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Abstract

Integrated Cost-Availability Based Maintenance Management Models for Data Centers

Mostafa Fadaeefath Abadi, Ph.D.

Concordia University, 2025

Data centers (DCs) are the backbone of modern digital infrastructure, but their complexity, energy
intensity, and need for continuous uptime pose major maintenance challenges. This dissertation
reviews current Operations and Maintenance (O&M) practices and develops three novel

optimization models specifically tailored to DCs.

The literature review highlights research gaps: existing O&M models rarely address DC-specific
issues such as balancing cost and high availability. It underscores the importance of integrating
reliability and availability analyses into predictive maintenance, energy efficiency, and system

optimization.

Building on these findings, three optimization models are introduced. The first applies Dynamic
Programming (DP) and the multiple knapsack problem to prioritize maintenance of UPS units
under budget constraints, achieving a 61% improvement in availability with optimized resource
allocation. The second model develops an availability-based cost optimization framework for UPS
units in k-out-of-n configurations. Case studies show optimal selection (k = 5 of 10), delivering
99.991% availability above Tier I standards while minimizing costs. Sensitivity analysis confirmed
that availability is more affected by repair times than failure rates, and the validation under varying
conditions confirmed the robustness of the results. The third model, formulated as a Mixed-Integer

Nonlinear Program (MINLP), optimizes maintenance in Series-Parallel systems. Results



demonstrate 99.974% availability (above Tier I targets) while maintaining costs within budget.

Together, these models advance DC maintenance by integrating cost, reliability, and availability
into scalable decision-making frameworks. The contributions provide operators with practical

tools to reduce costs, improve reliability, and ensure compliance with strict uptime standards.
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Chapter 1: Introduction

1.1. Introduction to Data Centers and Their Features

A Data Center (DC) is a major infrastructure and facility which contains a high quantity of servers
and computers to provide internet services for many companies in the world (such as Google,
Amazon, etc.). The term “Data Center” may have different meanings from various points of view
and there are also some other similar names such as data hall, data farm, data warehouse, computer
room, server room, etc. which have been used by researchers and scholars. Over the past two
decades, DCs have evolved from being relatively unknown to becoming indispensable for
companies across different sectors to meet digital demands and provide online services
(Fadaeefath Abadi et al., 2020). According to the U.S. Environment Protection Agency (EPA), DC
is a type of principal electronic equipment that is used for processing data (server devices), storing
the data (storage equipment) and communications including networking tools and devices. DC
requires special power conversion and backup equipment to preserve high quality and reliable
power system. The system maintains important environmental factors such as proper temperature
and humidity for the Information and Communication Technology (ICT) equipment (Geng,
2015a). The principal components and equipment located in DCs are computers, servers, cooling
systems, storage devices, and supply devices. Three main subsystems located in a general
(traditional) DC are continuous power supply, air conditioning and network connectivity (Saha et

al., 2016a).

DCs have become indispensable pillars of contemporary society, serving as the backbone for

critical infrastructure and operations. Their intricate systems and components demand meticulous



attention, particularly in the realm of Operations and Maintenance (O&M). As technology
advances, the DC industry undergoes rapid evolution, with transformative changes reshaping its
landscape. Based on recent reports (Informa PLC - AFCOM, 2024), this sector is witnessing
exceptional expansion, emerging customer demands, and shifts in the approach to deploying

physical infrastructure.

Corresponding to different references, there have been various changes in the technology of
DCs such as other technologies in the world. As there were computer rooms in the middle of the
20th century, DC began to operate in those computer rooms as a shelter or house. Later, these
computer housings became large and complex infrastructures. The ARC net is recognized as the
first DC, placed in a special area. About 10,000 ARC net DCs were used globally by 1980. From
the beginning of the 1990 decade, as the usage of personal computers was increasing in the world,
users had access to a network. Therefore, the real difference appeared and the mainframe which
existed before, was converted into places hosting many servers. These places were later named

“Data Centers” (Carey et al., 2017).

DCs are industrialized centers located worldwide and the number of them is growing due to
high demand for several services. As specified by references and reports, the total number of DCs
worldwide in 2017 was about 8.4 million. Based on the literature, there are about 8.6 million
enterprise DCs operating globally. Also, the number of Cloud DCs has been increased recently.
Colocation DCs accommodate a diverse range of retail and wholesale clients. Retail colocation
services, encompassing power and cooling, are provided through monthly service agreements,
similar to cloud computing offerings. While the typical contract durations for cloud computing
DCs are 12, 24, or 36 months, the wholesale colocation entails longer-term leases, generally

spanning 5 to 20 years (Equinix Editor, 2024). DC facilities have been combined and became
2



hyperscale DCs. A hyperscale DC represents a specialized form of wholesale colocation facility
designed to meet the stringent technical, operational, and economic requirements of large-scale
enterprises, including Amazon, Alibaba, Meta, Google, IBM, and Microsoft. These entities,
commonly termed “hyperscalers,” necessitate substantial spatial and power resources to support
the deployment and scaling of thousands of servers for cloud computing, big data analytics, and

high-volume storage operations (Equinix Editor, 2024).

Therefore, because of hyperscale DCs, the total quantity of DCs has decreased from 8.55
million in 2015 to about 8.4 million in 2017, but the demand for data storage and processing is still
rising (Statista, 2017; Williams, 2018). According to statistics, the amount of DC storage
consumed by big data worldwide required about 124 exabytes of DC storage space globally until
the end of 2018 and was estimated to grow up to 403 exabytes by 2021 (Cisco Systems, 2018a).
In addition, in 2018, the storage capacity of DCs reached 1450 exabytes in the world with 250
exabytes being consumed by collaboration activities and data (Cisco Systems, 2018b). Based on
statistics and predictions, the global amount of data will reach 200 zettabytes by 2025 (Edge Delta,

2024).

Figure 1 presents the countries' ranks by the number of DCs as of March 2024, showing the
United States with the highest count at 5,381, followed by Germany, the United Kingdom, China,
and Canada (Cloudscene, 2025). According to Figure 2, the Global DC colocation Market was
valued at USD 65.04 billion in 2023 and increased to USD 72.98 billion in 2024. This market is
projected to reach approximately USD 205.65 billion by 2033, growing at a Compound Annual
Growth Rate (CAGR) of 12.2% from 2024 to 2033 (Precedence Research, 2024). Also, Figure 3

highlights the expected growth in the Global DC construction market from 2023 to 2033, broken



down by DC tier types, with total market size rising from $237.1 billion in 2023 to $453.5 billion

in 2033 (Tajammul Pangarkar, 2024).

Leading countries by number of data centers as of March 2025
United States of America 5,426
Germany 529
United Kingdom 523
France 322
Australia 314
Netherlands 298
Russia 251
Italy 168
Mexico 173
Poland 144
Spain 143
China 449
Japan 222
Brazil 196
Switzerland 121
Hong Kong 122
Sweden 95
Singapore 9
Belgium 80
Indonesia 84
New Zealand 83
Austria 68
Malaysia 62
Ghile 59
Ukraine || 58
Ireland Jf 55
Denmark 50
Finland [ 48
Norway [ 47
South Korea | 43
[+] 1,000 2,000 3,000 4,000 5,000 6,000
Number of data centers
Source Additional Information:
Cloudscene Worldwide; 2025
© Statista 2025

Figure 1. Leading countries by number of DCs in 2025 (Cloudscene, 2025)
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Figure 2. DC colocation market size (Precedence Research, 2024)
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Figure 3. Global DC construction market from 2023 to 2033 (Tajammul Pangarkar, 2024)

Regarding the provided statistics related to DCs, there are several challenges and issues in
managing DC facilities and their components. Especially, the amount of power being consumed
by servers is noticeable. Concerning energy consumption, it should be noted that DCs utilize about

40 times energy than other standard buildings such as offices. Thus, energy management tools that
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have been used for regular office buildings could not be easily applied to DCs since the energy
simulation of DCs is complicated. There are considerable differences in terms of energy loads and
the structure of buildings between DCs and commercial buildings (Cho et al., 2015). Research and
studies have been performed on DC operations by scientists to effectively apply the DC operations
management framework for reducing the staff workload. In addition, the other goal is to increase
the work efficiency to bring maximum overall effectiveness for the DC operations management
system (Bai & Geng, 2015). In terms of DC power and energy usage, the indicated numbers
express high and increasing energy demands. The servers and DCs have used 61 billion kWh,
costing $4.5 billion in the year 2006 and it was expected to be doubled by the year 2011. Based on
recent studies, one server with 300W power has about $330 energy cost in a year (Saha et al.,
2016a; Shehabi et al., 2016). In addition, the total electricity consumption of DCs in the United
States has reached 60 billion kWh per year in 2014 and was estimated to rise to 70 billion kWh
per year by 2020. Fortunately, based on the presented numbers, responsiveness about infrastructure
operations in DC has increased and thus the efficiency has been improved, specifically in cloud
DCs. Moreover, recently, the cloud DCs have been designed to maximize the efficiency of the DC
infrastructure. Generally, Cloud DCs host around 10,000 servers for offering various services to

be used by the applications (Saha et al., 2016a; Shehabi et al., 2016).

DCs play an essential role in our fast-developing society as the main Information Technology
(IT) infrastructures. Due to the complexity of IT equipment placed in DCs, the reliability,
availability, and maintenance of its components require more attention. Based on recent studies,
DCs should adjust themselves to the fast-developing industry. In addition, the O&M System
should be carefully considered and formed based on the required standards to obtain a standard

management system to meet DC’s acceptable performance (Zhan & Zhang, 2014).



A DC may exist independently within its own facility or be housed within a facility that
accommodates various functions or organizations (F. Alshakhshir & Howell, 2021). DCs are
known as critical infrastructures which have various subsystems and components such as heating,
ventilation, and air conditioning systems, chillers, cooling towers, computer room air conditioning
units, backup power sources, boilers, generators, lighting systems, servers, and other relevant

components.

There are numerous difficulties and concerns in overseeing DC facilities and their elements.
Notably, the substantial power consumption by servers stands out. According to recent research
findings (F. Alshakhshir & Howell, 2021) (Fadaeefath Abadi et al., 2020), approximately 2% of
the annual energy consumption in the United States is allocated to DCs. Furthermore, another
objective is to enhance work efficiency, ultimately achieving maximum overall effectiveness for

the DC operations management system.

DCs are being built across the globe to cater to various needs, reflecting a growing demand for
their services. Various companies in the world have these major infrastructures and facilities for
providing different online and cloud services. These essential facilities have undergone significant
transformations over time, transitioning from small computer rooms to today's hyperscale and
cloud-based DCs. Moreover, researchers (Fadaeefath Abadi et al., 2020) state that the technology

advancements have led to increased complexity in DC operations in recent years.

As financial strain and economic unpredictability continue to rise, IT departments are
increasingly compelled to adopt cost-saving measures. One common strategy is extending the
lifespan of existing hardware and postponing major capital expenditures, a practice now seen
across businesses of all sizes, including large corporations such as Amazon Web Services (AWS)

(Kirkwood, 2023).



Canada's DC market, valued at $4.05 billion in 2022, is projected to reach $6.5 billion by 2028,
with an annual growth rate of 8.21%. Across 21 cities, Canada hosts 336 DCs. Toronto leads as
the largest market, with a DC capacity of 267 MW, while Montreal follows as the second largest
with 126 MW in current capacity and an additional 51 MW under development. Notably, Montreal
boasts the most affordable power among major global markets, at a rate of $0.0533 per kilowatt-

hour (John Minnix, 2024).
1.2. The COVID-19 Pandemic and the Role of Data Centers

The COVID-19 pandemic has significantly altered global business operations, making DCs more
crucial than ever. As companies have adapted to remote work and new digital infrastructures, the

demand for DC services has surged (Babar, 2020; Hevey, 2020).

According to recent reports (Technavio Research, 2020), this pandemic has had a significant
impact on the hyperscale DC market, with a predicted CAGR of 21% from 2020 to 2024. The
global expansion of DCs is expected to have varying effects on the IT Industry due to this rapid

growth.

Maintaining DC resiliency and business continuity has become more urgent, with a focus on
minimizing downtime and enhancing infrastructure reliability. Despite the expectation for 100%
uptime, one-third of DCs experienced service outages in the past year, highlighting the need for
improved maintenance strategies. The pandemic has also made day-to-day monitoring and
maintenance more challenging due to the remote work transition, increasing the pressure on IT
infrastructure and support solutions. Consequently, risk mitigation and maintenance prioritization
tools have become essential for managing these critical infrastructures (Hevey, 2020; Roxtec Inc,

2020; Rubenoft, 2020).



Therefore, the COVID-19 pandemic has amplified the critical role of DCs in supporting global
business continuity, particularly as remote work and digital infrastructures have expanded. The
increased demand for DC services, coupled with rising service outages, highlights the urgent need
for enhanced maintenance strategies and risk mitigation tools to ensure DC resiliency and

minimize downtime in this rapidly growing industry.
1.3. Maintenance Scheduling and Management for Data Centers

Given the critical role of DCs in today's fast-evolving world, effective maintenance management
and scheduling are essential to ensure the reliability and availability of Information Technology
(IT) components. As 24/7 mission-critical facilities, DCs require continuous attention and
optimized maintenance scheduling to minimize downtime (Fadaeefath Abadi et al., 2020; Hevey,
2020). Optimizing maintenance for each component or subsystem, such as hard drives, fans, and
chips, is vital to maintaining efficient overall system performance, despite these components being

vulnerable to failure (CommScope, 2020; Roxtec Inc, 2020).

DC companies have introduced best practices to enhance operations and prevent maintenance
issues, such as implementing metrics-based predictive maintenance strategies to reduce reactive
corrective practices. While some DCs use multiple vendors for O&M, a more efficient approach
involves self-performing maintenance by Subject Matter Experts (SMEs), which can optimize the

efficiency of mission-critical facilities (Hevey, 2020).

Traditional maintenance strategies, based on historical data and asset lifespans, are still
common, but the high cost of DC downtime necessitates exploring alternative maintenance
approaches (Lachance, 2016). Effective DC Maintenance Management, as part of Facilities

Management, focuses on secure and efficient operations, emphasizing technical documentation,



operational processes, and the human factor. In a field study by Jiirgen Bieser, it was found that
approximately 70% of DC costs are driven by energy consumption, 20% by construction, and 10%
by technical facilities management and maintenance, highlighting the financial impact of

maintenance in DCs (Statista, 2017; Williams, 2018).

The 2024 Data Center & Infrastructure Report (Service Express, 2023) shows that for IT
professionals, cost, quality of service, and resolution speed are the primary considerations in DC
maintenance decisions. Equipment failures and downtime heavily affect business operations and
productivity. To control costs while improving support and customer experience, organizations are
turning more frequently to automated solutions for infrastructure management and support.
Additionally, ongoing supply chain disruptions have reinforced equipment lifespan extension as a

key approach for cost savings and sustainability.

1.4. Data Centers Reliability and Availability

The intersection of communication networks and the rising demand for substantial storage and
processing capabilities, especially in recent years, has spurred a heightened request for everything-
as-a-service, resulting in the proliferation of new DC constructions (Camboim et al., 2020).
Nonetheless, guaranteeing the dependability of these infrastructures, with a predominant emphasis

on achieving system availability, remains paramount

In assessing the system’s reliability, the configuration of the components plays a crucial role.
One strategy involves organizing components in parallel, where the functioning of one or more
elements is necessary for the system's operation. If there are n elements arranged in parallel, the
system may necessitate a minimum of k elements to function properly, where k must be less than

or equal to n. When k equals n, the configuration represents a series system, as all elements must
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be operational. Conversely, when k = 1 and n is greater than 1, it signifies a straightforward
parallel system. For instance, in a scenario where k =2 and n = 4, the system remains operational
as long as any two of the four elements are functioning. Consequently, this configuration offers
some advantages of parallelism while being more cost-effective and less reliable compared to a
simple redundancy system (Schenkelberg, 2020). A schematic diagram of the k-out-of-n
configuration is shown in Figure 4. This figure presents the Reliability Block Diagram (RBD)

assuming that the system has ideal failure detection and switching (Birolini, 2017).

Reliability Block Diagram
Reliability Function k-out-of-n redundancy,
Ri=...=Ra=R fork=1 %
Ro=Yk(})RQ-R"" | R=1-(1-R"
k-out-of-n configuration

Figure 4. Reliability Block Diagram of the k-out-of-n configuration (Birolini, 2017; Fadaeefath Abadi, Bordbari,

etal., 2025)

1.5. Research Gaps

The existing body of research on maintenance management has explored various industrial
systems, such as power plants, Heating, Ventilation, and Air conditioning (HVAC) systems, and
power distribution networks, employing advanced techniques like Artificial Intelligence (Al),
Machine Learning (ML), and Dynamic Programming (DP) to optimize decision-making,
reliability, and cost-efficiency. Despite this progress, there are notable gaps in the application of

these methodologies within DC environments, which present unique operational challenges and
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requirements. A review of the literature, which will be presented in the next chapter, reveals several

specific gaps in DC maintenance strategies that this research aims to address.

Limited Focus on DC-Specific Maintenance Models: Most maintenance models in the

literature are designed for broader industrial applications, including energy generation and
distribution, but few are specifically tailored to the needs of DCs. These models often fail to
account for the distinct requirements of DCs, which demand high levels of availability,
reliability, and operational efficiency. This gap underscores the need for research dedicated to
developing comprehensive and efficient maintenance strategies that meet the evolving
demands of DC infrastructures.

Integration of Reliability and Availability Analysis: Although reliability and availability are

critical components of any maintenance strategy, the literature lacks detailed methodologies
that incorporate these analyses into maintenance scheduling specifically for DCs. The few
existing studies that do address DC maintenance often overlook the integration of failure rates
and system availability in a cohesive manner. Developing robust models that align
maintenance scheduling with reliability and availability analysis is vital for ensuring
uninterrupted operations and minimizing downtime in DCs.

Optimization of Maintenance Scheduling in DCs: Optimization techniques, particularly DP,

have been successfully applied to maintenance scheduling in various industries, but their use
in DC maintenance remains underexplored. Given the complex and recursive nature of
maintenance tasks in DCs—such as ensuring continuous power, cooling, and network
availability—there is a pressing need for optimization models that account for the unique

operational constraints of DC environments. This research addresses this gap by exploring
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multi-stage optimization models that leverage DP to enhance maintenance decision-making in
DCs.

Innovative Approaches to Maintenance Management: Emerging technologies like Al, ML, and

data analytics offer predictive maintenance and improved resource allocation but have not been
fully integrated into DC maintenance frameworks. Exploring these tools can enhance
operational efficiency and decision-making.

Development of Comprehensive Frameworks for DC Maintenance: Finally, the reviewed

literature reveals a lack of comprehensive, coherent frameworks specifically designed for DC
maintenance. Most existing models focus on isolated aspects of maintenance, such as energy
efficiency or component reliability, without offering a holistic approach that addresses
strategic, operational, and technical challenges in DCs. The development of an integrated
framework that considers all facets of DC maintenance, including system availability,
reliability, and cost constraints, will be crucial for the future of maintenance management in

this critical sector.

By addressing these research gaps, this study makes a significant contribution to the advancement

of maintenance strategies in DCs. Specifically, it introduces three novel optimization models

designed to improve maintenance decision-making. The first two models apply DP techniques to

prioritize maintenance actions and optimize cost in k-out-of-n system configurations, integrating

system availability constraints, reliability metrics, and budget considerations. The third model

extends the framework to more complex series-parallel system architectures to minimize

maintenance costs while satisfying the DC availability requirements. Collectively, these models

offer tailored solutions to the unique operational and structural challenges of DC maintenance

management. Hence, this research aims to develop and validate novel dynamic optimization
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models for DC maintenance that minimize costs while ensuring compliance with availability
standards defined by the Uptime Institute. This aim directly guides the dissertation by linking the
identified research problem with the proposed methodological contributions and sets the

foundation for the objectives and models presented in the subsequent chapters.

1.6. Motivation and Significance

The continuous operation of DCs is vital to supporting global digital infrastructure. Any service
disruption due to equipment failure or suboptimal maintenance planning can lead to significant
financial and operational losses. This research is motivated by the need to develop decision-
support tools that allow DC operators to maintain high system availability and reliability while
minimizing maintenance costs. By focusing on availability-aware, data-driven optimization
strategies, this work provides a much-needed contribution to both academic literature and real-

world applications in DC asset management.

The significance of this research lies in its comprehensive approach to addressing the critical gaps

identified in the literature and contributes to the body of knowledge in the following key areas:

o Tailored Maintenance Management for DCs: By integrating practical maintenance

management models specifically designed for DC components, this research addresses the

unique challenges of DC infrastructures, such as maintaining continuous power supply.

e Optimization of Maintenance Costs: Through the development of mathematical optimization

models, this research provides optimal solutions to minimize the maintenance costs associated
with DC components. The model considers factors such as system configurations and system

availability thresholds, resulting in potential cost savings and improved efficiency.
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Optimal Component Selection for k-out-of-n _Systems: The proposed availability-based

maintenance cost optimization model determines the k& optimal components in DCs within a
parallel k-out-of-n configuration. This model minimizes maintenance costs while ensuring the
system meets the required total system availability threshold, potentially reducing operational

expenses and enhancing efficiency.

Prioritized Maintenance and Budget Allocation: This research presents a novel maintenance

prioritization plan that ensures maintenance activities are prioritized based on their impact on
total system availability and budgetary constraints. By maximizing component availability,
this model facilitates informed decisions regarding maintenance resource allocation, thereby

maximizing the overall availability of the DC infrastructure.

Dynamic Programming Approach: The proposed DP approach captures the recursive and agile

nature of maintenance scheduling in DCs, allowing for more precise decision-making and

improved resource and budget allocation.

Reliability and Availability Analysis: This research conducts detailed reliability and

availability analysis for DC components, forming the foundation for the optimization models

and ensuring that the proposed strategies meet the high availability standards.

Optimizing DC Maintenance with International Availability Standards: Integration of system

availability constraints derived from international DC standards into the proposed optimization
models ensures that maintenance strategies not only satisfy mandatory industry requirements
but also do so in a cost-efficient and dynamic manner. The contribution lies in embedding these
non-negotiable compliance thresholds within advanced optimization frameworks, thereby

supporting uninterrupted DC operations while enhancing decision-making efficiency.
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In summary, this research advances the field of DC maintenance management by addressing
critical gaps in the literature and offering innovative, optimized solutions that meet the growing

demands of the DC industry.
1.7. Problem Statement

DCs are highly complex environments where asset failures can occur unpredictably, ranging
from minor faults to critical disruptions. Traditional maintenance scheduling methods, which rely
on long-term planning, are insufficient due to the high operational demands and dynamic nature

of DC assets.

In response to these challenges, there is a critical need for a robust, integrated maintenance
management model that incorporates both cost and availability considerations while
accommodating flexible, short-term planning horizons. DP offers a promising approach, as it
enables adaptive, “plan-as-you-go” maintenance scheduling. By analyzing historical data, DP can
optimize real-time decision-making for maintenance prioritization, thereby enhancing asset
availability and reducing operational disruptions. This thesis addresses the identified research gaps
by proposing integrated cost and availability-based maintenance management models tailored for
the unique demands of DCs, aiming to optimize maintenance schedules on monthly, daily, or even
hourly intervals. Through the proposed models in this thesis, the research seeks to formulate
solution approaches that uphold high availability standards and minimize maintenance costs, even

amidst the complex and critical operational environment of DCs.

1.8. Research Objectives
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The overarching objective of this research is to develop a comprehensive framework for
availability-aware maintenance optimization in DCs. This objective is achieved through the

following sequential research steps:

e Literature Review: A systematic review of current DC O&M practices and availability-
based maintenance models was conducted to identify research gaps and establish a

foundation for model development.
e Development of Three Maintenance Management Models:
» Model 1: Dynamic Availability-Based Maintenance Prioritization Model

This model aims to prioritize maintenance actions across assets based on their condition
and impact on system availability to maximize the asset’s availability improvement

while respecting budgetary and operational constraints.

> Model 2: Dynamic Availability-Based Maintenance Cost Optimization Model

for K-out-of-N Systems

Building on the first model, this approach aims to minimize the total maintenance costs

in k-out-of-n DC systems to ensure required availability with minimal expenditures.

> Model 3: Availability-Constrained Maintenance Cost Optimization Model for

Series-Parallel Systems

Extending the scope to more complex DC configurations, this optimization model

minimizes maintenance costs while meeting availability thresholds.

These models are interconnected and progressive, each addressing increasingly complex system

configurations and constraints:
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e The first model provides a foundational decision-support tool for maintenance

prioritization based on asset condition and availability gains.

e The second model builds on this by optimizing cost and redundancy in k-out-of-n systems

with dynamic failure rates and costs.

e The third model extends the optimization framework to hybrid DC architectures,

integrating both series and parallel configurations.

1.9. Thesis Organization

According to the 2023 Student’s Guide to Thesis Preparation, Examination Procedures and
Regulations provided by the School of Graduate Studies of Concordia University, this thesis has
been organized based on a collection of three manuscripts which are either published or submitted
for publication in high quality and prestigious scientific journals in the fields of Facilities,
Maintenance, Reliability and Buildings. Additional information and updates are also included in

the chapters of this thesis for enrichment.

In the first Chapter, a general introduction on Data Centers is provided, which clearly states the
rationale, objectives and motivations of the research. The thesis structure and sections are also

explained in this chapter.

In Chapter 2, a comprehensive review of the literature in the fields of DCs and O&M
management is presented that frames the thesis research area and includes information derived

from the published article below:

» Fadaeefath Abadi, M., Haghighat, F., & Nasiri, F. (2020). Data center maintenance:

applications and future research directions. Facilities, 38(9/10), 691-714.

18



The methodologies and case studies have been presented and discussed in Chapters 3 and 4,

respectively, which are derived from the two following articles:

» Fadaeefath Abadi, M., Bordbari, M. J., Haghighat, F., & Nasiri, F. (2025). Dynamic
Maintenance Cost Optimization in Data Centers: An Availability-Based Approach for K-out-

of-N Systems. Buildings, 15(7), 1057.

» Fadaeefath Abadi, M., Haghighat, F., & Nasiri, F. (2025, January). Availability-based
maintenance prioritization for data centres: a dynamic programming approach. In Safety and

Reliability (pp. 1-36). Taylor & Francis.

Finally, the research conclusions, contributions and future research directions have been discussed

in Chapter 5 which also addresses the entire contents of the thesis.
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Chapter 2: Literature Review

This chapter presents a critical and systematic review of the relevant literature, evaluating
strengths, limitations, and gaps in previous studies to establish the foundation for this thesis. It
explores the current state of knowledge across several key areas, including maintenance
management in industrial systems, O&M management in DCs, DC Infrastructure Management
(DCIM), maintenance scheduling optimization, and the applications of DP in maintenance
management. By critically examining these fields, the chapter identifies the primary research gaps
and limitations within the DC domain, highlighting areas that warrant further research and

investigation.
2.1. Maintenance Management in Industrial Systems and Applications

While maintenance models in diverse industrial systems continue to evolve with emerging
technologies, many studies focus on energy and HVAC systems rather than DC-specific
requirements, limiting direct applicability to DC operations. The integration of Artificial
Intelligence (Al) and Machine Learning (ML) has enabled data-driven decision-making in building
maintenance (F. S. Alshakhshir & Howell, 2021; Fadaeefath Abadi et al., 2020), promoting energy
efficiency and offering early detection of equipment issues. For instance, recent studies on
Heating, Ventilation, and Air Conditioning (HVAC) systems (Fadaeefath Abadi et al., 2022),
particularly the Vapour Compression Refrigeration System (VCRS), highlight how optimizing
partial load usage across components can boost system reliability. This shift toward using high-
quality, load-sharing components has demonstrated a near 10% improvement in system reliability

over extended operation periods. Furthermore, availability-centred maintenance models, such as
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those applied to Domestic Hot Water (DHW) systems (Pourhosseini & Nasiri, 2018a), reveal that
prioritizing maintenance activities based on their impact on overall system availability reduces
unnecessary interventions, enhancing uptime and cost-effectiveness. The Keeping System
Availability (KSA) method, originally designed for power plants, has been adopted by researchers
to incorporate the impact of maintenance activities. A recent focus on power distribution systems
highlights the critical role of asset management and strategic maintenance planning in preventing
costly failures and improving overall performance. Comprehensive reviews (Mirhosseini &
Keynia, 2021) emphasize that well-planned maintenance reduces operational costs and prevents
shutdowns while also addressing economic, social, and environmental impacts, including those
arising from deregulated power markets. A comparative analysis indicates that while research on
industrial systems provides useful insights on reliability and predictive maintenance, they lack DC-
specific considerations, including continuous operation, strict uptime requirements, and complex

system interdependencies.

2.2. Data Center Operations and Maintenance Management

Operations are defined as tasks recurrently executed during an application’s lifecycle to ensure
continuous service availability (Diouri et al., 2015). Given the critical requirement for
uninterrupted services, any operational disruptions in DCs can result in significant systemic
challenges. Rapid restoration of services is thus paramount to maintain DC functionality. The rise
of cloud services has amplified the role of DCs in delivering information to a global audience using
diverse smart devices and portable technologies (Janacek & Nebel, 2017). This section reviews

contemporary research on DC operations and maintenance management strategies.

Effective cooling systems are essential in optimizing DC performance and reducing operational

and maintenance costs. Emerging technologies, such as free-air and liquid cooling, are under
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investigation as potential alternatives to traditional air cooling (Li et al., 2016). Researchers are
studying economically viable cooling solutions to optimize energy use within DCs. Using
simulation and numerical analyses, these studies explore design-specific cooling systems under
various conditions to identify the most efficient option (Cho et al., 2015) . As cooling systems are
a primary energy consumer in DCs, energy-saving methods are evaluated through case studies,

demonstrating the potential for considerable energy conservation (Hassan et al., 2015).

To enhance operational resilience, predict behaviours, and improve DC responsiveness,
researchers have developed low-cost, low-power wireless sensor networks. These sensors monitor
critical parameters such as temperature, humidity, airflow, pressure, water presence, closures,
motion, and vibration within the facility (Levy & Hallstrom, 2017). Their study aims to provide
users with actionable data to reduce downtime and operational costs, improve energy audits and

space planning, and support predictive modelling for DC operations.

Regarding maintenance management, extensive studies have explored various models and
methodologies to improve DC infrastructure reliability. This section synthesizes current research
on maintenance management issues in DCs and IT infrastructure, reviewing practices across
sectors to identify optimal maintenance frameworks. Such an approach is essential for developing

effective maintenance schedules and frameworks tailored for DC environments.

Maintenance is a critical stage within DC systems, given the numerous essential components
operating continuously. An effective maintenance management system is essential for monitoring
operations, identifying failures, and implementing repair strategies (Xia et al., 2017). Scholars
emphasize the importance of DC maintenance, proposing solutions that address energy
consumption, reliability, and the performance of vital DC systems. Techniques that integrate

improved cooling technology and server management strategies are vital for minimizing
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operational costs. According to some surveys and studies, maintenance expenses account for
approximately 80% of total DC costs (Saha et al., 2016). Other reports (Howell, 2024) indicate
that, in a large DC, the costs of procuring and maintaining hardware, software, networking
infrastructure, and other essential equipment can account for approximately 50% of annual

operating expenses.

Additionally, recent studies consider the economic advantages of implementing Computer-
Aided Facility Management (CAFM) software, with an example from a manufacturing company
in the Czech Republic focusing on machinery maintenance as a core component of the facility
management industry (Poor et al., 2014). The influence of human performance during maintenance
operations has also been investigated, with researchers analyzing data from structured
questionnaires in marine systems, though findings are limited to marine applications without

specific maintenance schedules or frameworks (Islam et al., 2018).

Since much of the reviewed research originates from industrial and power systems rather than
DCs, applying these insights to DCs necessitates consideration of continuous power supply,

cooling interdependencies, and IT workload criticality.

2.3. Data Center Infrastructure Management (DCIM)

The cost of DC infrastructure represents nearly one-third of the total IT budget, a significant
investment that also covers DC operations. However, organizations have not yet fully adopted
innovative strategies, models, or technologies to optimize capital expenditures related to DC
infrastructure management. This section examines the concept of Data Center Infrastructure
Management (DCIM), recently introduced to facilitate comprehensive monitoring and

management of various systems within a DC (Geng, 2015b). Some studies define DCIM as an
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integration of IT systems management and facility management (FM) systems (Hubbell et al.,

2015).

Previously, IT professionals focused exclusively on IT hardware (such as servers, storage, and
networks), while facility managers were responsible for the physical DC environment. However,
with rising investments in high-performance computing (HPC) and cloud infrastructure,
considering the DC and its IT equipment as a unified system is now seen as advantageous.
Advanced tools and methods, such as the Big Data model, 3D gaming technology, and 3D
monitoring and management (MM3D), developed by MIT Lincoln Laboratory, support in-depth
trend analysis and operational optimization, enhancing both efficiency and reliability. These
approaches aim to manage computing resources, troubleshoot issues, and provide real-time
insights into critical facilities, including IT infrastructure, lifecycle management, and cost
optimization. Additionally, the U.S. government and major technology companies (e.g., Google,
Microsoft, and Facebook) are investigating DCIM implementation costs. Based on current
findings, future initiatives may focus on developing intelligent tools for energy-efficient DCs, such
as scheduling tasks during off-peak hours to take advantage of lower electricity rates (Hubbell et

al., 2015).

DCIM enables the monitoring, assessment, control, and management of IT energy consumption
within DCs. Its key components include input, process, and output. Sensors, as input devices,
collect data which is processed for analysis and presented as output to users. The insights provided
by DCIM are valuable for DC asset management, enabling accurate predictions of critical
parameters such as space, power, and cooling capacity. Furthermore, DC availability can be
enhanced by tracking real-time power levels and cooling capacity, while operational costs are

reduced through improved overall efficiency (Abbas et al., 2015).
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Recent advancements in DCIM have positioned it as an essential tool for optimizing DC
efficiency and sustainability while addressing the growing complexity of digital and hybrid IT
environments. Contemporary DCIM platforms, such as Schneider Electric’s EcoStruxure IT, are
adopting Al-powered automation and predictive analytics to address the increasing scale and
distribution of DCs. These systems now provide real-time insights, enabling proactive
management of energy usage, asset tracking, and environmental monitoring, which helps DCs

achieve compliance with strict environmental regulations and sustainability standards (Bjarke

Fenger, 2024; Ella Hutchinson, 2023).

Moreover, the rise of "DCIM 3.0" reflects a significant evolution in infrastructure management.
Unlike earlier versions, DCIM 3.0 solutions integrate seamlessly with cloud-based and edge
environments, supporting universal interoperability with Building Management Systems (BMS)
and IT Service Management (ITSM) tools. This integration enables operators to achieve
centralized visibility across multiple sites, enhancing capacity planning and resource allocation,
particularly in colocation facilities where tenant-driven demand for transparency and sustainability
reporting is high. By tracking metrics such as Power Usage Effectiveness (PUE) and Carbon Usage
Effectiveness (CUE), these modern DCIM tools also facilitate compliance with global and regional
sustainability mandates, making them crucial for DCs committed to green practices and

operational efficiency (Data Centre Dynamics, 2024; Datacenter Dynamics, 2023).

These enhancements in DCIM not only streamline management processes but also support DCs
in adapting to emerging needs driven by Al and other high-power technologies. Al integration
allows for dynamic workload management, predictive maintenance, and automated response to
system anomalies, thereby minimizing downtime and optimizing performance in an increasingly

data-intensive landscape. As DCIM continues to evolve, it is expected to play a transformative
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role in supporting the digital infrastructure's future through sustainable and adaptive management

practices (Bjarke Fenger, 2024; Jeff Safovich, 2024).

2.4. Maintenance Scheduling Optimization

Recent literature emphasizes the growing sophistication of maintenance scheduling
optimization, particularly through the integration of predictive maintenance technologies.
Leveraging Artificial Intelligence (AI) and the Internet of Things (IoT), modern predictive
maintenance frameworks enable accurate failure forecasting, thereby reducing downtime and
improving cost-efficiency across various sectors. For instance, Al-driven solutions in Electric
Vehicle (EV) systems and urban infrastructure, including City Information Modelling and sewer
network analysis, have enabled proactive maintenance and enhanced system reliability (Cavus et
al., 2025). Concurrently, optimization efforts in k-out-of-n systems have explored maintenance
strategies that address load-sharing constraints and common-cause failures (Wu et al., 2023).
Approaches such as two-threshold group maintenance and opportunistic scheduling have
demonstrated significant potential in minimizing operational costs while ensuring uninterrupted
performance. In parallel, DCs represent another domain where maintenance optimization is critical
yet underexplored. Studies highlight the strategic shift in DC maintenance—from a technical
necessity to a core management function—and recommend incorporating advanced models like
Monte Carlo simulations, stochastic reliability analysis, and ITIL-based frameworks. Collectively,
these advancements underscore a cross-sectoral movement toward intelligent, cost-effective, and
resilient maintenance strategies (Fadaeefath Abadi, Bordbari, et al., 2025). According to the
reviewed studies on maintenance scheduling optimization, comparative analysis reveals few
models explicitly evaluated for DC cost, availability, and operational constraints. Table 1

summarizes the strengths and limitations of the major applied methods.

26



Table 1: Comparative analysis of maintenance scheduling approaches

Method Key Features Strengths Limitations Applicability to DCs
Time-Based Ignores real-time Limited; not optimal
Simple, easy to
Maintenance Fixed intervals conditions; may for high-availability
implement
(TBM) over-maintain DCs
Reduces
Condition-Based Sensors monitor Requires sensor
unnecessary Moderate; depends on
Maintenance real-time deployment; data
interventions; DC sensor coverage
(CBM) component health may be noisy
predictive
Uses historical High potential;
Predictive Reduces Needs sufficient
and sensor data promising for DCs
Maintenance downtime; historical data; model
for failure with monitoring
(AI/ML) proactive complexity
prediction systems
Opportunistic & Combines Minimizes Complex scheduling Moderate; must
Group maintenance disruption; cost- may conflict with integrate with DC
Maintenance across assets efficient availability priority systems
Monte Carlo & Probabilistic Limited without
Captures Computationally
Stochastic failure simplification in
uncertainties intensive
Reliability modelling large DCs
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2.5. K-out-of-N Configurations and Fault-Tolerant Frameworks

In complex engineering applications, fault-tolerant system design is critical for ensuring
reliability. These k-out-of-n systems have been widely studied and compared with other fault-
tolerant strategies such as N + 1 redundancy, active/standby redundancy, and system-level

redundancy.

Component-level versus system-level redundancy for k-out-of-n configurations has been
analyzed by researchers (Kuiti et al., 2017), demonstrating that component-level redundancy often
enhances fault tolerance more efficiently than system-wide redundancy. Similarly, the reliability
of k-out-of-n data storage systems has been investigated with deterministic repair times under
serial and parallel repair models (Aggarwal, 2016). The study found that parallel repair strategies
enhance system reliability by minimizing downtime compared to sequential repairs. Also, the
redundancy allocation in k-out-of-n systems was explored by evaluating active versus standby
redundancy, concluding that selecting an optimal redundancy strategy improves both reliability
and cost efficiency (Aghaei et al., 2017). The researchers demonstrated how the k-out-of-n

configuration is a viable alternative to traditional N + 1 redundancy models.

Further research on comparing k-out-of-n systems with other fault-tolerant methods has been
seen in recent studies. The Matrix-cased System Reliability Method (MSRM) and the Reliability
Growth Models (RGMs) have been applied to k-out-of-n systems for reliability growth analysis
evaluation (Byun et al., 2017). The results of the numerical examples in the study demonstrated
the efficiency and applicability of the proposed method, concluding that the k-out-of-n
configurations can offer superior fault tolerance compared to traditional redundancy schemes,

particularly in large-scale and complex systems.
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Furthermore, an optimal condition-based maintenance policy for k-out-of-n systems has been
developed, considering the interdependencies between internal deterioration and external shocks
using a Markov decision process framework (Kasuya & Jin, 2025). By modelling stochastic
dependencies, this approach improves maintenance decision-making, achieving up to 9.9% cost
savings in a case study on offshore wind turbines. The findings highlight the importance of
integrating degradation interactions into maintenance strategies, making the approach valuable for

reliability-critical industries (Fadaeefath Abadi, Bordbari, et al., 2025) .

2.6. Utilization of Dynamic Programming in Maintenance Management

Because of the nature of maintenance activities that should be considered in a DC system,
implementing a multi-stage model could have several advantages in allocating maintenance
actions and costs for a component or system. Thus, the DP method and algorithm is a promising
and valuable multi-stage approach that can lead to an optimal maintenance scheduling and
management solution for various multi-state deteriorating components and systems placed ina DC
system and infrastructure. As a quantitative analysis technique, in various large and complex
problems that have sequences in their decision-making process, DP can solve these problems by
dividing them into many decision stages. In the DP problem-solving process, the output of a
decision at one stage will be impacted by the decision(s) made at the beginning of the next stage
(Render et al., 2012). This section highlights relevant publications and research on applying DP in

several industrial systems, applications or infrastructures.

Although the concept of DP was introduced decades before (Bellman, 1957; Bradley et al.,
1977), many publications have recently become available considering the application of DP in
maintenance management and scheduling. In vessel engines (Kian et al., 2019), a mathematical

programming model is used as well as the shortest path DP formulation for a single part and
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multiple parts of the vessel. This model is applied to solve a spare part ordering problem arising
within a logistics system and obtain optimal solutions. The researchers have also used Condition-
Based Monitoring (CBM) as part of predictive maintenance to collect real-time information about
the health condition of the vessel parts (Kian et al., 2019). Another study (Kim et al., 2016) has
worked on comparing Time-Based Maintenance (TBM) and Condition-Based Maintenance
(CBM) policies considering various cost environments for a highway pavement section, which is
part of a stochastically deteriorating infrastructure system. Researchers have selected the DP
algorithm and applied it to obtain the optimal maintenance activity for each year in the CBM
strategy based on the inspection results. According to the literature, DP is one of the most widely
used models to solve maintenance optimization problems for stochastically deteriorating
infrastructures (Kim et al., 2016). Also, in the case of substation equipment (Kuang et al., 2016),
the DP algorithm is proposed to solve the optimal maintenance planning problem considering Life
Cycle Cost (LCC) and reliability. They used DP to minimize the LCC while satisfying the
substation equipment's reliability requirements and final condition state. The results of their model
are compared with the genetic algorithm results, and eventually, the effectiveness of the DP model
in providing less LCC for maintenance planning is proved. In addition, researchers implemented
the DP method for the maintenance of electric power systems and manufacturing systems to obtain
the optimal maintenance strategy and minimize the maintenance costs for a component (Korpijérvi

& Kortelainen, 2009; Liu et al., 2019).

The knapsack problem combined with DP has been studied and conducted in several recent
research works. Using DP, a knapsack problem approach was developed in power distribution
networks to find the optimal preventive maintenance budget for one and two years of the planning
horizon. The research objective was to obtain the best relationship between system reliability and
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maintenance resource allocation (Bacalhau et al., 2013). The DP approach and knapsack model
are capable of solving various problems such as allocation, payload, capital budgeting inventory

control, and other problems in the industry (Fawzy et al., 2017)

In another research, to determine the most cost-effective maintenance and rehabilitation (M&R)
activities, an optimization model was developed. The selected case study was the highway
pavement network within an extended planning horizon (Yoo & Garcia-Diaz, 2008). In their
research work, a multi-dimensional 0-1 knapsack problem with M&R strategy selection
considering priority and feasibility constraints was applied. The formulation has been conducted
based on total benefits dollar value maximization regarding the chosen pavement improvement
activities. Furthermore, the integer 1/0 knapsack Problem has been applied as a DP optimization
method to determine the maintenance activities schedule for maintaining buildings in Indonesia
(Fawzy et al., 2017). In the study conducted by Viska Dewi Fawzy et al., building damage,
occupant participation rate, and maintenance costs are considered criteria based on limited funding

and budget to obtain the optimum solution.

Hence, according to the literature concerning the importance of resource allocation and budget
constraints in different industries and facilities, the knapsack problem is a helpful tool and model
since it deals with maximum capacity as the primary constraint. In various research works,
optimization problems have focused on budget allocation for prioritizing elements and parameters

for maintenance and rehabilitation actions in buildings and facilities (Shehab et al., 2021).

Recently, studies have been conducted on improving the planning and organization of rail
grinding operations which are used in the rail grinding trains(Ilinykh & Bondarev, 2022a)(Ilinykh
& Bondarev, 2022b). The researchers have identified the drawbacks in current approaches through

organizational and technological analysis and proposed a novel approach for planning
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technological interventions concerning the classification of rail defects by importance which
serves as the basis for targeting rail grinding activities, determined through a stochastic decision-
making process utilizing DP methods. An optimal strategy based on DP has been formed for
maximizing income and minimizing expenses by representing the process structure as a matrix,
with elements representing income values resulting from transitions between defect importance
groups due to grinding. Transition probabilities and income values are dependent on available
solution alternatives. The proposed methodology aims to expedite the removal of defects prone to
catastrophic development, thereby enhancing safety, while also addressing less critical defects

economically without compromising safety.

DP has also been used in studies for the Network-Level Pavement Asset Management System
addressing the challenge of selecting Maintenance and Rehabilitation (M&R) activities for Low
Volume Roads (LVRs). Scholars (Albatayneh et al., 2021)have developed an optimization
algorithm using DP and Ant Colony Optimization (ACO) to maximize pavement performance
within budget constraints. Their DP model efficiently explores various treatment combinations,
considering factors such as road condition, available budget, and desired performance outcomes.
By leveraging DP techniques, the study provides practical solutions for road agencies to enhance

network-level pavement management.

Researchers (Mirhosseini & Keynia, 2021) have examined an optimal strategy for a multiyear
maintenance schedule using a risk-based approach and a decoupled failure risk factor model in
distribution networks. Introducing a novel state transition model has resulted in the formulation of

new variables, which are tackled using DP techniques.

Based on the reviewed research works, while DP has demonstrated effectiveness in solving

maintenance optimization problems, it is not without limitations. The most critical drawback is the
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curse of dimensionality, where the state and action spaces grow exponentially with system size,
rendering exact solutions computationally intractable for large-scale applications such as DCs
(Bertsekas, 2012; Puterman, 2014). Furthermore, DP models often rely on simplified Markovian
assumptions that may not fully capture the complex interdependencies of DC infrastructures.
These scalability and modelling challenges restrict the applicability of DP in real-time DC
maintenance planning. To overcome such drawbacks, researchers increasingly turn to
Approximate Dynamic Programming (ADP) and hybrid optimization methods as more practical

alternatives (Powell, 2007).

In summary, this literature review critically evaluated advancements and challenges across
industrial and DC maintenance studies, highlighting gaps in availability-centred, cost-aware, and
predictive maintenance for DCs. These insights form the basis for the research design and
methodological approach presented in the following chapter. Chapter 3 details the proposed
methodology for addressing these identified gaps, with a focus on developing a dynamic,
availability-centred maintenance prioritization framework for DC infrastructure. Specifically,
three models are introduced to support decision-making in maintenance planning, addressing
prioritization, cost optimization for K-out-of-N systems, and cost minimization under availability

constraints for series-parallel system architectures.
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Chapter 3: Methodology

This chapter outlines the research methodology and addresses the overarching problem and sub-
problems related to DC maintenance management. The proposed methodological approach
involves the development and application of optimization models designed to improve the cost-

effectiveness, availability, and reliability of critical infrastructure components.

This chapter presents the following three models developed to support decision-making in

maintenance planning for DCs:

» Dynamic Availability-Based Maintenance Prioritization Model

This model employs a 0/1 multiple knapsack formulation to prioritize maintenance actions
under availability and budget constraints. The knapsack problem was chosen because it
allows explicit quantitative trade-offs between maintenance costs and availability
improvements, providing a rigorous decision-making framework under resource

constraints.

» Dynamic Availability-Based Maintenance Cost Optimization Model for K-out-of-N
Systems
integrates dynamic failure rates and variable maintenance costs to determine the optimal
number of operational components (k) required to satisfy system availability targets while
minimizing total costs. This model allows explicit incorporation of dynamic, time-
dependent failure probabilities and cost variations, enabling decision-makers to optimize
maintenance schedules over multiple periods. Moreover, it provides a flexible framework
for balancing cost-efficiency and reliability, supporting strategic trade-offs between
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preventive maintenance investments and system availability—ecritical in DCs where both

operational continuity and budget constraints are key considerations.

» Availability-Constrained Maintenance Cost Optimization Model for Series-Parallel
Systems
This model is formulated as a Mixed-Integer Nonlinear Programming (MINLP) problem to
minimize maintenance costs in series-parallel DC configurations while ensuring
compliance with required availability thresholds. MINLP was selected because series-
parallel systems introduce nonlinear availability expressions that cannot be adequately
captured with linear formulations. The approach accommodates discrete decision variables,
nonlinear availability functions, and multiple interdependent constraints, making it well-

suited for optimizing cost while maintaining system reliability in complex DC architectures.

These models collectively provide a robust framework for strategic maintenance scheduling,
enabling DCs to maintain high reliability and availability standards within constrained budgets

and varying infrastructure configurations.

3.1. Dynamic Availability-Based Maintenance Prioritization Model for Data Centers

This section presents the proposed maintenance scheduling and prioritization model for DCs
based on DP optimization. The structure, elements, and parameters of the model are defined and
thoroughly described. Aligned with the research objectives outlined in Chapter 1, the model is
designed to optimize the scheduling, prioritization, and maintenance of components (devices)
within DCs. The goal is to determine the optimal number of components requiring maintenance
while ensuring compliance with the availability requirements of DC systems, which are derived

from global DC standards. Specifically, the model incorporates the four primary levels of DC
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availability, known as DC Tiers (Gabriel, 2014; Institute, 2014). Table 2 outlines the

corresponding availability requirements according to the Uptime Institute standards.

Table 2: DC availability requirements based on Uptime Institute tiers (Gabriel, 2014)

DC Availability
DC Tier System’s Description
Percentage
Single non-redundant distribution path serving the IT equipment. Non-
1 99.671%
redundant capacity components.
Meets or exceeds all Tier 1 requirements. Redundant site infrastructure
2 99.741%
capacity components
Meets or exceeds all Tier 1 and Tier 2 requirements, Multiple independent
distribution paths serving the IT Equipment. All IT equipment must be dual-
3 99.982%
powered and fully compatible with the topology of a site’s architecture.
Concurrently maintainable site infrastructure.
Meets or exceeds all Tier 1, Tier 2, and Tier 3 requirements. All cooling
pieces of equipment are individually dual powered, including chillers and
4 99.995%

heating, ventilating, and air-conditioning (HVAC) systems. Fault-tolerant

site infrastructure with electrical power, storage and distribution facilities.

According to Table 2, the system or component’s availability (A¢) parameters, which are further

explained in the “Problem Formulation” section, are integrated into our methodology and

considered the primary thresholds.

Therefore, depending on the desired availability level for the Data Center are:

36




o A4,>99.671%, (Tier 1 Data Center) (1)

o A4:>99.741%, (Tier 2 Data Center) (2)
o A4,>99.982%, (Tier 3 Data Center) 3)
o A4:>99.995%, (Tier 4 Data Center) 4)

Hence, in order to meet the availability constraints, the following equation should be valid:

A= At (Required) (5 )

To reach the model’s objective, among several models of DP, the “Knapsack problem” has been
selected as a non-network problem that could involve maximizing or minimizing a specific
parameter such as costs or profits. In the general knapsack problem, some restrictions such as
certain weights or volumes may be considered. The main goal of this type of problem is to put
different items in the knapsack to maximize the total value considering the knapsack’s total

capacity, which could be weight or another similar constraint (Render et al., 2012).

Therefore, the knapsack problem can be considered a combinatorial optimization problem with
a set of items such as loads, volumes, or other parameters. The summation of these items should

be less than or equal to the total capacity of this knapsack (Fawzy et al., 2017).

Some important terms and concepts are inherent in a DP problem of any size, type, and

complexity. These parameters are described briefly below based on the DP knapsack problem.

e Problem’s Stage: This is a period or a logical subproblem within the whole problem.

e Problem’s State variables: The stage’s conditions which are the input variables.

e Problem’s Decision variables: At each stage, there are alternatives or possible decisions.
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e Problem’s Decision criterion: The statement related to the problem’s objective.

e Optimal policy: These are the rules for each decision and are developed based on the
decision criteria. This policy provides the optimal decisions for any entering condition at

any stage.

e Transformation: The relationship which is established between the problem’s stages

(Render et al., 2012)

Therefore, in each DP problem, in the first step, the original problem is divided into several sub-
problems defined as the problem’s stages. The second part includes solving the problem’s final
stage considering all possible conditions or states. In step 3, the recursive process is conducted to
work on the problem from the last stage to solve each intermediate stage by defining optimal
policies from that stage to the problem’s final stage. Finally, the optimal solution is achieved in

step 4 for the original problem when all stages are solved logically (Render et al., 2012).

According to resources, there are different types of knapsack problems such as the 0/1
knapsack, the Bounded knapsack, the Unbounded knapsack, the Subset-Sum, Integer knapsack,
Fractional knapsack, Multiple knapsacks and the Bin-Packing Problem which can be applied in
different cases (Codesdope, n.d.; Motion and Shape Computing Group, n.d.). Some of these types

have been selected and modelled in this research.

3.1.1. Model’s Formulation

In this research, the 0-1 (or 0/1) knapsack problem, combined with the multiple knapsack problem
has been selected to formulate the proposed maintenance management and prioritization problem.
This version of the knapsack problem is applied when indivisible and discrete items or parameters

are considered (Shehab et al., 2021).
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Based on the general definition, there are different kinds of items (i), and each item has a weight
(w) and a corresponding value (v). The number of i1 types of items selected to be placed in the
multiple knapsacks are notated with xi, and the full knapsack’s capacity is W (maximum weight)

(Codesdope, 2023).

According to this version’s requirements, at the selected timeframe (week or month), an item
can be either included in the knapsack or excluded. So, including a fraction of the item or more

than one item of each type is not allowed in this version of the knapsack problem (Terh, 2019).

Therefore, regarding the information mentioned above, the primary and general formulation
(Equations 1 and 2) derived from various resources (Jensen & Bard, 2003; Optimization Expert,

n.d.) of the knapsack problem is structured as follows:

n
Maximize Z = Z xi(t) Vi(t) (6)
i=1

Subject to:

n

in(t) Wity < W (7)

i=1

The parameters are defined as follows:
Z = Number of maintained components within a fixed budget in a specific timeframe,

Xi)= Quantity of each item included in the knapsack (which could be binary or non-binary

depending on the problem’s type in each timeframe (t),

Vi(ty= The value of each item included in the knapsack in each timeframe (t),
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W)= The item’s weight in each timeframe (t),

And W= Maximum weight capacity of the knapsack in a specific timeframe.

In the DP approach for solving the knapsack problem, each item is represented as the problem’s

stage, which has a corresponding decision of either including the item in the knapsack or not.

Equation (6) represents the objective function, which aims to minimize the total maintenance
costs over a specified planning horizon. The costs considered include six types of maintenance
costs such as preventive, corrective and other associated maintenance costs which have been
demonstrated further in this section. Thus, the objective function integrates multiple cost

components to provide a comprehensive cost minimization strategy.

Also, Equation (7) demonstrates the constraints associated with the maintenance scheduling
problem. It ensures that the maintenance activities are scheduled within the allowable time
windows and resource limitations. The constraints take into account the availability and reliability
requirements of the DC components, which are critical for maintaining optimal operational

performance.
3.1.2. Application of Dynamic Programming

As mentioned previously, the DP approach has been selected and applied to solve a Multiple
and 0-1 knapsack problem. Based on studies, this powerful algorithmic technique has the
capability of solving complex problems and breaking them down into simpler overlapping
subproblems. The DP model stores the solutions of the subproblems in a table to avoid redundant

computations.

The model used in this research includes the main and important features of DP which as

described below.
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e Overlapping Subproblems

Since the core feature of DP is identifying and solving the overlapping subproblems, the
multiple knapsack Problem finds the optimal value for different capacities of each knapsack and
considers different subsets of items. A 3D table[k][i][j] has been created and used in this
formulation to store the optimal values for the subproblems. The k parameter represents the

knapsack index, i is defined as the item index, and j is the remaining capacity.

e Optimal Substructure

The optimal substructure property is another important feature of DP which defines the optimal
solution to a larger problem, and it is constructed using optimal solutions to the smaller
subproblems. In our problem, the optimal value for a specific knapsack and its capacity is built
upon the optimal values for smaller capacities and subsets of items, which leads to a bottom-up

calculation and model.

e Memorization

The 3D table[k][1][j] stores the intermediate results to avoid repetitive calculations which

improves the algorithm’s efficiency by omitting the extra computations for the same subproblems.

e State Transition

In the DP approach, we have the recurrence relation which is determined by the transition
between the subproblems considering the items and capacity of the knapsack. This transition

mechanism is useful to dominate the items and to obtain the optimal value at each subproblem.

Therefore, according to the above-mentioned features and the systematic approach, the code

used in this research implements a specific Multiple and 0-1 Knapsack Problem, which has a
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maximum constraint value for each knapsack (the fixed monthly budget). This algorithm breaks
down the whole problem into subproblems, stores the solutions, and calculates the optimal
distribution of items among all knapsacks (12 knapsacks representing 12 months in our specific
model) as well as checking the capacity limitation of each knapsack and ensures that each of the
12 knapsacks has the maximum value (availability improvement factor in our research model) and
the maximum permitted item (the components) (Bellman, 1957; Cormen et al., 2022; Dasgupta &

Papadimitriou, 2006; Kleinberg & Tardos, 2006).

3.1.3. Application of the Knapsack Problem in DC’s Maintenance Management

In this research and according to our specific application, the parameters of the knapsack

problem are defined as follows:

The items packed in the knapsack are the devices (components) classified based on their

condition state according to their Facility Condition Index (FCI).

e The value of each device (component) in the DC is considered based on a novel scoring

system calculated according to its availability improvement after maintenance action.

e The weight of each item is the total maintenance costs each year for each device

(component) to improve their availability percentage.

e Maximum weight is defined as the total allocated maintenance budget (financial resources)

for the DC to conduct the maintenance action for the components (devices) each year.

3.1.3.1. Multiple and 0-1 Knapsack Problem
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In this scenario, components with different condition states in a DC have a low availability
percentage (lower than 99.982% for tier 3 DC) and need maintenance improvement to maintain
their operations. Thus, this model aims to obtain the maximum number of these components which
can reach the minimum availability threshold within a fixed budget each month by conducting
proper maintenance actions. In this scenario, a component can be selected only once for the

maintenance action(s).
3.1.4. Mathematical Formulation

In this model, there are a set of n items, each having a weight (w;) and a value (vi) with the capacity
of (Cx) to have the maximum items with maximum values distributed monthly within a one-year

time horizon while respecting the capacity constraint of each knapsack (budget limitation).

Hence, the inputs of this model are:

e Setofitems: = {1, 2, ..., n}

e Set of knapsacks: K= {1, 2, ..., m}

e Item weights: w;, foriin I

e Item values: v, foriin I

e Knapsack capacities: Ck, for k in K

¢ Maximum allowed items per knapsack: M

The decision variable is xik = 1 if item i is selected for knapsack k (or t), 0 otherwise

Thus, this parameter is a binary variable (0 or 1), indicating whether item 1 is selected for

knapsack k.
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The objective function is to maximize the total value of each knapsack as follows:
n
Maximize = Z Xik) Vi (8)
i=1
The model’s constraints are:
Each item (component) can be selected at most once:
n
Z Xiky < L foralliinl 9)

i=1

There is a capacity constraint (fixed monthly budget) for each knapsack:
n
Zwi * Xy < Cy, forallkin K (10)
i=1

There is also a maximum allowed items (components) per knapsack constraint:

n
le-(k) < M, forallkinK (11)

i=1
3.1.5. Model’s Parameters

There are several parameters and criteria which are considered and included in the proposed
maintenance management model. In this section, before presenting the case study implementation

and the problem’s solution and results, these parameters are elaborated and explained.
3.1.5.1. System’s Reliability and Availability

These terms are crucial criteria for any system, subsystem or component in a complex

infrastructure such as a DC. Reliability is defined as the ability of a component, subsystem or
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system to have operational performance considering specific conditions and periods. Also, this
term is applied as a performance-based metric presenting the component’s success ratio or success
probability during its operation (Heising, 2007a). Moreover, the failure rate is another critical
parameter for performing a system’s reliability analysis which is defined as the mean number of

system failures within a timeframe (Rahmat et al., 2013a).

System availability is generally calculated based on the two (or three) following metrics. The
first one is the Mean Time Between Failure (MTBF), which is the computed average time between
failure occurrences (Heising, 2007a) or the Mean Time to Failure (MTTF). MTTF is used for
replaceable or non-repairable components or devices in a system for component failure rate

prediction. Otherwise, MTBF will be considered (Kidd, 2019).

In addition, the Mean Time to Repair (MTTR) is the second parameter used to calculate the
system’s availability. It represents the average time consumed to repair a component and restore
it to full operating functionality after a failure. MTTR is also known as Mean Time to Restore or
Mean Time to Recover. This factor could be obtained by dividing the total maintenance time by

the total number of maintenance actions within a time horizon (Riello Elettronica Group, 2021).

The system’s Availability is expressed as several “nines,” which represent the percentage of
operational time within a year for a component or system. The system availability formulas are

shown below (Loeffler & Spears, 2014; Pourhosseini & Nasiri, 2018b).

MTBF (or MTTF)
MTBF (or MTTF) + MTTR

Availablity of system/component =

(12)

45



This formulation is also defined as “Inherent Availability” by some references such as RAC
Toolkit, MIL-STD 338, and IEEE Dictionary (Heising, 2007a), which only includes the time for

repairing failures and the logistics time is not included.

According to relevant resources, the term “Availability” specifically for IT infrastructure is
defined as follows: “The degree of readiness expected of information systems and IT resources to
deliver an appropriate and timely level of service, regardless of circumstances.” (Treasury Board

Secretariat, 2021).

Hence, to conduct the reliability and availability analysis, the main parameters: failure rate,

MTBF (MTTF) and MTTR, are obtained and presented in the following sections.
3.1.5.2. Condition State Index

There are several guidelines, approaches, methods, and standards for asset condition assessment

(Federal Transit Administration, 2018; The Regional Municipality of Durham, 2019)

According to various condition assessment reports and relevant research works, different
measuring systems, criteria, ratings, and rankings have been used to assess and measure an asset’s

health condition in a facility or infrastructure (Ahmed et al., 2020; Town of Ajax, 2017).

In some Facilities Condition Analysis (FCA) references, the Facility Condition Needs Index
(FCNI) metric has been calculated for DCs and other facilities to conduct the condition analysis
(DTZ, 2013). This parameter is obtained by dividing the recommended upgrade costs divided to

the facility replacement costs.

In this research, by conducting a general search on some of these resources, a condition

assessment and analysis ranking based on the information provided by the Institute of Public
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Works Engineering Australasia (IPWEA) and the National Asset Management System (NAMS)

Group (New Zealand) is assumed and implemented.

The following asset condition grading system shown in Table 3, is the Simple Approach

presented by the International Infrastructure Management Manual (IIMM) (IPWEA and NAMS,

2012). This approach is adopted and applied in this research to assign a condition state ranking to

DC’s assets and components for the maintenance management model.

Table 3: Asset condition grading system (IPWEA and NAMS, 2012)

Rank (Rating) Asset Condition Description of Condition
A brand-new device or near new condition -
1 Excellent or Very Good
Only routine maintenance required
2 Good - Minor Defects Only Minor maintenance required (5%)
Adequate - Maintenance Required to
3 Significant maintenance required (10-20%)
Return to Accepted Level of Service
4 Marginal - Requires Renewal Significant renewal/upgrade required (20-40%)
5 Poor - Asset Unserviceable Over 50% of asset require replacement

3.1.5.3. Maintenance Costs

Since the goal of this model is to minimize total maintenance costs, data on the maintenance

costs of each component over a specific time horizon in the DC were collected from reliable

sources, including manufacturer data, industry reports, and field observations. These costs serve
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as critical inputs into the proposed optimization model, capturing the economic implications of

maintenance strategies across varying operational scenarios.

As briefly mentioned in Subsection 3.1.1 (Problem Formulation), the model considers multiple
types of maintenance costs. These costs encompass both preventive maintenance (aimed at
minimizing failure risks) and corrective maintenance (which addresses unexpected repairs).
Additionally, they incorporate real-world variations in repair complexity, system requirements,
and component-specific needs. To comprehensively represent these aspects, the following six

distinct maintenance cost categories are specified:
Cr(,: Costs of services for each incident/failure
CpMmcy): Preventive maintenance costs
Cemy: Corrective maintenance costs
Crc(iz: Costs of power and cooling services
Ccr,y: Component renewal costs
Ci,p: Investment costs

Hence, to calculate the total maintenance costs of each ‘i’ component at time ‘t” which is defined

as wi(t), the following formula is used.
Wit)= Crip T Cemin T Coma,n + Credn + Ceran + Cidyy (13)

This formula reflects the cumulative nature of maintenance expenses, ensuring that all cost

dimensions are accounted for in the optimization process.
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To provide further clarity, additional details regarding the calculation and application of these
costs, as well as their integration into the optimization framework, are elaborated in Chapter 4

(Case studies and Results).
3.1.5.4. Algorithmic Framework and Case Study Context

In addition, a flowchart illustrating the Dynamic Availability-Based Maintenance Prioritization
Model's algorithm is presented in Figure 5, providing a clear and concise step-by-step visual
representation of the process. It outlines the key stages, including input identification and
validation, DP table initialization, iterative evaluation of components against budget constraints,

and optimal solution computation, culminating in the generation of a prioritized maintenance plan.

The Uninterruptible Power Supply (UPS) system (APC Symmetra PX 500 kW with Right-
Mounted Maintenance Bypass and Distribution) has been selected as the component for the case
study in this model, as well as in the two other maintenance optimization models. These models
will be further elaborated and discussed in Chapter 4 under Section 4.1, Case Study

Implementation.

Furthermore, the analytical procedures and findings of the Dynamic Availability-Based
Maintenance Prioritization Model for DCs are comprehensively presented in Chapter 4. In
particular, this includes the detailed reliability and availability analysis of the case study, together
with the outcomes of the knapsack problem formulated for maintenance management and

scheduling.
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Start
Begin the knapsack problem

1. Identify Inputs
= Items (UPS components)
=Values (UPS availability improvement)
= Weights (UPS maintenance cost)
+Knapsack capacity (monthly maintenance budget)
« Minimum required total system availability

!

2. Input Validation /

Validate inputs (length, positivity, range)

Return Error:
*Request |« -nvalid—
correct inputs

3. Validate inputs

Valid

!

4. Initialize the Dynamic Programming (DP) Table
k: Knapsack (month)
i: Component
j: Remaining capacity

5. Loop Through Items (Components)
Check if the component fits within the budget
(capacity constraint)

Skip the

component

Yes

Add it to the
knapsack

5. Applying State Transition (Recurrence Relation) and populating the DP Table
» Decide whether to include the component based on maximizing value
= Store optimal values in DP table to avoid redundant calculations

J

6. Check Constraints
= Each component is selected at most once
= Budget constraint for each month is respected
= Maximum allowed components per knapsack

J

7. Compute Optimal Solution
« Distribute components across 12 knapsacks (months)
= Ensure maximum availability improvement within budget

|

‘ 8. Output Optimal Maintenance Plan

Figure 5. Flowchart of the dynamic availability-based maintenance prioritization model algorithm
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3.2. Dynamic Availability-Based Maintenance Cost Optimization Model for K-out-of-N

Systems in Data Centers

This section presents and discusses the proposed availability-based maintenance cost
optimization model for a k-out-of-n parallel system in DCs by implementing the DP method.
Before presenting quantitative analysis, the structure of the model and its elements and parameters

as well as the assumptions, are defined and described.

This model formulates a dynamic maintenance cost optimization model specifically designed
for parallel k-out-of-n-configured components in DCs. It optimizes the selection of k components
to minimize maintenance costs, while ensuring the system meets the required total availability
threshold. This k-out-of-n configuration is particularly relevant in DC environments where
uninterrupted operations are critical, and maintenance budgets are constrained. It is imperative to
acknowledge that within the proposed model, the optimal (minimum) count of k components in
the k-out-of-n configuration is attained precisely when the prescribed minimum total system
availability percentage is fulfilled. This constraint has been discussed earlier in this thesis since it
has also been considered to formulate the first model (Dynamic Availability-Based Maintenance

Prioritization).

3.2.1. Model’s Formulation and Algorithm

According to the information mentioned above, the primary optimization formulation is structured

as follows:

Minimize Z = Total maintenance costs of assets (components) in the DC =
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n
D i x Xy (14)
i=1

Where:
Cirepresents the maintenance cost of each component at time t.

Xitrepresents the binary variables for each component, where i ranges from 1 to n and indicates

whether a specific component is chosen (1) or not chosen (0) at time t.

The above optimization formula is subject to the total system’s availability constraint (discussed

earlier) as follows:
n
1= [1a = Aid = Acrequirea (15)
i=1

Where:

Az availability of the ith component at time t, which is the probability that the component is

operational at time t.

At Required: the required system availability threshold at the time, which represents the minimum

acceptable level of system availability required for the system to meet its operational objectives.
This constraint represents the system’s availability condition in a parallel k-out-of-n system.

Thus, the above information demonstrates the objective of minimizing the total maintenance
costs by selecting the optimal combination of components, subject to constraints ensuring that the

selected components achieve the required system availability.
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The DP algorithm used and applied in this research efficiently determines the optimal number
of components to minimize the total maintenance costs while ensuring that the total system
availability meets the specified minimum availability requirement (based on DC standards). By
utilizing DP, the algorithm calculates the minimum maintenance cost for each possible
combination of components. It considers both cases: choosing or not choosing the current
component. Then, the system availability is computed, and the optimal number of components (k),
the corresponding minimum maintenance cost, and the final system availability are given as the

algorithm’s outputs.
3.2.2. Model’s Parameters

Before detailing the case study implementation and addressing the problem's solution, this
section explains the main parameters and criteria used in this maintenance cost optimization model

as follows:
n: total number of components

MTBF [MTBF1, MTBF2, ..., MTBFn]: the list of Mean Time Between Failures (MTBF) for

each component.

MTTR [MTTRI1, MTTR?2, ..., MTTRn]: the list of mean time to repairs (MTTR) for each

component.
Maintenance costs [costl, cost2, ..., costn]: list of maintenance costs for each component.

K (integer variable) represents the number of components to choose (from a total of n

components).

Min_availability: the minimum required system availability.
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The concepts of system reliability, failure rate, and system/component availability - along with
the associated metrics such as Mean Time Between Failures (MTBF), Mean Time To Failure

(MTTF), and Mean Time To Repair (MTTR) - have been previously introduced in Section 3.1.

Additionally, the interpretation of system availability expressed through "nines," the standard
availability formula, and the DC availability thresholds based on the Uptime Institute’s Tier
classification have been comprehensively discussed in Section 3.1. As such, these fundamental
principles are regarded as already established within the framework of the proposed methodology
and will not be reiterated in subsequent sections unless further specification or refinement is

required for the model’s development.

Consistent with the formulation of the first model (Dynamic Availability-Based Maintenance
Prioritization) outlined earlier, the Asset Condition State Index - previously detailed through the
discussion of condition assessment methodologies, grading systems, and corresponding
maintenance strategies - has likewise been considered and incorporated into the development of
the proposed optimization model. As the same condition state indexing system has already been
established and applied to categorize maintenance costs and guide the optimization process, further

elaboration in this section is deemed unnecessary.

In this model, the same six maintenance cost categories used in the previous model (Cry),
CpMma), Cemay, Credy, Cergyy, and Cig,y) are considered to ensure consistency and comparability
in cost estimation. In addition, an extra cost component, Cg,) (costs of battery replacement
service), is incorporated to address the specific maintenance needs of K-out-of-N system
configurations where battery reliability is critical. Accordingly, the total maintenance cost of

component i at time ¢ is calculated using the following formula:
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Cit= Criyp + Cemiy + Comiy + Crey + Caiy + Ceray + Cry (16)

This formulation ensures comprehensive coverage of all relevant cost dimensions within the

optimization process.

Additional details regarding the calculation and application of these costs are presented in

Chapter 4 (Case studies and Results).

3.2.3. Dynamic Programming Approach

In this section, the Dynamic Programming (DP) approach is described. The DP model optimizes
maintenance costs for k-out-of-n configurations while ensuring system availability thresholds are

met.

The DP algorithm identifies the optimal combination of k components from n available units
by solving recursive subproblems. Each decision state represents a set of operational components,

with transitions reflecting maintenance actions and costs. This algorithm evaluates the following:

System Availability: ensures the selected configuration meets or exceeds the availability

threshold, depending on the selected tier.

Cost Minimization: selects the configuration with the lowest total maintenance cost while

meeting the minimum availability requirement.

The following steps show how DP is applied in the algorithm to solve the problem.

e DP Table Initialization

First, the algorithm creates a 2D table, which is initialized with dimensions (n + 1) X (n + 1),

where n is the total number of components.
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Each cell dp[i][j] in the DP table represents the minimum maintenance cost to achieve system

availability with i components, where j out of the total i components are selected.

e Base Cases

The base cases handle the scenarios with 0 or 1 components:

The dp[i][0] is set to 0, which indicates no cost for 0 availability (no component is selected),
and when it is set to infinity, it means that there is an infinite cost for non-zero availability with no

components available.

e Filling the DP Table

The DP bottom-up approach has been utilized to iteratively complete the DP table, and the
nested loops iterate through all possible numbers of components (i) and all possible component

selections (j).

Two cases are considered for each cell dp[i][j]:

In Case 1, the current component is not chosen and dp[i][j] is updated with the minimum cost

from the previous row, indicating not choosing the current component.

In Case 2, the current component is selected and if the current component is chosen (j < 1), the

system availability is calculated.

Then, if the calculated system availability meets the minimum requirement, the minimum
maintenance cost is updated based on the previous row and the maintenance cost of the current

component.
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It should be noted that each state in the DP algorithm represents the operational status and
maintenance cost of specific components, with decisions based on recursive evaluations of the

subproblems.

e  Obtaining the Optimal k and the Minimum Maintenance Costs

After the DP table completion, a loop iterates over possible numbers of components (k) to find
the optimal solution, which is the one achieving the minimum maintenance costs while meeting

the availability requirement.

e  Final Output

The minimum cost and corresponding optimal number of components are determined, and the
final system availability and other relevant information, such as the optimal number of components

and minimum maintenance costs, are provided as the algorithm outputs.

Therefore, the proposed DP application efficiently solves the optimization problem by breaking
it down into smaller subproblems and reusing solutions to those subproblems, resulting in an
optimal solution with improved time complexity compared to brute force or other recursive

approaches. A summary of the proposed algorithm is provided below.

This algorithm takes as inputs the total number of components (n), their Mean Time Between
Failures (MTBF), Mean Time To Repairs (MTTR), maintenance costs, and the minimum
acceptable system availability. The outputs include the optimal number of components (k) to
achieve the required availability, the minimum associated cost, the final system availability, and

the specific combination of selected components.

The process begins with input validation to ensure all lists are consistent, the MTBF and MTTR

values are positive, and the minimum availability is within the valid range (0—1) depending on the
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DC’s tier. Next, the availability of each component is calculated using Formula (3) (Availability
= MTBF/(MTBF + MTTR)), which was presented earlier. A DP table is then initialized to
systematically store the best combinations of components for varying selections, tracking both
availability and cost. The table is populated by evaluating all possible combinations of components

to identify those that meet or exceed the minimum availability requirement at the lowest cost.

The algorithm subsequently determines the optimal number of components (k) by selecting the
configuration that satisfies the availability constraint while minimizing costs, ensuring that at least
five components are included. Finally, the results—optimal k, minimum cost, final system
availability, and the chosen combination of components—are extracted from the DP table and

returned as the solution.

The following pseudocode presented in Algorithm 1, provides a high-level overview of the
model to assist readers unfamiliar with the DP algorithm. It outlines the key steps, from input
validation to determining the optimal component selection while minimizing the total maintenance

costs and meeting the total required system availability.

Pseudocode for the optimal UPS component selection algorithm:

Algorithm 1. Optimal UPS Component Selection.

1: FUNCTION FindOptimumUPSCombination(components, requiredAvailability):
2: // Validate Inputs
3: FOR each component IN components:

4: IF component. MTBF < 0 OR component. MTTR < 0 OR component.MaintenanceCost <

S: RETURN “Error: Invalid input values.”
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6:

7:

8:

9:

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

20:

21:

22:

23:

/I Compute Availability for Each Component
FOR each component IN components:

component.Availability = component. MTBF/(component. MTBF + component. MTTR)

// Initialize DP Table

DPTable = Array[ NumComponents][requiredAvailability + 1] filled with Infinity

// Check Feasibility
IF no valid configuration exists:

RETURN “Error: No valid component configuration found.”

// Populate DP Table
FOR k FROM 1 TO NumComponents:
FOR each combination OF components:
total Availability = ComputeTotal Availability(combination)
totalCost = ComputeTotalCost(combination)
IF totalAvailability > requiredAvailability:

DPTable[k][total Availability] = MIN(DPTable[k][total Availability], totalCost)

// Determine Optimal k
OptimalK = —1, MinCost = Infinity

FOR k FROM 5 TO NumComponents:
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24: FOR j FROM requiredAvailability TO 0:

25: IF DPTable[k][j] < MinCost:
26: MinCost = DPTable[k][j]
27: OptimalK =k

28: // Output Results
29: IF OptimalK =—1:

30: RETURN “Error: Required availability cannot be met.”

31: SelectedComponents = RetrieveSelectedComponents(DPTable, OptimalK, MinCost)
32: RETURN OptimalK, MinCost, ComputeTotal Availability(SelectedComponents),

SelectedComponents

33: FUNCTION ComputeTotal Availability(components):

34: RETURN PRODUCT(component.Availability FOR component IN components)

35: FUNCTION ComputeTotalCost(components):

36: RETURN SUM(component.MaintenanceCost FOR component IN components)

37: FUNCTION RetrieveSelectedComponents(DPTable, OptimalK, MinCost):
38: //Backtrack to retrieve selected components

39: RETURN SelectedComponents
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In addition, a flowchart illustrating this algorithm is presented in Figure 6, providing a clear and

concise step-by-step visual representation of the steps, decision points, and iterative loops.
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l.identify Inputs:
= Number of available components
* MTBF for each component
« MTTR for each component
» Maintenance costs for each component
= Minimum required total system availability

2. Input Validation
Validate inputs (length, positivity, range)

!

Return Error:
*Request
correct inputs

Validate

Anvalid— R
inputs

Valid
1

3. Calculate the availabilities of each component
Availability = MTBF / (MTBF + MTTR)

|

4. Initialize the Dynamic Programming (DP) Table
Store best the combinations of components to meet required
availability and minimum maintenance cost

!

Does any configuration
meet or exceed the minimum required
availability?

Remove

configuration

Yes

}

5. Populate the DP Tahle
Iterate through different combinations of compeonents and fill the DP Table with the best
combinations for different numbers of selected components (k)
« Update best system availability and maintenance cost for each k

|

6. Determine the optimal k
Find k meeting availability with minimum cast
*Ensure k=5

7. Return Results
= Optimal k
+ Minimum Total Maintenance Cost
+ Final Total System Availability
+ Selected Components

l

Figure 6. Flowchart of the dynamic cost and availability-based optimization algorithm for DC components in a

k-out-of-n parallel configuration

62



3.2.3.1. Dynamic Maintenance Costs

It should also be noted that in the implemented algorithm, the concept of variable failure rates

is employed to derive dynamic maintenance costs based on the condition of each asset. By applying

this approach, different failure rate functions are considered, which reflect the varying reliability

and performance characteristics of individual assets within a system, and a more dynamic model

is proposed and implemented.

In the following parts of this subsection, it will be expressed how variable failure rates are

integrated into the code to achieve dynamic maintenance costs:

>

Individual asset characteristics: Each asset in the system is characterized by its own Mean
Time Between Failures (MTBF) and Mean Time To Repair (MTTR). These parameters
define the asset’s failure rate and repair rate, respectively, and serve as a basis for
calculating its availability and determining the impact of its failure on the overall system

performance.

Dynamic availability calculation: The availability of each asset is dynamically calculated
based on its MTBF and MTTR. Availability represents the probability that the asset will

be operational at any given time, considering its historical failure and repair patterns.

Dynamic maintenance costs: maintenance costs are tied to the condition and reliability
of each asset. As the availability of an asset changes dynamically over time, so does the
associated maintenance cost. Lower availability, resulting from higher failure rates or
longer repair times, leads to increased maintenance costs to restore the asset to

operational status.
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» DP optimization: The DP approach is used to optimize maintenance costs while ensuring
system availability meets specified requirements. By considering different combinations
of assets and their associated maintenance costs, the DP algorithm identifies the most

cost-effective configuration of assets that satisfies the availability target.

» Cost-effectiveness analysis: the use of variable failure rates and dynamic maintenance

costs allows for a more accurate cost-effectiveness analysis of maintenance strategies.

Based on the above-mentioned information, failure rates (A), Mean Time To Repair (MTTR),
and Mean Time Between Failures (MTBF) are central to this optimization model and are integrated
into the cost and reliability calculations. The method ensures scalability and adaptability, providing

solutions for various subsystems and operational scales.
To ensure real-world applicability, the model accounts for:
e Variable component aging and failure trends.
e Budget constraints and cost variations for different maintenance actions.

3.3. Availability-Constrained Maintenance Cost Optimization Model for Series-Parallel

Systems

This section presents an optimization model tailored for Series-Parallel systems to support
maintenance decision-making in DCs. The model aims to minimize the total maintenance costs
while ensuring that system availability requirements, aligned with Uptime Institute Tier standards

(presented in Table 2 under section 3.1), are met or exceeded within a fixed monthly budget.

3.3.1. Model’s Formulation
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The model is formulated as a Mixed-Integer Nonlinear Programming (MINLP) problem, where
the decision variable is the number of components—grouped by condition states—selected for

maintenance. The objective function is defined as:

Minimize Z = Total maintenance costs of assets (components) in the DC =
n
minz Ci * x; (17)
i=1

Where:

e Ci: Maintenance cost per unit for component in condition state i

xi: Number of selected components for maintenance in condition state i (X;€Z)

1; Condition state index from 1 to 10

n: number of series subsystems (asset condition states)

As with the two previously presented models, this formulation incorporates availability
constraints defined by the Uptime Institute Tier standards (outlined in Table 2 of Section 3.1).
These constraints ensure that the selected maintenance strategy maintains the required service-

level expectations for DC operations.

3.3.1.1. Model’s Configuration and Constraints

The system under consideration consists of multiple parallel subsystems, each containing
several assets connected in series, as illustrated in Figure 7. This hybrid structure reflects a realistic
DC architecture where redundancy and fault tolerance are achieved through parallelism, while

critical dependencies are modelled through series connections. The model assumes that each
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component's availability and condition state are known and that maintenance decisions are made

periodically based on these inputs.

Asset 1 Asset 1 Asset 1
- - J - J
****** Asset 2 Asset 2 Asset 2 b — =
| | |
| | |
| | |
Asset N Asset N Asset N
| — | — | —
S S S

Parallel Subsystem 1 Parallel Subsystem 2 Parallel Subsystem N

Figure 7. Series-Parallel configuration of DC assets

o Key constraints:

First, for each parallel configuration, the probability of at least one component functioning (i.e.,

system availability) must also satisfy or surpass the target availability level:

m
A Subsystem,i — 1- 1_[(1 -4y = ARequired (18)
i=1

Where:

m: number of units in each parallel subsystem
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Then, for the series configurations, the product of component availabilities must meet or exceed

the required system availability threshold:

n

A System= 1_[( A Subsystem,i) = ARequired (1 9)
i=1

Where:

n: number of series subsystems (asset condition states)

These availability thresholds serve as hard constraints within the optimization framework,
ensuring that the selected maintenance strategies align with the required service-level expectations
for DC operations. These constraints guarantee that the system availability remains at or above the
minimum level specified for each Tier classification, thereby preserving operational reliability and

resilience.

Additionally, the number of components selected for maintenance at each time step must adhere
to the condition-state-based decision variable. Therefore, the component selection bound &

integrality constraints are as follows:

Xit (min) < Xt < Xit (max) (20)

This constraint ensures that at least one unit in each subsystem per each state is selected for
maintenance and the number of selected components per each subsystem should not exceed the

total number of components per each subsystem.

- Total component selection bounds:
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Xi,t (min) < 211=01 Xt = Xi,t (max) (2 1)

This constraint ensures the total minimum and maximum selected components for the whole

Series-Parallel system.

- Integrality constraint:

X €Z Vi=1,..,10 (22)

Finally, the total maintenance costs constraint ensures that the sum of maintenance costs over

the planning horizon does not exceed the predefined budget:

T
z Cis* Xi; <Total budget  (23)
t=1

These constraints collectively ensure that the optimal maintenance strategy remains both

technically effective and economically viable.

It is important to note that all the model parameters—such as system reliability and availability
metrics, definitions of MTBF, MTTR, and failure rates, and the asset condition grading system are

the same used for the two previous models presented in subsection 3.1. and in Table 2.

The comprehensive maintenance cost categories (Cr,), Cpmi,, Cemi,n, Cred,, Ceray, Ci)
are consistent with those introduced in Subsection 3.1 and are similarly applied in this model

formulation to ensure continuity and methodological coherence.
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3.3.1.2. Model’s Implementation

The optimization model was implemented using the Excel Solver add-in, employing the
Evolutionary engine due to the non-linear and integer-constrained nature of the problem (Frontline
Systems, n.d.; Jain, 2024). The choice of the Evolutionary algorithm is justified by its ability to
handle complex, non-smooth functions, discrete decision variables, and multiple interacting

constraints, characteristics inherent to the DC maintenance optimization problem.

e Rationale for Using the Evolutionary Engine

» Non-smooth objective and constraints: The system availability function is non-linear
and involves products of parallel subsystem availabilities, which may include

discontinuities.

» Integer decision variables: Each represents a discrete number of units selected for

maintenance, requiring integer optimization.

» Complex constraints: The model includes per-subsystem bounds, total selection bounds,
budget limitations, and system-level availability requirements, which are efficiently

managed by the Evolutionary solver.

e Advantages and Limitations

» The Evolutionary engine provides feasible, cost-minimizing maintenance schedules for

complex, discrete, and non-linear problems.

> As a stochastic search method, it does not guarantee a global optimum, although

multiple runs can improve solution quality.
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» The obtained solution can be further refined by employing GRG (Generalized Reduced
Gradient) optimization, starting from the best solution identified by the Evolutionary

solver, enhancing local optimality.

The analysis and results of this model are presented in Chapter 4 (Subsection 4.4: Results and
Discussion — Availability-Constrained Maintenance Cost Optimization Model for Series-Parallel

Systems).
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Chapter 4: Case studies and Results

This chapter presents the selected case study and the corresponding outcomes derived from the
application of the developed optimization models. The results from the implementation of each

model are explained in detail as follows:

Dynamic Availability-Based Maintenance Prioritization Model: The outcomes of applying this
model to the case study are discussed, focusing on how it prioritizes maintenance tasks in DCs

based on availability considerations.

Dynamic Availability-Based Maintenance Cost Optimization Model for K-out-of-N Systems:
The results derived from this model are analyzed, emphasizing how it optimizes maintenance costs

while accounting for DC system availability in K-out-of-N systems.

Availability-Constrained Maintenance Cost Optimization Model for Series-Parallel
Systems: The outcomes from this model are explored, illustrating how it optimizes maintenance

costs in systems with availability constraints, specifically for series-parallel configurations in DCs.

The chosen case study serves as a practical validation of the proposed methodologies. The
findings from running the optimization models on the case study are visually illustrated and
explained, demonstrating the models’ effectiveness in prioritizing maintenance, minimizing costs,

and ensuring system availability under real-world operational constraints.
4.1. Case Study Implementation

4.1.1. System and Component Description
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For the implementation and execution of the proposed models, as outlined in the previous
chapter, a collection of UPS units within a DC has been selected as the focal point of investigation.

These units operate collectively as an integral subsystem of the DC’s power infrastructure.

Maintaining continuous operation and minimizing downtime are paramount for DCs,
emphasizing the indispensable role of UPS in their functionality. UPS systems supply power to
equipment during maintenance or unexpected power outages when the primary source fails. It is
crucial for DCs to invest in equipment that aligns with their requirements and to diligently monitor
Key Performance Indicators (KPIs) to ensure seamless operations (MCIM by Fulcrum

Collaborations, 2023).

Various UPS types and configurations are employed across diverse facilities based on their
specific operational needs and demands. UPS systems are broadly categorized into static and rotary
types, further classified into single-conversion or double-conversion topologies. The static UPS, a
fundamental variant, typically integrates a battery as its primary emergency power source in the
DC. This system incorporates electronic switching components to convert DC voltage from the
battery into AC voltage, facilitating its utilization by the connected IT Equipment (ITE).
Additionally, a switch, whether electronic or electromechanical, is incorporated within the static
UPS to manage the transition between primary power and battery backup during power outages
(de Jonge et al., 2015), (Geng, 2015a), (Heising, 2007b). The Schematic Block Diagram of a UPS

system is shown in Figure 8.
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Bypass

UPS (VFI)

Mains ———— Conventional or Modular Load

]

- Batteries
]
]

Figure 8. Schematic block diagram of a UPS system (Legrand, 2021)

To simplify the maintenance cost optimization model and have consistency in the results of this
study, a single type of UPS system (APC Symmetra PX 500kW with Right Mounted Maintenance
Bypass and Distribution) has been chosen to conduct the calculations and analysis (APC -
Schneider Electric, 2021) (CDW LLC., 2021b). This UPS is 3-phase, modular and scalable, having
high performance and industry-leading efficiency and capacity, which makes it an ideal power
protection solution for medium to large DCs and mission-critical environments (APC - Schneider
Electric, 2021). Notably, this UPS system is based on a real-world implementation currently in use
at the Cologix MTL3 Data Center in Montréal, Québec, Canada (Cologix, 2019), further

demonstrating its practical applicability in a live DC environment.
4.1.2. Failure Modes, Condition States and Maintenance Actions

Building upon the condition state rankings and descriptions outlined earlier in Chapter 3, this
subsection delves into the specific details and potential failure modes associated with a UPS

system within the DC infrastructure.
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Various methods and approaches have been employed by researchers to determine the

reliability parameters of components. Failure Modes, Effects, and Criticality Analysis (FMECA)

has been utilized to investigate the causes and impacts of component failures. For UPS systems,

manufacturers typically use field data measurement methods to estimate reliability parameters.

Additionally, some studies have employed RBD and Monte Carlo simulations to calculate UPS

failure rates, MTBF, availability, and unavailability (Rahmat et al., 2013b). Therefore, the

reliability data in this study have been derived from these pertinent sources.

Figure 9 shows the top 10 failures in UPS components, which were collected from various

manufacturers by Fulcrum Collaborations (MCIM by Fulcrum Collaborations, 2023).

Static UPS Failure Modes

B Manufacture A B Manufacture B B Manufacture C B Manufacture D B Manufacture E

Output Breaker Failure
Electrical Component Failure

UPS System Board Failure

Communication Alarm

Top 10 UPS Failures by Manufacturer (Sorted by % of Failures)

Input Breaker Failure
Utility SAG

UPS Battery Failure
Transfer to Bypass

System Alarm

Fan Failure

=]
=2
&
1]
S

10% 15% 20% 25% 30%

Percentage of recorded Failures

Figure 9. Top 10 failures in UPS systems (MCIM by Fulcrum Collaborations, 2023)
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To operationalize the proposed maintenance optimization models, as described earlier in
Chapter 3 and presented in Table 3, a discrete scale of 1 to 5 was employed to represent the varying
physical and functional condition states of the UPS units. This ranking system facilitates the
integration of these condition states into the model, enabling the selection of appropriate

maintenance actions.
4.1.3. Reliability and Availability information

As mentioned in the previous section, variable failure rates for the UPS units based on their
conditions are employed to derive dynamic maintenance costs and deploy them into the

maintenance cost optimization model.

Regarding the asset condition grading system presented earlier in Chapter 3 (Table 3), a ten-
point classification scheme, with 10 representing the best and 1 the worst condition, was
established for the UPS systems based on their failure rates and availability percentages. The
MTBF and MTTR data were sourced from the IEEE 493-2007 standard, specifically for UPS
systems in small computer rooms (Heising, 2007b). This data served as the baseline for the best
asset condition (State 10). To comprehensively represent the reliability profile for the remaining
condition states (from 1 to 9), additional parameters were incorporated through informed
assumptions. The mentioned categories and parameters are shown in the table below (Table 4)
(Heising, 2007b) for a static UPS system. The available UPS units in the case study system are

named UPS DC 1 to UPS_DC 10 (for conditions 1 to 10, respectively).
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Table 4: UPS system’s reliability and availability data (Fadaeefath Abadi, Haghighat, et al., 2025; Heising, 2007b)

Asset Asset
Asset Condition MTBF |[MTTR |Failure Rate o
Condition Availability
State (hrs.) | (hrs.) | (per year)
Description (percentage)

Brand new device or near new )
10 933,708| 2 0.009382 | 99.999%
condition

Brand new device or near new

9 930,000 4 0.009419 | 99.999%
condition
8 Fully operational device 850,000| 8 0.010306 | 99.999%
Partially operational device with some
7 500,000/ 12 | 0.017520 | 99.997%
failures

Partially operational device with some
6 300,000 14 | 0.029200 | 99.995%
failures

5 Fair condition 100,000| 18 | 0.087600 | 99.982%

Poor condition and needs component
4 50,000 | 25 | 0.175200 | 99.950%
renewal (battery or other parts)

Poor condition and needs component
3 30,000 | 27 | 0.292000 | 99-910%
renewal (battery or other parts)

2 Critical condition and near end-of-life | 20,000 | 29 | 0.438000 | 99-855%

1 Critical condition and near end-of-life | 10,000 | 30 0.876000 | 99.701%

The following subsections of this chapter present, analyze, and discuss the detailed results of
the three models: (1) Dynamic Availability-Based Maintenance Prioritization, (2) Dynamic
Availability-Based Maintenance Cost Optimization Model for K-out-of-N Systems, and (3)

Availability-Constrained Maintenance Cost Optimization Model for Series-Parallel Systems.
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4.2. Results and Discussion: Dynamic Availability-Based Maintenance Prioritization Model

Building on the information provided in the previous subsections, the reliability and availability
parameters, condition states, and relevant maintenance actions for assumed UPS units located in a
DC have been identified and quantified. These inputs were then used to develop and implement

the Dynamic Availability-Based Maintenance Prioritization Model.

To run the model and generate results, an availability threshold consistent with Tier 3 DC
standards was adopted as a constraint. According to the Uptime Institute DC (Uptime Institute,
2021a), a Tier 3 DC not only supports the basic capacity requirements for IT infrastructure but
must also meet several key criteria, including the deployment of UPS systems to mitigate power
sags, outages, and spikes, as well as the provision of dedicated spaces for IT systems. Additionally,
Tier 3 facilities require redundant power and cooling components to improve maintenance

flexibility and enhance operational resilience during disruptions.

The results of the model are presented in the following subsection and analyzed with respect to

these operational and availability constraints.
4.2.1. Maintenance Costs Information

In the next step, the relevant maintenance costs have been collected and indicated (CDW LLC.,
2021a; Hummingbird Networks, 2021a) for the UPS system to calculate the total costs for each
maintenance action according to each condition state. Table 5 indicates the list of available
maintenance services provided by the manufacturer and the corresponding costs for the selected
UPS model. The information in Table 5 is essential for understanding the different types of
available maintenance services and their costs. It provides the basis for calculating the total

maintenance costs associated with each maintenance action in the study.
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Table 5: Available maintenance services for the APC Symmetra PX 500kW UPS system (CDW LLC., 2021b;

Fadaeefath Abadi, Haghighat, et al., 2025; Hummingbird Networks, 2021b)

APC Symmetra PX 500kW Scalable to S00kW with Right Mounted Maintenance Bypass and

Distribution - SY500K500DR-PD

Cost per year
Type of maintenance service offered by the manufacturer
(USD)
New device (APC Symmetra PX 500kW) $261,464

Electric Critical Power and Cooling Services Advantage Ultra Service Plan - On-site $44,269

APC Modular Battery Replacement Service - Installation and configuration - On-
site - Includes Installation, maintenance, replacement, or removal of one UPS $9,049

battery during business hours.

APC On-Site Service On-Site Warranty Extension - Extended Service Agreement -

$6,660
Parts and Labour (for UPS 300-500 KVA) - 1 Year - On-site - Business Hours
On-Site Service Upgrade to Factory Warranty or Existing On-Site Service Contract
$2,704
- 4-Hour Response
APC Modular Battery Replacement Service Scheduling Upgrade to 7*24 (7 days a
$2,073
week and 24 hours a day) - Installation/configuration (for UPS battery) - On-site
APC 7*24 Scheduling Upgrade from Existing Preventive Maintenance Service - 1
$1,027

incident - On-site

Table 6 presents the cost calculation details of each individual maintenance action. According to
the six distinct maintenance cost categories presented in Chapter 3, this table breaks down the costs
associated with different maintenance actions, allowing for a detailed understanding of how

maintenance costs contribute to overall maintenance planning and budgeting.
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Table 6: Combined and categorized maintenance costs for the APC Symmetra PX 500kW UPS system (CDW

LLC., 2021b; Fadacefath Abadi, Haghighat, et al., 2025; Hummingbird Networks, 2021b)

Type of maintenance action Cost per year (USD)
Service for each incident/failure $1,026.99*(yearly failure rate)
Preventive maintenance (inspection) $6,659.6
Corrective maintenance $6,659.6 + $2,703.99 = $9,363.59
Battery replacement service $9,048.99 + $2,072.99 = $11,121.98
Electric critical power and cooling services $44,268.99
Component renewal
0.35 * $261,463.99 = $91,500
(30% - 40% of purchasing a new device)
Investment (new device purchase) $261,463.99

According to the data in Table 6, the pie chart provided in Figure 10 illustrates the distribution of
various lifecycle and maintenance costs of the APC Symmetra PX 500kW UPS system over a
given timeframe. The initial investment in the new device accounts for a significant portion of the
overall cost (approximately 62%). Component renewal, Cooling and Power services also form

substantial shares (22%, 10%), while other services contribute less.
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Lifecycle Costs Breakdown for APC Symmetra PX 500kW UPS Maintenance

Preventive Maintenance

Corrective Maintenance Investment

Battery Replacement
v Rep 1.6%

2.2% 61.6%
2.6%

Cooling & Power 10.4%

21.6%

Component Renewal

Figure 10. Lifecycle and maintenance costs distribution for the APC Symmetra PX 500kW UPS system

4.2.2. Maintenance Prioritization Model (0/1 Multiple Knapsack Problem) Results

As mentioned previously, the objective is to obtain the maximum monthly number of UPS
systems which can be improved by conducting proper maintenance actions to reach the minimum
availability requirement (99.982% for Tier 3 DC) considering a yearly fixed budget for the DC
company. The UPS systems in condition state from 5 to 10 are excluded from the model since their
availability percentages are already within the required range (above 99.982% for Tier 3 DC).
Hence, the components in condition states 1 to 4 are included in the knapsack model and their
availability needs to be increased. In this scenario, it is assumed that the DC company has 24 UPS
devices in operation (from state 1 to state 4 and 6 devices per each condition state) and has the
plan to improve them to condition states 5 or higher to meet the availability requirement of Tier 3

DC (99.982% availability) within a limited monthly and yearly maintenance budget. Table 7 shows
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the corresponding maintenance costs for each UPS device regarding its availability improvement.

The information presented in Table 7 is crucial for demonstrating the financial implications of

maintaining and improving the availability of UPS devices in the DC. It shows the relationship

between maintenance costs and the resulting availability improvement.

Table 7: UPS system’s maintenance costs for its availability improvement

Yearly
maintenance Availability
Current Current Condition Availability
costs for after
UPS ID condition | availability state after improvement
availability improvement
state (%) improvement (%)
improvement (%)
(USD)
UPS_APC500 DC 1 1 99.701% $261,463.99 10 99.999% 0.29889%
UPS_APC500 DC 2 2 99.855% $261,463.99 10 99.999% 0.14458%
UPS_APC500 DC 3 3 99.910% $156,566.84 7 99.997% 0.08752%
UPS_APC500 DC 4 4 99.950% $156,446.89 7 99.997% 0.04758%

It should be noted that due to the nature of maintenance actions and the importance of DCs and

the criticality of UPS devices operating in the DC, the “Yearly maintenance costs for availability

improvement” have been converted to monthly costs so that our model could be more realistic and

to meet the DC company’s maintenance prioritization goals.

Therefore, the corresponding yearly maintenance costs from Table 7 are converted into monthly

costs for a more realistic budgetary application and shown in Table 8. This conversion allows
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maintenance planning to align with monthly budgeting cycles, making it easier for DC companies

to manage their finances and plan maintenance actions within a fixed monthly budget.

Table 8: UPS system’s monthly maintenance costs for its availability improvement

Monthly
maintenance Availability
Current Current Condition Availability
costs for after
UPS ID condition | availability state after improvement
availability improvement
state (%) improvement (%)
improvement (%)
(USD)
UPS_APC500
1 99.701% $21,789 10 99.999% 0.29889%
DC 1
UPS_APC500
2 99.855% $21,789 10 99.999% 0.14458%
DC 2
UPS_APC500
3 99.910% $13,047 7 99.997% 0.08752%
DC 3
UPS_APC500
4 99.950% $13,047 7 99.997% 0.04758%
DC 4

Based on the data obtained from Table 7, a correlation analysis between the Current

Availability, Yearly Maintenance Costs, and Availability Improvement has been performed to

provide a comprehensive view of how these variables relate to each other in the context of the UPS

availability and maintenance costs for DCs. The heatmap in Figure 9 presents this correlation.
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Heatmap of Availability and Maintenance Costs
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Figure 11. Correlation heatmap between the current availability, yearly maintenance costs, and availability

improvement parameters

As illustrated in Figure 11, the colour scale ranges from cool (blue) to warm (red), with darker
shades indicating stronger correlations. The numbers in each cell represent the correlation
coefficients between the variables. A strong negative correlation (-1.00) is observed between
Availability Improvement and Current Availability. Similarly, Current Availability shows strong
negative correlations (-0.80) with both Maintenance Costs and Improved Availability. In contrast,
Availability Improvement exhibits strong positive correlations (0.79) with both Maintenance Costs
and Improved Availability. Finally, a perfect positive correlation (1.00) exists between

Maintenance Costs and Improved Availability.

In addition, the 3D scatter plot presented in Figure 12 effectively illustrates the relationships
between the three key variables for each UPS component which allows for easy comparison of the
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different UPS components across all three variables simultaneously, providing a comprehensive

view of their performance and potential for improvement.

Interplay of Current Availability, Maintenance Cost, and Availability Improvement in UPS ComponenEs4
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Figure 12. The relationships between the three key variables for each UPS component

According to the knapsack problem’s features, the parameters involved in this scenario are as

follows:

UPS ID: The items which should be included (only 0 or 1 item can be selected).
Availability improvement parameter: The value of each item included in the knapsack.

e Maintenance costs: The weight of each item in the knapsack.

DC company’s allocated budget: The maximum weight of the knapsack, which should not be

exceeded while including different items.

The availability improvement of each UPS has been converted to a novel ranking system so

that the summation of all improvement parameters is 1. Thus, the knapsack model aims to include
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the maximum items with the highest values while not exceeding the maximum allocated financial

resources for the maintenance actions of the DC company.

This model has been created and developed according to DP. Based on references and other
studies, the 0/1 or integer knapsack problem, known as a discrete optimization problem, can be
modelled and solved by applying DP. In this knapsack problem, the optimal solution is a set of
integer numbers (Shehab et al., 2021). DP is a very efficient approach for solving these types of
problems since it reduces the duration of repeated iterations and decreases the computing process

by solving a minor central area of the problem as a principal solution (Shehab et al., 2021).

In the DP approach for modelling and solving the knapsack problem, different methods could
be used. Based on the Memorization technique, which is an extension of the recursive approach,
the issues of computing redundant cases can be solved and thus, the problem’s complexity can be
reduced, and the algorithm's running time is decreased (GeeksforGeeks, 2021). Moreover,
although a separate code should be written for each specific DP problem, the approach will always

lead to a global optimum solution after the algorithm termination if the problem has been correctly

formulated (Jensen & Bard, 2003).
4.2.2.1. Model’s Assumptions
This model operates under the following assumptions:
e System Configuration
- The system comprises 24 UPS devices, grouped into 4 types with 6 units each.

- Each UPS has an associated monthly maintenance cost and expected availability

improvement percentage (Table 8).
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Devices are assumed to be independent in terms of availability improvement

contribution.

Availability Constraint

The minimum required system availability is 99.982%, corresponding to the Uptime

Institute Tier III standard.

Components in states 1 to 4 (Table 7), which fall short of this threshold, must be selected

for maintenance to ensure compliance.

Each selected device contributes a fixed availability improvement value when

maintained, as specified in Table 8.

Budget Constraint

The total yearly maintenance budget is $1,500,000 USD, distributed across 12 months

(Table 9).

Monthly budgets are treated as fixed, limiting the number and selection of devices for

maintenance each month.

Component Selection Constraint

Each UPS can be selected only once for maintenance within the one-year timeframe.

The maximum number of components that can be maintained per month is 4, ensuring

feasible scheduling and operational continuity.

System-Level Constraints

Total maintenance actions are constrained by the monthly budget and the maximum

number of components per month.
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- Optimization selects the combination of UPS units that maximizes overall availability

improvement while respecting these constraints.

These assumptions provide the boundary conditions for simulating the Knapsack-based

prioritization model, allowing an assessment of trade-offs between maintenance cost and system

availability improvements under realistic operational and financial constraints.

Table 9 defines the four UPS types (24 components) with their costs and availability

improvements as inputs for the optimization model. The yearly budget of $1,500,000 USD,

distributed monthly (Table 10), constrains the selection, with each UPS maintained only once and

a maximum of 4 components per month allowed.

Table 9: Knapsack problem’s parameters for the maintenance prioritization model

Number of Monthly maintenance Availability Availability
UPS ID (Item) available costs for availability improvement improvement
components improvement (USD) (%) parameter (Value)
UPS_APC500 DC 1 6 $21,789 0.29889% 0.52
UPS_APC500 DC 2 6 $21,789 0.14458% 0.25
UPS_APC500 DC 3 6 $13,047 0.08752% 0.15
UPS_APC500 DC 4 6 $13,047 0.04758% 0.08
Total 24 - - 1

Table 10: Monthly available maintenance budget for the maintenance prioritization model

Month | Monthly fixed available budget (USD) | Month | Monthly fixed available budget (USD)
1 $122,000 7 $110,000
2 $130,000 8 $131,000
3 $151,000 9 $105,000
4 $144,000 10 $132,000
5 $112,000 11 $124,000
6 $137,000 12 $102,000
Total yearly available maintenance budget (USD) $1,500,000
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Finally, after running the Multiple 0-1 knapsack model based on the DP approach, the results
including the quantity of UPS devices selected for maintenance each month, the budget used, and
the monthly fixed available budget are obtained and shown in Table 11. This table provides the
outcome of the optimization model, showing how the maintenance actions are prioritized and

scheduled to maximize availability within the budget constraints.

Table 11: Knapsack problem’s results for the maintenance prioritization model

Quantity of UPS devices selected for maintenance action based on their Monthly
Budget used
condition state fixed
for Value
Month available
UPS_APC500 | UPS APC500 | UPS_APC500 UPS_APC500 maintenance obtained
budget
DC 2 (USD)
DC 1 _DC . DC 3 DC 4 (USD)

1 0 0 0 0 - $122,000 0
2 0 0 0 0 - $130,000 0

3 0 0 0 0 - $151,000 0

4 0 0 0 0 - $144,000 0

5 0 0 0 0 - $112,000 0

6 0 0 0 0 - $137,000 0

7 4 0 0 0 $87,156 $110,000 2.08
8 0 0 4 0 $52,188 $131,000 0.6
9 0 0 0 0 - $105,000 0
10 0 4 0 0 $87,156 $132,000 1.0
11 0 0 0 0 - $124,000 0
12 0 0 0 0 - $102,000 0
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Hence, as seen in Tables 11 and 12, 12 UPS devices (out of 24) having the highest total value
(availability improvement) while meeting the DC company’s budget constraint are selected for
maintenance. In addition, the total obtained value is 3.68 (out of 6) which means that about 61%

of availability improvement value has been obtained.

Table 12: Summary and interpretation of the knapsack problem’s results

UPS_APC500_DC 1,
Selected UPS devices for maintenance action(s) UPS_APC500 DC 2 and

UPS_APC500 DC 3

Total number of selected UPS devices for
12 of 24 (50%)
maintenance action

The maximum value of selected UPS devices for
3.68 of 6 (61%)
maintenance action

It should also be noted that this model was created in the Spyder open-source scientific
environment with Python 3.9 (Python Software, 2021a; Spyder Website Contributors, 2021a;

Tutorialspoint.dev, 2019).

4.2.3. Managerial Implications

This section presents how DC managers can use the approach and findings outlined for the
Dynamic Availability-Based Maintenance Prioritization Model to improve their maintenance
strategies, optimize resource utilization, enhance decision-making, and achieve better operational

efficiency. The proposed Availability-based maintenance prioritization approach has significant
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implications for managerial decision-making and operational efficiency in DCs. Managers and

decision-makers can leverage this approach in the following ways:

e Optimized Resource Allocation:

By applying DP, managers can efficiently allocate maintenance resources, ensuring that critical
components receive the necessary attention while optimizing the use of available budgets. This

leads to a reduction in unnecessary maintenance activities and cost savings in DCs.

e Enhanced Decision-Making:

The approach provides a structured framework for maintenance scheduling, allowing DC
managers to make informed decisions based on comprehensive reliability, failure, and availability
analyses. This data-driven decision-making process helps prioritize maintenance tasks that have

the most significant impact on system availability and performance.

e Improved Operational Efficiency:

Implementing this approach can lead to a more streamlined and efficient maintenance process.
By minimizing unexpected downtimes and optimizing maintenance schedules, DC operations can

run more smoothly, leading to increased productivity and reduced operational disruptions.

e Strategic Planning

The integration of dynamic programming with maintenance management allows for long-term
strategic planning. Managers can use predictive insights to plan for future maintenance needs,

ensuring that the DC infrastructure remains robust and reliable over time.
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e Risk Management:

By focusing on reliability and availability, managers can better manage risks associated with
equipment failures. The approach helps in identifying and addressing potential failure points

before they lead to significant operational issues, thus enhancing the overall resilience of the DC.

e Sustainability and Environmental Impact:

Efficient maintenance management contributes to the sustainability of DC operations. By
reducing unnecessary maintenance activities and optimizing resource usage, the approach supports

environmentally sustainable practices, aligning with organizational goals for sustainability.

e Competitive Advantage:

DCs that follow more developed operating strategies like the one proposed in this article can
have a competitive advantage in the market. It was pointed out that high availability and reliability
are crucial for customer satisfaction and business continuity, and the suggested approach helps in

hitting these goals.

4.3. Results and Discussion: Dynamic Availability-Based Maintenance Cost Optimization
Model for K-out-of-N Systems
4.3.1. Model’s Assumptions
Although the model’s assumptions will be explained in detail throughout the model description,
they are consolidated here to provide a clear and comprehensive summary for clarity in the

following subsections.

Maintenance actions are scheduled on a monthly basis, with decision-making guided by
operational thresholds aligned with Tier I DC requirements. Accordingly, the minimum system

availability is set at 99.671%, consistent with the Uptime Institute Tier I classification (Uptime
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Institute, 2021b). In addition, at least k =5 UPS units must remain operational at all times to satisfy

the DC’s power, reliability and operational requirements
This model operates under the following assumptions:

* System Configuration

- The system is modelled as a k-out-of-n UPS configuration, reflecting redundancy in DC

power systems.

- A total of 10 UPS units are considered in the case study, each with defined condition

states and associated failure/maintenance characteristics.
UPS devices are categorized into three age-based condition groups:
- Group 1: New (0-2 years; states 9—10)
- Group 2: Middle-aged (2—18 years; states 3—8)
- Group 3: End-of-life (18-20 years; states 1-2)
* Availability Constraint
- System availability must remain at or above 99.671% (Tier I requirement).

- At least five units (k = 5) must remain operational at any time to satisfy DC power

requirements.

- Components with condition states below the threshold are prioritized for maintenance.

* Budget Constraint
- Maintenance costs vary dynamically by condition group and month, based on failure
rates and service costs (Table 6).

92



- Monthly maintenance decisions must account for these costs while ensuring compliance

with the availability requirement.

» Component Selection Constraint

Each UPS unit may be selected for maintenance depending on its condition category

and associated failure rate function.
- Maintenance costs are defined as follows:
- Group 1 (states 9-10): Preventive inspections + corrective failure costs.
- Group 2 (states 3—8): Preventive + corrective + battery replacement + failure costs.
- Group 3 (states 1-2): Renewal + cooling/power services + failure costs.
- Monthly costs for each group are calculated according to equations (24) to (26).
* System-Level Constraints

- The optimization ensures that the selected subset of k UPS units from the n available

meets or exceeds the Tier I availability requirement.

- Dynamic programming is applied monthly to minimize maintenance costs while

satisfying both availability and redundancy (k-out-of-n) constraints.

Collectively, these assumptions establish the boundary conditions for implementing the K-out-
of-N optimization model, enabling a rigorous evaluation of the trade-offs between maintenance

cost efficiency, redundancy management, and compliance with Tier I DC availability standards.

The subsequent analysis evaluates the model results with respect to the defined operational
parameters and availability constraints, highlighting their impact on system performance and

maintenance decision-making.
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4.3.2. Dynamic Failure Rates and Maintenance Costs

Before presenting the model results, this subsection details how failure rates and asset
conditions are integrated to categorize the UPS units and assign a failure rate function to each asset
group, enabling the calculation of variable monthly failure rates and maintenance costs for each

UPS unit.

These maintenance costs underpin the model’s ability to simulate realistic operational

scenarios, particularly for k-out-of-n configurations in DC systems.

In the Fulcrum Collaborations report (MCIM by Fulcrum Collaborations, 2023), firsthand and
real-time data sourced from users of Mission Critical Information Management (MCIM) systems
have been collected for Static UPS brands on a global scale which offers valuable insights into the
operational dependability. As Figure 13 presents, crucial benchmarks for over 3,750 static UPS
systems are documented by MCIM. This dataset includes products from leading manufacturers
such as Eaton, Schneider Electric, Vertiv Group Corp., and other top companies within the MCIM
database. The data offers valuable insights into the following key metrics for assessing the
reliability of static UPS systems and their manufacturers: Failures per Asset, Age of Failure by
Lifecycle Stage, MTBF, and Failure Modes. MCIM's analysis underscores the most prominent

static UPS brands currently utilized in the global market.
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Dynamic Failure Trends of Static UPS Systems by Lifecycle Stage
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Figure 13. Number of failures of static UPS systems by their lifecycle stage (MCIM by Fulcrum Collaborations,

2023)

Therefore, by gathering the relevant information from different references, as mentioned in the
“4.3.1. Model’s Assumptions” subsection, three condition categories have been selected to
simplify the model implementation. These three asset condition categories are assumed based on
the UPS unit’s age. Therefore, the first category represents the new UPS systems or units
(UPS_DC 10 and UPS DC_9) having an age between 0 and 2 years (beginning of their lifecycle).
Then, the Middle-Aged UPS components (from 2 to 18 years old and during their useful lifecycle)
were grouped having the condition states 3 to 8 (UPS_DC 8 to UPS_DC 3). Finally, the third
category belongs to the UPS units in their end-of-lifecycle (between 18 and 20 years in operation)

which are conditions 1 and 2.
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Figure 14 presents a heatmap visualization of the yearly failure rates for UPS systems, derived
from the data presented in Table 3. The heatmap effectively illustrates the relationship between a
UPS system's condition state (ranging from 10, representing optimal condition, to 1, representing
the worst) and its age group (categorized as Group 1, Group 2, or Group 3). The visualization
clearly demonstrates the trend of increasing failure rates with declining condition state and older

age group, highlighting the importance of both factors in UPS reliability.

Heatmap of yearly failure rates for UPS systems
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Figure 14. Heatmap visualization of the UPS yearly failure rates

In the next step, the corresponding failure rates are obtained from resources (MCIM by Fulcrum
Collaborations, 2023) and the failure rate function (A(t)) which represents the probability of failure
per unit of time in a one-year time horizon has been derived for each of these three categories as

follows.

e Group 1 - New UPS components (0-2 years old) including condition states 9 and 10:

The failure rate function for this group is:
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M)=0.2+0.8%¢"(-0.5%) (24)

Where:
x: Represents the time of the year (month or hours)

Figure 15 shows the failure rate function plot for this group of UPS components in a one-year

time horizon.
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Figure 15. Failure rate function for the UPS components of Group 1 in one year

e Group 2 - Middle-Aged UPS components (2-18 years old), including condition states 3 to

8:

It is important to highlight that the data pertaining to this asset group spans a 16-year duration,
corresponding to the typical useful life of UPS systems. Based on the insights gleaned from Figure

5, the failure rate function has been recalibrated to align with a one-year timeframe.

The Weibull continuous random variable distribution is a versatile tool for modelling various
physical phenomena. Its flexibility lies in the ability to adjust parameters within its reliability

functions, allowing for the representation of diverse distributions. By characterizing failure modes
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with a slope parameter (b) and considering the associated age and probability of failure for a
component, the Weibull distribution becomes instrumental in statistical analyses of experimental

data (Fadaeefath Abadi et al., 2022).

Therefore, the Weibull distribution has been assumed and used for this group of UPS systems
which is more appropriate due to its flexibility in modelling different types of failure behaviours,
including early-life failures, random failures during the useful life, and wear-out failures as the

system ages. The equation for the normalized failure rate function for Group 2 is given below.

MO)=0.16+F(t)*(0.46-0.16) (25)

Where:

F(t): Represents the Weibull Cumulative Distribution Function (CDF) evaluated at the time 't'

(each month)

e Group 3 - End-of-Life UPS components (18-20 years old) including condition states 1

and 2:

The failure rate function for this group is:

A(t)=0.14%¢10.1551x (26)

Where:
x: Represents the time of the year (month or hours)

Figures 16 and 17 show the failure rate function plots and the failure rate changes over the 12

months, for groups 2 and 3 of UPS components.

98



Weibull Failure Rate Function in 1 Year for Middle-Aged UPS components (2-18 years old)
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Figure 16. Failure rate function (Weibull distribution) for the UPS components of Group 2 in one year
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Figure 17. Failure rate function for the UPS components of Group 3 in one year

Therefore, by obtaining the failure rate functions for each month and for each group of asset
conditions for the available UPS components in the case study system, the failure rates are

integrated into the corresponding monthly maintenance costs. Hence, the dynamic maintenance
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costs for each month depending on the type of UPS components are available and these

maintenance costs are presented further.

The maintenance cost information used in this model is consistent with the data gathered from
various sources and applied in the Dynamic Availability-Based Maintenance Prioritization Model,
as detailed in Section 4.2.1. Therefore, the relevant maintenance costs for the APC Symmetra PX
500kW UPS system were utilized to calculate the total cost associated with each maintenance
action under different condition states. The available maintenance services offered by the
manufacturer for the selected UPS model, along with their respective annual costs which were

presented in Tables 4 and 5 form the basis for cost estimation in our case study.

Now that the yearly categorized and combined maintenance costs are defined, the monthly
dynamic maintenance costs which are based on variable failure rates for each group of UPS

systems are calculated.

For Group 1, which are the new UPS components (0-2 years old), we assume that only the
preventive maintenance (inspection) (Cpm) costs and the costs of each incident/failure (Cr) are
applicable. Therefore, the total monthly maintenance costs of this group of assets (conditions 9

and 10) are calculated as follows:

Monthly maintenance costs of Group 1 assets =
(Cemdyp /12) + Cry * (monthly failures)]  (27)

For Group 2, which are the Middle-Aged UPS components (2-18 years old), the costs of
preventive maintenance (inspection) actions (Cpm), corrective maintenance actions (C™), the

costs of each incident/failure (Cr) and the costs of battery replacement service (Cgr) have been
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considered and added together. Therefore, the total monthly maintenance costs of this group of

assets (conditions 3, 4, 5, 6, 7 and 8) are calculated as follows:

Monthly maintenance costs of Group 2 assets =

[(Cpmi,nTCeMmTCrRei,0)/12) + Cry * (monthly failures)] (28)

Finally, for the third group which are End-of-Life UPS components (18-20 years old), the costs
of electric critical power and cooling services (Cpc), the component renewal costs (Ccr), and the

costs of each incident/failure (Cr) are added together and calculated as follows:

Monthly maintenance costs of Group 3 assets =

[(CrcntCeriy)/12) + Crgiy * (monthly failures)]  (29)

The monthly maintenance costs of all three groups are presented in Table 13.

Table 13: Monthly dynamic failure rates and maintenance costs for the UPS units based on their state of condition

Asset Group 1 (UPS_DC 10 Group 2 (UPS DC 3to Group 3 (UPS_DC 1
Group — and UPS_DC 9) UPS DC 8) and UPS_DC 2)
Monthly Monthly
Monthly Maintenance
Monthly Monthly |Maintenance| Monthly |Maintenance
Month | costs
Failures Failures Costs Failures Costs
(USD)
(USD) (USD)
1 0.68522 $1,344 0.16190 $2,428 0.16349 $12,410
2 0.49430 $1,148 0.17080 $2,438 0.19092 $12,438
3 0.37850 $1,029 0.18890 $2,456 0.22295 $12,471
4 0.30827 $957 0.21630 $2,484 0.26035 $12,509
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5 0.26567 $913 0.25130 $2,520 0.30403 $12,554
6 0.23983 $887 0.29080 $2,561 0.35504 $12,607
7 0.22416 $871 0.33070 $2,602 0.41461 $12,668
8 0.21465 $861 0.36740 $2,639 0.48417 $12,739
9 0.20889 $855 0.39800 $2,671 0.56541 $12,823
10 0.20539 $851 0.42150 $2,695 0.66027 $12,920
11 0.20327 $849 0.43780 $2,712 0.77104 $13,034
12 0.20198 $848 0.44820 $2,722 0.90040 $13,167

Table 13 provides data that is visually represented in Figure 18 to illustrate the monthly dynamic
maintenance costs for three UPS groups: New, Mid-life, and End-of-life. The costs for new UPS
systems (Group 1) show a decreasing trend, stabilizing around $850 per month. For mid-life UPS
systems (Group 2), costs gradually increase, reaching approximately $2,720 per month by the end
of the year. In contrast, end-of-life UPS systems (Group 3) exhibit a significant and consistent rise,

reaching about $13,200 per month by year's end.

Monthly Dynamic Maintenance Costs Across UPS Groups
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Figure 18. Monthly dynamic maintenance costs for the three groups of UPS systems
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4.3.3. Model’s Results

This section presents the detailed results and analysis of the maintenance optimization model

for a k-out-of-n configuration in a DC.

As mentioned in the previous sections, by running this cost and availability-based DP
optimization model, we aim to find the optimal number or combinations of UPS units (k) out of
all available UPS units (n) in the parallel system, while having the minimum monthly maintenance

costs, and meeting the required total system availability.

Hence, the model is executed by using the DP algorithm and by having the following input data
for the first month provided in Table 13. As an assumption, the total minimum required parallel
system availability is 99.671% for the Tier 1 DC (Uptime Institute, 2021a). Similarly, the input
data for the other 11 months (from month 2 to month 12) are derived from Table 13 and used to
run the optimization model for the whole year. Table 14 summarizes the first month’s input data
for UPS assets, showing MTBF, MTTR, expected failures, and availability across condition states.
Higher condition states exhibit longer MTBF, shorter MTTR, and higher availability, while

degraded states have reduced reliability and lower availability.

Table 14: Model input data for the first month of operation

MTTR Failures UPS Availability
Condition State| Asset Group |MTBEF (hrs.)
(hrs.) |(per month) (percentage)

10 933,708 2 99.999%
Group 1 0.68522

9 930,000 4 99.999%

8 850,000 8 99.999%
Group 2 0.16190

7 500,000 12 99.998%
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6 300,000 14 99.995%

5 100,000 18 99.982%

4 50,000 25 99.950%

3 30,000 27 99.910%

2 20,000 29 99.855%
Group 3 0.16349

1 10,000 30 99.701%

By running the optimization algorithm for the first month of operation, the optimal combination
of UPS components in the DC power system configured as a k-out-of-n parallel system was
determined. The results, presented in Table 15, detail the selected components and their
characteristics. A 3D visualization of this optimal combination is depicted in Figure 19, illustrating
the selected components alongside their respective availabilities and monthly maintenance costs.
In addition, the selected UPS components and their availabilities are shown in the column chart in

Figure 20.

Table 15: Optimized combination of UPS components in the k-out-of-n system in one month

Monthly Monthly
Available maintenance | maintenance
Asset combonents Selected costs costs
Component | Condition P Components for for for
for . .
State . maintenance available (n) | selected (k)
maintenance
components components
(USD) (USD)
UPS DC 10 10 1 1 $1,344 $1,344
UPS DC 9 9 1 1 $1,344 $1,344
UPS DC 8 8 1 1 $2,428 $2,428
UPS DC 7 7 1 1 $2,428 $2,428
UPS DC 6 6 1 1 $2,428 $2,428
UPS DC 5 5 1 0 $2,428 0
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UPS DC 4 4 1 0 $2,428 0

UPS DC 3 3 1 0 $2,428 0

UPS DC 2 2 1 0 $12,410 0

UPS DC 1 1 1 0 $12,410 0

Total Monthly
Total: 10 5 Maintenance $9,973
Costs:
Total System Availability = 99.991% > 99.671% (Tier 1 DC)
Optimized Combination of Components (K-out-of-N System)
s MNon-selected Components
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Figure 19. 3D visualization of the optimal combination of UPS components in one month of operation
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Optimal combination of UPS components in the first
month of operation
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Figure 20. Optimal combination of UPS components in one month of operation

Table 15 demonstrates the outcome of the optimization process applied to the DC power
system's UPS components. Specifically, a subset of 5 UPS units—namely, UPS DC 10,
UPS DC 9, UPS DC 8, UPS DC 7, and UPS DC 6—has been selected for maintenance
actions out of the total 10 available UPS systems or units. This selection optimizes the system’s
availability and maintenance costs, highlighting the efficacy of the k-out-of-n redundancy
approach. Also, as illustrated in Table 14, the total monthly maintenance budget required amounts
to $9,973 USD. Furthermore, the combined system availability achieved with the optimal
configuration of UPS components is 99.991%, surpassing the minimum system availability
requirement for a Tier 1 DC, which is 99.671%. This allocation is essential for conducting various
maintenance procedures on the optimal combination of UPS components throughout one month

of operation.

In addition to running the DP optimization model, further investigation has been conducted to

assess the robustness and applicability of the proposed optimization model and enhance the value
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of this study by performing a comprehensive sensitivity analysis. This analysis focused on key
parameters such as MTBF, MTTR, failure rates, maintenance costs, and system availability

thresholds.

Specifically, the first part of the sensitivity analysis explored the impact of £10% variations in
key parameters, including MTBF, MTTR, and maintenance costs. The analysis examined how
these changes influenced the total system availability and total maintenance costs, highlighting the

interdependence of these factors and their effect on the optimization outcomes (OpenAl, 2024).

Effect of MTBF Variations on Availability
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Figure 21. Sensitivity Analysis: Impact of £10% variations in MTBF on availability (Python Software, 2021b)

As observed in Figure 21, decreasing MTBF by 10% slightly reduces total system availability,
while a 10% increase results in marginal improvement. The availability remains high across the

range, indicating robustness to MTBF variations.
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Effect of MTTR Variations on Availability
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Figure 22. Sensitivity Analysis: Impact of £10% variations in MTTR on availability (Python Software, 2021b)

According to the sensitivity analysis presented in Figure 22, a 10% increase in MTTR results in a
significant reduction in system availability, whereas a 10% decrease in MTTR leads to a marked
improvement in availability. These findings underscore the pivotal role that minimizing repair
times plays in sustaining optimal system performance, highlighting the direct correlation between

rapid fault resolution and enhanced operational reliability.

The analysis presented in Figure 23 demonstrates that variations in maintenance costs lead to
proportional changes in the total monthly maintenance expenses, confirming the model's
predictable scaling with cost fluctuations. A baseline total cost of approximately $9,973 was
observed, which increased or decreased by roughly $1,000 under sensitivity scenarios reflecting a
+10% change in maintenance costs. This result highlights the robustness of the model in
responding linearly to cost adjustments, ensuring its reliability for scenario analysis and financial

planning.
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Effect of Maintenance Cost Variations
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Figure 23. Sensitivity Analysis: Impact of +10% variations in maintenance costs on total maintenance costs

(Python Software, 2021b)

In the second part of our sensitivity analysis, a systematic approach is conducted to assess the
impact of different k-out-of-n UPS system configurations on the total system availability and
maintenance costs. The analysis systematically varied the minimum required UPS units (k) from
5 to 9, identifying the lowest-cost configurations that maintained a total system availability above
the required 99.671% total availability threshold for Tier 1 DC. The results presented in Figure 24
help identify the optimal number of components to maintain while meeting the Tier 1 DC
availability requirement at a reasonable cost. This approach provides valuable insights for DC

managers aiming to balance maintenance cost and availability in their operations.
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Total Maintenance Costs vs. Total System Availability for various k-out-of-n UPS Systems
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Figure 24. Sensitivity Analysis: Maintenance costs and total system availability comparison for various k-out-

of-n UPS configurations from k=5 to k=9 (Python Software, 2021b)

In the third part of the sensitivity analysis, different optimal selections of UPS units under
different monthly maintenance budget constraints (ranging from $2,000 to $10,000 per month)
were found to achieve a minimum total system availability of 0.99671. The optimization process
explores various k-out-of-n system configurations while considering the associated maintenance

costs.

Figure 25 illustrates the feasible k-out-of-n UPS configurations across different allocated
maintenance budget constraints, highlighting the number of selected UPS units (k) that meet the
minimum total system availability requirement. The heatmap highlights how lower budgets

significantly restrict feasible configurations, while higher budgets allow for more redundancy.
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Total System Availability Heatmap
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Figure 25. Sensitivity Analysis: System availability variations for different optimal k-out-of-n configurations

under varying budget constraints (Python Software, 2021b)

Figure 26 presents a heatmap visualization of total maintenance cost variations for different
optimal k-out-of-n configurations under different budget constraints. The total maintenance cost
values are colour-coded, with darker shades representing higher costs. The results demonstrate that
as the number of selected UPS units increases, the maintenance costs also increase due to the
additional servicing requirements and increasing the budget doesn’t necessarily lead to higher
availability. A higher maintenance budget allows for a greater number of UPS units to be

maintained, but beyond a certain threshold, cost efficiency diminishes.
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Total Monthly Maintenance Costs Heatmap
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Figure 26. Sensitivity Analysis: Maintenance costs variations for different optimal k-out-of-n configurations

under varying budget constraints (Python Software, 2021b)

According to the two recent heatmaps, it is observed that optimizing the number of UPS units

is crucial for achieving a balance between high availability and cost-effectiveness. Increasing the

maintenance budget does not always result in higher availability, as evidenced by the diminishing

returns observed for larger values of k. Therefore, selecting an appropriate k-out-of-n

configuration is essential to maximizing system availability while keeping operational expenses

under control.

This analysis provides valuable insights into the trade-offs between budget constraints, system

redundancy, and availability, offering a systematic approach for optimizing UPS maintenance

strategies in mission-critical environments.
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Comparing the optimal number of UPS components and their associated minimum costs across
different DC tiers have been performed in the fourth and final part of our sensitivity analysis which

reveals a clear relationship between redundancy requirements and operational expenses.

Figure 27 presents the optimal number of UPS components and their minimum maintenance
costs across different DC tiers based on their availability requirements. As depicted, the optimal
number of UPS units increases with higher tier levels, reflecting the enhanced redundancy and
availability demands. Specifically, Tier I (1), with an availability requirement of 99.671%,
necessitates 5 UPS units at a minimum cost of $9,973. In contrast, Tier II (2), which requires
99.741% availability, optimally utilizes 6 UPS units, incurring a cost of $11,417. For Tier I1I (3),
with a stringent availability target of 99.982%, 8 UPS units are optimal, resulting in a cost of
$14,856. Finally, Tier IV (4), the highest tier with a 99.995% availability requirement, demands
10 UPS units, with the minimum cost rising to $19,946. Table 16 provides a summarized overview

for improved clarity.
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Optimal number of UPS components and their minimum maintenance
costs across different DC tiers
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Figure 27. Sensitivity Analysis: Optimal combination of UPS components across different DC tiers (Microsoft

Copilot Al, 2024; Python Software, 2021Db).

Table 16: Optimal number of UPS components and maintenance costs across different DC tiers

Minimum
Avalilability Optimal Number
DC Tier Maintenance Cost
Requirement of UPS Units
&)
Tier I (1) 99.671% 5 9,973
Tier IT (2) 99.741% 6 11,417
Tier I1I (3) 99.982% 8 14,856
Tier IV (4) 99.995% 10 19,946

This progression underscores the significant impact of redundancy on both the number of

components and the financial investment required to maintain high availability in DC operations.
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The results of the sensitivity analysis demonstrated that the DP optimization model remains

effective under varying conditions, thereby reinforcing its reliability and practical relevance.

The optimized selection of components underscores the effectiveness of the proposed DP model
in balancing reliability and cost efficiency. Achieving an availability of 99.991% not only meets
but surpasses the Tier 1 standard (99.671%), which demonstrates the model’s capability to provide

robust maintenance planning even under strict operational constraints.

The results highlight the practical utility of incorporating dynamic failure rates and variable
maintenance costs into the optimization framework. By selecting fewer components while
maintaining high availability, the model minimizes redundant expenses, offering a significant cost-

saving advantage for DC operators.

This optimization model and algorithm was developed and implemented using the Spyder open-
source scientific environment, leveraging the capabilities of Python. The scripts were executed in
a Python 3.x environment with libraries such as NumPy and Matplotlib (OpenAl, 2024; Python

Software, 2021b; Spyder Website Contributors, 2021b).

4.3.4. Discussions

While the proposed availability-based maintenance cost optimization model demonstrates
effectiveness in optimizing maintenance strategies for UPS systems within DCs, certain limitations
must be acknowledged in greater detail, along with their potential impact on the results and
strategies for mitigation. This section first examines the challenges associated with implementing

the model, followed by an analysis of its key limitations and constraints.

4.3.4.1. Challenges in Implementing the Proposed Model
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There are several potential challenges to implementing our proposed availability-based
maintenance cost optimization model in real-world scenarios. The important ones are discussed

below.

One of the primary challenges in validating and refining the proposed model is the restricted
access to accurate and comprehensive maintenance and reliability data for DCs. Due to security
concerns and confidentiality agreements, organizations are often reluctant to share operational data
related to system failures, maintenance schedules, and cost breakdowns. Despite multiple attempts
to engage with various DC operators and obtain access to relevant datasets, we were unable to
secure real-world records for direct validation. This limitation affects the ability to fine-tune model
parameters, particularly failure rates and maintenance cost variations, which are essential for

ensuring accurate predictions.

DCs operate within complex infrastructures that incorporate diverse equipment, monitoring
tools, and maintenance frameworks. Integrating the proposed model into existing maintenance
management systems requires compatibility with different software solutions and data processing
architectures. Additionally, the model’s reliance on dynamic failure rate estimations necessitates

real-time data collection and analysis, which may not be readily available in all DCs.

To mitigate these challenges, future research should explore collaboration with DC operators
under strict confidentiality agreements to obtain anonymized datasets for model validation.
Additionally, integrating machine learning techniques to estimate missing parameters dynamically
can improve prediction accuracy. Further efforts should also focus on developing user-friendly

software interfaces that simplify model implementation and adoption by industry professionals.

4.3.4.2. Key Limitations and Constraints
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This research is based on a specific DC configuration, with a focus on UPS systems in a k-out-
of-n arrangement. Consequently, the optimization model may not be directly applicable to
different system configurations or other critical DC subsystems, such as HVAC, network systems
or other components. Thus, future research could explore extending the model to incorporate
additional critical DC components, such as cooling systems, by integrating multi-component
optimization frameworks. Additionally, developing a modular version of the model that allows for

subsystem-specific parameters would enhance its adaptability to diverse DC architectures.

In addition, as discussed as one of the model’s important implementation challenges, the model
relies on assumed failure rates and maintenance costs due to the variability and limited availability
of real-world operational data for each component across different DCs. This assumption
introduces potential inaccuracies, particularly for organizations with distinct operational
environments, unique maintenance policies, or varying workload intensities. In the event of a
significant deviation between the actual and the assumed failure rates, the model's results for
optimal maintenance strategies may require recalibration to preserve their effectiveness.
Additionally, collaborations with DC operators to collect real-time operational data would improve

parameter accuracy, leading to more reliable optimization results.

Also, certain assumptions were made regarding the system reliability metrics, such as MTBF
and MTTR, and the availability thresholds aligned with Tier 1 standards which may not be suitable
for DCs of higher or lower criticality (e.g., Tiers 2, 3, and 4 and will limit the direct applicability
of the model's results beyond similar operational environments. Therefore, the model can be

adjusted and modified in the future based on other DC Tiers.

To address potential uncertainty in MTBF and MTTR values, and to ensure broader

applicability, the implications of such variability are discussed in Chapter 5. Specifically,
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Subsection 5.2.1 highlights limitations arising from the reliance on deterministic reliability
parameters, while Subsection 5.2.2 outlines actionable research directions, including sensitivity
analysis, stochastic modelling, and periodic updates with field data. These strategies provide a
foundation for adjusting and refining the models to accommodate different DC tiers and

operational environments in future studies.

Lastly, although the model incorporates dynamic maintenance costs, it does not account for
external economic factors such as inflation, supply chain disruptions, or regulatory changes that
may impact long-term cost predictions. Thus, the long-term validity of cost-based optimization
may decrease if external cost factors change unpredictably. To mitigate this limitation, future
extension of this research could integrate economic forecasting models to adjust maintenance cost
predictions dynamically. Furthermore, incorporating stochastic optimization techniques would

enhance robustness in handling uncertain cost fluctuations.

Therefore, to ensure simplicity and feasibility, the model incorporated certain assumptions that
were necessary for its initial implementation. Adjusting these parameters and assumptions—such
as failure rates, maintenance costs, and availability thresholds—would alter the model’s outcomes
and potentially expand its applicability. Thus, the model can be modified to suit other DC tiers,

allowing it to adapt to varied operational environments and requirements.

Based on the discussed limitations and restrictions of the proposed model, specific
methodologies, technologies, and frameworks could be explored in future studies to improve the

model's precision, scalability, and real-world implementation.

The incorporation of machine learning (ML) techniques could improve failure rate predictions

by dynamically analyzing historical maintenance logs. This refinement would lead to more precise
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maintenance scheduling. Accurate data collection with ML, combined with predictive
maintenance models leveraging supervised and unsupervised learning algorithms can analyze

historical failure data, detect patterns, and predict component degradation more effectively.

Furthermore, IoT technologies can be integrated into maintenance frameworks which allow
real-time monitoring and data acquisition from DC components. Thus, future research could
explore the integration of loT-based condition monitoring systems with the proposed optimization

model to enhance decision-making accuracy.

The proposed model can also be enhanced by incorporating stochastic elements through Monte
Carlo simulations or probabilistic risk assessment techniques. Various failure scenarios and
maintenance actions under uncertain conditions can be simulated by researchers to evaluate the
system’s reliability and availability for different strategies and determine optimal responses to

unexpected system behaviours.

Despite the discussed challenges, limitations and restrictions, the proposed model successfully
identifies the optimal (minimum) number of k components to meet the minimum system

availability threshold precisely using DP.

As reviewed, extant literature underscores the numerous advantages of the DP method, notably
its reduced computational time and efficiency in handling complex problems. A distinguishing
feature of the proposed maintenance cost optimization model, in contrast to prior scholarly work,
is its explicit design for DCs. This model uniquely incorporates principal DC availability
requirements as established by the Uptime Institute, dynamic monthly failure rates with
corresponding maintenance costs, and the application of the DP algorithm to ascertain the optimal

“k” out of “n” components within the DC's parallel k-out-of-n system.
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As illustrated in the results, the sensitivity analysis confirms that the DP optimization model
consistently identifies optimal maintenance strategies while maintaining high system availability
and cost-efficiency. This analysis not only enhances the robustness of the research conclusions but
also provides valuable guidance for DC operators in making informed, cost-effective maintenance

decisions under varying operational constraints.

This tailored approach ensures practicality in real-world applications and aids DC managers in
optimizing maintenance schedules, reducing downtime, and extending equipment lifecycles as
hyperscale and cloud-based DCs are expanding globally. The model’s ability to optimize resource
utilization while maintaining high system availability addresses challenges like budget constraints
and increasing energy costs. By incorporating dynamic maintenance costs, the framework adapts
to real-world variations in asset performance and reliability, offering a robust tool for long-term
infrastructure management. Beyond maintenance cost optimization, the model also supports
sustainable infrastructure planning by improving resource utilization in DC operations. By
determining the optimal number of k components, it minimizes unnecessary, energy-intensive
maintenance and component replacements, indirectly reducing energy consumption and lowering
the environmental footprint. Additionally, optimizing maintenance strategies ensures critical
systems operate efficiently with minimal downtime, reducing reliance on redundant backup power.
It sets the stage for future work on advanced optimization methods tailored to industrial challenges
and underscores the model’s versatility for other critical systems. Furthermore, the theoretical
implications of this study extend to reliability engineering and optimization, demonstrating the
applicability of DP to complex maintenance systems. This research sets the foundation for future
advancements in optimization methods tailored to industrial challenges, highlighting the model’s
versatility for other critical systems.
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4.4. Results and Discussion: Availability-Constrained Maintenance Cost Optimization

Model for Series-Parallel Systems
4.4.1. Model’s Assumptions

To evaluate the effectiveness of the proposed availability-constrained maintenance cost
optimization model, a case study is conducted using a representative DC subsystem. The system
comprises 30 UPS devices, distributed into 10 discrete condition states with 3 devices allocated to
each state. Devices follow a state-transition model that captures natural degradation and
performance deterioration over time. The overall system is modelled as a hybrid series-parallel
structure (Figure 7; Section 3.3.1.1), reflecting realistic DC configurations where redundancy is

achieved through parallel subsystems and dependencies are captured through series connections.
The model operates under the following critical assumptions:
e System Configuration

- Each case-study system is composed of n = 10 series subsystems, each containing m =

3 parallel units, giving a total of 30 UPS devices.

- Condition states reflect operational degradation, and devices are assumed to transition

between states over time.
e Availability Constraint

- The minimum required availability is set to Ageguirea = 0.99671 (99.671%),

corresponding to the Tier I Uptime Institute standard.
- This requirement is treated as a hard constraint in the optimization model.

e Budget Constraint

121



- A fixed monthly maintenance budget of $20,000 is enforced: Y7, C; ¢ * x;; < $20,000
- This ensures that optimization remains aligned with practical DC operational budgets.
e Component Selection Constraint

- Foreach condition state i, at least X; ¢ (miny = 1 device must be selected for maintenance,
while no more than X; ; (max) = 3 devices (i.¢., all devices in that state) can be selected.

Thus:

1<x;;<3 (30)
This condition guarantees balanced attention across all condition categories.
e System-Level Constraints

- The total number of selected components must satisfy:

Xit (min) = 10 < lezol Xit < Xt (max) = 30 31

- This ensures that the optimization selects enough units to meet system availability

requirements while not exceeding operational or budgetary limits.

These assumptions and parameter assignments provide the boundary conditions for simulation,

enabling an assessment of trade-offs between cost efficiency and system availability under realistic

operational settings.

4.4.2. Sensitivity Analysis

A sensitivity analysis was conducted to evaluate how variations in MTBF, MTTR, and failure rates

affect the availability of UPS components across different condition states, relative to the Tier 1

DC requirement of 99.671% availability. Table 17 presents availability results based on changes
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in MTBF and MTTR values. It reveals that only components in better condition states meet or

exceed the Tier 1 threshold, while those in degraded states fall significantly below. Table 18

examines the relationship between MTBF and failure rate. Similar trends are observed, with

availability increasing as the failure rate decreases and the condition improves. These tables

collectively underscore the critical influence of reliability parameters on system-level availability

and the importance of prioritizing maintenance for components in suboptimal states to ensure

compliance with availability requirements.

Table 17: Sensitivity Analysis: The effect of MTBF and MTTR on the UPS availability (%)

MTTF (hours)
5 100 500 1000 1500 2000

8.0 | 38.4615% 92.5926% 98.4252% 99.2063% 99.4695% |99.6016%

4.0 | 55.5556% 96.1538% 99.2063% 99.6016% 99.7340% |99.8004%
MTBF

0.5 | 90.9091% 99.5025% 99.9001% 99.9500% 99.9667% |99.9750%
(hours)

0.4 | 92.5926% 99.6016% 99.9201% 99.9600% 99.9733% |99.9800%

0.3 | 94.3396% 99.7009% 99.9400% 99.9700% 99.9800% |99.9850%

Table 18: Sensitivity Analysis: The effect of MTBF and failure rate on the UPS availability (%)

MTBF (hours) = 1/Failure Rate (A)
5 100 500 1000 1500 2000

1.00E-04 | 99.8501% | 99.8501% | 99.8501% | 99.8501% | 99.8501% 99.8501%

3.00E-04 | 99.5510% | 99.5510% | 99.5510% | 99.5510% | 99.5510% 99.5510%
Failure

6.70E-04 | 99.0000% | 99.0000% | 99.0000% | 99.0000% | 99.0000% 99.0000%
Rate (1)

1.00E-03 | 98.5112% | 98.5112% | 98.5112% | 98.5112% | 98.5112% 98.5112%

1.00E-02 | 86.0708% | 86.0708% | 86.0708% | 86.0708% | 86.0708% 86.0708%
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4.4.3. Model’s Results

This subsection presents the outcomes of the maintenance cost optimization model applied to a

UPS system operating under a series-parallel configuration. As detailed in Table 19, 20 out of 30

available components were selected for maintenance, with individual component costs ranging

from $140.92 to $2,650.00. This selection strategy resulted in a total monthly maintenance cost of

$19,999.75, remaining within the $20,000 budget constraint. The model also ensures regulatory

compliance by achieving a system availability of 99.974%, surpassing the Tier 1 DC requirement

0f 99.671%.

Table 19: Results of the availability-constrained maintenance cost optimization model for Series-Parallel systems

Monthly Monthly
Asset | Availability| Number of Number of
Maintenance Maintenance
Condition| of each available Components
Component Costs for one Costs for selected
State subsystem Components selected
component components
Rating (Parallel) | for maintenance | for maintenance
(USD) (USD)
UPS DC 10 10 99.9998% 3 1 140.92 140.9
UPS DC 9 9 100.000% 3 3 141.83 425.5
UPS DC 8 8 100.000% 3 3 143.33 430.0
UPS DC 7 7 99.9976% 3 1 370.42 370.4
UPS DC 6 6 99.9953% 3 1 373.50 373.5
UPS DC 5 5 100.000% 3 2 392.75 785.5
UPS DC 4 4 99.9500% 3 1 395.17 395.2
UPS DC 3 3 100.000% 3 3 1,276.25 3,828.7
UPS DC 2 2 99.9998% 3 2 2,650.00 5,300.0
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UPS DC_| 1 100.000%

2,650.00

7,950.0

Total:

30

20

Total Monthly

Maintenance Costs

19,999.75

e Total Availability (Series—Parallel System):

n
l_[(A i,t) =A t,Required
i=1

99.974% > 99.671 % (Tier 1 DC Requirement) v/

e Budget Constraint:

$19,999.75 < $20,000 v

T
Z Ci: * x;; < Total budget
t=1

These results demonstrate that the model successfully prioritizes components based on

condition ratings and cost-effectiveness. The proposed optimization model effectively balances

cost-efficiency and system availability in the maintenance of a UPS system configured in a series-

parallel architecture.
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Chapter 5: Conclusions and Future Research Directions

5.1. Summary of Contributions

This research aimed to address the growing complexity of maintenance planning in DCs, with a
focus on enhancing the reliability and availability of UPS systems—critical components in
ensuring continuous DC operations. Three novel maintenance optimization models were
developed to support data-driven, availability-aware maintenance strategies within constrained

budgets and diverse system configurations.

In the first phase, a Dynamic Availability-Based Maintenance Prioritization model was
developed. This model formulates the problem as a 0/1 multiple knapsack problem within a DP
framework to prioritize maintenance actions based on component condition states and their
contribution to availability improvement. Unlike traditional approaches, it explicitly integrates
Uptime Institute Tier-based availability thresholds, ensuring strong relevance to real-world DC
operations. Results from the case study demonstrated that applying this model led to the selection
of 50% of UPS units for maintenance, yielding a 61% improvement in total system availability for
12 UPS units—highlighting its efficiency in budget-constrained maintenance prioritization.
Correlation analysis further highlighted that components with lower initial availability offer
greater potential improvement, and higher maintenance investment directly translates into
increased system availability. Accordingly, this model is most appropriate for situations where
operators face strict budget limitations and must identify the most impactful subset of components

to maintain.
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The second phase introduced a Dynamic Availability-Based Maintenance Cost Optimization
model for k-out-of-n Systems, which extends the first model by incorporating variable failure rates
and dynamic maintenance costs into a dynamic programming framework. This model identifies
the optimal number of active components (k) required to meet or exceed system availability
thresholds while minimizing total maintenance costs. Sensitivity analyses were performed to
validate the robustness of the model. The primary goal of these analyses was to identify abnormal
deviations in results under varying parameter conditions. The findings confirmed that the model
behaved predictably: availability was only marginally affected by MTBF changes but showed
significant sensitivity to MTTR, emphasizing the importance of fast repair times. Maintenance
costs responded linearly to £10% adjustments, validating the model’s stability and reliability under
multiple scenarios. Furthermore, optimizing the k-out-of-n configuration revealed diminishing
returns beyond certain budget thresholds, highlighting the need for careful redundancy planning.
Tier-based comparisons also demonstrated that higher availability requirements significantly
increase costs—for example, total maintenance costs rise from $9,973 for Tier I (5 units) to
$19,946 for Tier IV (10 units)—illustrating the model’s adaptability across different operational
and financial conditions. Overall, the proposed optimization model represents a substantial
advancement toward cost-effective and availability-driven maintenance planning. The DP-based
framework successfully balances operational expenditures and reliability objectives, achieving a
maximum system availability of 99.991%, well above the Tier I benchmark of 99.671%. This
makes the model particularly valuable in contexts where redundancy management and dynamic

cost structures significantly shape maintenance decision-making.

In the third phase, an Availability-Constrained Maintenance Cost Optimization model for
Series-Parallel Systems was developed. This model addresses the complexity of real-world DC
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architectures by explicitly representing UPS configurations with both series and parallel
components. It incorporates availability constraints aligned with Uptime Institute Tier standards
while enforcing budgetary and component selection rules. Sensitivity analyses were conducted to
evaluate how variations in MTBF, MTTR, and failure rates affect system availability relative to
the Tier I DC requirement of 99.671%. The results indicated that only components in better
condition states consistently meet or exceed the Tier I threshold, while degraded components fall
significantly below, highlighting the importance of prioritizing maintenance based on component
condition and reliability parameters. Availability was observed to increase as failure rates
decreased and component condition improved, emphasizing the model’s capability to guide cost-
effective, condition-based maintenance decisions. The case study confirmed the model’s
effectiveness in maintaining required availability levels while minimizing total maintenance costs,
demonstrating its practical value for DCs with heterogeneous infrastructures. Compared with the
Knapsack and k-out-of-n models, this approach offers the greatest flexibility, as it captures hybrid
system dependencies that simpler configurations cannot. Accordingly, this model is most
applicable in environments where infrastructure complexity, mixed redundancy strategies, and
strict Tier-based compliance requirements necessitate a comprehensive, reliability-driven

optimization framework.

Collectively, these three models offer a scalable, flexible, and theoretically grounded
framework for maintenance scheduling in DCs. They enable operators to manage resources
efficiently, maintain high availability, and align with industry standards under varying operational
and financial conditions. Moreover, the validation through sensitivity analysis confirmed the
robustness of the results under these varying conditions, reinforcing the practical reliability of the
models.
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5.2. Limitations and Future Research

5.2.1. Limitations

While this research advances the state-of-the-art in DC maintenance optimization, several

limitations must be acknowledged.

From a theoretical perspective, the models assume:

Uniform and discrete condition state transitions that may not capture the continuous and

stochastic nature of component degradation.

Static availability thresholds based on predefined Tier levels, which do not account for

varying Service-Level Agreements (SLAs) or evolving operational demands.

Deterministic failure rates and repair times, as well as maintenance cost estimates, are
assumed to be known and accurate. This overlooks real-time fluctuations and uncertainties
in field operations. Variability in these parameters could influence system availability

predictions and optimal maintenance strategies across all three models.

From an application perspective, the models:

Were validated using simulated or structured case studies rather than real-world datasets.

Focused solely on UPS systems, excluding other critical DC subsystems such as HVAC,

power distribution units, and networking equipment.

Do not currently incorporate live data feeds, predictive analytics, or integration with
enterprise asset management systems, limiting their adaptability in dynamic operational

environments.
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Optimize maintenance primarily for cost and system availability. Other potentially
important operational, environmental, or regulatory constraints such as energy
consumption limits, thermal management, SLAs, interdependencies with other subsystems,
or sustainability targets are not explicitly included. While sustainability metrics were
beyond the scope of this study, the models indirectly support sustainability by reducing
unnecessary maintenance, minimizing failure risks, and optimizing resource usage.
Explicit inclusion of environmental indicators such as energy consumption, carbon
footprint, or lifecycle impacts would better align the models with current DC sustainability

pressures.

Were specifically developed to model k-out-of-n and series-parallel UPS configurations.
Although these configurations are widely used, exploring other DC architectures was
beyond the scope of this study and thus represents a limitation of the research.
Nevertheless, the proposed models are generalizable: with appropriate parameter
adjustments, they can be applied to different UPS configurations and DC layouts to provide

comparable insights into availability-driven maintenance planning and cost optimization.

5.2.1.1. Implications of parameter uncertainty

Given that MTBF and MTTR values may vary due to operational conditions, environmental
factors, and manufacturing tolerances, the models’ predictions may require recalibration when
applied in different DC environments. To enhance robustness under uncertainty, future work could

consider:

e Sensitivity Analysis: Evaluating how variations in MTBF, MTTR, and maintenance

costs affect model outputs and optimal strategies.
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e Stochastic Modelling: Incorporating probability distributions for uncertain parameters

within the optimization frameworks.

e Field Data Updates: Periodically updating reliability parameters based on actual

operational data to refine predictions.

By acknowledging these limitations, the research provides a foundation for further
methodological enhancements and practical extensions to improve the adaptability, accuracy, and

applicability of DC maintenance optimization frameworks.

5.2.2. Future Research Directions

To address these limitations and expand the scope of the research, the following future

directions are proposed:

e Integration of Real-Time Data and Predictive Analytics: Incorporating IoT-enabled
condition monitoring and Al-driven failure prediction would allow for dynamic

adjustments to maintenance schedules and enable truly predictive maintenance strategies.

e Stochastic and Multi-Objective Optimization: Future models could introduce stochastic
elements to account for uncertainty in failure rates and costs and consider multiple
objectives—such as minimizing energy use or carbon footprint—in addition to system

availability and cost.

e Incorporation of Uncertain Reliability Parameters: To address variability in MTBF,
MTTR, and maintenance costs, stochastic modelling approaches and sensitivity analyses
should be integrated into the optimization frameworks. This would allow the models to

account for operational uncertainties and provide more resilient maintenance strategies.
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e Cross-System Optimization: Expanding the model framework to include multiple
subsystems (e.g., cooling, power distribution, network infrastructure) and their

interdependencies would provide a more holistic maintenance optimization platform.

e Exploration of Alternative DC Architectures: Future research could extend the models to
diverse UPS configurations and overall DC architectures beyond k-out-of-n and series-

parallel setups, validating their applicability in a wider range of operational contexts.

¢ Inclusion of Broader Operational Constraints: Future work should extend the optimization
framework to incorporate additional constraints—such as energy efficiency, thermal
management, SLA requirements, and subsystem interdependencies—ensuring that

maintenance strategies align with the full spectrum of operational and regulatory demands.

e Validation Through Industry Collaboration: Partnering with DC operators, UPS vendors,
and software providers could support large-scale pilot implementations, enabling empirical

validation and refinement of the models.

e Scalable Decision-Support Tools: Translating the models into decision-support tools with
user-friendly interfaces and integration capabilities would support real-world adoption by

operations teams.

e Sustainability Metrics: Incorporating metrics such as energy consumption, carbon
emissions, and lifecycle sustainability into the optimization process would align the models

with the increasing environmental expectations placed on DCs.

By addressing these directions, future research can build upon the foundational framework
developed in this study and move toward more intelligent, resilient, and sustainable DC

maintenance strategies.
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