INFORMATION TO USERS

This manuscript has been reproduced from the microfiim master. UMI fiims
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overiaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6 x 9" black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

Bell & Howell Information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI

Software Architecture and Design of
Task Deduction and Task Planning Components for a
Multiple Robot Simulation System

John Karigiannis

A Thesis
in
The Department
of

Electrical and Computer Engineering

Presented in Partial Fulfilment of the Requirements
for the Degree of Master of Applied Science
Concordia University
Montreal, Quebec, Canada

July 2000

© John Karigiannis, 2000

i~l

National Library

of Canada du Canada

Acquisitions and Acquisitions et

Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

Bibliothéque nationale

services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Your file Votre référence

Our file Notre rélérence

L’auteur a accordé une licence non
exclusive permettant a la
Biblhiothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’auteur conserve la propriété du
droit d’auteur qui protége cette thése.
Ni Ia these ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

0-612-54318-8

Canada

Abstract

Software Architecture and Design of Task Deduction and Task Planning Components
for a Multiple Robot Simulation System

JOHN KARIGIANNIS

Visual simulations of industrial processes (e.g. welding, assembling etc.) involving multi-
ple robots, are part of the overall design process for such systems. A 3D simulation and
visualization software tool has been developed named MRS, for Multiple Robot Simulation
system. Experiences in this area of industrial robotic applications have shown that there is
a great concern about operability and supervision efforts. The goal is to give user confi-
dence in operating such a system in an intuitive manner. In order to reach that, a Virtual
Reality (VR) interface is integrated in the existing MRS. In addition, user must be provided
with convincing information concerning the conduct of the tasks to be performed. More-
over, the system must demonstrate a certain degree of autonomy regarding the planning of
these tasks. In this thesis, we present a software architecture for two components that we
believe satisfy these functional requirements that are posed by the specific robotic system.
The Task Deduction and Task Planning components presented here are designed and
implemented as an integral part of MRS. We analyze the design proposed for the Task
Deduction component, which will allow communication between the user in the VR space
and MRS. In addition, by employing Petri Net structures, we provide a formal model of rep-
resenting the tasks the user can deduce in the VR environment. We describe the design of
the Task Planning component we believe will increase the system’s autonomy concerning
the planning of the tasks that will undertake. In addition, in order to add to the system the
capability to resolve automatically certain unsatisfied task constraints, a formal methodol-
ogy of modeling each task in terms of its constraints is presented. The software architecture
of both components is described using the Unified Modeling Language (UML) and a com-

ponent-based-development approach.

11

Dedication

To my parents, Nikolao and Stamatia, with love and endless thanks.

270v¢ yoveig uov, Nikoiao xou Ztauaria, pe aydnn kai éva ueydlo
EVYOPIOTQ.

v

Acknowledgments

I would like to express my sincere gratitude to my supervisor, Dr. Rajnikant Patel, for his
guidance, support, patience and encouragement during the course of this research. Dr.
Rajnikant Patel, besides being a great teacher is also an excellent man. Working in associ-

ation with him has been a pleasant experience for me and I thank him for that.

I consider myself fortunate to have as my co-supervisor Dr. Ferhat Khendek. I wish to
express my deepest gratitude to Dr. Ferhat Khendek; his academic intuition was fundamen-
tal to the completion of this work. [would like to thank him for his technical and moral sup-

port, and the good advices he always gave me.

My good friends, Mr. Tadeus Obuchowicz and Mr. Nestor Caouras, deserve special
acknowledgment for helping me to keep my focus and for being always there for me. I wish
to single out Mr. Iain Bryson not only for being a great friend, but also for his great support
both technical and moral, and for been my, barring my supervisors, closest colleague on

this work.

It is with pride that I acknowledge the support and inspiration of my parents Nikolao and
Stamatia, and my sister Katerina - back home. I would like to thank them for believing in
me, and making me understand that nothing is unachievable.

Last but never least, I wish to thank Maria Sarlis for her love, sacrifices and moral support

all these years that we have been together.

Table of Contents

LIST OF FIGURES X
LIST OF TABLES xii
CHAPTER 1. INTRODUCTION 1
L1 Related WOTK ..ottt es e e n s 3

1.1.1 Virtual Reality Robotic Simulation Systemscceveeeevveeereueeenen. 3

1.1.2 Task Planning SYStEMSc.cccevrrrerieiereeeeeereeeeeereeee e eesreeeeeseenes 4

1.1.3 Object-Oriented Techniques in Simulationcccceeeeeeeveeecueennen. 6

[.1.4 MRS VETSIONSceeiiiiiniriiaianerenteieeeeereeeeeessess e nseee e e e eesesesnnens 6

1.2 Outling of the TReSISccovieeeereiertieereeeertreeieteetene ettt anas 6
CHAPTER 2. PETRI NETS 8
2.1 INITOAUCHON ...ttt se s e be e s e sesaesaesmeeone 8

2.2 Modeling With Petri NEtScceeoieeiieeeieeeeiet et eeete e e ee s sae e eeanen 10

2.2.1 Modeling a VR-based Interaction Schemeccoceveeeereceereennee. 10

2.2.2 Modeling 2 VR ENVITONMENLoeereeeeieeeeeeeenieereeeneeeneresesescoenne 10

2.2.3 Modeling Control of Production Systemccccceeeveeeeeeeeeeeeenence. 10

2.3 PetriNets inMRS ...ttt st een 11
CHAPTER 3. TASK DEDUCTION SUBSYSTEM OF MRS 15
3.1 INTOAUCHON ...ttt ettt et tenen 15

3.2 Functional Requirements of the TDCc.ccooeeiemeieeeeeeeeeeeeeeeeeeeeeereaenns 16

vi

3.2.1 General & Specific Requirementsccceeeeeeeereeeeeeneeereerneeennn. 17

3.3 Decomposition of the Task Deduction Componentcccccveeemereeeennnne 18
3311 ADALYSIS ettt ee e s e e en e e en e rean 18
3.3.1.1 User Action Detection URitccceeeeeeeeeereceeerecererenenns 20

33.1.2 MeSSenger Uitceceeieceeeeieeeieeeereeeeeeereeesee s s 20

3.3.1.3 Task Manager Unitc..ccoeeveeeeemeeeeeeeneeeeeceeneeeesee e 21

3.3.1.4 TaskDBase Uitccceceeeerrecireeeeeeeeireeeneeeeeeceeeerseenene 22

3.3.1.5 Task Interpreter Unitccceceeveeeeeecerecaernreeeeneeeeesenenens 23

3.3.1.6 Example of Task Deduction with Petri Net Tracing 23

3.3.1.6.1 Listof Statescceeceeeeceeeciicecerreeereeeneeereee 23

3.3.1.6.2 List of Transitionsccccceeeeeeeevereveenecrrennnnen. 25

3.3.1.6.3 List of ACtiOnS ...ccccveeeeeceeecieencrereeeereeereeeenee. 26

34 Design of Internal Unitscoooeeeiieiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeessssnsssmeesans 27
3.4.1 User Action Handlercoooveeiveeeeeeecicieeeeeeeeeeeeeee e aeae 28

3.42 Petri Net Handlerccccooeiieieninirniieeeeeeeeeeeee et 30

3.5 Behavior and INeractionc.ceceeeeeeeseeseeceemeuiereeeeieeeeee e eeaeeeeeneeses e esene 32
3.5.1 Sequence Diagram for Generating - Storing a Message 33

3.5.2 Sequence Diagram for Loading a Task to the Task Interpreter33

3.6 Summary of Task Deduction SUbSYStEIMccuoeeeeeeoreeeeeeeeeeeceeeeeeeeeenes 36
CHAPTER 4. TASK PLANNING SUBSYSTEM OF MRS 37
4.1 INOAUCHION ..ottt e e e e ee e e e e e e e emmeeeseeeeseeennens 37

4.2 Functional Requirements of the TPCccccovvmmieeemeeeeeeeeeeeeeeeeeeereeeeeeons 38

4.2.1 General & Specific ReqUirementsccceceveeueeeereeemeeereerveanennn. 38

vii

4.3 Decomposing the Task Planning Component (TPC)c..ccccveuvmemevenenne. 40

4.3.1 System DecCOmMPOSItiONccccceeecceeereerrerronernreerneereeeseresnseesssasnes 40
4.3.1.1 Action Controller Unitcccccceeoimmmmnrrerrereereereereeeenns 42

4.3.1.2 Action Dispatcher Unitccccccoeviimimecrieecceeeceeeeeeeeeneenane 42

4.3.1.3 Collection of Action Patterns Unitccceeeeereeeeneen.n. 42

4.3.1.4 Constraint Solver Unitccccceeveeoieeceeeeciiceeecrcceeeseeenens 45

4.3.1.5 UtHEY UDIt ooooniiieieeeeeeceeeeteeteteteeteee e emseeeeseeenns 47

4.4 Design of Internal Units of the TPCooooieeeeeceeieceeeeeeeee e eeeeeeeeeenens 48
4.4.1 CONMTOUET ...cormieiiiieeeeeceeeeeeeeeeeteen e reenete et erererseseeasesenaesereensenen 48

4.4.2 The Action Pattern Handlercccoouevieoeeeencniceeiceeceeeeeeennene 50

4.5 Behavior and Interaction in the TPCccocovecieimerimeeieeeeeeeeeeeeeeeeaens 56
4.5.1 Sequence Diagram for Instantiating Variablescccceeecuueenn.. 56

4.6 Summary of Task Planning SubSystemccceeeeeeiiuimeeeeeeeeeeeeeeereeneenes 58
CHAPTERS. .CASE STUDY 59
5.1 Analysis Of the SCENATIOcooveeveiveeiieeeieeeeeeie e eeeeeeeeeeeeeeee e maeeeeenns 59
5.2 Describing the WOTKCEILcceeomiieiieeeeeeeeeeeeeeeee e eee e e e seeeeeeeeen 60
5.3 Joining the Two Metal Parts TOZEthercccoveeemeemeeiieiteeeeeeeeeeeeeeeeeeennen 62
5.3.1 Tracing the Welding Patterncccceceeeceemereeeecreeiirccee e eeeaenes 64

5.3.2 Solve an Unsolved Constraint - Call Move-Object Pattern 67

5.3.3 Binary Constraints of the Welding Patternco.coeeeeemmeeennee.. 70

5.4 Moving Welded Object to the Palletc.eeeereeemenieeeeeeeeeeneeeeeeeeeee e 71
5.5 Tracing the Placement-to-Pallet PAtterncocoeuieeiveceeeeeeeeeeereeeeeeeenens 71
5.6 Summary of the SCENATIOceeeeeurieeeireeeeeieeeee e eeeeeteeeeee e e e eeeneesnas 76

CHAPTER 6. CONCLUSIONS

6.1 Suggestion for Future Workccoecooeooiemeemeecereieeieeceee e ceeeeeveecneeanas

References

Appendix A. Introduction to the UML Notation

86

Figure 2-1.
Figure 2-2.
Figure 3-1.
Figure 3-2.
Figure 3-3.
Figure 3-4.
Figure 3-5.
Figure 3-6.
Figure 3-7.
Figure 3-8.
Figure 3-9.
Figure 3-10.
Figure 3-11.
Figure 3-12.
Figure 4-1.
Figure 4-2.
Figure 4-3.
Figure 4-4.
Figure 4-5.

Figure 4-6.

List of Figures

An example of a Petri Net consisting of five states and four transitions.... 9
Petri Net graphical representation in MRSccooooiiriiiiiiiniiiicccennne. 12

Placing Task Deduction subsystem in the overall architecture of MRS ..16

Black Box representation of the Task Deduction Component 17
The architectural structure of the Task Deduction Module 19
The queuing of the messages and their internal structurec.cccceu..... 21

Petri Net for deducing “Move_Metal_Part” and “Weld_Metal_Part”24
The Task Manager is accessing the TaskDBase to load a Petri Net 27

The class diagram in UML notation for User Action Handler subsystem 28

Petri Net Handler SUbSYStEmMc.eeeeeeieeveeeieeeeeeceeeeeeeeeeneeeeeeeeeeeeenne e 30
Class diagram for the Petri Net Handler subsystemccccccveeuveennenn.... 30
The class diagram after joining the two subsystemscccccceeecereeennnne 32
Sequence diagram for creating and storing a mMessageccceeeecveeeueenen. 34
Sequence diagram for loading a task to the TaskInterpreter 35
Black Box representation of Task Planning Componentc.......... 39
The overall architecture of the Task Planning Component 41
The graph represents a typical Constraint Netcccceevveeveeeeereenneeene. 43
Dependencies between Constraints and Variablesccccoeeveeeeeeenene 44
Interaction between an Action Pattern and a Constraint Solver 46
Example of the Utility Unitcoeemieeieeeeeieeeeeeeee et eeeeenes 47

Figure 4-7.
Figure 4-8.
Figure 4-9.
Figure 4-10.
Figure 5-1.
Figure 5-2.
Figure 5-3.
Figure 5-4.
Figure 5-5.

Figure 5-6.

The class diagram for the Controller subsystemcccceeeevveereccreeeenne. 49

The class diagram for the Action Handler Systemcccccoerrenenenne. 51
The class diagram that joins two subsystems togetherccccccceevveeen... 55
Sequence diagram for instantiating Variablescccocooeeoeieeereveneeenen. 57
The hypothetical setup of the workcellcoceeeeeeimmerecieieeeecceeeeraenne. 61
Action Pattern for welding operationcccccceeeeeeeeeeeveeeeveerneeeecrnneenns 65
Action Pattern for transporting an objectcccceeeeeeeeeeiereeeeereeeeeneeeenns 67
Action Pattern for placing a compound object on a pallet 72
MRS version 2.0, showing three different simulated robots 75
The multi-stage planning of welding operationcceeeeeveveeeveennne. 76

Table 5-1.

Table 5-2.

Table 5-3.

Table 5-4.

Table 5-5.

Table 5-6.

Table 5-7.

Table 5-8.

Table 5-9.

List of Tables

Part a) List of variables for welding operation - Action Pattern 66
Part b) List of variables for welding operation - Action Pattern 66
Part a) List of variables for transporting an object - Action Pattern 68
Part b) List of variables for transporting an object - Action Pattern 68
Binary constraint of transporting an object - Action Pattern 69
Binary constraints of welding two objects - Action Pattern 70
Part a) List of variables for transporting compound object to pallet 73
Part b) List of variables for transporting compound object to pallet 73
Binary constraints for placing compound object on the pallet................. 74

Chapter 1

Introduction

In order to control and supervise a robotic system with multiple agents, the operator usually
has to cope with a large amount of information. The conventional technologies for control
and supervision often overwhelm the user with the displayed data. In addition, in order to
ensure safe operation of the system, several operators with great experience in the specific
area of robotics, are usually required to monitor the system. Therefore, working towards
the development of intelligent, autonomous robotic systems, that will minimize the need of
“expert” users and will allow operability and supervision to be done in a more intuitive
manner, a twofold approach has to be followed. On one hand the capabilities of the robots
have to be enhanced in a way that they can act and react more autonomously, and on the
other hand, the development of a suitable man-machine interface has to be pushed further

in order to be able to command and to keep control over the system.

The realization of a man-machine interface, based on modern virtual reality (VR) tech-
niques, is a promising approach for a new command and supervision interface that is intu-
itively operable. The general aim of the development to be described here is to provide a
general framework for a system which allows to map actions that are carried out by users
in the virtual world into the real world with the help of the robots composing the robotic
system. This framework relies on the task deduction and the automatic task planning com-
ponents of the virtual reality system that we wish to develop. A large variety of components
have to be taken into account in order to establish automatic task realization by the robotic
system, and to make the system capable of making decisions on planning the execution of

different tasks.

The creation of simulations of systems consisting of multiple cooperating robots interacting
with each other and their environment, and which can be controlled and supervised via a
smart man-machine interface is therefore a large, complex task. Such VR-systems, how-
ever, are an essential part of virtual prototyping, tuning and testing new robotic applica-
tions. Moreover, it is frequently the case that it is impossible to test a single part of such a
system in isolation. For instance, if one wishes to evaluate a new task deduction strategy,
one must implement not only the new algorithm, but at least some model for interaction
with the virtual environment. In addition, one would also want to view the results as a 3-D
visualization of the workcell. As we can see, it is not feasible to examine a module as a
static entity, since it involves interactions with other components in order to function.
Because of coupling between these modules, the scope of software that needs to be con-
structed increases rapidly. An observation that can be made by looking over many different
systems, is that the majority of the modules cannot be reused because they were designed
quickly and without having reusability and future changes as a primary design concern. The
robotics engineer who is interested in testing a task deduction algorithm now faces a soft-
ware engineering load that has to be carried, and which is increasingly disproportionate to

the original goal.

The purpose of this thesis is to provide a software architecture, intended to provide a prac-
tical framework for the automatic task deduction and task planning components of a VR
robotic simulation. By using advanced software engineering notations such as Unified
Modeling Language (UML), we provide both a modular design and implementation that
will satisfy the requirements of the system. Although we went through the entire software
process in order to come up with the proposed architecture, in this thesis we will be pre-
senting the final result of that process only. The architecture focuses on providing the users
with a default suite of generic modules allowing the user to add new ones. The advantage
of developing a series of easy-to-use generic modules is quite obvious - modules could be
reused without having to be rewritten. By adapting a software architecture where new mod-
ules can be easily added, and where all components are well defined modules with well

defined interfaces, designed based on principles like extendability, reusability and design

for change, we expect to limit some of the software design and maintenance difficulties. The

following is a list of the issues this thesis is tackling:

* Petri Net models of robot tasks
* Task deduction

* Task planning

* Modeling task constraints

One of the main themes, which we expanded throughout this thesis is our desire for the soft-
ware, named MRS, for Multiple Robot Simulation system, to function in as many different
ways as possible. For instance, since we want MRS to support a VR interface, it should be
able to support an automatic task deduction mode of operation, where the system should be
able to recognize a user’s action in the virtual space and map them to task descriptions. In
addition, it should support automatic task planning functionalities, in order to decompose
complex tasks and generate a plan of execution, which will be composed of a set of primi-
tive (also called elementary [22]) actions. Integrating these different goals into a coherent

and cohesive whole is what this thesis aims at.

1.1 Related Work

Automatic task deduction and task planning are not new issues. Several existing robotic
simulation systems that provide a VR interface, support these capabilities in order to enable
users to function both in a more efficient as well as intuitive way. In the following subsec-

tion, we will review briefly some of the work that has been done in this area.

1.1.1 Virtual Reality Robotic Simulation Systems

There are several academic and commercial products that include in their list of features
some of the capabilities that we are interested in. We mention them here for completeness
and we do not claim to have duplicated the multi-year efforts by significantly large corpo-
rations. One of them is the Cell Oriented SIMulation of Industrial Robots (COSIMIR)[23].

COSIMIR operates in various domains, both industrial and academic. By using latest VR

4

techniques it provides a new and intuitively comprehensible way for man-machine commu-
nication in different types of automation applications. The domain of applications covers
from space laboratory services, industrial assembly, spray painting and laser ablation appli-
cations to VR-based training facilities. The features that this system demonstrates, and
which are more important to us, are those of task deduction [21], and automatic action plan-
ning [22]. The architecture that was developed for these two capabilities of COSIMIR,
demonstrates several key ideas, some of them were adopted and further expanded to serve
the purposes of MRS. For instance, in the task deduction module, COSIMIR introduces the
idea of using petri net structures to model the tasks that the robotic workcell can execute.

A second system, Distributed Interactive Virtual Environment (DIVE) [25] is a virtual real-
ity tool developed by the Swedish Institute of Computer Science, used to simulate workcell
for manufacturing assembly processes. The important characteristic that this system dem-
onstrates is that all the objects in the workspace establish relationships between them and
between the agents in the workspace. For example, an object can send a signal when it
touches another entity in the workspace or could report its status with respect to certain
agent. These relationships allow the agent to query at any instant the position of the object
with respect to the environment or with respect to other objects and based on the answer
that it receives it is able to generate a multi-stage task plan. We say multi-stage because in
order to have a plan of execution several stages of analysis are required. The system gen-
erates a set of simple pre-conditions that must be satisfied, then based on these pre-condi-
tions and the relationships between the object and the agent, responsibilities are assigned.
Finally, the evaluation of agent responsibilities with respect to the objectives of the problem
leads to the reorientation of the agent goals to better address the problem. The concept of
establishing relationships between the entities in the workcell is something we will be using

when we discuss the architecture of task planning modules of MRS.

1.1.2 Task Planning Systems

Since the work of this thesis involves also the development of a task planning architecture,

it is instructive to examine various planning components that have been developed. We

hope to gain insight into existing planning component architectures, even if they are not

wholly within our domain.

The REusable Task Structure based Intelligent Network Agents (RETSINA) planner is a
very interesting architecture [30]. The way that this planning system is formulated is as fol-
lows. Instead of having a single global task planning component that formulates the general
action plan, we have several distributed planners that are internal to the agents that are par-
ticipating in the task. Each agent, using its internal planner, formulates detailed plans and
executes them to achieve local and global goals. Knowledge of the domain is distributed
among agents, therefore each agent has only partial knowledge of the world. This forces
agents to cooperate with the planners of other agents, and to monitor their plan. The RET-
SINA planner, allows agents that adapt that type of architecture to interleave planning, exe-
cution and replanning in a dynamically changing environment despite having only partial
knowledge of the domain. Another important concept that is being introduced in the design
of the RETSINA planner is that of task representation using the Hierarchical Task Network
(HTN) formalism [37]. Basically, this is a structure that has been adapted to decompose a
single task to subtasks and each subtask to sub-subtasks, generating a tree structure.

Yet local and distributed planning brings about other problems. For instance, once it is
found that an agent’s local plans conflict with other agents’ local plans, the agent’s plans
must be revised and re-planned. Moreover in multi-agent systems, the computation of an
agent’s local plan partly relies on other agents performing parts of the plan. This implies
that agent’s i local planning may require information from other agents to complete their
plans and provide results; until then, agent i will be waiting. This will cause serious delays

for a system in which time is a critical constraint.

The AREAS [26] system addresses a new approach for planning and evaluating assembly
sequences. This approach requires cooperation between the user and the automatic assem-
bly planner. This planner takes a representation of the design of a certain product, whose
assembly sequence has to be planned, and determines the best sequencing alternatives. The

planner interacts with the user through “augmented reality”, in order to identify the best

solution. The interconnection between the parts that have to be assembled form a liaison
graph. All the possible assembly transformations can be represented in terms of the assem-
bly graph. The assembly graph basically represents all possible state transitions in the
assembly of a product. The planner with input from the human operator traverses the

assembly graph to determine a path that constructs the product in an efficient way.

1.1.3 Object-Oriented Techniques in Simulation

Both task deduction and task planning modules are software components of a larger system,
which is the robotic simulation system. Simulation systems have been built using tradi-
tional structured approach and not in an object-oriented way. The application of software
engineering principles and object-oriented analysis, design and programming techniques
have been introduced recently into simulation systems. Harrell et al. [7] provide an over-
view of a component-based distributed simulation architecture for discrete-event simula-
tions. McMillan et al. [8] addressed the common manipulator dynamics simulation problem
[6] using object-oriented design. The RETSINA planner, mentioned above, introduced an
object-oriented approach for the design of the planner. In all these cases, it is clear that the
resulting code reads like a high-level scripting language that promotes fast prototyping,
while maintaining the fast execution speed of the compiled code. This is a major advantage

of using object-oriented programming.

1.1.4 MRS Versions

The software architecture of the task deduction and the task planning modules presented in
this thesis is closely coupled with the architecture of MRS v2.0 [10]. There exist also a first
version of MRS (v1.0), which is described in [11] and [12]. We should note here that all

the references to MRS in this thesis refer to the second version.

1.2 Outline of the Thesis

Chapter 2 begins the thesis by reviewing background information. This information is
important for the understanding of the design described in subsequent chapters. For

instance, Petri Net structures are elements used in the specific domain of the application we

are developing. A brief description of these structures as well as the benefits that we gain

from their usage, are topics presented in this chapter.

Chapter 3 is dedicated to the description of the task deduction module. It starts with a brief
discussion of the analysis of the problem domain. We describe the functional requirements
of the task deduction module. Then we proceed with the decomposition of the system into
its basic components. We describe the role of its individual units and its internal design.
Subsequently, the dynamic behavior and the way of interacting with the rest of the system
are described towards the end of this chapter.

The next chapter, Chapter 4, presents the task planning component of the system. It begins
by analyzing the role of this module in the entire system. Then, the functional requirements
with respect to the entire system and the modules that interact with it are presented. In addi-
tion, the basic software building blocks of the task planning component are described and
the most important architectural decisions that were made are presented. In particular, we

focus on the architectural features which allow us to enhance and extend the software.

Chapter 5 presents a case study. In this chapter we present the task deduction and task plan-
ning module through MRS (v2.0). A complete example is presented. It puts together both
components that are developed, providing a study of their interactions and their behavior

with respect to each other and with respect to MRS.

The thesis concludes with Chapter 6, which contains a recapitulation of the major work of

the thesis and suggestions for future work.

Throughout this thesis, we will be using the UML notation to describe the architecture and
our design. An introduction to the UML notation is given in Appendix A.

Chapter 2

Petri Nets

This chapter presents some background information regarding Petri Net structures as a
modeling tool. Since these structures will be used in a subsequent chapter, where task
deduction will be presented, it is useful to address here some basic definitions and termi-
nology. In addition, this chapter presents Petri Nets as a modeling tool for a wide range of
applications. Starting with Human-Machine Interactions (HMI), we move on to discuss the
application of Petri Nets to control production systems. We conclude this chapter by intro-
ducing the software representation of Petri Net that has been adopted in MRS.

2.1 Introduction

A Petri Net (also named place/transition net in [16]) is defined as an oriented graph com-
prising two types of nodes: (1) places and (2) transitions. This graph is constituted in such
a way that the arcs can only link places to transitions or transitions to places [17]. Places
are represented by circles and transitions by bars (Figure 2-1). Peterson [14], defines the
structure of a Petri Net as a composition of four parts: (1) place, (2) transitions, (3) input
function and (4) output function. The input and the output functions relate transitions and
places. The input function is a mapping from a transition to a collection of places, known
as input places of the transition. The output function maps a transition to a collection of

places, known as the output places of the transition.

Petri Nets represent not only one of the most formal, but also the best developed, models
for representing multi-process systems. Several existing ways of representing processes
(e.g. finite-state automata, register automata [9] etc.), are limited by the fact that they can
represent only sequential processes. Thus, these limitations pose a great obstacle in the
modeling of the inherent parallelism of Multi-Agent Systems (MAS) [9]. For this reason,
when we want to model precisely the interactions between agents, we need more complex
formalisms, able to describe both behaviors and organizations in which several processes
execute concurrently. In addition, Petri Nets can easily model non-determinism and parallel
computation, two essential features of concurrent systems, such as VR systems. Moreover,
Petri Nets can model easily synchronization of asynchronous processes. An additional
advantage is that Petri Nets can accommodate quite easily models at different abstraction

levels [39].

P e e

Figure 2-1. An example of a Petri Net consisting of five states and four transitions.

10

2.2 Modeling with Petri Nets

Petri Nets were designed and are used mainly for modeling. Petri Nets can be used to model
a wide range of systems; computer hardware, computer software, physical systems, etc
[15,17,18]. Petri Nets are used to model the occurrences of various events and activities in
a system. In particular, Petri Nets may model the flow of information within a system as
well as the interactions of the system with entities external to the system. The following
sections present Petri Nets in the area of VR-based Human-Machine Interaction (HMI) sys-

tems, as well as in developing control schemes for manufacturing systems.

2.2.1 Modeling a VR-based Interaction Scheme

In [19], Freund and Rossmann present the application of Petri Net structures in modeling
an automatic task deduction component for their system. The domain of their application
is the control and supervision of an autonomous multi-robot-system for a space laboratory,
by means of virtual reality techniques. By using the task deduction component, they allow
the system to recognize the task the user is trying to perform. This was achieved with the
use of Petri Nets; all the tasks that the system supported were modeled with these structures

in a very formal way.

2.2.2 Modeling a VR Environment
In [39], the University of Illinois at Chicago present CAVE. A VR environment which con-

sists of several walls that display computer-generated images for the benefit of a human
viewer. These images are drawn in real-time on the basis of the viewer’s perspective in the
virtual world in such a way as to create the impression of real-life, three-dimensional view
of a given scene. By employing a timed extension of Petri Nets they modeled the opera-
tional and timing behavior of all the different subsystems that compose CAVE.

2.2.3 Modeling Control of Production System

Valette [38] gives examples of many projects both commercial and academic, involving
control of manufacturing and assembly systems, that utilize Petri Net structures, in order to

solve concurrence and synchronization problems. Moreover, in [38], the Japanese company

11

Hitachi has developed a decentralized control system for factory automation where the pro-
gramming of the station controllers (corresponding to the level of coordination), is done by
Petri Nets. This approach has been applied in several applications including stations

responsible for scheduling assembly sequences.

2.3 Petri Nets in MRS

Having in mind the typical structure of a Petri Net and the different domains of its applica-
tion, this section will introduce the software representation of Petri Nets that was adapted
in MRS. First, the role of Petri Nets in the context of MRS will be presented briefly, since

Chapter 3 covers the topic completely.

MRS is expected to undertake several tasks (welding, assembling etc.). These tasks involve
the different objects that are present in the robots’ workspace (e.g. metal parts, wooden pal-
lets etc.). For instance, the welding task involves the two or more objects that are going to
be joined together. In order to accomplish a specific task, the objects involved will have to
pass through certain states. For example, to move an object from one point to another, the
object passes through the following states: (1) Grasped, (2) Moving and (3) Released. Thus,
we employ Petri Nets to model this behavior of all the objects in the workspace.

In Figure 2-2, we see a Petri Net structure with three states and two transitions. We note
here the existence of a new symbol in the overall Petri Net structure, a six-edged symbol
[20]. The only reason this symbol is introduced is to provide a visual representation of the
fact that a certain transition causes a certain effect in the system. We will calil that effect
“Action”, and we will represent it with the six-edged symbol throughout this thesis.

We begin our discussion by elaborating on how we model Petri Nets in MRS, since the
decisions we make are quite important in order to provide an easy way to examine them
and to store them. The formulation that we will choose will definitely affect the design, and
as a result, the implementation of certain modules, which we will address in the following

chapters.

12

State

i

T

sz Transition
EEESLnhy

4 Action

e

3

—P Arrow

Figure 2-2. Petri Net graphical representation in MRS

The software representation that we adopt for our Petri Net structures is the formulation of
the Petri Net graph in a vector representation. The entire structure is a set of quadruples of

the following format:
<Starting_State;, Transition_Condition;, Action;, Ending_State;>
or
<S;y Ty 43 E;>

where / is the index that identifies a quadruple in the entire set. If we would now like to
represent the Petri Net in Figure 2-2, in this representation, we would have the following

general description:

PetriNet[AI] ={<S1, TI’ AI' E1>,<Sz, Tz, A>, E2>,<S3, T3, A3, E3>,<S4, T4, A4, E4>}

13

The number of quadruples is equal to the number of unique parhs that we can form. We
define, going from starting state S; to ending state E;, through transition T; and by generat-
ing action A; as a path. Referring again to Figure 2-2, we have one possible path going from
S; to S,, via T; and without producing any action. The fact that no action is generated in
that path, simply means that for that specific quadruple, assume the i, A; is equal to null.
A different possible path is, if we move from S to S;3, via T with generating action A;. In
order to understand better the utilization of the Petri Nets we proceed with the analysis of
Figure 2-2. Considering the fact that the general description of our Petri Net has four dif-

ferent paths, we list the values that are assigned to each variable of every quadruple:

Quadruple #1, <S; =5, T;=T1, A; = null, E; =8>
Quadruple #2, <S, =s;, T,=T1y Ay = Ay, E; =s;3>
Quadruple #3, <S3 =s,, T3=T,, Az = null, E; =8>
Quadruple #4, <S; =Ss;, Ty=T, A4 = null, E; =8>

We should note here that the index on a certain variable (state, transition condition or
action), for instance S3, does not necessary mean that the path S; to S,, through T, is the
third quadruple in our set. The quadruples could be in any order in the set, the Petri Net
structure does not change. This is actually quite important, since the meaning or status of a
process that is modeled with our software representation of Petri Nets does not depend on
the order that the Petri Net quadruples are stored. Thus, all the following expressions are

equivalent:

Petri Net[A1] ={<Sz, Tz, Az, E2>, <S3, T3, A3, E3>,<SI, TIr AI! E1>,<S4, T4, A4, E4>}
PetriNet[AI] ={<S1, T[' AI’ E1>,<S4, T4, A4, E4>,<Sz, Tz, Az, E2>,<S3, T3, A3, E3>}

PetriNet[AI] ={<S3, T3, A3, E3>,<S1, TI’ AI’ E1>,<Sz, Tz, Az, E2>,<S4, T4, A4, E4>}

14

PetriNet[AIJ ={<S2, T2, Az, E2>,<S1, TI’ AI' E1>,<S4, T4, A4, E4>,<S3, T3, A3, E3>}

Moreover, for the specific context of MRS, we decided that each Petri Net is uniquely char-
acterized and identified by the “Action(s)” that is (are) described. For that purpose, our
notation specifies in the general description of the Petri Net, between the square brackets,
the action that is generated by following a certain path. In the example presented before,
only one action is generated. This of course does not represent a general case, in fact, in the

case where more that one action is generated, all of them are listed.

15

Chapter 3

Task Deduction
Subsystem of MRS

This chapter covers the first part of the work presented in this thesis which is the task deduc-
tion subsystem proposed for the VR environment of MRS. The fundamental functional
requirements of this module are first presented, explaining the need for its existence and
describing exactly what we want to accomplish by introducing it to the overall architecture
of MRS. Next, the analysis of its internal architecture is presented. The decomposition of
the entire subsystem to its basic components follows, addressing the functionalities of each
individual building block. Subsequently, the object-oriented structure of each individual
component is examined. The chapter ends by addressing the dynamic aspect of the sub-
system, we describe the interactions and the communication between the different units

comprising the task deduction module.

3.1 Introduction

One of the major subsystems that is vital for the interaction with MRS via the VR interface
is the Task Deduction Component (TDC). The TDC is responsible for recognizing the
actions the user performs in the VR environment and provides a task description to the next
level which is assigned the responsibility of planning the specific task that the user is trying
to execute. That next level corresponds to the action planning system and we will see more
of its design and operations in the next chapter. The block diagram in Figure 3-1 shows the

layout of the overall system.

16

The functionality of the task deduction component is based on the fact that the set of tasks
that can be performed in MRS have been pre-defined and also have been modeled in a very
specific way to serve the purposes of our application. At this point we should note that the
task deduction mode of operation works only for a specific class of simple tasks, and does
not provide solutions to complicated tasks. This subsystem is a composition of several units
interacting together, in order to support the functionalities required. The main idea behind
its operation is the modeling of each task in the form of a Petri Net structure [21, 28, 29].
With the help of these structures, the task deduction subsystem can filter, analyze and cat-
egorize the users’ actions which can be further summarized into task descriptions for the

action planning system.

Task :> Task

Deduction Planning

igi igi
User
% &~ VR Interface N[RS
&=

GUI Interface

Figure 3-1. Placing Task Deduction subsystem in the overall architecture of MRS

3.2 Functional Requirements of the TDC

One of the most common techniques for reusing functionality in object-oriented systems is
Object Composition [2],[5]. Object Composition requires that the objects being composed
have well-defined interfaces. This style of reuse is called Black Box reuse [2]. This style is
the one adopted for the task deduction component, since reusability is one of the primary
goals of our system. Here we examine the task deduction component as a Black Box, for

which the only information we have is the type of inputs provided and the corresponding

17

outputs that we get (Figure 3-2). This approach is adopted through out the thesis. The fol-
lowing subsection presents the set of functional requirements which characterize the behav-

ior of TDC in MRS.

3.2.1 General & Specific Requirements

REQUIREMENT 1: The task deduction component receives as input Physical events (Figure
3-2). Since the user acts in the VR environment of MRS, with the input device that is avail-
able, these physical events that are generated in reaction to his/her actions are received as

inputs from the upper layers of the task deduction module.

REQUIREMENT 2: The task deduction component provides a mapping from Physical to Log-
ical events. The task deduction is responsible to interface the user in the VR-environment
with MRS. In order to accomplish this, the physical input that it receives gets translated into

a different form, which will be used in the rest of the system.

REQUIREMENT 3: Implement structures and algorithms that will allow for storing and exam-
ining Petri Net structures which are used to represent the tasks the user can generate in the

VR environment of MRS.

REQUIREMENT 4: The output that the task deduction should generate is a message to the
next level, which is the task planning component, and that will contain a description of the
task that has to be planned.

Figure 3-2. Black Box representation of the Task Deduction Component

18

3.3 Decomposition of the Task Deduction Component

Since in the previous section we dealt with our requirements for the task deduction compo-
nent, we will present now the architectural foundation of this module, the software frame-
work with which we hope to satisfy those requirements. MRS was developed using
paradigms of object-oriented analysis (OOA) and object-oriented design (OOD) ([4],[5]),

we follow the same principles in the development of the task deduction subsystem.

We will start with an analysis of the problem space. This will provide us with a good
grounding for the presentation of the architecture following it. By showing the structure and
the relationships between the entities that comprise this subsystem, the motivation for the

specific architecture will become clearer.

3.3.1 Analysis
An object oriented analysis starts by identifying the objects in the problem space. In this

specific domain, the problem space is the task deduction module. We decompose the entire
problem space into a group of logically distinct units that provide the different functional-
ities the problem space demands. The units that we can identify are: the User Action Detec-
tion unit, the Task Interpreter unit, the Messenger unit, the Task Manager unit and
TaskDBase unit (Figure 3-3). The User Action Detection and the Task Interpreter are those
that form the task-recognition functionality of the task deduction module. The User Action
Detection unit receives the physical events coming from the user in the VR environment.
For instance, when the user in the VR environment “Selects” an object, the User Action
Detection unit is responsible for assigning a tag to the object selected and mapping the
user’s action to a higher level input (e.g. GRASP or RELEASE that object), sending it after-
wards to the Messenger unit. The Task Interpreter contains algorithms that are based on the
Petri Net structures introduced in the previous chapter. Its major functionality is to trace
these structures by using as inputs the messages stored in the Messenger unit. By analyzing
these structures the Task Interpreter generates task descriptions for the next level which is
the task planning subsystem. The Task Manager unit is responsible for loading a specific
task structure from the TaskDBase and passing it to the Task Interpreter. A very important

19

functionality that the Task Manager performs is to identify the type of task that should be
retrieved from the TaskDBase. The static entity that keeps all the Petri Net structures stored,
is the TaskDBase. It is very closely associated with the Task Manager in order to provide
safe access to the task structures. The Messenger unit provides a communication pipeline

between the different units.

Physical
Events

Task Description for
Task Planning

Figure 3-3. The architectural structure of the Task Deduction Module

20

Having the overall architecture of the TDC in mind we proceed to the analysis of each indi-
vidua: unit that is present. The following sections analyze the overall structure as well as
the functionalities that these units provide.

3.3.1.1 User Action Detection Unit

The User Action Detection unit, as already mentioned, receives signals from the user, and
is responsible for performing a very specific mapping of those low level user inputs to a
higher more abstract type. This means, mapping from Physical to Logical events. For
example, when the user points to an object inside the VR environment ([31,32,33,34)), that
object gets selected. That low level signal which represents the selection of certain objects
is sent to the User Action Detection unit that maps it to a “GRASP” or a “RELEASE” mes-
sage. The User Action Detection unit is responsible for keeping track of the messages that
are generated with respect to each individual object, in order to distinguish between differ-
ent signals and perform a simple constraint checking on user’s actions. For instance, when
the user issues a “GRASP” signal for a certain object, that is recorded, then when the user
issues another “GRASP” without a “RELEASE” being issued before, the User Action
Detection unit, will detect that and act accordingly. In addition, the User Action Detection
unit tags the object that is currently active, and is responsible for propagating that tag to the

next unit which is the Messenger.

3.3.1.2 Messenger Unit

The Messenger unit receives inputs from the User Action Detection unit and stores them
until the Task Manager sends a request to retrieve one. The role that the Messenger per-
forms is very simple: it operates as a temporary storage where we have the scheme shown
in Figure 3-4. The messages passed to the Messenger unit contain information regarding
both the type of action performed by the user and also the tag that uniquely identifies the
object in the entire MRS. The messages are stored in that buffer in the same order that they
arrive, forming a queue. When the Task Manager requests a message, it retrieves the one

that is in the front of the queue.

21

3.3.1.3 Task Manager Unit

The next unit of the task deduction module that we will address, is the Task Manager unit.
That entity is responsible for handling the loading of the task structures from the TaskD-
Base to the Task Interpreter, based on the outcome of the evaluation that it performs on the
messages that are retrieved from the Messenger. We should note here that only through the
Task Manager can the tasks (in the form of Petri Nets) in the TaskDBase be accessed.

I Incoming Messages From User Action Detection

"f&h"] ;ﬂ:«m oty
A _ir;,'
td /

Action == Grasp | Entity = Object_Tag

A

AT
Mes
Message

Outgoing Messages For Task Manager

Figure 3-4. The queuing of the messages and their internal structure.

In addition, the Task Manager is responsible for decomposing the message retrieved to the
two components that comprise it: the user’s action and the object’s unique identifier. The
object’s tag (or identification number) is used as a key for retrieving the task structure (or
Petri Net) that is associated with that specific object in the TaskDBase. The other part of

the message that contains the action which the user performed is used in the Task Inter-

22

preter (when the Petri Net is loaded) as the input function which will cause a certain tran-
sition from a specific Starting_State to a certain Ending_State. Another functionality of the
Task Manager is to provide an interface for handling the flow of messages going to the Task
Interpreter. Since the Task Interpreter needs messages to traverse the Petri Net structures
(we will see more about this in the following section), instead of going directly and access-
ing the Messenger, it goes through the Task Manager. This is quite important to our overall
architecture of the task deduction component in order to ensure that no messages are lost
or disregarded. The problem that will occur if we allow the Task Interpreter to directly
access the buffer is the following: a message that is important for the Task Manager to
retrieve a task is removed from the queue by the Task Interpreter while on the other side
the Task Manager will be waiting for it and will get stalled. With the proposed architecture,
only the Task Manager retrieves the messages, keeps a record of the information it needs

and passes a copy to the Task Interpreter.

3.3.1.4 TaskDBase Unit

The next unit that will be addressed is the TaskDBase unit. It contains a collection of all the
tasks that can be deduced from the user’s actions in the VR-environment of MRS. We
should note here that from the group of tasks that MRS supports, if operated via its GUI,
only the tasks that can be deduced from the VR-environment are modeled in the TaskD-

Base.

In order to store and manipulate the tasks in a formal way that will provide efficiency and
will resolve possible problems with concurrency (since we operate in a multi-agent envi-
ronment), we adopted the Petri Net structures as our modeling tool. In Section 2.3, we saw
the software representation of the Petri Net structure that we formed. We will see now how
this representation fits into the context of MRS. The way task deduction works in the con-
text of MRS is as follows. We combine the user’s actions with predefined tasks descrip-
tions, in order to a derive what the user is trying to accomplish. We have seen the units that
provide the functionality of recording the user’s actions; what the TaskDBase adds to that
is the place to store the Petri Nets used to model the MRS tasks.

23

The next unit, the Task Interpreter, will show how the tracing of the Petri Net is performed,

by using the task descriptions in the TaskDBase.

3.3.1.5 Task Interpreter Unit

The Task Interpreter is the unit where algorithms have been implemented to trace the Petri
Net structure. When we say the Task Manager loads a Petri Net to the Task Interpreter,
what we mean is that it passes a pointer to the software representation of the Petri Net. Then
the Zask Interpreter, because the process of tracing the Petri Net requires the type of action
that the user performs, requests inputs from the Task Manager which has access to the Mes-
senger. The Task Manager returns the type of action performed and the process of tracing

continues.

3.3.1.6 Example of Task Deduction with Petri Net Tracing

In order to understand the method of task deduction with Petri Net structures an example
of Petri Net analysis will be presented. We will describe a Petri Net that can generate two
different types of actions (see Section 2.3 for actions), “Move_Metal_Part” and
“Weld_Metal_Part”. In Figure 3-5, the Petri Net structure used to model these actions is
presented. Recalling from Chapter 2, in this structure we have five states, six transitions and

two possible actions.

3.3.1.6.1 List Of States
STATE (1): Welding Position

This is the state we reach after performing the welding operation between two metal parts.
At this state the two metal parts are considered not as two distinct parts but as one single

object.

STATE(2): Free Position

This is the state we can reach if two possible situations occur. One possibility is when the
user in the VR-environment moves the object anywhere within the robots’ workspace [6]

except the location that is characterized as the location where the welding operation will

24

take place. The second possibility is the case where the user moves the virtual object to a
location assigned to the welding operation and it is the only object that is located in the
welding position at the moment; then again the state we reach is the same, but no action is
generated. The reason why we don’t generate an action when only one object is in the weld-
ing location is because we want the user to bring both virtual objects to the specific location
before the process of welding gets initiated, so the task planning component will be able to
plan the operation accordingly, having the information of both objects that take place in the

process.

Figure 3-5. Petri Net for deducing actions “Move_Metal_Part” and “Weld_Metal_Part”

25

STATE (3): Undefined Position

This is the state that the task reaches when the user in the VR-environment moves the object
in a location outside the robots’ workspace. Since the virtual space in which the user oper-
ates does not have any physical limitations, the possibility of moving the object to a loca-

tion that cannot be mapped to an actual location in the real workspace is always present.

STATE (4): Metal_Part In Motion
This is the state that the task reaches when the user “GRASP”’s the object in the virtual envi-

ronment. We note, that it does not mean the object is actually moving, it could be just
placed anywhere in the workspace without being involved in any type of motion and still

be in that state, provided that a “GRASP” signal has been issued.

STATE (5): Metal_Part Released

After a “RELEASE” signal is generated from the user, we reach to this state.

3.3.1.6.2 List of Transitions

TRANSITION (1): Grasp
This is the transition condition that is enabled, when the user selects an object in the work-

cell.

TRANSITION (2): Release

This is the transition condition that is enabled when the user issues a message that is

mapped to a logical event “RELEASE”.

TRANSITION (3): Inside the Workspace

In order for this condition to be evaluated, the task deduction component communicates
with MRS via the interface available to check if the entity examined is inside or outside the

workspace.

26

TRANSITION (4): One Object In Welding Position

This transition is triggered when one object is positioned at the predefined welding loca-

tion.

TRANSITION (5): Two Objects In Welding Position

This transition is enabled when after communicating with MRS, both entities that will be

welded are in proper position so the process can be initiated.

TRANSITION (6): Any Other Position

This transition is enabled when the result of the evaluation of the position of an object in
the virtual environment is that it is outside the workspace of any robot available in the

workcell.

3.3.1.6.3 List of Actions

ACTION (1): Move_Metal_Part

This action initiates the process of transporting the object that the user manipulates in the

VR workspace to the location also specified by the user.

ACTION (2): Weld_Metal_Part

This action generates a task description that will trigger the planning of a process that welds
the two objects that are placed by the user at the locations predefined as the welding loca-

tions.

When the user in the VR environment selects an object, the associated physical event is sent
to the User Action Detection unit, which maps it to the corresponding logical event. We
assume for the purpose of our example that the signal is a “GRASP?”, that is sent to the Mes-
senger unit from where the Task Manager retrieves it, analyzes it, and based on the object’s
tag that the message contains, the Task Manager accesses the TaskDBase and loads the
proper Petri Net into the Task Interpreter (Figure 3-6). Suppose that the initial state of the
object, before the “GRASP” was inside the workspace but not at any welding configura-

27

tion. Then the state from where we start tracing the Petri Net is State(2). Since a “GRASP”
was signaled, Transition(1) is fired and without causing any action the task moves to State
(4). We could have many different paths (see Chapter 2). In the specific example, the one

described is a simple one, considering the fact that no action was generated.

'

Figure 3-6. The Task Manager is accessing the TaskDBase to load a Petri Net into the Task Interpreter

Having addressed the basic units of the task deduction component of MRS, we will proceed
to the software structure of this module. By following an OOD process, we provide a mod-
ular design that can be easily adapted, and that will allow future modifications to be made.

3.4 Design of Internal Units

The task deduction component can be seen as two subsystems working together. The first

is responsible for working as an interface with the user and the other for doing the process-

28

ing. First, we present the software structure of each individual subsystem separately, and
then we join the two together in order to study the overall software architecture.

3.4.1 User Action Handler

This is the first subsystem of the TDC and it handles the events coming from the user. It
operates as a link that joins together the low-level user interaction subsystem, with the more
abstract and higher level subsystem responsible for interpreting these actions and under-
standing their meaning. In fact, it is responsible for mapping every valid action of the user
to a certain type of message. In addition, it should allow both the dynamic creation of mes-
sages when a user’s action occurs, and the dynamic adjustment of the buffer size that stores
the messages. The last requirement demands the existence of a dynamic structure that will
expand and shrink according to the situation. Moreover, the type of information contained
in the messages passed as well as the order in which they are generated should be recorded.
For these purposes the software model we adopt for the system is the one shown in the class

diagram in Figure 3-7.

CUserActionHandler
1 Create
»| CMessage
%x
has a
1
CMessenger

Figure 3-7. The class diagram in UML notation for the User Action Handler subsystem

29

We note that in order to provide background information for readers not familiar with
object-oriented modeling languages, a complete description for the Unified Modeling Lan-
guage (UML) notation ([1],[3]) is included in Appendix A.

CUSERACTIONHANDLER class:

The CUSERACTIONHANDLER class is the one that provides the implementation for distin-
guishing different events coming from the user. It keeps a record of the previous events that
arrived, and based on a set of predefined constraints, it maps the events to messages and
sends them to the rest of the subsystem. This class has a relationship “create” with class
CMESSAGE of type Association [3]. To be more precise, the relationship between the
CUSERACTIONHANDLER and CMESSAGE is one-to-many [1], meaning, one instance of
CUSERACTIONHANDLER could be related to many instances of CMESSENGER. The impor-
tant point we should note is that this relationship simply represents the fact that the CUSER-
ACTIONHANDLER instantiates messages, and does not correspond to the actual flow of data.

CMESSAGE class:

The CMESSAGE class is responsible for providing the implementation for the CMESSAGE
objects, that will be used as transportation units for the information in the subsystem. It is
used by the CUSERACTIONHANDLER as a factory for creating objects of type CMESSAGE.

CMESSENGER class:

This class is the one that implements dynamic structures for storing objects of type CMES-
SAGE. It is responsible for allocating memory to the incoming messages and free memory
space used by messages that have been processed. It is also responsible for keeping track
of both start and end points of the buffer so that messages can be removed and added
respectively. This class establishes a relationship “has a” with class CMESSAGE of type
Aggregation [3]. Aggregation here expresses a strong coupling between these two class. In
fact, the relationship between the specific classes CMESSENGER and CMESSAGE is one-to-
many, denoting that one instance of CMESSENGER could be related to many instances of the
class CMESSAGE.

30

3.4.2 Petri Net Handler

The subsystem already described interacts with a second subsystem that is responsible for
handling the tracing of the Petri Net structures. In addition, this subsystem is managing the
tasks’ storing in the structure we have created (the TaskDBase). Finally, this subsystem is
also responsible for controlling access to the buffer where the messages are store until they
are processed by some unit of the system. The general behavior of this subsystem is shown

in the following block diagram (Figure 3-8).

Request for Accesing TaskDBase Delivering Request

—_— > =
Request ... Lo Delivering Request
Request for Getting Message) s e : B Delivering Reﬂuest

Figure 3-8. Petri Net Handler subsystem

The Petri Net Handler accepts as inputs different types of request, which it has to deliver.
For instance, a request could be to retrieve a Petri Net structure based on a message that
was consumed. The class diagram in Figure 3-9, shows the software components that com-

pose this subsystem.

CTaskDBase < accesses
1
1 CTaskManager
1
1
<> composed of aCCesSes
"—:L 1
CTask CTaskInterpreter

Figure 3-9. Class diagram for the Petri Net Handler subsystem.

31

CTASKMANAGER class:

This class implements the algorithms responsible for retrieving Petri Net structures from
the CTASKDBASE and loading them into the CTASKINTERPRETER. This class has a relation-
ship “accesses” of type Association with both the CTASKDBASE and the CTASKINTER-
PRETER classes. Since only one instance of the CTASKMANAGER is related to only one
instance of the CTASKDBASE class, we set the cardinality of both classes to one, and the
relationship between them is one-to-one. In addition, the relationship of the CTASKMAN-
AGER class with the CTASKINTERPRETER is also one-to-one, since we allow only one
instance of the class CTASKMANAGER to be associated with one only instance of the class
CTASKINTERPRETER.

CTASKINTERPRETER class:

The CTASKINTERPRETER class contains algorithms to traverse the Petri Net structure in
order to detect the type of action the user is trying to perform in the workcell. The
CTASKINTERPRETER interacts with the CTASKMANAGER to get information about the tran-
sition conditions necessary to trace the Petri Net. The outcome of this class is very impor-
tant since it generates the task description that we propagate to the next level which is the

task planning subsystem.

CTASKDBASE class:

This class provides a software structure which consists of instances of the class CTASK.
This class is static since the number of the predefined tasks is known, and it does not change
during run time. The CTASKDBASE class has a relationship “composed of”, of type Aggre-
gation, with the class CTASK. The cardinality of the class CTASKDBASE is one while the
cardinality of the CTASK class is many. This implies that one instance of the CTASKDBASE

could be related to many instance of the class CTASK.

CTASK class:

This class is responsible for constructing the Petri Net structures (as presented in Chapter
2), and is used by the CTASKINTERPRETER to deduce the desired task description.

32

Having described the software model of the two individual subsystems, we conclude this

section by joining the two subsystems together in one software architecture (Figure 3-10).

| /——_—_—__\\
User Action Handler|__—7 CUserActionHandler| ™
' Y
//// 1 \~\\
e
yd create ™
/ CM. ! o~ CMessenger
essage ~
& ‘l—l composed of 1
N rTl
.................. ——— accesses
Ei’ CTaskDBase ¢ accesses st ~
\'\.‘ 1 CTaskManager| ;
! i
\ 1 i
Lo -"
"1' composed of accesses ,'
] ; !
i %] 1 i
. - i r i
Petri Net Handler < 4 CTask CTaskInterpreter| ;

. —————

Figure 3-10. The class diagram after joining the two subsystems

In order to represent the interactions between different objects of the software model, we
introduce a set of Sequence Diagrams [1]. This representation, presented in the following

section, focuses on expressing the dynamic behavior of the objects.

3.5 Behavior and Interaction

It would be impossible to present all the possible interactions that take place among the set

of objects existing in our software model in sequence diagrams. In this section we simply

33

present two examples that will give a picture of the dynamic behavior of our software
model. The following Sequence Diagrams will provide a graphical representation of the

message broadcast chronology, among the objects of our model.

3.5.1 Sequence Diagram for Generating - Storing a Message

The process of creating and sending a message involves several interactions between the
different objects of both the TDC and the MRS. In order to form a message, as we described
in Section 3.4.1, we need several items of information regarding the entities involved in the
workspace. These items are stored in the CWorkcellModel subsystem of MRS [10],[14],
that forces messages to be passed from the objects of CWorkcellModel to objects of the
TDC. In Figure 3-11, the object CUSER issues a signal to the CWORKCELLMODEL of MRS
via the VR interface. This signal identifies the entity involved, and passes the information
(for example, object identification, etc.) to the object CUSERACTIONHANDLER. The
CUSERACTIONHANDLER creates a CMESSAGE and loads it with the information described
in Section 3.3.1.3. Subsequently, the object CMESSAGE calls the object CMESSENGER to
store the message and subsequently, the CUSERACTIONHANDLER calls the CTASKMAN-
AGER to notify the existence of a new message in the CMESSENGER.

3.5.2 Sequence Diagram for Loading a Task to the Task Interpreter

The Sequence Diagram in Figure 3-12, shows the process of loading a task from the
CTASKDBASE to the CTASKINTERPRETER via the CTASKMANAGER. Having described the
functionality of the Petri Net Handler subsystem in Section 3.4.2, we proceed with an
example of a Sequence Diagram that will put a finer point on that static presentation. The
objects involved are communicating with a synchronous broadcasting of messages. That
means that the object that sends the message waits until the called object finishes the pro-
cessing of the message. In the case of loading a task, the object CTASKMANAGER requests
a message from the object CMESSENGER. The CTASKMANAGER gets the message and
retrieves from the CTASKDBASE the corresponding task. A pointer to the CTASK is passed
to the CTASKINTERPRETER, which initiates the process of examining the Petri Net. At a cer-
tain instance, the CTASKINTERPRETER requires further input from the CTASKMANAGER.
As soon as the CTASKMANAGER obtains the information necessary, it returns control to the

34

CTASKINTERPRETER. When the CTASKINTERPRETER completes the processing, it retumns

the resulting task description to the CTASKMANAGER.

' 1 L} !
1 i I '
1 1 ')
| " “ :
mA 33vue i Mo N " " “ " |
' [} 1

| “ owgmoE 03018 | " “ “
| | .+ | | |
: " | uOmeuLOJuI PR | “ |
t 1 ! | | |
' ' | eBessapoemary | ! !
' 1 ' | of- ! 1
! " " ' uoneuHOu] s AU ! “
} | J .‘! } }
_ _ ' ' npueyEudly | _
} | 1 ' ' 1
Iy —

| “ i : | fmug epeg |

:35beueyyse], || Tx9Buassay | Tebessoy || TASTPUBHUOTIAYISEN || TTOPORTTSANI0on || TI96q

Figure 3-11. Sequence Diagram for Creating & Storing a Message

35

|
|
[
|
|
+
1
!

| [} !
! | |
1 | !
1 | 1
! | 1
1 + >)
! uopduosaq yse], ey " "
m < 10N 119 9U}19§10A0E], 0} UOTBULIOJU] PUSS | "

] | f }
“ | ! ' adessapy > '
J ' 1 ' ‘ }
! ! " ! “oBessepyisonbey !
, ' 19N W18 8Y} 9639ARI], 0} UOHRULOJULISaNbaYy o
| : r " "
' 10703c199U] 03397UT0 J SSB ' ' '
! | } ! ' 1
“ " | NGNS I, 0 3030 g "
1 | ‘III 1 | [
" o ¥eLBRD | " "
“ “ A (sBessap) yse I 1isenbay |
1 L} ' 1 }
“ " \ | omgmos_v “
| 1 1 | ‘ 1
' X ' , oBessapisanboy |

t1933ada23qUTNSe], 1yse], 1asegqysel : 19Puassay T I90bBUBHYSB]

Figure 3-12. Sequence Diagram for loading a Task to the TaskInterpreter

36

3.6 Summary of Task Deduction Subsystem

The Task Deduction Component (TDC) is the software module responsible for monitoring
the actions the user performs in the VR space. It is required to handle the phAysical events
that it receives from the VR operator and map them to the corresponding logical events. In
addition, it implements software structures and algorithms that are responsible for storing
and examining Petri Net structures. The Task Deduction Component is composed of a col-
lection of basic software building blocks, each one responsible for performing certain func-
tionalities. These are: the User Action Detection, the Task Interpreter, the Messenger, the
Task Manager and the TaskDBase. Proceeding to the description of the software architec-
ture, TDC is analyzed into two major subsystems: the User Action Handler and the Petri
Net Handler. These two subsystems after performing certain processing generate as output
a logical event. This logical event is a task description that is propagated to a subsequent
component which is called Task Planning Component of MRS and which will be discussed

in the following chapter.

37

Chapter 4

Task Planning Subsystem
of MRS

The purpose of this chapter is to elaborate on the architecture of the task planning sub-
system of MRS. To start with, the functional requirements of this module will be addressed
in order to understand the role of this subsystem in the overall MRS. Explaining what the
system is expected to do is very important in order to realize the purpose of its existence as
a component of our simulation system. We proceed by presenting the decomposition of our
subsystem into a group of basic units which are closely coupled in order to provide the
required functionalities. Next, an object-oriented analysis is performed to address the soft-
ware structure of each individual unit of our subsystem and to give a formal description of
their internal design. The software dependencies and relationships among the basic build-
ing blocks of the task planning subsystem are discussed and we raise issues of dynamic

behavior, interaction and communication between them

4.1 Introduction

After the analysis and design of the TDC, we come to the point of introducing the next sub-
system which is the Task Planning Component (TPC). This is the second major subsystem
that will be covered in this thesis. TPC is the key determinant of how well MRS will support
the VR-mode of operation, since it is responsible for “understanding” and handling the task

descriptions coming from the TDC.

38

As the user carries out actions in the virtual environment, different task descriptions are
deduced by the TDC through the process that has been described in the previous chapter.
These abstract task descriptions are forwarded to the TPC which receives them and initiates
an entire process of analysis. This process contains the decomposition of the task descrip-
tion received into a set of primitive actions that will be scheduled and executed by MRS.
The entire operation of the TPC is based on the fact that the set of primitive actions have
not only been pre-defined but also modeled based on a very specific methodology that
serves the purpose of our application. Keeping in mind the modularity of our design we
form the TPC as a composition of several modules interacting together to support the ser-
vices required. The main idea behind the TPC’s operation is to model as many as possible
of the actions that the robots are responsible for performing in the workcell into a “Task
Pattern”, also called an “Action Pattern™ [22]. In addition, we establish a set of rules that
link one Action Pattern to another, providing in that way solutions to more complicated
tasks. Finally, by analyzing these patterns, we determine a set of actions that the agents

have to follow in order to accomplish the desired task.

4.2 Functional Requirements of the TPC

Following the same principles of Object Composition and Object Inheritance [5], as in the
design of the TDC for reusability, we will proceed with the analysis of the TPC. The Black
Box reuse style is adopted, since the TPC will definitely be evolving as the needs of MRS
grow and cover a wider domain. In Figure 4-1, the Black Box representation of our sub-
system shows the inputs provided and the corresponding outputs expected, dictating a spe-
cific behavior which will be presented by a set of functional requirements listed in the

following sections.

4.2.1 General & Specific Requirements

REQUIREMENT 1: The TPC receives as input logical events from the TDC task descriptions.
These are logical events which the TPC is responsible for detecting and categorizing.

39

REQUIREMENT 2: The TPC is responsible for “understanding™ the incoming task descrip-

tions and decomposing them into well defined sets of primitive actions.

REQUIREMENT 3: TPC should be able to provide a mapping between a task description and
certain software structures called Action Patterns, which will be further discussed in the

sections that follow.

REQUIREMENT 4: The TPC is responsible for analyzing the Task Pattern invoked and gen-
erate a software model that will describe the plan that has to be adopted for proper execu-
tion of the desired task. This software model is called a Constraint Net [22],[35], and its

description in the context of MRS is extensively covered in the following sections.

Figure 4-1. Black Box representation of Task Planning Component

REQUIREMENTS 5: TPC should provide mechanisms to analyze the Constraints Nets. This
analysis consists of identifying the basic components of a Constraint Net which are the
Variables and the Constraints [22],[36].

REQUIREMENTS 6: The TPC should support mechanisms to link different Action Patterns

providing solutions to more complex task descriptions.

REQUIREMENT 7: The TPC should assign a specific order of execution to the set of primitive

actions that are derived from the analysis of a certain Action Pattern.

40

REQUIREMENT 8: The TPC should output an ordered set of actions that the robot(s) will
follow to accomplish the task

4.3 Decomposing the Task Planning Component (TPC)

Having addressed the functional requirements of the Task Planning Component (TPC), we
proceed by presenting the architecture of this subsystem. The software framework of the
TPC is created by using paradigms of OOA and OOD. These principles provide a solid
foundation which will support a flexible architecture and that will make further expansion

of the system as easy as possible.

The following subsection will present the analysis of the problem space. The system’s
decomposition will provide us with all the software units that comprise the base of the TPC.
By elaborating on the dependencies and the interactions generated among these units, as
well as their role with respect to each other and to the overall function of MRS, we will jus-
tify the decisions taken for the specific architecture.

4.3.1 System Decomposition

The problem space in our domain is the TPC. We need to identify the objects in the problem
space that are architecturally significant [4]. In order to achieve this, we need to decompose
the entire problem space into a set of software units, that will be tightly coupled and that
will be characterized by the services they provide. The entities that we identify are: Action
Controller unit, the Action Dispatcher unit, the Collection of Action Patterns unit, the Con-
straint Solver and the Utility unit (Figure 4-2). The Action Controller unit and the Action
Dispatcher unit are those that form the link between the TDC and TPC. In fact, the Action
Controller unit provides an interface that allows abstract task descriptions to be submitted,
while the Action Dispatcher unit is responsible for categorizing them and supporting their
mapping to the corresponding action pattern. All the action patterns are associated with a
very specific task description. When the proper input arrives the related action pattern is
signaled. The structure of every action pattern will be analyzed in great detail in the subse-

quent sections. For now, we will only mention that action patterns are composed of two

Action Pattern 2

Figure 4-2. The overall architecture of the Task Planning Component

41

42

software entities which are called Variables and Constraints. These entities are essential
elements that dictate the handling and the behavior of a certain action that the robots will
be assigned to perform. The Constraint Solver is the unit that provides some sort of feed-
back to the Action Controller. We will be able to understand better its role later when we
discuss in greater detail the character of its operation. The Utility unit is the one responsible
for connecting TPC to MRS.

We will continue our analysis by moving to the functional description of each individual
unit present in the overall architecture of TPC. The following sections elaborate both on
their structure, and the services that they are expected to provide to TPC and to MRS in

general.

4.3.1.1 Action Controller Unit
The Action Controller unit, is the first layer between the TDC and the TPC. This module

provides an interface to access the inner layers of the planning component via the Action
Dispatcher unit. In addition, the Action Controller unit is also responsible for performing
a first level of validity check on the incoming task descriptions. By doing so, we get a fast
rejection for some of the task descriptions. Moreover, the Action Controller, is responsible
for controlling the access to the Action Dispatcher, in this way providing the capability for

keeping track of who is accessing a certain action pattern, and when.

4.3.1.2 Action Dispatcher Unit

The next module is the Action Dispatcher unit which is responsible for forwarding the
inputs coming from the upper layer and triggering the corresponding action pattern from

the Collection of Action Pattern unit.

4.3.1.3 Collection of Action Patterns Unit

We create a group of action patterns that form the Collection of Action Patterns unit. The
size of this group is variable, meaning that new action patterns can be added or existing
ones can be modified. Moreover, these patterns can be associated in order to solve more

complex problems. These associations among the different action patterns are built upon a

43

very specific set of rules that are established to fit the domain of MRS. In the following sub-
sections, we will analyze the logic behind the process of creating an action pattern, as well

as the elements that compose a pattern.

Action Pattern. In the context of MRS, an action pattern is a logic structure that is used as
a modeling tool to model the tasks the robotic simulation system will support. It is a com-
position of two major software components: the Constraint Net and the Set of Rules [22].
The first, is the software structure itself that describes the model of the task, and the second,
the set of rules that associates one action pattern with another. Each component will be ana-
lyzed further.

Constraint Net. A Constraint Net is a software structure that involves two types of param-
eters: (1) variables and (2) constraints, in order to model each action pattern that MRS
needs. In Figure 4-3, we can see an example of a constraint net. The cylindrical shapes cor-
respond to the variables and the arcs to the constraints. The constraints are differentiated to
unary and binary. A unary constraint is one that begins and ends at the same variable. A
binary constraint is the one that associates two distinct variables. For the specific domain
of MRS we can think of the variables in a constraint net as the entities that are involved in
a task, for example robots, end-effectors etc. Also, we think of the constraints as the con-

ditions that must be satisfied in order to establish proper associations between these entities.

Unary Constraint |

Binary Constraint 3

Figure 4-3. The graph represents a typical Constraint Net.

44

The TPC is able to generate a plan of execution for a certain task, if and only if, the con-
straint net that models the specific action pattern has a solution. In order for a constraint net
to have a solution, all the variables must be assigned with values and all the constraints
must hold. If the above conditions are satisfied we have successfully defined a set of entities
(or variables) that have been assigned with some specific values, and which behave accord-
ing to the constraints that are established between them. If there exists at least one con-
straint that does not hold, then the constraint net cannot be solved and we employ the set of
rules that we defined in order to call a new action pattern. The process repeats itself until
either all constraints get satisfied or until the set of rules that we have cannot provide us
with a solution. Let us consider the logic synthesis of a constraint net. We know that the
components of a constraint net are variables and constraints. The question that arises is the
following: “How do we define the dependencies between certain variables and the con-
straints associated with that variable?”. In order to answer this question, let us look at
Figure 4-4. We can see that we have a variable a;, and a collection of constraints, some of
them are generated from that variable and are moving outwards and some of them end at
that variable. We define a constraint to be a function of a certain variable a; if and only if
the constraint is generated from that specific variable. If this is the case then the constraint

depends on that variable.

Constraint;= f{ Variable(a;))

Constraint;= f{’ Variable(a;))
Constraint;+ = f(Variable(b;))

Constraint;= f(' Variable(a;))

Figure 4-4. Dependencies between Constraints and Variables

45

In the same figure, a second group of constraints, f(Variable(b;), has as. an ending point the
variable a;. This set of constraints depends on the hypothetical variable b;, and that is noted
by putting b; as the argument of the function. By categorizing the constraints with respect
to the variables that they depend on, we establish a formal description for both the con-
straints and the variables that compose a constraint net structure. This formalism promotes
not only a more concrete design, but also enables us to model the implementation of the

algorithm to analyze a constraint net in such a way as to follow a certain methodology.

Rules to Associate one Action Pattern to Another. The second part -of an action pattern
is the set of rules that are used to associate every unsatisfied constraint to either an action
pattern or to a specific solution other than generating an action pattern. By doing so, we
allow the system to solve by itself the unsolved constraints, and proceed further to the plan-

ning process of a task.

4.3.1.4 Constraint Solver Unit

The Constraint Solver is the part of the overall system that maps the constraints that are not
satisfied to the corresponding pre-assigned solutions. A solution to an unisatisfied constraint
could be a simple process or it could be a more complicated one. In the «case where the pro-
cess is simple, the solution could simply involve the assignment of a different value to the
variable that the unsatisfied constraint is dependent on. On the other hand, when the process
is complicated, the solution could involve the selection of a different action pattern that will
satisfy the unsolved constraint. We should note that not all unsolved constraints can be
solved. Situations exist where a constraint cannot be solved and the pslanner is unable to
provide a solution by itself. In that case the control is passed to the user, who is informed
about the deadlock situation that has occurred and the user is now respoensible for perform-
ing an action (if the user is capable) to solve the unsolved constraint. In: the case where the
Constraint Solver is able to match the unsolved constraint to a certain sollution, two possible
situations exist. First, the control is passed to the Action Controller which will trigger the
action pattern that the mapping rule in the Constraint Solver dictates to solve the unsatisfied
constraint. Second, the control is passed back to the Collection of Action Patterns. We can
see these possibilities in Figure 4-2, where a bidirectional communication can be estab-

lished between the Constraint Solver and the Collection of Patterns while one way com-

46

munication is feasible between the Constraint Solver and the Action Controller. In Figure
4-5, we can see an example of the operation described. A constraint net that describes a
hypothetical action pattern with four variables and five constraints is employed. In addi-
tion, a set of rules is formed that is associated with every constraint of the action pattern.

Moreover, the Constraint Solver provides a table that maps the rules to a set of solutions.

1 P Rule1
2 —» Rule 2
3 —» Rule 3
4 —» Rule 4
5 —» Rule 5

Action Pattern

Action Pattern # 1
Rule 1
Rule 2 Action Pattern # 2
Rule 3 —
Rule 4
Rule 5 Action Pattern # n

Change Value of Variable (V 1)

//

Constraint Solver No Solution: Return Control to User

Figure 4-5. Interaction between an Action Pattern and a Constraint Solver

47

We have mentioned that certain situations exist where the solution requires a different
value to be assigned to the variable in order for the function of the constraint to be satisfied.
When that situation occurs then the TPC has to communicate with MRS to obtain the values
for the specific variable. Recalling the fact that the variables of a constraint net represent
entities of the workcell, in order to obtain values for these variables, we need to request
them from MRS. For this purpose the existence of an interface that will provide communi-

cation between TPC and MRS is absolutely necessary.

4.3.1.5 Utility Unit

The Utility unit is the interface that groups a collection of static function calls that will
allow the TPC to retrieve information from MRS. The Utlity unit allows the TPC to adopt
an independent architecture that will be easy to interface with MRS. Some typical informa-
tion requested could be the unique identification number of the object involved or the robot
assigned to execute the task. According to the description of the architecture of MRS devel-
oped by Bryson [10], different layers of the architecture have to be accessed to obtain the
necessary information. Figure 4-6, presents an example of the functions grouped in the
Utility unit.

Sample Of

Interface
/ Functions
bool IsRobotAvailable(int ID);
int GetNumberOfRobots();

int GetObjectGoalPositionID(int GoalPositionID);

— =T

=

Different Layers
of
MRS

Workcell Model

Figure 4-6. Example of the Utility unit.

48

Having described the overall architecture of the TPC and the operation of every unit com-
posing that module, we proceed to the analysis of the software structure. Object-oriented
principles dictate a modular design which will be presented in the following sections.

4.4 Design of Internal Units of the TPC

In the following sections we will divide the problem space into two major software sub-
systems that will be analyzed separately. These subsystems represent the framework which
is expected to handle the requirements that we have for the TPC. By addressing the soft-
ware synthesis of the components involved individually, we present the expandability and
the adaptability demonstrated by each of these modules via the proposed software design.
We begin with the description of the first subsystem.

4.4.1 Controller

Controller is the subsystem for achieving the activation of an action pattern. It is the soft-
ware layer that connects the TDC and the TPC. In fact, it provides a way to distinguish
between the different task descriptions coming from the TDC, and to provide a mapping to
the corresponding action pattern. So the input to the subsystem is a task description and the
output is the corresponding action pattern. In order to isolate the algorithmic details of these
functionalities from the main component, the Controller uses the collection of classes asso-

ciated as shown in the class diagram in Figure 4-7.

CACTIONCONTROLLER class:

The CACTIONCONTROLLER is an abstract class that inherits its member functions to the
CMYACTIONCONTROLLER class. It provides a simple interface to operations while the
implementation of the actual functions is given in the CMYACTIONCONTROLLER class. By
forming this set of virtual functions in the CACTIONCONTROLLER class, we will be able in
the future to replace, if necessary, the existing implementation in the CMYACTIONCON-
TROLLER class while keeping the same interface in the CACTIONCONTROLLER class. In
addition, it has a relationship “accesses” with the abstract class CACTIONPATTERN of type

49

Association. Moreover, the association is one-to-many, since one instance of the class
CACTIONCONTROLLER can be associated with many instances of the abstract class CAC-

TIONPATTERN.

CACTIONPATTERN class:

This class is also an abstract one, and represents a common interface to all the action pat-
terns that are implemented in the TPC. It provides a collection of definitions of virtual func-
tions that will permit, for the same function, different implementations to be provided from
the different action patterns. For instance, we have several action patterns, all of them have
the BinaryConstraints() method but each one implements it differently. This way of orga-

nizing our software structure creates the flexible design we need.

1 +CActionController():void ,
\ +~CActionController) void
, YActivateTask{) :void

, FDeAcfivateTask() void
| +Dispafcher() void

accesses

CMyActionController

T+ CActionPatterns() void |

, t~CAcfionPatterns{):u'oidl
' +NefVariable():-void '
! +Binary Constraints() void
« +Unary Contraints(}-void ,

Figure 4-7, The class diagram for the Controller subsystem

50

CMYACTIONCONTROLLER class:

The CMYACTIONCONTROLLER class simply provides the algorithmic details for the
abstract class CACTIONCONTROLLER.

4.4.2 The Action Pattern Handler

The second major subsystem of the our problem space is the Action Pattern Handler. This
is the part responsible for forming and examining the action pattern required for a certain
task description. In fact, it has the responsibility for performing the analysis of every action
pattern, communicating with MRS to retrieve information about the task that has to be
accomplished and also, providing solutions in the cases where the constraints are not satis-

fied in the constraint net.

The Action Pattern Handler subsystem receives as input from the Controller the type of
pattern that has to be used. According to the type of pattern a constraint net gets generated.
We note here that each pattern has been pre-assigned with a certain constraint net structure.
That structure gets instantiated when the corresponding action pattern gets called. By
instantiating a certain constraint net structure, we automatically generate the group of vari-
ables that are included in the structure and we assign to them values. These values come
from MRS that has to be accessed (e.g. the identification number of a robot). After the vari-
ables have been created and a set of values has been assigned to them, the Action Pattern
Handler proceeds to the next step which is the analysis of the constraints that are estab-
lished among those variables. The Action Pattern Handler subsystem does not provide a
general solution to all the unsatisfied constraints that are detected during the tracing of a
constraint net structure. The process of examining a certain constraint net could very easily
result in a situation where a solution cannot be provided automatically by the system itself,
and the user has to intercede in order to address the difficulty that has occurred. The class
diagram in Figure 4-8, represents the software components of the Action Pattern Handler.
In addition, some definitions of the functions in these classes are also included in the class
description in order to give a broad picture of the services that every class provides. During

the analysis of every class

51

CMaove Obj_Pattern : CActionPatterns :
 fabstractp ________ i, hasa
+CMoveObj_Patter():void b e e e e :
+CMoveObj_Pattem():void 1 +CAcfionPatterns() void
+NetVariable()-void « +~CActionPatterns() void
+BinaryConstraints():void \ +NetVariable():void :
+UnaryConstraints():void : +BinaryConstraints() :voigd £
+HsAgentAvailable():void ' +Uhnary Contraints(}void! | CINetVariable —
+IsGoalPositionBlocked():void to-- N ORTS ?: ---- + | ftenplate}
+IsActualPositionBlocked():void
+AgentGoalPos_WithinReach():void
+AgentActualPos_WithinReach():void
1 —

CPlacePalleie Patiern CWeldObj Pattern

+CPlacePallet():void CWeldObj_Pattem():void

+CPlacePallet()-void ~CWeldObj_Pattern():void

+NetVariable():void NetVariable():void
+BinaryConstaints():void || BinaryConstraints():void
+UnaryConstraints():void || UnaryConstriants():-void
HsAgentAvailable():void || [sAgentAvailable():void
+sPallet_InPosition():void | [[sObj_1_InPosition():void
+IsPallet_Blocked():void IsObj_2 InPosition():void
AgentWeldingSpotsl _AllowedSpots():void

1 1 AgentWeldingSpots2_AllowedSpots():void
pecesses AgentWeldingSpots!_WithinReach():void
accesse% accesses AgentWeldingSpots2_ WithinReach():void
accessef .]
accesses tcoesses
I oy
CSOLVER CActionPlanUTIL
- +CActionPlanUTIL):void
fgggzgm)m“? g +CA ctionPlanUTIL ()-void
s comsgrRég&vb?}r MTevboot | |1CRECKROBOISTATUS()bo0l
- -MT()boa +CheckGoalPosition():bool
+B_CONSTRAINT MT():bool p
+GetNumberofRobots():int
+U_CONSTRAINT_WT():bool +GetRobotsID id
+B_CONSTRAINT_WT():bool etRobotsIDs()void
- — +GetEndEffectorID():void

+U_CONSTRAINT PT():bool
+B_CONSTRAINT_PT():bool

Figure 4-8. The class diagram for the Action Handler System

52

individually, we will be able to acquire a better understanding of the dependencies that we
establish among them and their contribution to the overall software architecture of TPC.

CMOVEOBJ_PATTERN class:

This class represents the action pattern responsible for modeling the task of moving an
object in the workcell. Basically, it contains all the variables and all the constraints that
must be satisfied in order for the entire action pattern to be executable.
CMOVEOBIJ_PATTERN class is responsible to assign values to the variables of its constraint
net. This can be achieved by accessing the CACTIONPLANUTIL class, which contains all
the definitions of functions for retrieving information from MRS. Then the
CMOVEOBJ_PATTERN has to examine every unary and binary constraint in the pattern. The
evaluation of both types of constraints will definitely require accessing MRS. For instance,
a typical constraint could be whether or not, the position of a certain object is within reach
for a specific robot. Since MRS contains the algorithmic tool to calculate inverse kinemat-
ics [6],[10], we pass the information required (e.g. robot ID, object ID etc.) and we let MRS
to do the processing. In case where the specified robot cannot reach the target, the
CMOVEOBJECT_PATTERN will have to try to solve the problem, by calling the CSOLVER.
Since we are working on a multi-robot environment, the CSOLVER will automatically
assign a different robot as active and will return control to the CMOVEOBJ_PATTERN class
which will try to solve the pattern with the new robot as active. As we can see we try to
make CMOVEOBIJ_PATTERN a self-defined and self-contained structure. What we mean is
that it defines itself all the variables and the constraints it needs. By doing that, we force the
class to a minimum number of external dependencies. To be more precise, the relationships
between CMOVEOBJ_PATTERN and CSOLVER, CACTIONPLANUTIL, are “accesses” of type

Association, and moreover, all of them are one-to-one relationships.

CWELDOBIJ _PATTERN class:

This class follows the same design principles as those described above. It is responsible for

modeling the task of welding two objects together. The objects could be single objects or

53

composites. Composite objects are those that have been produced by the welding of two or
more single objects. This class is also associated with the CSOLVER and the CACTIONPLA-
NUTIL with Association type of relationship.

CPLACEPALLET PATTERN class:

The CPLACEPALLET_PATTERN is similar to the CMOVEOBJ_PATTERN class not only on the
design principles that it follows but also on the type of action pattern that it models. This
class is responsible for modeling the task of placing the welded object in the pallet which
is placed at a certain position. The purpose of distinguishing this task to a separate model
is that it involves a set of constraints that cannot be generalized and therefore we cannot use
the class CMOVEOBJECT_PATTERN to mcdel that pattern. In addition, we do not want to
make any class very complex just because we want it to model several actions. By using
CPLACEPALLET_PATTERN class, we create a more precise model of the task that the robots
have to execute. Once again, this class is associated with CACTIONPLANUTIL and

CSOLVER classes.

CSOLVER class:

This class undertakes the responsibility for solving the unsatisfied constraints that are
detected during the analysis of each action pattern by the corresponding class. The class
groups the solutions that it offers based on the action pattern that requests a solution. For
instance, we can see in Figure 4-8, function definitions of the type: U_CONSTRAINT _MT()
and a U_CONSTRAINT_WT(). The first function definition is responsible for handling the
requests for solutions to unsolved unary constraints coming from the class responsible for
modeling move-object tasks. The second is responsible for handling requests for solutions
also to unary constraints but coming from a different class. In fact, for the second case the
requests are coming from the class responsible for modeling weld-object tasks. Moreover,
the CSOLVER class “decides” on the type of solution that a certain constraint requires. We
should note that its decisions are based on a set of predefined rules that exist. In the case
where the solution requires a new action pattern to be involved, the CSOLVER communi-

cates with the Controller subsystem according the procedure described in Section 4.3.2.1.

54

CACTIONPLANUTIL class:

The CACTIONPLANUTIL class hosts the interface of the TPC with the rest of MRS. It pro-
vides a collection of static function definitions that provide a way to send and receive infor-
mation to and from different layers of MRS. Typical items of information are robot
identification numbers, number of robots available in the workeell, object positions and ori-

entations, etc.

CINETVARIABLE class:

The CINETVARIABLE class is a template [1] class that allocates space to construct the soft-
ware structures that will represent the variables in the constraint nets. Basically, this class
creates arrays of different types for storing the entities that the variables represent on a con-
straint net. Elaborating a bit more on this point, we will give an example. Let us consider a
variable on a hypothetical constraint net, that has to keep a record of all the robots that are
present at a certain point in time in the workcell. That variable will be an object of the class
CINETVARIABLE. The requirements demand that the CINETVARIABLE allocate space to its
object, let us call it 4gent, in order to store all the identification numbers of the robots in
the workcell. Again referring to Figure 4-8, we see the relationship between the CINET-
VARIABLE and CACTIONPATTERN to be an Aggregation since every instance of the class
CACTIONPATTERN “has a” collection of CINETVARIABLES.

To recapitulate, the two subsystems that we have to join together are the Controller and the
Action Pattern Handler. When a task description is passed from the TDC to the CACTION-
CONTROLLER, the type of action pattern required is identified. According to the type of
action pattern that gets selected, the corresponding objects of CINETVARIABLE class are
instantiated and the examination of the constraints involved gets initiated. During this pro-
cess we have continuous access to different layers of MRS via the CACTIONPLANUTIL, in
order to get the values for the variables and to check the constraints. When we come across
an unsolved constraint the CSOLVER gets signaled to handle that constraint. The solution
could be either a new value for the variable that the unsolved constraint depends on, or it
could be a new action pattern that has to be called in order to solve the problem. In either

case, all the constraints must be satisfied in order for the action that the action pattern

55

models to be executable. The following class diagram shows the entire software model that

joins the two subsystems together (Figure 4-9).

[1

Contfroller

! CActionPatieras
' {abstract}

accesses

CMyActionController

1

CMove Obj_Pattern

CINetVariable

{template}

CPlacePallet Patitern

Figure 4-9. The class diagram that joins two subsystems together

1 1 X
1 CWeldOhj_Pattern accesses \'\
accesses \\
accesses 1 [accesses \
Ay
\
&1 1 '1
accesses CAcionPLanUTIL
CSOLVER ~aTEEsses
1 1
e
\ :
R / MRs [€7°
/
Action Pattern Handler |/

56

4.5 Behavior and Interaction in the TPC

In the following section we will present an example of the dynamic aspect of the sub-
systems. The process we have selected to present with a sequence diagram demonstrates
the interactions that occur in order to form a constraint net with five variables. We focus on
the construction of five objects of type CINETVARIABLE and also to load the corresponding
values from MRS.

4.5.1 Sequence Diagram for Instantiating Variables

In Figure 4-10, we see the object CACTIONCONTROLLER to send a message, MOVE_OBJ,
to the object CACTIONPATTERNS containing the type of action pattern that has to be trig-
gered. The last one receives the message and creates an object CMOVEOBJ_PATTERN. As
soon the pattern is created, all its variables have to be generated and also to be assigned with
the appropriate values from MRS. We can see this process by looking at the messages that
are passed between the objects CMOVEOBJ_PATTERN and CINETVARIABLE. In addition,
we have calls being issued from the CMOVEOBJ_PATTERN to the CACTIONPLANUTIL.
These messages are requests for the values of the variables that the constraint net requires
for that pattern. We point out that the object CACTIONPLANUTIL accesses different MRS
layers to retrieve the information. This is not shown since these layers are external to our
subsystem. Moreover, to realize the interactions between the object CSOLVER and the rest
of the subsystem, we assume that a certain constraint of the pattern is validated. In fact, the
constraint is an unsatisfied one, which means that the CMOVEOBIJ_PATTERN has to call the
CSOLVER to report the situation. Another assumption that we make is the following: in
order to solve the problem, a new action pattern has to be triggered. That can only be
achieved through the CACTIONCONTROLLER which is called by the CSOLVER. This small
sequence of messages gives us a general idea of the flow of messages between the different
objects. Obviously many other possible sequences exist but it is impossible to present all

of them in the thesis.

57

wo[qo3d JUTexISU0 Y} AT0S 03 UkeTiRd UOKOR MAU B B) 10AJ0S]) oY
1 1 L}

<

JUTBIISUO)) PaysIesu) 103 I9AJ0G 0D X
!

" ; "
|) !
1) t
t 1 1 '
i ; > " !
“ < sed 100 | | "
m D m m “
|
“ " wpawD “ "
1 J 1 |
! ! Loz?? §,01q8Me 4 1s9nbay ! m m
m m " “ VOISO JeNnjoR JeA ! | |
| | _ > " |
)) onEA 190 ; _ _
| | " [} | | |
“ | onfeA so[qeme j 1sanboy " " "
m m m “ UOTISOJIe03 FeA m _ _
' I " i ‘818Y) S1) 1. g ‘umoys jou st
; P SRA 1D " TLLAURIGUOBY) 8U) 4q SY 8Y} 0} 558300 By}
! Stea sepqume 1senbey ! we18e1p sauanbas aaoqe ayy uj
1 1 | | T Y
' ' X + J0%093-pue oA | X '
| ! Il v | !)
“ " 9RA 100 “ " "
m m ._.oag § 9]QRIR A amozmo oy m m m
" " A 100fqo @A “ "
| | ; >, " |
" | oheA 190 _ _ _
1 1 | |
" " 402.5 §,0[qu1e A 1sanbay ! " !
“ " " « 1u98n oA " " "
" " " | “ - |
! " ! t 190 sa0 weneg ;) [0 JAOW
' | [} | “ ‘ “
} | ' ! t)
SHHAT0S) CTILAWETJUOTAOY] || 3THBFAVAISNIS || ‘uxd32®¥d [qODAOH) || :Suxa3a38dUOTAOY) || :ISTTOAIUCIUGTADY)

Figure 4-10. Sequence diagram for instantiating Variables

58

4.6 Summary of Task Planning Subsystem

The Task Planning Component (TPC) is the software module that is assigned with the
responsibility of analyzing the task descriptions generated from the Task Deduction Com-
ponent. It receives as input the task descriptions that TDC produces and by performing cer-
tain analysis decomposes them into well defined sets of primitive actions. This
decomposition is done by employing certain predefined structures called Action Patterns.
As a result of this process generates a software model of the plan that has to be adopted in
order to execute the specific task. This software model is called a Constraint Net. TPC sup-
ports mechanisms of analyzing both the Action Patterns that are involved and the Con-
straint Nets that comprise each Action Pattern. The Task Planning Component is composed
of a number of basic building blocks, each one assigned with specific responsibilities.
These are: the Controller, the Action Dispatcher, the Collection of Action Patterns, the
Constraint Solver and the Utility. Moving further to the description of the software archi-
tecture, TPC can be seen as two subsystems: the Controller and the Action Pattern Handler.
These two subsystems analyze the task description that is provided as input and generate as
output an ordered set of actions that the robot(s) will have to follow in order to accomplish
the task. In the following chapter we will study a complete example that addresses an
abstract description of a welding operation of two objects and in which both TDC and TPC

are involved.

59

Chapter 5
Case Study

The purpose of this chapter is to show a complete example that will demonstrate the func-
tionality of the two components, TDC and TPC, that were analyzed in detail in the previous
chapters.The operation that will be used as an example is the welding of two metal pieces
together. The purpose of this example is to focus on the operations that the two modules
perform in order to produce a set of primitive steps that the execution has to follow in order
to plan successfully the specific action. In the first part, we start with the activities that the
user performs in the VR environment and what effect these actions have on the TDC. In the
second part, we describe how the corresponding action (welding operation) that gets gen-
erated from the TDC is passed to the TPC and is analyzed in terms of the corresponding

action pattern.

5.1 Analysis of the Scenario

The process that we address in the following sections consists of multiple stages. At the
beginning, the user in the VR environment has to “select” the parts that will be welded and
bring them, one by one, to the location in the 3-D environment that is assigned to be the
welding position. The system recognizes the actions performed and helps to plan the pro-
cess of welding. Although the process might appear to be simple, several points have to be
taken into account. The user does not have to mcve the parts to the goal position directly.
The system allows the user to move them around in the workspace in order to organize its

workspace in a more natural way, before it proceeds to the welding process. In order for a

60

task description to be generated, certain steps have to be followed. In fact, the user has to
bring first one part (any one) in the welding location then the other, and only after that the
task description or action as described in Section 3.3.1.6.3, Weld_Metal_Part, gets gener-
ated. Since the task that the user is trying to accomplish is recognized by the system, what
has to be done next is the analysis of the task description by the TPC. At this stage, the

system processes the task description and generates a set of primitive actions.

5.2 Describing the Workecell

Before proceeding further, we should describe briefly the environment and the objects that
are present. This is quite important since several of the properties that the objects and the
agents (robots) demonstrate are used by the TDC and TPC. We assume that MRS, at a very
specific instance, contains three robots and four objects. The four objects correspond to the
pallet where the welded parts will be placed, the two metal parts that have to be welded and
a third object that we introduce purposefully, to demonstrate how the system will behave

in terms of dealing with obstacles.

Every robot in MRS has several properties that govern its operation, e.g., its status that
identifies if it is available to perform a certain task, has a unique identification number, can
carry certain objects, etc. In addition, every object in MRS also has certain principles that
dictate a certain behavior, e.g., has a set of pre-defined points that can be grasped from, can
only be grasped by certain grippers, etc. In addition, all the objects in MRS have dual 3D
representations. The first one, is a solid 3D rendered object, and the second is a wireframe
representation. When the user manipulates an object in the workcell, he manipulates its
wireframe representation while the solid one remains at the position and orientation that the
physical object is located. The solid 3D model of an object is moved only when the actual
manipulator acts on it, giving in that way a visual effect on the motion of the physical
model. This is very useful since it provides the operator with the capability to move the vir-
tual object in the workcell, while having at the same time, knowledge of where the physical

object is located.

61

All these properties play a significant role in order for the TDC and TPC to function prop-
erly. In Figure 5-1, we present the situation we have in a graphical way, showing some of
the properties that the entities in MRS demonstrate just before we start. We can see the cir-
cular loops that represent the workspace of each robot and the objects that are placed within
the robots’ workspace. For demonstrating certain issues, we assume that the welding loca-

tion is at the same as where the obstacle is located.

The closed loops
represent the
workspace of robot

-,
-,

Object Properties:

e D Number

Current State {Grasped / Released / Undefined}
Set of Grip Points {1,2,...n}

Can be Grasped by Grippers {1,2,...k}

— | Robot Properties:
e ID Number
e Current State {Available or Not}
e Gripper Attached {Y/N}
e Can Carry Objects {1,2,...p}
[

Figure 5-1. The hypothetical setup of the workcell

62

5.3 Joining the Two Metal Parts Together

Having the overall picture of the workcell, we proceed to the first step which is the deduc-
tion of the task that the user wants to perform. The user through the VR interface selects
the 3D model of metal part 1. This is a physical event that gets detected by the User Action
Detection unit of the TDC (see Section 3.3.1.1), the identification number of the object is
then retrieved and by following the procedure we described in Section 3.3, the correspond-
ing Petri Net structure is selected to be examined. We have seen in Section 3.3.1.6, the
description of the Petri Net structure responsible for generating two different actions
“Move_Metal_Part” and “Weld_Metal_Part”. In the description that follows we will be
referring to Figure 3-5 that shows this structure.

We assume that the state of the metal part 1, at the beginning is at the state Free Position
(see Section 3.3.1.6.1). So, when we load the Petri Net we start from that state, referring to
Figure 3-5, State(2). When the user “GRASPs” the metal part 1, Transition(l) gets sat-
isfied and the state of the object changes to State(4) which is Metal_Part In Motion. At
this state, the user drags the wireframe representation of the object in the 3D virtual envi-
ronment. Assume that the user issues a “RELEASE” signal to the Metal_Part when it
reaches the predefined welding location. The TDC detects the action the user has performed
and by continuing the tracing of the Petri Net, it moves from State(4) to State(5) which
represents the object’s state, Metal_Part Released.

This state initiates a sequence of requests to MRS to check whether or not the location
where the wireframe was released is inside the workspace of any of the robots or not. In
addition, it checks whether or not the position released is a welding location. If it is, checks
if any other object that metal part 1 can be welded with, is at the welding location too.
Since the user released the wireframe at a welding location, metal part 1 is the first object
that arrives at that location and thus Transition(4) is fired and the state where the object
moves to is Free Position. We can see that no action is generated although the user moved
one of the two objects to the welding location. This is a design decision that we made in

order to make sure that before we initiate the action “Weld_Metal_Part”, both objects have

63

to be moved to the welding location by the user. Subsequently, the user “Selects” the metal
part 2, as the next object to manipulate. The steps that are followed are exactly the same
up to the point where it reaches State(S). Since now we have already one object placed at
the welding location, Transition(5) gets fired and the state of the object is State(1) while
the action generated is Action(2). The resulting object after the welding will be a new
object that will be a composition of metal part 1 and metal part 2 and will be assigned a
new identification number. Its initial state will be State(1), meaning that it is already in
Welding Position.

In the case where the user releases metal part 2 at a location different from the welding
position, then assuming that the location is within the workspace of at least one of the
robots in workcell, Transition(3) is fired and the state of the object goes to State(2), gen-
erating in the meanwhile Action(1), which is Move_Metal_Part. What this means, is that
one of the robots will have to move the metal part to the location specified by the user, while
the state of the object is Free Position. After that, the user can select again the same object
(metal part 2), from the location previously released and this time move it to the welding

location where the first metal part is already located.

Note here that, although the welding location is occupied by a different object-obstacle, the
TDC does not block the user from continuing in describing the task that has to be achieved.
What actually happens, is that it lets the TPC to handle that problem at a later stage by intro-
ducing proper planning. This is quite useful since the user does not have to worry about
moving the obstacle to one side and then proceed, but can simply go ahead and start

describing the task that is needed.

As soon as the action Weld_Metal_Obj is generated by the TDC, that signal is sent to the
Action Controller unit of the TPC. The entire process in the TPC is presented in the follow-
ing sections, where the decomposition of the Weld_Metal_Obj task description takes

place.

64

5.3.1 Tracing the Welding Pattern
The task description for welding metal part 1 and metal part 2 involves the analysis of

the related action pattern. In Figure 5-2, we can see the action pattern that corresponds to
the task description Weld_Metal_Obj. When we load this structure, the variables that are

contained in the action pattern are assigned with the entities that are involved in the task.

The assignment is done for some of the variables directly and for the others indirectly.
When we say directly, we mean that they are read directly from the MRS workcell setup to
the constraint net variables. Table 5-1 and Table 5-2, show the assignment of values that
we make to the variables that the constraint net has. In the first table we can see the vari-
ables ?object_1, ?object_2 and ?agent. The first two are directly assigned from the MRS
workcell with the values of metal part 1 and metal part 2. The third one does not get
assigned with a single value, but gets assigned a range of values. The value of the robot that
itreceives changes according to the robot that is active at a certain instant. This is the reason
we characterize this assignment as not a direct assignment. In a similar way, we assign the

values for the variables presented in the second table.

As soon as all the variables are assigned with values, the constraints start to be evaluated.
First we examine the unary constraints then the binary. The unary constraints we have are:
(1)?IsAgentAvailable, (2)?IsObj_1_InPosition and (3)?IsObj_2_InPosition. The first
one evaluates whether or not there is an agent (robot) which is available to undertake the
task. If the agent selected is not available, that means the constraint is false. The Constraint
Solver is passed the unsolved constraint, and automatically assigns a different robot to the
variable ?agent. After that, the same unary constraint is re-evaluated. If that constraint or
any other cannot be solved, the process terminates and the user is informed about the situ-
ation. Usually, in a welding operation, there is a dedicated welding robot. That means,
another robot cannot take over the welding operation in the case where the dedicated robot
has its status marked not available. What happens then is that since the Constraint Solver
cannot solve the problem, it returns control to the user in order to solve the unsatisfied con-

straint. In the case where the unsatisfied constraint comes from the fact that the agent is

o IsObj_1_InPosition

Alligned

Alligned

ObjectlSet_Welding_Spots_I_AllowedSpots

AgentWeldingSpots_1_WithinReach

AgentWeldingSpots_1_Suitable

IsAgentAvailable

65

AgentEndEffector_Attached

EndEffectorAgent_Attached

AgentWeldingSpots_2_Suitable

AgentWeldingSpots_2_WithinReach

Object2Set_Welding_Spots_2_AllowedSpots

IsObj_2_InPosition ™~ ™

— N

Object20bject]_Matching

Figure 5-2. Action Pattern for welding operation

Object1Object2_Matching

66

involved to another welding process and that is why its marked not available, the user can
either interrupt that process or wait until it is completed. In the case where the agent cannot
reach a specific point then the user moves the dedicated welding robot to a new position.
With this example we saw how the user can try to solve the problem when the system

cannot solve it by itself.

Let us assume that for this example Robot 3 is available to perform the welding operation,
so the variable ?agent will be assigned that value and we proceed to the next constraint.
The next unary constraint is ?2IsObj_1_InPosition. We should point out here that the con-
straint refers to the physical object - whether it is at the welding position or not.

Table 5-1. Part a) List of variables for welding operation - Action Pattern

Variable ?object_1 ?object_2 ?agent
Value metal part 1 metal part 2 set of robots
Direct yes yes no

Table 5-2. Part b) List of variables for welding operation - Action Pattern

Variable ?set_of_welding_spots | ?set_of_welding_spots ?end_effector
1 2
Value set of welding spots in set of welding spots in according to the robot
metal part 1 metal part 2 assigned
Direct no no no

The answer to that is no, since only the wireframe representation is placed at the desired
location. Again the Constraint Solver is called and the solution that it provides is to call the
Action Controller to generate an action pattern which will move the actual object to its
welding position. We observe that the tracing of the action pattern associated with the weld-
ing operation is paused. The validation of the remaining unary and binary constraints will
continue later. The control will then return from the Constraint Solver with a solution for
the unsatisfied constraint. We should note here that in the case where no solution can be

provided for the unsatisfied constraint, no other constraints will be tested for validity. The

67

action pattern that is assigned with the responsibility to plan the process of moving the

actual object to its welding location will be presented in the following subsection.

5.3.2 Solve an Unsolved Constraint - Call Move-Object Pattern

The unsolved constraint is that the metal_part_1 is not in welding position, that means the

move-object action pattern has to be called in order to resolve the unsolved constraint. The

structure that represents the associated action pattern is shown in the following diagram

EndEffectorObject_Occupied

IsGoalPositionBlocked i —

(Figure 5-3).
.'f’
AgentObject_Suitable -1 f
s
EndEffectorAgent_Attached -

\

EndEffectorGripPoint_Suitable

GripPointEndEffector_Suitable

IsAgentAvailable

AgentGoalPos_WithinReach

\ IsActualPositionBlocked 1

AgentActualPos_WithinReach

AgentEndEffector_Attached

~

GripPointObject_AllowedPoint

Figure 5-3. Action Pattern for transporting an object

68

When the structure is loaded, the same procedure as before gets initiated. All the variables
that are contained in the structure get assigned with the appropriate values. For instance,
the variable ?agent can get assigned with any of the values from the set of robots except
Robot 3 which has been assigned for the welding task, and so is marked as unavailable.
The ?object variable will be assigned with the value metal part 1, the ?end_effector will
get the value gripper etc. The complete list of the variables and the corresponding values

that they get are listed on Table 5-3 and Table 5-4.

Table 5-3. Part a) List of variables for transporting an object - Action Pattern

Variable 2o0bject ?goal_peosition ?actual_position
Value metal part 1 wireframe’s position solid’s model position
Direct yes yes yes

Table 5-4. Part b) List of variables for transporting an object - Action Pattern

Variable 2agent ?end_effector ?grip_point

Value set of robots gripper set of grippoints the
(Not Including Robot 3) object has

Direct no yes no

After assigning the appropriate values to the variables, we proceed with the validation of
the unary constraints. The unary constraints in the specific action pattern are: (1) ?IsAgen-
tAvailable, (2) ?IsActualPositionBlocked, and (3) ?IsGoalPositionBlocked. The first
one evaluates whether or not a robot is available to be assigned with the specific action,
same as before. The second checks whether or not the position where the metal part 1 is
currently located, appears to be blocked or not by another object. The third constraint
checks whether or not the position where the wireframe is located is blocked. In our case
we have the unary constraint (3) to be false, since we placed at the beginning of our sce-

nario, the object-obstacle at the same location where the welding will take place.

The unsolved constraint gets detected and the Constraint Solver unit gets notified about the

unsolved constraint. The solution that it proposes is that a new action pattern will have to

69

be called to move the object-obstacle away from the welding location. Thus, the process of
validating further the constraints of the action pattern responsible to bring metal part 1 to
welding location is paused. The rest of the constraints are validated at later stage. Assuming
that the process of moving the object-obstacle away from the welding location is completed
successfully by Robot 1, we return to the evaluation of the rest of the constraints in the
action pattern responsible for moving the metal part 1 to the welding location. The remain-
ing constraints are binary, so they involve two variables. Their evaluation is required to be
done in a systematic manner. We group all the constraints according to the dependencies
they have to a certain variable (see Section 4.3.1.3), and we examine them sequentially.

Table 5-5 shows the groups that are formed.

Table 5-5. Binary constraint of transporting an object - Action Pattern

Group / Binary Constraint Description

Group 1) AgentActualPos_WithinReach Is the agent within reach of the position where the
physical object is located

Group 1) AgentGoalPos_WithinReach Is the agent within reach of the position where the
wireframe is located

Group 1) AgentObject_Suitable Is the agent suitable for carrying the specific
object (e.g. can carry the load etc.)

Group 1) AgentEndEffector_Attached Is the specific agent equipped with the required
end effector

Group 2) EndEffectorObject_Occupied Is the required end effector associated with a dif-
ferent object.

Group 2) EndEffectorAgent_Attached Is the end effector required available for the robot
selected.

Group 2) EndEffectorGripPoint_Suitable Is the end effector appropriate for the grip point
available

Group 3) GripPointEndEffector_AllowedPoint Is the grip point appropriate for the end effector
available

Group 3) GripPointObject_AllowedPoint Is the grip point that the object can be grasped

from available.

We assume that all the binary constraints that are listed above are satisfied, and Robot 2
gets assigned with the task of moving metal part 1 to the location specified. After com-

pleting this, we return to the action pattern that generated the unsolved constraint. In our

70

case, we return to the pattern responsible for the welding operation. From Section 5.4, we
recall that the unary constraint ?IsObj_1_InPosition, was false and this forced the Con-
straint Solver unit to invoke the move-object action pattern. Continuing the process of
examining the unary constraints of the welding pattern, we see that ?2IsObj_2_InPosition
is also false. This again through the same process calls 2 new move-object pattern in order
for metal part 2 to be placed at the desired location. We assume that this is done, omitting
the description since it follows exactly the same steps as before. After that the control
returns to the welding pattern which now continues with the binary constraints. The next

section elaborates on this.

5.3.3 Binary Constraints of the Welding Pattern

Since the unary constraints of the welding pattern have been examined, we proceed to the
validation of the binary constraints. Table 5-6, shows the groups of binary constraints that

are formed.

Tablie 5-6. Binary constraints of welding two objects - Action Pattern

Group / Binary Constraint Description

Group 1) AgentWeldingSpots_1_WithinReach Is the agent within reach of the spots on object 1
that have to be welded

Group 1) AgentWeldingSpots_1_Suitable Is the agent appropriate for the type of welding
that object 1 requires

Group 1) AgentWeldingSpots_2_WithinReach Is the agent within reach of the spots on object 2
that have to be welded

Group 1) AgentWeldingSpots_2_Suitable Is the agent appropriate for the type of welding
that object 2 requires

Group 1) AgentEndEffector_Attached Is the agent selected equipped with the proper end
effector

Group 2) EndEffectoAgent_Attached Is the end effector required assembled at the
selected agent

Group 3) Aligned Is the set of spots 1 aligned with the set of spots 2

Group 4) Aligned Is the set of spots 2 aligned with the set of spots 1

Group 5) Object2Set_Welding_Spots_2_Allowed Does object 2 hawve the allowed welding points

Group 6) Object] Object2_Matching Does object 1 match with object 2

Group 6) ObjectlSet_Welding_Spots_1_Allowed Does object 1have the allowed welding points

71

After all the binary constraints have been checked and validated, Robot 3 undertakes the
task of welding metal part 1 which is manipulated by Robot 2 and metal part 2 manipu-
lated by Robet 1 which in the meanwhile has removed the obstacle from the welding loca-
tion before moving metal part 2 there. So we can see very briefly how the distribution of
responsibilities was done automatically, without input from the user interfering. Let us now
go one step further in order to complete our scenario and let the user in the VR space
“GRASP” the welded object and place it on the pallet. The next section describes this last
part of our case study.

5.4 Moving Welded Object to the Pallet

After the object has been welded, the user “GRASPs” the new object that has been formed
and moves its wireframe representation to the place where the 3D model of the pallet is sup-
posed to be. The TDC detects the user’s actions and according to the type of object, the cor-
responding Petri Net structure is retrieved. The trace of the Petri Net described below refers
to Figure 3-5. The state of the composite object is State(1), which is Welding Position.
When the user selects it, Transition(l), is triggered and the state of the object moves to
State(4). Then the user drags the object in the virtual space and places it on the 3D model
of the pallet. Transition(2) is fired and the object is moved to State(5). Since the place
where the object was released is the pallet (that means inside the workspace), Transition(3)

is fired and Action(1) is generated while the state of the objects moves to State(2).

As soon as the Move_Metal_Part task description is detected from the TPC, the appropri-
ate action pattern is selected. The Action Controller triggers the pattern dedicated to handle

the positioning of the composite object on the pallet.

5.5 Tracing the Placement-to-Pallet Pattern

The corresponding action pattern that is responsible to place the composite object on the
pallet is given in Figure 5-4. The process is similar to the one before. The variables are
assigned with certain values and the constraints are examined, first the unary then the

72

binary. The Table 5-7 and Table 5-8 give a list of the variables that are involved in this pat-
tern description. The ?agent that will undertake the responsibility of placing the composite

7 i EndEffectorGripPoint_Suitable

i IsActualPosition_Blocked %

L

H 7 i GripPointObject_AllowedPoint

I A G i IsAgentAvailable

IsPallet_InPosition

IsPallet_Blocked

EndEffectorAgent_Attached

AgentCompound_CanCarry

AgentPallet_WithinReach

AgentActualPos_WithinReach | — ‘| AgentCompound_Safe

i

IsCompound_Safe

Figure 5-4. Action Pattern for placing a compound object on a pallet

73

object on the pallet could be one of the robots actually holding the composite object
already. If this is the case, it is required that the other robot would release the object in time.
For the rest of the variables the values that are assigned are quite obvious. The
?compound_object takes as a value the identification number of the new object, the
?end_effector is assigned with the gripper and so on. The unary constraints that can be
observed are: (1) IsAgentAvailable, (2) IsActualPositionBlocked, (3)
IsCompound_Safe, (4) IsPallet_InPosition and (5) IsPalletBlocked. The first and the
second have already been discussed, the third one investigates if the welding has been per-

formed properly and the compound object is properly welded.

Table S-7. Part a) List of variables for transporting compound object to pallet - Action Pattern

Variable ?compound_object ?pallet ?actual_position
Value metal part | + location where 3D welding position
metal part 2 model of pallet is
located
Direct yes yes yes

Table 5-8. Part b) List of variables for transporting compound object to pallet - Action Pattern

Variable ?agent ?grip_point ?end_effector
Value set of robots gripper set of grippoints the
object has
Direct no yes no

The fourth and the fifth unary constraints validate if the pallet is within reach of the agent
assigned to move the compound object and whether the pallet is blocked by a different
object which the robots will have to move before the next can transport the compound
object. After the unary constraints are examined, the binary constraints have to be vali-

dated. The list of the binary constraints for the action pattern are listed in Table 5-9.

74

Table 5-9. Binary constraints for placing compound object on the pallet - Action Pattern

Group / Binary Constraint

Description

Group 1) AgentActualPos_WithinReach

Is the agent within reach of the position where the
physical object is located

Group 1) AgentPallet_WithinReach

Is the agent within reach of the position where the
pallet is located

Group 1) AgentCompound_Safe

Is it safe for the agent to carry the specific object

Group 1) AgentCompound_CanCarry

Is the agent capable of carrying the weight of two
objects

Group 2) AgentEndEffector_Attached

Is the agent equipped with the proper end effector

Group 2) EndEffectorAgent_Attached

Is the end effector required available for the robot
selected.

Group 2) EndEffectorGripPoint_Suitable

Is the end effector appropriate for the grip point
available

Group 3) GripPointEndEffector_Suitable

Is the grip point appropriate for the end effector
available

Group 3) GripPointObject_AllowedPoint

Is the grip point that the object can be grasped
from available.

In order to provide a 3D visualization of the actual robotic workcell we present here a

screenshot of the workcell that we have simulated in MRS v2.0 (Figure 5-5). Present are

three different robots, and several metal parts that will take place in the process of welding.

Robot three will be assigned with the responsibility to perform the welding operation while

robot two and one are assigned to bring together the appropriate parts together to the spec-

ified welding location.

Metal Part 3

Robot 1
Puma 560

Metal Part 2

Metal Part 1

Robot 3
GM Fanuc
S420F

Metal Part 4

Robot 2
Puma 760

Figure 5-5. MRS version 2.0, showing three different simulated robots

Welding
Location

76

5.6 Summary of the Scenario

As we mentioned at the beginning of this chapter, the process of planning consists of mul-
tiple stages. Each stage contributes certain amount to the overall plan. We saw that the ini-
tial action pattern that was triggered (welding operation action pattern), called other action
patterns to solve certain unsolved constraints, forcing the planning to move to a second
level. For instance, the welding operation action pattern, invoked two other action patterns.
The first, responsible to move metal part 1 at the welding location, and the second to move
metal part 2 at the same location. Subsequently, the action pattern that was assigned with
the responsibility to move metal part 1 at the specific location called another action pattern
to solve a certain unsatisfied constraint. In fact, the action pattern responsible to move the
object-obstacle is called, causing planning process to move to a third level. The following

diagram (Figure 5-5) shows all these different layers.

[ttt tat ettt ittt 1

i Weld i
i Metal Part 1 & Metal Part2 ;
LEVEL 1
g Move Metal Part 2 at d i Move Metal Part 1 at :
i Welding Location ; Welding Location !
LEVEL 2
oL ,
LEVEL 3 i Move Object-Obstacle away !
% from Welding Location

Figure 5-6. The multi-stage planning of welding operation

77

The numbers presented inside the circles indicate the order in which every action pattern is
invoked. For instance, the welding action pattern triggers the move metal part one action
pattern and has to wait until that second action pattern returns the control. Subsequently, a
third action pattern is invoked, which we assume is executed with success and so control is
returned to level two of planning. The arrow with number three represents that the action
pattern for moving the metal part can now continue. Assuming that there are no unsatisfied
constraints the action pattern finishes and the control returns to the welding pattern (arrow
four). The welding action pattern continues with the validation of the remaining constraints
until it is realized that the second metal part has to be placed at the welding location. Once
that occurs, the action pattern to move metal part two at the welding location is called. After
completing the planning of that process, the control returns to level one so that the welding

operation action pattern can finish with the validation of the constraints that remain.

78

Chapter 6

Conclusions

In this thesis, we have presented the software architecture for the Task Deduction and Task
Planning Components for a Multiple Robot Simulation system called MRS. We began by
providing some background information regarding Petri Nets, the software structure that
we used in our process of development. We have described the utilization of Petri Nets both

in MRS and in other similar applications.

Proceeding from this background, we performed an analysis of the problem space of the
first component that we had to design and implement, namely the Task Deduction Compo-
nent (TDC). We enumerated the basic components that compose its structure and we
described the functions each one is responsible for providing in order to gain sounder
understanding of the underlying software architecture. We then proceeded to describe the
software architecture by providing a complete description of the classes that are designed
and implemented and what responsibilities each one has been assigned. In addition, we
elaborated on the interactions that are established between the different units that the Task
Deduction Component is composed of, giving in this way not only a static picture of the

component but also a dynamic aspect.

Subsequently, we tackled the description of the second component of our project that is the
Task Planning Component (TPC) of MRS. We began with the definition of its functional
requirements, as a black box architecture. We simply identified its input and output func-
tions and we placed it in the overall architecture of MRS. We then went on to describe its

decomposition to the basic building blocks that comprise it. This began by an examination

79

of the generic modules that the architecture of the Task Planning Component introduces.
The services that each module undertakes were addressed next, and the architectural deci-
sions that were made during their development are presented. Moreover, the description of
the software architecture of the task planning system covered the entire collection of classes
that are implemented, the dependencies and the associations that are established among

them, and their interactions both with MRS and with the Task Deduction Component.

Finaily, we looked at a complete example which employed the functionalities that both
Task Deduction and Task Planning Components provide. The example addressed an
abstract description of a welding operation of two objects performed under very specific
domain constraints. The description covers two major parts: (1) the recognition of the
actions that the user performs in the VR space and (2) the proper planning of these actions
by using the functionalities that Task Planning Component provides in order to accomplish

the required task.

In the process of designing the Task Deduction and Task Planning Components, the fol-

lowing architectural decisions were made which are also contributions made by this thesis:

* To encapsulate task descriptions in self-contained Petri Net models.

» To distribute the services required by the Task Deduction and Task Planning Compo-

nents among a collection of self-contained units.

* To make the classes that form the action patterns to share a common interface rather

than provide multiple interfaces, one for each action pattern class.

* To use a simple and generic methodology for evaluating the constraints that are con-

tained within each action pattern.
* To force both Task Deduction and Task Planning Components to communicate with

MRS only through well defined interfaces.

Since both Task Deduction and Task Planning are still under development several limita-
tions exist. The Task Deduction Component can process only tasks that have been pre-

80

defined. In addition, the steps that the user has to follow, in order for the Task Deduction
Component to realize the task one is trying to perform, are very specific and have to be exe-
cuted in certain order. Moreover, the automated Task Planning Component provides solu-
tions only to those tasks that can be modeled with Petri Net structures. The Task Planning
Component provides in all cases a single solution, although there exists situations where
more than one solution exist. Due to all these limitations both Task Deduction and Task

Planning require further research.

6.1 Suggestion for Future Work

It is in the nature of research that the solution of one problem often gives rise to many new
questions or problems. In this section we will introduce suggestions for future work. These

suggestions mainly concern the Task Deduction and Task Planning Components.

We have mentioned in our discussion on TDC that the task descriptions are predefined and
the user cannot modify them during execution. It would be useful to have a graphical tool
component running within MRS where the user could have a visual representation of all the
task descriptions (in the form of Petri Nets) from where one would have the ability to add,

remove or modify task descriptions during execution.

When we talked about TPC we saw that the system evaluates the problem by itself and
comes up with a single solution. Allowing the user to interact with the Task Planning Com-
ponent and let him also participate to the selection of a proper plan, increases the flexibility
of the system. That implies that the Task Planning Component must be able to produce
more than one solution (if the problem has multiple solutions), demonstrate these to the

user, and ask the user to participate (if he or she desires) to the selection of the plan.

In addition, the action patterns that are included in the TPC cannot be altered during the
execution of a certain process. This means that the conditions that govern the execution of

an operation (welding, assembling, etc.) cannot be modified dynamically during the pro-

81

cess. It would be useful to allow the user in the VR space to provide direct input to the TPC
in order to bypass temporarily certain constraints of a specific action pattern. Provided that
the constraints that the user wants to be able to bypass are not critical for the stability of the

system, one could cancel them and proceed with the execution of the specific task.

82

References

[1]

(2]

B3]

[4]

(3]

(6]

(7]

(8]

(9]

Pierre-Alain Muller, The Instant UML, Wrox-Press, Birmingham, UK, 1997.

Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides, Design Patterns: Ele-
ments of Reusable Object-Oriented Software, Addison-Wesley Longman, Menlo
Park, CA, 1995.

Ivar Jacobson, Graby Booch, James Rumbaugh, The Unified Modeling Language
User Guide, Addison-Wesley, Reading, MA, 1999.

Ivar Jacobson, Graby Booch, James Rumbaugh, The Unified Software Development
Process, Addison-Wesley, Reading, MA, 1999.

James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy, William
Lorensen, Object-Oriented Modeling and Design, Prentice Hall, Englewood Cliffs,
New Jersey, 1991.

John Craig, Introduction to Robotics: Mechanics and Control, Second Edition, Add-
ison-Wesley, Menlo Park, CA, 1989.

Charles R. Harrell and Donald A. Hicks, “Simulation Software Component Archi-
tecture for Simulation-Based Enterprise Applications”, Proceedings of the 1998
Winter Simulation Conference, Vol. 2, pp. 1717-1721, 1998.

Scott McMillan, David E. Orin, and Robert B. McGhee, “Object-Oriented Design of
a Dynamic Simulation for Underwater Robotic Vehicles”, IEEE International Con-
Sference on Robotics and Automation, Vol.2, pp. 1886-1893, 1995.

Jacques Ferber, Multi-Agent Systems: An Introduction to Distributed Artificial Intel-
ligence, Addison-Wesley, Reading, MA, 1999.

[10]

[t1]

[12]

[13]

[14]

[15]

(16]

[17]

[18]

[19]

[20]

83

LJ. Bryson, Software Architecture and Associated Design and Implementation
Issues for Multiple-Robot Simulation and Visualization, M.E.Sc. Thesis, University
of Western Ontario, London, Ontario, 2000.

L.J. Bryson, S.M. Noorhosseini and R.V. Patel, MRS vI.0 Users Guide, Concordia
University, Montreal, Canada, 1996.

F. Shadpey, S.M. Noorhosseini, I.J. Bryson and R.V. Patel, “An Integrated Robotic
Development Environment for Task Planning and Collision Avoidance”, Third
Biennial ASME European Joint Conference on Engineering Systems Design and
Analysis, Montpellier, France, 1996.

LJ. Bryson and R.V. Patel, “A Modular Software Architecture for Robot Simulation
and Visualization”, 31st International Symposium on Robotics (ISR 2000), Mont-
real, Canada, 2000.

James L. Peterson, Petri Net Theory and the Modeling of Systems, Prentice-Hall,
N.J, 1981.

Rajesh Mascarenhas, Dinkar Karumuri, Ugo Buy, Robert Kenyon, “Modeling and
Analysis of a Virtual Reality System with Time Petri Nets”, JEEE Transactions on
Robotics and Automation, pp. 33-42. 1998.

Wolfgang Reisig, “Place/Transition Systems”, Lecture Notes in Computer Science-
Petri-Nets: Central Models and their Properties, Part I, pp. 119-141, 1986.

Wolfgang Reisig, “Petri Nets in Software Engineering”, Lecture Notes in Computer
Science-Petri-Nets: Central Models and their Properties, Part I, pp. 63-96, 1986.

Horst Oberquelle, “Human-Machine Interaction and Role/Function/Action-Nets”,
Lecture Notes in Computer Science-Petri-Nets: Central Models and their Proper-
ties, Part I1, pp. 171-190, 1986.

Eckhard Freund and Juergen Rossmann, “Projective Virtual Reality: Bridging the
Gap Between Virtual Reality and Robotics”, IEEE Transactions on Robotics and
Automation, Vol.15, No.3, pp.411-422, 1999.

Juergen Rossmann, “Virtual Reality as a Control and Supervision Tool for Autono-
mous Systems”, Intelligent Autonomous Systems, 10S Press, pp.344-351, 1995.

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

84

E.Freund and J.Rossmann, “Virtual Reality as a Novel Man-Machine Interface for
Intelligent Robotic Systems”, Proceedings of 3rd European Control Conference
Rome, Italy, 1995.

K.Hoffmann, E.Freund, J.Rossmann, “Resourse-Based Action Planning for Multi-
Agent-Systems”, SPIE Conference on Sensor Fusion and Decentralized Control in
Robotic Systems, Boston, Massachusetts,1998.

E.Freund, J.Rossmann, “Intelligent Autonomous Robots for Industrial and Space
Application”, Proceedings of the IEEE/RSJ/GI Intelligent Robots and Systems
IROS’94, Vol.2, Munich, Germany, 1994.

J.Uthoff, U.var der Valk, E.Freund, J.Rossmann, “Towards Realistic Simulation of
Robotic Workcells”, Proceedings of the IEEE/RSJ/GI Intelligent Robots and Sys-
tems IROS’94, Vol.1, Munich, Germany,1994

Yi Yan, S.Ramaswamy, “Agent Based, Modeling and Simulation of Virtual Manu-
facturing Assemblies”, Communications of the ACM, No.8, pp. 78-87 August 1998.

Vijaimukund Raghavan, Jose Molineros and Rajeev Sharma, “Interactive Evalua-
tion of Assembly Sequences Using Augmented Reality”, IEEE Transactions on
Robotics and Automation, Vol.15, pp. 335-349, 1999.

Jan D. Woilter, “On the Automatic Generation of Assembly Plans”, IEEE Transac-
tions on Robotics and Automation, pp. 62-68, 1989.

L.De Floriani, “A Graph Model for Face-to-Face Assembly”, IEEE Transactions on
Robotics and Automation, pp. 75-78, 1989.

L.S. Homem de Mello, A.C.Sanderson, “A Correct and Complete Algorithm for the
Generation of Mechanical Assembly Sequences”, IEEE Journal of Robotics and
Automation, pp. 56-61, 1989.

M. Paolucci, D. Kalp, A. Pannu, O. Shehory, K. Sycara, “A Planning Component
for RETSINA Agents”, [EEE Expert Systems and their Applications, pp. 36-45,
1998.

Richard W. Bukowski, Carlo H. Sequin, “Object Associations: A Simple and Practi-
cal Approach to Virtual 3D Manipulation”, Symposium on Interactive 3D Graphics,
Monterey CA, USA, pp. 131-138, 1995

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

85

Mark R. Mine, Frederick P. Brooks Jr. Carlo H. Sequin, “Moving Objects in Space:
Exploiting Proprioception In Virtual-Environment Interaction”, Communications of
the ACM, No.7, pp. 19-26, July 1997.

Doug A. Bowman and Larry F. Hodges, “An Evaluation of Techniques of Grabbing
and Manipulating Remote Objects in Immersive Virtual Environments”, Symposium
on Interactive 3D Graphics, pp. 35-38. 1997.

Jeffrey S. Pierce, Andrew Forsberg, Matthew J. Conway, Seung Hong, Robert
Zeleznik, Mark R. Mine, Image Plane Interaction Techniques In 3D Immersive
Environments, Technical Report, University of Virginia, Brown University, Univer-
sity of North Carolina, 1995.

Rafael Ramirez, Nets, Logic and Concurrent Object-Oriented Programming, Techni-
cal Report, University of Bristol, UK, Dept. Computer Science, 1995.

Pascal Van Hentenryck Vijay Saraswat et Al, “Strategic Directions in Constraint
Programming”, Communications of ACM Vol. 28, No.4, December 1996.

Kutluhan Erol, James Hendler, and Dana S. Nau. “HTN planning: Complexity and
Expressivity”, Proceedings 12th National Conference on Artificial Intelligence
(AAAI-94), Seattle, WA, 1994.

R.Valette, “Nets In Production Systems”, Lecture Notes in Computer Science-Petri-
Nets: Central Models and their Properties, Part I1, pp. 191-217, 1986.

Rajesh Mascarenhas, Dinkar Karumuri, Ugo Buy, Robert Kenyon, “Modeling and
Analysis of a Virtual Reality System with Time Petri Nets”, Proceedings 19th.
International Conference on Soft. Engineering. Kyoto, Japan, pp.19-25, April 1998.

86

Appendix A : Introduction

to the UML Notation

The Unified Modeling Language (UML) is a standard notation for modeling object-ori-
ented applications. It focuses on the description of software development artifacts, rather
than on the formalization of the development process itself. It can therefore be used to
describe software entities obtained through the application of various development pro-
cesses. UML is a very flexible notation, it is generic, extensible, and can be tailored to the
needs of the user. Here we will give an overview of the semantics of UML’s model ele-
ments, and we will introduce the main concepts of modeling, articulating them in terms of

the UML notation.

UML defines nine types of diagrams to represent the various modeling viewpoints [1]. The
order in which we will present the various diagrams does not reflect the order of implemen-

tation in a real project. It only attempts to minimize the prerequisites and cross-references.

TYPES OF UML DIAGRAMS

* (Class Diagrams

* Use Case Diagrams

* Object Diagrams

* Collaboration Diagrams

* Sequence Diagrams

87

» Statechart Diagrams

* Activity Diagrams

* Component Diagrams
¢ Deployment Diagrams

CLASS DIAGRAMS

The class diagram is the structure that expresses, in a general way, the static structure of a
system, in terms of classes and the relationships between those classes [3]. A class
describes a set of objects, and an association describes a set of links. Objects are class
instances, and links are association instances. Note here that a class diagram does not
express anything specific about the links of a given object, but it describes, in an abstract
way, the potential links from one object to another.

CLASSES: Classes are represented by rectangles that are divided into three compartments.
The first compartment contains the class name. The class is not a function; the class is an
abstract description of a set of objects from the application domain [1]. The other two com-

partments contain respectively the class’s attributes and its operations.

Class Name
Attributes

Operations

UML defines three visibility levels for attributes and operations:

* public : the element is visible by all the clients of the class
e protected : the element is visible to subclasses of the class

¢ private : the element is visible only to the class

88

The visibility levels in UML are represented symbolically by the characters +, # and - for
public, protected and private.

TEMPLATE CLASSES: Template classes are model classes. A template class cannot be
used as is. It is first necessary to instantiate it in order to obtain a real class that must in turn
be instantiated to produce objects. Template classes facilitate the construction of universal

collections, typed by parameters.

Class Example
{template}

ABSTRACT CLASSES: Abstract classes cannot be instantiated directly. They do not give
birth to objects, but may be used as a more general specification in order to manipulate
objects that are instances of one of their subclasses. Abstract classes provide a general basis
for extensible software applications. The set of general mechanisms is described according
to the specifications of the abstract classes, without taking into account specific features
gathered within concrete classes. The important feature of an abstract class is that new
requirements, extensions and improvements are gathered into new subclasses which gen-

erate objects that can be manipulated transparently by mechanisms that are already in place.

;_ {absiract} :

89

RELATIONSHIPS:

* Association: Represents a structural relationship between classes of objects. Associa-
tions may be named. Without being a systematic rule, experience recommends naming

associations using either active, like “accesses™ or passive “is employed by”.

* Aggregation: Aggregation is an asymmetric association, in which one of the ends
plays a more important role than the other. An aggregation is represented by adding a
small diamond next to the aggregate. Aggregation is implied when a class is part of
another class. Also, when the attribute values of one class propagate to the attribute val-
ues of another class. In addition, when an action on one class implies an action to

another class.

N
Jagd .1
An aggregation

* Composition:This association is a particular case of aggregation, where we have phys-

ical containment.

* Navigation: Navigation is an association with an arrow at one of the ends of the associ-
ation. When there is no arrow, that simply means that the association may be navigated
in both directions. The object instances of that class from from the navigation starts can

see the object instances of the class where the navigation ends.

* Generalization: UML uses the term generalization to specify the classification rela-
tionship between a general element and a more specific element. In fact, the term ‘gen-

eralization’ specifies a viewpoint focused on a classification hierarchy.

90

USE CASE DIAGRAMS:

A typical use case diagram is composed of the actors, the system and the use cases them-
selves. With this model we present the functionalities of a system, as interactions between
the actor and the several use cases. Actors are represented by little stick people who trigger

the use cases which exist within the system.

SYSTEM

Use Case X

eI A

An actor represents a role played by a person or a thing that interacts with the system. An

actor could either be a direct user of the system or it could be another system interacting
with the system that we are studing. We should point out here the fact that, the same phys-
ical person could play the role of several different actors (client). Moreover, several people

may all play the same role, and for that reason we can group them into a single actor.

OBJECT DIAGRAMS

Objects diagrams, also called instance diagrams, illustrate objects and links. Similar to
class diagrams, object diagrams represent the static structure of the system. The notation
that is employed for the object diagram is derived from that of class diagrams; elements that

are instances are underlined. Object diagrams are primarily used to show a context, before

91

or after an interaction. However, they are also used to aid in the understanding of complex

data structures, such as recursive structures.

: Wheel : Wheel : Wheel : Wheel

COLLABORATION DIAGRAMS

Collaboration diagrams are used to show the dynamic behavior of the system. They illus-
trate the interactions between different objects, using a static spatial structure that facilitates
the illustration of the collaboration of a group of objects. With these diagrams we demon-
strate both the context of a group of objects and also the interaction between these objects
by providing representation of message broadcasts. The context of an interaction comprises
the arguments, the local variables created during execution, and the links between the
objects that participate in the interaction. The interactions are implemented by a group of
objects that collaborate by exchanging messages. These messages are represented along the

links that connect the objects, using arrows pointed towards the recipient of the message.

92

: Elevator

/I:GoUp

: Cabin 3: Close

N

\[2: Turn On : Door

: Light

SEQUENCE DIAGRAMS

Sequence diagrams also display the dynamic structure of the system. The difference from
a collaboration diagram is that the context of the object is not represented explicitly. The
representation focuses on expressing interactions. A sequence diagram represents the inter-
action between objects and focuses on the message broadcast chronology. An object is rep-

resented by a rectangle and a vertical bar called the object’s lifeline.

One Object

93

The communication between the objects is established by exchanging messages, which are
represented by horizontal arrows drawn from the message sender to the message recipient.
The sending order of the messages is indicated by the position of the message on the verti-
cal axis. Sequence diagrams can be used in object-oriented modeling in two different ways
according to the phase of the life cycle and the desired detail level. The first one focuses on
the description of the interaction without getting into the details of synchronization. In this
case, the information carried by the arrows corresponds to the events that occur within the
application domain. The second use allows the precise representation of interactions
between objects. The concept of a message unites all the different types of communication
between objects, in particular, procedure calls, discrete events, signals between flows of

execution and hardware interrupts.

<«

One Object Second Object Third Object
: message ' X
: = :
:4 message : '
13]]
: message > :
) t i
; message . >
1] 1
: : message >
! ' message '
€ ' '
‘ ' message |
I [4 t
[§ t l
[} [} 1
)]]
]] !

94

STATECHART DIAGRAMS

Statechart diagrams represent state machines from the perspective of states and transitions.
A state machine is an abstraction of all possible behaviors, similar to the way class dia-
grams are abstractions of the static structure. Each object follows the behavior described in
the state machine associated with its class and is, at a given moment, in a state that charac-

terizes its dynamic behavior.

/Op 1
@ State A ——>©
entrv / Op2
do / On3

exit/ Opnd
AnEvent/ OpS

/ Opb
State B /Opl0

do / On?
exit/ On8
AnEvent/ Op9

ACTIVITY DIAGRAMS

An activity diagram is a variant of the statechart diagram organized according to actions,
and mainly targeted towards representing the internal behavior of a method. The activity
diagram represents the execution state of a mechanism as a sequence of steps grouped
sequentially as parallel control flow branches. The activities are represented by rounded

rectangles.

95

Activity diagrams show synchronizations between control flows by using synchronization
bars. A synchronization bar makes it possible to open and close parallel branches within the

flow of execution of a method.

Cramri)

/

Synchronization Bar

COMPONENT DIAGRAMS

Component diagrams describe the software components and their relationships within the
implementation environment; they indicate the decisions that are made at implementation
period. Components represent all kinds of elements that pertain to the piecing together of
software applications. Among other things, they may be simple files or libraries loaded
dynamically.

DEPLOYMENT DIAGRAMS

Deployment diagrams show the physical layout of the various hardware components that
compose a system, as well as the distribution of executable programs on this hardware.
Each hardware resource is represented by a cube, evoking the physical presence of the

equipment within the system.

