INFORMATION TO USERS

This manuscript has been reproduced from the microfiim master. UMI films the
text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the copy
submitted. Broken or indistinct print, colored or poor quality illustrations and
photographs, print bleedthrough, substandard margins, and improper alignment
can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and
there are missing pages, these will be noted. Also, if unauthorized copyright
material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning
the original, beginning at the upper left-hand comer and continuing from left to
right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white photographic
prints are available for any photographs or illustrations appearing in this copy for
an additional charge. Contact UMI directly to order.

Bell & Howell Information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA

®

800-521-0600

Specification and Detection of

Feature Interactions Using MSCs

Zhaogiang Li

A Thesis
in
The Department
of

Electrical & Computer Engineering

Submitted as Partial Fulfillment of the Requirements
for the Degree

Master of Applied Science at

Concordia University
Montreal, Quebec, Canada

March, 2000
© Zhaogiang Li 2000

i~

National Library

of Canada du Canada

Acquisitions and Acquisitions et

Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

Bibliotheque nationale

services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Your fila Votre reference

Our file Notre reference

L’auteur a accordé une licence non
exclusive permettant a la
Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’auteur conserve la propriété du
droit d’auteur qui protége cette these.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

0-612-47827-0

Canadia

ABSTRACT

Specification and Detection of

Feature Interactions Using MSCs
Zhaoqiang Li

New network architectures, such as the Intelligent Network (IN), have evolved in
response to the changing needs and demands for advanced and sophisticated
telecommunications services. However. as more services are introduced into the
network, a new problen: of interactions between various services/features,
becomes more prominent. This problem arises when multiple services or features

interfere with each other and produce unexpected results. which disturb the users.

This thesis presents my work in modeling features and detecting feature
interactions using Message Sequence Charts (MSCs). The modeling technique is
based on the Advanced Intelligent Network (AIN) architecture and call models. To
effectively detect teature interactions. we propose an MSC feature specitication
style which embodies several important aspects of features directly related to
feature interactions. Based on the modeling of features using the speciftication
style, we propose a new approach for detecting feature interactions. This approach
includes definitions, classification of feature interactions, and specific detection
algorithms for various types of interactions. We developed a prototyped feature
interaction detection tool to implement our approach. With this tool, we are able to
detect many interactions described in the Bellcore feature interaction benchmark.
Our detection technique has maintained its consistency and accuracy in detecting
these interactions. However, some limitations of our approach prevent us from
detecting certain types of interactions. Combining our feature specification style,
detection approach and tool, we propose a general framework for feature

specification and interaction detection for IN services.

il

Acknowledgments

First of all, I would like to express my deepest thanks to both of my supervisors
for their indispensable encouragement. guidance and support throughout the
period of this research. Dr. Ferhat Khendek has contributed a substantial portion of
his time and effort in steering the research direction, holding periodic technical
discussions, evaluating problem-solving strategies, reviewing research proposals
as well as providing financial support to me. Dr. Rajni Patel has also made great
efforts in directing and supporting my work both academically and financially.
This research is carried out at Concordia University and partly funded by the

National Science and Engineering Research Council (NSERC) of Canada.

Special thanks to members of our telecommunications software group, with whom

[have had many fruitful discussions.

Among the people who also deserve my special thanks are Graduate Program
Director Dr. Asim Al-Khalili who provided me with extensive guidance during my
graduate study, graduate secretary Ms. Diane Moffat who provided me with
miscellaneous help. and also technical staff of the department who maintained an

excellent network environment for doing advanced studies and research.

Finally, I would like to extend my sincere gratitude and respect to my wife Jing,
who has accompanied me in overcoming numerous difficulties and hardships. It is
her extraordinary understanding, support and unselfish love that made the

completion of this research and thesis possible.

TABLE OF CONTENTS

ListofFigures I I R S R R R R e

Listof Tables +ccceccecccccecccccossccersoscscsccsccncos

ListOfAcronyms € © 0 6 0 6 00 8 00 60 00 G 00 E P G GO S S LSS e

Chapterl[ntroduction 06 0 0 0 0 06 0 0 80 60 060 s 00 0 0 0 0 P O OO BSOS

1.1 Network Evolution ceesssesesceessssstoscsscaasssosaasocoscnnsas
1.2 Telecommunication Featlres +ecsscectossesotcostotsnstssscccsanaas
1.3 The Problem of Feature Interactions cecveerceceererarenenienn,
1.4 Formal Methods for Detecting Feature [nteractions ceeveeececeeensn..

]_SSummaryofOurApproach T T T T T S

1.5.1 Under[ying [\,Ig[hodolog‘v ...

152 Feﬂlurc Speciﬁca[ion S[ylc ..
1.5.3 Classification of Feature [nteractions ceecrrrecsessecttststrseteranesiases

154 Summ;u-y Ot' De[CC[iOn Algon[hmb

1,60rgnniza[ionof[he]"hesis e e s ess e s e e s s e s asas e s et et e ececeanan

Chapter 2 Intelligent Networks ececeeccececececcesaaans

2.1 IN Goals P

2.2 IN Architectural Model +eceees tesceesser e e st s e st a e et eoeaes s

2.2.1 Evolution of IN ArChiteCture cecceseecesevsocccsesnsctosonsvossscsasosones

2.2.3 IN Functional Entities And Physical Nodes cccerreerecrcrccccenerinennane,

2.3 IN Conceptual Model (INCM) -+ eeveeeeeeeennnes i reeeeerateeieaeaa

D IN Call MOAEl ++vvvrvervenroraannasssnsssssreneeenasnnssassssaennnnnns
2.4.1 Basic Call Model +ecevsesess e eeetreisiee e Ceeereeeea.
2.4.2 Detection Points (DPs) ++=+eveve- et eeerieesatsatettaae e ereresasnnns

243 Triggers ceesessvrssessesnsesnnase [S

2.4.4 Originating and Terminating Call Models +eveveevercres terensenenn Ceeeees

245 Examples of AIN Opera[ions cesesesescnas secsenas ssressserses teseerasns

1X

Xiii

18

18
19

117

24
28
29
3t
3l
32

33

2.4.6 Bellcore ‘ALN' Call Model Releases cccsvseccecearteccnscertscoscsoasannnsass 35

Chapter 3 MSC and Feature Interaction Detection <+¢+ccsec. 37

3.1 The History of MSC Standardization = cececereccececseccannnn eeceee 38
3.2 MSC Language Constructs cresesnssens I tseeeaass e 41
3.2.1 Instance and MeSSage ++ecevvecrnnrottteaatiietatettiiititiiitttaaaaaaaas 41
322 FENVITONMENE +cvtssesaceastaravsasanossosstssttossseansasssnnnssnsaes 42
3.23CONAIHION s resees taosnsoananssastasosssseatonsssanstoseensassenssness 43
SOATIMEE o vevovsosseaesonsauorasssssosesersossasssonssssnsnnnsssonsss 44
325 ACHON +eevseeosasoanasonsosonsssstossossassassasosonsosssonsanesss 435
3.2.6 Instance Creation and StOp s eveeeveeearserrsnstetanrerocrooetesarcorsns 45
3.2.7 Instance Decomposition (SUDMSC) ceevvreeeststeroeteanneetiinioraeneans- 46
3.2.8COrEgion s eevetreren treitiiatiaiii ettt 47
3.2.9 Inling EXPrEssion s ceseeesnetoonnettiectneetettttatronntonttatinnaons 48
BII0OHMSC covserasoaeseasaststotaseosssssosassstoastsssanscsosasonsas 48
3.3 Using MSC to Specify Telecommunication Features = seeeceeresecasans 50
3.4 Related Work on Feature Interaction Detection +eecvceececeevn.n eeve 54

Chapter 4 The Feature Specification Style <cccccccceecccass 60

4.1 Concepts Related to Feature Interaction Detection «eceeveeee AEEREE <+ 61
4.2 Feature Concepts and Their Corresponding MSC Structures e ececevene 63
4.3 Naming Convention certseesaan B I A
3.3.1 Network EICMEnts crccererectrrcoraocnesassetosserssesoonoocnnnssnnss 64
432 Format Of EVENLS +eveessooecesoansecnssostassossesosassocsnsososassrns 66
4.3.3 PICs, Initial Triggerand GOAL cvevvesensenronteetaetinattiateetennnonns 69
4.3.4 Static REQUITEMENTS ++sccvrecrverracrersnettetotnntssctsscnntrcnnnsns 71

4'4TheSpeCifica[ionProcedure R R I T N NI I S S i)
4.5 Comments on the Feature Specification Style «+sveeecceccecccoeeass. 71

Chapter 5 Classification and Detection of Feature Interactions .- 80

5.1 Definition on Feature Interactions sssecerccercccsceccrccancnccecs 80
5.2 Classification of Feature Interactions +s+sesececsetectcnccccsscssss 8]

vi

5.3 Call Configurations and Scenarios ecceecerrecccccccctrccccccccses 8]
5.4 Blocking of Initial Trggers «eceeeveseesenasansaccesaiaeceanass 83
5.5 Interaction Between Traces teesessseasessassecnsecesssssrassass 86
5.6 Violation of Static Requirements cererecescaresccccrserccncaces.s 97
5.7 The Detection AlgOrithms — ++ceeceseraressasessesacnceansanaass 99

5.8 Comparison with Related Approaches +secesreerecrccecccecsceas 03

Chapter 6 Tool and Application cccccccrevcccccccceccccs 106

6.1 Tool Architecture and User Interface eesseccecccceccrevenceceess |06

6.2 Bellcore's Benchmark c e e s s e s e cse e es s s st as eees b0t e b e 108

6.2.1 Call Waiting and Answer Call «+veeerereararanerscstentnetreteaeeanaa, 108
6.2.2 Call Waiting and Three-Way Calling voceeereocrorerrtocecncecconanecenn, 110
6.2.3"911" and Three-Way Calling +«vevererreronananecacensiettciieanania. 12
6.2.4 Terminating Call Screening and Automatic ReCall ereereerrecerrevanneaenn L4
6.2.5 Originating Call Screening and Arca Number Calling cesveerererecrecceenn, 116
6.2.6 Operator Services and Originating Call Screening seveerrecrsererececence, 117
6.2.7 Credit-Card Calling and Voice-Mail service coeeeccerrorecerceccrcctncens 18
6.2.8 MBS-ED and CENTREX +evvceevononsoenasnsatrsssossavansssrsoanonns 120
6.2.9 Call Forwarding and Originating Call Screening eeeresrrrsrrorcrscerececens 122
6.2.10 Call Waiting and Personal Communication Services(PCS) srereereereeevenn. 124
6211 OCS and MDNL-DR +eccovevnscescosescansasasssssosssssasasssssssnas 125
6.2.12 OCS and Call Forwarding (revisited) »ee-eerverereesccnrcvoirenccrnsnnsa, 126
6.2.13 Call Waiting and Automatic CallBack — cecvereeroreserrrverrcconociee e, 127
6.2.14 Call Waiting and Call Waiting ++++ -+ Cteeiasaessaiaaet e 128
6.2.15 Call Waiting and Three-Way Calling (revisited) = seceerrecrcrcrrercceceenn 130
6.2.16 Calling Number Delivery and Unlisted Number ceccevcrerrersecrencccrans, 131
6.2.17 Call Forwarding and Call Forwarding = cccecverreseccerercrcncccccccce,. 133
6.2.18 Automatic CallBack and Automatic ReCall ~ sevevecrrrrerecececreosccnans 135
6.2.19 Long Distance Calls and Message Rate Charge Services sccccerereccccciaas 136
6.2.20 Calling from Hotel Rooms ~ +++ - teesanesans Ceseresecneasans N 137
6.2.21 Billing in AIN Release 0 +eceoeecesaseosaes ceerenaes Ceeeeseransans eee 137
6.2.22 AIN-Based Services and POTS ceccevesss N ceeann 138

6.3Benchmark5ummary teseesssessessessss et ettt s e s s ses s 138

vii

Chapter7C0nclusion © 00000000000 Cs s s EEOELOLELLELIOEOELOGOGE 141

7.[SummaryofmeCOn[ribu[ions R R R R T T T 141

7.1.1 A Framework for Specifying Telecommunication Features «=recreveccciaiins. 142
7' 1 2 De[ec[ioﬂ Of Feature In[erﬂc[ions 143
7.1.3 Feature Interaction Benchmark cccevvrereereroceeets tocenessrestancsnas 144

7'2DirectlonsforFutureWork 2 8 0 85 05 00 0 % 400 L 00 G T O CL LI SIE eSSBS 144

7'2'1 Addressing Currcn[Limi[a[ions 145
7.2.2 Towards Resolution or Avoidance esseee srerrercees AR AL EEREE 146
7.2.3 Adapting to Other Network Architectures =esc cosevrrsrrrtrneieniia.., 147

References © 8 0 0000600008600 8 0066000 e000000000c00ECELIOBLIOGSN 148

Appendix A AIN 0.1 PICs TDPs and Triggers *+cccccceccecses 153

viii

List of Figures

Figure 1-1:
Figure 1-2:
Figure 2-1:
Figure 2-2:
Figure 2-3:
Figure 2-4:
Figure 2-5:
Figure 2-6:
Figure 2-7:
Figure 2-8:

Figure 2-9:

Figure 2-10:

Figure 3-1:
Figure 3-2:
Figure 3-3:
Figure 3-4:
Figure 3-5:
Figure 3-6:
Figure 3-7:
Figure 3-8:

Figure 3-9:

Figure 3-10:
Figure 3-11:
Figure 3-12:
Figure 3-13:

Figure 3-14:

Figure 4-1:
Figure 4-2:

Plain Old Telephone System (POTS)
ANC Service
Early Network Architecture

Basic Intelligent Network Architecture

.................................

AIN Components
IN Physical Entities and Functional Entities ---«----
IN Conceptual Model (INCM)
Basic Call Model (BCM)

Detection Points (DPs)

Triggers and Detection Points «-orcerrerreeeeneenn.
Examp[e of AIN Operation
AIN 0.1 Basic Call Models

A POTS Specification Using Basic MSC Constructs

POTS Specification of the “answered™ Scenario

POTS Specification of the “no-answer” Scenario

Instance Creation, Stop and Submsc
Coregions and Inline Expressions ~ =+-vseveeveeveens
HMSC Constructs Defined in ObjectGeode
An HMSC Containing an OR Scenario
A High-Level Specification of a Telephone Call
The IN Automatic Call Back Feature

MSC Specification of the ACB Feature

Voice Activated Dialing

........
............
e e
..............

............
..........................

.............................

Follow Me Diversion
VAD and FMD Combined with No Feature Interaction
The Interworkings for Both CFB and CFU
Network Elements Represented as Instances in MSC
A POTS Specification Using the Event Format

........

ix

.......

.......

ooooooo

.......

.......

ooooooo

.......

.......

ooooooo

Figure 4-3:
Figure 4-4:
Figure 4-5:
Figure 4-6:
Figure 4-7:
Figure 4-8:
Figure 4-9:
Figure 5-1:
Figure 5-2:
Figure 5-3:
Figure 5-4:
Figure 3-5:
Figure 5-6:
Figure 5-7:
Figure 5-8:

Figure 5-9:

Figure 5-10:

Figure 5-11:

Figure 6-1:
Figure 6-2:
Figure 6-3:
Figure 6-4:
Figure 6-5:
Figure 6-6:
Figure 6-7:
Figure 6-8:

Figure 6-9:

Figure 6-10:
Figure 6-11:
Figure 6-12:

Figure 6-13:

MSC Specification for the OCS Feature -+--ceceveenennen.. 71
MSC to Specify Static Requirement of OCS -+-«+vvevvennt. 72
Specification Procedure, Step I +oveverrereeeiiiinianL, 73
Specification Procedure, Step 2 »roeeeeeiiiiiiiiiiinl 74
Specification Procedure, Step 3 croreerieereeiiieiiiil 74
Specification Procedure, Step 4 =+vrrecreeeeiiiiiiiinn 75
Specification Procedure, Step 5 «crcrrerieiiiiieint 76
Call Forwarding Unconditional(CFU) «+evvevreneeenenat 86
Call Forwarding on Busy (CFB) ++vvvrerveeemininian, 86
Transtorming and Labeling Action Sequences -« ---c-vt-t.. 92
Call Waiting +« v vevrvreerrrnneieeiiii e, 96
Three-Way Calling ««vveeorerveeeeraiiiiiiiiian.., 97
Call Forwarding on No Answer (CFNOA) ++-vvvvvenennnnt 98
The Main AlgOrithm =« v evvrrrerseronmiinnnnaiaa... 99
Algorithm for Detecting Blocking of Triggers —---cc-v-cvtnt 100
Algorithm for Detecting Interaction between Traces ------- 101
Labeling Procedure +«veveererermmmmneeniieeenenennaia, 102

Algorithm for Detecting Violation of Static Requirements -- 103

Architecture of the FI Detection Tool ~ =+v-veeveceeeennen.., 107
GUI of the FI Detection TOO] ~+vvverrrrerrnsereeeennnnes, 108
Call WRIting =« v veeererrvrreetemmammminieneneeenninann, 110
ANSWEL Call v v evrerrreenenss cireenenenenensennneennns, 110
03 113
Three-Way Calling ««+vverrmrrermneeriiieiiiiii., 113
Static Requirement on "911" sereeeereieiieiiiii, 114
Terminating Call Screening «««+«rreerrerrerreeeeiuann. 115
AUtOmAatic RECall +rerverercrrrerrmrnrerrenrarnernenans. 116
Area Number Calling «-v«coeveeeernreeesineeeiiiuiein.. 117
OPperator SEIVICes - +ereererernrresrersotaceetieiiiiiane.. 118
Credit Card Calling «+evvreerenennreeeciieieni ., 120
VOICE Ml ceeveerernreneneateneneraresseiensicaisenann, 120

Figure 6-14:
Figure 6-15:
Figure 6-16:
Figure 6-17:
Figure 6-18:
Figure 6-19:
Figure 6-20:
Figure 6-21:
Figure 6-22:
Figure 6-23:
Figure 6-24:

Figure 6-25:

MBS-ED cecvrvreeereasoenranetrseneeaenemaranieenasnns 122

CENTREX crrvrererrrentarantocaaneanueosasassonsanenns 122
OCS: Calling to Oneself ~ «+ccevmereeremermanneieiennn. 124
Call Forwarding: Calling to Oneself ~ ---+-receevcnreeeeen.. 124
Call Forwarding ... 127
Automatic CallBack: Part 1 cecceerrocrerraieieeciaenen 128
Call Waiting CW 1 +oevrrrnreerenreenetiaiiei ., 130
Call Waiting CW2 +rvrreereerseeeeniteinetieeiinenn. 130
Calling Number Delivery —cecceveereeererienenn. 133
Requirement on Unlisted Number — «c-voeeeeerreneeerenees 133
Two Call Fonvarding ina LOOP 135
Specifying Loop as a Static Requirement «--r-vvereereeene. 135

Xi

List of Tables

Table 4-1:
Table 4-2:
Table 5-1:
Table A-1:

Mappings between AIN Concepts and MSC Structures ------ 63
POTS Events .. 67
Interaction Cases Related to Triggers — s-ocoeevveereencnenn 84

Triggers Defined in AIN 0.2 cceerreeerreentiiieniieneainas 163

xii

List of Acronyms

ACB
AD
AIN
AMA
ANC
AR
BCM
BCSM
CCAF
CCF
CENTREX
CFB
CFNoA
CFU
CIC
COoT
CPE
CS

CwW

DP
DTMF
EBNF
ESC
ESTELLE

FE

Automatic Call Back

Adjunct

Advanced Intelligent Network
Automatic Message Accounting

Area Number Calling

Automatic Recall

Basic Call Model

Basic Call State Machine

Call Control Agent Function

Call Control Function

Central Office Exchange Service

Call Forwarding on Busy

Call Forwarding on No-Answer

Call Forwarding Unconditional
Carrier Identification Code
Continuity (message)

Customer Premise Equipment
Capability Set

Call Waiting

Detection Point

Dual-Tone Multi-Frequency digit collection
Extended Backus Naur Form notation
Extended Sequence Chart

Formal Description Technique based on Extended State
Transition Model

Functional Entity

Xxiii

FEA
FMD
FSM
GUI
HMSC
IAM

IN
INCM

[P

ISDN
[SO

ITU
ITU-T
LOTOS
MBS-ED
MDNL-DR

MSC
NANP
NAP
O_BCSM
OCM
OCSs
PCS
PE
PIC
POR
POTS

Functional Entity Action

Follow Me Diversion

Finite State Machine

Graphical User Interface

High-level Message Sequence Chart

Initial Address Message

Intelligent Network

IN Conceptual Model

Intelligent Peripheral

Integrated Services Digital Network
[nternational Standards Organization
[nternational Telecommunications Union

[TU Technical Section (formerly known as CCITT)
Language Of Temporal Ordering Specification
Multi-location Business Service-Extension Dialing
Multiple Directory Number Line with Distinctive
Ringing

Message Sequence Chart

North American Number Plan

Network Access Point

Originating Basic Call State Machine
Originating Call Model

Originating Call Screening

Personal Communication Service

Physical Entity

Point In Call

Point Of Return

Plain Old Telephone System

Xiv

PSTN

SCE
SCEF
SCF
SCP
SDF
SDL
SDP
SF

SF
SFC
SIB
SMAF
SMF
SMS
SN
SRF
SS§7
SSF
SSp

- STP

SUS
T_BCSM
TCAP
TCM
TDP

TG

Public Switched Telephone Network
Release (message)

Service Creation Environment

Service Creation Environment Function
Service Control Function

Service Control Point

Service Data Function

Specification and Description Language
Service Data Point

Service Feature

Special Form (of trace)

Special Function Call

Service Independent Building Block
Service Management Access Function
Service Management Function

Service Management System

Service Node

Specialized Resource Function
Signaling System Number 7

Service Switching Function

Service Switching Point

Signaling Transfer Point

Suspend (message)

Terminating Basic Call State Machine
Transaction Capabilities Application Part
Terminating Call Model

Trigger Detection Point

Trunk Group

Xv

TWC Three Way Calling
VAD Voice Activated Dialing

Xvi

Chapter 1

Introduction

Over the past few decades, major changes in telecommunications have brought to
the public an ever-wider range of services of ever-higher quality. Behind the
scenes, advances in networking technology are largely responsible for these rapid
changes, and the Intelligent Network (IN) architecture. first proposed by Bellcore
in the 1980 and standardized by the International Telecommunications Union
(ITU), is perhaps foremost among the advanced telecommunications architectures

deployed today.

In order to manage and control telecommunication services (or features. as we
shall call them hereafter) with maximal efficiency, Bellcore designers put the logic
governing these features in computer nodes distributed throughout the entire
network rather than in the switching element, thus allowing the architecture to
function independently of the individual features. Major telephone companies
adopted IN rapidly and. as a result. network operators began to develop and
control features more efficiently. rapidly introducing new and sophisticated
capabilities to the network and customizing these to meet individual needs of

customers.

However, with more and more services and features introduced into the network.
the problem of Feature Interactions becomes more and more prominent. Feature
Interaction represents the phenomenon that different telecommunication features
affect each other or the underlying service. Feature Interaction is a problem,

though not one specific to IN features, and as IN facilitated the introduction of

new features and deregulation brought in a host of new players in service creation,

deployment, operation and management, the problem grew in prominence.

This thesis deals with the detection of feature interactions rather than the study of
strategies for their resolution or avoidance. Our approach uses a formal description
language MSC and formal methods. This not only facilitates common
understanding of feature behavior, but also permits automation based on

unambiguous interpretations.

While MSC provides sufficient mechanisms for describing a feature. difterent
users may have different ways of using the language. resulting in very different
specification styles and greater difficulty in automation. Instead of allowing the
user to decide how to specify a feature, we propose a feature specification style in
MSC that both facilitates automation and ensures some level of user-friendliness.
Based on this specification style, we classify feature interactions into three
categories: Blocking of Initial Triggers. Interaction between Traces and Violation
of Static Requirements. We develop techniques and algorithms to detect each of
the three categories of interactions. This study is based on the Advanced
[ntelligent Network (AIN) architecture and Basic Call Models. However. the

principles derived here can be adapted easily to other network architectures.

1.1 Network Evolution

Prior to the 198Q’s, as Bell Atlantic [1] recalls, the network consisted of an
assemblage of large switching systems and the telephone terminals connected to
them (Figure 1-1). Switch vendors, for the most part, decided which services can
be offered and how they were to be implemented and deployed into the network.
New services could be introduced only when network operators had met with

switch vendors, discussed the types of services customers required, negotiated the

~

switching features that provided the services, and finally agreed on a generic
release date for feature availability. When such a service was finally in place. the
operators could not easily modify it to meet individual customer requirements.
Often, the network operator had to negotiate the changes with the switch vendor
and. as a result, it took years to plan and implement services. Understandably, a
network operator could only offer a few basic services to business and residential

subscribers.

During the mid-1980s, the market for traditional telephony services reached
saturation point. In order to increase traffic volume and so generate additional
revenue, operators needed to offer new services that would meet the expectations
of ever more sophisticated subscribers. Demands for these advanced network
services began to exceed the network capacity. Then. with deregulation of the
industry in the U.S.. start-up operating companies joined established overseas
operators to raise the level of competition in the global telecommunications
market. There was a scramble to protect market share and profitability as operators
strove to offer subscribers a wider range of services more quickly and cost

effectively than their competitors.

Switch

) |

Switch Switch

Figure 1-1: Plain Old Telephone System (POTS).

In response to the needs of operators to improve existing services and expedite the
development of new services, Bell Communications Research (Bellcore)
introduced the concept of Intelligent Networks'. In 1989, the International
Telecommunications Union (ITU) incorporated ideas from the AIN work done by
Bellcore, together with ideas from European operators and vendors. and proposed
a first standard IN architecture called CS-1. Since then. Bellcore and ITU-T have

coordinated their development efforts.

The introduction of IN satisfied the needs of operators to develop and deploy
services rapidly, to obtain vendor independence and to open interface for service
creation. Since IN follows an incremental approach that provides a feasible
solution for service providers, telephone companies all over the world have
deployed it as the standard architecture for telephony systems. [n Chapter 2, we
will examine IN architectural concepts, particularly AIN concepts introduced by

Bellcore.

! Later, Bellcore changed this concept to Advanced Intelligent Networks (AIN), as we shall call it hereafter.

1.2 Telecommunication Features

Although there is a trend within the telecommunications industry today towards
making clear distinctions between services and service features, as pointed out in
the SCORE project [2], the words “service”™ and “feature™ are not yet used

consistently.

Bellcore researchers [3, 5] suggest that “a network provides one (or more)
services”. and that “each service can be augmented with several features. For
example. the Plain Old Telephone System (POTS) is a service on which
Automatic Call-Back and Call Waiting are features.” For the remainder of this
thesis. since we have not addressed interaction between “‘services” as defined by

Bellcore. we will only speak about "feature interaction”.

As an example. we illustrate the telephone feature “Area Number Calling” (ANC)
in Figure 1-2. This feature is useful for companies or businesses that advertise one
telephone number but want their customers calls routed to the nearest or most
convenient business location. In IN architecture, the feature logic is located in the
Service Control Point (SCP). The SCP uses feature data (e.g. ZIP codes) to make a
match between the calling telephone numbers and their geographical locations.
then the Service Switching Point (SSP) routes the call to the company or business

location that is closest to or most convenient for the calling party.

SCP database

N\

T \{/__/Lm@
|

T
B

N

SSP SP

Figure 1-2: ANC Service.

1.3 The Problem of Feature Interactions

As operators introduce more features into networks and feature interaction
problem becomes more prominent, they can be expected to give rise to major
difficulties in understanding and mastering how features cooperate and interact.
how they share resources and what the resulting behavior of the network will be.
Each new feature has the potential to interact negatively with existing features.
annoying customers or, in the worst scenario, causing total system breakdown.

Muller et al. [6] has described how difficult it will become to assess a priori that:

a For the customer (subscriber or end-user), the features shall behave properly in
regard to information received from the network (expected to be correct and
user-friendly), information sent to the network (expected to be taken into
account), waiting time (expected to be short) and results (expected to match

each feature requirements).

a For the service provider, the features shall remain available, reliable and in
accordance with user requirements, data shall remain consistent, and the call
records shall permit the subscriber to be charged for the use of these features.

a For the network operator, the services shall not create any deadlock or
abnormal resource consumption in the network and charging should be

consistent.

To date, we do not have a standardized formal definition of feature interactions.
There are. however. several formal and informal definitions in use today that
partly describe the nature of the problem. In the introduction to the proceedings of
the Second Feature Interaction Workshop [4]. a feature interaction is defined in

this way:

“A feature interaction occurs when the behavior of one feature is changed
by the behavior of another. In many cases, this can lead to unexpected or
undesired behavior which affects the quality of the service provided to

»

telecommunications users.’

This definition suggests that some interactions may be expected and desired while

others may be unexpected or undesired.

In our thesis. we use the following informal definition:

A feature interaction is said to take place if the behavior of any one of the

participating features is not preserved.

This definition arises from our methodology, that is, checking for the preservation

of feature behaviors. We do not distinguish between expected or unexpected

interactions and additional actions would have to be undertaken to detect harmful

interactions.

1.4 Formal Methods for Detecting Feature Interactions

Our description of formal methods will follow closely that provided by Clarke and
Wing [7]. In [7], Clarke and Wing describe formal methods as “mathematically-
based languages. techniques. and tools for specifying and verifying software or
hardware systems”. They acknowledge that formal methods do not guarantee
absolute correctness, but assert that their use can increase our understanding of a
system by revealing inconsistencies. ambiguities, and incompleteness that might

otherwise go undetected”.

For our purposes. tormal methods consist of “formal specification™ and “formal

verification™.

Formal specification describes a system and its desired properties using a language
with mathematically-defined syntax and semantics. This language allows us a
deeper understanding of the system being specified. and using such a language.
developers uncover “design flaws, inconsistencies, ambiguities and

incompleteness”[7].

Formal verification confirms that the design meets various correctness and quality
standards. During the verification process, testers can detect subtle design errors
using automatic model checking or theorem proving, thus providing evidence for

safety and quality assurances.

Formal methods provide a potential solution to feature interaction detection for

three reasons [2]:

o Formal description techniques provide precise and unambiguous descriptions
of features. This makes a comprehensive and reliable approach to interaction
detection possible. Formal verification techniques open up the possibility of
automating the detection method.

a2 Formalization allows a better understanding of the real expected requirements
of the behavior of features. As part of this process. as we achieve a better
understanding of the informal definition of features, many interactions can be
detected. leading to the redefinition of features.

a We expect the number of features introduced in networks to grow rapidly, and
manual approaches to interaction detection will become increasingly
inadequate. Formal specification allows the automation of interaction detection

and reduces the severity of the combinatorial problem.

Researchers currently use many formal approaches to detect feature interactions.
[n Chapter 3, we will present several of these formal approaches that are related to

our own approach.

1.5 Summary of Our Approach

Our approach employs formal description techniques to specify feature behavior.
Every system may be understood at different levels of abstraction and, although
our specification explores the feature behavior mainly at the requirement level, we
require additional information about the feature in question. This requirement
differentiates our approach from several related approaches that use requirement

specifications only. .

1.5.1 Underlying Methodology

The principle behind our approach is simple: to detect a feature interaction, we
must take into consideration several important properties of features. namely.
triggers, traces and static requirements. Otherwise, we risk detecting false
interactions or failing to detect existing interactions, as happens in the case of

several related approaches.

According to IN terminology. a trigger is a special mechanism on the Basic Call
Model that. when activated, results in suspension of normal call processing and

invocation of feature-specific logic.

The trace of a feature is defined as the complete sequence of transitions on a
specific IN Call Model during the lifetime of the call and when the feature is
enabled. A feature may contain several traces, each corresponding to an IN

Originating or Terminating Basic Call State Machine (BCSM).

A static requirement is a restriction on the occurrence of certain events or
combinations of events or a restriction preventing the call processing from
reaching a certain system state. As an example, a common static requirement on

almost all features is that callers are not allowed to connect to themselves.

In our approach, we design a specification style for features that take these three
properties into consideration. We classify feature interactions according to these
properties, and we develop techniques to confirm the preservation of these

properties and, in so doing, we detect feature interactions.

10

1.5.2 Feature Specification Style

A good specification language is an important prerequisite for the
implementability and applicability of an approach. Due to the popularity of
Message Sequence Charts (MSC) (8] in the telecommunications industry and the
rich structural concepts defined in it. we choose MSC as our specification
language. However. this does not satisfy all our needs. Since MSC is a rich
language, different investigators can have very different specification styles for the
same feature behavior. To facilitate automation and common understanding, we
have designed a style for feature specifications that not only allows developers to
specify feature properties, but helps provide developers with a simple template to

accelerate the process.

This specification style consists of two parts: the structures for feature
specifications, and the naming conventions for all structures involved in the
specification. We selected the structure for feature specifications based on the
Advanced Intelligent Network (AIN) architecture and Basic Call Model (BCM).
By making an intuitive mapping between the elements present in the AIN
structure/call model and the MSC structural concepts, we are able to represent
feature behavior. However, since the naming of the structures is still subject to
interpretation, we designed the naming conventions. which help the feature
specifiers communicate with each other and with the tool. Similar to creating a
new programming language on top of the specification language in use. the
naming conventions define a set of reserved keywords and syntax for many

structures.

With the help of the structures and their naming conventions, we can ensure that
the information contained in any specification is unique as long as the

specification follows our specification style.

11

1.5.3 Classification of Feature Interactions

In our approach, we define feature interaction as “failure to preserve any kind of
feature behavior”. We measure the preservation of feature behavior using three
feature properties: trigger. traces, and static requirements. Following this

definition, we classify feature interactions into three categories:

i. Blocking of triggers: This happens if the trigger of any feature is blocked.
ii. Interaction between traces: This happens if the internal traces of any feature
are modified.
iii. Violation of static requirements: This happens if static requirements on a

feature. e.g. restrictions on certain connections, are not respected.

1.5.4 Summary of Detection Algorithms

L. Internal Representation of Feature Behavior

Let us assume we have feature specifications in a high-level language like MSC.
To detect feature interactions. we extract the useful information contained in the
specifications and transform it to a machine-tfriendly form such as the Finite State

Machine (FSM) model.

An FSM is a state-transition model which can be used to model dynamic system
behavior. Every FSM consists of states, and transitions that link the states. In
addition, events can be specified on the transitions to indicate what triggers the

transition.

Using the FSM representation, we develop detection algorithms for each type of

feature interactions.

2. Algorithm for Detecting the Blocking of a Trigger

We identify some situations where the blocking of a trigger will occur, some
situations where it will not occur and some situations where no interaction can
happen. We base this identification on observations of trigger criteria, trigger
positions and the positions that traces of a feature pass by (as described in the AIN
Basic Call Model). The algorithm simply simulates this identitication process and
tells us if it finds the blocking of a trigger. Where there is no blocking of triggers.
the algorithm guides us as to what steps we should take to detect other types of

interactions.

3. Algorithm for Detecting Interaction between Traces

To detect this type of interaction, we must first use FSMs to represent and identify
the overlapping parts of the two traces. These overlappings are the only parts
where interaction between traces can happen and. once we have identitied these
overlapping parts, peer traces (i.e. traces which correspond to the same Basic Call

State Machine) have already synchronized in the first states of their FSM models.

Next. we must examine how each trace follows its transitions and identify those
divergences that might lead to non-preservation of transition behavior. To do this.
we develop an algorithm that simulates a negotiating process for traces. We
develop simple rules that define agreement, disagreement, and determine, in the

case of agreement, what is the agreement trace.

For instance, to determine the agreement between peer traces, we must examine

each pair of peer transitions. We show that, for any pair of peer transitions, we

13

must consider two properties: the “next state” and the “actions taken to reach the
next state”. When we consider the “next state” property, we must take into account
the fact that, in many cases, a trace jumps to an earlier state simply to collect extra
information, then comes back to the current state when that task is complete. If, as
a result. the pair of transitions under study have different next states, we do not
consider this as a divergence of destinations. since the call processing tends to
follow the backward transition. When it returns. all requirements of the other trace
(i.e. the trace without the backward transition) is preserved. Therefore, we
consider this type of backward transition not as a transition but as an “action taken
to reach the next state ". We then propose a special form of trace. one in which we
define “transition” as the giant step by which the current state reaches the state
which. according to AIN Basic Call Model. comes later than the current state. We
treat all contributing events, including backward transitions. simply as actions on
the giant step. Then. in this special form of trace, we can prove that two transitions
agree on their next states (i.e. there is no divergency on transition destinations) if

and only if their next states are the same.

For transition actions, we develop a similar algorithm to the algorithm for traces.
This algorithm takes each action as a state. Between the states, there are no actions
and it is thus relatively easy to decide the agreement. However, we change the

rules for deciding agreements to reflect the nature of actions.

Pairs of peer transitions are examined one pair at a time. Meanwhile, the
agreement trace is generated gradually based on transition agreements. However,
if any time during the process, a disagreement is encountered, then two traces

disagree and we detect an interaction between traces.

4. Algorithm for Detecting Violation of Static Requirements

14

Once we have completed the algorithm for detecting interaction between traces
and found no interactions., we forward the generated agreement trace to this
algorithm to detect any violation of static requirements. These usually take the
form of a pattern that should not appear in the combined trace. We therefore
perform a search on the combined trace for the violation pattern. If we find the
pattern, we detect a violation of the static requirement. Otherwise. there is no
interaction detected at this level, although there might still be interactions at lower

levels.

1.6 Organization of the Thesis

The rest of the thesis is organized as follows:

Chapter 2: Intelligent Networks

In Chapter 2, we provide a brief description of basic IN concepts and architectural
models. We pay more attention to Bellcore AIN concepts. We describe concepts

of IN that are directly related to our detection techniques in greater detail.

Chapter 3: MSC and Feature Interaction Detection

In Chapter 3, we provide a brief tutorial on the formal description technique, the
MSC language. As in Chapter 2, we will put greater emphasis on concepts in MSC

that are directly related to our feature specification style. We then describe some

of the related feature interaction detection techniques.

15

Chapter 4: Feature Specification Style

Chapter 4 provides a detailed description of our specification style in MSC. In this
chapter, we will first introduce some of the basic concepts related to feature
interaction detection. We then present an intuitive mapping of these concepts to
MSC structures. This provides us with the means to represent these concepts using
MSC structures. To eliminate the possibility of ambiguity, we develop naming
conventions for these structures and. as a conclusion to the specification style

presented in Chapter 4, we provide some comments on the specification style.

Chapter 5: Classification and Detection of Feature Interactions

[n Chapter 5. we present our main contribution, addressing our methodology and
techniques for detecting feature interactions. This chapter begins with the
classification of different categories of interactions. We then derive the detection
techniques for each category of interactions. To facilitate automation. we also
provide algorithms for implementing all the detection techniques. We provide

several examples to illustrate our approach.

Chapter 6: Tool and Application

We start this chapter with a brief introduction to the architecture of our feature
interaction detection tool prototype. We then illustrate the strengths and explore
some of the weaknesses of our approach by presenting a comprehensive
benchmark. This benchmark is based on the complete Feature Interaction

Benchmark presented by Bellcore. We test our tool with this benchmark.

16

Chapter 7: Conclusion

As a conclusion of the thesis. Chapter 7 summarizes the main contributions ot our

work and points toward several directions for future development.

17

Chapter 2

Intelligent Neiworks

In this chapter, we introduce the concepts ot IN. We lay greater emphasis on the
Bellcore AIN concepts since they are more directly relevant to the specification
and detection techniques presented in this thesis. However, since Bellcore AIN is
highly consistent and aligned with ITU-T IN. most of the terms introduced in this
chapter apply to both Bellcore AIN and ITU-T IN. In the rest of the chapter,
without further indication. we use the term IN to denote both Bellcore AIN and

ITU-T IN.

In the first section of the chapter. we introduce the goals behind the IN. Then. we
introduce the different models involved in IN: the architectural model, the

conceptual model and the call model.
2.1 IN Goals

As we have seen in Chapter 1. the demand for new network services and teatures
led directly to the creation of IN, and a fundamental goal of IN is to support the
rapid creation and provisioning of services and features for the end customer. As
Duran [9] points out, IN is designed to “allow the introduction of new capabilities
in the telecommunications network and to facilitate and accelerate in a cost-
effective manner, service implementation and provisioning, in a multivendor
environment.” In the Bellcore AIN releases (and similarly in ITU-T IN

recommendations), the following objectives are addressed:

a Rapid creation of new services, from conception to deployment.

18

a Broader range of services: IN should go beyond traditional voice and data
bearer services to a much broader range, including information services,
broadband and multimedia bearer capabilities.

a Applicability to all telecommunications networks, e.g.. Public Switched
Telephone Networks (PSTNs). Integrated Services Digital Networks (ISDNs).
Packet Switched Public Data Networks and Mobile Networks.

2 Independence from network-specific developments by equipment suppliers: IN
should allow service-providers to define, implement and efficiently manage
their own services independently from switch vendors. In addition, IN should
enable a multivendor. competitive environment and ensure that the services
will work correctly and consistently on any vendors equipment. and across
equipments of several vendors.

2 Maximum compatibility with existing networks: IN should be introduced
starting from existing networks. Otherwise. it will not be feasible for service
providers.

a2 Evolution to reflect implementation experiences, new technological

opportunities and market evolution.

To meet these objectives. Bellcore has proposed a generic requirement for an
incremental approach to the definition and development of the AIN. Each
increment, referred to as a release, represents the set of marketable and
maintainable AIN capabilities expected to be available in a particular time frame.
Each AIN release is intended to be backward compatible to the previous release

and on an evolutionary path towards the target AIN architecture.

2.2 IN Architectural Model

2.2.1 Evoluation of IN Architecture

19

Before the introduction of IN, as Black [10] points out, switches distributed
throughout the network contained not only the network intelligence but the basic

call processing and database processing capabilities (see Figure 2-1).

)

. Basic call processing [

‘ Control data ! ;/\‘ ! ; <5 |

| Supplementary services r:.:- oo ‘ / u f

Switching and routing ; ‘ I \, databases |

.""vs’witch

i { | 4 :

| L ! |

! ! ’ i ‘ 1
; ; : — 1

Switch m Switch databases

Figure 2-1: Early Network Architecture.

There was no overarching model for these switches, originating as they did with
various manufacturers and vendors, each of whom had their own ideas as how to
use these switches. A good deal of time and money was spent to update the
software and database contents across this heterogeneous switching environment.
Since each switch was redundantly configured with identical control databases and
software, change meant maintaining multiple copies of this data and supporting
software at every node. To make matters worse, as Black explains, if a service
provider decided to offer a new service, say call forwarding, developers wrote
software from the bottom up solely for that service. The vendor was forced to

change the basic call processing modules.

Change to these large systems was cumbersome and complex, not surprisingly,

vendors found it hard to respond quickly to their customers’ requests, hard to

make timely releases to software, and even harder to build new services. Bell

researchers [1] state that two to four years were not unusual for the latter task.

Network architecture was subsequently re-thought and the result was the basic

intelligent network architecture, shown in Figure 2-2.

SCP databases .
[Supplementary services <3 i
Control data AP TOR L '

Switching and routing
Basic call processing

— e

. m ;
S : i |
B BN

Switch Switch |
SCP: Service Control Point

Figure 2-2 Basic [ntelligent Network Architecture.

In this model. user services, rather than residing redundantly at each switch, are
handled by only a few processors — sometimes just one — and are available to
many users. In the example shown in Figure 2-2. the single databases module is
linked to the Service Control Point (SCP) and so accessible to the entire network.
The SCP is an example of the specialized machines that are now introduced to

handle various functions.

Although, in Figure 2-2, we are already looking at a rudimentary IN architecture
— what Black calls the “service-independent environment” that was to replace the
“service-specific environment”, developers went on to introduce IN-specific
components — the Service Creation Environment (SCE), the Service Management

System (SMS) the Intelligent Peripheral (IP), the Adjunct (AD), and the Network

21

Access Point (NAP) — that would enhance networks by permitting the rapid
creation and efficient maintenance of new services. Their position in the IN

topology is illustrated in Figure 2-3.

SCE SMS —— scp /Ej

STP

Q Backbone
KN—ﬂ___.

Adjunct ;

SSP SSP |
T —— Lo Twan
R | i NAP |

Figure 2-3 AIN Components.

2.2.2 IN Physical Components

Here is a list. drawn extensively trom Black's book [10], of the network

components with their basic functions:

Service Switching Point (SSP)

The SSP continues to play the role it had in earlier systems, represented by Figure
2-1: it is the central element for switching resources, for signaling and for
interfacing with other network components. As the point of entry for all IN
services, it must provide mechanisms to detect user requests for IN services while

interacting with other IN components, such as the SCP, to carry out these requests.

Service Control Point (SCP)

[88)
(8]

The SCP is connected to the SSP by the SS7 network. It contains service logic
programs and associated data that enable the IN services and carries out the

network-based transaction processing.

Service Creation Environment (SCE)

The SCE provides design and implementation tools that enable developers to

create and modify services in the SCP.

Service Management System (SMS)

This database management system manages the master database that controls the
IN customer services, including the continual processes of database maintenance.

backup and recovery, log management, and audit trails.

Intelligent Peripheral (IP)

The application-independent IP is connected to one or more SSPs. It supports
basic services like tone generation, voice recognition. playback, compression. call
control. record and DTMF (Dual-Tone Multi-Frequency digit collection) detection

and collection.

Adjunct (AD)

Adjunct performs the same operations as an SCP, but it is configured for a single

switch where a few fast-response services are required through a high-speed link.

Network Access Point (NAP)

23

The NAP, a switch without IN functions, is connected to an SSP, and interfaces to
trunks with SS7 messages or frequency tones. Based on the called and calling
number received at the NAP, it may route the call to its attached SSP or IN

services.

Signaling Transfer Point (STP)

The IN STPs perform two tunctions beyond their usual operations. First. they can
employ pseudo-addressing that enables them to balance the load between two or
more SCPs. Second. they can employ alternate routing in the event of a problem in

the network.

2.2.3 IN Functional Entities and Physical Nodes

Figure 2-4 shows the IN physical nodes and their functional entities. Again

tollowing Black's book [10]. we can summarize these entities as tollows:

Service Switching Function (SSF): This function:

* recognizes calls that require IN service processing and interacts with call
processing and the service logic to deal with these calls.

» generates functions that mediate interactions between the CCF and the SCF
when associated with the CCF.

* further increases the capability of the CCF to recognize IN service control
triggers.

* manages the signaling between the CCF and the SCF and, if required. modifies
call processing functions in the CCF to handle requests for IN-provided service
usage under control of the SCF.

* is managed by the SMF.

SCP

SCF | SDP
1P
|_sRE_ TP
SN Backbone
SCF |
SDF :
| CCF ’
| SSF ‘
| SRE | CCF
CCF | |
| SSF —— | ccar o
| CCAF|
SDF ;
I
= 8
S

Figure 2-4: IN Physical Entities and Functional Entities.

Call Control Function (CCF): This function:

may establish and control bearer services on behalf of network users.

may deal with requests from the CCAF to establish and dismantle connections.
associating the CCAF functional entities to each connection instance.
participates in trigger operations (by passing events to the SSF).

is managed by the SMF.

Call Control Agent Function (CCAF): This function:

provides users with access to the services.

represents the users to call processing

represents the interface between the user and the network control functions.
interacts with the user for activities pertaining to an IN operation.

accesses the CCF’s service-providing capabilities for call or an IN service.

relays CCF information about the call or service back to the user.

Service Control Function (SCF): This function:

* contains IN service logic that provides the logical control applied to a call that
entails an IN service.

* handles service-related processing activities such as analysis. translation.
screening, and routing.

* interacts with other functional entities to obtain information as required to
process a call or IN service.

" is managed by the SMF.

Service Data Function (SDF): This function:

* handles service-related and network data.

» provides the SCF with a logical view of the data.

* contains data that relates to the provision or operation of IN service and may
include access to user-defined service-related data.

* is managed by the SMF.

Specialized Resource Function (SRF): This function:

= provides end-user interaction with the IN by providing control over resources
such as DTMF receivers. voice recognition capabilities. protocol conversion.
and announcements.

® s managed by the SMF.

Service Management Function (SMF): This function:
= provides the service provisioning, deployment, and management control.
®= allows access to IN functional entities for the transfer of information that

relates to service logic and service data.

Service Management Access Function (SMAF): This function:

® controls access to service management functions.

Service Creation Environment Function (SCEF): This function:

® supports the creation, verification, and testing of new IN services.

As shown in Figure 2-4, an SSP contains a CCF and an SSF and, if it is acting as a
local exchange. it also contains a CCAF. As options, it may contain an SCF. an

SRF and an SDF.

The NAP is not a fully functional IN node, but contains only the CCAF and CCF

tunctional entities.

The SCP contains an SCF and an SDF and can sometimes access data in a service

data point (SDP).

The SDP contains the SDF and the customer data that is usually accessed during

the execution of an IN service.

The IP provides a number of specialized services in the IN network. for example:
voice recognition, announcements etc. and. as might be expected. contains the

SRF.

The adjunct (AD) is a physical entity that is equivalent to an SCP. and contains the

same functional entities as an SCP.

The service node (SN) provides interactions with users and controls IN services. It
communicates directly with SSPs and contains an SCF, SDF, SRF and an
SSF/CCF. In the SN, the SSF/CCF is not accessible by external SCFs and is
closely coupled to the specific SCF operating within the SN.

2.3 IN Conceptual Model (INCM)

The INCM is a term introduced in the ITU-T IN, though many of the concepts
were later adopted by Bellcore AIN. The INCM represents the entire IN process.
This model is published in ITU-T Recommendation [1l] Q.120l. with
supplementary information in Q.1203, Q.1204, and Q.1213. For the development
of so-called IN capability sets (CS), the model is highly useful.

Service Plane

@@

~— D

/

/
/
‘\

-~
-~ ~
il

S

. AN £ e
anm Plane " ~agsiy)
ot .~ 4 \f—\v

/ —7 P \ , 4 -)
,, , ' \S\IB/l) - - - :’-/- - ®™UGSL2) »._a*“\'
SIBy_—~ - - g —a" >
_* {GStn/

Figure 2-5: IN Conceptual Model (INCM).

As shown in Figure 2-5, there are four planes defined in INCM. Each of the four

[INCM planes provides a schematized view of IN capabilities (see Figure2-5).

1. The service plane depicts the IN process from the perspective of network

services. It does not attempt to address implementation of these services.

Within this plane, the model groups various services (e.g. credit card calling)

into units called “service features” or “SF” (e.g. user authentication).

The global functional plane represents the functions of an IN network
considered as a single entity. This plane contains the call-processing model and
depicts the service-independent building blocks (SIBs), which global service

logic combines to build service features in the service plane, above.

The distributed functional plane models the distributed functions of IN.
defines the functional entities (FEs), describes the actions of FEs (FEAs) in
those cases where an FE represents a grouping of related FEAs. and describes

the relationships between FEs.

The physical plane represents the physical IN-structured network. depicting
the various physical entities, the functional entities embodied within them and

the protocols by which the physical entities communicate with one another.

The arrows in Figure 2-5 show the pathways along which the various planes of the

model interact. The service features in the service plane are realized in the global

functional plane with global service logic and SIBs. The SIBs in the global

functional plane are present in the FEs in the distributed functional plane, and a

SIB may be instantiated in more than one FE. The FEs in the distributed functional

plane are mapped to the PEs in the physical plane. Each PE may contain one to

several FEs.

2.4 IN Call Model

The call model represents the sequence of procedures executed by an IN to set up.

manage and clear an IN session between IN components. The call model allows

29

both ends of a session, regardless of the specific vendor's machine, to share a
common view of the on-going phases and operations of the IN operation. As
Duran [9] points out, it defines “the sets of states (or Point in Call, PICs).
transitions, and detection points, which are used to illustrate the different states
that a call can go through, from origination (the user picks up the phone) to

termination (the user hangs up).”

[n the sections that follow, we will attempt to define and expand on the different
terminology employed in the Bellcore AIN call model. Since the Bellcore AIN
call model ditfer only slightly with the ITU-T IN call model in terms of

terminology. most of these terms will apply to the ITU-T IN call model as well.

Nl | f=mm---= ittt '
(On-hook) | | Point in Call (PIC) 1 '

¢

Originating Point in Call (PIC) 2 '

- = m e m m m m = e o o e - -

i Exit event (user hears dialtone)

1 Entry event (user dials first digit)

- e wt e e e e = e = - o -

Dialing ~ F=--1 __ Point in Call (PIC)3
Talking @ r---1 Point in Call (PIC) 4

(- o e e e e e e - e o = .

| Exit event (user hangs up)

|

Figure 2-6: Basic Call Model (BCM).

30

2.4.1 Basic Call Model

Figure 2-6 depicts the basic call model. As a high-level finite state machine, it is
organized around actions (and aggregations of actions) called Points In Call (PICs)
that divide the entire call processing into phases. We shall see in later chapters
how we use these phases to identify the activation period of a feature. In addition
to internal actions performed in a PIC. a PIC contains also an entry point and an

exit point. These are the points where call processing is directed in or out of the

PIC node.

B

Null
(On-hook)

— :
| DP Disconnected

U

! DP/! Origination Attempt

Y

Originating

| DP' Origination Attempt
* Authorized

Dialing |
|

i | g :
i DP! Information Analyzed

Y

Talking

|

Figure 2-7: Detection Points (DPs).

2.4.2 Detection Points (DPs)

“Detection points”, as Black [10] describes them, “operate between the PICs to

delineate the points in the model where call processing is suspended and other

31

actions are invoked; for example, the action of sending a message to another node.
Query messages are associated with specific DPs and when a specific query
message is received by a node, it knows the exact stage of a call that has been

completed in the transmitting node.”

As illustrated in Figure 2-7, a DP is located in between the PICs (acting as

transition points) in the call model.

2.4.3 Triggers

DPs are associated with triggers. A DP containing at least one trigger is called a
Trigger Detection Point (TDP). A trigger lists a set of criteria that contain a
condition that must be satistfied before a message is generated. In addition. the

trigger must include the address of the node that will receive the message.

Y External
j , Trigger AIN
i PICn e Criteria Host ID
Trigger | ———— [2%/vaice | SCP-02 |

—_——— ﬁ .
DPf-------- . |Tngger2l L 73—l | SCP-02 |

. Trigger3——— a0 agum
PICn+1‘ e

Figure 2-8 Triggers and Detection Points.

A combination of DP and trigger criteria, if satisfied, suspends call processing at
the node (Figure 2-8). This suspension triggers the creation and sending of a

message to the relevant recipient node. Operations remain suspended until a

32

response returns from the remote node. If none of the trigger criteria are satisfied,

call processing proceeds directly to the next PIC.

2.4.4 Originating and Terminating Call Models

The call model divides into two parts: the Originating Call Model (OCM) and the
Terminating Call Model (TCM). Both models describe a state machine for the call
processing logic. As Black explains. "An AIN operation begins with the
invocation of the OCM. then the TCM is started based on the satisfaction of
trigger criteria. Once the TCM starts, both the OCM and the TCM operate in
parallel, although the specific instance of the OCM may be suspended when the

TCM is operating.”

The OCM initiates the call. performs call validation of the calling party. and
controls the call to its completion. The TCM validates the called party and

terminates the call.

2.4.5 Examples of AIN Operations

The call model defines the exchange of information between a Service Switching
Point (SSP) and a Service Control Point (SCP). As figure 2-9 depicts, an incoming
call is processed through the Originating Call Model (OCM) module by executing
the state logic with Points in Call (PICs) and Detection Points (DPs). This figure
illustrates the basic events required to evoke trigger operations. In event 1. the SSP
receives information (i.e., dialed digits etc.). In event 2 the SSP executes the PICs
until (for example) the “information analyzed” detection point is reached.
invoking the trigger logic (depicted in event 3). The SSP now analyses the various

trigger criteria and, in event 4, trigger 3 and its criteria are satisfied.

33

AIN call _

processing ! '
| 1= y
f { i z Trigger 1 - X ; Decoda
Trigger 2 - X t AIN message @
L i l Trigger 3 - (/ ! 3 q
1 i ! ' ~———
{ L~T3)| v @x Direct to N
@ _— ! i ; ol G b ‘ | service_iogic PN
‘ ! ect data for |
[T l : AIN message J @& *

f
[t
AIN message @_ ‘ —
I N
oo g : : Build (encode) info @
! @ ' into AIN message '
AN 1
{ Suspend call | @ '
Calling processing o :
o | .
party P [
{ Instruction
! or response

.-\[ge:"cds:age J @
Y

Resume call
processing @

Figure 2-9: Example of AIN Operation.

If the trigger 3 criteria are satisfied. the AIN node now assembles the required
information and builds a query message, as depicted in Figure 2-9, that contains
all the fields necessary to identify the message (addresses, type of message. etc.).
In event 6, this message is coded into the SS7 TCAP query message and sent to
the relevant SCP. After the query is sent, event 7 shows that the SSP suspends cail

processing on this particular call to await the response from the SCP node.

In event 8, Figure 2-9, the SCP decodes the incoming TCAP message. Based on
the analysis of the fields in the message, it executes the specific software module
to service the query (event 9). This module executes the operation and generates

the parameters that are used to create the response message (event 10). Finally, in

34

' Service_logic @ \
. generates Info. g
Build (encolde) 1

event 11 the SCP creates a TCAP response message and sends this message to the

originating SSP.

When the response arrives, the SSP reactivates the suspended call (see Figure 5-9),
decodes the message as depicted in event 12, which may entail the execution of
other actions (such as “do not charge for this call”, “replace the dialed number
with a different number” etc.). Then, the SSP begins the activation of the call
processing at a specific PIC based on the information processed in event 12.
which, in some instances. may assume a different point in the call than is shown in
the sequential state diagram. Here, we call the activation of a difterent PIC as
“warping”. Whatever is the case, call processing is resumed as illustrated in event

13.

2.4.6 Bellcore AIN Call Model Releases

Figure 2-10 illustrates the originating and terminating basic call state machines of
AIN 0.1. Please refer to Appendix A for detailed descriptions of PICs, TDPs and
triggers that are defined in the originating and terminating basic call state

machines of AIN O.1.

S[PPO [[BD d1seg [0 NIV (01-T 2Indig
PPON €D sey SupewidaO sd0o[jog

»aptwiory a=>-pry O :.3
PO (€19 [

— LDANNODSIATO 01 o
o) (719) [0w-PIN cwiw_
PPOIN 118D disey Supeujuiad |, 210210y | 7 mawovos |o———m
I]
preey ‘C‘Amvlra\l_-!v-:z O»&
- J - L | oNmwaivos J -
= Py .rc.»z pumD @i B
o)) LHMOXY(L (972) m »~ Linkiac] He-pIN 0 (113) -
——— . - uts3] QL)
T ao _zzc.z:_ Lt o T g mm._.l/ ke I
- _l 7] PO (619) "TIVO GNES 'L .
T PUATL (LT Lmq 2oy
II\\\ pITRRpnY pavanbay -
Pasunodas Kued pogien) [eaguisalit} .F.M.MUW e L S aomuru) (92) — - 11_ aummagy a-uv\
— HALOV L 91 .
i i :IJ - [[NLAS TIVO AZIHOHLOY e
‘‘‘‘‘‘‘] — .l| —_— T Vll|
arm
w453 g | e hcﬂx vonezLMImMY 13) porops picanbay
sawsuy oN"L (REY) et s I M. - amoy (53) j I_ anway Ac—uv\
] — ONLLYHIVTL ‘ST ﬁl - (e
—y A P SR e o — ALNOW LDHTAS 'S ;w\lill
panas Lenq fQ&‘v«Zﬁmh—uv 2. N ?ll?!‘l "
- .- — _— _— Q‘\ SINMDI
"y (1) prekpruy E-ﬂ“.— 1)
e e [e TTIVD ANHSHNG v I neneng 09]
prballl B Sl - = 1* NOLLVINYOANI AZATVNY v_i,!;
o onenUo
.x.wﬂ“”.“n._. _A..—aw.ﬂlul. jgymprsy ug.laww pReat (913) 1—-.'-*9«-3 a pasanbay
eIl (233) L. o vonwumguy (£2) [amea (012)
e I B _ >_3_J<._ AHTAS 2 v - - B
L _ - S Bk FI_ NOILLVIWNOANI LDHT10D € |- ———»f
AnygtLe» | » 4 s
) ﬁ . W ! D Am““tﬁ..:(. wwamy a parsantbay ._
paTuOInY vonwmuuag, (172 o .
i nerdug (73) amwag (012) ot Aueg
ll-lﬂllln_ IHAHL HZIHOILNY TL Tl - S 1] koW
i ‘ - f— -ﬁ LLY "OTHO AZIHONANY T Tl;iilv wopireqd -0 (63
Pami(] ojisuiuag, (679 a >aq fung Iy | | paruaq) vonenFie) (113}s.«x . M..m!_:z [1 _i=]
. . .
¥ wumy _Eﬁialﬁu._. (1<) _ ‘H vognieqy) (§72) _ B vopmn3po (13)

\\\\ _ f amnieag (013)
:c:;uux_ ,_suli — l\.|'— ‘ TINTLIL .‘Tl.lsll - ! :ﬂ:aug._xc_ ‘) L ‘ ::Z c -) |,\l_\‘~iv| ZIHt. 9

Chapter 3

MSC and Feature Interaction Detection

Message Sequence Charts (MSC) [8] is the name given to a trace language that
uses message interchange to specify and describe the communication behavior of
system components and their environment. The language. particularly in its
graphical format, makes an intuitive presentation of communication behavior. We
employ it in conjunction with other languages to support methodologies tor

system specification, design, simulation, testing, and docuinentation.

The most important application of MSC is as an overview specification for the
communication behavior of real-time systems, in particular, telecommunication
switching systems. Using MSCs, we can readily specify selected system traces —
primarily standard cases — and build non-standard cases covering exceptional
behavior. This allows MSC’s use in requirement specification. interface
specification, simulation and validation, test case specification and documentation
of real-time systems. Employed in connection with other specification languages
— in particular Specification and Description Language (SDL) [12] — MSCs

provide a basis for the design of SDL systems.

In the first three sections of this chapter, we review the definitions and formal
semantic descriptions of the MSC concepts as outlined in the MSC Standard (8],
and provide specific examples and diagrams to apply these to the subject of this

thesis.

In the last section of the chapter (Related Work on Feature Interaction Detection),

we present several related approaches to the detection of features interactions and

37

identify some of the limitations of these approaches. This will prepare us for the
development of our approach, presented in later chapters, which addresses these

limitations.

3.1 The History of MSC Standardization

Industry and international standardization bodies such as ITU and ISO/IEC have
long used MSCs. Although they followed different conventions and were labeled
with a variety of names (Arrow Diagrams. Extended Sequence Charts, [nformation
Flow Diagrams, Message Flow Diagrams, Time Sequence Diagrams). These MSC
variants differed largely with respect to minor semantic differences and

terminology. Standardization was clearly viable.

Though MSCs may play an important role in the years to come, the SDL user
guidelines of 1988 [13] devoted only a short section to MSCs. Grabowski and
Rudolph pointed out the language’s greater applicability in their 1989 paper
Putting Extended Sequence Charts to Pructice [14], presented at the SDL Forum
in Lisbon. They termed MSCs. enhanced by SDL symbols and a few further
constructs. “Extended Sequence Charts” (ESCs). They presented ESCs as tools
that would refine and extend MSCs, allowing the ultimate derivation of SDL
specifications, and highlighted the role of MSCs and ESCs within the whole

software life cycle, from requirement specification to test case specification.

MSCs aroused great interest at the1989 SDL Forum, leading to the suggestion that
they be standardized in graphical and textual representation within the ITU-T. The
ITU-T approved standardization at the meeting in Helsinki in June, 1990 and
decided to concentrate first on the basic language constructs of MSCs, that is,

message flow diagrams without further extensions such as SDL symbols, and in

38

particular to work out a clear semantics for these constructs. Through this

restriction, the ITU-T hopes to avoid undue overlap with SDL.

At the same meeting, Tilanus presented a first attempt at the formalization of
MSCs (updated in [15]). He focussed this formalization on equivalence relations
for MSCs and on the merging of instances within MSCs to provide a formal
relationship between different levels of abstraction. pointing out that, by merging
of instances, we obtain a more general time ordering for events than was originally
defined for the basic language of MSCs. These early investigations have
influenced the inclusion of higher level concepts contained in the final MSC

recommendation [16].

The Helsinki conference decided not to prepare a separate recommendation for
standardizing MSCs. which were to be covered as part of the new SDL
Methodology Guidelines aimed at the effective use of SDL. But it was soon
recognized that the standardization of MSCs would go beyond the SDL
guidelines. In addition to SDL [l12], LOTOS [17], and ESTELLE ([l18], a
comprehensive classification called for a fourth Standard Descriptive Technique.
one in which MSC was described as a new specification language that might be
used in combination with other languages for system development. This
designation was subsequently formalized at the next ITU-T meeting, in Geneva in

February, 1991.

The Geneva meeting also agreed to include further language constructs such as
conditions (representing system states), timer constructs and some higher level
structural concepts (e.g. Macros) that would go beyond pure MSCs. Researchers
further elaborated on these concepts prior to the ITU-T meeting December 1991 in
Recife, adjusting the language constructs to cover the needs of other ITU-T

recommendations employing Message-, Signal-, and Information-Flow Diagrams.

39

At the ITU-T meeting in Recife, a thorough and critical review of the draft MSC
recommendation by Swedish Telecom formed the core agenda. A first selection of
higher level constructs took place, retaining coregion, substructure, macro, but
postponing the MSC language constructs tor remote procedure calls and grouping
of instances to the next study period. In addition, the conference decided to
include a “create and stop” for MSC instances. The Recife meeting also moditied
the form of the draft MSC recommendation to bring it into line with the SDL

recommendation [12].

The session of ITU-T Study Group X. Geneva, May 1992, approved a new MSC
recommendation with a few changes. In particular, it renamed “‘substructure™ as
“submsc” and found the macro concept to be insufficiently mature and hence

postponed adopting it to the next ITU-T study period.

From the earliest attempts at MSC standardization, developers had considered
combining MSCs with composition mechanisms from process algebra. This work
was forwarded by development of the ObjectGeode tool. But it was only with the
development of the formal MSC semantics that developers were able to realize the
potential of this approach and the evolution of an MSC language gained impetus
during the ITU study period from 1993 to 1996. The condition-based composition
mechanisms of MSC’92 were not dropped but incorporated into process algebra

based techniques in MSC’96 [8].

MSC’96 became a powerful synthesis of concepts taken from process algebra,
petri nets and, beyond that, from object oriented modeling, where MSC may
become a standard for the formulation of Use Cases, as is under discussion within
the Unified Method for Object Oriented Development [19]. MSC’96 new language
concepts — generalized ordering, inline expression, reference, High Level MSC

(HMSC) — has increased its applicability. The specification of Use Case [20], i.e.,

40

of main scenarios together with all accompanying side cases, is one of the most
promising candidates for the application of MSC’96 [21] and may overcome the
restriction of MSC to the specification of only a few selected scenarios, which was

considered as the major shortcoming of MSC’96.

3.2 MSC Language Constructs

In this section, we describe the language constructs of MSC’96. The language of
MSC includes all constructs necessary to specify pure message flow. These
language constructs are Instance, Message, Environment. Condition, Timer.
Action, Instance Creation and Stop. Coregion, Instance Decomposition (Submsc).

[nline Expression and High-Level MSC.

msc POTS_specl

Switch A Switch B

Figure 3-1: A POTS Specification Using Basic MSC Constructs.

3.2.1 Instance and Message

41

The most basic language constructs are instances. We use instances to specify
communicating entities. The instance of an entity is an object which has the
properties of this entity. In the context of SDL, an entity may be an SDL process,
block or service. Within the instance heading, the entity name may be specified in
addition to the instance name. Within the instance body, the ordering of events is
specified. In graphical representation, instances are represented by vertical lines or
alternatively by columns. Figure 3-1 presents an MSC specification of a POTS

call. The switches of the telephone network are represented by MSC instances.

According to Z.120, a message within an MSC specifies "a relation between an
output and an input. The output may come from either the environment (through a
gate) or an instance, and an input is to either the environment (a gate) or an
instance .” A message is presented by arrows (Figure 3-1) in graphical format. The
head of the message arrow denotes the message consumption, the opposite end of
the arrow denotes the message sending. In addition to the message name, message

parameters in parentheses may be assigned to a message.

Along each instance axis (column), we assume a total ordering of the described
communication events. Events of different instances are ordered only via

messages, since a message must be sent betore it is consumed.

3.2.2 Environment

Within an MSC, we use the frame symbol to represent the system environment.
This is indicated by a rectangle which forms the boundary of the MSC diagram
(Figure 3-1). Unlike instances, we assume no ordering of communication events
on the environment. In Figure 3-1, all user interactions with the telephone system
are assumed to be coming to/from the environment, as shown by the messages

drawn to/from the boundary of the MSC.

msc answered

User A POTS network User B

I L
< Disconnected D
Off-hook -

| eantll- Dialtone

Digits(E
. L Routecall | ., -
- Audible Ring | ¥ B-cings
{_____ _ Waiting for connectio D

Figure 3-2: POTS Specification of the “answered™ Scenario.

3.2.3 Condition

Z.120 describes condition as “either a global system state (global condition)
referring to all instances contained in the MSC or a state referring to a subset of
instances (non-global condition). In the second case the condition may be local,
i.e. attached to just one instance.” We can use conditions to emphasize important
states within an MSC or for the composition and decomposition of MSCs. In the
graphical format, conditions are represented by hexagons covering the involved

instances (Figure 3-2).

43

In Figure 3-2, we present another specification of the same POTS call. In this
specification, we separate the users from the environment and consider them to be
actors in the call. At the same time, we consider the network one actor regardless
of how the network is comprised. The instance "POTS network" is not covered by
the conditions "Disconnected" and "Connected". It is therefore not involved in the
states to which the conditions refer. The condition "Waiting for connection"

covers all three instances; therefore, it represents a global system state.

msc No-answer

User A POTS networlg User B

Off-hmk »
egt—Dialtone

(Route cail]
fible Ri Ring -
j 8-rings

et Busy Tone

Figure 3-3: POTS Specification of the “no-answer” Scenario.

3.2.4 Timer

In MSCs, we may specify either the setting of a timer and a subsequent time-out
due to timer expiration, or the setting of a timer and a subsequent timer reset (time
supervision). In addition, the individual timer constructs — timer setting,
reset/time-out — may be used separately, for example, where timer expiration or
time supervision is split between different MSCs. In the graphical representation,

the set symbol has the form of an hour glass connected with the instance axis by a

44

(bent) line symbol. Time-out is described by a message arrow, pointing at the
instance, attached to the hour glass symbol (Figure 3-3). The reset symbol has the
form of a cross symbol which is connected with the instance by a (bent) line
(Figure 3-2). In Figure 3-3, another scenario for the POTS call was specified: if
the call is not answered within a certain period of time (represented by the
expiration symbol of the 8-rings timer), the network will give up presenting the

call.

3.2.5 Action

Z.120 describes action as “an internal activity of an instance™. In graphical format,
an action is represented by a rectangle containing an arbitrary text. In Figure 3-2
and 3-3. the "route call" action represents an internal action performed by the

network.

3.2.6 Instance Creation and Stop

Most communication systems are dynamic, with instances appearing and
disappearing during the system’s lifetime and making the creation and termination
of instances within communication systems common events. A system designer

obviously needs features to describe such events.

The corresponding MSC language elements are shown in Figure 3-4. The “create”
symbol is a dashed arrow which may be associated with textual parameters. A
create arrow originates from a “father” instance and points at the instance head of
the “child” instance. The termination of an instance is represented graphically by a

cross (stop symbol) at the end of the instance axis.

45

ms¢ POTS senario: No-answer

User A 53;53 " Control Control User B
manager Al manager B
_.____.Qfﬂth_» CCF/
- ¥ SSE A
ol Dialtone -
Digits(B) I send call CCF/
) -
SSER Ri
Adlert 1ng. >
| . Audible Ring | iﬁ-n’ngs
. —~—— i
| e Busy Tone J(X___Smp_ﬂlngmg_>.
; S

Figure 3-4: Instance Creation, Stop and Submsc.

Figure 3-4 shows some internal details ot the call set-up and release process for
the call scenario in Figure 3-3. When user A goes oft-hook. the local switching
element spawns a child CCF/SSF process which will be responsible for setting up
the call. providing call supervision and termination of the call. When the call
reaches the local switch element of the called party, another instance of the
CCF/SSF is created which serves like an agent for the called party. When the call

is terminated, both processes terminate and return the resources to the system.

3.2.7 Instance Decomposition (submsc)

A submsc is an MSC that refines another MSC instance. The submsc represents a
decomposition of this instance but does not affect its observable behavior. The
messages addressed to and coming from the exterior of the submsc are
characterized by the messages connected with the submsc border (frame symbol).
Their connection with the external instances is provided by the messages sent and

consumed by the corresponding decomposed instance, using message-name

46

identification. It must be possible to map the external behavior of the submsc to
the messages of the decomposed instance and the ordering of message events
specified along the decomposed instance must be preserved in the submsc. In
Figure 3-4, the instances “"Control manager A”, “Control manager B”, "CCF/SSF

A’ and “CCF/SSF B” constitute the submsc of the instance “POTS network™.

[msc POTS senario: No-answer —]

User A FOTS network: User B
!

Off-hook o
L< Dialtone

Digits(B). -

- Ring -
lible Ri h

Figure 3-5: Coregions and Inline Expressions.

3.2.8 Coregion

Along an MSC instance, message events are totally ordered. This may not be
appropriate for instances referring to a higher level than SDL processes. For this
reason, Z.120 introduces a so-called coregion denoting a section of an MSC
instance where the specified communication events are not ordered. Within any
coregion, only sending (origin of message arrows) or only consumption events
(arrow heads) may be specified. In Figure 3-5, the dashed line segments
containing the messages “Ring” and *“Audible Ring”, “Stop Ringing” and “‘Stop

Audible Ringing”, “Stop Ringing” and “Busy Tone” are coregions. For example,

47

the coregion containing “Ring” and *Audible Ring” implies that the ordering of

these two messages is not important.

3.2.9 Inline Expression

The composition of event structures may be defined inside of an MSC through the
use of inline operator expressions. The operators refer to alternative, parallel
composition, iteration, exception and optional regions. The inline expression is
represented graphically by a rectangle with dashed horizontal lines as separators.
There are currently 5 operator keywords defined for inline expression — alt. par.
loop, opt, exc — that denote alternative composition. parallel composition,
iteration. optional region and exception, respectively. The operator keyword is
placed in the lett upper corner. Figure 3-5 shows an inline expression with the
keyword alt. This means that only one of the two msc sections separated by the

dashed line will be executed.

3.2.10 HMSC

High-level MSCs provide a means to graphically define how a set of basic MSCs
can be combined. An intuitive, non-standard name for HMSCs might be “road

maps”, which suggests how HMSCs are used in practice.

The ITU-T standard Z.120 defines a set of HMSC constructs. However, different
msc tool sets may have their own notations for HMSC. Figure 3-6 shows HMSC

language constructs as defined in the ObjectGeode tool set [22]:

IS scenario

and scenario

or scenario

parallel scenario

repeat scenario

exception scenario

leaf scenario

() d) Al el d] el

Figure 3-6: HMSC Constructs Defined in ObjectGeode.

Figure 3-7 shows an HMSC specified using ObjectGeode. This HMSC contains an
“or’” scenario with two “leaf”" scenarios. The answered leat scenario corresponds to
the msc call scenario specification presented in Figure 3-2. The no-answer leaf
scenario corresponds to the msc call scenario specification in Figure 3-3.
Together. the HMSC describes a typical POTS call. And the behavior specified is

equivalent to that of Figure 3-5.

POTS call
o

N\ answered WO-answor

Figure 3-7: An HMSC Containing an OR Scenario.

49

3.3 Using MSC to Specify Telecommunication Features

To specify a telecommunication feature in MSC, any specification must identify
two basic elements: the parties involved in the communication and the messages

exchanged between the parties during the communication process.

There are different abstraction levels within the system: therefore. different
viewpoints may result in quite ditferent specifications. For example, in the case of
a typical telephone call, if we consider all telephone and network equipment as
belonging to a single entity and all entities outside of this system as the
environment. then the resulting specification will contain only one instance (as
shown in Figure 3-8). All communication events exchanged between the system
and its environment are modeled as messages. Figure 3-8 shows the specification
at the highest level of abstraction. If we separate the users from the environment.
then our specification would look like the specification shown in Figure 3-2. In
this case. we can distinguish between the behavior of different users and the
behavior of the network as a whole. However. we are not aware of any
communication events that happen inside the telephone network. The network
structure is completely invisible to the viewer and we cannot tell whether the
network is an intelligent network or just a plain old telephone network. even
though the feature under specification may be an IN feature. Figure 3-4 shows
some internal details of the network, that is, the SSF/CCF spawned to handle user
requests. However, the means by which different network elements coordinate to
fulfill the user’s requirements are still hidden to the viewer. We still cannot
distinguish between an IN feature and a non-IN feature. In order to specify an IN

feature, we need to have more details about the network structure.

50

msc POTS high level spec

telephone
network

lible Ri Ring .

Figure 3-8: A High-Level Specification of a Telephone Call.

Weng[23] established a good tramework for specifying IN features. In his
specification. the network is broken down into physical entities that participate in
an IN feature. Standard names like SSF/CCF, SCF, IP etc. are used for instance
naming. The messages exchanged use names in TCAP or other protocols. thus
complying with IN standards. In the section that follows, we provide an example

of the specification procedure and explain the concepts used in the specification.

SCP database
<

SSP SSP |

Figure 3-9: The IN Automatic Call Back Feature.

51

Figure 3-9 shows an IN Automatic Call Back (ACB) feature. The corresponding

MSC specification is illustrated in Figure 3-10. ACB is a feature that allows a user

to redial the last call that the user made. As shown in Figure 3-9, the following

steps are taken to make an ACB call:

[88]

. The calling party dials ACB access code

The SSP processes the call and realizes that the call needs IN processing. It
builds a query message in TCAP format, Query with Permission
(InfoAnalysed) and sends the query to SCP (shown in Figure 3-10 by the
Qwp message). It includes the following parameters in the message:

a2 Trigger Criteria: SFC

a Calling Party [D: A

2 Collected Digits: XX

a2 Carrier: 0110(local carrier)

. Upon receipt of query message, SCP analyzes the message, identifies that it

needs ACB service. It does necessary database querying to find the last
number that the customer called (which happeqs to be B) generate billing
information and sends back a response message Response(Analyze Route)
to SSP. In the message, the following parameters are included:

a Last Called DN

2 AMASIlipID #

After receiving this message, the SSP routes the call to B. in Figure 3-10,
the AR message shows this response message.

B receives the ACB call.

ACB

USER CCF/SSFil SCF USERE
offh ook ’[
DialTone
XX QwP(SFC.
—Galling BN-GollecmdDg)
k SSPtoretrieve
lastcall DN
AR(LastCalled DN)
Routecall
Audible ring
[]] I I

Figure 3-10: MSC Specification of the ACB Feature.

Although the method presented above etfectively specifies IN features, it is
inadequate for the detection of feature interactions. For this purpose, we will
require more details on certain important properties of the feature that are not
shown in this specification style. In Chapter 4: the Feature Specification Style, we
discuss how we add those details to this specification, creating a unique

specification style.

53

3.4 Related Work on Feature Interaction Detection

There are currently many approaches in the detection of feature interactions.
According to their methods of application, these approaches can be classified as
either off-line detection approaches or on-line detection approaches. According to
their modeling techniques used, they can be classified as either formal approaches
or pragmatic approaches. Our approach to be presented in later chapters, in

particular, belongs to the category of off-line formal detection approaches.

In this section of the thesis, we do not intend to provide an overview of ail existing
approaches. For that purpose. please refer to Keck and Kuehn [38] for a
comprehensive survey of many of the existing approaches. Instead. we will
concentrate on several approaches that use similar modeling techniques to our

approach.

In Bergstra and Bouma [24], an MSC-like language. “interworking™ is used to
describe features and detect feature interactions. Interworkings are like MSCs with
the difference that interworkings use synchronous communications. In graphical
format, interworkings are called interworking diagrams. which are similar to the
graphical format of MSCs. In the case of interworkings. they define several
composition operators, specifically sequencing and interworking merge. These are
comparable to vertical (sequential) and horizontal (parallel) composition as
defined in MSCs. They describe the merging of two interworkings as the
synchronization of both diagrams in respect to all actions they have in common.
The merging of two interworkings is called “merge-inconsistent” if they cannot
synchronize in respect to all communication actions they have in common. In their
paper Models for Feature Description and Interaction [24], Bergstra and Bouma
state that there is a feature interaction between two features if and only if their

interworkings are merge-inconsistent.

Bellcore’s paper [25] describes a feature as a sequence of traces. The authors
model the composition of two features as the union of their traces. They define a
projection operator, which gives a focused view of the combined behavior as seen
from one of the features. They then define feature interactions according to the
trace equivalence criteria, as follows: if, after projecting the combined behavior
onto events recognized by one feature, the resulting set of traces is different from

the original set of traces of this feature, then there is a feature interaction.

There are drawbacks to both the Bellcore and Bergstra and Bouma's approaches,
since both try to model feature interactions as conflicts between traces and fail to
consider other properties of the feature. for example. triggers and activation

periods. In the following, we discuss three of the drawbacks:

. If two features can actually be executed one after another without any
interaction, both approaches may mistake this situation as a feature interaction.
For example, consider the situation between Voice Activated Dial (VAD)
feature and the Follow Me Diversion (FMD) feature. VAD is a feature that
allows a caller to use his/her voice to dial a number that he/she wants to reach.
The FMD feature, on the other hand, forwards all incoming calls to a directory
number where the customer of FMD can be reached. As shown in the MSC
diagram in Figure 3-11, the trigger “Otfhook-Immediate” of VAD is launched
before routing and routing, when it takes place, fultils VAD’s goal. The
trigger “Termination-Attempt” of FMD is launched only after routing. as
illustrated in the MSC diagram in Figure 3-12. The activation periods of the
two features clearly do not overlap and, as we can see in the MSC diagram in
Figure 3-13, we can combine these two features without any interference. Yet
by looking only at the traces, both the Bellcore and the Bergsta and Bouma’s

approaches will erroneously conclude that there is a feature interaction.

55

STR(Res ColectecCipur)
—

Connect 1o SAF:
yAnncurcement

AD ‘1 i
Usar A S3F ! SCF SRF Usar B
|
i i |
' Qfthesk l
% Qwz(CHtktmm CallngONj i
; |
: Verty CalingCN|
-

|
| VOICE
v ColiestecCrps |
‘ RasCannCalezesOg] 1
AR(CaimeCN|
oute callto B
| g »
Avaie nng i | !
i ! |
!
{
L] [] L] R #
Figure 3-11: Voice Activated Dial.
PO : : —
LearA S3F SCF © s zerg e |
: | I ‘\
Citheak
Oalcra
AU e
Roue Call ko 8
Qup(TermAt CalecONY
|
Firt Divertea N}
FC/CalaiON)
.
rcute cailto C :
g
Auchie nng

Figure 3-12: Follow Me Diversion.

VAD_FRD | } 1
UserA [SSF J l SCF sF | Usard erC |
| i

Qfthack
Cwp(Cliimm CaltingCN)
i
i Veniy CalingON|

| $TR(es CobeosTGHT]
—

Connect ko SAF I ;
ByAnrounasmart 1

I VOICE i
L CalectiDgrs

| F‘ssC‘nm(Cale::mcqlsI ‘

T A(CamdCN)
PRl B

route cafl to 8 i

Jwp{iermat CatealN)

Fit Snartea DN

\ FC{CaleCN)
————
1
: Foute Call to &
i b
1_ Avazm nng 'L ;_‘
< 1 !
v — oopmmemny SRS L I

Figure 3-13: VAD and FMD Combined with No Feature Interaction.

2. If the triggers of two features are launched in different call contexts, and these
contexts cannot coexist, then in any situation, only one of the features can be
launched. There is no way that these two features can coexist. so there is no
feature interaction. However, the Bellcore and Bergsta and Bouma's
approaches may again mistakenly identify this situation as feature interaction.
Let us consider an example: Call Forwarding on No Answer (CFNoA) is a
feature that forwards the incoming call to another number if the call is not
answered in a certain period of time. Call Forwarding on Busy (CFB) is a
feature that forwards the incoming call when the customer is busy. The trigger
criteria (or context) for CFNoOA is that the line is not busy and the call is
presented but not answered after a certain period of time. The trigger criteria
(or context) for CFB feature is that the line is busy. Obviously, these are two
call contexts which cannot coexist and CFNoA and CFB cannot coexist in a
single two-party call. They cannot possibly interact in this situation. However,

by only looking at the traces, one may erroneously make the wrong surmise

that there is a feature interaction.

57

3. As viewed from a higher level, two features may have exactly the same traces,
but different triggers cause them to interact. In this situation, if we simply
examine the traces of the two features, we cannot identify the interaction. For
example, as shown in Figure 3-14 (from [24]), in the context that the called
party is busy, Call Forwarding on Busy (CFB) and Call Forwarding
Unconditional (CFU, it is actually another name for FMD) have exactly the
same traces, vet their triggers may interact. In fact, when enabled on the same
subscriber, CFB cannot be initiated when there is CFU because the trigger

Termination-Attempt for CFU is always reached first.

off-hook
dialtone
number(B) L
ringhack —rfhemg
off-hook

connect(A, B) .
connect(A,B) . — "~ .

oﬂ'—ﬁook

___number(B)
: ringing

cinghack

- [off-hook
|

. connect(C, D) 1
connect(C, D)
!

! :
! I l
3

Figure 3-14: The Interworkings for Both CFB and CFU [24].

58

From the above illustrations, we can conclude that it is not enough to detect
interactions by simply looking at the traces. Other properties of the feature, such
as positions of triggers, the activation periods of two features. and the trigger

criteria, should also be considered.
In later chapters of this thesis. we will show how our approach has addressed the

limitations of the Bellcore and Bergstra and Bouma's approaches and present our

contribution to feature interaction detection.

59

Chapter 4

The Feature Specification Style

As we have seen, a given specification language may offer a variety of ways to
describe the same feature. However, in order to implement detection techniques
using such a language, we must work out a specification style — the set of
rules for feature specifications — that can be easily recognized by the detection

tool and by others using the language.

In this thesis, we use MSC as the language of specification because MSC is a
powerful and standardized language. However. our underlying detecting
techniques are independent from the specification language. and — provided
we develop a specification style for another language — it is possible to apply

our techniques to that language.

Our MSC specification style consists of two parts: the structures for feature
specifications, and the naming conventions for these structures. With the help
of the structures and their naming conventions, the tool we develop can extract
useful information about the teature. We can ensure that the information
contained in any specification is unique provided that the specification follows

our specification style.

This chapter describes our specification style in MSC. We begin with the
introduction of several important properties that are related to feature
interaction detection, then introduce the structural elements of the specification
style and their corresponding MSC constructs. Following this, we present our
naming conventions for all these structural elements. To help readers quickly

master the specification style, we provide a feature specification procedure. A

60

summary of the strengths and weaknesses of this specification style is presented

at the end of this chapter.

4.1 Concepts Related to Feature Interaction Detection

As described in Chapter 3, there are several related approaches to feature
interaction detection. All these approaches have a common drawback: they
ignore several important propertics of features. Our work suggests that. to
detect a feature interaction. these key properties — triggers, traces, and static
requirements — should be taken into consideration. To avoid ambiguity. we

clarify our notations as follows:

Initial Trigger: This is the first trigger on the BCSM that activates a feature.
For example, the initial trigger for Freephone is the trigger SDS-11 (special
digits string, 11 digits). while the initial trigger for CFU is TermAtt
(Termination Attempt). In the VAD feature presented in Chapter 3, the initial

trigger 1s Offhook-Immediate.

As we have seen in Chapter 2, each trigger resides in a specific TDP and has a
corresponding trigger criteria that specifies the situations in which this trigger
will be launched. The Offhook-Immediate trigger for VAD, for instance,
resides in the TDP: Origination Attempt. The trigger criteria is that the user

picks up the phone.

GOAL: We have coined this term to specify the uppermost (earliest) point in
the BCSM at which the objective of a feature can be considered as fulfilled. For
example, the GOAL for VAD is reached when the called party directory
number is collected successfully. Note that this concept of “GOAL” is not the
same as the IN concept we term “Point of Return” (POR). GOAL is only a

logical concept representing the point where the objective of a feature can be

61

considered as fulfilled, whereas POR refers to the specific moment that the
normal call processing is resumed in the BCSM and call control is returned to
the switching function. GOAL and POR. however, may sometimes refer to the

same point in the call.

Activation Period: This is the period beginning at the Initial Trigger of the
feature and ending at the GOAL of the feature. Again, for VAD, this period
begins at the launching of the Offhook-Immediate trigger and ends after the

digits are successfully collected.

Trace: A trace of a feature is defined as the sequence of all transitions taken by
a specific BCSM during the lifetime of a call with this feature enabled. A
feature can have several traces. each corresponding to a BCSM that participates

in the activities of the feature.

Peer Traces: Peer traces may occur in two features. The term refers to traces
that have the same corresponding BCSM. For each connection. regardless of
how many features are enabled, each SSP spawns only one instance of BCSM.,
in other words, one O_BCSM in the originating SSP and one T_BCSM in the
terminating SSP. This results in features sharing the common pair of BCSMs
(and peer traces) if they share the same connection. A direct consequence of
this sharing is feature interactions between peer traces. Some features, e.g.
Three Way Calling, may maintain several connections at the same time. In this
case, we should distinguish the peer traces in each connection with an

additional connection number.

Static Requirement: A Static requirement of a feature is a restriction on the
occurrence of certain events or combination of events or on the reaching of a
certain system state. As an example, a common static requirement on almost all

features is that callers are not allowed to connect to themselves. This restricts

62

both the connection signal and the state in which callers are connected to

themselves.

4.2 Feature Concepts and Their Corresponding MSC Structures

The structures for feature specifications are selected based on the AIN Basic
Call Model. To exploit the rich structural concepts defined in the MSC
language. we mapped the structures of the AIN Basic Call Model to structures

present in MSC. Table 4-1 presents a summary of the mapping:

AIN Concept -~ MSC Structure

Behavior of a feature ::> MSC specifications

One call scenario ——» One MSC specification

Network elements and users =——> Top level instances

Events happening in between ::>
Top level messages
network elements and the users

Basic call state machines ﬁ) Sub-MSC of the SSF (switch)

One basic call state machine 5~—) One instance in the sub-MSC

Internal events in the switch =—) Internal messages in the sub-MSC

PICs =—) States on the BCSM instance

Trigger — Action on the BCSM instance

Table 4-1: Mappings between AIN Concepts and MSC Structures.
In Table 4-1 “behavior of a feature” refers to the overall behavioral

characteristics of the feature. This behavior can be represented using several

characterizing call scenarios. Each call scenario represents a procedure which

63

begins at call setup at the switch and ends at completion of the call.

4.3 Naming Convention

Although the structures for feature specifications present one-to-one mappings
between feature concepts and MSC structures, the namings of these structural
elements create another possibility of ambiguities. To uniquely identify a
specification, we need to have some rules for the namings of structural
elements and. as we have said, the naming conventions are simply sets of rules
that help to remove these ambiguities. The naming conventions are created to
help the feature specifiers communicate with each other and with computer
programs. Similar to creating a new programming language on top of the
specification language (in our case. MSC), the naming conventions define a set
of reserved keywords and syntax for many structures. With the help of the
EBNF formalism. we will illustrate the structures and their naming conventions

one by one.

4.3.1 Network Elements

In an MSC, network elements currently involved in the Call can be represented
as instances. There are generally two types of elements: “users” and “elements
internal to the network”. User names are represented as a single letter. For
elements internal to the network, we adopt the functional entities naming
conventions of the IN distributed functional plane and disregard the CCAF,
SMF, SMAF, and SCEF. That is, the following functional entities are present:
SSF/CCF, SCF, SRF, SDF. In EBNF format, we define the allowable top-level

instance names as follows:
Top_Inst_Name ::= <letter> | 'SSF' | 'CCF' | 'SCF' | 'SDF' | 'SRF'
In EBNF, “I” represents the logic “OR” operator, *“::=" represents the definition

64

operator, “{}” specifies that the elements inside it can be repeated for zero or
more times, “[]” specifies an optional element that can only be repeated zero or

one time, “<>" specifies a fixed element that is present once and only once.

In the above definition, <letter> is a single alpha character representing a user.
For the same functional entities which reside in different nodes of the network,
we will assume that they form a single functional entity. In other words. we

will not consider physical distribution of functional entities.

In order to represent the BCSMs that are vital to our detection technique. we
apply the submsc construct on the SSF. That is, we refine the SSF instance into
a submsc consisting of O_BCSM and T_BCSM instances. The names of the O_
or T_BCSM instances also include an additional parameter specifying which
party it represents. Optionally, a BCSM instance may also carry a connection
number if it is necessary to distinguish between BCSMs from different
connections maintained by the same feature. Therefore, we define an instance

name in the submsc and names for all instances as follows.

Submsc_Inst_Name ::= ‘O_BCSM’" | ‘'T_BCSM'’ <letter> [*("<number>")’]

Instance_Name ::= <Top_Inst_Name> | <Submsc_Inst_Name>

65

In Figure 4-1, we can see how we represent typical elements of the network in

MSC.

TBCSMB|| |, SCF | SRF B
| | |

A ||SSF|0_BCSM A

1
|

i | : E
| ; |
l_ —_— LI] L LI] L]

Figure 4-1: Network Elements Represented as Instances in MSC.

4.3.2 Format of Events

We can represent events that occur between the network elements as messages
in MSC. Sometimes it becomes necessary to uniquely identify an event sent
and received between network elements and this entails restrictions on the

format of events.

Bellcore's Generic Requirements for Switching Systems [26] has defined the
format of events as shown in Table 4-2. However, this format is redundant
when applied to events specified using MSC messages, since every message in
MSC may already have a parameter node attached to it, either as a receiver or a
sender. For example, since an Off-hook message drawn from user A to the SSF
effectively identifies the Off-hook A event, there is no need to specify the
parameter A explicitly. Furthermore, the event format in Table 4-2, if applied to
message names in MSC, may cause some inconsistencies between the actual
participants of the event. For example, the Start Ringing A B event defines A as

the recipient node of the event. However, mistakenly drawing the arrow of the

66

message towards B will create confusion between the meaning of the event and
the actual recipient node in the MSC specification. To avoid this and to make

the specification more concise, we adjust the format in Table 4-2 as follows:

User to Switch Switch to User

Off-hook A DialTone A

On-hook A Start AudibleRinging A B
Dial AB Start Ringing A B

Flash A Start CallWaitingTone A B

Stop AudibieRinging A B
Stop Ringing A B

Stop CallWaitingTone A B
LineBusyTone A
Announce A R

Disconnect A B

Table 4-2: POTS Events (based on Bellcore's Generic

Requirements for Switching Systems [26]).

The format of a message name is:

Message_Name ::= <event> <Instance_Name> [‘(" parameter_list *)’]

parameter_list ::= <parameter> {,” <parameter>}

where <event> is a base event name (i.e. without the extra parameters) as
presented in Table 4-2; <Instance_Name> is a name of the instance as defined
by the naming conventions in section 4.3.1, excluding the sending and
receiving parties of the message; and <parameter> is an additional information
carried by the current event such as a recording. In other words, we show only

parties that are not directly involved with the message and other information

67

(such as recordings) that the event carries.

We will illustrate this format in a typical POTS specification as shown in

Figure 4-2.
1 - [Ema——
A t SSF | B
ourtee " |
one :
— ?
ia
is)| Start Ringing A »i
tart AudibleRinging B ;
gt AudibleRinging '« Off-hook :
s<tgp AudibleRinging B Stop Ringing A
| On-hook |
| Disconnect B < ‘
!
f
| |
—— SEe— amssss—

Figure 4-2: A POTS Specification Using the Event Format.

In this example. from the top to the bottom. the messages exchanged. when

expressed with the format in Table 4-2, would be:

Off-hook A, DialTone A, Dial A B, Start Ringing B A,
Start Audible Ringing A B, Off-hook B, Stop Ringing B
A, Stop Audible Ringing A B, On-hook B, Disconnect A
B.

Our format is intuitive: the Start Ringing A message drawn to B, for
example, indicates that the ringing happens at B’s telephone, but A is indirectly
involved in sending the message. Addressing A’s role is particularly useful
when we want to examine static requirements of the feature. We will elaborate

on this in Section 4.3.4.

68

4.3.3 PICs, Initial Trigger and GOAL

In section 4.3.1 we have described the representation of BCSMs with MSC. We
will now discuss the MSC representation of four other properties that are

related to feature interaction detection: PICs, Initial Trigger, and GOAL.

Recalling that a PIC is defined as a set of states in the life of a call at a switch,
we would naturally model PICs using MSC states attached to the BCSMs. The

format of the state name is:

PIC_Name ::= "PIC’ <number> | *O_Exception’ | "T_Exception’

{ ', <number> | "O_Exception” | "T_Exception’}.

where PIC is a reserved keyword that identifies that the state represents a PIC:
<number> is the number of the PIC which we have listed in Appendix A. If the
current PIC is O_Exception or T_Exception. they do not have numbers. so we
will represent them using their full names. i.e.. PIC O_Exception or PIC

T_Exception where O_Exception and T_Exception are also reserved keywords.

As an example. we present in Figure 4-3 the MSC specification of the
Originating Call Screening(OCS) feature. This feature prevents the caller from
reaching certain directory numbers if the called directory number is on his/her
screening list. Figure 4-3 presents the behavior of OCS in the scenario that the
called party is not on the screening list of the calling party. Here, we can see
how we model PICs of the OCS feature. Here PIC 2,3 denotes that PICs 2
and 3 are passed one after another. Since there are no events sent in between

these two PICs, this abbreviation will not create any ambiguity.

Since the Initial Trigger is associated with actions that do not belong to the
normal processing of the call, we will model it using the action construct in

MSC. The format of the action name of the Initial Trigger is :

69

IT_Name ::=‘IT" e<number> : <Trigger_Name> [*(* <Priority> *)’]

Priority ::= <Natural_Number>

where IT is a reserved keyword that identifies that the action is an [nitial
Trigger; e<number> represents the TDP where <number> is a TDP number
listed in Appendix A; <Trigger Name> is the full name of the trigger that is
also taken from Appendix A; <Natural_Number> is a positive integer. The
<Priority> is an optional entry to a trigger specification. As shown in Figure 4-

3. the Initial Trigger for OCS is represented as IT e3: OffhookDelay.

We can now represent the GOAL of the feature. The GOAL is defined as the
point in the BCSM where we can consider the objective of the feature as
fulfilled. We will represent this by attaching a GOAL label to the PIC where
the aim of the feature can be considered as realized. The following Definition

defines the tormat of such a PIC.

GOAL_PIC :: = <PIC_Name> : "GOAL"

[n Figure 4-3. the GOAL of OCS is represented as PIC4 : GOAL which
means that the GOAL of OCS is reached at PIC4, i.e. after the called party

authorization process is complete.

Now that we have represented the initial trigger and the GOAL, the activation
period (i.e. the period beginning at the initial trigger and ending at the GOAL)
is obvious. Corresponding to two BCSMs, there are two traces for the OCS
feature. If we use a “—" to represent state transition, “'!” to represent sending of
messages and “?” to represent the receiving of messages, then we can represent

the traces of OCS in the activation periods in the following format:

0 _ B CS A’I A - P ICS 'DialTone.? DiulB.'QwP(Offhkdel .calline DN .CalledDN). Authorize~Originuation > P [C_‘

T _BCSMB: PIC,

70

{ A] | ssr | 0_6csm A b_scsmai] Lscﬁi R
Ctt-nook| L—::IF‘—)

e

DnalTonJ

Dial 8
T 83 CffhoekCe|
‘I—ri——-Jay QwP{oth«cet callhgCN CalecDN}

Authonze-Crpinaion

(ress7y (CPecna)

Present-Call .

€ic-2 13 14 6 StartSingng A

Aeart b
:
StartAccivledin gmg i

Figure 4-3: MSC Specification for the OCS Feature.

4.3.4 Static Requirements

Static requirements on a feature usually stipulate that some state of the call is
not allowed. For example, a typical static requirement is that callers should not
be allowed to connect to themselves. To specify such a requirement. we may
choose to use temporal logic formulas or other textual requirement
specification languages. By adding declarations of formulas or simple
specifications to the MSC model, we can specify static requirements [28].
However, one has to define the format of the formulas and this is the equivalent
to defining a new language. Because MSC itself is a good requirement
specification language, we do not need to introduce other languages and can
instead specify static requirements directly on a feature, using a separate MSC
diagram. However, the format of the specification is such that it defines a
pattern that will lead to violation of the static requirement. We shall see why it

is beneficial to specify static requirements this way in Chapter 5.

Let us look at an example. A major requirement on OCS is that callers should

not be allowed to connect to a directory number which is on their screening list

71

if they call the number. Suppose A has OCS and C is on A’s screening list, then
the static requirement on the OCS of A can be represented as shown in Figure
4-4. This requirement says : the Start Ringing A message drawn toward C is
prohibited. From this example, we can see that the format of the message name
plays a key role. If the parameter A is left out, then it will not be clear who is
indirectly involved in sending the “Start Ringing” message. especially when a

third party (e.g. B) is present.

‘connectAtoC
A ssF 0_5CSM A T_8CSMC i scF } c
J
I |
I :1 |
! StartAinging A _J'
—
| I
| | .
' ' | |
! f I '
! | | ;
: I !
i
i ;
i
| ! l i _ | E
] N]] L

Figure 4-4: MSC to Specify Static Requirement of OCS.

4.4 The Specification Procedure

As a summary of the specification styles presented so far. we provide here

general procedural guidelines on how to specify features using these styles:

72

msc stepl j
‘] |
A SSF } SCF B ;
.
-
: !)
i f - ‘
| a
| |
| ! |
'_ — .] .] '

Figure 4-5: Specification Procedure, Step 1.

Step 1: Identify typical call scenarios for the features under study. In each
scenario, identify network elements participating in the call. By applying the
naming conventions presented in section 4.3.1. draw instances of the MSC
models. Following the naming conventions for messages presented in section
4.3.2, identify the characterizing messages of the feature and draw top-level
messages sent in between the network elements and users. We provide an

illustration of this step in Figure 4-5.

73

msc step2]

-

A | SSF;EO_BCSMA _BCSMB . SCF

Figure 4-6: Specification Procedure, Step 2.

Step 2: Refine the SSF to a submsc containing O-BCSM and T-BCSM
instances. Connect external messages to the SSF with the BCSMs. In between
the O-BCSM and T-BCSM instances. draw messages to show the internal

events. For illustration of this step. see Figure 4-6.

imscstcpJ]

!

A ' SSF [O_BCSM A E‘_BCSM B

i

!
: {
——?——*< Cc11)

|

PI |
@IC234567> : ’
: i

"

IC 12,13,1413>

‘__‘ t

{pcs T

Figure 4-7: Specification Procedure, Step 3.

74

Step 3: Identify the initial trigger that activates a feature. Following the naming
conventions presented in Section 4.3.3, draw relevant PICs to show the relative
position of the initial trigger and to mark the traces of the feature. In Figure 4-7,
the internal action with the IT eE: T denotes the initial trigger for this
feature. Here, E refers to the TDP number and T is the name of the trigger. We
show all PICs as states in the MSC model. Note that PIC 2,3,4,5,6,7
denotes that PICs 2, 3, 4, 5. 6 and 7 are passed one by one. Since there are no
external events sent in between these PICs. this abbreviation will not create any

ambiguity.

A ‘ 'SSF' :O_BCSMA?T_BCSMB

; i
l | e ! 1

| G |
- = (e | |

! | ITeET| ‘

L & |

L

Figure 4-8: Specification Procedure, Step 4.

75

Step 4: By analyzing the characteristics of the feature, we identify the GOAL
of the feature. We show this by attaching a GOAL label to the PIC where the
objective of the feature can be thought of as fulfilled. The activation period of
the feature is the period beginning at the initial trigger and ending at the GOAL.
In figure 4-8, as we can see, the GOAL for this feature is reached on PIC 4.
Note that in this instance, we should separate this PIC from others because. if

we do not, we cannot attach the GOAL label to it.

f
! msc statie_requirement
;]

[T_BCSM A A ’

! ! ‘

i | Start Ringing A J p
. I
. | |
S N |

Figure 4-9: Specification Procedure, Step 3.

Step 5: We specify static requirements of the feature in separate MSC
diagrams. Figure 4-9 specifies a typical requirement on most features. i.e.
callers should not be allowed to connect to themselves. This is shown by a
pattern, i.e. the sending of the Start Ringing A message drawn toward A,

that violates the requirement.

[n Chapter 6 of this thesis, we will present MSC specifications of many features
described in the Bellcore Feature Interaction Benchmark [5]. We hope this will
help readers quickly adapt to the way we specify real telecommunication

features with our specification style.

76

4.5 Comments on the Feature Specification Style

As an evaluation of the specification style presented in this chapter, we

summarize a few characteristics of this specification style:

1. High-level specification of feature behavior

The specification style presented in this chapter represents a high-level
specification of feature behavior. The viewpoint of the specification is very
close to the user’'s viewpoint to telecommunication features. Although,
contrary to many pure requirement specification methods. we have now
reached the point where we can illustrate a few internal details of the
network, such as the basic call models and triggers. These concepts are
relatively easy to understand by users with basic programming knowledge.
Other network details such as memory usage or process control are not
included in our specification style, and thus. transparent to the feature

specifier.

2. Fast prototyping tool

The specification style introduced in this chapter can be used as a fast
prototyping tool for telecommunication features. It can be considered as a
template for feature specifications. The reader may consider the feature
specification procedure we suggest as a standard way to fill up the template

and produce specifications in an efficient manner.

3. User friendly

As mentioned previously, since the specification style is designed to

produce high-level specifications of feature behavior, users with basic

77

programming knowledge will be able to understand the concepts involved.
In addition, we have selected intuitive MSC structural mappings and
naming conventions in order that the specification style is easier for normal

users to learn.

Limitations

Some of the limitations of this specification style are the direct consequence
of our design intention, i.e. to produce high-level specifications of feature
behavior. This perspective provides us with all the benefits summarized
above. However. since many low-level behaviors of features are ignored.
feature interaction detection methods based on this specification style
generally cannot detect interactions that happen between low-level
behaviors. Our approach, to be presented in Chapter 5. in particular. cannot
detect many low-level interactions. We will see this consequence clearly in

the benchmark to be presented in Chapter 6.

For simplicity. our current specification style does not consider physical
locations of network components. However. many interactions happen due
to confusions between physical entities and their functional assignments.
For example, in Chapter 6, we have two interactions that involve directory
numbers and their assignments to physical lines. Because of our

simplification, we are unable to detect these interactions.

Feature interactions that give rise to inconsistencies in charging constitute a
considerable amount of interaction cases. Because of the time limitations for
this project, our current specification style is unable to include the means to
model charging aspects of features, and our approach. presented in Chapter
5, is unable to check behavioral preservations on charging aspects, and thus
unable to detect these interactions. Again, in Chapter 6, the benchmark

clearly shows this limitation.

78

Some feature interactions arise due to the synchronicity of feature
behaviors. In Chapter 6, we will present one example that renders an
interaction of this type. Due to the fact that MSC currently supports only
modeling of asynchronous behavior, we are unable to address synchronicity

in our specification style in MSC.

79

Chapter 5

Classification and Detection

of Feature Interactions

This chapter describes the complete methodology, techniques and algorithms
employed in the detection of feature interactions as part of our general

framework. The chapter is organized as follows:

o Section 5.1 derives a definition of feature interactions based on our
viewpoint of the feature interaction problem.

a Section 5.2 gives a classification of feature interactions.

3 Section 5.3 emphasizes the importance for finding interaction-prone call
scenarios.

a Section 5.4, 5.5 and 5.6 introduce the methodology and techniques for
detecting various types of interactions.

3 Section 5.7 describes the algorithms that implement the detection techniques.

5.1 Definition on Feature Interactions

To date, we do not have a standard definition of feature interactions. However.
there are several formal and informal definitions in use today that partly
describe the nature of the problem. In the proceedings of the Second Feature

Interaction Workshop, a feature interaction is defined as follows [4]:
“A feature interaction occurs when the behavior of one feature is

changed by the behavior of another. In many cases, this can lead to

unexpected or undesired behavior which affects the quality of the service

80

provided to telecommunications users.”

The above not only defines an interaction, it also indicates that some
interactions are expected and desirable while others may be unexpected or
undesirable. From this definition, we can see that a necessary condition for
feature interaction is that the behavior of any one of the features is changed. In
other words, we can detect possible interactions by checking the preservation of

feature behavior. Therefore, in this thesis, we use the following definition:

There is a feature interaction if the behavior of any one of the

participating features is not preserved.

Sometimes. non-preservation of feature behavior does not necessarily mean
there is harmful feature interaction. For example, in the case of the OCS feature
presented in Chapter 4, blocking of unauthorized calls is desired. although it
may change the behavior of many features. For simplicity. our definition does
not distinguish between desired and harmful interactions. Therefore. additional

actions will have to be undertaken to detect harmful interactions.

5.2 Classification of Feature Interactions

We have shown previously that, to detect a feature interaction, several
important properties of features should be taken into consideration. These
properties include the initial trigger, the traces and static requirements on the
feature. In Chapter 4, we have presented our feature specification style which
takes these properties into consideration. Here, we would also like to classify

feature interactions according to these properties.

As mentioned previously, our methodology is to check for preservation of

feature behavior. Since, when viewed from the high-level, the initial trigger, the

81

traces and static requirements constitute the most important characteristics of a
feature behavior, we can say that, at the high-level, the behavior of a feature is
preserved if and only if :
a. its initial trigger can be reached (not blocked by other features)
b. its traces in the activation period are preserved (not modified by other
features)

c. static requirements of the feature are respected.

Thus, our informal definition of feature interactions is equivalent to the

following:

Feature Interaction: We define as a Feature [nteraction any violation of a. b.

orc.

In other words, we can classify feature interactions into 3 categories:
a. Blocking of Initial Triggers,
b. Interaction between Traces and

c. Violation of Static Requirements

[n the following sections, we will illustrate our techniques for detecting each

categories of interactions classified above.

5.3 Call Configurations and Scenarios

When analyzing interactions between features, it is necessary to consider the
interactions in each call configuration and each call scenario. For example, to
analyze the interactions between Call Waiting (CW) and Three Way Calling
(TWC), we must consider on which parties these two features are enabled. And
if the call scenario is changed, e.g. A calls B is changed to B calls A, it will also

change the interaction situation. While the possible combinations between two

features can be enormous, Keck [27] has presented a technique to filter through
all call scenarios and identify those scenarios which are interaction-prone. In
simple cases. however, one can simply take all combinations and skip the

filtering process.

In this thesis, we will assume that all scenarios which are subject to further
study have been identified. We will study feature interactions in each identified
scenario. Based on our framework, we will study interactions related to the
initial trigger, the dynamic behavior (represented by traces) and static

requirements of the feature.

5.4 Blocking of Initial Triggers

Note that the prerequisite for two features to interact is that the trigger criteria
of the features can coexist. In particular. the trigger criteria for
O_Called_Party_Busy and O_Called_Party_No_Answer or T_Busy and
T_No_Answer cannot coexist in a two-party call, since the terminating party is
either busy or not busy: there is no alternative. The trigger criteria for different
digit strings cannot coexist in a two-party call either. For example. 911 service
and Freephone service do not interact in a two party call because their triggers
are different digit strings. one is 3 digits and the other is 11 digits. The user can

dial only one number to initialize a call.

Blocking of Initial Triggers: Let us suppose that the trigger criteria of two
features can coexist in the current call configuration. If it is possible for one
feature to block the other feature from reaching its trigger, then the two features

are said to have a “Blocking of Initial Trigger” interaction.

Based on careful observation of trigger conditions and positions, we identified

four situations that can arise due to trigger criteria and positions of triggers:

83

a. No interaction

b. Blocking of Initial Trigger

¢. No Blocking of Initial Triggers and no possibility of interaction between
traces; however, there may be violation of static requirements.

d. No Blocking of Initial Triggers although there may be any other type of

interactions.

Table 5-1 gives a summary of these situations and their corresponding trigger

conditions and positions.

Interaction Situation Cases

No Interaction Trigger criteria do not coexist

. Activation periods do not overlap and
at least one feature does not pass by the

trigger of the other teature

!'Q

Two features share the same trigger in

the same BCSM or two triggers reside

in the same TDP of the same BCSM

Blocking and there is no priority. At least one
feature does not get back to the triggeq
of the other feature

3. The feature with earlier trigger of

trigger with higher priority does nof

pass by the trigger of the other feature

Activation periods do not overlap and two
No Blocking, No Trace Interaction [features pass by the trigger of one another.

Check violation of Static Requirements.

No Blocking Only Other situations. Continue to check all the

other interactions

Table 5-1: Interaction Cases Related to Initial Trigger.

84

In Table 5-1, “pass by or “‘get back” refer only to peer traces. If the trigger of
one feature resides on a trace that the other feature does not have, then by
default, the second feature also passes by this trigger. This is because. the call
control will not prevent this trace from being instantiated. Once started, the first

feature has total control and can ensure call processing to pass by the trigger.

Detecting Blocking of Initial Triggers is straightforward: simply look at each
trigger criteria, the position of the two triggers and GOAL and the traces if
necessary. Check the four interaction classes in Table 5-1. If it is possible for
one initial trigger to be blocked, there is a Blocking of Initial Trigger
interaction. Otherwise, we should refer to Table 5-1 to see what actions should

be undertaken to detect other types of interactions.

In order to illustrate this technique, we present an example of Blocking of
[nitial Trigger type of interaction. In Chapter 3. we have shown a feature
interaction example between the CFU and CFB features in the scenario that the
called party is busy. We have explained that related approaches may not be able
to detect this interaction. Here. we will show how our approach detects this

interaction as a Blocking of Initial Trigger.

In Figure 5-1, we present the MSC specification of the CFU feature in the
scenario that the called party is busy. Figure 5-2 shows the MSC specification
of the CFB feature in the same scenario. In the two specifications, we can see
that the two features have overlapping traces. The trigger for CFU, i.e.
TermAutt, resides in TDP e20 which, as we can see. is reached after PIC 11. On
the other hand, the trigger for CFB, i.e. T_Busy, resides in TDP 30 which is
reached after PIC 13. From this, we can conclude that the trigger for CFU is
reached first. However, after reaching the initial trigger, trace of CFU

corresponding to T_BCSM B clearly do not pass by PIC 13 which contains the

85

CFB trigger. Therefore, the situation between CFU and CFB in this scenario

corresponds to the third “Blocking” case classified in Table 5-1. Thus, we

detect a Blocking of Initial Trigger interaction.

CFu
[A J | ssF | o_acsm A rr_acsa,ﬂ F_scsm: | scr H 5 |l c
i
Off-hook C;F—‘—) : ! i
{Pcz23)y I 1
DiaiTone I
Oial B .
(rcass) {_PSL)
Prasent-Calt
ITe20 Temgz
Qw>{TarmAyt. CatezON)
ForwarzPall{C)
AcuteTe(C)
(P1C5 Geal (P—'é’D
ERRE
FIC5 7
CHE57) rggrntcat |
'C12.13 "4 i
Alart Start Rnging A !
SunAudlsloerﬁ@(E ’
|

Figure 5-1: Call Forwarding Unconditional (CFU).

cra
[a] [[ssr] [oscsva | r_BcsME | ~_3CSMG }7oses |1 s [¢
l Crt-hoox Q:',Q’—> ' 3
{Pcz23>) |

!

CiatTone
N |
Jal 3 |
I

(pici 56 p» (PGt)

sent-Cal

PIC 12,13 ,

T e30 T_Bub ‘
(e T_8u QWF(T Sidy. CalledON) ‘
ForwarsCall(C)

ScuteTo(C)

{ PICS Goa|> (Tm ST

(PICE 7) presentCall

[14
c2.13 StartRnging A

Alert

smmwnmm@.@c—a_—) . !

Figure 5-2: Call Forwarding on Busy (CFB).

5.5 Interaction Between Traces

86

In the fourth interaction situation classified in Table 5-1, there is no blocking of
triggers. However, since activation periods overlap. traces of two features in the
overlapping parts of the activation periods run in parallel. We must therefore
examine the possibility of interaction between traces. In other words, in the
overlapping parts of the activation periods, if at least one of the traces is not
preserved, then there is an interaction between traces: if both can be preserved,
then there is no trace interaction. Further examination shows that conflicts only
happen on peer traces of two features (the traces that refer to the same BCSM)

since the BCSM tries to execute both traces with possibly ditferent behavior.

Since peer traces in the overlapping parts of the activation periods consist of
transitions, we can examine the interactions at the transition level. According to
finite state machine notation. every transition consists of three properties: a
current state property, a next state property and actions taken on the transition.
Note that peer traces in the overlapping activation periods always have a

common starting PIC. because this is where two traces start to overlap.

Now. the question is: how can we determine if two corresponding transitions
are conflicting? Here. we give a few examples to illustrate conflicting
transitions. Suppose that “!”” denotes the send action: 7" denotes the receive
action; “—" denotes state change. Let us consider the following peer traces

(which, as we can see, already synchronized in the first PIC states):

Trace 1: PIC, »PIC, —»PIC,
Trace 2: PIC, »PIC, —»PIC; —»PIC, -PIC,

In this example, we did not consider the events sent and received in between

the PICs. We only consider state changes of two traces. Suppose e#b.

Obviously, these two traces have different destinations in the first transition:

87

trace 1 moves to PIC, while trace 2 moves to PIC.. Does this mean that the two
traces are conflicting? The answer is: not necessarily. Suppose that the PIC
indices take the order: e<f=a<b<c. In trace 2, the call control first goes to PIC,,
then it jumps to a previous state PIC, (because, for instance, it needs to collect
extra information), then passes through PIC;, then PIC, then PIC.. We can see
that all transitions in trace 1 are fulfilled in trace 2. In real-life situations. if two
traces are running in parallel and take the above forms, then the BCSM will in
all likelihood follow trace 2 since the “jump-back™ action is active and the
action to “pass on to next state” is passive. Now, we can see that although the
transitions do not follow trace 1, all trace | transitions are preserved. In other

words, there is no conflict.

However, the following pair of traces will not be able to run together because
they conflict in respect to their transition destinations during the first transition.
The BCSM will follow trace 2, since it has an active jump forward. After going

to PIC;, the BCSM will not be able to pass PIC,. Trace 1 is thus suppressed.

Trace 1: PIC,—»PIC,—-PIC,
Trace 2: PIC,—»PIC;—-PIC,

From the above examples. we derive the following conclusion in regard to

transition destinations:

Sometimes, a trace jumps to a previous state to collect extra information and
comes back to the current state when this is accomplished. If this results in a
different destination from that of a normal transition, we do not regard it as a
conflict. However, in those cases where the trace does not come back, or jumps
forward to some later PIC state, the transition conflicts with normal

transitions.

88

In view of this conclusion, we cannot simply say there is conflict if two
transitions have different destinations. To facilitate analysis of trace
interactions, we propose a special form of trace (“SF trace”), wherein each
transition is taken as the *“giant step” tor the current PIC to reach the next PIC
that, according to AIN basic call model, has a number higher than the current
PIC. We will consider transitions to previous states and all messages exchanged
as actions on the giant step. In this SF trace, transitions do not conflict as to
their destinations if and only if their destinations are the same. Bearing in mind
that the first starting PICs are always the same, we can also say that peer traces
in the overlapping parts of the activation periods do not conflict on any
transition destinations if and only if their SF peer traces contain the same set of

PIC states.

[n the following example. the peer traces are transtormed to SF traces. Trace 2
does not change since it does not contain transition to previous states. [n this
example. "—PIC; denotes the action of going to a previous state PIC;. We can
see in this example that each of the resulting two traces consist of only one
transition. and their destinations are the same. In other words, they do not

conflict on their destinations.

Tracel: PIC, — PIC, — PIC ,—22— PIC
= P[C.‘ —=PIC,.=PIC,.'a.?b)P[C5

Trace2: PIC, —%<— PIC,

We have represented conflicts between transition destinations. We do not need
to examine conflicts between transition origins because the first starting PICs
of overlapping peer traces are always the same, and we are always checking
conflicts between destinations from the top to the bottom. Absence of conflicts
in the previous transitions automatically guarantees that the origin PICs of the

next peer transitions are the same.

89

Agreement of transition destinations: Two transitions in SF traces are said to
disagree as to their destinations if they have conflicting (different) destination
PICs. They are said to agree as to their destinations if their destination PICs are
the same and this common destination PIC is said to be the agreement of

transition destinations.

We now consider the conflicts between transition actions. As we can see from
the previous example. actions on a transition form a sequence. [f we consider
each action as a state, then the sequence of actions looks similar to a trace.
though with no further actions on each transition. Regarding them in this way.
we can determine their contlicting situations just as we would for peer traces.
However. unlike PICs, individual actions do not take any orders. In other
words. there is no jumping forward or jumping backward between actions. For
this reason we need to define contflicts between actions in a somewhat different

way.

Now, suppose we have two transitions (already in the special form):

‘a.?h e

Transitionl : PIC, ——— PIC,

.. ‘ale. = PIC, 'd.Mb.!
Transition2: PIC, ————+=—"2 P|C,

We call individual actions such as *“!a” a node, and a pair of neighboring
actions such as "'a.?b” an edge. We can see in this example that the edge !a.?7b
in Transition 1 has a corresponding sub-sequence 'a.?c.—-PIC,.!d.?b in
Transition 2. We call 'a.?c.—PIC,.!d.?b an extended version of the edge !a.?b,
since besides !a and ?b, the former contains some add-on actions. The edges

7b.!e in both transitions are in the same format; thus we call them equal.

When these two transitions are running together, the BCSM will try to execute

90

both transitions. Transition 2 has some add-on actions from the feature. these
usually have higher priorities, so Transition 2 will be executed. Since the
BCSM will also execute the sequence of actions that Transition | requires. we
can conclude that Transition 1 is not influenced by the presence of Transition 2.
Therefore. actions of Transition 2 appear to be the final action sequence to be

executed. we call it the agreement of the two action sequences.

We can see from this example that each of the edges in the two action
sequences belong to one of three types:
1. It has an extended version in the peer sequence. For example. 'a.?b in
Transition 1.
2. It participates in constructing an extended version for an edge in the peer
sequence. For example, !a.”c in Transition 2.
3. [t has an equal edge in the peer sequence. For example, ?b.'e in both

Transitions.

And there is still another type of edge:

4. none of the above three.

When the fourth type of edge exists in either sequence. we can conclude that
this edge is only recognized by one sequence and that it will not satisfy the
needs of the other sequence. Thus, existence of this type of edges means the

interests of two sequences are in conflict.
On the other hand, if all edges in two sequences are of the first three types, then
they tend to reach an agreement. The agreement consists of extended versions

and equal edges.

Agreement between action sequences: If two action sequences consist of only

edges of the first three types, then they are said to agree, and their agreement

91

consists of extended versions and equal edges. If any of them contain an edge

of the fourth type, they are said to disagree.

A null sequence (that is, no actions) is said to agree with any other sequence

and the agreement is the other sequence.

We follow with a procedure for calculating agreements of two transition action
sequences. We will illustrate this procedure with an example provided in Figure

5-3.

Transition 1: Transition 1: Transition 2:
e 7h.. 1o 1 n,
PIC 4 'a.7b. >l’lC-8..r:..d> PICS \‘\i,] s
) . @ ! extending (2)
Transition 2: —\\U «d (2) @
. P extented (2
PIC 4 'a.2e->PIC3.->PICL!L.2b.->PICAle2d) - - QL‘ en extending (2)
"equal (3) N ,
o : extending (2)
4 '\T,/ ae
\ equal (4) hnd
m i extending (2)
SN\ @
L equal(® equal (3)
@ 'A\
Ny =>d)
N
equal (4)
N
I equal (5)
(2d)
1d,

(

Figure 5-3: Transforming and Labeling Action Sequences.

Procedure for calculating agreement between action sequences:

Step 1. Transformation

Transform both action sequences into the nodes and edges graphical format
illustrated in Figure 5-3. Here the nodes of the graph represent single actions
which take effect in this transition phase. The edges in the graph denote the
sequential relationship between actions. For the backward transition actions,

only the action that takes effect in this phase, i.e. the first jump, is shown. In

Figure 5-3, we can see that the backward transition period —PIC;.—»PIC, of

Transition 2 is shown in the graph by a —3 node.

Step 2. Labeling: Following is a labeling procedure on the edges of the graph

which simulates the negotiation process between two action sequences:

~

From the beginning, all edges are assumed to be unlabeled. Take an

unlabeled edge from the top of either graph and proceed to 2. below.

Compare the edge with the first unlabeled edge in the other graph. If
they are equal. label both of them with an “equal™ label. and repeat 2. If
they are not. see if an extended version of this edge exists in the other
graph. In this context. “extended version” means all edges taken before
reaching a node that is equal to the next node of the current edge. If an
extended version exists. the current edge is labeled “extended”. while all
edges in the extended version in the peer graph are labeled “extending”.
If a label has been successfully applied in this step. then a “failure
counter” is reset to zero. If neither an equal edge nor an extended
version of the current edge exists. then no label can be applied. Increase

the failure counter by one and go to 3. below.

Check if the failure counter is equal to two. If so, this is the second
consecutive time that the labeling process in 2 has tailed. Theretore, the
labeling process cannot proceed on any graph, meaning that the
negotiation process had failed. The two action sequences cannot reach
an agreement. In other words, their agreement is invalid. However, if the
failure counter is equal to one, there is still hope that this edge belongs to
an extended version of an edge in the peer. So, take the first unlabeled

edge in the peer graph and go to 2, above.

93

4. If at any time during the process, either graph reaches the bottom node
(meaning that all edges of this graph have been labeled). determine if
there are still unlabeled edges in the peer graph. If so, all actions after
the unlabeled edge are those that should be combined with the
agreement sequence reached so far since these are add-on actions from
the feature as well. Whatever is the case, we should continue to examine

backward transitions in 5. below.

5. We do not need to examine a backward transition if the edge before it
has an extending label. since the backward transition only exists in one
action sequence. If it has an equal label. then go inside both backward
transition periods and repeat the entire process for deciding agreements
on all transitions in the backward transition periods. If the traces in the
backward transition periods agree with each other, take their agreements
and go to 6, below. If this not the case. the two action sequences

disagree.

6. The agreement of the two action sequences consists of all edges that

have an extending label and all edges that have an equal label.

In Figure 5-3. we can see this labeling procedure clearly. The steps taken are
marked by numbers with an arrow pointing to the edge currently being
examined. After the labeling procedure, the agreement of the two action

sequences is equal to that of Transition 2.

Agreement between transitions: Two transitions in the special form are said
to disagree if they either disagree on their transition destinations or they
disagree on their transition action sequences. Otherwise, they are said to agree,
and their agreement consists of the agreement of their transition destinations

and agreement of their action sequences.

94

Based on the above analysis and definitions. we define trace interactions as

follows,

Interaction between Traces: We say that two features have interaction
between traces if any of their peer traces in the overlapping activation periods

disagree on a specific transition.

According to the above definition of trace interaction, we can see that when
two traces do not interact, then all their corresponding transitions must have
agreements on transition actions and destinations. This agreement gives us
some indication as to how to combine two traces: it two traces agree on all their
transitions, then they can be combined to torm one trace. which is made up of

all agreements of the corresponding transitions.

The following example of trace interactions further illustrates this technique for

detecting trace interactions:

Example:

This is an example in the Bellcore benchmark [5]. Suppose during a phone
conversation between B and C, an incoming call from C has arrived at the
switching element for B’s line and triggered the Call Waiting feature that B
subscribes to. However, before being alerted by the Call-Waiting tone. B has
flashed the hook, intending to initialize a Three-way Call. The ambiguity here
is whether the flash-hook signal should be considered as the response for Call

Waiting, or as an initiation for Three-way Calling.

Figure 5-4 gives the behavior of the call when the flash-hook signal is

considered as the response for Call Waiting and Call Waiting is launched.

95

Figure 5-5 specifies the behavior when the flash-hook is considered an

initialization for Three-way Calling and Three-way Calling is launched.

Because both features pass by the trigger of the other feature, there is no

blocking of triggers. And when the trigger for Three-way Calling is launched,

the two features are running in parallel. However, in the peer traces

corresponding to O_BCSM B. after outputting the On-hold signal, the two

features disagree on the next action. Call Waiting issues an accept signal and

prepares to connect to A, while Three-way Calling activates another instance of

O_BCSM and prepares for the next call initialization. As shown below. it we

transtorm the peer traces into our special form of trace, we can see the

disagreement clearly.

Call waiting O_BCSM B: PIC,

Three - way callingO_BCSM B : PIC,

? flush .)On—hold ! Accept

Y
7

T flash }QwP (). TWC — Authorized 'On-hold lactivate

5

[n the labeling procedure, when the labeling proceeds to the !On-hold node, it

cannot label any more. The failure counter reaches 2 and the procedure aborts

and gives information that a contlict has been found.

CallWa.tng

[(c_scsmal[7_scsws|l o_scsvsl| ~seswe

!

[A}I SSF

Oft-hoox

4 PICT)

>

DCiaiTong

(PIC23)

Zial 3

StartAugibieR

PIC8
hging

StopAudibier]

T

(Fcase p{_PC11)
resent.

-Col

{Te3c T 8

{ acs) (PIC1B)

QwP(T_B

sy Call

ON)

STH

{Res)

PIC 14 1

c8pt

flash

E

ayAnnoungement

On-heid

'

haing 8

PIC 9 Goal

()

bn-rold B

: <Talkxn§A>

Figure 5-4: Call Waiting.

96

7

TWC

f AJ [ssF o acsm?’ Lo_s:s.ua(z} [7 scswq ! SCFJ | saF | ra] | c |

flasn L

T et1 Feamraﬂ}c

QwP{FeanteReq, CRingEN}
TWC_Authonzed

On-hoig

actvate |
@E DiaiTene

Cr-notg g

;]

Dial 2

|

s |

|

Figure 5-5: Three-Way Calling.

5.6 Violation of Static Requirements

When two features can coexist and there is no interaction between initial
triggers and no interaction between traces. (Wo features can be combined to
form one trace. However. the combined behavior can sometimes violate some

static requirements of one of the combining features.

Our specification style allows to use MSCs to specify violation patterns of
static requirements. By performing a search algorithm on the combined trace.

we can determine the presence of the violation pattern.

Violation of Static Requirements: In our framework, Violation of Static
Requirement occurs when the violation pattern in the MSC specification of

static requirements is found in the combined behavior.

In many situations, the violation pattern consists of only a single message, not a

sequence of several messages. In this case, the search can instead be performed

97

on each feature. This is particularly useful when the combined behavior is

difficult to obtain.

Let us look at an example to illustrate violation of static requirements. The two
features OCS (Figure 4-3) and CFNoA (Figure 5-6) do not have overlapping
activation periods. Thus they do not interact on their initial triggers and their
traces. However. their combined trace may violate a static requirement of OCS.
which is that A should not connect to a number that is on the screening list.
Suppose C is on the screening list of A. Since the violation pattern presented in
Figure 4-4 contains only one message. instead of combining two traces and
performing the search on the combined behavior. we can instead perform the
search on each feature. In this example, we pertorra the search on OCS and
CFNoA individually. We can see that the violation pattern. i.e. the Start
Ringing A message connected to C, is present in the specification of CFNoA

(Figure 5-6). So, we have detected a violation of static requirements of OCS.

| A | ssF | o_scsm A [r_scsusi F_acﬂ] scr Jih 8 [c
Gft-hoox C—?-;"E;i—> i
(Fez3) |
CiafTone !
Dial 8

(PpCased (PC1T)

[PresentCall
i &
Alert rrAinging A
.
StartALdicieRigqgn il
IT 832 T_No_AnsWikwp(TNoA, CajedCN. CallingCN)

.

SouteToC Forwarcfail(C)
PFICE 7 Presentcan __PEY
Aot 'C12.13. °4 Start nging A
O ¥ O TED A

Figure 5-6: Call Forwarding on No Answer (CFNoA).

98

5.7 The Detection Algorithms

Let us emphasize again that our method is only applicable when the call
scenario is specified. Thus one should always identity all possible scenarios
first, then apply the method proposed in this thesis to each call scenario. For
any given call scenario, assuming that two features are specified using our
MSC specification style. Figure 5-7 shows the overall algorithm for detecting

feature interactions.

Read the MSC feature specification files and extract
information about initinl triggers, GOAL and traces
Transform to internal FSM representation

A

Check blecking of initial triggers

No blocking of initial tnﬁn\‘ﬂy/
Interaction between traces

Check interaction between corresponding traces

Blocking of initial triggers

Noblocking of initial teiggers and

No interaction bctweenirace.s Ao ihteraction between traces

Check violation of static requirements

¥ In
No interaction
Violation of static requirements

Figure 5-7: The Main Algorithm.

99

ﬁ‘riggcr criterin coexist? |

yes mﬁu feature interaction, abort |
k\cﬁvation periods ovcrlnp?J

yos

uNrm:ast one feature does not pass by trigger of the other feature? J
& g
Elocking of trigger, abort l Continue to check violation

of static requirements

\J
Two fentures share the same trigger in the sane BCSM or
two triggers ceside in the same TDP of the same BCSM and
there is no priority between them?

Ye\

no h’racts of at least one feature do not get back to the common 'IDPM
0o yé\
Blocking of tlﬁgsl;,aboﬂ

\ Continue to check interaction between traces i

The feature with earlier trigger oc higher priority
does not pass by the trigger of the other feature?

no l ye

Elocking of triggers. abort

[Continue to check interaction between traces |

Figure 5-8: Algorithm for Detecting Blocking of [nitial Triggers.

The algorithm for detecting interaction between traces is given in Figure 3-9.

100

Identify overlapping parts of two traces |

l

Tcansform overlapping parts of traces into the special form

All peer transitions of peer traces are checked, starting
from the first transitions of peer traces. See if there is
disagreement on either traosition actions or destinations

y

A disagreement is found?

€S

ne l {l:lteracﬁon between traces, abort

[The combined trace is formed based on all agreements |

l

| Continue to check violation of static requirements |

Figure 5-9: Algorithm for Detecting Interaction between Traces.

The labeling procedure for calculating agreements between action sequences is

shown in Figure 5-10.

101

Store two action sequences in a ‘nodes and edges’ graph
Formut where nodes are individunl actions, edges denote
¢ temporal and cousal relationship between actions

i

{ The first nodes (first sctions) are the same? J

n
yj *{ Two action sequences disagree, nhort |

b’hcre exists nt lenst one unlabelled edge in bath grophs? | e—

o I' yes

"

L

| ﬁ'hcre exists at least one unlobelled edge in the peer graph?

yes

an
[Include in ngreement |
J

\
Take the frst unlabelled edge from either one of the two gruphs
ond compare it with the first uninbelled cdge in the peer graph

l .

(Two edges are equal(link the same pair of node)?_l |

no

s
! ' \ nbell both edges with "Equal® and continue .
ith next unlabelled edge of the current graph
¢ ge o grap
i
i

| ‘
There exists an extended version of the current edge in the peer groph? ! L

no l yk . ’

lnbell the current edge with 'Extended’ and
lnbel all edges inthe extended version "Extending’ I l
¥ Continue with next unlabelled edge of this graph

This edge belangs to an extended version of |
the first unisbelled edge in the peer graph?
labell the first unlohelled edge in the peer graph

no _ycs_\
with "Extended’ and labell nil edges in the current

graph which perticipate in constructing the extended
’ version with '"Extending’. Continue with next
v uninhelled edge in the cuierent graph i

l

[‘l’wo action sequences disagree, uban]

b

h‘hcre exists an edge before 5 backwsrd transition which is labelled the 'Equal’ label?]

s
¥ ind the equavalent backward transition node

the peer graph. Check agreement between
no ces in the backward transition periods

T
v

{Traces in the backward transition periods ngree? |
yos | ao

'wo action sequeneces agree. Construct agreement of two action
uences and continue with oext pair of action sequences |

Figure 5-10: Labeling Procedure for Calculating

T'wo action sequences disagree, ahort !

Agreement between Action Sequences.

102

Finally, the algorithm for detecting violation of static requirements is given in

Figure 5-11.

Rend the static requirement file and extract the violation patterns

l

Transform the violation patterns to trace patterns

Search the combined traces for the violation trace patterns

y

Violation patterns are found?

no ¥

eature interaction: violation of
atic requirements, abort

E‘lo feature interaction detected ot this level

Figure 5-11: Algorithm for Detecting Violation of Static Requirements.

5.8 Comparison with Related Approaches

We believe that our new approach is more complete than Bellcore's approach.
We have classified interactions into three types and developed algorithms for
each one of them. while Bellcore deals with only one type. comparable only to
our second type of interactions, i.e. interaction between traces. Due to the fact
that Bellcore did not consider the first type of interactions, their approach
encounters many problems. For example, they may fail to detect certain cases
of interactions or, in other cases. detect something that is actually not an
interaction. They may be able to integrate some cases of the third type of
interaction by making a requirement violation a conflicting message. However,
this does not apply to all the static requirements. If the specification does not
reach the depth of explicitly specifying some internal messages, they still

cannot create such a conflict.

103

Even though the Bellcore algorithm also deals with traces, their algorithm
differs significantly from our algorithm for detecting interaction between
traces. They use a highly theoretical approach, i.e. the trace equivalence criteria
introduced in process algebra, according to which two features do not interact
only if the projection of the union of their traces onto their own events results in
a set of traces identical to their original sets. Our more practical approach
defines agreement between traces as the collective agreements between each
pair of transitions. For each pair of transitions. we define agreement as both the
agreements between transition destinations and actions. At the lowest level, we
define agreements between destinations or actions according to common sense:
determination as to whether the destinations are the same and all actions can be
acted. Then our algorithm simulates the negotiating process between two traces
and outputs the results of the negotiation. There is no complex computation of
the set of traces or events. Furthermore, our approach works better within our
general framework because it uses the results obtained from detecting the first
type of interactions and it generates a combined trace to be used for detecting

the third type of interactions.

Besides Bellcore's approach, related approaches do not reach the depth of
explicitly specifying the trigger of a feature. This means that these approaches

cannot in general detect blocking of trigger type interactions.

In Johan Blom's paper Formalization of Requirements with Emphasis in
Feature Interaction Detection [28], the author uses temporal logic to specify
requirements on a feature. He also uses reachability analysis to search for
violation of system requirements. This is similar to our techniques for finding
violation of static requirements. However, other aspects of his approach are not
comparable to ours because they use logic reasoning, not detailed analysis, to

find interactions. In terms of performance, their approach will inevitably

104

encounter the state explosion problem. Therefore, when detecting complex

interaction problems, their approach will be slower than our approach.

105

Chapter 6

Tool and Application

In this chapter. we will first introduce a prototyped implementation of our
algorithms as a feature interaction detection tool. Then. we use the feature
interaction benchmark developed by Bellcore [5] and present a benchmark of

our approach. Finally, we present a summary of the benchmark results.

6.1 Tool Architecture and User Interface

We have developed a prototyped tool to implement the detection algorithms
presented in Chapter 5. This tool takes as input MSC feature specification files
and requirement specification files produced by the ObjectGeode MSC editor.
and gives information as to whether the features interact or not. Figure 6-1

illustrates the architecture of the tool.

[n this diagram. there are three inputs to the tool. Each of the two MSC feature
files contains MSC feature specifications for one feature. This specification
must follow the specification style introduced in Chapter 4. MSC requirement
files, containing MSC specitications of violation patterns, comprise the third
input. The tool first extracts information from these files and transforms it into
internal FSM representation. Then the algorithms are performed one by one,

and the results are printed or saved in a file.

106

MSC Feature File 1 MSC Feature File 2 MSC Requirement Files

\ /

FI detection

Info. Extractor

Y

Internal Representations

!r

Algorithm for detecting
I Blocking of Trigger | S —— \._1
Interaction or

|

Algorithm for detecting L
‘L Interaction between traces

E I]

~ Algorithm for detecting e
Violation of static requirements

v

! No Interaction at this level
|

| No Interaction

|
‘ |
|
n
|

Figure 6-1: Architecture of the FI Detection Tool.

Figure 6-2 illustrates the snap shot of the tool GUIL The top part of the GUI is
the part responsible for collecting the parameters (i.e. MSC files) for the tool.
Every parameter has an entry tield allowing the user to enter the parameter by
hand, and a button which invokes a file selection widget if pressed. In the
middle of the GUI, there are 4 command buttons. The "check FI" command
button causes the tool to check for interaction between the teatures specified in
the MSC files. The result is logged into the text field in the bottom part of the
GUI. The "Save Log" and "Save Log As" command buttons save the results in
a file whose name the user may specify through a file selection widget. The

"quit" command button exits the program.

The GUI is so designed that the user is easily acquainted with the tool. We also

introduce some measures to prevent the user from making mistakes. For

107

example, if the user does not specify enough parameters, or if any file specified
by the user as a parameter is not found, the GUI will warn the user of this via a

message and refuse to launch the tool.

Che ckmg comp lete .

FI Found: V:.olatlon of Static. Requ:.rement nolatlon Pat:term el
s in file /home/alex/FI/msc/Req.msc . found in the ttaces of 1 | 1K
[lile /home/alex/FI/msc/cfnoa.msc - o _ ,
|[Here :is the pattern bemg v:.olated
0_BCSM A:

T BCSM C: l Start ngmg a TD ENV

: X

L/

Figure 6-2: GUI of the FI Detection Tool.

6.2 Bellcore’s Benchmark

We applied the tool to known interaction cases described in the Bellcore
benchmark [5]. In the following subsections. we illustrate the benchmark

results in detail.

6.2.1 Call Waiting and Answer Call

Problem Description: A caller attempts to reach a busy line. The Call Waiting
feature generates a call-waiting tone to alert the called party. The Answer Call
feature connects the calling party to an answering service. In a case where caller B is
a subscriber to both features, what happens if B is already on the line when the
second call comes in? Does B receive a call-waiting tone or is the second call

directed to the answering service?

108

Feature Specifications: Based on the call scenario described above, we
constructed MSC feature specifications for Call Waiting and Answer Call as

shown in Figure 6-3 and Figure 6-4.

Benchmark Results: Below are extracts from the log file saved after running
the tool. We can see that the tool identifies the interaction as a blocking of

trigger interaction.

ER R EE R EE S & ChECkFI VerSiOH O.l EE I 2 2 b 2 2 2 4
Feature Files:
/home/alex/FI/MSC/callwaiting.msc
/nome/alex/FI/MSC/answercall.msc
Requirement Files:

rRunning

Checking complete

FI Found: Blocking of Trigger: Trigger for

"answercall.msc" may be blocked!

R R R R R E R E R EREEEE R R EEE SRR SR I

109

CallWaitng

| & | ssr [c_scsma| [T_acsms|[o scswsi, T acsMg HEZIERIENIER
CHf-hook <_P_'l_cl_> l (#cs y (FC5) <'a.|k|nr&;toc>
FIC2 3 i
Cra:Tone]
Zial 3 |
(Ficz 56 H_PC1)
resent-Call

T e3C T_Bupy
QwP{T_Busy Ca fealN)
S1 K Fes)
. PIC 14 1
Aelr FlayAnncuntement
1 Aash
! o b te) hat]
| StartAud:bleFir Giig ol I Acsent tnnoia g

g
T_Answer
StopAcai ernging S@— 1

21 16
s

L

Taringgo A

Figure 6-3: Call Waiting.

ArswerCall / VoizeVal

oA | s _ C.3CSMA | T_3CSM8 | |

Dial B
; FIC4 5 6 Ceon) .
| resent Call !
. 'T e T _Buby
—— CwpP(l Eusy CaledTN)

Cisconnect AromSA;

AR

STR(Aes) pAAes) :
| 21IC3 élC T_E:ccmu}n '
! connectAto SR : '
| | P'ayAnnouncerfent i
| Voioa Massac |
E On-hoe :
i

Figure 6-4: Answer Call.

6.2.2 Call Waiting and Three-Way Calling

Problem Description: During a phone conversation between A and B, an incoming
call from C arrives at the switching element for B's line and triggers the Call Waiting
feature that B subscribes to. However, before being alerted by the call-waiting tone,

B has flashed the hook, intending to initiate a three-way call. Does the network

110

interpret the flash-hook as the response for Call Waiting, or an initiation signal for
Three-Way Calling?

The problem here is that, given the limited signaling capability of customer
premise equipment (CPE), the same signal is designed to mean different things,
depending on context. In the context of the Three-Way Calling feature, a flash-hook
signal (generated by hanging up briefly or depressing a ‘tap’ button) issued by a busy
party signals the nenvork to start adding a third party to the established call. In the
context of the Call Waiting feature, the same signal tells the system to accept a

connection attempt from a new caller while putting the current conversation on hold.

Feature Specifications: In Chapter 5, we have provided the MSC feature
specifications (Figure 5-2 and Figure 3-3) for Call Waiting and Three Way

Calling in this scenario.

Benchmark Results: As we have seen in Chapter 3. the interaction between
Call Waiting and Three Way Calling in this scenario belongs to the category of
interaction between traces. The following is part of the tool’s output. We can

see the result is in accordance with our analysis in Chapter 3.

In the two traces:
O_BCSM B: PIC 9(? flash FROM, ! On-hold TO, ! Accept TO)
T _BCSM C: PIC 16(? On-hold FROM, ! On-hold B TO)

and
O_BCSM B: PIC 9(? flash FROM, ! QwP (FeatureReq,
CallingDN) TO, ? TWC_Authorized FROM, ! Oon-hold TO, !

activate TO)
T _BCSM C: PIC 16(? On-hold FROM, ! On-hold B TO)

FI Found: Interaction Between Traces!

11t

6.2.3 911" and Three-Way Calling

Problem Description: Suppose that A wishes to aid a distressed friend C by
connecting C to a 911 operator (B) using the Three-Way Calling service. If A and C
are in conversation and A calls 911, A can establish the three-way call, since A
maintains control of putting C on hold before calling 911. In the unlikely event.
however, that A calls 911 first and then tries to bring in C, A cannot imake the three-
way call.

The problem here is that, before bringing a third party into the
conversation, a Three-Way Calling subscriber must put the second party on hold.

However, the 911 feature prevents users from putting a 911 operator on hold.

Feature Specifications: A basic requirement on 911 services is that one cannot
put a 911 operator on hold. This requirement can be specified using MSC as
shown in Figure 6-7. Based on the call scenario described above. we also
constructed MSC feature specifications for 911 and Three Way Calling as

shown in Figure 6-5 and Figure 6-6.

Benchmark Results: The following shows the output of running the tool with

the two feature specifications and the requirement specification on 911.

FT Found: Violation of Static Requirement: violation
patterns in file "911Req.msc" found in the traces of file

"TWC_scenel .msc"

Here is the pattern being violated:
QO_BCSM A:
T_BCSM B: ! On-hold A TO

fg11

[A I | ssF CECSMA| . TBCSMB | | scr [s

FIC 1

otread TG D

{ mCc23)

DiafTon
Ziat 3

Jc4

ITed WCB

_‘ Cw?{3gts EatlecCN)
AR{CalezC§ AMA)
{?csE7 G@ 2C -
Present-Call |
———*
éIC “2.13.14 ﬁ
StartJ.nging A
Alant
a1 ~
StartAucicier mq,ngg:@ Otfreok
T_Arswar “
. StopAug blaifinging S EF’IC ey
{ _PcCs
| |
PR s L] | .]

SWC
! = f - | S—— . o - I
A | ss .lc_scsmq r _5CsME| 0_sCsv M#), r_ucsmci || scr ' sj [¢]
[eh : ! :
. T
e | |
a5 - 5 | !
(Fca 58) ' :
[!
= — i |
NP"“Z 13 14 StartAingrg A !
| }
! StartAugitiefinging-S3 T An Ct-nee i i
StopAugibeflinging B & i i
gD e Coe | |
1T e11_FeatureReq QwF(FeatureReq $altng DN '
| TWC _Authorized) '
< . I
MCTIEEI " ormocn | |
l acuvate i l
ohrene
Chal C '
T_Present-Cal i :
{ i

Figure 6-6: Three-Way Calling .

J

put §11 or hotd

A SSF Q_3CSMA| @ T_SCSMB i scF 8

Cn-hoic A

Figure 6-7: Static Requirement on "911".

6.2.4 Terminating Call Screening and Automatic ReCall

Problem Description: Suppose that B has “no bother” features in response to
phone harrassment, and A's number is among those that B refuses to accept via the
Terminating Call Screening feature. If A calls B while B's line is busy, then when B's
line becomes idle the Automatic ReCall feature will initiate a connection attempt back
to A.

The problem here is that the Terminating Call Screening feature screens
every incoming call against the incoming call screening list. The Automatic ReCall
feature automatically returns the last incoming call. If however, the user is on the
line when another call comes in, and the Automatic ReCall feature is processed
before Terminating Call Screening, Automatic ReCall could register the incoming
call number without having the number screened and initiate connection attemps.

This would contradict the purpose of the Terminating Call Screening feature.

Feature Specifications: Based on the call scenario described above, we

constructed MSC feature specifications for Terminating Call Screening and

114

Automatic ReCall as shown in Figure 6-8 and Figure 6-9.

Benchmark Results: After careful examination of the specifications of these

two features, we can see that the situation described above cannot actually take

place, since the TermAtt trigger for Terminating Call Screening is always

reached before the trigger T_Busy for Automatic ReCall. This is probably the

current implementation of the T_BCSM that avoids this problem. If the

implementation is different, for example, if the T_BCSM checks the busy

condition before termination attempt. then the situation could actually arise.

When we run the tool to analyse the current configuration, it will give us output

indicating that there is a blocking of trigger type interaction. However, this is a

desired interaction. Below is part of the output trom the tool

FI Found: Blocking of Trigger: Trigger

"AutomaticReCall.msc" may be blocked!

for

A] [ssr | G BosMA F_acsmd | s [0 s
J —_
ott-nock %—MC" 1 !
i i
{ 2C223 > |
CialTcge ‘
Dial ! '
PICL 5 Z 21G **
ent-Call [
=
L e |
Oisconnect
Qisconnect
LneSusyione
ic O_Exuem% élc T_Excepnen éal
e | | L] I S SN

Figure 6-8: Terminating Call Screening.

115

lAute-HeCall

N |73_scs~| Al T scsM ﬂ zrr_scsnmﬂ 0_BCSM ﬂ 1 f sc;‘ 8|
! Cff-hook ;_;mc !
iafTone @iﬁ) Bls@

Lial S
PIC4 S 6 PIC 11 PIC 3

Present-Call !
|7 833 T Busy GwP(T_Busy, CalledDN)
[register rurmpent Al
gisconnect [t ———

Chilec_Party_Sud¥
LineEusvTone Kic O_Exceo%‘c T_Ex:em}n

Qnhoek ! ; On-hock
PIC 1 FiC 1
- ‘ 28 P{C_BiscComp C:‘ihngDN(Es ce)

Aoule TgIA}

1

@
tngjn '
! I i Start Finging A

Figure 6-9: Automatic ReCall.

6.2.5 Originating Call Screening and Area Number Calling

Problem Description: A, who is subscriber of the AIN Originating Call Screening
feature, calls Domino Pizza's area number to order a pizza. Domino’s Pizza pays for
Area Number Culling feature to serve its customers by directing calls to the nearest
location. The call cannot go through.

The problem here is that the Originating Call Screening feature aborts
attempts to connect the subscriber to directory numbers in the screening list, whereas
Area Number Calling decides the actual terminating number based upon the
originating number and the dialed number. Each of them needs to launch a query for
call origination treatment during call set up. Switching elements may impose
restrictions on the number of queries per call and, after automatically launching a
query for the Originating Call Screening feature on behalf of the caller, the
component will not be able to launch another querv for the Area Number Calling

feature.

Feature Specifications: In Chapter 4, we have constructed the MSC
specification for Originating Call Screening (Figure 4-3). In Figure 6-10, we

present the MSC specification for the Area Number Calling Feature.

116

Benchmark Results: After running the tool on the specifications, we got the

message shown below, as expected.

FI Found: Blecking of Trigger: Trigger for
"AreaNumberCalling.msc" may be blocked!

ANC

l___'i_‘ [ssF rc_scsw\‘g TBCSM3 | -} f scr | |

—/ w

EXeR] !
Cit-ncok <——_-C—>
»
DialTor]
Sal 3
T 83 CrthookDe
2y GwP{crhkeet callhgtN CaliedCN)
RouteCal(B)
PIC 4 Geal
{rcse) Ceer)
| Present-Call i

StartAirg.ng A

StartAucivienging - i

;———'————— ;

Figure 6-10: Area Number Calling.

6.2.6 Operator Services and Originating Call Screening

Problem Description: A has subscribed to the Originating Cull Screening feature
deploved in a local switching element, hoping 1o screen outgoing calls made to any
number in a screening list. However, anybody can make an operator assisted 0+ or 0-
call to a screened number using A’s line.

The problem here is that Operator Services may be handled in a remote
switching element that does not have access to the feature subscription profile of
every customer who wishes to use the services. Therefore, every call made through

Operator Services acts like an outgoing POTS call, except that it is operator-assisted.

Feature Specifications: In this example, we need to use the static requirement

117

on OCS presented in Figure 4-4. Figure 6-11 illustrates the MSC specification
of the IN Operator service feature. We can still use Figure 4-3 as the

specification for OCS.

Benchmark Results: As shown below, the tool detected the violation of static

requirement on OCS.

FI Found: Violation of Static Requirement: violation
Patterns in file "Reg.msc" found in the traces of file
"OperatorService.msc"

Here is the pattern being violated:

Q_BCsSM A:

T _BCSM C: ! Start Ringing A TO

= - ; g e — 1l L
| oa | [ssF 03CSMA « TBCSM g | 7.3CSM g | scr | [zoperateq)
l Ct*-nocw (_"éc_’_) ' :
' . »
i DialTone; ez > : \ l
- Dial = J ‘ | i
(T : | !
IT o4 operatcrocge Gwaicpertersoce. JalesCN) !
]
TobteGalB) tra c:oses:op.rltal") !
i PCS 67 S 3¢ 11) ‘
! resent-! :
1 !
! ;i’z' 1314 Plartfinging A (
i |
| !
! L SRIRAUCIEIGHMQ Crt-hook ‘
. -« le— L Arswer RAIrGnG A l o
! ; ¥
resy (o) | ‘ |
rymcer ! o } i
; ISEKED) GonnectTouA) ' ‘ '
[~ ConnedtTe(C) ' ! '
i 2C -2 Goa! ‘ ’ i
PIC 13.14.°5 snn.‘m ing A ‘
n — ‘ »
PIC 8 ! E |
— anme SRS S S SE—

Figure 6-11: Operator Services.

6.2.7 Credit-Card Calling and Voice-Mail Service

Problem Description: A is a credit-card customer who frequently calls Aspen and is
familiar with Aspen calling procedures. A places a credit-card call to Aspen and hits

“#" immediately to access his Aspen Voice-Mail without waiting for Aspen's

118

introductorv prompt. However, the “#" signal is intercepted by the credit-card call
feature and interpreted as an attempt to make a second call.

The problem here is that, for the convenience of customers, many credit-card
calling services instruct callers to press “#" 1o place another credit-card call,
instead of requiring them to hang up and dial the long distance access code again.
But to access Voice-Mail messages from phones other than his/her own, some Voice-
Muail services such as Aspen allow users to (1) dial the Aspen service number, (2)
listen to introductory prompt (instruction), (3) press “#" followed by the mailbox
number and passcode to indicate that the caller is a subscriber, und then (4) proceed
to check their messages. When a customer places a credit-card call to Aspen, the
customer does not know exactly at what point the Credit-Card Calling feature stops

interpreting signuls and sturts passing them to a called party.

Feature Specifications: Figure 6-12 and Figure 6-13 show the MSC
specifications for the Credit Card Calling feature and Voice Mail Service

features in the scenario described above.

Benchmark Results: As shown below, the tool identifies a blocking of trigger

type interaction. which is exactly what we would expect.

FI Found: Blocking of Trigger: Trigger for

"WoiceMail .msc" may be blocked!

119

[a || s 0_BCSMA|| T_BCSW a:‘ T_BCSM G | [scF | [a l r c J
J
, :
' # ey {Fce)

b

. [Tett O MaCEI | oy oo Madal Satin§ON CalleaCN) '
PlaceNewCatt
gisconne
Dia:Tordl g?i) (il) Discenract A
Sl C o (rct)
PICs 5 Geat
aC-
=1
ICE 7 Present-Cail
IC+2 13 ~4
Start fingirg A
l Alert
| ‘ |
| '\ sapsuctedors© ! ;
i v i
| | |
| ; SIS RS |
i |
S—

Figure 6-12: Credit Card Caliing.

VM
! [a [ss= !C—S?SM"i | 7_3CSMB| | | S°F] P I?;vcncefvaxl'd]
I Ais 'si6ringo b { PC9) i
LR5)] |
Tnartex-numograpasscode | i

Tatt O_MuaCall
PG

talall Calhnqd

N CaliogON pox# :as}:nce:

|

o STR(Rgs}
. connectAte (P
N T VocelMaiM
¥ key I
: 3pscurce cloar i
I
? PC 1 59 |
| Tsconnect, '
! Cisccrneg: 3
2 - .
GC @ Jisconrect A _l '
2C1 ”
. €<s 1~.> |
! |
i |
|
| |
e N | S S R AR

Figure 6-13: Voice Mail.

6.2.8 MBS-ED and CENTREX

Problem Description: The Bellcore Benchmark poses the following problem:

“The AIN Release 0 Multi-location Business Service-Extension Dialing

(MBS-ED) feature allows a customer to extend a 4 or 5 digit extension dialing plan to

locations served by different switching elements. This is accomplished by querying an
SCP or an adjunct to translate digit combinations to directory numbers. CENTREX
features are also based upon a 4-digit extension dialing plan, but are served by a
single switch. Thus, CENTREX features do not query an SCP or adjunct, as the
corresponding directory numbers must be local to that swich. When a 4-digit number
is received in a switch that supports both AIN Release 0 MBS-ED and CENTREX
features, it is not clear whether an SCP should be queried or not. Assignment of
disjoint subsets of the 4-digit numbers to the MBS-ED features and the CENTREX
features could be used by the switch to detect what rype of features in effect whenever

a 4-digit number is received.”

Feature Specifications: Figure 6-14 and Figure 6-15 show the MSC
specifications of the MBS-ED and CENTREX features in the scenario

described above.

Benchmark Results: After running the tool with the two MSC files as input.

the following information is output from the tool:

FI Found: Blccking of Trigger: Trigger for
"CENTREX.msc" may be blocked!

MBS-Z0
l A | ssF { 0_acsm j r_acsm% | | see V[3 |
otrood CFCT D
{Pcza)y
ZiaiTon
4 agts
FIC &
IT a4 4digi
CGwP{4digits BallingCN)
AcuteTEBY
PICs Goa) {_PICH >
BICE !
resent-Call ¢
%IC 1213 14, ¥ StantFirging A
Alar: f
PCe
! StartAugitiefnging S
i
aassme Em—— SIS T o aaaas SEEE—
Figure 6-14: MBS-ED.
CENTAEX
I A \ | ssf Toacsma| | -Bcswel 1R
3C 1
C-heok! C—T—)
4 PIC2))
DiaiTon
4 aigrs :
(rca ? ,
! 1T ad 2dig x
; find resl CalledaN
PICS 7 |
Present-Call |
'- srartAingng A |
Alet T bl
s
S!lrtAun‘bleA mgxngﬁ—l !
i
l
| | |

Figure 6-15: CENTREX.

6.2.9 Call Forwarding and Originating Call Screening

Problem Description: An adolescent knows that his parents have used Originating
Call Screening to block all calls to a dial-porno number C from their home line A.

Using the Call Forwarding feature, he instructs the switching element to forward all

calls terminated at A to C, and then call himself to get the effect of Call Forwarding.
This seeming loophole was not anticipated by his parents.

The problem is that Call Forwarding allows incoming calls to be redirected to
another directorv number, while Originating Call Screening aborts attempts to
connect the subscriber to some other directory number and then forward calls to the
same number, but the above situation can arise if the forwarding number and the call
screening number were supplied by two different people sharing the sume physical
line. Whether the forwarding number is considered a dialed number (to be checked
against the screening list) becomes an issue. lf Call Forwarding tukes precedence
over Originating Call Screening, calls can be forwarded to the forwarding number

despite the fact that the number is also on the screening list.

Feature Specifications: In this example. the scenario for Originating Call
Screening is that a caller calls him/herself. Therefore. we can no longer use the
specification presented in Chapter 5. The new specification for OCS is
presented in Figure 6-16. The specification for Call Forwarding in this scenario
is presented in Figure 6-17. The static requirement for OCS is shown in Figure

4-4,

Benchmark Results: After running the tool with the two teature specification
files together with the requirement specification file for OCS, the output shows

a violation of static requirement type interaction, exactly as expected.

FI Found: Violation of Static Requirement: violation
Patterns in file "Reg.msc" found in the traces of file

"cfu_self.msc”

Here is the pattern being violated:
O_BCSM A:
T _BCSM C: ! Start Ringing A TO

boa | [ssf [oecsMA [7BosMA | [see | T ¢ |
.

.

{ PC23)

IT 83 OffhookCelay
—: © Qwpicthscel calhgCN CalleaDN)
Authonze-Org:raton

(Crics) e)

Prasent-Call

DiaiTond
Dial A

Figure 6-16: OCS, Calling to Oneself.

CFo-aeit
[A J | sse 0_3CSM A F’_acsrw] L'_scqu], sc=

Ctf-hook LL) ‘

™ |

 pgc2a)

: 1
CiaiTone ‘ '

Diat A
PC455,>< PC1)
resent-Call

T e o

CwP{TermAt CalleaTN) 1 !
Forwarspall(C)

Acute TXC)
'———

{ PICS Geay) (T@ .

PICS 7 PressntCall <__:J::> icn
»

AJen fcrzraiay StartFlngrg A

StartAucicleRifyrs-6 .
L) i e e b s el s

Figure 6-17: Call Forwarding, Calling to Oneself.

6.2.10 Call Waiting and Personal Communication Services (PCS)

Problem Description: X and Y are both PCS customers currently registered with
the same CPE; X has Call Waiting but Y does not. Y is on the phone when somebody

calls X. Since X has Call Waiting and is registered on the line, the new call triggers

the Call Waiting feature of X. But is it legitimate 1o send the call-waiting alert
through the line to interrupt Y's call? If not, then X's Call Waiting feature is ignored.

The problem here is that Call Waiting is a feature assigned to a directory number, but
Call Waiting uses the status of the line with which the number is associated to
determine whether the feature should be activated and PCS feature assigns a

directory number to the line which may or may not have Call Wuiting associated.

Benchmark Results: In our specification style. since we are not concerned
with the physical location of network elements, we are unable to model the
Personal Communications Feature, which attaches a directory number to any
physical line. Therefore, we were unable to detect this interaction. Future

improvements on the specification style are needed.

6.2.11 OCS and MDNL-DR

Problem Description: B is a subscriber of the IDNL-DR service with nvo numbers
X and Y, and A has the Originating Call Screening service with the number X in the
outgoing call screening list. A can still make calls to B's line, ifA dials Y.

The problem here is that Originating Call Screening is a feature based on
directory numbers and any call placed to a directory number on the screened list will
be blocked. Disallowing calls to a directory number prevents connections to the
identified line, provided the line is associated with onlv that directorv number.
However, services for Multiple Directory Number Line with Distinctive Ringing
(MDNL-DR) allow more than one directory number to be associated with a single

line.

Benchmark Results: Same as PCS, we are currently not able to model MDNL-
DR with our specification style. Therefore, we are unable to detect this

interaction.

6.2.12 OCS and Call Forwarding (revisited)

Problem Description: A has C on the Outgoing Call Screening list, but, when A
calls B, B, who has Call forwarding, will forward all incoming calls to the number
C. and connections from A to the line identified as C will be established.

The problem here is that Originating Call Screening blocks calls based on the
mmwwdmw¢ﬁm&aWsmapmﬁerMwawbbdahm@#ﬂdekdmmmww
associated with that line. However, Call Forwarding connects to a line other than the

one associated with the dialed number.

Feature Specifications: We use Figure 4-3 as the specification for OCS in this

example. Figure 6-18 shows the Call Forwarding feature in this scenario.

Benchmark Results: The nature of this interaction is exactly the same as the
interaction between OCS and CENoA which we discussed in Chapter 5. After
launching the tool with OCS. Call Forwarding and the requirement

specification of OCS as input. we obtain the output as shown below.

T Found: Violation of Static Requirement: violation
Patterns in file "Reg.msc" found in the traces of file

"cfu.msc"

Here is the pattern being violated:
O_BCsSM A:
T BCSM C: ! Start Ringing A TO

CFU
A] [Lssr [ososmd | Tacsvy | T_BcsM g HEE |
Cithook ;—> %
{Pcza) ‘
CiaTone !
Dial B]
Gicased {CPS1)
Present-Cai
ITe20 Term
GwP{TermAt CallegsON)
Ferwarzfal(C)
FouteTC)
(ecer) Pot P'C
Presgnt-Call |
! C12 13 ‘4)J
L Aen Startfingirg A E A_'_l '
1
StartAuaiblefir ,.C‘q\, fce) |]l l

Figure 6-18: Call Forwarding.

6.2.13 Call Waiting and Automatic CallBack

Problem Description: A calls B. B is a Cull Waiting subscriber and A has activated
the Automatic CallBack feature. Will Automatic CallBuck work for A, if B is calling to
C when A cualls B? Note that because of the Call Wairing feature that B has, A will
receive a ring-back signal from B, instead of the busy signal.

The problem here is that Automatic CallBack is triggered if the called party is
busvy, but a line with Call Waiting appears 1o be idle to a caller, although it is actually

busy.

Feature Specifications: In Figure 6-3, we already have the specification for
the Call Waiting feature. In Figure 6-19, we present the specification for

Automatic CallBack.

Benchmark Results: After launching the tool, the output indicates that the
trigger O_Called_Party_Busy of Automatic CallBack is blocked. This is in

accordance with the problem described above.

FI Found: Blocking of Trigger: Trigger for
"ACB_partl.msc" may be blocked!

?\cs carnt l
r - — \ — —
A | |sst [cscswa | " T.BCSME | | | sc J E il

D[C -

l QOtf-hoor C_L'_—')

DiaiTone @'ii) 3 's Jusy

Qial g o |

¢esss) PGt :
Present-Call
fiC 2 *3
Caliad_2arty_Susy

| —— p

| ‘ [T e13 0 Caled_Paity Busvenp o Callba_Party_Susy QungCN SalledCN)

! | ~

i lA —— Fiegister nurbeof §

! | -

' _FIC Q_gxception GOA < = 9,

! e _neBusyTdre = XO.BF Sl FIC T_Except

i . Crnpok =|

| : | | |

| | ' | |

| l | |

| | ,

; |

| e S P _]

Figure 6-19: Automatic CallBack. Part 1.

6.2.14 Call Waiting and Call Waiting

Problem Description: The Bellcore Benchmark describes an interesting conflict
situation that often comes up:

Subscriber A calls subscriber B. Both have Call Waiting. A now puts B on
hold to talk to C. While on hold, B decides to flash the hook to answer an incoming
call from D, which puts A on hold as well. If A then flashes the hook expecting to get
back to the conversation with B, A will be on hold instead, unless either B also
flashes the hook to return to a conversation with A or D hangs up automatically
returning B to a conversation with A.

Ambiguity arises when B, instead of flashing to return to conversation with A,
actually hangs up on the conversation with D while A is still talking to C. There are
two separate contexts in which to interpret B's action. Assume that CWI refers to the
Call Waiting call among C-A-B and CW?2 refers to the one among A-B-D. According
to the specification of Call Waiting, in the context of CW2 B will be rung back

(because A is still on hold) and, upon answering, become the held party in the CWI

context and hear nothing. But, in the context of CWI, B’s call termination will be
interpreted as simply a disconnection: A and C will be placed in a normal two-way
conversation and B will be idled. The question is: Should B be rung back or should B
be idled?

The problem here is that Call Waiting allows a subscriber to put the other
partv on hold. However, it does not protect the subscriber from being put on hold.

Confusion can arise when two parties exercise this type of control concurrently.

Feature Specifications: We model the two Call Waiting teatures for CW1 and

CW?2 with the two MSC specifications Shown in Figure 6-20 and Figure 6-21.

Benchmark Results: After launching the tool with CW1 and CW2, we detect
an interaction between traces. The following shows the extracts from the

output:

In the two traces:

O_BCSM A: PIC 9¢(? flash FROM, ! On-hold TO, ! Accept TO,
> Disconnect FROM, ! held_party disconnected TO) -> PIC
10(-> PIC 1)

T_BCSM B: PIC 16(? On-hold FROM, ! On-hold & TO, ? On-

hook FROM) -> PIC 17(! Disconnect TO, ->PIC 11)

and

O_BCSM A: PIC 9(? On-hold FROM, ! On-hold B TO)

T _BCSM B: PIC 16(? flash FROM, ! On-hold TO, ? get-back-
to held_party FROM, -> PIC 15, ! Start Ringing A TO)

FI Found: Interaction Between Traces!

CW+

c J [ssr | [oscsud |Tscsmy ra"sni} T_BCSM HHE]IESIIRE

3
Ctennon A PIC 16 Tarogod
%m |
Cial A .
i
i OwP(T Susy CajeaDN)
[STA(Res)
l PlayArrountemen:
1 fasn '
Ca ~ Gnrolg
sunmanueahggj L S On-heia A
T _Answer
StopAucizieRhgng A 5
< aCIE)
FICS ~alknctoC
l L Qn-hoow |
(CPC17)
heid_party “xs:a?
c:sc:nne..et—-——-—-
p C 10 4 @4
| | | ‘
] SIS S - ¥ ¥ ____N |
Figure 6-20: Call Waiting CW1.
‘Cwz2 %
LA S s ‘ o = < 20 I P | !
N } [ssr c_scsv J [7_8csu E«;)lo__§sm+r._a:smd e][Siﬁr A BE
| s % L
Gial - one T . |
. Dal8 ' .
; | Pressnt- t 1 ‘
. |
l | |
: Lsy_CafesDN) : | |
| fiFias) i : '
PtayArnounceTent !
. Yasn |
; StartAuditt ﬁ}l Fc I '
rtAuditle
! L T_Answer Cnroe 8 I
I StopAucitierfnging 8
|

l

Cres 522 o ncen |

; | PIC 17) i
! Onsmnnocr getoack-to i
f { i t
supisrs] |

.- _4_4__1____-@_ il

Figure 6-21: Call Waiting CW2.

6.2.15 Call Waiting and Three-Way Calling (revisited)

Problem Description: A has both Call Waiting and Three-Way Calling. B has Call
Waiting. A puts B on hold and talks to C. A decides to have B join his conversation
with C, so he puts C on hold, makes a second call to B. B hears the Call Waiting

signal and answers the call using the Call Waiting feature. A brings C back into the

130

conversation to establish a three-way call.

There are now three contexts in this establishment: a Call Waiting call and a
Three-Way Calling call, both established by A among B-A-C, and a Call Waiting call
established by B as A-B-A.

Now, B hangs up. According to the contexts established by A, the session
becomes a tvo-way call berween A and C; according to the contexts established by B,
however, B should get a ring-back because B still has A on hold.

The problem here is that a user can exercise both features simultaneously and

the call control relationship is now quite complicated.

Benchmark Results: In this example. there are three features involved in the
interaction. The Call Waiting and Three-Way Calling features of A and the Call
Waiting feature of B. The three features form one scenario and separating any
feature from them will make the scenario different. Our current detection
methods and algorithms cannot handle interactions between three features.
Since the scenario is not separable, we cannot check interaction between one
feature and the combination of the other two features either. Therefore, we

cannot detect this interaction.

6.2.16 Calling Number Delivery and Unlisted Number

Problem Description: Customer A with an Unlisted Number places a call to
another customer B with Calling Number Delivery. If the nenvork allows A's number
to be delivered to B, then A loses privacy; if it doesnt, then B gets no information.
Either way, one of the features doesn’t perform its intended function. Currently.
delivery of the number can be blocked by the Calling Number Delivery Blocking call-
processing feature, which nullifies the Calling Number Delivery feature by delivering
a number consisting of only ['’s.

The problem here is that Calling Number Delivery is a call-processing feature
that delivers the directory number of the calling party to the customer's premises
during the ringing cvcle and assumes that information such as the subscriber's

number will be released. Unlisted Number, on the other hand, is a directory-service

131

feature designed to allow a subscriber to keep the number private.

Feature Specifications: In Figure 6-22, we provide the MSC specification of
the Calling Number Delivery Feature. The Unlisted Number feature does not
have much dynamic behavior by itself. Therefore, we do not need to model
Unlisted number using MSC. In Figure 6-23, we present the static requirement
on Unlisted Number. i.e. The sending of the calling number is prohibited. This
is shown in Figure 6-23 by a violation pattern, that is the CallingDN(A)

message which violates the static requirement.

Benchinark Results: As we would expect, the static requirement on Unlisted
Number will be violated by Calling Number Delivery. Note, here we include
only one feature file in the input. Here is the results obtained after running the

tool:

FI Found: Violation of Static Requirement: violation
Patterns in file "UNReq.msc" found in the traces of file

"CND.msc"

Here is the pattern being violated:
O_BCSM A: OUT CallingDN(A) TO
T_BCSM B: IN CallingDN(A) FROM

END
[A J [ssF E_acs.vmf F_ecsmé | r scF | THE
CHf-h ook Cj_[r(l_)

PIC2 3
Dia: Ton
Cal 8
(rcass 7y PCc)
Prassent-Call
CwP(JermAr CaileaCN)
. CNC
cno_eb_PC 2
CalingCN{A}
TaihngDN{A)
PIC T3 16 15 Aegster A
Sartfinging A (A
Aer : T
—— et
= rc a8
StartAcgbledinging
* S [s | S SN S

Figure 6-22: Calling Number Delivery.

Jiistac Numoer Seguiremant

|

1 A 35F C_ZCSM Al T_BCSMEB !l SCF 8

k ! T 5 l

| % corepin | |
, ‘ -
| i | 5
| . |

Figure 6-23: Requirement on Unlisted Number.

6.2.17 Call Forwarding and Call Forwarding

Problem Description: Customer A with Call Forwarding redirects calls to his/her
own number and creates an infinite loop. Or calls for A are forwarded to B, only to
be forwarded back to A by B (i.e., a two-number loop); or to B, then to C, then back

to A (i.e., a three-number loop), and so on.

133

Detecting the loop during call processing is difficult if the amount of
information (e.g., the numbers having been reached) passed is limited. Currently, S§7

uses a counter, aborting calls that are forwarded more than 5 times.

Feature Specifications: In this example. instead of modeling two fowarding
features in two MSCs. it seems more natural to model the combined behavior in
one MSC (Figure 6-24). The loop can be detected using a static requirement.
i.e.. if a call is presented twice to one number, then a loop exists. Figure 6-25

presents an MSC specification of such a static requirement.

Benchmark Results: As we might expect, in Figure 6-24. the call is presented
twice to B and a loop is successfully detected. Note that, no matter how many
parties are involved in forming the loop, we are able to detect the loop with the
static requirement presented in Figure 6-25. Here are the results obtained after

running the tool with the feature file and the static requirement file.

FI Found: Violation of Static Requirement: violation
patterns in file "UNReq.msc" found in the traces of file

"CND.msc"

Here is the pattern being violated:
O_BCSM A: QUT CalledDN(B) TO. OUT CalledDN(B) TO

134

[a | [Tssr] [oscsmq |racsug [1acswg JU s [s [e |
o L |
e

Jal 3 H

5 ;
Present-Call

= |3
&
Q
-4
@
3

GwP(Termagt CalledCN)
ForwarcLall{C)

SeutaTe(C)

(_PIC5. 67 ;L FIC11) PIC 11
Present-Call f

Lod

iT @20 TermAlt
GQwPJlermAnt Called ON}
HorwaraCal(@)

AouTc(E)}
FICS € 7 |

Present-Calil

Figure 6-24: Two Call Forwarding in a Loop.

; !
] ¢
! A SSF O_3CSM A ~_BCSM 8‘ ! SCF 3

| | | |
|

Present-Call i
L - !

| Present-Cali _ 1

Figure 6-25: Specifying Loop as a Static Requirement.

6.2.18 Automatic CallBack and Automatic ReCall

Problem Description: Customer A has the Automatic CallBack feature that
continues to dial a busy number until it is answered. Customer B has the Automatic
ReCall that returns the latest incoming call at the subscriber's request. B's line is
busy when A calls B, and the switching element serving A’s line keeps initiating new

calls to B while the switching element serving B's line stays busy returning every call

135

made by A's AC feature. What's happening, according to Bellcore_Benchmark, is
this:

“When a subscriber dials the number X of a line that turns out to be busv, the
feature Automatic CallBack (AC) can be activated. Automatic Call Back
automatically redials X when X becomes idle. If X is idle, the cull is considered
completed, and the AC request is removed immediately. On the other hand, if X is
busy, the AC request is placed on a queue of AC requests in the central office. Call
set-up will be attempted again when X becomes idle, the subscriber’s line is idle, and
the subscriber has answered a special ringback. On the other hand, Automatic ReCall
(AR) automatically returns the latest incoming call for the subscriber, whether the
call from some line Y was answered or not. If Y is idle, the call completes and the AR
request is removed. If Y is busy, the AR request is placed on u queue of AR requests in
the central office. Call set-up will be attempted again when Y becomes idle, the
subscriber's line is idle, and the subscriber has answered a special ringback, very
much like the way Automatic CallBack operates.”

Present configurations assume that the two features are simply unlikely to be
executed at exactly the same time. No special provisions are made to disallow such

behavior.

Benchmark Results: This problem happens due to synchronicity of some
feature behavir. Our MSC specification style currently does not allow for the
modeling of synchronous behavior and we cannot detect this interaction. In
addition, MSC is a language for modeling asynchronous communications.

Therefore, we cannot use MSC to specity synchronous teature behavior.

6.2.19 Long Distance Calls and Message Rate Charge Services

Problem Description: A Message Rate Charge Service allows subscribers a total
aumber of local units per month. Since there is a local segment in every long distance
call (which consists of at least three segments — two local accesses at each end and
one provided by an interexchange carrier in between) should a customer be charged

for the segments that have been completed even if the call did not go through

136

successfully to its destination?

Benchmark Results: With our specification style, we are currently unable to
model charging aspects of a feature. Therefore, we cannot detect this

interaction.

6.2.20 Calling from Hotel Rooms

Problem Description: A makes a short long-distance call from a hotel room
phone and is not billed for the cull. B makes a local call and allows the system
1o ring for three minutes. The call is not completed. He receives a bill from the
hotel.

The problem here is that “'many hotels contract with independent vendors to
collect access charges for calls originated from phones in their premises. Without
being able to access to the status of call connections, some billing applications
developed by these vendors use a fixed amount of time to determine if a call is

complete or not.”

Benchmark Results: Same as the last example. we are unable to model

charging aspects of a feature. Therefore, we cannot detect this interaction.

6.2.21 Billing in AIN Release 0

Problem Description: The SSP assigns Area Number Calling a call-type code of
271 and assigns Originating Call Screening a call-tvpe code of 275. The SCP must
then tell the SSP to generate an AMA record that reflects the fact that both features
are being used. How can it do this?

The problem here is that, in AIN Release 0, the SCP instructs the SSP to
generate a billing (AMA) record by sending a call-type code (3 numerics) to the
switching element, but there is only room for one call-type code in the TCAP

response. It becomes problematic to accomodate multiple services invoked by one

137

SCP query.

Benchmark Results: This example shows a low-level resouce contention
problem. Our specification style currently does not support modeling of low-
level system behavior such as the “room for call-type code™ described in this

example. Therefore, we cannot detect this interaction.

6.2.22 AIN-Based Services and POTS

Problem Description: The Bellcore Benchmark describes a final problem type.
A is a new subscriber to AIN-based services and the provisioning of these services for
A is in progress. Once the trigger is set, the SSP will query the SCP database on all
calls and trigger is set for A. However, the customer record is not updated in SCP
and A has started to make a POTS call. IThe query triggered by A'’s POTS call
results in a " customer record not found" response from the SCP and consequently.
even the POTS cull cannot go through.

The problem here is that in the provisioning of some AIN-based services
deploved in SCPs, updates must normally be made to two network components: the
SSP must now know that a trigger should be established to query the SCP dutabases;

and the SCP should have an updated record of customer information.

Benchmark Results: This interaction case describes the situation of the
network which are undergoing some changes but the changes are not yet
finalized. Our specification style currently cannot model such a situation, and

we are unable to detect this interaction.

6.3 Benchmark Summary

Of the 22 interaction cases presented in the Bellcore feature interaction
benchmark, we are currently able to detect 14 interactions using our approach.

Our detection technique has maintained its consistency and accuracy in

138

detecting the 14 detected interaction cases. Those we fail to detect belong to the

following categories:

1.

!\)

Interactions that involve physical distribution of network components.
Examples 6.2.10 and 6.2.11 belong to this category. Both interactions
involve directory numbers and their assignments to physical lines. For
simplicity. our current version of the specification style has ignored
modeling of phyvsical locations of network components. For example. an
“A" user instance identifies both the directory number of the user and the
physical line of the user. Therefore. we are unable to detect this type of

interactions.

Inseparable scenarios that make detection difficult. Example 6.2.15
belongs to this category. Our detection algorithm currently can only detect
either interaction between two features or violation of static requirements on
one feature. [t cannot detect interactions with only one combined behavior
as input. Features in an inseparable scenario can only be presented as a
single combined behavior and we are therefore unable to detect their

interactions.

Interactions that happen because of synchronicity issues. Example
6.2.18 belongs to this category. Since our specification style does not
support modeling of synchronous behavior, we are unable to detect this type

of interactions.

Inconsistencies in charging. Examples 6.2.19. 6.2.20 belong to this
category. In our specification style, we haven’t included mechanisms for
modeling charging aspects of features. Therefore, we are unable to detect

such interactions.

139

5. Low-level interactions. Example 6.2.21 shows a low-level resource
contention problem. Our approach is not designed to handle low-level

interactions.

approach is designed to be used on a system that is relatively stable. We do

not address interactions that happen during changing system states.

Of the above 6 categories of undetected interactions. some categories may be
detected when we improve on the feature specification style to support
modeling of certain detailed system behaviors. However. if we are not to lose
many of the benetits of the feature specification style. such improvements must
be controlled in a way that the overall style ot the specification is maintained

and kept simple.

140

Chapter 7

Conclusion

Nowadays, the society is heavily dependent on telecommunications and
distributed systems, making the problem of feature interactions an issue of
growing importance. In developing telecommunication systems. adding new
functionalities costs huge numbers of person-hours on software modifications
and testing. Much of this time is spent on detecting and resolving feature
interactions. We anticipate that, as more services and features are offered in the
future. the feature interaction problem will become more of a bottleneck in
developing telecommunication systems. This situation has stimulated our
research in the detection of feature interactions. This thesis presents our work

in the course of this research.

7.1 Summary of the Contributions

We have addressed two objectives in this thesis: one is to present a framework
for specifying telecommunication features using the formal language MSC; the
other is to present our approach on the detection of feature interactions.
Although not a direct objective of this thesis. we have shown the classification
of different interactions to be helpful in understanding the nature of the
interactions and to point towards the possible resolution or avoidance

techniques.
In order to provide an evaluation that our approach meets the above objectives,

we provide a comprehensive benchmark which shows the applicability of our

approach and help us identify some limitations.

141

7.1.1 A Framework for Specifying Telecommunication Features

For the first objective, Chapter 4 presents the feature specification style for the
formal language MSC. This style consists of two parts: the structures for
components involved in the specification and the naming conventions for these
stuctures. For the specification stuctures, we make an intuitive mapping
between network components and available MSC language constructs. This
gives us the means to represent all components involved in the specification. To
eliminate further ambiguities that may arise due to namings of stuctures. we
develop the naming conventions for all structures with the help of the EBNF
definition formalism. The specification structures and their naming conventions
together. define a subset of the overall MSC language dedicated to feature

specifications.

We have shown in many examples that this specification style is high-level.
user-friendly and can be used as a fast prototyping tool. [n terms of limitations
of the specification style. some of the limitations are the direct consequence of
our design intention, i.e. to produce high-level specification ot feature behavior.
For example, we are currently not able to specify low-level system behavior
such as memory usage, signaling capabilities etc. Some limitations are due to
time constraints of the project. For example, charging aspects of features are
not yet included in the current feature specification style; Also, physical
locations of network components are not yet taken into account. Other
limitations are due to limitations of the MSC language. For example, MSC
currently lack support for specification of synchronous behavior. Due to all
these limitations, feature interaction detection techniques developed on the

basis of this specification style will be unable to detect certain interactions.

142

7.1.2 Detection of Feature Interactions

For the second objective of the thesis, we described our approach for detection
of feature interactions in Chapter 5. This approach includes definition,
classification of feature interactions, and detection techniques for each
categories of interactions. Our mcthodology to detect feature interactions is to
examine preservations of feature behavior. This methodology is reflected in the

definition. the classification and detection of feature interactions.

Since the initial trigger, traces and static requirements appear to be the most
important properties of a high-level feature behavior. we classified feature
interactions into three categories corresponding to the three properties:
Blocking of Initial Trigger. Interaction between Traces and Violation of Static

Requirements.

For block of initial trigger interaction. we identified several situations that may
arise due to trigger criteria, positions of triggers and positions that traces of
features pass by. The detection algorithm simulates this identification process
to find blocking of initial trigger. and it no blocking is found, decide what steps

should be undertaken to detect other types of interactions.

For interaction between traces, we tirst identify overlapping parts between peer
traces. For every pair of peer traces. we define their agreement as the collective
agreements between their peer transitions. For every pair of peer transitions. we
determine their agreements according to two properties: the next state and
actions taken to reach the next state. At the lowest level, we propose a special
form of trace that help to identify agreement between next states; We develop a
labeling procedure that decide agreement between action sequences. Our
algorithm checks peer transitions one by one, at the same time, the agreement

trace is generated based on agreements between each pair of peer transitions. If

143

any time during the process, a disagreement is found. we detect an interaction
between traces. Otherwise, the agreement traces are generated and forwarded to

the algorithm for detecting violation of static requirements.

Our technique for detecting violation of static requirements is based on our
specification style for static requirements. Since our static requirements are
specified using violation patterns. we simply perform a search on the combined
behavior for the violation pattern. If the pattern is found. we detect a violation

of static requirements.

7.1.3 Feature Interaction Benchmark

[n Chapter 6. we have presented a comprehensive benchmark of our approach
based on the Bellcore feature interactions benchmark. The benchmark is
performed on a prototyped implementation of our approach as a feature
interaction detection tool. The results of the benchmark prove that our approach
is applicable. Of the 22 feature interactions, we are able to detect 14, and our
detection technique has maintained its consistency and accuracy in detecting
the 14 interactions cases. The benchmark also reveals some of the limitations of
our approach. For example. we are currently unable to detect many low-level
interactions, all interactions that involve charging aspects of features. some
interactions that arise due to confusion on physical location of network
components, some synchonicity problems, inseparable scenario problems and

problems that happen in changing system states.

7.2 Directions for Future Work

We have seen that the approach presented in this thesis is simple, efficient, but
has limitations. There is also a lot of work to do to expand on the existing

framework to produce a general framework for detection, resolution or

144

avoidance of feature interactions. In addition, adaptation measures are needed

for addressing feature interactions that happen in other network architectures.

7.2.1 Addressing Current Limitations

Because of the limitations identified in the application to the benchmark. future

research should be directed towards improvements on our approach:

L.

For interactions that arise due to confusion on physical locations of network
components. future work would be to take into account physical locations of
network comporents in the specification styic. Corresponding adjustments
to the detection techniques should be made to include consideration of this

type of interactions.

For inseparable scenario problems. fundamental changes should be made to
the detection algorithms to not only check interactions between two separate
features. but also be able to check interactions that happen between features

in an inseparable scenario.

For synchronicity problems, progress in standardization in MSC will
eventually include support for synchronous behavior. Up to that point. we
should develop specification styles to support modeling of synchronous
behavior and include corresponding detection techniques for detecting
synchonicity problems. However, using other languages that support
modeling of synchronous behavior, e.g. interworkings. might be another

solution.
Some charging aspects of features cannot be directly specified using our

MSC specification style as it has been developed so far and our approach

does not as yet support detection of interactions involving charging aspects

145

wn

of features. We recommend further work be directed towards adding these
aspects to the specification style and developing algorithms that detect this

type of interactions.

. Currently, our techniques cannot detect some low-level interactions such as

resource contention problems. Although we have developed our methods to
be applied at a high level, it is always beneficial to incorporate low-level
detection techniques as well. This may be done by modification of the
feature specification style to enable modeling of low-level properties of
features. although the specification may in this case become too complex
and difficult to maintain. A more promising approach that may result in a
general framework for detecting all levels of interactions would be to

integrate our techniques with existing low-level detection techniques.

For problems that happen only in unstable system states, since our technique
is an off-line detection technique and is supposed to be used only in system
states that are relatively stable, it is not rational to include support for
detection of such interactions. However. it is always desirable to integrate

our approach with existing techniques that address these interactions.

7.2.2 Towards Resolution or Avoidance

Although not a direct objective of this thesis, we have shown that the

classification of different interactions to be helpful in understanding the nature

of the interactions and to point towards possible techniques for resolution or

avoidance. Therefore, possible work at this stage may be to develop resolution

and avoidance techniques based on our general framework.

146

7.2.3 Adapting to Other Network Architectures

The specification style we have presented is based on the Bellcore AIN
architecture. This limits the applicability of our approach to other network
architectures. However, the underlying detection methodologies remain valid. It
appears desirable at this stage to develop specification styles for other

architectures and apply the present method to features of other networks.

Nowadays. hybrid services consist of a considerable amount of new services
offered to customers. Hybrid services are services that span over several
different kinds of network architectures. For example. an IP phone service can
use both an IN and an Internet network. This makes feature interaction
detection in hybrid services more difficult than in traditional single-network
services. A feasible solution may be to develop an abstract feature specification
style that can represent features of all or most of the network architectures. This
work will not only facilitate interaction detection in hybrid systems, but help to
build an approach for detecting interactions in all or most network

architectures.

147

References

(1]

(3]

(4]

(6]

(7

Bell Atlantic. “Intelligent Network (IN) Tutorial”, available at URL:

hitp://www.webproforum.com/in/index.html, International ~ Engineering

Consortium, June 1998.

The SCORE Project, “Report on Methods and Tools for Service Creation.
Service Interaction Analysis™, Deliverable D206-Vol. .
R2017/SCO/WP2/DS/P/031/b1, RACE Project 2017. December 1995.

T. F. Bowen, F. S. Dworak, C. —H. Chow, N. D. Gritfeth. G. E. Herman.
and Y. -J. Lin. “Views on the feature interaction problem™. In: Proceedings
of the 7" International Conference on Software Engineering for
Telecommunications Switching Svstems, pp. 59-62, Bournemouth. 1989.

L. Bouma and H. Velthuijsen (eds.). “Feature Interactions in
Telecommunication Svstems”, Proceedings of the Second International
Workshop on Feature Interactions in Telecommunications Systems. [0S
Press. Amsterdam. May 1994.

E. J. Cameron. N. Griffeth. Y. -J. Lin. M. E. Nilson, W. K. Schaure. and H.
Velthuijsen. "A Feature Interaction Benchmark for IN and Beyond™, [n: [4.
pp. 1-23].

J. Muller. H. Blanchard, P. Combes, A. M. Daniel. and J. M. Pageot.
“Perfection is not of this world: debating a user-driven approach of
interaction in an advanced intelligent network”, In: Proceedings of TINA,
1993.

Edmund M. Clarke and Jeannette M. Wing, “Formal Methods: State of the
Art and Future Directions”, ACM Computing Surveys, vol. 28, number 4.
pp. 626-643, December 1996.

148

(8]

[9]

[10]

(11]

(12]

[13]

[14]

[15]

(16]

[17]

[18]

[19]

ITU-T. “Recommendation Z.120: (1996) Message Sequence Chart
(MSC)", Geneva, April 1996.

J. M. Duran and J Visser, “International Standards for Intelligent
Networks”. In: IEEE Communications Magazine, pp. 34-42, February
1992.

Uyless Black, “The Intelligent Network™, Prentice Hall PTR. 1998.

CCITT (now ITU-T), “Recommendations QIl200 series: Intelligent
Network Recommendation”, Geneva. 1992.

CCITT (now ITU-T). “Recommendation Z.100: Specification and
Description Language (SDL)”™ and Annex A to the recommendation.
Geneva. March 1992.

CCITT (now I[TU-T), “Recommendation Z.100: Specification and
Description Language (SDL) — Annex D: SDL User Guidelines™, 1988.

J. Grabowski, E. Rudolph, “Putting Extended Sequence Charts to Practice™,
In: SDL'89: The Language at Work, O. Faergemand and M. M. Marques
(eds.). North Holland, 1989.

P. A. J. Tilanus. “A formalisation of Message Sequence Charts™, In:
SDL'91: Evolving Methods. O. Faergemand and R. Reed (eds.). North
Holland. 1991.

CCITT (now [TU-T), "Recommendation Z.120: (1992) Message Sequence
Chart (MSC)”, Geneva, 1992.

[SO. ISO 8807:1989. “Information processing systems -- Open Systems
Interconnection — LOTOS -- A formal description technique based on the
temporal ordering of observational behavior”, 1989.

SO, ISO 9074: 1997, “Information processing systems --- Open systems
interconnection --- Estelle --- A formal description technique based on an
extended state transition model”, Geneva, 1997.

G. Booch, J. Rumbaugh, “The Unified Software Development Process”.

Addison-Wesley, 1999.

149

[20]

(21]

[22]

(23]

[24]

[26]

[27]

(28]

[29]

I. Jacobson, “Object-Oriented Software Engineering — A Use Case Driven
Approach”, Addison-Wesley. 1992.

M. Anderson. J. Bergstand, “Formalizing Use Cases with Message
Sequence Charts”, Master Thesis, Lund Institute of Technology. 1995.
VERILOG SA. “User’s Guide — ObjectGeode MSC Editor”. version 4.0.
D/GEMS/UA/400/908, VERILOG, April 1999.

Wenwei Weng. “Use HMSCs for IN Services Specification”™. M. Eng.
Project Report, Department of Electrical and Computer Engineering.
Concordia University, December 1998.

J. Bergstra and W. Bouma, “Models for Feature Description and
Interaction”. In Feature Interactions in Telecommunications Nerworks, vol.
4, P. Dini. R. Bouma, and L. Logrippo (eds.). pp 31-45, IOS Press.
Amsterdam, 1997.

Alfred Aho. Sean Gallagher, Nancy Griffeth. Cynthia Schell. and Deborah
Swayne. “Sculptor with Chisel: Requirements Engineering for
Communications Services”, [n: Feature Interactions in
Telecommunications Networks, vol.5. K. Kimbler, L. G. Bouma (eds.). IOS
Press. Amsterdam, 1998.

Belicore, “LSSGR: Signaling tor Analog Interfaces, Generic Requirement”.
GR-3506-CORE, Issue 1. June 1996.

D. Keck, “Identification of Call Scenarios with Potential Feature
Interactions”. In: [nternational Workshop on Advanced Intelligent
Nenworks (AIN’96), Passau, March 1996.

J. Blom., “Formalization of Requirements with Emphasis on Feature
Interaction Detection”, In: Feature Interactions in Telecommunication
Networks, vol.4, P. Dini, R. Bouma, and L. Logrippo (eds.), pp. 61-77. IOS
Press, Amsterdam, June 1997.

Bellcore GR-1298-CORE, Issue 4, September 1997.

150

[30]

[31]

(32]

[33]

[34]

[35]

[36]

[37]

S. Mauw, “The formalization of Message Sequence Charts ”, In: Computer
Networks and ISDN Systems — SDL and MSC, vol. 28, Number 12, June
1996.

E. Rudolph, J Grabowski, and P. Graubmann, “Tutorial on Message
Sequence Charts (MSC’96)", Tutorial of the FORTE/PSTV'96 conference
in Kaiserslautern, Germany, Kaiserslautern, October 1996.

Axel van Lamsweede, Robert Darimont and Emmanuel Letier, “Managing
Conflicts in Goal-Driven Requirements Engineering”, In: [EEE
Transactions on Software Engineering, vol. 24, Number 11, November
1998.

James J. Garrahan. Peter A Russo. Kenichi Kitami. and Roberto Kung.
“Intelligent Network Overview™. In: [EEE Communications MagazZine. pp.
30-36, March 1993.

K. Kimbler, C. Capellmann. and H. Velthuijsen. “Comprehensive
Approach to Service Interaction Handling”. In: Computer Nevworks and
ISDN Systems, vol. 30, September 1998.

C. Capellmann, P. Combes. J. Pettersson. B. Renard. and J.L. Rutz,
“Consistent Interaction Detection - A Comprehensive Approach Integrated
with Service Creation”, In: Feature Interactions in Telecommunication
Nenwvorks IV, pp.183-197. IOS Press, Amsterdam. 1997.

I. Aggoun, and P. Combes, “Observers in the SCE and SEE to Detect and
Resolve Service Interactions”. [In: Feature Interactions in
Telecommunication Networks IV, pp. 198-212, I0S Press, Amsterdam.
1997.

H. Velthuijsen, “Issues of Non-Monotonicity in Feature [nteraction
Detection”, In: Feature Interactions in Telecommunication Networks I,

pp. 31-42, IOS Press, Amsterdam, October 1995.

[38]

[39]

D. Keck, and P. Kuehn, “The Feature and Service Interaction Problem in
Telecommunications Systems: A Survey”, In: IEEE Transactions on
Software Engineering, vol. 24, Number 10, October 1998.

K. J. Turner, “An architectural description of intelligent network features
and their interactions”, In: Computer Networks and ISDN Systems, vol. 30,

September 1998.

Appendix A

AIN 0.1 PICs TDPs and Triggers

This appendix attempts to provide a detailed description of the PICs, TDPs and
triggers defined in AIN 0.1. The purpose of this appendix is to provide a reference
to the actual design purposes, operations. and relationships of these PICs, TDPs
and triggers. We draw extensively from Black’s book ([10] on Intelligent
Networks. For an even more detailed analysis of the concepts discussed in this

appendix, please refer to Black’s book.

In chapter 2. Figure 2-10 has depicted the originating and terminating basic call
state machines of AIN 0.1. Here. we explain the PICs, TDPs and Triggers that are

defined in this model.

1. PICs

2 PIC1 0 _Null; Line or trunk intertace is idle. Supervision is being provided.

2 PIC2 Authorized Origination Attempt: Authority of user to place outgoing
call with certain properties (e.g.. line restrictions) is being veritied.

a PIC3 Collect Information: SSP collects initial information (e.g.. dialed
address digits) from the user.

a PIC4 Analyze Information: SSP interprets and translates information
according to the specified numbering plan. Routing address and type of calls
(local, long distance) are determined.

a PICS Select Route: SSP is interprets the routing address and type of call to

select the next route.

153

PIC6 Authorized Call Setup: SSP verifies the authority of the calling party to
place this particular call.

PC7 Send Call: SSP sends an indication of desire to set up a call to the
specified Called Party ID to the terminating call portion.

PIC8 O_Alerting: SSP waits for the terminating party to answer.

PIC9 O_Active: Connection established between calling and called party. Call
supervision is provided.

PIC10 O_Disconnect: Connection is left intact and appropriate timing may be
started depending on the indication received, the access type and the position
of the SSP in the connection.

PIC11 T_Null: For a non-ISDN line. a conventional or SS7 trunk. or a private
facility trunk. the line or trunk interface is idle (i.e.. no calls exists), and the
SSP provides supervision on the line or trunk. For an [SDN interface although
the call reference of the cleared call has been released, other calls may sull
exist.

PIC12 Authorize Termination: SSP verifies the authority to route this call to
the terminating access (e.g.. check business group restrictions. restricted
incoming access to line etc.).

PIC13 Select Facility: The busy/idle status of the terminating access is
determined.

PIC14 Present Call: The SSP informs the terminating access of the call (e.g..
line serizure with power ringing, or Q931 SETUP message).

PIC15 T_Alerting: SSP alerts the terminating resource and waits for the
terminating party to answer.

PIC16 T Active: Connection established between calling and called party.
Call supervision is provided.

PIC17 T_Disconnect: Connection is left intact and the appropriate timing may
be started, depending on the access type and the position of the SSP in the

connection.

154

2. TDPs

o el Origination Attempt: SSP considers an Origination Attempt event to have
occurred when it receives an off-hook indication from an idle non-ISDN line, a
SETUP message from an ISDN interface, an Initial Address Message (IAM)
from an SS7 trunk or when a trunk within a Trunk Group (TG) supporting
conventional signaling is seized., or a seizure signal is received on a private
facility.

a e2 Origination Attempt Authorized: SSP detects an originated event when
the authority to place an outgoing call is verified.

a €3 Information Collected: SSP detects an information collected event when
the complete initial information from the caller is available.

o e4 Information Analyzed: SSP detects an information analyzed event when
the CallPartyID. the TypeOfCall. and when appropriate. the
PrimaryTrunkGroup and PrimaryCarrierID parameters are determined by the
SSP. The trigger analyses includes Carrier Identification Code (CICs), 3/6
digits and 7/10 digit DN North American Numbering Plan (NANP) addresses.
feature codes. carrier access codes, prefixes, customized dialing plan
addresses.

2 e5 Route Selected: SSP detects a route selected event when the originating
routing information fro the call has been determined.

a e6 Origination Authorized: SSP detects an origination authorized event when
the authority to place the call is verified. For an SS7 trunk interface, if the
received IAM indicates that a continuity check is being performed on the call
connection and the call terminates to an analog line or ISDN interface
subtending the SSP, this event occurs when a continuity message (COT) with a

successful indication is received from the originating access.

155

a e7 O _Term. Seized: The SSP detects a O_Term. Seized event when an
indication of a Call Accepted event is received from the terminating call
portion or when certain abnormal cases occur in ISDN when the call is offered
to an ISDN interface (or EKTS group) and no user equipment has responded.

a e8 O_Answer: The SSP detects an O_Answer event when an indication of a
connected event is received from the terminating call portion.

2 €9 O_Abandon and O_Calling Party Disc.: SSP detects a O_Abandon and
O_Calling Party Disc. Event when the calling party disconnects, which can be
the result of one of the following when a SSP receives:

s An on-hook from a caller served by a non line(following flash timing). or

= A call clearing message from a caller served by an ISDN intertace. or

» A disconnect indication for a conventional trunk or a private tacility, or

« A Release (REL) message for an SS7 trunk.

2 el0 Feature Requested: SSP detects a Feature Requested event from PICs
1.3.4.5. and 6 when one of the following has occurred:

* From an interface supporting ISDN Class I equipment. this corresponds to
the ISDN user sending a feature activator.

From PIC1, is expected in an INFORMATION message with a null
call reference value. From PICs 3-6. this is expected in a SETUP or an
Information message containing the call reference of the specific cail.

» This event is detected from PICs 3-6 when a switch-hook flash is entered
from an analog line or private facility in the special situation where the user
is initiating another two-party call in addition to an existing two-party call.
Otherwise, this event cannot occur from a non-ISDN line, conventional or
SS7 trunk, or from an interface supporting ISDN Class II EQUIPMENT.

SSP detects Feature Requested events for Feature Requested trigger
at the NULL, COLLECTING INFORMATION, ANALYZING
INFORMATION, SELECTING ROUTE, AND AUTHORIZING CALL
SETUP PICs.

156

a ell O_Mid_Call: SSP detects a Feature Requested event when one of the

following has occurred:

From a non-ISDN line or private facility, this event occurs when the user
executes a switch-hook flash.
From an interface supporting ISDN Class I equipment, this corresponds to
the ISDN user sending a feature activator, an ISDN HOLE message. or an
ISDN RETRIEVE message. When the controlling leg applies to an EKTS
group, a HOLD message can only be used to trigger AIN (or be treated as
an event)., when no other user in the EKTS group is connected to the call. If
there are other users connected to the call. the HOLD message causes the
user to be separated from the call. as defined user EKTS and is transparent
to AIN . In addition, when the controlling led apples to an EKTS group. a
RETRIEVE message can only be used to trigger AIN (or be treated as an
event) if no user is connected to the call. It one or more users are already
connected to the call, the RETRIEVE message causes the user to be
connected to the call. as defined by EKTS, and is transparent to AIN.
This event cannot occur from a conventional or SS7 trunk. or from an
interface supporting ISDN Class II equipment.

SSP detects Feature Requested events for mid-call triggers at the
CALL PROCEEDING. WAITING FOR ANSWER. ACTIVE. and
RELEASE PENDING PICs.

a el12 Cleared: SSP detects a Cleared event when an indication that the called

party disconnected is received from the terminating call portion, which can

result from the following:

For an intra-switch call to a non-ISDN line, the SSP receives an on-hook
indication from the terminating line (and the SSP has provided switch-hook
flash timing).

For an intra-switch call to an ISDN interface, the SSP receives a call

clearing message from the terminating user. In addition, this occurs when a

157

Call Rejected event is received from the terminating call portion that does
not indicate that the user is busy. For an intra-switch call to an EKTS
group. only one user in the terminating EKTS group is connected to the call
and that user sends a call clearing message (if ISDN) or an on-hook
indication (if an analog user, and switch-hook flash timing ahs been
provided). Moreover, the Cleared event occurs when an EKTS user (in the
terminating EKTS group) disconnects and under EKTS the switch
determines that the call should be cleared.

* For a conventional trunk or private facility, the SSP receives a disconnect
signal.

s For an SS7 trunk, a Release (REL) or a suspend (SUS) message is received.

3 el3 O_Disc. Complete: SSP detects a O_Disc. Complete event that occurs
when the timed release disconnect timer expires (at this SSP). For a
terminating access of an interface supporting ISDN Class [and Class II
equipment, this event is equivalent to the O_Disconnect event.

o eld4 Orig. Denied: SSP detects an Orig. Denied event when the authority to
place an outgoing call is denied. This event does not apply for private facilities
or an interface supporting ISDN Class II equipment. For convention and SS7.
this event occurs when glare is detected and the other call is given precedence.

a el5 Collect Timeout and Collect Information Failure: 1. SSP detects a
Collect Timeout event when complete initial information was not received
before a normal inter-digit timer expires. For an SS7 trunk the Collect Timeout
event corresponds to the IAM not containing the information necessary to
process the call. There is no timing involved. 2. SSP detects a Collect
Information Failure event when it is unable to perform the information
collection function because of a lack of switch resources (e.g., a digit collector
is unavailable). This event can only be a requested event; it cannot be a trigger.

o el6 Invalid Info: SSP detects an Invalid Info event when the collected

information is invalid.

158

el7 Network Busy: SSP detects the Network Busy event when all routes are

busy.

el8 Auth. Failure: SSP detects the Auth. Failure event when the authority to

place the call is denied. For an SS7 trunk interface, the Auth. Failure event

occurs when a COT with a failure indication is received.

el9 O_Called party Busy: SSP detects the O_Called party Busy event

indication when one of the following occurs:

* An O_Called party Busy event specifying user busy is received from the
terminating portion of the call (i.e., network-determined-user busy or user-
determined-user busy. or

* A Presentation Failure event specifying user busy is received from the
terminating call portion.

€20 Termination Attempt: SSP detects a Termination Attempt event when it

receives an indication of a desire to deliver a call from the originating portion

of the call.

€21 Term. Authorized: SSP detects a Term. Authorized event when the SSP

determines that a call is authorized to be routed to a terminating user.

22 Term. Resource Available: SSP detects a Term. Resource Available
event when the SSP determines that an idle facility (e.g.. a non-ISDN line.
ISDN interface. trunk or private facility) or a position in a queue is available.
€23 T _Term. Seized: SSP detects a T_Term. Seized event when the called
party is being alerted of the call. The Call Accepted event can be the result
when the SSP:

I. Provides power ringing to the terminating non-ISDN line; or
2. Receives an ALERTING message or PROGESS message from an ISDN

user; or

3. Seizes a conventional trunk and no continuity check is required in the
previous connection or, if a continuity check was required, a COT with a

successful indication has been received; or

159

4.
5.

Receives an ACM for an SS7 trunk in response to an IAM; or

Seizes a private facility.

a e24 T_Answer: SSP detects a T_Answer event when the called party answers

the call. A connected event can be the result when the SSP receives:

An indication that the terminating party served by an non-ISDN line when
oft-hook: or

A Connect message from an ISDN user; or

An answer indication on a conventional trunk or private facility: or

An ANM for an SS7 trunk in response to an [AM.

€25 T_Disconnect: SSP considers a T_Disconnect event to be the result when

the SSP:

L.

2

Receives an on-hook indication from a non-ISDN line; or

. Receives a call clearing message from an [SDN user (or a call terminating

to an EKTS group. a user in the EKTS has sent a call clearing message and
under EKTS. the call is to be cleared); or

The SSP receives a disconnect signal from a configuration trunk or private
facility; or

Receives RELEASE (REL) or SUSPEND (SUS) message for an SS7 trunk.
The T_Disconnect event may also result from error situations such as when
an ISDN interface goes down (this may be detected at the data link layer of

the protocol.

e26 T_Disconnect Complete: SSP detects a T_Disconnect Complete event

when the release timer expires (at this SSP). For a terminating access of an

interface supporting ISDN Class [and Class II equipment, this event is

equivalent to the Disconnected event.

€27 T_Mid-Call: SSP detects Feature Requested events for mid-cail triggers at
the ALERTING and ACTIVE PICs of the TBCM. The SSP detects a Feature

Requested event when one of the following has occurred:

160

1. From the ALERTING PIC, the Feature Requested event corresponds to an
ISDN Class I equipment user sending a feature activator.
2. From the ACTIVE PIC, the Feature Request corresponds to one of the
following:
s From a non-ISDN line or private facility this event occurs when the user
executes a switch-hook flash.
» From a user served by ISDN Class I equipment, this corresponds to the
ISDN user sending a feature activator, an ISDN HOLD message. or an
[SDN RETRIEVE message.
» This event cannot occur from a conventional or SS7 trunk. or from an
interface supporting ISDN Class II equipment.

28 T_Abandon & T_Calling Party Disc.: SSP detects a T_Abandon &
T_Calling Party Disc. Event when the terminating portion of the call receives
indication that the originating portion is clearing.
€29 Term. Denied: SSP detects the Term. Denied event when the authority to
route the call to the called party is denied.
€30 T_Busy: SSP detects a T_Busy event when the terminating access is found
to be busy. The T_Busy event may also be detected as a result of an analog line
being out of order, marked as busy by a customer make-busy key. or as a result
of certain maintenance actions.
e31 Presentation Failure: SSP detects the Presentation Failure event when the
call is rejected by the call party, or an expected response is not received for a
call terminating to a trunk. A Presentation Failure event can be the resuit of
one of the following occurring:

1. A call cannot be rejected from a non-ISDN line.

2. In ISDN (and EKTS), a call is rejected when one or more users send a call
clearing message in response to the terminating call, or one or more users
send any message other than an ALERTING or CONNECT message an

call setup timers expire.

161

3. For a conventional trunk or for a private facility, the call rejected event is
detected when either of the following occur:
* The SSP does not receive the proper acknowledgment signals (e.g.. an
expected wink is not returned).
s The SSP receives a disconnect indication before an answer indication
has been received.
4. For an SS7 trunk, the call rejected event is detected when any of the
following occur:
* The second attempt continuity check on the outgoing circuit fails.
* The SSP receives a REL in response to an [AM.
* The SSP does not receive a CRA after sending a CRM for the second
time.
s The SSP does not receive an ACM or ANM in response to the [AM in
the allotted time (if timing is applied at the SSP).
* The SSP receives a REL after an ACM has been received.
a2 €32 T_No Answer: SSP detects the T_No Answer event when the called party
does not answer before the switch-based ringing timer expires. This timer is

used for services such as Call Forwarding on No Answer.

3. Triggers

AIN 0.1 supports several triggers. AIN 0.2 supports four new triggers. As a

summary, Table A-1 providers the triggers that are defined in AIN 0.2.

TDP

Triggers

Origination Attemnpt (el)

Otf-Hook Immediate

Information Collected (e3)

Otf-Hook Delay
Channel Setup PRI (Primary Rate Intertace)

Shared I[nter-office Trunk

Information Analyzed (e4)

BRI(Basic Rate Interface) Feature Activation Indicator
Public Feature Code

Customized Dialing plan

3/6/10 Digit

INT1

Network Busy (el7)

AFR (Automatic Flexible Routing)

O_Called_Party_Busy (e19)

O_Calied_Party_Busy

Cleared (el2) O_No_Answer
T_Busy (e30) T_Busy
T_No_Answer (e32) T_No_Answer

Table A-1 Triggers Defined in AIN 0.2.

163

