Integration of HOL and MDG for Hardware

Verification

Vijay Kumar Pisini

A Thesis
in
The Department
of

Electrical and Computer Engineering

Presented in Partial Fulfilment of the Requirements
for the Degree of Master of Applied Science at
Concordia University

Montréal, Québec, Canada

February 2000

© Vijay Kumar Pisini, 2000

i+l

National Library

of Canada du Canada

Acquisitions and Acquisitions et

Bibliographic Services
395 Wellington Street

Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

Bibliotheque nationale

services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Your file Votre réiérence

Our fl@ Notre référence

L’auteur a accordé une licence non
exclusive permettant a la
Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’auteur conserve la propriété du
droit d’auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

0-612-47830-0

Canada

ABSTRACT

Integration of HOL and MDG for Hardware Verification

Vijay Kumar Pisini

With the ever increasing complexity of the design of digital systems and the
size of the circuits in VLSI technology, the role of design verification has gained a
lot of importance. Theorem Proving based verification and Decision Diagram based
verification are now-a-days the two main techniques used for formal verification.
Each of them has its own advantages and disadvantages. In this thesis, we propose
a nybrid approach for formal hardware verification which uses the strengths of the
theorem prover HOL (Higher-Order Logic) with powerful mathematical tools such as
induction and abstraction, and the advantages of the automated tool MDG (Multi-
way Decision Graphs) which supports equivalence checking and model checking. We
developed a linkage tool between HOL and MDG which uses the specification and
implementation of a circuit written in HOL to automatically generate all required
MDG files. It then calls the MDG equivalence checking procedure and reports the
MDG verification result back to HOL. To illustrate the proposed HOL-MDG hybrid

verification we use the Cambridge Fairisle ATM switch fabric as an example.

iii

ACKNOWLEDGEMENTS

My sincere thanks are due to Dr. Sofiéne Tahar, my thesis supervisor, for
the constant encouragement and support he has extended to me throughout the
period of my research work at the ECE Department of Concordia University. The
discussions I had with him and the motivation he has given me to work in a group
helped me a lot, and I am sure, it will help me in my further studies or work too! I
am grateful to him as a person.

I am thankful to Dr. Otmane Ait-Mohamed for the foundation he has laid for
my research work and for the constructive criticism about the tackling of my research
problem. I specially thank Dr. Xiaoyu Song of University of Montreal, who along
with my supervisor provided me the direction, financial support and the computing
facilities at University of Montreal. Also, I thank Dr. Paul Curzon of Middlesex
University, U.K. who constantly gave me good feedback on my work, as well as
Dr. Skander Kort and Mr. Mohamed Hassan Zobair of Concordia University who
helped me out with the technical details. I thank the HVG members at Concordia
University and all other friends who have contributed to my knowledge and success.

Finally, with utmost respect, I thank my parents for the constant love, en-
couragement and support they have given me throughout the journey of attaining

this degree. Not to mention, my wife’s support and patience is appreciated whom I

know from the beginning of my studies at Concordia University.

iv

Dedicated To My Parents

Wisdom is better than Rubies — King Solomon

TABLE OF CONTENTS

List of Figures
List of Tables o o o e e e e e e e

1 Introduction

1.1 Formal Verfication Techniques
1.1.1 Theorem Provingo
1.1.2 Decision Diagram based Methods

1.2 Formal Verfication Tools
1.2.1 HOL e e e e e e e
1.2.2 PVS . e e e e e e
1.2.3 SMV . . e e e e e
1.2.4 VIS . . . o e e e
1.2.5 FormalCheck o o i i i i i
1.2.6 MDG . . . o e e e e e e e e e e
1.2.7 Hybrid Tools oo

2 Related Work
21 Overview of Related Work oo

2.2 ScopeoftheThesisot

3 HOL and MDG Systems

vi

10

11

11

14

14

18

22

3.1 HOLSYStemM . « « ¢ v v v v e oo e e e e e e e e e e
3.2 MDGSYStem oo e e e e e e
3.2.1 Multiway Decision Graphs
3.22 MDG Verification Procedures
393 MDG-HDL e e
4 Linking Methodology
4.1 Hierarchical Verificationo -
42 HOL and MDG Interface« o oot oot
4.3 MDG_.COMB_TAC and MDGSEQ.TAC
5 Case Studies
5.1 Sequential Verificationo
5.1.1 Proof Structure of the Fairisle ATM Switch Fabric.
5.1.2 Timing Block Description
5.1.3 Timing Block Verification
5.2 Combinational Verificationo
5.2.1 Acknowledgement Block Description
5.2.2 Acknowledgement Block Verification

6 Conclusions

Bibliography

vii

45

46

48

33

56

60

61

LIST OF FIGURES

Verification by Simulation oo

Hierarchical Verification . . - o o oo oot

VHDL-HOL-MDG Project . - « « v v v oo ee e e ee e e e

Hierarchical Verification of a Module
Block Diagram of the Hybrid System
Internal Structure of the Hybrid Tool

Task of MDG.COMB_TAC/MDGSEQ.TAC

Fairisle ATM Switch Fabric« oo oo
Hierarchical Verification of the Fairisle Switch Fabric
Implementation of the Timing Block
State Transitions of the Timing Block
Block Diagram of the Acknowledgement Block

Implementation of the Acknowledgement Block

viii

LIST OF TABLES

5.1 MDG Equivalence Checking Results for Timing Block 53

5.2 MDG Equivalence Checking Results for Acknowledgement Block . . . 60

Chapter 1

Introduction

The rapid growth in the market gives rise to the demand in lesser and lesser design
cycles of a VLSI circuit design, while the complexity of the design is constantly
increasing. With ever increasing complexity of the design of digital systems and the
size of the circuits in VLSI technology, the role of design verification has gained a
lot of importance. Design errors can cause serious failures, resulting in the loss of
time, money and it takes a very large amount of time and effort to correct the error,
especially when the error is discovered late in the process. For these reasons, we need
approaches that enable us to discover errors and validate designs as early as possible.
Verification is defined as the validation of the circuit for its correctness. Validation
techniques are simulation, testing, prototyping and formal verification. Simulation,
which is the state-of-the-art is often used as the main approach for verification (see

Fig. 1.1). Despite the major simulation efforts, serious design errors often remain

Verify some
properties of the
"idea™

Compare Results

Behavioral Specification b Simulation
Reg. Transfer Description ' Simulation

Logic Description Simulation
Compare Results
oo > e | 1

Figure 1.1: Verification by Simulation

undetected which resulted in the evolution of alternative verification approaches
such as formal methods in verifying the hardware design. Formal methods have the
potential for significantly reducing the number of design faults in VLSI and at the
same time reduce the cost of that design. More over, not all the cases are covered
with simulation but formal verification provides exhaustive coverage of the test cases.
The cost of producing correct designs is increasing. They are especially important
in safety-critical and security-critical applications. Formal methods require skills in
specification and entail reasoning in some formal logic.

Formal methods have emerged as an alternative approach for traditional vali-
dation techniques such as simulation and testing. Some of the limitations of simu-
lation and testing are overcome by their introduction. Formal verification methods
fall into one of the two classes: theorem proving based methods and decision graph

based methods. The application of formal methods has two main aspects in the

L] Propertics to validate

Top Level Specification

Level i+1 Implementation

]
Level i Implementation
Level i+1 Specification
L ‘—{
Level i+2 Specification

TS -— Bottom Level Implementation

Figure 1.2: Hierarchical Verification

design process. The first is the formal framework used to describe the specification
and implementation of a design and the second is the verification techniques and
tools used to prove that the implementation satisfies the specification in a formal
way. A specification refers to the description of the intended/required behavior
of the hardware design. An implementation refers to the hardware design that
is to be verified. Various formalisms, such as temporal logic, propositional logic,
higher-order-logic, computational tree logic are used for the specification and imple-
mentation description framework. Coming to the second aspect, there are several
approaches to formal hardware verification such as theorem-proving, model check-
ing, equivalence checking and symbolic simulation (1, 2, 3]. Each of them has its
own strengths and weaknesses. Hierarchical Verification is best achieved with
theorem proving. In hierarchical verification, the lower level specification is equal

to the higher level implementation as demonstrated in Fig. 1.2 [2].

Level i Implementation = Level i + 1 Spect fication

In the following subsections of this chapter, each technique is briefly discussed.

1.1 Formal Verfication Techniques

1.1.1 Theorem Proving

In the theorem proving approach, the specification and implementation are usually
expressed in first-order or higher-order logic formulae. The relationship between the
specification and implementation is formed as a theorem to be proven within the
system using the axioms and inference rules. The powerful mathematical techniques
such as induction and abstraction are the strengths of theorem proving and make it
a very flexible and powerful verification technique. It makes it possible to construct
a model at almost every abstraction level and proves properties on all classes of
systems.

Theorem-proving methods have been in use in hardware and software verifi-
cation for a number of vears in various research projects. Some of the well-known
theorem provers are HOL (Higher-Order Logic) [4], PVS (Prototype Verifiation Sys-
tem) [5, 6], Boyer-Moore [7] and ACL2 [8, 9. Eventhough they are so powerful, one
needs expertise in using a theorem prover. One is expected to know the whole of
the design to verify it, as theorem-proving is a white box verification. It is not fully
automated and takes large amount of time to verify a circuit and hence the level of

its acceptance in industry is very low.

1.1.2 Decision Diagram based Methods

Decision graph based methods use state space algorithms on finite-state models to
check if the specification is satisfied. In case the verification fails, the user can track
with the counter-example produced as to why it failed. The two main techniques in
this category are property checking and equivalence checking. In property checking
we have invariant checking where safety properties are verified, and model checking
where safety properties as well as liveness properties can be checked. In equivalence

checking, we have combinational equivalence and sequential equivalence checking.

Model Checking

Model checking [10] is a decision graph based verification technique. It is an auto-
matic approach for verifying finite-state systems such as sequential circuits. Spec-
ifications are expressed in temporal logic and the system is modeled as a state-
transition graph. A search procedure is used to determine automatically if the spec-
ifications are satisfied by the state-transition graph. The technique was originally
developed by Clarke et al [11]. Model checking has several important advantages
over mechanical theorem proving, most importantly, it is fully automatic. The
model checker will either terminate with “true” indicating that the model satisfies
the specification or gives a counter-example execution that shows why the formula
is not satisfied. Model checkers are unable to handle very large designs due to the

state explosion problem [10]. Verifying complex systems dramatically changed with

the discovery of representing the transition relation using reduced ordered binary
decision diagrams (ROBDDs) [12]. Used with the original model checking algo-
rithm, it is called symbolic model checking [13]. By using this combination, it is

possible to verify large systems.

Equivalence Checking

Equivalence checking is used to prove functional equivalence of two design represen-
tations modeled at the same or different levels of abstraction. It can be divided
into two categories: ome is combinational equivalence checking, and the other
is sequential equivalence checking. Combinational equivalence checking is based
on the canonical representations of boolean functions or typically binary decision
diagrams (BDD). Equivalence checking verifies for all input sequences that an im-
plementation has the same outputs as the specification, both modeled as finite state
machines (FSM).

In combinational equivalence checking, the functions of the two descriptions
are converted into canonical forms which are then structurally compared. The ma-
jor advantage of BDDs is their efficiency for a wide variety of practically relevant
combinational circuits. The current designs which are clock-driven synchronized
designs, need to be separated into small designs. The tool then maps each register
of one model into another and compares their combinational circuits between ev-

ery two consecutive registers. However, combinational equivalence checking cannot

handle the equivalence checking between RTL and behavioral models because these
models are developed separately and it is not possible to map each register in the
RTL model to that of the behavioral model.

Sequential equivalence checking is used to verify the equivalence between two
sequential designs at each state. Sequential equivalence checking considers just
the behavior of two designs while ignoring their implementation details such as
register mapping. It can verify the equivalence between RTL and netlist or RTL and
behavioral model which is very important in design verification. The disadvantage
of sequential equivalence checking is that it cannot handle a large design because it

encounters state space explosion problem very fast.

1.2 Formal Verfication Tools

There are many formal verification tools available at academic and industry level.
Some of the main tools are HOL, PVS, SMV, VIS, FormalCheck, MDG along side
others. Each of the mentioned tools are briefly described in the following subsections.
Significant research work is going on at present to make the tools better to suit the
needs of academia and industry. In this thesis, we integrated the HOL and MDG

systems which are described in detail in Chapter 3.

1.2.1 HOL

The HOL System [4] is an environment for interactive theorem proving in a higher-
order logic, developed at University of Cambridge, U.K. Its most cutstanding feature
is its high degree of programmability through the meta-language ML [14]. The
system has a wide variety of uses from formalizing pure mathematics to verification
of industrial hardware. Academic and industrial sites world-wide are using HOL.
HOL has a formally defined syntax and semantics. It supports both ‘forward’ and
‘goal-directed’ proofs and it is secure, i.e., it can not prove false theorems. A more

detailed description of HOL system is provided in Chapter 3 of this thesis.

1.2.2 PVS

The logic of PVS (Prototype Verification System) [5, 6], developed at SR, California,

is a strongly typed higher-order with a rich type system, which includes dependent

8

types and predicate subtypes. Type checking in this logic is undecidable and requires
the assistance of the theorem prover and possibly human intervention to discharge
automatically generated type correctness conditions. Definitions and theorems can
be grouped into parameterized theories whose parameters may have constraints
attached.

Proofs in PV'S are backward proofs using a sequent representation for proof
obligations. The inference rules operate at a higher level than the primitive in-
ferences of higher-order logic and include instantiation, application of theorems,
equality rewriting, as well as complex propositional rewriting. Higher-level proof
strategies analogous to HOL tactics can be constructed from the basic inference
rules using a specialized strategy language.

To discharge certain classes of obligations, PVS employs an integrated decision
procedure for equality reasoning, linear arithmetic, arrays, etc., as well as a BDD-
based procedure for propositional logic. The decision procedures are integrated with
the type checker to make use of additional constraints available from information.
PVS also includes a model checker for finite-state u-calculus that can be accessed

through a formalization of the p-calculus within the PVS logic [15].

1.2.3 SMV

Symbolic Model Verifier (SMV) [13] is a model checker developed at Carnegie Mel-

lon University. It allows to check that a finite-state system satisfies specifications

given in CTL (Computational Tree Logic) properties [16]. It uses the OBDD-based
symbolic model checking algorithm. A specification for SMV is a collection of prop-
erties. When the tool fails to check properties of a certain model, it will produce a
counter-example. A counter-example is a behavioral trace that violates the speci-
fied property. This makes SMV a very effective debugging tool as well as a formal
verification system.

A newer version of SMV developed at Cadence [17] includes the concepts
compositional verification [18] and abstraction which enhance the ease of verifica-
tion. For large designs, especially those including substantial data path components,
the user must break the correctness proof down into parts small enough for Cadence
SMYV to verify. This is known as compositional verification. Cadence SMYV also
provides a number of tools to help the user reduce the verification of large, complex

systems to small finite state problems.

1.2.4 VIS

Verification Interact with Synthesis (VIS) [19], developed at University of Califor-
nia, Berkeley, integrates the verification, simulation and synthesis of finite-state
hardware systems. It uses a Verilog front-end and supports model checking, com-
binational and sequential equivalence checking, cycle-based sir;lulation, and hier-
archical synthesis. VIS performs symbolic model checking and reports the failure

with a counter-example which is called the “debug” trace. Also, VIS provides the

10

capability to check the combinational equivalence and sequential equivalence of two
designs. Sequential verification is done by building the product finite-state machine,
and checking that the outputs are equal for every reachable state of the product ma-
chine. VIS also provides traditional design verification in the form of a cycle-based
simulator that uses BDD techniques. Since VIS performs both formal verification

and simulation using the same data structures, consistency between them is ensured.

1.2.5 FormalCheck

FormalCheck {20] is an industrial model checking tool based on w-automata 21]. It
was first released in April 1997 by Bell Labs Design Automation and now part of
the Cadence Design Systems Affirma tool set.

FormalCheck supports the synthesizable subsets of the industry standard hard-
ware description languages, VHDL and Verilog. The user supplies FormalCheck with
a set of queries to be verified on the design model written in synthesizableVerilog or
VHDL code. The queries are simple temporal statements (formalizations) describ-
ing behavioral aspects of the specification. FormalCheck can handle larger designs

by using a number of embedded reduction techniques.

1.2.6 MDG

Multiway Decision Graphs (MDGs) [22], developed at University of Montreal, rep-

resent and manipulate a subset of first-order logic formulae suitable for high-level

11

hardware verification. With MDGs, a data value is represented by a single vari-
able of an abstract type and a data operation is represented by an uninterpreted
function symbol. The MDG operators and verification procedures are packaged as
MDG tools and implemented in Prolog [23]. The MDG tools provide facilities for
invariant checking, verification of combinational circuits, equivalence checking of two
state machines and model checking. More details about MDG system is described

in Chapter 3 of this thesis.

1.2.7 Hybrid Tools

No single formal method is suitable for describing and analyzing every aspect of
a complex system. A practical solution is to combine different methods. When
combining methods it is important to find a suitable style for using different methods
together, and also investigate how these different methods could be used together.
Today, there exist a number of hybrid tools which are mainly the combination of
theorem proving and model checking.

The remaining chapters of this thesis are organized as follows. Chapter 2
contains related work in the area and the scope of this thesis. Chapter 3 describes
the HOL and MDG systems. In Chapter 4 the linking approach for the hybrid tool is
presented as to how equivalence checking of an automated tool (MDG) is used in the
proof process of an interactive theorem-prover (HOL). In Chapter 5, two examples

are presented, the Timing block and the Acknowledgement block (for sequential and

12

combinational verification respectively) of the Fairisle ATM switch fabric, through
which the advantages of this hybrid approach are illustrated. Chapter 6 finally

summarizes the work and concludes the thesis.

13

Chapter 2

Related Work

There exist a number of hybrid approaches such as combining theorem proving with

model checking [15, 24] and combining theorem proving and symbolic trajectory

evaluation [25].

2.1 Overview of Related Work

HOL and Voss

Jovce and Seger [25] implemented a prototype software tool for their hybrid ap-
proach by means of an interface between the Voss system and HOL. A symbolic
simulator can be used to verify assertions about the state of a circuit that results
from a given sequence of inputs. An extension to symbolic simulation is symbolic

trajectory evaluation. In this extension to symbolic simulation, it was made possible

14

to verify assertions about state trajectories, that is, sequences of states rather than
just single states. In addition to treating node values symbolically, symbolic tra-
jectory evaluation provides a rigorous technique for verifying temporal relationships
between these node values. In their hybrid system, several predicates were defined
in HOL whereby a mathematical link is established between both systems. They
have implemented a tactic (SML function) called VOSS_TAC which calls the Voss
system which does a part of the verification using symbolic trajectory evaluation to
decide whether an assertion is true which in turn can be used by the HOL system

to proceed with further verification procedures.

PVS and Model Checking

Rajan et al [15] described an approach where a BDD-based model checker for the
propositional p-calculus has been used as a decision procedure within the framework
of the PVS proof checker. An extension of the p-calculus is defined using the higher-
order logic of PVS. The temporal operators are then given their customary fixpoint
definitions using the p-calculus. These temporal operators apply to arbitrary state
spaces. In the instance when the state type is constructed in a hereditarily finite
manner, p-calcululs expressions are translated into input acceptable by a u-calculus
model checker. This model checker can then be used as a decision procedure within a
proof to prove certain subgoals. The model checker accepts the translated input from

p-calculus expression. The generated sub-goals are verified by the model checker and

15

the results are used in the proof process of PVS.

HOL and Model Checking

Schneider et al [24] proposed an approach of invoking model checking from within
HOL where properties are translated from HOL to temporal logic. A new class of
higher-order formulae were presented, which allows a unified description of hardware
structure and behavior at different levels of abstraction. Datapath oriented verifi-
cation goals involving abstract data types can be expressed by these formulae as
well as control dominated verification goals with an irregular structure. To ease the
proofs of the goals in HOL, a translation procedure was presented which converts
the goals into several CTL model checking problems, which are then solved outside

HOL.

HOL and BuDDy

Gordon [26] described the integration of HOL98 with the BuDDy BDD package.
HOL was used to formalize the Quantified Boolean Formulae of BDDs. By using
a higher-order rewriting tool, the formulae can be interactively simplified to get
simplified BDDs. Mapping the simplified formulae to BDDs was done by using a

table. The BDD algorithms can also strengthen its deductive ability in this system.

16

HOL and Model Checking

Aagaard et al [27] constructed a system that integrates symbolic trajectroy evalua-
tion based model checking with theorem proving in higher-order logic. The approach
is made possible by using the same programming language fl, a strongly-typed
functional language in the ML family [14], as both the meta and object language
of theorem proving. This is done by “lifting” fl as they called it in their work
[27], essentially deeply embedding fI in itself. The approach provides an efficient
and extensible verification environment. Their goal in this approach was to move
seamlessly between model checking, where fI functions are ezecuted, and theorem
proving, where they reason about the behavior of fl functions. Those goals are
achieved via a mechanism that they referred to as lifted fl. The basic concept of
lifted fl is to use fl as both the object and meta language of a proof tool. This
approach is applicable to any dialect of the ML programming language and any

model-checking algorithm that has inference rules for combining results.

HOL and Gandalf

Hurd [28] described GANDALF.TAC, a HOL tactic that proves goals by calling
Gandalf [29] which is a first-order resolution theorem-prover optimized for speed and
specializing in manipulations of large clauses, and mirroring the resulting proofs in
HOL. Gandalf is a Prosper plug-in [30]. This call can occur over a network, and a

Gandalf server may be set up servicing multiple HOL clients. GANDALF _TAC does

17

not go through all of the proof procedure of the goal, but rather is a component of
an underlying proof infrastructure. GANDALF_TAC takes the input goal, converts
it to a normal form, writes it in an acceptable format, sends the string to Gandalf,

parses the Gandalf proof, translates it to a HOL proof, and proves the original goal.

LTL in HOL

More recently, Schneider and Hoffmann [31] described the embedding of linear time
temporal logic (LTL) [32] in HOL together with a translation of LTL formulae into
equivalent w-automata [21]. The translation is implemented by HOL conversions.
Its implementation is mainly based on pre-proven theorems. It runs in linear time
in terms of the given formula. The main application of this conversion is the sound
integration of symbolic model checkers as decision procedures in the HOL theorem
prover. The conversion also enables verifving temporal properties within the HOL

system.

2.2 Scope of the Thesis

More work is still being done to integrate formal verification tools. Since theorem
proving approaches have the flexibility to express the behavior of the circuit at
different levels of abstraction with ease which complements the reliability of the
obtained results, the formal verification research community is looking more into the

ways to integrate the automated tools with theorem provers to reap the advantages of

18

both. Among the developed hybrid tools, model checking is an automatic technique
and is mostly integrated with theorem provers.

In difference to related work, in this thesis we combine theorem proving with
automated equivalence checking. We proposed a methodology [33, 34] as to how
equivalence checking of the automated MDG system [22] supports the proof process
of the HOL theorem prover [4]. The implementation of the proposed methodology
is achieved by building a linkage tool using Standard Meta Language (SML) to
translate from HOL to MDG. Two tactics (SML functions) MDG_COMB.TAC and
MDG_SEQ_TAC are built for translation from HOL to MDG and verification in
MDG. Later the results from MDG are imported {35] to HOL.

The linkage tool is built to use the equivalence checking of MDG system,
though model checking facility is availble in MDG. The usage of model checking
of MDG for the hybrid tool is beyond the scope of this thesis. As a case study
example, Fairisle ATM switch fabric [36] is considered. The Timing block of the
Fairisle switch fabric is used to demonstrate the functioning of our hybrid tool for
sequential verification. For combinational verification, the Acknowledgement block
of the Fairisle ATM switch fabric is presented as an example. The Fairisle ATM
switch fabric has been independently verified in HOL {37] and MDG ([38].

The HOL theorem prover can handle very large circuits for verification but
it is a cumbersome and time-consuming process and needs expertise in using it.

We believe that the present VLSI industry, however needs the automation of the

19

verification process as much as possible without suffering the under-capability of
the automated tools when it comes to handling large circuits. The integration of
interactive and automated tools eases the verification complexity to a great extent
as well as significantly reducing the verification time.

The work described in this thesis is a part of a larger project to link VHDL,
HOL and MDG as shown in Figure 2.1. Here, the VHDL model is analyzed to
get a data structure (Directed Acyclic Graph—DAG) of the model which is passed
through an HOL Generator to get the HOL model. Within HOL, we use our hybrid
tool which uses MDG system partially to prove some sub-goals as explained later in
this thesis. In the case of property verification, an LTL property description (Lyrpc)
[39] is transformed into an equivalent VHDL or MDG-HDL circuit description that

will either be fed into the analvzer or directly to the MDG system, respectively.

20

VHDL Model

Analyser

I
]

HOL-ASM
Generator

!
HOL Model

l

L J

PROPERTIES
!
i

L-MDG

Order File

HOL

MDG_COMB_TAC
MDG_SEQ_TAC

N

MDG

uivalence
Checking

Invariant
Checking

L-MDG
Checking

Invariant File

Figure 2.1: VHDL-HOL-MDG Project

21

Chapter 3

HOL and MDG Systems

3.1 HOL System

The HOL System is a theorem prover based on higher-order logic [4] which was
originally intended for use in hardware verification, but now used in a variety of
application areas since it is a general purpose proof system. In the theorem proving
approach to verification, a system and its properties are described by means of
logical formulae and the system is shown by means of a logical proof to entail the
desired properties. It allows functions and relations to be passed as arguments
to other functions and relations. It provides a wide range of proof commands of
varying sophistication, including rewriting tools and decision procedures. Also, it is
user programmable, allowing user-defined and application specific proof tools to be

developed without compromising reliability.

The HOL system is a descendant of the earlier LCF system ([40]. The basic
interface to the system is a Standard ML interpreter. SML [14] is both the im-
plementation language of the system and the meta-language in which proofs are
written. Proofs are input to the system as calls to SML functions. Roughly speak-
ing, HOL is equal to SML plus: some predefined SML programs (functions), and
some data type declarations. Higher-order logic is very flexible and has a well-
defined and well-understood semantics. The HOL system supports forward proof
and goal-directed backward proofs in a natural-deduction-style calculus by creating
theorems and applying inference rules to the already created theorems.

HOL has many built-in inference rules and ultimately all theorems are proven
in terms of the axioms and basic inferences of the calculus. By applying a set of
primitive inference rules, a theorem can be created. Once a theorem is proven,
it can be used in further proofs without recomputation of its own proof. In the
backward proof, the user sets the desired theorem as a goal. Tactics are applied to
the goal to create sub-goals and inference rules are applied to prove the sub-goals
which in turn proves the main goal. The system is guided by applying tactics to
proof obligations; a tactic is an SML function that corresponds to a high-level proof
step and automatically generates the sequence of elementary inferences necessary
to justify the step. Tactics are used in backward proofs and inference rules are
used for forward proofs. Tactics can be composed into even larger steps using

tacticals such as “apply tactics A then B and then C repeatedly until no further

23

simplification is obtained.” A notable aspect of the system is that user-defined
tactics cannot compromise the soundness of a proof because the basic inferences
operate on proof states. The results are strong and the user can have great confidence
since the most primitive rules are used to prove a theorem. HOL system also has
automatic recursive type definitions, structural induction tools, rewriting tools (from
LCF), automatic primitive recursive definitions, built-in theories of arithmetic, lists,
sets, tautology checker, automatic inductive definitions, parser and pretty-printer
generator, online help facility and it has full documentation.

The applications of the HOL system can be found in hardware verification,
reasoning about security, verification of fault-tolerant computers, reasoning about
real-time systems. It is also used in compiler verification, program refinement cal-
culus, software verification, modeling concurrency and automata theory. HOL also
allows the use of hierarchical verification methodology wherein the modules are
divided into sub-modules and even the sub-modules are divided until the lowest im-
plementation level is reached. The behavioral and structural specifications of each
module are expressed in higher-order logic and each module is verified by proving a
theorem stating that the implementation implies the specification. Each sub-module
is verfied, and its result is used to verify the other sub-modules as needed. HOL
scales better than decision diagram based tools as illustrated by related work on
microprocessor verification [41, 42, 43] which are beyond the capabilities of such

tools due to state space explosion problem. To complete a verification, however,

24

ol e

a very deep understanding of the internal structure of the design is required, as
it is a white-box approach. Modeling and verifying a system using HOL is very

time-consuming (44, 45].

3.2 MDG System

The MDG system is a decision diagram based verification tool, primarily designed
for hardware verification which allows equivalence checking and model checking. It
is based on Multiway Decision Graphs (MDGs) [22] — an extension of the tradi-
tional ROBDDs [12] which accommodates abstract sorts and uninterpreted function
symbols. The MDG verification approach is a black-box approach. During the ver-
ification the user does not need to understand the internal structure of the design
being verified. The strength of MDG is its speed and ease of use. The MDG hard-
ware verification system has been used in the verification of significant hardware
examples [46]. A fundamental primitive of its hardware description language is the
table which is a general form of the well-known truth tables. Used with don’t-care
and default values, next state variables and variable entries, it becomes a powerful
specification construct that can be used to give behavioral specifications of hardware
as abstract state machines (ASM) [22]. The MDG tools combine the advantages
of representing a circuit at higher levels as is possible in a theorem prover, and the

advantages of the automation offered by ROBDD based tools.

25

3.2.1 Multiway Decision Graphs

Multiway Decision Graphs (MDGs) have been propo.sed as a solution to the data
path width problem of ROBDD based verification tools. The formal system behind
MDGs is a subset of many-sorted first-order logic with distinction between abstract
sorts and concrete sorts. Concrete sorts have finite enumerations, while abstract
sorts do not. The constants occuring in enumerations are referred to as individual
constants, and the other constants as generic constants. Concrete symbols must
have explicit definition.

An MDG is a finite, directed acyclic graph (DAG). An internal node of an
MDG can be a variable of a concrete sort, or it can be a variable of abstract sort
or it can be a cross-term (whose top-level function symbol is a cross-operator). A
cross-operator is a function which takes inputs of abstract sorts and/or concrete sorts
and it’s output is always of concrete sort. An MDG may only have one leaf node
denoted by T which means all paths in the MDG are true formulae. Thus, MDGs
essentially represent relations rather than functions. MDGs can also represent sets
of states. Using MDGs, a data value can be represented by a single variable of
an abstract sort, rather than by concrete variables. Variables of concrete sorts
are used for representing control signals, and variables of abstract sorts are used
for representing datapath signals. They are much more compact than ROBDDs
for designs containing a datapath. Furthermore, sequential circuits can be verified

independently of the width of the datapath. For circuits with large datapaths,

26

the representation of MDGs are much more compact than that of ROBDDs, thus
greatly increasing the range of circuits that can be verified since the verification is
independent of the width of the datapath.

A state; machine is described using finite sets of input, state and output vari-
ables. The behavior of a state machine is defined by its transition/output relations,
together with a set of initial states. Similar to the way ROBDDs are used to repre-
sent sets of states and transition/output relations for finite state machines (FSMs),
MDGs are used to compactly encode sets of states and transition/output relations
for ASM. Starting from the initial set of states, the set of states reached in one
transition is computed by the relational product operation. Like ROBDDs, MDGs

must be reduced and ordered.

3.2.2 MDG Verification Procedures

The MDG tools package the basic MDG operators and verification procedures [47].
The verification procedures are combinational and sequential verification. The com-
binational verification provides the equivalence checking of two combinational cir-
cuits. The sequential verification provides invariant checking and equivalence check-
ing of two state machines. The MDG operators and verification procedures are

implemented in Quintus Prolog [23].

e Combinational Verification : The MDGs representing the input-output re-

lation of each circuit are computed using the relational product of the MDGs

27

of the components of the circuits. Then, taking advantage of the canonicity

of MDGs, it is verified whether the two MDG graphs are isomorphic.

Invariant Checking : Using symbolic reachability analysis, the state space of
a given sequential circuit (an ASM) is explored in each state. In each state
it is verified that the specified property is satisfied. The transition relation of
the ASM is represented by the relational product which computes the product

machine of the component ASMs.

Sequential Verification : The behavioral equivalence of two sequential cir-
cuits (ASMs) is verified by checking that the circuits produce the same se-
quence of outputs for every sequence of inputs. This is achieved by forming a
circuit consisting of the two circuits, feeding the same inputs to both of them,
and verifying an invariant asserting the equality of the corresponding outputs

in all reachable states.

Model Checking : Model checking feature has been recently developed and
incorporated into the existing MDG system [48, 49]. This provides both safety
and liveness property checking using the implicit abstract enumeration of an
ASM. The properties are represented in a first-order linear time tempqral logic,
called Lyrpg [39]. The ASM model of the Lyrpc formula is constructed, along
with a simplified invariant. The ASM of the Lypc formula is composed with

the original model and the simplified invariant is checked on the composite

28

machine, using the implicit abstract enumeration of an ASM.

e Counter — ezample Generation : When invariant or model checking fails, the
MDG tools generate a counterexample to help with identifying the source of
the error. A counterexample consists of a list of assumptions, input and state
values in each clock cycle, which provides a trace leading from the initial state

to the faulty behavior.

3.2.3 MDG-HDL

MDG-HDL is the input language for MDG. It supports structural descriptions,
behavioral ASM descriptions or a mixture of both. A structural description is usually
a netlist of components connected by signals. A behavioral description is given by
a tabular representation of the transition/output relation. The MDG-HDL comes
with a large library of predefined, commonly used, basic components (such as logic
gates, multiplexers, registers, bus drivers, ROMs, etc.) [47]. A circuit description
includes the definition of signals, components and the circuit outputs. Signals are
declared along with their sorts. Components are declared by the instantiation of
the input/output ports of a predefined component module.

For example, a multiplexer with a control signal select of concrete sort having
[0,1,2] as an enumeration, inputs: x0, x1, x2 of an abstract sort and output: y of

the same abstract sort is defined as:

29

component (mux1,mux(sel(select),

inputs ([(0,x0),(1,x1),(2,x2)1), output(y))

Among predefined modules we have a special module called a table. Tables
can be used to describe a functional block in the implementation, as well as in
the specification. A table is essentially a series of lists, together with a single final
default value. The first list contains variables and cross-terms. The last element of
the list must be a variable (either concrete or abstract). The other variables in the
list must be concrete variables. The last element in the list of values could be a first
order term.

A table can be thought of as taking 5 arguments. The first argument is a list
of the inputs, the second is the single output, the third is a list of table rows. Each
row is a list itself, giving one allocation of values to the inputs. The entries in the
list can be either actual values or a special don’t-care marker. The latter matches
any value the input could hold. The fourth argument is a list of output values. Each
is the value on the output when the inputs have the values in the corresponding row.
The final argument is the default value, taken by the output if the input values do
not match any row.

For example, a 2-input AND gate can be described as a table as:

table([[x1,x2,y], [0,*,0], [1,0,0] | 11)

The necessary files for verification in MDG for equivalence checking are: a

30

behavioral specification file, a circuit description file, an algebraic file, a symbol
order file, and an invariant file [47]. The behavioral specification file declares signals
and specifies the behavior of the circuit using tables as described above. The circuit
description file declares signals and their sort assignments and describes the circuit
netlist. The algebraic specification file defines sorts, function types and generic
constants. The symbol order file provides the user-defined symbol order for all the
variables and cross operators which would appear in MDGs. The invariant file takes
the corresponding outputs from both behavioral specification and circuit description

for equivalence checking using MDGs.

31

Chapter 4

Linking Methodology

4.1 Hierarchical Verification

In the hybrid approach, a hierarchical hardware verification methodology is followed.
Generally, when we use HOL to verify a design, the design is modeled as a hierarchy
structure with modules divided into sub-modules as shown in Fig. 4.1. The sub-

modules are repeatedly subdivided until eventually the logic gate level is reached.

By proving a theorem saying that the implementation (structure) implements

the specification (behavior), we accomplish the verification of each module. That is:
+ Implementation_A => Spect fication_A (4.1)

The verification starts in HOL with a goal to be proved. The correctness

theorem for each module states that its implementation down to the logic gate

32

Specification Module A Verification

|]
Submodule Al Submodule A2
{ | | 1
Submodule A1l Submodule A12 Submodule A2l Submodule A22
'

Figure 4.1: Hierarchical Verification of a Module

level satisfies the specification. The correctness theorem for each module can be
established using the correctness theorems of its sub-modules. When the module is

sub-divided, then we can write the theorem about the structural description as
+ Implementation.A = Imp_Al A Imp_A2 (4.2)
Now (4.1) can be written as
 Imp_A1 A Imp_A2 = Speci fication-A4 (4.3)

The correctness statements of the sub-modules A1 and A2 can be used to prove

the correctness theorem for the module A. Likewise we can prove independently for

each sub-module that
F Imp_41 = Spec_Al (4.4)

F Imp_A2 = Spec_A2 (4.5)

33

Since these are implications, to prove (4.1), it is enough to prove that
+ Spec_Al A Spec_A2 = Speci fication_A (4.6)

Similarly, Al is verified from its sub-modules A11 and A12, and A2 is verified
from its sub-modules 421 and A422. Hence, we verify module A by independently
verifving its sub-modules Al and A2. Using this top-down approach, the main
objective of this work is to identify and prove the correctness of certain sub-modules
in an automatic fashion using the MDG system. In MDG, each selected sub-module
will be proved by automatic verification that its implementation is equivalent to
its specification, and the result is imported into HOL. In our hybrid system, the

sub-module is treated as a black-box.

4.2 HOL and MDG Interface

In HOL, the specification and implementation are expressed in higher-order logic.
The MDG system uses MDG-HDL to describe the implementation and the specifi-
cation, the latter is written in the table form [50]. The sub-goals from the main goal
are generated by HOL. The user decides if the sub-goal can be proved in MDG and
its description is written in an MDG-acceptable form using the description predi-
cates. In case a sub-goal cannot be expressed in the MDG acceptable form or the
MDG verification fails, then the regular HOL proof procedure is followed. Once

all the sub-goals are proved, it implies that a HOL proof for the main goal can

34

HOL Sub-goal MDG Files

MDG Sysiem True/ Falsc'

—— | HOL System
Make_theorem

m A > Moo m o

True

Figure 4.2: Block Diagram of the Hybrid System

be generated and the circuit is formally verified. As shown in the block diagram
of the hybrid system in Fig. 4.2, the interface converts the HOL descriptions to
equivalent MDG files and all required files for the MDG verification as specified in

the following.

The sub-goal specification and implementation which are in two separate files
are given as input to the interface which is built in SML. The two HOL files contain
the inputs, outputs, intermediate outputs and their signal types. The potential
user-defined types are provided in the HOL specification file. From the given two
HOL files, corresponding MDG circuit description, specification, algebraic, order and
invariant file are created automatically. In the case where the equivalence checking
has succeeded, MDG returns “true”, this result is imported into HOL in the form of
a theorem (using the HOL built-in function mk_thm in HOL) and the main proof
procedure continues in HOL with the next sub-goal to be proved.

Xiong et al [35] showed as to how the results of MDG can be imported into

35

HOL. (35] provides a formal proof for the soundness of imported verification results
from MDG to HOL. Since one cannot assume that a piece of hardware verified in
MDG can be taken as a theorem in a HOL proof, [35] shows a way as to how the
MDG results are converted to appropriate HOL theorems as used in traditional HOL
hardware verification in the style of Gordon [51]. Formalizations of MDG results in
HOL were given based on the semantics of the MDG input language. Then theorems
were derived which show that the results can be converted between these two forms.
First it was needed to formalize the results of the MDG verification applications in
HOL. To do that, a series of translation theorems (one for combinational verification,
one for sequential verification, etc.) had to be proved that state how an MDG result

can be converted to the traditional HOL form:

+ Formalized M DG Result => (Implementation = Speci fication)

As part of the build-up of the mathematical interface between the two tools,
we use above proof to safely import MDG equivalence checking results to HOL.
Besides, we base our work on [50] where Curzon et al formally specified and verified
the total MDG component library in HOL. They also suggested an embedding of
MDG tables in HOL.

The HOL and MDG interface is finally summarized in Fig. 4.3 which ex-
plains the internal structure of the hybrid tool in detail. First, a tactic invokes the

translation and the necessary files generation, and once the files are generated, the

36

verification begins and the obtained validation result is imported into HOL for fur-
ther verification proof process. All the file generators (Algebraic, Order, Invariant,
Specification, Implementation) shown in Fig. 4.3 are associated each to a specific
generator in the translator implementation.

We developed two tactics, MDG_COMB_TAC (for combinational verification)
and MDG _SEQ_TAC (for sequential verification) which start within HOL the trans-
lation of the files, calls the verification in MDG, and analyses the result to eventually
generate a theorem. The operations performed by these tactics are shown as a flow-

diagram in Fig. 4.4. These tactics are explained in the next section.

37

Translator

Algebraic

Order

Invariant
Generator

Spec.

Impl.

MDG

MDG
Impl. File

Result
Validation

Goal

No

Proven ?
Yes

Theorem
Generator

Figure 4.3: Internal Structure of the Hybrid Tool

38

Sub-goal

Sub-goal
acceptable ?

— SPEC (MDG)
— IMPL (MDG)
— ORDER File
—e ALGEBRAIC File
— INVARIANT File

SPEC (HOL) —
IMPL (HOL) —

Call MDG and do the
verification

RESULT False
from

MDG

True

Make Theorem Regular HOL Proof

Figure 4.4: Task of MDG_.COMB_TAC/ MDG_SEQ-TAC

39

4.3 MDG_COMB_TAC and MDG _SEQ_TAC

The implementation language for HOL is the Standard Meta Language (SML) [14],
and for MDG it is Prolog [23]. The translator was built in SML in order to facilitate
the tactics MDG_COMB_TAC and MDG.SEQ.TAC to be invoked within HOL.
SML is a functional programming language. Functional programming consists of
functions operating on data structures. SML protects programmers from their own
errors. Before a program may run, the compiler checks that all module interfaces
agree and that data types are used consistently. SML supports a level of abstraction
that is oriented to the requirements of the programmer. The SML system can
preserve this abstraction, even if the program is faulty. It is a strictly typed language.
SML was primarily designed for theorem proving.

Fither MDG_COMB.TAC or MDG_SEQ.TAC, when invoked within HOL
takes the files which contain HOL specification and implementation and processes
the translation and verification in MDG. The implementation of both tactics is given
below in detail.

Input needed: HOL descriptions (Specification and Implementation in HOL).
The Specification also contains newly defined types if any.

Output produced: The MDG files are created and a window is opened for

MDG verification.

40

[Sv])

HOL Specification contains:
High level definition of circuit behavior using specification tables
Initial values and initial variables (optional)

New types definitions (optional)

HOL Implementaion contains:

Definition of the circuit components as predicates based on the MDG compo-

nent library

Initial values and initial variables (optional)

HOL Specification Translation:

. Read the file

Separate tables, initial values & initial variables and new types

Take tables and process each table

Processing Tables:

(a) Capture inputs, outputs and their types. Output may be a next state
variable

(b) Translate the values to 0’s and 1’s or an enumerated type

41

=~I

(c) Translate the default value and add to the outputs

(d) Format inputs and outputs

. Capture the initial values and initial variables

Get the inputs and outputs from all tables and transfer them to an auxiliary
order file. This auxiliary file which eventually contains inputs, outputs and

internal signals from implementation file is used to create the order file.

From the high-level definition which includes all the defined specification ta-
bles, transfer the final outputs of the circuit to an auxiliary invariant file (in
the case of sequential verification only). This auxiliary file which eventually
contains the outputs from implementation file is used to create the invariant

file.

. Write all signals (inputs, outputs and internal signals) with types into the

specification file

Join the formatted tables, formatted circuit outputs, next states, state to next
state partitions as needed (for sequential or combinational circuit) and write

into a file which is in an MDG acceptable file format

Algebraic File Generator:

. Read the specification file and capture the new types

42

o

N

Write the formatted list of strings into a file to create the Algebraic File with

other necessary details

HOL Implementation Translation:

. Read the file

Separate initial values, initial variables and the definition of the circuit
Process the definition of the circuit to an acceptable MDG format

Get the inputs and outputs with their types of each predicate and transfer
them to add to the auxiliary order file which was already created from the

specification

From the definition of the circuit, get the circuit outputs and transfer them to
add to the auxiliary invariant file which was already created from the specifi-

cation

Write all signals (inputs, outputs and internal signals) with types into the

specification file

Join the formatted tables, formatted circuit outputs, next states, state to next
state partitions as needed (for sequential or combinational circuit) and write

into a file in an MDG acceptable format

43

Order File Generator:

1. Read the auxiliary order file (created from specification) and create the order
of variables by first placing the inputs, internal signals and outputs supplied

by implementation into the Order File

[S)

Add to the file, the inputs and outputs supplied by the specification

Note: This order respects the rules of MDG in writing the state & next state

order, etc. [47]
Invariant File Generator (for sequential verification only):

1. Read the auxiliary file and join the corresponding outputs of the circuit using
a fork for equivalence checking and write them into Invariant File which is

acceptable by MDG

Note: Number of outputs from specification must be equal to the number of

outputs from implementation. Obviously they are of the same type.

Once all the five files (Specification, Implementation, Algebraic, Order, Invari-
ant) are created, a window is opened with Prolog prompt and all these files are fed
to it to invoke the MDG verification. The traces from MDG are captured in a file

to analyze and validate the result from MDG to be imported into HOL.

44

Chapter 5

Case Studies

5.1 Sequential Verification

For illustration purposes, we show the verification of two sub-modules of the Fairisle
ATM switch fabric [36] (see Fig. 5.1). Curzon [37] formally verified this ATM switch-
ing element using the theorem-prover HOL. Tahar et al reverified it using MDG [38].
The Fairisle switch fabric is a real switch fabric designed and in use at University
of Cambridge for multimedia applications. The Fairisle switch forms the heart of
the Fairisle network. Considering the fabric as the main module to be verified, it
can be split into 3 sub-modules, namely Acknowledgement, Arbitration and Data
Switch. Further dividing the Arbitration sub-module, we have the Timing, Decoder,
Priority Filter and Arbiters as sub-sub-modules (Fig. 5.1). In our sequential veri-

fication example, we have taken the Timing block to be a sub-sub-module (one of

45

Aout0 - l/ 7 je———— Ain0
- o~ -—
2232, = L ACKNOWL. [o 2:25
Aout3 -= I: fe———————— Ain3
fs L
7 eecseencancncone vweaswamcsccecccans b eocacses s
4 ARBITRATION :
: =0]
£ ’
’ = > .
Ld .E ‘, []
[o -]
L] o . (]
. 5 |12} outDis; ¢
: £ 71 xGrant; s
: b > w 2 }'Gm[i :
‘o 2|32 |Fsll6l 2|16 :
[5 M EETT w [s
44 T) o= X H
A ok : X2 = = E
.
4/4, ---; emcccemecsnenrcedancene -
Din0 7 “3 z E Bguto
Dinl 2 - 2 £ utl
Din2 —= 8, 5 & DATASWITCH % Dour?
Din3 —= 2 = =< Dout3

Figure 5.1: Fairisle ATM Switch Fabric

the sub-goals) and used our hybrid tool to achieve the desired verification.

5.1.1 Proof Structure of the Fairisle ATM Switch Fabric

The verification of the Fairisle switch fabric is arranged according to the division of

the fabric in a hierarchical fashion as shown in Fig. 5.2.
The goal is to prove that
+ FabricImp => Fabric_Spec (5.1)
From Fig. 5.2 and the equations in Section 4.1, we have

 Fabric_Imp = AckImp A ArbImp A DataSw _Imp (5.2)

46

ATM Fabric

Acknowledge Arbitration Data Switch

Timing Decoder Priority Filter Arbiters

Figure 5.2: Hierarchical Verification of the Fairisle Switch Fabric

as in (4.4) and (4.5) of Chapter 4, we can prove that

F Ack_Imp — Ack_Spec (5.3)
F Arb_Imp => Arb_Spec (5.4)
+ DataSw Imp => DataSw_Spec (3.5)

Now it is enough to prove that

F Ack_Spec A Arb_Spec A DataSW _Spec = Fabric_Spec (5.6)

Likewise, at the next lower level the Arbitration block is proved in the same
fashion. In this Arbitration block, one of the sub-modules or sub-goal is the Timing
block. Instead of proving the implication in HOL, it can be proved using equivalence

in MDG which we illustrate in the following section.

47

act {0..3] ' OR anyActive

AND —& DFFd X

x = routeEnable

frameStart INV frameStartBar

I

| yterm DFFd

Figure 5.3: Implementation of the Timing Block

5.1.2 Timing Block Description

The Timing block controls the timing of the arbitration decision based on the frame
start signal and the time the routing bytes arrive. The implementation of the Timing

is shown in Fig. 5.3 and the FSM representation is shown in Fig. 5.4.

The specification and implementation were written and used by the hybrid
tool to do the verification using equivalence checking of MDG. The implementation

of the Timing block shown in Fig. 5.3 described in HOL is:

—V frameStart actO actl act2 act3 routeEnable.
TIMING_IMP ((frameStart act0 actl act2 act3))
((routeEnable)) =

J anyActive frameStartBar x xBar y yterm dx dy .

48

(or4 act0 actl act2 act3 anyActive) A

(not frameStart frameStartBar) A

(not x xBar) A

(and xBar y yterm) A

(and4 anyActive y frameStartBar xBar dx) A
(or frameStart yterm dy) A

(reg dx x) A

(reg dy y) A

(fork x routeEnable)

where “ord” is a 4-input OR gate, “and4” is a 4-input AND gate. “not” and “or”are
the regular logic components. “fork” is used to represent the equality of two signals
and “reg” is a register. All these components are pre-defined in MDG component

library and are defined [50] in HOL.

The resulting MDG-HDL implementation of the Timing block which is equiv-

alent to that of HOL, as generated by MDG_SEQ_TAC is:

component (anyActive_impl,or4 (input(act0,actl,act2, act3),
output (anyActive))).
component (frameStartBar_impl,not (input (frameStart),
output (frameStartBar))) .

component (xBar_impl,not (input (x) ,output(xBar))) .

49

X

frameStart = l/routeEnable=0

Figure 5.4: State Transitions of the Timing Block

component(yterm_impl,and(input(y,xBar),output(yterm))).
component(dx_impl,and4(input(anyActive,y,frameStartBar,xBar),
output (dx))).
component(dy_impl,or(input(frameStart,yterm),output(dy))).
cpmponent(x-impl,reg(input(dx),output(x))).
component(y_impl,reg(input(dy),output(y))).
component(fork-for.routeEnable_impl,fork(input(x),

output (routeEnable))) .

The specifications of the Timing block in HOL and MDG are shown below.
The HOL specification of the T iming FSM is described using a state transition
function and an output function. The HOL definition of the state transitions of the

FSM in Fig. 5.4, written in terms of the table specification is given as [50]:

50

TABLE [anyActive;frameStart;timing_state] (n-timing_state o NEXT)
[[DONT_CARE ; TABLE_VAL (TRANS T) ; TABLE_VAL(STATE run)];
[DONT_CARE; TABLE_VAL (TRANS F) ; TABLE_VAL (STATE run)];
[TABLE_VAL (TRANS T) ; TABLE_VAL(TRANS F);

TABLE_VAL(STATE WAIT)];

[DONT_CARE ; TABLE_VAL (TRANS T) ; TABLE_VAL (STATE route)]]

[waitSIG;runSIG;routeSIG; waitSIG] waitSIG

where TABLE_VAL is is defined as a new HOL type, DONT_CARE is defined for
the don't care condition and runSIG, waitSIG and routeSIG are the lifted versions
for the constants run, wait and route respectively. TRANS and STATE are defined
in HOL as a common type for all the input variables and state variables respectively.

NEXT states that n_timing_state is the next state of timing state in this case.

The equivalent MDG table specification of the Timing FSM state transition

is generated using MDG _SEQ_TAC as:

[[anyActive, frameStart, timing state, n_timing.statel],
[*,1,run, waitl,

(*,0,run, run],

[1,0,wait, routel,

[*,1,route, wait] | waitl

51

Once the specification and implementation written in HOL are translated,
MDG_SEQ_TAC generates the required order file, algebraic specification file and
invariant file and calls the MDG tool for equivalence checking. The succeeded result

from MDG is imported into HOL as a theorem. And hence the verification of the

Timing block is done.

5.1.3 Timing Block Verification

We have shown that:
Timing_Imp = Timing-Spec (equivalence) (5.7)
We got the above result from MDG and it is imported into HOL [35] as:
F Timing Imp => Timing_Spec (5.8)

Using similar MDG proofs for the other sub-modules of the arbitration block,

we can get:

+ Timing_Spec A Decoder Spec A PFilter _Spec A Arbiters_Spec

= Arb_Spec (5.9)
Hence proving the higher-level sub-goal for the whole arbitration block.

We showed using MDG that the structural description (i.e. implementation)

is equivalent to a high-level specification, described in terms of tables. Writing the

52

[MDG Nodes | CPU Time (sec.) | Memory (MB) |
227 0.41 0161 |

Table 5.1: MDG Equivalence Checking Results for Timing Block

high-level specification using the tables in MDG is far easy compared to writing it
down in HOL. In HOL, the proof is interactive and is time-consuming [37].

Using our hybrid tool, the procedure is faster than proving in HOL that the
implementation implies the high-level specification. Curzon [37] took several hours
to do the proof of the Timing block in HOL whereas the verification is done in
less than a second in MDG (see Table 5.1). It took six man hours to write the
HOL specification and implementation files. The automatic translation to the MDG
svstem proved effective in this case, reducing the specification and verification time
significantly. The verification results obtained by means of equivalence checking can
be formally related to higher levels of abstraction. Also, equivalence is a stronger

result compared to implication.

5.2 Combinational Verification

As an example for the combinational verification we have considered the Acknowl-
edgement block of the same ATM switch fabric which we used for sequential ver-

ification. This acknowledgement block is considered as a sub-module of the ATM

53

grant Acknowledgement ackOut

4x2 Block 4
outputDisable
4

Figure 5.3: Block Diagram of the Acknowledgement Block

switch fabric when the hierarchical verification approach is used. The acknowledge-
ment block produces the acknowledgement signals from the result of arbitration (see
Fig. 5.1). The block diagram of the Acknowledgement block is shown in Fig. 3.5.

The Acknowledgement block takes as input acknowledgement signals ackIn,
as from the output ports, signals indicating grants as to which request was granted
for each output port and disable signals outputDisable, for each output port. It
outputs acknowledgement signals ackOut for each input port.

The acknowledgement block gives the acknowledgement signal for a single in-
put port on a single clock cycle. The input port receives a positive acknowledgement
provided it has been selected by some output port, the disable signal is not asserted
indicating that the grant is valid at that time and provided the acknowledgement
signal from the granted output port is positive. [t has two main units ACKGEN
and ACKOR. The detailed block diagram is shown in Fig. 5.6.

ACKOR_N combines the acknowledgements for all the input ports giving one
bit per input port. If any output acknowledges an input, then an acknowledgement

signal is sent to that input. The implementation of ACKORN is shown in Fig. 5.6.

54

ACKGEN_N

ACKOR_N

— s oSO SOOR SRR
; ; : LINV —
yGrani0: NV} NAND | ackTermPreQ
ackIn0 K i ackTerm0
—| NOR ACKOR_O
NAND | ackTermPred ’
| NOR ackTerm-t
: ackOut0:
KTermPre8 : OR = ™
NAND | ack? : ackTerm8
| NOR ;

; ; NAND | ackTermPrel2 : I O
outputDisable0 : NOR : ackTerml2
«Grantl ...

- ackTerml
vGrantl: :

: ackTerm5 ackOutl:
acklnl ACKGEN_I ackTerm9 OR ——————>
outpu[Di:sab]el ackTermi3 :
xGrant2 :

mam,,f ackTerm2 : :
- — ackTerm6 ackOut2

: - _—
ackln? . ACKGEN_2 ackTerml0 OR -
outputDi%ableZ ackTerml4
xGrant3§ > ackTerm3 .
YGmUE ackTerm7 oR ackOut3

P : ‘ H
ackIn3 : ACKGEN_3 ackTerml] | —__.E
outputDisable3 ackTermlS :

Figure 5.6: Implementation of the Acknowledgement Block

95

ACKGEN\N generates the acknowledgement signals for the output ports. The
implementation of ACKGEN_N is shown in Fig. 5.6. If outputs are disabled for a
port or the corresponding external port is sending a negative acknowledgement,
then all inputs are sent a negative acknowledgement from that port. Otherwise the
granted input is sent an acknowledgement and the others negative acknowledgements
from that port. The separate signals for an input port are combined to give a single

acknowledgement by a separate module ACKORNN.

5.2.1 Acknowledgement Block Description

The behavioral specification for four output bits is given in four tables one for each
bit. For the illustration purposes, we show specification in HOL for one output only
which is given as:

For the output ackOut0:

TABLE [xGrantO; yGrantO; ackInO; outputDisableO;
xGrantl; yGrantl; ackInl; outputDisablel;
xGrant2; yGrant2; ackIn2; outputDisable2;
xGrant3; yGrant3; ackIn3; outputDisable3] (ackOut0)
[[TABLE_VAL F;TABLE_VAL F;TABLE.VAL T; TABLE_VAL F;
DONT_CARE; DONT_CARE; DONT_CARE; DONT_CARE;
DONT_CARE; DONT_CARE; DONT_CARE; DONT_CARE;

DONT_CARE; DONT_CARE; DONT_CARE; DONT_CARE];

56

[(DONT_CARE; DONT_CARE; DONT_CARE; DONT_CARE;
TABLE_VAL F;TABLE.VAL F;TABLE_VAL T; TABLE.VAL F;
DONT_CARE; DONT.CARE; DONT_CARE; DONT_CARE;
DONT_CARE; DONT_CARE; DONT_-CARE; DONT.CARE];
[DONT_CARE; DONT_CARE; DONT_CARE; DONT_CARE;
DONT_CARE; DONT_CARE; DONT_CARE; DONT.CARE;
TABLE_VAL F;TABLE_VAL F;TABLE_VAL T; TABLE.VAL F;
DONT_CARE; DONT_CARE; DONT_CARE; DONT.CARE];
[DONT_CARE; DONT_CARE; DONT_CARE; DONT.CARE;
DONT_CARE; DONT_CARE; DONT_CARE; DONT_CARE;
DONT_CARE; DONT_CARE; DONT.CARE; DONT_CARE];

TABLE_VAL F;TABLE_VAL F;TABLE_.VAL T; TABLE_VAL F1];

[TSIG;TSIG;TSIG;TSIG] FSIG

where TABLE_VAL is defined as a new HOL type, and TSIG and FSIG are the

lifted versions for the constants T and F which in turn are 1 and O respectively.

The equivalent MDG table specification of the Acknowledgement block gener-

ated using MDG_COMB_TAC for the output ackOut0 is as follows:

(4]
~]

component (ackOut0 _spec, table(l
[xGrant0 , yGrantO , ackIn0 , outputDisableO ,
xGrantl , yGrantl , ackInl , outputDisablel ,
xGrant2 , yGrant2 , ackIn2 , outputDisable2 ,

xGrant3 , yGrant3 , ackIn3d , outputDisable3d , ackOutO 1,

(g §
*
-

*
*
*
*
*
*
*
o
o
.

[y
o
*
»*
*
*
oy
—J

For understanding the specification, just the MDG tables (high-level specifi-

cation) for the other three outputs ackOutl, ackOut?2, ackQut3 are shown below.

For the output ackOutl:

[0’ 1] 1’ o) *l *’ *’ *, *) *I *’ *’ *l *l *J *, 1]’
[*l *’ *! *l 0’ 1’ 11 Ol *I *’ *’ *' *’ *D *, *) 1]!
[%, *, %, *, %, %, *, *, 0, 1, 1, 0, =, =, *, %, 1 1,

[%, *, %, =, *, * %, * %, *x *, %, 0,1, 1, o,1110

58

For the output ackOut2:

The implementation of the Acknowledgement block shown in Fig.5.6 described
in HOL is trivial and is similar to the implementation in HOL of the Timing block
which was shown in the sequential verification example. The resulting MDG-HDL

implementation of the Acknowledgement block is generated by MDG_.COMB.TAC.

Once the specification and implementation written in HOL are translated,
MDG_COMB_TAC generates the required order file and algebraic specification file
and calls the MDG tool for equivalence checking. The succeeded result from MDG
is imported into HOL as a theorem. And hence the verification of the Acknowiedge-

ment block is done.

5.2.2 Acknowledgement Block Verification

We have shown that:
Ack_Imp = Ack_Spec (equivalence) (5.10)
We got the above result from MDG and it is imported into HOL [33] as:
- Ack_Imp = Ack_Spec (5.11)

We hence showed using MDG that the structural description (i.e. implemen-
tation) is equivalent to the high-level specification, described in terms of tables.
Using our hybrid tool, the procedure is faster than proving in HOL that the im-
plementation implies the high-level specification. The results for the combinational
verification are shown in Table 5.2. The automatic translation to the MDG sys-
tem proved effective in this case, reducing the specification and verification time

significantly. Also, equivalence is a stronger result compared to implication.

MDG Nodes | CPU Time (sec.) | Memory (MB) |
433,077 1426.51 163.98 J

Table 5.2: MDG Equivalence Checking Results for Acknowledgement Block

60

Chapter 6

Conclusions

Given that no single formal method is likely to be suitable for describing and ana-
lyzing every aspect of a complex system, a practical approach is to combine different
methods. As explained in this thesis we combined theorem proving and equivalence
checking methods.

To summarize the work, a linkage tool between HOL and MDG is built. It
can be invoked by calling the functions MDG_COMB_TAC or MDG_SEQ_-TAC from
HOL. The tool uses the specification and implementation written in HOL in terms
of MDG like tables and components respectively, generates all the required files
(specification, implementation, algebraic specification, symbol order and invariant
file) automatically, to be used in MDG. After the generation of the files, the MDG
system is invoked where the MDG equivalence checking procedure is called and an

appropriate theorem in HOL is generated in the positive case. By using this tool,

61

more complex circuits can be verified using the powerful induction and expressive-
ness of HOL and the automation of MDG with significant reduction of time avoiding
cumbersome proof process of HOL as shown by our example. This is the main ad-
vantage of this hybrid tool. This hybrid approach is more effective in hierarchical
verification. If the main module can be divided into smaller sub-modules, then
certainly the use of this hybrid approach proves to be effective since there are less
chances of state explosion problem and MDG can effectively handle smaller circuits.

The HOL-MDG interface implemented works for equivalence checking. The
order, specification, implementation and the algebraic generators can be reused for
extending this work to include model checking as part of the existing hybrid tool.
The invariant file will be replaced by the property file and the MDG-HDL for the

property file has to be generated.

62

Bibliography

[1]

C. Seger, “An Introduction to Formal Hardware Verification,” Tech. Rep. 92-
13, Dept. of Computer Science, University of British Columbia, Vancouver,

B.C., Canada, June 1992.

A. Gupta, “Formal Hardware Verification Methods: A Survey,” Formal Meth-

ods in System Design, vol. 1, no. 2/3, pp- 151-238, 1992.

C. Kern and M. Greenstreet, “Formal Verification in Hardware Design: A
Survey,” Transactions on Design Automation of Electronic Systems, vol. 4,

pp. 123-193, 1999.

M. Gordon and T. Melham, Introduction to HOL: A Theorem Proving Enuviron-
ment for Higher-Order Logic. Cambridge University Press, Cambridge, U.K.,

1993.

S. Owre, J. Rushby, and N. Shankar, «“PVS: A Prototype Verification System,”
in Proceedings of the 11th Conference on Automated Deduction (CADE’92),

Lecture Notes in Computer Science 607, pp- 748-752, Springer Verlag, 1992.

63

[6]

[10]

[11]

S. Owre, S. Rajan, J. Rushby, N. Shankar, and M. Srivas, “PVS: Combin-
ing Specification, Proof Checking, and Model Checking,” in Computer Aided
Verification, Lecture Notes in Computer Science 1102, (New Brunswick, NJ),

pp. 411-414, Springer-Verlag, July 1996.

R. Boyer and J. Moore, 4 Computational Logic. New York: Academic Press

Inc., 1979.

M. Kaufmann and J. Moore, “Design Goals for ACL2,” Tech. Rep. 101, Com-

putational Logic Inc., Austin, TX, 1994.

M. Kaufmann and J. Moore, “ACL2: An Industrial Strength Version of
Nqthm,” in Proceedings of the 11th Annual Conference on Computer Assur-
ance (COMPASS’96, Gaithersburg, MD, June (S. Faulk and C. Heitmayer,

eds.), pp. 23-24, 1996.

E. M. Clarke, O. Grumberg, and D. E. Long, “Model checking,” in Nato ASI,

vol. 152 of F, SpringerVerlag, 1996.

E. Clarke, E. Emerson, and A. Sistla, “Automatic Verification of Finite-state
Concurrent System Using Temporal Logic Specifications,” ACM Transactions

on Programming Languages and Systems, vol. 8, no. 2, pp. 244-264, 1986.

R. Bryant, “Graph-based Algorithms for Boolean Function Manipulation,”

IEEE Transactions on Computers, pp. 677-691, August 1986.

64

[13]

[14]

[13]

[16]

K. McMillan, Symbolic Model Checking. Boston, Massachusets: Kluwer Aca-

demic Publishers, 1993.

L. Paulson, ML for the Working Programmer. U.K.: Cambridge University

Press, 2nd ed., 1996.

S. Rajan, N. Shankar, and M. Srivas, «An Integration of Model-checking with
Automated Proof Checking,” in Computer Aided Verification (P. Wolper, ed.),

Lecture Notes in Computer Science 939, pp. 84-97, Springer Verlag, 1995.

E. Emerson, Temporal and Modal Logic, Handbook of Theoretical Computer

Science. Elsevier Sciences B.V. J. Van Leeuwn North Holland Edition, 1990.

K. McMillan, Getting Started with SMV; User’s Manual. Cadence Berkeley

Laboratories, U.S.A., 1998.

K. L. McMillan, “Verification of an Implementation of Tomasulo’s Algorithm
by Compositional Model Checking,” in Proc. Computer Aided Verification

(CAV°98), (Vancouver, BC, Canada), June/July 1998.

R. Brayton et al, “VIS,” in Proceedings of the First International Conference
on Formal Methods in Computer-Aided Design (FMCAD’96) (M. Srivas and
A. Camilleri, eds.), Lecture Notes in Computer Science 1166, pp. 248-256,

Springer Verlag, 1996.

65

[20]

[26]

Cadence:, Formal Verification Using Affirma FormalCheck; Manual, Version

2.9. USA, October 1999.

] W. Thomas, Automata on Infinite Objects, vol. B of Handbook of Theoretical

Computer Science. Amsterdam: Elsevier Science Publishers, 1990.

i F. Corella, Z. Zhou, X. Song, M. Langevin, and E. Cerny, “Multiway Deci-

sion Graphs for Automated Hardware Verification,” Formal Methods in System

Design, vol. 10, no. 1, pp. 746, 1997.

1 W. Clocksin and C. Mellish, Programming in Prolog. Springer-Verlag, 1987.

3rd Edition.

K. Schneider and T. Kropf, “Verifying Hardware Correctness by Combining
Theorem Proving and Model Checking,” Tech. Rep. SFB358-C2-5/95, Univer-

sity of Karlsruhe, Karlsruhe, Germany, December 1995.

1 J. Joyce and C. Seger, “Linking BDD-based Symbolic Evaluation to Interactive

Theorem Proving,” in Proceedings of the 30th International Conference on De-
sign Automation (DAC’93) (A. Dunlop, ed.), (Dallas, TX), pp. 469474, ACM

Press, June 1993.

M. Gordon, “Combining Deductive Theorem Proving with Symbolic State Enu-
meration.” 21 Years of Hardware Verification, December 1998. Royal Society

Workshop to mark 21 years of BCS FACS.

66

27]

(31]

M. Aagaard, R. Jones, and C.-J. Seger, “Lifted-FL: A Pragmatic Implementa-
tion of Combined Model Checking and Theorem Proving.” in Theorem Proving
in Higher Order Logics (Y. Bertot, G. Dowek, A. Hirschowitz, C. Paulin, and
L. Theryvon, eds.), Lecture Notes in Computer Science 1690, pp. 323-340,

Springer Verlag, September 1999.

J. Hurd, “Integrating Gandalf and HOL,” in Theorem Proving in Higher Order
Logics (Y. Bertot, G. Dowek, A. Hirschowitz, C. Paulin, and L. Theryvon,
eds.), Lecture Notes in Computer Science 1690, pp. 311-321, Springer Verlag,

September 1999.

T. Tammet, “A Resolution Theorem Prover for Intuitionistic Logic,” in CADE

13, Lecture Notes in Computer Science 1104, Springer Verlag, 1996.

i L.A.Dennis, G. Collins, M. Norrish, R. Boulton, K. Slind, G. Robinson, M. Gor-

don, and T. Melham, “The PROSPER Toolkit,” in Proceedings of the Sizth
International Conference on Tools and Algorithms for the Construction and

Analysis of Systems, LNCS, Springer Verlag, March/April 2000.

K. Schneider and D. Hoffmann, “A HOL Conversion for Translating Linear
Time Temporal Logic to w-Automata,” in Theorem Proving in Higher Order
Logics (Y. Bertot, G. Dowek, A. Hirschowitz, C. Paulin, and L. Theryvon, eds.),

Lecture Notes in Computer Science 1690, Springer Verlag, September 1999.

67

(32]

(33]

[36]

(38]

7. Manna and A. Pnueli, The Temporal Logic of Reactive and Concurrent

Systems: Specification. Springer-Verlag, 1991.

V. Pisini, S. Tahar, O. Ait-Mohamed, P. Curzon, and X. Song, “An Approach to
Link HOL and MDG for Hardware Verification.” Proc. 1999 Micronet Annual

Workshop, Ottawa, Canada, pp- 156-157, April 1999.

V. Pisini, S. Tahar, P. Curzon, O. Ait-Mohamed, and X. Song, “Formal Hard-
ware Verification by Integrating HOL and MDG,” in Proc. ACM 10th Great
Lakes Symposium on VLSI (GLS- VLSI°00), (Chicago, Illinois, USA), pp- 23—

28. ACM Publications, March 2000.

i H. Xiong, P. Curzon, and S. Tahar, “Importing MDG Results into HOL,” in

Theorem Proving in Higher Order Logics (Y. Bertot, G. Dowek, A. Hirschowitz,
C. Paulin, and L. Theryvon, eds.), Lecture Notes in Computer Science 1690,

pp. 293-310, Springer Verlag, 1999.

I. Leslie and D. McAuley, “Fairisle: An ATM Network for the Local Area.”

ACM Commaunication Review, vol. 19(4), pp. 327-336, 1991.

P. Curzon, “The Formal Verification of the Fairisle ATM Switching Element,”
Technical Report 329, Computer Laboratory, University of Cambridge, UK.,

March 1994.

S. Tahar, X. Song, E. Cerny, Z. Zhou, M. Langevin, and O. Ait-Mohamed,
“Modeling and Verification of the Fairisle ATM Switch Fabric using MDGs,”

68

[41]

(42)

[43]

[44]

IEEE Transactions on CAD of Integrated Circuits and Systems, vol. 18(7),

pp. 956-972, July 1999.

] Y. Xu, E. Cerny, X. Song, F. Corella, and O. Ait-Mohamed, “Model Checking

for a First-Order Temporal Logic using Multiway Decision Graphs,” in Com-
puter Aided Verification (A. Hu and M. Vardi, eds.), Lecture Notes in Computer

Science 1427, pp- 219-231, Springer Verlag, 1998.

M. Gordon, C. Wadsworth, and A. Milner, “Edinburgh LCF: A Mechanized
Logic of Computation,” Lecture Notes in Computer Science 78, Springer Verlag,

1979.

S. Tahar and R. Kumar, “A Practical Methodology for the Formal Verification
of RISC Processors,” Formal Methods in Systems Design, vol. 13(2), pp. 159-

225, September 1998. Kluwer Academic Publishers.

P. Windley, “Formal Modeling and Verification of Microprocessors,” in IEEE

Transactions on Computers, vol. 44(1), pp. 54-72, January 1995.

J. Joyce, Multi-Level Verification of Microprocessor-Based Systems. PhD thesis,

Computer Laboratory, Cambridge University, U.K., December 1989.

S. Tahar and P. Curzon, “Comparing HOL and MDG: A Case Study on the
Verification of an ATM Switch Fabric,” Nordic Journal of Computing, vol. 6,

pp. 372-402, 1999.

69

[45]

[46]

7]

S. Tahar, P. Curzon, and J. Lu, “Three Approaches to Hardware Verification:
HOL, MDG and VIS Compared,” in Proceedings of the International Confer-
ence on Formal Methods in Computer-Aided Design (FMCAD’98) (G. G. and
W. P., eds.), Lecture Notes in Computer Science 1522, pp. 433-450, Springer

Verlag, 1998.

E. Cerny, F. Corella, M. Langevin, X. Song, S. Tahar, and Z. Zhou, “Automated
Verification with Abstract State Machines Using Multiway Decision Graphs,”
in Formal Hardware Verification: Methods and Systems in Comparison, Lecture
Notes in Computer Science 1287, State-of-the-Art Survey, pp. 79-113, Springer

Verlag, 1997.

7. 7hou and N. Boulerice, MDG Tools (V1.0) User’s Manual. Dept. of Com-

puter Science, University of Montreal, Montreal, Canada, June 1996.

Y. Xu, MDG Model Checker User’s Manual. Dept. of Information and Opera-

tional Research, University of Montreal, Montreal, Canada, September 1999.

Y. Xu, Model Checking for a First-Order Temporal Logic Using Multiway De-
cision Graphs. PhD thesis, Dept. of Information and Operational Research,

University of Montreal, Montreal, April 1999.

P. Curzon, S. Tahar, and O. Ait-Mohamed, “Verification of the MDG Compo-
nents Library in HOL,” in Theorem Proving in Higher Order Logics: Emerg-
ing Trends (J. Grundy and M. Newey, eds.), (Australian National University),

70

pp. 31-45, September 1998.

[51] M. Gordon, “Why Higher-Order Logic is a Good Formalism for Specifying and
Verifying Hardware,” in Formal Aspects of VLSI Design: Proceedings of the
1985 Edinburgh Workshop on VLSI (G. Milne and P. Subrahmanyam, eds.),

pp. 153-177, North-Holland, 1986.

71

