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ABSTRACT

A Visual Performance Debugger for
Concordia Parallel Programming Environment

Jing Zhang

This thesis presents the design and implementation of the Visual Performance Debugger
for the Concordia Parallel Programming Environment (CPPE). a simulator for parallel
programming environment. The purpose of this visual performance debugger is to
provide a rich set of correctness and performance debugging tools for CPPE to make
CPPE a real flexible and efficient system for parallel program development.

The challenge in the design of the performance debugger is the comprehensive
recognition of the interaction of performance affecting factors and their impact on
parailel applications running on a parallel system. We intend to provide the user with the
tool set that can gather performance data regarding different performance affecting
factors at different level of details to facilitate the performance analysis and fine-tuning.
To this end, a comprehensive survey of performance affecting factors for parallel
programming is conducted. Based on this recognition, we have designed and
implemented a rich set of correctness and performance debugging tools that can
significantly help the user in their parallel programming exercise for correctness
debugging and performance tune. We provide a visual environment for this performance

debugger in order to achieve these goals more easily.
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Chapter 1

Introduction

Computing power has always been an issue in research and industry. Despite the
tremendous growth of processor speed over years. there is still a wide range of important
computational problems in science and engineering that require much greater computer
speed. Parallel programming has shown its potential to meet the demands for high
computing power. However, parallel programming is difficult and error-prone. not only
because parallel processes are difficult to trace and debug. but also duc to the fact that the
performance of parallel program is influenced by many hardware and software factors,
such as algorithm design, system architecture, routing technique, and networking speed.
To make matter even complicated, some algorithms may be more suitable for a particular
architecture than others. The performance of a particular parallel program often has to be
evaluated through trial and error.

In order to evaluate and improve the performance of parallel application
effectively, simulation techniques have been studied in the hope to provide the necessary
environment and software tools. CPPE (Concordia Parallel Programming Environment)
is one of the simulated parallel systems being studied and developed in our group, aimed
to provide users with flexible and efficient software tools for developing parallel

programs. evaluating and optimizing performance of parallel applications.



As part of the CPPE project. the objective of the research associated with this
thesis is to study the performance affecting factors in parallel computing, design and
implement a visual performance debugger for CPPE. The visual performance debugger
will provide a rich set of correctness and performance debugging tools to make CPPE a
flexible and efficient system for parallel program development.

In this chapter, we first discuss the motivations and objectives of this research.

Then we present the contributions of this thesis. At the end we give a thesis outline.

1.1 Motivations

Parallel computers can be classified into two categories: shared-memory multi-processor
and message-passing multicomputer. With the advancement of hardware technology,
high-speed networks and efficient routing techniques have made message-passing
multicomputer the developing trend for parallel computing. because it is more scalable
due to the distributed nature of local memories.

On a parallel computer architecture, there are many factors that can affect the
performance of a parallel program. Users often have to write a parallel program and run it
on an actual parallel system to verify the correctness and observe the performance of the
program through trial and error. However, The trial and error approach on a real machine

is inefficient because of the following reasons:

1. Real parallel computers are expensive resources that are available to only a restricted
number of users. Testing and debugging tools supported on real parallel computer are

currently very limited.



2. Real parallel computers are non-deterministic in nature in terms of the network
performance and the probability of error. The probability for some bugs to occur may
be one over ten thousand. It is vary hard to test, debug and tune a parallel program on

a real parallel computer machine.

3. The performance of a parallel program is affected by system size and system
topology. The performance of an application may be good on small-sized systems but
degrade tremendously as system size increases. An algorithm may be efficient on a
particular system topology but perform badly on another topology. To achieve high
performance. the designer should study the scalability and communication complexity
of parallel algorithms. However. topologies and sizes supported by a real multi-
computer are restricted within small ranges. This limitation does not allow for studies

of scalability and communication complexity of parallel algorithms.

Because of the limitations of the real machines, many studies of parallel
algorithms have been conducted on an analytical basis — the analytical modeling.
Performance aspects of a parallel program under specific conditions may be estimated
using mathematical formulation. However, this approach is suitable only for simple
applications and small computer systems. Parallel computer systems and their
applications are sufficiently complex to make analytical modeling very difficult and
inaccurate.

Because of the difficulty of using real parallel computers and analytical modeling,
the simulation approach has been studied by several research groups. CPPE is one of the

projects of that kind. CPPE provides a parallel system simulator cailed CPSS (Concordia



Parallel System Simulator) which runs sequential software on a uniprocessor to emulate
program execution on a real parallel computer. Its objective is to provide a parallel
programming environment that allows users to study impacts of system and software
factors on program performance and locate performance bottlenecks in the program.

The simulator CPSS is supposed to accurately mimic the behavior of the real
parallel machine and yield correct program outputs as if the program has been executed
on the real machine. In addition, it should provide users with adequate and uscful
simulator tools and models for evaluating parallel architectures and the performance of
parallel programs on these architectures. Users should be able to use these tools to
observe the effects of all the affecting factors on their application so as to detect system
bottleneck and thus optimize performance of the applications, which is referred to as
performance debugging.

The objective of this thesis is to give a comprehensive review of performance
affecting factors of parallel computing. design and implement a visual performance
debugger for CPPE. which allows users to study the impacts of system architectures and

software algorithms on the program performance.

1.2 General Structure of CPPE

This thesis is part of the research project Concordia Parallel Programming Environment

(CPPE). CPPE consists of two major modules (Figure 1):

1. Concordia Parallel C Compiler (CPCC): The CPCC accepts parallel programs written
in the CPC (Concordia Parallel C) language and generates virtual machine code

(vCode) which will be the input to the CPSS.



2. Concordia Parallel System Simulator (CPSS): The CPSS reads in the intermediate

code produced by the CPCC, simulates execution of the application, yields programs

outputs.

Parailel
Program

CPCC (&
Graphical User
Interface
CPSS [«

Application Outputs
Debugging Information
Performance Statistics

Figure !: General structurz of the CPPE

As a major component of the CPPE, CPSS in turn is made of three main

components:

1. Code Execution Module (CEM): The CEM is the processing element of a simulated

parallel system. It executes the vCode produced by the CPCC.



L]

Network Module: The roll of the network module is to allocate network resources to

messages, route and deliver messages, and detect deadlock in the network.

3. Performance Debugger: The performance debugger provides a set of software tools to

facilitate program testing and debugging.

The scope of this thesis is to design and implement the Performance Debugger of
CPSS and provide a graphic user interface (GUT) for the CPPE. Together we call the

software Visual Performance Debugger.

1.3 Contributions of This Thesis

The visual performance debugger includes three major components: correctness

debugging tools. performance debugging tools and graphical user interface.

1.3.1 Correctness Debugging Tools

The design concepts of correctness debugging tools are borrowed from sequential
programming environment [27]. We concentrate on the most useful debugging tools
existing in other sequential debuggers, plus the specific debugging tools necessary for

parallel programming environment.

1.3.2 Performance Debugging Tools

The performance debugging tools are meant to provide the performance data and
statistics for parallel execution at various levels of details in order to help the user locate

performance bottleneck and fine-tune the program. The design of performance debugging



tools is based on the comprehensive study of performance affecting factors of parallel
computing. This study enables us to define the most informative and useful performance
data and statistics so that we can design corresponding tools to provide such information.
One of the distinguish characteristics of our performance debugger is the ability to
support virtual architecture programming and run-time mapping. The user writes an
application using the virtual architecture most natural to the application. At run-time the
virtual architecture will be mapped to the available physical architecture based on the
user-specified virtual-to-physical mapping pattern. For programs with multiple parallel

phases. the user can specify a mapping pattern at the beginning of each parallel phase.

1.3.3 Graphical User Interface

The visual performance debugger has a graphic user interface (GUI) which provides a
user-friendly developing environment, making the use of debugging tools and the
analysis of execution results easy. We provide graphic user interface for versions
running on both UNIX and Windows platforms.

The efficiency of our visual performance debugger is tested by actually running
some parallel application programs and then analyzing the performance data and statistics
gathered from the performance debugging tools. Our simulation results show a good
match with the theoretical analysis of the performance under different software and

network environment.

1.4 Thesis Outline

In chapter 2, we give a comprehensive review of the performance affecting



factors of parallel computing in both parallel computing and network communication.
Chapter 3 gives an overview of CPSS and debugging environment in CPSS, identifies
and rationalizes the design of debugging tools in CPSS. Chapter 4 details the design of
correctness and performance debugging tools. Chapter 5 describes the design and data
structures of graphic user interface. Chapter 6 are some actual parallel program execution
and performance statistics using the performance debugging tools built in this thesis.
Chapter 7 provides a summary of the thesis and suggestions for future work. Appendix A
provides a user manual of CPPE for UNIX platform. Appendix B provides a user manual

of CPPE for Windows platform



Chapter 2

Literature Survey

The general structure of a multicomputer system can be illustrated in Figure 2. Each
processor has its own local memory and processing unit so that it can compute in a self-
sufficient manner, using the data stored in its own local memory. Each processor also has
a function unit called router so that every processor can send and receive data from any
other processor. using the message-passing communication network. The advantage of
multicomputer structure over the multiprocessor include better utilization of memory

access locality and support of scalable parallel systems.

Message-passing Communication Network

R R R

AN ZZDNE B AN

Figure 2: Model of the multicomputer architecture

However, the advantage of multicomputer does not come without cost. The cost is

the data communication between different processors. There is another type of cost



concerning the use of the parallel computer system. From a parallel program designer’s
perspective, parallel computer system makes the parallel programs more difficult to
develop. debug and fine-tune the performance. Therefore, a set of user-friendly
debugging tools are indispensable in a paraliel development system.

CPSS is a simulator of parallel development system which is intended to provide
accurate simulation of both computation and communication activities, at the same time.
with a flexible and user-friendly environment for correctness and performance debugging
of parallel program development. In order to identify and design the debugging tools
which are helpful to the users, we should first understand the computation and
communication behavior in a parallel system and identify the performance affecting
factors in the computation and communication process.

In this chapter, we first present a literature review on performance affecting
factors of parallel applications in the perspectives of both parallel computing and
communication. Then we present a review of existing code execution simulation

techniques and their debugging functionality.
2.1 Sources of Performance Degradation

In order to design effective performance debugging tools for monitoring program
performance, first we need to find out the major practical sources of performance
degradation of parallel programs when running on real multiprocessors or
multicomputers. Some performance affecting factors are typical for multiprocessors,
some are typical for multicomputers, while some factors exist for both multiprocessors

and multicomputers. The performance of parallel programs are affected by the

10



combination of software and hardware characteristics. Therefore, without effective

performance monitoring tools, it would be hard to predict the final performance output.

2.1.1 Performance Affecting Factors in Communication

In a multicomputer. each processor has its own private physical memory for

storing and retrieving data during computation. Each processor also has one or more
direct connections to other processors. through which data can be transmitted. If
processors have no direct connection, they will communicate through intermediate
processors that forward the data. The overall pattern of the direct connections between

processors is called the multicomputer topology.
Topolegy and Performance

There 1s a wide variety of different types of communication topologies that can be

used in parallel systems. The goal of these topologies is to try to reduce the cost and
complexity of the network, while rapid communication between processors is achieved.
Ideally. the communication cost will be reduced to minimum if there is a direct
connection between each pair of processors. However, it is generally not possible in a
large multicomputer system to provide a connection between every pair of processors,
because this would need n? number of connections for n processors. This is not only too
expensive, but also practically unachievable for a large multicomputer system. Also,
there is a trade-off between cost and performance. In order to maintain a reasonable
cost/performance rate and allow the system to be easily scaled up to a large number of

processors, different topologies have been developed for multicomputers.

11



There are two important parameters that characterize each topology: the
connectivity. which is the number of direct connections per processor, and the diameter,
which is the maximum number of intermediate connections required for distant
processors to communicate. The connectivity of a topology is an important affecting
factor of network cost, while the diameter is an important affecting factor in the
performance of the network. Simpler topologies usually have lower connectivity and
thercfore a higher diameter. The more complex topologies usually have higher
connectivity and therefore a lower diameter. The fact is, we can not make a simple
association between performance and topology. The performance is usually affected by a
combination of topology and other factors such as parallel algorithm [21][22]. message
routing technique [15], network speed, data and program mapping [24]. and operating
system [25]. This fact justifies the existence of different topologies and the requirement
for efficient performance monitoring tools.

The multicomputer topology is determined by its underlying interconnection
network. CPSS is able to simulate all the widely used network topologies including line,
ring, mesh. torus, hypercube and full-connected [23]. Through the performance debugger,
user can specify different topologies before simulation without recompile of the simulator
software and the user application program. This provides a flexible performance

debugging environment.

Communication Delay

The overhead caused by communication delay is typical in multicomputers where the

processors interact with each other through message-passing communication. In a

12



multicomputer, each processor has a separate local memory module for storing its data
and program code. In order for all the processors to work together on a single
computational problem they must communicate and exchange data during execution.
Processor communication is accomplished by message-passing via processor-to-
processor communication link. The basic unit of communication from a programmer’s
point of view is a message, which consists of many bits of data. There are time delays by

each message transmission because of the following reasons [26]:

¢ Transmission time: The communication link has a certain maximum bandwidth. The
transmission time is significant compared with the processor speed. In addition to the
actual physical transmission of the data bits, the communication module also needs to
perform other functions to ensure that data is sent and received correctly. If error does

occur, the message may need to be retransmitted.

® Processing time: The communication module needs to perform some computation for
every message. The computation includes error detection using the checksum, routing

decision based on the source and destination processor IDs.

® Waiting time: The waiting time results from the delay due to congestion in the
communication network. Some algorithm may incur considerable amount of message

assing, causing heavy network traffic so that messages build up and are delavyed.
&~ o y -

The actual cost of message transmission can also be affected by the network
topology and communication parameters such as packet size, flit size, number of virtual

channels per link, and buffer size of the virtual channel [13][14]{35][36]. Significant

13



efforts have been made in both network design and program algorithm design. The
ultimate goal is to minimizing the frequency of communication and the distance traveled
by each message, and to minimize the communication cost under specific network
architecture. However, again because of the complexity of parallel programming, it is
hard to accomplish the goal without efficient performance monitoring tools.

The performance debugger developed for CPPE enables user to configure
network architecture by redefining the communication parameters and costs without
recompile of the simulator software and application programs. Performance statistics
enables user to easily obtain the program performance under different network

architectures.

2.1.2 Performance Affecting Factors in Parallel Computing

Memory Contention And synchronization Delay

Memory contention is typically a problem when there is shared memory such as in
multiprocessors. Processor execution is delayed while waiting to gain access to the
shared memory that is currently being used by another processor. When global variables
are shared by a large number of processors involved in a parallel computing, memory
contention can cause significant performance degradation.

When parallel processes synchronize, one processor may be forced to wait until
certain condition is satisfied. So some processes may be idle for a considerable amount of
time that causes performance bottlenecks and a reduction of overall speedup.

Because of the memory contention and synchronization delay, the overall

performance of parallel computing could be affected to a variety of extents. Users need to
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obtain the overall performance data and statistics in order to fine-tune the parallel

algorithms.

Excessive Sequential Execution and Process Creation Cost

In any parallel program, there are always portions that are purely sequential code. Certain
types of centralized operations, such as initializations. are executed sequentially in one
processor before any parallel processes are created. In some algorithm. the sequential
code may significantly limit the overall speedup that can be achieved from parallel
execution.

The creation of parallel processes requires a certain amount of execution time. If
the created processes are relatively short in duration. the process creation overhead may
not be compensated by the savings of time due to parallelism. That means, parallel
program may not necessarily speed up the execution in some algorithms.

Both scenarios hide the efficiency of parallel computing. In order to realize the
actual gain from a certain pattern of parallel computing, we need to provide the
performance data for any fragment of program execution in addition to the overall
performance monitoring. Typically user may want to obtain speedup data for a pure
parallel computing fragment without the counting of cost for sequential computing

fragment and parallel process creation.

Load Imbalance

In some parallel programs, computing tasks are generated dynamically in an
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unpredictable manner and must be assigned to processors as they are generated. The
result is the possibility that some processors may be idle while others have more
computing load than they can handle.

Load imbalance is most likely caused by the difference between the optimal
computing architecture for a particular algorithm and the available physical parallel
architecture. In order to evaluate the efficiency of a particular parallel algorithm on
different physical architectures. we need to provide the user with the ability to map a
virtual architecture which is optimal to the parallel algorithm to different physical

architectures and study the performance under these virtual-to-physical mapping styles.

2.1.3 Parallel Algorithms and Performance

There has been a considerable amount of research in the field of parallel algorithm design
for a wide range of practical problems [28. 29, 30]. The most common parallel algorithms
include data parallelism. synchronous iteration, replicated workers and pipeline
computation. For parallel application programmers. such research help them to fully
utilize the enormous computing potential of parallel computers. For us, it helps us to be
aware of the different parallel algorithms and their pros and cons for different network
architectures, so we can design meaningful test cases to evaluate our system design and
demonstrate the usage of our performance debugging tools. By comparing the actual
performance output gathered from the performance debugger with the anticipated
performance based on the analysis of parallel algorithms and network architecture, we
can not only evaluate the efficiency of the performance debugging tools, but also evaluate

the correctness and efficiency of the CPSS network simulation system.
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2.1.4 Summary

In this section, we summarized the major performance affecting factors in

parallel programming. There is no simple formula to calculate the relative weight of each
factor contributing to the overall performance, because the performance of parallel
programs are affected by a combination of many software and hardware characteristics of
the multiprocessors or multicomputers. Effective performance monitoring tools are

required for performance debugging.

2.2 Parallel Computer Simulators and Performance

Debugging

Several simulation systems for parallel computers have been developed [1][2][3][4][3].
Existing simulation techniques can be classified into three categories: direct execution,
direct execution with code augmentation and functional simulation. In this session. we

provide a review on these three types of simulation systems concerning the relationship

between the simulation mechanism and their debugging functionality.
2.2.1 Direct Execution Simulation System

In direct execution simulation systems, a parallel program is first compiled into object
code which is in the assembly language of the host computer. During compile, the
compiler identifies two kinds of instructions for the purpose of simulation: local

instructions and non-local instructions. An instruction is local if it has effects only on the
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local processor, such as accessing variables residing in the local memory. Non-local
instructions such as sending messages to a remote processor, in contrast. impact another
part of the system such as a remote processor. In the process of simulation, local
instructions will be executed directly by host processes and timed with the host’s
machine clock, while non-local instructions will be simulated via a procedure call which
interprets the instruction at the functional level.

Direct execution technique is generally faster compared with the functional
simulation technique, because local instructions are executed directly instead of being
interpreted. However, it suffers from a major drawback: difficult debugging in terms of
feasibility and accuracy.

In terms of feasibility. local instructions are directly executed by the host and the
simulating engine does not have much control on the execution of local instructions. Thus
it is very difficult to establish the connection between user application code and the low-
level simulation activities. Such connection is essential for in-session debugging and fine-
tuning an application. (In-session debugging refers to the debugging interaction between
users and the program during execution of the program. Examples of in-session
debugging are stepping through the program, setting breakpoint, and variable tracing
after breakpoints).

In terms of accuracy, direct execution suffers an even more drawback of low

accuracy because of the following reasons:

¢ Because the simulation is timed with the host’s clock, which is usually the
workstation clock with coarse granularity. Therefore, the timing is not accurate

because execution time of an instruction is often truncated to the nearest milliseconds.
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Within a millisecond., the target parallel computer may have executed thousands of

instructions or sent hundreds of messages.

e With direct execution technique, monitoring code is often needed because the
difficulty of in-session debugging. Such code fragments would not be executed on the
target machine. Because there is no way to distinguish monitoring code from the
application code. the direct execution technique also times the monitoring code and

this will affect the overall execution time. making the simulation even less accurate.

Because of the difficulty of debugging, debugging tools provided by direct-
execution simulators are very limited and based primarily on monitoring code added to
the application and the simulation engine. In general, direct-execution simulator is not
suitable to accurately simulate both computation and communication activities of a target
parallel computer and to provide a user-friendly debugging environment.

An example simulator using direct execution technique is the CARE simulator

[6][7] which simulates the execution of LISP code.

2.2.2 Direct Execution with Code Augmentation

This approach enhances the pure direct execution technique by adding cycle counts of
local instructions to the object code during the compilation phase. The cycle counts of an
instruction is the time the target system would take to execute that instruction. Cycle
counts of object code will be accumulated during simulation as if the code were being

executed on the target parallel computer. The simulation of local instructions is no longer

19



timed with the host’s clock but accumulated using cycle counts added to the object code.
This resuits in a more accurate simulation than the pure direct execution technique.

Like the pure direct execution technique, code-augmented direct execution is
generally faster than functional simulation since local instructions are executed directly
rather than being interpreted. On the other hand, code-augmented direct execution offers
more accuracy to simulation results than pure direct execution.

However, the problem of difficult debugging still exists. In fact, correctness and
performance debugging in direct-execution simulators (both pure and code-augmented)
relies heavily on the instrumented software technique due to the difficulty of in-session
debugging. In the instrumented software approach, additional code is inserted into the
simulation engine and the application to monitor the simulation. Adding monitoring code
to the simulation engine does not cause any side-effect except that the added code may
slow down the simulation. However, adding monitoring code to cycle-counted code (i.e.
tocal instruction blocks) can be problematic. A simple addition will change the behavior
of the simulation since the monitoring code is also included in the cycle counting.
Conditional compilation flags or macros can be used to exclude the cost of the added
monitoring code [2]. However, even with conditional compilation flags or macros, the
addition may change the behavior of the application. This is because the additional code
may affect the surrounding code indirectly. For example, if the additional code uses
several registers, the surrounding code may spill more registers than the previous version
(which contains no monitor code). This would increase the cost and thus could change
the behavior of the system. The more debugging or statistics traces are required, the more

perturbed the simulation can be.



Example simulators using direct execution with code augmentation technique are

Ptoteus [2]. Tango [3][8], EPPP [4][9], and PARSE [5].

Proteus

Proteus [2] is developed at MIT in 1991, using code augmentation to count the cycles
required by the target machine to execute local instructions. The application program is
first compiled into the host’s assembly language. A code-augmenting program will then
add cycle counts to local instructions of the object code. The compiled code is first
divided into basic blocks of local instructions. A basic block is the smallest block of code
delimited by a non-local instruction or an instruction where the execution can branch
(e.g. a jump, a function call). Each instruction of a basic block is then matched with a
cycle count by looking up a table. The cycle counts of all the instructions in that basic
block are then summed and an instruction updating a global cycle counter is added at the
end of the block. The cost of each basic block is thus a fixed number and determined at
compile time.

Proteus’ debugging capability depends heavily on the use of sequential dbx tools.
The user is also allowed to add monitoring code into the simulation engine and the
application. During program execution, monitoring code produces data and event traces,
and logs the traces into an output file. When the program execution is completed, a graph
generator is used to interpret the trace file data and present the results of the simulation.

Although the Proteus simulator is fast, it suffers from several drawbacks

regarding its debugging functionality:



* Although the simulation results are improved compared with pure direct execution
because of the use of cycle counts, the timing results may still not be accurate because
the cost of each block is determined at compile time and is a fixed number. In reality,
the cost of an instruction depends on other run-time factors such as operands (or

cache hits if the target machine is a shared-memory architecture).

® The simulator can simulate accurately only a limited set of architectures whose
instruction set is similar to that of the host. If the instruction set of the target machine
is quite different from that of the host. the assignment of a cycle count to a local

assembly instruction is no longer accurate.

® The simulator is not flexible from the user’s point of view. When the architecture is
changed, the engine parameters must be modified. The engine then needs to be re-
compiled and linked with the user application. This is not convenient. for example.
for experimenting with different network topologies or program mapping. The
experiment would require to run the same program on different architectures of varied
sizes. The simulator must be modified, re-compiled and linked with the application

code every time the topology or system size is changed.

¢ Debugging capability relies mainly on software instrumentation. In-session

debugging facility is very limited and depends on sequential dbx tools.

Tango

Tango simulator was built at Stanford University in 1990 [3][8]. Tango and Proteus are

quite similar, however, Tango simulates only shared-memory architectures. It was
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implemented for studying shared-memory behaviors, shared-memory synchronization
and concurrency abstractions and for architectural evaluation [3].

Like Proteus, Tango may produce inaccurate simulation results due to fixed costs
of local instruction blocks calculated at compile time. Tango does not support any in-
session debugging tools. Debugging and statistics data are provided using the
instrumented software approach. Many kinds of trace file are generated. Svstem events
are recorded in trace files. Program outputs are logged in an output file. There are also a
process summary file and an event trace file. This is not a user-friendly debugging
environment for parallel applications. Debugging tools are not adequately provided for

code development or performance fine-tuning.

EPPP Project

The EPPP (Environment for Portable Parallel Programming) simulator [4][9] is in fact an
extended versiorn of Proteus. In this simulator, the augmentation phase is enhanced to
accurately simulate a particular target architecture whose instruction set differs from that
of the host. An application program will first be compiled and optimized as it would be
on the target system. The intermediate code just produced will then be augmented with
cycle counts. A second pass on the augmented intermediate code will generate assembly
code for execution on the host.

The above enhancement requires the compiler to be modified specifically for each
different target architecture. This is a major task calling for much time and effort.

Therefore, the target architectures of the EPPP simulator have been so far limited to only



very few systems [4]. Like Tango, no in-session debugging tools are available in the

EPPP.

PARSE

Unlike Proteus or Tango which uses a separate program to augment the compiled code.
PARSE [5] has code augmentation implemented directly in the compilation phase. The
GNU C/C++ compiler was modified to augment parallel code when its basic block
profiling flag is enabled.

This simulator is aimed at analyzing communication architectures and
communication performance of parallel applications. Thus a high level of accuracy of
code execution simulation is not of special interest to the simulator. For example, PARSE
assumes that each instruction takes one clock cycle to execute and that memory accesses
do not take additional cycles.

Concemning the debugging facilities. no tools are provided for correctness
debugging of parallel programs. Performance debugging is available to analyze
communication performance. However it is not user-friendly. The user specifies the
monitoring of various events performed within the communication network through a
configuration file. The simulator will generate a trace file containing a time sorted list of
all requested events. Detailed communication statistics can then be determined by

examining these traces using data analysis tools.

Summary



Direct execution (both pure and with code augmentation) is fast but associated with two

severe drawbacks:

e In-session debugging is very hard due to the nature of direct execution. Debugging
and statistics rely heavily on the instrumented software approach. The accuracy of
simulation results then depends on how much the monitoring code perturbs the
system and application behaviors. The more traces/data required, the less accurate
simulation results would be. This approach is thus not suitable for code developing or

fine-tuning application performance.

e Simulation results are not accurate if the host’s instruction set differs from that of the
target. The inaccuracy also results from the fact that cycle counts of local blocks are
accumulated at compile-time. In reality. execution time of an instruction depends on

many run-time factors.

2.2.3 Functional Simulation System

In functional simulation systems. a parallel program is first translated into intermediate
code of a virtual parallel machine (target machine). The set of intermediate code
instructions is definable and can be different from the host’s assembly language. Each
instruction of the intermediate code is usually expressed as a host macro/procedure whose
size depends on the complexity of the instruction and the desired level of simulation
accuracy. At run time, the intermediate code instructions are interpreted at the functional

level as if they were being executed on the target machine.
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Functional simulation generally takes more simulation time than the direct

execution approach. However, it is a very attractive technique for performance debugging

due to its high accuracy and flexibility:

In terms of accuracy, it is very accurate due to the interpretation of intermediate
instructions as if they were executed on the target machine. Monitoring code can be
added to the simulating code without affecting simulation outcomes, because
monitoring code can be distinguished from the application code and its execution
time will not be accumulated into the total execution time. Cycle counts of
intermediate instructions are accumulated at actual run-time (whereas direct
execution simulators compute execution time of local blocks in advance at compile

time).

In terms of flexibility, code interpretation permits the simulator to have complete
control over program execution. This allows to establish the connection between user
program code and the intermediate instructions. The user can thus set breakpoints,
examine traced variables, or step through the program in a particular process. The
user can also view status of processes, processors and messages at any point during
program execution. Monitoring code can be added to the simulating code without
affecting simulation outcomes, because execution time of monitoring code is not

accumulated.

A typical simulator using functional simulation technique is Multi-Pascal

simulator [1][10].
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Multi-Pascal Simulator

This simulator simulates both shared-memory and message-passing architectures. User
programs are first compiled into intermediate code. Each intermediate code instruction is
associated with a fixed cost which is the cycle count of that instruction on the target
machine. At run time. intermediate code instructions are interpreted and their cycle
counts are accumulated to give the total execution cost at the end of execution.
Multi-Pascal simulator provides a rich set of debugging tools. which benefits from
the advantages of functional simulation technique. However. it still has some limitations

which prevent it from being an ideal performance debugger.

¢ In Multi-Pascal simulator, cycle counts of intermediate instructions are hard-coded
into the interpreting code of the instructions and not well-defined, therefore

simulation results may not be accurate.

¢ The simulator does not support the concept of virtual architecture. The user needs to
declare the physical architecture and specify the process-to-processor mapping in
their application programs. There is no run-time mapping. Moreover, the user is
forced to organize the program to match the available physical architecture which
may not be a natural structure to the application. This limitation makes study of

program performance under different architectures inconvenient.

® The simulator assumes an underlying packet-switching network. There is no dynamic

network simulation. Communication overheads of message passing are calculated



based on one communication model. Again this makes the study of program

performance under different network conditions inconvenient.

® The simulator does not support file /O. It is only intended for small applications.

2.2.4 CPSS Simulation Technique

CPSS uses the functional simulation technique to simulate the execution of a parallel
program on a multicomputer or multiprocessor system. Application programs are written
in CPC language which enhances the C language with parallel features to express process
creation/termination and message-passing. Similar to Multi-Pascal simulator, the CPSS
also provides a rich set of debugging tools. In addition, it has some improvement over the
Multi-Pascal simulator which makes it an ideal performance debugger for studying

parallel programming:

e Every intermediate code instruction is associated with a configurable cost which can
be adjusted to match a specific target machine. which makes the simulation outcomes

more accurate.

® Most of the computation and communication parameters are configurable. Values of
the configurable parameters can be changed within the same simulation session as

often as needed.

¢ CPSS supports virtual architecture programming and run-time process-to-processor
mapping to improve programmability of message-passing applications. The user can

write an application using the virtual architecture most natural to the application. At



run-time the virtual architecture will be mapped to the available physical architecture.
Moreover, the same source program can be mapped to different physical architectures
without any changes to the source code. This makes the performance study under

different physical architectures easy.

e CPSS contains a dynamic network simulator. It can simulate both packet switching
and wormhole routing. CPSS can offer very accurate message routing and
communication performance statistics for both routing models. Since wormhole
routing technique is very popular on modern parallel computer systems, such as Intel
Paragon [31], nCUBEG6400 [32], and Ametek2010 [33]. a parallel computer simulator
that supports wormhole-routed networks has the practical value for performance

study of parallel applications.

e CPPE has a graphical user interface that eases the use of the rich set of debugging

tools and the analysis of debugging information and program output.
2.3 Graphic User Interface

Graphic user interface has been designed for some of the parallel simulators to help the
programmers to visualize and analyze program outputs and problematic performance
statistics. METRICS [16] and Procsimity [17] are implemented using Tcl/Tk, which is an
interpreted language. Applications witten in Tcl/Tk require an interpreter at run time and
thus are slower. ParaGraph [18] is implemented using the X Window System. It is quite
fast since it does not use any toolkit, but it does not take advantage of the latest

developments in graphical user interface technology. U/IMX [19] is a toolkit for



developing graphic user interface based on X Window System. It has powerful capability
to create GUI for existing application programs. However it is less flexible to integrate
the graphic interface with a complex application program, such as CPSS. Java Abstract
Window Toolkit [20] is another GUI development toolkit. Applications implemented in
Java are portable across many platforms without modification. Again, Java is an
interpreted language and thus applications written in Java are slow.

Our GUIT for CPPE is developed using Motif toolkit [1 1] for the UNIX
workstation platform and MS-MFC (microsoft foundation classes) [12] for the Windows
PC platform. Moitif is a set of guidelines that specifies how a user interface for graphical
computers should look and feel. The term of Motif describes how an application appears
on the screen (the look) and how the user interacts with it (the feel). Motif toolkit is
developed by the Open Software Foundation (OSF) [34]. Compared with X window
programming, Motif toolkit provides a higher level interface functionality and thus
enables user to produce completely Motif-compliant applications in a relativel y short
amount of time. Compared with other X window toolkit. such as U/IMX. Motif toolkit
provides the lower level programming functionality and thus provides the high flexibility
to integrate application programs with the user interface. MS-MFC has become the most
popular tools in writing Windows program. It provides a comprehensive set of classes for
developing GUI objects and applications. Since it was written by the company that writes
the Windows operating system, MFC is continuously updated to incorporate the latest

changes to Windows itself.
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Chapter 3

The CPSS System Architecture and Debugging
Environment

In this chapter, we first describe our objectives for the design of CPPE performance
debugger. Then we present an overview of the system architecture and high level design
of CPSS. which provides the background information and creates the foundation for
identifying the debugging environment and designing the performance debugger in

CPSS. Then we present the high level design of the CPSS performance debugger.
3.1 Design Objectives

The final goal of the debugging system is to enable the user to interact with the
underlying simulation system in order to better understand the behavior of parallel
programs for correctness and performance tuning. To realize this goal. the most important

objectives in the design of the debugging system are as follows.

e Correctness debugging: We should provide end-users with convenient debugging
tools and useful information in order to debug and test applications, as in the case of
sequential debugging environment. After all, this is the main advantage of using a
simulator rather than a real parallel computer machine which provides a very limited

set of debugging tools. Compared with conventional sequential debugging tools, the
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challenge for designing the parallel debugging tools is that the tools should be able to

trace individual parallel process during execution.

Performance debugging: We should provide end-users with a set of performance
monitoring tools which will provide computation and communication statistics of
parallel application execution to facilitate the study of parallel architectures. network
characteristics. parallel algorithms, program mapping and their effect on performance.
Global statistics of an application (such as total execution time, speedup, total
computation time and total communication time) allow the user to tune the
applications to a desired performance. Run-time data or trace (such as process
creation/termination information, message sending/receiving information) could be
very useful in studying a particular aspect of the application, which can not be

captured by global statistics.

User friendliness: It should be easy to learn and use the simulator debugging tools.
The functionality of each tool should be well defined and informative so that users

can easily apply these tools in their programming exercises.

To meet the objectives of performance debugging, the following criteria should be

followed in the designing of performance debugging tools:

Informative: The information provided by the debugging tools should well address
the functionality of corresponding performance affecting factors of parallel
processing in the areas of both computing and network communication. From the

performance statistics and run-time data, user should be able to well understand the



behavior of the parallel programs in terms of the relationship between performance

and the changing of performance affecting factors.

® Accurate: The performance results obtained from the debugging tools should reflect
accurately the behaviors of the parallel computer system. The results should be based
on behaviors of realistic computation and communication models, vet making a good

trade-off between simulation accuracy and simulation time.

e Repeatable: The results obtained from the debugging tools should be repeatable.
Repeatability is essential to provide a stable debugging environment that is not
available on a real parallel computer machine. Real parallel computers are
nondeterministic in nature and, rarely provides any form of repeatability. Some bugs
may not occur frequently encugh for observation. Repeatability does not mean that
the simulator can produce only one of the many possible executions of a
nondeterministic application: the simulator should also be able to simulate multiple
executions of an application when it is required to mimic the nondeterministic nature

of real parallel computer systems and of parallel applications.
3.2 CPSS High-Level Design and Debugging Environment

This section gives an overview of CPSS high-level design, which provides the foundation

for the design of debugging system in CPPE regarding the necessity and feasibility.

3.2.1 The General Structure of the CPSS
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The CPSS (Concordia Parallel System Simulator) is an integrated part of the CPPE
(Concordia Parallel Programming Environment). CPPE consists of two components: the
CPCC and the CPSS.

The core of the CPCC (Concordia Parallel C Compiler) is a compiler. After
reading a parallei program written in CPC (Concordia Parallel C) language. the CPCC
builds a complete abstract syntax tree to perform syntax and semantics analysis. and
produces object code for a generic virtual machine. Such object code is called vCode in
CPPE. The vCode instruction set is defined based on an analysis of common operations
of parallel computer systems. To produce vCode. the compilation process makes use of
the virtual architecture and does not call for a physical architecture. The advantage of this
design is that the CPC parallel program does not need to be re-compiled every time the
underlying target architecture is changed.

The vCode produced by the CPCC will be input to the CPSS. Other inputs to the
CPSS are parameters and commands from the user. For example, the user can specify the
physical topology on which the program will run and the virtual-to-physical topology
mapping. The CPSS then executes the vCode, using the parameters and commands
entered by the user. The outputs from the CPSS are the application outputs, performance
statistics, and debugging information.

The CPSS consists of two major components: the code execution module and the
network module. The code execution module models the processing elements of the
parallel computer system: it executes the parallel code specified by the parallel program.

The network module is to manage the inter-processor communication via message
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passing. There are two other utility modules interacting with the code execution module
and network module in CPSS: they are the debugging monitor and the user interface.

The interactions between the components in CPSS are illustrated in Figure 3.

Application input
User Commands
Parameters

Application output
Debugging info
Performance statistics

vCode

. Application L -
Code Execution ;f[‘;;t User
Module — > Interface
ICP
Message ICP | {Debugging information
MAN PSI PSR Performance statistics
Network MNT e Debuggmg
Module — Monitor
MNR
MAN: Message Armrival Notification [CP: Inpu/Commands/Parameters
MNR: Message/Network Request PSR: Process/Processor Status Request
MNI: Message/Network Information PSI: Process/Processor Status Information

Figure 3 : CPSS structure and operations

The debugging monitor and interface not only closely interact with the two major
components of CPSS during execution, their implementation is also dependent on the
high-level design of these two components. In order to understand the design of the
debugging monitor, we will first have an overview of the high-level design of code

execution module and the network module.
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3.2.2 The Code Execution Module

The Code Execution Module (CEM) plays the role of processing element of a

parallel computer system: it executes the parallel code specified by the parallel program.
There are three key issues that influent the design of the debugging monitor: simulation at
the functional level. sequential execution model and the way timing system is
implemented. CPSS uses the functional simulation technique which uses sequential
execution model to emulate the parailel execution and interprets the parallel object code
instructions at the functional level. This technique offers the most accurate results among
the existing simulation techniques. In addition, this technique provides a good basis for

performance debugging:

e Functional simulation: CEM interprets the intermediate parallel code at the functional
level as if they were executed on the target machine. Each instruction of the target
machine is usually expressed as a host macro or procedure whose size depends on the
complexity of the instruction and the desired level of simulation accuracy. This
technique permits the simulator to have complete control over program execution. It
allows to establish the connection between user program statements and intermediate
instructions. Thus the user can set breakpoints, examine trace variables. or step-
through the program fragment of a particular process. Monitor code can be added to
the simulating code without affecting the execution outcomes, because the CEM is
able to distinguish between application code and monitor code and the execution time

for monitoring code is not accumulated.
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By using functional simulation technique, we can parameterize system measurements
(e.g. system clock cycle, execution time of object code instructions, network packet
size, link buffer size, network delay. message and packet startup overheads).

Performance statistics are based on these parameterized measurements.

The sequential simulation is deterministic in nature. Therefore repetition of
execution of a parallel program will always produce the same results and
performance under the same system parameters. This provides a stable environment
to study the performance of parallel programs at different levels of detail and from

different perspectives.

Timing system: CPSS does not use the machine clock for performance timing. There
is a global clock for the simulated parallel computer system which is updated
periodically by the CEM. Each process has a local clock that keeps track of the
present time of this process. In the CPSS, parallelism is simulated by time slicing:
each application process is given a quantum to run and processes are scheduled in a
round-robin fashion. During each quantum, the job scheduler traverses the list of
physical processors and schedules one process on a processor at a time for execution.
The local clock of the scheduled process is updated after each instruction is executed.
The user can define the cost to execute an instruction based on the complexity of the
instruction. A process runs until its time quantum expires or it is put to sleep by some
event. The job scheduler then schedules a process on the next processor for execution.

When every processor has finished its quantum, the global clock is advanced to the
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next quantum. By using this timing system. CPSS can provide accurate and

repeatable performance statistics for performance debugging.

3.2.3 The Network Module

The Network Module is responsible for inter-process communication via message
passing. It is under control of the network manager. The network manager allocates
network resources to messages to be sent, routes messages and delivers them to
destination processors. and detects and resolves deadlock, if any.

The following design issues of the network module is crucial for accurately
simulating the communication behavior. vet providing feasibility for performance

evaluation for parallel applications:

e By using the functional simulation technique and the same global clock mentioned in
the CEM design, it can effectively simulate the network behavior and communication
cost such as message startup overhead, routing overhead and congestion delay. New
messages which are being initialized for routing are queued at a new message list.
The waiting time at this list simulates message startup overheads. When the startup
overhead time of a new message expires. the message will be removed from the list
and appended to a list of active messages. In each quantum, all active packets that are
not blocked are advanced by one link, and it simulates the movement of packets by

advancing their ID numbers.

e Most of the network and communication parameters are well defined with appropriate

data structures. User can configure most of the network parameters such as packet
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size, flit size, routing scheme, link bandwidth, communication delay, network
topologies and virtual-to-physical mapping without recompile of the simulator
software and application programs, which provides a flexible performance debugging

environment.
3.3 High-Level Design of Debugging Tools

Practical sources of performance degradation reviewed in Chapter 2 require the
simulation system to provide the efficient and flexible debugging tools for parallel
program development and performance fine-tune. The system architecture of CPSS
provides a good debugging environment which is inherited from the functional
simulation technique and the timing system employed in the design of the two major
components (Code Execution Module and Network Module) in CPSS, as we reviewed in
last section. We now identify the major debugging tools which will be implemented in

CPSS and describe the high-level design of these debugging tools.
3.3.1 Correctness Debugging

Since parallel object code instructions are interpreted at the functional level, it is
convenient to insert debugging code inside the interpretation code as much as we need to
implement the necessary debugging functions. Unlike the case of direct simulation
technique, the debugging code can be distinguished from the application code so that the

amount of inserted debugging code does not affect the simulation results in terms of

execution cost.
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We identified and implemented the following functionality within CPSS for
correctness debugging, with the design concepts borrowed from sequential programming

environment:

e Set and clear instruction breakpoints: users can set breakpoints in the source program

to autornatically interrupt the program execution. Users can also clear breakpoints.

e Set and clear trace variables: users can set a trace flag on variables. Whenever the
variable is referenced during execution, the program execution is suspended so that

user can inspect the execution status. Users can also clear the trace flags.

e View the value of a variable: users can view the value of a variable in an active

process when execution is suspended.

e Step through a process: users can suspend a program and then let the execution

continue line by line or by a specified number of lines.

e Set a particular process to be the current process for debugging. The user may then

use the above tools to debug the current process.

e View the program source code (written in the CPC language). Users can specify the

range of the source code to be displayed.

e View the vCode corresponding to specified range of the source code.

e View the status of the processes. Information about each process includes

- the processor on which this process is run
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- the process status (e.g., ready, running, blocked, etc.)
- the stack of the process
- the function that is currently executed by this process

- the line in the source code that is currently executed by this process.

The main data structures related to correctness debugging are:

Source code breakpoint table: CPSS maintains a global break table that stores all
breakpoints set by user at run time. When executing in debugging mode, the code
execution engine checks the line number of an instruction in the global break table

before executing it.

Trace vanable table: CPSS maintains a global trace table that stores all traced
variables set by user at run time. Since CEM references variables by their addresses
in the memory pool, traced variables are stored in the trace table with their memory
addresses. When a vCode references a variable, CEM will check whether the

referenced variable is in the trace table.

Source code and vCode table: Source code table stores the application source code.
and vCode table stores the compiled virtual machine code. CEM executes the vCode
in the vCode table, with the index of the vCode table servers as the program count

(PC).

Source-to-vCode table: each source code is usually compiled into several vCode
instructions for execution. The source-to-vCode table src2codTable will associate the

source line number with the vCode line number so that we can trace the program
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execution. The first vCode line number of each corresponding source code line will

be stored in this table.

¢ Memory pool: Memory blocks will be allocated from the memory pool and
distributed to running processes for program execution. Memory pools is
implemented as a fixed-size array, with the index of the array serves as the memory

address. Variables are accessed by their addresses in the memory pool.

3.3.2 Performance Debugging

Based on the review on the sources of performance degradation in Chapter 2. we not only
necd to provide the overall performance profile of a parallel program execution. but also
to provide the functionality to study the performance of any portion of the parallel
program. To study the communication overhead of parallel computing. we need to
simulate a variety of network topologies and be able to easily configure the
communication parameters. To study the optimal program mapping from virtual
architecture to physical architecture, we need to provide the user with the ability to
specify certain patterns of virtual-to-physical-architecture mapping.

We identified the following performance statistics for perforrnance debugging and

implemented corresponding functionality within CPSS to provide these information:

e Set and clear time breakpoints: user can set an alarm to automatically suspend the
program execution when a certain time is reached. When program execution is
suspended, user can query various performance data and statistics. User can also clear

the alarm.



Parallel execution time: the estimated execution time of the program run on an actual

target multicomputer or multiprocessor.

Sequential execution time: the estimated execution time of the program run on a

uniprocessor computer.

Execution time of any portion of the program. either sequential or in parallel

Computation time of the program: time the program spent on computation task

Communication time of the program: overhead involved in inter-processor

communication such as message sending/receiving. congestion delay

Processor utilization

Profile of processor utilization as a function of time

Process creation/termination information, such as time, processor number, parent

process [D

Message send/receive information, such as time, source node, destination node,

message length

Message routing information, such as path, time traces

User can reconfigure the network by specifying different topology, virtual-to-

physical mapping and redefine most of the communication parameters in order to study

the performance at different levels from different angles. We also provide the utility to
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log these performance statistics data into files that can be retrieved later for further
analysis as the user wishes.

The main data structures related to performance debugging are:

e The global clock: CPSS uses relative timing with a user defined clock cycle. The
global clock is advanced to next quantum only when every application process has
finished its quantum. Global clock simulates the actual elapsed execution time on a
real parallel machine. Both parallel and sequential execution time are accumulated

based on this global clock.

® Process local clock: each parallel process maintains a local clock using the same
clock cycle as the global clock. During parallel execution. each parallel process is
given a quantum to run until its quantum expires. The process local clock is used to

keep track of the time spent during the given quantum.

e Nectwork and communication parameters: network and communication parameters are
all configurable variables defined in CPSS. The network architecture is defined by
network type. network dimension and size of each dimension. Communication
parameters are defined in a parameter structure. Different network architectures and
communication patterns can be simulated by simply redefining corresponding

variables or parameters.

e Virtual-to-physical mapping table: this table is used to store the data that reflect a

specific pattern of virtual-to-physical-architecture mapping. Using this table at run-



time, a virtual processor will be mapped to a physical processor on which a parallel

process will be running.

3.3.3 Graphical User Interface

Due to the complexity and multiple dimensionality of parallel performance data, we
provide a graphical user interface (GUT) to help programmers in their development
process. The user interface enables the user to interactively communicate with the
simulator. The user interface receives parameters and commands from the user, validates
the received information, and passes valid parameters and commands to the appropriate
module (the CEM. the network module or the debugging monitor). During execution of a
parallel program. the user interface is used to interact with debugging monitor and
display performance statistics and debugging information. Program outputs are also
transferred from the CEM to the user interface for displaying.

Currently. CPPE runs on UNIX workstations and MS-Windows PCs. The GUI for
UNIX workstations is developed with MOTIF toolkit [11]. and the GUI for MS-
Windows PCs is developed with MS-MFC (Microsoft Foundation Classes) [12].

To modularize the development, the interface code is isolated from the other
components in CPPE as much as possible. Since CPPE is continuously under
development, modularization helps to de-couple and therefore reduce the dependence
between CPPE modules. To support portability, compilation condition flags are used to

adapt the simulator to different development environment.
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Chapter 4

The Design of the Debugging Monitor

This chapter presents the design and implementation of the debugging monitor. The
debugging monitor is composed of a set of debugging tools. We divide the debugging
tools into two major categories: correctness debugging tools and performance debugging
tools. In first section we present the design of correctness debugging tools. In the second
section we present the design of performance debugging tools. In the second section. we

also describe the design of performance statistics as part of the program output.
4.1 Correctness Debugging Tools

In chapter 3. we have identified a set of useful tools for correctness debugging. Basically,

these tools are used for two types of purpose:

¢ Tools for execution control using which the user can step through the program
execution. These include tools for setting and clearing source code breakpoints, and
tools for stepping through program execution. In order to design and implement the
tools for execution control, we need to understand how a vCode program is executed
and how execution proceeds in CPSS in order to set breakpoints during execution.

This concerns the mechanism of the execution function of the code execution module
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(CEM). We will review the execution mechanism of CEM in the desi gn of relevant

tools that follows.

® Tools for execution examination using which the user can trace the execution status.
These include tools for viewing source code and vCode, tools for tracing and viewing
variables, and tools for examining the status of process and process stack. To design
and implement the tools for examination purpose, we need to understand how data
and variables are stored in the execution environment in order to retrieve them at run
time. This concerns the memory management of CEM. We will review the memory

management of CEM in the design of relevant tools that follows.

4.1.1 Setting and Clearing Source Breakpoints

Functionality

We implemented two tools in this category: Break and Clear Break. Break function is
used to set breakpoints to interrupt execution so that the user can step through a particular
parallel process and trace variables in that process. Before the execution of a vCode file
or after each breakpoint suspension, the user can set breakpoints by referring to the line
numbers in the source program. At the same time, user can also clear previously set
breakpoints by referring to the line numbers in the source program. A breakpoint is
assigned to a specific line of source code in the program. When any running process tries
to execute a line in the program with a breakpoint, the whole program execution will be

suspended, including the execution of all the processes.

47



As we will discuss in the following section. the implementation of Breakpoints is
based on the vCode of a compiled source program. Since the vCode is produced only for
the executable source code in the compile process. therefore only executable source lines

can be selected as breakpoints.

System Status

In crder to control the execution of the application program. CPSS defines a set of system
states and the behavior of CPSS in each system state. It also defines the rule of
transformation between different system states. The major system states include Run,
Break. Halt, Dead, and various kinds of error states.

When the system state is set to Run, the Code Execution Module (CEM) in CPSS
will execute the program until the system state becomes a value other than Run. The

system state is set to Run when one of the following conditions is true:

e when CPSS execution is first started

* when execution is resumed from a breakpoint by Continue function in the debugging

tools

¢ when execution is resumed from a breakpoint by Step function in the debugging tools

When the system state is set to Break. the CEM will suspend the program
execution. A suspended execution can be resumed and continue execution from the last
suspension point. The system state is set to Break when one of the following conditions is

true:
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e when a breakpoint set by a user is encountered during execution

¢ after the execution of one step of source code when using Step function

e atraced varnable is referenced

e the alarm time set by the Alarm function in the debugging tools is reached

The system state is set to Halt when a user program executes the vCode HALT
when it finishes execution successfully so that the execution session can terminate
normally. When the main process in a user program finishes execution. it executes the
vCode HALT to signify the end of execution. The main process then waits for all its
forked child processes to terminate. After all forked child processes terminate, the main
process terminates itself and sets the system state to Halt.

The system state is set to Dead when fatal problems happen during program
execution. As an example. all processes are deadlocked so that no process can be
scheduled to run. A Dead execution session is unrecoverable and users must restart the

execution.

Data Structure of Breakpoint Table

CPSS maintains a global breakpoint table that is used to store all breakpoints set
by the user at run time. The breakpoint table is implemented as an array breakTable, and

each breakpoint is implemented as a structure of breakEntry, defined as in Figure 4:
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struct BreakEntry

{
int line; // source code line number
int memLoc; // vCode line number

}:

BreakEntry breakTable [MaxNbrBreaks] ;

Figure 4 : Data structure of Breakpoint table in C

In the structure BreakEntry. the field line is the line number in the application
source code, and the field memLoc is the line number of the vCode. The line number of
the vCode is used by CEM as the process count (PC). Since CEM executes a program
based on the vCode rather than source code, we should associate each breakpoint in the

source code with the corresponding vCode line number.

Implementation

When a breakpoint is set at a specified source line, this source line will be insert into the
global breakpoint table with its source line number and its first corresponding vCode line
number, the memLoc, in the structure of BreakEntry. The first vCode line number of a
source code can be found from another global table maintained by CPSS: src2codTabile.
Every time the CEM increments a current process’s PC, it checks the break table before it
executes the code. If the value of the PC is found in the breakpoint table by satisfying the

condition:

currentProc->PC == breakTable[i] .memLoc
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the system state wili be set to Break and the execution is suspended at this point. A flag is
used to set the debugging mode On or Off during execution. CEM checks the breakpoint
table only when the debugging flag is set to On while ignoring the breakpoints when the
debugging flag is set to Off. During program development, user can set the debugging
flag On in order to use the debugging functions. In real execution of the program. user
can set the debugging flag Off to make the execution fast.

To clear a breakpoint, simply delete the breakpoint entry from the breakpoint

table.

4.1.2 Stepping Through a Process

Functionality

When any parallel process tries to execute a line in the program with a breakpoint. the
whole program execution will be suspended. From that point. the execution of the
program may be continued in two manners: either continuing the execution until the next
breakpoint is encountered by any process, or user can follow the execution line by line.
We implemented two tools for this purpose: Continue and Step. By using Continue, the
program will resume execution from the breakpoint and continues until the next
breakpoint is encountered or the execution finishes. By using Step, the default action is
that the program will continue the execution from the breakpoint line by line upon each
Step call. The process where the suspension occurred becomes the current “Step-
Process™. User can also override the default action by specifying a different Running

process as current “Step-Process™ or specifying a different number of lines in each step.

51



(To get a list of Running process, we need another tool called Status which displays the

status of all active processes. The design of the tool Status will be introduced later.)

Data Structure

CPSS has two global variables that are used by CEM to control the execution starting and
ending point when stepping through a process: startCodLineNbr and endCodLineNbr.
During the execution of a source line. startCodLineNbr stands for the starting vCode
line number for the source line, and endCodLineNbr stands for the ending vCode line
number for the source line. CEM uses these two variables to determine the execution
starting and ending points when CEM is invoked to execute one source line. CEM has a
local variable that keeps track of the current execution point: curCodLineNbr which
stands for the currently executed vCode line number. When CEM steps through a
process. curCodLineNbr should be always between startCodLineNbr and
endCodLineNbr inclusive.

CPSS has another global variable curProcess. which stands for the currently
scheduled process. It is defined as a pointer to structure of the process, which contains all
run-time information of a parallel process during execution. One of the information is the
process count (curProcess->PC), which keeps track of the current execution point in the

vCode table.

Implementation

By default, we set the currently scheduled parallel process when program is suspended to

be the “Step-Process”, which is pointed to by a global variable steppingProc in CPSS.
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During stepping, curCodLineNbr increments only when the stepping process is
rescheduled to run. All other parallel processes are scheduled and run in the same way as
normal execution. So essentially we are stepping through a particular parallel process.
Both Step and Continue function will resume the execution of CEM from the last
breakpoint, which is the process count of the currently scheduled process (curProcess-
>PC). For the Continue function, CEM restarts its execution on the vCode from the
resuming point and continue until it encounter the next breakpoint if any or the end of the
program. This can be implemented by simply setting the system state to Run and
recalling the CEM function execute().

To implement the Step function, we need to tell the CEM the starting and ending
point in the vCode corresponding to one source line. The starting point is the first vCode
corresponding to the source line which is to be stepped. and the ending point is the last
vCode corresponding to the same source line. This is implemented by using the global
variables startCodLineNbr and endCodLineNbr. Every time Step function is called, the
system state is set to Run, the startCodLineNbr is set to the first vCode of the source line
which is steppingProc->PC, and the endCodLineNDbr is set to the last vCode of the

same source line, which can be calculated based on the src2codTable:

startCodLineNbr = steppingProc->PC;

endCodLineNbr = src2codTable[breaklLine + 1] - 1;

where breakLine is the source line number of the breakpoint. CEM function execute() is
then called to execute the vCode between the startCodLineNbr and endCodLineNbr
inclusive. execute() function maintains a local variable curCodLineNbr, which

increments at the same pace as the process count (steppingProc->PC). When
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curCodLineNbr becomes greater than endCodLineNbr, the system state is set to Break,
and the program is suspended again. which concludes the execution of one line of the
source code.

We can easily extend the Step function so that it can step through any running
process when program is suspended. Simply define any running process to be the “Step-
Process™ by assigning it to be steppingProc, recalculating the values for
startCodLineNbr. endCodLineNbr and curCodLineNbr. and curCodLineNbr
increments only when the newly assigned stepping process is rescheduled to run.

By default, the number of lines in one step is one. We can also extend the Step
function to be able to step through any number of lines in one step. Another global
variable stepNbrSrcLine, which stands for the number of source lines in one step. is
needed for this purpose. CEM executes the first source line in the step as we described
before. however. instead of setting the system state to Break after finishing the first
source line in the step. it recalculates the startCodLineNbr and endCodLineNbr for the
second source line in the step. and decrements the stepNbrSrcLine. and executes the
second source line in the step. The system state will be set to Break only when
stepNbrSrcLine decrements to 0, and at this point the program will be suspended. which

concludes the execution of one step of a specified number of source lines.

4.1.3 Viewing Source Code and vCode

Functionality

There are two tools in this category: List Source and List vCode. List Source is used to

list a fragment of the application source file. List vCode is used to list a fragment of
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vCode of an application. Before the initial execution or after each execution suspension,
the user can specify a range in the application source file. the List Source function will
display the source code within that range, and the List vCode function will display the
vCode instructions corresponding to the specified range of source code. If no line

numbers are specified. the whole source file or vCode file will be displayed.

Data Structure

Three tables are involved to implement this functionality: srcTable, codeTable and
src2codTable. srcTable is used to store source code, codeTable is used to store
execution code (vCode), src2codTable is used to associate the source code and the
vCode. Before a program is executed. there is a loading process during which a set of
global tables are loaded from the compiled vCode file. srcTable. codeTable and
src2codTable are three of these global tables. srcTable is loaded with source code, with
the index of the table stands for source line number and entries of the table are the actural
source code. codeTable is loaded with vCode. The index of codeTable stands for the
vCode line number which serves as the process count (PC) during execution, and the
entry of the codeTable is the vCode that is defined as a structure of virtual machine code
and its operands. One source code may involve several successive vCode instructions, so
a src2codTable is used to associate the source code and vCode. The index of the
src2codTable stands for the source code line number, the entry of the table is the line

number of the first vCode instruction generated from that source code line.

Implementation
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To list the source code, simply display the contents of the srcTable from the starting
point to ending point specified by the user.

To display vCode, we think the following information will be helpful for the user.
and these information can be retrieved from the codeTable and src2codTable: the
source line number, the corresponding vCode line number, the vCode name. operands of
the vCode instruction. All these information will be displayed in one line for each vCode
instruction, and the range of vCode instructions to be displayed is determined by the user
specified range of source code and the src2codTable, which provides the first vCode

instruction line number for each source code line number.

4.1.4 Tracing Variables

Functionality

Whenever the execution of the parallel program is suspended, the user may want to
examine the current value of variables in the current execution environment of each
process. We implemented two functions for this purpose: Show and Trace. Function
Show is used to display the value of a variable when program execution is in suspension
state. Users can use this function to examine variables in the current environment of each
active process. Active processes are those that may be in the state of Ready, Running,
Blocked, Delayed or Spinning. We developed another tool called Status which displays
the status of all active processes.

Function Trace is used to trace a particular variable during the execution process.
The user essentially sets a flag on the traced variable. Whenever that variable is

referenced during subsequent program execution, the program will be suspended as it is
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for breakpoints. In addition, the program will display the value of the traced variables so
that the user can examine the status of the program execution. Since variables may be
referenced by many different processes in a variety of locations, the trace function
provides a useful tool for the user to focus on some important program variables.

In order to implement the Show and Trace function, we first need to understand
how CPSS manages local memory to simulate a parallel execution and how variables are
stored in such simulation environment. Then we can easily trace and retrieve values of

variables during program execution.

Memory Management of CPSS and Data Structures

In the CPSS modecl, parallel processes time-share a physical processor, thus the
corresponding local memory is shared by many processes. When a new process is created
on a processor. a memory block is allocated from the local memory for that process

(Figure 5a), which is used for the following types of data:

e working stack: the stack is needed for expression evaluations and for temporary run-

time data.

e activation records: each record contains function parameters, local variables inside
the called function, and other control information for the function call/retum. An
activation record is allocated on every function call, and de-allocated on the function

retum.
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When a process is created, the very first working stack granted to it is called a

process frame. Every time a function is called from a process, a function frame consisting

of an activation record and a working stack is allocated to the calling process (Figure 5b).

If a second function is called from inside the first function, a second function frame will

be allocated from the local memory and linked to the first function frame. When a

function returns, the corresponding function frame will be de-allocated.

The process created when program execution starts is the process 0. Global

variables are stored starting at address just below the first process frame for process 0

(Figure 5b). Local variables inside a function are stored in the activation record of the
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corresponding function frame (Figure 5c shows the activation record for main()). The
name of the function is indexed in a global table of identifiers, with the index stored in
the function control information sector of the activation record (Figure 5d).

Several major data structures are used to implement the above memory
management in CPSS, which are also crucial in the implementation of our debugging

tools:

® Memory pool: Memory blocks are taken from a common memory pool and
distributed to requesting processes. CPSS implements the memory pool as a fixed-
size array. the storageValue[]. The entry of the array is considered to be a memory
word and is implemented as a C Structure type indicating the data type and the data
value (Figure 6). An array parallel to array storageValue(] is used to store locations
(physical processor IDs) of a memory word. the storageOwner[]. so that CPSS can

know to which physical processor each entry in the memory array belongs.

® Process Control Block (PCB): every application process is associated with a process
control block (PCB) that stores various information needed for its execution. When a
new process is created, a PCB is allocated and appended to a global list of processes
which is not implemented in the memory pool. This is a singly-linked list managed by
three pointers: actProcHead pointing to the first entry of the list, actProcTail
pointing to the last entry of the list and the curProc pointing to the PCB of the
process currently running. As a process is running, its memory address in the
common memory pool is maintained and handled by four pointers which are stored in

PCB, they are base, which points to the starting address of the process stack
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allocated when the process is created: B, which points to the starting address of the
current function frame; T, which points to the stack top of the current working stack;

and stackTopLim, which points to the upper bound of the current working stack.

typedef struct ({
char tyve;
union ¢
int intvalue;
float floatValue;
} val
} basicValue, *basicvValueP:r:;

basicValue storageValue[STORARGE_SIZZ=];

int storageOwner [STORAGE_SIZE] ;

Figure 6 : Data structures of memory pool in C

e Global tables: CPSS uses several global tables outside the memory pool to store
different run-time information. Among them, the important tables that are related to
the debugging tools are identTable, which stores the identifiers such as function
names and variables: blockTable. which has one entry for each compound statement
(function body is also a compound statement); arrayTable, which stores information

of arrays: and floatConsTable, which stores the constants of float type.

Implementation of Show Function

Based on the memory management and data structures introduced above, we now

introduce how to retrieve a variable value in a specific application process. This is the

60



basis for implementing the Show debugging tool. In CPSS, different types of variables
have different ways of storage, therefore the ways to retrieve their values are also
different. The following sections introduce the Show function for variables of major data

types supported in CPC.

1. Show Function for data type of integer, float, char

Figure 7 shows a typical process to get the value of a local variable of type integer, char

or float inside a currently called function in a specific application process.

Working variable | -
stack Function
n
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Activation >3 vanable2
record
procDesPtr ->B ~— Function
3
variable3 . able i
- e last variable index Function
List of - 3
PCB Working -
stack - Function
function Block index 1
Function index name
Function
processNum main()
storage Value identTable blockTable

(memory pool)

Figure 7 : The process of retrieving the value of a variable

The prerequisites for the process in Figure 7 are:

e The variable is of type integer, char or float.
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[t is a local variable of a function that is currently called by an application process.

The function is not the program’s main() function. (Process for variables in main()

function will be discussed later.)

The application process must be an active process defined as before.

The input of the value retrieving process are the process number and the variable

name.

The value retrieving process can be depicted in the following steps:

Get the process description pointer (procDesPtr): according to the process number
specified by the user, we first get the pointer to the process description block for that

specific process by searching the global PCB list.

Get the function index (furicindex): as described before, each currently called
function is allocated an activation record and a working stack, and one of the field in
the activation record is the function index which is a pointer to an entry in the
identTable corresponding to this function identifier. The PCB has a field called B
which is the pointer to the starting address of the current function frame, therefore

the function index can be calculated by the formula

funcIndex = ProcDesPtr->B +

offset of function index in activation record
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Get the block index for the function: the function identifier has an entry in the global
identifier table identTable indexed by the funcindex. One of the information of the
identifier entry is a reference (identTableffuncindex].ref) to an entry in another
global table called blockTable. blockTable is used to store information about
compound statements including function bodies. with one entry for each compound

statement.

Get last variable index of the function: local variables in a function are maintained in
the identTable using a linked list in reverse order, with the index of the last variable
stored in the function entry in the blockTable. The index of the last variable
(blockTable[idenTable[funcindex].ref].lastldent) is the index of the variable in the

identTable.

Get the offset address of the specified variable in a function frame: every local
variable of a function has an entry in the identTable and they are related by a linked
list. Starting from the last variable. we can search for the specified variable in the
variable linked list and get its address (identTable[n].address) for a particular index
value n. The address identTable[n].address is the offset of a variable in a function
frame where the value of that variable is stored. Since CPC supports nested function
definition, users can specify a variable at different levels of function scope. Therefore
we start the search from the highest scope level (the most nested function scope) i to
the lowest scope level O (for global variables) until the user specified variable is
found. and the scope level scopelev will be used to calculate the base address for

that function frame.
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Get the address of the specified variable in the memory pool (elemAdd): the actual
address of a variable in memory pool (elemAdd) is the sum of its offset address in
the function frame (identTable[n].address in last step) and the base address (B) of
the function frame in the memory pool. The process description block has a data field
display(] that stores the base addresses of each function frame regarding that
particular process. For each integer / > 0, display([/] stores the base address of the
function frame where the function is declared at scope level i. Having known the
scope level (scopelev from last step) of the function that contains the user specified
vaniable. we can get the base address of the function frame, procDesPtr-

>display[scopelev]. Therefore elemAdd can be calculated by the formula

elemadd = identTablel[n].address +

procDescPtr->displayscopel.ev]

Get the value of the variable: during function execution. the value of a variable is kept
in the activation record of that function frame and updated with the proceeding of the
program execution. Therefore, we can display the value of a variable by referring to

the corresponding storage in the memory pool as

storageValue[elemAdd] .val.intValue
// for integer or char variable
or
storageValue[elemaAdd] .val.floatValue

// for float wvariable



For a global variable, the value retrieving process defined above will be
simplified, as global information is always maintained in process 0, and the entry in
blockTable for the imaginary block containing all the global variables is always the first
one (blockTable[0]). Global variables are reversely linked together in the same way as a
function’s local variables, with the index of the last variable defined in
blockTable[0].lastldent. In the same way as described above, we can get the address of

the specified global variable in the memory pool and display the value during execution.

2. Show Function for Data Type of Structure

The value retrieving process for a Structure variable can be depicted in the following

steps:

e First. we use the same approach as we described before for data type of integer, float
and char to get the entry for the structure variable in the identTable (identTable[n])
(Figure 7). Each entry for a variable in the identTable has a field to indicate the data
type of this variable as well as its compound level and offset of the variable in a
function frame. If the variable is of structure type, the offset address in the entry
structure (identTable[n].address) is actually the offset address of the first field in
the structure variable, and another field in the entry structure called ref will provide
the index (identTable[n].ref) for the first field of this structure variable in the

identTable (field 1 in the identTable, Figure 8).



filed2

fieldl

Starting address
of structure
variable
(varAdd)

ﬁeldi
______ memory pool
field2
fieldl varRef
type
Index of the structVar ref
structure | link
variable
size
address
scopelLev
identTable ident_entry

Figure 8 : The process of retrieving the value of a structure variable

Data fields in a structure variable could be of any data types. Each field has a

ident_entry structure in the identTable. The size field of the ident_entry structure

(identTable[m].size) records the corresponding size of the field data type, and the
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link field of the ident_entry structure (identTable[m].link) gives the index of the

next field of the structure variable in the identTable.

We need to get the address of each field in the structure variable in the memory pool
in order to retrieve the value of each field. To get the address of the first field in the
structure variable in the memory pool (elemAdd,), we can use the offset address of
the structure variable in the function frame (identTable[n].address) and the base
address of the function frame (procDescPtr->display[scopelev]. as we described

before for data type of integer, float or char:

elemAdd; = identTable[n].address +

procDescPtr->display[scopeLev]

Since all the fields in a structure variable are contiguously stored in the memory pool.
the address of the second field will be address of the first field moving forward by the
size of the first field. In general, the address of the field (i+1) (elemAdd;-1) can be

calculated by the following formula:

elemAdd,,: = elemAdd; + identTable([i].size

where identTable(i] is the entry for the field i in the structure variable in the

identTable (Figure 8).

If all the fields in the structure variable are of type integer, float or char, we can create

a ShowElement() function, based on what we described before for the data type of

67



integer. float or char, and go through all the fields in the structure variable to display

their values.

o If afield in the structure variable is a compound data structure, a recursive call to the
function ShowElement() will be required to process all the fields in that structure
field. By using recursive function call, we can generalize the Show function for any

data type of the fields in the structure.

3. Show Function for Data Type of array of integer, float, char

To implement Show function for data type of array, we need to use another data
structure called arrayTable. Each array used in the application program has an entry in
this table. The entry structure of this table stores information about an individual array
such as index range (low, high). element type (type) and element size (size).

The value retrieving process for an array can be depicted in the following steps:

e First. we use the same approach as we described before for data type of integer. float
and char to get the entry for the array variable in the identTable (identTable[n])
(Figure 7). The entry structure in the identTable has a field to indicate the data type
of this variable. If the variable is of type array, the offset address in the entry structure
(identTable[n].address) is actually the offset address of the first element in the array
variable, and another field in the entry structure called ref will provide the index

(identTabie[n].ref) for this array in the arrayTable (Figure 9).
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e From the arrayTable. we then get the array index range (arrayTable[m].low,

arrayTable[m].high). element size (arrayTable[m].size) and element type

(arrayTable[m].type).
arrayVar low
high
size
'V
armayvar type type
ref
address arrayTable array_entry
scopelLev
identTable ident_entry

arrayVar

Starting address
of array variable
(varAdd)

memory pool

Figure 9 : The process of retrieving the value of an array variable
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e We need to get the address of each element in the array variable in the memory pool
in order to retrieve the value of each element. To get the address of the first element
in the array variable in the memory pool (elemAdd;). we can use the offset address
of the array variable in the function frame (identTable[n].address) and the base
address of the function frame (procDescPtr->display[scopel.ev]. as we described

before for data type of integer, float or char:

elemAdd; =identTable[n].address +

procDescPtr->display[scopelev]

® Since all the elements in an array variable are contiguously stored in the memory
pool, the address of the second element will be address of the first element moving
forward by the size of the array element. In general. the address of the element (i+1)

(elemAdd;.) can be calculated by the following formula:

elemAdd,, = elemAdd; + arrayTable[m].size

where arrayTable[m] is the entry for the array variable in arrayTable (Figure 9).

e If all the elements in the array variable are of type integer, float or char, we can create
a ShowElement() function, based on what we described before for the data type of
integer, float or char, and go through all the elements in the array variable to display

their values.

e If an element in the array variable is an array, then we are dealing with a multi-

dimensional array. In that case, a recursive call to the function ShowElement() will
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be required to process all the elements in that secondary dimensional array element .
By using recursive function call, we can generalize the Show function for variables of

multi-dimensional array.

4. Show Function for Channel Variables

Channel vanables are specific for CPC programs and write/read operations on channel
variables abstract message send/receive in the real parallel computer. A channel can be
considered as an infinite buffer owned by some process p. where other processes can
deposit messages of the same type as the channel for p to read. From the perspective of
debugging. channel variables can be treated as other application variables in the sense
that user can inspect the contents of the channel buffer in order to trace the message
flowing during parallel execution.

Control information of channel is stored in a structure called channel descripror.
When a channel is opened (i.e. accessed for the first time). a channel descriptor is
allocated for this channel which contains the data fields shown in Figure 10.

A channel is considered to be an infinite buffer of messages of the same type.
Messages written to a channel are stored in the increasing order of arriving time, and
maintained in a list for reading by the channel owner. This list will be referred to as the
list of channel values. The field head in the Channel structure points to the first
element of the list. The Show function for a channel variable is meant to display the list
of channel values maintained in a specified channel variable at a program suspensicn

point.
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Channel descriptors are taken from an array of channel descriptors. array chann(]
(Figure 10), when a channel variable is first time accessed. As other variables. a channel
variable also has an entry ¢ in the memory pool (array storageValuef] in Figure 6). The
index of this entry in the menory pool is called the address of the channel variable.
Unlike a normal variable such as an integer or a float, a channel variable does not have a
specific value. It represents a list of values (messages). Before the channel is opened.
entry e was initialized to 0. meaning that the channel is currently inactive. When the
channel is accessed for the first time (either for read or write), a channel descriptor is
allocated to the channel. The index of the channel descriptor in the array of channel
descriptors chann(] is called the channel ID. which will be stored in entry e of the

memory pool.

typedef struct

{
int head;
// pointer to the head of the list of channel values
int dataCount;
// number of elements in list of channel values
ProcessNodePtr waitProcQueue;
// pointer to blocked reader’s PCB
int chanElemSize; // message size
} Channel

Channel chann[MAX_NUM_CHANNELS+1];
// array of channel descriptors
// entry chann[0] is unused

Figure 10 : Data structure of Channel variable in C

The value retrieving process for a channel variable can be depicted in the

following steps (Figure 11):
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Figure 11 : Retrieve messages from a Channel variable



First. we use the same approach as we described before for data type of integer. float
or char to get the channel variable in the identTable (Figure 7). For a channel
variable, the ref field in the ident_entry structure provides the index
(identTable[n].ref) for this channel variable in a global channel table channTable.
channTable stores the information about each channel type such as the message type

and message size for this channel.

From the channel address (identTable[n].address) and the base address of the
function frame (procDescPtr->display[scopelLev]. we can access the entry of the

channel variable in the memory pool and obtain the channel ID.

From the channel ID, we retrieves the channel descriptor from the array of channel

descriptors (chann[]).

Field head in the channel descriptor will then point to the list of channel values.
Information in the channTable directs us to display the message value appropnately

based on the message type and size.

Implementation of Trace Function

Trace function is implemented by labeling the traced variable, so that every time the

traced variable is referenced during execution, the system state will be set to Break and

the execution is suspended. There are two issues in the implementation: how to label

traced variables and when variables are referenced during execution.

During execution, the code execution module (CEM) executes the vCode of the

program and variables are referenced by their addresses in the memory pool. For
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example, to execute the vCode LDVal (load the value of a variable), CEM refers to the
variable by its address in memory pool (index of the memory array storageValue[]) and
copies the value (storageValue[index].val.intValue) to the top of the working stack.
Since every variable has a corresponding address in the memory pool and the address is
referenced by CEM for execution, we decided to use the memory address as the label for
the traced variables. The variable name and its memory address will form an entry in a
global table, the traceTable, that is used to store all user specified traced variables. The
memory address of a variable can be computed using the same approach as we described
in the implementation of Show unction. referring to Figure 7. The data structures for the
traceTable are shown in Figure 12:

When Trace function is called, user specifies the variable name and process id
where the variable is in. CEM computes the memory address of the variable and stores a
new entry in the trceTable. When user wants to clear a traced variable, the clearTrace

function is called and the corresponding entry of this variable is removed from the

traceTable.
struct traceTabEntry {
char name[maxVarLengthl]; // variable name
int memLoc; // index in mamory pool

}:

traceTabEntry traceTable{MaxNbrTraces];

Figure 12 : Data structures in C for Trace function

75



In the vCode set defined in CPSS, vCode instructions that have variable reference
in their execution are listed in Table 1: vCode's that have variable reference. Whenever a
vCode in Table 1 is executed, CEM will call a function checkVarTrace() to check if the
variable referenced by this vCode is in the global traceTable. If yes, the system state

will be set to Break and the execution will be suspended.

VCode Mnemonic Description
LDVal Load value of a variable onto stack
LDIndirect Load indirectly of a variable onto stack
LoadBlock Load a block of data to stack
Dereference Replace pointer on the stack by value
STORE Store value into memory location
SCANF Get user input for a variable from stdin
FSCANF Get user input for a variable from a file
PRINTF Output to standard output
FPRINTF Output tc a file
LOCK Lock a variable to prevent concurrent access
UNLOCK Unlock a variable to release the access control
CopyBiock Copy a block of data into another
CopyToNewBlock Allocate a new block and copy data to it

Table 1: vCode’s that have variable reference

4.1.5 Examining Status of Process

Functionality
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Some debugging tools can only be applied to processes in certain execution states. For
example. user can only use the Show function to examine variables in active processes,
Step function can only be used for processes in Running state. So user needs to know the
execution status of each parallel process before other tools are used. We developed a tool
called Status to meet this requirement. When program execution is in suspension state,
users can use the Status tool to specify a range of processes to show their execution

statuses.

Data Structure and Implementation

Every application process is associated with a process control block (PCB) that stores
various information needed for its execution. When a new process is created, a PCB is
allocated for this process and appended to a global list of processes. which is
implemented as a singly-linked list. To implement the Status function. we simply identify
the useful information in the PCB of each process and display these information on per-
process basis. The information contained in PCB is shown in Figure 13 : Data structure of

Process Control Block in C as a data structure in C language.
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typedef struct ProcDesStruct {

int processID; // process ID

int PC; // program count

enum State state; // process state

enum Priority priority; // scheduling priority

struct ProcDesStruct *parent;
// pointer to parent’s PCB

int base; // lowest address of process frame
int B; // lowest address of current function frame
int T; // current stack top

int stackTopLim;

// highest address of the current function frame
int foralllLevel;

// forall nesting level of this process
int numForallChildren;

// number of forall children currently running
float maxForallTermiTime;

// most recent forall termination time
int forallIdxadr; // memory address of forall index
char repeatProcInGroup;

// f£lag for implementing grouping option
int forkCount;

// number of fork children currently running
float maxForkTermiTime;

// most recent fork termination time
int joinCount;

// number of fork children terminated but not

//matched with join
float time; // local clock of this process
float wakeTime;

// wakeup time if process state is Delayed
int virProcessor; // virtual processor ID
int phyProcessor; // physical processor ID
int altPhyProcessor;

// to save actual physical processor ID on

/ /parameter evaluation
enum ReadStatus readChannStatus;

// status during channel read
char accumSeqgTime,

// flag for accumulating sequential time

} ProcDescriptor, *ProcDexPtr;

Figure 13 : Data structure of Process Control Block in C
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In the Status function, we display the following information for each process that

is within the range of processes specified by user:

e Process [D

* Function name: the function name that the process is currently executing in. Using the
same approach described in the implementation of Show function. we can get the

function name in the global identifier table as identTable[funcindex].name.

® Source line number: the source line number that the process is currently executing.
We can get the source line number based on the PCB’s process count (PC). which is
equal to the vCode line number. vCode line number is associated with the source line

number in the src2codTable as we described in section 4.1.1

e State: the current state of the process, the state field in PCB

e Virtual processor ID: the virProcessor ficld in PCB

e Physical processor ID: the phyProcessor field in PCB

4.1.6 Examining Memory Contents

Functionality

This function is used to display the memory contents for a specified range of address in
the memory pool during program execution. It provides a debugging tool for the
implementor of CPPE to monitor the process stacks during execution of the parallel

program. Users of CPPE rarely need to use this function.
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Data structure and implementation

Memory block can be allocated to different processes during parallel program execution.
This function displays both the content of the memory currently used and the process ID
that is currently using that memory location. With the data structure storageValue([] and
storageOwner[] described section 4.1.4. which are two arrays parallel to each other, we
can display the value of a specific memory location (storageValue[n].val.intValue in
case of a integer data type or stroageValue[n].val.floatValue is case of a float data type)

and the process ID that owns that memory location (stroageOwner[n]).

4.2 Performance Debugging Tools

In chapter 3. we have identified a set of important performance data and statistics

for parallel program execution. We have also reviewed the important affecting factors for
the performance of parallel programs in chapter 2. Based on these information, we
designed and implemented a set of functions, known as performance debugging tools. to
help the user to fine-tune their application program. Basically these tools are categorized
into three main types: tool that sets time breakpoint. tools to set network architectures.
and tools to report performance statistics. There are two major designing issues in CPSS
that affect the design and implementation of the performance debugging tools. The first
issue is how timing system is implemented in CPSS. The second issue is how parallel
execution environment is simulated in CPSS. We will review these issues in the process

of introduction of relevant tools.
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4.2.1 Setting Time Breakpoint: Alarm

Functionality

Alarm function is used to suspend the program execution when a certain amount of time
is reached. When the program execution is suspended when the alarm times out. user can
investigate the program execution status, reset the network parameters. and gather
performance data as an aid in debugging or performance analysis of a program. We
provide a user interface to set the alarm time and a switch to either turn the alarm on or
off. The alarm setting can be done before the execution of a user program starts or when

the execution is suspended.

Timing System of CPSS

CPSS uses a simulated timing system rather than the real machine time. A global variable
globalClock is used to simulate the global clock and is initialized to O when a new
program execution starts. Every application process has its local clock and is initialized
with the time on its parent’s clock when the process is created. All performance statistics
are based on this simulated timing system, and the design and implementation of our
performance debugging tools also heavily depends on the mechanism how this timing
system works.

The way the global clock advances during program execution is decided by the
Time Slicing mechanism employed by CPSS. Parallel execution of application processes
in CPSS is simulated by time slicing. The execution of a parallel program is divided into

quanta, each quantum lasting q clock cycles (or time units) where q > 0. During program
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execution, each physical processor is assigned a quanta in round-robin manner. Each
physical processor maintains a circularly linked list of processes running on it. These
processes use the quantum allocated to this physical processor in round-robin fashion.
During each quantum, the scheduler traverses the list of physical processors, and
schedules a process to run from the circularly linked list of processes on a physical
processor in a round-robin fashion. If the scheduled process is able to run. it executes
until the time slice of q time units expires or it is put to sleep by some event. The
scheduler then gets the next physical processor in the list of physical processors and
schedules a process to run on the second physical processor. When the last processor in
the list of physical processors finishes its time slice, the global clock (globalClock) is
advanced by q time units to the next quantum and a new quantum begins. Such a
quantum simulates q time units of parallel execution on all physical processors on a real
parallel machine.

In addition to the global clock, each process has its local clock (field time in
PCB). This local clock is needed for the process to synchronize with the global clock and
with other processes. Every time the process finishes executing a vCode instruction, its
local clock is incremented by the cycle count of that instruction, which is defined based
on the complexity of the instruction. When the local clock reaches or exceeds the time on
the global clock, the process knows that its time slice in this quantum is up. The

scheduler will then schedule a process on another physical processor to run.

Implementation of Alarm Function



Alarm is set by assigning a float value to a global variable alarmTime that records the
alarm time. When program execution proceeds, before CEM executes a vCode
instruction, it checks the global clock time against the alarm time. When the global clock
time reaches or exceeds the alarm time. system state will be set to Break and this cause
the program execution to be suspended. We can use a global flag as an alarm switch.

CEM only checks the alarm time when the alarm switch is turned on.

4.2.2 Setting Network Architectures

Functionality

When CPPE is started, CPSS sets up a default wormhole-routed network. The network
parameters in CPSS include network topology. dimension and size. number of virtual
channels between two adjacent nodes. buffer size of a virtual channel. size of a packet (a
packet is the basic unit carrying the address of the destination node for routing purpose).
size of a flit (flit is the smallest unit of information for transmission). size of the header in
a packet. size of the data in a packet, message startup delay and network link delay. All
these parameters are configurable in CPSS. We designed a set of tools into CPSS so that
the user can examine the current configuration of the network and re-configure the
network by redefining some or all of the parameters before starting running the

application program.

The Simulated Parallel Computer Network and Data Structures

CPSS uses an uni-processor to simulate a parallel execution environment. The network

module has a set of data structures that are used to simulate the parallel environment and
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support the virtual-to-physical architecture mapping. It functions under the control of the
network manager, which is responsible for allocating network resources, message
routing. detecting and resolving deadlock if any. The network also uses the global clock
mentioned before. In each quantum, all active packets that are not biocked are advanced
by one link. In addition, the network manager provides a well-defined network API
which makes the network reconfiguration easy. The following are the major configurable
data structures of the network API which will be used in the designing and

implementation of performance debugging tools:

e Network topology: the network architecture is defined by three global variables:
phyTopo (network type), phyTopoDim (network dimension). and phyDimSizes(]
(size of each dimension). Network manager uses these variables in message routing

and communication cost computation.

e Network type: currently CPSS can simulate both wormhole-routed network and
packet switching network. The network type is defined by a global variable called
networkType and it tells the network manager what type of network it should

simulate in message routing.

¢ Network communication parameters: for wormhole-routed network, all
communication parameters are defined in a global variable of structure para.
Network manager uses parameters in this structure to navigate the messages and

calculate the communication cost.
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e Timing system: the network module uses the same global clock as we describe
before. It also defines a Basic Communication Delay, which is the basic time to
communicate a message packet between two processors with a direct physical

communication link.
Implementation of Network Configuration Tools

From the data structures of network API described above, we identified the following
network parameters which may affect the program performance and implemented
corresponding tools to enable the user to re-configure the corresponding parameters. The

rationale for requiring these tools are also described.

e Netwwork topology: network topology affects the connectivity between network
nodes. which in turn affects the distance between nodes and the traffic contention in
the network. To study the effect of network topology on the performance, we
implemented the tool for changing network topology. This can be done by simply
providing users with the interface to change the value of the three global variables
that define a network topology: phyTopo (for network type). phyTopoDim (for

network dimension) and phyDimSizes[] (for size of each dimension).

e Network type: because of the existence of different routing techniques used in the
world of parallel computer, CPSS supports multiple network types to accommodate
the user applications, at the same time, provides the performance statistics to
evaluate the pros and cons of different network types for different types of

applications. We implemented a tool to allow users to specify the network type
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before execution of the application program or change network type during program
execution. This can be done by providing users with the interface to change the

value of the global variable networkType.

Number of virtual channels per link: a virtual channel is a logical link between two
adjacent nodes. Multiple virtual channels can be multiplexed on one physical link.
This parameter affects the communication performance in a way that having more
virtual channels enhances network throughput but increases the routing latency. This
parameter is defined as a field in the global variable of structure para as
nbrLanesPerLink. To study the effect of this parameter on the performance. we
implemented a Display and Change function by providing a user interface to display

or change the value of para->nbrLanesPerLink.

Flit size: in wormhole-routed networks. flit is the smallest unit of information for
transmission. Small flit size helps to reduce network latency. However, If the flit
size is too small. flit overheads may overweigh the benefits of wormhole routing
[13]. Other factors deciding the choice of flit size include network size, routing
scheme, link bandwidth, and router design [14]. This is a parameter defined as a
field in the global variable of structure para as flitSize_B. To study the effect of this
parameter on the performance, we implemented a Display and Change function by
providing a user interface to display or change the value of field flitSize_B of

structure para.

Packet size: a packet is the basic unit carrying the address of the destination node for

routing purpose. Factors influencing the choice of packet size include the routing
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scheme, link bandwidth, router design. and network traffic intensity [14]. This is a

parameter defined as a field in the global variable of structure para as packSize_B.
To study the effect of this parameter on the performance, we implemented a Display
and Change function by providing a user interface to display or change the value of

field packSize_B of structure para.

Virtual channel buffer size: each virtual channei is associated with a buffer. Larger
buffer size may improve network performance [13][15]. but buffer size equal to
packet size will effectively reduce the benefit of wormhole routing to that of packet
switching. Increasing buffer size can also help to support large networks when the
flit length is not long enough to carry node addresses. This is a parameter defined as
a field in the global variable of structure para as buffSize_F. To study the effect of
this parameter on the performance, we implemented a Display and Change function
by providing a user interface to display or change the value of field buffSize_F of

structure para.

Message initialization cost: the startup cost of a message is primarily due to message
and packet initialization overheads and buffer management. A message is first
divided into packets which are initialized with the destination address. the sequence
number and other routing information. Every packet is then buffered until the
network port is available, and the packet is injected into the network. There are two
parameters defined in para: msglnitCost and packlnitCost, which stand for
message initialization cost and packet initialization cost respectively. To study the

effect of the message startup cost on the performance, we implemented a Display
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and Change function by providing a user interface to display or change the value of

field msginitCost or packlnitCost of structure para.

Header and other flit speed ratio: the ratio between header flit speed and data flit
speed. The latency for a flit to move from one node to the next node on the path
differs between a header flit and a data flit, because in addition to the normal latency
for a data flit. header flits incur router decision time and virtual channel allocation
time. The ratio between the header flilt speed and data flit speed affects the overall
network performance. This is a parameter defined as a field in the global vanable
structure para as headOtherFlitSpeedRatio. To study the effect of this parameter
on the performance, we implemented a Display and Change function by providing a
user interface to display or change the value of field headOtherFlitSpeedRatio of

structure para.

Basic communication delay: this is the basic time to communicate a message flit (or
packet) between two processors with a direct physical communication link. The
effect of the basic communication delay on performance varies between a
computation-bound program and a communication-bound program. By saying a
computation-bound program, we mean a program which spends much more time on
local computation than inter-processor communication. On the contrary, a
communication-bound program spends a significant amount of time in inter-
processor communication. CPSS defines a global variable linkDelay to be used in

communication cost evaluation. To study the effect of the basic communication
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delay on the performance, we implemented a Change function by providing a user

interface to change the value of linkDelay.

Communication congestion: in packet switching network, basic communication
delay is adequate to reflect the communication delay when the message traffic is low
enough that there is no interference between messages that might result in
congestion delay. Some programs have more frequent communication that travels
longer paths in the network, resulting in the potential of message congestion and
communication delay. CPSS defines a global variable congestionOn to signal the
calculation of the communication delay. We implemented a function so that user can
have the option to either turn the congestion on or off for two reasons. First, it gives
the opportunity to determine if there is any performance degradation resulting from
congestion in the communication network. Second, the detailed simulation of
message flow in the network is very time consuming. and therefore may
significantly increase the program simulation time. For programs that do not suffer
from congestion problems. the user can tumn this option off to make the simulation

run more quickly.

4.2.3 Varying Processor Speed

The simulator can reproduce multiple executions of a non-deterministic application. This

is particularly useful for applications whose behavior is considerably different from one

run to another depending on the output of race conditions.

In CPPE, multiple executions are implemented by varying the relative processor

speed. Race conditions can be created by the variation of relative processor speeds. For
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example. by changing the relative processor speeds, the order of sending two messages
from two distinct nodes may be reversed. If the two messages compete for the same
physical link, the sending order would decide which message will get the link first.

At run time, users will be asked to provide an integer Random Number Seed,
which will be used to create a random number r, between 0 and 1 for each physical
processor { that will be used to increase the specd by a factor of I/r,. This randomly
selected speed factor for each processor will remain in effect throughout the subsequent

program execution.

4.2.4 Program Mapping

Functionality

In CPPE parallel programmers usually write an application using an architecture most
natural and efficient to program performance. This is called virtual architecture
programming, with the architecture referred to as virtual architecture and its processors as
virtual processors. Virtual architecture programming improves the programmability of
message-passing applications, however, the topology and size of the physical machine
may not match that of the virtual architecture. Processors that constitute the physical
machine are physical processors. At run time, virtual architecture will be mapped to the
available physical architecture, and the performance of a parallel program is really
calculated based on the physical architecture. The objectives of mapping are to minimize
communication cost among communicating processes, and to balance the workload
among physical processors. The performance debugger provides a library of different

types of mapping, which currently supports the Default mapping, Identity mapping,
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Random mapping, Ring-to-Line mapping, Torus-to-Mesh mapping and User-defined

mapping.

Data Structures

A global variable curMapping is used for the user to specify the desired mapping type,
and a virtual-to-physical mapping table, virPhyMapTab. which is implemented as an
array. is use to store the data that defines the specific mapping function. In CPSS.
simulation of program execution utilizes absolute IDs for processors so that simulation
routines are generic and can be used for all types of topology. In the mapping table, we
use the index of virPhyMapTab as the virtual processor ID. and the indexed value of

virPhyMapTab as the physical processor ID.

Implementation

There are two levels of program mapping in CPSS. The first level is the mapping from
processes to virtual processors. The second level is the mapping from virtual processors

to physical processors.

e Process-to-virtual-architecture mapping: this is usually accomplished in the
application program. Often in the application program the user specifies the ID of the

virtual processor on which a process will run.

If the user does not provide a virtual processor for a new process, at run time the
process is mapped directly to a physical processor, bypassing the virtual processor

level. The physical processor allocated to the new process is determined by a default
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processor allocation algorithm which is implemented in CPSS. The default allocation

criterion is to balance the work load among existing physical processors.

e Virtual-to-physical-architecture mapping: in CPSS, simulation of program execution
utilizes absolute IDs for processors, so the mapping is accomplished by mapping the
virtual processor ID to a physical processor [D. A virtual-to-physical mapping table
(virPhyMapTab) is used to store the mapping function. with the index of
virPhyMapTab being the virtual processor ID. and the indexed value of
virPhyMapTab being the physical processor ID. The physical processor ID will be
used to match the actual physical processor in the physical processor table

(phyProsorTable). See Figure 14.

Default processor allocation algorithm

mapping P <«
function m

Application ; virtual P phyProsorID \\

process processor

(virProsoriD) Py
virtual-to-physical table of
mapping table physical processors

(virPhyMapTab) (phyProsorTable)

Figure 14 : Mapping of a process to a virtual processor then to a physical processor



Effectively, a process-to-physical-processor table can be derived from the process
to virtual processor mapping and the virtual processor to physical processor mapping so
that each parallel process will be allocated to run on an appropriate physical processor
based on this table. Table 2 shows a sample mapping from parallel processes to physical
processors. In this example. every two successive parallel processes are linearly mapped

to one physical processor.

| Parallel process D | 1 2 3 4 5 16 7 8

| Virtual processor ID | 1 2 7 3 | 6 4 5
Process to virtual processor mapping

Virtual processor [D 2 3 | 4 I'5 6 7 8

Physical processor ID | 1 1 2 | 2 |3 3 4 4

i Parallel process ID 1

1)
W
4
o]u
o)
o]

Foy
[
&

| Physical processor ID | |

Process to physical processor mapping

Table 2: Process-to-physical-processor mapping

The performance debugger provides a library of different types of virtual-to-
physical mapping. The design strategy of mapping functions is to maximize the
resemblance between a virtual architecture and an available physical architecture in terms
of their communication behavior, so that the advantage of a particular virtual architecture

for an application program, such as the minimized communication cost between
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communicating processes and balanced work load between processors. can be carried
over to the available physical architecture. Currently the library supports six types of

mapping with algorithm for each type of mapping described as following.

1. Identity Mapping

A virtual processor ID is mapped to a physical processor with the same ID. This can
happen only when the total number of physical processors is equal to or more than the

total number of virtual processors. The algorithm in C language is shown in Figure 15.

int virabsId; // virtual processor absolute ID
int nbrVirProsors; // total number of virtual processors
int nbrPhyProsors; // total number of physical processors
if (nbrVirProsors <= nbrxrPhyProsors)
for (virabsId = 0; virAbksId < nbrVirProsors; vVirAbsId++)
virPhyMapTab{virabsId] = vir2bsId;

Figure 15 : Algorithm for Identity mapping in C

2. Random Mapping

Random mapping is simulated by mapping a virtual processor ID number to a physical
processor ID number that is randomliy produced by the host machine. We can first make
an identity mapping as described above. Then we swap the entries in the mapping table
randomly using the system function rand(). Random mapping is also supported only
when the number of physical processors is equal or greater than the number of virtual

processors. The algorithm in C language is shown in Figure 16.
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if (nbrvVirProsors <= nbrPhyProsors) {
for (virAbsId = 0; viraAbsid < nbrVirProsors; vir2bsId++)
virPhyMapTab[virAbsId] = virabsId;
for (virAbsId = nbrVirProsors-1; virabsIid > 2;
viradbsId--)
swap (virPhyMapTab[virabsId],
virPhyMapTab( (rand() % (virabsId-1)) + 11);

Figure 16 : Algorithm for Random mapping in C

3. Default Mapping

In default mapping, if the number of the virtual processors is not greater than the number
of physical processors, the mapping uses the same algorithm as the identity mapping.
Otherwise. virtual processors are linearly divided into blocks. with the block number
equals to the number of physical processors. Each block of virtual processors is mapped
to the corresponding physical processors. If the number of virtual processors is a
multiple of the number of physical processors. each physical processor gets the same
amount of virtual processors mapped to itself. Otherwise, the first several physical
processors get one more virtual processor, while the other physical processors get the

default amount of virtual processors. The algorithm in C language is shown in Figure 17.



// How many virtual processors are mapped to the same
// physical processor

blockSize = nbrVirProsors / nbrPhyProsors;

// how many virtual processors are left over

remains = nbrVirProsors % nbrPhyProsors;
if (nbrVirProsors <= nbrPhyProsors) // Identity Mapping
for (virabsId = 0; virAbsId < nbrVirProsors; virAbsId++)
virPhyMapTab{virabsId] = virabsId;
else if (remains == 0) {
// Linear Group Mapping
virProsorNbr = 0;
for (phyProsorNbr=0; phyProsorNbr<nbrPhyProsors;
phyProsoxrNbr++)
for (i = 0; 1 < blockSize; i++)
virPhyMapTab [virProsorNbr++] = phy?rosorNbr;
}
else { // remains !'= 0 && remains < nbrPhyProsors
// Linear Group Mapping
virProsorNbr = 0O;

blockSize += 1;
// first physical processors get one more virtual
// processor
for (phyProsorNbr = 0; phyProsorNbr < remains;
phyProsorNbr++)
or (i = 0; i < blockSize; i++)
virPhyMapTab[virProsorNbr++] = phyProsorNbr;
plockSize -= 1;
// others get the default number of virtual processors
for (; phyProsorNbr < nbrPhyProsors; phyProsorNbr++)
for (i = 0; i < blockSize; i++)
virPhyMapTab([virProsorNbr++] = phyProsorNbr;

rh

Figure 17 : Algorithm for Default mapping in C

4. Ring-to-Line Mapping

This type of mapping is to map a virtual architecture of Ring to a physical architecture of
Line, and it is supported when the number of virtual processors equals to the number of

physical processors. For a Ring architecture. the maximum distance between two
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processors in terms of hops is half the total number of processors n. While for a Line
architecture, the distance between processors linearly increases with the process number.
We developed a jump() function to map the virtual processor to the physical processor in
a way that distance between any two neighboring virtual processors is at most 2. The

algonithm is shown in Figure 18:

int jump(int x, int n) {
1 (x<=((n-1)/2))
return 2*xX;
else
return 2*(n-x)-1;

}
void setRingMap () (
int i;
for (i = 0; i<nbrVirProsors; i++)
virPhyMapTabl[i] = jump(i, nbr2hyProsors) ;

[

Figure 18 : Algorithm for Ring-to-Line Mapping in C

As an example for total number of virtual processor of 8. the effective result of Ring-to-

Ling mapping is shown in Table 3:

Virtual Processor [D 0 1

W
~ |4
U
W

39
9
o)}

Physical processor ID | O

Table 3 : Ring-to-Line mapping

5. 2D Torus-to-Mesh Mapping
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This type of mapping is to map a virtual architecture of 2D Torus to a physical
architecture of 2D Mesh, and it is supported only when the number of virtual processors
equals to the number of physical processors in both dimensions. Figure 19 shows a

sample two-dimensional Torus and Mesh topology:

\ 4
4—. 3 S——
2D Mesh (4 x 4) 2D Torus (4 x 4)

Figure 19 : Mesh and Torus topology

,
-

A Torus topology can be viewed as connecting the two ends of each dimension of
a Mesh topology, just as a Ring topology can be viewed as connecting two ends of a Line
topology. Therefore the basic algorithm for the Ring-to-Line mapping is also applied to
the Torus-to-Mesh mapping, except that in Torus-to-Mesh mapping. Cartesian ID is used
to describe the relative position in a multi-dimensional topology.

We first transform the virtual absolute processor ID (virAbsiD) into virtual
Cartesian ID (virCartiD) by calling the function cart_ID(). In function cart_ID() the
“row-major ordering” algorithm is used to transform an integer absolute ID into a
Cartesian ID which is a multi-dimensional Cartesian coordinator. Then for each
dimension i of the virtual Cartesian ID (virCartiD[i]), we use the same jump() function as

in the Ring-to-Line mapping to map it to a physical Cartesian ID (phyCartiD(i}). Finally
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the physical Cartesian ID is transformed to a physical absolute processor ID (phyAbsID)
by calling function abs_id() that also uses the “row-major ordering” algorithm to
transform a Cartesian coordinator to an integer absolute ID. The detailed algorithm is

shown in Figure 20:
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void cart_ID( enum ArchType topology, int topoDim,

int dimSizes{], int abs_id, int cart_idl[]

int i;
switch (topology) (
case TORUS:

for (i = topoDim; i > 0; i--) {
cart_id[i] = abs_id % dimSizes[i];
abs_id /= dimSizes({i];

}

break;

case OTHER TOPOLOGY

default:
printf("cart_ID: invalid topology\n"):;
exit(-1);

}
} // cart_ID

int abs_ID( enum ArchType topology, int topoDim,
int dimSizes{], int cart_id[] )} {
int i, abs_id;
abs_id = cart_id(1l]; // first coordinate
for (i = 2; 1 <= topoDim; i++)
abs_id = abs_id * dimSizes([i] =+ cart_id[i];
return abs_id;
} // abs_ID

void setTorusMap () ({

int virAbsID, 1i;

for (virAbsID = 0; viraAbsID < nbrVirProsors;
virAbsID++) {

cart_ID(virTopo, virTopoDim, virDimSizes, virAbsID,

virCartId) ;
for (i=1; i<=virTopoDim; i++)
phyCartId{i] = jump(virCartId[i],

phyDimSizes([i});
virPhyMapTab ([virAbsID] = abs_ID(phyTopo,
phyTopoDim, phyDimSizes, phyCartId);

Figure 20 :Algorithm for Torus-to-Mesh mapping in C
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6. User-defined Mapping

This function enables user to declare virtual-to-physical mapping after loading the vCode
file and before each execution. User specify a custom mapping function interactively by
entering a mapping function string via the debugger’s dialog box. which is processed by
lex and yacc facilities to map the virtual processors to physical processors.

As an example, a one-to-one mapping from a two-dimensional torus to a two-

dimensional mesh can be translated as following:

torusZmesh(x, y) = [x<=(#1-1)/2 2?2 2*x : 2*(#1-x)-1,

y<=(#2-1)/2 2 2*y : 2*(#2-y)-1].

“ dimension of the virtual architecture, and the pair (x,

where #n denotes the size of the n
v) denotes the Cartesian coordinate of the virtual processor in the virtual architecture. The
square brackets enclose the right-hand side of the mapping function. The pair of values
inside the square brackets denotes the Cartesian coordinate of the physical processor in
the physical architecture. The final dot is used to signal the end of the mapping string so
that users can break the map string in several lines during inputting.

A many-to-one mapping from a two-dimensional torus to a two-dimensional

mesh can be expressed as follwoing:

torusZ2mesh(x,y)=
[x<=(#1-1)/2 2 (2*x)/(#1/S1):(2*(#1-x)-1)/(#1/s1),
y<=(#2-1)/2 2 (2*y)/(#2/$2): (2* (#2~-y)-1)/(#2/$2)1].
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where $n denotes the size of the n™ dimension in the physical architecture. The
denominator (#i/$i) in the physical Cartesian coordinate provides the effect of block
cyclic mapping.

In general, a mapping function string has the following format:

mapfunction(x,, %, ..., x) = [y., Y., --., v.].

k-

where m 1s the dimensionality of the virtual architecture. (x;. Xa. .... X,) is the Cartesian
coordinate of the virtual processor in the virtual architecture. n is the dimensionality of
the physical architecture, (¥, v2, .... va)is the Cartesian coordinate of the physical
processor in the physical architecture. and y; is a function of the virtual Cartesian
coordinate and the sizes of each dimension in the virtual and physical architectures. In

other words, v; can be expressed as following:

y; = f;(X._,X._.,...,X, Yfl, T?2, v e o g #ml Sll $21 - o e Sn)

All basic mathematical operations and relations in C are supported. Conditional statement

can be expressed using the ? : operator.

4.2.5 Performance Statistics

Functionality

The ultimate goal of parallel computing is to reduce the total execution time,
which can be evaluated by the speedup by parallel computing compared with sequential
computing. Due to the complexity of parallel computing, parallel programmers usually

need more information about the execution process in addition to the final result of
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speedup in order to better understand the behavior of the program. We identified some
important performance statistics and implemented corresponding tools for users to get
these data.

Basically we defined two types of performance statistics in CPSS. The first type is
the run-time data which can be examined at any execution suspension point. These data
can provide information about the program performance in a specific aspect and within a
specific period of time during execution, such as the parallel speedup since last
breakpoint and the usage of a specific processor since last profile. This helps the user to
monitor the performance during various phases of the program execution. Users can
concentrate on the performance of localized segments of the parallel programs. For
example. it can be used to remove the effects of data initialization from the overall
performance statistics. For the run-time data, we designed three tools to be used when
program execution is suspended: Time, Utilization and Profile.

The second type is the final performance statistics provided at the end of program
execution. These data provide the overall performance statistics of the program. such as
the overall speedup of the program by parallel execution. For the second type, the final
performance statistics are provided at the end of program execution following the

rogram output.
prog p

Data Structures

All performance data are based on the timing system described before. When CPSS
executes the vCode instruction, it uses an estimated execution time for each vCode

instruction and keeps a running total of the execution time of the program. The number of
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time units charged for each vCode instruction varies depending on the relative

complexity of the instruction. We implemented into CPSS the following data structures

that will be used to produce the performance statistics:

globaiClock and seqTime: the running total of the execution time of the program
distinguishes between parallel execution time and sequential execution time. The
global variable globalClock in CPSS we described before stands for the parallel
execution time. because it increments only after all physical processors have been
scheduled to run for a time quantum. CPSS uses another global variable seqTime to
record the total execution time if the program is executed in a sequential mode. Each
parallel process has a flag in its PCB to indicate whether the current vCode
instruction is parallel-execution specific or not. seqTime increments as long as the

current vCode instruction is not parallel-execution specific.

prevParaTime and prevSeqTime: when program execution resumes from a
breakpoint, we record the current globalClock time and seqTime as the
prevParaTime and prevSeqTime respectively. This allows us to get the

performance statistics within the time window of two consecutive breakpoints.

nbrUsedProcessors: this stands for the number of actually used physical
processors. In CPPE, users can specify the process-to-virtual-processor mapping and
virtual-to-physical-architecture mapping. If user does not specify such mapping, at
run time, the application processes will be mapped to physical processors by a default

processor allocation algorithm. The default allocation criteria is to balance the work
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load among existing physical processors. In either case. the actual number of physical

processors used will be recorded by the global variable nbrUsedProcessors.

phyProsorTable: information required to simulate a physical processor is stored in a
structure called physical processor descriptor. phyProsorTable is used to store the
physical processor descriptors of all available processors in the parallel computer
system. Some information we stored in the physical processor descriptor that are
related to performance evaluation include virTime. the virtual processor running time
since the beginning; profileTime, the virtual processor running time since last profile;
virTimeLastBreak, the virtual processor running time since the last breakpoint.
These information reflect the usage of a particular physical processor for a certain

period of time, which will be used in the implementation of the profile function.

Implementation of Time Function

Time function is used to examine the run time performance when the program execution

is suspended. User can first set two source lines as breakpoints and then examine the

performance between these two source lines. This is useful for focusing attention on the

performance of localized segments of the program. In this function, we display the

following information to the user upon invoking the Time function, using the values of

the variables we described above:

Elapsed time since the beginning: this is the time of the variable globalClock, which

is the elapsed parallel time since the beginning of the program.



* Elapsed time since last breakpoint: this is the elapsed parallel time since the last

breakpoint. The value is (globalClock — prevParaTime).

e Parallel speedup since the beginning: the parallel speedup is reflected by the ratio
between execution time in sequential mode and the execution time in parallel mode
(SequentialTime/ParallelTime). The speedup since the beginning can be calculated by

seqTime/globalClock. This is an approximation of the theoretical speedup.

» Parallel speedup since last breakpoint: this is the ratio between the elapsed sequential
time (seqTime — prevSeqTime) since the last breakpoint and the elapsed parallel

time since last breakpoint (globalClock — prevParaTime).

e Number of processors used: the number of physical processors used up to this

breakpoint is stored in the variable nbrUsedProcessors.
Implementation of Utilization Function

Utilization is used to measure how efficiently a program uses a particular parallel
architecture. The measurement is based on the utilization of each physical processor
defined as the proportion of the time the processor is actually running. User can use this
function when the program execution is suspended to get a table of utilization
information of the specified range of processors up to that point in the execution. The

utilization information we displayed include:

e Utilization since the beginning: the actual running time of each processor since the

beginning is recorded in the physical processor descriptor by the variable virTime.
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When a process is scheduled to run, its PCB has a field phyProcessor to specify
the physical processor ID the process is running on based on the user specified
mappings or the default processor allocation algorithm described before. Whenever
a process executes on this physical processor. this physical processor’s virTime
increments by the amount of the corresponding instruction cycles, see Figure 21.
The utilization of a processor i is the percentage of its virTime against the

globalClock (phyProscrTable[i].virTime/globalClock*100).

Utilization since last breakpoint: similarly. the utilization of a processor i since last
breakpoint is the percentage of its actual running time since last breakpoint
(phyProsorTable[i].virTimeLastBreak) against the elapsed parallel time since last
breakpoint (globalClock — prevParaTime). The variable virTimeLastBreak
increments in the same way as virTime does (Figure 21), except that it is set to zero

every time the program resumes execution from a breakpoint.

virTime

virTimeLastBreak

Pi
phyProcessor / profileTime

p. v =2 "
Pl ------ pl ------
List of PCB PCB of process 2 Table of physical Physical processor

processors descriptor

Figure 21 : Data structure related to Physical Processor Descriptor
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We provide a user interface that allows the user to specify the range of processors

displayed in this function.

Implementation of Profile Function

This is a function that creates a visual performance profile, that will help the user to
understand the program performance at a glance. Figure 22 is a typical example of a
performance profile. showing the physical processor utilization during successive time

intervals of program execution.
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Figure 22 : Performance profile of a parallel program
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The program starts at time 0. The physical processor numbers are given
horizontally across the display. Time advances vertically down the display from top to
bottom. In this case, each successive line of the display represents a time interval of
duration of 20 time units. The marks indicate the processor utilization during each time
interval: “**”" indicates 75-100 percent utilization, “+” indicates 50-75 percent utilization,
“-" indicates 25-50 percent utilization. and " indicates 0-235 percent utilization. To
improve readability, a time stamp is inserted after certain amount of time (in this case
200) has elapsed.

Utilization of a processor i in the performance profile is the percentage of its
actual running time (phyProsorTable[i].profileTime) during a user specified time
interval in the profile (profileStep). The variable profileTime increments in the way as
virTime does (Figure 21), except that it is set to zero every time after profile is reported
for the latest time interval. Profile is generated from the function execute() in the Code
Execution Module. execute() uses another timer profileReportTime to keep track of the
next profile reporting time, which is the globalClock of the last profile reporting time
plus the user specified time interval (globalClock + profileStep). When the
globalClock exceeds the profileReportTime, the execute() generates a new line for the
profile for the latest time interval.

We provide a user interface that allows the user to specify the time interval and

the range of physical processors in the profile.

Overall Performance Statistics
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Overall performance statistics is provided at the end of the program execution. It is the
overall performance evaluation in the current execution environment, taking into account
all performance affecting factors we reviewed in Chapter 2. The most important data that
we concern is the speedup gained from parallel computing compared with the sequential
computing. The other concem is the resource requirement, which is the number of
physical processors used. In a simulation environment. user may also be interested in the
actual time needed to run the application in the parallel computer simulator.

The overall speedup can be evaluated by the ratio between the execution time in
sequential mode, which is the seqTime. and the execution time in parallel mode, which
is the globalClock. The number of physical processors used is recorded in the variable
nbrUsedProcessors. The actual execution time of the application program is the actual

machine time on which the simulator is running on.
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Chapter 5

Graphical User Interface

A graphical user interface (GUI) is used to integrate the major components in CPPE
(CPCC and CPSS) into a unified and user-friendly parallel programming environment.
Through interaction with the GUI. user can accomplish the whole development process
from source code editing, to compile, debugging. execution. and performance profiling.
The design goal of the GUI is to make program developing and debugging easy for the
parallel application programmers. at the same time the GUI can be easily configured to

run in different environment and on different platforms.
5.1 Design Objectives

The most important objectives of the design of the CPPE GUI are as follows:

¢ Unified CPPE development environment: The major components in CPPE include
CPC, CPCC and CPSS. CPC is the language for writing parallel application
programs, while CPCC and CPSS are two independent components for compile and
execution respectively. Plus the source code editing, user needs three separate
executables in the whole developing process. The GUI design should accomplish a

unified developing environment so that the user can configure and launch the CPPE
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in one shot. All user activities involved in the developing process can be done

through this GUI.

® User friendliness: Due to the complexity of parallel programming and multiple
dimensionality of parallel performance, the GUI design should make the use of
different debugging tools easy. and make the understanding and analysis of the

program outputs and performance statistics easy.

e Easy configuration: Different environment and different user requirements can be
satisfied by easy configuration without modifying the GUI source code. The GUI
design should reduce or eliminate hard coding of environment setting and resource

requirement. making adaptation as easy as possible.

e Muluple platform: CPPE is intended to be used in different teaching and researching
environments with different platforms, most likely the UNIX workstation platform
and the Windows PC platform. The GUI design should reduce the modification of the
“engine” part of CPPE (CPCC and CPSS) and restrict the platform-specific code to

the interface itself.

The stated objectives above are realized in the design and implementation of the GUI for

both UNIX and Windows platforms.

5.2 Approaches to Realize the Design Objectives

5.2.1 Unified CPPE Development Environment



The GUI for both UNIX and Windows platforms share a common design objective and
implementation strategy, which is to provide a unified parallel programming
environment. CPPE needs three major functions to be a complete development
environment: source file editing function, compile of the application programs written in
CPC, simulation of parallel system and program execution. Considering that both UNIX
and Windows platforms have powerful text editors coming with the operating system. we
do not provide integrated text editing function in CPPE. Instead, user can use text editor
outside CPPE in order to achieve best editing result. However, we provide user the option
to either use the editor outside the CPPE environment or invoke the editor from within
the CPPE interface. We can invoke an editor executable. such as emacs in the UNIX
platform or notepad in the Windows platform, from an interface button or menu item
and put it into background execution mode. In that case. the CPPE and the editor can run
concurrently.

The compile function in CPPE is provided by CPCC. If used from command line.
CPCC is an independent executable with its own command line input and console output.
To incorporate CPCC into the unified CPPE environment, we need to modify its main
function into a CPPE global function, which is called from an interface callback function.
A generic output function is needed to replace the original output function to display the
program output into a designated text widget in the CPPE GUI

CPSS is the parallel system simulator that includes the functionality of network
module, code execution module, and debugging monitor. When used from command line,
CPSS has an interpret function that accepts the user command and invokes the

corresponding functions from the network module, code execution module or debugging
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monitor. When incorporated into the unified CPPE, the interpret function of CPSS will
not be used. Instead, CPSS functions can be invoked from the callback functions of GUI
components. The same generic output function can be used to display the program output
into designated GUI components.

A main function is used to create the GUIL. Functions of CPCC and CPSS are all
registered with the callback functions of GUI components and invoked when

corresponding GUI components are activated upon user events.

5.2.2 User Friendliness

The objective of user friendliness is realized by easy access of the different CPPE
functionality from the GUI and the clear visualization of the program output, different
debugging information and performance statistics for performance analysis.

User can access the CPPE function from main menu, option menus and function
buttons. For the most frequently used functions. such as open a source file, compile a
source file. run a parallel program, we provide the function buttons directly on the main
frame. User can invoke a function by simply clicking the corresponding function button.
In the case that user needs to select an item from several predefined options, such as
selecting a physical parallel architecture, selecting a virtual-to-physical mapping pattern,
selecting a source file from previously opened source files, we provide the option menus
directly on the main frame. User can select an item by pulling and selecting from an
option menu. All other functions are categorized and distributed in the GUI main menu.

For clear visualization of the program output, we use different windows for the

different types of program display. The program output, debugging information and
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performance data are displayed in the main output window of the GUI. Source code List
function will open another window to display the source code. vCode List function also
open another window to display the vCode. Help function will open a window to display
the help information. All the windows are movable and resizable. so that user can easily
check program execution status against the source code and vCode. with the Help
window describing the functionality and significance of the debugging tools and program
result. The program output. debugging information and performance data displayed in the

GUI main output window can also be saved into a log file for further analysis.

5.2.3 Easy Configuration and Multi-Platform Support

CPPE configuration can be done through a configuration file. resource files and
environment variables without changing source code and recompile.

CPPE is intended to be used on any host machine that has a C compiler. Compile
conditional flags are used in the source code to adapt the simulator to different version of
C compiler and the simulator can be built with or without GUI. Without GUT, CPPE runs
in command-line mode with all debugging commands input from command line, which is
more difficult to use but is faster. Currently, the simulator can work on UNIX

workstations and PCs, with or without GUL

5.3 GUI for UNIX Platform

5.3.1 Main Function
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The GUI for UNIX workstation platform is developed using MOTIF-toolkit. A main
function is developed to create the GUI main frame with widgets designated for different
CPPE functionality. Each widget is associated with a callback function that in turn calls a
user defined function in CPCC or CPSS. The program starts with the initialization of the
GUI main frame. Then the main function enters an infinite loop to wait for the messages
received from the GUI widgets. Based on the xlib (X window system) and Xt intrinsics
(X toolkit library). MOTIF toolkit provides the functionality to create the loop. receive
the messages from the GUI widgets. and invoke the callback functions of the widgets,
that in turn invokes the corresponding CPCC and CPSS functionality.

Figure 23 illustrates the event-handling of a MOTTF application.
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Figure 23 : Event handling of a MOTIF application

5.3.2 Main Frame

Figure 24 shows a typical layout of the CPPE GUI on the UNIX platform. The
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window with the title CPPE is the main frame of the CPPE. The upper part of the main
frame provides the main menu, function buttons and option menu for user to invoke the
CPPE functions. The main output window in the main frame is the area that displays the
application execution result, debugging information and performance statistics. The

bottom of the main frame shows the current working path.
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Figure 24 : CPPE GUI on UNIX workstation platform
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The window with the title LIST is the source code listing window. User can
specify the starting and ending line numbers of the source code to be displayed. This
window can also be used to set source code breakpoints. There are two source code lists
in this window. The list in the upper part of the window is used to display the source code
with line number, called source list. and the list in the lower part of the window is used to
display the source lines of the breakpoints. called breakpoint list. User can set a
breakpoint by clicking on the desired source line in the source list. and this source line
will be listed in the breakpoint list. To clear a breakpoint, user can click the source line in

the breakpoint list. and this source line will be deleted from the breakpoint list.

5.3.3 Configuration

A resource file called CPPE is needed for the basic MOTIF resource specification for the
GUIL. A configuration file called cppe_motif.cfg is used to specify the basic features of
the GUI, such as the default input path, the current physical architecture and network
size, the current list of defined architectures, the current window size, etc. When CPPE is
launched, a specific class in CPPE will try to find this configuration file and use it to
initialize itself. An environment variable called XAPPLRESDIR is used to specify the
path for the resource file CPPE. Another environment variable called CPPE is used to

define the path to find the input .c and .h files in the compile and execution process.

5.3.4 Data Structures

The graphical user interface is an X application implemented as a widget hierarchy as

shown in Figure 25.
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Figure 25 : Application widget hierarchy in CPPE GUI

Widget Hierarchy

The application first initializes the Xt Intrinsics, creates an application context to
be used by the rest of the application, and creates a top shell widget in the widget
hierarchy. The top shell widget contains an endless loop that waits for process events.
Under the top shell, there are several manager widgets which are able to contain and
manage their descendent widgets, which could be manager widgets or primitive widgets.

Each primitive widget has a registered callback function which is invoked upon user



events. User events are received as Xt Intrinsics messages and are passed along the

widget hierarchy towards the top shell until it is handled.

Main Frame Bulletin Board

This is the main frame of the CPPE GUI. On top of it we have built the main output
window and the menus. The main output window is used to display program output and
debugging information. The contents of the output window can be saved to a log file. To
make the GUI user-friendly. we designed three kinds of menu: function button, option
menu and main menu bar. Function buttons can be used to invoke those most frequently
used functions in CPPE such as Open a source file, Compile and Execute. An option
menu enables user to make a choice from some predefined options. The menu bar

provides the comprehensive menu for CPPE functionality.

Popup Shell

Popup shell is initially created as a hidden shell. Unless it is explicitly popped up by the
program. it will be invisible upon the start of the program. Popup shell has the ability of
other manager widgets in terms of containing and managing descent widgets. In our
program, we have three popup shells which are used for listing source code, listing vCode

and displaying help information respectively.

Primitive Widgets

Primitive widgets are the graphical interface components that directly interact with user.

Each primitive widget has a registered callback function which will be invoked upon user



events such as mouse clicking. The widget callback function serves as a container of
CPCC or CPSS functions so that user can call CPCC or CPSS functions through the
graphical interface. Callback function also updates the graphical interface accordingly

based on the system execution status of CPPE.

5.4 GUI for Windows Platform

5.4.1 Main Frame

The GUI for the Windows PC platform is developed with MS-MFC. MS-MFC evolves
with the Windows operating system so that it provides the most advanced graphical
features in the GUI design. In addition, MFC provides an object-oriented development
environment. with well defined graphic objects and hierarchical relations between
graphic objects. This makes the application program easy to maintain and evolve in the
future. With the evolution of MFC. we can continuously employ new features to enhance
the graphical functionality of the CPPE.

Figure 26 shows a typical layout of the CPPE GUI on the Windows platform,
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Figure 26 : Main frame of CPPE on Windows platform

5.4.2 Configuration

Same as the UNIX version, CPPE configuration can be done through configuration files
and environment variables without changing source code and recompile. A configuration
file called cppe_win.cfg is used to specify the basic features of the GUI. A specific class
is developed to read this configuration file and define the GUI features. CPPE is used to
define the path to find the input .c and .h files in the compile and execution process. On a
PC platform, we can also define environment variables in the system’s autoexec batch
file. The following example shows how to define the environment variables CPPE in file

autoexec.bat:



set CPPE=, ;d:\cppe98\test

5.4.3 Data Structures

The CPPE GUI are constructed from a few application classes that are inherited from
appropriate MFC base classes. Figure 27 shows the major application classes and their

relationship.
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Figure 27 : Major classes and their relationship in CPPE GUI
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CWinCPPEApp (file winCPPE.h, winCPPE.cpp)

This is the application object based on the CWinApp class in MFC. It is the heart of an
MEFC application program. since CWinApp provides member functions for initializing
the application program. CWinApp also provides function that can be overridden to
customize the application program’s behavior. CWIiNnCPPEApPp overrides the function
Initinstance() inherited from CWinApp to initialize the CPPE application, including the
creation of the application window, and the initialization for CPSS. Initinstance() creates
the application window by instantiating classes CMainFrame, CWinCPPEDoc and
CWinCPPEView, and the functionality of these classes are introduced in the following
paragraphs.

The application object of CWINCPPEApp is declared with global scope so that it

will be instantiated in memory at the very outset of the program.

CMainFrame (file MainFrm.h. MainFrm.cpp)

This application class is inherited from the MFC’s class CFrameWnd. CFrameWnd
provides functions that models basic features of a window frame. CMainFrame
overrides the function OnCreate() inherited from CFrameWnd to customize the
window’s “look’ and behavior for CPPE.

The window provides mainly two types of interface components for user
interaction: a menu bar and a debugging dialog bar. The behavior of the window is
implemented by message mapping, MFC’s way of relating user’s input from the interface

to the application’s internal functionality. Each menu item or button in the debugging



dialog bar is associated with a message type, which will invoke a CPPE function
registered with this type of message. Menu bar is implemented in an application
program’s resource file winCPPE.rc. The debugging dialog bar is implemented by

another class CDebugDialozBar.

CDebugDialogBar (file DebugDialogBar.h, DebugDialogBar.cpp)

This class is derived from the MFC’s class CDialogBar. The CDialogBar class provides
the functionality of a Windows modeless dialog box in a control bar. A dialog bar
resembles a dialog box in that it contains standard Windows controls. Our debug dialog
bar is used to provide function buttons for the debugging tools in CPPE. Each button is
related to a message type which will be mapped to a debugging function in CPPE. User

can use most of the debugging tools from the debug dialog bar.

CWinCPPEDoc (winCPPEDoc.h, winCPPEDoc.cpp)

This class is derived from the MFC’s class CDocumnet. MFC's document class provides
a template to store the application’s data, a visible representation of what appears in the
GUL. It also provides public member functions that other objects can use to query and

modify its data.

CWinCPPEView (winCPPEView.h, winCPPEView.cpp)

This class is derived from the MFC’s class CEditView. MFC’s view class offers two

major functions: to render visual representation of a document’s data on the screen, and
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to translate the user’s input into messages that will operate on the document’s data or

invoke other application functionality such as the functions of CPCC or CPSS.



Chapter 6

Example Applications of Debugging Tools

The effectiveness of the debugging tools is demonstrated by actually running some
parallel application programs and analyzing the debugging output and performance
statistics. The performance debugging tools allow us to effectively simulate different
parallel topologies. communication parameters, and virtual-to-physical-architecture
mappings. Based on the study of the performance affecting factors in parallel computing
reviewed in Chapter 2, we can evaluate the effectiveness of our debugging tools. remedy
the defects and recommend enhancement for our future work.

The matrix multiplication program (Figure 28) is presented here to illustrate the
application of performance debugging tools in the process of parallel program
development. In this program. the user specifies the virtual architecture as a 2D torus and
the physical architecture as a 2D mesh. However. the simulator can override the physical
architecture using the debugging tool we developed before starting execution, without
recompiling the application program. The program first initializes two 2D arrays. In order
to eliminate the effect of the sequential initialization cost on the overall performance, we
use a function timeOff() to turn off the global clock for the phase of array initialization.
We then turn on the global clock and start the phase of parallel computing. In this way,
the performance statistics can truly reflect the performance of parallel execution. The

forall statement in function pMultify() has three parts. The first part indicates the lower
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and upper bounds of the indices. The second part indicates the absolute virtual processor
ID on which the process is spawned, and its associated channel variables. The last part is

the function to be invoked.



finclude "cpc.h"
#define n 8

arch torus T[n][n];
onyArch mesh L[n][n];
cnannel float Achan([n] [n], Bchan([n]inl];

void main() {
float aln][n], binl(n], clnlnl:;
int i, 3;

timeOff () ;
for (1i=0; i<n; i++)
for (j=0; Jj<n; j++)
afilf[j]l = rand{() *5;
for (i=0; i<n; i++)
for (j=0; Jj<n; j++)
b(i][j] = rand()*5;
timeOn{() ;
opMultify(a, b, c):

void pMultify(float &a[n]l[n], float &binlinl],
float &c[nlln]) {
inc i, j;
forall (i from 0 to n-1)
forall (j from 0 to n-1)
fork [i*n+j; Achan[i][j]., Bchan(i]([j}]]
multiply (i, j, alill(j+1i) % n],
b{(i+3J) % nl(3j]l., c[il(3]);

void multiply(int row, int col, float myA, float myB,
float &mainC) {

int iter, above, left;

float myC;
if (row>0) above = row - 1; // up neighbor
else above = n - 1;
i1f (col>0) left = col - 1; // left neighbor
else left =n - 1;
myC = 0;
for (iter=0; iter<n; iter++) {
Achan([row] [left] = myA;
// send myA in leftward rotation
Bchan[above] [col] = myB;

// send myB in upward rotation
myC += myA * myB;
myA Achan[row] [col]; // receive new my2
myB Bchan([row] [col]; // receive new myB

130



mainC

// Send final value to main process

The following sections demonstrate the application of performance debuggin

Figure 28 : Matrix multiplication on an 8x8 torus

tools in the study of the relationship between performance and performance affecting

factors.

6.1 Virtual-to-physical Mapping And Performance

g
=

Virtual Physical Mapping | SeqExe | ParExe Speedup
Topology Topology Time Time
8x8 Torus 8x8 Mesh Default 35816 3630 | 9.87
8x8 Torus 8x8 Mesh Identity 35816 | 3630 9.87
8x8 Torus 8x8 Mesh Random 35886 | 4910 | 7.31
8x8 Torus 8x8 Mesh Torus-to-Mesh | 35771 3490 | 10.25
. 16x16 Torus 16x16 Mesh Default 265766 | 14580 i 18.23
16x16 Torus 16x16 Mesh [dentity 265766 | 14580 | 18.23 |
16x16 Torus 16x16 Mesh Random 266471 | 23150 11.51 j
16x16 Torus 16x16 Mesh Torus-to-Mesh | 265971 | 14960 17.78 !

Table 4: Performance statistics for virtual-to-physical-architecture mapping

Table 4 is the performance statistics for different types of virtual-to-physical mapping,

using wormbhole routing.

¢ According to our design, when the number of virtual processors is equal to the

number of physical processors, the default mapping is effectively the same as the

identity mapping. This is verified by the execution results.
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* For a wormhole-routed parallel computer. although the network latency is no longer
affected by the distance, the link contention can still affect the communication
efficiency [24][26]. From the execution result. when the size of the network becomes
larger. the parallel speedup for the random mapping is significantly degraded
compared with the identity, default or Torus-to-Mesh mapping. where the link

contention is optimized because of the nature of the mapping.

6.2 Topology And Performance

Virtual Physical Mapping | SeqExe | ParExe | Speedup
Topology Topology Time Time
4x4 Tourse 4x4 Torus Default 5127 700 7.32
4x4 Tourse 4x4 Mesh Default 5135 1010 5.08
| 4x4 Tourse Ring [256] Default 5146 3820 1.35

Table 5: Performance statistics for topologies

Table 5 is the performance statistics for different parallel topologies, using wormhole
routing. If the physical topology is the same as the vinual topology, which is defined in
the application program as the optimized topology for the application, it will gain the
maximum benefit from parallel computing. showing the best parallel speedup. With the
physical topologies increasingly differentiate from the virtual topology, the parallel

speedup is degraded.

6.3 Communication Parameters And Performance



Virtual Physical Packet SeqExe | ParExe | Speedup
Topology Topology Size(bvtes) | Time Time
16xi6 Tourse | 16x16 Mesh 4 265766 | 14580 18.23
16x16 Tourse | 16x16 Mesh 8 266680 | 27560 | 9.68
16x16 Tourse | 16x16 Mesh 16 266845 | 44020 | 6.06

Table 6: Performance statistics for packet size

Table 6 is the performance statistics for different packet sizes, using wormhole routing.
For wormhole routing. the network latency is affected by the packet size. It is verified by

the execution results. with the parallel speedup degraded when the packet size increases.
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Chapter 7

Conclusion and Future Work

In this thesis. we presented the design and implementation of the Visual Performance
Debugger for CPPE. The Visual Performance Debugger aims to provide flexible and
efficient software tools for developing parallel applications and optimizing their
performance. It will be useful for the parallel application programmers to design.
implement. and test their programs to improve performance before working with the
actual parallel systems. Through practice with coding and testing parallel programs they
will develop a practical skill of isolating and removing performance bottlenecks that may
severely limit the parallelism achieved by the programs. Within the research community,
the visual performance debugger will be a helpful tool for the testing and analysis of new
algorithms in parallel computing and virtual-to-physical architecture mapping.

Bearing this objective in mind, we have conducted a comprehensive survey on the
practical sources of performance degradation both in inter-processor communication and
parallel computing. Existing simulation systems have also been studied to find out pros
and cons of their debugging features.

Our visual performance debugger makes the CPPE an excellent environment for
developing and fine-turning parallel programs due to the following advantageous

features:
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Flexibility: The debugger provides a rich set of correctness and performance
debugging tools. In addition to conventional sequential debugging functions, user can
set breakpoints and trace variables based on individual parallel process during
execution. The performance debugging tools allow user to simulate a wide range of
parallel topologies. sizes, communication parameters, and virtual-to-physical-

architecture mapping.

I[nformative: The performance debugging tools provide debugging information and
performance statistics at various levels of details. These information well address the
relationship between the program performance and the corresponding performance
affecting factors. which significantly help the user to understand the behavior of the

parallel programs in order to fine-turning their programs.

Accurate: Simulation results are based on the functional simulation technique which
can provide the most accurate performance data among existing simulation
techniques. In addition, performance debugging tools enable the user to reconfigure

network parameters to accurately simulate a particular parallel computer system.

Repeatable: Simulation results obtained from the debugging tools are repeatabie.
Therefore it provides a stable and reliable debugging environment. At the same time,

multiple execution of a non-deterministic application is also supported.

Portable and user friendly: The graphic user interface enables the user to easily use

the debugging tools and analyze the debugging information and performance
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statistics. Compile flags are used to make the visual performance debugger portable

to different platforms.

The visual performance debugger is designed in a modular fashion so that it will

be easy to extend its functionality. The following debugging features can be implemented

in the future to further enhance the functionality of the visual performance debugger:

Capturing and rerunning a debugging session: sometimes the user may want to rerun
a debugging session to better understand some critical behaviors of the program. User

should be allowed to go back to a certain point and replay the subsequent session.

Saving and restoring the debugger state: a similar functionality would allow the user
to save the current set of debugging state such as breakpoints. traced variables into a
file. Later on. the user can restore this information when re-invoking the debugger

and replay the previous debugging session.

Tracing function or procedure calls: when a program contains several functions or
procedure calls. the user may want to know the sequence of calls that led to the

current point of suspension.

With the evolution of technology in the design of graphical user interface, we can
continuously employ new features to enhance the graphical functionality of the
debugger such as 3D display of 2D and 3D topologies, visualization of message

flow, and visualization of stepping through a program execution.
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Appendix A

CPPE User’s Manual For UNIX Platform

1 Configuration

This section introduces the procedure to set up the environment and start the
program. CPPE is currently compiled on SunOS 5.5 SPARC machine. The executable

program name is cppe.
1.1 Environment Files

CPPE has two environment files: resource file CPPE and config file cppe_motif.cfg.
Normally, user should install these two environment files in the same working directory
as CPPE executable. But these two environment files are both optional. If they are not

provided. CPPE will use default resource and configuration to start.
Resource File CPPE

CPPE needs a resource file called CPPE. If C shell is the default shell on your machine,
You need to add the following line to your .cshrc file to specify the path of the resource

file:

setenv XAPPLRESDIR S$WORKING_DIR
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e.g. setenv XAPPLRESDIR /home/grad/John/cppe

where WORKING_DIR is the path where the resource file CPPE exists. For different

shell, you need to set the environment properly following the corresponding shell syntax.

Configuration File cppe_motif.cfg

CPPE has an optional configuration file called cppe_motif.cfg in the same directory as
the CPPE executable. When CPPE startes, it looks for this configuration file to initialize
the working environment of CPPE, including the current working directory. the editor
type. the current physical architecture of the simulated parallel system and the network
type. User can change the initial CPPE configuration by modifyving file cppe_motif.cfg.
When modifying cppe_motif.cfg, make sure to follow the existing format in the initial

cppe_motif.cfg file.

If the configuration file cppe_motif.cfg is not found in the directory where CPPE
starts, CPPE starts with a default configuration. Users then have the option to save a
current working configuration as a default configuration and a default configuration file

cppe_motif.cfg will be created in the directory where CPPE starts.

1.2 Environment Variables

CPPE needs another environment variable named "CPPE". It is used to define the path to
find the input .c and .h files in the compile and execution process. You need to add the

following line to your .cshrc file to set this environment variable:

setenv CPPE $SOURCE_DIR
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e.g. setenv CPPE /user/John/cppe/src:/user/John/cppe

where SOURCE_DIR is the path where the source .c and .h files are stored. For different

shell. you need to set the environment properly following the corresponding shell syntax

1.3 Start The CPPE Program

To start the CPPE program. at the command line, type

> cppe
1.4  Configuration Setup

When CPPE is launched, a default configuration is set up based on the environment
variables and the default configuration file. In the process of program development, users
can reconfigure the CPPE execution environment based on their needs for debugging and
performance tuning. CPPE provides a functionality that users can save the current
configuration to a data file and this configuration is retrievable in the future. so that CPPE
can be easily configured to meet the specific requirement of different users.

CPPE allows users to save the current configuration as a default configuration or
as a specific debugging configuration. A default configuration can be used to initialize
the working environment when a new CPPE session is started or reset the working
environment to its default state during an execution session. The data that are saved in a
default configuration include the current working directory, the editor type, the current
physical topology, all the available physical topologies including those that are defined

by a user at run time, and the current network type. A specific debugging configuration
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will also include the user-defined physical-to-virtual topology mapping function, if
defined. in addition to the other configuration data found in a default configuration file.
To save the current configuration as default configuration, from the main menu
click the menu pane Configure, then select the menu item Save Configure As Default.
To save the current configuration as a specific debugging configuration. from the main
menu click the menu pane Configure, then select the menu item Save Configure As
Other. A file save dialog box will be popped up for users to specify a file name. To reset
the default configuration. from the main menu click the menu pane Configure. then
select the menu item Load Configure From Default. To reset a specific debugging
configuration. from the main menu click the menu pane Configure. then select the menu

item Load Configure From Other. A file selection dialog box will be popped up for

users to provide the configuration file name.

2 CPPE Functionality

This section introduces the utilities supported by CPPE and the usage during execution.
CPPE contains three major functionalities: parallel application program compiling,
parallel application program execution, correctness and performance debugging.

A graphic user interface (GUTI) is popped up when the user starts the CPPE
program as described in section 1.3. The GUI main frame is composed of main menu.
option menus, function buttons, output window and message line. All CPPE functions

can be invoked either from main menu, or option menus, or function buttons.
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2.1 Create Application Program Source File

A parallel application program source file should be created first as a text file, with file
name extension ".c”. The user can use any text editor to create the source file outside the
CPPE program. CPPE also provides a utility to invoke a text editor from inside the
CPPE.

To invoke the text editor from inside CPPE. from the main menu in the GUI main
frame. click the File menu pane. select menu item Edit. Depending on the configuration,
either a vi editor or a emacs editor will be invoked. The editor starts with the source file
currently opened in CPPE. If no source file has yet been opened. a file named “untitled”
will be opened in the editor. The text editor runs in background so that it can work in

parallel with the CPPE program.

2.2 Compile Application Program Source File

Open A Source File

To open a source file, click the function button Open in the GUI main frame. A file
selection dialog box is popped up. To select a directory, double click the requested
directory in the Deirectoies list. Then the files in that directory will be displayed in the
Files list besides the Directories list. To specify a filter, modify the filter in the Filter
field. To select a file, single click the requested file, then click OK. The file name will be
displayed in the Source option menu, and the working path will be displayed in the

message line at the bottom of the main frame.

Compile a Source File
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Compile process is used to compile an application program source file into a virtual
machine code (vCode) file, with file name extension “.cod™. for execution in CPPE.

A source file should be opened before it can be compiled. To compile a source
file, click the function button Compile. If compile succeeded. the corresponding code file
name is displayed in the Cod option menu. At the same time, the virtual architecture of
the program will be displayed in the Virtual Arch text field and the default mapping will

be displayed in the Mapping option menu.

Open a vCode File

Function button Open can also be used to open a vCode file directly. The opened vCode
file name is displayed in the Cod option menu. At the same time, the virtual architecture
of the program will be displayed in the Virtual Arch text field and the default mapping
will be displayed in the Mapping option menu.The opened code file is immediately

ready for execution.

Close a source file or vCode file

The number of source files or vCode files that can be opened at the same time is limited
in CPPE. You may want to close some currently opened files in order to open other files.
To close a source file or vCode file, click the function button Clese in the main frame. A
dialog box will pop up for user to select the type of file to be closed. The user has the
option to close the currently selected source file in the Source File option menu in the
main frame, the currently selected vCode file in the Executable File option menu in the

main frame, or both at the same time.



2.3 Execution And Debugging

2.3.1 Execution

After a source file is successfully compiled or a vCode file is opened. click the function
button Run in the main frame. The execution result and any debugging message will be

displayed in the main window of the main frame.

2.3.2 Viewing Source Code and vCode

After a source file is successfully compiled or a vCode file is opened. or after program
execution is suspended, user can specify a range of source code or vCode to be displayed
by referring to the line numbers.

To display the source code, from the main menu in the main frame. click the
Source pane and select the List Source Code menu item. A new List window will be
popped up. In the List window, specify the line numbers in the List From and To fields
and then click the List button. If no line numbers are specified in the List From and To
ficlds. the whole source file will be displayed. To close the List window, click the Back
button in the List window.

To display the vCode, from the main menu in the main frame, click the Source
pane and select the List vCode menu item. A new vCode window will be popped up. In
the vCode window, specify in the List From and To fields the starting and ending line
numbers for the vCode to be displayed, and then click the List button. If no line numbers

are specified in the List From and To fields, the whole vCode file will be displayed.
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2.3.3 Setting Breakpoints

The user can set breakpoints on executable instructions in the source program to
automatically interrupt the program execution. This function is useful for helping the user
to locate bugs in the program.

Breakpoints are set in the CPPE by referring to program line numbers. To set a
breakpoint. click the function button Break in the main frame. A new window titled List
will be popped up. From the List window, the user gets a list of program source code in a
source code list. To set a breakpoint, single click on the source line in the source list
where the break point will be. Then click the Break button in the List window. The
selected break point line will be displayed in the breakpoint list below the source code
list. To clear a breakpoint, single click on the breakpoint line in the break point list, then
click Unbreak button in the List window. Both setting a breakpoint and clearing a
breakpoint can also be done by double clicking the source line in the source list or in the
breakpoint list.

If a breakpoint is set and CPPE is set to Debug mode. when users execute an
application program, the execution will stop at the breakpoint and a new window titled
Step Execution From Breakpoint will pop up showing the program source code with

the breakpoint highlighted.

2.3.4 Stepping Through A Process

When any running process tries to execute a line in a program with a breakpoint, the
whole program execution will be suspended. At this point, the execution of the program

may be continued with two functions: Continue or Step. If Continue function is used, the
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execution will be continued until the next breakpoint is encountered by any process. If
Step function is used, the execution will be continued line by line from the breakpoint in
the suspended process. User can also specify the number of lines in each step and set the
"Step-Process” to a different running process. CPPE provides these two functions so that
the user can step through the execution of a program in order to trace the execution status
and debug the program.

The Step function counts just executable lines in the program listing, independent
of how many statements are contained on a given line. For program loops. the total
number of lines executed is counted until the number reaches the number specified by the
Step function. Although the Step function is applied to the currently suspended process.
all the other parallel processes also continue to execute in parallel. so they also will be
advancing in execution.

To use Continue function. click the function button Continue in the main frame.
To use the Step function. if user wants to step through the currently suspended process
line by line, click the function button Step in the main frame. In either case, if the
program execution stops at a new breakpoint of execution, the new breakpoint of source
code will be highlighted in the Step Execution From Breakpoint window. When
program execution terminates, the Step Execution From Breakpoint window will be
shut down.

To specify a different "Step-Process”, from the main menu, click the Debug menu
pane, select the Step menu item, then select the Set Step Process submenu item. To step
a process with a different number of lines in each step, select the same Step menu item,

then select the Step submenu item.
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2.3.5 Tracing Variables

Whenever the execution of the parallel program is suspended. the user may want to
examine the current value of variables in the current environment of each process. CPPE
provides two functions for this purpose: Show and Trace.

Function Show is used to display the value of a variable when program execution
is in suspension state. User can use this function to examine variables in the current
environment of each active process. Active processes are those that may be in state of
Ready. Running, Blocked. Delayed or Spinning.

To use function Show, the variable should be in a currently active process. To get
the list of active processes, from the main menu. click menu pane Report. select menu
item Status, the default function of Status will give a full list of process status. To use
Show function, click the function button Show in the main frame window, specify a
variable name and an active process id. If the variable is an array, user should specify the
index range that user wants to display. Then click the button OK. The output will be
displayed in the output window in the main frame.

Function Trace is used to trace a particular variable during the execution process.
User essentially sets a flag on the traced variable. Whenever that variable is referenced
during subsequent program execution, the program will be suspended as it is for
breakpoints. The traced variable may be referenced by many different processes in a
variety of locations in the program.

To use function Trace, from the main menu, click menu pane Debug, select menu

item Trace. A trace dialog box will be popped up. Specify the variable name and process
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id in the trace dialog box and then click button Trace. The traced variables are displayed
in the Trace Variable List in the dialog box. User can clear a trace variable later by
selecting the variable from the Traced Variable List and clicking the button UnTrace.
Users have the option to turn on or off the Trace function before or during
program execution. There is a group of Trace On/OfF radio buttons in the main frame

window for user to turm Trace function on or off.

2.3.6 Alarm

Alarm is used to suspend the program execution when a certain amount of time is
reached. The functionality of Alarm is similar to setting a breakpoint so that user can
examine execution status in the process of program execution.

To set an alarm, from the main menu in the main frame. click the menu pane
Debug and select the menu item Alarm. An alarm_popup dialog box will pop up. User
can turn the alarm function on or off from this dialog box. When the alarm is turned on.

user can specify the alarm time in the text field Enter Alarm Time.

2.4  Network Architectures and Mapping

2.4.1 Specifying the Architecture

When CPPE starts, the default architecture is a 2D-mesh parallel computer with size of
each dimension being 4 (mesh 4x4). The user may override this default and specify a
wide range of other architectures, including many of the common parallel topologies.
This allows the performance of the parallel program to be simulated and evaluated on a

wide range of parallel computer architectures according to the choice of the users.
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CPPE has predefined some most common architectures in the system. which can
be used directly by selecting from the option menu PhyArch in the main frame. User can
also define new architectures according to the needs of their applications. To define a
new architecture, from the main menu, click the menu pane Network, then select the
menu item Architecture. An archDialeg dialog box will pop up. A new architecture is
defined by architecture type and size. Select an architecture type from the option menu
phyArch in the dialog box. Then specify the architecture size in the text field in the
dialog box. For architecture of type Line, Ring. Fullconnect and Shared, specify the
architecture size by entering the number of physical processors. For a multi-dimensional
architecture. such as mesh, torus, enter the size of each dimension separated by commas.
For a hypercube architecture, enter the number of dimensions. The newly defined
architecture will be added to the phyArch option menu in the main frame and becomes

the current parallel system architecture.

2.4.2  Virtual-to-Physical Architecture Mapping

Message-passing parallel programs are encouraged to be written using virtual topologies.
the topologies most natural to express the program communication structure. However,
the virtual topology may be the same as or different from the topology of the physical
system on which the program is running. CPPE supports virtual-to-physical architecture
mapping. The objectives of virtual-to-physical architecture mapping are to minimize
communication cost by minimizing the distance between communicating processes, and

to balance the workload among physical processors.
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CPPE currently supports six types of mapping: Default. [dentity, Random, Ring-
to-Line. Torus-to-Mesh and User-defined Mapping. In Random mapping, virtual
processors are randomly assigned to physical processors at run-time. In Identity mapping,
the virtual topology are mapped to the identical physical topology, which is the exact
match between virtual topology used in programming and the actual underlying physical
machine. Both Random and Identity mapping can only happen when the number of
virtual processors is no greater than the number of physical processors. When the number
of virtual processors is greater than the number of physical processors. effectively these
two mappings will fall into Default mapping, where virtual processors are divided into
blocks. and each block is then mapped to the physical processors. Ring-to-Line mapping
is available when the virtual architecture is Ring. the physical architecture is Ling and the
number of virtual processors equals to the number of physical processors. Torus-to-Mesh
mapping is available when virtual architecture is Torus, the physical architecture is Mesh
and these two architectures are identical except the wraparound links. A user-defined
mapping allows unlimited mapping functions to be specified at debugging time to satisfy
the need of different user applications.

To specify a virtual-to-physical mapping. select a mapping type from the option
menu Mapping in the main frame.

To specify a user defined mapping function, users should enter a mapping
function string following the syntax defined in CPPE. In general, a mapping function

string has the following format:

mapfunction(x,, x,, ..., x,) = [¥., Y., --.. v.].

149



which maps virtual processor (xi, X3, ..., Xp) tO physical processor (yi, y2, .... Ya). Most C

expressions can be used inside the square brackets.

As an example, a one-to-one mapping from a two-dimensional torus to a two-

dimensional mesh can be translated as following:

toruszZmesh(x, y) = [x<=(#1-1)/2 ? 2*x : 2=~(#1-x)-1,
y<=(#2-1)/2 2 2*y : 2*(#2-y)-1].

where #n denotes the size of the n”* dimension of the virtual architecture, and the pair (x,
v) denotes the Cartesian coordinate of the virtual processor in the virtual architecture. The
square brackets enclose the right-hand side of the mapping function. The pair of values
inside the square brackets denotes the Cartesian coordinate of the physical processor in
the physical architecture. The final dot is used to signal the end of the mapping string so
that users can break the map string in several lines during inputting.

A many~to-one mapping from a two-dimensional torus to a two-dimensional

mesh can be expressed as follwoing:

torus2mesh(x,y)=
[x<=(#1-1)/2 2 (2*x)/(#1/$1) : (2*($1-x)-1)/(#1/$1),
y<=(#2-1)/2 2 (2*y)/(#2/$2): (2* (#2-y)-1) /(#2/$2)].

where $n denotes the size of the n” dimension in the physical architecture. The
denominator (#i/8i) in the physical Cartesian coordinate provides the effect of block
cyclic mapping.

To specify the user-defined mapping function, from the Mapping option menu in

the main frame, select the User Defined menu item. A User Defined Mapping dialog
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box will pop up. The user can either enter a mapping function string in the text field in
the dialog box, or load a mapping function string from a file that contains a mapping
function string. To load a mapping function string from a file, click the button Load in
the dialog box and a file selection box will pop up. Select the file that contains the
mapping function string and click button OK in the file selection box. The mapping
function string will be loaded into the text field in the User Defined Mapping dialog
box. The user can also save the user input mapping function string into a file. The button

Save in the User Defined Mapping dialog box is used for this purpose.

2.4.3 Network Routing Type

CPPE can simulate different network types. Currently it supports packet switching
network. simulated packet switching network, shortest path network and wormhole-
routed network. In packet switching network. basic communication delay is adequate to
reflect the communication delay when the message traffic is low enough that there is no
interference between messages that might result in congestion delays. Some programs
have more frequent communication that travel longer paths in the network, resulting in
the potential of message congestion and further communication delay. In order to
simulate the execution of different parallel programs, CPPE provides an option to turn on
or off the message congestion. The simulated packet switching network simulates a
packet switching network with message congestion turned on. The shortest path network

simulates a packet switching network with message congestion turned off.
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Users can select a network type before program execution starts or change
network type during program execution. The network type can be selected from the

option menu Network in the main frame.

244 Communication Delay

CPPE can simulate the parallel architecture. using message passing for inter-process
communication. An important parameter for the inter-process communication is the Basic
Communication Delay, which is the basic time to communicate a message packet
between two processors with a direct physical communication link. User can define the
value of the Basic Communication Delay at run time. From the main menu, click the
menu pane Network, select the menu itern CommDelay. A comm_delay_popup dialog
box will pop up for user to enter the value of Basic Communication Delay. which is

defined as the number of time units.

2.4.5 Communication Parameters

In a wormhole-routed network, users can check the current setting of communication
parameters and redefine the values of communication parameters before simulation starts
or when program execution is in suspension. The following communication parameters
are defined in CPPE which are configurable during simulation: number of lane per
channel, flit size (bytes), packet size (bytes), buffer size (flits), startup overhead per
message (time units), startup overhead per packet (time units), headOtherFlitSpeedRatio
(speed ratio between head flit and following flits). To display the current setting of

communication parameters for the current routing option, from the main menu, click the



menu pane Architecture, select the menu item Network Parameters, then select the
cascaded menu item Display. The current values of the communication parameters will
be displayed in the output window in the main frame. To redefine the communication
parameters, from the main menu, click the menu pane Architecture. select the menu item
Network Parameters, then select the cascaded menu item Change, a Change Network
Parameters dialog box will pop up. The current values of all the available
communication parameters are displayed in the dialog box. To change the value of a
parameter. click the corresponding text field for that parameter and reenter the value, then

click button OK in the dialog box.
2.4.6 Vary Processor Speed

This function is used for testing multiple executions of non-deterministic applications and
robustness of deterministic programs, as discussed in section 4.2.3. Race conditions are
simulated by varying relative processor speeds. When the Vary Processor Speed option
is turned on. users need to provide an integer Random Number Seed. which will be used
to create a random number r; between 0 and 1 (>0) for each physical processor i that will
be used to increase the speed by a factor of I/r,. This randomly selected speed factor for
each processor will remain in effect throughout the subsequent program execution. The
particular random speed factors chosen completely dependent on the Random Number
Seed: using the same seed again will result in the same set of processor speed factors.

To turn on the Vary Processor Speed option, from the main menu, click the menu
pane Architecture. then select the menu item Vary Processor Speed, and a Set Vary

Processor Speed dialog box will pop up. Set the Vary Speed on or off from the radio
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selection button. When the option is set on, the user can specify an integer number of

Random Number Seed in the text field in the dialog box, and click button OK.

2.5 Program Performance Statistics

When CPPE executes a program, it keeps track of the relative timing of all processes and
generates a range of performance statistics at the end of execution to help the user

understand the behavior and evaluate the performance of the program.

2.5.1 Execution Time

CPPE is a code interpreter. The program source code is first compiled into a virtual-
machine code (vCode) which is interpreted rather than directly executed. When CPPE
runs a program, it interprets the vCode and uses an estimated execution time for each
vCode instruction and keep a total execution time of the program. The estimated
execution time differs between instructions depending on the complexity of the
instructions. Using this estimated execution time. CPPE can simulate the performance of
the program on a real multiprocessor or multicomputer.

At the end of execution, CPPE will display the total Sequential Execution Time
and the total Parallel Execution Time. Sequential Execution Time is the estimated
execution time on a uniprocessor computer. Parallel Execution Time is the estimated
execution time on an actual target multicomputer or multiprocessor. From the ratio of
sequential/parallel execution time, user can estimate the performance improvement by

parallel computing.
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2.5.2 Time

Time function can be used whenever program execution is suspended to give the total
elapsed time since the beginning of the program execution.

To use the time function, from the main menu in the main frame. click the menu
pane Report menu. select the menu item Time. The output will be displayved in the main

output window in the main frame.

2.5.3 Utilization

Utilization function is used to show the usage of physical processors in a particular
parallel architecture. The utilization of a given physical processor is defined as the
proportion of the time the processor is actually running. Whenever the program execution
is suspended, the user can use this function to display the utilization of a range of
processors.

To use the Utilization function, from the main menu in the main frame. click the
menu pane Report, select the menu item Utilization. A utilizationDialog dialog box will
pop up. The user can specify the range of processors that the user wish to see the

utilization value from the dialog box.

2.5.4 Program Performance Profile

CPPE can create a visual performance profile that will help the user to understand the
program performance. The visual performance profile will be displayed in the main
output window in the main frame. It shows the processor utilization during successive

time intervals of program execution.



A sample profile fragment is shown as following:
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In the sample profile fragment, the first line shows the current elapsed program execution
time. The second line shows the processor number. Time advances vertically down the
page from top to bottom, with each successive line represents a time interval of duration
10 time units. The marks indicate the processor utilization during each time interval: "*"
indicates 75-100 percent utilization, "+" indicates 50-75 percent utilization, "-" indicates
25-50 percent utilization, and "." indicates 0-235 percent utilization.

To create a performance profile, the user needs to turn on the profile option. In the
CPPE main frame there is a group of Profile radio buttons that let users to turn on or off

the profile option. The default range of processors in the profile is all processors used in
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the program. The default time interval in the profile is 10 time units. User can also
specify a different range of processors and time interval. From the main menu of the main
frame, click the menu pane Report, select the menu item Profile. a profileDialog dialog
box will pop up. User can specify the range of processors and the time interval from this

dialog box.
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Appendix B

CPPE User’s Manual For Windows Platform

1 Configuration

1.1  Configuration File

CPPE has an optional configuration file called cppe_win.cfg in the same directory as the
CPPE executable. When CPPE starts. it looks for this configuration file to initialize the
working environment of CPPE. including the current working directory, the editor type,
the current physical architecture of the simulated parallel system and the network type.
User can change the initial CPPE configuration by modifying file cppe_win.cfg. When
modifying cppe_win.cfg, make sure to follow the existing format in the initial
cppe_win.cfg file.

If the configuration file cppe_win.cfg is not found in the directory where CPPE
starts, CPPE starts with a default configuration. Users then have the option to save the
current working configuration as a default configuration and a default configuration file

cppe_win.cfg will be created in the directory where CPPE starts.

1.2 Environment variables

158



We can also define environment variables in the system’s autoexec batch file. The

following environment variables are defined in file autoexec.bat:

set CPPE=.;D:\cppe98\test

set PATH=.;C:\tools;D:\cppe98\wirnCPPE\Debug

CPPE is used to define the path to find the input .c and .h files in the compile and
execution process. PATH is used to define the path to launch the CPPE executable from

DOS command line.

1.3  Configuration Setup

When CPPE is launched. a default configuration is set up based on the environment
variables and the default configuration file. In the process of program development, users
can reconfigure the CPPE execution environment based on their needs for debugging and
performance tuning. CPPE provides a functionality that users can save the current
configuration to a data file and this configuration is retrievable in the future. so that the
CPPE can be easily configured to meet the specific requirement of different users.

CPPE allows users to save the current configuration as a default configuration or
as a specific debugging configuration. A default configuration can be used to initialize
the working environment when a new CPPE session is started or reset the working
environment to its default state during a CPPE session. The data that are saved in a
default configuration include the current working directory. the editor type, the current
physical topology, all the available physical topologies including those that are defined

by a user at run time and the current network type. A specific debugging configuration
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will also include the user-defined physical-to-virtual topology mapping function, if
defined, in addition to the other configuration data found in a default configuration file.
To save the current configuration as default configuration, from the main menu
click the menu pane Configure, then select the menu item Save Configure As Default.
To save the current configuration as a specific debugging configuration. from the main
menu click the menu pane Configure. then select the menu item Save Configure As
Other. A file save dialog box will be popped up for users to specify a file name. To reset
the default configuration, from the main menu click the menu pane Configure. then
select the menu item Load Configure From Default. To reset a specific debuggin g
configuration, from the main menu click the menu pane Configure. then select the menu
item Load Configure From Other. A file selection dialog box will pop up for users to

provide the configuration file name.

2 CPPE Functionality

This section introduces the utilities supported by CPPE and the usage during execution.
CPPE contains three major functionalities: parallel application program compiling,
parallel application program execution, correctness and performance debugging.

A graphic user interface (GUT) will pop up when the user starts the CPPE
program from Windows platform. The GUI main frame is composed of main menu,
option menus, function icons and output window. All CPPE functions can be invoked
either from main menu, or option menus, or function buttons. When click on the function
icon D in the main frame. a debugging menu bar will be popped up which contains

function buttons for all the debugging utilities.
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2.1 Create Application Program Source File

A parallel application program source file should be created first as a text file with file
name having the extension “.c” . Users can use any text editor provided in the PC
platform to create the source file outside the CPPE program. Or users can invoke a

default text file editor from the Edit menu in the CPPE main frame.

2.2 Compile Application Program Source File

Open a Source File

To open a source file. click the standard Windows' file Open icon in the main frame. A
standard Windows'’ file selection dialog box will pop up. Select the application source
file and click Open button in the dialog box. The file name will be displaved in the

Source File option menu.
Compile a Source File

Compile is used to compile an application program source file into virtual machine code
(vCode) file for execution in CPPE.

A source file should be opened before it can be compiled. To compile a source
file, click the function button C in the main frame. If compile succeeded, the
corresponding vCode file name is displayed in the Execution File option menu. At the
same time, the virtual architecture of the program will be displayed in the Virtual Arch
text field and the default mapping will be displayed in the Mapping option menu.

Compile function can also be invoked from the menu item CPCC in the main menu File.
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Open a vCode File

The Open icon can also be used to open a vCode file directly. The opened vCode file
name is displayed in the Execution File option menu. At the same time, the virtual
architecture of the program will be displaved in the Virtual Arch text field and the
default mapping will be displayed in the Mapping option menu. The opened vCode file

is immediately ready for execution.

Close a source file or vCode file

The number of source files or vCode files that can be opened at the same time is limited
in CPPE. You may want to close some currently opened files in order to open other files.
To close a source file, from the main menu click the menu pane File. select the menu
item Close Source File. The currently selected source file in the Source File option
menu in the main frame will be closed. To close a vCode file. from the main menu click
the menu pane Fiie, select the menu item Close vCode File. The currently selected

vCode file in the Executable File option menu in the main frame will be closed.

2.3 Execution And Debugging

2.3.1 Execution

After a source file is successfully compiled or a vCode file is opened, click the function
icon E in the main frame. The execution result and any debugging message will be

displayed in the output window of the main frame.



2.3.2 Open the Debugging Menu Bar

The Debugging Menu Bar contains all the debugging function buttons in CPPE. User
can also tumn on or off the debugging mode for program execution from this menu bar.

Open the Debugging Menu Bar by clicking the function icon D in the main frame.

2.3.3 Viewing Source Code And vCode

After a source file is successfully compiled or a vCode file is opened, or after program
execution is suspended. user can specify a range of source code or vCode to be displayed
by referring to the line numbers.

To display the source code, from the Debugging Menu Bar, click the SrcCode
button, a dialog box will pop up. In the dialog box, specify the starting and ending line
number of the source code to be displayed. Then click the OK button in the dialog box.
The source code will be displayed in a separate Source Code Window.

To display the vCode, from the Debugging Menu Bar, click the ExeCode button,
a dialog box will pop up. In the dialog box. specify the starting and ending line numbers
for the vCode to be displayed. Then click the OK button in the dialog box. The vCode

will be displayed in a separate Executable Code Window.

2.3.4 Setting And Clearing Breakpoints

Breakpoints are set in the CPPE by referring to program line numbers. To set a
breakpoint, from the Debugging Menu Bar, click the Set Break button. A Set Break
Point window will pop up. In this window, there is a list displaying the source code

starting from line number one. Setting a breakpoint by selecting a line from the source
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code list, then click the Break button in this window. The breakpoint line will be
displayed in a breakpoint list below the source code list in the same window.

If a breakpoint is set and CPPE is set to Debug mode. when users execute an
application program, the execution will stop at the breakpoint and a new window titled
Step Execution From Breakpoint will pop up showing the program source code with
the breakpoint highlighted.

To clear breakpoints. from the Debugging Menu Bar. click the Clear Break
button. The same Set Break Point window will pop up with the previously set
breakpoints displayed in the breakpoint list. Select a breakpoint from the breakpoint list

and click the button UnBreak.
2.3.5 Stepping Through A Process

When any running process tries to execute a line in a program with a breakpoint, the
whole program execution will be suspended. At this point, the execution of the program
may be continued with two functions: Continue or Step. If Continue function is used, the
execution will be continued until the next breakpoint is encountered by any process. If
Step function is used, the execution will be continued line by line from the breakpoint in
the suspended process.

The Step function counts just executable lines in the program listing, independent
of how many statements are contained on a given line. For program loops, the total
number of lines executed is counted until the number reaches the number specified by the

Step function. Although the Step function is applied to the currently suspended process,
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all the other parallel processes also continue to execute in parallel, so they also will be
advancing in execution.

To use Continue function, from the Debugging Menu Bar. click the button
Continue. To use the Step function, from the Debugging Menu Bar, click the button
Step. In either case. if the program execution stops at a new breakpoint of execution, the
new breakpoint of source code will be highlighted in the Step Execution From
Breakpoint window. When program execution terminates. the Step Execution From
Breakpoint window will shut down.

To specify a different "Step-Process”. from the Debugging Menu Bar, click the
button Set Process. a Set Debugging Process dialog box will pop up. Specify the
process id in the dialog box and click OK. To step a process with a different number of
lines in each step, from the Debugging Menu Bar, click the button Set Step. a Set Step
dialog box will be popped up. Specify the step size in terms of number of source lines in

the dialog box and click OK

2.3.6 Tracing Variables

Whenever the execution of the parallel program is suspended. the user may want to
examine the current value of variables in the current environment of each process. CPPE
provides two functions for this purpose: Show and Trace.

Function Show is used to display the value of a variable when program execution
is in suspension state. User can use this function to examine variables in the current
environment of each active process. Active processes are those that may be in state of

Ready, Running, Blocked, Delayed or Spinning.



To use function Show, the variable should be in a currently active process. To get
the list of active processes, from the debugging dialog box. click the button Status, the
default function of Status will give a full list of process status. To use Show function,
click the button Show in the Debugging Menu Bar, a Show Variable Value dialog box
will pop up. In this dialog box, specify a variable name and an active process id. If the
variable is an array. user should specify the index range that user wants to display. Then
click the OK button in the dialog box.

Function Trace is used to trace a particular variable during the execution process.
User essentially sets a flag on the traced variable. Whenever that variable is referenced
during subsequent program execution. the program will be suspended as it is for
breakpoints. The traced variable may be referenced by many different processes in a
variety of locations in the program.

To use function Trace. from the Debugging Menu Bar. click the button Set Trace.
A Set Trace Variable dialog box will pop up. Specify the variable name and process id
in the dialog box and then click button OK. To clear a traced variable. from the
Debugging Menu Bar, click the button Clear Trace. A Clear Trace Variable dialog box
will pop up. In this dialog box, there is a list displaying all the traced variables. User can
clear a traced vanable by selecting the variable from the list and then click button OK in
the dialog box.

Users have the option to turn on or off the Trace function before or during
program execution. There is a group of Trace On/OfF radio buttons in the Debugging

Menu Bar for user to turn Trace function on or off.
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2.3.7 Alarm

Alarm is used to suspend the program execution when a certain amount of time is
reached. The functionality of Alarm is similar to setting a breakpoint so that user can
examine execution status in the process of program execution.

To set an alarm, from the debugging menu bar, click the button Alarm. A Set
Alarm dialog box will pop up. User can turn the alarm function on or off from this dialog
box. When the alarm is turned on. user can specify the alarm time in the text field in the

dialog box.

2.4  Network Architecture And Mapping

2.4.1 Specifying The Architecture

When CPPE starts, the default architecture is a 2D-mesh parallel computer with size of
each dimension being 4 (mesh 4 x 4). The user may override this default and specify a
wide range of other architectures, including many of the common parallel topologies.
This allows the performance of the parallel program to be simulated and evaluated on a
wide range of parallel computer architectures according to the choice of the users.
CPPE has predefined some most common architectures in the system, which can
be used directly by selecting from the option menu Physical Arch in the main frame.
User can also define new architectures according to the needs of their applications. To
define a new architecture, from the main menu, click the menu pane Architecture, then
select the menu item Add New Architecture, a Change Physical Architecture dialog

box will pop up. A new architecture is defined by architecture type and size. Select an
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architecture type from the option menu Topology in the dialog box. Then specify the
architecture size in the text field in the dialog box. For architecture of type Line, Ring,
Fullconnect and Shared, specify the architecture size by entering the number of physical
processors. For a multi-dimensional architecture, such as mesh, torus, enter the size of
each dimension separated by commas. For a hypercube architecture, enter the number of
dimensions. The newly defined architecture will be added to the Physical Arch option

menu in the main frame and becomes the current paralle! system architecture.

2.4.2  Virtual-to-Physical Architecture Mapping

Message-passing parallel programs are encouraged to be written using virtual topology.
the topology most natural to express the program communication structure. However, the
virtual topology may be the same as or different from the topology of the physical system
on which the program is running. CPPE supports virtual-to-physical architecture
mapping. The objectives of virtual-to-physical architecture mapping are to minimize
communication cost by minimizing the distance between communicating processes, and
to balance the workload among physical processors.

CPPE currently supports six types of mapping: Default, Identity, Random, Ring-
to-Line, Torus-to-Mesh and User-defined Mapping. In Random mapping, virtual
processors are randomly assigned to physical processors at run-time. In Identity mapping,
the virtual topology are mapped to the identical physical topology, which is the exact
match between virtual topology used in programming and the actual underlying physical
machine. Both Random and Identity mapping can only happen when the number of

virtual processors is no greater than the number of physical processors. When the number
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of virtual processors is greater than the number of physical processors, effectively these
two mappings will fall into Default mapping, where virtual processors are divided into
blocks, and each block is then mapped to the physical processors. Ring-to-Line mapping
is available when the virtual architecture is Ring. the physical architecture is Ling and the
number of virtual processors equals to the number of physical processors. Torus-to-Mesh
mapping is available when virtual architecture is Torus, the physical architecture is Mesh
and the two architectures are identical except the wraparound links. A user-defined
mapping allows unlimited mapping functions to be specified at debugging time to satisfy
the need of different user applications.

To specify a virtual-to-physical mapping, select a mapping type from the option
menu Mapping in the main frame.

To specify a user defined mapping function, users should enter a mapping
function string following the syntax defined in CPPE. In general. a mapping function

string has the following format:

mapfunction(x,, x., ..., x) = [Y., V.. ..., V.I.

=

which maps virtual processor (x,, x,, ..., x.) tophysical processor (y,, o

.. ¥.) - Most C expressions can be used inside the square brackets

As an example, a one-to-one mapping from a two-dimensional torus to a two-

dimensional mesh can be translated as following:

torus2mesh(x, y) = [x<=(#1-1)/2 ? 2*x : 2*(#1-x)-1,

y<=(#2-1)/2 ? 2*y : 2*(#2-y)-11.
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where #n denotes the size of the n”* dimension of the virtual architecture, and the pair (x,
v) denotes the Cartesian coordinate of the virtual processor in the virtual architecture. The
square brackets enclose the right-hand side of the mapping function. The pair of values
inside the square brackets denotes the Cartesian coordinate of the physical processor in
the physical architecture. The final dot is used to signal the end of the mapping string so
that users can break the map string in several lines during inputting.

A many-to-one mapping from a two-dimensional torus to a two-dimensional

mesh can be expressed as follwoing:

torusZ2mesh(x,y)=
[x<=(#1-1)/2 2 (2*x)/(#1/$1) : (2% (#1-x)-1)/(#1/31),

y<=(#2-1)/2 2 (2*y)/(#2/$2): (2*(#2-y)-1)/(¥#2/%$2)].

where $n denotes the size of the n”* dimension in the physical architecture. The
denominator (#i/Si) in the physical Cartesian coordinate provides the effect of block
cyclic mapping.

To specify the user-defined mapping function, from the Mapping option menu in
the main frame, select the User Defined menu item. A User Defined Mapping dialog
box will pop up. The user can either enter a mapping function string in the text field in
the dialog box, or load a mapping function string from a file that contains a mapping
function string. To load a mapping function string from a file, click the button Load in
the dialog box and a file selection box will pop up. Select the file that contains the
mapping function string and click button OK in the file selection box. The mapping

function string will be loaded into the text field in the User Defined Mapping dialog
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box. The user can also save the user input mapping function string intc a file. The button

Save in the User Defined Mapping dialog box is used for this purpose.
2.4.3 Network Routing Type

CPPE can simulate different network types. Currently it supports packet switching
network. simulated packet switching network, shortest path network and wormhole-
routed network. In packet switching network, basic communication delay is adequate to
reflect the communication delay when the message traffic is low enough that there is no
interference between messages that might result in congestion delays. Some programs
have more frequent communication that travel longer paths in the network, resulting in
the potential of message congestion and further communication delay. In order to
simulate the execution of different parallel programs, CPPE provides an option to turn on
or off the message congestion. The simulated packet switchin g network simulates a
packet switching network with message congestion turned on. The shortest path network
simulates a packet switching network with message congestion turned off.

Users can select a network type before program execution starts or change
network type during program execution. The network type can be selected from the

option menu Network in the main frame.
2.4.4 Communication Delay

CPPE can simulate the parallel computer architecture, using message passing for inter-
process communication. An important parameter for the inter-process communication is

the Basic Communication Delay, which is the basic time to communicate a message
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packet between two processors with a direct physical communication link. User can
define the value of the Basic Communication Delay before program execution starts.
From the main menu, click the menu pane Architecture, select the menu item Network
Delay. A Set Network Delay dialog box will pop up for user to enter the value of Basic

Communication Delay, which is defined as the number of time units.

2.4.5 Communication Parameters

In a wormhole-routed network users can check the current setting of communication
parameters and redefine the values of communication parameters before simulation starts
or when program execution is in suspension. The following communication parameters
are defined in CPPE which are configurable during simulation: number of lane per
channel. flit size (bytes), packet size (bytes), buffer size (flits). startup overhead per
message (time units). startup overhead per packet (time units), headOtherFlitSpeedRatio
(speed ratio between head flit and following flits). To display the current setting of
communication parameters for the current routing option, from the main menu. click the
menu pane Architecture, select the menu item Network Parameters, then select the
cascaded menu item Display. The current values of the communication parameters will
be displayed in the output window in the main frame. To redefine the communication
parameters, from the main menu, click the menu pane Architecture, select the menu item
Network Parameters, then select the cascaded menu item Change. a Change Network
Parameters dialog box will pop up. The current values of all the available

communication parameters are displayed in the dialog box. To change the value of a



parameter. click the corresponding text field for that parameter and reenter the value, then

click button OK in the dialog box.

2.4.6 Vary Processor Speed

This function is used for testing multiple executions of non-deterministic applications and
robustness of deterministic programs, as discussed in section 4.2.3. Race conditions are
simulated by varying relative processor speeds. When the Vary Processor Speed option
is turned on. users need to provide an integer Random Number Seed. which will be used
to create a random number r; between 0 and 1 (>0) for each physical processor i that will
be used to increase the speed by a factor of 1/r;. This randomly selected speed factor for
each processor will remain in effect throughout the subsequent program execution. The
particular random speed factors chosen completely dependent on the Random Number
Seed: using the same seed again will result in the same set of processor speed factors.
To turn on the Vary Processor Speed option, from the main menu. click the menu
pane Architecture, then select the menu item Vary Processor Speed, and a Set Vary
Processor Speed dialog box will pop up. Set the Vary Speed on or off from the radio
selection button. When the Vary Speed is set on. the user can specify an integer number

of Random Number Seed in the text field in the dialog box, and click button OK.

2.5 Program Performance Statistics

When CPPE executes a program, it keeps track of the relative timing of all processes and
generates a range of performance statistics at the end of execution to help the user

understand the behavior and evaluate the performance of the program.
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2.5.1 Execution Time

CPPE is a code interpreter. The program source code is first compiled into a virtual-
machine code (vCode) which is interpreted rather than directly executed. When CPPE
runs a program, it interprets the vCode and uses an estimated execution time for each
vCode instruction and keep a total execution time of the program. The estimated
execution time differs between instructions depending on the complexity of the
instructions. Using this estimated execution time, CPPE can simulate the performance of
the program on a real multiprocessor or multicomputer.

At the end of execution, CPPE will display the total Sequential Execution Time
and the total Parallel Execution Time. Sequential Execution Time is the estimated
execution time on a uniprocessor computer. Parallel Execution Time is the estimated
execution time on an actual target multicomputer or multiprocessor. From the ratio of
sequential/parallel execution time, user can estimate the performance improvement by

paratlel computing.

2.5.2 Time

Time function can be used whenever program execution is suspended to give the total
elapsed time since the beginning of the program execution.
To use the time function, from the debugging menu bar, click the button Time.

The output will be displayed in the main output window in the main frame.

2.5.3 Utilization

174



Utilization function is used to show the usage of physical processors in a particular
parallel architecture. The utilization of a given physical processor is defined as the
proportion of the time the processor is actually running. Whenever the program execution
is suspended, the user can use this function to display the utilization of a range of
processors.

To use the Utilization function. from the debugging menu bar, click the button
Utilization. A Process Utilization dialog box will pop up. The user can specify the range
of processors that the user wish to see the utilization value from the dialog box. The

output will be displayed in the main output window in the main frame.

2.5.4 Program Performance Profile

CPPE can create a visual performance profile that will help the user to understand the
program performance. The visual performance profile will be displayed in the main
output window in the main frame. It shows the processor utilization during successive
time intervals of program execution.

A sample profile fragment is shown as following. In the sample profile fragment,
the first line shows the current elapsed program execution time. The second line shows
the processor ids. Time advances vertically down the page from top to bottom, with each
successive line represents a time interval of duration 10 time units. The marks indicate
the processor utilization during each time interval: "*" indicates 75-100 percent
utilization, "+" indicates 50-75 percent utilization, "-" indicates 25-50 percent utilization,

and "." indicates 0-25 percent utilization.
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To create a performance profile. the user should turn on the profile option. From
the Debugging Menu Bar, set the profile option to on from the Profile radio buttons. The
default range of processors in the profile is all processors used in the program. The
default time interval in the profile is 10 time units. User can also specify a different range
of processors and time interval. From the Debugging Menu Bar, click the button Profile,
a Show Processor Status dialog box will pop up. The user can specify the range of
processors and the time interval in the text fields provided in this dialog box, and click

button OK.
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