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ABSTRACT

Ultrasonic Circumferential Waves in Empty and Water-Filled Tubes

Xing Li, Ph.D.
Concordia University, 2000

Ultrasonic waves propagating in the circumference of elastic isotropic cylindrical shells
are theoretically and experimentally studied.

Dispersion relations of different circumferential modes, including the SH-type and
Lamb-type families, are obtained by solving the wave equations numerically. Asymptotic
solutions are also given for the SH-like modes.

Various technologies are applied for generating and detecting the circumferential
waves. In particular, a new approach is developed for experimental determination of the
dispersion of the circumferential waves in cylindrical shells. With a chirp interdigital
transducer (IDT) as a broadband transmitter and receiver made on a stainless steel tube
coated with piezoelectric film, both the group and phase velocities of the circumferential
waves are obtained over a wide frequency range, which covers the most sensitive region
of the lowest flexural mode. Other transduction approaches are also used as
complementary tools in the experiments.

Experiments are carried out on both empty and fluid-loaded cylindrical shells at
different frequencies. With the specially developed experimental configuration,
propagation of a new flexural wave type in a water-filled tube is observed. Mode
conversions are also observed between the Ap mode in the shell and the compressional

waves in the water. The results show good application potentials in liquid level sensing.
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CHAPTER 1. INTRODUCTION

Recently, we have developed integrated thin walled acoustic tube wave devices which
demonstrated to be an attractive mass-loading sensor candidate [1-4]. The waves can
propagate either in the axial direction, or around the circumference of the tube devices,
depending on the configuration of the transducers, as illustrated in Fig. 1.1. Our present
interest has been focused on the circumferential waves, and in particular the lowest two
Lamb-type modes (referred to as Ag and Sp; modes, respectively), because of their special
properties and potential applications in other areas. Knowledge of the characteristics of

these circumferential modes is demanded for sensor device design and new application

4
Axial acoustic waves

Tube Circumferential acoustic waves

(®)

Fig. 1.1 Schematic configuration of tube wave devices



development. In our previous experiments we also observed circumferential wave
phenomena which are very interesting from both the application and academic points of
view. This work is in fact a continuation and extension of the previous research.

Properties of the acoustic modes in a plane plate have been extensively studied
since they were first discussed by Rayleigh and Lamb a century ago [5-17]. Study of the
circumferential waves in an elastic cylindrical shell, as a counterpart of the plate case, has
also been carried out for decades and is still found active in recent years [18-29, 52-56].

Most of the research reported in the literature is in the context of underwater
acoustics, where incident plane impinge are scattered from the cylindrical shells {20-29].
Applications are also found in non-destructive testing (NDT) such as evaluating the
quality of the nuclear fuel cladding tube [36]. While extensive theoretical analysis and
numerical computations based on various thin-shell models have been presented, and full
dispersion curves in different cases were given, experimental dispersion curves are rarely
found in the literature and usually only a few discrete points are available. Many studies
have focused on problems where a cylindrical shell is immersed in a liquid (typically in
water) with inside filled with air. The circumferential wave phenomenon is commonly
analyzed by the resonance scattering theory (RST) [30, 31], with experimental data
obtained from evaluating the measured parameters of the scattered field in the media
surrounding the shell [26-29].

_ In liquid sensing with a tube wave device, as developed recently, the liquid is

present inside the tube. There are other situations, such as a cylindrical tank containing
liquid inside, where non-invasive liquid level monitoring [47] or non-destructive

evaluation of the cylindrical container may be needed. However, no theoretical analysis or



experimental results are reported in the literature for the case where the cylindrical shell is
filled with liquid inside only.

In our previous work [1], we gave a very general description of all possible
modes, including the circumferential modes, in an empty cylindrical shell with finite
thickness using the linear elasticity theory. We did not solve the equations. As a
continuation, in this work we complete the circumferential part and solve the eigen
equations for both the SH- and Lamb-type families in the circumferential modes. The lack
of suitable theoretical results in the literature, based on models close to our practical
cases, also motivated us to practice our own modelling, although our primary emphasis
was on the experimental side. The theoretical derivations and solutions of the equations,
including numeric and asymptotic results, are presented in Chapter 2.

Fig. 1.2 shows schematically the configurations of two independent families of
circumferential modes. The displacement polarisation of the so called SH-type modes lies
in the axial direction only, in analogy to the shear-horizontal modes in a plate. In the
Lamb-type modes, the displacements are restricted within the radial-angular plane with
no component in the axial direction, which correspond to the sagittal-plane in the plate
case. Theoretically the SH-type modes are quite simple, but it is somewhat difficult to
excite these modes in an isotropic shell. On the other hand, the Lamb-type modes can be
more easily generated than the SH-type modes, at least under certain conditions, while
they are much more complicated in the theoretical analysis. The same situation also
pertains to their counterparts in the plate. This may also be one of the reasons that the

Lamb modes in both thin cylindrical shells and plates have attracted enormous attentions



in the literature. For completeness, we give theoretical analysis on both the SH and Lamb
families. Experimentally, we have focused only on the latter.
Although they have been investigated for decades, the spectrum behaviour of

these circumferential modes, along with that of their plate counterparts, is not yet well

(b) Limb-like circumferential wave

Fig. 1.2 Schematic configuration of the two families of
circumferential modes



understood. Many problems still remain unsolved and questions unanswered, especially
in the fluid-loaded cases. Among the numerous theoretical dispersion curves published,
whether the modes presented could actually exist in a liquid-loaded tube or not is not
clear. On the other hand, a major concern, for example, has been the identification of the
modes corresponding to the observed signals in particular experimental configurations.

One of our objectives in this work is to experimentally identify some of the
acoustic modes which are not very clear in the literature. Technically, our effort has been
made to develop a suitable approach to obtain the spectra over the most sensitive
frequency range. This involves using a chirp interdigital transducer (IDT) as a broadband
transmitter and receiver made on a stainless steel tube coated with piezoelectric film. The
configuration is illustrated in Fig. 1.3. In Chapter 3 we give particular details on the
development of this integrated wideband transducer on tubes, and how they were applied
for the dispersion curve measurement. Techniques such as the pseudo-standing wave and
the integration methods are also developed, in order to obtain the experimental phase
velocity dispersion with this special configuration. Configurations using other types of
transducers are also described, which are applied either supportively in the same cases, or
independently in different cases. Chapter 3 also describes briefly the measurement
arrangement and the signal processing procedures.

With the specially developed technology, dispersion curves of both the group and
phase velocities were obtained over a wide frequency range. Chapter 4 presents the
experimental data measured on both empty and water-loaded tubes, along with the
available theoretical results for comparison and evaluation. Emphasis is given to mode

identification as well as mode conversion in liquid-loaded shells, for which other



complementary experiment configurations were also used. In the discussion of the water-
filled stainless steel tube, we have also included up-to-date theoretical results from the
external correspondents. For the time being we will not review the theoretical background

of their modelling, but compare the results with our experimental data only.

Chirp IDT

Circumferential waves

Fig.1.3 Schematic configuration of a chirp IDT on a tube.



CHAPTER 2. THEORETICAL MODELING

2.1 GENERAL DISCRIPTION OF THE CIRCUMFEREMTIAL WAVES

Propagation of circumferential waves in a cylindrical shell is a two-dimensional problem,
i.e. in a cylindrical coordinate system the acoustic field distributions depend only on r
and @, although the polarization can be in any direction.

In general, around the circumference either stationary or travelling waves can
exist. In this work, we are interested in travelling circumferential waves in a thin-walled
shell and the wavenumbers around the circumference are significantly large.

To study the net effect of a cylindrical thin shell’s curvature on the travelling
waves, in comparison to the case of a plate, and to avoid involving interactions between
the waves themselves, it is convenient to assume that the waves travel unidirectionally
around a cylindrical shell with an infinite angular interval —eo <@ <+ without any
overlap, in analogy to waves in an infinite plate. With this assumption, the analysis is
carried out without applying the periodic boundary conditions in the 6-direction, and
therefore in our solutions the wave numbers around the circumference are NOT restricted
to integers or half-integers.

An alternate way to avoid the periodic boundary conditions is to assume that the
waves start at 8 =6, and vanish at 6 <8, + 27 . Practically this can be realized, for
example, by applying acoustic absorbers at a certain location to block the waves without
resulting reflection. Thus the waves are unidirectional and no overlap would occur.

For a pulsed wave travelling around the circumference, the continuity condition
can always be satistied for any wave numbers without having to worry about the
interference, as long as the pulse duration 8¢ is sufficiently shorter than the period 7 of the
wave around the circumference. This condition is easily satisfied with our experimental

configuration.



In our previous work [1] we presented a very general description of all possible
modes, including the axial and circumferential modes, in an empty cylindrical shell with
finite thickness, using a 3-D model. It was ascertained that the circumferential waves can
be de-coupled into two families of modes - the radial-angular plane modes, which
correspond to the sagittal plane modes (or Lamb mode) in a plate, and the axially
polarized modes, which correspond to the shear-horizontal (or SH) modes in a plate. We
will refer to these two circumferential families as Lamb-type and SH-type modes,
respectively. In our previous derivation, the circumferential modes were naturally
separated from the 3-D problem and two independent groups of equations, one for the
Lamb-type modes and one for the SH-type modes, were obtained.

In this work we solve the equations to obtain the dispersion curves and give
detailed discussions for each of the families. For completeness, we first perform a brief
derivation to obtain the eigen equations for the two circumferential families. Instead of
using a 3-D model, we start directly with a 2-D model, without considering propagation
in the axial (or z) direction.

To describe the general characteristics of the circumferential waves propagating in
a cylindrical shell with a finite relative thickness, we define an angular wave number

pP=0/Q=2n/(Q/ f)=2n/0,
where Q is the angular phase velocity and © is the angular wavelength, as the
counterparts of the phase velocity and wavelength, respectively. Here p, € and @are
independent of the coordinate r. Similar to the plate waves, the wavefronts of the
circumferential waves can be considered “parallel” along the angular direction at the

same 0.



2.2 DECOUPLING OF THE CIRCUMFERENTIAL WAVE MODES
The equation of motion for an isotropic elastic medium, in an invariant form, is
UV + (A + WVV - u = p@’u / 913, 2.1)

where u is the displacement vector, p is the density, A and u are the Lame's constants,

and V> is the Laplace's operator. The displacement u is expressed in terms of a

dilatational scalar potential ¢ and an equivoluminal vector potential vy, such that

u=Ve+Vxy, 2.2)
where

V-y =0. 2.3)
The displacement equations of motion are satisfied if the potentials satisfy the wave
equations

VAV =3¢ /013

24)

VévViy = 9%y / 9 t2.

where V; and Vj represent the longitudinal and shear wave velocities in this bulk

material, respectively, given by

Vi =+ 2w/ p; 2.5
Vé =u/lp.

In detail, the Helmholtz equations (2.4) can be expressed in cylindrical co-ordinates by

(V2 + @/ V2o =0
v? VS, = 0
(V2 + 0 1 Vi)w, 2.6)
(V2 =1/r* + 0>/ V&)y, — 2/ r*)@w, / 36) = O;

(V2= 1/7r* + 0 / V&)ye + (27 r*)(@y, / 96) = 0.



For acoustic waves propagating around the circumference of a concentrical hollow

cylinder with finite thickness # = b — a, where a and b are the inner and outer radii of

the cylinder, respectively, the potentials can be written in the form

¢ = f(r)-cos(po+wt);
Y, = g.(r)-sin(po + wt);
Yy = go(r)-cos(po +wt);
Y. = g.(r)-sin(pO +wr).

or alternatively

¢ = f(r)-sin(pd +wr);
Y, = g.(r)-cos(pO+wr);
Y, = go(r)-sin(po +wt);
Y. = g.(r)-cos(po +we).

(2.7a)

(2.7b)

Here, p is an arbitrary value, which corresponds to the eigenvalue Yy =@/ V in the plate

case. We will discuss their relation later. Substituting Egs. (2.7) into (2.6), we obtain

d%g.(r) 1 98.(n) +-

o

r

or

9go(r) 1 %o [

or®
where,
=V
k=l V:.

r

or

_P -0
rz ]f(r) 0,
P ]
— £ _ s = 0;
p: _g.(r)
p2+l1] 25

— |8, (N +—
-

10

'ge(r)=0;

58, (r)=0.

(2.8a)

(2.8b)

(2.8¢c)

(2.8d)

2.9)



Equations (2.8a, 2.8b) are the standard Bessel equations. Their general solutions can be

given by

f = A - Jskrr) + B - Y(k.r);
(2.10)
& = 8. = G, - Jilksr) + D, - Yi(ksr).
Where, J;; and Y} are the first and second Bessel functions of the pth order, respectively.

Subtracting (2.8b) from (2.8a) gives

? 2 p+ 1)
[% thog k- ("—fl—} (80 ~ &(N] = 0; @.11),

and adding (2.8c) to (2.8d) yields

“ie

[ ¢+l d,g- (ir‘—l)—] (2.0 + g(M)] = 0. @.12)

The solutions of (2.11) and (2.12) can be given by

8= (1/ 2)(8,. - ge) = q ° Jﬁﬂ(ksr) + l)l - Y;‘7+l(ksr);

(2.13)
&=U/2)g t+&)=A4A, J;,-_l(ksr) +B,- Yﬁ-l(ksr)-

The property of the gauge invariance can now be utilized in order to eliminate two of the
integration constants in Egs. (2.13). It may be shown that any one of the three potential

components of g; (i=1,2,3) can be set equal to zero, without losing generality of the

solution. Physically, this implies that the displacement field corresponding to

equivoluminal potential g, can also be derived by a combination of the other two

equivoluminal potentials.

By setting g, =0, one obtains

8 =—8=8 (2.14)

11



So, Egs. (2.7) can be written in the form of

© = f(r)-cos(p0+wr);
Yy, = g(r)-sin(po+wt);
Yy = —g(r)-cos(nO + wt);
Y_= g(r)-sin(nd +wt).

(2.7¢)

where

f=A-J;(kr)+ B-Y(kr);
& = G- Jpulksr) + D G, (Ksr); (2.15)
& =G, - J;(ksr)+ Dy - X (k).

The displacement field can be obtained from Eq.(2.2), by noticing 9/ dz =0, and given by

u, =[f'+(p/r)g,] cos(p0 +wr);

uy =[~(B/1)f - g';]-sin(pO +r); (2.16)

u.=[-g\—(p+1)(g /r)]-cos(pb+wt).

It is shown in Egs. (2.16) that the radial component «. and the angular component
u, are coupled, both involving f(r) and g,(r), while the axial component u, involves
only g(r). The physical significance is that for the free harmonic waves travelling along
the circumference of a hollow circular cylinder, the solutions of the axial displacement u.
can be separated from the radial-angular plane components «, and u,. Comparing to the
plate case, the radial-angular plane solutions correspond to the sagittal-plane waves (or
Lamb waves) and those of the axial component correspond to the shear-horizontal (SH)
modes. Having shown that these two families of modes are de-coupled, next we solve
them separately. We deal with the SH-type family first, which is mathematically much

simpler than the Lamb-type modes.

12



2.3 EXACT AND APPROXIMATE SOLUTION OF THE SH-type MODES

By setting f = g5 = 0, we have the displacement fields for the SH-type family

u, = 0;
ug = 0 (2.3.1)

u. = [—g'—(P + (g / r)]- cos(pO + wt) .

The stress distribution is then given by

T, =0;
T, =0; 2.3.2)
T =23 %%y cos(50+wr),

" u dz Or -

where
0. = L5 A [ukn) - LkD] + B - [Bon) - Kan]} 233)

noting that du, / dz = 0.
Applying the boundary condition of free stress on the inner and outer surfaces of

the shell, i.e. 7.(a) = 0 and 7_(b) = O, we have the following equations:

[[Jﬁ—l(xl) = J5(x)] (Yoo (x) — Y;;H(xl)]] . [A

=0 234
51 (62) = Tpar o)l [Xpoy () = Ty (22)] B] (239

@le

where x, =ksa=-‘(/£-a . =ksb=V£-b and p=
S S

The eigenvalue p at a given frequency can be determined by solving the eigen

equations
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[Jp‘_x(xx)_-,ﬁﬂ(xl)] [Y;_l(xl)"ypﬂ(x[)] _

= 2.3.
[ (52) =y ()] [y ()= ()] @33)

Dispersion relations of the phase angular velocity versus the frequency are
included (2.3.5), which are not explicit. The exact solutions can be obtained only by
solving (2.3.5) numerically.

In order to have an analytical understanding of the effect of the curvature on the

SH-type waves, we seek asymptotic solutions for thin shells with 2 / R << 1.

First let us have a look at the SH modes in a plate.

For a plate with thickness #, the dispersion equation is

- 102
v y - mVs
2bf

(f 2 -1/2
=V, -|1-| = (m=0, 1, 2,3, ...) (2.3.6)
Wi
where
m-V;
= 2.3.7
Sm 2 ( )

is the cut-off frequency of the m-th mode, at which frequency the phase velocity becomes

infinite.

For the lowest mode SH,, the phase velocity V, = V;, and for all non-zero

orders, V, >V

14



In the plate case, the transverse component (in the thickness direction) of the wave

vector is y=+/k2—k> . Similarly, the quantity B = \[kZ — 5> / r* in Eq (2.8b) is the
radial component of the wave vector. Note here that B is r-dependent rather than a
constant. For a free shell in the vacuum, B should be a real number, which requires

P = ksr. As h / r — 0, the shell becomes a plate, and the variable r can be replaced

by a constant R.

Mathematically, the dispersion equation Eq. (2.3.6) for a plate is obtained from
the condition

Yh =mm. (2.3.8)

We can consider that the effect of the curvature of a thin shell (A / R << 1) is
Jjust a perturbation to the plate case, such that

Bh=mr +8 (8 << 1) 2.3.9)

Our next step is to find the &.

The minimum phase angular velocity which corresponds to the SH,-type mode
can be expressed by

O =Vs /R, (2.3.10)

and the corresponding angular wave number is
R. (2.3.11)

It is seen that the real eigen value should always be less than 2R/ A;. It can be
expected that the phase angular velocity of the lowest SH-type mode will be near the

valueof @ =0, =V./R.
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2.3.1. Asymptotic solution

We discuss the problem starting from Eqs. (2.3.4). There are three cases, whose
solutions can be obtained by different asymptotic approaches.
(). p=0, or B=k;. This gives pure thickness modes without any nodes along the
circumference, which can be named “shear-ring” modes. We are not interested in this
case.
(ii) l1<<p<kr and h/ R << 1

For a very thin shell (2 / R << 1), the phase velocity can be considered to be

independent of r in the shell. Thus the wavenumber B becomes approximately a constant

and can be rewritten as

B2 =k} -p>/R> =k - /V? (2.3.12)

where V' is the phase velocity in the circumferential direction. The function g,(r) in Eq.

(2.15) then becomes a standard zero-order Bessel equation and the solution is simply

g(N=C-J,Br+D-Y,Br). (2.3.13)

The stress distribution is the same as in Egs. (2.3.2) except that the argument is

now Pr instead of k;r. The stress-free condition on both shell surfaces gives the

homogeneous equations

Ji(Ba) ¥(Ba)
= 2.3.14
7.B5) _ X(Bb) @319
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Note now that both variables V and ® are in the argument of the Bessel functions. The

argument can be estimated by comparing with the plate case using Eq. (2.3.8)

Brzvr=m7nr- (2.3.15)

Evidently, for any nonzero m, Br >>1 is guaranteed as long as r / h >> 1. The large
argument asymptotic expansions of the Bessel functions can then be applied here and, to
the first order, we have
) 172 3
J, (%) z(—:—) -{sin(x—ﬂ:/4) +——cos(x—-1t/4):l;
X 8x

(2.3.16)

Y(x)= (——2—) ) . [—cos(x—n:/ét) + —3—sin(x -1/ 4)].
TIX 8x

Substituting (2.3.15) into (2.3.14), we have

3h
8 Bab

:l-sin(ﬁh) = -cos(ph)) . (2.3.17)

9
14—
[ 64p ab
Since Ba = Pb >> 1, (2.3.17) can be simplified to

tan(Bh) = —ob— = 2

h_ _
SheF ~ 3T O (2.3.18)

where R = a = b is the curvature radius of the thin shell.
Obviously, 8 << 1, so we have

thnm+8=mn+§ h

SR @=L2.3.) (2:3.17)

Note that for m = 0, Eq. (2.3.17) gives

BR = 37738

17



which does not satisfy our assumption that BR >> 1. Than means this method is not

valid for m =0.

Solving (2.3.17), we have

- 3 (AY -
B = mm + 2 ( R) (m=123...) (2.3.18)

Comparing with the dispersion equation for the SH waves in a plate
Yh=mm,
the second term in the right-hand side of Eq. (2.3.18) is just the perturbation 8§ we
assumed in Eq. (2.3.9).
It is clearly seen that the effect of the curvature of the shell on SH-type waves is

of second order. As  / R — 0, the shell becomes a plate, and Eq.(2.3.9) reduces to

Eq. (2.3.8).

Eq. (2.3.18) can be re-written as

Bh = (1 + 8, )mm (m=1,2,3..) (2.3.19)
with
_3(_k Y
8 = 3 ( 2mR) (2.3.20).

The significance of Eq. (2.3.19) is that, by simply replacing m with m'= m(l + §,,) in
all the dispersion relations for the SH modes in a plate, the corresponding equations for
the SH-type circumferential modes in a thin shell can be readily obtained. Physically, the
quantity m’ represents the number of nodes in the radial (thickness) directions of the

shell, which is no longer an integer as in the plate case, but increased by a small fraction
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3., due to the curvature. For the m -th order mode, §,, is approximately the square of the

shell thickness over m times the shell circumference.

We can now write immediately the phase velocity of the SH-type mode for a thin

shell:

2 -172
V=V, -[1—(—————(”5"‘ JmVs ) J
20f

2 -172
=V -[1 - (ffi) ] (m=1,2,3..) (2.3.20)
where
- =(1+5”2,;lm-vs =fn(1+6,) (2.3.21)

is the cut-off frequency, 3, is given in Eq. (2.3.20), and f£{#*9 is the cut-off frequency

of the m -th SH mode in a plate given in Eq. (2.3.7).

Eq. (2.3.21) shows that the cut-off frequency is increased from the plate case by a

fraction of &, ~( h ) .

2mnR
Comparing Eq. (2.3.20) with Eq. (2.3.6), we also see that the phase velocity of the
SH-type modes is higher than the plate counterpart at a given frequency, noting that
fmw > fn- In both cases, the normalized phase velocity of the m -th mode V_,/V; —1 as
f >> f.. For a given m, the difference between Eq. (2.3.20) and Eq. (2.3.6) is rapidly

reduced as the frequency goes far from f,,. However, the numeric results of the exact
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solution show that as f increases, the phase velocity of the SH-type modes in a shell

reduces to V_ /V; — 1 much slower than that of the corresponding SH modes in a plate.

The discrepancy between the asymptotic and the exact solutions is due to the fact that as
f >> fu,V — Vs, thus BR can no longer be a large number for any finite R, and the
approximation used is not accurate. It can be expected that for the m-th mode this method
is more accurate at a frequency near f, which is confirmed by the results of the numeric
solutions.

As pointed out previously, the solution for the lowest SH-type mode
corresponding to the SHy mode in a plate cannot be obtained by the method used above.
The numeric solution shows that, unlike in the plate, the phase velocity of the lowest SH-
type mode is not a constant, but is frequency-dependent. Only at a particular frequency

fs dowe find V, =V, . As fdecreases from fs, V, increases slightly from V. Solutions
of V, >V, were also obtained for f > f5, which shall be dropped because 8 must be

real.

2.3.2 Numeric sulotions

The phase velocity dispersion curves of the first few SH-type tube modes obtained
from the asymptotic formula Eq. (2.3.20) for a typical stainless steel tube sample are
plotted in Fig. 2.1, together with the those from the numeric solutions of the exact

expression Eg. (2.3.5), as well as those of the SH plate counterparts.
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Fig. 2.1 Normalized phase velocity V/V; of the first three non-zero order
SH-type circumferential waves in a stainless steel tube with a
thickness of 0.254 mm and a curvature h/R =1/20.
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The difference among the three is not visible at the scale used. Fig. 2.2 shows a
close-in plot for a stainless steel tube with the same wall thickness but a much larger
curvature. It is seen that the second order effect of curvature is really minimal, and the
asymptotic solution can give a very good accuracy, even for a tube with a curvature as

large as 1/5.

40

30
—eo— Asymptotic

Exact

7 w0
20 4
N N
10 4
- 3
0 T ] 1 1 T
6.18 6.20 6.22 6.24 6.26 6.28 6.30

Freuency [MHz]

Fig. 2.2 Normalized Phase velocity of the SH, circumferential waves in
a stainless steel tube with a thickness of 0.254 mm and a
curvature h/R =1/5, compared with the corresponding SH; plate

mode
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2.4 LAMB-type MODES - EXACT SOLUTION

2.4.1 Eigen equations

For the Lamb-type family, with g,(r) = 0 in Egs. (2.1.7), we have the potentials

@o=f(r)-sin(p0 + wr);

Y, =g, (r)-cos(pO + wt);
Yo = go(r) -sin(pO + wt);
v, =g.(r)-cos(pO +wt).

and the displacements

90 1 9. _ Y P | coi )
u, = r+r ) [ar+r g3] cos(po + wt);

0g; g .
. f - ’a—rjl . sm(pG + r);

Substituting (2.4.2) into (2.4.3), the stress can be given by

23

2.4.1)

24.2)

(2.4.3)



c, = —-}\.kz -f(H+2u l:a-fsr) +z- ag3 (r) ———?,-g3 (r)]
or* r or r

xcos(p0 + wr);
24.4)
D 2 a°
S {Zp (¥ _f0) )_( K gy -2 280 )}
r k or r or
X sin(pO + we).
Substituting the boundary conditions for a free shell
6, (a)=0,(b)=0; oc4(a)=064b)=0 (24.5)

into Egs. (2.4.4), we have the eigen equation group to determine the coefficients A, B, C,

and D, in the matrix form

Cu €2 G353 G A
Csyy Cwmm Cx3 Cyu| | B
. =0 (2.4.6)
€3 € €33 G| |C
Cyq Cap Caz Cyuy D

The elements in the first two rows are:

cy =R2p(p—-D - k;'az]Jﬁ(kLa) + 2k,al 5, (k. a)
. = —2P(P — DJ;(ksa) + 2pksal ;. (ksa)
a; =R2p(p-D - k:?zaz]YE(kLa) + 2kLaY5+1(kLa)
s = —[2p(p — DY;(ksa) + 2pksa¥;,,(ksa)
2.4.7)
¢y = [2p(p — ]-)Jﬁ(kLa) - 2ﬁkLa‘]5+l(kLa)
cm = -[2p(p - 1) - kgazlfp(ksa) - 2ksaj,3+1(ksa)
s = [2p(p — DY;(k.a) — Zﬁkt_ayﬁn(kt_a)

Cu = 2P(P — 1) — kia*1¥;(ksa) — 2ksa¥s;,, (ksa)
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where we have eliminated all the first and second order derivatives by using the recursive
relations for the Bessel functions. The remaining two rows in Egs. (2.4.6) are obtained by

substitution of b for a in Egs. (2.4.7).

For nontrivial solutions the determinant of the coefficient matrix {c;} in Eq.

(2.4.6) must be zero, from which the dispersion relations can be obtained. In the elements
of (2.46), both the arguments and the order of the Bessel functions are real for the modes
in an unloaded shell, if the propagation attenuation is ignored. The angular phase velocity

in the order of the Bessel function, p =® /L, is the eigenvalue to be found.

Finding the asymptotic solutions for the Lamb-type modes is much more difficult
and complicated than for the SH-type modes. To avoid lengthy mathematical derivations,

we present only the numeric solutions.

2.4.2 Numeric solutions for an empty tube

Egs (2.4.9) were solved numerically with a program written in Mathematica®. A typical
example is given for a stainless steel tube with a wall thickness of 0.254 mm and a outer
diameter of 9.8 mm. The phase velocity dispersion curves of the first few modes are
shown in Fig. (2.4) by solid lines. For comparison, the dashed curves represent the
dispersion curves of the phase velocities of Lamb waves propagating in a “dry” plate of
the same material and thickness. It is seen that the properties of the Lamb-type
circumferential waves are analogous to their plate counterparts, with only a slight

difference in value due to the curvature. For simplicity we will use the same notation for
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the circumferential waves as for the plate waves. We denote the antisymmetric modes by
A,, and the symmetric modes by §,, .

Except for the A, mode, the phase velocity of all the symmetric and
antisymmetric circumferential modes is somewhat higher than that of the corresponding
plate modes at a given frequency. As for the A, mode, the solid line is slightly below the
dashed line.

At the scale used in Fig. 2.4, such differences are not visible. More significant
difference can be seen only for tubes with larger R/h values. Fig. 2.5 shows the curvature
dependence of the phase velocity of the S, (upper plot) and A, (lower plot) modes at low
frequencies.

In the low frequency region, there is a significant change in the dispersion curve
of the S, circumferential mode from the plate case. While the phase velocity of the S,
plate mode remains constant as the frequency goes to zero, that of the §, circumferential
mode goes to infinity. In other words, the S, circumferential mode has a “cut-off”
frequency near zero while the S, plate mode has none. This cut-off frequency is
curvature-dependent, as easily seen in Fig. 2.5.

This result is very interesting. In Vektorov’s book [11], a conclusion was given,
without proof, that in an isotropic, homogeneous plate, for the symmetrical modes, when
the phase velocity reaches the value of V,, the velocity of bulk longitudinal waves, the
vertical (normal to the plate surface) component of the displacement vector vanishes on
the free surfaces. Pilarski er. al. [37] gave a proof of this statement, with an explicit

expression for the frequency-thickness products where this vanishing occurs. In the
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Fig. 2.3
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Calculated dispersion curves of the phase velocity (upper chart)
and the group velocity (lower chart) for the first few Lamb-type
modes in an empty stainless steel tube, with comparison to their
plate counterparts.
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Fig.2.4 Phase velocity of the S,—type (upper plot) and A,-type (lower
plot) modes for empty stainless steel tubes with different
curvature, where b is the outer radius and h = 0.254 mm is the
wall thickness.
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formula, the critical frequency-thickness product for the n-th symmetrical mode is
proportional to the index n, except for n=0 excluded because “for zero frequency no mode
with a phase velocity equal to the bulk longitudinal wave velocity exists [37].”

However, as can be seen in Fig. 2.3, in a cylindrical shell the circumferential S,
mode does have a phase velocity equal to the bulk longitudinal wave velocity, V, at a

frequency near zero.

One can expect that for all symmetrical circumferential modes, including the S,
mode, the radial component of the displacement vector vanishes on the free surfaces of
the tube as V' — V. This prediction can be verified by substituting into Eq. (2.4.2) the
p value at V, and the corresponding frequencies in the dispersion curves. The numeric
results for the first few non-zero symmetrical modes show that at the free surface r=a, b ,

the ratio u,_/u,<<1 at frequencies where the phase velocity V =V, .

It is demonstrated in [37] that for all non-zero order symmetrical Lamb modes in a
plate, the group velocity take the same value V, D at frequencies where the phase velocity

V = V,. In this work we have verified that this also occurs for the non-zero order
symmetrical Lamb modes in a tube. However, the S, circumferential mode is an

exception. Although in its dispersion curve there exists a point where the phase velocity

V = V,_, at that frequency point the group velocity value obtained is somewhat different

from that of the non-zero order symmetrical modes. This may be due to the inaccuracy of

the numerical solution, because in this frequency range the dispersion is extremely sharp.
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2.5 CIRCUMFERENTIAL MODES IN A WATER-FILLED SHELL

For a cylindrical shell filled with water, only the Lamb-type family is considered,
because the water-loading has no effect on the SH-type modes. The potentials,

displacements and stress in the shell take the same forms as in the empty case.

The potentials in the water are, considering only the circumferential motions,

@® = £ (r)-sin(po + wt);

3' ig 2.5.1)
2] - £y
y.=0.

Substituting Eqs.(2.5.1) into the wave equation
cTVip® =92 /&2, (2.5.2)

where c is the compressional wave velocity in water, we can obtain

or? or 2

>
(o r-

*F A (r) + % ) Af A (r) + [mz ﬁ_z}f(z)(r) =0 (2.5.3)

Equation (2.5.3) is the standard Bessel functions in order p with arguments wr/c =k,r.

Its general solutions can be given by
f@=E-J;kr), (2.5.4)
where J; is the first kind of Bessel function of order p. The second kind of Bessel

function, Y, cannot satisfy the natural boundary condition at r =0, and is therefore

dropped.

The displacement vector components can be obtained from the relation of
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u=Vp+Vxy, (2.5.5)

and given by

S TR S
@ =%-.g—(g.—i;,r—‘_—-f‘“’ cos(p6 +wr); (2.5.6)
u® =0

The stress-strain-displacement relations are

o =(A+2u)-Qu, /or)+A-= [aue +u ]

d
2 £ 2 =2
=p,c2.[aaf: - i a;;r Ir)l f<~>] sin(p0 + wr); (2.5.7)

) a ue 1 au
—ulr-Z - 0.
G0 =K ':r or{ r r d0

noting that in water W = O. Substituting (2.5.4) into (2.5.7), the stress components

(omitting sin(p0 + wt) ) become

1 P
=p,0°-| Jo(k,;r)+——-J 5 (k,r)— -J -E
! [ ( r) kl ( ) (kl °r)2 JP (klr)]

=-p,0*-J;(k,1)-E; (2.5.8)
O-ro = 0

where E is a constant to be determined. The radial distribution of the displacement

components are

u =k -J;?(k,r)-E;

5 (2.5.9)
=£J (kn) -E.
;
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The boundary conditions are:
(). 6P (a) = 6P (a); (). u’ (@) = uf(a); (). 65(a)=0;

@). oL ®B)=0; (5). 0,,(b)=0 (2.5.10)

where the quantities with superscript (1) denote the stress and displacement components

in the shell, which are given by Egs. (2.4.2) and (2.4.4).

Substituting (2.5.8) and (2.5.9) into conditions (2.5.10), we have the following equation

group to determine the coefficients, which can be written in a matrix form

€1t €2 G3 Cia —Cis
€ Cx2 €23 C4 0
€31 €3 ¢33 €3 O (2.5.12)

Cq1 Cqo €43 Caqa O

o aw >
[
>

Cs1 Cs2 Cs3  Csqg  —Css |

The nontrivial solution requires that the determinant of the matrix goes to zero, i.e.,

dw =ley €32 €3 ¢y 0| =0, (2.5.13)

Csi Csa2 Cs3 Cs4 —Css

It is found that the elements in this matrix and those in Eq. (2.5.13) with the same indices

are identical. Here we list only the additional elements:
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o’ 2
as =227 (ka) =‘2)—")-k§ T 5 (k).

(\®)
=

€5 = %Zp_-- Jykpa)~k, - T, (k a);
Csy = —i—- Yo(k,a)—k, - Y5, (k a);
Cs3 —;——J‘-,(ksa),
Csy = —-g-Y,-, (kga);
Css = —g- Js(ka)+k - T3, (ka).

By setting ¢;5 = ¢5; = 0 (4, j =1,2..,5), Eq. (2.5.13) reduces to Eq. (2.4.6) for the empty
case.

Egs. (2.5.13) can be solved numerically. It is worth noting that the model used
describes only motions along the 8 direction. The waves can be in the shell, in the water,
or in both, depending on the modes and frequency range. We have ignored internal
attenuation, and thus the waves propagate in either the shell or the water without
consuming any energy. For the water-filled tube, no energy radiates out of the tube into
the vacuum (or air), and the total energy in this closed system is conserved. So we find
only real eigen values in the solution of Egs. (2.5.13).

However, the acoustic energy can transfer between the water and the shell.
Radiation from one subsystem to the other and conversion from one mode to another can
occur. In this case, the waves are "leaky” if we consider the subsystems separately, and
the propagation of the waves may not be purely circumferential. For simplicity we will

use the quasi-plane wave approximation and the acoustical ray method in our analysis of
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the radiation and the associated mode conversion, which will be discussed in Chap. 4.2.

with our experimental observations.

2.5.2 Numerical results for a water-filled tube.

Solving numerically Eqs. (2.5.13) for a water-filled tube, we obtained two sets of
dispersion curves. While solutions corresponding to the Lamb-type modes are still found,
and remain nearly unchanged from the empty case for a thin shell, an additional series of
modes are also obtained. Fig. 2.5-(a) shows the dispersion curves for a water-filled
stainless steel tube of the same size as that presented in Section 2.4.2.

For the frequency range given, we see that in addition to the Aq and S, modes,
there are many new modes not found in the empty tube. The dispersion of these additional
modes coincide with that of the so called “Whispering Gallery” modes confined in the
cylindrical water column by the tube wall, obtained with the resonant scattering theory
[55, 56]. There are two types of Whispering Gallery modes in a liquid filler; one is with a
rigid boundary and another with a “soft” boundary. Our results corresponded to the
second Whispering Gallery type. In our case the water column is within a tube wall that
has finite density, and is “free” to vibrate. We label these modes with W,_(m=1,2,3 ....).
Both the rigid type and soft type Whispering Gallery modes in a layer of a liquid filler
propagate at the cylindrical liquid-solid boundary without attenuation. In other words, the
roots of the eigen functions are all real, which is the same as in our case.

Fig. 2.5-(b) shows the group velocity dispersion curves of the water-filled tube

modes. Comparing Fig. 2.5 -(a) and -(b), we see that for each W, mode, except for m=1,
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the group velocity reaches its maximum value V,™*at the cut-off frequency, where the
phase velocity goes to infinity. This maximum value is a constant for all W, modes with

m>1. For the typical stainless steel tube sample, V,™* = 2420 m/s.

Very recently, Veksler et al. [55] and Maze [56] observed in their theoretical
modelling by the resonant scattering theory, a third mode family in a liquid filled tube, in
addition to the Lamb-type and the Whispering Gallery type modes. With our modelling
based on the classical linear elasticity theory, we have by far not found any roots for these
new modes from the eigen equations. In Chap. 4.1 we also compare our experimental

results with the theoretical ones in [S5, 56].
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Fig. 2.6 Calculated dispersion curves of (a) the phase velocity and
(b) the group velocity of the circumferential modes in a
water- filled stainless steel tube.
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CHAPTER 3. EXPERIMENTAL METHODS AND PROCEDURES

3.1 TRANSDUCTION TECHNOLOGIES

Proper transduction configurations are crucial in order to effectively generate and detect
the circumferential waves. While our emphasis is given to the integrated configuration,
two other approaches are used in this work. The three different approaches are applied
either independently in different cases, or supportively in the same cases as

complementary tools.

3.1.1 Integrated method- Interdigital Transducer (IDT)

In our R & D of thin-walled tube sensor devices, we developed a special technology of
making transducers directly on the tube surface. Piezoelectric PZT films were coated on
the outer surface of the tubes, and interdigital transducers (IDT) were then fabricated on
top of the piezoelectric film. This technology not only made the novel thin-walled tube
wave devices a promising sensor candidate, but also provided a very useful tool in
investigating circumferential waves.

With this configuration, circumferential waves can be effectively excited and very
well guided around the circumference, as illustrated in Fig. 1.1, which gives excellent
signal-to-noise ratio in the received signals. Because the IDT electrodes were very thin
compared to the tube wall (typically 1:1000), perturbation introduced by the transducer is
minimal. Since the transducer is integrated on the tube surface, it has no alignment
problem, and thus provides more consistent results for measurements under different

conditions. The most significant feature is that, when IDTs with varied spacings (so
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called "chirp” IDTs) are used, as will be described later, circumferential waves over a
wide frequency range can be generated and detected continuously, which is particularly
desirable for dispersion curve measurement. This is the superior advantage of this
technology over the others.

This method also has its own limitations. Only selected materials are suitable for
PZT coating, and the tube size is limited. In addition, highly specialized skills are

required for the device fabrication, and good devices are not easy to obtain.

A. Fabrication process

The key technology in this approach is coating piezoelectric films onto the tube
surface, which convert electrical energy into mechanical energy and the reverse. A
specially designed recipe of the stock solution [1] was used for dip-coating PZT films on
metallic tubes. A typical tube substrate was a stainless steel tube with a diameter of 9.8
mm and a wall thickness of 0.25 mm. Aluminium tube samples were also made. Before
coating, the tube substrate was cleaned, and then pre-heated to a temperature of about S00
°C to further remove possible remaining organic substance. The pre-heating could also
form a thin oxidation layer on the stainless steel tube surface, which could enhance the
adhesion between the substrate and the ceramic PZT film.

A step motor-controlled system was used for the dip-coating. The tube substrate
was kept vertical by the sample holder, and immersed in the chemical solution by a depth
of the desired coating length. It was then lifted slowly and smoothly at a speed of about
1.5 cm/min, as programmed, until the whole tube was out of the solution. A thin gel layer

was formed on the outer surface of the tube. After drying in the air for about 10 minutes,
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the tube sample was placed in a vertically mounted tube furnace. The firing of the film
was carried out at a temperature of 480 °C for 12 minutes. The sample was then taken
out, staying in the air until it cooled down to the room temperature. By repeating the
above procedure, multiple layer coating was performed and films of up to 20 layers were
obtained. The as-fired films coated on the tube were annealed at 620 °C for 2 hours for
the crystallization.

The as-annealed film is not piezoelectric and poling of the film is required. The
PZT films coated on the tubes were poled in a conventional way by applying a DC
voltage across the film thickness, using the conductive tube itself as one electrode and an
aluminium layer on top of the PZT film surface as the other (Fig. 3.1 (a)). The aluminium
layer was also used later for IDT fabrication. The sample was kept at 185 °C for 2 hours
with an applied DC voltage of about 3 V per 1 mm of PZT film thickness, and then
slowly cooled down to room temperature. The DC voltage was withdrawn as the
temperature dropped below 60 °C.

An alternate poling configuration was also used which was carried out after the
IDT electrodes had been fabricated on the PZT film. In this case the DC voltage was
directly applied across the IDT fingers, as illustrated in Fig. 3.1 (b). In this case, higher
DC voltage was applied. This method was found particularly useful for reducing the
short-circuit risk during the poling due to micro-defects in the PZT films. Films free of
micro-defects were very difficult to obtain, especially for large area coating. Aluminium
deposited on the PZT film surface could penetrate through the micro tunnels and resulted
in a short-circuit between the top and bottom electrodes. At the points which were not

short-circuited, but weakened by the micro-defects, electrical breakdown could happen
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when a high DC voltage was applied. Breakdown could also happen if the film thickness
was not uniform over a large area. With the conventional poling configuration shown in
Fig. 3.1-a, only one defect spot could kill.

It is noticed that most of the top aluminium layer will be etched out including the

unused area and the IDT finger intervals. So limited micro-defects in the whole film area

Top electrode L)

(b) O

Fig. 3.1 Two configurations for PZT film poling
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they have a good probability to distribute out of the usable area or just reside in the
spacines between the IDT fingers, rather than exactly under the IDT fingers. So the risk of
short-circuit could be much reduced. Even if there happen to be some micro-defects
exactly under a few IDT fingers which would cause a short-circuit between those
particular IDT fingers and the tube, a short-circuit may not have to just happen between
the IDT electrodes themselves. Since in our case the finger spacing was much larger than
the PZT film thickness (~200:1), the electric fields generated from the poling voltage
applied across the IDT fingers were still mainly in the “vertical” or the film thickness
direction rather than in the “horizontal” or the surface direction. Therefore, a breakdown
between a positive-negative finger pair is also unlikely for films without a uniform
thickness. In the event that a breakdown happens between the tube and a few IDT finger,
the majority of the IDT could still survive and function well as long as such breakdown
does not happen for both a positive and a negative electrode at the same time.

In order to fabricate the IDT patterns on the curved surface of a tube, flexible
masks made of transparent films were used. After a thin aluminium layer (typically 2000
A) was deposited on the PZT-coated tube surface by means of vacuum evaporation, a
photoresist layer was then applied on the tube using the same dipping technique as for the
PZT film coating. Following this was a standard wet-etching procedure commonly used

in the photolithography process for planar structures.

B. Chirp IDT
For an IDT with uniform finger spacing, the center frequency is determined by the finger

period P which is approximately the wavelength, and the bandwidth depends on the
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number of electrodes N. For a chirp IDT with varied finger spacing, the bandwidth
mainly depends on the variation of the local period P, of the electrodes. Fig. 3.2. shows
schematically the geometry and impulse response of a chirp IDT.

Consider the chirp IDT as a receiver. In coming acoustic waves will have
maximum efficiency in generating an IDT voltage in the region where the finger period is
also that of the incoming wave. The same situation also holds when the IDT acts as a

transmitter. Acoustical waves will be principally excited by regions of the IDT whose

- v e - =

o o v o o et o .-
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o
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Fig. 3.2 Schematic geometry and impulse response of a chirp IDT
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finger periods are in synchronism with the excitation frequency. For a chirp device with
center frequency fp and bandwidth B, the excitation frequency at the “low end” and of the
IDT, i.e. maximum finger spacing, will be (fy - B/2), while that at the “high end", i.e.
minimum finger spacing, will be (fo + B/2).

It is noticed that in a two-port configuration, either up-chirp or down-chirp, the
distance from the IDT finger pairs in the transmitter to their counterparts in the receiver
varies with different finger spacings, as shown in Fig. 3.3 (a). Therefore the time delay
between the two ports is frequency-dependent.

One would immediately question how this configuration can be used for
dispersion measurement, if it itself is already dispersive. This is true if a two-port
structure is used, as shown in Fig. 3.3 (a). However, for a single chirp IDT as a
transmitter and receiver along the circumferential direction of a cylinder, this inherent
dispersion does not exist for constant wave velocity. At first glance one would think that
the one-port chirp IDT should be up-chirp dispersive in one direction, and down-chirp
dispersive in the other direction, similar to the two-port cases in Fig. 3.3 (a). A careful
examination shows that this is not the case. As shown in Fig. 3.3 (b), the distance an
acoustic signal travels in either direction from the transmitter back to itself as the receiver
is a constant for any finger pairs of any spacing, which is nothing but the circumference
of the shell. Thus there should be no dispersion in the time delay, unless the velocity of
the acoustical circumferential waves is dispersive. This justification was experimentally
verified by comparing the measured time delay at several frequency points with those

obtained with other methods.
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Doubiy-dispersive up-chirp

Doubly-dispersive down-chirp

Single chirp IDT along tube circumference

(b)

Fig. 3.3 Comparison of a one-port chirp IDT on a tube surface and two-
port chirp IDTs on a planar surface.



For best results in both the electrode layer deposition and the photolithography

procedure, the total IDT length should not exceed 1/3 of the tube circumference, i.e.

N-PX< lgi This condition limits the total number of the electrodes N for given
finger spacings. While for a uniform IDT the maximum N limits the minimum attainable
bandwidth, for a chirp IDT it limits the maximum attainable bandwidth for a given
increment in the finger spacing P, or the minimum increment in P for given bandwidth.
There was then a trade-off between the bandwidth and the increment AP. Since our
objective was to obtain detectable signals, the actual shape of the frequency response is
not very important, as long as the signal is at an acceptable level over the desired
frequency range. So we sacrifice AP to maximize the bandwidth B.

For a typical stainless steel tube sample with a wall thickness of 0.25 mm and
diameter of 10 mm, the finger spacing variation is estimated to be approximately from 0.4
mm to 1.6 mm, in order to cover the desired frequency range, based on the theoretical
dispersion curve (see Fig. 4.2).

In order to meet all the requirements and keep a minimum required N, we split the

IDT into parallel IDTs, as illustrated in Fig. 1.3.

3.1.2. Contact method - piezoelectric thin disk transducer

This method is simple, straightforward, economic and quite effective. It can be applied to
shells made of any materials which support acoustic waves, and there is no upper limit on
the shell size. Commercially available thin-disk piezoelectric transducers were used. This

type of transducer is commonly used for generating bulk waves, so it is also often called
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bulk wave transducer. The transducer was aligned tangentially with the tube, with a thin
layer of acoustic couplant applied between the transducer and the tube. Ideally, the
acoustic couplant applied should be a very narrow and straight line parallel to the tube
axial direction, so that the transducer can be considered as a “line source”. The
narrowness, straightness and parallelness (to the axial direction of the tube) of this line
coupling layer is very important to get sharp “echoes”, in order to effectively excite the

circumferential waves and to minimize the error of the time delay measurement.

There are a number of disadvantages of this method:

A number of transducers of different nominal frequencies are needed to get the
spectrum. Only limited discrete frequency points can be obtained. Careful alignment (re-
alignment) is required in each experiment. There is larger perturbation on the experiment

sample. It is not suitable for shells of small diameters, especially at low frequencies.

3.1.3 Non-contact method - laser probe

This technology can be used for very wide frequency range, and can provide continuous
spectra if used to generate the waves. However, as a generator a very high power laser
source is required, which was costly and not available in our case. We used a low power
laser source for detecting only. Since this method is non-contact, and passive when used
for receiving only, no modification is made on the experiment sample. The disadvantage
is that the signal-to-noise ratio is usually poor. Other concerns are the elegant optical

alignment required and the demanded reflective material surface of the sample.
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Most interferometric systems described in the literature for laser ultrasound
applications detect the ultrasonic motion perpendicular to the surface of the specimen
when the beam is sent normal to it. As described by Monchalin %], these systems are
based on either optical heterodyning, which is the case of most of theirs and of ours as
well, or velocity interferometry. In the optical heterodyning technique, the light scattered
by the surface of the specimer{ is made to interfere with a reference wave derived directly
from the laser. The interferometric arrangement used in this case is called homodyne if
the reference wave and the wave sent onto the specimen are at the same optical
frequency, or heterodyne if one of the waves is frequency offset with respect to the other.
In the velocity interferometry technique, an interferometer giving time delay between the
interfering waves demodulates the frequency shift of the scattered light produced by the
surface motion. Such techniques permit determination of only one component of the
ultrasonic surface motion. This is sufficient for many applications, in which the detection
of the arrival of the ultrasonic wave is the only requirement, as for our case.

In our experiment an OP-35-O optical probe system was used. Its frequency
response bandwidth extends from 1 KHz to 35 MHz. This instrument is based on optical
heterodyning, which consists in beating (or making to interfere) the beam scattered or
reflected by the surface with a reference beam, both being derived from the same laser. In
order to ease calibration and establish immunity to ambient vibrations, which generally
produce displacements exceeding the small ultrasonic displacements to be detected, the
reference beam is frequency shifted with a Bragg or acoustic-optic cell (by 40 MHz in our
case). The electronic demodulation circuitry produces a voltage signal output proportional

to the surface displacement, unaffected by the environmental vibrations. The instrument
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uses a small SmW He-Ne laser as the laser source. This laser produces several
longitudinal modes separated in frequency by c/2L, where c is the speed of light and L is

the laser cavity length.

Fig. 3.4 illustrates the configuration of the contact method combined with the non-

contact laser probing method.

Piezoelectric thin disk transducer
\ Acoustical couplant

Fig.3.4 Schematic configuration ofthe contactmethod using a piezoelectric thin
disktransducer and the none-contact method using a laser beam.
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Note that the laser probing position is such that the distance from the contact
point of the thin-disk transducer in one direction is about half that in the other direction.
This is to well separate the two echoes from the two directions. In this configuration the
echo trains received by the laser probing contains two echo series, with equal time

interval but different delay time and probably different amplitude.

3.2 METHODS FOR VELOCITY MEASUREMENT

3.2.1 Group velocity - time delay measurement

a) One-port or two-port

Experimentally, the group velocity can be determined by measuring the time delay of the
acoustical signals travelling around the circumference. In our theoretical modelling in
Chapter 2, we assumed that the waves could propagate around the circumference without
any overlap and no interference would be involved. In reality, one must face the
overlapping problems. One simple solution is to use pulsed waves instead of continuos
waves (CW). Standing waves would not be formed as long as the duration of the pulse is
sufficiently short compared to the period for the waves to propagate around a complete
circumferential cycle, even if the waves are allowed to propagate in both directions
around the circumference. Although the two branches of waves in opposite directions will
meet after travelling one or more complete circumference(s), a short-period overlapping
would not support a formation of standing waves. For short duration pulses, the two
branches of the waves in the opposite directions can meet at only two positions: the initial

point where the transducer is located, and the point which is exactly half way around the

49



circumference. At either of these two positions the superposition is always constructive,
which can only enhance the received signals, since any two branches of waves of the
same mode are always in phase when they meet after travelling exactly the same path
length (n or n+1/2 times a complete circumference).

In a two-port (transmission) configuration, the time interval is determined by two
transducers separated by a distance in the path, one as the transmitter and another as the
receiver. In a one-port (reflection) configuration, a transducer generates the signals and
receives the echoes, i.e. the acoustical signals reflected from a boundary in the path.

One advantage of the reflection configuration is that the length of the acoustical
wave path can be extended by many folds, so that accuracy of the time delay
measurement can be significantly increased. This is especially useful in the cases where
the acoustical path is extremely short, such as crossing the thickness of a thin film.
Another advantage of this configuration is that the electromagnetic (EM) feedthrough can
be completely eliminated. Since electromagnetic waves travel at the speed of light which
is greatly much faster than the acoustical waves, and they attenuate much more rapidly
than the latter in most media, the EM feedthrough signals no longer appear after the first
received acoustical echo. The time interval between the subsequent echoes is used, which
provides better accuracy than using that between the initial signal and the first echo.
Usually in a two-port structure only the latter is available. Given the fact that the
circumferential waves can naturally come back to the transducer, for either a one-port or a
two-port configuration, multiple echoes are available. However, unlesé the two
transducers are perfectly symmetrical, i.e. they are equally spaced in both directions

around the circumference, each received echo will split into two because of the different
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delays from the two opposite directions. This would reduce the resolution in the time
interval measurement, unless the signals of the two branches are either well separated or
totally coincide at the receiver.

When we used the laser probe as a passive detector, the probing point was chosen
at about 1/3 of the tube circumference from the generating point, as illustrated in Fig. 3.4,
so that the time interval of the two wave branches were very well separated.

As discussed later in 3.1.1 B, for the broadband measurement using a chirp IDT as

the transducer, only one-port configuration is suitable.

b) Cross-correlation
The precise determination of the time delay is based on the cross-correlation of
consecutive echoes. Cross-correlation time delay measurement has been used successfully

[CRI] giving the most reliable and reproducible

with conventional ultrasonic techniques
results even in difficult cases where the echoes could be very noisy and distorted. The

cross-correlation of two time domain signals u(¢) and v(¢) is defined by

T
= Iim L
Co = lim { u(t)v(@t + T)dr (3.2.1)

The time delay measurement by cross-correlation is based on the property that the auto-
correlation Cy,(7) of a signal u(z) is an even function of 7, which is maximal at 7= 0. If
v(?) is the signal u(z) delayed by T, i.e.

w(t) = u(t-T), (2)
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the cross-correlation function Cyy (7) will be the auto-correlation function C,, (7) shifted
by T,ie.

Cuv(7) = Cuu(7-T)
and will therefore have its maximum at 7=T.
Two portions in the received echo train, each including one of these arrivals, are selected
by two windows of length T.., one starting at time ¢; and the other at time 1,. Both data
portions are then normalized to the same energy, and their mean values are set to zero
(DC offset elimination). The coarse delay between the two windows is T. = f; - ¢;. The
maximum of the cross-correlation gives the fine delay, T¢. Thus the exact time delay
between the two echoes is given by

T=T.+T¢
where the value of Tt can be either positive or negative. This procedure does not require
knowledge of the initial time, or determination of the exact arrival time of each echo. It
uses the whole shape of the wavefront signals, and therefore diminishes the effect of local

uncorrelated.

3. 2.2 Experimental determination of phase velocities

Usually the conventional pulse-echo technology is not suitable for phase velocity
measurement. Thanks to the special geometry in the circumferential problem and our
novel technology, we have developed two methods for the phase velocity measurement.
a) Pseudo-standing wave method

In this method long duration tone-burst pulses, or pseudo-CW input signal, were

used. Because of the special property of the circumferential wave which propagates round
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and round along the circumference, standing waves can easily be formed in the output
signals when the duration of the tone-burst input is long enough, e.g. covering more than
one circumference period. By measuring the adjacent frequencies f, and f,,,, where the
signals are at maximum or minimum (constructive or destructive interference), the phase
velocity can be estimated by V =27R-(f,,, — f,)- Thus the phase velocity values can be
measured at certain discrete frequencies. Since in our case Af was typically in the order
of 107 MHz, the dispersion effect on the accuracy of the integration constant should not
be significant if a phase velocity value is at a frequency where the dispersion curve does

not have a sharp slope.

b) Integration method

In principle, the phase velocity dispersion curve can be derived by integrating the group
velocity curve. The latter can be experimentally obtained from the time delay
measurement. This requires sufficient group velocity data points measured at different
frequencies. Although the principle seems obvious, the detailed procedure is not trivial. It
is worth giving a brief derivation here.

By definition, we have

ve (@) = ﬁ,—k“l (3.2.1)

v, (@) = % (3.2.2)
or

ve (f) = 271:% (3.2.3)

vp(f) = %ti (3:2.4)

53



From (3), we have

- df
dk = 27 52 (F) (3.2.5)

Integrating (5) gives

= < [ TN + Ky (3.2.6)

where k, is an integration constant and

21TR

LU= 500

is the group time delay over the circumference at frequency f .
Substituting (6) in (4) yields

21f

i 3.2.7)
=] L + &

v (f) =

The group time delay 7,(f) can be experimentally measured, and the integration

constant

_ 2nfy,
C = v (o) K(fo) (3.2.8)

is to be determined, where K(f ) = [éj. T,(fhdf ]f—j

Thus, in order to obtain the phase velocity dispersion curve v,(f), we need

integratable T, ( f) data points, i.e. a smooth T, ( f) curve, as well as a known value of

v, at a frequency f, at which the value of UTS (Hdf Jf_f is also available.
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In this work, a sufficiently smooth experimental T,(f) curve over a wide

frequency range was obtained by employing the chirp IDT configuration. Integration

constant v,( fp) values were also experimentally measured at 2 MHz and 5.4 MHz,

respectively, by using the pseudo-standing wave method described in a) with a uniform

IDT transducer.

3.3 MEASUREMENT PROCEDURES

3.31 Signal generating and receiving systems

A Ritech Ram 10000 system was used at Concordia for delay time measurement, using
the integrated and contact transduction methods. Fig. 3.3.1 shows such a system and the
measurement arrangement. High power tone-burst signals, i.e., square-pulse modulated
envelopes at a specific frequency with a narrow bandwidth were generated and applied to
the transducer. With this technique the response of the transducer can be controlled by the
signal generator. By varying the output frequency of the tone-bursts within the bandwidth
of the transducer, acoustic signals at different specified frequencies can be obtained. This
method is very useful for directly measuring the time delay at a given frequency,
especially for broadband transducers.

A conventional pulser-receiver system was used at IMI, NRC for measurements
using the combined contact and laser probe methods. The system output a pulse which
was Gaussian-like and broadband. The response of the transducer depends on the
properties of the transducer. In this case, if the transducer is a broadband one, frequency

filters are needed to precisely determine the delays at specific frequencies. The advantage
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of the single pulse method is that, with a broadband transducer and with the help of
narrowband filters such as provided with LabVIEW, time delay data at different
frequencies over the bandwidth of the transducer can be obtained from one measurement.

This method is also useful to characterize the response of a transducer.

Digital
Oscilloscope
o

Trigger ] Out

e .. . RF|Signal Out
qullld 1n RAM-10000 High Power

Revr. ~ RF Out
H Input 2— i >— -0 1?

m Diplexer [

Fig. 3.5. Time delay measurement arrangement
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3.3.2 Data Acquisition
a) A digital oscilloscope was used at Concordia and the waveforms were averaged by the

oscilloscope to suppress the noise. The digitized data were acquired through a GPIB to a
PC with LabVIEW® programs.
b) At IMI an analog oscilloscope was used and the waveforms were sampled and acquired

real-time through a high-speed DAQ card to the computer with LabVIEW®. The

averaging was also performed real-time directly on the computer with LabVIEW®.

3.3.3 Data processing and analysis

The following data processing was carried out with LabVIEW® .

a) Frequency filtering

In order to filter out the undesirable signals and precisely determine the time delay values
at a given frequency, frequency filtering was performed with LabVIEW®s virtual filters

which could work at any frequency with any possible bandwidth.

Fig.3.6 shows an example of the measured waveforms before and after the

filtering. A clear and regular echo train was obtained after the processing.

b) Cross-correlation

Cross-correlation as described in 3.2 was carried on the received echo trains with a
LabVIEW® program. When a window for the first echo was defined with a pair of

cursors and a starting cursor was set for the 2nd echo, a window for the 2nd echo was
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automatically defined. The software output instantly the time delay value between the

selected echoes.

¢) Fast Fourier Transform (FFT)

The frequency response of the integrated tube devices was obtained by performing the

FFT on the waveforms measured in time domain, again, with LabVIEW®.

Fig. 3.6

i ||',u |

|| |,||'|,

n!"' i1

Waveforms measured on an empty stainless steel tube with a
thin-disk transducer. The upper one was directly acquired from

the oscilloscope and the lower one was filtered with LabVIEW® at
1 MHz with a bandwidth of 0.1 MHz.
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The main reason not to use a network analyzer to measure the frequency response
directly was that our devices made for the time delay measurement were of the one-port
configuration only. As discussed previously, interference would easily occur for
continuos circumferential waves. Secondly, the strong EM feedthrough was very difficult
to be eliminated with the structure used, which gave much higher signal level than the
acoustical signal.

The FFT was made on the second echo in the received echo trains, which was
totally uncoupled from the EM signals. To obtain a full spectrum, tone-bursts with the

widest passband available on the Ritech system were applied without a pre-filtering.
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CHAPTER 4. EXPERIMENTAL RESULTS AND DISCUSSION

4.1 DISPERSION CURVES IN EMPTY AND WATER-FILLED TUBES

4.1.1 Empty stainless steel tube
Dispersion curve measurements were carried out on a stainless steel tube with a wall
thickness of 0.254 mm and an outer diameter of 9.8 mm. This tube was coated with thin
PZT film, and with a combined chirp IDT pair on its outer surface, the same device
characterised in the previous chapter (Fig. 3.6 (b)). High power tone-bursts at different
frequencies were applied on the IDTs, with steps of 0.05 MHz. The frequency range was
between 0.8 MHz and 6.6 MHz, i.e. the frequency-thickness product f-d = 0.2
MHz - mm to 1.7 MHz - mm, which covered the most sensitive f-d range of the lowest
flexural modes. The signals measured at each frequency were carefully processed, and the
time interval was precisely determined using the cross-correlation method. Typical
received echo trains are presented in Fig. 4.1, all of which show a very good signal-to-
noise ratio. It is clearly seen that the time interval of the echo train varies systematically
with the frequency. At frequencies lower than 3 MHz, signals of a single mode were

obtained, which was identified as the A, mode. In the frequency region between 4 MHz

and 6 MHz, two modes were found in the echo trains, the second being identified as the

S, mode. The amplitude difference between the two modes was about 10 to 15 dB. The

A, mode was dominant over the whole accessible frequency range.
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Fig. 4.1 Received echo trains at different frequencies for an empty stainless

steel tube, measured with a chirp IDT.
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The results obtained with a uniform IDT on an identical stainless steel tube

showed some difference: at frequencies around 2Mhz, only the A, mode was generated,
while near 5.4 MHz, S, mode was uniquely observed. The first two peaks in Fig. 3.7 (a)

correspond to the two modes at their center frequencies, respectively. Around 4 MHz,
both modes were observed. At about 8.3 MHz, a very weak echo train was observed. The
group velocity values showed that this was the A, mode.

By re-plotting the theoretical dispersion curves with wavelength vs. frequency, as
shown in Fig. 4.2, we can have a clear picture as to how these three lowest Lamb-type
modes are generated (and detected) by the chirp IDT and/or the uniform IDT. As
described previously in Chap. 3.3.1, the wavelength A of the signals generated (and
detected) by an IDT has approximately the same value as the IDT finger spacing P, with a
certain bandwidth depending on the detailed IDT structure.

The constant finger spacing value of the uniform IDT intersects with the
wavelength curves of all the three modes, at three well separated frequencies with very
narrow frequency bands.

For the chirp IDT, the varied finger spacing range covers the three modes over
three frequency bands, each of which has wide overlaps with the others.

Fig. 4.3 shows the frequency characteristics of a uniform IDT and a combined
chirp IDT pair, respectively, made on two identical stainless steel tubes. The frequency

responses were obtained from the time domain measurement by performing the FFT with

LabVIEW®.
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Fig. 4.2 Relation between wavelength of the Lamb-type modes and the

finger period P of the IDTs on the stainless steel tube sample.

Three narrow band peaks corresponding to the first three Lamb-type modes were
found in the frequency respond of the uniform IDT. At the center frequency of each peak,
the uniform IDT period has an intersection with the wavelength curve of the

corresponding mode, as seen in Fig. 4. 2 .
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On the other hand, the broadband characteristic of the chirp IDT is very well
shown in Fig. 4.3 (b). The frequency bandwidth (BW) of the transducer is extremely
wide, with BW 4p) = 2.5 MHz, BW(jp ag) = 4.5 MHz, and BW(y 45y = 6 MHz,
respectively.

The three possible mode are coupled, but there is no doubt that the total
contribution is mainly from the Ay mode.

The group delay time for the Ag mode was easily derived from the well defined
interval in the echo trains as shown in Fig. 4.1.

Because they were much less effectively excited and were emerged by the
dominant Ao, in the whole accessible frequency range, the Sp mode was quite difficult to
be separated from the echo train and the A; mode was not seen at all with the chirp IDT.
With extremely careful processing, we eventually picked up the S, signals from the echo
trains.

The group velocity and phase velocity dispersion curves, both derived from the
delay time measurement, are shown in Figs. 4.3 and Fig. 4.4, respectively. They are
plotted together with the theoretical curves for comparison.

The experimental phase velocity curve was obtained by numerically integrating
the measured time delay data over the frequency. The integration constants for the Ay and
So curves were determined by applying the pseudo-standing wave method on an identical
tube with a uniform IDT at frequencies 1.98 MHz and 5.38 MHz , respectively.

Both the experimental V, and V, curves are in very good agreement with the

theoretical modelling for the empty tube. Data points measured with other methods on an

identical tube sample at several discrete frequencies are also included in the figure.
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The excellent agreement among the data obtained from all three different
approaches verifies that the measured dispersion is real, not just an artificial effect of the

“dispersive” chirp IDT itself.
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Fig. 4.4(a) Measured group velocity dispersion curves of the circumferential
waves for an empty stainless steel tube by different approaches,
with a comparison to the theoretical resulits.
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4.1.2 Water-filled stainless steel tube

When the same stainless steel tube was filled with water, signals were detectable between
0.8 MHz and 2.4 MHz, at which frequency range only the Ao mode was measured in the
empty tube. Representative echo trains and the measured time delay intervals to compare
these two cases are shown in Figs. 4.5 and Fig 4.6, respectively. It is obvious that the
time intervals in the water-filled tube are significantly larger, especially on the high
frequency side.

In general two mechanisms are possible for this large change in time delay:

(1) The waves are severely leaky. Unlike the water-loaded plate case, due to the curvature
the leaked waves may re-enter the tube wall under certain conditions, and be emitted
again, and may be received by the transducer after several reflections. In this case the
waves would travel mainly in water, which propagate in very much the same wave as the
“Whisper Gallery” modes.

(i1) The flexural motion in the tube is strongly modified when it is filled with water. The
observed signals are either from the modified Ag mode present in the tube only, or from
new circumferential modes associated with the flexural motion in a compound tube-water
system.

Consider first the leaky case. In order for the signals to be received by the
transducer, the path of the leaked and reflected waves should form nearly a closed loop,
assumed to be equilaterally polygonal. Since the sound velocity in water V,=V,=1.48
Km/s, and typically the measured time interval AT = 13.1 us, the total distance the waves
could have traveled in water is estimated to be 19.3 mm, which is approximately twice of

the tube diameter (2 x 9.8 = 19.6 mm). Thus only the path directly across the diameter of
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Fig. 4.5 Received time delay signals for an empty and water-filled

stainless steel tube at different frequencies.
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Fig 4.6 Comparison of the measured time delay intervals for an

empty and water-filled stainless steel tube.

the tube is possible. Any other polygonal paths (triangle, square, pentagon, etc.) defined
by the circle of R =4.9 mm would lead to a much longer delay time, and are therefore

excluded.

To evaluate this hypothesis, the following experiments were performed:
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(1) Insert co-axially an empty tube with an outer radius close to the inner radius of the
water-filled tube device, which would have profoundly modified, delayed or smeared out
any existing bulk wave in the water. No change in either the delay time or amplitude of
the echoes was observed.
(2)Touch the outer surface of the tube at arbitrary positions with a wet Q-tip. The signal
amplitude decreases significantly.
(3) Fill the tube with different water levels parallel to the tube axis. The time delay
increased systematically as the level increased, but the amplitude showed little change for
different levels.
(4) Perform the measurement using the combined contact and non-contact methods on an
identical stainless steel tube, with the laser probing point well off the opposite position of
the generating transducer. The measured time intervals were the same as obtained by the
IDT, although the signal-to-noise ratio was obviously poorer. The comparison of the
measured echo trains is given in Fig. 4.7. The paired echoes with the same time interval
in the echo train received by the laser probe also strongly support the notion that the
received signals were circumferential.

All of the above experimental evidences rule out the leaky wave assumption. We
thus conclude that in the water-filled stainless steel tube the received signals were from
the acoustic waves traveling in the tube wall around the circumference. The observed
large change in the time delay is not trivial, but reflects a significant change in the group

velocity of the circumferential waves.
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Having established that the observed signals are circumferential, we can now
derive the group velocity directly from the measured time intervals, and compare the
results with our theoretical curves for the water-filled tube. The comparison is made in
Fig. 4.8. In the water-filled case, no sufficiently clear resonance was observed with the
pseudo-standing wave method, and therefore the experimental phase velocity curve was
not available by the integration method without an experimental integration constant.

In Fig. 4.8, it is obvious that the measured V; curve, with nearly a constant value
about 2380 m/sec at frequencies around 1 MHz and 2 MHz, respectively, has no
similarity with that of the Ag curve, except that at the lowest frequency (~0.8 MHz) there
is an overlap. On the other hand, the data points are very close to the “plateau” formed
by the maximum V; of the W modes. Unfortunately, this is just a coincidence. The
possibility that we have observed the W modes are immediately excluded by noting that
any of the maximum V; of the W modes occurs at the cut-off frequency where the phase
velocity goes to infinity, and so does the wavelength. In our case only waves with finite
wavelengths close to the finger spacing of the IDT are excitable and detectable.
Furthermore, the W modes at their cut-off frequencies propagate in the water cross the
tube diameter, which we have just excluded by a series of experiments.

Our theoretical modeling is not sufficient to interpret the circumferential modes
observed.

Although there have been many theoretical studies and several experimental
reports on circumferential elastic waves in cylindrical shells immersed in a liquid, no
reported theoretical results can be used to interpret our observation, and so far no

reported experimental results are similar to ours.



It is commonly accepted in theory that flexural motions could exit (at least
mathematically) in the liquid-loaded cylindrical shells, with an A mode, which is
subsonic, in the low f « d (frequency-thickness product) region, and an A mode, which is
supersonic, in the mid f « d region. The A mode is also called the Scholte-Stonely mode,
which propagate only at the water-solid interface, and most of the acoustic energy is in
the liquid . The Aq mode propagate in the shell but is strongly leaky and practically could
not survive in the liquid-loaded cylindrical shells.

Talmant er al. [24-26] irradiated thin cylindrical shells immersed in water with
short acoustic pulses, and measured group velocities of waves circumnavigating the
cylinder. A “fast” wave was identified with Sy, and a “slow” wave with a Scholte
interface wave A. The Ay mode was not observed, the reason being given that radiation
damping is much stronger for this mode. A third weak circumferential mode with a
group velocity V= 2450 m/sec was observed but not identified. Izbicki et al. [27-29]
used a different geometry, where the transducer was placed on the inner wall of an empty
cylindrical shell, and the receiving transducer was placed in the liquid outside of the tube.
The results were compatible with those of Talment er al. for external excitation; Sp and A
modes were observed but no Ap mode was identified.

By the nature of the configuration in our work, where a chirp IDT is placed on the
outer surface of the water filled tube, we are only able to detect tube-borne waves such as
Ap or So modes, and not the Scholte-Stoneley waves at the solid-fluid interface inside the
tube.

Since in the frequency region f«d =1 only Ao mode was excited for the empty

tube with the given IDT, the observed waves in the water-filled tube should be related to
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the flexural vibration of the tube. Furthermore, it is intuitively obvious that the flexural
waves can be strongly influenced by the liquid filler, which would lead to a significant
change in the propagation velocity, while the Lamb-type symmetric Sy waves are not very
sensitive to the presence of a liquid filler.

Very recently, as this thesis was being finalized, Veksler et al. [55] and Maze
[56], in response to our short communication to JASA [54], presented to us their latest
theoretical results, in which a new family of modes are predicted in liquid filled
cylindrical shells.

Veksler et al found that, between each two non-zero order Whispering Gallery
modes, WG; and WGy, there exisits the [-th order of the so called “S-shaped
Whispering Gallery” mode, SWG;. Fig. 4.9 illustrates the phase velocity dispersion of
these modes in a liquid-shell-liquid configuration. The plot is schematic, and the original
curves provided in the private communication are not directly quoted here. It is seen that
the [-th non-zero order mode is confined by the WG, and WGy,; modes, with the SWy
confined by the A9 and WG;. On the low frequency side it approaches the WG; while at
the high frequency side it approaches WG, ,;, forming an S-shaped curve across the A (or
Ap) mode

According to Veksler et al., while the A (or Ag) waves and the WG waves exist in
two subsystems - the shell and the liquid filler, respectively, the SWG waves belong to
the compound liquid-filled tube system. The flexural motion of the shell is realized in the
form of the SWG waves.

Maze performed a particular computation for a water-filled stainless steel tube

similar to our experimental sample, using material parameters slightly different from
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ours. He also obtained modes corresponding to the SWG family, which he named WT
modes. The results are schematically plotted in Fig. 4.10 with our experimental V; data,
the original curves provided in the private communication not being directly quoted. For
comparison all the units and scales in Maze’s curves have been converted. We observe
that the group velocity of the WT; (or SWGq by Veksler) mode has a maximum near 1
MHz and that of the WT, (or SWG;) mode has a maximum near 2 MHz. These two
maximums, valued about 2380 m/s, coincide with the two “plateaus” in our experiment
curve. By examining Maze’s V,, curves in Fig. 4.10 (a), we see that the WT; mode is very
close to the Ag mode at low frequency (f < 1 MHz) and the WT, mode has an intersection
with the Ao mode near 2 MHz, around which the two curves are also very close. That
means that in the frequency regions around the two peaks in the group velocity of WT;
and WT; modes, the two WT modes have a strong interaction with the Ag mode.

If we ignore the difference in values and the detailed dispersion trends, our
experiment observation was so far best interpreted theoretically by the WT (or SWG)
modes.

Both Veksler er al and Maze made their computations base on investigating the
scattering of an incident plane wave by a liquid-filled cylindrical shell, using the
resonance scattering theory. The question followed here is whether the WT (or SWG)
modes are generatable and detectable with our experiment configuration. A positive
answer can be given with the following argument:

The IDT may initially generate the Ag waves in the tube, which later become the
WT waves due to the strong interaction between the Ay and the WT; and WT, at

particular frequencies. Once being steadily formed, the WT waves propagate in the
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78



compound water-tube system, and thus may be easily detected repeatedly by the IDT on
the tube surface. This could occur only in the frequency region where the A mode and
the WT modes had a strong interaction. Around 1.5 MHz, the Ay mode is well separated
from the WT, and WT, modes, but it strongly interacts with the W; mode. If the system

is more in favour of the W mode than the Ap mode, and the acoustic energy is then
concentrated in the water column by the nature of the Whispering Gallery modes, the
signals could hardly be detected by the IDT on the outer surface of the tube. That may
explain the loss of signals in this frequency region. The same reason may apply to the
frequency range near 2.4 MHz where the Ap mode has a strong interaction with the W,
mode. At higher frequencies the Ap mode has no interaction with the others but it is
highly attenuated and cannot survive in the shell.

The reason we did not detect the signals at frequencies below 0.8 MHz is simply
that the wavelengths of both the A and the WT,; modes are beyond the upper limit of our
IDT finger spacing, even though these two modes have the strongest interaction in this
frequency region, and they are basically the same at even lower frequencies.

In addition to the difference in values, the main discrepancy is that our
experimental curve is more plateau-like than curved peak-like. These discrepancies may

be partly due to experimental uncertainty and partly to the parameters used.
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42. MODE CONVERSION BETWEEN CIRCUMFERENTIAL AND
COMPRESSIONAL WAVES.

In the last section we have unambiguously excluded the possibility that the signals

received involve strong leakage of the A, mode into the water, propagation as a bulk
wave in water, and re-conversion to the A, mode before the pulse arrived at the

transducer. We did, however, observe such phenomenon in a water-filled aluminum shell.

The measurement was made on an aluminum shell with an inner diameter of 91
mm and a thickness of 0.8 mm, using the contact method described in Chapter 3. Tone-
bursts at 1 MHz were applied to a piezoelectric transducer of the same nominal
frequency. Clear echo trains were obtained both when the shell was empty and when it
was fully filled with water. In the empty shell, the echo interval was 93.6 us,
corresponding to a group velocity of 3,081 m/s, which clearly identifies the mode as A,
(see Fig. 4.11). A delay time of 153.2 us was found in the water-loaded shell, which is
65% longer than the empty case. Had the propagation been within the shell, the group
velocity of the lowest flexural circumferential wave due to the water-loading would have
been 1,882 m/sec, which is a huge change from the empty case. On the other hand, if we
consider the leakage case which involves mainly bulk waves propagating in the water, the
most possible closed path would approximately be an equilateral triangle. This was
confirmed by the “blocking” experiment similar to that for the water-filled stainless steel
tube. When a cylinder of small diameter was inserted co-axially to the water-loaded
chamber, no modification was found in the echo train. When a cylinder of larger diameter
was inserted, the echo train was strongly modified. When the diameter of the blocking

cylinder was large enough (Fig. 4.12), the echo train was totally killed.
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If we assmuume that the acoustic energy in the vibration generated by the transducer
was totally radiated in the water and a pure reflection occurred as the radiated waves hit
the shell wall, tkhe most likely closed path for the transducer to receive equal-intervaled
echoes is an equailateral triangle in the water, such as that in Fig. 4.12. The total time for
the compressional waves in water to complete this path is 160.1 us, given that the inner
diameter of the shell was 91 mm. This is quite a close estimation, but it is still

significantly longer than the measured 153.2 ps.
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Fig. 4.11 Tke measured V4 at 1 MHz, and the theoretical V, and V4
curves for an empty aluminium shell with an inner
di.ameter of 98 mm and a thickness of 0.8 mm.
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Transducer

Blocking tube

Fig. 4.12  lllustration of blocking the compressional
waves in a water-filled shell.

Transducer

Fig. 4.13 Illlustration of mode conversion between the Ao wave
in the shell and the compressional wave in the water.
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A modified picture, such as that in Fig. 4.13, suggests that instead of having
totally traveled in water, the waves could have propagated partly in the shell and partly in
the water. The path consists of three equal-lengthed straight lines in water and three
equal-lengthed arcs along the shell circumference. In this model we assume that initially
the circumferential A, mode was generated, but strongly leaked into the water with an
angle 6. The A, waves could then travel in the shell circumference effectively only for a
limited distance, such as an arc in Fig. 4.13, before most of the energy was emitted into
the water. The resulting compressional waves in the water re-converted into the A, mode
when they hit the inner surface of the shell. Again, The A, mode survived only shortly in
the second arc of the same effective length and then emitted back into the water as
compressional waves. After another repetition of this procedure the waves finally
returned to the starting point. So the total time needed to finish this travel is

T=T+7T, =S5/v}® +1/cy 4.2.1)
where § = R(2m — 60) is the total length of the three arcs in the shell and
Il = 6R - sin 0 is the sum of the three straight lines in the water as shown in Fig. 4.13,

ve® and cy are the group velocity of the A, mode in the shell and that of the

compressional waves in water, respectively. Before we examine whether this assumption

is reasonable and find the values of v:‘) in this water-loaded aluminum shell and the

emission angle Bof the leaky waves, let us see some very interesting experimental resuits.
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We placed the same aluminum shell horizontally and filled it with water to
different levels, as we did with the stainless steel tube for mode identification. Unlike the
previous case, where regular echoes were obtained for all water levels, here clear echo
trains with equal intervals were observed only at levels near 15 mm and 62 mm,
corresponding to ~ 16.7 % and ~ 68.8% of the chamber height, respectively, in addition
to the empty (0%) and full (100%) cases. As the water increased or decreased from the
four levels mentioned above, the echo trains faded away rapidly. In regions far from these
levels, for example 50% of the chamber height, either no significant echoes were
observed or they were randomly distributed. Again, in all the partially filled cases the
echo trains were either strongly modified or smeared out when blocking tubes were
inserted in the water.

We also noticed that there existed a very weak echo in the received signals at
around 153~155 ps from the initial triggering time, which is very close to the value of
the echo interval in the empty case. This echo, sometimes just above the noise level, was
observed for most water levels that were far from being full. This single weak echo and
its time location suggests that the A, mode in the water-loaded aluminum shell, with a
group velocity about the same as in the empty shell, was so strongly attenuated that only
the first echo could be weakly detected. It was difficult to precisely cross-correlate this
very weak echo with the initial signal, the latter being always coupled strongly with the
EM signals. But it is safe to say that the error should not exceed 2 us by just taking the
time reading of the echo at its maximum without a careful cross-correlation. This result is

in good agreement with the theoretical calculation that the V, and V, of the A, mode (if

it survives) have very little difference between the empty and water-filled tube.
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Fig. 4.14 Received echo trains in a horizontally placed aluminum
cylindrical shell filled with water to different levels.



Experimental V, values were not available in this case.
Since the measured V, = 3,081 m/sec of the empty aluminum shell is almost the same as

the theoretical value, which is 3078 m/sec, in the following analysis we use the calculated

phase velocity value, V,, which is 2,190 m/sec. Furthermore, since the difference in 'V,
of the A, mode between the empty and water-filled shell is so small, in our estimate we

use a constant Vp for both cases.

It is well known that when the incidence angle of a plane wave beam upon a solid
plate satisfies the critical condition
cos(8)=cy, / Vg, “4.2.2)
the transmitted wave is totally converted into a Rayleigh wave beam on the surface of the
solid plate. In Eq. (4.2.2), ¢, is the compression wave velocity in water, and V, the
Rayleigh wave velocity on the solid plate, respectively. Such a mode conversion
phenomenon exists in other acoustical modes as well, for example, the Ay mode in an

aluminum plate immersed in water [S7]. In this case the Rayleigh velocity V; in
Eq.(4.2.2) is replaced with the phase velocity of the Ay mode, VpAo , in the solid plate.

For simplicity, we use the mode conversion picture described in [57] to interpret
our experimental results in our case, for a thin-walled cylindrical aluminum shell filled
with water. Here we use the quasi-plane wave approximation and acoustical ray method.
We consider each ray radiated or leaked from a point on the shell as a plane wave beam
with limited width, and ignore the slight variation within the beam width due to the
curvature of the shell. Furthermore, the wave beams are represented by acoustic rays.

Initially, the circumferential Ag mode is excited efficiently by the transducer on the outer
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surface of the shell. The Ap waves propagate along the circumference, but can survive
only for a limited distance in the shell due to strong leakage into the water. The Aq mode

wavevector, k,,, is in the tangential direction along the circumference. The angle
between k ,, and the wavevector of the compression wave, k,, , is given by

cos(@) =cy IV}, 4.2.3)
where Vp‘“’ is the phase velocity of the Ag mode for the water-filled shell. The "efficient

distance” of the Ao mode on the circumference, say within a loss in amplitude of -10 dB
for example, depends on the emission angle and the mode-conversion coefficient, which
is determined by the acoustic impedance of the shell material and of the water. According
to [57], this distance is about 15 wavelengths for a plane aluminum plate in water (but
how much loss in dB at 15 wavelengths is not mentioned). This distance is represented by
arc AA' in Fig. 4.15. Rays radiating from arc AA’, bounded by the rays in its vicinity,
form an “effective” beam. When this beam arrives at the inner surface of the shell, it re-
converts into Ap mode in the shell because the wavevectors satisfy Eq.(4.2.2). The latter
will start to emit into the water again.

For a fully filled shell, only rays following the paths in the hatched areas in Fig.
4.15 can be detected repeatedly and regularly. Note that all these paths have the same
acoustical length in total, and thus rays following these paths all arrive at the transducer
at the same time. So the detected echoes are the sum of these rays (plus their counterparts
in the opposite direction, which fall in exactly the same hatched areas because of
symmetry). These rays can be represented by an “effective beam” such as the one

following the path
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Transducer

Fig.4.15 Possible acoustical baths for detectable signals
in a fully filled shell.

Transducer Transducer

Fig. 4.16 Examples of acoustical baths for undetectable
signalsin afully filled shell
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AA'-A'B-BB'-B'C-CC'-C'A in Fig. 4.15. Compared to an acoustic lens, the arcs represent
either an aperture or a focusing width.
For the 16.7% and 68.9% filled (in level) cases, the possible paths are illustrated

in Fig. 4.17.

Transducer Transducer

Transducer

Detectable level —Y9

Fig. 4.17 lllustration of detectable water levels for a partially filled shell.
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The periods for the wave beams to finish a complete path are calculated for the
three typical cases:

a) Full;

b) 16.7% filled (in level);

c) 68.8% filled (in level).

Substituting into Eq. (4.2.3) V;°=2,190 m/sec ar IMHz (fd=0.8 mm-MHz) and the
compressive wave velocity in water ¢y, =1490 m/sec, the critical angle is estimated to be

1490

COS(e) =Cy /VPAO = m—

0=47.12°.
The wavelength at f= 1 MHz is about 2.2 mm. Given the critical angle, the length of one
of the arcs in Fig. 13 is about 22 mm, or about 10 wavelengths long for the A, wave in
the shell, which is a very reasonable "efficient distance” compared to that in [57].
The time delays for the three different levels calculated using the estimated O
value are listed in Table 4.1 with the measured data. They are in fairly good agreement.
Fig. 4.18 also illustrates why for other level regions no regular echo trains could be

observed.
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Table 4.1 Measured and calculated delay time intervals in an aluminum
cylindrical shell with an inner diameter of 91 mm and walli
thickness of 0.8 mm, filled with different water levels.

Filled Level | Measured time interval Calculated time interval
[us] [us]
Full 1533 153.2
68.8% 135.1 1334
16.7% 113.5 111.8
Empty 93.6 93.7 *
* From the theoretical V,

Transducer Transducer

Undetectable
level

Undetectable 8
level region

Fig. 4.18 Examples of undetectable water levels for a partially filled shell.
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4.3 EMPTY AND WATER-FILLED BRASS TUBES

In addition to the stainless steel and aluminium tubes, experiments were also carried on
brass tubes of different sizes. The combined contact and non-contact method shown in
Fig. 3.6 was used for the measurement. Transducers of 1 MHz, 2 MHz, 5 MHz and 10
MHz were used. Clear and regular echo trains were obtained from both the thin-disk
transducer and the laser probe in the empty brass tubes of all sizes at 1 MHz and 2 MHz.
No appreciable signals were observed when 5 MHz and higher frequency transducers
were used. Fig. 4. 19 shows the received signals at the same frequency for two empty
brass tubes with the same thickness but different diameters. Note that the paired echoes
received by the laser probe represent the signals from the two opposite directions around
the tube circumference, due to the unequal distances between the transducer and the laser
probing point, as shown in Fig. 3.4. At the same frequencies, no regular echoes were ever
received in any of these brass tubes when they were filled with water.

This experiment was in fact performed before the two cases in Chap. 4.1 and 4.2.
Although no interesting phenomenon was observed in these water-filled brass tubes, the
measurement along with those on the stainless steel and aluminum tubes verified
experimentally that the existence of circumferential wave propagation in a water-loaded
tube depends not only on the frequency and the physical dimensions, but also on the
materials of the tubes. This part was indeed also a very good exercise in transducer
alignment and signal processing, which made the consequent experiments in the other

two cases more smooth and productive.
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Fig. 4.19

Thin disk

El

s

@

k-]

2

-

£

<<

0] 20 40 60 80
Time (uS)
Thin disk

3
&
K 223 uS [

S 7 I |
F=

a

£ Laser
<

o 20 40 60 80
Time (uS)

Received time delay signals measured with a thin-disk
transducer and a laser probe in brass tubes with wall
thickness of 0.254 mm and diameters of 11. 89 mm (upper) and
15. 96 mm (lower) at 2.25 MHz.

93



CHAPTER 5. CONCLUSIONS

In this work we have studied theoretically and experimentally ultrasonic waves
propagating in the circumference of empty and water-filled tubes.

In the theoretical modelling, we solved the wave equations separately for the two
independent circumferential wave families. Dispersion relations of both the SH-type and
Lamb-type circumferential modes were obtained.

From the asymptotic solutions, we show that the effect of the curvature on the
SH-type waves in an empty tube is of second order, compared to the SH waves in a plate.
For a tube with h/R << 1, the dispersion relations can take exactly the same form as its

SH plate counterpart, by simply replacing the integer number m in all the expressions for

the m-th order of the SH mode with m'= m(1 + §,,), where 8, = 3. ( h )-. The
2 \2mmR

exact (numeric) solutions show that the difference between the dispersion curves of the
SH circumferential modes and their plate counterparts are minimal. We also found that,
unlike its plate counterpart SHy, the lowest SH circumferential mode is not a constant and
has a cut-off frequency.

We have also theoretically verified that the dispersion behaviour of the Lamb-
type circumferential modes is very similar to that of their plate counterparts, with only
slight difference in value at a given frequency. An exception is the asymptotic behaviour
of the lowest antisymmetrical mode at zero frequency, which is significantly different

from that of its plate counterpart, So. While the phase velocity of the S, plate mode
remains constant as the frequency goes to zero, that of the S, circumferential mode goes

to infinity. In other words, the S, circumferential mode has a “cut-off” frequency near
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zero, while the S, plate mode has no cut-off frequency. As a result of this exception, the
S, circumferential mode has a phase velocity equal to that of the bulk longitudinal wave

at a frequency near zero, at which frequency the radial component of the displacement

vector vanishes on the free surfaces of the tube. Such property makes the S,

circumferential mode similar to all other antisymmetric circumferential modes and all
non-zero order antisymmetric plate modes.

Experimentally, we have developed a novel technology which has superior
advantages over many existing methods for experimental determination of the dispersion
of circumferential waves. With a chirp interdigital transducers (IDT) as a broadband
transmitter and receiver integrated on a stainless steel tube coated with piezoelectric film,
we successfully generated and detected Lamb-type circumferential waves in the tube with
very good signal-to-noise ratio over a significantly wide frequency range, which covered
the most sensitive region of the lowest flexural mode.

The experimental group velocity and phase velocity were in excellent agreement
with the theoretical values for the empty tube. In a water-filled stainless steel tube we
have unambiguously observed propagation of tube-bomm rather than water-bom
circumferential waves. The group velocity spectrum is significantly different from that
for an empty tube. Although our own theoretical modelling is not sufficient to interpret
the observed mode(s), all experimental evidence strongly suggests that the waves are
related to the flexural motion in the water-loaded tube system. The phenomenon may be
best interpreted as a result of the strong interaction between the lowest flexural
circumferential tube mode, Ao, and the first two S-shaped Whispering Gallery modes, the

latter being newly predicted with the resonant scattering theory by Veksler et al. and
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Maze [55, 56]. In other words, with our unique configuration we may have
experimentally observed for the first time the presence of the new circumferential modes
in a water-filled stainless steel tube, which reflect the flexural motion of the compound
tube-water system. Experimental observation of these modes has not hitherto been
reported and is difficult if not impossible in any other documented configurations. The
discrepancy between the experiment and the theory in value and in detailed dispersion
trends may be due to experimental uncertainty and the parameters used. A conclusive
identification of these new modes in the given configuration will need more careful
experiments and precise computations.

In a water-filled aluminum shell we have also observed mode conversions
between the lowest flexural mode in the shell and the compressional waves in the water.
A partially filled shell with a horizontal central axis was fully investigated. The
experimental results were satisfactorily described with the quasi-plane wave
approximation and acoustical ray method.

In both the typical experiments for the water-filled stainless steel tube and the
water-filled aluminium shell, the measured delay time intervals show a very large
changes from the empty cases. Although different mechanisms are responsible for the
large changes, the phenomenon in both cases show good application potentials in liquid

level sensing.
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