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ABSTRACT

Classification and Discriminant Analysis

Goldisse Fazeli

This study provides a comprehensive review of the literature pertaining to the
problem of classification. General concepts and principles of the classification
problem are explored. These results are presented especially for populations under a
normal distribution. Three major techniques of classification and discriminant
analysis are presented: linear discriminant analysis, quadratic discriminant
procedures and logistic regression. Logistic regression is reviewed in its general
framework and as a classification tool. A few articles on the comparison of the
efficiency of discriminant analysis and logistic regression are summarized. The
discriminant approach is proven to be more efficient in the case of populations

with a multivariate normal distribution. Under nonommality, logistic regression with

maximum likelihood estimators outperforms discriminant analysis.
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Introduction

The problem of classification

We are confronted with the problem of classification when we want to assign a
unit into one of several categories (or populations) on the basis of measurements
made on it. The goal of classification is to derive a rule that can be used to

optimally assign a new observation to the labelled sets of observations (or populations).

Some examples of classification are as follows.

Example A Prospective students applying for admission into college: the problem
is to classify a student applying for admission as successful or unsuccessful (fail to
graduate) on the basis of his/her entrance examination scores, high-school grade-point

average and number of high school activities.

Example B Classifying applicants for a bank loan as low risk or high risk on the

basis of their income, age. number of credit cards. other existing loans and, family size.

Example C In anthropological studies, the problem of identifying a jawbone
excavated from a burial ground as having belonged to a male or a female, based on

measurements like circumference and volume.

In all the above examples, the problem is to assign a unit to one ofa
finite number of groups to which it may belong on the basis of a set of observed

characteristics.



Discriminant analvsis

Discriminant analysis is a general statistical tool in multivariate analysis, which
separates distinct sets of objects (or observations) based on multivariate data. The first
clear statement of the discrimination problem was given by Sir R.A. Fisher to classify
skeletal remains. Fisher (1936) introduced the discriminant function for distinguishing
between two multivariate normal observations with a common covariance matrix (see

Chapter II).

The purpose of the thesis

There are three major techniques of discrimination
(1)  Linear discriminant analysis: the classical approach by R.A. Fisher.
(2)  Quadratic discriminant / classification procedure.

(3)  Logistic regression / classification procedure.

The purpose of this thesis is to provide a comprehensive review of the literature
pertaining to these methods. We also demonstrate the use of these methods through some

examples.

In Chapter [ we review the theory of classification in general terms. The standards
of good classification are presented for two populations and then they are carried out for
several populations. Finally, general classification procedures for populations

involving the normal distribution are presented.

Chapter Il is a review of the linear discriminant analysis, the method proposed by

~



Fisher (1936). Classification by Fisher’s method is presented for two known multivariate
normal populations and then they are extended to several populations. The distribution of
the criterions of classification as well as the probabilities of misclassification are
presented. Finally, some new diagnostic measures in linear discriminant analysis

proposed by Fung (1995) are reviewed.

In Chapter III. the quadratic discriminant analysis, for classification and
discrimination among two or more multivariate normal populations with unequal
covariance matrices. is presented. The case of non-normal populations is also

discussed.

In Chapter IV, the general framework of logistic regression is reviewed, followed

by the relation between discriminant analysis and logistic regression.

Chapter V presents a summary of some results on the comparison of the

efficiency of discriminant analysis and logistic regression.

Examples are provided to illustrate the results.

L)



Chapter 1 General concepts and principles of the classification problem and
discriminant analvsis

1) Introduction

In this chapter, we introduce the concepts of classification and discriminant
analysis (Johnson & Wichem, 1988). We investigate the standards of good classification
through the optimal classification rule, some special cases of minimum expected costs.
the total probability of misclassification and we evaluate classification functions for two
populations. For more than two populations, we present the development of the optimal

rules of classification. Finally, we elaborate the classification for normal populations.

An example of the separation-classification situation would be data collected on
the sepal width, sepal length, petal width and petal length of three species of iris [see:
Fisher (1936)]. The first goal would be to find “discriminant scores™ such that the three
classes of iris species are as separated as possible. And secondly, given a new iris, to

classifv it into one of the three classes.

Prior to the separation procedure, the probability distributions of the observations
are checked. If the probability distributions are not known, we start by plotting the data
for the pairs of observations in order to investigate their form. If the form of each
distribution is known, then the parameters of the distributions are estimated from a

sample of that population, called the training sample.



2) Classification for two populations: standards of good classification

We start by presenting classification for two populations =, and n., and later we

shall treat the more general case.

Let X'=[X| Xz.....Xn] denote the vector of measurements of an observation. To
classify X" into &, or w2, we use the classification regions R; and R:obtained by the
training sample. The training sample is the set of randomly selected objects known to
come from each of the populations. We examine each object for their set of values X; X,

X such that the set of all possible outcomes is divided into two regions R; and R

Let Q be the sample space divided into R, and R:such that Q = R, U R>and
R,;NR>= . Hence R, and R:are mutually exclusive and exhaustive. If X" falls into R,,
we allocate it to population =, and if it falls in R we allocate it to population 7.

R

&~

e

,/,

o T_—

R,

Figure 1.1 Classification regions R, and R. for two populations , and &



Two kinds of errors in classification can be made when the sets of measured
characteristics are not clearly distinct. One is to classify a w; object as belonging to m,
and the other is to classify a ©t; object as belonging to 72. A good classification procedure

is one that minimises the probability of misclassification.

e Optimal] classification rules

[n the literature, two important features of an “optimal “ classification rule are

1) the prior probabilities of occurrence,

2) the cost of misclassification.

1) If one population is relatively much larger than the other then it has a
greater likelihood of occurrence. For example, there are more financially sound
firms than bankrupt firms. Then the prior probability of a bankrupt firm is very
small. A randomly selected firm should be classified as non-bankrupt unless the

data overwhelmingly favors bankruptcy.

Let fi(X) and £2(X) be the probability density functions associated with X" for the
populations &t; and =, respectively. The prior probabilities for populations &) and n; are

pi1 and p» respectively where p; + p2=1.

The probabilities of correctly or incorrectly classifying observations are

Pr (observation is correctly classified as ;)

=Pr(X e R/ | m) Pr(m)=Pr (1| 1) pi=pi Jr i(X) dX (1.1)

Pr (observation is misclassified as ;)

=Pr (X e R, | 2) Pr (m2) = Pr (1| 2) p2= p2Jr. (XD dX (1.2)



Pr (observation is correctly classified as 72)

=Pr(Xe Ro| 72) Pr (o) = Pr 2 12) p2= p2Jr XY AX (1.3)

Pr (observation is misclassified as ®2)

—pr (X e Ri| m) Prry = Pr@ | D pr= prlee IO X (14)
where Pr (kl i) is the conditional probability of allocating an item 0 7tk when, in fact, it
belongs to .

As mentioned earlier, an optimal classification procedure is one that minimizes the

probabilities of misclassification (1.2) & (1.4).

2) The cost of misclassification can be defined as a cost matrix.

Classify as
1g 2
—
True population ™' \ 0 c2i>0 \
L

2

Fel | 2)>0 0 _‘

These costs may be measured in any kind of unit. The costs are (1) zero for correct
classification, (2) c(1 l 2)> 0 when an observation from T is misclassified as nt; , and 3)

c(2 l 1) when an observation from 7 is misclassified as 2 -

For any classification rule, the expected cost of misclassification (ECM) is the sum of the

product of the misclassification costs and their probabilities of occurrence, ie.
ECM=c(2\1)Pr(2\1)pl+c(1\2)Pr(1‘2)pz 1.5)

An optimal classification rule should result in an ECM as small as possible. That is, we

want to divide the sample space Q into regions R;and R: such that the ECM is as small as



possible. The regions R;and R;that minimize the ECM are defined by the values X for

which the following inequalities hold.

R: i/ £X) 2 [c112)/c2I )] [p2/p1]
(1.6)

Rz A0/ AX) < [e[2)/ e 1)] [p2/ 1]

Proof. From equation (1.5) we can write

ECM =c(2| 1) pi fo i(X) dX + (1 | 2) p2 fr, A(X) dX

Noting that Q = R; U R; so that

[ AX) dX + . AX) dX = 1

we can write
ECM =c2| 1) pi [1-Jo, i(X) dX] + c(112) p2 Jr: o(X) dX

=[x [c(112) p2 XD - 1) p D] X + 2 1) pi .

where note that p;_p> c(2 | 1), and ¢(1 l 2) are nonnegative. The density functions f(X)
and />2(X) are nonnegative for all X and are the only quantities in ECM that depend on X.

Thus ECM is minimized if R, includes those values of X for which the integrand
[c(112) p2 sX) - 2 1) p1 /i(X)] < 0 and excludes those X for which this quantity is
positive. That is, R; must be the set of points X such that

c(112)p2 ¥ < e D P AX)

or A/ LX) 2 [ca |2/ eI D] [p2/ 1 ]-

Since R»is the complement of R, in Q2, R; must be the set of points X for which



X/ AX) < [e(112)/ @] D] [p2/ p1].

In the literature, a procedure that minimizes (1.5) for given p, and p, is called a Bayes

procedure (Anderson, 1984).

Note. If p iX) c(2 ly= P2 5X) c(1 ] 2), then X could be classified either as from
orm;.
If Pr{rX)/ X =[ct|2)/cCIDllp2/p] | m}=0 fori=12 (1.7)
then the procedure in (1.6) is unique except for the sets of probability zero (Anderson.
1984).

From (1.6) it is clear that the implementation of the minimum ECM rule requires
(1) the density function ratio evaluated at a new observation. (2) the cost ratio, and (3)
the prior probability ratio. In this chapter, we shall discuss special cases where each one
of these components is unknown. The presence of ratios in (1.6) is significant because
often it is much easier to specify the ratios than their component parts. For example, the
cost to a credit company of classifying an applicant as a good client when, in fact he or
she has no credit profile and classifying an applicant as a bad client when, in fact he or
she has an excellent credit profile, is difficult to specify. However, a realistic number for
the cost ratio of such misclassification can be obtained. Not admitting a client with a
good credit profile may be four times more costly, over a determined period of time, than

admitting a client with no credit profile. Thus, the cost ratio is four.

3) Special cases of minimum expected cost regions

o The prior probabilities are unknown



If the prior probabilities are unknown, they are often taken to be equal. i.e.

(py p2)= 1. The regions R, and R:that minimize the ECM are defined by

Re i/ A = [ca12)/ @I D]
(1.8)

Rz A0/ 600 < [c1l2)/e2lD)]

e The misclassification cost ratio is indeterminate

If the misclassification cost ratio is indeterminate, it is usually taken to be unity,
[c(l 12)/ c2 | 1)] = 1. In this case, the optimal classification regions R, and R:are chosen

to minimize the total probability of misclassification (TPM).

TPM = pi [z /1(X) dX + p2 [r. (X) dX (1.9)

R: A/ A = [p2/pi]
(1.10)

Rx: £iX) /X < [p2/p1]

e Egual prior pr biliti nd equal misclassification cost ratios

When both the prior probability and misclassification cost ratios are unity or one
ratio is the reciprocal of the other, i.e. (p1/ p2) = [c(1 [2)/cln]=1o0r

(pi/ p2)=1 / [c(l 12)/c2 I 1)], the optimal classification regions R;and R:are given
by R: AX)/ X)) 21
(1.11)
Rz i)/ A <1

10



e Conditional or posterior probabilitv

Another way of minimizing the probability of misclassification is to allocate a
new observation X, to the population that has the higher conditional or posterior

probability. Given a new observation X,, the conditional probability of coming from
population = is
Pr(m; | Xo) = Pr(m and observe X,) / Pr (observe Xo) (1.12)

= [Pr (observe X, | ) Pr (m)] / [Pr (observe X, l 1) Pr (%)

+ Pr (observe X, | m5) Pr (112)]

=pi1fiXe) ! [ p1/iXo) + p2f(Xo)]

Pr(m: | Xo)=1-Pr(mi | Xo) =p2sXo)/ [ p1fiXo) + p2.fi(Xo)]

If Pr(m | Xo)=Pr (2| Xo,), we classify X, as m;. Otherwise, we classifv X, as 2. The

optimal classification regions R; and R:are equivalent to (1.10).

4) Evaluating classification functions

In this section, we present an important feature, which plays an essential role in
the performance of a classification procedure. That is the error rate or misclassification
probabilities. If the forms of the parent populations are completely known then the
smallest value of the rotal probability of misclassification (TPM) (1.9), obtained by a
sensible choice of R;and R; is called the optimum error rate (OER).

OER = py [p. /i(X) dX + p2 [z, 2(X) dX (1.13)

where R;and R:are obtained by (1.10).

11



We can define the OER as the error rate for the minimum TPM classification rule.
In the event that the parameters of the parent populations are not known, as mentioned
earlier, they are estimated from the training sample. The performance of sample
classification functions is evaluated by the actual error rate (AER).
AER=p1§R_-ﬂ(X)dX+szR:f2(x)dx (1.14)

where R; and R: are the classification regions by samples of size n; and n2. respectively.

There are also error rate estimates that do not depend on the form of the parent
populations and that can be calculated for any classification procedure. One of them is
called the apparent error rate (APER). The APER is defined as the function of
observations in the training sample that are misclassified by the sample classification
function. This measure is calculated from the confusion matrix, which shows the actual

versus predicted group membership.

Predicted membership
™ T
T Ny Nim= 01~ 0jc o,
Actual i
membership %] N2m=N2- 02 N2c n;

n; = number of observations from ;.

n> = number of observations from 7.

nc= number of =, items correctly classified as ;.
nyc = number of ; items correctly classified as = .
n;m = number of ; items misclassified.

n;m= number of 7, items misclassified.

12



APER = (nim + Nzm) / (M1 + n) (1.15)

As presented by (1.15), APER is the proportion of items in the training set that are

misclassified.

Note. Unless the sample sizes n; and n; are very large. the APER underestimates the

AFR (Johnson & Wichem, 1988).

There exists other methods to estimate error rate, which are better than APER, are

easy to calculate, and do not require distributional assumptions. One method is to split the

total sample into a training sample and a validation sample, which are used to construct

and evaluate the classification function. respectively. The disadvantages of this procedure

are (1) it requires large samples, and (2) the function evaluated is not the function of

interest. In order not to lose any valuable information. almost all of the data must be used

to construct the classification function.

A method called Lachenbruch’s holdout procedure (Lachenbruch & Mickey,

1968), which seems to work well is

1.

N

Start with the =; group of observations. Omit one observation from this group and
develop a classification function based on the remaining n;-1, n, observations.

Classify the “holdout” observation using the function constructed in step 1.

Repeat steps 1 and 2 until all of the =, observations are classified. Let nym ™"

be the number of holdout (H) observations misclassified in this group.
Repeat steps 1 through 3 for the n; observations. Let nan™ be the number of holdout

observations misclassified in this group.

13



Estimates Pr (2| 1) and Pr (112) of the conditional misclassification probabilities in (1.2)
and (1.4) are then given by

Pr2l1)=n.®™/n
(1.16)

Pr(1 |2) =n..®/ n,

And the total proportion misclassified, (™ + nz™) / (N1 + 02 ) is. for moderate

samples, a nearly unbiased estimate of the expected actual error rate, E(AER).

E(AER) = (nn® + n:a™)/ (0 + n2) 1.17)
Lachenbruch's holdout procedure is computationally feasible when used in conjunction

with linear classification statistics (see Chapter II).

As a conclusion. we note that a good classification rule depends on the separation
of the population. Hence, it is important to effectively separate the groups as much as

possible in order to develop good classification rules.

5) Classification with several populations

In this section, we present the development of the optimal rules to classify more

than two populations. Let £(X) be the density associated with population &;. i =1,2.....g.

Let pi= the prior probability of population &;, i =1,2,....g.
ck | i) = the cost of allocating an item to n; when, in fact, it belongs to m;,

fori.k=12,....g.

14



Fork =i, c(i | i) = 0. Finally, let R, be the set of X’s classified as n;and

Pr (k | i) = Pr (classify observation as n, | 1 ) = fr. A(X) dX

4
fori,k=1.2,....g with Pr(ili)=1-Z;~ Pr(jli.

J*®1!

The conditional expected cost of misclassifying an X from ncto . i. k=1.2.....g

andk z1is
g
ECM(k) = Zi~ Pr (i LK) (il k).

The overall ECM is given by

ECM = p ECM(1) + ... + p, ECM(g)

g
=Siapi (Tia Prilk) el k)). (1.18)

k=i

In order to develop an optimal classification rule. we must choose mutually exclusive and

exhaustive classification regions R,, R5, ..., Rg such that the overall ECM be a minimum.
A judicious choice is to choose the classification regions by allocating X to that
population mi, k = 1,2....,g for which

ZE:-i pi fiX) il k) (1.19)

is smallest. We note that if a tie occurs, then X can be assigned to any of the tied

populations (Anderson, 1984).

We look at the case where all the misclassification costs are equal. Without loss
of generality, we set them equal to one. Following the same logic as for (1.19), we would

allocate X to that population ni, k = 1.2....,g for which

15



g
i< pi f(X) is smallest
k=i
or ~AX) is largest.

In that case, the minimum expected cost of misclassification rule has the following form:
Allocate X to ntk if i A(X)>pi fiX) forallizk

or allocate X to ni if Inpy AX)>Inp; f(X) forallizk (1.20)

We note that the components of the minimum ECM rules (prior probabilities,
misclassification costs, and density functions) must be specified (or estimated) before the

rules can be implemented.

Another approach to determine a minimum ECM rule with equal misclassification
costs is to maximize the posterior probability.

Pr (m | X) = Pr(X comes from =, given that X was observed).
where Pr (m | X) = (2 4X) / £r o X)) (1.21)
= ((prior) x (likelihood)) / (£ [(prior) x (likelihood)])
fork=12,...g.

Equation (1.21) is the generalization of equation (1.12).

6) Classification with normal populations

In this section, we present an important special case. That is when fi(X) isa

multivariate normal density with mean vectors y; and covariance matrices Zi.

16



fX)=[1/@ry? 1 2l 2] exp [(-1/2) X- i) &7 K-pi)], fori=12,....g (1.22)

If the misclassification costs are all equal (or c(k | i)=1 for ks#i ) then the rule in (1.20)
becomes:

Allocate X to ry if

Inp AX)=Inpr—(m2) In Cr)—(172) Inl Sl - (172) X- e ) =" X- i)

= max In pi fiX) (1.23)

Eliminating the constant (m/2) In(2x) since it is the same for all the populations, we
define (1.23) as the quadratic discrimination score for the ith population to be

DeX)=(-1/2)In| il -1/2) X- i ) T X-pi)+Inpi  i=12....¢ (1.24)

Hence, we obtain the following minimum total probability of misclassification rule for
normal populations:
Allocate X to my if

the quadratic score Dx2(X) = largest of D, (X), D:2 (X), ... , D2(X) (1.25)

The estimates of y; and Z;, when they are unknown. are obtained through a training set of

correctly classified observations.

The relevant sample quantities for populations r; are
Xi= sample mean vector
S; = sample covariance matrix

n; = sample size
The estimate of D:is then

17



d2X)=(-1/2) In| Si| - (172) X- Xi)’ Si' (X- X)) + In p;

Hence, the estimated minimum TPM rule for several normal populations is
Allocate X to my if

the quadratic score di2 (X) = max (d,2(X), d:2(X), --. » 42 (X)) (1.26)

If the population covariance matrices, I, are equal, ie. ;=X fori=12,....¢g.
the discriminant score in (1.24) becomes

DAX)=(-1/2)In[ Z]-(12) X' Z'X)+ " E' X - (12) ' T w) +Inp;  (1.27)

We can ignore ((-1/2) In| £ - (1/2) (X" £"' X)) since it is the same for D;?(X),
D2 (X)..... D2 (X). Consequently, we get the linear discriminant score as

DAX) =i "' X~ (172) (" ' i) + In p; (1.28)

The minimum TPM rule for equal covariance normal populations is:
Allocate X to i if

the linear discriminant score Dx (X) = largest of D, (X), D2 (X), ... . D;(X) (1.29)

The estimate d; (X), of the linear discriminant score D; (X) is based on the pooled estimate
of Z.

Spooied = (M= 1) Sy + (2= 1) S2+ ... + (g = 1)S) / (n; +ma + ... +ng) (1.30)
and is given by

diX) = (Xi" S pootea X )~ ((1/2) Xi” $™ pooica X)) + In p; (1.31)

Consequently, the estimated minimum TPM rule for equal covariance normal
populations is:

18



Allocate X to m if

the linear discriminant score di (X) = max (d; (X), d>(X), ... , dg (X)) (1.32)

Another approach for the equal covariance case is obtained from (1.24) by ignoring the
constant term, (-1/2) In| £ |, where the allocatory rule is given by:
Allocate X to the population =x; for which

-1/2) X=Xi)’ S oooted X - Xi) + In p; is largest. (1.33)

We can interpret (X — Xi)’ S pooted (X — Xi) as the squared distance from X to the sample
mean vector X;. We note that both rules. (1.32) and (1.33), assign X to the closest

population.

Remark. If the prior probabilities are unknown, they are set to be pi=p>»= ... =p,= 1/g.

19



Chapter II Linear discriminant analvsis: Fisher’s method

1) Classification for two populations bv Fisher’s method
In this section we present the method proposed by Fisher (1936) which consists of

transforming the multivariate observations X'=[X; X, ., Xx] (the vector of
measurements of m relevant variables of an observation) to univariate observations Y

such that the Y’s derived from populations n; and = are separated as much as possible.

Fisher’s idea was to take linear combinations of X in order to create the univariate
observation Y to create a single index for classifying observations. Let p,y and p2y be the
means of the Y’s obtained from X’s belonging to &, and n;, respectively. Let the mean

and covariance matrix of X be denoted by

ui = E (X| 1) = expected value of a multivariate observation from m,
2= E (X| ;) = expected value of a multivariate observation from w2

T =E(X-p) (X-p). i=12.

We consider the case £, = £, = Z and the linear combination

Y=L X (2-1)

(Ix)  (low omxl)

with wy=E(Y|r)=E(L'X!|m)=L"p,
2-2)
uy=E(Y[n) =E(L Xln2) =L s

6/.=Var(L'X) =L Cov(X)L=L"XL 2.3)

Fisher’s idea was to choose the linear combinations that maximized the (squared)

distance between pv and p.v relative to the variability of the Y’s, 6,%:
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[uv-pv)?/ 6] =[(L' i -L )/ (L' ED) ]

=[L (i -p2) (wi-p2) L] /(L'EL)

=(L"8)’/(L"EL) (2.4)
where d =, - > .
The coefficients L" = [L, Ls,..., L»] which maximize the ratio (2.4), are called the
Fisher'’s linear combination coefficients. We maximize the numerator in (2.4) with
respect to L and we hold the denominator constant (Anderson, 1984). If A is a Lagrange

multiplier, we seek the maximum of

L (ui-p2) (ui-p2)’)L=A(LZL-1) (2.5)

Taking the derivatives of (2.5) with respect to the components of L and equating them
to zero. we get
2[(mi-p2) (m-mw)JL=2AZL 2.6)
Since (i - u2)" L is a scalar, say v, we can write (2.6) as
p-p2=(A/NV)ZL Q.7
= Z'(m-p)=(N)L

= L=(vVA)Z" (pi-p2) (2.8)

The ratio (2.4) is maximized by choice of L in (2.8), for any (v/&) = 0.
Choosing (v/L) = 1 produces the linear combination
Y=L X=(u-u) =X 2.9)

which is known as Fisher s linear discriminant function.
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Note. The maximum of the ratio in (2.4) is given by

max, {(L'8)2/(L"'EL)]=5"%"5.

Fisher’s discriminant function does not depend on the form of the parent populations
71 and 2. However, there are non-normal cases where Fisher’s discriminant function

performs poorly.

2) Classification into one of two known multivariate normal populations

In this section we use the optimal classification rule for two populations outlined
in Chapter I, in the case of two multivariate normal populations with equal covariance
matrices, Z (Anderson, 1984). The vector of means of the ith population is

.= (fa. M. Wim). i =1,2. This approach was first given by Wald (1944).

The ith density is

SX)=[1/ @y Z1"*] exp [(-1/2) (X-p)" £ (X- )] (2.10)

The ratio of the densities is

(L0 / £X0) = (exp [(-1/2) (X- )" =7 (X- )] / exp [(-1/2) (X-p2)” 27 (X- p2)])

=exp {(-1/2) [(X- p1)" T (X- pi)- (X- p2)” 7 (X- )]} @.11)

The regions of classification R, and R, are given by
Ri: (%) £0) 2 &
: (A0 5(X)) < k

for & suitably chosen.

R
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In order to simplify the ratio in (2.11), we rewrite it in term of its logarithm function:
(-172) [(X- )" T (X- 1) - (X- p2)” 27 (X- )] = In (A0 / X)) (2.13)
Rearranging the terms we obtain

In (AiX)/ AX) =X =" (i -p2) =(172) (i + 12) =7 (i - p2) (2.14)

The first term is the Fisher's linear discriminant function. The second term is the

midpoint M between the two-univariate population means.
M=(1/2) (uy +pav) = (1/2) (L'pi + L'y2)

=(172) (i +p2) ' (p1 - p2) 2.15)

Hence the best regions of classification that minimize the expected cost of

misclassification. are

R X Z'(i-p)-(172) (pi+p2) Z' (- p2) = Ink

(2.16)
R X' Z'(pi-p) = (172) (i +12) T (pr-p2) < Ink
If prior probabilities p; and p, are known, then & is given by
k=[c(112)/ eI D] [p2/p1] 2.17)

In the case of two populations being equally likely and the costs being equal, k = 1 and

In £ = 0. Then the regions of classification are

Ri: X 27 (ui-p) 2 (172) (i + p2)” T (i - p2)
(2.18)

Ry X T (- p2) < (172)(m1 + p2)" T (s - p2)

If we do not have the prior probabilities, we may select In k = ¢, say, on the basis of



making the expected losses due to misclassification equal.

3) The distribution of the criterion of classification

Let X be a random observation. We are interested to find the distribution of
U=X"Z" (- p2) - (172) (pi + p2) "Z7 (1 - o2) (2.19)
For X being distributed as NV (i1, £), U is normally distributed with mean
E(W)=m Z" (u1-p2) - (172) (i + p2)” T (11 - po)
= (1/2) (pi-p2) 27 (1 - p2)
= (1/2) A? (2.20)
and variance
Var(U) =E [(p1-p2) " (X - 1) (X - )" Z7' (1 - p2)l
= (mi-p2) T (- 2)
=A’ -21)

where A? is the Mahalanobis squared distance between N (., £) and N (u2, I).

As a conclusion, if X is distributed according to N (1, £) then U is distributed
according to N ((1/2) A%, A?). Similarly, if X is distributed according to N (p2, £) then U

is distributed according to N ((-1/2) A%, A?).

4) The probabilities of misclassifications

The probability of misclassifying an observation from n; as n2 is

c

Pr(2l1) = f. (1/(27)= A) exp[{Z - -172) A7) 2/ (2 A%)] 4z
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(c-(12) A:)IA

=L (/7)) exp[-12) Y] dY C

I
[
(18]
~

The probability of misclassifying an observation from = as «; is
Pr (2l 1) = k£ (1/(27)" A) exp[-(Z+ (-1/2) AY) 2 / (2 A?)] dZ

= fumaia (1/(27)=) exp[(-1/2) Y?] dY (2.23)

R_? RI

(-1.2) A* 0I c ' (172)A°

Figure 2.1 Pr (1 {2)and Pr (2! 1) are indicated by the shaded portion in the tails.

For the minimax solution (a solution where the maximum expected loss is a minimum)

we choose ¢ so that

c(112) Jimumaia (1/21)*) expl(-172) Y] dY

(c-(172) Al) /A

=cl [ (1/(2r)"2) exp[-172) Y] dY 2.24)
where c(i| /) are the costs of misclassification, 7/, j = 1.2.

As a conclusion, the minimax regions of classification for the two multivariate
normal populations are given by (2.16) where ¢ = In k is chosen by the condition (2.24).

If the costs of misclassification are equal then ¢ = 0 and the probability of
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misclassification is

L. (1/(27)=) expl-1/2) Y] aY 2.25)

If the costs of misclassification are unequal, ¢ could be determined to sufficient accuracy

by a trial-and-error method with the normal tables.

5) Classification into one¢ of two multivariate normal populations when the
parameters are estimated

In most cases the population quantities pi, p2 and Z are not known. Hence they
are inferred from samples, one from each populations, ©; and x,.
Suppose we have the data matrices

Xi=[XiuX2. . Xim] fromN(u, X)
(m <nl, (2.26)

and X;= [Xu, le . Xz,n] from NV (p.z, Z)

(m<nl)

which represent the training sample.

On the basis of this information we want to classify the observation X as coming from n,

or ©;. The sample mean vectors and covariance matrices are

‘)—(. :(1/"1) 21Xy 5 S = gl/("l ~1)) 2. (Xy- X)) (Xy- X))

2.27)
Xz =(1/ﬂ2) z,=| x;, 5 Sz = gl/(nz— 1)) z]-l (X2j— iz) (X2j—i2)'
tmx1) (mxm
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and

Spootea= [(m~1)/ (m = 1) + (m2= D] S1+ [(m-1) [ (m-1) + (m:-1)] S,

=[(m~-1) $i+(m-1)$:]/ (n+n-2) (2.28)

Remark. Speiea is an unbiased estimate of Z and it represents a weighted average of S,

and Sz.

The estimate of L is given by

A - —

L=S"pootea (X1 — X2) (2.29)
We substitute these estimates for the parameters in (2.14) and we obtain

W(X) = X' S pootea (X1 — X2) = (1/2) (X1 + X2)" $™ powtea (X1 — X2)

= (Xi-X2)" $" pootea [ X = (1/2)( X + X3)] (2.30)
w(X) is often called Anderson s classification function (statistic) and it is used as a

criterion of classification in the same way that (2.14) is.

Another case is when we have a sample X; X, ... X, from either &, or %;, and we
wish to classify the sample as a whole. Then, an unbiased estimate of the covariance
matrix X is defined by

nt [( 2]

Spoctea=[1/ (m + ma+n=3)] [Z-1 (Xy-Xi) (Xy-X1)" + 200 (Xp-X3) (X5—X2)"

+Z0 (X-X) (X-X)] @2.31)

where

X=(1/n) T~ X (2.32)



Then the criterion of classification is

[X-(1/2)(Xi +X2)]" §" pociea (X1 — X) (2.33)
Note. The larger n is, the smaller are the probabilities of misclassification.

Similarly to (2.5) and (2.6), the linear combination
A —_— —
Y=L X=(Xi-X2) " S pootea X
which is the Fisher's sample linear discriminant function, maximizes the ratio
p— —_— 5 L= L=\ I\' A A’ A’ A
(Y1 -Y2)/ 8% ) =[(L"Xi =L X2)* / (L” Spootea L) = [(L°d) / (L Spoviea L)]  (2.34)

where d = (il - iz)

Note. We must have (n; + ny —2) > m, otherwise Sppq is singular and the usual

inverse. S'l,,wkd does not exist.

The maximum value of the sample ratio (2.34) is given by
max; [(L'dy / (L Spooted L)] =d" S pooted d = (X1 = X2)" S ovtea (X1 — X2) (2.35)

which is the sample squared distance.

The midpoint, m, between the two univariate sample means, Y; = 2 X and Y, = 2 X is
given by:

m=(1/2) (Y- Y2) = (1/2) (Xi - X2)" S pootea (X1 + X2) (2.36)
Hence the regions of classification that minimizes the expected cost of misclassification,
are given by:

R: (Xi-X2)' S pooweaX - (1/2) (X1 - X2)" S oonea(Xi1 +X2) 2 In k
2.37)



Ry: (Xi-X2) S pootd X-(1/2) (Xi —X2)" S oot (X1 + X2) <Ink

where k=[c(112)/clD)] [p2/p:]-

6) The distribution of the criterion
Let W(X) =X S.lpo‘,[ed(i[ —iz) - ( 1/2) (3(-[ + iz)' S-lpm(ed(—x-[ -—iz). The distribution
of w(X) is said to be extremely complicated. It depends on the sample sizes and the

unknown A

Anderson (1984) gives the following result: if n, = n,, the distribution of w for X
from =, is the same as that of —w of X from nz. Thus, ifw > 0 is the region of
classification as m;, then the probability of misclassifying X when it is from n; is equal to

the probability of that when it is from .

o The asvmptotic distribution of the criterion

Wald (1944) was the first one to conclude that the limiting distribution of w as
n;— o and n> — « is the same as the distribution of U given in equation (2.19). For
sufficiently large samples from =, and nt;, we can use the criterion as if we knew the
population exactly and we make only a small error. This result is presented in the

following theorem.

Theorem!l
Let w be given by (2.30) with X, the mean of a sample of size n, from N (., £), X2 the
mean of a sample of size n, from N (4>, Z), and S the estimate of Z based on the pooled

sample. The limiting distribution of w as n— o and n; — o« is N ((1/2) A% AY)ifXis
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distributed according to N (1, £) and is N ((-1/2) A%, A?) if X is distributed according to

N (p2, X).

7) Fisher’s method for discriminating among several populations

In this section we outline a several population extension of Fisher's discriminant
method. The purpose of this is to obtain a reasonable representation of the population that
involves only a few linear combinations of the observations, such as L "X, L2 X and
L’;X. The primary purpose of this method is to separate populations. It can also be used
to classify observations.

In this case, we have g populations, which are not necessary multivariate normal. We

assume that the population covariance matrices are equal and of full rank, i.e.

$i= Zr=...=Z,=% and Rank(Z) = m.

Remark. If T is not of full rank then we let P = [e;,..., eq] be the eigenvectors of

corresponding to nonzero eigenvalues [A...., ;). Then we replace X by P* X. which has

a full rank covaniance matrix P'ZP.

g
Let m=(1/g) Z... u: be the mean vector of the combined groups.

g
Bo=2X.. (u-H) (u-pm) (2.38)

be the between groups sum of crossproducts.

We consider the same linear combination as in (2.1) with expected value

E(Y)=LE (X|r)=L"u=py for population i, 2.39)

30



and variance

Var (Y)=L " Cow(X)L=L"Z L forall populations. (2.40)

The overall mean is defined by

g -4 8
Av=(1/g)Zipy =(1/g) Z..L'w =L ((1/g) T p)=L'1 (2.41)

Fisher’'s idea was to find the linear combinations that maximized the sum of squared
distances from populations to the overall mean of Y relative to the variance of Y, i.e. to

minimize
g g
Zoi(uv-mv) /(L zL)=Z. (L'p-L'p)? /(L' 2ZL)

L e (o) () L/ (LEL)

=(L'BoL) /(L' EL) (2.42)

Fisher showed that we could select L such that the ratio in (2.42) is maximized in the

following result. It is convenient to scale L so that L" £ L = 1, without loss of generality.

Lemmal Let A, >4z 2> ... 2 A;> 0 denote the s < min (g-1, m) nonzero eigenvalues of
T'Boand ey, ey, ..., e;the comresponding eigenvectors (scaled so that e” = e = 1). Then the
vector of coefficients L that maximizes the ratio (L " BoL) / (L" £ L) is given by L, = e;.
The linear combination L1 X is called the first discriminant. The value L2 = e; maximizes
the ratio subject to Cov(L";X, L"; X) = 0. The linear combination L", X is called the
second discriminant. Continuing, L, = e, maximizes the ratio subject to

Cov(L«X,L",X) =0, i<k, and, L' X is called the kth discriminant. Also Var (L', X) =1,
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i=1,...s.

In most applications, T and p; are not known. Hence, their estimates are obtained through
the training sample of size n, from populations =, i = 1,2,...,g. The data set from
populations =, is denoted by the mx n, matrix, X..

m

Let X,=(1/n,) -1 X, be the sample mean vector of population .. (2.43)

8= (1/n,-1) Z-,(X,-X.) (X, —X,)" the covariance matrix of population x,.  (2.44)

X= (Z,—.-[ n, i;) / (Z,:] n,)

g n g

= (2=1Z~1X,)/(Z=1n) the overall sample average vector. (2.45)

The sample between groups matrix is defined by
g — — —
bo=2- (X:i-X) (X. -X)’ (2.46)

An estimate of I is given by

»

8
Spooled'_' (l/(nl +ny+.. .+ ng -g)) z,=1 Z,:[ (X,j—i,) (X,,»—i,—)’

=(1/(m +n+...+ ng-g)) wo
wo is the sample within groups matrix.
Since wo = (1/(n + ny +...+ ng -g)) Spoviea, then the same L that maximizes
(L boL) / (L Spociea 2) also maximizes (2 bo 2) / (Z Wo 2) As a result, the

.Y -
optimizing L is given by eigenvectors e; of wo ' bo, because if wo'bo e = A4 e then



Spociaboe =1 (m + n +...+ ng-g) e. The fisher 's sample discriminants are outlined in

the following result.

Lemma 2 Let A > 422> ... 24 > 0 denote the s < min (g-1, m) nonzero eigenvalues of
wo'bg and e 1, e, ..., €; be the corresponding eigenvectors (scaled so that e “Spooieae = 1).
Then the vector of coefficients L that maximizes the ratio (L bo 1)/ (L wo L)

g g n
=1 E & -B) K- L/ [L (e Z1 (X-R) (%,-X)) I] @48)
is given by 2 1 = e 1. The linear combination 2 "X is called the sample first discriminant.

A ~ N
The choice L ; = e ; produces the sample second discriminant, L', X. Continuing, L', X =
e« X is the sample kth discriminant, k < s. Unlike the population result, the discriminants
will not have zero covariance for each random sample X.. Rather, the condition
A A
L' Spotealk=1 if i=k<s
= 0 otherwise

will be satisfied.

8) Classification bv Fisher’s discriminants

Fisher’s discriminant also provides the basis for a classification rule.

LetY =[Y., Ya,..., Y,] where Y;= L's X = kth discriminant (2.49)
where £ < s and s = min(g-1, m).

Y has mean vector gy = [pm, Rivz..... l.l,y,] = [2. i 2’2 Mise-ns 2', u,] under population =;

and covariance matrix I (Identity matrix), for all populations (see Lemmal).

Since the components of Y have unit variances and zero covariances, the appropriate
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measure of squared distance from Y =Y to pyy is

(Y-pa) (Y-py) =21 (- 1)’
A reasonable classification rule is one that assigns Y to population n.if the squared
distance from Y to py is smaller than the squared distance from Y to p.y fori = k.
If only r of the discriminants are used for allocation, the rule is:

Allocate X to ny if

r

2 (y-my) =2 [21 (X-p)J?
<SS [L,(X-p))?  forallizk (2.50)

Remark. The restriction on the number of discriminants is explained by the number of
nonzero eigenvalues of £ Bo or £ 2 Bo £ (see Lemmal ).
We know that £'Bg is m x m, hence s < m. Furthermore, the g vectors

Hi-H, p2-f. ... Hg- B (2.51)

£
satisfy (- i) + (u2- ) +..+ (g- ) =21 pi-gi=gp-gp=0.
That is any of the differences p;- . i = 1,..., g, can be written as a linear combination of
the other (g — 1) differences. Linear combinations of the g vectors in (2.51) determines a
hyperplane of dimension ¢ < g — 1. Taking any vector e perpendicular to every p, - Hi.

and hence the hyperplane, gives

-4 g
Boe =2 (pi- 1) (- ) e=Z-: (u-n) 0=0

So T 'Bye = Qe.



There are (m — g) orthogonal eigenvectors corresponding to the zero eigenvalue. This
implies that there are ¢ or fewer nonzero eigenvalues. Since it is always true that

q < g — 1, the number of nonzero eigenvalues s must satisfy s < min(m, g — 1). Thus
there is no loss of discriminant information by plotting in two dimensions if the following

conditions hold.

Maximum number of
Number of variables Number of populations discriminants
anv m g=2 1
m=2 any g 2

Given the classification rule in (2.50) and the normal theory discriminant scores.

)
W
(1]
N’

D(X)=p Z'X-(172) p", T'u;+ In p, 2.
or. equivalently,

D(X)-(12)X =X =-(1/2) (X- ) ' (X-p) +Inp,
Obtained by adding the same constant — (1/2) X" £'X to each D{X), we present the

following important lemma.

Lemma 3 Lety, =L, X where L, = ="'¢; and ¢, is an eigenvector of £*Bo ™7 . Then

m

o (y-pe) =2 [ X-p)P=(X- ) 2 (X-p)
=.-D(X)+(1/2) X £'X +1Inp,
If A=A . 2 A >0=As =AS2= ... = Am,

m

21 (¥, - p,)’ is constant for all populations i =1, 2...., g so only the firsts y,.
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s

or 21 (v,- ui,)?, i =1, 2,..., g contribute to the classification.

Also, if the prior probabilities are such that p; = p>= ...= p,= 1/g, the rule in (2.50) with

r = s is equivalent to the minimum TPM rule (1.29).

Fisher's classification procedure based on sample discriminants is:

Allocate X to ny if

S (Y- Y =2 [L5(X-XI)P
<T [L;(X-X)?  forallixk (2.53)

A
where L, is defined in (2.48) (see Lemma 2) and r < s.

When the prior probabilities are such that p,=p2=...=p,= 1/g and r =s, the rule (2.53)
is equivalent to the rule based on the largest linear discriminant score of (1.32). In
addition, if » < s discriminants are used for classification. there is a loss of squared
distance, or score, of

m

Zer [2, (X-pn)]? for each population =,

5

where 2~ ., [L(X - p)]? is the part useful for classification.

9) Diagnostics in linear discriminant analvsis

In this paper, Fung (1995) proposed some new diagnostic measures in linear

discriminant analysis. For simplicity, a common prior probability and misclassification
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cost function is taken for both populations &, and n; .The Fisher s linear discriminant
rule (2.9) is:
Allocate an observation X to m; if

(pi-p2)" X - (1/2) (u1-p2) " Z7'(ua+ p2) 20

and to n, if otherwise.

We have M= (1/2) (ui- p2)” ='(ui+ p2) and L* = (u, - u2)” =7 Hence we have

LX-L (i +p)(1/2) 20.

The discriminant coefficients L can be estimated in two ways:
a) by the usual sample estimates L = ()_(l - _)Ez) g Spoozed".
b) By using the regression model Z=Yy + g, where Zandeare nx 1,

Y= [Y;, Y...... Y,,]T is nx (m+1)and L is a (m+1) vector.

Let v be the least squares estimator for . The residual is r; =Z, + Y."7, and the leverage
is 2, =Y,"(Y" Y)"' Y, . Many diagnostic measures in regression can be expressed in
terms of them. One example is the statistic of Cook (1977)

C=[F-7)" Y YFT-T)]/ [(p+1) 7] (2.54)
where & is the unbiased error variance estimate and ¥ is the least squares estimate for
a using the sample without observation / in the regression model Z = Yy +¢. (2.54a)
Under the linear discriminant analysis framework where the first column of Y contains
unities and the remaining columns contain » observations X,/ = 1,....m,i=1,2,and Z

has the first 7, elements as an arbitrary constant 4, and the other elements as b,. Let *{T be
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partitioned as (y,, v2") then the least squares estimates 72 is known to be proportional to L

(Anderson, 1984, sec. 6.5; Cox and Snell, 1989, sec. 4.4; Mclachlan, 1992, sec. 3.3.4).

Replacing the parameters by the sample estimates, we get

I'X-L (X +%)(1/2) 20
and the allocation rule is identical to (2.15) where L= (Xi-X;)" Spooied - The quantity
I'X-L (X + X)(1/2) is the discriminant score, which is also the estimated log-odds,

Log [Pr (Xo 1S m) / Pr (Xo €N )], for observation X. Fung denotes it as BT Y. where

BT=(L (X, +X:)(1/2), L) and Y’ =(1,X’) (2.55)

Fung is interested in the effect of the omission of observation i (for simplicity, we
assume i is from =, ) on the parameter estimate B. He studied this through the mean
squared difference of the discriminant scores for the full sample and the sample without
observation /. i.e.

EBTY-BTwY) (2.56)

The expectation is taken with respect to the estimated density of X, which is evaluated in

two ways: parametrically and nonparamerrically.

Parametrically X is distributed as ¢t N (u1, £) + (1 —¢) N(u2. ). Let £ = n / mand

plug-in estimates X, Xz, and S in (2.56). After some calculations, the expectation is
given as

E2=¢B?+(1-1) B +V (.57)
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where B = (I- Lo)" (Xi-X2)(1/2) - LT (Ri-Xio)(1/ 2)
(2.58)
B:=-(L-Lu)" (Xi-X2)(1/2) - L " (Xi- Xin)(1/2)
and V=(2—Z(1))TS(E_2(1))

are the bias and the vaniance.

Nonparametrically The empirical (nonparamerric) distribution function for X is used to

evaluate (2.56) as
F2=2; [(B-Bw) Y.}/ n
or. equivalently
F2= [(TS -B) Y'Y (B-Bw)] /'n (2.59)

Fung makes the remark that F2 is in analogy to the well-known Cook statistic in (2.54).

After some calculations, F2 is also expressed as

F2=(B2+(1-)B +(n-2)V/n (2.60)
Note. Since F2 and E2 are very close, especially for a large size n, the later discussion is
mainly on F2.
F2 and E2 can be expressed in terms of the two fundamental statistics in discriminant
analysis

d?= (X, - X1)'s'(Xi-X))

(2.61)

and ¥, =a"(X1— X))
which are like the residual and leverage measure in regression, on which many influence

measures depend. The following theorem is useful for getting the asvmptotic distribution

for the proposed measures.
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Theorem 2 The statistics DIF = d ~ (¥, / D)? and ¥,/ D, where
D=Xi-X2) §'(Xi-X2),

are asymptotically independent and are distributed as 1’1 and N (0, 1).
By the use of this theorem, it could be shown that d and ¥, / D are asymptotically 3>,
and V (0, 1) distributed respectively. Hence critical values and expected quantiles of the
measures can be approximated using numerical integration.
(2.56) could also be evaluated non-parametrically based on the empirical distribution
function estimated from the sample without observation i/, giving a measure

F2/ = [(B-Bw)" Yo " Yo (B-Bw)] / (n-1) (2.62)
Which is analogous to the statistic of Welsch (1982) in regression diagnostics.
Similarly, if we evaluate (2.56) parametrically, treating the leave-one-out estimates ?,(,)._
Y-. and S(» as parameters, then we obtain the measure E2/ with a form similar to that of

E2in (2.57).

F2I and E2I could also be expressed in terms of the basic statistics (2.61). These four
measures are aimed at detecting influential observations that have an unusually high
influence on the estimated /og-odds or the discriminant score. They are asymptotically
equivalent, under the null case, to having no influential observations. F2 and E2 could
give different results from F2/and E2/ as the Cook and Welsch statistics do in regression

diagnostics.

In the study of the possibility of generalizing regression diagnostics to linear
discriminant analysis, Fung discusses one basic distinction between regression and

discriminant analysis. In both /inear and logistic regression, Z is assumed to
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be random and Y is non-random, but linear discriminant analysis instead models Y
(random) given Z (random). Therefore, regression diagnostic measures, such as the
covariance ratio, being constructed under the foregoing randomness assumptions for
regression, are inappropriate in the discriminant analysis situation.

Setting the Z and Y in model (2.54a), both the regression residual r, and the leverage
statistic &, can be expressed in terms of d.” and ¥, in discriminant analysis. But #; is
arbitrarily determined by the constants b, and b2 in Z, whereas 4 is equivalent to a
multivariate outlier test for a single population (Rousseeuw and Van Zomeren, 1990),
without taking into account the special structure of discriminant analysis. Thus it would

be hard to have a simple interpretation for r; and A in the context of discriminant analysis.

Fung shows that although F2 is in analogy to the Cook statistic C;, in regression,
they are not in proportion over all possible indices i, i = 1.,....n. The Cook-like statistics
C.’in logistic discriminant analysis, apart from the weights, have the same interpretation

as F2. The vector Y(y'- yy") in C;" contains the differences of the log-odds, having the

same meaning as Y (B - B(,) in F2. But the meaning of Y(¥-7,) in C,. under the linear
discriminant analysis, is ambiguous and different. The interpretations of C; and other

regression diagnostics are not simple when applied to linear discriminant analysis.

Fung comes to the conclusion that the discriminant coefficients can be determined
using a regression model, whereas the well-known regression diagnostic measures cannot
be used under a discriminant analysis framework. The proposed measures are useful for
detecting single influential observations. By sequential application, they could be useful

to identify multiple influential observations. They could be extended to detect multiple
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influential observations in blocks avoiding the masking problem. However, the
computation requirements are increased. The approximation suggested by Critchley and
Vitiello (1991) could be applied to reduce the load of computation. Moreover, the
methods suggested by Rousseuw and Van Zomeren (1990) and Fung (1993) may be

extended for detecting multiple outliers in discriminant analysis.

10) Examples

We have generated multivariate normal data for two populations, «t; and ntz, with m=3,
different means. pi and p2 , and equal covariance matrices. X.

We consider nine different cases:

100
a) ' =(0,0,0), p2’=(0,1,1). ==l010
0 0 1
1.5 .5]
b) i’ =(0,0.0). p2’=(0.1.1), E=|5135
5.5 1
1.9 .9
S ui =(0,0,0), u2=(.1,1). Z=(91.9
9.9 1]
(100
d) " =(0.0,0), u2'=(0.1,2), ZX=010
001
(1.5 3]
e)ui’=(0,00), u2=(,1,2), Z=|S51.5
5.5 1
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f) ;" =(0,0,0), np2=(,1,2), Z=1.

o~ \©
|L—-‘\D\O|

o —-0o

g’ =(0,00), p2’=(0.15), 2=

L

h) " =(0,0,0), p2’=(,1.5), Z=

)i =(0.,0,0), u2"=(0,1,5), =

— , l VI
o~ TG oo~ g0~
=
Sy,

o —
-~ o o

For each case, the training samples are of sizes 15, 30, 100. For each training sample.
there are 50 validation samples of 1000 observations. The Mahalanobis distance,

A’ = (i - p2)” £ (1 - p2), and the “optimum error rate™, i.e., the “minimum total
probability of misclassification”, ®(-A/2) (where ®(.) is the cumulative distribution
function of a standard normal random variable) are tabulated for each case (Tables L. IL.
and IIT). The lowest total probability of misclassifications (TPM) are obtained for cases f,
g. h. and i. These cases have in common that ®(-A/2) < 3. The size of the training
samples does not have an important impact on the total probabilities of misclassification.
Hence, we can conclude that the probabilities of misclassification between two
multivariate normal populations with equal covariance matrices and unequal mean
vectors are influenced by their Mahalanobis distance. As A? increases. A/2 increases and

d(-A/2), i.e., the optimum error rate, decreases.
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Table 1. Probabilities of misclassification of two multivariate normal populations
71 and 72, (m=3) with equal covariance matrices £ and mean vectors p;'=(0,0,0) and
different values of p2.

100
z=[g 1 o] u2=(0,1,1) H2"=(0,1,2) u2=(0,1,5)
01
Training
sample sizes 15 30 100 15 30 100 15 30 100
A’ 2 5 26
A2 0.71 1.12 2.55
D(-A2) 23.89 13.14 0.54
(%)
Total number
! of
misclassified | 134357 | 12679 | 12205 | 7706 | 7125 6734 437 306 285
observations
TPM 2691 | 2536 | 2441 | 1541 | 1425 | 1347 | 0.87 0.61 0.57
(%)




Table I1. Probabilities of misclassification of two multivariate normal populations

71 and 72, (m=3) with equal covariance matrices Z and mean vectors pu;"=(0,0,0) and
different values of .

z{ T :i] p2"=(0,1,1) p2'=(0,1,2) H2'=(0,1,5)
5 351
Training i
sample sizes 15 30 100 15 30 100 15 30 100
A? 2 5.5 34
A2 0.71 1.17 2.92
DO(-A/2) 23.89 12.1 0.18
(%)
Total number
of )
misclassified | 12989 | 12658 | 12107 | 6839 | 6508 | 6067 149 132 95
observations
TPM 2598 | 2532 | 2421 | 13.68 | 13.02 | 12.13 | 0.30 0.26 0.19
(%)
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Table II1. Probabilities of misclassification of two multivariate normal populations
71 and 72, (m=3) with equal covariance matrices  and mean vectors p;"=(0,0,0) and
different values of u>.

199
2=‘:_9 i .9] p2=(0,1,1) u2'=(0,1,2) u2” =(0,1,5)
991
Training
sample sizes 15 30 100 15 30 100 15 30 100
A? 7.14 21.07 144.29
A2 1.34 2.30 6.01
D(-A/2) 9.01 1.07 0
(%0)
Total number
of
misclassified 5620 | 5097 | 4781 848 661 594 0 0 0
observations
TPM 1124 | 10.19 | 9.56 1.70 1.32 1.19 0 0 0
(%)
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Chapter III Quadratic discriminant analvsis

So far we have outlined procedures of classification and discriminant analysis for
two or more multivariate normal populations with equal covariance matrices. In this

chapter, we analyse the special case of multivariate normal populations where covariance

matrices X, are not equal.

1) Case of two multivariate normal populations

The ith density is

AX) =1/ =] exp [(-1/2) (X- 1) =7 (X-p)], i=1.2. (3.1)

The ratio of the densities is
X/ £X)) = (3.2)

(1 2:1"exp [(-1/2) (X- )" 7 (X-p))] /1 20 [P exp [(-1/2) (X- p2)” 271 (X- p2)])
The ratio in (3.2) is known as the likelihood ratio.

The natural logarithm of (3.2) is

In (AX)/ H(X)) =

G2 /12:0)-02) (ur = -pr 227 w2) -(12) X7 (207-27) X

+ (=7 27 X (3.3)

The result in (3.3) is a quadratic function of X. Substituting (3.3) in (1.8) gives the

following classification regions (34)
R: C12)X(ET- )X+ =7 - pr B X -k 2 In [(c1{2)/ eI D)) (p2/ p1)]

R 1) X (-2 X+ (pr 7w B Xk <In [(c1 [2)/ c@ 1 1))(p2/ p1)]

47



where k=(12) In( =, [ /1 2.1 ) + (172) (o 27 - 2 27" o) (3.5)

We note that the classification regions are defined by quadratic functions of X,

The classification rule that minimises the expected cost of misclassification is as follows:
Allocate X to =y if (3.6)
12y X (-2 ) X+ (e 7 2 2 X -k 20 [(c112) / eI D)2/ )]

and allocate X to n, otherwise.

In most applications y,and Z,, i = 1.2 are unknown. Then they are estimated through a
training sample. The sample quantities X, X, S; and S, are substituted in (3.6). As a
result, the sample analogue of the quadratic classification rule is as follows:

Allocate X to «; if G.7
-12)X($'-8N)X+ (X' S$7'-XS") X—k2In [(c112)/ 2l D) p2/ p1)]
And allocate X to t; otherwise.

Where k=(1/2) In (S, 1/]18:D) +(12) X" S Xi-X2' 8" X>) (3.8)

Note. ForS,"and S.™" to exist, it’s very important that the inequalities #,>m and n,>m
hold. n, and n, are the sizes of the training samples from =, and nt;, respectively.
Classification with quadratic functions is rather awkward in more than two dimensions

and can lead to some strange results, especially if the data are not multivariate normal.

The probabilities of misclassification are difficult to compute. In that effect,
Anderson (1984) suggests a linear transformation of X so that its covariance matrix is I

and the matrix of the quadratic form is diagonal; then the result in (3.3) has the
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distribution of a linear combination of non-central y*-variables plus a constant. Another
way of computing the probabilities of misclassification which is easy and appealing,
would be the apparent error rate (APER) (see Chapter I). Unfortunately. it tends to
underestimate the actual error rate (AER) unless the sample sizes n; and »; are very

large.

2) Case of non-normal multivariate populations

In the presence of non-normal multivariate populations, two options are
suggested. First, the non-normal data can be transformed to data more nearly normal.
Then a test for the equality of covariance matrices can be conducted to see if the linear
rule in (2.16) or the quadratic rule in (3.5) is appropriate. The second option is to use a
linear (or quadratic) rule without considering the form of the parent populations. For
example, Fisher’s procedure did not depend on the form of the parent populations. It only
requires that the populations have identical covariance structures. However, studies by
Krzanowski (1977) and Lachenbruch (1975) have shown non-normal cases where
Fisher’s linear classification function performs poorly. Therefore, we always have to

check the performance of any classification procedure.

3) Case of several multivariate normal populations

This case has been outlined earlier in the introductory chapter. We briefly recall the
results.

The multivariate normal densities are

X =[1/@r)"? z:1"] exp [(-172) (X- )" &7 (X-p)] . i=12....8. (3.9)

49



Ifc(ili)=0and c¢(k| i) = 1, k=i then the quadratic discriminant score for the ith
population is as follows:
DAX)=¢1/2)InlEl-12)X-p) ' X-p)+Inp,  i=12....8 (3.10)

where p; is the prior probability.

The minimum rotal probability of misclassification rule for several normal populations is
as follows:
Allocate X to =, if

the quadratic score D2 (X) = largest of D2 (X), D:2(X), ..., D.2(X)  (3.11)

In most applications, p,and Z, are unknown. Then the estimate of the quadratic
discriminant score, obtained through the rraining sample, is

d2(X)=(-1/2) Inl S;| - 12) X-X))’' S X-X) + In p;

Hence. the estimated minimum TPM rule for several normal populations is as follows:

Allocate X to m; if

the quadratic score d;2(X) = largest of d;2(X), d22(X). ..., d.2(X) (3.12)

4) Examples

We have generated data for two multivariate normal populations, r; and 72, with m=3,
different means. u) and p2 , and unequal covariance matrices, £, and X; .

We consider six different cases:

=W

100 1.5
a) u'=(0,0,0), p2=(0,1,1), ,=|0 1 Of.and Z2=[.5 1 .
001 S5
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b) u1"=(0,0,0),

¢) u1'=(0,0,0).

d) pi"=(0,0.0),

e) u1'=(0,0.0),

f) 1= (0,0.0),

u2=(0,1,5), &=

u2'= (09191)9 zl =

u2=(0,1.3), I, =

p2=(0,1,1), =}

u=(0,1.5), S1=|

100 [1
010](.,and Z24.5
0 0 1] 5
r - r
100 ]
010 | andX:2=|.9
0 0 1] 9
100] I
010 /| and=:=.9
0 01 9 .
15.5] 1
51 .5,and z,5.9
55 1_j 9
1 5.5 1
5 1.5Land 2259
5.5 1 9

— in
— i

For each case. training samples of sizes 15, 30, and 100 are generated. For each training

sample, 50 validation samples of 1000 observations are generated. The probabilities of

misclassification are evaluated by the apparent error rate (APER). These probabilities

are presented in tables IV, V, and V1. The probabilities of misclassification substantially

decrease with a choice of p2"=(0,1,5) (cases b, d, and f). For these same cases, an

increase in the size of the training samples dramatically decreases the probabilities of

misclassification.
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Table IV. Probabilities of misclassification (APER) for two multivariate normal
populations (7,=3) with mean vectors yu;"=(0,0,0) and 2, and covariance matrices
Zi1and X,.

As7 5] p2'=(0,1,1) k2" =(0,1,5)

Training sample size 15 30 100 15 30 100

Total number of

misclassified 13881 | 12740 | 12131 | 519 | 330 | 258
observations

APER 27.76 S48 | 2426 | 1.04 0.66 0.52

(%)

(%)




Table V. Probabilities of misclassification (APER) for two multivariate normal

populations (m=3) with mean vectors yu,'=(0,0,0) and pu., and covariance matrices
Ziand X2.

100 199 .
:.{o 1 o}andz,:{e) 1 .9] p2=(0,1,1) p2” =(0,1,5)
001 9 9 1
Training sample size 15 30 100 15 30 100
Total number of
misclassified 6908 | 6159 | 5545 | 222 | 88 46
observations
APER 13.82 { 1232 | 11.09 0.44 0.18 0.09

(%)




Table V1. Probabilities of misclassification (APER) for two multivariate normal

populations (m=3) with mean vectors p;"=(0,0,0) and p., and covariance matrices
Z:1 and Z..

1 5.5 199
.\:.{5 1 _5}andz,a[9 i _9] p2"=(0,1,1) u2” =(0,1,5)
5351 9 9 1
Training sample size 15 30 100 15 30 100
Total number of
misclassified 8646 | 7783 | 7119 | 55 13 7
observations
APER 1729 i 1557 | 1424 0.11 0.03 0.01
(%)

54



Chapter IV Logistic regression: an alternative method for the discriminant analvsis
In this chapter first we consider the general framework for logistic regression.

And then we consider the relation between discriminant analysis and logistic regression.

1) Logistic regression (Cox and Snell, 1989

We suppose there are n individuals, usually assumed to be independent. On each
individual we have a binary observation or response, Y, = 1 a “success” or Y, =0a
“failure™. Also for each individual there is a row vector, X,, of explanatory variables. The
probability of a binary variable, Y;, on a vector X, of explanatory variables is 0,. Hence
Pr(Y.=1;X)=0;and Pr(Y:=0;X;) = 1-0..

The problem is to develop good methods of analysis for assessing any dependence

of 8, on the explanatory variables, X, representing, for example, groupings of the
individuals or quantitative explanatory variables. The simplest empirical relation is to

suppose that 0; is linearly dependent to the explanatory variables, X,

0.=a+X.B=a+2Z X;sBs @.1)

where B is a column vector of unknown regression coefficients and a is an unknown
intercept.
The most serious restriction on the usefulness of (4.1) arises from

06,1 4.2)
We discuss the models in which the constraint (4.2) is automatically satisfied.
The notion of a distribution of a /atent response variable is used to motivate some
alternatives. Suppose that there is a /atent variable u, which has a continuous cumulative

distribution function F(u; X), for a given vector X of explanatory variables. The binary
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response Y = 1 is recorded if and only ifu > 0. That is

0=Pr(Y=1;X)=1-F0; X) 4.3)

Note that there is no loss of generality in taking the critical point to be zero since u is not
directly observed and also we may take the standard deviation of u or some other

measure of dispersion, if constant, to be unity.

In this formulation, the critical level of u is regarded as fixed and the distribution
of u as changing with X. The complementary formulation in which the distribution of u is
fixed and the critical level varies with X is more natural in bioassay when dose, or log
dose, is the explanatory variable. For this version, we take v as the dose that would just
produce a response, also called the rolerance. If the dose is a + X 8, then

Pr(Y=1;X)=Pr(vZa+XB) 4.4
which relates the probability that Y = 1 directly to the distribution function of'v.
It is recommended, however, to use the first formulation because u thereby is more

directly related to the observed binary response.

There are few possibilities for the distribution of u. One is where u has a logistic

distribution with location a + X B and unit scale. This has cumulative distribution

function (c.d.f)

Fu;X)=exp(u-a-XB)/ {1+exp(u-a-Xp)} (4.5)
so that FO;X)=1/{1+exp(a+XB)} 4.6)
from which it follows

8=Pr(Y=1;X)=exp(a+XPB)/ {1 +exp(a+XB)}
@.7)
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1-8=Pr(Y=0;X)=1/ {1 +exp(a+XB)}

The relationship is /inearized by the transformation

Log{6/(1-8)}=a+XB 4.8)

Forscalar X and B > 0, (4.7) is said to define via (4.4) a probability density function on

differentiation with respect to X, namely

Bexp(a+XB)/ (1+exp(a+Xp)) 4.9)

The logistic regression model is formulated mathematically by relating the
probability of some event, Y = 1 or 0, conditional on a vector, X, of explanatory

variables, to the vector X, through the functional form of a logistic c.df. This model is

given by (4.7) where (a, B) are unknown parameters that are estimated from the data.

The linearized relation in (4.8) is called the linear logistic model.

n=(0./(1-0))=a+X.B=a+2 - X« B: (4.10)

In this model, there are unknown parameters a and the mx1 column vector B. For general
purposes, it is convenient to change the notation slightly by writing Bo=a and Xo =1,
when (4.9) is equivalent to A = XB, where A is an nx1 column, X is an nxd matrix

(d= m+1),and B is a dx1 column of parameters, B"=(Bo,. .., Br). We shall assume that
Yi..... Y, are ndistinct individuals, mutually independent.

To estimate a and B, we can maximize the conditional likelihood function
fop (Yi.., Y) =T 6,7 (1-6) -
=1
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=0 [ NP /(14e X B)] Y [1/(1+eo"XB)]0-Y

=1

=1 [(e= 5 0) ¥ / (1+e* )]

=exp [z’;. (a +X:B) Y] /Ir"{ (1+e**XP) @.11)
with respect to (a, B).
Nore. In most situations it is preferable to work directly with the probabilities of success.
The concept of a /latent distribution has proved useful when the /atent variable has an
intrinsic physical significance and also when the idea is useful in suggesting models for

more complex problems.

2) Relation between discriminant analvsis and logistic regression

We shall consider the relation between two intimately related and yet
conceptually quite different techniques, namely discriminant analysis and logistic

regression.

In discriminant analysis (see Introduction, Chapter I) there are two distinct
populations, defined by 1 or 0. Within each of these populations, there is a set of
properties X. That is, there are two probability densities /(X) and f1(X). The focus in
discriminant analysis is on how those distributions differ most sharply. The problem
could be formulated as follows. Given a new vector X’ from an individual of unknown Y,
we wish to find out, in some optimal way, the population from which the individual was
drawn. The emphasis is strongly on the distributions of X within the two populations.

On the other hand, logistic regression presupposes a stable statistical relation such that
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once a vector of explanatory variables, X, is given a probability that a binary response, Y,

is equal to one, is determined. The distribution of X is not directly relevant to the

definition.

At this point, two rather different situations are considered. In the first, the
relative frequencies with which the two populations generate data are not defined, since
they may change relatively under hypothetical repetition. Then we cannot consider the
probability distribution of Y, either marginally or conditionally, on X. Thus logistic
regression is not applicable. However, discriminant analysis is applicable and the

statistic for assessing X" is the log-likelihood ratio

log Ai(X") —log fo(X") 4.12)
[f the two densities come from the same exponential family with canonical statistic X and
with two different parameter values, then (4.11) is a linear function of the components of
X. The resulting function is called a /inear discriminant function. The most important
special case is when f; and f; are multivariate normal densities with the same covariance
matrix ¥ and means po and p; (see Chapter II). Then (4.11) becomes
172) (i 2" - o 27 po”) + X Z7 (i - po)”

which is the population linear discriminant function.

In the second situation, still within the framework of discriminant analysis, there
are physically defined probabilities o and =; such that Y is 0, 1 with 7o + mr; = 1. Then
we can represent membership of a population for an arbitrary individual by a random
variable, Y. The full properties of Y are represented by a vector of random variable
Y. X).
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The functions f(X) and £1(X) specify conditional densities of X given Y =0, 1. For the

new individual of known X’ but unknown Y, we have by Bayes Theorem that

Pr(Y=1[X)=(AX)m)/ (SX)m +A(X)m) (4.13)

So that

log {Pr(Y=1[X=X)/Pr(Y=0 X=X} =log (m:/ o) +log ( AX" / X")
(4.14)

defining a logistic regression in which the prior probabilities are isolated into a single

term. Hence from a linear discriminant function, in the sense mentioned above, results a

linear logistic regression. It is noted that this happens only when the conditional

distributions of X are normal with the same covariance matrix.

3) Comparison of the efficiency of discriminant analysis and logistic regression

We shall compare the efficiency of discriminant analysis and logistic regression.
The literature on this topic is numerous. We shall summarize a few articles.

As observed earlier, relating qualitative variables to other variables through a
logistic cumulative density function (c.d.f) functional form is logistic regression.
Classifying an observation into one of several populations is discriminant analysis. In
most discriminant analysis applications, at least one variable is qualitative (ruling out
multivariate normality). If the populations are nommal with common covariance matrices,
discriminant analysis estimators are preferred to logistic regression estimators for the
discriminant analysis problem. However, under non-normality, the logistic regression

model with maximum likelihood estimators is preferred.
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We start the comparison by summarizing the discussion presented by Cox and
Snell (1989). As discussed in Chapter II, one approach to linear discriminant analysis is
to find the linear combination of the components of X which most strongly separates the
two populations, by maximizing the square of the difference between the population
means divided by its covariance matrix, assumed common but arbitrary for the

components of X.

The result is the Fisher’s linear discriminant function
Y=LX
Y=(u-pw) 27X
L might be estimated by replacing u, by the sample mean of population i and T by the

pooled sample covariance matrix S.

As a consequence of the geometry of the estimation problem this technique is
considered equivalent to the formal linear regression of the binary variable Y on the
vector X, treated as fixed. And also under normal theory assumptions, exact tests of
regression coefficients are obtained by pretending that the fixed binary Y is normal and
that the random multivariate normal X is fixed. With a slight loss of generality, the two
conditional densities are taken to be of common parametric form with some common
parameters. That is

SoX)=g(¥, o) . /i(X)=g(¥, 1) 4.15)
for some known function g and unknown parameters ‘¥, Ao, A; and , 7. The
multivariate normal case with the common covariance matrix is clearly included. We

assume there are ng, n; individuals respectively from the two populations I and II. All
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individuals are assumed to be independent and generated by the full probability model
described. Each individual has its full X vector of observations.
The method of maximum likelihood is applied to estimate the unknown parameters. The
contribution of the itk individual to the likelihood can be written as

Pr(Y=Y)A(X) for ¥,=0,1 (4.16)

or Pr(Y=Y.I|X=X) AX) @.17)

The maximization of either expression leads to the same result, in the case of a normal
population to Fisher's linear discriminant function. From the maximization of (4.16) we
see that 7o = no /(no + ny) and the remaining parameters are estimated from the two

samples of sizes no and n;, from the densities f,and /,, respectively.

For the second version, (4.17), if we maximize only the first factor we would be
using techniques of logistic regression analysis. It follows that logistic regression is
inefficient, under the full assumptions, in that the second factor of (4.17) does contain
information about relevant parameters and this information has been totally discarded.
Efron (1975) and Ruiz (1989) have investigated this loss, the former by using
discriminant misclassification rates as a criterion and the latter estimating efficiency: up

to one-third loss in efficiency can occur.

The most important special case considered is where f;and f; are multivariate
normal densities with the same covariance matrix ¥ and means po and p,, respectively.

Then the log-likelihood ratio, for assessing X', given by
log Ai(X") —log fo(X") (4.18)
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becomes (-1/2) (i = 1" - o T o) + X = (1 - o) 4.19)

which is the population linear discriminant function.

Under the same assumptions, Cox and Snell (1989) proved that the estimate ‘ﬁm
of coeflicients determined by a discriminant approach is directly proportional to B(i) of
obtained by substituting the maximum likelihood estimates T, po and i, into the
population discriminant (4.19). Thus from (4.19)

B =2"(X:- ?-(o)r (4.20)
The estimate B4 is given by solution of the least squares equations
SBay = (nom/n) (X, -X) " @.21)
Where S is the matrix of total sums of squares and products and ng, 7, (n = ng + n;) are
the numbers responding to Y =0, 1. Since
S=nET'+(nom/n) (Xi-Xo)' (X:-Xo) 4.22)
Thus. we have
B =(nom/n) {1-(Xi-Xo) Bar} Br= kB (4.23)
where & is equal to the difference between the total sum of squares (170 7, / n) and the sum
of squares due to regression. Hence,
By =B SSres/ n = Bl SSres/ 1 (4.24)
where B_(z,, is the maximum likelihood logistic regression estimate and SS,; is the

residual sum of squares obtained when Y is regressed on X.

In summary, Cox and Snell (1989) state that the key issue in choosing one of the

two techniques, is the stability of the conditional probability of Y given X and of the
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distributions of X within the two sub-populations. If the two techniques are applicable,
and the logistic regression is effectively linear, logistic regression assumes less, in that
given the linear regression the forms of the distributions of X within sub-populations are
irrelevant. On the other hand, if multivariate normality or some other specific

distributional form can be taken. then the discriminant approach is more efficient.

4) Summary of few articles

In the article “Choosing between logistic regression and discriminant analysis™,
Press and Wilson (1978) present theoretical arguments for using logistic regression with
maximum likelihood estimation compared to using linear discriminant analysis, in the
classification problem and the problem of relating qualitative to explanatory variables.
The presence of qualitative variables rules out multivariate normality. The authors
concluded that under non-normality, the logistic regression model with maximum
likelihood estimators outperforms discriminant analysis. The related arguments are
supported by the results of several empirical comparisons of the MLE logistic regression
and discriminant analysis estimators involving breast cancer. and population changes

across states of the U.S.

Discriminant function estimators have been used in logistic regression. in both
theory and applications (see: Truett, Comfield, and Kannel,1967).
These estimators were compared empirically with maximum likelihood estimators for
logistic regression problems, and they were found to be generally inferior, but not by
substantial amounts (Halperin, Blackwelder, and Velter, 1971, and D’ Agostino et

al.1978).



The discriminant function estimators have been used as starting values in iterative
maximum likelihood estimation and in exploratory data analysis, for logistic regression
models. There are alternative estimators for the logistic regression problem, as well as for
the non-normal discriminant problem such as the “reverse Taylor series approximations™

and the “conditional estimators™ (Nerlove and Press, 1973).

“Conditional estimators™ are obtained by maximizing the conditional likelihood
(conditional on the explanatory variables). “Reverse Taylor series approximations™ arise
from the logistic cumulative density function,

FX)=1/[1/(0+e™)]. b20, w<x<w .

From the Taylor series expansion about X = (X — Xo) + X, we get
FQX)=(1/[1 +e@®])
=F(X - Xo + Xo)
=FXo) + (X - Xo) F'Xo)
= F(Xo) - Xo F'Xo) +X F'(Xo)

=A+BX

where A= {1/[1+e®®™]1 -BX

and B={be®™0/[] +e@N02}

Solving these equations for a and b, we get
b=B/[(A+BX)(1 -A-BX)]

and a=-bX-log((1/A+BX)-1)

as the reverse Taylor series approximation.
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The reverse Taylor series estimators are appropriate regardless of the underlying
distribution of explanatory variables. By contrast, the discriminant function estimators are
appropriate only when the explanatory variables have a multivariate normal distribution,

with equal covariance.

At this point, the authors address two general questions. The first is, why use a
logistic formulation rather some other functional form? The second is, how should the
parameters of the model be estimated? As Anderson (1972) pointed out the logistic
formulation results not only from assuming that the explanatory variables have
multivariate normal distribution with equal covariance matrices, but also from assuming
that the explanatory variables are independent and dichotomous zero-or-one variables, or
that some are multivariate normal and some dichotomous. By contrast, the linear
discriminant approach is applicable only when the explanatory variables are multivariate
normal with equal covariance matrices. Thus, one advantage of using the logistic model
rather than the linear discriminant function. for discriminant analysis, is that the former is

robust; i.e., many types of underlying assumptions lead to the same logistic formulation.

Another advantage of the logistic model would be its use as an altenative to
contingency table analysis in biological and medical applications. This was pointed out
by Gordon (1974); Cross-classified tables with large numbers of cells, and usually too
few observations per cell, are replaced by a logistic or log-linear relationship among the
variables. One possible hazard of the linear combination of variables in a multivariate

logistic formulation is that some types of interaction may not be expressible in that form.



However, the logistic function can be appropriately used in many such applications.

Efron (1975) has shown that logistic regression estimators are between one-halfto
two-thirds as efficient as discriminant function estimators when the data are multivariate
normal with equal covariance matrices. Halperin, Blackwelder, and Verter (1971)
compared maximum likelihood estimation and linear discriminant estimation, for a
logistic regression, and found that “the times required for compilation and execution of
the programs were higher for the maximum likelihood method than for the discriminant

method by factors ranging from 1.3 to 2".

The authors present the following arguments against the use of discriminant
function estimators:

. If the explanatory variables are binary (they don’t follow a multivariate
normal distribution with equal covariance matrices) discriminant function estimators of
the slope coefficients in the logistic regression will not be consistent. Even in large
samples there is no guarantee that good prediction will be obtained by this method. The
solution is to use a consistent method of estimation, such as MLE.

Halperin, Blackwelder, and verter (1971) have proven the inconsistency of discriminant

function estimators in logistic regression. for various cases, under non-normality.

. Under non-normality of the explanatory variables, discriminant function
estimation can give misleading results regarding significance of the logistic regression
coefficients. For example, a slope coefficient which is really zero, is not necessarily

estimated as zero by the discriminant function method.
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[ Halperin, Blackwelder, and Verter (1971) found that, under non-normal
conditions, the “maximum likelihood method usually gives slightly better fits to the
model, as evaluated from observed and expected numbers of cases per decile of risk.”
They also found that “there is a theoretical basis for the possibility that the discriminant

function will give a very poor fit, even if the logistic regression model holds.™

) The use of estimators based on sufficient statistics result in smaller mean
squared error (Rao-Blackwell theorem, see Rao, 1965) compared to estimators not based
on sufficient statistics. The MLEs are functions of the sufficient statistics. while the

discriminant function estimators are not.

o An interesting and desirable property of the maximum likelihood
estimation of the logistic regression is that the expected number of cases equals the
observed number of cases; i.e.. LY = Z P(Xyi, ..., Xy;) (Halperin, Blackwelder, and

Verter. 1971). The discriminant approach does not satisfy this property.

e In a Bayesian analysis, McFadden (1976) concludes that the use of
discriminant function estimators may tend to generate substantial bias in some

applications.

The ideas and arguments presented by the authors are illustrated through two
examples of classification problem. In each case, both logistic regression and linear
discriminant analysis were carried out on empirical data. We illustrate one of the two
studies. The data in this example comes from breast cancer patients initially treated at the

British Columbia Cancer Institute between 1955 and 1963.
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The variables are mixed: continuous, discrete, and binary. The binary grouping variable
is defined to be 0 if metastatic carcinoma is not present in the lymph nodes, and 1 if it is
present. The independent variables are

. Number of births, X;.

. A history of hysterectomy (0-1), Xa.

. A history of benign breast disease during lactation (0-1), X;.
o Presence of nipple changes as the first disease symptom (0-1), X.
o Duration of symptoms in months, Xs.

There were 173 patients of which 115 were used in the training set and 58 in the
validation set. The patients’ nodal status had been determined by a surgical procedure.
There were no missing data. The estimated functions for logistic regression were given
by

YX)=.058-233X,-1.096 X; +.713 X5 -.028 X; + .995 X;s.

UX)=.362-251 X;-1.245X,; +1.104 X;5 - .036 X; + 2.114 X;s.

The prior probabilities used were the approximate proportions of actual cases in the data:
0.66 of having no metastases and 0.34 of having metastases. The logistic regression
classified correctly 71% of the patients into the training set and 62% of the patients into
the validation set. The discriminant analysis correct classification rate was of 67% for the
training set and 59% for the validation set. The correct classification rate of logistic
regression is higher compared to discriminant analysis. Moreover, there was a difference
in the types of cases misclassified by the two procedures. The discriminant function

consistently misclassify more patients into the group having no metatases than the
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logistic regression. Hence logistic regression with MLE outperforms classical linear
discriminant analysis, in the presence of non-normality, but not by a large amount.

A similar result is obtained in the second empirical example.

Thus, Press and Wilson agreed with the conclusion of Halperin, Blackwelder, and
Verter (1971) that “‘use of maximum likelihood method would be preferable, whenever
practical, in situations where the normality assumptions are violated, especially when

many of the independent variables are qualitative™.

O’Neill (1980) showed that the efficiency of logistic regression in some
non-normal cases is low. In his article, the asymptotic distribution of the error rates of an

estimator of the optimal classification rule

"=DoU Dy
such that Y =1. i.e. the individual belongs to m;, if X € D\,
and Y =0, i.e. the individual belongs to . if X € Do.

with the optimal partition
Di={XeR™m AX)/ rofo(X)> 1}
Do={Xe R iX)/ nofuX)< 1}

where fX)=AX |Y =), i=0, 1, for arbitrary f; and £, is given.

Once the asymptotic distribution of the logistic regression estimators was obtained, this
enabled the comparison of logistic regression and maximum likelihood discrimination for
arbitrary distributions other than the normal distribution with constant covariance studied
by Efron (1975). O*Neill also compared the efficiency of logistic regression and

maximum likelihood discrimination in two cases: the exponential distribution with m =2
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and quadratic normal discrimination. He concluded that the inefficiency of logistic
regression discrimination is more marked in both cases considered. The poor
performance for situations in which good discrimination is possible casts doubt on the
use of the logistic regression discrimination rule and suggests that the maximum
likelihood estimation of optimal discriminant rule for the specific distributions at hand

should be used whenever possible.

Efron (1975) computes the asymptotic relative efficiency of the normal
discriminant analysis, i.e., linear discriminant analysis, and the logistic regression in his
article “The efficiency of logistic regression compared to normal discriminant analysis™.
The author shows that logistic regression is between one-half to two-thirds as effective as
normal discrimination for statistically interesting values of the parameters.

The framework of the article is as follows: there are two m-dimensional normal
Populations, 1 and 0, differing in mean but not in covariance

X ~ N, (i1, 2) with prior probability p,

4.25)
X ~ N, (peo, T) with prior probability pq,
where p\+ po=1.
The Anderson’s classification function is A(X) = Bo + B'X, where
Bo = log (p1/ 7o) = (1/2) (1" " 1 - po” 7' po)
4.26)

B"= (i~ po)y =™
A random vector X, which arises from one of the two populations, is assigned to

population 1 if A(X) >0 and to population 0 if A(X) <0.

When the parameters pi, pe, p1, po and Z are unknown, they are substituted by
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their maximum likelihood estimates, through a training set (Y1, Xi), (Y2, X2), ...,
(Yn9 xn)s
where Yj indicates which population X comes from.

Y; = 1 with probability pi,

(4.27)
= ( with probability po,
and X; | Y; ~ N, (v, 2). (4.28)
The maximum likelihood estimates of the parameters are
£ x
pi=m/n, po=no/n
" — ﬁ —
m=Xi=Zv=1 Xj/ni, po=Xo=Zv-0X;/no. (4.29)
and 2= [y Xj- X1 ) (Xj - Xi ) + Zy0 (Xj - Xo ) (Xj - Xa) ]/
wheren; =% Y; and no=n—n,.
& &
The values (B, Bo) gives a version of Anderson’s estimated linear discriminant function

S A X
A (X) =Bo + B° X. such that a new observation X is assigned to population 1 or 0 if

A (X) is greater than or less than zero.
If the functions £(X) and fo(X) specify the conditional densities of X given y equal to one
or zero, for a new observation of known X but unknown Yj, we have by the Bayes’

theorem that

Pr{Y;=1|Xj} = p1 i(X)/ (01 £iX5) + Po fo(X)) (4.30)

Sothat log {Pr{Y;=1|X;} /Pr {Y;=0|X;}}=log (pv/ po) + log {£i(Xy)/ foX)}

Denote pi;=Pr {Y;=1 | X;} and pq; =Pr {Y; =0 X;}.
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then A(X)= A(X)) = log (p/ po))- 4.31)

Hence, A(X) is shown to be the a posteriori log odds ratio for population 1 versus
population 0 having observed X.
Given the values X, X, ..., Xa, the Y| are conditionally independent binary random

variables,

py=Pr{ Y;=1|Xj}=exp (Bo+ BXj)/[1 +exp(Bo+PB Xj)]

(4.32)
Poy=Pr{ Y;=0|X;}=1/[1 +exp (Bo+B"Xj)].
Estimates of (Bo. B) are obtained by maximization of the conditional likelihood
Sos Y. Y2 .o, Ya | Xu, Xa, ..., Xa)
=11 py; Y Doj (-¥3) . 4.33)

=
=_I]l exp[ Bo+B X Y;] /1 +exp(Bo+BXj)]
-

with respect to (Bo, B).

The values (ﬁo, E) givei(X) =Bo+ B X as an estimate of the linear discriminant function
A(X). The discriminant procedure which chooses population 1 if A(X) >0 and population

0 if A(X) <0, will be referred to as the logistic regression procedure.

The normal discrimination procedure is based on the full maximum likelihood
estimator for A(X) whereas the logistic regression procedure is based on the conditional
likelihood estimator for A(X). Thus, the logistic regression must be less efficient than

than the normal discrimination, at least asymptotically, as n goes to infinity.
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Under a variety of situations and measures of efficiency, the central result for

the asymptotic relative efficiencies is

ARE = 2n)" (1 + A% po p1) exp(-A* /8) j: exp(-X2 2) / (p1 exp(AX /2) + po exp(-AX /2))
(4.34)

where A is the square root of the Mahalanobis distance between of population 1 and 0.

The author gives values of ARE for reasonable values of A, with po = p1= !z, which is the

case most favorable to the logistic regression.

A o | s | v 15 ] 2 |25 ] 3 | 35| 4

|
ARE ’ 1.0000 | 1.0000 ' 995 ‘ .968 l .899 l .786 ' 641 l 486 ' 343
For A between 2.5 and 3.5, good discrimination becomes possible but at the same time,

the ARE of logistic regression decreases sharply.

Although the logistic regression is less efficient and also more difficult to calculate. it is
more robust than normal discrimination. The conditional likelihood (4.33) is valid under

general exponential family assumptions on the density AX) of X,

SX)=g(01,n) (X, n)exp(0:" X) with probability p;.
(4.35)
AX)=g(00,n) (X, M) exp(Bo” X)  with probability po .
where p1+ po=1.

1 is an arbitrary nuisance parameter, like Z in (4.25). Equation (4.25) is a special case of

equation (4.35).
Efron used the linear transformation 5( = a + AX to reduce (4.25) to the case
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-~

X ~ N ((A72) e;, 1) with probability p,,

X ~ N ((A2) 1, 1) with probability po,

where p1+po = 1.

And €"1=(1,0.0,...,0); L is the mxm identity matrix: and A is the square root of the
Mahalanobis distance (1.11).
The boundary B = {X: A (X) =0} between Fisher's optimum decision regions for the
two populations to the new optimum boundary

B=1{X:A(X)=0}= {X:X=a+AX, X € B}. 437
Both estimated boundaries 3 ={X: 3\ X)=0} and B= {xzi (X) =0} for logistic
regression and normal discrimination, respectively, are transformed as in (4.37). In other
words. for both procedures, the estimated discrimination procedure based on the

transformed data is the transform of that based on the original data.

m

For a partition of the m-dimensional space E into the regions Ry and R, such that we
choose population 0 or 1 as X falls into Ry or R, respectively, the error rate (or the
probability of misclassification) under assumption (4.25) is

Error Rate = p; Pr {X € Ry | X ~ i (u1, £)}

+poPr{X e R; | X ~m (o, I)} (4.38)

Error rate is a random variable since the partition is chosen randomly by the logistic
regression and normal discrimination procedures. For either procedure, the error rate
will have the same distribution under (4.25) and (4.36).

Henceforth, the simpler assumptions (4.36) (calling it the “standard situation™, and )E will
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be referred to as X) will be worked with.

Fisher’s linear discriminant function (4.26), under the standard situation, becomes
AX)=A+AX (4.39)

The optimal boundary B(0,0) = {A(X) =0} is the (m-1) dimensional plane orthogonal to

the X axis and intersecting it at the value t=-A/ A.

Let B(dt, da) be another boundary, intersecting the X, axis at t + dt, with normal vector

at an angle da from the X; axis. The error rate (4.38) of the regions separated by

B(dz, da) will be denoted by ER(dt. da). dt and da denote small discrepancies from

optimal, which will be the case in the large sample theory.

The error rate of the optimal boundary B(0.0) is
ER(0.0) = pi¢(-D1) + pod(-Do) (4.40)
where Di=(A2)-1, Do=(A/2)+ 1, 441)

z
and §(Z)=] @®)dt, o(t)=(2m)" exp(-t/2).

x*

The distances from p,and po to B(dt, da) are defined as
d,= (D1 - dz) cos (da).
do= (Do - dt) cos (da). 4.42)

Then ER(dt, da)= pi¢(-D1) + pod(-Do). (4.43)

From the Taylor expansions,
cosda)=1-(da)*2 +...
and ¢(-D+dr)=¢(-D)+ ¢ (D) +D ¢ (D) (d1)* 12+ ....

We get the following lemma.
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Lemma 4 Ignoring differential terms of third and higher orders,
ER(dt, da) = p1¢(-D1) + po¢(-Do) + (A/2) p1 ¢(D1) [(d7)* + (da)’]

= ER(0,0) + (A/2) p1 (D) [(d1)* + (do)’]. (4.44)

Suppose that the boundary B(dt, da) is given by those X satisfying
(A +dBo) + (Ae; +dB) X=0 (4.45)
where dfoand df = (dB,, dBa, ... , dBm) . indicating small discrepancies from the optimal
linear function (4.39).
The expansion of dt and dt?, ignoring higher-order terms, are
dt = (1/A) (<dBo+ (A/A) dBy),

(dz)* = (1/ A*) ((dBo)? - QA /A) dBo dB1 + (A/A)? (dB1)? ). (4.46)

Similarly, expansion of
da = arctan [( (dB2)* + ... + (dABm)*)* /(A + dB1)]

and so (do) 2= ((dB2) + (dBs) + ... + (dBm)?) / A% (4.47)

Suppose that under some method of estimation, the (m+1) vector of errors (dfo, dB) has a

Limiting normal distribution with mean vector 0 and covariance matrix /n,

Bo
L:Vn = N1 (0, Z). (4.48)

B
Hence the differential term
(d©)? + (da)® = (1/A%) [ (dBo)? - (2A/A) dBo dBy + (WA (dB1)? + (dB2)* + ... + (dBm)? ]

4.49)
will have a limiting distribution of 1/n times the normal quadratic form
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(VA Ze* - QMA) ZoZy + (WAY Z 2+ L2 + ... + L7,
Where Z ~ N+ (0, 2).
As moments converge correctly for the logistic regression and normal discriminant

procedures lemma gives a simple expression for the expected error rate in terms of the

elements Gj; of X.

Theorem 3 Ignoring terms of order less than 1/n,

E{ER(dt, da) - ER(0, 0)} = (p1@(D1)/ 2An) [Goo - QA/A) 11 + G2+ ... + Omm ]. (4.50)
The quantity E{ER(dt, da) - ER(0, 0)} is a measure of our expected regret, in terms of
increased error rate, when using some estimated discrimination procedure. Next, £ for the

logistic regression procedure and the normal discriminant procedure is being evaluated.

Asvmptotic error rates of the two procedures

For the normal discriminant procedure described after (4.29), we have

Lemma 5 In the standard situation, the normal discriminant procedures estimates
(Bo» B) = (o, €17 + (dPBo. dB ) satisfying
dBo R
L:N5n| , | = 1m1(0.%), @.51)
dp
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where —
1 +(A%4) (-A72) (po—p1) o ... 0 0
(-A2) (po—p1) 1 +2A%pop, o ... 0 .. 0
% =0/ pop) 0 0 L+A%popr O ... 0
L 0 0 0 0 1 + A% po p1

4.52)
For the logistic regression estimates defined at (4.29), we have

Lemma 6 In the standard situation, the logistic regression procedure produces estimates

(Bo- B) = (Ao €1 ) + (dBo- dB ) satistying

dpBo _
L:¥n| _ | = nm1(0.3), (4.53)
dp
where
_ -
Ao/ (AcAz— A2) -Al/ (AcAz—Ard) 0.. O
_ -Ar/ (AsAz2— A®) Al (AvAz2—Ar?) 0.. O
z =U/Po pl)
0 0 /A, 0
0 0 0 1/Ac
(4.54)
A; = Ai(p1, A) is defined as
Ai(p1, A)=[ (¥ X oX)/ p1 2% + poe-2¥DdX, i=0,1,2,... (4.55)
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Denote the errors for the logistic regression procedure and the nomal discrimination

procedure by (d7, d&@) and (d*, d&), respectively.

Define the efficiency measure,
EFFn(A, A) = lim E{ER(T, da) - ER(0, 0)} / E{ER(dT, d&) - ER(0, 0)} (4.56)

Theorem 3, lemmas 5 and 6 then give

EFF,=(Qi+(m~1)Q2) / (Qs + (m—1) Qq). 4.57)
Where
1 +A%/4 (Po—p1XA/2) 1
Qi = (1. A/A)
(po—p1 XA2) 1 +2popi A® MA
Q:= 1+ popr A? (4.58)
As Ay

Q:=(1.MA) (1/(AdAz—-A)
A Ao

1 =1/ Ao
The following theorem gives a simple expression for EFFx(A, A) as a weighted average

of the relative efficiencies when m =1 and m — .

Theorem 4 The relative efficiency of logistic regression to normal discrimination is
EFF.(A. A) = [q(A, A) EFF (A, A) + (m — 1) EFF.(A, A)] / [q(A. A) + (m - 1)] (4.59)
Where EFF.(A, A) = Q2/ Q4 is by (4.56) the asymptotic efficiency as m — .

EFF (A, A) = Qi / Q; follows from (4.56) and lemma 1 for m = 1. (Note: da can always

be taken equal to zero when m=1).
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For the case A= 0 (then A = 0) we have the following result.
Corollary When A= 0, i.e. when po=p =4,
EFFn(A. A) = EFF.(A, A) = Ao (1 + A%/4), (4.60)

for all values of m.

Note that when A # 0 (i.e. po. p1 # %), EFFi(A. A) > EFF (A, A). and ¢ is near unity (see
Table 1). Under these conditions, EFF»(A. A) in (4.59) shows that it will be nearer

EFF.(A, A) than EFF (A, A). for m> 3.

qg=1, m=1  EFFm(A.A) = [EFF(}, A) + (1-1) EFF (2. A)] / [1 +(1-1)]
= EFF (A, A)
g=1, m=2  EFFm(A, A) = [EFFi(A. A) + (2-1) EFF=(A, 4)] / {1 +(2-1)]

= Y [EFF\(A, A) + EFF(A. A)]

qg=1. m=3 EFFn(A. A) = [EFFi(&, A) + 3-1) EFF=(&, A)] / [1 + (3-1)]

= (1/3) EFF(i, A) + (2/3) EFF<(X, A)

g=1. m=4 EFFn(h, A) = [EFF\(, A) + (4-1) EFF(A, A)] / [1 + (4-1)]

= (V4) EFF (&, A) + (4) EFFx(A, A)

Angle and intercept error
EFF (). A) could also be interpreted as the asymptotic relative efficiency of logistic

regression to normal discrimination for estimating the angle of the discriminant

boundary, EFF (), A) = limp.. Var (d@) / Var (d&) 4.61)
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Likewise, EFFi(a, A) is the asymptotic relative efficiency for estimating the intercept of

the discriminant boundary,

EFF (2, A) = limy. Var (d7) / Var (d7)

These results follow from (4.46), (4.47), (4.52) and (4.54). A comparison of(4.47) and
lemmas 5 and 6 shows that

L: n(dtf - (1/ pop1 &%) (1+ pop1 &%) Lima.

(4.62)

L: n(d&@F - (1/ popi A*) (1/A0) Lmi-
In terms of the angular error, the asymptotic relative efficiency of logistic regression to
normal discrimination is
ARE = (1 + pop1 A%) Ao

= [(1 +pop1 &%) /2@r)"] &**] ™ /(1 €7 +poe-37)dX

Hence. a sample of size n using logistic regression produces asymptotically the same
angular error distribution as a sample of size n = ARE x n, using normal discrimination.
For example, for A =0 (i.e. po = pi= %) and A = 2.5, n = 1000 is approximately
equivalent to n = 0.786 (see (1.12), Efron 1975).
The above statement is not valid for intercept error because the two matrices involved in
the definition of Q, and Qs, are not proportional. However, A = 0, i.e. when py = p\= V2.
(4.46) and lemmas S and 6 show that

L: n(dY)?> (4/A%) (1+A%4) ¥,

(4.63)
L: n(da)*—> (4/4%) (1/A) 4.

In this case, the ARE by (4.62) again gives asymptotically equivalent sample sizes.
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When A =0, then t =0 and so D= D= A/2. Now combining (4.62) and (4.63) with
lemma 4 we get

L: n {ER(Y, d@) - ER(0, 0)}— (9(A2) / A) (1 + AY4) ¥3m,

L: n {ER(dT, da) - ER(0, 0)} = (9(A2) / A) (1 / Ag) £’m- “eb

So for po = p1= Y%, error rate for samples of size n = ARE x n and n will have
asymptotically equivalent distributions. This statement is not true for po, p1 # 2, however

it becomes true as the dimension m gets large. Then error rates for the two procedures

will have the same asymptotic distribution if n=ARE x n,whenm —>oandn/m — .

This result follows from (4.49) and lemmas 5 and 6.

Distorted sampling proportions

In some situations, the probabilities po and p) may be distorted due to the sampling
scheme employed. Let p~o and p~l be the distorted values, then A = log (p: / po).

7: = log (1;1 / ;)o)and for some known constant A = i. +C. (4.63)
For example, due to some experimental constraints, the statistician might have to
randomly exclude from his training set nine out of ten members of population 0. In this
case, C = log 10. Then the normal discrimination procedure assigns a new X to
population 1 or O as 3» (X) is greater or less than C. The logistic regression procedure is
modified similarly.

The relative efficiency of logistic regression to normal discrimination (Theorem 4)

remains true. Only, A is replaced by A for the vector [1, A/ A]” and its transpose, which

appear in the definition of Q:and Q;. With a choice of C = 0, the intercept is changed

83



from (-A / C) to —(A + C)/ A. The effect of this change is to reduce EFF (A, A), as shown

in the following tabulation.

' A=2,p1 =0.5 A=3,p| =0.5
!
C 0 +1 2 +3 O +1 +2 +3
EFF, .899 .869 .836 819 641 604 .550 516

The angular efficiency. EFF .(A, A). remains unchanged for any choice of C since the

corresponding discrimination boundary is paraliel to that for C = 0.
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