INFORMATION TO USERS

This manuscript has been reproduced from the microfiim master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overiaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6° x 9” black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

Bell & Howell Information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI

SCHEDULABILITY ANALYSIS AND AUTOMATED
IMPLEMENTATION OF REAL-TIME OBJECT-ORIENTED
DESIGN MODELS

PANAGIOTA KARVELAS

A THESIS
IN
THE DEPARTMENT
OF
COMPUTER SCIENCE

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF MAS TER OF COMPUTER SCIENCE
CONCORDIA UNIVERSITY
MONTREAL, QUEBEC, CANADA

MAY 2000
(© PANAGIOTA KARVELAS, 2000

i~l

Nationali Library
of Canada

Acquisitions and
Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4

Bibliothéque nationale
du Canada

Acquisitions et)
services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
Our file Notre réfdrence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.
The author retains ownership of the L’auteur conserve la propriété du

copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

Canada

0-612-54334-X

Abstract

Schedulability Analysis and Automated Implementation of Real-Time
Object-Oriented Design Models

Panagiota Karvelas

There is a growing interest in adopting object technologies for the development of real-
time systems. Several commercial tools, currently available, provide object-oriented mod-
eling and design support for real-time systems. While these products provide many useful
facilities, such as visualization tools and automatic code generation, they are all weak in
addressing the central characteristic of real-time system design, i.e., providing support for
a designer to reason about timeliness properties.

We believe an approach that integrates the advancements in both object modeling and
design methods, and real-time scheduling theory is the key to successful use of object
technology for real-time software. We propose a methodology based on this idea for uni-
processor multi-threaded environments. Specifically, given an application design model
and end-to-end timing requirements, we synthesize a feasible implementation model using
a built-in schedulability analysis tool. The synthesis process is supported by automatic code
generation that can take the application design model and the synthesized implementation
model and generate code for the target platform.

In this thesis, I have designed and implemented some of the key components to support
this methodology. First, I have developed a schedulability test that determines whether a
particular implementation model satisfies the real-time requirements of an application. This
can be used during the automatic synthesis process. Second, I have developed an initial
implementation supporting automatic code generation, which takes textual specifications of
the application design model and a synthesized implementation model, and automatically

generates executable code for it.

iii

Acknowledgments

First, I'd like to thank my supervisor, Manas Saksena, for helping me a great deal on my
thesis, always keeping his door open to his students (including me) no matter what his
workload and just for being an extraordinary teacher. Of course, thanks to Yun Wang and
Alex Nikolaev for all their insightful ideas during our research group meetings. It was
always an interesting and draining experience ;)

Also, I'd like to thank Paul Di Marco for his constant support, his exceptional proof-
reading skills and his way of making me forget all the cares in the world :)
Angus Graham, for his comical side that provided a good balance of work and play in the
lab (most of the time) and often made me cry from the laughter.
My parents and brother Nick, for having to deal with my mood swings (or should I say this
to everybody), for taking care of me unconditionally and for leaving the house whenever I
needed to work in peace and quiet.
My friends and family, for forgiving me whenever I over-neglected them because I was
sitting in the lab doing work.
And the Concordia Bubble Bath Dragon Boat team, for letting me take out my frustrations
during practices. You guys are the BEST !!!

Finally, to the CS people of the 9¢* floor, I'd like to thank you for enhancing the working
environment by being kind and friendly people.

iv

Contents

List of Figures
List of Tables
1 Introduction
I Motivation o o o it e e e e e e e e e e e e e e e
1.2 SolutionOverview e
1.2.1 General Approach00
1.2.2 Our Constrained Approach
1.3 Thesis Contributions
1.4 Thesis Organization 0 vt tu it e
2 Background and Related Work
2.1 Real-Time System Characteristics
2.1.1 Task Characteristics v i
2.1.1.1 ArivalInformation
2.1.1.2 Dependency Information
2.1.2 Environment Characteristics
2.1.3 Scheduling Algorithms
2.2 Schedulability Tests e
2.2.1 Fixed-Priority Scheduling Theory
2.2.2 Extensions for Multi-Processor and Distributed Systems
2.3 Real-TimeSystemDesign
2.3.1 UML and Object-Oriented Design
232 CodeGenerationttt
2.3.3 Real-Time MethodsOverview

viii

ix

2.3.4 ROOM Methodology/ObjecTime Developer Overview

3 Automated Implementation

3.1 Application-View Modeling
3.1.1 ObjectModeling

3.1.2 Timing Constraints Modeling

3.2 Implementation-View Modeling
3.2.1 ThreadModeling
3.2.1.1 Single-Threaded Environment

3.2.1.2 Multi-Threaded Environment

3.2.2 Binding of Application-to-Environment Modeling

3.3 Generic Implementation Architecture
34 Tool e
341 Library
3.4.1.1 Synchronization Service

3.4.1.2 Generic Class Management

3.4.1.3 Thread and Messaging Management . .

3.4.1.4 Memory Management

3.4.1.5 TimerService

3.4.2 Description of Generated Files

35 SimpleExample.
Discussion.

4 Schedulability Analysis

4.1 AnalysisModel
41.1 Notation
4.1.2 Eventand Action Properties
4.1.3 Communication Relationships
4.1.4 ModelRestrictions

4.1.5 Example: Extracting Analysis from Design Models

4.2 Problem Statement
4.3 Response Time Analysis
4.3.1 Properties of the Scheduling Model
432 Blocking

vi

.........

.........

.........

.........

.........

.........

.........

.........

.........

.........

.........

.........

.........

.........

.........

.........

.........

.........

43.2.1 Case 1: Single-Threaded Implementations 63

4.3.2.2 Case 2: Multi-Threaded Implementations 63

4.3.3 Interference Effects and Busy Period Analysis. 64

4.3.4 Example: Calculating Worst-Case Response Times 69

44 Tool e e e e e e e e e e e e e e e e e 73

45 DISCUSSION o vt et e e e e e e e e e e e e e e e e 73

5 Concluding Remarks 76
5.1 Future Work L L e e e e e e 77
5.1.1 Extensions for Sub-Action Types 78

5.1.2 Extensions for Transaction Priorities 79

5.1.3 Extensions for Synchronously-Triggered Actions 79
Bibliography 81
A Application-View Model Grammar 85
B Implementation-View Model Grammar 95
C Schedulability Analysis Model Grammar 98
D Response Times Calculations: Single-Threaded Implementation 101
E Response Times Calculations: Multi-Threaded Implementation 102

vii

List of Figures

O 00 1 O L AW —

L e
2 WO = O

Methodology Overview of the Development Process 7
Overview of the Synthesis Subsystem 8
Overview of the Automatic Code Generation Subsystem 8
Thread Behavior in the Generic Implementation Architecture 39
Send and Call Sub-actions, 40
Run-Time Library Services 42
Example System: General Description 47
Example System: Port Description 48
Example System: Method Description 49
Example System: End-to-End Behavior View 60
Execution (Partial or Complete) of Actions Prior to the Executionof A; . . 67
Example System: Execution of our Multi-Threaded System 72
Analysis Program Structureo e 74
Analysis Tool Behavior 75

viit

List of Tables

B WO~

(o V]

Example System: Single-Threaded Implementation 70
Example System: Single-Threaded Response Times 70
Example System: Multi-Threaded Implementation 71
Example System: Multi-Threaded Response Times 71
Single-Threaded Response Time Calculations: Full Results 101
Multi-Threaded Response Time Calculations: Full Results 102

X

Chapter 1
Introduction

Real-time systems are differentiated from other types of systems by the timing require-
ments associated with some or all of their computations. As a result, validating such sys-
tems requires that these additional timing constraints also be satisfied. This verification is
especially necessary for hard real-time systems, where fatal situations may occur if any
timing constraint is not met.

Typically, designers of real-time systems have dealt with these timeliness properties by
using their intuitive engineering skills to design such a system and then, by substantiating
their design through system simulation. While this method produces the desired effect after
possibly several iterations, it greatly relies on the abilities of the designer and unnecessarily
consumes an elaborate amount of time and effort.

To eliminate these shortcomings, we have proposed a methodology [SKWOO] that fur-
ther supports the design of real-time systems. For simplicity, we have fully developed the
design strategy for hard real-time systems consisting of a single processor that may contain
one or more threads. This design methodology addresses predictability issues in the early
stages of design and releases the designer from making decisions that could impact the
feasibility of the system. It also eliminates many tedious and costly fine-tuning steps by
supporting automation wherever possible.

This thesis focusses on the development of some essential components to support this
methodology. Specifically, I design and implement a schedulability test that determines
whether a particular complete system specification satisfies the timeliness requirements of
the application. Also, I develop an initial implementation that supports automatic code

generation given a complete system specification.

In this introductory chapter, I present the motivation behind our research, a detailed
description of the proposed design strategy, my contributions to this work as well as the

organization of the rest of the thesis.

1.1 Motivation

Most often, real-time systems are embedded in larger applications, where they interact with
the physical world. Examples include devices we rely upon and use on a daily basis, such
as cellular phones, microwaves and security systems, as well as others we may only read
about, such as air traffic control systems and robot arms.

The interaction with the physical world can be quite complex to model, especially
since events can occur at any time and in any order. As was stated in [SS99], this non-
deterministic environment behavior induces the need to synchronize concurrent activities
and unfonunately, concurrency conflicts with the inherently serial, cause-and-effect flow of
human reasoning. Designers of real-time systems must also deal with issues of dependabil-
ity, including correct and continuous performance of these systems. Moreover, the design
of such systems must be “readable” so that these systems can be maintained and extended
with ease and low cost.

Thus, it is easily observed that designing real-time systems is a daunting and expensive
task. However, steps have been taken towards the incorporation of more effective technolo-
gies in real-time software development. Of these, the more fruitful have been the efforts
to re-orient object-oriented technologies towards the modeling and design of real-time sys-
tems.

Object-oriented analysis and design models offer modeling abstractions that are closer
to the problem space, thus facilitating the design process and promoting a better under-
standing of the design, especially when used in conjunction with visualizing tools. This
approach has even greater benefits if the design models can be automatically translated
into an implementation for a desired target platform.

A number of commercially-available real-time object-oriented development environ-
ments have already made their mark. Examples of such tools include Rational Rose Real-
Time from Rational Software! and ObjecTime?, ObjecTime Developer from ObjecTime,

'Rational Software is located at http://www.rational.com/
2ObjecTime is located at hitp://www.ob jectime.com/

Rhapsody from iLogix’, ObjectGeode from Verilog*, Real-Time Studio from Artisan Soft-
ware> and BridgePoint from Project TechnologiesS. However, despite their claim of being
“real-time” software development tools, they are all weak in addressing the central char-
acteristic of real-time system design, i.e., providing support to reason about timeliness
properties.

This inability to reason about timeliness significantly restricts the usefulness of these
tools for rescurce-constrained systems with stringent timing requirements. Various imple-
mentation choices impact the response times in a real-time system and, in such systems,
the selection of these choices becomes critical in obtaining a correct design, i.e., one that
meets its timeliness requirements. In the absence of tools that allow reasoning about the
impact of these implementation choices on the timeliness requirements, a designer must
make choices based on rather loose and ad-hoc guidelines or intuition, and hope that the
requirements will be met. This can easily result in lengthy fine-tuning cycles to iterate to a
correct implementation. Furthermore, this process must be repeated frequently in evolving
systems, whenever new functionality is added or when timing requirements change.

At the other end of the spectrum, schedulability analysis tools have been developed,
which allow the user to analyze the feasibility of a system with respect to its timeliness
requirements. Such tools include TimeWiz from TimeSys’ and RapidRMA from TriPacific
Software®. However, their underlying computational models lack the design power offered
by object-oriented design technologies. Hence, these tools cannot provide timing analysis
in the early stages of design when using object-oriented methods. Rather, they come into
play once the design phase is complete. Worse still, it is not even possible to directly
use these schedulability analysis tools to perform timing analysis for designs developed
using the real-time object-oriented development tools, because of the incompatibilities of
the underlying computational models.

One explanation for this lack of support is that the developments in scheduling theory,
and more generally performance analysis techniques, have taken place iargely in isolation
from the developments in obj’ect—oriented design methods. The underlying computational

model of implementations, generated by tools such as ObjecTime Developer, is based on

}iLogix is located at http://www.ilogix.com/

*Verilog is located at attp://www.verilogusa.com/

3 Artisan Software is located at http/www.artisansw.com/
SProject Technologies is located at http://www.pro jtech.com/
"TimeSys is located at http://www.timesys.com/

8TriPacific Software is located at http://www.tripac.com/

an event-triggered architecture, where tasks are implemented as event handlers. Thus, each
task is ultimately part of multiple end-to-end computations and timing constraints, quite
unlike the tasking models assumed in real-time scheduling theory, where tasks of the same
end-to-end computation are essentially maintained as a whole.

Finding a middle point between these two extremes has already been proposed. One
prominent and representative example is HRT-HOOD [BW94], which is heavily influenced
by the developments in real-time scheduling theory. However, in concentrating on the
timeliness aspects, the method is weak on behavioral modeling concepts, making it difficult
to use when the reactive behavior is complex.

Hence, the general problem involves providing complete support for real-time system
design. Specifically, treating timeliness as a first-class concern in the design phase by using
schedulability analysis to guide the design process. In addition, incorporating features al-
ready present in most real-time object-oriented software development environments, such
as a powerful modeling language for designing the functionality of real-time systems, vi-
sual tools for facilitating the design process and a code generation strategy for automating

the implementation from the design stage.

1.2 Solution Overview

The solution to our problem requires the formulation of a design strategy (and its imple-
mentation in a toolset) that would enable designers to concentrate on the modeling of the
system rather than the intricacies involved when designing real-time systems. In other
words, a designer would not have to worry about ensuring the system’s feasibility with
respect to schedulability, because the tools would automatically yield a feasible system, if
such a system could be manufactured.

Specifically, the integration of timeliness support involves the following steps. First, we
need to isolate the design decisions that affect timeliness but, at the same time, do not affect
any functional requirements of the system. Then, we must systematically explore these
design choices, using schedulability analysis, to find a suitable combination that satisfies

the timeliness properties.

My research group® has undertaken the task of developing this methodology for uni-
processor hard real-time systems. In this section, I first provide an overview of the general

approach, followed by a more detailed discussion of our constrained methodology.

1.2.1 General Approach

As was mentioned earlier, the methodology requires the selection of implementation choices
be left as open issues by the designer. We accomplish this goal by modeling the system
using two distinct views, namely the application and implementation views. The latter idea
is based on the Shlaer-Mellor domain concept [SM97], where a designer can create several
views of an application and each of these targets a specific focus.

The application view focuses primarily on the functional requirements of the system
under development. The designer models the application view without including any im-
plementation artifacts, which bind the modeled objects to a particular real-time execution
environment. In addition, the designer includes any system interactions originating from
external sources. In this way, the application model, containing only the design of objects
and their interactions, is free of any physical mapping that may result in an unschedulable
systemn, i.e., one that does not meet its timing requirements, if these mappings had other-
wise been included.

The implementation view is mainly concerned with the strategies undertaken to im-
plement the particular application. In general, the designer must model the portion of the
implementation view that describes any limiting execution environment parameters within
which the system will run. The latter inciudes variables such as whether the system is cen-
tralized or distributed and whether machines are uni-processor or multi-processor. These
parameters reveal the maximum resources available to the designer for the creation of the
particular system. We denote this part of the implementation model as the fixed implemen-
tation model. The remaining portion of the implementation model, denoted as the variable
implementation model, will be automatically synthesized.

The problem of synthesizing a feasible implementation model is a complex combinato-
rial optimization problem. It involves the production of a feasible solution for the real-time

system by automatically generating the variable implementation model, which entails both

9The research group is headed by Dr. Manas Saksena, who is now teaching at the University of Pittsburgh,
and contains the PhD. student Yun Wang, as well as the Master student Alex Nikolaev and myself. Thus, any
mention of “we” implies the above-mentioned people making up the group.

making any additional execution environment choices that are left unsettled and determin-
ing which implementation constructs to use in order to link the specified application model
with the underlying machine. It is easily observed that a fixed implementation model spec-
ifies a family of implementation models and idcntifies the search space for the synthesis
process. Consequently, the synthesis procedure searches through the space of candidate
implementation models and finds one (if any) that is determined to be feasible using a
built-in schedulability analysis tool.

‘Once an implementation model is synthesized, code generation proceeds, using both
the application and implementation models. Notice that a similar generic architectural
framework can be created for each implementation model that is based on a common fixed
implementation model. Thus, to facilitate the code generation process, the strategy can
also provide a set of run-time libraries, each of which implements the primitives used in
the corresponding fixed implementation model and application model.

Figure 1 illustrates the developed methodclogy. Although we have constructed the tool
integrating this methodology assuming uni-processor hard real-time systems, the compo-
nents making up the tool are still valid for the development of any generalized real-time
system. The tool can be decomposed into two subsystems, namely the Synthesis subsystem
and the Automatic Code Generation subsystem.

The Synthesis subsystem, as shown in Figure 2, is made up of three components: the
Schedulability component, the Analysis Extractor component and the Search Engine com-
ponent. The Search Engine component is used to find a candidate implementation model
in some heuristic approach. Then, the Analysis Extractor componeni builds the analysis
model by extracting necessary information from both the implementation and application
models and by adding the resource demands wherever necessary. The resulting analysis
model is inputted to the Schedulability component, which determines whether or not the
system satisfies its timeliness requirements by comparing the given timing requirements
with the calculated worst-case response times for the time-constrained computations. If the
considered implementation model gives rise to a feasible system, the Synthesis subsystern
feeds its outputs, i.e., the implementation and application models, to the Automatic Code
Generation subsystem. If not, the Search Engine component is prompted to search for the
next probable solution, again in some heuristic approach.

In this case, notice that the designer must explicitly provide the system resource de-

mands to enable the use of a schedulability analysis tool. These may be estimates in the

" Fixed". ..

; hr;pleim:ntziiioh"
- Madel. _~

Timing
Requirements

Application

Qode[D ands

i

I |

s L] “
f .
; SYNTHESIS SUBSYSTEM ‘
N [J

Variable
Implementation
Model
| l Y

— s

(AUTOMATIC CODE GENERATION SUBSYSTEM

\.

Application Code

At

| Make uility |
Executable code

Figure I: Methodology Overview of the Development Process

early stages of the development life cycle and, during the later stages, may be based on ex-
ecution time analysis or measurements. Also, observe that measurements can be obtained
easily with an automatic code generator present.

The Automatic Code Generation subsystem, as shown in Figure 3, comprises the Trans-
lation component and the Run-Time Libraries. The Translation component uses the imple-
mentation and application models to produce the corresponding application code and any
necessary makefiles. The translation process follows the guidelines outlined by the generic
architecture, which are specified by the fixed implementation model and are implemented
as a framework provided by the run-time libraries. At this point, the designer can use
the generated makefiles to compile the produced application code along with the run-time

libraries, resulting in the creation of an executable for that particular application.

~ Fixed -

Resource . #
Implemeéntation

Application Timing

Model Demands Requirements pleme
\J ~N— Modcl- .
| |
Y Y] y

SYNTHESIS SUBSYSTEM

Analysis

Candidate Search Engine
Implementation

Model

Schedulability L_@ i

Extractor
Model
Component g U Component l

Not Feasible

Component

Feasible

Variable
Implementation
Model

Figure 2: Overview of the Synthesis Subsystem

Fixed
[mplementauon
- Modeél -

Variable
Implementation
Model

\ \i
AUTOMATIC CODE GENERATION SUBSYSTEM

! Translation Applica@—-
o | e
e J

Application
Model

O

: . Rum Txme :
Llhrary fot: Genencz
Impl Archxtecture

{ ’_—W
Make utility l
i

Executable code

Figure 3: Overview of the Automatic Code Generation Subsystem

1.2.2 Our Constrained Approach

Our developed methodology restricts to hard real-time systems in a uni-processor, multi-
threaded environment. I will now give a description of the elements already dealt with,
while developing this strategy.

In the application specification, we model active objects, as in the ROOM methodol-
ogy [SGW94]. These objects communicate through prioritized events. Events may be sent
either synchronously or asynchronously. The former method requires the sender object wait
for a reply from the receiver while, in the latter technique, the sender object may continue
its execution immediately after the event is sent. The behavior of an active object is mod-
eled using a finite state machine. The object remains dormant until an event arrives. Any
incoming event may trigger a transition within the finite state machine, resulting perhaps in
the execution of an action. We also enforce a run-to-completion semantic on objects, i.e.,
there is at most one event processing being performed for every object at any given time.
In addition, the application view contains information about each external event, such as
its type and arrival pattern.

As aresult of the predetermined execution environment, the fixed implementation model
is completely specified and thus, the designer does not specify any part of the implemen-
tation view whatsoever. We represent this fact in Figure 1 as well as Figure 2 by shading
the fixed implementation model. Moreover, because of the single fixed implementation
model, it is also the case that there is only one generic architectural framework to be im-
plemented within the run-time libraries for code generation. For this reason, we also shade
the run-time libraries in Figure 3. |

Our run-time library constructs a priority-based preemptive multi-tasking implementa-
tion architecture. It utilizes light-weight threads as event handlers, where events are queued
in priority order. Each thread remains dormant until an event arrives requiring processing
within the particular thread. The thread then processes any queued event by invoking the
finite state machine behavior on the recipient object. We also impose a run-to-completion
semantic on threads, resulting in a non-preemptive scheduling of events '°, i.e., once pro-
cessing for an event has begun, processing for another event in the same thread cannot be
started until the former has completed.

In a single-threaded implementation, events are processed in a single thread and thus, a

"9 ater, [will explain why synchronous events are the exception to this rule.

higher priority event can be awaiting processing for at most one lower priority event pro-
cessing. On the contrary, multi-threaded implementations can lead to unbounded blocking.
Because of the run-to-completion paradigms in place, it may happen that a lower prior-
ity event is being processed while a higher priority event is awaiting processing, as in
the single-threaded case. Unboundedness arises since events requiring execution in other
threads with priority ranging between the priorities of these two events also end up exe-
cuting before the higher priority event. This situation is denoted priority inversion. We
utilize the scheduling algorithm in [WS99] to bound priority inversion. This scheduling
policy supports a dual priority by assigning two scheduling attributes, namely a nominal
priority as well as a preemption threshold, to each event. With this policy, an event awaits
processing at its nominal priority and, when it acquires the thread for processing, its prior-
ity changes to its preemption threshold. Thread priority management occurs whenever an
event processing generates another event as well as within the event handling loop in such

a way that thread priority equals:

o the highest priority pending event when the thread is waiting for events to process,

and

e the preemption threshold of an event when the thread is in the midst of processing

that event.
Consequently, thread scheduling works as follows:

1. The operating system picks the thread to execute based on thread priorities.

2. The thread event queue picks the event to be processed based on event nominal pri-

orities.

Our schedulability analysis for this scheduling policy is based on the tasking model with
critical instant/busy period analysis [LL73, LSD89, HK1.91] for fixed-priority scheduling.
The critical instant for a particular task, which indicates the task arrival pattern leading
to the worst-case response time, arises when all higher (nominal) priority tasks have just
arrived and the lower nominal priority !! task has just begun processing. To accommodate
for the dual priority, we divide the busy period into the early and late busy period. In

" For multi-threaded implementations, this lower nominal priority task must also have higher preemption
threshold value.

10

both cases, we must account for blocking from “lower priority” tasks and interference
from “higher priority” tasks. These terms are different depending on whether the system is
single- or multi-threaded and whether they are being calculated as part of the early or late
busy period.

The implementation architecture described above specifies a family of implementation
models with varying environmental factor being the number of threads used. Thus, the

synthesis process must determine:

e the number of threads in the environment,
e the assignment of scheduling attributes '? to events, and

e the mapping of these events to the threads.

Making these choices is not fully understood at the moment. However, members of
our research group have been working on this area and some results have already been
obtained [WS99, SW00, Wan00]. Although the results have been primarily proven for a
simplified model, where there is no communication between objects, the author of [Wan00]
is extrapolating these results to fit the more generalized model being considered in this

thesis. These investigations have lead to the following assertions and solutions:

e Scheduling under the preemption threshold assignment subsumes both a fixed-priority

preemptive and non-preemptive scheduling model.

e If a feasible implementation model exists, i.e., one that produces a schedulable sys-
tem, then creating another implementation mode!, which has each event mapped to
its own thread and the same scheduling attribute assignments for every event, also

produces a feasible solution.

e Given that each event is mapped to its own thread, address the problem of finding an
optimal scheduling attribute assignment that ensures schedulability. In [WS99], the
optimal solution developed there has been shown to be inefficient. To counter this
effect, sub-optimal solutions have also been proposed in [SW00] that are much more
practical. These algorithms have varying computational complexity and therefore,

the approach is to try each algorithm, in sequence of increasing complexity, until a

'2Nominal priority and preemption threshold for multi-threaded implementations, while only nominal pri-
ority for single-threaded implementations.

11

solution is found. I first present the three sub-optimal solutions, in order of increasing

complexity, followed by the inefficient optimal solution.

Pre-Assigned Preemption Threshold Approach concentrates solely on nominal pri-
ority assignment because it assumes that event preemption thresholds have been
predetermined. The approach requires searching for feasibility under fixed-
priority preemptive and non-preemptive priority assignments. If any of these
produces a feasible solution, the resulting implementation model is also feasi-
ble under preemption threshold scheduling. Fortunately, an optimal ordering
algorithm with search space ©O(n?) solves the problem for preemptive schedul-
ing [Aud91, TBW94] and has been found to be applicable to non-preemptive
scheduling as well [GRS96]. Note however that both preemptive and non-
preemptive priority assignments need to be tried, as neither dominates over the
other [GRS96].

Greedy Approach follows a two-stage process. First, we need to assign event pri-
orities and then, we use the priority assignment to find a preemption threshold
assignment that will result in system feasibility. This approach is based on our

optimal, yet inefficient, algorithm discussed later.

— The greedy nominal priority assignment algorithm divides the events into
the assigned lower priority events and the unassigned (but necessarily higher
priority) events. Starting with the lowest priority value and iteratively go-
ing through each event in the unsorted list, the algorithm tries to find the
next best event to assign the current priority value and move to the sorted
list. The greedy heuristic function for finding the next best event consists
of calculating the worst-case response time of each event and then choos-
ing the one with the greatest “slack”, i.e., the leniency that this event has
before it misses its deadline, as the next best event. Worst-case response
time calculations are valid in this case because we assume that preemption
threshold of all events are set to the highest value; thus, blocking can be ex-
actly determined as originating from one of the sorted lower priority events
and interference occurs from every element in the unsorted higher priority

events.

— The preemption threshold assignment is based on an efficient optimal algo-
rithm presented in [WS99] with search space O(n?). The algorithm con-
sists of computing the worst-case response time for each event by setting
the preemption threshold of all other events to the highest possible value
and, initially, the preemption threshold of the current event to its nomi-
nal priority. While the system is unschedulable, the preemption threshold
value of the current event is incremented and the worst-case response time
calculation is repeated. If the preemption threshold of an event has reached
the highest possible value and the system is still unschedulable, then we
can say that the system can never be schedulable with the given nominal

priority assignment.

Simulated Annealing is a global optimization technique that attempts to find the
lowest point in an energy landscape [KGV83]. This algorithm assigns an “en-
ergy” to a complete nominal priority assignment candidate at every step and the
objective is to find a minimum energy solution. The energy of an event is calcu-
lated as the maximum value between 0 and the “negative slack” 13 and thus, the
energy of a candidate assignment is simply the sum of all event energies. Hence,
an energy level of 0 for an event implies the event meets its deadline as well as
an energy level of O for an entire candidate solution implies a feasible nominal
priority assignment. Initially, the nominal priority assignment conforms with
the deadline monotonic priority assignment. The negative slack of each event
is computed by (1) assigning a preemption threshold value to all events, (2)
computing the worst-case response time for each event and (3) comparing the
latter result with the corresponding event deadline. Step (1) is accomplished by
using the preemption threshold assignment algorithm presented in the Greedy
Approach except for a slight modification: if no preemption threshold assign-
ment makes an event meet its deadline, then its preemption threshold value is
set to the maximum possible value. Simulated annealing moves from one prior-
ity assignment to the next by swapping the nominal priorities of two randomly
selected events. If the new solution has a lower energy, this is a good local

choice that may or may not lead to the global optimal solution and we select

'3The slack was described above as being the subtraction of the response time from the deadline.

13

this new solution as the next candidate. Otherwise, this is not the greatest lo-
cal choice one would make, but nevertheless this may lead to a global optimal
solution later. To investigate whether to take such upward energy jumps, a con-
trol parameter is introduced, namcly temperature. The upward energy jump is
taken only if the difference between the new and old energies is less than the
temperature. Initially, the temperature value is high enough so that every up-
ward energy jump is taken, but it is slowly reduced when a so-called “thermal
equilibrium? is reached. That is, as we get closer to the optimum, we want to
take as little upward energy jumps as possible because we are narrowing in on
the solution. At any time, if a solution with zero energy is found, we terminate

because a feasible nominal priority assignment has been achieved.

Our Optimal Algorithm consists of a simple branch-and-bound search algorithm,
where we first assign nominal priorities to events and then, use the priority
assignment to set preemption threshold values in order to produce a schedulable
system. This approach is also the basis for the greedy algorithm described

above.

~ The nominal priority assignment algorithm divides the events into the as-
signed lower priority events and the unassigned (but necessarily higher pri-
ority) events. Starting with the lowest priority value and iteratively going
through each event in the unsorted list, the algorithm examines each event,
selecting the most promising candidate first by using the same heuristic
function described in the Greedy Algorithm above. If the algorithm fails
to find a solution with that partial assignment, it will backtrack and then
select the next event.

— Once each event has been assigned a nominal priority, the optimal pre-
emption threshold assignment, presented in the Greedy Algorithm, is per-

formed to assign preemption threshold values.

Besides ensuring feasibility, search algorithms may also attempt to optimize on some
cost function, such as minimizing (1) the number of threads used, (2) inter-thread message
passing and (3) events with the same recipient object mapped to multiple threads. A syn-
thesis process, aimed towards obtaining a schedulable system by using a combination of
these types of cost functions, enhances the performance of the search algorithm, because

the cost functions ensure that the least amount of computation will be added to the system.

14

In [WS99, SW00], the feasibility problem and optimization problem have been completely
separated. Below, I present the solutions obtained in solving some primitive optimization

problems once the feasibility problem has been solved.

e Given a feasible implementation model, address the problem of optimizing it by
increasing the preemption threshold values as much as possible so as to minimize the
number of preemptions while still achieving schedulability. The algorithm iteratively
goes through each event, in increasing nominal priority order, and increments the

preemption threshold value for that event until either the highest threshold value is

attained “ or the system becomes unschedulable 3.

e Given a feasible implementation model, address the problem of optimizing it by

decreasing the number of threads required as much as possible so as to minimize

Memory costs.

L.

(93]

The first step is to reduce the number of unnecessary preemptions from the

given (feasible) implementation model by using the algorithm discussed above.

The second step consists of grouping together mutually non-preemptive events,
i.e., events that do not interfere with each other’s execution, in the same thread.
The algorithm begins by creating a list of sorted events, in increasing order of
their preemption threshold. Then, we remove the first event and form a new
group with that event. For each event in the ordered list, we check if it is
mutually non-preemptive with the events of the newly-formed group. If so, the
event is moved from the ordered list to the group; otherwise, it remains in the
ordered list. Once every element in the ordered list is checked, a new group is
formed with the first event that has remained in the ordered list and the process

continues until the ordered list of events is empty.

Then, each group of events are said to be mutually non-preemptive and thus,

can be assigned to the same thread.

'f’[’he preemption threshold equals the maximum preemption threshold value.
>The preemption threshold equals the highest preemption threshold value that kept the system

schedulable.

15

1.3 Thesis Contributions

My contribution to this work revolves around the design and implementation of some of
the key components to support the above-mentioned strategy. Specifically, I developed the
Schedulability component as well as the Automatic Code Generation subsystem.

The schedulability component determines whether a centralized system within a uni-
processor multi-threaded environment satisfies its timeliness requirements. This is accom-
plished by computing the response times of the resource-demanding entities that make up
the system. We assume that the resource demands of such entities are determined and fixed
in advance. I have developed a schedulability analysis tool, which takes textual specifica-
tions of the supported analysis model. Chapter 4 explains the schedulability component in
more detail. '

The automatic code generation component uses the application and implementation
models to translate the design model into executable code. To facilitate the code generation
task, I have built a library that implements the generic implementation architecture for
a uni-processor muiti-threaded environment as well as generic entities found within the

application model. Chapter 3 fully describes the details.

1.4 Thesis Organization

The organization of the rest of the thesis is as follows. In Chapter 2, I provide an overview
of related work performed in both automatic code generation and schedulability analysis.
Then, in Chapter 3, I describe the details of my work on the process of automatic code
generation. In Chapter 4, I explain the design and implementation of the schedulability
analysis process. Finally, I conclude in Chapter 5, where I provide a summary of my work

as well as future extensions.

16

Chapter 2

Background and Related Work

Employing the term “real-time” to describe a system generates a particular connotation: the
correctness of some or all system computations depend not only on the results of the com-
putations themselves, but also on the time by which these results are available to the sys-
tem'’s environment. In other words, there are timeliness properties associated with system
computations that must be satisfied as another step in validating the design of a real-time
system.

Our everyday activities involve the usage of real-time systems, whether we are aware of
it or not. Some of these systems are used for monitoring and controlling purposes, where
catastrophic situations may arise to the degree of endangering human life, if the timing re-
quirements are not satisfied. For instance, in an automobile cruise control system [Rod98],
when the user wants to disable the cruise control, the return of control to the user must be
done within a short interval of time to avoid the occurrence of an accident, say if there were
another automobile ahead of the user that suddenly began braking.

On the other hand, other systems may necessitate these timing requirements to guaran-
tee certain results, such as assuring some predetermined quality of service. An example of
this type of system is a movie-on-demand system, where the user of such a system selects a
movie for viewing and the provider relays the movie to the user. Although no great disaster
will occur if the timing constraints are not met in this case, the latter are still important
in some respect. In the above example, the timeliness properties need to be guaranteed so
that jerkiness as well as other distortions can be avoided while viewing the movie, which
ensures the customer’s satisfaction relative to this aspect.

No matter what the reason for these timing constraints, a designer needs to be able

17

to predict whether or not such systems will meet their requirements. Deciding this issue
is not such an easy task, but several schedulability tests have been devised to overcome
this difficulty. However, these tests come in various shapes and sizes tailored to fit some
particular category of real-time system. In other words, a system termed real-time is not
self-explanatory. Several distinguishing characteristics further classify real-time systems.
In this chapter, I first describe the prominent features of real-time systems. Using these,
basic principles of scheduling theory will be presented, with a greater interest in fixed-
priority scheduling theory. Finally, I provide some background material related to the the

design of real-time systems.

2.1 Real-Time System Characteristics

In general, real-time scheduling theory models are centered around end-to-end system be-
havior, which are modeled using the notion of tasks. A task represents an entity requiring
execution in some specified environment and it has several characteristics affiliated with it.

Basically, scheduling theory modeling expresses a real-time system as a collection of tasks.

2.1.1 Task Characteristics

Associated with a task is its computation time, i.e., the processor time required to fully
execute, as well as its deadline, i.e., the time by which a task should finish executing.

A system is said to be hard if there is no deadline-leniency for any tasks within the entire
task set. In this type of system, each task must meet its deadline at all times. Thus, it is
crucial that some schedulability test be performed in this case. Also, worst-case scenarios
are assumed in order to ensure the system will always meet its deadlines. On the other
hand, soft real-time systems can tolerate the occasional missed deadline. In this case, other
techniques are used to determine the degree at which the timeliness requirements were
satisfied, such as stochastic methods and simulations. The remaining task attributes can be
divided into arrival information and dependency information as described in the sections

below.

18

2.1.1.1 Arrival Information

Each task may have an arrival time, release jirter and arrival partern associated with it. The
release jitter is defined as the difference between the arrival time, i.e., the time at which a
task invocation wishes to start running, and its actual release time, i.e., the time at which the
scheduler acknowledges the fact that the task is ready-to-run. The task does not necessarily
begin running at the release time, although it could.

The arrival pattern distinguishes tasks as follows: a task can either be non-recurring, in
which case the task is invoked only once, or recurring, in which case multiple instances of
the same task will exist.

Recurring tasks can be classified further as periodic, where the task arrives at regular in-
tervals, or aperiodic, where the task is activated only when a particular event occurs [SR94].
The inter-arrival time, i.e., difference between two consecutive instance arrivals of the
same task, ot a periodic task is a constant value, referred to as the period. For aperiodic
tasks, the inter-arrival time is not regular. However, if the latter is bound below by some
value, which we call the minimum inter-arrival time, a specialized set of aperiodic tasks
are formed, denoted sporadic tasks [BF96]. The remaining aperiodic tasks, i.e., those not
sporadic, can arrive at any time and thus, performing any schedulability analysis techniques

on such tasks is quite impossible.

2.1.1.2 Dependency Information

Dependency information creates links between tasks within a task set. These relationships
may arise so that tasks can communicate with one another, denoted communication rela-
tionships, or because a task requires results from one or more tasks before it can start its
execution, called precedence relationships.

Communication is usually based on either shared memory, where tasks indirectly com-
municate with others by accessing portions of the memory that are shared, or message
passing, where explicit communication between tasks occurs. When shared memory is
used between tasks, concurrent access can lead to inconsistent updates. However, synchro-
nization mechanisms [SS99] can eliminate such problems altogether. Nonetheless, a task
may become blocked by another because the latter is in the process of using shared memory.
Note that processor sharing can also be classified as resource sharing and this also causes
tasks to become blocked. In message passing communication, tasks may communicate

synchronously, where the sender task must wait until the receiver task finishes processing

19

the message sent before it can resume, or asynchronously, where the sender task continues
its execution immediately after it sends the message. In pure synchronous communication,
the sender must rendezvous with the receiver to exchange information. [SS99]

Thus, an independent task set refers to tasks that do not communicate with each other,
do not share resources other than maybe the implicit sharing of the processor!, and do not

have precedence relationships.

2.1.2 Environment Characteristics

We must also consider the environment of the real-time system as a defining factor. First,
the system may either be centralized, i.e., the entire system resides on one machine, or
distributed, i.e., the task set is dispersed on more than one machine.

Whether in a centralized or distributed environment, each machine can consist of one
or more processors. With multiple processors, true concurrency and parallelism can be
achieved. Likewise, within a single processor, the creation of multiple threads produces

pseudo-concurrency.

2.1.3 Scheduling Algorithms

Task scheduling is another distinguishing feature of real-time systems. Schedulers can be
classified as either being static or dynamic. Static schedulers create the task execution
pattern, or schedule, off-line and the latter is then used to dispatch tasks at run-time. In
contrast, dynamic schedulers determine the schedule on-line, based on specific task char-
acteristics.

Common dynamic schedulers are based on task priorities. Priority-driven scheduling
algorithms assign priorities to tasks according to some policy. This priority assignment pol-
icy may be static, in which case each task is attributed with a priority value, determined off-
line, and this value remains fixed at run-time. Such assignments are called fixed-prioriry.
Alternatively, priority assignments that are determined at run-time, typically when the task
is invoked, are denoted dynamic-prioriry scheduling algorithms. Ultimately, the goal for
any priority-driven scheduling algorithm is to find a priority assignment for tasks, which

will satisfy the timing requirements of the real-time system.

'Note that, in the case where there is no processor sharing among tasks, schedulability analysis becomes
trivial.

20

Schedulers may also be categorized as non-preemptive or preemptive. In a non-preemptive
scheduler, a scheduled task keeps the processor until it decides to relinquish it voluntarily.
On the other hand, in a preemptive scheduler, a scheduled task may be suspended, or pre-
empted, so that the processor can be allocated to another task.

Although various task set scheduling algorithms exist, only a few are redeemed appro-
priate for real-time systems. In the past, programmers resorted to using non-preemptive
static scheduling techniques, such as cyclic scheduling followed by its extension, cyclic ex-
ecurive scheduling. In cyclic scheduling, a timer is set up to expire at the next task’s arrival
time. When this happens, the next task starts using the processor. This process goes on in
an iterative method until all tasks are scheduled and then, the process is repeated for recur-
ring tasks. The major problem with this method is that every task must finish in time before
the arrival of the next task but, at the same time, there should not be large gaps between
the finish of one task and the arrival of the next otherwise the processor is unnecessarily
idle. In order to lessen this problem, the cyclic executive scheduling was conceived from
the previous technique, in which case time is broken into major and minor frames. Each
task is scheduled to arrive at either a minor or major frame. The timer expirations are set up
at major frames and each of these contains one or more minor frames. Thus. tasks sched-
uled within minor frames of a specific major frame will run until completion and then, the
subsequent task will automatically start running once the earlier task finishes executing.

The static ordering of tasks in these types of scheduling techniques produces a high
level of determinism. In this way, the times at which tasks complete could be easily pre-
dicted in advance, leading to simplistic schedulability tests. However, several problems
with this approach have been discovered [Loc92], such as the maintainability of the sys-
tem, the inefficient use of resources and the inflexibility for supporting future needs. Thus,
such methods have now been superseded by priority-driven scheduling approaches.

The dispatching process of priority-driven scheduling algorithms consists of schedul-
ing higher priority tasks before lower priority ones. A preemptive approach will preempt a
lower priority task whenever a higher priority task becomes ready-to-run. However, some
situations do arise, whether with preemptive or non-preemptive, where a lower priority task
may be executing while a higher priority task is waiting to run. This phenomenon is called
priority inversion. For instance, say the processor is executing the task with the current
highest priority in a system using a non-preemptive scheduler and a task with greater pri-

ority arrives. In this case, the non-preemptive nature of the scheduler will result in the

21

higher priority task to wait for the lower priority task to finish. As another illustration, syn-
chronization mechanisms that are used to eliminate data corruption for shared memory can
also create priority inversion. In this case, notice that medium priority tasks can interrupt
the execution of the lower priority task, thus unrestricting the amount of pricrity inversion.
Schemes have been devised to minimize priority inversion, which will be discussed in the
subsequent section. Nevertheless, precise schedulability tests can be created so long as
priority inversion is bound.

Because of all these distinguishing features a real-time system can possess, several
types of tests have been developed in order to determine the feasibility of a system with
respect to its timeliness requirements. Some of these have been deterministic, i.e., it is

| possible to determine whether or not the timeliness needs are satisfied at design time with
complete certainty, while others have been statistical, i.e., the determination of a system’s
feasibility is given with a certain amount of probability. Deterministic approaches, mostly
needed for hard real-time systems, require the characteristics of the system to be known in
advance.

Historically, two distinct approaches for schedulability testing have come about. Namely,
the calculation of processor utilization, i.e., the percentage of processor time that may be
occupied by tasks, and the computation ot response times, i.e., the exact duration by which
tasks may be delayed. The feasibility is then determined, in the former case, by ensuring
the processor utilization does not exceed the upper bound value defined, and in the latter
case, by comparing the worst-case response times with the assigned deadlines, introduced

to quantify the system’s timeliness requirements.

2.2 Schedulability Tests

In the pioneering work [LL73], the authors developed optimal static and dynamic priority
scheduling algorithms for a set of periodic, independent tasks with hard real-time con-
straints and deadlines at the end of periods in a multi-threaded uni-processor environment,
where the mapping of tasks to threads was given as an assumption. Specifically, they
showed that the rate monotonic priority assignment is optimal in fixed-priority scheduling
with an upper bound for processor utilization approximately 70% for large task sets. Simi-
larly for dynamic scheduling, they proved that 100% processor utilization can be achieved

with dynamic priority scheduling algorithms, such as the optimal earliest deadline first

22

priority assignment.

Since then, there has been extensive research to generalize and improve the initial model
considered. Specifically, these algorithms have been extended to deal with the effect of
tasks with arbitrary deadlines, dependent tasks - both communicating and resource-sharing,
tasks with release jitter, sporadic tasks. In the next section, I will only deal with these issues
for uni-processor multi-threaded fixed-priority scheduling algorithms. However, there have
been advancements for the case of multiple processor systems as well as distributed systems

and these will be mentioned briefly in a subsequent section.

2.2.1 Fixed-Priority Scheduling Theory

Fixed-priority schedulability analysis for uni-processor systems has received a great deal
of attention. The seminal paper by [LL73] initiated it all when the authors formulated the
rate monotonic prioriry assignment RV A, i.e., assign a task with a shorter period, a higher
priority. They showed that R 4 was optimal with respect to fixed-priority scheduling
algorithms in the sense that, if a task set can be scheduled by some other fixed priority
assignment, it must also be schedulable using RM A. They also devised the upper bound

utilization term as a function of the number of tasks within the system:

For a set of m tasks with fixed priority order, the least upper bound to processor

utilization is U = m(2¥/™ — 1).

Leung and Whitehead [LW82] extended the above model to include task sets where the
deadline of each task can be less than the period. They formulated the inverse-deadline
priority assignment, i.e., assign a higher priority to tasks with smaller deadlines, as an
optimal priority assignment for the extended model. This priority assignment reduces to
the original when deadlines are at the end of periods.

When synchronization primitives are used for resource sharing among tasks, unbound
priority inversion may occur, which jeopardizes the satisfaction of the system’s timeliness
requirements. Priority inversion occurs when a higher priority task must wait for a lower
priority task before executing. In [SRIL90], the authors investigated a few protocols of the
priority inheritance class, namely the basic priority inheritance protocol and the priority
ceiling protocol. Both protocols bound priority inversion by allowing a lower priority task
to inherit the priority of a higher priority task while in a critical section. However, deadlocks

and chained blocking, i.e., a blocking term occurs for each synchronization primitive that

23

the task must access sequentially, are still present in the basic priority inheritance protocol.
The priority ceiling protocol reduces the blocking to exactly the longest critical section of
a lower priority task as well as prevents deadlocks from occurring by deferring access to
critical sections in certain circumstances.

In the works [JP86, LSD89, SRL90, Leh90], the authors developed exact schedulability
analysis to determine worst-case timing behavior for tasks with hard real-time constraints
in the R 4 model considered in the initial work [LL73] as well as extended models in
later pursuits, such as arbitrary deadlines, release jitter, sporadic as well as periodic tasks.
Overview papers on schedulability analysis concerned with such issues and more can be
found in [BF96, Fid98, HLR96].

Most of the deterministic schedulability analysis techniques follow the same approach.
First, the notion of the critical instant of a task is defined to be an instant at which a re-
quest for that task will have the largest response time [LL73]. For the types of models
we consider, the critical instant for any task occurs whenever the task is ready-to-run si-
multaneously with all higher priority tasks. Then, the notion of the busy period at level
t is also required. The latter is defined as the time interval during which the processor is
continuously processing tasks at priority ¢ or higher.

With these concepts, the calculation of the worst-case response time of an action in-
volves the computation of the response time for successive arrivals of the action, starting
from a critical instant until the end of the busy period. Also, the response time of a par-
ticular instance of an action can be calculated by considering the effects of the blocking
factor from lower priority actions and the inrerference factor from higher or equal priority
actions, including previous instances of the same action.

In addition, we are interested in the work [HKI.91], where the authors consider the
problem of fixed-priority scheduling of periodic tasks that may have varying priorities dur-
ing specific points of execution. This can happen, for instance, when the task set consists
of sequentially-constrained tasks where a task and its subsequent task are not at the same
priority. Also, when the basic ceiling priority protocol is used for resource sharing, a
task’s priority changes for a short period of time in the midst of its execution while in a
critical section. In general, systems of this type come about when the addition of a partic-
ular mechanism creates a complex priority structure. In this paper, the authors formulate
schedulability analysis for such systems by decomposing tasks into sub-tasks, where each

of these is characterized by an execution time, a fixed priority and, optionally, a deadline.

24

Then, for the response time calculation of each task, the authors g0 on to categorize all
tasks depending on how the latter will affect the former, where three distinct possibilities
can occur: a task can either have no effect on the response time computation or it can cause
interference or blocking. These decisions are easily made when one realizes that sub-tasks,
rather than tasks, have become the entities of execution. Consequently, the scheduling poli-
cies for tasks now apply to sub-tasks, such as sub-tasks executing at a given priority level
can be preempted by any sub-task of higher priority. By deciphering through the collection
of tasks, the response time of each instance of a task can be computed. Similarly, the au-
thors make a few variations in both the critical instant and the busy period in order to work
with this new model.

With the advent of these protocols, a new breed of priority assignment policies, denoted
mixed-priority assignment policies, arise that are a mixture of both fixed- and dynamic-
priority assignment policies. Another flavor of this mixed-priority assignment is dynamic
thread priorities with preemption threshold described in [WS99]. This policy supports a
dual priority by assigning both a (nominal) priority and preemption threshold value to each
task. A detailed discussion of this policy will be discussed in Section 3.2.1.2.3.

2.2.2 Extensions for Multi-Processor and Distributed Systems

The scheduling problems arising from a system made up of multiple processors are two-
fold: to determine when a given task executes as well as where it executes. The latter
assignment problem has lead to the creation of two distinct priority-driven scheduling al-
gorithms, namely the partitioning and non-partitioning methods. The partitioning method
consists of dividing the tasks into separate groups, where each of these is assigned to a
distinct processor. Alternatively, the non-partitioning method treats the set of processors as
one entity and tasks are assigned in a higher priority manner to available processors.

Although tempting, it has been shown in [DL78] that optimal priority assignments for
single-processor systems are not optimal in multi-processor cases. With either the par-
titioning or non-partitioning method for task scheduling, Leung and Whitehead [LW82]
showed that the problem of determining whether a task set was schedulable, given the pri-
ority assignment, is NP-hard. They also showed that the effectiveness of these approaches
is incomparable; it has been found that some task sets are schedulable using the first method
but not with the second and others work in the second but not the first.

In a distributed system, further complications arise if sequence constraints among tasks

25

exist. The general approach taken [Tin93, GGH97] is to implement each initial task trig-
gered by some external event as a periodic task and subsequent tasks triggered as sporadic
tasks. The timing analysis is then performed for each individual processor, where each task
has an associated release jitter to incorporate the variable arrival time of the preceding task.
In this way, the global timing properties of the entire system are accounted for and each
task is thought of as independent. Because sequentially-constrained tasks across processors
may be intertwined, the timing analysis process must be repeated until convergence occurs.
The latter takes place when, after a single timing analysis passes through the task sets on
all processors, all worst-case response times and all worst-case communication times do
not increase. However, the above approach may result in pessimistic results, originating
from the inclusion of unnecessary interference that cannot occur in practice [BAW97] and
thus may lead to poor utilization levels. A less pessimistic approach has been devised
in [GHO98, BB98], where each task is now treated as dependent and is released after some
time, called the offser. The latter is expressed using the arrival of the external event of this

transaction and the ancestor tasks that the current task depends on.

2.3 Real-Time System Design

Although the principles developed in software engineering hold true for the design process
of real-time systems as much as any other type of system, a shift on the importance of these
principles occurs because of the timeliness issues prominently distinguishing real-time sys-
tems. Above all, the most significant principle of software engineering relative to real-time
systems is predictability, i.e., the ability of a system to perform correctly and, sometimes
even continuously. Other important issues include the maintainability and extendability of

areal-ime system.

2.3.1 UML and Object-Oriented Design

Recently, several efforts have been made to introduce object-oriented modeling and design
to the software development process of real-time systems. The need for such techniques
stems from the ever-increasing complexity of real-time systems. Such techniques allow
designers to break up a complex software system into several manageable pieces.
Moreover, the object paradigm has evolved to augment the traditional programming

26

language notions of classes and objects with higher level modeling concepts allowing de-
signs of complex system structures and behaviors. Such modeling concepts include (1)
the hierarchical specification of the software architecture of a system using objects, (2) the
behavioral modeling of objects using extended finite state machines and (3) the use cases
and scenarios to model end-to-end system behaviors. These modeling concepts use visual
notations that greatly increase the understanding of the system structure and behavior.

The recently standardized Unified Modeling Language (UML) [BRJ99, RIB99] is an
amalgamation of many of these concepts and notations. It has quickly becoming very
popular with a number of UML-based modeling and development tools offered by various

commercial vendors.

2.3.2 Code Generation

A much greater benefit from the newly-adopted approach of developing a real-time sys-
tem using object-oriented technologies results if the design models can be automatically
translated into an implementation for a desired target platform. With such automatic code
generation, the benefits of modeling extend through the product’s life-cycle.

Automatic code generation is especially critical with an iterative and incremental style
of software development. In the absence of code generation, developers will often bypass
the models and directly modify the code when pressed for time. Thus, models get out of
sync with the code and become less relevant. When code generation is supported, models
retain their usefulness and the design model becomes the implementation. [Bel98, SGW94]
Moreover, when models are executable, they can be simulated to identify design flaws.

While code generation from object-oriented models has received little attention in the
research literature, it has been successfully accomplished in a few commercial tools.

One of the first efforts to build design tools for real-time systems based on object-
oriented modeling and to provide automatic code generation came from ObjecTime. They
built the design tool ObjecTime Developer, which is based on the ROOM modeling lan-
guage [SGW94]. In Section 1.1, I gave a list of the commercial tool vendors [am aware
about that have been involved in similar work. They have built these design tools using
UML or some variant of the latter and many support partial or total code generation.

In what follows, I will give a brief overview of many design methods proposed for real-
time system development. Since we base our own modeling language on ROOM, I then

tollow with a discussion on ROOM.

27

2.3.3 Real-Time Methods Overview

Over the years, many design methods have been proposed for real-time system develop-
ment, for example JSD, MASCOT, RTSA, DARTS, CODARTS, HRT-HOOD and OC-
TOPUS [Gom93, AkZ96]. Many recent design methods are based on object-orientation
and include HRT-HOOD [BW94], OCTOPUS [AkZ96], CODARTS [Gom93], the ROOM
Method [SGW94] and the Shlaer-Mellor method [SM96].

HRT-HOOD was designed for hard real-time systems and is heavily influenced by the
developments in real-time scheduling theory. Its abstractions directly map to the concepts
in real-time scheduling theory, thus making the designs analyzable for real-time properties.
However, in concentrating on the timeliness aspects, the method is weak on behavioral
modeling aspects, making it difficult to use when the reactive behavior is complex.

The Shlaer-Mellor method is representative of industrial practice and, while it is strong
in code generation, it provides little support for schedulability analysis. This method pro-
vides flexibility in determining a physical architecture of the system and our generic im-
plementation architecture is heavily influenced by this, but it provides no clear guidance to

map an object design to a physical architecture.

2.3.4 ROOM Methodology/ObjecTime Developer Overview

Active objects, called actors, are the entities used to model a system with ROOM. These
are encapsulated, concurrent objects that communicate asynchronously by sending and re-
ceiving messages through distinct interfaces called porrs. A message consists of a signal
name, an optional list of parameters and a priority. The latter identifies the significance of
the message.

The behavior of actors is modeled using ROOMcharts, which is an extended finite state
machine that may include composite states as well as guard conditions. It is based on
the statechart formalism [Har87]. Sending an event to an actor may initiate the execution
of an action. The action specification is thought of as a fine-grained detail and thus, can
be specified using a programming language, such as C++. Code involved with message
transfers are also specified within actions.

ROOM uses a run-to-completion paradigm for event execution on a thread, i.e., when a
higher priority event arrives for execution on a thread, but another event is being processed
in the same thread, the former will not get processed until the latter has completed.

28

ROOM also provides a generic run-time system, which is also incorporated in Objec-
Time Developer toolset, a CASE tool that provides a fully integrated development envi-
ronment to support the ROOM methodology, with features such as graphical and textual
editing for actor construction and C++ code generation from the model [SGW94].

The generic run-time system models threads as event handlers. Within every thread
resides an event queue where arriving events are queued in priority order. Actors are also
mapped to threads. Hence, when a message is sent to a specific actor, the underlying
machine first determines which thread the receiving actor is associated with and puts the
message in the corresponding priority queue. Because the execution of an actor resides
entirely in one thread and each thread executes in a run-to-completion paradigm, it is im-
plicitly true that there is a run-to-completion paradigm with respect to each actor as well.
That is, there can only be at most one processing in progress for every actor in the system.
ROOM’s generic run-time system also includes a dedicated thread, which is used to insert
periodic or timer messages to actors.

Within single-threaded implementations, priority inversion can occur because of the
run-to-completion paradigm for event execution on a thread. Nonetheless, this value is
bound to the processing of exactly one event. In a multi-threaded implementation, there
are two levels of priority scheduling: within the context of a single thread, where the pro-
cessing of events takes place in event priority order, and across the whole system, where the
operating system schedules the threads in thread priority order. However, thread priorities
within ObjecTime are statically. managed, which lead to unbound priority inversion. Thus,
it may be possible that a lower priority message is being processed while a higher priority
message is waiting and these are in different threads because the former is mapped to a
thread with higher priority.

The ROOM methodology is representative of industrial practice. With the introduction
of UML, ObjecTime has cooperated with Rational Software to develop UML-RT, which
uses UML’s in-built extensibility mechanisms to integrate ROOM concepts within UML.

Both these languages have features that, on one hand, enable high-level modeling of
complex real-time applications (e.g., hierarchy in structure diagrams and in state machines,
layering, dynamic structures and inter-connections) and, on the other hand, allow fine-
grained details to be specified (e.g., use of a programming language like C++ to specify the
action to be handled).

29

Chapter 3
Automated Implementation

Automatically synthesizing an implementation from design models for a desired target plat-
form is not a deeply researched area. To our knowledge, there are no.other non-proprietary
strategies developed in this field, except for the well-known Shlaer-Mellor Method [SM97].
Furthermore, there are few, if any, academic tools that support code generation. Other in-
stances of the code generation process, either partial or complete, stem from commercial
tools, where the code is proprietary. For instance, the design tool ObjecTime Developer,
based on the ROOM modeling language [SGW94], provides support for code generation.

In this chapter, I deal with the problem of automating the translation of design models
into an implementation for a uni-processor system. Based on our design model representa-
tion discussed in the previous chapter, we can restate this problem as that of automatically
merging the application view, detailing the system’s functional requirements, and the im-
plementation view, specifying the execution environment as well as the bindings of the
application view to the execution environrment, into executable code.

Our solution entails constructing a textual grammar based on the UML specifications to
model the application and implementation views of a system. The grammar, which includes
real-time notions, is restricted in certain ways, so that programming can be bearable.. We
then proceed by translating the entities modeled into actual code. To aid in this translation,
we develop a generic implementation architecture specific for uni-processor environments
as part of a library.

The details regarding the solution are presented in this chapter as follows. I specify the
entities modeled in both the application and implementation views. Then, I continue with

a description of the generic implementation architecture aiding the translation process. I

30

also describe the tool that was built to conduct the translation, which includes a high-level
design description of the library for the generic implementation architecture, and give a
concrete but rather simplistic example of this process. Finally, I conclude this chapter by

briefly discussing some issues regarding the solution.

3.1 Application-View Modeling

As in other object-oriented methods, we cast an application as a network of collaborating
objects. Our application model is inspired by ROOM [SGW94], UML-RT [SR98] and
a UML-based executable object model [Har87]. We make use of UML [RJB99, BRJ99]
notation and terminology wherever possible.

The timing constraints associated with a real-time system are also modeled in the ap-
plication view, some explicitly and others implicitly. The reason for the explicit modeling
of some of these constraints is that they are not only of great importance for schedulabil-
ity analysis, but also pertinent for the process of automatic translation. For completeness

however, we briefly describe all the timing-constraint entities requiring modeling.

3.1.1 Object Modeling

The basic architectural modeling entity is an active object as in ROOM and UML-RT.
Active objects are logically concurrent and communicate by sending and receiving events.
An event is globally defined within a system by its name and, in the above-mentioned
modeling languages, can have an optional list of parameters. For simplicity however, we
do not model the optional list of parameters for events. Events may be sent asynchronously,
in which case the sender object does not wait for the event to be delivered, or synchronously,
in which case the sender object blocks and continues only after the recipient replies with a
return event. In accordance with the UML terminology, we refer to asynchronous events
as signal events and synchronous events as call events.

Communication between objects is performed via ports. An active object may have
an optional list of ports, each of which is locally defined by its name. Message transfers
within a system can occur between a pair of ports that are bound to each other. In this way,
an event sent out of some port of the sender object may be received if this port is bound
to another. If the port is unbound however, the event is discarded. Thus, a port binding

specifies a one-to-one communication.

31

Active objects have their behavior modeled using a restricted finite state machine, based
on the statechart formalism [Har87], where we disallow composite states as well as guard
conditions. Each active object remains dormant until an event is received. The reception
of an event may trigger a transition in the state machine, if such a transition cxists from the
current state given the particular event arrival. Otherwise, the event is discarded.

A transition in the state machine may have a collection of sub-actions associated with
it. Sub-actions may also be associated with entry to a state or exit from a state. In general,
an event trigger will result in an acrion, defined as a collection of sub-acrions, that may
include an exit sub-action from the current state, sub-actions associated with the transition
and an entry sub-action for the next state. Hence, we can say that an action captures the
processing information for an event.

Also, we expect the execution of an action be atomic, in the sense that it follows a
run-to-completion paradigm within the context of an object. That is, if some action has
started executing, no other action for the same object can be started elsewhere until the first
action has completed. The atomicity of event processing within the context of an object
ensures object consistency and greatly simplifies the design of objects through avoidance
of concurrency conflicts.

Other, less disceming, elements comprised within active objects are arttributes and
methods, as they are conventionally defined within the context of object technology. More-

over, the definition of a method is also expressed as a collection of sub-actions.

3.1.2 Timing Constraints Modeling

The modeling of objects, their associations and their behavior seems to be sufficient for
code generation. However, there are a few notions dealing with timing requirements that
are also pertinent to this process. As we consider all the concepts, we will identify those
meeting the latter condition.

We begin with the notion of an external event stream. Each external event stream
is characterized by a name, arrival pattern, recipient object and initial arrival time. We
differentiate between two arrival patterns: either non-recurring one-shot events, where the
event arrives only once at the time specified by the initial arrival time, or periodic events,
where the event first arrives at the initial arrival time and every subsequent arrival is at
the time specified by (initial_arrival_time) + (i = period). We do not explicitly model

sporadic events.

The arrival of an external event triggers an action or, equivalently, a sequence of sub-
actions, within a particular object. In other words, we can say that the external event is sent
asynchronously to a particular object within the system, which may trigger a transition in
the state machine, thus executing some action within the object. From this, we observe that
the notion of external event is required for the translation process.

Sub-actions may be specified as code segments in a detail-level language, such as
C++. These are termed uninterpreted. We impose certain restrictions on uninterpreted sub-
actions so that, when timing analysis is performed, it may be done correctly. Specifically,
uninterpreted sub-actions must be simple code segments that may not include alternate
paths nor loop structures and may not cause any blocking.

We also support some special sub-actions as defined by the UML specifications. Some
of these are used to denote sending of events, while others express ordinary concepts found

in most programming languages. These are as follows:
e a send request sub-action to asynchronously send a signal event to another object,
e a call request sub-action to synchronously send a call event to another object,
® a return sub-action to reply to a call event,
® an assignment sub-action to assign attributes to particular values,
® 2 rerminate sub-action to halt the execution of the entire system

Note that we disallow any dynamic creation or deletion of objects, which are also specified
within UML as the create and delete sub-actions [RJB99, BRJ99].

Both request sub-actions consist of an event of the appropriate type (e.g., call event
used for call request sub-action) and a particular object port, which ultimately specifies the
recipient of the event. In addition, the return sub-action specifies an expression as a return
type.

All sub-actions, excluding the assignment sub-action, must be explicitly modeled so as
to perform the proper activities prior to termination of the entire program as well as to allow
the inter-object behavior to be visible at the modeling level, thus facilitating the timing
analysis. The assignment sub-action may alternatively be expressed by an uninterpreted
sub-action.

The execution of an action may generate other internal events through send/call sub-

actions, consequently resulting in the execution of other actions, and so on. The entire

33

causal set of actions executed as a result of the external event forms a transaction. A
transaction is not explicitly modeled in the application view. Rather, it is hidden within
the representation of actions and sub-actions. This does not cause problems, because a
transaction is not explicitly required for the translation process. However, it is needed for
timing analysis and thus, it must be explicitly modeled in the timing analysis view, as will
be explained in Chapter 4. Note however that the timing analysis model could be extracted
from the application model ! and, in this case, all the information could actually be stored
in the application model.

For completeness, we mention other timing attributes not explicitly modeled in the

application view. These are:

e the computation time associated with an action, which specifies the amount of pro-

cessor time required to execute this action, and

e a deadline that may be associated with an action, introduced to quantify the timeli-

ness requirements of the system.

3.2 Implementation-View Modeling

Notions contained within the implementation view specify information related to the ex-
ecution environment and the binding of the application model to the execution environ-
ment. However, we have already restricted the types of applications that can be modeled
to centralized ones running in a uni-processor multi-threaded environment. Also, we have
assumed that our underlying implementation architecture, described later in Section 3.3,
will treat threads as event handlers, where the processing of events will be performed in
priority order. Hence, the threads, the mapping of actions to threads and the assignment of

event priorities are the remaining specifications left unsettled.

3.2.1 Thread Modeling

Threads are attributed with a unique name. Moreover, by specifying the threads within a
system, we implicitly also identify the number of threads, which leads to the determina-
tion of whether we are creating a single- or multi-threaded environment for the particular

system.

'In Section 4.1.5, we manually extract the analysis from an example system design.

34

To describe the exact modeling of the mapping between actions to threads and the
assignment of event priorities, we must first reason about the scheduling of actions in both

single- and multi-threaded environments.

3.2.1.1 Single-Threaded Environment

A single-threaded environment automatically implies non-preemptive scheduling. When an
action completes in a single-threaded environment, the current highest priority action, iden-
tified by the triggering highest priority event, is the next action to execute on the thread with
no interruption until it has completed. Of course, any synchronously-called actions are the
exception to this rule, i.e., the current action will suspend itself whenever a synchronously-
called action is made and then, when the latter replies (with a return sub-action), the trigger-
ing action resumes its execution. We will refer to an action and any synchronously-called
actions made from that action as the synchronous set of an action®.

In such a system, when a higher priority action arrives while a lower priority action
is executing, the former will be blocked until the synchronous set of the latter completes.
Once completed, this higher priority action will execute so long as no other action with
higher priority has arrived. Thus, we observe that priority inversion, or blocking, in a

single-threaded environment is limited to a single synchronous set of one action.

3.2.1.2 Multi-Threaded Environment

In a multi-threaded environment, multiple threads are introduced to achieve preemptability
of event processing. Assuming that event priorities have already been assigned, the ob-
jective is to process higher priority events in preference to lower priority ones. However,
once an event begins processing within a single thread, it cannot be preempted by newly
arrived higher priority events in the same thread. We express this non-preemptiveness qual-
ity within a single thread as the run-ro-completion paradigm within the context of a thread.
Because of this fact, priority inversion may still occur and we can think of threads as mutex
resources, since only one action at a time may be actively using a thread. As in the single-
threaded case, synchronously-called actions are the exception to the rule. For simplicity,
we restrict synchronously-called actions to execute within the same thread as the caller

action.

2This will be formally defined in Chapter 4 when dealing with timing analysis.

(9%
W

As we argue below, unless the multiple threads and their priorities are managed care-
fully, a solution with multiple threads may not give rise to any advantages over a single-
threaded implementation. The overall aim is to drive the scheduling of events based on
event priorities and to minimize priority inversion. We will begin with the assumption that
actions have been mapped to threads and will consider the assignment of thread priorities

using distinct priority management schemes.

3.2.1.2.1 Static Thread Priorities

The simplest approach to managing thread priorities is to assign them static values. In fact,
this is the approach followed in Rational Rose RT (and other tools as well). While the
designer is free to choose any priority for the threads, a good heuristic is to assign a thread
a priority that is the maximum of all events that it processes. This approach is similar to
the highest locker protocol for mutex resources [KRP*+93].

One of the problems with static thread priority assignment is that events at a lower
priority in a higher priority thread have their priorities boosted up artificially. Due to this,
there are possibilities of priority inversion from multiple lower priority actions. This is
clearly undesirable in many situations.

Another, and potentially more important, problem with static thread priorities is the
fickleness it introduces in the design. Since blocking effects can be cumulative, the chances
that the addition of new low-priority functionality may affect the timeliness of time-critical
transactions increases. In the single-threaded case, since blocking is limited to a single syn-
chronous set of an action, new functionality could be safely added so long as the execution

time of any new synchronous set does not exceed the previous upper bound.

3.2.1.2.2 Dynamic Thread Priorities

A solution that avoids such potentially unbound priority inversions is to dynamically man-
age a thread’s priority such that the latter equals the highest priority pending event, includ-
ing the currently processed event, if any. Note that this scheme is much like the priority
inheritance protocol for mutex resources [SRI1.90]. When thread priorities are dynamically
managed in this way, it can be shown that priority inversion is bound.

While priority inversion with the above scheme is bound, we may still get priority

inversion from multiple lower priority events. In the worst case, this can occur with one

36

lower priority event from each of the threads. This effect is similar to the chained blocking

that can occur in priority inheritance protocols.

3.2.1.2.3 Dynamic Thread Priorities with Preemption Threshold

The work-around to this “chained blocking” type of priority inversion has been devised
in [WS99]. In this scheme, each event is not only assigned a priority, but also a preemp-
tion threshold prioriry. To avoid any confusion, we will refer to an event’s priority as its
nominal priority. The idea is that when an event is being processed, its priority is raised to
its preemption threshold pﬁoﬁty. In this way, an event processing can only be preempted
by the arrival of events in other threads that have nominal priorities higher than its pre-
emption threshold priority. By appropriately setting the preemption threshold priority, the
priority inversion problems can be minimized to a single synchronous set of an action. The

preemption threshold assignment constraint is expressed in Equation 6 of Chapter 4.

3.2.2 Binding of Application-to-Environment Modeling

From the above arguments, we deduce the modeling of both the mapping of actions to
threads and the assignment of event priorities. These are explicitly modeled in one giant
specification, where a mapping consists of a thread, an action identifier and a set of schedu!-
ing attributes. We utilize an action identifier to express a unique request from one object
to another. This includes the identification of the sending object, the receiving object and
the (signal or call) event to be sent. The set of scheduling attributes consists of the nominal
prioriry of an action identifier for a single-threaded implementation. For a multi-threaded
implementation, it comprises the nominal priority and the preemption threshold priority of
an action identifier.

From this, we can observe that an action identifier uniquely identifies each action within
our system. We already imposed the restriction. that event names are unique within the
system. Thus, we can say that an event also uniquely identifies each action within our
system. In addition, we restrict the mapping of synchronously-called actions to execute
in the same thread as the caller action in multi-threaded environments. The reason for
the above constraint is so that the priority management scheme we use does not incur any
added blocking.

37

3.3 Generic Implementation Architecture

Our generic implementation architecture uses preemptively scheduled threads and is similar
to that used in both ObjecTime Developer and Rhapsody tools. However, there are two
main differences: first, we transparently manage the priorities of threads in order to bound
and minimize priority inversion and second, we allow general mappings of the application
model to the implementation architecture.

In this architecture, a thread is modeled as an event handler. A thread maintains an
event queue where arriving events are queued. The queued events are processed in a run-
to-completion manner within the context of a thread. This can easily be done using an
event-handling loop. If there are no queued events, the thread blocks itself, awaiting new
event arrivals. Event processing is accomplished by calling the appropriate action of the
destination object.

Figure 4 graphically shows the behavior of a thread. Thread priority management is
shown in the right half of the figure. As was mentioned above, we use dynamic thread pri-
orities with preemption threshold as our priority management scheme. A thread’s priority
is then managed as follows.

When an event is deposited into the event queue of the receiving thread within a send
sub-action, the receiving thread’s priority is set to the higher of its current priority and the
event’s nominal priority, as illustrated in Figure 5(a).

A similar change of priority is done for call sub-actions. However, in this case, the
target thread’s priority is set to the maximum of its current priority and the calling action’s
preemption threshold priority, as illustrated in Figure 5(b). Nonetheless, the thread priority
value turns out to be the same as before for the send sub-action, since we have assumed
that synchronously-triggered actions run in the same thread as their caller action.

When a thread retrieves a message from its event queue for processing, it sets its priority
to the event’s preemption threshold priority. At the end of processing, the thread priority
is set to the highest nominal priority pending event in its event queue. Figure 4 shows the
changing of priorities within a thread’s event loop. With this priority scheme, we can show
that priority inversion (defined with respect to nominal event priorities) is bound whenever
the preemption threshold priorities are no less than the nominal priorities. Moreover, if
the preemption threshold priority of an event is no less than the nominal priorities of all
events that are processed in the thread or the object, then priority inversion can be shown

to be bound by one lower priority event processing [WS99] (actually, the synchronous set

38

. Ve —\
Incoming Event Queue r , 1~ ~
L Initialization l R Set Priority to
S Event’s Run Priority
’ .
- . 1 N
, —
| ‘Wait for Next Event J e
| Wait for Next Even . Call Event's
‘ Destinarion Object->Method
P \. J
.) .
(Process Event - Set Prioriry to
~ T Seel Highest Nominal Priority
I 1 P Pending Event)
=~ .
T~ . J

Figure 4: Thread Behavior in the Generic Implementation Architecture

of one lower priority event processing). This fact is proven later when considering the
schedulability analysis.

External events, including timed events, are injected into the event queue of the appro-
priate thread by polling for external events within a thread’s event loop. Another possibility
is to use a timer manager thread to manage timed events, as it is done in ObjecTime De-
veloper. Alternatively, external events may trigger interrupts and an interrupt handler can
insert the event into the target thread’s event queue (or set a flag that is checked within the
event loop). '

Figure 5 models the implementation of the send and call sub-actions described earlier.
Both send and call sub-actions must first determine the target thread where the event will
be processed. This is simply determined by looking up the mapping of the action identifier
to the specific thread mentioned before. This mapping is used to insert an event into the
appropriate thread’s event queue when it is generated. We assume that all threads share a
single address space and therefore, a thread has access to other thread’s event queue. Thus,
the sending thread (i.e., the thread that executes the send/call sub-action) deposits the event
in the receiving thread’s event queue.

The generic implementation architecture does not assume or imply any a priori map-
ping of events to threads and, in general, any arbitrary mapping is allowed. Therefore, it is
possible that a thread may process events destined for multiple objects. Likewise, events
destined for an object may be processed in multiple threads. When this is the case, we need

additional mechanisms to ensure that the execution is consistent with the run-to-completion

39

~
Find Target Thread l
..

y

.

L Find Target Thread

Deposit Event in Target Thread

.
)
-

Set Target Thread’s Priority to
Max(Current, Calling action’s Run Priority)

[(Deposit Event in Target Thread

L4
Set Target Thread’s Priority to

.

Waiting for Reply Event

) L
7T s

77T

Max(Current. Event’s Nominal Priority)

(a) Send Action (b) Call Action

Figure 5: Send and Call Sub-actions

concurrency model (i.e., within the context of an object). This can be easily done by as-
sociating a *mutex” lock with each such object, which is locked during event processing.
The locking and unlocking is then done as part of the event handling loop.

Another method, which is what I used, is to take advantage of the dual priority when in
a multi-threaded system to ensure that both run-to-completion paradigms are satisfied. For
this to work properly however, we need to impose another restriction. Namely, an object
may not make a synchronous call to itself using a call event; it must do so by calling the
appropriate method within an uninterpreted sub-action. Also, call event loops, which lead

back to an object that is awaiting a reply, are strictly forbidden.

3.4 Tool

The textual grammars, describing the application and implementation models referred to
in this chapter, can be found as appendices A and B respectively. Although they are two
separate grammars, we have combined them into one in such a way that the corresponding
parser gets the input from the user from two separate files, namely one containing the
application model and the other the implementation, and translates the input from these

two files into executable code.

40

The translation component generates C++ code given valid application and implemen-
tation models. As it parses the input from both views, it constructs the translation model,
which includes all the necessary information to create the complete application. Then, us-
ing the generated makefile, executable code is automatically created using the pre-existing
library as well as the application code produced by the translation process. Before we pro-
ceed to describe the information stored in all these files, we will first describe the library in

greater detail.

3.4.1 Library

The library, implementing the generic implementation architecture, consists of a set of
C++ files. These files can be subdivided into six groups as shown in Figure 6. They are as

follows:

) Synchrc;nization Service, implementing mutex (RTMutex) and condition variable
(RTSyncObject).

e Generic Class Management, implementing a generic class (RTClass), its finite state
machine (RTFSMInfo) and its ports (RTPort).

e Thread and Messaging Management, implementing a priority message queue (RT-
Controller) and thread functionality (RT Thread).

e Memory Management, implementing a message type and the management of mem-
ory (RTMessage. RTMessageQ, RTResourceMgr).

e Timer Service, implementing a time specification, a timer event type and the man-
agement of timed events (RTTimespec, RTTimerNode, RTTimeClass).

e Generic Main, implementing the generic main function (RTMain).

3.4.1.1 Synchronization Service

Synchronization mechanisms are used to control access to shared data among threads. In
our case, we use POSIX-compliant thread libraries for this task, which are guaranteed to

be fully portable to other POSIX-compliant environments.

41

Generic Main Thread & Messaging Generic Class

. RTThread RTClass
RTMain RTController RTFSMInfo
| RTPort }
Timer Memory Synchronization
R’I’[.'imesl—aec RTMessage RTMutex
RTTimerNode RTMessageQ
RTTimeClass RTResourceMer RTSyncObject

Figure 6: Run-Time Library Services

The RTMutex class implements the mutex synchronization mechanism with the meth-
ods enter(void) and leave(void) for exclusive access to a critical section. This feature
is essential in our system because it permits access to global data such as the messaging
management and global timer service structures in place.

The RTSyncObject class, derived from RTMutex, implements the methods signal(void),
wait(void) and timedwait(RTTimespec), which are respectively used to signal a condi-
tion variable (i.e., wakeup a single thread that may be blocked on the condition variable),
to wait on a condition variable (i.e., block a thread indefinitely until the condition vari-
able is signalled) and to wait on a condition variable or until the absolute time specified
by RTTimespec has expired. This mechanism ensures processor resources are not wasted

unnecessarily (see Section 3.4.1.5 for more information).

3.4.1.2 Generic Class Management

Every user-defined class inherits from the abstract class RTClass. The latter contains a few
abstract methods, which are automatically filled in within each derived class by the code

generation process. Specifically, these are:

e Method AddU serSignalsF S M Behavior(void) to shape the underlying finite state

machine by adding its behavior.

e Method Speciallnitialization(void) to include any special initialization require-

ments when the finite state machine is initialized via the initial transition.

42

e SpecialDestruction(void) to add any special destruction requirements prior to the

destruction of the finite state machine.

This class also defines the underlying functions that are replaced in the user-defined
class implementations whenever either a call, signal, return or terminate sub-action is
made. These are request(RT Message :: Synch, Event, Data, OutPort, Priority),
request(RT Message :: Asynch, Event, Data, OutPort, Priority), reply(Data) and
abort(void) respectively, where all the parameters are further described in Section 3.4.1.3.

In addition to these, RTClass has methods to create, delete, shape and access the asso-
ciated finite state machine. The finite state machine object, within every RTClass object,
is implemented by the RTFSMInfo class. Because there is only one object accessing the
finite state machine, no mutex lock is required to access it.

Access to an entry of the finite state machine requires an event and a state. Each entry
in a finite state machine includes a pointer to an entry method, a pointer to an exit method, a
pointer to a transition method and a new state. Each object’s finite state machine includes all
user-defined and system events, whether or not this object can receive/send all the events.
The behavior of an object is accessed by using the Go(Event) method of its finite state
machine, where Event defines the event that has just been received and, of course, the
finite state machine has knowledge of its current state.

If the event is received by the object and this event is invalid or there is no transition
from the current state, nothing will happen. However if there is a transition involved, then
the object’s per form Action(PointerT oM ethod) will be called by its finite state machine
first, with the exit-of-state method (if any) and then, with the transition method (if any).
Then, the finite state machine will move to the appropriate new state and call the object’s
per formAction method for the entry-of-state method (if any).

A list of all ports defined within the derived class are stored in RTClass. Ports are
implemented by the RTPort class. All ports have a unique identifier. That is, object a of
class A and object b of the same class A each have ports, say one port, port . Then, port 7
of object a has a different identifier than port ¢ of object b. Ports may be bound using the
BindPort(RT Port) method, where RTPort specifies the remote port that this port will be
bound to. In this way, if a message is sent from this port, it will be received by the remote

port and vice-versa.

43

3.4.1.3 Thread and Messaging Management

The messaging service is implemented by the RTController class. This class implements
a priority message queue as two distinct entities, namely the inner message queue and the
outer message queue. Also, each RTController object has an associated RTSyncObject. Its
utility is explained below in Section 3.4.1.5, where the timer service is described.

When a thread wants to send a message, if the message is to be processed in the same
thread, then the message is just put into the inner message qu;:ue. On the other hand, if
the message is to be handled in another thread, a lock on the outer message queue of the
receiving thread must first be acquired, the message is then inserted and the lock is released
afterwards.

In order to determine whether a message is to be processed in the same thread, we
store a static look-up table within the RTController class, which maps action identifiers
to controllers. These mappings, originally obtained from the implementation model, are
inserted in the table during initialization.

We also associate an RTThread object and RTTimeClass object with every RTCon-
woller object. An RTThread object implements methods such as get Priority(void) and
set Priority(Priority) used for thread management purposes. The RTController class
has two derived classes, namely singleController and multiController, where the former
conforms to single-threaded environment design specifications while the latter to multi-
threaded environments. The RTTimeClass object, described in Section 3.4.1.5, is used to

insert timer events into the current RTController’s message queue.

3.4.1.4 Memory Management

Memory management is implemented by the RTMessage, RTMessageQ and RTResourceMgr
classes. The RTResourceMgr object exists statically for all RTControllers and manages all
the memory for the entire system. Messages sent and received by objects are implemented
using the RTMessage class. Each message consists of the event to be sent (either syn-
chronous or asynchronous), the scheduling attributes of the message (nominal priority and
the preemption threshold priority for multi-threaded environments) and the port the mes-

sage is sent from.

3.4.1.5 Timer Service

There is one RTTimeClass object for every RTController object, and thus every thread, in
the system. Each RTTimeClass object keeps track of timer events that are to be processed
within this thread and ensures these timer events are sent when required to the proper
destination. Timer messages, implemented by the RTTimerNode class, are sent internally
within a thread, therefore there is no additional inter-thread send cost. Time is implemented
using the RTTimespec class.

Since the RTTimeClass object is not running in its own thread, we cannot perform
“wait” operations, because this blocks all other activities that need to be performed in
this thread. Instead, specific methods of the RTTimeClass object are called to handle all
local expired timer events after the completion of every message processing. If no more
processing remains for the thread, we perform a “timedwait” on the condition variable
associated with the message queue, which will block the current thread until the next timer

event expires or a new event arrives (in the outer message queue).

3.4.2 Description of Generated Files

As we mentioned earlier, the translation component automatically generates files. Specifi-

cally, it creates:
e Class header and implementation files, one for each declared class and
e a makefile, a global header file as well as a file containing the main function.

The class header and implementation files store specific user-defined functionality for
each class. They also store information required to create the finite state machine behavior
associated with each class, namely the states, the transitions and the valid signals. In ad-
dition, local port details are available so that each instance of the class can access its ports
without having to know their global names. Each user-defined class inherits from RTClass.
Thus, any call or signal events as well as any rerminate sub-action are translated to ap-
propriate calls provided by the generic RTClass class. Also, in order to add user-defined
behavior to the finite state machine, special abstract methods of RTClass are automatically
generated within each derived class by the translation process.

All information required for both objects and the underlying system are stored in the

global generic header file. These include:

45

A list of all events that can possibly be generated within the system.

A list of all objects in the system. Note that these objects may only be statically

created during system initialization.

A list of all port identifiers, each of which uniquely defines an object port.

A list of all controllers in the system.

A list of all initial port bindings, i.e., object ports that will be bound during system

initialization.
The main function performs the following actions:
1. Create all required system abjects.
2. Create any addition_al objects specific to the particular application.

Bind all object ports for communicating objects.

(98]

4. Map methods (actions) to threads.
5. Add all initial messages to the system as well as any timer events.

6. Start the event handling loop for the current thread.

3.5 Simple Example

Let us now illustrate the steps a designer would follow in order to use the automated imple-
mentation. This would necessitate the specification of the application and implementation
model. As the implementation model should be synthesized automatically, we will delay
its specification until we need it (in Section 4.3.4). That is, we will defer the event pri-
ority assignment and, for muiti-threaded implementations, the thread specification, event
preemption threshold assignment as well as action-to-thread mapping. Let Figure 7 give a
view of the example system and its interaction with the environment.

Our example system is made up of seven objects, where each object’s finite state ma-
chine is shown. We can observe that each object has only one *“‘real” state associated with
it; any accepted event first triggers some transition action and then returns to the same state.

We also notice that each object calls its SpecialInitialization action during initialization,

46

External_T1
periodic
first arrival at 0
every 60 time units
——

External_T2
periodic
first arrival at 0
every 300 time urits
——————r

External T3

periodic

tirst arrival at 0

every {000 time units
———trafi—

—

Specualinitialization(«oid } SpecialDestruction(void)

J

e a N g
Object O, Object Og
Extemal_T1/Method_Al(void } Intemal_a2l/Methad_A7(void)
N . -
RTInitSignal/ RTDestroySignal/ RTInitSignal/ RTDestroySignal/

Speciallnitiatization(void }

\

SpeciaiDestruction(void)

J

%bj«t o,

RTInitSignals

\,

Externai_T2/Method__A2(void)
Extemnal_T2’Method_A3(void)

RTDestroySignal/

Specialinitialization(void) SpecialDestruction(void)

~

J

RTInitSignal/
Speciallnitialization(void 3

-

(Object 04 Intermal_a24/Method_AS(void)
Internat_a3UMethod_AA(void)

RTDestroySignal/
SpecialDestruction(void }

/

E—

RTlnitSignalt

Internai_aS/Method_A§(vaid)
Intemal_a23/Method_AS(void)

RTDestroySignal/

Specialinniaiizationt void) SpecialDestruction(void)

J

4 R '
Object 03 Object O,
Intemal_al 3/Method _AS(void) Internai_aA2/Method_AB(void)}
RTInitSignal/ RTDeswoySignal/ RTInutSignal! RTDestroySignalt
Specialinitiafization(void) SpecialDestruction(void) J Specialinitialization(void } SpeciaiDestruction(void)
— \. J
[Object C, lmemalalZMehod A void)

Figure 7: Example System: General Description

through the system event R7 InitSignal, and Special Destruction action during system
shutdown, through the system event R7 DestroySignal. In addition, there are three exter-

nal events interacting with the system just described above. Each of these is periodic and

initially arrives into the system at time 0. Their periods, however, differ.

We require more information about our example system even though Figure 7 was quite

descriptive. Specifically, we need to know the existing communication relationships and

the method descriptions; these are shown in Figure 8 and Figure 9 respectively.

Ports are used to define the communication relationships within the system. For in-

stance, in the figure, we see that object O1 can communicate with objects O3 and O4.

By looking at the method description of object O1, we see that action Method_Al asyn-

chronously * generates signal event Internal_al2 and sends it out through its port P3,

3An asynchronous request is denoted with the keyword “send” in our application model, while a syn-
chronous request by “call”.

47

Object O 4

Pl P2 I: Pl
P3 P2 J

External_T1

j Object O
External_T2 Object O , R
Pl
External_T3 o
P2 P53 P4 P35 o

Object O ¢ Object O ¢ Object O ,
Pl ! Pi P2 Pi

Figure 8: Example System: Port Description

which is bound to port P2 of object O4. Hence, action Method_Al of object O1 asyn-
chronously generates I'nternal_al2, which is sent to object O4. Now, using Figure 7, we
can determine what processing will occur within object O4 because of this signal event. If
we proceed in this way, starting from the arrival of an external event until no more events
are generated, we create the end-to-end view of our system that becomes crucial in our

response time analysis.

3.6 Discussion

As discussed earlier, we use a primitive modeling language for system design. Although
the language attempts to conform to UML, it does not support much of its features. One ob-
vious distinction is the fact that, in UML, an object may be categorized as active or passive.
Active objects, which we explicitly model as well, have a finite state machine associated
with them and, when triggered by some event arrival, execute the appropriate action on a
specified thread. In contrast, passive objects have no associated finite state machine and,
when called upon via an event triggering a method invocation, execute by “borrowing” the

thread of the caller object. In our modeling language, we do not explicitly model passive

48

Object O |

Method Al

a 1| : UNINTERPRETED
a 45 send Intermal_al2 o port P2
a ;3 send Internal_al3 to port P2

|

-
Object O 4

Method_AS

a g, - UNINTERPRETED

2 55 - cail Intemnal_aS2 o port P2
a 53 : UNINTERPRETED
agycretun |

-

~
Object O ,

Method A2

-
Object O

a 4, : call Intermal_a21 to port P3
a 55 : UNINTERPRETED

a 53 : send Internal_223 to port PS5
a 5, > call Internal_a24 to port P4
2 55 : UNINTERPRETED

Method_A3

a 3; : UNINTERPRETED
a 35 : call Intemal_a32 1o port P4
a 35 : UNINTERPRETED

[Method_A4

| a4, : UNINTERPRETED
i

Method A6

a ¢ : UNINTERPRETED
agy:rewm 1

Method_AS8

a g, : UNINTERPRETED

-

Method A7

aq: UNINTERPRETED
3 4 D WM H

.

h
Object O ¢

Method_A9

agp: UNINTERPRETED
a g, I retum 3

Method _AA

a 5 ;- UNINTERPRETED

a 4 5: send Internal_aA2 to port P2
a 5 ;- UNINTERPRETED

a , 4° retum 13

—

(Object Lo

Method AB

a g,: UNINTERPRETED

Figure 9: Example System: Method Description

object. Nonetheless, these can be incorporated by calling the required method of an object
in uninterpreted sub-actions.
As a means of understanding the full extent of the restrictions imposed on our models,

I will re-iterate them below by clustering similar items:

e Supported types of applications that can be modeled must be centralized with a single

Processor.

e The UML specifications create and delete sub-actions are not supported. All ob-
jects are static; they must be created during initialization and destroyed at system

shutdown.

e An object’s finite state machine is restricted by disallowing composite states and

guard conditions.

e A port binding specifies a one-to-one communication relationship. Communications

from a single source to multiple destinations or from multiple sources to multiple

49

destinations are not supported.

e If an event does not trigger any transition from the current state of the recipient object,

it is discarded. Deferred events are not supported.

e Parameterized events are not supported. An event is globally defined within the
system. An action identifier is uniquely identified by an event. An action captures

the processing information for an event.

e An asynchronously-triggered action follows two run-to-completion paradigms: one
within the context of the corresponding object and the other, within the context of the

corresponding thread.

e The processing of a synchronous event must not be on behalf of the same object
as the event that triggered its generating action. In multi-threaded environments,
a synchronous event must be processed in the same thread as its triggering event.
A synchronously-triggered action follows a run-to-completion paradigm within the

context of the corresponding object.

e A method is implemented as a collection of sub-actions. A collection of sub-actions

is defined as an action. A method can also be denoted an action.

In our model, we also imposed uninterpreted sub-actions to be simple code segments,
with no alternate paths or loop structures present. This restriction however is due to the
limitations originating from our timing analysis and not our code generation process. In
other words, if our timing analysis did support such sub-action traits, the latter could be
included within our code generation process by representing them in C++ code.

Also recall that, in the implementation architecture, we schedule event based on event
scheduling attributes. As a result, thread priorities are never directly assigned by the de-
signer but rather, they become artifacts of the underlying implementation.

The implementation architecture can easily be specialized by constraining the action-
to-thread mapping process. In fact, these specialized architectures may not only trivialize
the synthesis problem, but also simplify the schedulability analysis as well. Even more,
the code implementing such specialized architectures may be optimized to meet its needs.

Examples of such specialized architectures are as follows:

50

e Mapping all events for a particular object to the same thread. This constraint gener-
ates implementation models that are supported in various CASE tools, such as Ob-
jecTime Developer. With this restriction, code optimization could be performed on
the implementation of the specialized architecture, since the logic of sending a mes-
sage would be greatly simplified in this constrained implementation than it would be

in the general case.

e Mapping all events in the same transaction to the same thread. This constraint elim-
inates inter-thread communication and makes the models similar to those used in
real-time scheduling theory. Once again, code could be optimized, such as eliminat-
ing the outer message queues altogether and eliminating the need to determine where

a message is to be processed.

e Mapping all events of the same priority to the same thread. This can be used to

eliminate the need for dynamic priority changes.

For many applications, it may be simpler to use one of such specialized architectures. At
the very least, these architectures can serve as initial starting points, and the constraints can

be relaxed if no suitable solution is found.

51

Chapter 4
Schedulability Analysis

In this chapter, I consider the schedulability analysis of object design models. The anal-
ysis is restricted to uni-processor hard real-time systems and is applicable to the design
and implementation models presented in Chapter 3. To facilitate schedulability analysis,
we consider an analysis model that can be systematically derived from the design and im-
plementation models. The analysis model presents a view of the system that focusses on
end-to-end behaviors, instead of object behaviors. This is useful since timing requirements
in real-time systems are often “end-to-end” in nature, i.e., from system inputs to system
outputs, and thus, span a computation that may involve the collaboration of multiple ob-

jects.

4.1 Analysis Model

Our analysis model assumes that a system is made up of a set of transactions, where a
‘transaction denotes a single end-to-end computation within the system. Specifically, it
refers to the entire causal set of actions executed as a result of the arrival of an external
event, i.e., an event originating from an external source. External event sources are typically
input devices (sensors) that interrupt the CPU-running embedded software when an event
has occurred. We also include timed events as external events; such events are generated
by periodic and one-shot timers. Since all processing within a system is ultimately initiated
by some external event, expressing the system as a collection of transactions captures all
computations in the design model.

We also utilize the term action to capture the processing information associated with an

52

event. Recall that, in our design model, each event is processed by invoking the recipient

object’s finite state machine and this processing is done in a run-to-completion manner

within the context of the object. Thus, in our computation model used for the analysis,

an action captures this entire run-to-completion processing for an event. The execution of
an action may generate internal events that, in turn, trigger the execution of other actions

(possibly in other active objects). Thus, on a more detailed level, each transaction can

be expressed as a collection of actions and events, where an external event triggers the

execution of the first action in a transaction and this action may generate zero or more .
internal events that, in turn, trigger the execution of other actions also associated with that

particular transaction.

While the execution of an action is atomic within the context of the corresponding
active object, its effects may be visible outside the active object even when it has only
partially executed. This is true when an action generates events, especially synchronous
events, as part of its execution. Therefore, we express an action as being composed of
sub-actions. In particular, sub-actions that generate internal events are of interest. These
include the send, call and rerurn sub-actions. A send sub-action generates an internal event
and asynchronously sends it to the recipient object. In contrast, a call sub-action generates
an internal event, sends it to the recipient object and blocks, waiting for a reply to be sent
back through a rerurn sub-action by the called action. To simplify matters, we assume that
if an action is triggered by a synchronous event, then that action must have a single return
sub-action, and the latter must be the last sub-action in the sequence.

Sub-actions are also useful in capturing conditional behavior within an action, as may
happen when the action may execute different steps depending on the state of the object or
the data associated with the event. In this way, the sub-actions composing an action can
create alternate paths within this action. Note that simultaneous paths, i.e., a sub-action
branches into more than one sub-action and all of these paths are executed, are forbidden
since one action is correlated to the processing of a message and the thread that handles
this message must execute the sub-actions in sequential order. This is a true restriction,
an artifact of the design model and its implementation. In the rest of the chapter, we will
confine our attention to a single sequence of sub-actions. The analysis presented can be

easily extended to account for conditional behavior, by considering all alternate paths.

33

In our analysis model, we also need to capture timing constraints. We are mainly con-
cerned with arrival rates of external events and end-to-end deadlines. The end-to-end dead-
lines, introduced to quantify the system’s timeliness requirements, can be specified on any
action in a transaction; the deadlines are end-to-end in the sense that they are relative to the
arrival of the transaction or, more precisely, the arrival of the external event associated with

the transaction.

4.1.1 Notation

Let £ = {E\,Bs,...,En,Equq, ..., En} be the set of all event streams in the system,
where Ey, Es, ..., E, denote external event streams and the remaining internal ones. Each
external event stream E; corresponds to a transaction 7;. Associated with each event E;
is an action A;. An action is decomposed into a sequence of sub-actions, i.e. A; =
(@i,1,i2, - - -, Qin;), where each a; ; denotes a primitive execution step.

Any sub-action that has externally visible side-effects must be explicitly modeled. In
our current analysis, these sub-actions include the send, call and reply sub-actions. Other
sub-actions may be used as well without affecting the schedulability analysis, with the
restriction that these sub-actions must have bounded execution times and have no externally
visible side-effects.

Each event and action is part of a particular transaction. Superscripting is employed
to show the association of an entity with its transaction. For example, AT represents an
action and E7 an event, both of which belong to transaction 7. Adding the superscript for
external events {Ey : £ = 1,2,...,n} is unnecessary since there is exactly one external
event associated with each transaction, i.e., external event E; belongs to transaction k and

would be denoted as E¥. In this case, the superscript is omitted.

4.1.2 Event and Action Properties

Each external event stream E; is characterized by a function ¥;(¢) that gives the maximum
number of event arrivals in any interval [z, z +t), where the interval is closed at the left and
open at the right. Also, the notation U7} (¢) indicates the maximum number of event arrivals
from event source E; in any closed interval [z, z + t]. For example, an event stream with a
minimum inter-arrival time of T has ¥;(¢) = [t/T"] and ¥ (¢) = [¢t/T'| + 1. In contrast to
external events, the rates of internal events are dependent on the execution and thus, cannot

54

be formulated here.

Each action is characterized as either asynchronously- or synchronously-triggered, de-
pending on whether the triggering event is asynchronous or synchronous respectively. All
external events are assumed to be asynchronous. Each action A; executes within thread
I'(A4;) and on behalf of active object O(A;). The scheduling attributes of each action (or
equivalently, the triggering event) include its (nominal) priority and, for multi-threaded
implementations, preemption threshold priority, as described in Chapter 3. We represent
these scheduling attributes for A; as #(4;) and 7(A;) respectively. By convention, we will
express a higher priority with a larger value. Each sub-action a;; of 4; has an associated
computation time C(a; ;) (abbreviated C; ;). The computation time of an action is simply
the sum of its component sub-action computation times as shown in Equation 1. Also, the
computation time of any sequential sub-group of sub-actions a;, to a;, where p < ¢ is

described in Equation 2.

C(4:) =) Cij (H
Jj=1
i<q i<q i<q
Y Claiy) =2 Cij=2 Cijup<gq 2
j=p .J=p j=p

4.1.3 Communication Relationships

Communication relationships within the system can be captured using binary relations
between actions. There are two types of communication relationships between actions,

namely asynchronous and synchronous. These can be defined as follows:

Definition 4.1.1 (Asynchronous and Synchronous Relations) An asynchronous relation
A; = A; exists between action A; and A;, if A; generates an asynchronous (signal) event
E; (using a send sub-action) that triggers the execution of action Aj. Likewise, a syn-
chronous relation A; = A;j exists between action A; and A;, if A; generates a synchronous

(call) event E; (using a call sub-action) that triggers the execution of action A;.

A single action may (asynchronously or synchronously) trigger 0 or more actions, but
each action must have a unique triggering event, which must be generated by a unique
action. Hence, both the relations defined above are many-to-one. Moreover, these relations

are irreflexive, anti-symmetric and intransitive.

55

While these relations are defined on actions, it is a sub-action that actually generates the
event that establishes a relation. Sometimes, it is useful to identify the particular sub-action
that generated the event. To do so, we will sometimes write the relation as A;(p) R A4;,
where R € {—, =}, indicating that sub-action a; , of action A; generates E; that triggers
the execution of action A;.

In addition to these communication relationships, it is also useful to define a “causes”
relation, denoted by the symbol ~+, which captures the causal relationship between actions.
A causal relationship exists between two actions of a transaction, whenever one of the
actions directly or indirectly causes the execution of the other. Formally, this can be defined

as follows:
Definition 4.1.2 (Causes Relation)

Ao A% (4 o A) V(A= Ay) VO (ER) (A~ AR A (A~ A7)

In other words, A; causes A; if either it directly triggers the execution of A; (by gen-
erating event Ej), or it indirectly causes the execution of A; through another action Ag.
Moreover, the causes relation 4; ~ 4; indicates that A; is a successor of A4;, A; is a
predecessor of A; and A; must execute (at least partially) for A; to be triggered.

When an executing action makes a synchronous call to another action, the latter must
execute completely before the former can resume. In this way, we can refer to synchronous
actions as calling extensions of the triggering action. Furthermore, it is useful to define the
notion of a synchronous set of an action, identifying the set of actions that form this calling

extension, as well as the synchronous subset, a subset of the synchronous set.

Definition 4.1.3 (Synchronous Set and Synchronous Subset) The synchronous set of A;,
denoted Y (A;), is a set of actions that can be built by including A; and all actions synchronously-
triggered by it. The process is recursively repeated until no more actions can be included
in the set.

Similarly, the synchronous subset of sequence a;p to a; 4 wherep < q, denoted Y (a;p.4),
is a set of actions that can be built by first including all synchronously-triggered actions
originating from any call sub-actions in the sequence a;p to a; 4. Then, any synchronously-
riggered action that may arise from the actions already-present in the set are also included,

in a recursive manner as in synchronous sets.

With the definitions above, we can observe that each synchronous action may be part

of synchronous sets of zero or more synchronously-triggered actions, but of only one

56

asynchronously-triggered action. We will call this asynchronous action as the asynchronous
root of a synchronous set and will denote it £(4;).

We can also notice that the synchronous set with a synchronous root A; will always be
a subset of the synchronous set with the asynchronous root 4;, where 4; ~+ 4;. Moreover,
the group of synchronous sets with asynchronous roots are non-overlapping.

For clarity, here is an example. Let action 4 have exactly one synchronous sub-action
a rq) that triggers A; and the latter contains exactly two synchronous sub-actions ai(m)
and ag () triggering A,, and A, respectively, where {(m) < [(n). Let us further assume
that neither A,, nor 4, have any synchronous sub-actions. In this case, we have the fol-

lowing synchronous relations:
Ac(k(D)) = A A(l(m)) = Am A(l(n)) = An

The synchronous sets of the actions can be constructed through recursive use of the syn-

chronous relations as given below:

T(A.) = {4}

T(An) = {4An}

T(d) = {A} U T(dn) U T(4) = {4, 4m, 4An}
T(Ae) = {4} U T(A) = {Ap A dm, A}

Finally, the synchronous sets of sequences of sub-actions, as defined above can also be

constructed, as given below:

T(ak1kwy) = T(A)

T(ak1.kw-1y) = @
T(aii.amy) = T(Am)
T(ar,m).am-1) = T(Am)

T(aaemy)..amy)) = T(Anm) U T(An)
Also, let C(T(A;)) denote the cumulative execution time of all the actions in the syn-

chronous set of A;. Mathematically, this value can be calculated as follows:

C(Y(4)) = CAY+ > C(T(4y) 3)

JuAiT=A;

Similarly, let C(Y(a;,.,)) denote the cumulative execution time of all the actions contained

in the synchronous subset of T (a;p. 4).

57

4.1.4 Model Restrictions

The schedulability analysis presented in this chapter is conducted on an application model,
for which an implementation model has already been synthesized. We impose a few re-
strictions on the design and implementation models to simplify the analysis. Most of these

restrictions are reasonable and do not impose serious limitations on the models.

1. A synchronously-triggered action has a single reply sub-action that is the last sub-

action.

2. Any reply action within an asynchronously-triggered action is treated as a send ac-

tion, i.e., it generates an asynchronous event.

3. Inamulti-threaded implementation, we assume synchronously-triggered actions must

be handled by the same thread as the caller action.

4. We assume the assignment of priorities to actions follows the rule that any successor
action .4; with respect to action A; must have a priority of equal or lesser importance

than action A4;. Thus, we say:

(Ai ~ Aj) = (7(Ad) = w(45)) 4

5. We also associate priorities with synchronous actions, although these actions are
executed as an extension of the calling action (i.e., are not separately scheduled).

Therefore, for convenience we assume the following:

(4: = A;) = (7(A:) = 7(4;)))

6. In multi-threaded implementations, a preemption threshold is used to minimize the
blocking effects. The scheduling model works correctly if the following constraint is
true [SW00}:

(T(A) =T(47)) V (O(4) = O(47))) = (7(4:) = m(47)) A (7(45) = 7(42))
(6)
The above equation says that, if actions 4; and A; execute on behalf of the same
object and/or within the same thread, then (1) the preemption threshold of A; must
be no less than the nominal priocity of A; and (2) the preemption threshold of A;

must be no less than the nominal priority of A;. Without loss of generality assume

58

A; starts executing first, A; will not get preempted by A; because the preemption
threshold of A; must be at least as much as the nominal priority of A4;. Furthermore,
as was mentioned in the previous chapter, there is no need to include any special
mechanisms within the implementation model so as to preserve the object and thread

run-to-completion paradigms with this priority management scheme.

4.1.5 Example: Extracting Analysis from Design Models

An automated extraction of the analysis model from design and implementation models
has not been developed yet. However, at the end of Section 3.5 and in this chapter as well,
I explained the idea behind it. Therefore, I take the opportunity now to provide the entire
manual derivation of the simple example that was presented in Section 3.5 by using the
notation described above. This is shown in Figure 10. Notice that, in this figure, I still
have not specified any information about threads, the mapping of actions to threads and the
scheduling attributes. Thus, we can say that this figure represents the end-to-end behavior
of our system, whether it be single- or multi-threaded.

In this figure, we use ellipses to denote actions and represent the underlying sub-actions
using squares. A solid directed edge from one sub-action to another represents a commu-
nication relationship; this can either be synchronous (call event) or asynchronous (signal
event). On the other hand, a dashed directed edge represents a return sub-action, which im-
plies that the event that triggered this particular action must have been a call event. To make
the figure more legible, we use Method_ Az instead of Ayrethoq_ac as well as Ezternal Ty
rather than Egzternar_1y-

Our example system consists of three periodic transactions. Note that, each transaction

traverses multiple objects.

4.2 Problem Statement

Given the above model and restrictions, we want to calculate the end-to-end response times
of each action within the model. Once again, end-to-end simply means that the response
times are computed relative to the associated transaction arrival. The well-known critical
instant/busy-period analysis [LL73, LSD89, HKI.91] for fixed priority scheduling is used,
but it is adapted to fit the analysis model developed above. Having calculated these val-

ues, we can then compare them with the assigned end-to-end deadlines to determine the

59

External_T!

/ﬁm
L))

Method_AS

i 1
r’l"ss

Method_Ad
2,

o NS

Method_AB

Uy P N UL U,

'
Method_A9 /
Method_AS i

Figure 10: Example System: End-to-End Behavior View

schedulability of a system.

Definition 4.2.1 (Schedulable System) A system is said to be schedulable if all response

rimes obtained do not surpass the respective deadlines.

4.3 Response Time Analysis

In our response time analysis for action A}, we will compute the response time of the action
for successive arrivals of the transaction, starting from a critical instant, until the end of the
busy period. From these, the one with the highest value will be denoted the worst-case

response time of action AT. We do this by determining the worst-case ending time for each

60

instance of an action within the busy period. However because of our modified busy period
analysis, we also need to calculate the starting time for each instance. The starting time
refers to when that instance actually gets the CPU for the first time, while the ending time
refers to the time at which that instance has compietely finished executing. Hence, prior to
the starting time, the action is waiting to execute at the nominal priority and afterwards, it

is executing (or preempted) at its preemption threshold.

Definition 4.3.1 (Response Time and Worst-Case Response Time) Let S7 (q) denote the
worst-case start time for instance q of action Al, starting from the critical instant at
time = 0. Likewise, let F](q) denote the worst-case finish time, st;zrting from the crit-
ical instant. Let Arr.(q) denote the arrival time of instance ‘q’ of external event Er,
starting from the critical instant, assuming events arrive at their maximum rate. Thus,
Arr.(¢) = min{¢ :: TF(¢) = ¢}

Iteratively compute the results of ST(q) and F] (q) forq =1,2,3,... until ¢ = m, such
that F7(m) < Arr.(m + 1). Then, the worst-case response time of action A} is given by:

R = max Fi(q)— Arr-(q) N
q€(L,-...m}

More specific, the response time of an action can be calculated by considering the
effects of: (1) blocking from lower priority actions and (2) interference from higher or equal
priority actions, including previous instances of the same action. The blocking effects refer
to priority inversion. These two factors are considered from both single- and multi-threaded

implementation perspectives.

4.3.1 Properties of the Scheduling Model

In a single-threaded implementation, a single thread processes pending events in priority
order. This simply results in a non-preemptive priority scheduling of actions. There is
‘a special case however: every time a synchronous call sub-action is present, the current
action pauses its execution until the synchronously-triggered action sends a reply (using a
reply sub-action). However, we made an assumption earlier stating that a synchronously-
called action has exactly one reply call and the latter is always the last sub-action of the
entire action. Thus, the current action, which synchronously called another, pauses its
execution while the synchronous action executes and only resumes once the synchronous
action executes completely. Hence, synchronously-triggered actions are truly extensions of

the caller action.

61

Since the execution of a synchronously-triggered action depends on the caller’s execu-
tion and thus the caller’s priority, we can say that the priority of a synchronously-triggered
action is simply a matter of convenience; its priority does not have any significance for
scheduling. For this reason, we previously restricted the priority of synchronously-trigger
actions to equal that of its caller action.

The scheduling in multi-threaded environments is more complex. Recall from chapter 3
that we use a scheduling model in which multiple threads, if they are present, are sched-
uled based on a dynamic priority management scheme. With this scheme and the model

restrictions given earlier, the following properties are true:

1. When a thread is processing an event, i.e., executing an action, then thread priority

equals the preemption threshold of the event,

2. When a thread is not processing an event, its priority equals the priority of the highest

nominal priority pending event in its event queue,

3. Anaction A; can never be preempted by another action A; if they execute in the same

object and/or same thread,

4. When the processor is idle, and if multiple events arrive simultaneously, the thread
with the highest priority will have the event with the highest nominal priority and the

highest nominal priority event will be processed next,

5. When a thread finishes processing an event, then the next event to be processed will

be the event with the highest nominal priority.

4.3.2 Blocking

Blocking refers to the effect of lower priority actions on the response time of an action.
Blocking is inevitable in this architecture, due to the run-to-completion semantics of objects
and the run-to-completion processing architecture of a thread. However, the scheduling
model has been designed to assure that this blocking effect is bound and minimalized. In

this section we show how blocking effect may be calculated for an action A;.

Definition 4.3.2 (Blocking Effect) Ler B(A;) denote the maximum blocking effect for an

action A; from all lower priority actions.

62

4.3.2.1 Case 1: Single-Threaded Implementations

The blocking effiect is easy to determine in single-threaded implementations. Since schedul-
ing is non-preemptive, based on action (nominal) priority, priority inversion can only occur
if a lower priorkty action is already in execution. However, if the lower priority action
that causes blocking also generates synchronous events, then those actions will also get
executed and cause blocking. In this way, blocking is limited to one synchronous set of
actions with a lower priority asynchronous root action. This action must have started ex-
ecuting just before the transaction containing A; arrives. Thus, the blocking effect for an

action A; is given by:
B(4:) = max{C(Y(Ax)) = 7(4) > m(4¢)} ®

Notice that this blocking term may come from any transaction and so, we omit the super-

script denoting the transaction altogether.

4.3.2.2 Case 2z Multi-Threaded Implementations

The blocking effect is trickier to calculate in multi-threaded implementations, but is still
greatly simplified due to the properties of our scheduling model. Let us consider an action
A7 and suppose transaction 7 arrives at time 0. First, any lower priority event that has
not triggered its corresponding action execution at time O cannot cause blocking. This is
because all predecessors of 4; have a priority equal to or higher than A4; and therefore,
due to the nature of the scheduling scheme, A; will be scheduled in preference to this lower
priority action. S-econd, if a lower priority action is in execution at time 0 and its preemption
threshold is lower than 7(A7), it will not cause any blocking since it will be preempted.
Note that, this action could not have been in the same object or thread as A7, because of
Restriction 6 andt therefore, preemption is possible.

Again, as in the single-threaded case, if an action 4; can cause blocking, then its entire
synchronous set «can. We already mentioned that a synchronous set from an asynchronous
root is a superset of one with a synchronous root. Trivially then, we can restrict our atten-
tion to synchronous sets with asynchronous roots in considering the blocking effect.

Finally, we can show that the blocking effect must arise from a single such synchronous
set with a lower priority asynchronous root. Let us suppose that action A; gets blocking
from two actions:, namely A; and A;. Again, we know that 7(4;) < 7(4;) < v(4;) and
w(Ax) < 7(A4i) < v(Ak). Thus, for them to both block A;, it must be true that they are

63

both in execution with priority set to their respective preemption threshold. Without loss
of generality, assume that A4; started execution first. Then, A; cannot also be in execution
unless v(A;) < w(Ag). However, if this is the case, we have 7(4;) < 7(4¢) < 7(4;) =
7(4;) < w(A;), which contradicts the assumption that A; blocks A4;.

Based on the above description, we can derive the blocking effect for action A; as

follows:
B(4y) = max{C(T(4x)) = 7(Ae) > 7(4:) > w(4x)} ©)

4.3.3 Interference Effects and Busy Period Analysis

As is usual in real-time scheduling literature, the term “interference” is used to denote the
effect of higher priority events/actions on the response time of an action. The interfer-
ence effects cause those higher priority actions to execute in preference to the action under
consideration. Unlike blocking however, a higher priority action may cause interference
multiple times, if it becomes ready more than once. Since dependencies between actions
determine when an action gets ready, we will consider the interference effects of transac-
tions, rather than individual actions, in presenting the response time analysis.

Consider the response time computation for an action A}. As explained earlier in this
chapter, we perform the busy period analysis by considering instances ¢ = 1,2,...,m
of action A; and iteratively computing S7 (¢) and F] (g) for each instance, assuming that
the first instance arrives at time 0. Accordingly, we define two functions, one to consider
the interference effect prior to the starting time of instance ¢ and another for the interfer-
ence effect once instance ¢ first starts utilizing the CPU until it has completely finished its

processing.

Definition 4.3.3 (Interference Effects) Ler rhe early interference function Eczrly,zl ‘T(Q)(t)
denote the interference effect of transaction k prior to ST(q), assuming that ST(q) = t.
Likewise, let the late interference function Latei‘ﬂq} (t) be a function that gives the inter-

ference effect of transaction k for the interval (ST (q), F7 (q)], assuming that F(q) = t.

We will defer a description on how these functions may be determined. We compute
the value of S7(g) by considering all actions that can execute before the action under con-

sideration. Assuming these functions have been determined, the value for S7(g) can then

64

be determined as follows:

SI(g)=minW: W = BAN+ 3. Early i@ W) (10)

k:1<k<n

That is, an action (instance) will start, in the worst case, at a time W if the sum of the
blocking and interference effects equals W, where W is the first time instance when this
becomes true. Note that the term W occurs on both sides of the equation. This equation
can be solved by iteratively refining W using the right side of the equation, starting from
an initial lower bound value, B{ A7) in this case, as explained in [TBW94].

Once S7(g) is known, we can compute F; (g). This is done by considering the addi-
tional interference effects from higher or equal priority actions that can preempt A7 (q) and
therefore, can further delay the execution of A7(g). Then, we can write the equation for
Fi(q) as:

Fi@)=minW: W = 8(q) + C(YAD)) + ¥ Latel@(w) (1)
k:i<k<n

The equation adds any additional computation beyond what has already been accounted for

in 87 (g). This includes, at a minimum, the computation time of the action, including any

actions in its synchronous set. In addition, we add any interference that comes from actions

that may preempt A7 (g), which is given by Late}:f(Q) (W), a function which we will derive

later in this section.

4.3.3.0.1 Early Interference Function. Let us now consider the determination of the
early interference function Early,’:ir@ (t). The function depends on whether we are consid-
ering interference from another transaction & # 7, or from actions in the same transaction,
ie,k=r.

First consider the case when & # 7. In this case, for any arrival of the transaction & in
the interval [0, t], we have to consider the computation times of all higher or equal priority!

actions making up transaction k. Thus, the interference function is given by:
Early,"¥(t) = ¥{(t) - 3(C(Af) = w(Af) > (4D (12)
]

We note that interference from other transactions will be considered for all event arrivals in

the interval [0, ST (q)], where the closed interval is considered, because if a higher priority

'Equal priority actions are considered as well to ensure that we get the worst-case. However only some
equal priority actions will interfere because events are queued in FIFO ordering. Taking all equal priority
actions into account for interference gives rise to pessimistic analytical resulls.

65

action becomes enabled at time S (q), then A7(g) cannot begin executing. We also note
that all synchronously-called actions that can interfere are also included due to the way we
have assigned priorities to them.

Now consider the case when & = T, i.e., interference from actions within the same

transaction. In this case, it is important to distinguish between previous instances, i.e.,

1,2,...,q — 1 of the transaction, and all other instances after that. Accordingly, we write:
Early?@(t) = E’arlyfif(q) (t) + Earlyff_(q) (t) (13)
where Earlyfi_m () is the interference effect from past instances (1,2,...,q — 1) and

AT . . :
Earlyﬂ‘,(‘” (t) is the interference effect of all other instances ¢, ¢ + 1, ... that may have
arrived in [0, S7]. The past instances of the transaction have a similar effect as other trans-
actions, since any higher or equal priority actions of the transaction must execute prior to

AT(q). Thus, this can be given as:
Early@@t) = (¢—1) - S(CMAD) =m(AD) 2 #(4])) (19
{

The interference effect of instances ¢ onwards must not count the effect of any action A]
if AT ~ A7 since if AT(q) has not executed, any action that is caused by it could not have
executed either. Furthermore, we assume that multiple instances of the same action execute
in order and thus, this is true for instances ¢ + 1 onwards as well. There are additional
considerations if AT is synchronously-triggered, which we will show shortly. However, if

action AT is asynchronously-triggered, the following equation gives the interference effect.

Barlyf9(t) = (WE(W) —q+1) - S(O(A7) = ~(Af ~ A) A m(4]) 2 7(4]))
' (1)
Let us now consider a synchronously-triggered action A7 and let A7 = £(A7) be the
asynchronous root of the synchronous set containing A7. Then, we have a chain of actions,
starting from A7 up to A7, that partially execute and then, get blocked until A7 completes.
Thus, there may be sub-actions in this chain of actions that have not had a chance to execute
and the effects of those sub-actions must be discounted. Furthermore, any actions caused
by those sub-actions must also be discounted.
The above statement changes the interference term Early(Z,+(A7)), i.e., the interfer-
ence for instances q,q + 1,...,UF(S7(q)). For instance ¢, only a subset of the actions
making up T (A7) will contribute to interference and, of these, only some of their com-

putations will be counted. Specifically, say sub-action a4 is the synchronous action that

66

sub-action

executed

D not executed

Figure 11: Execution (Partial or Complete) of Actions Prior to the Execution of A;

eventually leads to the execution of 4;, then the interference added by A, is Zgg{(Cg,q)
in addition to the contribution of any synchronous action triggered by a sub-action in the
set {ag,1.k—1}. Once again, the synchronous action triggered by a, that leads closer to
the execution of 4;, say A;, will only partially execute before it makes the synchronous
call that brings us closer to the execution of A;. Thus, we see that actions leading to the
direct path from A, to A; will partially contribute and any synchronous action triggered
prior to the execution of the sub-action that leads to the direct path will contribute com-
pletely. Pictorially, this can be represented as in Figure 11, where the direct path from
the asynchronously-triggefed predecessor A, to the action in question A; is visible. For
instances ¢ + 1 onwards, none of the actions in T(A7) can cause interference, since their
previous instance (q) is blocked.
Thus, based on the above discussion, we can derive the following equation:

i1 (=)
AT
Earlypi9@) = S C(T(agmepiit@n-my)) + 2. Clapeyw) (16)

=0 y=1

i (An@) ((F(A(2)))) = Anz+))
AN (A; = Ah(o))

A (A] = An) |

67

4.3.3.0.2 Late Interference Function. The late interference function incorporates the
effects of any actions after the action under consideration (A7) has begun executing. It is
necessarily true that any such effect will come from actions that (1) arrive after §7, and (2)
can preempt (A7).

Since actions are executed in a non-preemptive manner for single-threaded implemen-
tations, there can be no preemption effects after an action has started executing. Thus, we

have the following trivial function:
Late @) =0 (17)

Consequently, the worst-case finish time for instance g of action A; is given by the follow-
ing simplified equation:
Fila) = 5 (q) +C(T(4)) (18)

In a multi-threaded implementation, preemption from other actions is possible. For an
action A; to preempt 4;, several conditions must be satisfied. First, its nominal priority
must be no less than the preemption threshold of A;. Furthermore, 4; and A; must be as-
signed to execute in different threads and on behalf of different objects. Finally, these must
also hold for A;’s triggering action as well, otherwise the event that triggers the execution
of A; cannot be generated. The last condition must actually be recursively true up to the
root of the transaction, i.e., the action triggered by the external event. We note that this
also eliminates any successors of A}, so we do not need to consider that separately. If A; is
synchronously-triggered, this also eliminates any actions that are part of the synchronous
chain from £(4;) to .4; and therefore their successors, since we have assumed that they

must all be in the same thread. Based on the above, we can write:
LateA7(q) = (Ex(W) — Ti(S7(q))) - Le(47) (19)

where L;(A7) sums up the computation time of all the actions within transaction & that
meet the conditions specified above, and. ¥ (W) — ¥ (S7(q)) gives the number of new
arrivals of event Ey. Formally, Li(AT) can be computed as in the following equation,

68

where we assume that the associated event E, triggers the execution of action A¥:

Le(AT) = L(4], 4%
(0 if (T(4%) =T(4]) vV (O(4A%) = O(AD) v (7(4%) < v(AT))

L(AT, AF) =
C.&k

Aft

> L(AT, A% else

g::.ﬂ&ﬁf—'r.—‘l’;v.‘{f‘——"él’;

(20)

Here, we cannot say that if an action A; causes interference to A;, then all its syn-
chronous successors also cause interference. This is because a synchronously-triggered
action may be part of the same object as action 4; even though we are sure that the
synchronously-triggered action will be in a different thread than A; (because we assume

it to be in the same thread as 4;).

4.3.4 Example: Calculating Worst-Case Response Times

We now continue developing our simple example by performing schedulability analysis on
it. As was explained in Section 4.1.5, the example system is made up of three periodic
transactions. Please refer to Figure 10 to view the end-to-end behavior of the system.

At this point, we need to specify other information that has not been mentioned yet.
This includes the event priority assignment, and, for multi-threaded implementations, the
thread specification, event preemption threshold assignment as well as action-to-thread
mapping.

We are primarily interested in showing how to compute worst-case response times.
Therefore, we do not require any deadline specifications. We present the analysis for both
single- and multi-threaded implementations.

We first compute the worst-case response times for the single-threaded implementation.
Let Table 1 provide the information required for the single-threaded case. For complete-
ness, we include the information already available from all the figures already presented.
Here, we use A; to denote action A prethod_a.r and transaction 7'y to correspond to external
event Egziernar_Ty- Recall that a priority with higher value indicates a greater importance.

Using the tool described below, I calculate the worst-case response times. The results
are displayed in Table 2. For completeness, I also provide the worst-case response time
calculations of all instances in. Appendix D. Recall that all these response times are actually

69

Transaction | Period | Action | Priority | Object Sub-Actions Computation Time
T1 60 Ay 10 O {a1,1,21,2,81,3) (5,1, 1)
Ay 6 04 (eq,1) (5}
As 10 O3 {as,1,a5,2,45,3,85,4) (2,1,2,1)
As 10 O4 {a6.1,86.2) {4, 1)
T2 300 Aa 9 Oa (az,1,a2,2,a2,3,02,4,02,5) (1,3,1,1,4)
Az 9 05 (aT.l) 0.7'2) (9, L)
Asg 7 O4 {as,1) (10)
Ag 9 Os {ag.1,a9,2) {50, 1)
T3 1000 A3 8 02 (aa,1,23,2,a3,3) (4,1,3)
Ag 8 Os (@4.1:24.2:3.4,3:24,3) {(4,1,3,1)
Ap 5 O {ag.1) {250)

Table 1: Example System: Single-Threaded Implementation

Transaction | Action | End-to-End Response Time
T.1 753
Ar 268
Ay 753
As 261
Ag 255
T2 603
Az 429
A7 368
As 603
Ag 409
T3 j 593
Ag 593
Aa 583
Apg 421

Table 2: Example System: Single-Threaded Response Times

relative to the arrival of the entire transaction and not the individual actions.

All new information required for multi-threaded implementations are contained within
Table 3 below. Please notice that we also include preemption threshold values, which sat-
isty Restriction 6 in Section 4.1.4. To ensure we meet this constraint, we assign preemption
thresholds as follows:

1. We first find the “maximum priority” of an object by assigning it the same value
as the greatest priority of all actions that execute on behalf of this particular object.
Thus, MazPrio(O(z)) = maz{m(A4;) : O(4;) = O(z)}.

2. In the same way, we also find the “maximum priority” of a thread by assigning it
the same value as the greatest priority of all actions that have been mapped to this
particular thread. Hence, Maz Prio(T'(y)) = maz{nw(4:) = T(4;) =T(y)}-

70

Action | Thread | Preemption Threshold
A r 10
Ag | 0P 10
As T» 10
As T 10

1o 3 9
A7 L3 9
Ag T2 10
A9 T3 9
Az 3 9
Aa | Y 9
Ag Ty 5

Table 3: Example System: Multi-Threaded Implementation

Transaction | Action | End-to-End Response Time

T 161

Ay 28

Ag 161

As 21

As 15
T2 161

Ao 67

A7 49

As 161

As 108 }
T3 582

A3 i45

Aq 146

Ap 582

Table 4: Example System: Multi-Threaded Response Times

3. Finally, we assign the preemption threshold of each action to the highest priority
between the maximum priority of its corresponding object and its thread. Mathemat-
ically, v(4;) = maz{MazPrio(O(A4;)), MazPrio(T(A;))}-

Pictorially, the execution of our multi-threaded implementation is shown in Figure 12.
Again, I calculate the worst-case response times by inputting the information above into
the tool described in the next section. Table 4 eresents the results obtained and, as before,
Appendix E shows the complete set of worst-case response times for each action instance.
Comparing Tables 2 and 4, we can observe that the end-to-end response time of all
transactions have decreased, some more dramatically than others. The introduction of mul-

tiple threads has given rise to preemptions.

71

< | _)
D : "
3 " “
o ! _ S
_ _ i g
£ _ i s <
| _ :
) uu R gl
" ! 5 A ,
» “ | 74
= _ ! ol
2 1 [y TN 2]
[}
= " 1
——— !
¢ e e T RV
™ ! .
- | "
. " |
[} 1 _
.m | “
I
= T AN ! “
AN L | S _
"] e Bl H e i e e
r % m] [}
. s . ! !
- " ' _
% A o o 1 “
£ " _
= ! |
_ _ '
1 J
Tl_ a o
» B

ystem

72

Figure 12: Example System: Execution of our Multi-Threaded S

4.4 Tool

The developed tool computes the worst-case response times of actions making up transac-
tions. These are compared to the deadlines associated with the actions (if any) and if each
response time does not surpass the corresponding deadline, the system is said to meet its
timeliness requirements.

The analysis model described in this chapter was transformed into an understandable
input for the schedulability tool by using a textual grammar. The grammar itself is found
as Appendix C.

The tool first parses the user input based on the analysis grammar. Based on its find-
ings, it creates the structure for the model. The analysis model structure is illustrated in
Figure 13. In this figure, italicized words imply that these will be calculated by the pro-
gram, while all others should be given as input by the user. From this, we see that actions
hold a great deal of precomputed information, which is later used to calculate the response
time. The precomputed information includes the blocking term, both the early and late
interference terms, one such structure for each transaction within the system. Using the
equations for blocking and interference, the tool goes on to compute the precalculated val-
ues. Then, it uses these values to calculate the end-to-end response times of each instance of
an action until the end of the busy period, again as described by the response time analysis
in this chapter.

The schedulability analysis component is made up of 3 main functions as shown in
Figure 14. The more important of the three, calculating the response time, is also shown in

greater detail to the right of this figure.

4.5 Discussion

As was mentioned earlier, a system is made up of a set of transactions. This set may be re-
ally large if the system is extremely complicated and some of these transactions may not be
associated with timing constraints whatsoever. Because of this, it is often useful to restrict
our attention to a subset of the entire collection of transactions, namely those associated
with time-critical requirements. Since we are using a priority scheduling scheme, a de-
tailed modeling of the discarded transactions is not necessary if they are executed (in their
entirety) at lower priorities as compared to the transactions being considered. This assump-

tion is truly reasonable because, in a system where priorities decide the scheduling process,

73

Analysis
Model

Y

I« e In
Thread Object Transaction
name: string name: string name: string
ceiling_priarity: int ceiling_priority: int period: int !
|f i 1 1
runs belongs to contains
i = - -
Action

names string 1 from

| | priority: int N .
optional deadline: int L gets we blocking starting at

! p ion: int
ceiling_priority: int _
blacking_term: int L has m <=2n Interference
interference_term: int ! type: (EARLY, LATE} L L]
response_time: inf starts ar

alls calls ?
SubAction
name: string
cost: int
J] i]
Syncironcus Asynchronous Other Returnt
1 |__SubAction 1 |_SubAction SubAction SubAction

Figure 13: Analysis Program Structure

it would make complete sense to give non-time-critical transactions lower priorities than
time-critical transactions.

In practice, however, such transactions cannot be completely disregarded due to priority
inversions. In the scheduling scheme we employ, such priority inversion considerations are
limited to a single lower-priority action. Therefore, it may be necessary to identify actions
with large computation times and ensure that any priority inversion effects associated with
those actions are accounted for in the analysis. Also, there are other overheads associated
with these transactions such as the costs associated with executing the interrupt handler,
which will typically execute at high priorities. Such overheads must also be accounted
for in the analysis. We have ignored the effects of any such overheads and priority inver-
sions, although, we note it is relatively straightforward to incorporate these effects into the

analysis.

74

Schedulability Component s

, instance =~ 0
; next_arrival - get arrival ot first instance
f — S do { ’
Parse Input and ; instance += | .
S arrival_time = next_arrivai
Build Analysis Model Structure ‘ do {

start_time = ¢ind the start time of instance by adding

. J , ¢
K blocking term and
. carly interference term
,
~ .
;
Precomput Blocking ! finish_time - find the finish time of instance by adding

start time,
current computation and
late interference term

Precompute Interference j o

} uatii (end of late busy period)

) *

) ¥

t 1

) v

p ' yunril Cend of early busy period)
For Each Action. / ' do { :
. '

» .

. .

v]

M response_for_instance ~ finish_time - amrival_time
For Each Action. WCTT = max(wert, response_for_instnce)
Get Response Time next_arrival = get arrival of (instance + 1)
~— / } unil (finish time <= arr_next) :

Figure 14: Analysis Tool Behavior

The schedulability analysis and the associated tool presented in this chapter have a few
limitations that we now enumerate. Clearly, one limitation is the restrictions that we made
on the models. While not severely limiting, the analysis greatly relies on those restrictions
and becomes much more difficult if those restrictions are removed.

One limitation of the tools developed is that the transaction information must be man-
ually extracted from the design models, although automation of this process should be
quite feasible, because we can now decomposed an action into sub-actions. Note also that
there are many “pre-specified” sub-actions that are automatically generated with the code.
These sub-actions also include calls to the real-time execution framework. An automatic

generation process can easily include these actions as well.

75

Chapter §
Concluding Remarks

Software design has become more and more important within the real-time design process
ever since functionality implementation gradually migrated from hardware to software and,
even more so, because of the increase in software complexity. Consequently, several com-
mercial tools have become available that provide an integrated development environment
for real-time systems with object-oriented technology to facilitate the design phase. How-
ever, these tools lack the “real-time” support required by many of these systems, especially
those with stringent timing requirements and limited resources.

As a result, we proposed a methodology for the integration of schedulability analysis
techniques within real-time object-oriented modeling techniques. We accomplish the above
by visualizing a system using two separate views: (1) the application model, detailing
the functional requirements of the system, is completely specified by the designer and
(2) the implementation model is partly specified by the designer to indicate the maximum
resources available for the creation of the system and partly synthesized to bind the modeled
objects to the particular real-time execution environment. We showed how this synthesis
process can be automated to yield a feasible implementation model, i.e., one that meets the
specified timing requirements. The automatic synthesis process releases the designer from
the burden of selecting various implementation artifacts, such as priorities of events and
physical mapping of events, in much the same way automatic code generation releases a
designer from the burden of deciding how to implement the modeling abstractions.

We began the construction of a prototype toolset for uni-processor hard real-time sys-
tems, implementing the above methodology. Specifically, I dealt with the creation of a

76

schedulability analysis tool and an initial implementation supporting automatic code gen-
eration.

The initial implementation automatically generates code from design models using
primitives that have been defined within a generic implementation framework. For sim-
plicity, our modeling language does not support sophisticated features, such as hierarchical
decomposition, inheritance of state machines and dynamic objects, available in other pow-
erful modeling languages like ROOM. The implementation framework supports multiple
threads with threads serving as event handlers and objects communicating by sending pri-
oritized events to eachother.

The schedulability analysis tool is used to determine a system’s feasibility, with respect
to the timeliness requirements, once an implementation model has been synthesized. In
addition to the application and implementation views, the designer needs to input the sys-
tem resource demands to calculate worst-case response times and the timing requirements
to compare against the calculated response times. The analysis is based on a slight mod-
ification of the well-known critical instant/busy period analysis [LL73, LSD89, HKL91]
for fixed-priority scheduling. In our analysis, we consider two busy periods to calculate
the res.ponse time for each action: (1) the time prior to the considered action’s execution
(for the first time), where the action is waiting at its nominal priority, and (2) the interval
from the time the action starts executing for the first time until it completely finishes; in a
single-threaded implementation, the action cannot be interrupted from this point on while,

in a multi-threaded case, the action executes at its preemption threshold priority.

5.1 Future Work

The major area for advancements in our developed methodology is mostly centered around
the synthesis problem. In particular, we want to fine-tune the synthesis algorithms to inte-
grate complex cost functions that would maximize system performance, however the latter
is defined.

Also on a broader scale, constructing the methodology for more than just uni-processor
real-time systems would, of course, be the ultimate design tool. This could be done by using
self-contained components, one for each type of environment setting, that can be mixed and

matched with others to provide the appropriate design tool. Components for each aspect

77

of the methodology could be divided into those for hard or soft real-time systems, cen-
tralized or distributed systems as well as uni-processor or multi-processor systems. Other
components that would enhance this design tool even more includes adaptive and dynamic
systems.

However, this thesis deals with some aspects of the methodology and, as a result, I
limit the discussion to the future work of these topics. First, the methodology would be
greatly enhanced if the analysis model (transaction information) could be automatically
extracted from the design models. Also, we want to investigate the impact of specialized
architectures (as mentioned in Section 3.6) compared to the generalized architecture we
have developed. Moreover, the development of a real-world example would provide much
better insight on the viability of our methodology.

In what follows, I briefly outline the modifications to both the automated implementa-
tion and schedulability analysis that arise when certain imposed restrictions are eliminated.
I will only consider the elimination of restrictions that are not realistic and, thus, diminish

the value of our methodology !.

5.1.1 Extensions for Sub-Action Types

Types of sub-actions that wouid be greatly appreciated include alternate paths and loop
structures. We do not support these types of sub-actions in our methodology, since resource
demands of such structures are “fuzzy” and thus, performing schedulability analysis on
such systems could be misleading.

Alternate paths could be represented within our modeling language by creating a case
orif —then—else sub-action as well as adding guard conditions to the finite state machines
of objects. The translation of such sub-actions to code would be straight-forward. Now, the
problem would be how to accurately calculate response times if alternate paths are included.
In the simplest case, we could include the computations of all paths in the response time
calculations. In this case, we have overestimated these values and, possibly, not found any
schedulable solution when one might have existed. A better way would be to distinguish
the different paths and include the one that leads to the largest computation. However,
when considering the response time of an action that is part of an alternate path, then the

following considerations need to be taken into account:

“The restrictions fitting this description that do not require much thought will, of course, not be discussed.

78

e Previous instances of the same transaction can execute any of the paths and so, the

one leading to the largest computation is assumed (to get worst-case response times).

e The current instance of the same transaction must execute the path that the considered

action is in (otherwise, the action could not have executed).

e Future instances of the same transaction can execute any of the paths and so, the

computation added is the same as that for previous instances.

Loop structures are a little trickier to include because of the unknown number of iter-
ations that a loop may need to execute. If the latter value is known (or an upper bound of
it can be determined), then unrolling the loop would be the easiest way for schedulability
analysis. Note that this unrolling could be automatically done by the future extraction pro-
cess. Again, a loop structure can easily be represented in our modeling language and be

translated to actual code.

5.1.2 Extensions for Transaction Priorities

If we lift the restriction that transactions are made up of non-increasing priority actions,
many schedulability analysis terms are invalidated and would need to be redefined. These
include the critical instant, the blocking and interference effects, which are all crucial in
the calculation of the response time analysis. No necessary changes would be required for

the automated implementation.

5.1.3 Extensions for Synchronously-Triggered Actions

Without the supposition that a synchronously-triggered action has exactly one return sub-
action and the latter is the last sub-action in the sequence, we can do the following. If
there are more than one return sub-actions, then the first will be treated as a reply and any
others as asynchronous events to the caller action’s object. Additional information would
need to be kept in the automated implementation to express when a reply is made. Also,
if the return sub-action is not the last one in the sequence, then we would need to modify
the schedulability analysis to include this situation. Particularly, we could consider such
a synchronously-triggered actions as two actions; the first, considered as a synchronously-
triggered action, would contain all sub-actions up to and including the first return sub-

action and the second, considered as an asynchronously-triggered action, would contain

79

the remaining sub-action sequence. At this point, response times could be calculated using
the same formula as described in this thesis.

If we assume that synchronously-triggered actions can have a priority different from
that of its caller action, several complications arise. Making a synchronous event have
lower priority would disturb the entire notion of a synchronous event given that our schedul-
ing policy conforms to preemptive priority scheduling. On the other hand, making the
synchronous event have higher priority could be possible and, in this case, a schedulabil-
ity analysis even more complicated than the one with transaction priorities extensions (as
mentioned in Section 5.1.2) would be required.

In addition, abolishing the restriction that a synchronously-triggered action must exe-
cute in the same thread as its caller action would necessarily complicate the system. First, in
our automated implementation, we would need to include blocking code for actions that are
waiting for a reply when it synchronously triggers an action that executes in another thread.
This ensures that no action can start executing in a thread that just generated a synchronous
event to another thread. Also, this same stipulation must be taken into account when con-
sidering schedulability analysis. Specifically, the interference effect for a synchronously-
triggered action could be smaller because it will not include any action executing in the
same thread as the caller action. Also, the blocking effect would be severely modified, be-
cause an action A, may have been previously running in some thread when another action
A; interrupts its execution. This action A; could possibly generate a synchronous event des-
tined for the same thread that A, is executing on. In this case, unbounded priority inversion

arises that can be remedied by redefining the preemption threshold priority assignment.

80

Bibliography

[AkZ96]

[Aud91]

[BAWI7]

[BB98]

[Bel98]

[BF96]

- [BRJ99]

[BW94]

[DL78]

M. Awad, J. kuusela, and J. Ziegler. Object-Oriented Technology for Real-Time
Systems: A Practical Approach using OMT and Fusion. Prentice Hall, 1996.

N. Audsley. Optimal priority assignment and feasibility of static priority tasks
with arbitrary start times. Technical Report YCS 164, Department of Computer
Science, University of York, England, December 1991.

A. Burns, N. Audsley, and A. Wellings. On the schedulability analysis for dis-
tributed real-time systems. In Proceedings of Euromicro Conference on Real-
Time Systems, pages 136—143, 1997.

I. Bate and A. Burns. Investigation of the pessimism in distributed systems
timing analysis. In Proceedings of the 10th Euromicro Workshop on Real Time
Systems, Berlin, Germany, pages 107-114, June 1998.

R. Bell. Code generation from object models. Embedded Systems Program-
ming, 11(3), March 1998.

A. Bertossi and A. Fusiello. Rate-monotonic scheduling for hard-real-time
systems. European Journal of Operational Research, pages 429—-443, June
1996.

G. Booch, J. Rumbaugh, and 1. Jacobson. The Unified Modeling Language
User Guide. Addison-Wesley, 1999.

A. Burns and A. J. Wellings. Hrt-hood: A design method for hard real-time.
Real-Time Systems, 6(1):73—114, 1994,

S. Dhall and C.L. Liu. On a real-time scheduling problem. Operations Re-
search, pages 127—-141, September 1978.

81

[Fid98]

[GGH97]

[GHO98]

[Gom93]

[GRS96]

[Har87]

[HKI.91]

[(HIL.R96]

[JP86]

[KGV83]

[KRP*93]

C.J. Fidge. Real-time schedulability tests for preemptive multitasking. The
Journal of Real-Time Systems, pages 61-93, 1998.

J. Gutierrez, J. Garcia, and M. Harbour. On the schedulability analysis for dis-
tributed real-time systems. In Proceedings of Euromicro Conference on Real-

Time Systems, pages 136—143, 1997.

J. Gutierrez and M. Harbour. Schedulability analysis for tasks with static and
dynamic offsets. In RTSS, December 1998.

H. Gomaa. Software Design Methods for Concurrent and Real-Time Systems.
Addison-Wesley Publishing Company, 1993.

L. George, N. Rivierre, and M. Spuri. Preemptive and non-preemptive real-
time uni-processor scheduling. Technical Report N° 2966, INRIA, France,

September 1996.

D. Harel. Statecharts: A visual approach to complex systems. Science of Com-

puter Programming, 1987.

M. Harbour, M. Klein, and J. Lehoczky. Fixed priority scheduling of periodic
tasks with varying execution priority. In Proceedings, IEEE Real-Time Systems
Symposium, pages 116—128, December 1991.

J.-F. Hermant, L. Leboucher, and N. Rivierre. Real-time fixed and dynamic pri-
ority driven scheduling algorithms: Theory and experience. Technical Report
N° 3081, INRIA, France, December 1996.

M. Joseph and P. Pandya. Finding response times in a real-time system. The
Computer Journal, pages 390395, 1986.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated
annealing. Science, 220:671-680, 1983.

M. H. Klein, T. Ralya, B. Pollak, R. Obenza, and M. G. Harbour. A Prac-
titioner’s Handbook for Real-Time Analysis. Kluwer Academic Publishers,
1993.

82

[Leh90]

[LL73]

[Loc92]

[LSD&9]

[LW382]

[RTB99]

[Rod93]

[SGW94]

[SKWO00]

[SM96]

J.P. Lehoczky. Fixed priority scheduling of periodic task sets with arbitrary
deadlines. In Proceedings of IEEE Real-Time Systems Symposium, pages 201—
209. IEEE Computer Society Press, December 1990.

C. Liu and J. Layland. Scheduling algorithm for multiprogramming in a hard
real-time environment. Journal of the ACM, 20(1):46—61, January 1973.

C. Locke. Software architecture for hard real-time applications: Cyclic execu-
tives vs. fixed priority executives. Real-Time Systems (Netherlands), 4:37-53,
March 1992.

J. Lehoczky, L. Sha, and Y. Ding. The rate monotonic scheduling algorithm:
Exact characterization and average case behavior. In Proceedings of IEEE Real-
Time Systems Symposium, pages 166—171. IEEE Computer Society Press, De-
cember 1989.

J. Y. T. Leung and J. Whitehead. On the complexity of fixed-priority scheduling
of periodic, real-time tasks. Performance Evaluation (Netherlands), 2:237—

250, 1982.

J. Rumbaugh, L. Jacobson, and G. Booch. The Unified Modeling Language
Reference Manual. Addison-Wesley, 1999.

P. Rodziewicz. Timing and scheduling analysis of real-time object-oriented
models. Technical report, Department of Computer Science, Concordia Uni-

versity, August 1998.

B. Selic, G. Gullekson, and P. T. Ward. Real-Time Object-Oriented Modeling.
John Wiley and Sons, 1994.

M. Saksena, P. Karvelas, and Y. Wang. Automatic synthesis of multi-tasking
implementations from real-time object-oriented models. In Proceedings of
IEEE International Symposium on Object-Oriented Real-Time Distributed
Computing, March 2000.

S. Shlaer and S. Mellor. The shlaer-mellor method. Technical Paper, Project
Technology, Inc. 1996. Available from http://www.projtech.com, 1996.

83

[SM97]

[SR94]

[SR98]

[SRL90]

[SS99]

[SWQ00]

[TBW94]

[Tin93]

[Wan00]

[WS99]

S. Shlaer and S. J. Mellor. Recursive design of an application-independent
architecture. [EEE Software, 14(1), January 1997.

K. Shin and P. Ramanathan. Real-time computing: A new discipline of com-
puter science and engineering. In /EEE Proceedings, pages 6—23. IEEE Com-

puter Society Press, January 1994.

B. Selic and J. Rumbaugh. Using uml for modeling complex real-time systems.
White Paper, Published by ObjecTime and available from www.objectime.com,
March 1998.

L. Sha, R. Rajkumar, and J. Lehoczky. Priority inheritance protocols: An
approach to real-time synchronization. [EEE Transactions on Computers,
39:1175-1185, September 1990.

M. Saksena and B. Selic. Real-time software design: State of the art and future
challenges. IEEE Canadian Review, 32:5~-8, Summer 1999.

M. Saksena and Y. Wang. Scalable real-time system design using preemption
thresholds. In Proceedings of IEEE Real-Time Systems Symposium, December
2000.

K. Tindell, A. Burns, and A. Wellings. An extendible approach for analysing
fixed priority hard real-time tasks. The Journal of Real-Time Systems, 6(2):133—
152, March 1994.

K. Tindell. Holistic schedulability analysis for distributed hard real-time sys-
tems. Department of Computer Science, University of York, 1993.

Y. Wang. Scheduling fixed priority tasks with preemption threshold and its ap-
plication in automatic synthesis of object-oriented real-time systems. Technical

report, Department of Computer Science, Concordia University, August 2000.

Y. Wang and M. Saksena. Fixed priority scheduling with preemption thresh-
old. In Proceedings, I[EEE International Conference on Real-Time Computing
Systems and Applications, December 1999.

84

Appendix A

Application-View Model Grammar

¥start applicationModelSpec

applicationModelSpec
: '"Application Model’
"{’ classList objectList
bindingList optExternalEvents '}’

optExternalEvents
/* empty */
| "External Events’ ’'{’ externalEventList
externalEventSpec ’}’

externalEventList

/* empty */
| externalEventList externalEventSpec ;'

’

externalEventSpec
eventName optEventArrivalPattern
startTime recipientObject

optEventArrivalPattern
/* empty */
| "One-shot’
| periodicArrival

;
periodicaArrival

85

"Period’ =’ INTEGER

recipientObject
objectName

startTime
'Start’ ’'=’ INTEGER

classList
/* empty */
| classList classSpec

’

objectList
/* empty */
| objectList objectSpec ;'

’

objectSpec
"Object’ objectName ’:’ className

bindingList
/* empty */
| bindingList bindingSpec ’;’

7

bindingSpec
‘Bind’ fullPortName ‘=’ fullPortName

fuliPortName
objectName ‘.’ portName

classSpec
"Class’ className ' {’
optClassAttributes optClassMethods
optPorts optSignalEvents optCallEvents optFsmSpec '}’

86

optPorts
/* empty */
| 'Ports’ ‘{’ portList portSpec '}’

.
’

portList
/* empty */
| portList portSpec ’;’

r

portSpec
portName

portName
NAME

optCallEvents

/* empty */
| ‘Call Events’ '{’ callEventList callEventSpec ’}’

r

callEventList
/* empty */
| callEventList callEventSpec ’;’

r

callEventSpec
eventNMame

optFsmSpec
/* empty */
| "FSM’ ‘{’ optStates initialTransition optTransitions '}’

r

initialTransition
‘Initial Transition’ ’‘to’ targetState optAction

optAction

87

/* empty */
! '/’ actionList

4

optStates
/* empty */
| ‘States’ ’‘{’ stateList stateSpec '}’

’

stateList
/* empty */
| stateList stateSpec ’;’

r

stateSpec
stateName optEntryAction optExitAction

eventName
NAME

optEntryAction
/* empty */
| “Entry’ '/’ actionList

r

optExitAction
/* empty */
| "BExit’ '/’ actionList

r

optTransitions

/* empty */
| ‘Transitions’ ’'{’ transitionList transitionSpec’}’

14

transitionList

/* empty */
| transitionList transitionSpec ’;’

.
I4

transitionSpec

88

transitionName ’‘'from’ sourceState ’'to’ targetState
eventName optAction

stateName
NAME

transitionName
NAME

sourceState
stateName

targetState
stateName

optSignalEvents

/* empty */
| "Signal Events’ ‘{’ signalList signalSpec '}’

signalList
/* empty */
| signallist signalSpec ‘;’

r

signalSpec
eventName

type
className optPointer
| defaultType optPointer

’

defaultType
'void’
[“int’
| ‘char’

89

"double’
"float’
‘enum’
"long’
‘short’

optPointer
A X4

I Txl I gt

’

optAbstract
/* empty */
| 'Abstract’

I

className
NAME

optClassAttributes
: /* empty */
["Attributes’ ‘{’ attributeList '}’

r’

attributeList
/* empty */
| attributeList attributeSpec ' ;'

14

attributeSpec
optVisibility optScope attributeName
optAttributeType optInitialDefaultvalue

optInitialDefaultvValue
/* empty */
| =’ expression

r

expression
NAME

90

INTEGER
FLOAT
STRING
CHAR
boolean

boolean
TRUE
| FPALSE

optVisibility
/* empty */
| ‘public’
| 'protected’
| ‘private’

’

optScope
/* empty */
| ‘scope instance’
| 'scope classifier’

r

attributeName
NAME

optAttributeType
/* empty */
| ":7 type

.
7’

optClassMethods
/* empty */
| "Methods’ ’{’ methodList '}’

r

methodList
/* empty */
| methodList methodSpec ’;’

.
’

91

methodSpec
optVisibility optScope optAbstract methodName
optMethodParameters optReturnType optMethodCode

optReturnType
/* empty */
I 7 . 7 type

r

optMethodCode
/* empty */ _
["{’ actionList "}’

.
r

methodName
NAME

optMethodParameters

/* empty */
| ('’ methodParameterList methodParameterSpec ')’

Is

methodParameterList
/* empty */
j methodParameterlList methodParameterSpec ;'

r

methodParameterSpec
optDirection attributeName
" optAttributeType optInitialDefaultValue

optDirection
: /* empty */
l in’
| ‘out’
| “inout’

actionList

92

/* empty */
| actionList actionSpec

'

actionSpec
"Action’ actionName ’'{’ subActionList subActionSpec ’}’

actionName
NAME

subActionList
/* empty */
| subActionList subActionSpec ;'

.
I

subActionSpec
assignmentAction
requestAction
returnAction
terminateAction
uninterpretedAction

assignmentAction
variable ’:=’ expression

variable
NAME

objectName
optObjectPath simpleObjectName

optObjectPath
/*empty*/
| 'PATH’ className ’:’

I's

simpleObjectName

93

NAME

returnAction
‘'return’ expression

’

requestName
NAME

requestAction
"call’ requestName ’'to’
| ‘send’ requestName ’'to’

'

terminateAction
"terminate’

uninterpretedaAction
STRING

portName
portName

94

Appendix B

Implementation-View Model Grammar

$start implementationModelSpec

implementationModelSpec
"Implementation Model’ ‘{’ threads mapping "}’

17

threads
"Threads’ ‘{’ threadlList threadSpec '}’

t4

threadList
/* empty */
| threadList threadSpec ’;’

r

mapping
‘Mapping’ ’‘{’ mappingList mappingSpec '}’

7

mappingList
/* empty */
| mappingList mappingSpec ’;’

mappingSpec

threadName ’'=’ ActionIdentifier
at’ ’(’ schedulingAttributes ')’

schedulingAttributes
whatPriority optWhatPreemptionThresholdPriority

95

ActionIdentifier
"(’ sendObjectName ’,’ recvObjectName ’,’ eventName ')’

sendObjectName
objectName

recvObjectName
objectName

objectName
optObjectPath simpleObjectName

optObjectPath
/*empty*/
| "PATH’ className ' :°'

r

className
NAME

simpleObjectName
NAME

eventName
NAME

threadSpec
threadName

threadName
NAME

96

whatPriority
"Nominal Priority’ ’=’ INTEGER

optWhatPreemptionThresholdPriority
/*empty*/
| 7,’ ’'Preemption Threshold Priority’ ‘=’ INTEGER

r

97

Appendix C

Schedulability Analysis Model
Grammar

%3start analysisSpec

analysisSpec
"Analysis’ '{’ threads objects transactions actions '}’

7

threads
"Threads’ ’{’ thread_list thread_desc '}’

Is

thread_list
/*empty*/
| thread_list thread_desc ’,’

s

thread_desc
NAME

.
’

objects
"Objects’ ’{’ object_list object_desc ‘}’

7

object_list

/*empty*/
| object_list object_desc ’,’

r’

98

object_desc
NAME

transactions
"Transactions’ ’'{’ transaction_list transaction_desc

transaction_list
/*empty*/
| transaction_list transaction_desc

r

transaction_desc
NAME ‘:’ period_expr ’,’ init_action_expr

period_expr
"period’ ’'=' INTEGER

init_action_expr

Yinitial action’ ‘=’ actionName
7
actions
"Actions’ ‘{’ action_list action_desc "}’

action_list
/*empty*/
| action_list action_desc

.
’

action_desc

I}I

NAME ’‘:’ priority_expr ’,’ optDeadline_expr
thread_expr ’,’ object_expr ’,’
subactions
subactions
: 'SubActions’ ‘=’ ’{’ subaction_list subaction_desc '}’

’

99

subaction_list
/*empty*/
| subaction_list subaction_desc

r

subaction_desc
NAME ’‘:’ subactionType_expr

subactionType_expr

"send’ actionName ’,’ cost_expr /* Asynch Event */

| ‘call’ actionName ’,’ cost_expr /* Synch Event */
| "return’ ’',’ cost_expr
| ‘uninterpreted’ ’,’ cost_expr
actionName
NAME

cost__expr
‘cost’ ‘=’ INTEGER

priority_expr
‘priority’ ‘=’ INTEGER

optDeadline_expr
/*empty*/
| ‘deadline’ ‘=’ INTEGER ', '

r

thread_expr
‘thread’ ‘=’ NAME

object_expr
"object’ ‘=’ NAME

100

Appendix D

Response Times Calculations:
Single-Threaded Implementation

Transaction Action ce Arrival Finish End-to-End Resp Time

T.1 753
Ay I 0 268 268
2 60 286 26

3 120 304 184

4 180 322 142
5 240 340 tog

] 300 358 58

Ag i 0 753 783
2 60 758 698

3 120 763 643

4 130 768 588

5 240 773 533

6 300 778 478

7 360 783 423

8 420 306 186

9 480 8t 33t

10 540 816 276

i 600 821 p2a]
12 660 826 166

13 720 831 1t

14 730 836 56

As i [261 261
2 60 279 U9
3 120 297 77

4 180 3ts 135

5 240 333 93

6 300 351 51

Ag 1 0 255 255
2 60 273 13

3 120 %1 i
3 180 309 129

b 240 327 87

6 3¢0 345 45

T2 603
Aa 1 0 429 429
2 300 536 236

Ag i 0 368 368
2 300 475 175

Ag 1 [603 603
2 300 720 420

3 600 748 148

Ag i Q 409 49
2 300 516 216

T3 593
Az [[1] 593 593
A4 [Q 583 583
Ag ! [321 421

Table 5: Single-Threaded Response Time Calculations: Full Results

101

Appendix E

Response Times Calculations:
Multi-Threaded Implementation

Transaction | Action | Instance | Arrival | Finish | End-to-End Response Time

T_1 161
Ay 1 0 28 28

Aq 1 0 161 161
2 60 166 106

3 120 171 Sl

As 1 0 21 21

As I 0 15 15

T2 161
A2 [0 67 67

Av I 0 49 49

Ag i 0 161 161
Ag 1 0 108 108
T3 582
Az 1 0 145 145
A 1 0 {46 146
Ap 1 0 582 582

Table 6: Multi-Threaded Response Time Calculations: Full Results

102

