of tasks. Their findings
underscore the value of statistical monitoring in bridging subjective workload evaluations with

objective performance data.

Collectively, these studies demonstrate the effectiveness of statistical control charts in identifying
performance deviations, uncovering their underlying causes, and informing appropriate
interventions. Within the proposed framework, this analytical function is delegated to the robot
supervisor, which continuously monitors human performance, detects anomalies, and initiates
further diagnostic steps to ensure that performance remains within safe and efficient operational
thresholds.

Given this capability, the hypothesis that the robot can detect when human performance is
statistically out of control is accepted (Ho). With this confirmation, the robot can proceed to the
next stage—Step 2: Analyzing Stress and Performance Correlations Using Physiological and
Behavioral Data—to determine whether the detected performance deviation stems from elevated

or reduced stress levels.
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7.1.2. Step 2: Analyzing Stress and Performance Correlations Using Physiological and

Behavioral Data

While Statistical Process Control (SPC) charts allow robots to detect when human performance
exceeds defined control limits, such detections alone do not provide insight into the root causes of
these deviations. To address this limitation, SPC data must be supplemented with indicators of
human stress. Generally, low stress levels are associated with a state of boredom, whereas high
stress may indicate cognitive overload or task-related chaos. Therefore, in cases where
performance anomalies are identified, the robot—as a supervisory controller—must evaluate the

human's stress condition in real time to determine whether stress is the underlying cause.

To support this decision-making process, the robot must be equipped with non-intrusive sensing
capabilities for continuous monitoring of human stress. In this step, a stress assessment method is
introduced that enables the robot to estimate human stress levels precisely at the point when
performance deviates from defined thresholds. This estimation is based on physiological and

behavioral data collected through minimally invasive sensing technologies.

Extensive research has demonstrated that such physiological and behavioral signals can effectively
indicate human emotions and associated stress levels. For example, Zhao et al. (2024) employed
EEG signals to monitor pilots’ cognitive states during virtual simulation exercises. Their study
marked a significant advancement by enabling the quantitative measurement of cognitive activity
and its association with stress, surpassing the limitations of traditional qualitative approaches.
However, the use of EEG hardware during active task execution presents notable ergonomic
challenges. This concern is echoed by Sugiono et al. (2022), who emphasized that while such
intrusive technologies are effective for measuring cognitive states, they can hinder natural

movement and negatively impact task performance.

Given these limitations, it is essential that any data acquisition tools used in robotic supervision
rely on non-intrusive technologies. Wearable devices such as wrist-worn fitness trackers and
smartwatches, as well as contactless behavioral monitoring tools (e.g., cameras), offer viable
alternatives (Gjoreski et al., 2017; Nath and Thapliyal, 2021; Mitro et al., 2023; Bello-Orgaz and
Menéndez; Awada et al., 2024; Jo et al., 2025). For instance, Awada et al. (2024) demonstrated a
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73.43% accuracy in stress detection using wristband data, highlighting the potential of such

technologies for continuous stress assessment.

Building on this body of research, the proposed framework assumes that robots can effectively
estimate human stress using wearable sensing devices. Once a robot detects that human
performance has exceeded control limits, it evaluates whether the anomaly is stress-induced. If
elevated stress is identified, the robot prepares for an appropriate intervention. However, if stress
levels remain within the optimal range, the robot will consider alternative explanations—though

such diagnostic exploration falls outside the scope of this study.

To formalize this component of the framework, the following hypothesis is adapted from the work

of Awada et al. (2024):

e Ho: Human stress levels can be estimated with high accuracy using wearable devices (e.g.,
wristbands, smartwatches).
e Hi: Human stress levels cannot be accurately estimated using wearable devices (e.g.,

wristbands, smartwatches).

Quantitatively linking stress and performance has long been studied, with the Yerkes—Dodson law
(1908) establishing one of the earliest models to describe an inverted-U relationship between
arousal and performance. In more recent work, Awada et al. (2024) further quantified this
relationship by incorporating biosignals and task performance metrics. While these studies center
on the stress—performance interaction, it is proposed here that workload also plays a significant
role in shaping stress levels. For this reason, the workload-related findings of Zhao et al. (2023)
are considered alongside the Yerkes—Dodson principle and Awada et al.’s results. Despite their
different scopes, all studies converge on a similar bell-shaped pattern, often modeled using

Gaussian distributions, reflecting an optimal zone of stress known as eustress.

Given that Step 1 confirms the robot’s ability to detect when human performance falls outside
control limits, and Step 2 establishes that human stress can be reliably estimated using wearable
technology, these components can be integrated into a unified control strategy. In this model, SPC
charts are used for anomaly detection, followed by real-time stress evaluation to determine the

need for corrective action. The objective is to maintain emotional states within the eustress zone—
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where productivity and cognitive function are optimized—through adaptive workload

management.

By interpreting biosignals from wearable devices, the robot can detect shifts away from the optimal
zone and implement timely interventions, such as task redistribution or workload adjustment. This
proactive stress management strategy not only supports individual well-being but also enhances
the overall efficiency of the human-robot system. Embedding this capability into the proposed
framework creates a data-driven mechanism for regulating stress, thereby strengthening the

system’s adaptive and collaborative potential.

Given the supporting evidence and demonstrated feasibility—particularly the findings of Awada
et al. (2024), whose study was discussed in detail in Subsection 6.3—the hypothesis Ho (that
human stress levels can be estimated with high accuracy using wearable devices such as wristbands
or smartwatches) is accepted. With this confirmation, the robot is now equipped to proceed to the
next phase. In Step 3: Balance Stress Levels Using Robot-Supervised Task Reallocation, the
system leverages real-time stress assessments to initiate adaptive workload adjustments aimed at

restoring and maintaining human performance within the optimal stress range.

7.1.3. Step 3: Balance Stress Levels Using Robot-Supervised Task-Reallocation

This section introduces the intervention algorithm that governs the task reallocation process when
irregularities in human performance are accompanied by deviations in stress levels—whether
elevated or reduced beyond acceptable thresholds. Upon identifying such deviations, the robot
evaluates current stress indicators and proceeds to review individualized task assignments. This
evaluation considers a range of contextual and systemic factors that influence task distribution,

rendering the human-robot collaboration process both dynamic and adaptive.

As discussed previously in Section 5, multiple modes of collaboration exist within human-robot
teams, including human-human, robot-robot, and human-robot interactions. Although the
algorithm proposed here primarily operates within a human-robot framework—where the robot
supervises and responds to human states—it is important to recognize the role of other
collaboration types in shaping decision-making. In particular, robot-robot collaboration at the

system level is crucial for accessing and integrating data from distributed subsystems, enabling the
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robot to make informed decisions about task reallocation. This integrated interaction is depicted

in Figure 21.

This third step constitutes the core contribution of the study. Accordingly, a detailed, phase-by-

phase explanation of the proposed intervention mechanism is provided in Subsection 7.2.

7.2. Intervention-Based Task Reallocation Model for Robots

With the advancement of human-robot systems through machine-to-machine (M2M)
communication, wireless sensor networks, and intelligent Al-driven algorithms, these systems
have evolved into complex, highly integrated frameworks. In such settings, the outputs of certain
systems function as critical inputs for others, enabling a continuous exchange of data and inter-

system coordination.

To accurately interpret implicit human conditions—such as cognitive workload, domain
knowledge, emotional states, stress levels, and sleep quality—the robot responsible for executing
the proposed intervention model (System 1 in Figure 21) must rely on input from complementary
systems, including other robotic agents within a smart integration architecture. Incorporating
wearable technologies further augments the model’s capability by supplying real-time
physiological indicators of stress, which are essential for monitoring performance and ensuring
stress levels remain within optimal thresholds (System 2 in Figure 21) (Gjoreski et al., 2017; Nath
& Thapliyal, 2021; Mitro et al., 2023; Bello-Orgaz & Menéndez, 2023; Awada et al., 2024).

Additionally, temporally dependent variables—such as circadian rhythms, sleep cycles, and time-
of-day effects—play a pivotal role in modulating human performance during collaborative tasks
(System 3 in Figure 21) (Kalanadhabhatta et al., 2021; Razavi et al., 2023). To accommodate these
fluctuations and execute task transitions effectively, a responsive dynamic task scheduling
mechanism is essential (System 4 in Figure 21). This system must continuously assess task
availability and human functional capacity to enable real-time adjustments as needed (Pupa et al.,

2021; Alirezazadeh & Alexandre, 2022).

Moreover, an analytical evaluation unit should be incorporated to assess task complexity, offering

critical insights into how individual task demands influence human stress and perceived workload
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(Zahmat Doost & Zhang, 2023). This layered integration of systems forms the foundation for

intelligent, context-aware task reallocation in robot-supervised environments.

In cases where performance irregularities are observed but stress levels remain within acceptable
thresholds, it suggests that stress is not the primary factor impairing performance. In such
scenarios, an alternative diagnostic system should be activated to identify other potential causes.
For instance, a human capacity analysis module can be employed to evaluate the alignment
between the individual's current knowledge, skills, and the demands of the assigned task (Nguyen
& Zeng, 2017). If a discrepancy is identified, the system should propose suitable interventions—
ranging from immediate support mechanisms to longer-term upskilling strategies—to address the

misalignment (System 5 in Figure 21).

The architecture of the proposed framework allows for the integration of additional subsystems as
required to increase adaptability and contextual awareness. Figure 12 provides an overview of the
core reallocation algorithm and its interaction with the broader set of supporting systems. Although
the literature supports expanding the model by incorporating further modules, the primary
emphasis of this thesis remains on the development and implementation of the task reallocation

algorithm itself (System 1 in Figure 21).

Overall, Figure 21 presents a comprehensive overview of the integrated system architecture,
highlighting how various subsystems interact to support adaptive task management in human-robot
collaboration. While the primary focus remains on the task reallocation algorithm (System 1), the
figure also illustrates the interconnected roles of complementary systems—such as physiological
monitoring, capacity analysis, and dynamic scheduling—that collectively contribute to informed,
real-time decision-making. This visual representation underscores the complexity and modularity
of the proposed framework, reinforcing the importance of multi-system integration for effective

workload distribution.
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SYSTEM 4: GENERATING FEASIBLE TASK LISTS FOR EACH
MEMBER OF THE HUMAN-ROBOT TEAM
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Figure 21: Intervention-Based Task Reallocation Model for Human-Robot Systems

According to the intervention-based task reallocation logic illustrated in Figure 21, the robot’s

decision-making follows these phases:

1. Utilizing a State Diagram for Adjusting Human Stress Levels
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2. Quantitative Evaluation of the Impact of Task Complexity and the Formulation of Stress
Induced by the Assigned Task
3. Deciding on the Suitable Task for Optimal Performance

The robot’s intervention strategy unfolds through a structured sequence of decision points, each
addressing a distinct aspect of task reallocation. The following subsections delve into these phases,
outlining how stress regulation, task complexity analysis, and final task selection are

systematically integrated to support informed and adaptive collaboration.

7.2.1. Phase 1: Utilizing a State Diagram for Adjusting Human Stress Levels

When stress-related input is received from an external supporting system (referred to as System 2
in Figure 21), the robot processes the incoming biophysical data—following the methodology
described by Awada et al. (2024)—to assess the individual’s current stress state. This value is then
positioned along a bell-curve representation (Figure 22), classifying the state as "underloaded" (-

1), "stabilized" (0), or "overloaded" (1).

If the detected stress level falls into either the underloaded or overloaded category, the system
activates a Moore State Diagram—based control mechanism (Giantamidis et al., 2021) to trigger
task reallocation, aiming to return the individual to a stabilized state. According to the logic of the
state diagram, when a transition occurs from the stabilized state to either overload or underload—
or when the system remains in a non-optimal state—the robot intervenes by modifying the
workload. Specifically, it reduces the workload (Wp—) to mitigate high stress or increases it (Wp+)
to counteract low stress. In contrast, if the stress level remains within the stabilized zone, no
immediate intervention is initiated. The robot continues to observe and monitor performance and

stress levels to detect any future deviations.
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Figure 22: Mapping of Human Stress Levels on a Bell Curve

At this stage, specific input conditions determine whether the robot should intervene in workload
allocation. If any of the following transitions are observed, the system output is defined as "No",
indicating that the robot does not intervene (denoted as WP’) and continues monitoring human

performance and stress levels:

e [-1, 0]: Transition from an underloaded state to a stabilized state
e [+1, 0]: Transition from an overloaded state to a stabilized state

e [0, 0]: The human state remains stabilized
In contrast, intervention is required when any of the following state transitions occur:

e [0,-1]or [0, +1]: Transition from the stabilized state to either underload or overload
e [-1,+1] or [+1, -1]: Cross-transitions between underload and overload

e [-1,-1] or [+1, +1]: The human state remains underloaded or overloaded, respectively
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In these cases, the output is "Yes", prompting the robot to initiate workload reallocation. The
overarching aim of the state diagram is to restore the human to a stabilized stress level and maintain
this condition. A summary of this algorithmic logic is presented in Table 10. Based on this
decision-making framework, the robot operates using the state diagram illustrated in Figure 23,
which classifies the human state as stabilized, underloaded, or overloaded, and guides whether

workload intervention is warranted.

Table 10: Summary of the State Diagram Algorithm

Input Output Action
[-1,0] No WP (Not intervene in workload
allocation)
[+1, 0] No WP (Not intervene in workload
allocation)
[0,0] No WP (Not intervene in workload
allocation)
[0,-1] Yes WP* (Increase human workload)
[0,+1] Yes WP~ (Decrease human workload)
[-1,+1] Yes WP~ (Decrease human workload)
[+1,-1] Yes WP* (Increase human workload)
[-1,-1] Yes WP (Increase human workload)
[+1,+1] Yes WP~ (Decrease human workload)
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Figure 23: The State Diagram for Robot’s Decision-Making in Reallocation Interventions

Human-centric evaluations, as embedded in the proposed algorithm, enhance the robot’s ability to
interpret and respond to human states, thereby fostering more effective and adaptive collaboration.
In the current framework, these human conditions are classified into two categories: stabilized and
non-stabilized stress states. In a similar vein, Merlo et al. (2023) investigated dynamic human-
robot task collaboration by allocating tasks based on a comparison between an individual’s current
physical condition and the ergonomic requirements of the task. Their findings indicated that
withholding high-risk tasks when ergonomic conditions were suboptimal significantly reduced

human fatigue and frustration during interaction.

Tao et al. (2024) further examined how various forms of human-robot interaction—including
touchless mid-air gesture-based systems and device-assisted methods—influence human
performance under differing ergonomic constraints. Collectively, these studies, along with the
proposed model, underscore the importance of continuously monitoring human physiological and

behavioral states in collaborative environments.
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By integrating real-time assessments of human condition, robots can make informed decisions
about task assignment and interaction modalities. This not only optimizes task performance but
also ensures that human collaborators remain within an ergonomic, cognitive, and emotional
comfort zone. In essence, the robot’s ability to monitor and respond to human conditions supports

efficient, responsive, and sustainable collaboration in dynamic human-robot teams.

7.2.2. Phase 2: Quantitative Evaluation of the Impact of Task Complexity and the Formulation
of Stress Induced by the Assigned Task

Following the detection of human stress levels, the robot must initiate appropriate adjustments by
either assigning new tasks, modifying the human’s current role, or removing ongoing tasks. To
make informed decisions, it is essential to quantify the stress-inducing potential of each task—
both current and prospective—in terms of its impact on human performance. This task-specific
stress value enables the robot to compare multiple task options and select the one that aligns best
with the human’s current stress condition, thereby facilitating optimal performance. The

methodology for quantifying these stress effects is described in detail in Subsection 6.4.

7.2.3. Phase 3: Deciding on the Suitable Task for Optimal Performance

In human-robot collaboration, ongoing monitoring enables robots to identify inconsistencies in
human task execution. This process begins with the detection of anomalies—such as prolonged
task completion times and increased error frequencies—as discussed in Section 7.1.1. Following
the detection of such performance issues, the robot assesses the human's stress levels using
physiological signals captured by wearable devices, as detailed in Section 7.1.2. If the assessment
indicates that task reallocation is required, the robot selects and assigns tasks more appropriately
aligned with the human’s current cognitive and physical state, with the goal of sustaining or

enhancing performance, as explained in Section 7.1.3.

The reallocation mechanism unfolds over three consecutive phases. Section 7.2.1 outlines a state
diagram that assists in determining when task reassignment should be initiated. Section 7.2.2
introduces a mathematical model that quantifies the potential stress induced by each task. This
quantification is not limited to task complexity alone; it also incorporates factors such as task-

specific perceived workload, the time of day the task is performed, time constraints representing
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actual workload demands, and the human’s affective state during task execution. Building on these
foundations, the current section (7.2.3) focuses on the final phase: selecting the most suitable task

by taking into account the human’s current condition as well as broader system constraints.

To support implementation, Table 11 introduces a pseudocode framework that brings together the
model’s key assumptions, visual tools, and mathematical foundations. Figure 20 provides an
illustrative overview of the three main stages of the intervention process, while Figure 21 offers a

more detailed depiction of the integrated, human-centered task reallocation architecture.

Table 11: Decision Algorithm for Intervention-Based Task Reallocation in Robots

BEGIN (at time t)
1. Is human performance within the control limits?

YES: Continue monitoring human performance: t = t + 1
NO: Verify if the stress is the main reason human performance is reduced

Go to step 2:

2. Observe and record the human's stress level (,) from the wearable device at time ¢.

3. Normalize d, as
ol — gimn

max _ ;min
Oy Oy

G4 =
Where minimum (O'JV”‘") and maximum (o,'**) stress values are obtained from

previous observations

4. Use the state diagram introduced in Figure 5 to determine whether the robot should

intervene in task reallocation.

[F intervention is required:
Proceed to Step 5.
ELSE:
t=t+1
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Return to Step 1

5. Perform task reallocation:

5.1 Evaluate currently handled task’s (task i) contribution on human stress (g;)

5.1.1

5.12

Calculate actual workload for the currently assigned task i:

Let € be time spent on task i so far.

!
wel =wael — g where t' is the time when task i is assigned to human

Identify the human’s perceived workload for task 7 at time ¢, Wpf:

For controlled experiments: ask the human partner via subjective
questionnaires.

For real-time applications: estimate via facial expression analysis and/or

physiological data using inference algorithms.

Determine Duration-Based Performance Indicator:
pt
i

t
a
we;

DPI! =

Determine current task’s contribution on human stress (o).

t
c_wrar L GT
O-i - WiaAt - i At
Where:
Knowledge — based tasks 5.9
C; = Skill — based tasks 4.0

Rule — based tasks 3.7

04:00 < Time of Day < 08:00 0.23
08:00 < Time of Day < 12:00 2.63
T =<12:00 < Time of Day < 16:00 2.53
16: 00 < Time of Day < 20:00 1.33
20:00 < Time of Day < 24:00 0.11
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HAHV: High Arousal — High Valence 4.59
LAHV: Low Arousal — High Valence 2.99

At = Neutral 1
LALV: Low Arousal — Low Valence 0.56
HALV:High Arousal — Low Valence 0.42

5.1.5 Normalize o} as:

. _ b=
o = —
i -
O.imax _ O.imm

Where g™" and g/"** values are obtained from previous observations

5.2 Determine the contribution of task considered to be assigned on human stress
5.2.1 [Identify feasible task which is possible to assign to human at time t

5.2.2 Determine candidate task’s contribution on human stress (O'f).

pt
L_wreT g

ST wear T T A

Where G, T and Atare determined similar to Step 5.1.4.

5.2.3 Normalize Uf as:

of — g™
J T _max _ .min
i i

Where /™" and ¢;"** values are obtained from previous observations

6. LEvaluate reassignment of tasks:

6.1 Case 1: 6%, < LCL - Human is in boredom state. Add new task j without removing
the current task i
65"t =65, +6f +6f
IF LCL < 6L < UCL:
Accept the new assignment
Updatetime t =t + 1
Go to step 1 and verify the stress level using wearable device data.

ELSE consider adding more task and repeat Step 6.1
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6.2 Case 2: !, < LCL = Human is in boredom state. Replace task i with more complex
task j
6Lt = 6t — 6t + 6};
IF LCL < 64t < UCL:
Accept the reassignment
Updatetimet =t + 1

Go to Step 1 and verify the stress level using wearable device data.

ELSE consider replacing task i with a more challenging task and repeat Step 6.2

6.3 Case 3: g, = UCL - Human is in chaos state. Replace task i with a simpler task j
ottt =6t — 6t + 6jt
IF LCL < 65" < UCL:
Accept the reassignment
Updatetimet =t + 1

Go to Step 1 and verify the stress level using wearable device data.

ELSE consider replacing task i with a less challenging task and repeat Step 6.3

END

7.3.Monte Carlo Simulation: Intervention-Based Task Reallocation Model

To evaluate the validity of the proposed human-centered dynamic workload reallocation model,
a Monte Carlo simulation study was conducted. This simulation aims to offer empirical insights
that can guide the design of future controlled experiments and support the adaptation of the

proposed model for real-time applications.
The simulation follows a structured sequence of steps:

i. Parameter Initialization:
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In accordance with Section 2.3.2, key variables were established: actual workload (W?),

perceived workload (W), task complexity (C), time-of-day impact (T), and affective state (A).

e W2 and Wr were randomly sampled from a uniform distribution, as this distribution is
suitable for modeling bounded variables, consistent with project management
estimates.

e C, T, and A were generated using multinomial distributions, reflecting predefined

weighted categories for these variables.
ii. Task-Specific Stress Computation:

The stress level associated with each task (o) was calculated using Equation 54 and normalized

for comparison.
iii. Wearable-Based Stress Generation:

A general stress level (o), mimicking data from wearable sensors, was generated using a
normal distribution and normalized. This allowed for direct comparison with the task-induced

stress values.
iv. Performance Evaluation:

Human performance was quantified using Equation 55, which is based on the “Duration-Based
Performance Indicator (DPI)” proposed by Yousefi et al. (2019). The DPI was then normalized

to reflect a performance percentage.

=
WIC/ | /4

Performance = DPI =

A DPI approaching zero does not imply zero performance; rather, it indicates extremely

low task-related motivation at that specific time and context.

v. Checkpoint Analysis:

Two critical checkpoints were assessed:
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e Control Chart Monitoring: DPI values were monitored to determine if performance
remained within control. DPI > 1 indicated that performance was acceptable.

o Stress Validation: If performance was out of control, the system checked whether
stress was the underlying factor:

o Case I: If stress was within acceptable bounds, the issue was attributed to
other variables (refer to Figure 3: Systems 3 and 5). No intervention
occurred.

o Case 2: If stress was beyond thresholds, the individual’s state was

reclassified. Based on Zhao et al. (2023), the following conditions applied:
u—150 <o, <u+120 (56)

* ¢, < LCL: Underload (State = -1)
= g, > UCL: Overload (State = 1)
» LCL < o, < UCL: Stabilized (State = 0)

If overload or underload was detected, robot intervention was initiated.
vi. Robot Intervention and Task Reallocation:

When necessary, the robot reallocated tasks to stabilize the human’s stress level. Task-specific
stress contributions were recalculated using Equation 54. The updated overall stress at time ¢

was determined using Equation 57 below:

of = oyt —of +df (57)

Here, o represents the stress contribution of the removed task, and ajt that of the newly

assigned task. If the resulting stress oy}, fell within predefined thresholds (LCL < o, < UCL),

the new task assignment was confirmed.

7.3.1. Simulation Design and Parameters

In this simulation study, synthetic data were generated to assess the validity of the proposed

human-centered task reallocation model. The study setup was as follows:
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e Participants: 10 individuals

e Task pool: Each individual was assigned 20 potential tasks

e Evaluation frequency: Performance was assessed at 10 distinct time points throughout the
day

o Assumption: None of the tasks were on the project’s critical path

This configuration resulted in 2,000 unique data points (10 individuals x 20 tasks x 10 time

points), forming the foundation for the simulation analysis.

To account for time-dependent variation in performance, simulation times were distributed

across five time slots, as outlined in Table 7:

o 04:00-08:00 — 3%
o 08:00-12:00 — 25%
e 12:00-16:00 — 51%
e 16:00-20:00 — 20%
e 20:00-24:00 — 1%

The time-of-day selection was modeled using a normal distribution, centered around peak
cognitive performance periods (08:00—16:00), based on findings by Kalanadhabhatta et al. (2021),
which indicate enhanced mental performance during standard working hours. This approach
ensured that data points were predominantly concentrated around these high-performance

windows.

7.3.2. Simulation Results and Insights

As summarized in Table 12, only 9% of cases required intervention—triggered when wearable-
derived stress measurements diverged significantly from the expected stress levels calculated

through task-based parameters.
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Table 12: The Distribution of Data in the Monte Carlo Simulation of the Proposed Model:
I=Intervene; NI=Not intervene

Simulated Personas Time of the Day
04:00-08:00 08:00-12:00 12:00-16:00 | 16:00-20:00 | 20:00-24:00
I NI I NI I NI I NI I NI
Person 1 0 0 3 37 6 134 2 18 0 0
Person 2 0 20 6 54 13 67 3 37 0 0
Person 3 0 0 4 56 14 126 0 0 0 0
Person 4 0 0 8 72 10 90 1 19 0 0
Person 5 0 0 0 0 14 126 4 56 0 0
Person 6 0 0 7 93 1 79 2 18 0 0
Person 7 0 0 1 39 92 8 52 0 0
Person 8 1 19 6 34 7 53 8 52 1 19
Person 9 0 0 3 57 10 50 9 71 0 0
Person 10 2 18 0 20 13 107 5 35 0
Total number of simulations | 3 57 38 462 9% 924 42 358 1 19
% of total Simulation cases | 0.15 2.85 1.9 23.1 4.8 462 2.1 179 0.05 0.95
Table 13: Monte Carlo Simulation Results for the Proposed Model
Simulated  t: The time Task i Task j Expected
Personas irregularity is Improvement
observed through
intervention
o!, with Human State Task- | o, with Human State Task- (%)
Taski with Task i Specific | Task j with Taskj  Specific
{-1,0, 1} DPI; (%) {-1,0, 1} DPI; (%
Person 1 11:59:00 AM | 0.28 -1 0.74 0 )25 16
Person 2 1:53:00 PM 0.80 1 0.68 0 37 35
Person 3 3:15:00 PM 0.18 -1 19 0.38 0 54 34
Person 4 4:05:00 PM 0.22 -1 0 0.59 0 66 66
Person 5 4:00:00 PM 0.77 1 0.58 0 28 19
Person 6 8:52:00 AM 0.76 1 14 0.41 0 95 81
Person 7 12:29:00 PM 0.20 -1 1 0.69 0 48 47
Person 8 8:12:00 PM 0.13 -1 1 0.67 0 74 73
Person 9 6:58:00 PM 0.93 1 2 0.63 0 79 77
Person 10  7:16:00 AM 0.86 1 9 0.39 0 93 84
Average 7 60 53
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Table 13 presents a detailed comparison of ten simulation points across ten individuals. Each case
documents Task i (initial assignment) and Task j (reallocated alternative), with corresponding
stress levels measured using wearable devices. These cases demonstrate how robot-assisted
reallocation adjusts task assignments to bring the individual’s emotional and physiological state

closer to a stable condition.

It is important to note that, due to the randomized input structure, the precise numerical effect of
task substitution on stress (as described by Equation 8) cannot be validated deterministically.
However, the aggregate outcomes were encouraging. Average performance without intervention
was only 7%, whereas robot-assisted task reallocation led to an improvement up to 60% —an
increase of 53%. Additionally, participants’ emotional states shifted from overloaded or
underloaded conditions (£1) to a stabilized state (0), indicating successful stress regulation through

intelligent intervention.
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8. DISCUSSIONS

This thesis focuses on robots’ capabilities to observe their human partners, interpret their
performance along with corresponding emotional and stress states, and act accordingly within
human-robot collaboration to make smart systems more symbiotic and proactive. To this end, the
literature was thoroughly reviewed to identify current technologies capable of recognizing both
covert and overt human intentions. It was found that recent advancements are sufficient to assess

human behaviors, cognitive states, and emotional conditions.

This finding led to the formulation of the central research question: “How can the collaborative
performance of a human-robot team be improved through a robot-supervised decision mechanism
for  workload allocation  based on  fluctuations in  human  stress levels?”

This question formed the foundation and objective of the thesis.

To address this question, the structure of human-robot systems was first analyzed. Particular
attention was given to the communication channels and interaction modes through which
collaboration occurs. The differences between these terms were clarified, and their roles in task
execution were investigated. In addition, performance factors influencing these channels and
modes were examined, leading to the identification of task zones that facilitate robots’ role in task
allocation. These zones were defined according to the distinct characteristics of system members—

namely, humans, robots, or their joint activities.

Once the foundational components of communication and collaboration were established, a stress-
aware dynamic task allocation algorithm was proposed for robots to apply when intervention
becomes necessary. The algorithm was conceptually implemented within the context of the SAP
system architecture, which integrates numerous subsystems and provides visibility into various
communication channels during operational processes. Although current SAP systems are not
equipped with the necessary capabilities to detect users’ affective or cognitive states, it is assumed
that future systems will possess the intelligence required to collaborate with users in the proposed

mannecr.

Following this, the regulation of human stress became a central focus. It was hypothesized that

certain performance signals could trigger robot intervention. According to the literature, human
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performance often reflects underlying emotional or affective states. Thus, human performance was
chosen as the entry point for the proposed model: “Robot-supervised intelligent workload

’

reallocation based on stress-aware human performance monitoring in human-robot teams.’

Accordingly, after reviewing the stress—performance relationship, performance parameters for
each member in a multi-human, multi-robot system were analyzed in detail to understand their
collective impact on team output. Furthermore, the individual parameters influencing human stress
and performance were examined, leading to the identification of a self-feeding loop—a dynamic
cycle in which output parameters from one stage serve as input parameters for the next. This

feedback structure highlights the temporal dependencies within the system.

The next step was to evaluate how other researchers measure human stress levels. A
comprehensive review of stress detection methods was conducted to identify effective techniques,
drawing on validated approaches. Based on this analysis, wristbands were selected as the most

efficient, accurate, and non-intrusive solution for monitoring stress in real-time.

However, measuring overall human stress alone was not sufficient for the scope of this study.
Since human stress may fluctuate for various reasons, this thesis focused specifically on how task-
induced stress contributes to general stress levels. This is critical, as the aim is to regulate human
stress through task reallocation. Consequently, the quantification of task-specific stress

contribution became essential.

To address this, a conceptual formula was developed to calculate the stress induced by individual
tasks. This formula incorporates parameters such as perceived workload, task complexity, time of
day, actual workload, and mood-related affective states. According to this formulation, the task-

specific effect on human stress can be estimated, enabling more informed task allocation decisions.

Finally, the process flow of the proposed model was visualized and tested using a Monte Carlo
simulation. Although there was insufficient time to conduct controlled experiments for real-world
implementation, the simulation study yielded promising results. The objective was to sustain
optimal performance by maintaining human stress within an ideal range. The results showed that
the proposed system successfully maintains stress at manageable levels while simultaneously

enhancing performance.
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8.1. Practical Applications of Stress-Aware Human-Robot Collaborations

Even though the proposed framework introduces a generic algorithm for human-robot
collaboration—where a robot can represent any computerized smart system—it is evident that the
framework is applicable to various domains sensitive to workload fluctuations in human
performance, such as manufacturing and assembly lines, healthcare and assistive robotics,
transportation and logistics, and military and emergency response. However, since the concrete
measurement of stress remains the primary challenge in this study, the numerical values within the
proposed model cannot be generalized. In other words, no universally accepted quantitative
method has yet been introduced to measure human stress levels; therefore, generic thresholds
cannot be defined across all application areas. Moreover, different fields may require distinct
optimal values to successfully accomplish their corresponding tasks. Consequently, this study
generalizes that neither low nor high stress levels support optimal human performance, but rather
a moderate level of stress enables maximum human efficiency. Building on this principle, the
proposed model formalizes human-robot teaming by allocating workload according to stress

levels.

8.2. Ethical Considerations in Stress-Aware Human-Robot Collaboration

Ethical concerns inevitably arise in team collaborations where humans are involved. As Paul et al.
(2022) note, embedding ethics into technology is challenging, yet it remains essential to account
for human perceptions of collaboration’s ethical dynamics. These dynamics include fairness
(justice, non-discrimination, equity), trust and transparency (explainability, reliability),

accountability (responsibility, liability), and well-being (safety, cognitive load).

Ali et al. (2022) examined role allocation between humans and robots, suggesting that robots
should assume task-allocation responsibilities to reduce human workload and allow humans to
concentrate on execution. However, in high-risk domains such as healthcare or military operations,
human judgment remains indispensable. Where applicable, research supports automation-driven

allocation as a means of facilitating effective collaboration.

Kim and Phillips (2021) hypothesized that maintaining fairness in human-robot collaboration

enhances motivation and fosters acceptance of robot decisions. Ali et al. (2022) similarly
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emphasized fairness in shaping team relationships and performance, while also highlighting the
importance of negotiation. In this vein, Roncone et al. (2017) proposed a method that allows
humans to either accept or reject a robot’s decision regarding task execution. Such negotiation

ensures fairness and strengthens trust within the collaboration.

When considering task reallocation, trust becomes the pivotal factor influencing both individual
and team performance. Lee and See (2004) classified trust into three categories: undertrust,
overtrust, and calibrated trust. Undertrust results in the disuse of robotic capacity, while overtrust
can lead to misuse through inflated expectations of robot capability. Both disuse and misuse hinder
team performance, as highlighted by Azevedo-Sa et al. (2020). Only calibrated trust—where robot

capacity aligns with human expectations—supports effective collaboration.

Ali et al. (2022) further linked trust to task allocation, noting that undertrust may cause humans to
underestimate the benefits of robot decision-making, while overtrust may lead them to accept
decisions without sufficient scrutiny. Calibrated trust, on the other hand, fosters shared
understanding, which introduces another ethical dimension: shared situational awareness. This
alignment of team members’ mental models toward a common goal is critical, as Hagos et al.

(2024) argue, for effective decision-making in collaborative systems.

Although ethical considerations lie beyond the primary scope of this thesis, their influence on
human perception is undeniable. Ethical dynamics directly shape stress levels, trust, and ultimately

human performance—factors that are central to the success of human-robot collaboration.
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9. LIMITATIONS

While this study presents a novel framework for stress-aware human-robot collaboration, several

limitations should be acknowledged.

First, the framework is currently limited to a single-human, single-robot, single-task scenario.
Real-world applications often involve multiple humans, robots, and tasks interacting dynamically.
The lack of simulation or experimentation in complex n-human—n-robot—n-task environments
constrains the generalizability of the findings. Additionally, although the system attends to the task
actively pursued by a human at a given moment, it does not fully account for the background
influence of other pending tasks, which may still affect stress levels. These indirect effects are
assumed to be partially captured through affective state parameters, as outlined in Equation 4, but

further empirical validation is required.

Second, the current model does not address situations that require simultaneous task reallocations,
as it assumes a human can only manage one task at any given time. In such cases, a more complex
multi-agent environment should be considered. This simplification underscores the need for future

research involving adaptive strategies for dynamic, multi-task settings.

Third, although a simulation study was conducted, the system lacks validation through quantitative
performance metrics such as task completion time, error rates, or productivity indices. Moreover,
the framework has not yet been tested across robots with varying levels of intelligence or integrated
with different systems. As a result, its ability to function effectively in diverse real-world

applications—where such variability is common—remains uncertain.

Fourth, long-term changes in human capability and stress levels were not examined due to the
absence of longitudinal experiments. As such, the model's capacity to adapt to evolving human

states over time remains an open question for future investigation.

Despite these limitations, this work contributes a foundational model for robot-supervised
decision-making under uncertain human performance. The framework demonstrates how robots
can monitor human activity, estimate task-induced stress, and intelligently intervene to optimize

collaboration. Although full-scale experimental validation remains a future goal, the simulation
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results provide promising preliminary evidence that targeted interventions can stabilize human

stress levels and improve overall team performance.
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10. FUTURE WORK

As noted in the Discussion and Limitations sections, this study could not be validated through
controlled experiments, which limits the assessment of its effectiveness in real-world applications.
Future research should therefore focus on conducting such experiments—particularly within
multi-human, multi-robot systems—to evaluate the impact of the proposed model under complex

and dynamic collaboration conditions.

Additionally, this study highlights the importance of quantifying task-specific stress contributions
to overall human stress in order to guide accurate task allocation. While a conceptual formula was
proposed and demonstrated promising results in simulation, it lacks empirical validation and
mathematical rigor. Future work should include controlled experimental studies to evaluate the

formula’s effectiveness and determine its success rate in practical settings.

To enhance the reliability of this quantification, the development of a mathematical model is
recommended alongside the existing conceptual framework. In this context, the logic of electrical
circuits—particularly the self-feeding loop structure discussed in the thesis—may offer a useful
analogy. Applying Kirchhoff’s Current and Voltage Laws could provide a systematic approach for
modeling stress flow and feedback within the task allocation process, leading to a more concrete

and testable mathematical representation.
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11. CONCLUSIONS

This thesis has explored the integration of stress-aware decision-making into human-robot
collaboration, focusing on how robots can adaptively manage workload in response to fluctuations
in human performance. The study contributes to the broader field of intelligent systems by framing
collaboration not only in terms of efficiency but also in relation to human cognitive and emotional

well-being.

Rather than treating robots as passive executors of predefined tasks, the proposed framework
positions them as active observers and adaptive decision-makers—capable of interpreting human
states and responding accordingly. This human-centered approach aligns with emerging trends in
proactive and symbiotic robotics, where the goal is to foster sustainable, responsive, and

psychologically supportive collaboration environments.

Although implemented and evaluated within a simplified context, the framework opens several
pathways for future research. Extending this work to multi-agent systems, integrating long-term
learning mechanisms, and validating real-time performance through field experiments will be

essential steps toward operationalizing stress-responsive robotic systems in practical settings.

The findings highlight the importance of incorporating affective understanding into collaborative
technologies. As the boundaries between human and robot capabilities continue to blur, designing
systems that can perceive, interpret, and respond to human needs in real time will be critical for

advancing the next generation of human-robot partnerships.

131



REFERENCES

Abbink, D. A., Carlson, T., Mulder, M., De Winter, J. C., Aminravan, F., Gibo, T. L., & Boer, E.
R. (2018). A topology of shared control systems—Finding common ground in diversity. /EEE
Transactions on Human-Machine Systems, 48(5), 509-525.
https://doi.org/10.1109/THMS.2018.2791570

Ali, A., Tilbury, D. M., & Robert Jr, L. P. (2022). Considerations for task allocation in human-
robot teams. arXiv preprint arXiv:2210.03259.

Alirezazadeh, S., & Alexandre, L. A. (2022). Dynamic task scheduling for human-robot
collaboration. = [EEE  Robotics  and  Automation  Letters, 7(4), 8699—-8704.
https://doi.org/10.1109/LRA.2022.3188906

Al-Shargie, F., Kiguchi, M., Badruddin, N., Dass, S. C., Hani, A. F. M., & Tang, T. B. (2016).
Mental stress assessment using simultaneous measurement of EEG and fNIRS. Biomedical Optics

Express, 7(10), 3882—-3898. https://doi.org/10.1364/BOE.7.003882

Antén-Haro, C., Lestable, T., Lin, Y., Nikaein, N., Watteyne, T., & Alonso-Zarate, J. (2013).
Machine-to-machine: An emerging communication paradigm. Transactions on Emerging

Telecommunications Technologies, 24(4), 353—354. https://doi.org/10.1002/ett.2668

Anzalone, S. M., Boucenna, S., Ivaldi, S., & Chetouani, M. (2015). Evaluating the engagement
with social robots. International Journal of Social Robotics, 7(4), 465-478.
https://doi.org/10.1007/s12369-015-0298-7

Attar, E. T. (2022). Review of electroencephalography signals approaches for mental stress
assessment. Neurosciences, 27(4), 209-215. https://doi.org/10.17712/nsj.2022.4.20220025

Awada, M., Becerik-Gerber, B., Lucas, G. M., & Roll, S. C. (2024). Stress appraisal in the
workplace and its associations with productivity and mood: Insights from a multimodal machine

learning analysis. PLOS ONE, 19(1), €0296468. https://doi.org/10.1371/journal.pone.0296468

132


https://doi.org/10.1109/THMS.2018.2791570
https://doi.org/10.1109/LRA.2022.3188906
https://doi.org/10.1364/BOE.7.003882
https://doi.org/10.1002/ett.2668
https://doi.org/10.1007/s12369-015-0298-7
https://doi.org/10.17712/nsj.2022.4.20220025
https://doi.org/10.1371/journal.pone.0296468

Azevedo-Sa, H., Jayaraman, S. K., Yang, X. J., Robert, L. P., & Tilbury, D. M. (2020). Context-
adaptive management of drivers’ trust in automated vehicles. IEEE Robotics and Automation

Letters, 5(4), 6908-6915.

Barnes, M. J., Chen, J. Y., & Jentsch, F. (2015, October). Designing for mixed-initiative
interactions between human and autonomous systems in complex environments. /n 2015 IEEE
International Conference on Systems, Man, and Cybernetics (pp. 1386-1390). IEEE.
https://doi.org/10.1109/SMC.2015.246

Behinaein, B., Bhatti, A., Rodenburg, D., Hungler, P., & Etemad, A. (2021, September). A
transformer architecture for stress detection from ECG. In Proceedings of the 2021 ACM

International Symposium on Wearable Computers (pp- 132-134).
https://doi.org/10.1145/3460421.3480427

Bello-Orgaz, G., & Menéndez, H. D. (2023, April). Smartphones and wristbands detect stress as
good as intrusive physiological devices. In WorldCist °23 — 11th World Conference on Information
Systems and Technologies (pp. 308-319). Springer. https://doi.org/10.1007/978-3-031-45642-
8 31

Bergman, M., de Joode, E., de Geus, M., & Sturm, J. (2019). Human-cobot teams: Exploring
design principles and behaviour models to facilitate the understanding of non-verbal
communication from cobots. Proceedings of the 3rd International Conference on Computer-
Human Interaction Research and Applications, 191-198.
https://doi.org/10.5220/0008363201910198

Biondi, F. N., Cacanindin, A., Douglas, C., & Cort, J. (2021). Overloaded and at work:
Investigating the effect of cognitive workload on assembly task performance. Human Factors,

63(5), 813-820. https://doi.org/10.1177/0018720820929928

Bitkina, O. V., Park, J., & Kim, H. K. (2021). The ability of eye-tracking metrics to classify and
predict the perceived driving workload. International Journal of Industrial Ergonomics, 86,

103193. https://doi.org/10.1016/j.ergon.2021.103193

133


https://doi.org/10.1109/SMC.2015.246
https://doi.org/10.1145/3460421.3480427
https://doi.org/10.1007/978-3-031-45642-8_31
https://doi.org/10.1007/978-3-031-45642-8_31
https://doi.org/10.5220/0008363201910198
https://doi.org/10.1177/0018720820929928
https://doi.org/10.1016/j.ergon.2021.103193

Borges, G. D., Reis, A. M., Ariente Neto, R., Mattos, D. L. D., Cardoso, A., Gongalves, H., ... &
Arezes, P. (2021). Decision-making framework for implementing safer human-robot collaboration

workstations: System dynamics modeling. Safety, 7(4), 75. https://doi.org/10.3390/safety7040075

Boy, G. A. (Ed.). (2017). The handbook of human-machine interaction: A human-centered design
approach. CRC Press.

Broo, D. G. (2022). Transdisciplinarity and three mindsets for sustainability in the age of cyber-
physical systems. Journal of Industrial Information Integration, 27, 100290.
https://doi.org/10.1016/}.jii.2021.100290

Caulcutt, R. (2004). Control charts in practice. Significance, 1(2), 81-84.
https://doi.org/10.1111/5.1740-9713.2004.024.x

Carlson, T., & Demiris, Y. (2012). Collaborative control for a robotic wheelchair: Evaluation of

performance, attention, and workload. /[EEE Transactions on Systems, Man, and Cybernetics, Part

B (Cybernetics), 42(3), 876-888. https://doi.org/10.1109/TSMCB.2011.2181833

Chen, M., Herrera, F., & Hwang, K. (2018). Cognitive computing: Architecture, technologies and
intelligent applications. IEEE Access, 6, 19774-19783. https://doi.org/
10.1109/ACCESS.2018.2791469

Chi, C., Sun, X., Xue, N., Li, T., & Liu, C. (2018). Recent progress in technologies for tactile
sensors. Sensors, 18(4), 948. https://doi.org/10.3390/s18040948

Cittadini, R., Tamantini, C., Scotto di Luzio, F., Lauretti, C., Zollo, L., & Cordella, F. (2023).
Affective state estimation based on Russell’s model and physiological measurements. Scientific

Reports, 13, 9786. https://doi.org/10.1038/s41598-023-36915-6

Creech, N., Pacheco, N. C., & Miles, S. (2021). Resource allocation in dynamic multiagent
systems. arXiv. https://doi.org/10.48550/arXiv.2102.08317

134


https://doi.org/10.3390/safety7040075
https://doi.org/10.1016/j.jii.2021.100290
https://doi.org/10.1111/j.1740-9713.2004.024.x
https://doi.org/
https://doi-org.lib-ezproxy.concordia.ca/10.1109/TSMCB.2011.2181833
https://doi.org/10.1109/ACCESS.2018.2791469
https://doi.org/10.1038/s41598-023-36915-6
https://doi.org/10.48550/arXiv.2102.08317

Cruz, F., Dazeley, R., Vamplew, P., & Moreira, 1. (2021). Explainable robotic systems:
Understanding goal-driven actions in a reinforcement learning scenario. Neural Computing and

Applications, 35(25), 18113-18130. https://doi.org/10.1007/s00521-021-06425-5

Dahiya, A., Aroyo, A. M., Dautenhahn, K., & Smith, S. L. (2023). A survey of multi-agent human—
robot interaction systems. Robotics and  Autonomous  Systems, 161, 104335.

https://doi.org/10.1016/j.robot.2022.104335

Dahl, M., Bengtsson, K., & Falkman, P. (2021). Application of the sequence planner control
framework to an intelligent automation system with a focus on error handling. Machines, 9(3), 59.

https://doi.org/10.3390/machines9030059

Damacharla, P., Javaid, A. Y., Gallimore, J. J., & Devabhaktuni, V. K. (2018). Common metrics
to benchmark human-machine teams (HMT): A review. [EEE Access, 6, 38637-38655.
https://doi.org/10.1109/ACCESS.2018.2853560

Dao, J., Liu, R., & Solomon, S. (2024). State anxiety biomarker discovery: Electrooculography
and electrodermal activity in stress monitoring. arXiv preprint arXiv:2411.17935.

https://arxiv.org/abs/2411.17935

Darvish, K., Simetti, E., Mastrogiovanni, F., & Casalino, G. (2021). A hierarchical architecture
for human-robot cooperation processes. [EEE Transactions on Robotics, 7(2), 567-586.

C:\Users\rukivekirgilbudakli\Downloads\10.1109\TR0.2020.3033715

Das, A. K., Kumar, P., & Halder, S. (2023). Complexity analysis of ocular signal for detection of
human fatigue wusing small datasets. Procedia Computer Science, 218, 858-866.

https://doi.org/10.1016/j.procs.2023.01.066Get rights and content

Debie, E., Rojas, R. F., Fidock, J., Barlow, M., Kasmarik, K., Anavatti, S., ... & Abbass, H. A.
(2019). Multimodal fusion for objective assessment of cognitive workload: A review. [EEE

Transactions on Cybernetics, 51(3), 1542—1555. https://doi.org/10.1109/TCYB.2019.2939399

135


https://doi.org/10.1007/s00521-021-06425-5
https://doi.org/10.1016/j.robot.2022.104335
https://doi.org/10.3390/machines9030059
file:///C:/Users/rukiyekirgilbudakli/Downloads/10.1109/ACCESS.2018.2853560
file:///C:/Users/rukiyekirgilbudakli/Downloads/10.1109/ACCESS.2018.2853560
https://arxiv.org/abs/2411.17935
file:///C:/Users/rukiyekirgilbudakli/Downloads/10.1109/TRO.2020.3033715
https://doi.org/10.1016/j.procs.2023.01.066
https://s100.copyright.com/AppDispatchServlet?publisherName=ELS&contentID=S1877050923000662&orderBeanReset=true
https://doi.org/
https://doi-org.lib-ezproxy.concordia.ca/10.1109/TCYB.2019.2939399

Del Carretto Di Ponti E Sessam, E. (2023). Exploring the impact of stress and cognitive workload
on eye movements: A preliminary study (Doctoral dissertation, Politecnico di Torino).

http://webthesis.biblio.polito.it/id/eprint/29968

di Fiore, A., & Schneider, S. (2017). Crowd-scanning: The future of open innovation and artificial
intelligence. LSE Business Review. Retrieved from

https://blogs.lse.ac.uk/businessreview/2017/10/30/crowd-scanning-the-future-of-open-

innovation-and-artificial-intelligence/

D’Mello, S., Picard, R. W., & Graesser, A. (2007). Toward an affect-sensitive AutoTutor. /[EEE
Intelligent Systems, 22(4), 53—61. https://doi.org/10.1109/MI8S.2007.79

Dromnelle, R., Renaudo, E., Chetouani, M., Maragos, P., Chatila, R., Girard, B., & Khamassi, M.
(2023). Reducing computational cost during robot navigation and human-robot interaction with a

human-inspired reinforcement learning architecture. International Journal of Social Robotics,

15(8), 1297—-1323. https://doi.org/10.1007/s12369-022-00942-6

Dutta, V., & Zielinska, T. (2021). Cybersecurity of robotic systems: Leading challenges and
robotic system design methodology. Electronics, 10(22), 2850.
https://doi.org/10.3390/electronics 10222850

Fahn, C. S., Chen, S. C., Wu, P. Y., Chu, T. L., Li, C. H., Hsu, D. Q., ... & Tsai, H. M. (2022,
November). Image and speech recognition technology in the development of an elderly care robot:

Practical issues review and improvement strategies. Healthcare, 10(11), 2252.

https://doi.org/10.3390/healthcare10112252

Feigh, K. M., & Pritchett, A. R. (2014). Requirements for effective function allocation: A critical
review. Journal of Cognitive Engineering and Decision Making, 8(1), 23-32.
https://doi.org/10.1177/1555343413490945

Fischer, C., & Pohler, A. (2018). Supporting the change to digitalized production environments
through learning organization development. In C. Harteis (Ed.), The Impact of Digitalization in

136


http://webthesis.biblio.polito.it/id/eprint/29968
https://blogs.lse.ac.uk/businessreview/2017/10/30/crowd-scanning-the-future-of-open-innovation-and-artificial-intelligence/
https://blogs.lse.ac.uk/businessreview/2017/10/30/crowd-scanning-the-future-of-open-innovation-and-artificial-intelligence/
https://doi.org/10.1109/MIS.2007.79
https://doi.org/10.1007/s12369-022-00942-6
https://doi.org/10.3390/electronics10222850
https://doi.org/10.3390/healthcare10112252
https://doi.org/10.1177/1555343413490945

the Workplace: An Educational View (Professional and Practice-Based Learning, Vol. 21, pp. 141—
160). Springer, Cham. https://doi.org/10.1007/978-3-319-63257-5_10

Floridi, L. (2020). What the near future of artificial intelligence could be. In C. L. Floridi (Ed.),
2019 Yearbook of the Digital Ethics Lab (pp. 127—-142). Springer. https://doi.org/10.1007/s13347-

019-00345-y

Gallala, A., Kumar, A. A., Hichri, B., & Plapper, P. (2022). Digital twin for human-robot
interactions by means of Industry 4.0 enabling technologies. Sensors, 22(13), 4950.
https://doi.org/10.3390/522134950

Gazetta, G., Miller, C., Clemency, B., Tanaka, K., Hackett, M., Norfleet, J., ... & Cavuoto, L.
(2023, September). Evaluating workload indicators for learning during stress exposure training of

endotracheal intubation. Proceedings of the Human Factors and Ergonomics Society Annual

Meeting, 67(1), 574-578. https://doi.org/10.1177/21695067231199681

Giantamidis, G., Tripakis, S., & Basagiannis, S. (2021). Learning Moore machines from input—
output traces. International Journal on Software Tools for Technology Transfer, 23(1), 1-29.
https://doi.org/10.1007/s10009-019-00544-0

Gjoreski, M., Lustrek, M., Gams, M., & Gjoreski, H. (2017). Monitoring stress with a wrist device
using context. Journal of Biomedical Informatics, 73, 159-170.
https://doi.org/10.1016/].jbi.2017.08.006

Gombolay, M., Bair, A., Huang, C., & Shah, J. (2017). Computational design of mixed-initiative
human-robot teaming that considers human factors: Situational awareness, workload, and
workflow preferences. The International Journal of Robotics Research, 36(5-7), 597-617.
https://doi.org/10.1177/0278364916688255

Guo, H., Pu, X., Chen, J., Meng, Y., Yeh, M. H., Liu, G., ... & Wang, Z. L. (2018). A highly
sensitive, self-powered triboelectric auditory sensor for social robotics and hearing aids. Science

Robotics, 3(20), eaat2516. https://doi.org/10.1126/scirobotics.aat2516

137


https://doi.org/10.1007/978-3-319-63257-5_10
https://doi.org/10.1007/s13347-019-00345-y
https://doi.org/10.1007/s13347-019-00345-y
https://doi.org/10.3390/s22134950
https://doi.org/10.1177/21695067231199681
https://doi.org/10.1007/s10009-019-00544-0
https://doi.org/10.1016/j.jbi.2017.08.006
https://doi.org/10.1177/0278364916688255
https://doi.org/10.1126/scirobotics.aat2516

Guo, J., Tao, D., & Yang, C. (2020). The effects of continuous conversation and task complexity
on usability of an Al-based conversational agent in smart home environments. /z S. Long & B. S.
Dhillon (Eds.), Man—Machine—Environment System Engineering: Proceedings of the 19th
International Conference on MMESE (Lecture Notes in Electrical Engineering, Vol. 576, pp. 695—
703). Springer, Singapore. https://doi.org/10.1007/978-981-13-8779-1 79

Gutzwiller, R. S., Lange, D. S., Reeder, J., Morris, R. L., & Rodas, O. (2015). Human-computer
collaboration in adaptive supervisory control and function allocation of autonomous system teams.
In R. Shumaker & S. Lackey (Eds.), Virtual, Augmented and Mixed Reality — 7th International
Conference, VAMR 2015, Held as Part of HCI International 2015, Proceedings, Part II (Lecture
Notes in Computer Science, Vol. 9179, pp. 447-456). Springer. https://doi.org/10.1007/978-3-
319-21067-4_46

Hardin, B., & Goodrich, M. A. (2009, March). On using mixed-initiative control: A perspective
for managing large-scale robotic teams. In Proceedings of the 4th ACM/IEEE International
Conference on Human-Robot Interaction (pp. 165-172).
https://doi.org/10.1145/1514095.1514126

Harriott, C. E., Buford, G. L., Adams, J. A., & Zhang, T. (2015). Mental workload and task
performance in peer-based human-robot teams. Journal of Human-Robot Interaction, 4(2), 61-96.

https://doi.org/10.5898/JHRI1.4.2. Harriott

He, H., Gray, J., Cangelosi, A., Meng, Q., McGinnity, T. M., & Mehnen, J. (2021). The challenges
and opportunities of human-centered Al for trustworthy robots and autonomous systems. /[EEE

Transactions on  Cognitive  and  Developmental — Systems,  14(4), 1398-1412.
https://doi.org/10.1109/TCDS.2021.3132282

Heard, J., Harriott, C. E., & Adams, J. A. (2018). A survey of workload assessment algorithms.
IEEE Transactions on Human-Machine Systems, 48(5), 434-451.
https://doi.org/10.1109/THMS.2017.2782483

138


https://doi.org/10.1007/978-3-319-21067-4_46
https://doi.org/10.1007/978-3-319-21067-4_46
https://doi.org/10.1145/1514095.1514126
https://doi.org/10.5898/JHRI.4.2.Harriott
https://doi.org/10.1109/TCDS.2021.3132282
file:///C:/Users/rukiyekirgilbudakli/Downloads/10.1109/THMS.2017.2782483
file:///C:/Users/rukiyekirgilbudakli/Downloads/10.1109/THMS.2017.2782483

Hemakom, A., Atiwiwat, D., & Israsena, P. (2023). ECG and EEG-based detection and multilevel
classification of stress using machine learning for specified genders: A preliminary study. PLOS

ONE, 18(9), €0291070. https://doi.org/10.1371/journal.pone.0291070

Hooey, B. L., Kaber, D. B., Adams, J. A., Fong, T. W., & Gore, B. F. (2017). The underpinnings
of workload in unmanned vehicle systems. /IEEE Transactions on Human-Machine Systems, 48(5),

452-467. https://doi.org/10.1109/THMS.2017.2759758

Horvath, 1., Rusék, Z., Hou, Y., & Ji, L. (2014). On some theoretical issues of interaction with

socialized and personalized cyber-physical systems. In Informatik 2014.

Horvath, 1., Rusék, Z., & Li, Y. (2017, August). Order beyond chaos: Introducing the notion of
generation to characterize the continuously evolving implementations of cyber-physical systems.
In ASME 2017 International Design Engineering Technical Conferences and Computers and
Information in Engineering Conference. American Society of Mechanical Engineers.

https://doi.org/10.1115/DETC2017-67082

Horvath, 1., & Wang, J. (2015, August). Towards a comprehensive theory of multi-aspect
interaction with cyber physical systems. In ASME 2015 International Design Engineering
Technical Conferences and Computers and Information in Engineering Conference. American

Society of Mechanical Engineers. https://doi.org/10.1115/DETC2015-47243

Huang, C. M., Andrist, S., Sauppé, A., & Mutlu, B. (2015). Using gaze patterns to predict task
intent in collaboration. Frontiers in Psychology, 6, 1049.
https://doi.org/10.3389/fpsyg.2015.01049

Humann, J., Fletcher, T., & Gerdes, J. (2023). Modeling, simulation, and trade-off analysis for
multirobot, multioperator surveillance. Systems Engineering. https://doi.org/10.1002/sys.21685

Hussein, A., Gaber, M. M., Elyan, E., & Jayne, C. (2017). Imitation learning: A survey of learning
methods. ACM Computing Surveys (CSUR), 50(2), 1-35. https://doi.org/10.1145/3054912

139


https://doi.org/10.1371/journal.pone.0291070
file:///C:/Users/rukiyekirgilbudakli/Downloads/10.1109/THMS.2017.2759758
file:///C:/Users/rukiyekirgilbudakli/Downloads/10.1109/THMS.2017.2759758
https://doi.org/10.1115/DETC2017-67082
https://doi.org/10.1115/DETC2015-47243
https://doi.org/10.3389/fpsyg.2015.01049
https://doi.org/10.1002/sys.21685
https://doi.org/10.1145/3054912

[Jtsma, M., Ma, L. M., Pritchett, A. R., & Feigh, K. M. (2019). Computational methodology for
the allocation of work and interaction in human-robot teams. Journal of Cognitive Engineering

and Decision Making, 13(4), 221-241. https://doi.org/10.1177/1555343419869484

Jabon, M., Bailenson, J., Pontikakis, E., Takayama, L., & Nass, C. (2010). Facial expression
analysis for predicting unsafe driving behavior. [EEE Pervasive Computing, 10(4), 84-95.
https://doi.org/10.1109/MPRV.2010.46

I, Z.,Liu, Q., Xu, W., Yao, B., Liu, J., & Zhou, Z. (2021). A closed-loop brain-computer interface
with augmented reality feedback for industrial human-robot collaboration. The International
Journal  of  Advanced  Manufacturing  Technology, 1-16.  https://doi-org.lib-
ezproxy.concordia.ca/10.1007/s00170-021-07937-z

Jo, W., Wang, R., Yang, B., Foti, D., Rastgaar, M., & Min, B. C. (2024). Cognitive load-based
affective workload allocation for multihuman multirobot teams. /EEE Transactions on Human-

Machine Systems. Advance online publication. https://doi.org/10.1109/THMS.2024.3509223

Johannsmeier, L., & Haddadin, S. (2016). A hierarchical human-robot interaction-planning
framework for task allocation in collaborative industrial assembly processes. IEEE Robotics and

Automation Letters, 2(1), 41-48. https://doi.org/10.1109/LRA.2016.2535907

Kalanadhabhatta, M., Rahman, T., & Ganesan, D. (2021). Effect of sleep and biobehavioral
patterns on multidimensional cognitive performance: Longitudinal, in-the-wild study. Journal of

Medical Internet Research, 23(2), €23936. https://doi.org/10.2196/23936

Kaltwang, S., Rudovic, O., & Pantic, M. (2012, July). Continuous pain intensity estimation from
facial expressions. In Advances in Visual Computing: International Symposium on Visual
Computing (Lecture Notes in Computer Science, Vol.7432, pp.368-377). Springer.
https://doi.org/10.1007/978-3-642-33191-6_36

Katmah, R., Al-Shargie, F., Tariq, U., Babiloni, F., Al-Mughairbi, F., & Al-Nashash, H. (2021).
A review on mental stress assessment methods using EEG signals. Sensors, 21(15), 5043.

https://doi.org/10.3390/s21155043

140


https://doi.org/10.1177/1555343419869484
file:///C:/Users/rukiyekirgilbudakli/Downloads/10.1109/MPRV.2010.46
file:///C:/Users/rukiyekirgilbudakli/Downloads/10.1109/MPRV.2010.46
https://doi-org.lib-ezproxy.concordia.ca/10.1007/s00170-021-07937-z
https://doi-org.lib-ezproxy.concordia.ca/10.1007/s00170-021-07937-z
https://doi.org/10.1109/THMS.2024.3509223
https://doi.org/10.1109/THMS.2024.3509223
https://doi.org/10.2196/23936
https://doi.org/10.1007/978-3-642-33191-6_36
https://doi.org/10.3390/s21155043

Khamis, A., Hussein, A., & Elmogy, A. (2015). Multi-robot task allocation: A review of the state-
of-the-art. Cooperative Robots and Sensor Networks 2015, 31-51. https://doi.org/10.1007/978-3-
319-18299-5 2

Kim, B., & Phillips, E. (2021). Humans' assessment of robots as moral regulators: Importance of

perceived fairness and legitimacy. arXiv preprint arXiv:2110.04729.

Kim, D. H., Song, J. Y., Lee, J. H., & Cha, S. K. (2009). Development and evaluation of intelligent
machine tools based on knowledge evolution in M2M environment. Journal of Mechanical

Science and Technology, 23(10), 2807-2813. https://doi.org/10.1007/s12206-009-0725-5

Kim, Y., Lee, H., & Provost, E. M. (2013, May). Deep learning for robust feature generation in
audiovisual emotion recognition. In 2013 IEEE International Conference on Acoustics, Speech

and Signal Processing (pp. 3687-3691). IEEE.

Kirtay, M., Hafner, V. V., Asada, M., & Oztop, E. (2023). Trust in robot-robot scaffolding. /EEE
Transactions  on  Cognitive  and  Developmental  Systems,  15(4), 1841-1852.
https://doi.org/10.1109/TCDS.2023.3235974

Kleitman, N. (1933). Studies on the physiology of sleep: VIII. Diurnal variation in performance.
American Journal of Physiology-Legacy Content, 104(2), 449-456.
https://doi.org/10.1152/ajplegacy.1933.104.2.449

Kolb, J., Ravichandar, H., & Chernova, S. (2022, August). Leveraging cognitive states in human-
robot teaming. In 2022 31st IEEE International Conference on Robot and Human Interactive
Communication ~ (RO-MAN)  (pp.  792-799).  IEEE.  https://doi.org/10.1109/RO-
MANS53752.2022.9900794

Kosa, G., Morozov, O., Lehmann, A., Pargger, H., Marsch, S., & Hunziker, P. (2023). Robots and
intelligent medical devices in the intensive care unit: Vision, state of the art and economic analysis.

IEEE Transactions on Medical Robotics and Bionics.

https://doi.org/10.1109/TMRB.2023.3240537

141


https://doi.org/10.1007/978-3-319-18299-5_2
https://doi.org/10.1007/978-3-319-18299-5_2
https://doi.org/10.1007/s12206-009-0725-5
https://doi.org/10.1109/TCDS.2023.3235974
https://doi.org/10.1109/TCDS.2023.3235974
https://doi.org/10.1152/ajplegacy.1933.104.2.449
https://doi.org/10.1109/RO-MAN53752.2022.9900794
https://doi.org/10.1109/RO-MAN53752.2022.9900794
https://doi.org/10.1109/TMRB.2023.3240537
https://doi.org/10.1109/TMRB.2023.3240537

Lachance-Tremblay, J., Tkiouat, Z., Léger, P. M., Cameron, A. F., Titah, R., Coursaris, C. K., &
Sénécal, S. (2025). A gaze-based driver distraction countermeasure: Comparing effects of
multimodal alerts on driver's behavior and visual attention. International Journal of Human-

Computer Studies, 193, 103366. https://doi.org/10.1016/j.ijhcs.2024.103366

Lauterbach, B., Sauer, S., Gottlieb, J., Siirie, C., & Benz, U. (2019). Transportation management
with SAP (3rd ed.). Rheinwerk Publishing, Inc. Retrieved from

https://www.perlego.com/book/2826166/transportation-management-with-sap-pdf

Le, K.B.Q., Sajtos, L., Kunz, W.H., & Fernandez, K.V. (2024). The future of work:
Understanding the effectiveness of collaboration between human and digital employees in service.

Journal of Service Research, 28(1), 1-20. https://doi.org/10.1177/10946705241229419

Lee, E. A. (2008, May). Cyber physical systems: Design challenges. In 2008 11th IEEE
International Symposium on Object and Component-Oriented Real-Time Distributed Computing

(ISORC) (pp. 363-369). IEEE. https://doi.org/10.1109/ISORC.2008.25

Lee, J. D., & See, K. A. (2004). Trust in automation: Designing for appropriate reliance. Human
factors, 46(1), 50-80.

Lee, K., & McGreevey, C. (2002). Using control charts to assess performance measurement data.
The Joint  Commission  Journal on  Quality  Improvement, 28(2), 90-101.
https://doi.org/10.1016/S1070-3241(02)28009-8

Let, Y., Su, Z., & Cheng, C. (2023). Virtual reality in human-robot interaction: Challenges and
benefits. Electronic Research Archive, 31(5), 2374-2408. https://doi.org/10.3934/era.2023121

Lee, Y., Song, W.J., & Sun, J. Y. (2020). Hydrogel soft robotics. Materials Today Physics, 15,
100258. https://doi.org/10.1016/j.mtphys.2020.100258

Lemaignan, S., Warnier, M., Sisbot, E. A., Clodic, A., & Alami, R. (2017). Artificial cognition for
social human-robot interaction: An implementation. Artificial Intelligence, 247, 45—69.

https://doi.org/10.1016/j.artint.2016.07.002

142


https://doi.org/10.1016/j.ijhcs.2024.103366
https://www.perlego.com/book/2826166/transportation-management-with-sap-pdf
https://doi.org/10.1177/10946705241229419
https://doi.org/10.1109/ISORC.2008.25
https://doi.org/10.1016/S1070-3241(02)28009-8
https://doi.org/10.3934/era.2023121
https://doi.org/10.1016/j.mtphys.2020.100258

Li, S., Wang, R., Zheng, P., & Wang, L. (2021). Towards proactive human—robot collaboration:
A foreseeable cognitive manufacturing paradigm. Journal of Manufacturing Systems, 60, 547—

552. https://doi.org/10.1016/j.jmsy.2021.07.017

Li, S., Zheng, P., Liu, S., Wang, Z., Wang, X. V., Zheng, L., & Wang, L. (2023). Proactive human—
robot collaboration: Mutual-cognitive, predictable, and self-organising perspectives. Robotics and

Computer-Integrated Manufacturing, 81, 102510. https://doi.org/10.1016/j.rcim.2022.102510

Liu, Z., Yang, D. S., Wen, D., Zhang, W. M., & Mao, W. (2011). Cyber-physical-social systems
for command and control. IEEE  Intelligent  Systems, 26(4), 92-96.
https://doi.org/10.1109/MIS.2011.69

Lopez-de-Ipina, K., Iradi, J., Fernandez, E., Calvo, P. M., Salle, D., Poologaindran, A., Villaverde,
I., Daelman, P., Sanchez, E., Requejo, C., & Suckling, J. (2023). HUMANISE: Human-inspired
smart management, towards a healthy and safe industrial collaborative robotics. Sensors, 23(3),

Article 1170. https://doi.org/10.3390/s23031170

Lyons, J. B., & Stokes, C. K. (2012). Human—human reliance in the context of automation. Human

Factors, 54(1), 112—-121. https://doi.org/10.1177/0018720811427034

Maeda, G., Neumann, G., Ewerton, M., Lioutikov, R., Kroemer, O., & Peters, J. (2017).
Probabilistic movement primitives for coordination of multiple human—robot collaborative tasks.

Autonomous Robots, 41(3), 593—612. https://doi.org/10.1007/s10514-016-9556-2

Malta, L., Miyajima, C., Kitaoka, N., & Takeda, K. (2011). Analysis of real-world driver’s
frustration. [EEE Transactions on Intelligent Transportation Systems, 12(1), 109-118.
https://doi.org/10.1109/TITS.2010.2070839

Marculescu, R., & Bogdan, P. (2010). Cyberphysical systems: Workload modeling and design
optimization. IEEE Design & Test of Computers, 28(4), 78-87.
https://doi.org/10.1109/MDT.2010.142

143


https://doi.org/10.1016/j.jmsy.2021.07.017
https://doi.org/10.1016/j.rcim.2022.102510
https://doi.org/10.1109/MIS.2011.69
https://doi.org/10.3390/s23031170
https://doi.org/10.1177/0018720811427034
https://doi.org/10.1007/s10514-016-9556-2
https://doi.org/10.1109/TITS.2010.2070839
https://doi.org/10.1109/MDT.2010.142

Marinoudi, V., Serensen, C.G., Pearson, S., & Bochtis, D. (2019). Robotics and labour in
agriculture: A context consideration.  Biosystems  Engineering, 184, 111-121.

https://doi.org/10.1016/j.biosystemseng.2019.06.013

Mascarenhas, S., Guimaraes, M., Prada, R., Santos, P. A., Dias, J., & Paiva, A. (2022). Fatima
toolkit: Toward an accessible tool for the development of socio-emotional agents. ACM

Transactions on Interactive Intelligent Systems (TiiS), 12(1), 1-30.
https://doi.org/10.1145/3510822

McDuff, D., El Kaliouby, R., Senechal, T., Demirdjian, D., & Picard, R. (2014). Automatic
measurement of ad preferences from facial responses gathered over the Internet. Image and Vision

Computing, 32(10), 630—640. https://doi.org/10.1016/j.imavis.2014.01.004

McNeese, N. J., Schelble, B. G., Canonico, L. B., & Demir, M. (2021). Who/what is my teammate?
Team composition considerations in human—Al teaming. /EEE Transactions on Human—Machine

Systems, 51(4), 288-299. https://doi.org/10.1109/THMS.2021.3086018

McNeil, S. G., Robin, B. R., & Miller, R. M. (2000). Facilitating interaction, communication and
collaboration in online courses. Computers &  Geosciences, 26(6), 699-708.

https://doi.org/10.1016/S0098-3004(99)00106-5

Merlo, E., Lamon, E., Fusaro, F., Lorenzini, M., Carfi, A., Mastrogiovanni, F., & Ajoudani, A.
(2023). An ergonomic role allocation framework for dynamic human—robot collaborative tasks.

Journal of Manufacturing Systems, 67, 111-121. https://doi.org/10.1016/j.jmsy.2022.12.011

Merritt, T., McGee, K., Chuah, T.L., & Ong, C. (2011, June). Choosing human team-mates:
Perceived identity as a moderator of player preference and enjoyment. Proceedings of the 6th
International Conference on the Foundations of Digital Games (FDG 2011), 196-203.
https://doi.org/10.1145/2159365.2159392

Miller, C. A., Funk, H. B., Dorneich, M., & Whitlow, S. D. (2002, October). A playbook interface
for mixed-initiative control of multiple unmanned vehicle teams. Proceedings of the 21st Digital

Avionics Systems Conference, Vol. 2, TE4—TE4. https://doi.org/10.1109/DASC.2002.1052935

144


https://doi.org/10.1016/j.biosystemseng.2019.06.013
https://doi.org/10.1016/j.imavis.2014.01.004
https://doi.org/10.1109/THMS.2021.3086018
https://doi.org/10.1016/S0098-3004(99)00106-5
https://doi.org/10.1016/j.jmsy.2022.12.011
https://doi.org/10.1145/2159365.2159392
https://doi.org/10.1109/DASC.2002.1052935

Mirbagheri, M., Jodeiri, A., Hakimi, N., Zakeri, V., & Setarehdan, S.K. (2019, November).
Accurate stress assessment based on functional near infrared spectroscopy using deep learning

approach. Proceedings of the 2019 26th National and 4th International Iranian Conference on
Biomedical Engineering (ICBME), 4—10. https://doi.org/10.1109/ICBME49163.2019.9030394

Mitro, N., Argyri, K., Pavlopoulos, L., Kosyvas, D., Karagiannidis, L., Kostovasili, M., ...
Amditis, A. (2023). Al-enabled smart wristband providing real-time vital signs and stress
monitoring. Sensors, 23(5), 2821. https://doi.org/10.3390/s23052821

Mocny-Pachonska, K., Doniec, R. J., Siecinski, S., Piaseczna, N. J., Pachonski, M., & Tkacz, E. J.
(2021). The relationship between stress levels measured by a questionnaire and the data obtained

by smart glasses and finger pulse oximeters among Polish dental students. Applied Sciences,

11(18), 8648. https://doi.org/10.3390/app11188648

Mois, G., Sanislav, T., & Folea, S.C. (2016). A cyber-physical system for environmental
monitoring. [EEE Transactions on Instrumentation and Measurement, 65(6), 1463—1471.

https://doi.org/10.1109/TIM.2016.2526669

Montgomery, D. C. (2007). Introduction to statistical quality control. John Wiley & Sons.

Mulcahy, R. (2015). PMP exam prep: Rita’s course in a book for passing the PMP exam (8th ed.).
RMC Publications, Inc.

Murphy-Chutorian, E., & Trivedi, M. M. (2008). Head pose estimation in computer vision: A
survey. I[EEE Transactions on Pattern Analysis and Machine Intelligence, 31(4), 607-626.
https://doi.org/10.1109/TPAMI.2008.106

Nass, C., Fogg, B. J., & Moon, Y. (1996). Can computers be teammates? International Journal of
Human-Computer Studies, 45(6), 669—678. https://doi.org/10.1006/ijhc.1996.0073

Nath, R. K., & Thapliyal, H. (2021). Smart wristband-based stress detection framework for older
adults with cortisol as stress biomarker. IEEE Transactions on Consumer Electronics, 67(1), 30—

39. https://doi.org/10.1109/TCE.2021.3057806

145


https://doi.org/10.1109/ICBME49163.2019.9030394
https://doi.org/10.3390/s23052821
https://doi.org/10.3390/app11188648
https://doi.org/10.1109/TIM.2016.2526669
https://doi.org/10.1109/TPAMI.2008.106
https://doi.org/10.1006/ijhc.1996.0073
https://doi.org/10.1109/TCE.2021.3057806

Nguyen, T. A., & Zeng, Y. (2012). A theoretical model of design creativity: Nonlinear design
dynamics and mental stress-creativity relation. Journal of Integrated Design and Process Science,

16(3), 65-88. https://doi.org/10.3233/J1D-2012-0007

Nguyen, T. A., & Zeng, Y. (2017). Effects of stress and effort on self-rated reports in experimental
study of design activities. Journal of Intelligent Manufacturing, 28(7), 1609-1622.
https://doi.org/10.1007/s10845-016-1196-z

Nikolaidis, S., Hsu, D., & Srinivasa, S. (2017). Human-robot mutual adaptation in collaborative
tasks: Models and experiments. The International Journal of Robotics Research, 36(5-7), 618—
634. https://doi.org/10.1177/0278364917690593

Orsag, L., Stipancic, T., & Koren, L. (2023). Towards a Safe Human—Robot Collaboration Using
Information on Human Worker Activity. Sensors, 23(3), 1283. https://doi.org/10.3390/s23031283

Parisi, G. L., Kemker, R., Part, J. L., Kanan, C., & Wermter, S. (2019). Continual lifelong learning
with neural networks: A review. Neural Networks, 113, 54-71.
https://doi.org/10.1016/j.ncunet.2019.01.012

Park, Y. S., Yoo, D. Y., & Lee, J. W. (2021). Programmable motion-fault detection for a
collaborative robot. IEEE Access, 9, 133123-133142.
https://doi.org/10.1109/ACCESS.2021.3114505

Paul, S., Yuan, L., Jain, H. K., Robert Jr, L. P., Spohrer, J., & Lifshitz-Assaf, H. (2022).
Intelligence augmentation: Human factors in ai and future of work. AIS Transactions on Human-

Computer Interaction, 14(3), 426-445.

Pereira, D., Bozzato, A., Dario, P., & Ciuti, G. (2022). Towards foodservice robotics: A taxonomy
of actions of foodservice workers and a critical review of supportive technology. /EEE
Transactions  on  Automation  Science  and  Engineering,  19(3), 1820-1858.

https://doi.org/10.1109/TASE.2021.3129077

Perez-Valero, E., Vaquero-Blasco, M. A., Lopez-Gordo, M. A., & Morillas, C. (2021).

Quantitative assessment of stress through EEG during a virtual reality stress-relax session.

146


https://doi.org/10.3233/JID-2012-0007
https://doi.org/10.1007/s10845-016-1196-z
https://doi.org/10.1177/0278364917690593
https://doi.org/10.3390/s23031283
https://doi.org/10.1016/j.neunet.2019.01.012
https://doi.org/10.1109/ACCESS.2021.3114505
https://doi.org/10.1109/TASE.2021.3129077

Frontiers in Computational Neuroscience, 15, Article 684423,
https://doi.org/10.3389/fhcom.2021.684423

Perrin, X., Chavarriaga, R., Colas, F., Siegwart, R., & Millan, J.d. R. (2010). Brain-coupled
interaction for semi-autonomous navigation of an assistive robot. Robotics and Autonomous

Systems, 58(12), 1246—1255. https://doi.org/10.1016/j.robot.2010.05.010

Poh, M. Z., McDuff, D.J., & Picard, R. W. (2010). Non-contact, automated cardiac pulse
measurements using video imaging and blind source separation. Optics Express, 18(10), 10762—

10774. https://doi.org/10.1364/0OE.18.010762

Polenghi, A., Cattaneo, L., & Macchi, M. (2024). A framework for fault detection and diagnostics
of articulated collaborative robots based on hybrid series modelling of Artificial Intelligence
algorithms. Journal of Intelligent Manufacturing, 35(5), 1929-1947.
https://doi.org/10.1007/s10845-023-02076-6

Pop-Jordanova, N., & Pop-Jordanov, J. (2020). Electrodermal activity and stress assessment.

Prilozi, 41(2), 5-15. https://doi.org/10.2478/prilozi-2020-0028

Prasad, A., Kumar, A., & Prasad, P. (2024). Conceptualizing a digital twin model for natural gas
retailing in a geographic area n India. SPAST  Reports, 1(1).
https://doi.org/10.69848/sreports.v1il.4791

Prendergast, J. M., Balvert, S., Driessen, T., Seth, A., & Peternel, L. (2021). Biomechanics aware
collaborative robot system for delivery of safe physical therapy in shoulder rehabilitation. /EEE
Robotics and Automation Letters, 6(4), 7177-7184. https://doi.org/10.1109/.RA.2021.3097375

Prkachin, K. M., & Solomon, P.E. (2008). The structure, reliability and validity of pain
expression: Evidence from patients with shoulder pain. Pain, 139(2), 267-274.
https://doi.org/10.1016/j.pain.2008.04.010

Project Management Institute. (2021). A guide to the project management body of knowledge
(PMBOK® guide) — Seventh edition and the standard for project management. Project

Management Institute.

147


https://doi.org/10.3389/fncom.2021.684423
https://doi.org/10.1016/j.robot.2010.05.010
https://doi.org/10.1364/OE.18.010762
https://doi.org/10.1007/s10845-023-02076-6
https://doi.org/10.2478/prilozi-2020-0028
https://doi.org/10.69848/sreports.v1i1.4791
https://doi.org/10.1109/LRA.2021.3097375
https://doi.org/10.1016/j.pain.2008.04.010

Pupa, A., Van Dijk, W., & Secchi, C. (2021). A human-centered dynamic scheduling architecture
for collaborative application. /[EEE Robotics and Automation Letters, 6(3), 4736—4743.
https://doi.org/10.1109/LRA.2021.3068888

Rahma, O. N., Putra, A. P., Rahmatillah, A., Putri, Y. S. A. K. A., Fajriaty, N. D., Ain, K., & Chai,
R. (2022). Electrodermal activity for measuring cognitive and emotional stress level. Journal of

Medical Signals & Sensors, 12(2), 155-162. https://doi.org/10.4103/jmss.JMSS 78 20

Ramasubramanian, A. K., Mathew, R., Kelly, M., Hargaden, V., & Papakostas, N. (2022). Digital
twin for human-robot collaboration in manufacturing: Review and outlook. Applied Sciences,

12(10), 4811. https://doi.org/10.3390/app12104811

Razavi, S. R., Akgunduz, A., & Zeng, Y. (2023). Impact of course timetabling on learning quality:
sustaining an optimized stress level to stimulate enhanced comprehension. Journal of Integrated

Design and Process Science, 26(1), 25—44. https://doi.org/10.3233/JID-220019

Raziei, Z., & Moghaddam, M. (2021). Adaptable automation with modular deep reinforcement
learning and policy transfer. Engineering Applications of Artificial Intelligence, 103, 104296.
https://doi.org/10.1016/j.engappai.2021.104296

Riedelbauch, D., Hollerich, N., & Henrich, D. (2023). Benchmarking teamwork of humans and
cobots: An overview of metrics, strategies, and tasks. [EEE Access, 11, 43648-43674.
https://doi.org/10.1109/ACCESS.2023.3271602

Roncone, A., Mangin, O., & Scassellati, B. (2017, May). Transparent role assignment and task
allocation in human robot collaboration. In 2017 IEEE International Conference on Robotics and

Automation (ICRA) (pp. 1014-1021). IEEE.

Roveda, L., Veerappan, P., Maccarini, M., Bucca, G., Ajoudani, A., & Piga, D. (2023). A
human-centric framework for robotic task learning and optimization. Journal of Manufacturing

Systems, 67, 68—79. https://doi.org/10.1016/j.jmsy.2023.01.003

148


https://doi.org/10.1109/LRA.2021.3068888
https://doi.org/10.4103/jmss.JMSS_78_20
https://doi.org/10.3233/JID-220019
https://doi.org/10.1016/j.engappai.2021.104296
https://doi.org/10.1109/ACCESS.2023.3271602
https://doi.org/10.1016/j.jmsy.2023.01.003

Roy, R. N., Drougard, N., Gateau, T., Dehais, F., & Chanel, C. P. C. (2020). How can physiological
computing benefit human-robot interaction? Robotics, 9(4), Article 100.
https://doi.org/10.3390/robotics9040100

Rozo, L., Calinon, S., Caldwell, D. G., Jimenez, P., & Torras, C. (2016). Learning physical
collaborative robot behaviors from human demonstrations. IEEE Transactions on Robotics, 32(3),

513-527. https://doi.org/10.1109/TRO.2016.2540623

Saaty, T.L. (1977). A scaling method for priorities in hierarchical structures. Journal of
Mathematical Psychology, 15(3), 234-281. https://doi.org/10.1016/0022-2496(77)90033-5

Saaty, T. L. (1980). The analytic hierarchy process: Planning, priority setting, resource
allocation. New York, NY: McGraw-Hill.

Salmeron-Majadas, S., Santos, O.C., & Boticario, J. G. (2014). An evaluation of mouse and
keyboard interaction indicators towards non-intrusive and low-cost affective modeling in an
educational context. Procedia Computer Science, 35, 691-700.

https://doi.org/10.1016/.procs.2014.08.151

Sanislav, T., Mois, G., & Miclea, L. (2016). An approach to model dependability of cyber-physical
systems. Microprocessors and Microsystems, 41, 67-76.

https://doi.org/10.1016/j.micpro.2015.11.021

Sannicandro, K., De Santis, A., Bellini, C., & Minerva, T. (2022). A scoping review on the
relationship between robotics in educational contexts and e-health. Frontiers in Education, 7,

955572. https://doi.org/10.3389/feduc.2022.955572

Scherer, S., Stratou, G., Lucas, G., Mahmoud, M., Boberg, J., Gratch, J., & Morency, L. P. (2014).
Automatic audiovisual behavior descriptors for psychological disorder analysis. Image and Vision

Computing, 32(10), 648—658. https://doi.org/10.1016/j.imavis.2014.06.001

Schmitz, A. (2012). 4 primer on communication studies. Retrieved September 19, 2016, from

https://2012books.lardbucket.org/books/a-primer-on-communication-studies/

149


https://doi.org/10.3390/robotics9040100
https://doi.org/10.1109/TRO.2016.2540623
https://doi.org/10.1016/0022-2496(77)90033-5
https://doi.org/10.1016/j.procs.2014.08.151
https://doi.org/10.1016/j.micpro.2015.11.021
https://doi.org/10.1016/j.imavis.2014.06.001
https://2012books.lardbucket.org/books/a-primer-on-communication-studies/

Sha, L., Gopalakrishnan, S., Liu, X., & Wang, Q. (2008, June). Cyber-physical systems: A new
frontier. In Proceedings of the 2008 IEEE International Conference on Sensor Networks,
Ubiquitous, and Trustworthy Computing (SUTC 2008) (pp. 1-9). IEEE.
https://doi.org/10.1109/SUTC.2008.85

Shannon, C.E. (1948). A mathematical theory of communication. The Bell System Technical
Journal, 27(3), 379-423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x

Shannon, C. E., & Weaver, W. (1949). The mathematical theory of communication. University of

Illinois Press.

Shi, J., Wan, J., Yan, H., & Suo, H. (2011, November). A survey of cyber-physical systems.
Proceedings of the 2011 International Conference on Wireless Communications and Signal

Processing (WCSP), 1-6. https://doi.org/10.1109/WCSP.2011.6096958

Sickles, R. C., & Zelenyuk, V. (2019). Envelopment-type estimators. In R. C. Sickles & V.
Zelenyuk (Eds.), Measurement of productivity and efficiency: Theory and practice (pp. 243-285).
Cambridge University Press. https://doi.org/10.1017/9781139565981.010

Soori, M., Arezoo, B., & Dastres, R. (2023). Artificial intelligence, machine learning and deep
learning in  advanced robotics: A  review. Cognitive  Robotics, 3, 54-70.

https://doi.org/10.1016/j.cogr.2023.04.001

Sosa-Ceron, A. D., Gonzalez-Hernandez, H. G., & Reyes-Avendafio, J. A. (2022). Learning from
demonstrations in human-robot collaborative scenarios: A survey. Robotics, 11(6), 126.

https://doi.org/10.3390/robotics11060126

Sreedevi, A. G., Harshitha, T. N., Sugumaran, V., & Shankar, P. (2022). Application of cognitive
computing in healthcare, cybersecurity, big data, and IoT: A literature review. Information

Processing & Management, 59(2), Article 102888. https://doi.org/10.1016/5.ipm.2022.102888

Sugiono, S., Nugroho, W. S., Rahayudi, B., Lintangsari, A., & Lustyana, A. (2022). Train driver
cognitive workload management framework based on neuronal dynamics principle to maintain

train driver's health and railway safety. SSRN. https://doi.org/10.21303/2461-4262.2023.002652

150


https://doi.org/10.1109/SUTC.2008.85
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1109/WCSP.2011.6096958
https://doi.org/10.1017/9781139565981.010
https://doi.org/10.1016/j.cogr.2023.04.001
https://doi.org/10.3390/robotics11060126
https://doi.org/10.1016/j.ipm.2022.102888
https://doi.org/10.21303/2461-4262.2023.002652

Sun, D., Paredes, P., & Canny, J. (2014). MouStress: detecting stress from mouse motion.
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI 2014),
61-70. https://doi.org/10.1145/2556288.2557243

Sun, X., Zeng, Y., & Zhou, F. (2011). Environment-based design (EBD) approach to developing
quality management systems: A case study. Journal of Integrated Design and Process Science,

15(2), 53-70. https://doi.org/10.3233/JID-2011-15204

Sweller, J. (1988). Cognitive load during problem solving: Effects on learning. Cognitive Science,

12(2), 257-285. https://doi.org/10.1207/s15516709¢c0g1202 4

Tague, N. R. (2023). The quality toolbox (3rd ed.). ASQ Quality Press.

Talebpour, Z., & Martinoli, A. (2019). Adaptive risk-based replanning for human-aware
multi-robot task allocation with local perception. /[EEE Robotics and Automation Letters, 4(4),
3790-3797. https://doi.org/10.1109/LRA.2019.2926966

Tao, D., Luo, W., Wu, Y., Yang, K., Wang, H., & Qu, X. (2024). Ergonomic assessment of mid-air
interaction and device-assisted interactions under vibration environments based on task

performance, muscle activity and user perceptions. International Journal of Human-Computer

Studies, 192, 103364. https://doi.org/10.1016/].1jhcs.2024.103364

Tokadli, G., Dorneich, M. C., & Matessa, M. (2021). Evaluation of Playbook delegation approach
in human-autonomy teaming for single pilot operations. International Journal of Human—

Computer Interaction, 37(7), 703—716. https://doi.org/10.1080/10447318.2021.1890485

Toniges, T., Otting, S. K., Wrede, B., Maier, G. W., & Sagerer, G. (2017). An emerging decision
authority: Adaptive cyber-physical system design for fair human-machine interaction and decision
processes. In H. Song, D. B. Rawat, S. Jeschke, & C. Brecher (Eds.), Cyber-physical systems:
Foundations,  principles, and  applications (pp. 419-430). Academic Press.
https://doi.org/10.1016/B978-0-12-803801-7.00026-2

Tuyls, K., & Weiss, G. (2012). Multiagent learning: Basics, challenges, and prospects. Al
Magazine, 33(3), 41-52. https://doi.org/10.1609/aimag.v33i3.2426

151


https://doi.org/10.1145/2556288.2557243
https://doi.org/10.3233/JID-2011-15204
https://doi.org/10.1207/s15516709cog1202_4
https://doi.org/10.1109/LRA.2019.2926966
https://doi.org/10.1016/j.ijhcs.2024.103364
https://doi.org/10.1080/10447318.2021.1890485
https://doi.org/10.1016/B978-0-12-803801-7.00026-2
https://doi.org/10.1609/aimag.v33i3.2426

Van den Heuvel, R., Jansens, R., Littler, B., Huijnen, C., Di Nuovo, A., Bonarini, A., ... &
De Witte, L. (2022). The potential of robotics for the development and wellbeing of children with
disabilities as we see it. Technology and Disability, 34(1), 25-33. https://doi.org/10.3233/TAD-
210346

Van Merriénboer, J. J. G., & Sweller, J. (2010). Cognitive load theory in health professional
education: Design principles and strategies. Medical Education, 44(1), 85-93.
https://doi.org/10.1111/].1365-2923.2009.03498.x

Walhout, J., Oomen, P., Jarodzka, H., & Brand-Gruwel, S. (2017). Effects of task complexity on
online search behavior of adolescents. Journal of the Association for Information Science and

Technology, 68(6), 1449—1461. https://doi.org/10.1002/asi1.23782

Wan, J., Chen, M., Xia, F., Di, L., & Zhou, K. (2013). From machine-to-machine communications
towards cyber-physical systems. Computer Science and Information Systems, 10(3), 1105-1128.
https://doi.org/10.2298/CSIS120326018W

Wan, S., Gu, Z., & Ni, Q. (2020). Cognitive computing and wireless communications on the edge
for healthcare service robots. Computer Communications, 149, 99-106.

https://doi.org/10.1016/j.comcom.2019.10.012

Wang, F. Y. (2010). The emergence of intelligent enterprises: From CPS to CPSS. IEEFE Intelligent
Systems, 25(4), 85-88. https://doi.org/10.1109/MIS.2010.104

Wang, Y., Karray, F., Kwong, S., Plataniotis, K. N., Leung, H., Hou, M., ... & Patel, S. (2021). On
the philosophical, cognitive and mathematical foundations of symbiotic autonomous systems.
Philosophical  Transactions of the Royal Society A, 379(2207), 20200362.
https://doi.org/10.1098/rsta.2020.0362

Wang, Y., Sun, G.Q., Zhong, J., & Shen, W. L. (2013). The determining method of cashiers
working fatigue point based on performance measurement. In M. Qi, Y. Yang, & J. Gao (Eds.),
International Asia Conference on Industrial Engineering and Management Innovation
(IEMI2012)  Proceedings: Core Areas of Industrial Engineering (pp. 97-105).
Springer.https://doi.org/10.1007/978-3-642-38445-5

152


https://doi.org/10.3233/TAD-210346
https://doi.org/10.3233/TAD-210346
https://doi.org/10.1111/j.1365-2923.2009.03498.x
https://doi.org/10.1002/asi.23782
https://doi.org/10.2298/CSIS120326018W
https://doi.org/10.1016/j.comcom.2019.10.012
https://doi.org/10.1109/MIS.2010.104
https://doi.org/10.1098/rsta.2020.0362
https://doi.org/10.1007/978-3-642-38445-5

Wei, K., & Ren,B. (2018). A method on dynamic path planning for robotic manipulator
autonomous obstacle avoidance based on an improved RRT algorithm. Sensors, 18(2), 571.

https://doi.org/10.3390/s18020571

Whitehill, J., Serpell, Z., Foster, A., Lin, Y. C., Pearson, B., Bartlett, M., & Movellan, J. (2011,
June). Towards an optimal affect-sensitive instructional system of cognitive skills. In CVPR 2011

Workshops (pp. 20-25). IEEE. https://doi.org/10.1109/CVPRW.2011.5981778

Wilke, P. K., Gmelch, W. H., & Lovrich, N. P. (1985). Stress and productivity: Evidence of the
inverted U function. Public Productivity Review, 9, 342-356.
https://www.jstor.org/stable/3379944

Wilkinson, S. C., Reader, W., & Payne, S.J. (2012). Adaptive browsing: Sensitivity to time
pressure and task difficulty. International Journal of Human-Computer Studies, 70(1), 14-25.
https://doi.org/10.1016/].ijhcs.2011.08.003

Xiong, J., Chen, J., & Lee, P. S. (2021). Functional fibers and fabrics for soft robotics, wearables,
and human-robot interface. Advanced Materials, 33(19), 2002640.
https://doi.org/10.1002/adma.202002640

Yal¢inkaya, B., Couceiro, M. S., Soares, S. P., & Valente, A. (2023). Human-aware collaborative
robots in the wild: Coping with uncertainty in activity recognition. Sensors, 23(7), 3388.
https://doi.org/10.3390/s23073388

Yan, H. H., Wan, J.F., & Suo, H. (2012). Adaptive resource management for cyber-physical
systems. Applied Mechanics and Materials, 157-158, 747-751.
https://doi.org/10.4028/www.scientific.net/ AMM.157-158.747

Yang, Y., Fairbairn, C., & Cohn, J. F. (2013). Detecting depression severity from vocal prosody.
IEEE Transactions on Affective Computing, 4(2), 142-150. https://doi.org/10.1109/T-
AFFC.2012.38

153


https://doi.org/10.3390/s18020571
https://doi.org/10.1109/CVPRW.2011.5981778
https://www.jstor.org/stable/3379944
https://doi.org/10.1016/j.ijhcs.2011.08.003
https://doi.org/10.1002/adma.202002640
https://doi.org/10.3390/s23073388
https://doi.org/10.4028/www.scientific.net/AMM.157-158.747
https://doi.org/10.1109/T-AFFC.2012.38
https://doi.org/10.1109/T-AFFC.2012.38

Yang, J., Yang, L., Quan, H., & Zeng, Y. (2021). Implementation barriers: A TASKS framework.
Journal of Integrated Design and Process Science, 25(3—4), 134—147. https://doi.org/10.3233/JID-
210011

Yerkes, R. M., & Dodson, J. D. (1908). The relation of strength of stimulus to rapidity of
habit-formation. Journal of Comparative Neurology and Psychology, 18(5), 459-482.
https://doi.org/10.1002/cne.920180503

Yonga Chuengwa, T., Swanepoel, J. A., Kurien, A. M., Kanakana-Katumba, M. G., & Djouani,
K. (2023). Research perspectives in collaborative assembly: A review. Robotics, 12(2), 37.
https://doi.org/10.3390/robotics12020037

Yousefi, N., Sobhani, A., Moslemi Naeni, L., & Currie, K. R. (2019). Using statistical control
charts to monitor duration-based performance of project. arXiv preprint arXiv:1902.02270.

https://arxiv.org/abs/1902.02270

Yun, J. J., Lee, D., Ahn, H., Park, K., & Yigitcanlar, T. (2016). Not deep learning but autonomous
learning of open innovation for sustainable artificial intelligence. Sustainability, 8(8), 797.

https://doi.org/10.3390/su8080797

Zaatari, S. E., Wang, Y., Hu, Y., & Li, W. (2022). An improved approach of task-parameterized
learning from demonstrations for cobots in dynamic manufacturing. Journal of Intelligent

Manufacturing. https://doi.org/10.1007/s10845-021-01743-w

Zahmat Doost, E., & Zhang, W. (2023). Mental workload variations during different cognitive
office  tasks with social media interruptions. Ergonomics,  66(5), 592-608.
https://doi.org/10.1080/00140139.2022.2104381

Zanchettin, A. M., Messeri, C., Cristantielli, D., & Rocco, P. (2022). Trajectory optimisation in
collaborative robotics based on simulations and genetic algorithms. International Journal of
Intelligent Robotics and Applications, 6(4), 707—723. https://doi.org/10.1007/s41315-022-00240-
4

154


https://doi.org/10.1002/cne.920180503
https://doi.org/10.3390/robotics12020037
https://arxiv.org/abs/1902.02270
https://doi.org/10.3390/su8080797
https://doi.org/10.1007/s10845-021-01743-w
https://doi.org/10.1080/00140139.2022.2104381
https://doi.org/10.1007/s41315-022-00240-4
https://doi.org/10.1007/s41315-022-00240-4

Zeitlhofer, 1., Zumbach, J., & Schweppe, J. (2024). Complexity affects performance, cognitive
load, and awareness. Learning and  Instruction, 94, Article 102001.

https://doi.org/10.1016/j.learninstruc.2024.102001

Zeng, Y. (2002). Axiomatic theory of design modeling. Journal of Integrated Design and Process
Science, 6(3), 1-28. https://doi.org/10.3233/JID-2002-6301

Zeng, Y. (2011). Environment-based design (EBD). In International Design Engineering
Technical Conferences and Computers and Information in Engineering Conference (Vol. 54860,

pp. 237-250). https://doi.org/10.1115/DETC2011-48263

Zhang, R., Lv, J., Bao, J., & Zheng, Y. (2023). A digital twin-driven flexible scheduling method
in a human—machine collaborative workshop based on hierarchical reinforcement learning.
Flexible Services and Manufacturing Journal, 35(4), 1116—1138. https://doi.org/10.1007/s10696-
023-09498-7

Zhao, M., Jia, W., Jennings, S., Law, A., Bourgon, A., Su, C., Larose, M.-H., Grenier, H.,
Bowness, D., & Zeng, Y. (2024). Monitoring pilot trainees’ cognitive control under a simulator-

based training process with EEG microstate analysis. Scientific Reports, 14, 24632.
https://doi.org/10.1038/541598-024-76046-0

Zhao, M., Qiu, D., & Zeng, Y. (2023). How much workload is a ‘good’ workload for human beings
to meet the deadline: Human capacity zone and workload equilibrium. Journal of Engineering

Design, 34(8), 644—673. https://doi.org/10.1080/09544828.2023.2249216

Zhao, M., Yang, D., Liu, S., & Zeng, Y. (2018). Mental stress-performance model in emotional
engineering. In  Emotional  Engineering ~ (Vol. 6,  pp.119-139).  Springer.
https://doi.org/10.1007/978-3-319-70802-7 9

Zheng, P, Li, S., Fan, J., Li, C., & Wang, L. (2023). A collaborative intelligence-based approach
for handling human-robot collaboration uncertainties. CIRP Annals, 72(1), 1-4.
https://doi.org/10.1016/].cirp.2023.04.057

155


https://doi.org/10.1016/j.learninstruc.2024.102001
https://doi.org/10.3233/JID-2002-6301
https://doi.org/10.1007/s10696-023-09498-7
https://doi.org/10.1007/s10696-023-09498-7
https://doi.org/10.1038/s41598-024-76046-0
https://doi.org/10.1080/09544828.2023.2249216
https://doi.org/10.1016/j.cirp.2023.04.057

Zhou, X., Wang, X., & Liu, X. (2022). The impact of task complexity and translating self-efficacy
belief on students’ translation performance: Evidence from process and product data. Frontiers in

Psychology, 13, Article 911850. https://doi.org/10.3389/fpsyg.2022.911850

Zhu, G., Zhang, L., Shen, P., & Song, J. (2017). Multimodal gesture recognition using 3-D
convolution and convolutional LSTM. IEEE Access, 5, 4517-4524.
https://doi.org/10.1109/ACCESS.2017.2684186

156


https://doi.org/10.3389/fpsyg.2022.911850
https://doi.org/10.1109/ACCESS.2017.2684186

