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ABSTRACT

A Study of Estimators in Linear Models

Anna Nozza

This thesis is a study of Estimators, particularly in Linear
Models. The newest technology of Bootstrap Methodology is employed
in the estimation procedure. We present a survey of the Bootstrap
Methodology in the beginning and move on to some serious problems
in Linear Model estimation procedure. Wwe have worked out the
conditions under which the estimators of nonstandard linear models
will be best linear unbiased estimators. Furthermore, we have
shown that the estimators of other linear models bear a linear
relationship with least-squares estimators. Finally, we have
worked out the finite sample properties of two-stage least-squares

using the Bootstrap Methodology.
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CHAPTER ONE

INTROD ION EW

1 HISTORY

The accuracy and speed of computers have revolutionized
statistics including every other field of human activity and
science. Apart from conventional statistical methods that relies
on mathematical equations, Dr. Bradley Efron, a Stanford
University statistician, introduced "the bootstrap method"” in
1977, a simple but powerfully effective computational device for
approximating quantities that are almost impossible to compute
analytically (Kolata, 1988). Through the superior mathematical
abilities of computers, the bootstrap method allows statisticians
to predict the reliability of data analysis, to derive relevant
information from the data, to see patterns and fluctuations in
data, and ultimately to discover solutions and connections in

simulated samplings.

In his definitive paper, The 1977 Rietz Lecture, Dr. Efron
(1979) radicalized the statistics field when he proposed that the
bootstrap method was more dependable and more applicable than the

Jackknife, a simple statistical tool. Unfortunately, in the



following years, there has been abundant research in the
jackknife, but research on the bootstrap method is far and in

between. [Wu 1986]

Nonetheless, after the initial skepticism by some
theoretical statisticians and the euphoria by other academicians,
scientists from different disciplines (psychologists, physicists,
geologists, etc) now use the bootstrap method. K. Singh (1981)
provided mathematical proof for the validity of the Bootstrap

methodology.

F_THE B HOD

The essential problem in statistics 1is how to derive, from
a sample data, conclusions applicable to a population.

nstatistical theory attempts to answer three basic questions:

1.How should I collect my data?
2 .How should I analyze and summarize the data that I've collected?

3.How accurate are my data summaries?" [Efron & Tibshirani, 1993]

Statistical theory aims to answer the second and third

questions. Dr. Efron's method, (dubbed 'the bootstrap method'



because data "pulls itself up by its own bootstraps"), allows data
to generate artificial data sets through which their reliability
can be evaluated (Sim, 1989). In other words, the bootstrap method
assumes that the collected data is an exact replica of the entire
population; it resamples the data several times (creating "the
bootstrap samples") in order to compute or estimate statistical
functions (ex; mean, variance ..). For example, we obtain the mean
of the computed samples as an estimate of the expected value by

bootstrapping several times the original sample.

A University psychology professor is testing whether a new
school curriculum would improve the scores of 100 grade 6 children
having difficulties in math. Using the bootstrap method, the
computer would generate a new data set from the original 100
measurements. At random, it would pick a measure from among the
100, return it to the original data set, pick a second number,
return it again, pick a third, return in again, and so on and so
forth until 100 measurements are chosen. From the original data,
innumerable new data sets can now be generated. Researchers can
verify and quantify their original assumptions by comparing the
results of the bootstrapped data with the results of the original

data. Data resampling provides statistical inference.



To further explain the procedure of the bootstrap method, we
select a random sample from a population, say X, with probability
density function (f) and cumulative distribution function (F). The
symbol X represents the population of measurements whereas X
represents a random sample of size A from X. In other words, X,
, Xy, woo s X, 1s @ collection of measurements from X. We will use
the bootstrap method to verify how accurately a statistic (denoted
by T), calculated from X,, X3, ..., X, can estimate the

corresponding population characteristic (denoted by 6 ) .

Before we use the bootstrap method to estimate standard
errors, to correct for bias and to test hypothesis, we must
clarify the differences between parametric and nonparametric
models. Parametric models are pased on the assumption that both
the mathematical model (f) and the constants are known; when no
such mathematical model exists and conditions are unknown, the
statistical analysis 1is nonparametric. The only assumption for
non-parametric models is that the random variable X; are
independent and identically distributed (iid). Nonetheless,
whether a parametric model 1is used or not, a nonparametric
analysis can still be performed to assess the robustness of the
conclusions drawn from the parametric analysis (Davidson &

Hinkley, 1997).



The empirical distribution is the primary component of the
nonparametric analysis. Efron & Tibshirani (1993), defined the
empirical distribution as “Having observed a random sample of size

n from a probability distribution F,
F— ('tly st e o xn)l

the empirical distribution function /-A is defined to be the
. . . . 1 1 .
discrete distribution that puts probability n on each value X,

A
2 In other words, F assigns to a set A in the

where i=1,2, ... , n.

sample space of X its empirical probability
Prob (A} = # { X; € A}/n,

the proportion of the observed sample X = (X;, X3, ..o X,)

A
occurring in A.” The empirical distribution function (EDF) F,

defined as the sample proportion

>

(X) = # { X, < X}

There are many simple statistics (mean, median, correlation,
etc) that are extensions of the empirical distribution function.

A
The EDF (F) is a simple estimate of the entire distribution F.



The most obvious example is the mean of the EDF whereby
- 1
X = — X
S,

Parameters and statistics determine statistical inference. A
parameter is a function of the probability distribution F whereas
a statistic is a function of the sample X. Statisticians sometimes
write parameters directly as functions of F which can be

expressed as

where ¢ () is a statistical function (or simply a numerical

evaluation expression) for computing t from F. We then apply the

'plug-in principle' of estimating from samples. “The plug-in
estimate of a parameter 8 = ¢ (F) is defined to be
A A
6 = t (F)
In other words, we estimate the function @ = & (F) of the

probability distribution F by the same function of the empirical

A A A
distribution F, 8 = t (F)" [Efron & Tibshirani, 1993]. Some



examples are the mean and the variance of X.

The bootstrap method has been most effectively used in the
estimatior of standard errors, in the correction for bias, and in
the testing of hypothesis. The following is a brief description

of each of these concepts.

2.1 BOOTSTRAP TE ANDARD ERROR

In 1993, Efron and Tibishirani wrote an algorithm in An
Introduction to the Bootstrap on how to calculate the estimate of

standard error using the bootstrap method.

on

=1L

Let f be the empirical distribution. With probability
each of the observed values X,, where i = 1,2, ... ,n. Let (x,*. x,*
, ..., X,*) be a bootstrap sample of size M drawn with replacement

from the population of X. The bootstrap sample

consists of elements drawn with replacement from X = (X, X2y o0
X, ) whereby each X; may not be unique, i.e. it may appear once,

twice, or even never. We select B independent bootstrap samples.



To each of these bcotstrap samples is a bootstrap replication of

A
0, whereby

A
6 = 4 (x*).

4 (X*) uses the same function 4 (*) that was applied to X. For

example, if 4 (X) is the sample mean ._t-, then 4 (X*) is the mean

n *
- X . . .
of the bootstrap data X' = Z i our final step is to estimate

i=1
A
the standard error J4€r (f ) by using the sample standard deviation
of all B replications. We use the plug-in estimate that uses the

A
empirical distribution function F in place of unknown F. In other

A A
words, de.( 0 ) is defined by 4ef( f* ). Consequently,

1
B 2
4ep = E[’g\b:_é\]z
b=1
B-1
where
A B A
0. = 2 Ob.
b=l
B



As B - «, (i.e. B is very large), the empirical standard deviation

approaches the population standard deviation.

A
lim seq=4e2(0%)

1.2.2 BIAS CORRECTION

Bias is defined as the difference between the expectation of
an estimator 9 and the guantity f being estimated. The bootstrap
algorithm described in Efron & Tibashrani (1993] can easily be
adapted to give estimates of bias as well as estimates of standard
errors. Although the estimator is consistent, it might still be
biased. In 1999, Bergstrom described a simple procedure outlining
the application of bootstrap to pias correction. He wrote that
"the relation of the bootstrap sample to the original sample is
the same as the relation between the original sample and the true
population”. Bergstrom (1999) believes that the bias is constant

and does not vary with the parameter value.

Biases are harder to estimate than standard errors. Due to
the high variability in bias, bias correction can be dangerous to

use and hence problematic. Correcting the bias may cause a larger



increase in the standard error and consequently increase the mean
squared error of the estimator. This is also explored in MacKinnan

& Smith [1998] and in Ferrari & Cribari-Neto [1998].

If the bias is small compared to the estimated standard

. . » 3 A 3
error, then it is safe to use the statistic f . However, if the
bias is large compared to the estimated standard error, then this

A
may indicate that the statistic # = 4(X) may not be a good

estimate of the parameter 8 [Efron and Tibashrani (1993)]

1.2.3. Testin fH sis

The primary reason for using bootstrap tests rather than
asymptotic tests is due to the fact that asymptotic tests may be
biased (Bergstrom, 1999). Another feature is that their empirical
sizes would converge to the true sizes faster than asymptotic

tests, proven in Bergstrom (1999).

10



1.3 BOOTSTRAPPING REGRESSION MODELS

Bootstrapping can also be applied to regression models.
According to Efron & Tibshirani [1993], regression models are
among the most useful and most widely used of statistical methods.
Regression models evaluate the effects of many possible
explanatory variables on a response variable. Since Legendre &
Gauss of the 19%h century, the multiple linear regression mcdel

is given by

Y=X pg+¢&

In this equation, B = ( Biy Bays o s By )" (called a
parameter vector or regression parameter) is a pX1l vector of
unknown parameters. The main goal of the regression analysis is
to infer f from the observed data where X is an nXp matrix of
full rank where p<m , and Y (called the response vector) an nXl1
data vector . The error terms €, an mX1 vector, are assumed tO
be a random sample from an unknown error distribution F having

expectation 0,

F > (8,8, ....8&)= & [E: (&) =0]

11



Using the conventional least-square estimate to the so-
called normal equations, we need to minimize the residual squared

error denoted by,
RSE, = (Y-X B (Y-XB).
Minimizing RS E, yields
X'X B =X'Y
or simply

B=XX) "Xy

A
The question now is: how close is ﬂ to ﬂ? We will compare

the bootstrap approximation with the standard asymptotics. The

main assumptions are the following:
i. The matrix X is not random;

ii. The error components & 4, &, ... , & are independent, with the
distribution having mean 0 and the finite variance #2; F and 02are

unknown. [(Freedman, 1981]

12



Let 0,2 be the variance of the error & given by

)

6, = varr ( &)

A
And let the standard error of ﬂ be given by

A

se B=1{06.(XxX) -1}

A
Since 0, is estimated by 6., we obtain

standard errors given by

A

Ae(§)={0ﬁ(x'x) '}

[X1E

where

6= ee=(¥-Xf) (¥-Xp)
n-p n-p

the

estimated

The bootstrap method gives the same asymptotic results as

the linear regression model (Freedman, 1981).

Hence,

we are

assured that the bootstrap delivers the same results that we can

then analyze mathematically. The bootstrap method is best applied

to more general regression models

13



(i) that have no mathematical solution;
(ii) where the parameter vector ﬂ is non-linear;
(iii) and they use fitting methods other than least square.

(Efron & Tibshirani, 1993]

The probability model has basically two components; ,3, the
parameter vector of regression coefficients and F, the
probability distribution of the error terms €. In regression, the
centered residuals are resampled. ﬂ is not known, however, we use
A

ﬂ, the least-squares estimate of ﬂ If ,3 were known, then the

error terms are calculated by

&=y, - B fori=1.2...n

and estimate F by their empirical distribution. Since ﬂ is not

A
known, then we use ﬂ to calculate the residuals.

>

The estimate of F is F, the empirical distribution of the

A A A
€ so that F puts mass (or probability) % at & fori=1,2,... 1

A A
with expectation equal to 0. Given ,B & F, let

14



+ &%

™5

Yy X

where Y* is generated from the data, using the regression model
A A
with ,B & F as the empirical distribution of é and whereby each

A
€* equals any one of the M values & with mass 1/m.

If we would give X & ¥* to another statistician in order

to estimate ﬂ, then the estimate would be
A ' -t '
B* = (X'X) X'Y*.

Here, by applying the bootstrap principle, the distribution of
A A A
Vn (f*-B) approximates closely the distribution of Vn g -8 .

(Freedman, 1981]

The normal equations will yield the bootstrap least-squares

A
estimate f* given by

A -1
B* = (X'X) X'y*



1.4 THE SELECTION MATRIX

A selection matrix 1is a binary matrix of order mXnmn that
takes on the value of 0 or | with probability |/m and that the
value will be |. The mXn matrix randomly selects M elements

(with replacement) from a set of M elements. The selected element

is recorded and then returned to the original set.
A one is placed in the first column of the first row and
zeroes placed in the remaining columns. The same process is

repeated throughout the matrix for every row.

Let (&*, &%, ..., €,*) denote a bootstrap sample of size M

A .
from F. For all j =1, 2, .., J, then

81* = (8(])* 9 cee 9y 8(1)"*).

Consequently,

Yu* = XB + &,*.

Solving for normal equations,

16



3(1}2 (X'X)'l X'yy*
Substituting for y,¥,
Bo= (X'X)' X' [XB +&,*]
= (X'X) X'X B,+ (X'X)" X' g,*.
As a result,

A
By= B+ (xlx)I X" g,*.

A
We will look at some properties of ﬂw as it is applied to

the selection matrix. But first, some notations and definitions
must be supplied.
Let

S denote a set of n elements

S; denote a mXn selection matrix corresponding to the

J® bootstrap replication, j=1, .. J.

17



S denote the rw row of S; having zero everywhere

except in one position—the unity position, r =1,....m

Sjri denote the unity position in S,, where I represents
the integer randomly selected with replacement from

S. In other words, S;,, is a random variable which

1

assigns 0 or 1| to each element with probability n

1
that it will be “I” and (l - ﬁ') that is will be "0”.

S, denote the transpose of S;.
S,,' denote the rth column of S,'

Sll

S.

§23
S, :

S/n mx |
Sj' [ S]l,) szl, “ae ,S],,'] lxm

Using the preceding definitions:

18



S,," S is an mXn identity matrix

S8/ = 3 [s, s,

Resulting in the following theorems from Sim (1989):

j_l.'g Jj=l ! n mxXn

where U, x, 1is the unity matrix of order mXn.

1 J 1
lim -7;1 [S,, ' S,,]}= " [,

j—-m

Summing for all r= 1, ...,

J m
lim z Zl [S/r , S/r]}= 71; (m) In

L
jree V J 51

and,
J [
j}; S, S,/ = ;‘(n-l)‘ Iy + — U, x m

19



If we let &= (&, ..., &) and its sample mean as &=,

replace into

. 1 & 1

limd —> S,%$=— u,x,

j*x J =1
we get

1 EJS

since

um><n8 =né& U, x|
Similarly,

im L3 X'S & =& X' u

m - - .

: g'E

Let §, = , then

20

L
— and
=l n



or

[y
fim |5 2 (S

jr=

=&'| 1 — S,'S;
[II"JZ

= &' —m 1,
n

2
mo as B>

21



CHAPTER 2

GENERALIZED LEAST SQUARES ESTIMATORS AND

ITS RELATIONSHIPS WITH OTHER ESTIMATORS

2.1 Introduction

In the linear model Y=Xf + & where X is nXp matrix of

rank p, the Gauss-Markoff theorem gives all the essential
A

properties of the estimate ﬂ of ﬂ However 1in many practical
situations when the rank of the design matrix X is r such that
r<p<m, then a practitioner faces all kinds of problems, more so
if &€ =~ N (0,V) where V is the variance-covariance matrix. In this
chapter, we show that if X is in the column space of exactly r
eigenvectors of V each of which is associated with & positive
eigenvalue, then the set of weighted least square (LS) estimates
of ﬁ is identical to the set of LS estimates of ,5 Subsequently
the general form of a BLUE in terms of weighted least squares is
developed. Also the result is refined when 0 is in the sample
space. We have utilised Moore-Penrose generalised inverse in order
to find estimates. For completeness, the definition and an easiest
method of computation is also given. A method called Dwivedi’s

method of rank factorisation, is also included to facilitate the

computations of generalised inverses 1in practical problems.

22



Furthermore it is shown that all other estimators of linear models

bear a linear relationship with LS estimators.

2.2 Definitions of Generalized Inverses

+

Generalized Inverse: Let A be an mXn matrix. Let A be the

generalized inverse (g-inverse) of A if and only if

(1) AA+ is symmetric
(ii) A+A is symmetric
(1ii) AA A=A

(iv) A AA =A .

g
Rao g-inverse: Let A be an mXn matrix. There exists A such that

AAA =A.

+

Remark: A is called Moore-Penrose generalized inverse and is
. 3 z I3 .
unique. However, the Rao g-inverse A is not unique. The

+
generalized inverse which we have used in our work is A .

23



2.3 Method for Computing Generalized Inverses

It is a well-known fact in the mathematical literature that
if A is an mXn matrix of rank r then Ag, = Bg,C.,n where r is
the rank of B & C. The purpose of this section is to propose a
direct method to factorize A in the above form known in the

literature as Dwivedi’s method.

Let the given matrix be denoted by

A= (aij)mxn

Now select any non-zero element of A say a,, and subtract
the mxn matrix u,v, from A, where u, = a,,k-l (@0 3249 -oo0 Bmil and
v, = [@p1y Bnzs +evs Bpa] . The difference will be denoted by A,. It is
easily seen that all elements of the ht row and the kv column of
A, = A-A, are zero. If A,=0, A=u,v, is a factorization of the
required type. If A,#0 the above process is applied to A,;. This
yields a matrix A; with at least two null columns and two null
rows. Since each step increases the number of null rows and

columns by at least one, it is clear that the above process will

terminate after a finite number of steps.

24



Suppose,

A - U|V| =A|

Al - u:vl = Az

AL-u , vo,=A =2 0

uv, =0

r-t T Y

Then

A=uyv,+uyv,+..+uyv =BC,

where

B=[uu,..ujl C'=[vyv,..v].

It is an elementary exercise to verify that the columns of B,..

and those of C,"' are linearly independent. This establishes the

fact that B,,, and C,,, as obtained above are indeed rank factors

of A with rankr.

25



Remarks

If Apw = B,,C,,, is a rank factorization of a complex matrix

A, the Moore-Penrose inverse of A is given by

A= C* (CC*) (B*B) B*,

where * indicates complex conjugate transpose (Greville, 1960).

The above method makes it much easier to compute the

generalized inverse in practical situations.

26



2.4 Best Linear Unbiased Estimators (BLUE) in terms of Weighted

Least Squares Estimators

There have appeared articles on the equivalence of simple
least squares estimators, (SLSE)s, and best linear unbiased
estimators (BLUE)s of estimable functions of ﬁ in the linear model
Y = Xﬂ+8. Zyskind (1967) has given a bibliography. One of the
main points proven is that, for any estimable function of ﬂ, a
BLUE is a SLSE if and only if the nXp matrix X of rank r is a
linear combination of exactly r eigenvectors of V, the covariancze
matrix (Zyskind, 1969). The property of estimability is used in
the proof. Our purpose is to show the set of weighted least
squares estimators (WLSE)s of [3 is the same as the set of simple
least squares estimator (SLSE)s of [? under the same condition on
X and the eigenvectors of V, provided the eigenvectors are
associated with positive eigenvalues, but with no reference to an
estimable function. Subsequently, the development of the general
form of a BLUE will show X is in the column space of the
eigenvectors of V which are associated with positive eigenvectors
when 0 is in the sample space of the linear function nfy. The
converse of the original theorem will be developed using 2yskind’s

result.

27



The implication of statistical theory and practice is that
we can easily develcp more applications oriented examples of when
we would wish to estimate /1',3, even if it is not estimable, than
generally appear in the Mathematical literature (Zyskind (1969),
Kruskal (1968). In the case of non-estimability A will be equal
X'a+b, with b in C(LX'), (Graybill, 1961) where C (M) is the
column space of M and C{LX') is the orthogonal complement of
the column space of X'. If b'b is small enough we still may wish

A A
to estimate ﬂ.'ﬂ with l'ﬂ for an appropriate estimator ,B
Fortunately b'b is easy to obtain. Solving XA =XX'a for a and
substituting we get b'b = A’ (I-XX*) A. This is akin to a concept
of Goldman and Zelen (1964). Their corollary 1.3 is easily adapted

A
to show that if ,3 is the least squares estimator, in the case V

2 A
= 0l, then A’ is the BLUE of X'a.

In the subsequent portion of this thesis we identify the
(SLSE) as a solution to (x'x)ﬁ (s) = X'y and the (WLSE) as
the solution of (X'V*X)ﬁ (w) = X'V'y. In this thesis V¥
is the Moore-Penrose generalized inverse of the matrix V, and our
representation of the (WLSE) is a simple extension of a well-known

theorem ([Graybill (1969), pg. 159].

28



Theorem: If the coefficient matrix X is nXp of rank r < p <n,
the covariance matrix V is mxm of rank 2 r, (P, P,) is an nxa
set of orthogonal vectors of V such that P, is naxXr and is

associated with positive eigenvalues of V, and X = P,A for some

A; then {B(w)} = {B(s)}.

Note: If V is positive definite then the conditions on the
rank of V are met as is the association of P, with positive

eigenvalues of V.

Proof: The statement on the rank of V and P, is associated

with positive eigenvalues of V permits us to write

'y 4 —_ ! ! Dl 0 PI'
2-4.1 XV x_A Pl (P|, Pz) ) PlA
0 D, P,

where D, is an rxr diagonal matrix of positive elements and D,

is diagonal. Hence,
2.4.2 (X'V*X)*+=A* (A'D,)*

because (A'Dl) is pxr of rank r ([Graybill (1969), pg.102]. We

know
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A

(2.4.3) B(w) = (X'V¥X)*X'V*y + [I- (X'V*X) *(X'V*X) ] h
for any px1 vector h [Graybill (1969), pg 104]. Equivalently
2.4.4 ﬁ(w) =A* (A'D,)TADP/y+ [[-A" (A'D,) *A'D,A] h.
It is well known, however, for any matrix K that (K'K)* K'K

= K*K. Hence, on identifying (A'D,) in (2.4.4) as K, and

recognizing AA' is rxr of rank r, we obtain

A

2.4.5 B(w) =A* P’y + [I - (A" A)] h.

On the other hand,

o>

2.4.6 (s) = (X'X)*X'y + (I-(X'X)* (X'X) 1h

= (A'A)*A'P,'y+ [I- (A'A)*A’A] h

At P/'y+ [I- (A*A] h.

Before starting the next part of the development we will

prove a lemma which will be needed subsequently.
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Lemma : m'y = (q+a) 'y = q'y + r, where r is a constant, is a

BLUE of E [m'y] if and only if q'y is a BLUE of E [q'y].

Proof: Certainly q'y is a BLUE of E [q'y]. Thus there exists
a vector k such that k'y is a BLUE of E[q'y]. Then (k+a)'y =k'y
4+ r is also a BLUE of E [m'y] . Since the variance of m'y is
identical to the variance of q'y, which is at least as large as

that of k'y, then m'y is a BLUE of E [m'y] if and only if k=q.

The preceeding theorem only showed that {ﬂ (s)} 1is
identical to {ﬂ (w) } under the stated conditions and does not
provide a Gauss-Markov type theorem on (BLUE)s. To develop this
further we start, for the sake of clarity of exposition, with some
well-known results. Consider first non-singular V and that m'y
is a BLUE of its expectation, m'X,B. Then, since a non-singular
L exists with LVL'= 0’zl, we have m'y = m'L.lLy = (L'-Im) 'z is
a BLUE of its expectation. Now Z has mean LXﬂ and covariance
matrix O’zl. For such a covariance matrix a BLUE is a SLSE, as is

well known. Hence, m'y is a BLUE of m'Xf if and only if

2.4.7 m'y = (L"'m)’z= m'X { (X'L'LX) X'L'z

+ [I- (X'L'LX) (X'L'LX)] h}
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for any px1 vector h. One notes that this reduces to
-1 + -1

2.4.8 m'y=m'X(X'V X)X'Vy

on observing that

2.4.9 X [I- (X'L'LX) (X'L'LX)].

-1 +
=L LX[I-(LX) LX] =0 (Graybill (1969), pg. 111]
2 -1
Also, since Z has variance 0l, [(L') m]’z is a BLUE of its
-1
expectation if and only if (L') m & C(LX). Equivalently, it

is a BLUE if and only if Vm=Xb for some vector b.

However, if V is of rank q < n an orthogonal matrix P = (P,

P,), where P, is nxq and P, is nx(n-q), exists such that

r D 0
2.4.10 P VP axq

We have then the BLUE of m'Xf is

’ [ ’ ’ ’ Pl'y
2.4.11 my=mPPy=(m'P, m'P,) P,y
2

m'Pz, +m'P,z,.
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DO
00

constant. Thus m'y a BLUE of its expectation is identical to

) so that m'P,z, is a
Zz <

z,
But ( ) has covariance matrix (
m’'P,z, being a BLUE of its expectation, (m’P,) (P,'Xf). We have
then by (2.4.7) and (2.4.8) that m'y is a BLUE of its expecation if

and only if
2.4.12m'y=m'P,P,'X { (x’P.D"P,’X)’x'P.D"z.} +m'P,P, X8.

The second term of (2.4.12) follows since m'Pzzz is a
constant which is identically equal to m'P,P,’y, which as noted

by Goldman and Zelen (1964), must equal its expected value.

By our earlier comments a necessary and sufficient condition
for m'P,z, to be a BLUE of m'P,P'Xf is that DP,'m = P,’Xb for
some vector b. Equivalently m'y is a BLUE of its mean if and only

if
2.4.13 Vm = P,.DP,'m = P,P,' Xb.

(Actually for m'y to be a BLUE it is known that Vm & C(X)
(Zyskind, 1969), but for present purposes there is some merit in

having our conclusion in the form of (2.4.13). From (2.4.13) it
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follows that we must have, for some h

2.4.14 m =V P,P,’Xb + (I-V'V) h.

Now the columns of P span n space, so we can write X = P,A, + P,A,
for some matrices A, and A,;. Also from (2.4.10) it follows that

+ -1
V=PDP,’ and V=P D P,’. Thus (2.4.14) reduces to

2.4.15 m = V Xb + P,P,’h.

Subsituting (2.4.15) into the second term on the right of (2.4.12)
and recalling the form of V we have m'y is a BLUE of m’'Xf it

and only if

2.4.16 m’y =m'PP,'X { (X'VX) X'Vy} + h'P,A,B.

Now consider the ms for which m'y is a BLUE of m'Xﬂ. We have
shown the totality of all such ms is the set that satisfies
(2.4.15) for some b and h. Hence, if 0 is in the sample space of
m'y for all m (for example, if y has a multivariate normal
distribution) then (2.4.16) shows that h'P,A,f =0 for any h and
,B. Thus P,A, =0, X=P,A,, and (2.4.13) shows Vm & C(x), and

(2.4.16) becomes
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2.4.17 m'y =m'X (X'VX) X'V'y.

The converse requires no comment on the sample space of y.
If X=P,A,, where P, is associated with positive eigenvalues of
V, then, using the general form of a BLUE in (2.4.12) we note
(2.4.17) is the BLUE of its mean. We have then a somewhat more
general result than corollary 1.1 of (Zyskind, 1969) in the sense

that we have proved the following theorem.

Theorem: If 0 is in the sample space of m'y for all m then m'y
is a BLUE of its expectation only if X is in the column space of
the eigenvectors of V associated with positive eigenvalues. The
vector m is of the form in (2.4.15) for some h and b. The general
form of a BLUE is given in (2.4.16), and for 0 in the sample space,
by (2.4.17). Conversely, if X is in the column space of the
positive eigenvectors then a BLUZ is given by (2.4.17) and m has

form (2.4.15).

Perhaps it should be pointed out that the restriction on 0
being in the sample space of m'y is a minimal one. If m'y is to
be a BLUE of m'Xf for all B then it must be one when B =0. Thus
for a continuous sample space it is most reasonable that 0 be in

it.
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We are almost in position to prove a converse to the first
theorem. Since the columns of P span n space we know that for some
set of columns of P which are assembled in the matrix P,, where
P, is nxk and k = n, X, = P,A, if X, is a matrix of the r

independent columns of X. Let q = min {k | X, =P,A}.

Corollary: Let X be nXp of rank r<p and X, a set of r
independent columns of X. Let the related nXq matrix (as
described in the preceeding paragraph) be P, which is made up of
orthogonal eigenvectors of V and each of its columns be

A
associated with positive eigenvalues of V. Then if { ﬁ(w) } =

{ ﬁ(s)} we have r=q.

Proof: By the preceeding theorem, if A’'b is estimable then
A=X'm for some m and its BLUE is (2.4.17). However, by
hypothesis the BLUE is identical to the SLSE. The result follows

from Zyskind’s conclusions (Zyskind, 1969).
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2. lationships Among Estimators in Linear Models

In the linear models, in simultaneous equations systems, it has
been observed that the traditional method of OLS (ordinary least
squares) estimators fails to estimate the parameters consistently.
Thus, the number of estimation procedures has been developed for
estimating the parameters. They are classified in two (2) groups such
as limited information methods and systems method. The families of
limited information methods maximum are double K-class, K-class,
two-stage least squares, limited information maximum likelihood.

Following Dwivedi (1992), a linear relation is developed.

The families of systems method are full information maximum
likelihood, 3SLS, double h-vector class, double K-matrix class
estimators, and etc. For detail study regarding the relationship
among these estimators see Srivastava & Tiwari (1990), Tiwari (1986),

Srivastava & Tiwari (1986), and Srivastava & Tiwari (1977).
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2.5.2 Model Specification & Estimators

Suppose the equation to be estimated is

y=Yy +xlﬂ+u (2.5.1)

=70 +u

Z=1[YX,] 0= (};)

where y is a TXi column vector of observations on the jointly
dependent variables, Y is a TXm matrix of observations on jointly
dependent variables, X, is a TXL matrix of predetermined variables,
Y. B are associated coefficient vectors and u is a column vector

of T unobserved structural disturbances.

Assuming the equation (2.5.1) to be identifiable the double k-

class estimator as proposed by Nagar (1962) of 5 is given by
A -1
!
Ovwe = [Z'(I-k,M)Z] ' Z' (I-k,M) y (2.5.2)
where k, and k, are the characterizing scalers and

M=I-X(X'X) X’ (2.5.3)

38



X being TXA matrix assumed to be

of full column rank,
observations on all the A predetermined variables in the model.
Notice that if k, = k,, we get k-class estimators:
A -
Ow=I[Z(1-kM)Z] " Z' [1-KkM]y (2.5.4)

of

and if we k, =k, =1 we get the two stage least squares estimators:

A
azSLs = [Z'M*Z] IZ'M*Y

(2.5.5)
where
M* =X (X'X) X' (2.5.6)
i amon
Consider equation (2.5.2)
8- (2 .
owe = [Z' (I -kM)Z] Z [I-kM]y
8 -1
=0, + (keky) [ Z'(I-kM) Z] ' Z'My (2.5.7)
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To proceed with our discussion we require the following useful
result which we cite without proof. As a matter of fact the proof is

quite straight forward.

Lemma : For any two matrices Q, & Q,

(Q+Q;) " = [I- (Q+0Qy) Q,] Q, (2.5.8)

-1
provided Q, exists.

Now utilizing the above Lemma we can show that

[Z'(T-k,M)Z] = [K,Z'M*Z+ (1-k,) Z'Z]

= Lir-(1-ky 0z (1-xM) 211 2'2] (2'M*Z) (2.5.9)

Therefore

[Z'(1-k,M) Z]'Z' My

= (2" (1-kM) Z] " Z'(1-M*) y

=[Z'(1-kM) Z] Z'y- [Z'(I-kM)Z] Z'M*y.
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Now substituting from (2.5.9) to the 27 term on the RHS of the above

we obtain

[Z' (I-KM)Z] Z'My
(2.5.19)

. 1 -1 A
= [Z' (I-k,M) Z] 'Z'.v-k—[l-u-k.) (Z' (I-k,M)Z]  Z'Z] O ses
1

Again using the Lemma we can write (2.5.10) in the following form:

A

1/1-k, [1- (Z'(1-KkM)Z] Kk, (Z'M*Z)] Oos - 1/k, [1- (1-k,)

Y4
A
' -1 ' s
[Z'(1-k,M) Z] Z'Z] O s (2.5.11)
Now using (2.5.7) and (2.5.11) we obtain

kl‘kz
l' kl

A
{1z cr-km) 21" (K,Z2'M*Z) } Do

A A
50!&: = 5k: *

kl-

k - S
B k 2{[' (1-k) [Z'(1-kM) Z] Z,Z}525LS‘
|

We have therefore established the following:
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Theorem: Consider the equation (2.5.1); then the double k-class
A
estimator of the parameter, denoted by 50,“, k-class estimator, two
stage least squares estimator and ordinary least squares estimator
A A

A
of the parameter denoted as 5“, 525,_5 and 50,_5 respectively are

connected by the following identity:

Q.

Smc = Skc+ Kok {l'k| [Z'(I-k,M)Z]-l(Z'M*Z) }

oLS

ki-k,
- kz

{1-(1-kp 1z (z-xM) 21722} 04
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Chapter 3
Finite Sample Properties of Bootstrap Estimate of

Two- ast-Squares (2S1.S): An Analvtical roach

3.1 Introduction

Several methods of estimation have been proposed for the
parameters of a system of simultaneous equations in econometrics.
The method of two-stage least square has been very widely used and
investigated. This method, 1like many others in this contexet,
suffers from the drawback that it produces a biased estimator. It
still éemains a popular method because of 1its computerized

simplicity and consistency in large samples.

In general, the moments of 2SLS estimator do not exist
(Mariano, 1972) but under certain regularity conditions, they have
been explicitly obtained (Nagar, 1959), Chaubey et al. 1984]. The
expressions obtained in these papers are not easily applicable for
computation of bias and standard errors in practice. Freedman
(1984) has investigated the asymptotic properties of the bootstrap
estimator of 2SLS. However, Hsu et al (1986) pointed out that
Freedman's "theoretical results do not apply to the non-large

sample case". For this purpose, they applied the bootstrap method
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to reduce the bias of the 2SLS estimator and investigated it

empirically.

The purpose of the present thesis 1is to investigate the
finite sample properties of the bootstrap estimator of 2SLS. The
approach is analytical and offers simple estimate cf bias in
finite samples. In this paper, we concentrate on studying the bias
properties only. However, the method 1is general enough to
investigate the properties of arbitrary moments; and this exercise

is left for further work.

The plan of this section is as follows. In section 3.2, the
simultaneous equations model is described in detail for the sake
of completeness; and the method of 2SLS is also presented in this
section. Section 3.3 considers the bootstrap method when the
disturbances are sampled from a known distribution, and section
3.4 is devoted to the general case. The latter case is, of course,
more practical, but the former one is used because it facilitates
some derivations in the latter case. The introduction of bootstrap
is done through what is known as "selection matrix", which
simplifies the derivations. It may be mentioned that the use of
selection matrix was also made by Sim (1989), Sim & Fisher {19%1),

and Nebebe & Sim (1991).
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.2 Simultaneous E tion Model d Two Sta Least Squares

. 2.1 D ription of Simul us Estimation Model

In general, a system of M linear structural equations in M
jointly dependent and k predetermined variables may be expressed

in algebraic form as follows:

Padi)r o+ Yy Brxit) + o+ Baxdt) = uy ()

PO+ .+ PPy )+ ,Bl.\/xl (t)y+... + ,Bx,u-\',..(t) = UW,(t) (3.2.1.1)

for t=1,2, ... T. Here )'s are jointly dependent and X's are
predetermined variables. We have assumed that T observations are
available on each of these variables. Structural disturbances in
successive equations are represented by U (L), H,(t), ... U (L)
respectively and Y's & ﬂ's are structural coefficients. We assume
that the number of jointly dependent variables are the same as the

number of equations. That is, we have a complete system.

In matrix notation, the system of equations can be written

as:

Yr + Xg = v (3.2.1.2)
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where ¥ is a TXM matrix of jointly dependent variables, [ is a
MXxM matrix of parameters, X is a TxK matrix of predetermined
variables, ,B is a KXM matrix of parameters and U is a TxXM
matrix of disturbances. Assuming that I is non singular square

matrix of order M, we can write (3.2.1.2) as follows:

1

V... = -XBT" + UT’ (3.2.1.3)
Y?x:«. = X?x:-: né-?x)! + V-xu (3.2.1.4

where

M- -  ana V- UT",

Further we make the following standard assumptions (Theil, 1971;:

(i) The elements of X are non stochastic and fixed in repeated

samples.

(ii) Rank X =K< T

(iii) plim XX - Syx is a positive definite matrix.
- T
(iv) pl}mu =0
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We make further assumptions on the structural disturbances:

@ E [ ui(t) ] =0 foralli=12,...M , t=1,2. ... T
and
) E [ u,(t) u(t')y] = oy if t=t
= 0 if t=t.

The M~dimensional row vectors of U are independently and

identically distributed.

Furthermore, the T rows of V are also independently and

identically distributed such that

E(V)=O,—;E[V'V]=Q=F"ZF" (3.2.1.5)

where

2 = (O’U) .

SUPPOse that because of a priori restrictions, m+ 1 <M
Jointly depandent and K, < K predetermined variables enter the
equation with non-zero coefficients. Further, the structural
coefficients have been normalized by dividing the entire equation
by the coefficient of one of the jointly dependent variables. Then

the structursl equation, in terms of normalized coefficients, may
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be expressed as

m K,
y(t) = 2 y, p(t) + 12_:' B,x (t) + u(t) (3.2.1.6)

i=1
where the jointly dependent variable with "unit" coefficient is
placed on the left-hand side and all other jointly dependent
variables on the right-hand side. The coefficient y's and f's are
ratios of the original structural coefficients, which are

parameters of interest (Thiel, 1971).
We can write (3.2.1.6) in matrix format as follows:
y=Yy + X\ f+u (3.2.1.7)

where p is a Tx1 column vector, Y, and X. are matrices of the
order TXm and TXK, respectively. The coefficient vectors Y and
ﬂ are mxX1 and KX1 respectively and # is a TXx1 vector of

structural disturbances.

One should note that y and ¥, are submatrices of ¥ and X,
is a submatrix of X. Supposing that the columns of Y are
rearranged so that the columns of Jy and ¥, occur first in ¥ and

the columns of X, occur first in X. Then
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Y=[y Y, Yz] and X=[X| Xz]

where ¥, is the T x (M-m-1) matrix of observations on those
jointly dependent variables which are excluded from (3.2.1.7) and
X, is TxK; matrix of observations on K - K, = K, excludsd

predetermined variables.

Accordingly, the reduced form (3.2.1.4) can be written as

y=Xxn* + X,m, +v (3.2.1.€)
Y, = XII* + X,IT, + V, (3.2.1.9)
Y, = X\|IT,* + X,I1, + V,. (3.2.1.10)

so that (3.2.1.8) is that part of the complete reduced form which
corresponds to the jointly dependent variable on the left side in
(3.2.1.7); similarly, (3.2.1.9) corresponds to the right hand side
jointly dependent variables of (3.2.1.7) and (3.2.1.10)

corresponds to the jointly dependent variables excluded from

(3.2.1.7). We should note that

]t* is KIXI, .7[. is KzXl,
IN* is K,x m, I, is K,x m,
1IL* is K, x M-m-1,11, is K, x M-m-1 (3.2.1.11)
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and

VisTxl, V,is Txm and V, is Tx M-m-1. (3.2.1.12)

Now we may write

a* I1* IT,*
Im= V =(vV W)
Without any loss of generality, let us assume that (3.2.1.7)

happens to be the first equation of the complete structural

equation system (3.2.1.4). Then

l

-y is the first column of I’ and is the first column

OM-m-l

of ﬂ where OM,m_, and OKZ are column vectors of M-m-| and Kz
"zero" elements respectively, also K,=K - K, as defined earlier.
Since the structural parameters are related with the reduced form

parameters as

M = -BI'" and V=UT"
or

II" =-B and VT = U,
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we have

‘ 8
Il -y = -
0.\’4"'[ 0 J
and
l
V 4 = u
OSI-m-I
The important thing to note here is the following:
|
(v Vi V) -y = u.
0.\l-m-l
v-V,y=u
(3.2.1.12)
Hence,

FED -Vl v Vil ZE @ =
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2. Two-S Least are i io

To obtain the 2SLS estimator (3.2.1.7), we proceed as follows:

First, note that we can write

Y/ =X 1II* + X,I1, + V,

as
['I*
Y, = (X, X)) + V, (3.2.2.1)
I,
or
Y =Xn +V, (3.2.2.2)

where X is a TxXK matrix and @ is a KXm matrix of parameters

and V, is a TXm matrix of the reduced form disturbances.

First, apply ordinary LS to each one of the reduced form
equation in (3.2.2.2). Note that we can represent the estimator

as follows:

A=(X'X) XY,, (3.2.2.3)
So

F=x#=xXxXx"XxY,. (3.2.2.4)



A
Now replacing ¥, by Y, in (3.2.1.7), we obtain

y=l’>l? + X, +u. (3.2.2.5)
A ‘}} .
=(Y X)) 8 + u. (3.2.2.6)

Now applying LS again to (3.2.2.6), we obtain:

A A -1 A,
3 Py, Y'x Yy,
ﬁ = (3.2.2.7)
X'Y X/'X, X'y
We can represent this in the following form:
A
Lelz=[f>X] 0= ?\ and 5—[}’]
| 3 ﬂ ﬂ
Then (3.2.2.7) can be written as
Q ' -1 '
o (2'2) Ty (3.2.2.8)

and (3.2.2.6) as y=2 0 + u.
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A
w86 =(2'2) (23 +u)
=5 +(2'2) 7'u

Further, the estimator of 0 in (3.2.1.3) is given by

a (3.2.2.9)

>

where # =y - 2 0 denotes residual vector of the second stage

least squares, which can be shown to be a consistent estimator.

THE BOQOTSTRAP ESTIMATOR

The bootstrap methodology was first introduced by Efron
(1979) and was adapted by Freedman (1984) who further studied the
large sample properties of the bootstrap estimator of 2SLS. For
simplicity, we first describe it as follows for the ease of known

disturbances.

Let the components of the disturbance vector M be considered
as a known random sample from some distribution F. The bootstrap

method considers drawing repeated random samples from the

|
distribution F; which puts equal probability mass T at each of

.th
the components U,, U4,, .., Ur. Let,lq* denote the ) random sample
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(called the Bootstrap sample) in J repeated ramdom samples, j= 1.2,
., ] from F}. Then the boostrap consists of constructing the

vectors )ﬁ* (for a known O and ) as:
y¥=290 +u* (3.3.1)

Note that this is not a realistic case, but is presented for the
sake of clarity. Then we use the least squares method on (3.3.1)

th
to get for the ] bootstrap sample;

' L
5!1)* = (z z) z yl/)*
‘i(u* =y1* -2 50}*

'l,\

ki
Tk — *! 7 *
s, *=T a,* a,*.

For a large J, the bootstrap estimator of 0 is given by
- 1 x
5 = 72 5,“ . (3.3.2)

We now introduce an alternative representation of the
bootstrap sample #,,* through “selection matrix”. Let §, be a
TxT matrix of rows consisting of zeroes, except at the index at
which the camponent of M is selected where there is a unity. This

Jth
will be called the “selection matrix” corresponding to the
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bootstrap sample. For example, let T=4 and w*’', = (u, u,, u,,

u,) then

1000

_ 0001
SU) -

0100

1 000

Note that each element of any row of SU,is distributed as

1
a Bernouilli random variable with probability of success = 75 .

First we mention a few simple lemmas which will be used in

proving the theorems.
Lemma 2.1 (Sim & Fisher, 1991)

Let T be finite and J be the number of bootstrap replications,

then

1 J J X
TES, 3 TE 3:3.4
=

where E; is a TXT matrix of unities.
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Proof:

The lemma is easily established by the use of a strong law

of large numbers for the case of Bernoulli random variables.

Lemma 2.2

Let T be finite and J be the number of bootstrap replications,

then

1 { , J
7}; S Sy as I, (3.3.3)

i 7]
Let.su)= (a,, ) where a,, denotes the (r,s) element of.SU,.
Note that the (r,s) element of.gw'su)is zero when r#s and for r=s
. 0 ) ) _
it equals a, where &, = Bin (T, 1/T). Hence the results again

follow from the application of strong law of large numbers.

Now we can write (3.3.2) as follows;

J -
5+ = L3S (ze)'z (26 + s, ul

J =

=5 + %}_“ (2'2)' 2 s, u
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=§ + (z,z)~lz,[_;_2 s,“]u. (3.3.6)

Thus by lemma 2.1, we note that
*_J> ' -1 /] -1
Y as. 0 +(2'2) 2T Er u
which equals
- -
d+(2'2) 2 un

where 1; denotes TX1 vector of unities and u=T 2 u;,. We

state this as the following theorem.

The bias of 0% is zero when U=0in a finite sample,

otherwise it is given by
' g =
(Z2'2) 2" w1,

By a similar use of lemma 2.2, we obtain the following.
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Theorem 3.2

Let $°=uw'u/ T and let T be finite, then

1 J
’
— > u,*'u,*
J =l
1 , ;; 2
—> (s, u) (s, ,u)p? Ts. (3.3.7)
J
Now we consider the case of unknown disturbances.

3.4. Bootstrap Estimator when the Disturbances are unknown:

The bootstrap algorithm in this case is as follows:

A
Step 1 Obtain O, # according to the specification in (3.2.2.5).
Step 2 Construct §,,.
A -~

Step 3 Reconstruct the equation y,* =7 0 +§,4.

-1
Step 4 Compute 0,,* = (2'2) Z' y,*.
Step 5 Repeat it for j=1,2,..,1J.
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Now we focus our attention to the bootstrap estimates

obtained as above and obtain the following results.

Let @l be the residual vector at the second (2“d) stage of 2SLS

- 1 5.,
and # = — 2 @1, . Then for the finite T:
T i=1
A 12 2 as. A R I+
0% = 72 5,20 +(2'2) T [al 1r. (3.4.1)
=1

The proof of the above theorem follows along the same lines
as theorem (3.1). We also note that the conditiocnal bias of the
bootstrap is zero if the average of the 2nd stage residual is
zero. The term (Z'Z)-|Z' [E] 1; may be regarded as the estimate

A

of the bias of 0 due to the following theorem (see also Freedman,

1984).

A
Let 0 * be the boostrap estimator of 0 based on a large

A
sample and 0 be the two stage least square estimate of J;: then

plim [(3* - 3) - B -8)] =0
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Proof:

Note that from (3.4.1)

p lim (3* - 3) = plim [(z'2)' 2" @ 1,]
- iim|T (20 L7 E
P ‘T'" (z Z Tz r Q: u
where Q. = [T - Z(Z'Z).lZ'] . Hence
A A
= pli;n (0% -9)
= ptim [(2'2)'2 Eru- (2'2) 2'E 2(2'2) 2'u]

—pllm[T(z z) —z'E u-T(Z Z) —’z'E,zT(z Z) —z u]

p lim [T(Z'z)‘l]plim ?‘,"E u- pllmT(zz) p lim —1:E,z pI:mT(ZZ)plim z;‘

!

Eu

and

Note that all the plim’s are finite except p lim

!
p lim U, These plim*s can be shown to be equal to zero as follows:
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Since

z=[X7 | X|]
A - . I
= I Xn : (X, : X)] -
0
N J§
= X b4 .es
o
we have
Lo =1a I " Xu.
T 0 T

A
And by assumption (4) and the fact that plim T =Il; it follows that,

"u
p lim E;r = 0.

Similarly, P lim _I‘.' ZE;u =0 also.

A
Further, since 0 is 2sLS estimator, it is well known that

pu;n(3*-6)=0

and therefore the theorem follows.
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