INFORMATION TO USERS

This manuscript has been reproduced from the microfim master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overiaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6° x 9” black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

Bell & Howell Information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI

COM-Tester:
A Script Testing Tool for MS COM

Yonggqgiang Chen

A Thesis
n
The Department
of

Computer Science

Presented in partial Fulfillment of the Requirements
for the Degree of Master of Computer Science at
Concordia University
Montreal, Quebec, Canada

May 2000
© Yonggiang Chen, 2000

i+l

National Library

of Canada du Canada

Acquisitions and Acquisitions et

Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

Bibliothéque nationale

services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Your file Votre référance

Our file Notra référence

L’auteur a accordé une licence non
exclusive permettant a la
Bibliotheéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’auteur conserve la propriété du
droit d’auteur qui protége cette thése.
N1 la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

0-612-54329-3

Canada

ABSTRACT

COM-Tester:
A Script Testing Tool for MS COM

Yonggiang Chen

The purpose of this thesis is to develop a tool to test the COM object. Although COM
development is so important and so popular; there is no general tool to test it.

In industry, the cost to test COM-—related software is so high that there is a need to
develop a simple and general tool for the test. This thesis focuses on developing such a
tool called COM-Tester.

COM-Tester is a small scripting language tool designed for writing test scenarios. The
main goal of the tool is to reduce the costs related to the testing activities of Microsoft
COM-based software. The core distinctive features of COM-Tester are:

e A high-level simple interpreted language where the notion of a test is directly
supported by a specific syntax.

e Primitives to create and work easily with COM components.
e Merging of source code and documentation.

e Automatic generation of testing report.

Acknowledgements

Sincerely, I would like to express my deepest respect and gratitude to my thesis

supervisor Dr. Peter Grogono for his guidance, invaluable suggestions, encouragement
and various prompt help throughout the course of this research work. I am very thankful
for the opportunity that I had to work with Dr. P. Grogono, and for everything he taught

me during my master’s studies.

I would like to give a special thanks to my wife. It was her love, patience and continued
support that made this thesis possible. .

Table of Contents

_
Chapter 1 Introduction 1
Chapter 2 An Introduction to COM 5
Chapter 3 The Need for COM-Tester 14
Chapter 4 Design and Implementation 17
4.1 Language Elements 17
4.1.1 Literal 18
4.1.2 Identifiers and variables 18
4.1.3 ListsAnd Data Structures 19
4.1.4 Assignment And Unification 21
4.1.5 Arithmetic And Other Common Operations 23
4.1.6 Functions .- 23
4.1.7 Conditionals And Iteration 24
4.1 .8 Predefined FUNCIIONSccoeeeeeeeoeceeeneeeneceacseceramesosssesssesmssssssssssessonssmssseans sesesassesans sesen 24
4.1.9 Tests. 28
4.1.10 Comments And Documentation Generation 28
4.2 Grammar 29
4.3 Architecture 32
4.3.1 COM Manager . - 32
4.3.2 Interpreter .32
4.3.3 Parser 32
4.3.4 Doc. Generation Module ..33
4.3.5 Main Driver...... .33
4.4 The COM-Tester Abstract Machine 33
4.4.1 Overview Of The Abstract Machine 33
4.4.2 Memory Domains 34
4.4.3 CAM instructions..... 36
4.4.4 Compilation (COM-Tester = CAM) eeeeee et ee et s e nenenen 40
4.5 The Design of COM-Tester 45

4.5.1 COM Manager Module

45

4.5.2 Interpreter Module 45
4.5.3 Parser Module 46
4.5.4 Doc. Generation Module 46
4.5.5 Main Driver Module 47
4.5.6 Others 47
Chapter 5 The Usage and The Result 48
Chapter 6 Conclusion and Future Extension 52
References: 53
Appendix A: Example Of Usage 54
Appendix B: Sample Output 60
Appendix C: CAM Instruction Trace 64

Chapter 1 Introduction

1.1 Overview of COM

The Component Object Model (COM) is Microsoft’s distributed object architecture. In
COM, functions defined by a COM interface may be called by objects on other machines,

written in different languages and running on different operating systems.

COM is tightly integrated in Microsoft’s operating systems, Windows 95/98, Windows
NT and Windows 2000, and it underpins Microsoft’s view of current and future

application development.

Microsoft is heavily committed to the use and reuse of binary software components
across their systems. As a demonstration of this commitment, they have split much of
their own software into COM component — for example the Office suite and Internet

Explorer.

Let’s review the reason why component-based development is such a good idea —

namely, code reuse.

Code reuse can be as simple as copying and pasting source code. But whenever you
change the original source code, to add features or to fix a bug, you need to paste the

revised code into every application.

To improve source code sharing, object-oriented programming recognizes object
relationships and object-oriented languages automate reuse of parent class code, and

allow polymorphic method calling.

But this too has its limitations —any changes in the parent classes necessitate

recompilation of any application that reference child classes.

The next stage along is use of precompiled libraries; in Windows there are Dynamic
Linked Libraries (DLLs). This solves an additional problem — how to protect the code on
which you have worked so hard from being stolen. But the problem of keeping DLL

versions up-to-date is still left unsolved.

The industry solution to this is to define a unique interfacé to an object, which has

the following attributes:

e Unique identification;
e Interface set in perpetuity;

e Exposes public methods, and acts as a level of indirection between the caller and the

object. Thus, it supports strong encapsulation.

This is implemented through a binary-level compatibility specification. This specification
is based on the use of what COM callsa virtual table,orvtable.

When it comes to that bug fix, you can recompile the new, improved COM object to
support the same interface, and no-one will ever know, except by the disappearing

errors — as it supports the same interface.

Anytime you want to expand the functionality of an object, you can create a new
interface. This will have a new name and a new Identifier. And because COM
objects support multiple interfaces (as a means of supporting different sets of
functionality), your COM object can still support the old interface.

1.2 Objective and Scope of the Thesis

The objective of this thesis is to develop a tool to test the COM object. Although COM
development is so important and so popular, there is no general tool to test it.

In industry, the cost to test COM—related software is so high that there is a need to
develop a simple and general tool for the test. This thesis focuses on developing such a
tool called COM-Tester.

COM-Tester is a small scripting language tool designed for writing test scenarios. The
main goal of the tool is to reduce (in the short as well as in the long term) the costs
related to the testing activities of Microsoft COM-based software. The core distinctive
features of COM-Tester are: -

e A high-level simple interpreted language where the notion of a test is directly
supported by a specific syntax.

e Primitives to create and work easily with COM components. Interface
information (function prototypes) and data type information (classes and structures)
are automatically extracted from TLBs (type libraries) or the standard IDispatch

interface.

e Merging of source code and documentation. This enables documentation to be
extracted from the code, thus easing maintenance related to synchronization of

specification and actual code.

e Automatic generation of a VTR (Validation Test Report, or Log).

1.3 Organization of the Thesis

Chapter 2 of the thesis provides a literature review of COM technique. The emphasis is

on the interface which is the bridge for the client and server to communicate with

each otker. The chapter introduces two kinds of interfaces: custom and dispatch

interface.

Chapter 3 gives the reason why we need such a tool like COM-tester to test COM based

software.

Chapter 4 describes the design and implementation of COM-Tester. This is the core of
this thesis. First of all, it presents the language elements (including l1iteral,
variable,data structure, assignment,unification etc.). Secondly, it
shows the grammar of COM-Tester. Thirdly, it describes the architecture of COM-Tester.
Then, it provides COM-Tester Abstract Machine .(CAM). Finélly, it gives the design and
implementation of COM-Tester.

Chapter 5 shows the results from COM-Tester and includes a simple scripting test file.
Chapter 6 presents our conclusions and proposes future extensions to COM-Tester.
Appendix A contains a larger example of a script than the one in Chapter 5. Appendix B

shows the result of running the script in Appendix A. Finally, Appendix C Lists some of
the instructions executed by the CAM while running the script.

Chapter 2 An Introduction to COM

The Holy Grail of computing is to put applications together quickly and cheaply from
reusable, maintainable code — preferably, code written by someone else. For many years
now, experience and research have shown that object-oriented languages have a marked
effect on the ability of software developers to write this kind of code. The ability to
abstract concepts from a problem, and to turn them into classes and objects in a way that
is fundamentally supported by the programming language, is a powerful draw for

software engineers. The benefits of object-oriented techniques are there for all to see.

On its own, however, an object-oriented programming language is not sufficient for
widespread reuse. As soon as we go beyond the idea of having a single developer or
group of developers, the real world comes crashing in. The first problem we see is that

developers throughout the world are programming in different languages.

As much as some well-known Californian companies would like us to simplify things by
standardizing around a single programming language, it’s never going to happen. The
reasons for the diversity of languages in the world today are complex, beyond one
company’s control, and in many cases well founded. Some languages are better suited
than others to a particular problem domain; some programmers have a natural preference
for a particular language because it more closely reflects the way they think; some
languages relate well to particular hardware. New languages and tools replace old ones
because they’re based on new ideas or take advantage of processor power that wasn’t-
previously available. The popularity of a language responds to fashion and hype, and
even to the quantity of good books teaching the subject. We live, and will continue to

live, in a world of many tongues.

Now, a multitude of languages has its benefits, but the problem it presents to us is that it
fragments the marketplace for reusable components. A Java class is of little use to a C++
developer, and a chunk of Visual Basic code won’t help a COBOL pfogrammer. If
somebody writes a system in C++ today, will that effort be superceded five years from

now by the arrival of a new programming language, as yet undreamed? It was issues like

these that drove the authors of the Component Object Model (COM) to their solution,
which is to use language-neutral, binary components. Subject to a few considerations,
this methodology allows developers to write components ira whatever language they

choose. It’s the compiled code that matters, not the source code.

Of course, COM is neither the first nor the only way of reusing compiled code. C-style
DLLs, for example, have been used extensively in Window's programming for a very
long time, and their advantages are manifold [1]:

e They allow parts of an application to be swapped out ox upgraded without the need
for recompilation

e Code can be loaded on a just-in-time basis, so that it doesn’t take up any memory if
it’s never needed

e Code can be shared between processes, which can be more memory-efficient than

linking it statically (that is, compiling it into the application)

Given this list of important features, it will come as no surprise that COM components
can themselves be packaged as DLLs. However, things are not as simple as that, C-style

DLLs also have a number of disadvantages that COM must address:

e They expose only simple functions — they are not object-oriented.

e Traditionally, DLLs have been loaded by filename, which means that if the location
or the name of 2 DLL Change, the application will not be able to load it.

e It is difficult to provide different versions of a DLL in the same system, because

doing so can cause conflicts between different vendors™ products.

Fortunately, COM overcomes all of these problems, and provides a number of other

facilities we’ve yet to mention. So what is COM?

2.1 One sentence description of COM

Although COM is a complicated topic, we can write a simple one-sentence description

that outlines its most important features [2, 3]:

“COM is a specification and a set of services that allow you to create modular, object-
oriented, customizable and upgradeable, distributed applications using a number of
programming languages.”

Let’s look more closely at that overlong sentence and its implications to get a fuller
picture of the kinds of facilities offered by COM.

e (COM is a specification
The COM specification describes the standards that you need to follow in order to
create interoperable COM components. This standard describes what COM
components should look like and how they should behave.

e (COM is a set of services
The specification is backed up by a set of services or APIs. These services are
provided by the COM library, which is part of the operating system on Win32

platforms, and available as a separate package for other operating systems.

e COM allows modular programming
COM components can be packaged as DLLs or EXEs — COM provides the
communication mechanism to allow components in different modules to talk to each

other.

e COM is object-oriented
COM components are true objects in the usual sense: they have identity, state and
behavior, they support encapsulation. In certain circumstances, COM components
can be treated polymorphically. Although they don’t support implementation

inheritance, they do support interface inheritance.

e COM enables easy customization and upgrades to your applications

COM components link with each other dynamically, and COM defines standard ways

of locating components and identifying their functionality, so individual components

are swappable without having to recompile the entire application.

e COM enables distributed applications [6]
COM provides a communication mechanism that enables components to interact

across a network. More importantly, COM provides location transparency to

application (if desired) that enables them to be written without regard to the location
of their components. The components can be moved without requiring any changes to

the application.

COM components can be written in many programming languages

COM is a binary standard. Any language that can cope with the binary standard can
create or use COM components. The number of languages and tools that support
COM is sizable, with C, C++, Java, Jscript, Visual Basic, VBScript, Delphi,
PowerBuilder, and MicroFocus Cobol forming just part of the list.

COM is not about any particular type of application. It’s not about controls (that’s Active -

X) [71; it’s not about compound documents (that’s OLE); it’s not about data access (that’s
OLE DB and ADO); and it’s not about games and graphics (that’s DirectX). But COM is

the object model that underlies all these technologies. From the above list, you can see,

an understanding of COM is vital to programming any of these technologies successfully.

2.2 The Component Object Model

General speaking, the component object model is built around the notions of components

(often called coclasses), objects, and interfaces. These three different entities are

defined and related as follows [3]:

Loosely, as we have just been discussing, a coclass (named from component
object class) is a piece of binary code that implements some kind of functionality.
Coclasses can be distributed in DLLs, or in executable files. It is possible for a
single module (DLL or executable) to contain more than one coclass.

A COM object is an instance of a coclass that gets loaded into memory. (By the
same token, one might say that a coclass is a “blueprint’ for a COM object.) It is
not unreasonable (indeed, it is quite common) for more than one object of a given
coclass to be active at a time.

COM interfaces are the means — the only means — by which other components

and other programs get access to the functionality of a COM component. An

interface is a set of definitions of logically-related methods that will control one
aspect of the component’s operation. Each component can have one or more

interfaces.

Among these, the most important one is the COM interface. Let’s have a closer look

at it.

2.3 The Importance of Interface

Depending on the context in which it’s being used, the word “jnterface” can have
slightly different meanings. In the broadest possible terms, a COM interfaceisa

group of definitions of methods that are usually related in the operations they perform.
The methods in an interface can be called by using a pointer to that interface,

and doing so results in the execution of the code in a COM object [4].

A “human” component, for example, might have interfaces called Imouth and
Thand. These interfaces would group different methods — for example, Imouth
might contain methods called Eat(), Talk (), and Kiss (), and Thand might contain

Wwrite(), Point () and Scratch().

Choosing our words a little more carefully, we can say that an interfaceisan
abstraction. The definition of an interface includes the syntax of the methods it
contains (return types, parameter types and calling conventions), and the semantics of
how to use them. To see how the latter can be important, consider that there are often
restrictions placed upon implementers and users of an interface that just can’t be
described in code. A requirement such as the need to call an Init() method on the

interface before calling any other method needs to be clearly documented, and forms
the semantic part of the interface definition.
More carefully still, an interface actually has a very specific structure: it is any array

of pointers to the implementations of the functions it contains — this is the binary standard

that we mentioned earlier. Because the implementation of each function in the

interface is accessed by a pointer in an array, the precise order of the items in that

array is an important part of the interface’s definition.

Notice that the definition of an intexr£face does not include an implementation of its
methods. When a component says that it’s going to implement an intexrface, it’s up to
that component to do so in a way that is both appropriate to itself and in accordance with
the semantics defined for that interface. This separation leads to more robust design:
interfaces can be reused in different situations, and a component that makes a
particular interface available can be swapped with another component that makes
available (exposes) the same interface. As a client, if you know that you need the
functions for a particular interface, all you need to do is to find an object that

implements it.

We began this chapter by talking about the desire to build reusable components, but from
the point of view of the user (usually called the client), the important aspect is not what
the component is, but what it can do. Because interfaces are the only way of making
a component do anything at all, we can say that the functionality of a component is
defined by the interfaces it exposes. For example, if you want to say thata
coclass is both a lawyer and a philanthropist (and if you don’t feel that’s an

oxymoron), you can do so by having it expose interfaces called (say) Ilawyer and

Iphilanthropist.

The COM specification [2] includes details of a number of standard interfaces that
Microsoft has defined. By implementing one of these interfaces, a component states
that it supports some kind of functionality, or that it will work in some given situation.
For example, a coclass that implements IsupportErrorInfo is able to return
rich error information, while a component implementing IdataObject is capable of

allowing data to be pasted or dropped into another application.

2.3.1 Interface as contract -

As explained above, COM enforces complete encapsulation of the data and
implementation of a component. A client can only call methods on the interfaces

exposed by a component; it never gets direct access to the component’s data.

10

This fact is what makes interfaces so fundamental, and when we link it to our
earlier assertion about COM allowing easy customization and upgrading of applications,

we can reach a couple of important conclusion;

e An interface, once defined, must never change. Published interfaces are
immutable.

e Once a component has said that it exposes an interface, any future version of that
component should also support that intexrface, to avoid existing clients from

malfunctioning.

The interfaces that a component exposes represent a ‘contract’ between the
component and its clients. A consequence of the second of these points when taken in the
context of the first is that changes made to the contract in order to ‘update’ a component

will surely break any existing clients, and so any revisions must be made with care.

2.3.2 Interface type

Broadly speaking, there are two types of interface in COM, categorized according to
how the methods in the interfaces are accessed — static or dynamic invocation. Static
invocation is the mechanism used by custom interfaces, and the traditional way
the COM objects talk to each other. Dynamic invocation, on the other hand, is the means

by which Automation interfaces go about their business.[3]

Static invocation is a contract between the client and a server object. The client knows
exactly the number of methods in an interface, and the signatures of those methods.
The object, for its side of the contract, must implement the methods described by the

interface;if it does not, the two will not be able to communicate.

With custom interfaces, the only negotiation involved is the client querying for an
interface with QueryInterface (), and therefore the client can only ask a server
for interfaces that it already knows about. There is no other negotiation possible —
the client can not ask the object to list the interfaces it supports, nor can it ask the

object to tell it about the methods on those intexrfaces. Furthermore, if the object

11

only support interfaces that the client does not know about, the client cannot access

the object.

Automation interfaces use dynamic invocation. Basically, Automation allows
the client to ask an object to return information about the interfaces that it supports.
Through type information, the object can list all the interfaces it supports and, when
queried, it can return information about the methods on a specified interface. Using
this information, the client can invoke a method dynamically — in other words, the client
can package the parameters in a generic way, and then tell the object to call a particular
method with those parameters. This invocation is done on the fly, and can be performed

with no prior knowledge of the object.
2.3.3 Automation Mechanism

Automat ion objects use a standard interface called Idispatch. You can tell

whether an object can be “automated’ by querying for this interface [5].

Server objects implement Aut omation by allowing clients to use a method on the
Idispatch interface to call other methods. The collection of methods it makes
available in this way is called a dispinterface (short for ‘dispatch
interface’). Idispatch allows an object to indicate what dispinterface
methods it supports in two different ways. It can be done at runtime, through other
Idispatch methods; or else the object can be a little more expressive and maintain
information about its dispinterfaces that a client can use at compile time. The

client can still ask the object for information about its dispinterfaces, and can call

those interface methods dynamically.

The information that the object provides must include details of all the
disprinterfaces it supports, all the methods on those dispinterfaces, and all
the parameters of those methods. For an object to be an Automation object, a client
must be able to get access to this information, which the object can choose to supply
either directly or (more typically) through the type library files(with tlb extension) which
are being usefully employed as suppliers of the type information that’s used by

Automation clients.

12

A type library is effectively a tokenized version of the IDL file, and it describes all the
interfaces supported by the object, all the methods, and the parameters of those
methods. Since a type library describes exactly what an interface can do, it can be

used to marshal data between processes.

The rules of COM allow an Automation object to expose its interfaces both
through Idispatch and through the vtable of a custom interface. Such an
interfaceiscalled adual interface.Nowadays, most projects implement

dual interfaces, so the calling object can take the advantage of different

interface.

2.3.4 The need for Automation

When we are programming for clients that only support Automation interfaces,
we have to use Automat ion rather than custom interfaces. Such clients include
those that use VBA and VBScript etc.

For example, when a web developer writes VBScript code, the code is not compiled and
so there is no checking on the methods that are called or on the data types of the
parameters that are passed. Since a VBScript client passes parameters without knowing
beforehand what the types of those parameters are, this check must be done at runtime by
the object, using type information. If the object does not support a particular method, then
the call will fail. If the data passed from the client is of wrong type, the object can attempt
to coerce the data to the required type.

Since COM-Tester(We will see it soon) is a kind of script language, we will use

Automation to design and implement it.

13

Chapter 3 The Need for COM-Tester

3.1 Testing cost is high

From last chapter, we can see how important COM is in modern programming. Today
COM is everywhere, COM programming is the trend and center of Microsoft-related
software.

The software development cycle, according to the theory of software engineering,[8]
includes three major phases: requirements/design; implementation; and testing. The cost
of each phase for different types of software systems is different. However, the figures
(Table 3.1) given by Boehm (1975) [9] are probably still approximately correct.

Table 3.1 Relative costs of software systems

System type Phase costs(%)

Requirements/design Implementation Testing
Command/control systems 46 20 34
Spaceborne systems 34 20 46
Operating systems 33 17 50
Scientific systems 44 26 30
Business systems 44 28 28

The inference which can be drawn from the above figures is that the software
development costs are greatest at the beginning and at the end of the development cycle.
This suggests that a reduction in overall software development costs is best accomplished

by more effective software design and effective testing. Reducing testing cost is the main

concern after implementation.

3.2 Why we test software

We test software in order to:

14

1. Provide programmers information that they can use to prevent bugs.

2. Give management information it needs to rationally evaluate the risk of using the

object.
3. Achieve an object as bug-free as warranted by the situation.

4. Falsify the object with respect to stated and unstated requirements; also called,

“breaking the software”.
5. Validate the object; that is, show that it works.

Anything written by people has bugs. Not testing something is equivalent to asserting that
it’s bug-free. Programmers may make mistakes —especially of all the possible

interactions between features and between different pieces of software.

The penultimate objective of testing is to gather management information. Given enough

testing, we can make reasonably comfortable predictions about the software’s fitness for

use.

The highest goal of testing is to support quality assurance: to gather information that,

when fed back to programmers, results in avoidance of past mistakes and in better future

software.

3.3 COM-Tester comes to the rescue

Normally, to test a component object, the developer or tester has to develop a client using
some kind of programming language. This is really cost ineffective, because, each time
you develop a new component, you have to develop a new client to test it. This increases

the cost. Meanwhile, it is painful to maintain the consistency of the software

specification.

In the COM world, the intexrface is everything. The only way for the application to
communicate with a COM object is through the object’s interface. This feature
provides us with the opportunity to develop a general tool to test the component object

with the following general requirement:

15

e A way to specify unitary test cases;
e A way to specify more complex functional/integration test cases;

e A drver for a test campaign;
e A way to mix test coding and documentation in a single source file.
This general tool is COM-Tester. The next chapter will describe its design and

implementation.

16

Chapter 4 Design and Implementation

COM-Tester is a small script testing tool designed for writing test scenarios, especially
for the testing of Microsoft COM-based software. The main goal of the tool is to reduce
(in the short as well as in the long term) the costs related to the testing activities of

Microsoft COM-based software. The core distinctive features of COM-Tester are:

e A high-level simple interpreted language where the notion of a test is directly
supported by a specific syntax.
e Primitives to create and work easily with COM components. Interface

information (function prototypes) and data type information (classes and structures)
are automatically extracted from TLBs (type libraries) or the standard IDispatch

interface.

e Merging of source code and documentation. This enables documentation to be

extracted from the code, thus easing maintenance related to synchronization of

specification and actual code.
e Automatic generation of a VTR (Validation Test Report, or Log).

The following sections in this chapter will show the detailed description of design and
implementation of COM-Tester. It will cover the topics from language elements,

grammar, architecture to the COM-Tester Abstract Machine (CAM) as well as the class

level description of the implementation.

4.1 Language Elements

This section presents the lexicon, syntax and semantics of COM-Tester, going from the

basic elements to more complex functionalities.

17

4.1.1 Literal
There are three types of simple (primitive) data in COM-Tester: boolean, numbers

and strings.

Booleans

The two boolean literal are the reserved keywords true and false.

Numbers
Numbers can be written in decimal or hexadecimal following the notation of the C

programming language.

Strings
Strings follow the conventions of C too. That is, they are written using double quotes

(") and meta-characters such as '\t ', '\n", etc. are supported.

4.1.2 Identifiers and variables

Identifiers are written as in C: combined with letters, digits and underscore, not
beginning with a digit. Identifiers are used to name variables, functions and
tests. The underscore alone () is reserved for the anonymous variable. The
anonymous variable stands just for a memory slot which is never referred to - a "don't
care"; more on it below. Variables are not declared. They are simply introduced,
either by binding them to some expression or by passing them as unbound arguments to a

function:
HelloStr = “Hi, everybody!”

An important note is that variables get their scope from the context in which they
first appear. Consequently, the lifetime of a variable is the same as the activation time

of the scope in which it first appeared. Variables with the same name used in

18

unrelated scopes are also unrelated. That is, a variable used for the first time in a test
or a function has nothing to do with a variable with the same name in another test or

function. This follows from the lexical scoping rules of COM.-Tester.

The fact that variables are not declared before their use implies that it is impossible
to distinguish between local and global variables. Hence, a variable in an outer
scope is NOT immediately visible in the inner scope. To make it clearer, this means that
global variables are not available in functions or tests. To access a global
variable in a function or a test, the '$' operator alone must be used in front of the

Identifier. For example:
program name = “Namer Server”

test USE_GLOBAL 1
header = program_ name // Probably unexpected behaviour,

//program name is unbound here.

A

end

test USE_GLOBAL 2
header = $program name // OK, header is “Namer Server”

// now.

VA
end

Of course, at the top level, the 'S’ operator may be omitted.

4.1.3 Lists and Data Structures
The only compound Data Structures that can be defined in COM-Tester are

Lists. A list is a sufficiently general structure to represent any other structure. A

19

1ist is an ordered collection of optionally named elements. Elements are separated by

commas (,) and can contain any value, in particular a nested 1ist. Here is an example:
Ll = [1, “Wrong password”, [OxFE, 0xA9, 0xS000]]

Naming 1ist elements is done with the '=' operator:

status = 0x9000
L2 = [status, ub, count=1, message="The data is wrong”,

result = [0xFE, 0xA9]]

Here, the first element of the 1ist takes the value of the variable 'status’ (i.e.
0x9000); the second has neither a value nor a name, it is an empty slot; the third has the

name 'count’ and the value 1; etc.

Another way to specify empty slots is to write the special Literal ' which represents

an anonymous always unbound variable:

[count=1, _, str=" Hello World!”] \\ unnamed empty slot

or

{unbound=_, count=1}] \\ named empty slot
Elements can be accessed through table indexing (starting from 1):

L1{2} > “Wrong password”

Or with the dot operator ".":

20

L2 .message > "The data is wrong"

Negative numeric indexes specify a position from the end of the 1ist(starting from —1):
L1{-3} > 1

Element access operators all lead to a lvalue. That is, they can be assigned to:
L2.message = “This program has a high security risk”

Note however that the name of an element cannot be changed once it has been specified
in the 1ist 1iteral. Loosely speaking, those two access modes let one view a 1ist
as either an array of values indexed with integers or an object with members accessed

&e 2

through the conventional scope access operator “.”.

The empty 1ist is written as might be expected: []. It is a runtime error to try to access

an element of the empty 1ist.

4.1.4 Assignment and Unification

The usual Assignment operator '=' is present in COM-Tester. The expression on its left
must evaluate to a variable reference (i.e. a memory slot) - eithera variable name
ora list element. On the right hand side, the expression could be anything.
Assignment is right associative and the result of an Assignment expression is the

value of the expression on the right hand side.

The Unificat ion operator '<=>' behaves as in Prolog. That is, two expressions unify
either if they evaluate to the same value (a number, aboolean, astringora list)
or at least one of them is an unbound variable reference. Note that the
Unification of two values fails if they are not of the same type (i.e. both are

numbers or both are strings or booleans or Lists). Said in other words, even

21

though variables do not have types, values do, and, moreover, there's no automatic
conversion from one type to another. Lists unify if and only if their heads unify and
their tails unify recursively. The result of the Unification operatoris a boolean

(true or false).

This language decision (Unification) relates to the special COM testing case
generation. Normally, the functions in COM interfaces return HRESULT, which is
simply a 32-bit numbex containing a structured error code. For example,
S_OK(0x00000000), S_FAILSE(0x00000001), etc. In COM-Tester, we need to compare
the result of function call with HRESULT to know if the test steps pass or not.

It may seem uncommon and somewhat messy to allow Assignment and
Unification at the same time. Indeed very “unstructured” programs can be written in
COM-Tester. However, the goal of COM-Tester is not to have clean semantics, but to be
useful. With both Assignment and Unification, side effects percolate very easily.

Consider :
f (param) is

param = “Hello world”

end

a <=> Db
b <=> ¢

d <=> a
£(4d)

Assuming that a, b, ¢ and d are initially unbound, the last line in the above example will
put the st ring “Hello world” in all four variables a, b, ¢ and d. If we replace the
Unification (<=>) by Assignment (=), we would end up with only d being

modified, because assigning to a variable binds it only to a value and NOT to another

variable. The "special case" of assigning to an unbound variable is handled

simply by unbounding to assigned variable:

str = "Here is a bound variable: str" //“str” gets a value

str = unbound //Mstr” looses its value

4.1.5 Arithmetic and Other Common Operations
In this version of COM-Tester, number arithmetic, bitwise, stringand 1ist
operations are supported only through predefined functions. See the 1ist of those in

Section 4.1.8 below.

4.1.6 Functions
In COM-Tester, a function’s definition and behavior resemble logic programming rules.
The body of a function is simply a sequence of expressions. As soon as an expression

fails to execute (for example because some Unification failed), the function exits.

Parameters are always passed by Unification. Going from left to right, as soon as an

actual parameter does not unify with a formal one, the function call fails.

A notable difference of COM-Tester functions from conventional logic rules is that they
may have return values. Return values are specified through Assignment to the
reserved keyword retval. Assigning to retval does NOT cause the function to exit — it
simply specifies the value to be returned as the result if none of the expressions in the
function fails. Multiple Assignments of revtal are permitted and only the last one is

taken.

An important point about return values is that they are really values, not references.
Whereas a variable reference passed as a parameter may have its value changed
inside the body of the function (a side effect), the result of a function, even if it’s a
variable reference, may not be changed by the caller. In short, a function never

returns an lvalue.

23

Functions may be called recursively, but this is not supported in this version of COM-
Tester because of the absence of backtracking and comnditionals which gives no way to

stop the recursion.

For the precise syntax of a function definition, please see the COM-Tester grammar
below(Section 4.2). Note that, even though COM-Tester functions are modeled after
Prolog rules, the specific syntax of function definition (rule declaration) departs a little
bit. In particular, the if *:-* is replaced with an ‘is’ and there are no commas to separate
expressions. This is intentional since the presence of global variables and
Assignment in COM-Tester breaks heavily the clear logical semantics of the *:-* and

¢,” operators of Prolog.

4.1.7 Conditionals And Iteration
In this version of COM-Tester, there's no provision for conditionals ('if’ statements) and
iteration (‘for', 'while', 'do'). They will be added as the need arises, but, ideally,

backtracking should be implemented. This is a key point to be decided.

4.1.8 Predefined Functions
This section documents the built-in functions availabEe in COM-Tester. Due to the

current lack of operators (arithmetic, 1ist and string manipulation), they would
undoubtedly prove essential to any serious and useful COM-Tester test script. All of the

built-ins can be overridden by simply defining a function with the same name.

trace (X)

Write the object X in the trace file (specified on the command line). X may be anything
from a Boolean value to a 1ist with several levels of nesting. Unbound references are
written as underscores (). This function won't fail or produce a runtime error under any

circumstance. If a trace file is not specified when the COM-Tester interpreter is invoked,

24

the function call is ignored during compilation and there are no performance penalties.

The return value is the object X itself and it is available even if COM-Tester is invoked

without trace command specified.

list(N)
Creates a new 1ist with N unbound, unnamed elements. If N is not a positive integer, a

runtime error is reported.

head (L)
The head(L) function is equivalent to L[1]. It returns the first element of 1ist.If L is

empty or it is not a 1ist at all, a runtime error is reported.

tail (L)
Retumns the tail of the 1ist L. That is, the 1ist L without its first element. IfL is not a

1ist, a runtime error is reported. If L is empty, the result is the empty 1ist too.

append (L1, L2)
Returns a newly constructed 1ist which is the concatenation of L1 and L2. If one of L1

or L2 isnot a 1ist, a runtime error is reported.

reverse (L)
Returns a newly constructed 1ist which is formed by reversing the order of the

elements of L. If L is not a 1ist, a runtime error is reported.

insert (L, Elem, Pos)
Returns a newly constructed 1ist obtained by inserted the element Elem at position Pos
inthe list L. IfL is not a 1List or Pos is not a valid integer position in L, a runtime

error is reported.

25

sublist (L, Start, End)
Returns a newly constructed 1ist obtained from the elements of L from position Start to
position End included. If L is not a 1ist or Start > End or one Start, End is not a valid

integer position in L, a runtime error is reported.

remove (L, Start, End)
Returns a newly constructed 1ist obtained from L after removing all elements from
position Start to position End included. If L is not a 1 ist or Start > End or one Start,

End is not a valid integer position in L, a runtime error is reported.

flatten (L)
Returns a newly constructed 1ist obtained from L after expanding all nested Lists at

their positions. If L is not a 1 i st, a runtime error is reported.

copy (L1, Start, End, L2, Pos)

Copy the elements of List L1 from position Start to position End included at position
Pos in the 1ist L2. Ifeither L1 or L2 is not a 1ist or Start > End or one of Start, End,
Pos is not a valid integer position in the respective Lists, or L2 is not big enough to

hold all elements a runtime error is reported.

add (N, M)
Return the result of adding the numbexrs N and M. If either N or M is not a number, a

runtime error is reported.

sub (N, M)
Return the result of subtracting the numbers N and M. If either N or M is not a

number, a runtime error is reported.

mul (N, M)
Return the result of multiplying the numbers N and M. If either N or M is not a

number, a runtime error is reported.

26

div (N, M)
Return the result of dividing (integral quotient) the numbers N and M. If either N or M

is not 2 numbex, a runtime error is reported.

mod (N, M)
Return the remainder of the division of N by M. If either N or M is not a number, a

runtime error is reported.

concat (81, S2)
Returns a newly constructed string which is the concatenation of string S1 and S2.

If one of S1 or S2 is not a string, a runtime error is reported.

substring (s, Start, End)
Returns a newly constructed string which is part of string S starting from Start and

ending at End. If S is not a st ring, a runtime error is reported.

length (X)
Returns the length of X which may be a 1ist (in which the number of elements of the
1ist is returned) or a string (in which the numbexr of characters is returned). If X is

neither a 1ist nor a string, a runtime error is reported.

The following functions related to COM:

‘com_get_object (L) L=[S1,S82,83]

There are three arguments in the argument 1ist L, they are class ID S1, interface
[D S2 and type library path S3 respectively. If class ID or interface ID is empty
string ornot a string at all, a runtime error is reported.

This function call will return a newly created com object ID.

27

com_get_instance (L) L=[S1,S2,S3]
There are three arguments in the argument List L, they are class ID S1, interface
ID S2 and type library path S3 respectively. If class ID or interface ID is empty

string or not a string at all, a runtime error is reported.

This function call will return a newly created com interface object ID.

com_release (N)

This function call will release the com object identified by object id N.

com_call(N,S)
This function call will call the method specified by S in the com object identified by
object id N.

4.1.9 Tests
Tests are simply sequences of expressions. A test is specified by the reserved keyword

test, followed by the name of the test, followed by a sequence of expressions and
terminating with the keyword end. If any of the expressions in the test body fails, the test
fails too. So, essentially tests are, for now, based on the process of setting up parameters
and return values, and calling COM object functions to unify with the results. Again,

please read the usage example in next chapter and the grammar (section 4.2) for the

complete picture.

4.1.10 Comments and Documentation Generation

There are two types of comments in COM-Tester: code comments and documentation
comments. Code comments are ignored by the parser whereas documentation comments
are extracted for the generation of test specifications and validation test reports. Code
comments are as in C++ with the slight modification that multi-line comments can be
nested; they can appear anywhere. Documentation comments are arbitrary Lists of white-

space separated tokens and are delimited by the special character sequences '<<' (for

28

beginning) and '>>' (for end); they may only appear in meaningful places. The spaces
inside documentation comments are only separators and are ignored in a document
production. A documentation comment is always associated the syntactic construct that
follows it. Thus a <<...>> comment appearing immediately before the keyword test is
taken as the description of the test. If it appears before an expression in a test, it is taken

as the description of the test step (As it would be written in a Validation Test

Specification).

Generated documentation is in HTML format because it is an universal, simple yet
sufficient choice for the kind of typesetting that we want. It is also possible to generate
plain text which might prove desirable if further processing is needed and/or if the use of

an HTML browser proves too heavy.

For comment examples, see Chapter 5.

4.2 Grammar

The following is a complete grammar of COM-Tester. Production names are surrounded
with the '<' and ">' signs. Tokens are written in double quotes. Alternatives in a
production are separated by a '[', and a whole production is terminated with ';'. The

floating production <opt-doc.> indicates places where a documentation comment may

appear.

<test-file> : <opt-doc> <definition-list>

~e

<opt-doc> <definition> <definition-lists>

LY}

<definition-list>

<definition> : <function-definition>

| <test-definitions>

29

<include-
directives
<variable-binding>

<test-definition>

<function-
definitions>

<expression-list>

<expressions>

<opt-assignment>

<assignment>

<var_refs>

<opt-global-spec>

~e

~

~

<variable-binding>

<include-directive>

"include" <string>

<var ref> <assignment>

rtest" <id> <expression-list> "end"

<id> " (" «<formal-arguments> ")" "is"

<expression-list> "end"
<opt-doc> <expression> <expression-list>
<literal>
<var_ ref> <opt-assignment>
<function-call>

<expression> "<=>" <expression>

<assignments>

"=" <expression:>

<opt-global-spec> <id> <opt-access-spec>

30

<opt-access-spec>

<function-call>

<funcparam-list>

<opt-funcparam-

rest>

<funcparam>

<literals>

<list>

<list-elements>

<opt-list-rest>

<list-elem>

~

e

"." <var_ref>

"{" <expression> "l" <opt-access-spec>

<var_refs> " (" <funcparam-list> ")"

<funcparam> <opt-funcparam-rest>

" 1"
’

<literal>

<var_ref>

<numbers>
<string>

<list>

" "

<list-elements> "]"

n [n

<list-elem> <opt-list-rest>

"," <list-elem> <opt-list-rest>

n_n

<id> <literals>

<literals>

31

<funcparam> <opt-funcparam-rest>

<formal-arg> <opt-args-rest>

<formal-arguments>

<opt-args-rest> . "," <formal-arg> <opt-args-rest>
<formal-arg> : <id>
| <literals>

4.3 Architecture

Here is a list of the principal modules developed for this first version of COM-Tester
together with a brief description of each:

4.3.1 COM Manager
This module is responsible for the management of COM object: creation, destruction,

reading the TLBs or calling the IDispatch interface, function invocation,
mapping COM typed values to COM-Tester values and vice-versa (e.g. COM structures
are simply represented as Lists with named elements which can be accessed with the
usual “.” operator), etc.

4.3.2 Interpreter
The Interpreter module is the core of COM-Tester. It defines the run-time model,

memory domains, primitive operations and virtual machine. It uses the COM Manager
module and the Doc. Generation Module.

4.3.3 Parser
The Parser module reads a source file in textual form and transforms into intermediary

form for input to the Interpreter and the Doc. Generation Module.

32

4.3.4 Doc. Generation Module

The Doc. Generation Module contains the extracted documentation comments in a
structure following the test file. It also keeps an execution trace input by the Interpreter.
The module is thus able to generate a VTS, a VTR and a trace.

4.3.5 Main Driver

The Main Driver simply brings all the pieces together. It reads command line arguments,

reports parsing errors to the user and manages input/output files.

4.4 The COM-Tester Abstract Machine

4.4.1 Overview Of The Abstract Machine

The COM-Tester Abstract Machine (CAM) is somewhat inspired from Warren’s
Abstract Machine (the WAM) [10] which provides a well-known basis for Prolog like
languages. In our first version only certain elements of the WAM are borrowed and care
has been taken to ensure that the CAM will scale up to a full-featured backtracking
machine with an execution model a lot closer to the real WAM. The specifics of COM-
Tester force us, however, to abandon the letter of the WAM and to follow just the spirit.
One of the major sources of modification is the presence of assignment and global
variables. Because evaluation of expressions may in theory consume a lot of space
and have a lot of side effects, assignment alone causes complications to the original

WAM design. Another is the COM-Tester 1ist construct with named elements, acting

as a 1ist, an array or an object (structure).

The CAM follows the common pattern of other virtual machines. It is organized around
several memory domains, an instruction set and an execution driver. The most notable
memory domain is the Data Stack (or Heap) (see section 4.4.2) which is presently used
for pretty much everything — permanent store, evaluation stack, procedure activation
stack. The other important memory domain is the Code Area. As its name suggests, there

resides the compiled (COM-Tester - CAM) code.

The following global registers are used during execution:

33

DST — the Data Stack top, containing the address in the Data Stack of the next available

cell.
AST — the Address Stack top.
DFP — the Data Stack frame pointer containing the address in the Data Stack of the

beginning of local variables for the current procedure being executed.

AFP — the Address Stack frame pointer.

PC — the program counter, containing the address in the Code Area of the current

instruction being executed.

4.4.2 Memory Domains

Data Stack
The data stack is organized as a vector of data cells. Each data cell is a structure of 3

elements:

e A tag indicating the type of the data cell.

e Anintegral value (IValue) which can represent a number constant, a
pointer elsewhere in the data stack or a count of something.

e A string value (SValue) which can represent either 2 st ring constant, a name

of avariable or a name of a function.

The following table summarizes the possible tags together with the corresponding

interpretation of the [Value and SValue fields:

Tag IVvalue SvValue

BOOL 0 for false, 1 Unused.

for true.

NUMBER | The numbexr Unused.

constant.

34

STRING

VAR

LIST

Unused.

The index
(pointer) in the
Data Stack of the
value of the
variable. It may
a link to another
VAR cell (created
by unification)
or to a constant
or a list
(created by
unification or
assignment) . By
convention, an
unbound wvariable
is a one pointing

to itself.

The number of
element in the
list. See below
for a complete
description of
how lists are

represented.

The string constant.

The name of the variable or
the empty string if this is
simply an unnamed reference
(for example an unnamed list

element) .

Unused.

35

Given the above table, the representation of Boolean, number and string constants
as well as of variables is obvious. Lists are a bit trickier because we would like to
make both array-like operations (integer indexing) and standard 1ist operations (head
and tail) efficient. Moreover, we want 1ist elements to be seen as memory slots which
can be set and reset to different values preferably in constant time. This last fact forces us
to have a VAR (reference) cell for each element in a 1ist in addition to a constant value
cell as is the case for the classic WAM. Now we can organize those reference cells in two
ways: either as a chain of (value, next) pairs which offers an efficient representation for
mutating 1 ist structures (as is the case in the WAM and most implementations of List
structures); or as a vector of consecutive cells which is efficient for array like indexing.
We choose the later because the syntax and predefined functions of COM-Tester
encourage precisely this style of programming. That 1s, array indexing is easy to write
and is likely to be common when working with data buffers whereas all predefined 1ist
functions (except head and tail) construct a new 1ist and there is no provision for
mutating an existing one. Hence, a 1ist might be represented as a LI ST-tagged data
cell followed by N (the number of elements in the 1ist) consecutive reference cells
each one pointing either to itself (when the element is unbound) or to another cell
containing the value of the 1ist element. This is indeed the direction we take, but with a
slight modification in order to make the tail operation efficient: what is immediately
below the LI ST-tagged cell is a reference cell pointing to the beginning of the 1ist

elements. The LIST-tagged itself contains (in its [Value) the number of elements.
Here is an example of a 1ist representation in the data stack. The first column stands
for addresses in the Data Stack, the second for data cell tags and the third for data cell

values where both the IValue and the SValue are given or only one of them when the

other one is unused:

= [*s”, 2, t =3, [n = 55, “humpty”], msg = “forget it”]

36

0 STRING “s”

1 NUMBER 2

2 NUMBER 3

3 NUMBER 55

4 STRING “humpty”
S VAR “n”, 3

6 VAR w4

7 LST 2

8 STRING “forget it”
S VAR “wr, 0

10 VAR wr, 1

11 VAR g7, 2
12 VAR wor, 8

13 VAR “msg”, 9
14 LST 5

Address Stack

Another meaningful name for this memory domain could the "Evaluation Stack”. The

cells are simply pointers (integral values) into the Data Stack.

COM Objects Representation

COM objects are accessed through interfaces. For a given instance, we might have
multiple interfaces in use at any given time. CAM maintains a run-time table of
currently active COM interfaces each of which is identified by a unique integer

(assigned at run-time). It is through this unique id that the variables in COM-Tester

referto a COM interface.

37

Code Area

The code area is a vector of instruction cells. The instruction cells consist of an opcode

and a 1ist of arguments. The section on CAM instructions presents a 1ist of all

instruction together with their arguments and semantics.

4.4.3 CAM Instructions

putvar <«<string>

putstring <string>

putnumber <numbers>

putbool <true |

false>

putref <string>

putlist <n>

push <n>

pop

getlocal <n>

Create a new unbound variable with
the given name on the Data Stack.

Create a new string constant on the
Data Stack and push its address on
top of the Address Stack.

Create a new numeric constant on the
Data Stack and push its address on
top of the Address Stack.

Create a new boolean constant on the
Data Stack and push its address on
top of the Address Stack.

Create a new reference cell with the
given name on top of the Data Stack.
The cell will point to the address
specified on top of the Address
Stack. The latter is removed as a
final step of the operation.

Create a new list pair of cells on
the Data Stack and push the address
of the LIST-tagged cell on top of the
Address Stack. The reference cell
points to the one immediately below.

Push the address specified by <n> on
top of the Address Stack.

Remove the top of the Address Stack.

Push the Data Stack address of the
nth local variable in the current

getarg <n>

set

unify

Equal

Not equal

ideref

sderef <string>

activation scope onto the Address
Stack.

Push the Data Stack of the nth actual
argument to the current procedure
onto the Address Stack. Arguments are
numbered starting from 1.

Bind the next top address in the
Address Stack to the top address in
the Address Stack. Remove the top of
the Address Stack.

Unify the data cells pointed to by
the top and next to top addresses in
the Address Stack. Used only for the
output parameters.

Compare the data cells pointed to by
the top and next to top addresses in
the Address Stack. Pop 2 times the
Address Stack. Create a new Boolean
cell on the Data Stack containing the
result of the operation and push its
address onto the Address Stack.

Compare the data cells pointed to by
the top and next to top addresses in
the Address Stack. Pop 2 times the
Address Stack. Create a new Boolean
cell on the Data Stack containing the
result of the operation and push its
address onto the Address Stack.

If the top address in the Address
Stack does not bind to an integer or
the next to top address does not bind
to a list, report an error; else find
the position in the list specified by
the integer, reporting a run-time
error if not existing, and push its
address on the Data Stack after
removing the top addresses.

If the top of the Address Stack does
not point to a list, report a run-
time error. If the specified <string>
is not the name of an element of the

39

list, report an error. Otherwise,
push the Data Stack address of the
element specified by <string> on the
Address Stack after removing its top
element.

call <n>, <string> Call a function with <n> arguments.
If <string> is non empty, it is taken
as the global name of the function.
Else the function will be looked up
via the Data Stack element pointed to
by the (n+l)th next to top element on

the Address Stack.

ret Return from a function.

runtest <string> Run the test specified by <string> in
the current environment of global

variables.

putcom <n> Create a new com object with the
given id on top of the Data Stack and

push its address on top of the
Address Stack.

4.4.4 Compilation (COM-Tester > CAM)

Constants
A constant (Boolean, integer or string) is compiled by simply pushing it onto the

Data Stack via the corresponding instruction:

putbool <value> or

ANY ”

putstring “...

Variables
There are several instructions relating to the treatment of variables. The putvar and
getlocal instructions are specifically designed for that. The putvar instruction will create a

new variable on the Data Stack. The main program as well as every test and function

40

begin with a sequence of putvar instructions to create the global (for the main program)
or local (for tests and functions) variables. References to global variables in
expressions are compiled with the push instruction because their addresses are known at
compile time whereas references to local variables are compiled with the getlocal
instructions because their absolute addresses are only available at run time (via the frame
pointer register). The necessity of getlocal comes from our simple addressing scheme

(only absolute addressing allowed).

A special case is the anonymous variable °_’ . It has a special status in that it is
always unbound. To ensure this, we generate a separate unbound, unnamed variable

for each occurrence of *_’ in the source text.

Variable References

A variable reference is a top-level variable followed optionally by one or more
access specifiers. The top-level variable is compiled as specified in the previous
section. Access specifier can be either integers or names. A special instruction is
provided for each case. For the array indexing form ({}), the expression inside the braces
is compiled and then a ‘ideref” instruction is generated. The check that the result is indeed
an integer is made at run time. Similarly for the name access (with °."), there is the special
instruction ‘sderef <string>" expecting the top of the stack to evaluate to a 1ist and
<string> to be a valid name for an element of this 1ist. For example, if the 1ist L

is at address 100 and i’ at address 77, then the expression L{i}.n is compiled as follows:

push 100
push 77
ideref

sderef “n”

41

Variable Bindings
Compilation of variable bindings amounts to compiling the variable reference on
the left of the Assignment operator, compiling the expression on the right and

generating a ‘set’ instruction.

N = 255 >
push <address of 'N’'>
putnumber 255

set

Lists

List literal are compiled by first compiling the expressions for all sub-elements.
This leaves the Address Stack with (say) n Data Stack addresses on top pointing to the n
elements of the 1 ist. Then for each element, a new reference is created on the Data
Sfack via the putref instruction. Note that because putref operates on the top of the
Address Stack, the references are actually created in reverse (to the source code) order.

Finally, a 1ist cell with the number of 1ist elements is created on top of the Data

Stack. For example:

[1, x = 2, msg = “Hi”"] =2
:putnumber 1
:putnumber 2
:putstring “Hi”
:putref “msg”
:putref “x”

:putref ™7

A L s W N = O

:putlist 3

Unification
Unification is compiled the same way as variable binding except that the “set’

instruction is replaced by the *unify’ instruction.

42

Function Calls

Calling a function is done as in any other language. Compile the expressions forming the
actual call parameters. This leads to all parameters being on top of the Data Stack. Then

generate a “call’ instruction with the function's (usually address, but in our case) name:

Fun(<el>, <e2>, ..., <ens) =2

<code for el>

<code for en>

A complete example
Here is the sample output from Chapter 5 sample test

program(in cam.txt)

---> Main program <---

putvar S OK

putvar namer_object_guid

putvar iget_guid

push 0

putnumber 0

set

push 1

putstring {39257021-1402-11d1-8AAD-0020182A59AB}
set

push 2

putstring {39257022-1402-11d1-8AAD-0020182A59AB}
set

43

runtest NRM_GET

---> TEST: NRM_GET <---

putvar iget_object

putvar buffer

<<STEP: Create an instance of Iget >>
getlocal 0

push 1

push 2

putstring atl_server.tlb

putref tlb

putref interfaceid

putref classid

putlist 3

call 1, com _get_ instance

set

pop

<<STEP: Call GetBuf function in the interface>>
getlocal 1

getlocal 0

sderef GetBuf

putnumber 81

call 1,

set

pop

<<STEP: Compare string to verify the result >>
getlocal 1

putstring COM-Tester Version 1.1
equal

pop

Appendix C is the example generated by CAM from the example of Appendix A :

4.5 The Design of COM-Tester

This section presents the low-level C++ design of the COM-Tester interpreter. The
important classes are described, their responsibilities, their interaction and their

implementation.

To make life easier, our description will follow the principal modules developed for this

version of COM-Tester:

4.5.1 COM Manager Module

There are two important classes in this module: com_method and com_manager. They
are responsible for the management of COM object: creation, destruction, reading the
TLBs or calling the IDispatch interface, function invocation etc.

Com_manager class is a singleton for housekeeping of COM objects and Type libraries.
Com_method class manages a COM method given an object that exposes it. A type

descriptions needed in the call.

In addition, camcom class maps COM typed values to COM-Tester values and vice-

verse (e.g. COM structures are simply represented as Lists with named elements which

can be accessed with the usual “.” operator), etc.

4.5.2 Interpreter Module

The Interpreter module is the core of COM-Tester. It defines the run-time model,
memory domains, primitive operations and virtual machine. It uses the COM Manager
module and the Doc. Generation Module.

The major classes in this module include cam, ct_object and instr_cell.

Cam class represents the actual CAM interpreter. It manages the memory domain and

CAM objects. It handles the main interpretion loop, interaction between various COM-

Tester runtime objects (such as functions and tests). It provides a main execution driver
and event driven interface to the document generation and debugging facilities.
Ct_object class contains the COM-Tester objects. COM-Tester objects are tests, user
defined functions and builtin functions. Each object has its own code segment and
documentation, manages local variables and is capable of executing itself (given a
camT object) and printing itself to an output stream.

Instr_cell class implements all instructions of the CAM (COM-Tester Abstract
Machine). Please refer to Section 4.4.3 for a precise description of each instruction and

the CAM architecture.

4.5.3 Parser Module

The Parser module reads a source file in textual form and transforms into intermediary
form for input to the Interpreter and the Doc. Generation Module.

In this module, there are two important classes: ct_parser and slex.

Ct_parser implements a strightforward recursive descent parser. It follows exactly the
grammar specified in this documentation. That is, to every grammar production there
corresponds a function that recognizes that

production and generates the corresponding CAM (COM-Tester Abstract Machine) code.
Lexical analysis is done with the 'slex’ and related classes. Code is generated using
'code_segmentT' objects which act as arrays of CAM instructions. Every parsing function
(except the top-level "TestDefinition' and 'FunctionDefinition') returns a 'code_segmentT’
containing the code has been generated. If this code segment is empty, that means that the
function did not recognize the input as matching the corresponding grammar production.
The global variable 'current_object’ contains at whenever the current test or function
definition is parsed. This enables the parser to be aware of the current scope at any given
time during processing.

Slex is a simple lexical analyser for common languages. It is a set of classes for simple
lexical analysis of languages with C-like lexical elements. Many things are predefined

and the configurable all have defaults.

46

4.5.4 Doc. Generation Module

The Doc. Generation Module contains the extracted documentation comments in a
structure following the test file. The module is thus able to generate a VIS, a VIR and a
EVTR.

There are three major classes in this module, they are vtrgenT, vtsgenT and the
combination of this two evtrgenT.

Class vtrgenT handles generation of a Validation Test Report. It acts as a finite state
machine responding to events sent by the CAM. It registers for those events at
construction time.

Class vtsgenT handles generation of a VTS (Validation Test Report) given a CAM
(COM-Tester Abstract Machine) and a file name. Objects of this class don't have state for
now and all function could have been made static. But, in order to allow for future
extensions, we decided against this.

Class evtrgenT handles the generation of a EVTR (Extended Validation Test Report)
which is, by our definition, a VTR +a VTS after the check 1ist. Links from the
checklist to the specification of the corresponding test are provided and, in case of failure,
from the failed step to the description of this step.

Naturally, the class derives from both vtrgenT and vtsgenT.

4.5.5 Main Driver Module

The Main Driver simply brings all the pieces together. It reads command line arguments,

reports parsing errors to the user and manages input/output files.

4.5.6 Others

There are some other classes in this program, among them, camcom class is very
important due to its role that sits in between interpreter and COM manager module.
camcom class integrates the CAM and the COM_MANAGER. It encapsulates the
cooperation of the two. The main task of the class is calling COM methods from COM-
Tester while taking care of the mapping between COM-Tester and COM data types.

47

Chapter 5 The Usage and The Result

To test the COM_Tester, a very small COM object is built ,

which has only one interface Iget with one function GetBuf.

The sample test script is following:
// BEGIN OF Get TEST

S OK = 0
namer object_guid = "{39257021-1402-11d1-8AAD-0020182A59AB}"
iget_guid = "{39257022-1402-11d1-8AAD-0020182A59AB}"

<< To test that get interface works with com tester>>
test NRM_GET

<< Create an instance of Iget >>
iget_object = com_get_instance([classid =

$namer_ object_guid,
interfaceid =

Siget_guid,
tlb =
"atl server.tlb"])

<< Call GetBuf function in the interfaces>>
buffer = iget_object.GetBuf(81)

<< Compare string to verify the result >>
buffer <=> "COM-Tester Version 1.1"

end
// END OF Get TEST

And the output (to a html file) from this test program is in next page if there is no
function call failure:

48

Extended (+VTS) Validation Test Report

Test Checklist

erface

gTo test

TEST NRM_GET

Description: To test that get interface works with com_tester
Test Procedure:

1. Create an instance of Iget

2. Call GetBuf function in the interface

3. Compare string to verify the result

top

This document was generated by ComTester Version 2.0 on Wed May 10 16:00:27 2000
Copyright (c) 2000 by Yongqiang CHEN. All rights reserved.

49

If, for some reason, for example, we have not register our Namer server, the test will fail
on step 1. In the Extended Validation Test Report. the “Success Status” will be “KO?,
and “Step that failed” will point to step 1. You can see the output for this test below:

Extended (+VTS) Validation Test Report

Test Checklist

TEST NRM_GET

Description: To test that get interface works with com_tester
Test Procedure:

1 Create an instance of Iget

2 Call GetBuf function in the interface

3 Compare string to verify the result

top

This document was generated by ComTester Version 2.0 on Wed May 10 16:00:10 2000
Copyright (c) 2000 by Yongqiang CHEN. All rights reserved.

50

For this version of COM-Tester, a test campaign will consist of a single source file
defining a set of tests to be performed. The file is read, compiled and then the definition
statements in it are interpreted in the order in which they appear. Note that function
definitions are not interpreted; only variable bindings and test definition are. See

Appendix A for a complete and complex example of 3 tests of the Write method of the

IFileAccess interface.

When the example is run, the output consists of two files. One will contain the list of all
tests together with the result of the execution. The format of this file is set up to contain
the test name, description (if provided via the <<...>> special form) and the result (OK or
KO). The other file will be a complete trace of the execution steps with input, output and
return values; even, the hidden interactions that COM-Tester performs behind the scenes

(such as releasing a COM object when it goes out of scope) are logged in this file.

The sample output for the Extended VTR (VTR +VTS) corresponding to the example is
attached in Appendix B.

51

Chapter 6 Conclusion and Future Extension

6.1 Conclusion

COM-Tester is a powerful tool for testing COM based software. The script language is
simple for the tester to master; the tool can automatically generates the test report as well
as the test specification. This solves the test specification consistency problem and ease
the maintaining of test specification. It greatly reduces the cost of the test activities of
COM related software. Another benefit from COM-Tester tool is now the developers can

use it as a helper to find the bugs in their COM products.

6.2 Future extension

COM-Tester and the description here may appear quite incomplete. The specification was
kept minimal in order to avoid making key decisions before the first implementation

effort. Beside more powerful common language features, ideally there should be

1) away to define tests in a more generic manner, i.e. to separate the logical test rule

from the data used to perform the test;

2) away to logically group tests and a graphical interface to support the tool.

Also, there are some improvements to do. For example, to test some COM object, there is
a need to deal with some kind of User Defined data Type. In this version of COM-Tester,

we do not have such functionality.

52

References:

[1]. "The Advantages of Using DLLs", Visual C++ Programmer's Guide,
MSDN Library, April, 1999.

[2]. "The Component Object Model Specification ", Draft Version 0.9,
October 24, 1995. Microsoft Corporation and Digital Equipment Corporation.

[3]. "Inside COM", Dale Rogerson, Microsoft Press,1997.

[4]. "The Component Object Model: A Technical Overview", MSDN Library, October
1994.

[5]. "Inside OLE", Kraig Brockschmidt, Microsoft Press, 1995

[6]. "Professional DCOM Programming”, Dr. Richard Grimes, Wrox Press Ltd, 1997.
[7]. "ActiveX Controls Inside Out", Adam Denning, Microsoft Press, 1997.

[8]. “Software Engineering”, I. Sommerville, Addison-Wesley, 1985

[9] “ Computer performance evaluation : report of the 1973 NBS/ACM workshop”
Edited by Thomas E. Bell and Barry W. Boehm, and S. Jeffery. National Bureau of
Standards, USA, 1975

[10]. “Warren's Abstract Machine, A Tutorial Reconstruction™ Hassan Ait-Kacli,
http -/ www.isg.sfi.ca/~hak/documents/wam.html.

53

Appendix A: Example Of Usage

Here is a complete example of tests of the Write method of the IFileAccess

interface:

// BEGIN OF Write TEST

include "Const.ct" [/ error and other constants

<< To test that Write works with specific wvalid handle, data

length and modes>>

test NRM_WRITE

<< Create an instance of IFileManage >>
file manager = com_get_instance([classid =
$file manage_ guid,
interfaceid = $ifile manage guid,

tlb = $sp_tlb])

<< Create A Buffer for Reading file >>

file buffer = file manager.CreateByteBuffer(1l)

<< Attach to reader "Reader Name">>

$S_OK <=> file manager.AttachByIFD("Reader Name", 1)

<< Create an instance of IFileAccess via IFileManage >>

file access = file_manager.CreateFileAccess()

<< Call Open method with absolute path and file ID>>
f _hnd = file_access.Open($TYPE_BY_ID,"\\0200\\0004")

54

<< Convert BSTR to bytebuffer, prepare for Writing>>
$S_OK <=>
file_manager.ConvertHexBSTRToByteBuffer("02",buffer)

<< Verify that Write can write the specific opened

file>>

$S_OK <=> file_access.Write(f_hnd,1,buffer,0)

<< Select the file locations>>

$S_OK <=> file_access.Seek(f_hnd, 0, $SEEK_FROM_BEGINNING)

<<Verify that Read can read the specific opened file>>

$S_OK <=> file access.Read (f_hnd, 1,buffer, 0)

<< Convert bytebuffer to BSTR, prepare for comparing the

writing result >>

string = file_manager.ConvertByteBufferToHexBSTR(buffer)

<< Compare string >>

string <=> "02"

<<Select the file location>>
$S_OK <=> file_access.Seek(f_hnd, 0, $SEEK_FROM_BEGINNING)

<< Convert BSTR to bytebuffer, prepare for writing

back>>
$S_OK <=>
file_manager.ConvertHexBSTRToByteBuffer("01",buffer)

<<Write back the bytebuffer, recover the original file>>

$S_OK <=> file_access.Write(f_hnd, 1,buffer, 0)

55

<<Close the File>>

$S OK <=> file access.Close(f_hnd)

end

<< To test that Write doesn't work with specific invalid

handle >>

test CTX WRITE_1

<< Create an instance of IFileManage >>
file manager = com_get_instance ([classid =
$file manage_guid,
interfaceid = $ifile_manage_guid,

tlb = $sp_tlb])

<< Create A Buffer for Reading file >>

buffer = file manager.CreateByteBuffer (1)

<< Attach to reader "Reader Name'">>

$S_OK <=> file_manager.AttachByIFD ("Reader Name", 1)

<< Create an instance of IFileAccess via IFileManage >>

file access = file manager.CreateFileAccess ()

<< Call Open method with absolute path and file ID>>
f_hnd = file_access.Open(STYPE_BY_ID,"\\0200\\0004")

<< Convert BSTR to bytebuffer, prepare for Writing>>

$S_OK <=>
file_manager.ConvertHexBSTRToByteBuffer("02",buffer)

<<Verify that Write can not write with invalid handle>>

$S_OK != file_access.Write (10,1, buffer,0)

<<Close the File>>

$S_OK <=> file access.Close (f_hnd)

end

<< To test that Write doesn't work with specific invalid

data length >»>
test CTX_WRITE 2

<< Create an instance of IFileManage >>
file manager = com_get_instance([classid =
$file manage_guid,
interfaceid = $ifile_manage_guid,

tlb = $sp tlb])

<< Create A Buffer for Reading file >>

buffer = file manager.CreateByteBuffer (1)

<< Attach to reader "Reader Name'">>

$S_OK <=> file manager.AttachByIFD ("Reader Name", 1)

<< Create an instance of IFileAccess via IFileManage >>

file access = file manager.CreateFileAccess ()

<< Call Open method with absolute path and file ID>>
f hnd = file_access.Open($TYPE_BY_ID,"\\0200\\0004")

57

<< Convert BSTR to bytebuffer, prepare for Writing>>
$S_OK <=>
file_manager.ConvertHexBSTRToByteBuffer("02",buffer)

<<Verify that Write can not write with invalid data

length>>
$§S OK != file_access.Write(f_hnd,4000,buffer,O)

<<Close the File>>

$S_OK <=> file_access.Close (f_hnd)

end

<< To test that Write doesn't work with non-existing mode>>

" test CTX WRITE_ 3

<< Create an instance of IFileManage >>
file manager = com_get_instance([classid =
$file manage_guid,
interfaceid = $ifile manage_guid,

tlb = $sp_tlbl)

<< Create A Buffer for Reading file >>

buffer = file manager.CreateByteBuffer (1)

<< Attach to reader "Readexr Name">>

$S _OK <=> file manager.AttachByIFD ("Reader Name", 1)

<< Create an instance of IFileAccess via IFileManage >>

file access = file_manager.CreateFileAccess ()

58

<< Call Open method with absolute path and file ID>>
f hnd = file_access.Open($TYPE_BY ID,"\\0200\\0004")

<< Convert BSTR to bytebuffer, prepare for Writing>>

$5_OK <=>
file_manager.ConvertHexBSTRToByteBuffer("02",buffer)

<<Verify that Write can not write with non-existing
modes>>

$S OK != file access.Write(f_hnd,1,buffer,5)

<<Close the File>>

$S_OK <=> file_access.Close (£_hnd)

end

// END OF Write TEST

59

Appendix B: Sample Output

The sample output for the Extended VIR (VIR +VTS) corresponding to the example in

Appendix A is as following:

Extended (+VTS) Validation Test Report

Test Checklist

j i

. M WR[o test that Wnte works w1th specxﬁc valid handle fj
| 1
|

data length and mode

VORI

TEST CTX_WRITE _1

Description: To test that Write doesn't work with specific invalid handle

Test Procedure:
1. Create an instance of IFileManage

2. Create A Buffer for Reading file

60

Attach to reader "Reader Name"

Create an instance of [FileAccess via IFileManage
Call Open method with absolute path and file ID
Convert BSTR to bytebuffer, prepare for writing
Verify that Write can not write with invalid handle
Close the File

® N n AW

top

TEST CTX_WRITE_2

Description: To test that Write doesn't work with specific invalid data length
Test Procedure:
1. Create an instance of [FileManage
Create A Buffer for Reading file
Attach to reader "Reader Name"
Create an instance of [FileAccess via [FileManage
Call Open method with absolute path and file ID
Convert BSTR to bytebuffer, prepare for writing
Verify that Write can not write with invalid data length
Close the File

® N U AW

top

TEST CTX_WRITE_3

Description: To test that Write doesn't work with non-existing mode

Test Procedure:
1. Create an instance of IFileManage

2. Create A Buffer for Reading file

61

Attach to reader "Reader Name"

Create an instance of IFileAccess via [FileManage
Call Open method with absolute path and file ID
Convert BSTR to bytebuffer, prepare for writing
Verify that Write can not write with non-existing mode

Close the File

» N Uw kW

top

TEST NRM_WRITE

Description: To test that Write works with specific valid handle, data length
and mode
Test Procedure:

1. Create an instance of [FileManage
Create A Buffer for Reading file
. Attach to reader "Reader Name"
Create an instance of IFileAccess via IFileManage
Call Open method with absolute path and file ID
Convert BSTR to bytebuffer, prepare for writing
Verify that Write can write the specific opened file
Select the file location

V0 NV AW

Verify that Read can read the specific opened file
10.Convert bytebuffer to BSTR, prepare for comparing the writing result

1 1.Compare string

12.Select the file location

13.Convert BSTR to bytebuffer, prepare for writing back
14.Write back the bytebuffer, recover the original file

62

15.Close the File
top

This document was generated by Com-Tester Version 2.0 on Thu Apr.11
12:21:37 2000
Copyright (¢) 2000 by Yonggiang Chen. All rights reserved.

63

Appendix C: CAM Instruction trace

Here is the trace example generated by CAM from Appendix A: the example of usage
(we only present here part of the extraction as an illustration):

---> Main program <---

putvar S_OK

putvar sp_tlb

putvar file_manage_guid

putvar ifile_manage_guid

putvar TYPE_BY_ NAME

putvar TYPE_BY ID

push 0

putnumber 0

set

push 1

putstring sp.tlb

set

push 2

putstring {99A52A52-0E0C-11D3-9FE5-0008C7A185BF}
set

push 3

putstring {sE586211-5A09-11d0 -B84C-00C04FD424B9}
set

runtest NRM_ WRITE

runtest CTX WRITE_ 1
runtest CTX _WRITE_2
runtest CTX WRITE_3

---> TEST: CTX WRITE_1 <---

putvar file _manager
putvar buffer

putvar file access

putvar f_hnd

<<STEP: Create an instance of IFileManage >>
getlocal 0

push 2

push 3

push 1

putref tlb

putref interfaceid

putref classid

putlist 3

call 1, com_get_instance
set

pop

<<STEP: Close the File>>

push 0
getlocal 3
sderef Close
getlocal 4
call 1,
equal

pop

65

