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Abstract

Conductance and magnetoconductance of parabolically confined

quasi-one-dimensional channels

Sébastien Guillon

Electrical conduction is studied along parabolically confined quasi-one dimen-
sional channels in the framework of linear-response theory. In the absence of
a magnetic field an expression for the conductance is obtained, that agrees
with those in the previous literature on this subject, as well as with the limit
of the conductance in the Born approximation. A similar but new expression
is obtained in the presence of a magnetic field perpendicular to the channel.
This expression is more general than those contained in previous literature
as it accounts explicitly for the Hall field. Some particular cases are also

discussed.
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Chapter 1

Introduction

Since the discovery of electricity, there has been a longtime interest in under-
standing and utilizing the electric properties of materials. Different materials
can have very different electric properties. In electricity an essential char-
acteristic is the resistance of materials. The conductance [23] is the inverse
of the electric resistance. The expression for conductance is well known for
a rectangular box conductor. It is simply equal to the Ohmic conductivity
times a geometrical ratio (width over length). This expression of conduc-
tivity is based on experimental studies. The first theoretical understanding
was developed by Drude in 1900 [13]. In the Drude model the electron is
represented as a classical particle driven by an electric field. The electron is

slowed when bouncing against the wall of the conductor and when hitting



other electrons or obstacles.

This representation was refined by taking into account more physical
effects and using more complete model. The classical theory was replaced
by quantum theory around 1920. The new picture of a particle as a wave
was added to the collisions of a classical particle. New concepts such as
Bloch electron, band model, phonon vibrations etc., were used to explain the
conductivity at the end of the 60’s.

With new development in semiconductor manufacturing, it became possi-
ble to produce very small devices such as quantum wires and quantum dots of
nanometer sizes. At this scale the electron evolves along a distance less than
its mean free path. New phenomena occuring in electronic transport were
observed at low temperatures, e.g, the conductance quantization. For a large
sample, the Ohmic relation is still valid. If the length or width decreases,
the conductance decreases too. However, in mesoscopic samples, the Ohmic
relation is no longer valid. The conductance reaches a limit where its value
equals a universal discrete quantity. Van Wees et al. [33] and Wharam et al.
[36] in 1988 experimentally demonstrated that the conductance of electrons
through a narrow channel is quantized in units of €?/h.

These experimental results on nanostructures stimulated further theo-

retical understanding. Different forms were proposed to explain these new



properties. The first one was by Landauer in 1957 [25] for one dimensional
wire. He expressed the problem in terms of scattering. His expression was
used to explain experimental results found by Van Wees and Wharam. An-
derson [1] in the same year deduced the Landauer expression and was able
to describe a large range of phenomena such as localisation in one-dimension
and universal conductance fluctuations. In 1985 Gefen [16] solved the case
where there are two resistances in parallel. The conductance generalization
for multichannel propagation was proposed in 1981 [3] and in 1985 [7]. Si-
multaneously researchers tried to find a more rigorous foundation.

The linear response theory was proposed by Kubo in 1957. This the-
ory was used to derive expressions for the conductance [15, 14, 32]. Slight
variations between different results were a source of discussion. Crucial im-
portance was given to conditions of measurement. It was established that
four-probe measurements do not give the same answer as two-probe measure-
ments [18]. In 1985 Buttiker (7] clarified the physical conditions necessary for
the multichannel generalization. Following the Landauer approach a deriva-
tion from the linear response theory was given in 1988 (32].

The influence of a magnetic field was also studied. The two-probe for-
mula and its generalization were still applicable in a magnetic field. They

were derived again using linear response theory in 1988 [23, 4] and recently



by several groups {29, 21, 24]. The Onsager’s relation, relating the symmetry
of the conductance upon changing the direction of the magnetic field, was
verified. An apparent contradiction was expressed [30] using gauge transfor-
mation. The response clarified the different steps of calculation and showed
a simpler derivation [28].

For the four-probe measurement with the magnetic field, it was realised
that the conductance can be asymmetric under magnetic field reversal. Nu-
merical simulation [31] and specific cases (with a small number of channel) (8]
showed an asymmetric relation with the magnetic field. Instead of following
the Onsager relation, an equivalent relation between the resistances [10] was
shown.

In our work we propose to derive a conductance expression from linear-
response theory. The case with the electric field is formulated. The con-
ductivity is compared with that obtained by Verboven. The next situation
is with the presence of an electric field and a magnetic field. An attempt is
made to generalize the results of the literature by including the Hall field and
the curvature of the confining potential, and by evaluating their approximate

expressions.



Chapter 2

Mesoscopic systems and

Landauer formulation

2.1 Mesoscopic systems

2.1.1 Physical properties

Mesoscopic systems lie between macroscopic systems, such as bulk semicon-
ductors and metals, and microscopic systems, such as atoms and molecules.
They have common properties with these two opposite scales. There are, like
in solid state, a great number of electrons involved. We can use the Fermi
level and velocity concepts. The presence of chemical (impurities) and crys-

talline defects gives to each sample its uniqueness because the electron mean

5



free path is greater than the sample size. Similar to microscopic systems,
electrons are in coherent quantum states. Their phases can be conserved
during the propagation. We can have interference effects. The phase coher-
ence is typical for mesoscopic systems and is the source of new phenomena.
This is possible for low temperatures when the crystalline vibrations have

weak effect on the phase coherence.

2.1.2 Quantum transport

In quantum transport we can have three different regimes. They depend
on the Fermi wavelength of a free electron Ag. the mean free path [, . the
typical size of the sample L, and the phase-relaxation length L.,. The ballistic
regime is when \p <« [,. L </, and L > L. It is observed in semiconductor
heterojunctions where [, can reach 10 pm (and A\r = 300 angstroms). It is
the situation when electrons suffer a very small number of collisions and hit
(bounce on ) few times the surface of the sample. The diffusive regime is when
Ar €l < L and L, > L. It is the usual situation in metals where \p =
1 angstroms and [, &~ 100 angstroms. Electrons can suffer many collisions
scatterings and follow a random trajectory. The classical theory can then be
applied. The localisation regime is when the L., < L. Electrons are confined

in small different regions and propagate by hoping mechanism. In our study,
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Figure 2.1: Multichannel propagation in the Landauer model

we will have a region of scattering (diffusive) between two perfect ballistic

regions.

2.2 Multichannel Landauer formulation

2.2.1 Conductance between reservoirs

We consider the following model (see Figure 2.1) [19]. The scattering centres
(S) constitute the inhomogenous part of the sample. They are represented as
a potential barrier. The connections in the leads are ideal and represented by
channels. The reservoirs are the perfect sources (or sinks) of electrons. Elec-
trons coming from reservoir 1 propagate coherently in channel i. They pass
through the sample where they are elastically scattered and reach reservoir 2.
Each side of the leads has a finite cross-section A and N, transmission chan-

nels. Channels are the discrete energy coming from the quantization along



the perpendicular axis of propagation. N longitudinal waves pass through

channels. At temperatures close to zero, their energies are given by
E.; +hE2/)2m=Ep,i=1,.,N; (2.1)

Only channels with real k; are considered. Those with imaginary k; are

evanescent waves and are ignored. The inhomogenous part of the sample

behaves as potential barrier. An incoming wave coming from channel i, has

a probability T;; = |t;;|2 to be transmitted in the j cuannel of lead B and

a probability R;; = |rij|? to be reflected by the channel j. In the reservoirs

the chemical potential is u, on the left side and p, on the right side with

g1 > p2. The following assumptions are made :

1- The reservoir fills the channel until the population reaches the thermal

equilibrium corresponding to the Fermi distribution.

2- There is no phase relation between channels.

3- The propagation in the channels are completely coherent and are not

modified by changes in the éeometry.

4- The difference u, — po is weak enough to be in the linear response regime.
The current is the sum of the transmitted minus the reflected electrons.

It is expressed in terms of energy for a channel ¢ by

i = ¢ [ n(BYsT(E) A(E) - (1 = R) o E)E, (22)



where T; = 3, T;; and R; = 3_; R;; are the total transmission and reflection
probabilities and fiz)(E) is the Fermi distribution on the left (right) side.

The density of states n; in the direction of propagation, in one dimension, is

ni(E) = (2wh;) ™ (2.3)
therefore the total current is
i i 2.
L= %h / (2L zi:T(E)dE (2.4)
where we used the relation T;(E) = (1 — R;) and we linearize the expression

fluy + Ap) — f(u2) = Augé. This current is identical for each side. The

measured conductance between reservoirs is given by

I
#Mz

- ffengp s

= ,}}Ln 971’& ETu(EF

Gy, =

2

= 5‘;—htr{ttf} (2.5)

where tr{tt'} = Sty =¥, ¥ |t:;1* and t;; is the transmission coefficient.
This formula yields the conductance for a two-probe measurement. It repre-

sents a voltage measurement between the reservoirs and takes into account

the metallic wires connecting the sample to the voltmeter.



Conductance in the presence of a magnetic field

When a magnetic field is present, Eq.(2.5) satisfies the Onsager’s relation 8]
G3(B) = G2(-B) (2.6)

This is verified in two steps. Firstly, if one changes the current direction
G_;, the current conservation is still valid. The conductance is conserved :
G_; = G;. Therefore we have G_;(—B) = G(—B). Secondly, time-reversal
invariance requires S(B) = S*(—B), (t for transpose) for the scattering ma-
trices. This implies G_;(—B) = G(B). From theses two relations, we have

G(~B) = G_;(—B) = G(B) and Onsager’s relation follows.

2.2.2 Barrier Conductance

To calculate the conductance between the leads p4 and pp, several hypothe-
ses are available. It can be done directly upon assuming that the density of
states does not change with measurement. The chemical potentials between
the reservoirs and the nonhomogenous part of a sample are defined by the
equality of the density of states ny = n;, ng = n;.

For T = 0, the right lead has

2 1

10



and the left lead has

2 1
ng = EAu }: ;(1 + R;). (2.8)

If we use the Einstein relation for a degenerate gas, we obtain

on
1 = 2,
eAV (3E) An, (2.9)
here
2 1
An=n‘4—'na=-ﬁz;(1+&—ﬂ) (210)
and
on 2 1
(55) LR (2.11)

is the total density of current in the channels. The potential difference is

Tiyp(1+ R -T)

eAV =
2%

(1 — H2) (2.12)

and we can deduce conductance

P tr{tt'}2 5 -
YTAV T A L+ R-T)

(2.13)

This is the conductance between the scatterings centers. Experimentally, it is
found using a four-probe measurement. Physically it means that current and
voltage are measured. In the presence of a magnetic field, this expression does
not always follow the Onsager relation (8] [31]. This conclusion brought a

general discussion about the symmetry relation for four-probe measurements.

11



Symmetry in the presence of a magnetic field

For a four-probe measurement, Buttiker clarified the symmetry involved [9].
The hypothesis of a perfect voltage measurement without influence on the
current equilibrium was no longer applied. The current and the voltage were
considered on the same level. Using the resistance matrix, the current in
one channel is found in terms of chemical potentials of different channels.
Relating the chemical potential to the measured potential, using current
conservation and symmetry arguments, it was shown that there is an Onsager
symmetry. Instead of being one for the conductance, it is between resistance

elements.

12



Chapter 3

Electric field only

3.1 Expression for the conductivity

In Ref.[6] a general formula for the conductance is found in terms of the
transmission and reflection coefficients in the absence of a magnetic field.
The derivation is based on the Hamiltonian and von Neuman's equation. The
model (see Figure 3.1) proposes two perfect leads with scattering centres in
the middle. The electric field is applied only in the inhomogenous part.

The many-body Hamiltonian is
Hix(t) = Hy + W(t) + H' (3.1)

Hy is the unpertubed Hamiltonian, W the pertubation, and H I the interac-
tion between electrons and impurities. Hy describes independent electrons

13
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Figure 3.1: A quasi-one-dimensional conductor, connected to left (L) and
right (R) reservoirs in the presence of a longitudinal the electric field. The

length of the conductor is L’. The solid dots represent scattering centers.
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and phonons. It is supposed that impurities are fixed, i.e., they do not move.
There are no interactions between electrons. It is a gas of free electrons which
interacts only with impurities. We can transform the many-body Hamilto-

nian Eq.(3.1) to a sum of one electron Hamiltonians at T = 0 (no phonons)
Hoa=3 Hi+) wi+ h!; (3.2)

H; is the one-electron Hamiltonian, h! one-electron interaction with impu-
rities, and w; is related to the electric field by eE = —Vw(r). Then von
Neuman’s equation is used. For elastic scattering, it can be transformed into
a similar one-body equation. In the linear response theory for a Fermi-Dirac

distribution f(h) it reads
26(0) +iLp(t) = = +{w(0), F(B) (3.)

with Lo = X[H(t);, o]
The one-body density operator p is the sum of unpertubed operator f(h)

and of the pertubation operator j(t)

p(t) = f(R) + A(t). (3.4)

Since Lf(h) = 0 (for N-body see [34]), the equation for 5(t) is
3 )
SA(t) +iLp() = ~[i(t), F(B)] (35)

15



with the initial condition

5(0) = 0 (3.6)
The solution is found using Laplace transforms. In Laplace space (Eq.3.5)

becomes

il
P = T Rs+il

[@(s), f(R)] (3.7)
This equation can be separated in two parts. In a representation in which A;
is diagonal, the operator 5 has a diagonal (j;) and nondiagonal (fna) part,
p = pa + Pna- The diagonal equation is found using the diagonal projection
superator P. The equation is

i

5Pa(s) + iPL pna(s) = =3Pl (s), £ (h)] (3.8)

The nondiagonal equation is found using the nondiagonal projection super-

ator Q. The equation is
$Pna(s) + (L0 + QL) fra(s) = —iL" Pna(s) — %Q[@(S), f(h)] (3.9)

The steady state solution is represented by the limit ¢ — co. In Laplace
space this is equivalent to the limit s — 0+. In this limit Egs.(3.8) and (3.9)
can be combined in one equation

The result obtained for the diagonal part p4 of the density operator, the

only one pertinent to the conductance, is
- ¢
pa=—+A 'Tlw, f(h)] (3.10)

16



where the Master A and T superoperators are given by

_pprl 1
A=PL £+O+£ (3.11)
F~P[1—£‘ . ] (3.12)
- il + 0+ '
L and L! are defined by
Lo = —;—[H, o (3.13)
and
Cle= %[v, o, (3.14)
In matrix notation we can write:
[wv f(h‘)] = Z[w7 f(h)]a6|¢a)<¢ﬁ| (315)
af

with Hvy; = Epp;. This gives

(4

pa = —E[\_lrzﬂ[w:f(h)]aﬂlwa)(¢ﬂ|

1

= —EA-I Zﬂ F[wr f(h’)]aﬂlwa) (Vs
= A b, STl 0 (3.10)

The operator I doesn’t affect the sum and the number [w, f(h)]as. Using

the relation [6]

T[%a) (%8l = |a){¥s|0as, (3.17)

17



in terms of the unpertubed Hamiltonian hg, we obtain

Ao =~ A o Sl sl (3.18) -

the matrix elements are

Golddon) = w_;;A-lgﬁ;[w,f(h)laﬁlsoa(wlaaﬂz%)
- _%mm-lgﬁ;[w,f(h)la,slgoa«aﬁl%)saﬁ
- _%Mm-l;ﬁ[w,f(h)laal«pawmﬂ
= -% %[w, F(W)ag (9ol A" |0a)dprdas
=~ S lA e nbaa(bellw, F(RI) (319

Using the relation [6]

f(eﬁ) — f(fa)

€8 — €a

(allo, SRIvs) = (it ( ) f, e B walite s, (020

where f(h)¥; = f(e:), we have

(f(fa) — f(ea)

. i = :
(el Galipy) = ~ Y (0ol A7 pa)dpydas(—ih) .
B~ €a

af

) J; B walste )
(3.21)

With the help of the identity

f(eﬁ) - f(fa)

60;9 — f’(ea)éaﬁ (322)
€3 — €a

Eq.(3.21) takes the form
(polfulpr) = = S (oalR " lpoldonf (ca)das [ Gali() ) Bl (32)

18



The current density is

J(r) = Tr{j(r)pa}
= Z(‘Pﬂ] T)Ba|P~)

= Z(‘P‘yl] r)|a) (sl fale~)

1

Z +6(T)Pdgy (3.24)

Using Eq.(3.23) we rewrite J(r) as
Jr) == 3 jro(r)olA " |0a)Saxdas f (ea) [ dr' B (walilr)is) (3:25)
v6af
and we get

Iy == [ o (z m(r)<wm-‘|%>éayaaﬂf'<ea)<wa|j<r'>|¢ﬂ>) B(),

v8af
(3.26)

where E(r') is the electric field current density and the electric field FROM
J —_ d ! ! ! .
(r) /Q ro(r, ) E(r) (3.27)

we find the conductivity expression

o¥(r,7)

- z: j70 (7') (‘PGIA-I l‘pa>5ﬂ75cxﬂf’(ea) (%U(T') W)ﬂ)

Y0af

= - ;ﬂj-ro(r)(%lf\'ll(pa) F'(€a) Wali (r)|¥08)8540ap

it

19



Ud(r’ r) = - Z j‘r@(")(976l:\_ll#:’a)dj—/‘saﬂfl(fa)(wa (") ws)

18ad
= - Z Jya(r) S—B|\ Hooa) f/(€a) (Wal i (r)|w3)d 3400z
~v8a3
= = i) (el A ea) £ (ea) (wali () ws)dsn
163
= = 3 Fra(r) (el A i) £ (e (s L ()] &) (3.28)
.’g

In summary, we find that the conductivity is given by

Y= =S Jre(r) (el A M) f(ea) (e L) ). (3.29)
~0

3.2 Conductivity according to Verboven

Verboven's expression [33] can be deduced from Eq.(3.29). The conductivity
is
d t af -1 s
Tialr ) = T o | (5D < el > (330

If we use the relaxation-time approximation we can write (A™'j(r))w =
7o jex and
(0r) =2 (EE) 7 < alitlon < wlite > @3y
The expression of 7 is
T ke = %: Ticre (G — Jerker) (3.32)

20



- %W(k, K25 (ex — exr). (3.34)

In following Verboven we choose a free electron along z. The following eigen-

functions gy are chosen

1 ..
or = ——=e* xa(z, y) (3.35)
VN

With a parabolic confinement along y the energy is

(flkz)2
2m

een = (n+ %)fuu + (3.36)

where the confining potential is V;, = mw?y?/2. The current density is

. —ieh . e
ek = / ¢r V prdV
—1ieh . .
= 5 / (e Veor — e Vipi)dV
—ieh ,_. .
= 2(2ik) / orondV (3.37)

Verboven’s hypothesis is repeated. The first one is the spherical potential
which allows to define a vector by its longitudinal components 6, k = |k|cosf.

Taking into account normalization, it gives

k|h K
jEE - jk7k7 = eu— (1 - ucosG)

m K|
_ i
= e (1 — cosh) (3.38)

the last step of Eq.(3.38) is obtained by using Verboven’s hypothesis of one
band. In this case the indices are n = n’ = 1. Due to the Dirac function in

21



Eq.(3.34), the states have the same energy and |E| = |I€’ |. Then the relaxation

time has the form

- h - 2
Tk = X LRI - cosd) TIW (k, )6 (ex — e

kl
- 2T
= Z l7el(1 = cosG)-E|W(k, KN 26(ex — exr) (3.39)
kl

i

from that we can deduce 7, " wich is similar to Verboven’s. The final result

for the conductivity is

i) =5 (35) 7 < olitlee >< blicNw > (340)

k

and coincides with ¢ given by Verboven.

3.3 Conductance

The conductance is given by the integral

+00
G=- /_ " def(9G(6) (3.41)
where
Gle) = /S /S deol(r,")dSdS"; (3.42)

dS and dS' are two surfaces and

ay(r,r) =) 6(e - ee) (A~ ik (r)) e (') (3.43)
k
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The main idea now is to connect the scattering eigenfunctions v¥; with the
free-particle eigenfunctions ; using the transmission and reflection coeffi-
cients respectively .o and 7,». This is posible since we look far away from

the scattering center of length L. In detail we have

Ztm, €) P+ > L, (3.44)
Yoo = Pa(r) + D raw(€)pas(r),  z> L, (3.45)
Yoy = Yas(r) + Z rfa, (€)pa - (1), T < 0, (3.46)
Ztaa' (pal T << O, (3.47)

We evaluate the matrices Jxg(r') for different regions. To do so, we use new

eigenfunctions @

1
Pax(r) = 75e e*leixZ(z,y) (3.48)
such as
/sj¢(r) -dS = (3.49)
with
h
6, = Ellal (3.50)

The difference from the normalized eigenfunction ¢ is simply a coefficient

)
Pax = Pax\| T (3.51)
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The surface integral [ jxx(r) - dS|(az) is calculated using these eigenfunc-

tions. In terms of the transmission and reflection coefficients we obtain
[ jkx(r) - dSlan = e 7+ Z E 2 z> L, (3.52)
d

/ Ik (T) - dS|@es) = e ~[1- Z IrL 2, T K 0, (3.53)
. 6, ,
/s Jkk(r) - dS|@e-y = —e-L-, }: ItR, 2, T K0, (3.54)
d
[, dki(r)- Sl = —e S-SR s>l (3.55)
g9

Now we need to evaluate A~!. Since we consider only elastic scattering, we

can use the relaxation-time aproximation which gives

-~

(AF(r))ex = 7 Gke(T), (3.56)
and

(A5 (r))kk = ek (r)- (3.57)
The calculation gives [6]

Ag(Ajkk(r))kk'dsl(ai) nzzo { | (1 (;a> Uz (1_*_6;0)}’

(3.58)
with

h? o
Uney = 5 [ ") ¥ v (r) (3.59)
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We evaluate the integral with the transmission and reflection coefficients and

obtain
1 b 1 &0y
=t s e - rmn), 3.60)
8 1 &0y
-l 2 — 5 Z(rk, , .61
SR o S ) S

Here R and L refer to the right and left regions. Finally, we find the conduc-

tance in the form

Lt R4Rt
Gk——Z[ (4" o . RJ
1 + 5 2 a’(lraa’ - |taa' ) 1 + o E G'(Iraa'l ltaa'l )
(3.62)
with (tt1)as = &5 |tew|?> - To gain some insight, we further evaluate this

conductance below in two different approximations.

3.4 Conductance with free-particle eigenfunc-

tions
We start with the expression of G(e) given by Egs.(3.42) and (3.43)

G(e) = L, ﬁ.0 (/A Like(r) d.S’/ ]KK(T')dS) X (3.63)
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We aproximate the scattering eigenfunctions by the free-particle eigenfunc-

tions
@ai = ‘ﬁa:t-
Then the current density

zeﬁ.

Jas(r) = (wawn A%

translates to

. —iehf, o
Jrk(T) = oL/ ——@az V Paz.

Using the following properties, given in [6]

/ dS - @Zﬂ:(r) e ‘150’&(7') = :t_h'-‘sa’a

4872 oz, = 0,

we obtain

. 60
[g]KK(T)dSI(a:t) L’

For the other integral we use the relaxation-time approximation

LA_Ijkk(r)dsl(at) = LTkkjkk(T)dsl(ai)

= Thk /S Jik(T)ds|(ax)
—iehf,

+*»
= Tax 5o /S%i V @azds

+ef
= Ta:t(—Fg-).
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(3.65)

(3.66)

(3.67)

(3.68)

(3.69)
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The expression of 7,4 is
a_ L&l +4)2 O Oar
= = }; " {|Uaa,*| (1 — E) + |UEF|? (1 + Z)} : (3.71)
With

U™ = —fi/ds-'@‘ (r) ¥ Bargors) ()
aa’ - om s axt a’(forF)

h? L e
o\ Babe [ ds - 0ia() T buarn () (372)

we get
Bah§,w  fora*a™
sor) 0 for ata’”
ULETs) = ¢ (3.73)
~Bahby foraTa’”™
l 0 for a=a't
_ mL' <1 (| i6h. | 8, 0,
= ??U{i‘r‘”w (1-%) +or (”i)}
mL' &1 [, 0.8, 6,
= 0. (3.74)

For the conductance we obtain

Gle) = 2”—”2%( [, A d(r)as | jKK(r')dS')

A | +eb, ef,
=T (=C50) (%)

= 00 (3.75)

at

R
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In summary we find that for plane waves the resistance is zero. Clearly this

shows that this approximation is not valid.

3.5 Transmission and reflection coefficient in

the first-order pertubed eigenfunctions

We use the expression for the scattering eigenfunctions to the first order in

the scattering potential H'

1
) =l + & T8 0,) + 00) (3.76)
p#n

We write Eq.(3.76) in terms of the channel indices

o) = 1pur) + 3 Bl Petd iy 4000

p#a Eg
= I‘F—’a:k) + Z Dapl‘ﬁp:!:)- (3.77)
p#a

The current density is given by

—zeh. o

ikk(r) = ¢'aﬂ;() V Yaz(r)

= ——zehﬁ =2 (r ) a£(T)

omL’
<
= (@ax + Y DapPpz)* V (Paz + Y DasBos)
p#a b#a

= Cﬂaai V Pazx + czDab(pad: V Po+ +C Z Dap(lap:i: V Pax
b#a

+c Z 2 DapDab‘pp;t V Pt (378)
p#a b¥a

28



with ¢ = %ﬂ and

+2mai
/jKK(T)a:tdS = c hmz (1 +Y Dasbap + 3 Diplpa+ 22 D;pDab5p,b)

b#a p#a p#a b#a

= izo <1+0+0+ZD )

pFa
ieg (HZ ————((p”iIH ‘g":ﬁ ) (3.79)
p#a P
If we use Eqgs.(3.52) - (3.54) we have
[ ixx(r)ardS = Z 72 (3.80)
/ jri(T)e—dS = b (3.81)
we then see that
Z ltarP =1+ ﬁ"’—”*ﬁl—%ﬁ (3.82)
p#a

For U we find

K2 o
Usser = %/‘P;i V Yc+dS
N
= o\ DV [ P ¥ st
K2 (6, (6. 1., o _ _
= —'V EVE/%": V @t + 3, DopPpads
p#c

= Ca / Fox V Perds + &1 Y Dg / Paz Ppxds
p¥c

= (ﬁ"“) (ac + 3 Depliap)

p#c
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= qip Y0l (&.c +3 Dc,,a,,,,)

L p¥#c
V0.8, ;|
= +ip¥Y " (5ac+2(—""—fl——|—“’o°*—>) . (3.83)
L p E?

with coc = +ih¥%% and

Usser = Cac/‘ﬁ;;t v (pc;dS+cacZDcp/<paitp,,;dS

p#c
=0 (3.84)
With U given in (6],
h20,0,
Usyee|* = —r e R viid (3.85)
and
ﬁ29 6.
IUG:;:C:;I2 | R orl 2 (3.86)
we find
(Paz|H " |Pex) H
p;éc c
and
Tac = 0. (3.88)
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3.6 Total transmission and reflection coeffi-

cients

We have to solve the equation

)

=+ (K - \U(z))p =0 (3.89)

with the boundary conditions

Y — e* 4+ Re ™% for x - —o0 (3.90)

Y — Te* for x = +00 (3.91)

The Green’s function

Glelzo) = (7)== (3.92)
is a solution of
d*G
—7 T k°G = —8(z - z0), (3.93)

Therefore, the solution of Eq.(3.92)

= eiFz _ ) / G (z|20)U (o) (o) dzo (3.94)

becomes

. A T . oo |
Y(z) = e"‘x+(2—iﬁ) [/_m e*(==2)Y (2g)(zg)dzo + /: e'k(r"-z)U(-’Co)U/(xo)dxo]

(3.95)
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where ) is a parameter with value between 0 and 1. Its limiting behavior is
ik " A +00 |
PY(z) =" +e zﬂ/ e*= U (20)¥(zo)dzy for x & —c0  (3.96)
—00

: : +00 .
¥(z) = e** + C'kx% / e k=0 (20)1(zo)dzo for x — +co  (3.97)

Comparing Eq.(3.90) and Eq.(3.91) with the boundary conditions (Eq.(3.96)

and Eq.(3.54)) we obtain the total transmission and reflection coefficients

/\2 +00 ikz 2
R= ZF /—oo € k OU(.’Bo)'t/)(l‘o)dl‘o (398)
A2 oo " 2
T = .1 + 4—k—2 /;oo e’ mU(Io)‘l/)(Io)d&?o (399)

Thus, the Born approximation has the drawback that the transmission coef-

ficient is larger than 1.
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Chapter 4

Conductance in the presence of

crossed electric and magnetic

fields

4.1 Magnetoconductance, conductivity ten-

sor, and Hall coefficient

Magnetoconductance

We discuss briefly the distribution of the electric field and the current in

a magnetic field. Consider a two-dimensional system in the xy-plane with
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Figure 4.1: Schematic view a Hall bar.

a magnetic field along = (see Figure 4.1). If we apply a voltage along the
conductor. there is a flow of current in the direction E, of the electric field
represented by the current density j,. The voltage 1} perpendicular to the
bar is zero. The situation changes if we apply a magnetic ficld in the direction
-Z. As shown in Figure 4.1 the Lorentz force f(t) = q(E + T x B) creates
an accumulation of positive charges along one side of the bar and leaves
the other one negative. This gives rise to an electric field £, perpendicular
to the current. The voltage 1, is no longer zero. The ratio E./j, is the
usual conductance. In the presence of a transverse magnetic field B, this

conductance is called magnetoconductance.

Conductivity tensor

The classical calculation starts with the variation of the momentum during

collisions
dp(t)  plt) =
el + f(¢t) (4.1)



We multiply these equations by ngr/m and current density j = np/m.

It gives

ok = jz+wc7'jy: (4'2)

O'oEy = —WeTJz +jy7 (4-3)

where 0, = ng®r/m is the Drude conductivity and w, = g|B|/m. The

expression of the current density in terms of the electric field is

Jr = 1—_*%73 (E; — weTEy) (4.4)
Gy = ﬁ‘# (werEz + Ey) (4.5)

The conductivity is a tensor
J=0E (4.6)

For a material the electric field at one specific location can be different

than the applied electric field. This is represented by the equation
J(r) =3 (r,r")E(r") (4.7)

In our model this situation is considered. The relation between the con-

ductivity and the conductance is

G(r,r') = /A /A dAo(r,r")dA’ (4.8)
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Hall coeflicient

The Hall fied E, is found using the requirement j, = 0. From Eq. (4.3) we
obtain

Ry =—FL=— (4.9)

4.2 Schroedinger’s equation

In the following section we will give the classical Hamiltonian for an elec-
tron in an electromagnetic field. Then from this Hamiltonian we will write

Schroedinger’s equation without pertubation.

4.2.1 Classical Hamiltonian

The electromagnetic field interacts with charged particles. Its effect is rep-

resented by the Lorentz force
F=q(E+7xB). (4.10)

The electric (E) and magnetic (B) fields can be expressed in terms of the

-

vector (A) and scalar (@) potentials as

E

i
|
<
©-

(4.11)

o
il
]
X
'

(4.12)



The Lorentz force is rewritten in term of theses two potentials. Using the
identity

— -

Bx(VxC)=V(B-C)=(B-V)C-(C-V)B-(Cx(VxB)) (4.13)

and the expression

dA 0A - -
ad _ o4 | -, 14
= = 7 +(7-V)A (4.14)

to transform the triple product
Tx(VxA)=V(7-A)-(7-V)A (4.15)

and the velocity not being an explicit function of the position. Eq.(4.10)

becomes
. dA

F=gq —ﬁq>+€7(z7.A)-I . (4.16)

In Lagrange’s formulation, the generalized forces are related to the potential

U(xiv zt) by
ou d,oU
F=an tales) .l
Using
dA _ ds -
where the derivative is with respect to the velocity we get
d - d 0 _,
Fi=—5-(10—q7-A) + 5o~ (a8 -7 4). (419)
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the scalar potential is added since it is independent of the velocity u(7,t). A

comparison between Eq.(4.16) and Eq.(4.19) gives the generalized potential

U =q¢p—qi- A (4.20)

The Lagrangian L =T — U becomes

L= %mifz ~qp+qi- A (4.21)

In classical mechanics the relation between the Lagrangian and Hamiltonian
is given by
H(7\p) = Y piti — L{x;, ). (4.22)

This leads to

1
2m

H=——(5-d4) +4¢. (4.23)

This equation is the classical Hamiltonian for a free, charged particle in an

electromagnetic field.

Quantum expression

The transition to non-relativistic quantum mechanics is done by replacing

the momentum p with the operator AY /i. Therefore we have

1 (hg

2
Hy = o (-;V - QA) +q¢ (4.24)
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Figure 14.2: A quasi-one-dimensional conductor. connected to left (L) ‘dnd
right (R) reservoirs in the presence of a crossed electric and a magnetic fields.
The length of the conductor is L. The solid dots represent scattering centers.

This is the quantum mechanical Hamiltonian for an electron in an elec-
tromagnetic field. Since the later is not quantized. it is a semiclassical hamil-

tonian.

Hamiltonian

We consider the model shown in Figure 4.2. We use the one-electron approx-
imation i.e, no Coulomb interactions are present. and ¢ = 0. The magnetic
field B is constant along the z axis (B = —B3). the Hall field E, is oppo-

site to the y axis [27]. the confining potential is parabolic along the v axis.
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V, = mQ%y?/2, and the vector potential is along the x axis (Landau gauge)
A = Byz. Then

1 >] 2 1 2 2

Ho = %(P—q:i‘) —qELy-f-;mQ'y'
1 . 2p2 2
= 5-(Pr =~ PugBy - qByP: + ¢ By’)

9

P, 5 o
+2Y _gE.y+ 2022 (4.25)
2m 2

4.2.2 Solution of Schroedinger’s equation
Harmonic Oscillator

We attempt a solution of Eq.(4.23) in the form

F(£.y) = x(y) exp(ik.r) (4.26)
This gives
l 212 P] 9 RIS ﬁ'2 "
T ks = 2hkemucy = 2mgE Ly + m(we + X)yIx(y) - 5 (W) =ex(y)
(4.27)

with the cyclotron frequency we = ¢B/m. Introducing

_ hk:r qE.L
~ ¢B N mw?’

£ (4.28)

writing w} = w? + Q2, and completing the square, Eq.(4.27) is rewritten as

mw? 2 \?2 |
T (1-e) xo) - X ) =Ex)  (649)



where

202
__ mwglt o, we bk 1 5.0 43
E=c¢ ——-2w% Y; +——mw% qFE) + ——2mw%q E{ (4.30)

and Y; = hk;/qB. Equation (4.29) describes a displaced harmonic oscillator,

centered at y = wif /w3

Eigenfunctions, energy, and velocity

The solution of Eq.(4.29) is obtained by a power-series method or by using
creation and anhilation operators. It is expressed in terms of the Hermite

polynomials. The eigenfunctions are

Xn(y) = Gn ( - Z%qe) (4.31)

Wk
where ¢ = (mwr/h)}?y and ¢ = (mwrp/h)%E with

Ga(¢) = e "2 H, (), (4.32)

where H,(¢) are the Hermite polynomials.
The oscillator energy is a multiple of the energy fuwr and n is the Landau

level index. The total energy is

1 Rk2Q%2 we q*E?
k , = ( _.) z . _ ——_hk _ L )
e(kz,n) n+ 5 hwr + om oE 7 qE1 S (4.33)

From this expression we obtain the velocity along the direction of propagation
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using 7 = ﬁ,;e(l_c') /h. The result is

hk, Q2
vy = =2 — —C 4E, (4.34)
m wi  mwi

4.3 Current Density in a magnetic field

4.3.1 Current density

The current density is found by combining Schroedinger’s equation with the

continuity equation. The Schroedinger’s equation is

ih%p = HY; (4.35)

taking the complex conjuguate, we have

av*

—ih 5

= H"¥* (4.36)

We now multiply Eq.(4.35) by ¥* and Eq.(4.36) by ¥. Substracting the

results we obtain

ini(%;‘l'—) = U*(HV) — (H*T")T. (4.37)

Using the Hamiltonian operator we have

. _ 342
ina(‘la'tq') = 2;: [&°(V2¥) - (V29*)¥]
v Pw@ A+ A-9)+ (- A+ 4-9)w] w43
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We write the first term on the right-hand side as
T (VAE) - (V20 = V- (VT - V). (4.39)

Since

V(aVb) = (Va)(Vb) + aV?b, (4.40)

the second term on the right-hand side is simplified :

WUV - A+ 24 (T*VU + (VI)E) = 20°TV - A+ 24 V(IT)

Given these modifications, we deduce the following equation

L, 0¥ ¥) N O S .
ih—s = %v.[qlvw-\pw]
+ %"6-(,&\1:'\1:). (4.42)

This equation has the form of the continuity equation

3p — -
'5t-+V']—0 (4.43)

where p is the probability density
p(7,t) = W*(F,8)¥(F 1), (4.44)
and J the current density

J= 2 [V - u9e] - 4 1vv. (4.45)
2m m
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4.3.2 Representation of the current density

The current density operator is expressed in terms of the eigenfunctions in

matrix form as

T —1 h e, = = Y
Jpa = 251 [wg(V%)—(Vw,s)soa]—%Acpﬁ% (4.46)

We rewrite Eq.(4.46) with the gauge-invariant derivative D =V —igA/m

using the notation f D g=fVg—gV*f:
+
Joa = 5-=¥5 D fa (4.47)
The components along different axes are

h‘ L ]
T ke (T Y) = 4 [Qm(kﬂ +ka1) — qu/m} harka) st Xkam

(4.48)

: h OXkz2 OXx -
y o z,y) = AL zem ZXkzin | jilke2—k=1)Z (4 49
szl:n'kszM( y) %m Xk:l:l,n ay Xkz2,m ay € ( )

We notice some perticuliarities of the diagonal terms (kzo = kgz1,m = n).
The current density in the x direction depends only on the y position and
vanishes along the y direction since x*(y) = x(y). Along the y direction the

nondiagonal current density is

+00
f_ %dz = F(Xijr Xi5) / elki—k)zdy = Q (4.50)
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It makes sense since in our model there is a confinement along the y axis.
This confinement is represented by a parabolic potential. The consequence
of this potential is to cancel the result of the integral of the current density

along the y axis.

4.3.3 Probability density and normalized flux

Usually the solutions of Schroendinger’s equation are normalized. In order to
have a probability equal to one in the entire space, a normalization constant

N, is used.

1

on(z,y) = Xn (y)eltk=?) (4.51)

n

with [ |p|2dv =1

[lofav

1 .
i(kzz—kzz) 2
A / / e Xn(y)dzdy

- TVLT, [ H Gy, (4.52)

With the change of variable y = (v — d)/c (¢ = /mwr/h , d = wic€/w?)

and dy = dvy/c, we have

/

[1etas = == [ Hi
= clffnﬁ 2" . nl, (4.53)
the normalization constant NV, is
N, = L/72™n!/c (4.54)
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But the model we used here is a scattering problem. In order to define a
scattering matrix it is more convenient to normalize the flux using [ J d-:s/ qg=
1.

The new eigenfunction is

1
= —=e~

‘lazt,a. - \/o—a

where @ is a normalized flux constant and [ ¥2dy = 1. We have

*tkeg T

Xna,tkzg (y) (4.55)

e = = [ty

- ’2(7;1\7—/ dy(e**+x)" D -2(e**y)

= W / dye¥horx [d/dz — qiBy/H] €emx

_ _2%1%% / (:tzika—2%3y)xzdy

_ i}_\%/(i::h qf Cdy. (4.56)

If we repeat the change of variable y = (v — d)/c (see above) and apply the
properties of even (f¥/ f(y)dy = 0) and odd functions (f(~y) = —f(y)), we

obtain

LEkL [, _ qBdL [, +gBL )
Oxa — X" (v)dvy T NG /x (v)dy - N2 /7x (7)dy

_ +k,h qBd\ L 2
B :t( m mc)Nnc/X (dy

kqlh Bd
- (o
m mc
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where
kelh  qB w?
VUt = [I I ¥q——g'§}
m m wi
_ [lklh _gBwg
Tl m m wa

or after simplification

m w2

[Ikalﬁ Q?
Utq = — F

kol , 9E.

qB

Weq E L
mw

The relation between the two eigenfunctions is

e
=[5oen

n

4.4 Properties

4.4.1 First relation

2
mwz

)

(4.57)

(4.58)

(4.59)

(4.60)

The gradient of the current density can be expressed in terms of an energy

difference

-

Explicitly we obtain

—igh
2m

G =

47

= 1q .
\% Ba = 'ﬁfaﬂ‘pﬂ(pa-

(4.61)

. . 23 . 2 .
{£5(V*0a) — 0a(V203) = S (VA)pi0a — T AV (j00)}



= —{wb(5,; - 5 ) Pa ¥al5— = %Soa)}

= ?ﬁ‘l ;,(2P—T: - % + A+ U(®Y))wa — wa(% - 2% +¢*A* + U(y))pa}
- %1.{¢5(H%) — ¢a(Hepp)"}

= Be, — e5)par} (462)

h

where N = qP*A+qAP* and W = qPA + gAP are used.

4.4.2 Second relation

We deduce some properties from the first relation. With eigenfunctions of

the same energy, the current density matrix elements are constant {4].

Since
= = e . e .
VJge = Eeaﬂcpﬂgoa = Eﬁeag,/vﬂvagoﬂ'cpa, (4.63)
gives
VJga =0 (4.64)
for e = €3, we have
Iga = / J3adS = / VJsadV = constant. (4.65)

There is no current along the y axis ; consequently

Iga(z) = /< wgli%|pa > dy
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vV VBla — Ti—
= Y2 / < Pgls*[@a > dy (4.66)
L
and
Iso(z) = constant. (4.67)

The displacement of the homogenous system by AZ can be represented by
a unitary operator. The displacement operator is T(AZ) = e=*4%#/* After
displacing, operators associated with physical quantities are modified by T.
New operators are obtained by A’ = TAT*. This modification is done on the

current. We obtain
Iga(z + Az) = /1": < pgldop(z + Az)|pe > dy (4.68)
the result is
Iga(z + Az) = /2: < pgle”i8=P=N Y (z + Az)etBTP /A, > dy  (4.69)

The basis is chosen such that the functions are eigenfunctions of the trans-

lation operator. The exponential acts on |p; > and gives a phase factor
Igo(z + Az) = ¢ilka—kalAz [y (1) (4.70)

Equations (4.67) and (4.70) are verified for identical states w15 = @4,. If we

choose a constant equal to \/7aU./qL and use Eq.(4.47), we obtain

+2mi

pag oot Torer g
/dy P1p(D 2)Pso = Tfsaa, €8 = €q (4.71)
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For two states @5 and @4, with the same energy eg = €., the only possibility
to satisfy the two equations (4.67) and (4.70) is to have a current equal to

zero: Ig, = 0. The resulting property is

[y Fs(D D)Pa =0, & = ca. (4.72)

Equations (4.71) and (4.72) are the main results of this section.

4.5 Diagonal and nondiagonal current den-
sity

Every transport theory must satisfy current conservation in the static limit
(V < J >=0). This property is verified for states with the same energy.
More precisely, if we assume a density operator which does not depend on

the position p # f(z,y), we obtain

V<dp> = VTr{pJyp}

= VY <ilplj >< j|Jpli >
i.j
= Y <ilplj > V < j|Jpli >
i.j
= Zp,-dﬁfj,i =0. (4.73)

1Y)
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The current can be separated in diagonal and nondiagonal components
V<p> = V¥ pighi
47

=V (Z piidiabii+ > Pi,jjj,i)

ij 1#]
= 5(<fo>+<fND>)
= Y0V + 2 gV
4J i#j

= V<Jp>+V < Jyp> (4.74)
Using the diagonal terms in Eqs.(4.48) and (4.49) we obtain ﬁJ:,i =0=>
V < Jp >= 0. The diagonal part is conserved. From its conservation and
the complete current density, we deduce the conservation of the nondiago-

nal term. Thus, conservation is verified for all parts of the current density

involving states with the same energy.

4.6 Conductivity

The conductivity, in terms of summation over states, reads ([6])

Fa (r') == Fle) (A15(r))  (")ss; (4.75)

here s labels the unperturbed states op, ., and S the scattering states

Ungk.s- Lhe energy is restricted to a specific value ¢, The conductivity

ol



is

' ' “3€p '
oq(r,r') = —/f (€p) 04 (r,7")dep, (4.76)
where

gy (r,") -25 — enoke,) (A715(0)  3(7)ss- (4.77)

The Dirac function is rewritten in terms of k, using the property

= kz,), (4.78)

)= ]

:.I
where ¢’ is the derivative of g(k;) and k;, the root of g(kz) = 0. The equation

g(kz,) = 0 becomes

R Q2 wchqFE | 1 ¢*E?
— ok =k ( —) hwp — — %= — ¢, = 4.79
2m w2 mw2 koo + (R + 2 T 2mw?. & =0 (4.79)

The roots ks, are ky,, = (—b + vb% — dac)/2a. They are real if b* > 4ac.
If this condition is respected, the wavefunctions can propagate in different
channels. For imaginary roots, the wavefunctions have negative exponen-
tials and their amplitude decreases with propagation. If so, there is energy
absorption. The waves become evanescent and negligible. The condition of

propagation is given by

2 252 22
weg Bl 2| ¢OFEI ( _1_) _
TR > 20 [ om +({n+ 5 hwr — € (4.80)

Propagation modes depend on confinement, magnetic field, Landau levels and
electric field. For a given energy, Eq.(4.78) with ¢/(kz,) = (A2 /mw?) k., —
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wchqE | /mw?, leads to

9% (1 r 2 [0k = ka) | 8(ks —ke)] (Ro1i00) i
¢ () = nzk: ) 19 (el ](A 5 ))531( )ss  (4.81)

When the k, components become continuous, i.e, in the limit L — oo, the

sum over k. is replaced by an integral

L %
Z = lim o [ dk,. (4.82)
Looo 2 -L

Then the conductivity becomes

“)p

o (r,r') = Z lim —/

L—oo 27

O(kz — kzy)  O(kz — kz,)
ke [ EICATTICN]
x (A(r),, 3(r)ss

L&
= =% My, + Mk, (4.83)
where

— 1 ! g
My, = mJ(T Ve, msikems (A725(7)) . (4.84)

4.7 Conductance

The conductance is calculated by integrating the conductivity along any two

perpendicular surfaces. The conductivity calculations are repeated. A spe-

cific energy is chosen for the conductance

Gle,) = / [ dA 5 (r,r')dA",
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with the expression of the conductivity presented in Eq.(4.83) we obtain

L &
Glep) = o nE (M., + Neoy) s (4.86)
where
—_ 1 ! ! 2-1- —
ijIi B m/J(r )K:Un’;K:i’n"dA /(A ](T))k:i»n:ik:"vna dA' (4'8’)

4.8 Conductance in terms of transmission and

reflection coefficients

4.8.1 General discussion

To clearly see every step involved in the calculations, the two values k., ,
are taken to be in opposite direction. That is, in the expression of Eq.(4.79)

we start in supposing one positive and one negative solution. Then

L&
Glep) = o > (Niko, + Nekey) (4.88)

s

_ 1 [y A-l_
(4.89)
We now proceed with the evaluation of these two integrals that are related

to transmission and reflection coefficients. By choosing two surfaces (A, A')
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in an asymptotic region we can integrate. The choice of surface is arbitrary.

It is not necessary to know the exact scattering states. It is sufficient to have

their asymptotic expression in a region away from the scattering center. The

scattering states are represented by a linear combination of eigenfunctions of

the unpertubed Hamiltonian.

"1_[}.3+ = Zt“/(é (ps' 2> LS

4 \/Uﬂva —‘lqﬁ.—- b g
Joa = L 2m 8 D¥a

For the different regions we have

. zqfw
J-IZ (rl) = - Zztn'tsa"‘ps’+ D Py +1 z> L.n
=+ “omL o
. —ighvgs 7 — _
i3, () = — = D@, + er,f«p,, D%yt
€p . o
+ ersncps,+ DQgn_
Ngr
Cp ¢p
+ Z Z rss'rn”‘pa' D @s“—}’ z KL 0:
Nyt By
—ighv,_ _, & _ P opee B
7,_(r) = ——2# Po-DP,_+ D 18T, D Py

Ny
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(4.91)

(4.92)

(4.93)

(4.94)

(4.95)

(4.96)



€p
R —s= o
+ ers”‘ps’— D Pt

Ngn

€p €p
+ erss’rss"(ps' D Pgn +} z> Ly,
Ny Ng»
. ’ —zqhvs__ fp Ep ResR —s
i, 1) = —— ZZt tRoL P, <.

4.8.2 Evaluation of the first integral
Using Eqs.(4.71) and (4.72) we obtain
/]w' NdA' = qv,+ Ztu, L 2> L,

/ T3, (r)dA" = qv,+ Z rlarl}z <0,

/mjmmrz mwamﬂﬂi>%

[ 75, (da = W“Zﬂmy £ <0

(4.97)

(4.98)

(4.99)

(4.100)

(4.101)

(4.102)

With current conservation (1 = |r|? + |t|2) we obtain far away from each

scattering region the same result

. Uz,
/](T,):th‘-,n;:thi,n,dA’ = (q H ) Zt"nt”

4.8.3 Evaluation of the second integral

(4.103)

The second integral has the operator A. To easily calculate its inverse, we use

the relaxation-time approximation which is valid only for elastic scattering.
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It is very often an excellent approximation for weakly inelastic scattering.

The approximation leads to

[@Rsr))asdA = — [ Gudd. (4.104)

We deduce the value of 7, as follows. We have

Br = [jreda

_ [Us [Vis —igh [_ o
B LV L 2m /cp, D p,d4

Vg —igh £2mi
T L om R

qU+s
—_— 1
7 (4.105)

In the integral on the left-hand size of Eq.(4.104), the operator A is equal to
[6]

(1-\](1‘)) = Z 6(611 - ek')lT:{:ss’lz (jisis - js’a’) : (4106)

£s;=s
where Tisy =< @44|V|th4y > is the transition operator. In our model V
represent the scattering potential. The Dirac function is rewritten in terms
of the wavevector longitudinal components and of the two roots k; /2 ; then
the summation over k. is replaced by an integration, see Eq.(4.82). This

leads to

- . L & Ifz.':i:.s;n,:,Hc’,.1 Iz . . lT:!:s;n,;,—k',.2|2 3 .
O = 52 5 | TR (1= o) + i (s, )

s

(4.107)
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To evaluate the integral on the right-hand side of Eq.(4.104) we use Eq.(4.105)

and obtain

[Ri)edA = [(rir)sssada

Tts / JrstsdA

= 1, (ﬁ;q”*’) . (4.108)

With this result, Eq.(4.107), and Eq.(4.104) the relaxation-time becomes

' 2 ! , 2 ’
_1_. — £ i |:|Ti3m:"+k=n|l (1 T .B-i-{l) + IT:ts;n,:,-kz‘,zl (1 n '6—122)} .

Tes R T | |9'(+kg) Bis. |9(—kz;,)| Bis,
(4.109)
Using Eq.(4.103), Eq.(4.105), and Eq.(4.109), in Eq.(4.89) we get
Nig, = _—1—7' (i BE)ZZt‘ t (4.110)
tkz, — Igl(ikx,)l +s q L < ssnlss™ .

4.8.4 Calculation of T
Expression of T

The matrix element of the transition operator T' between a state ¢, and a
scattering state vy is

Tyy =< 05|Vt > . (4.111)
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If we write V = H — Hp, we obtain
T\ = €9 < Y5y > — < @s| (Holtps >). (4.112)

We modify the second term on the right-hand side. The Hamiltonian will

operate on the left element. In order to do so, we recall the expression

. R d, .., hp[d .
[P = 2 [ erwidv- 7 [

/ P, (o ) dv + / (P2 )udy. (4.113)

We obtain

[ PuPvyts = [ Puly"Pp)dv + [ (P Prido

[ Pato Pawdv + [ P(Proyldv + [ (P

K[ .9 )
- / (P2p*)ypdv — / = [<p‘%w ~ ¢a—$(p'] dv. (4.114)

and
/ @" Pyydv = f P(¢'yy)dv + / (Pr " )ypdv. (4.115)

If we combine these results with the Hamiltonian given by Eq.(4.25), we

obtain
1
<@l (Holbw >) = 5=(< @l Pz + Fy)lby >
_(n)? O s
S / Vip'Vy — yVe'ldv
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B B
~L [(roryywds - £ [ Pulorywds
= (< ps|Ho|)9ps >
h? o
5 [ Vet V vy

_1B )
— /Px(go yy'dv. (4.116)

If we combine this result with Green’s theorem, we obtain

R A . ¢B .
T = (e — &) < @ulthe >) + 5 [ dAle1 ¥ v0) + L= [ Prlolywe)av
(4.117)
The first term is zero if the energies are the same. If so, the remaining terms

can be simplified. The result

Tow = :; f (5 E Yy )dy + @;—(T;th / Pyvsdy (4.118)
is equal to
To = o / ( _2B y) by dy; (4.119)
thus
T,y = -2% /A dA - 203 D)y (4.120)

Finally, if we write the results in terms of the normalized flux, we obtain

_ 'U,Uslﬁ - e & -
To= Y /A dA - 257 (D)by (4.121)
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T,, in terms of transmission and reflection coefficients

To evaluate the term Ty14 .., we use equations (4.90) and (4.92) together with

equations (4.71) and (4.72). For z 3> L, we obtain

h
Tovot = %\/vs+vs’+tf'u (4.122)
Ty oy =0. (4.123)
For z <« 0 the results are

ih
Ts+s’+ = fmass’, (4'124)

h
Tyyy = —fL— vitgrk,. (4.125)

To evaluate the term T,.,_ we use equations (4.91) and Eq.(4.93) together

with equations (4.71) and (4.72). For z > L, we obtain

h
Ty = %,/—v,+v,:_r§,, (4.126)
th
T,_,'_. = —f\/v,_v,r-é,,l. (4.127)
and for 2 €0
i R
T,_,l_ = —f,/v,_v,:_ts,,, (4128)
T,.{..,I_. = 0. (4129)



4.8.5 Relaxation time in terms of transmission and re-
flection coefficients

With the form of T and the relaxation time given by Eq. (4.109), the results
for the various asymptotic regions are as follows.

For z > L, we have

1 L& (R |tL, |2 ( g ) Ir ,|’~’ ( B, ]
_= Vs Vs _-“,_ 1 — 2 + Vg4V ss 14+ =
T+s h ny [L2 v +| (+kz,)| ﬁ * I ( )l .Bia )

(4.130)
and
b B () B ()
h;[l'w T\ B ) T E g\ A
= 0 (4.131)

For z <« 0 the results are

1 (S ( )
Tes hz [szs+vs+l ,(+k )l <1 B + Ig’(—k',i)l 1+ B

=0 (4.132)
and
1 L& [r |rk, |2 ( B ) t&, ( ﬁ'_~>]
—_ == 'U,-'U,l—i—,-— 1-—- e < § + s— Ug? __"_’__ 1+ ==
T_s ﬁ; [I} |g'(+kz,)| B.) 7" |g'(—kz,)| B
(4.133)
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In summary, the result is

. Z[lm\/mt,y (1_;; )+|iﬂ~/——v¢vs’;rﬁ‘f’|2 (1+ B, )}
+ig

T. = ’
= h ny L2|g (+kn)| Lzlgl(_kn’)l ,H:tt,
(4.134)
4.8.6 Conductance expression
Using the expression of Eqgs.(4.110), (4.134) and (4.105) we obtain
N:i:lc 1 (ﬂ:qvizi)2 Zﬂ.ﬂ t;s” tss i
N Lh|g (ikz‘)l VEzily |tf,('n)|2 ( - v+z"‘) vi"”:Z'ﬂlrf’sL”z (1 + v_-z'xz-)
I (+k ;1) Ukzi lg'(- k:‘._,)[ Utz
(4.135)
Noticing that
g(k) = Vie(k)
= A7 (4.136)
see Egs. (4.77) and (4.78). We have
|g' (£kz:i)| = hvsai (4.137)
this gives
teqntssn
q Eﬂn 58 ss” (4,138)

Netes = Thre, [E5PF (1 - 222) + 1 0F (14 522)]

Utz Vkzi
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Using current conservation 3, , (Itf‘,(,a)l + Irﬁ(,L | ) = 1, we obtain

q Zn, :s" tSS

N:hkxi = L(R . * (4'139)
EAEER (-l =)
From this expression the conductance is found by Eq.(4.88)
2 € L‘
< L, tss ss”
G(ep) = Z ‘ v,
2 —-‘- 3 L +z 3
h 1+ Z"-" ('r”' Ugzi 12 ol v+zul)
zn ss’; ss — (4140)
1+ Zns’ (lrss' 2 u-_:,-; - Itas' u_zn‘,)
4.9 Limit for EF;, =0
If we neglect £, in Eq.(4.59), we obtain
hlk. |k |2
ve, = 1 I(1 “’C) L v (4.141)
mwT
The wavefunctions are the same with £ given by
hk.
£= EE (4.142)
The energy is
h2k2Q2?
€kon = (n + )hUJT + 2WT (4.143)
The equation g(k;) = 0 becomes
1 h2k2 Q2
oks) = & = (mt3) hor = 525 =0, (4.144)
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the two roots + and - are

2muw? 1
kzl'g = i—#\/ep - (n + E)th (4145)
and
Vizi = Vg (4146)

From these expressions the conductance is found to be

Gle) = L3 (E725) s N G
- €
PR T+ RS (PR = D) 1+ o B v (I P = 165 12)
(4.147)

This result is formally identical to the one given in [6] for B = 0. The differ-
ences are in the wavefunctions used, the ” renormalized ” energy levels, and

the corresponding expressions for the transmission and reflection coefficients.

4.10 Limit for B=20

If the magnetic field is absent the Hall field £, vanishes. Then

Vir = hlks| (4.148)
m
and the wavefunctions have the form
mQ\ 2
x(¥) = x ((—h ) y) (4.149)

65



The energy is given by

1 h2k2
— hd z 4.150
€eon = (N + 2)f’z.Q + 5 ( )
The equation g(kz) = 0 becomes
1 R2k2
— — it z _ 4.151
gkz) = ¢ (n+ 2) hQ + . 0, ( )
the two roots + and - are
1
ki = :t%n;-\/ep - (n+ )0, (4.152)
and
Vigi = Vgzi- (4.153)
The conductance is
o= B8 e e e,
P har 1+ =T vy (P2 = t5?) 1+ 50 T v (Irse 12 = [6517)
(4.154)

The result is the same of Eq. (3.62) in chapter 3 and coincides with that of

Ref.[6] with D=V/.

4.11 Conductance generalization

We have found the conductance for two roots in opposite direction. Here we
are going to obtain the conductance for the situation where the root can have
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any direction. We repeat the same procedure. The conductance is evaluated

at a specific energy value.
Glep) = [ [ dA5Z (r,r)dA (4.155)

Using Eq.(4.83) the conductivity, we obtain

€p

L
o) = 5= 3 [Ne., + N, | (4.156)

s

with

—_ 1 A—l: N} ’
Nk:i - Ig,(kz;)l / (A J(r))kzn"ikzi'nl da- /](T )Kz‘-,n;K:‘.,n,dA (4157)

The calculation of the second integral has been done, before, see Eqs (4.89)-
(4.103). The result depends on the direction of the wave vector (positive for

+Z negative for —£).

[ 30 ke iy = £ ILAE (4.158)

Concerning the first integral we have

(Ai(m),, 25 ~ &) [Too? (Gos — Jorsr) - (4.159)

The previous steps in the evaluation of the conductance, see Eqs (4.106)-
(4.107), are repeated. The Dirac function is rewritten in terms of the lon-

gitudinal vector and the sum over k. is replaced by an integral. The result
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is
2 2

L ¢p |Ts;n,, ke I lTs;n,/,k',, I
A T __—l—"('ss—'jn,' )+~—I~_‘2—-(-83—jn,' )
(3500),, =53 [ FZC] o) T T o

(4.160)
This result is integrated and compared with the expression for the relaxation-

time [(Aj(r))s;sds = [ jssds/7s. The expression for 1/7 is
2 2 1}
1 | singk | ( ,6’ ) ITs;n,:,k',. | ( ﬂ >
oLy Dty () _Pa) e (o fh (4.161)
Ts g,l: l: Ig( z;l)l ﬁi lgl(kz"z)[ :B"
with 8 = qui.;/L for k;; > 0, 8; = —qu_z;/L for k. <0, and
19 (kzi)| = v (4.162)

see Eq.(4.137)

Then
- 1 . . [N ] ’
Nk‘i - lgl(k:t‘)l /(TJ(T))k,‘-,n.;k,.-,n, dA /](r )Kﬁ,ﬂ.;Kﬂ',n.dA (4'163)
Combining Eq.(4.158) and Eq.(4.161) we obtain
2 £ "
Ny, = L3 Bi Zonyr taartss (4.164)

P ain g k| A Toin, k] '
g, [l (1-4 )+_-_~f:_(1_%,z)]
zil b '
The difference with the expression (4.135) is that the transition operator T
is not written explicitly and k.; is not assumed positive or negative.

If we look at the case when the two roots have the same sign. For positive

(negative) roots we have for z > L, (z < 0) the results

hZ
| Torssil’ = I3 —5VseVytigs (4.165)
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which gives

2 t‘ ut 2]
N, = 'g‘ﬁ — Z:,,- ss"Lss = —— (4.166)
Zn,: [It.s:t.q’l:tl2 (1 - ﬁ.) + |t3i-"2$|2 (1 - fﬁ)]
and
G(e) = ﬁ 2 Lo, bysntas?

[ ' T\

h L(R) vy L(R Uiy
= T, [ (1 - ) + Bl (1 - 2)
En', t;sn tas" ]
L(R) vig L(R Ui
Zn,: [|t52is’1:i:|2 (1 - r:j) + lts2i.~)z’2:i:|2 (1 - ;ﬁ)]

for z < 0 (2 > L;) the relaxation time is zero and there is no resistance.

N (4.167)

4.12 Discussion

From our calculations we can deduce the result of Ref.[6]. In this reference
it is explained how this formula, which coincides with the Eq.(4.154), can
be used to deduce Buttiker’s equation Eq.(2.13). The difference is that in
Buttiker model the injected current in each channel is constant (independent
of the channel indices). In our situation the current can be different for each
channel. It is not restricted to a constant current. In this respect, the result
of Ref.[6] and ours are more general.

The result of Eq.(4.139) is very general. It is not limited to two iden-
tical terminals. We can interchange the indices R and T without changing

the expression. This means that the conductance does not depend on the
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direction of the current. We notice that the sum depends on channel indices
in the numerator and denominator. This is interesting since, except from
Ref.[6], this aspect is not present in the literature. The consequence is that
it is possible to take into account the current depending of the channel [6].
It is still valid when a crossed electric and magnetic field are present.

This major result was not expected in Ref.[6] since in a magnetic field
the eigenfunctions along two opposite directions would be separated. It was
thought that the expression will change dramatically. This first picture made
it difficult to imagine a similar expression in the presence of a magnetic field.
To resolvele this, we chose to incorporate directly in the Hamiltonian the
(perpendicular) Hall field, due to B, and the magnetic field itself. In this
way we had coherent eigenfunction. The exact relation between the electric
and the magnetic fields is not specified since we suppose implicitly that we are
in equilibrium situation. This choice of eigenfunction gives useful properties
which allow us to calculate simply the conductance.

This expression for conductance is not the first one in the literature when
there is a magnetic field see [4, 21, 23, 22, 28]. The most common general

formula is obtained for a multiterminal [4] configuration. It is equal to

2 €
Gmn(e) = % Z |tmn,aclza (4'168)
ac

where tgnqc is the transmission coefficient between channel e in terminal
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m and channel ¢ in terminal n. This conductance is found by using the
Green’s function of the total Hamiltonian. It is then expressed in terms of
reflection and transmission coefficients. In chapter 2 this formula was valid
for a measurement between reservoirs, see Eq. (2.5).

When there is no magnetic field, the conductance expression, given by
Eq. (4.154), is similar to the one in Ref.[6] (see Eq. (3.62)). It is shown that
from this expression we can obtain Eq. (2.13). This last equation applies
for a four-probe measurement (between the barrier [19]). Since our result
is a generalization, we can deduce that our result is valid for a four-probe
measurement too. Thus we have found a general expression for conductance
between barrier valid for a four-probe measurement in a steady state when

there are a crossed electric and magnetic fields.

71



Chapter 5

Conclusion

Our goal was to generalize the conductance calculation when a magnetic
field is present. We started our calculation from the diagonal von Neumann
equation. A valid solution was found.

From this expression, a current density was obtained. We calculated the
conductivity. The conductance was evaluated in an asymptotic region, away
from the scattering region, using the reflection and transmission coefficients.
The conductance expression in the presence of crossed electric and magnetic
fields was found to be similar to the one in an electric field only. Physically, it
is possible because the conductance expression uses very general transmission
and reflection coefficients. The difference is in the summation, it is over a

more convenient set of eigenfunctions.
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From our calculation, we have demonstrated that we could find, from our
expression, Verboven’s conductivity formula and the Buttiker’s conductance
formula. It makes it possible to see the origin of their differences.

We have used a method very similar to the one used in the most recent
literature. The most useful is the scattering formulation. Usually the density
operator is approximated to first order only. In our situation it is exact.
In the recent literature, the conductance expressions are similar to the one
between reservoirs. They generalize the first formula. Our conductance result
seems to be a new conductance expression between the barrier. Further
studies are needed to explain the causes of their differences.

The role of the nondiagonal part was not considered in our study. It
would be interesting to see if we could obtain the quantum Hall effect using
this term. At the present time, there are still answers needed to give an exact

and complete picture of mesoscopic physics.
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