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ABSTRACT

The Effect of Students’ Physics Background on the Understanding of Linear Algebra

Richard Masters

In the hope of reducing the level of abstraction with the concepts of vectors, linear
combinations and spanning, transformations and linear transformations in the teaching of
Linear Algebra, a geometric approach was taken. Activities in the aforementioned areas
were designed in a dynamic computer environment Cabri Geometry II that allowed
students to interact with vectors in a two-dimensional coordinate free vector space. Some
of these activities embodied the notion of vectors in physical situations such as systems
of pulleys and weights being suspended from a string. Unfortunately these
representations proved problematic for a group of students having a working knowledge
of elementary physics. Therefore, the aim of this thesis is to understand the ways that
experience with physics knowledge interferes with the acquisition of knowledge in
Linear Algebra. It considered two groups of students, those with physics experience and
those without such experience. The topics that gave difficulty to both groups of students
were attributed to the complex nature of Linear Algebra and those that were different

were considered to be specific to a background in physics.
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Introduction



The aim of this thesis is to understand the ways that experience with physics knowledge
affects the acquisition of skills and knowledge in linear algebra. Linear algebra has many
complex abstract mathematical concepts (i.e. vectors, vector spaces, notion of solution,
and spanning sets) that prove difficult to teach to students effectively. For this reason, it
is important to understand the reasons for this difficulty, and the ways in which it can be
circumvented. Thus, the thesis has important implications for the ways that linear
algebra is taught to students, particularly students with relevant previous academic

experiences.

In Chapter I, the reasons why students have problems with learning linear algebra will be
discussed generally. As well, the specific ways that physics knowledge may potentially
interfere with this acquisition will be examined. Under the best of conditions, it is
frequently very difficult for students to obtain a generalized knowledge and skill with the
use of linear algebra. The problems these students face appear to be, at least in part,
inherent to the problem of learning this difficult set of concepts. There are also, however,
ways in which previous experiences of the students may interfere with the acquisition of
linear algebra knowledge and skills. In particular, past experience with physics may
predispose students to specific problems grasping linear algebra concepts. This is
primarily because students have acquired problem-solving skills that are useful in physics
but frequently misleading or counterproductive when applied in the setting of linear

algebra.



In Chapter II, the methods and results of the study are described. The study is described
in detail; two groups of students attempting to learn linear algebra are compared. One
group of students had previous experience with the concepts of vectors from physics. The
other group had no such experience. The results of this study are also reported in Chapter
II. Both sets of students exhibited a number of problems acquiring the linear algebra
knowledge in question, suggesting that some problems in learning linear algebra are
inherent to the process. There were, however, specific problems found only in the group
of students with previous physics experience, suggesting that previous experience with

physics can have a detrimental effect on learning, certain concepts in linear algebra.

Chapter III proposes some implications of this research for the teaching of linear algebra.



Chapter I

Difficulty Students Encounter in Learning
Linear Algebra and the Concept of Vector



Introduction

Because of its numerous applications, the study of Linear Algebra has become a
vital subject for undergraduate students majoring in social/pure sciences. Linear Algebra
offers a powerful computational tool; matrix theory and vector space concept allow many
complex problems to be modeled and discussed in linear terms. For example, static
mechanics concerned with the equilibrium of rigid bodies use vectors as models of forces
to determine some net force that may act on a particular body, and forest management
problems use matrix model to find optimal solutions of a periodic harvest yield. As well,
Linear Algebra is often studied as an abstract mathematical theory for its own value.

The aim of this chapter is to report some of the difficulty students encounter when
trying to learn Linear Algebra, the concept of vectors as they relate to physics, and
obstacles within the learning process that appear to be unavoidable. This chapter is
separated into three section: (1) Students’ difficulty in three areas of Linear Algebra, (2)
the concept of vectors in physics, and (3) obstacles that impede the learning of new
concepts.

The first section examines three areas that are essential to the learning of linear
algebra: symbolic representations, generalization of linear systems, and the notion of
vector space, and then reports difficulties experienced by some students when learning to
become proficient in these areas.

The second section reports some of the beliefs that students develop about force
and motion prior to formal instruction, and the difficulties that they encounter when

working with vectors and their properties.



The third section takes a psychologicai approach to learning in general. It reviews
four iecarning stages: acquisition, proficiency, maintenance, generalization, and also looks
at obstacles such as affective, cognitive and didactic that some students encounter.

1.1 Students’ Difficulty in Three Areas of Linear Algebra

The main topics covered in elementary linear algebra courses are systems of
linear equations, matrices, determinants and vector spaces. Students normally exhibit
very few difficulties in performing matrix operations on matrices with numerical entries,
computing the numerical value of a determinant, or using the technique of Gaussian
elimination to solve a system of linear equations. Difficulties arise, however, when
students are asked to interpret the outcome of the Gaussian elimination process on a
system of linear equations and generalize this experience to higher dimensions and an
arbitrary system. Even greater difficulties are encountered in understanding the nature of
vector spaces. For these reasons some college students consider linear algebra to be the
most abstract and rigorous math course they take in their college careers.

1.1.1 Difficulties with different symbolic representations

Students enrolled in an elementary linear algebra course are often baffled by the
many different modes of representations available in this domain (Dias & Artigue, 1995)
and the simultaneous geometrical and algebraic settings in which the course is taught
(Hillel, 1997). For example, a vector can be represented in several ways: by a directed
line segment (see Figure 1.1a), as an ordered n-tuple (b), as n x 1 matrix (c), or as a linear

combination of other vectors (d).
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Figure 1.1. Different representations of vectors

Thus, if the vector is considered a mathematical object, it can be thought of geometrically
as a directed line segment or a point in a coordinate system as well as analytically as an
n-tuple. Thus, switching between the geometrical and algebraic domains is an extensive
part of linear algebra. These domains are not equivalent: each can lead to a different
formulation of a problem and different results, techniques, and the creation of different
mathematical objects. Knowing when to switch from one domain to another and
recognizing the similarities that exist between the domains is a major source of difficulty
for students.

In considering the most popular equation in linear algebra, Ax = b, where A is an
mxn matrix some students also experience difficulties recalling that it, too, can be
represented in three different but equivalent ways (Lay, 1994). For example this equation
can be viewed as a system of linear equations (see Figure 1.2a), a linear combination of
vectors (2b), and as a matrix equation (2c). These equivalent representations of the
equation Ax =b allow us to conveniently change a given problem into a more suitable
from. Students are often quite good in writing the matrix representation of a linear

system and writing a system of linear equations from a linear combination of vectors.



However, they seem to experience difficulties in moving between the matrix equation

and the vector equation.

(a) System of linear equations
anx) +apxn+asxs=b;
azx) +anxX; tapnxz =b

(0) Vector equation
ay; ay az| | by
p:<] [321] + X3 [:an:] + X3 [azzJ = [bz:l
(¢) Matrix equation
an ap ars :1 _|br
231 222 a3 2T |y
| X3

Figure 1.2. Equivalent representations of the equation
Ax=b

In the course of studying linear equations, students are acquainted with matrix
representations using the augmented and/or coefficient matrix. These matrices are
represented symbolically as [A | b] and [A] respectively. It has been my experience that
students have difficulties remembering the difference between these two matrices, which
leads to erroneous solutions and mistaken interpretations of the row reduction process.

Some students pay little attention to notation. For example, they would see the
symbol |A| as synonymous with [A] using the former in two meanings, as determinant
and coefficient matrix, because it is easier to write. These students are under the
impression that the determinant symbol is a shorthand notation of writing the coefficient
matrix. This notational confusion leads to problems when the students are asked to

calculate the determinant of a matrix, and the exercise is formulated as follows:



Calculate the determinant
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First year students of linear algebra sometimes respond to the problem by first reducing
the determinant to row-echelon form by using elementary row operations. This reduces
the amount of computations needed to calculate the determinant, since it introduces zeros
in its equivalent system. The students then seem to forget that they are calculating the
value of a determinant and start solving the following homogenous system of linear

equations, by row reduction

row reduction

-2 81 40
325 1]0
1070j|0
4 -6 7-3|0

A common problem at all levels of mathematics education is that some students only pay
attention to numbers and procedures and do not read the text of the problem carefully.

1.1.2 Difficulties with generalizing from small linear systems to solving any linear system

Another difficulty students encounter in learning linear algebra is that they are
expected to generalize from solving systems of linear equations in R? and R? to arbitrary
systems without extensive preparation (Harel, 1989). For example, the solution set of an

arbitrary 2 x 2 system of linear equations:

ajx +appy = b; (where a;; and a,, are not both zero)
az1X + any = by (where ay; and ay; are not both zero)



can be described geometrically. The graphs of these equations are lines, say L; and L,
respectively. A solution that satisfies both equations simultaneously corresponds to
points of intersection of L; and L,. Thus, there are three possible configurations: the
lines L; and L, are parallel and distinct thus resulting in no intersection point and no
solution (see Figure 1.3a). The two lines intersect at exactly one common point thus
yielding a unique solution (see Figure 1.3b). The lines L; and L, coincide, thus yielding
many points of intersection with an infinite number of solutions (see Figure 1.3c)

(Anton & Rorres, 1991).

// | N\
L1// : //L/L2 X S

L2

@ ®) ©
No soultion One solution. Infinitely many soluﬁonsi

Figure 1.3. Geometrical interpretation of the solution set of a 2 x 2 system of
linear equations

Similarly, the solution set of an arbitrary 3 x 3 system of linear equations
ajx +apy +ai;3z =b; (where a;y, a;2 and a;3 are not all zero)
az1Xx + anpy +ax3z = by (where ay;, a5; and a3 are not all zero)
as1x +asy +assz = bz (where a3y, a3, and a3; are not all zero)
can be interpreted as common points of intersection of planes.
This visualization is no longer available in higher dimensions. However, it is still
possible to transfer the idea of a solution set to higher dimensions. This relies on the

ability to switch from the geometrical domain and its properties to the analytical or

numerical domain where the properties of points and vectors can be easily interpreted.
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But, students feel that they should be able to visualize the higher dimensions, and have
difficulties accepting the abstraction.

Another problem encountered by some students in linear algebra is the question of
how to translate a given problem and situation into a general setting (Harel, 1989). For
example, the statements in Figure 1.4 are all equivalent for any square invertible n x n

matrix A.

1) A isinvertible

2) AX =0 has only the trivial solution

3) A isrowequivalent to Inxn

4) AX =B is consistent for every n x 1 matrix B
5) det(A)=0

Figure 1.4. Equivalent statements for an invertible matrix

Suppose that students are given a system of linear equations and told that the coefficient
matrix is invertible and asked to make conclusions about the solution set. Some students
would prefer to solve the system using Gauss-Jordan elimination rather than using the
equivalence of the statements in Figure 4 to conclude that the system will always have a
unique solution. This sort of procedural thinking can inhibit students’ ability to make
generalizations of results to different domains.

The action of procedural thinking in solving a system of linear equations can
leave students void of any mathematical meaning within the procedure and relationships
that exist between the initial and the final systems (Harel, 1989). An example of this
would be when students use the technique of Gauss-Jordan elimination to row reduce a
complex system to an easier system and not realize the equivalence of the two systems.

If we consider the following concrete system of equations,

11



_4x+y=16
-2x+y=4

and its equivalent system,

We see that they both define the same set, namely {(-6,-8)}, and can be interpreted

graphically as intersecting lines (see Figure 1.5)

Figure 1.5. Graphical representation of an
equivalent system

12



1.1.3 Difficulties with vector spaces

Vector spaces is the topic that perhaps gives most students taking a course in
elementary linear algebra the greatest difficulty. This particular section relies on students
being able to understand that the term “vector” can be applied to a variety of objects that
are different from the familiar notions of directed segments, force, acceleration,
momentum, and velocity that have both magnitude and direction. The term “vector” can
also be used to describe mathematical objects such as matrices, polynomials, lists of
numbers (vectors in R") and real-valued functions (Johnson, Riess and Arnold, 1993).

In every set of these “vectors” two operations can be defined, addition and scalar
multiplication, satisfying certain basic properties. Linear algebra generalizes this
structure to form the abstract system called a vector space. Now, for the first time,
students are introduced to an abstract mathematical concept, which refers to systems that
differ from the real number system with which they are familiar. In the aim of
facilitating the understanding of vector spaces, instructors provide models that are
supposed to be more “concrete” than the abstract concept. But, since these models are
formulated in unfamiliar algebraic or geometrical terms, they add to rather than take
away the difficulty (Harel, 1989).

But can some of the difficulties that arise from the abstractions in linear algebra
be attributed to problems of conceptually understanding the real number system that
students are expected to be familiar with? For example, in order to get a good
understanding of the algebraic system called a vector space, it may be necessary for
students to have a good understanding of the real numbers as a system and a

mathematical structure. This includes knowing the different subsets that exist within the

13



real number system and how the arithmetic operations of addition and multiplication,
when applied to the objects within the set, transform the set into a particular
mathematical structure. For example, if we consider the set of natural numbers,
N={1,2,3, ...}, and let n and m be any two numbers in N, then their sum n + m and
product n'm are also in N. It is important, at this point, that students realize that the
operations of division and subtraction are not permissible since they could produce
elements that are not contained in the set N. An example of this would be to divide 5 by
2 (5/2 =2.5) and to subtract 5 from 2 (2 - 5 = -3) which both yield results which are not
elements of the set N.

At this point some students could start to experience a conflict with the
mathematical structure of the natural numbers which is closed under addition and
multiplication. They could argue that the operation of division and subtraction should be
allowed for the set of natural numbers since 10/2, 27/3, 10 - 2, 27 - 3 produce 5, 9, 8 and
24, respectively, which are all elements of N. Even though the former examples
produced results that are contained in the set of natural numbers, the operations of
division and subtractions only work for special elements in the set of natural numbers,
thus not making the set closed under division and subtraction. The convention of
mathematics is to make general statements and reach general conclusions about any set of
elements (Dorier, 1995). This requires students to view the real numbers not only as
individual objects but also as a mathematical structure with closure properties.

Another number system that students are familiar with is the set of integers
Z2={{...,-2,-1,0,1,2,....}. Ifweletnand m to be any two elements in Z then their

sum n + m and n'm are also elements in Z. Now if we compare the elements of the set N

14



and Z, it is not difficult to see that the set Z contains some elements that are not in the set
N. These different elements of set Z can be obtained from the operation of subtracting
any two natural numbers, say n and m, where n - m <0 when m > n. This example could
provide students with a good concrete example of how a mathematical structure such as
the natural numbers can be used to build the integer, rational and eventually the real
number system by extending the range of operations under which a set is closed.
However, the operations of addition, subtraction, multiplication, and division are not
enough to build the real number system. Rather, in order to do this, the introduction of
the limit operation on sequences of rational numbers or the axiom of continuity are
necessary.

With students having gained a better understanding of numbers as mathematical
systems, closed under certain operations, they would now be ready to explore the special
mathematical system known as a vector space with fewer difficulties. First, however,
some students would have to overcome their false notion of what a vector space is. For
example, when the topic of vector spaces are introduced, some students immediately start
thinking in terms of astronomy. They associate the word “space” with the universe and
the objects that exist within it, such as galaxies, stars, planets and so on. Unfortunately
this problem gets compounded when vectors in n-dimensional space are discussed. Some
students try to imagine how objects may visually appear in the 4™ or 5™ dimension, and
others believe that the n™ dimension is the infinite dimension.

It appears that students at the college level have certain connotations of these
mathematical terms that are not necessarily compatible with the intended mathematical

meaning. Indeed, one can draw a parallel between our universe and the mathematical
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abstraction of a vector space. For example, the universe consists of galaxies, stars, and
planets, which can be considered as natural objects that are governed by the laws of
physics. In considering a mathematical vector space, it, too, consists of objects, but of a
mathematical nature. These objects are themselves governed by a set of axioms that must

be satisfied in order for them to be a mathematical vector space.

1.2 The vector concept in physics

Physics, unlike mathematics, (which is an abstract science) is a natural science,
which “examines the relationships of matter and energy” (Murphy & Smoot, 1977, p. 3).
Since physics is a natural science, it is quite normal for students that are taking an
elementary physics course for the first time to enter into the classroom with their own
conceptions and beliefs about the physical world around them. These conceptions and
beliefs are formed from their daily interactions within their environment. However, the
beliefs, which are developed by students about force and motion, significantly differ from
those that are intended by Newtonian mechanics during formal instruction (Aguirre &
Erickson, 1984). For example, when a ball is thrown at an angle, its motion is not
perceived by most students as two-dimensional motion, but, rather, as a one-dimensional

motion.
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1.2.1 Students’ difficulties with vector in physics

Physical quantities such as length, speed, time, temperature, mass, displacement,
velocity, acceleration, force, and momentum are the foundational concepts we use to
express the laws of physics. However, these physical quantities can be classified as

either scalar or vector quantities (see Figure 1.6).

— Length

— Speed

Scalar quantities | — Time

— Temperature
Physical quantities — Mass

—— Displacement
L Velocity

Vector quantites
L. Acceleration

. Force
__ Momentum

Figure 1.6. Classification of physical quantities as
scalar and vector quantities

In studying physics, students frequently work with both scalar and vector
quantities. A scalar quantity is described by its magnitude, which consists of a number
and a unit (Murphy & Smoot, 1977). If we consider the scalar quantities listed in
Figure 1.6, we see that they can also be written as, example, 35 m, 120 km/hr, 22 s,

100 °C, and 102 kg.

A vector quantity, on the other hand, is characterized by two features: its
magnitude (which consist of a number and a unit) and direction. For example, the
velocity of the wind is given to be blowing 45km/hr [E] ([E] = east), and a group of
hikers’ displacement is 5 km [S] ([S]= south) of their initial position.

The concept of a vector is an essential and fundamental part of physics as well as

mathematics. Physics uses vectors to represent forces that act on objects in Newtonian
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mechanics. It also uses vectors as a means to track and locate the position of a moving
particle. Therefore, students possessing an insufficient knowledge of vector quantities
may experience difficulties in two areas: being able to solve problems that require
vectorial reasoning, and understanding other related topics that encompass the vector
notion (Chee, 1988).

Many physics educators, such as Kodratgev and Aguirre, clearly describe
situations where it is evident that students experience difficulty with the notion of
vectors. For example, Knight (1995), conducted a study on “the vector knowledge of
beginning physics students”, which consisted of a sample of 286 university students from
engineering, architecture, science and mathematics. The goal of the study was to see if
these students “possess the minimal basic knowledge of vectors that will allow them to
proceed with a study, either qualitative or quantitative, of Newtonian mechanics.”
(Knight, 1995, p. 75). His results showed that approximately 35% of the sample would
be able to read a physics text and solve basic vector problems. These students, however,
would need some instruction on how to find vector directions. A reported 15% of the
sample possessed some basic knowledge of vector properties, but would most likely not
apply this knowledge to mathematics unless explicitly told. The remaining 50% of the
sample had no useful knowledge of vectors at all.

Because half of most students enter into a beginners physics course with
essentially no useful knowledge of vectors, a question that comes to mind is, what kind
of knowledge are they bringing into the classroom about how objects move, and how
does this inhibit them from understanding vectors? Champagne (1983), suggests that

students’ conceptualizations about how objects move are very resistant to change and
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seem to have traits which are similar to the Aristotelian view of motion which

significantly differs from the accepted Newtonian mechanics. As Dijksterhuis (1961)

wrote:
To this day every student of elementary physics has to struggle
with the same errors and misconceptions which then had to be
overcome, and on a reduced scale, in the teaching of this
branch of knowledge in schools, history repeats itself every
year. The reason is obvious: Aristotle merely formulated the
most commonplace experiences in the matter of motion as
universal scientific propositions, whereas classical mechanics,
with its principle of inertia and its proportionality of force and
acceleration, makes assertions which not only are never

confirmed by everyday experience, but whose direct
experimental verification is fundamentally impossible

(p.30).

This suggests that students’ every day experiences are not quantified through
Newtonian mechanics, thus leaving students with the impression that physics word
problems are fictional, puzzle-like tasks that are unrelated to the real world. When it
comes to solving problems that require the following kinematics equations,

V=v, tat
X - Xo = Vot + (1/2)at®
V2 = vo? + 2a(X - Xo)

students are content with just writing down the given information and matching the given
quantity with the equations without using any vectorial reasoning at all (Resnick &
Gelman, 1985; Champagne, 1983). For example, “4 car traveling at 44 m/sec is
uniformly decelerated to a speed of 22 m/s over an 11-sec period. What distance does it
travel during this time? (answer: 363 m)” (Murphy & Smoot, 1977, p. 38).

Another difficulty that students confront when working with vectors is the

question of how to use their properties when discussing problems that involve
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acceleration, force and velocity. As a result of this, some students often end up using
vector notation without assigning any physical meaning to vectors (Chee, 1988). This
problem is apparent when students are asked to find the acceleration of a block that is

being pulled up an inclined plane (see Figure 1.7).

Figure 1.7. Free body diagram of a block being pulled up an
inclined plane

In order to reduce the amount of arithmetic calculations needed to solve this
problem, it is useful to turn to vectorial reasoning and choose the x-axis along the incline
of the plane and the y-axis perpendicular to the inclined plane. This eliminates the need
for decomposing forces, which are parallel to the axis, into their components. This line
of reasoning is not intuitive and therefore difficult for some students, since their natural
instinct would be to draw the x and y axis in the standard horizontal/vertical position thus
undoubtedly increasing the difficulty of the problem.

In order to help students gain a better understanding of how the abstract
mathematical notion of a vector can be made tangible in a physical situation, many of the
contextual problems that involve vector addition and subtraction are performed
graphically (by parallelogram, triangular, and polygon method) as well as analytically.

For example, suppose a plane which is flying at 275 km/hr west is blown north at 75
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km/hr. The true velocity of the plane is 285 km/hr 15° [NW] ([INW]= north of west), see
Figure 1.8a. Now, if we consider the case where the same plane is travelling West (at the
same speed) but now, encounters a head wind at 75 km/hr east, then the true velocity of

the plane is 200 km/hr W (see Figure 1.8b).

275 kméhr W
285kmihr1S Nw 75 kmdhr E
7S kmehr N —_—
- 275 kmihrw 200 kmnihr W
@ ®)

Figure 1.8. Contextual problems showing graphical method of
adding vectors

These graphical methods, which are used to represent vectors, provide a useful
way for students to translate words into vectorial diagrams, which have both physical and
mathematical meaning, thus reducing the level of abstraction from the general theory to
the particular situation at hand (Kondratgev & Sperry, 1994).

However, if we consider the situation in Figure 1.8a: The majority of students
are able to determine that the resultant vector of 285km/hr 15° [NW] is going to be
somewhere in between the two contributing vector components with a magnitude that is
different from that of the vector components. But, as reported by Aguirre and Erickson
(1984), some students think that these two vector components (75 km/hr [N] and 275
km/hr [W]) are not independent. They feel that the velocity of the planes’ engine is

altered as a result of the interaction with the wind.
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1.3 Obstacles Within The Learning Process

The complexities within the learning process have forced psychologists to
develop many learning theories that try to account for the manner in which we learn.
These learning theories can be divided into the following psychological categories:
Developmental, Behavioral, and Cognitive. Developmental psychology (which includes
theories of Piaget, Vygotsky, etc.) focuses on the development of intelligence in early
childhood through adolescence, and operates on the premise that in order for an
individual to learn, they need to attain a certain level of cognitive capacity (i.e. thinking,
reasoning ability etc.). Behavioral psychology (which includes theories of Thorndike's
connectionism, Pavlov's classical conditioning, and Skinner's operant conditioning etc.)
focuses on observable behavior not specific to a particular age and considers aspects of
the “behavioral unit” which consists of three steps. First is the antecedent event (or
stimulus), followed by the target behavior (or the response), and finally the consequent
event (or reinforcement). The main goal of a pedagogy based on behavioral psychology
is to promote learning through association by means of a stimulus-response mechanism
(Bower & Hilgard, 1981). Cognitive psychology (which includes Gestalt theories and
Tolman's sign learning) focuses on non-observable mental mechanisms that are not
specific to a particular age. Its main feature is to model the storage and flow of
information within cognitive and memory structures to gain a better understanding of
how people construct knowledge by linking new information to prior knowledge.

Therefore, these learning theories all require that the learner be able to perceive
an initial piece of information and process it in a purposeful manner, regardless of

individual learning styles (i.e. reflective, impulsive, active, passive etc.). There are many
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obstacles that can disrupt an individual's cognitive processes (since individuals have
different experiences which may affect perception, memory and judgment) and hinder
learning in subjects such as mathematics and physics per se. These obstacles may result
from the beliefs individuals possess about the world around them, misconceptions about
mathematics and physics, and irrelevant or misleading prior knowledge.
1.3.1 A general cognitive approach to learning

The three main components of cognition are perception, memory, and judgment,
each of which plays an important role in the way one interprets, recalls, and makes
conclusions about information that is being processed. Furthermore, because learning is
sometimes defined as an improvement in performance (Median & Ross, 1992), it is
difficult to say exactly when or how this improvement is achieved (i.e. is improvement a
result of learning or is it a result of memory?). It is nevertheless reasonable to think that
this improvement could result from an increase in an individual’s cognitive ability
(conceptualizing, thinking, abstracting, etc.) and cognitive skills (reading, problem-
solving, computing, etc.). The process by which an individual learns new skills occurs in
four main stages (acquisition, proficiency, maintenance, and generalization).

In the “acquisition stage ™ of learning, students are exposed to new knowledge.
Some students receive this knowledge best through visual means, some by the auditory
process of listening, while others respond best to new knowledge by performing
(kinesthetic) what was done in class (Lerner, 2000). In addition, learning is dependent
upon perceptual abilities, because most information is taken in through auditory and
visual means. These perceptual systems are necessary to convey information to the brain

so that relevant knowledge can be retrieved from memory. Thus, perception is defined
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as “the process of recognizing and interpreting sensory information” (Lerner, 2000, p.
265). This process is not a “passive” but rather an “active” one (Medin and Ross, 1992),
and gives the ability to bring structure and organization to different levels of information.
For example, in the course of studying physics students are introduced to vectors through
the force metaphor. They are told that forces can be represented graphically as arrows in
general and in content specific areas such as equilibrium problems, where two or more
forces can act concurrently on an object producing a vector sum of zero (see Figure

1.9a). The students are then shown how to represent a mass in equilibrium suspended
from strings by means of a free body force vector diagram (see Figure 1.9b) and how to
decompose forces into their vertical and horizontal components (see Figure 1.9¢).
Therefore, in this stage the student has acquired a set of declarative and procedural
knowledge that he or she tries to commit to memory by reciting it several times until it

becomes integrated in their vocabulary (Anderson, 1985).
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Figure: 1.9. a) A diagram of a system in equilibrium. b) A force
vector free body diagram of a system in equilibrium.
c) A force vector free body diagram of a system in
equilibrium with its forces decomposed in vertical
and horizontal components.
Problem taken form Concepts in Physics notes and laboratory manual p.145
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In the “proficiency stage” of learning, students begin to sharpen their perceptive
and memory abilities through practice. This is achieved by detecting and eliminating any
errors and inconsistent thoughts that are present in the initial understanding of concepts
(Anderson, 1985). This process can be extremely slow and frustrating because it requires
the learner to integrate new ideas with old ones and resolve internal conflicts in thought.
For instance, labeling the angles within the free body diagram (see Figure 1.9¢) requires
the student to be able to integrate their knowledge from geometry, which says, alternate
interior angles are the same. Students also must resolve the conflicts which arise from
seeing vector quantities as scalar quantities. In the equilibrium problem in Figure 1.9c,
the arithmetic sum of the tension forces T; and T, in the upward ropes is 130 N (where
N= Newton, is a unit of force), which is more than the weight being supported (w = 100
N); this might give the impression that the system is not in equilibrium. However, the
vector sum of T and T, is 100 N, acting upward, which cancels the force w of 100 N,
acting downward and thus ensuring that the system is in equilibrium. With continual
practice of routine problems (of a similar nature) students develop their procedural skills
of drawing and interpreting free body diagrams, which allows them to heighten their
perception and memory abilities.

In the “maintenance stage”, the learners can now demonstrate the ability to recall
key elements (formulas and diagrams) which will enable them to perform at a high level
of efficiency. At this stage the students' declarative information is transformed into a set
of procedural schemas, which encompass a reliable working knowledge of Newton's
laws from memory and relies less on the instructor and other external sources in problem

solving.
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The final stage of the learning process is the “generalization stage”. At this
stage, students are able to use their heightened memory and perceptual abilities to make
judgments about other situations from the knowledge that they have internalized. For
example, students are able to apply their knowledge of free body diagrams to situations
where objects are not in equilibrium and use Newton's laws to solve problems
quantitatively.

This description, however, is simply an idealization of how a student would go
about learning a particular subject in mathematics or physics. There are many obstacles
that may disrupt this construction of knowledge in students. These obstacles will be
discussed in the following subsections.

1.3.2 Affective obstacles

In the course of studying mathematics and physics many students fall victim to
affective obstacles. An affective obstacle is defined here as an emotional feeling or
belief that hinders or diminishes one's ability to perform a task. Anomalies in the
cognitive process, which include affective obstacles like anxiety, self-doubt, and thought
shift patterns can have a negative impact on a students performance (Klinger, 1996).

Irrational beliefs also represent an important set of affective obstacles. Many
students who suffer from math anxiety do so as a result of their misconceptions about
mathematics. These students enter into a mathematics classroom with strong
preconceived ideas of what mathematics is about. For example, some students believe
that the goal of mathematics is to use formulas to solve word problems in terms of
numerical answers (category 1), while other students (category 2), think of mathematics

as formulating equations with x and y's (Tobias, 1978). While these beliefs are not
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completely untrue, they can result in limiting students' views of mathematics in general,
and thus increase math anxiety when beliefs are challenged. For example, the student
who is in the first category might suffer from the belief that math problems have only
one right answer and subsequently believe that there is only one way of obtaining it.
Therefore, much of the students' time is devoted to practicing the same rote procedure on
several problems of the same type, instead of developing or practicing different schemas
to solve the same problems. An example of this is when students are asked to solve the
following 3 x 3 system of linear equations

3x+4y+5z=100

S= X+ y+ z=25
10x+3y+ 7z=130 -

This could be done in several different ways by using Cramer's rule, Gaussian
elimination, Matrix inversion, and Gauss-Jordan elimination. The preferred method by
most students is to use Gauss-Jordan elimination even though the problem might
specifically request that matrix inversion be used.

Students in the second category focus most of their attention on formulating word
problems into equations (see Figure 1.10). A system of linear equations can be written

from Figure 1.10 if we let x, y and z equal the number of Rattles, Flippers and Busters

respectively.

A toy company makes three kinds of toys, Rattle, Flipper and Buster. It takes 3
machine- hours and 1 safety-check hour to make one Rattle; 4 machine-hours and 1
safety-check hour to make one Flipper and 5 machine-hours and 1 safety-check hour to
make one Buster. The company has 100 machine-hours and 25 safety-check hours a
day. How many toys of each kind must be made each day to reap a daily profit of
$130.00 if each toy is sold at a profit of $10, $3 and $7 respectively?

Problem taken form Phull “assignment on linear algebra” p.5
Figure 1.10 Example of a word problem that can be written into a system of linear equations.
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This system of linear equations is identical to the system of linear equations S. Students
that lack the ability to restructure a problem so that it makes sense to them often suffer
from high anxiety if a particular word problem does not fit a familiar systematic
procedure that was practiced.

Students often feel that math is difficult because of the rigorous proofs done in
class which require a certain level of reasoning to understand them. This leads some
students to doubt their mathematical abilities and develop the idea that either one has a
mathematical mind or one doesn't. This misconception is often confirmed when students
watch the teacher present mathematical proofs and solve complex problems in a
straightforward manner without any hesitation (i.e. no false starts or second-guessing).
Therefore some students, unfortunately, develop the belief that if they can't solve
problems or do proofs within a short span of time (i.e. 5 to 10 minutes) they won't get
them if they keep on working (Mandl, Gruber and Renkl, 1993; Tobias, 1978;

Schommer, 1989).

1.3.3 Cognitive obstacles

One objective of natural sciences such as physics is to account for the way that
forces affect objects to cause motion, and to describe phenomena, which exist in our
environment such as gravity, in a formal manner. Consequently, physics relies on
diagrams that represent physical situations and exemplify how forces act on objects, and
makes use of algebraic mathematical equations to quantify these forces. However, these
diagrams and mathematical equations can sometimes be difficult to understand
conceptually and seem incomprehensible to the learner at times. As discussed earlier in

Chapter 1, the beliefs that students possess about forces and motion often differ
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significantly from what is intended by formal instruction. It is these differences that I
believe constitute cognitive obstacles that will be the focus of this section. It is important
to note that cognitive obstacles are inherent in the learning process and only become
problematic when they prevent further learning of solutions of more complex problems
(Alexander, 1992).

The first cognitive obstacle that will be discussed is the superposition of motion.
The notion of superposition of motion refers to the idea that an object can move in
different directions simultaneously with each of its contributing motions independent of
the other. This is not an easily accepted concept. When this motion is viewed from a
fixed reference point, it appears as one superposed motion. For example, a motor boat
crossing a river moves diagonally relative to the bank. This superposed diagonal motion
is composed of the moving water and the motion of the motor boat, which are
perpendicular and have no influence on each other. The following study about a boat
crossing a river was conducted by Aguirre and Erickson (1984). They reported that 80
percent of their sample of students felt that the current flow of the river would in some
way have an effect on the magnitude of the velocity from the motor of the boat. The
Tibingen research group in Germany also conducted a similar experiment on the
superposition of motion and found that some university students possess incorrect
cognitive concepts, which are a direct result of several misconceptions. One
misconception that was noted by the Tibingen research group was the "Dominant motion
misconception" where students assume that a motion is dominant over another. Another
misconception is that of "Active/ Passive motions" in which students assume that active

motions are dominated by passive motions (Mandl et al. 1993). In the previous example
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the passive motion would be considered the magnitude of the velocity from the motor of
the boat and the active motion would be the current flow of the river.

1.3.4 Didactic obstacles

Models that are introduced to students with the intention of reducing mathematical
abstractions can be considered didactic constructs. Examples of these constructs include
a teacher introducing the mathematical operation of division as a sharing property and
the idea that multiplication makes things larger. Although these familiar restricted
settings are not totally untrue, they can, however, hinder later learning, when the
operation of division also leads to an increase in quantity (i.e. dividing by a positive
proper fraction), and multiplication can lead to a reduction in quantity (multiplication by
a positive proper fraction).

In elementary physics students are told that displacement vectors, velocity
vectors, force vectors etc., can be added respectively by the following graphical methods:
Triangle, Parallelogram, and Polygon. It is quite common that when students are
introduced to the Triangle method of vector addition in high school physics that the two
vectors to be added (u and v) are both drawn to the same scale and placed tail to tip at a
90 degree angle. The resultant vector (or vector sum) is the vector drawn from the tail of
one (say vector u) to the tip of the other (say vector v), with vectors u and v as two of the
four sides of a rectangle. This method of vector addition is frequently dominant in
elementary physics textbooks, and has a strong effect on how students view the resulting

figure (as we will see in Chapter II) formed by the addition of two vectors in general.
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Chapter 11

Previous Experience with Physics as a Possible Source of Difficulty
in Understanding Linear Algebra in a Geometric Setting



Introduction

Given its complex and diverse nature, it is natural that problems emerge when
students attempt to learn linear algebra. Three basic classes of difficulties can emerge to
interfere with this learning: difficulties with symbolic notation, problems generalizing
from small systems to solving problems in general linear systems, and problems
understanding vector space. The purpose of this study was to understand factors that
contribute to problems understanding linear algebra, specifically the influence of prior
experience with physics knowledge was examined. As well as the learning problems
inherent in linear algebra, experience with physics may interfere with the acquisition of
linear algebra material in specific ways. It is important to understand these problems so
that the needs of these students can be better met. This chapter describes the methods
used to examine the effects of experience with physics on linear algebra acquisition and
the results obtained from such an examination.

This chapter includes a section on the Cabri Geometry II environment in which
the students worked. It gives a step by step example of how to draw a vector in Cabri and
explicitly states the difference between a drawn and constructed object. The chapter then
reviews the first three sessions and the individual activities performed by each group of
students. The remaining two sessions were summarized since their activities for the most
part were not referred to in the result section with the exception of Session IV Part IT Grid
transformation task. Each session was composed of one or more topics that were
explored in the individual activities. For example Session I looked at vectors, equality of
vectors and operations on vectors. The first activity in this session that was preformed by

the students highlighted two main features of vectors, their magnitude and direction. The
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second activity looked at the equality of vectors i.e. when they have the same magnitude
and direction. The remaining activities for this session involved constructing new vectors
using the operations of vector addition and scalar multiplication.

The chapter also summarizes the selection of the students that took part in the
experiment and describes how the data were collected and analyzed. The results section
reports the effects of incorporating physics in the learning of linear algebra. It also
reports obstacles and difficulties encountered by the two groups of students centering
around the notion of vector, operations on vectors, linear combination, spanning set and
linear/ non-linear transformation and tries to analyze the possible sources of these

difficulties.

2.1 Description of the Cabri Geometry Il environment

The computer software program Cabri Geometry II (or simply Cabri), that was
used by the students allowed them to draw and construct geometrical figures and objects
in a two dimensional space from the Cabri menus shown in (see Figure 2.1).

Once a figure was constructed, the Cabri dynamic environment allowed the
students to interact with the figure by dragging any one of its elements. For example,
vectors are represented by arrows in Cabri and can be drawn by selecting Lines from the
Cabri Toolbar menu and then choosing Vector in the Lines menu. Once the user has
selected Vector from the Lines menu they simply click and release the mouse button once
to create the initial point of the vector. They then move the mouse until the desired

length and direction of the vector is found. Then a second click of the mouse button is
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Figure 2.1. Cabri Toolbar Menu
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necessary to disengage the vector command. The newly drawn vector ov (see Figure

2.2a.) is called a free or independent' vector.
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Figure 2.2. Drawing and moving vectors in Cabri

The students were able to interact with this free vector in two ways. First, the
vector could be dragged by its free endpoint; this action made it possible for the user to
vary the magnitude and direction of the vector thus creating a new vector altogether
(vector ow see Figure 2.2b). The second way was to move the vector as a vector, this
action did not change the direction and magnitude of the vector but allowed the user to
translate the vector from one area of the screen to another (see Figure 2.2c).

Objects that are constructed (as opposed to just drawn) in Cabri are called
dependent? objects and can only be interacted with indirectly. For example, in the figure
below, the vector v, is constructed from vector v; by means of a rotation about the origin
O by an angle of 75 degrees and is therefore dependent on v (see Figure 2.3a). In order

to interact with v, it is necessary to move v; (see Figure 2.3b).

! Independent objects: Objects drawn by the user by using Cabri commands found in the Lines or Curves Menus,
2 Dependent objects:  Objects constructed by the user from existing objects by using the commands found in the
Transform/ Construction Menus.
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Figure 2.5. Interaction with independent vectors
2.2 Summary of the Experimental Sessions

The Geometric Approach to Teaching Linear Algebra Project 1998 (Sierpinska,
Trgalova, Hillel, Dreyfus, 1999) consisted of five consecutive sessions, with each session
requiring approximately two to three hours to administer. The inspiration for these
sessions and their activities came from a previous experiment in 1997 ( Sierpinska,
Dreyfus, Hillel, 1999) which considered teaching the notion of vectors, vectors spaces,
linear transformation, and eigenvectors in elementary linear algebra in a dynamic

computer environment which unfortunately revealed some shortcomings in the design
during the experimental stage. The experiment aimed at testing amendments introduced
into the most flawed parts of the old design related, in particular, with the notions of
vectors and linear transformation. The first session examined vectors, equality of vectors
and operations on vectors. The second looked at linear combinations and spanning. The
third session introduced the notion of transformations and linear transformations. The
fourth session took a deeper look at linear transformations. For example, it examined

how a 8 x 8 square grid is transformed into a parallelogram grid. It also considered how
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to define a linear transformation, which would turn a given square into a rectangle. The
fifth and final session examined how to define a linear transformation on a basis.
2.2.1 Sessionl

Session I was divided into three sections Part I, [T and III. In the first part, the
students were introduced to Cabri Geometry II software program and acquainted
themselves with the Cabri Toolbar menus through a series of activities which required the
students to draw points, lines, lines segments, triangles, vectors, reflecting points, rotating
points, and labeling figures.

The second part of Session I consisted of three activities that targeted specific
features of vectors. The purpose of the first activity was to focus the students’ attention
on two features of, a vector, namely magnitude and direction. The objective of the second
activity Planes was to demonstrate the equality of two vectors through a metaphor of
forces. In order to do this, the students were shown the following situation
(see Figure 2.4) in the Cabri Geometry computer environment and asked the following
question’® (amongst others):

Drag the blue vector around on the screen. Observe the effect
on the blue plane.

Can you make the blue plane overlap with the red plane?
What can you say about the forces represented by the blue and
red vectors now? What can you say about the lengths and the
directions of these vectors?

3 The expected answers to the questions are: (1) Moving the blue vector as a vector has no effect on the blue plane
since the direction and magnitude of the vector remains unchanged. (2) Yes. (3) They are the same and parallel. (4)
The lengths are equal and their direction is the same.
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Figure 2.4. Planes

The third activity, Origin, had several goals. The main goal was to introduce the
students to the convention of starting all vectors from a common point of reference on the
Cabri screen that is called the origin O. It also reinforced the notion of the equality of
two vectors from the previous activity with the planes. It did this by placing an arbitrary
fixed vector on the screen and a point O that the students were unable to move. The
students were then asked to construct or draw a vector starting from O that would be
equal to the given vector.

Part III of Session I: Operations on vectors, consisted of four activities. The first
of these activities Activity 4, Vector addition 1, looked at how to combine two non-
collinear vectors to form a new vector by applying a macro* construction called vector
addition. The main goal of this activity was to show that when two vectors in R? (say v

and w) are added geometrically their vector sum (v + w) could be interpreted as the

4 Macro constructions are special commands found in the macro menu that were made by the experiment designers to
reduce the amount of steps when performing operations on vectors i.e. vector addition, scalar multiplication, linear
combinations etc,.
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diagonal of a parallelogram. Another goal was to realize that the vector sum (v + w) is
always located in between the two vectors v and w.

In Activity S, Vector addition 2, the students worked with vectors as forces in a
contextual setting. They were given an object that was acted upon concurrently by two
vectors. They were asked to translate the object by the vectors v and then w. Once the
final position of the object was established the students were asked the following
question’:

What do you think would happen if; instead of applying the
Sforces v and w in a row to the ball, we applied the vector sum?

The two remaining activities looked at the operation of scalar multiplication. In
Activity 6, Scalar multiplication 1, the students multiplied a vector by a scalar quantity &
and explored the effects of this operation by varying the scalar quantity &. This could be
done by moving the shaded point on a number line (the non-shaded point represented the
origin, see Figure 2.5). It was hoped that the students would realize the following
relationships between the vector v and kv; the vectors v and kv always lie on the same
line and the magnitude of kv is |k times the vector v. If the vector v is multiplied by a
negative scalar £, then the product kv has the opposite orientation of v, and the same

orientation as v if k is positive.

5 The ball will have the same final position.

39



k=1.79

0]

ky

9]

Figure 2.5. Introduction of scalar multiplication

In Activity 7, Scalar multiplication 2, the students considered the operation of
scalar multiplication in a contextual setting. They were shown the initial figure below
(Figure 2.6) which contained a variable triangular mass that was suspended from two
anchors along with a vector which represented the gravitational force (W= mg). Where

m is the mass of the object and g is the acceleration due to gravity 9.8m/s” acting on the

triangular object.

k=1.00

0]

Figure 2.6. Representing the change of weight by scalar multiplication
of a vector
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The students were told that they could increase or decrease the mass of the triangular
object by a factor of k simply by moving the shaded point on the number line. However,
this action would alter the gravitational force proportionally that was acting on the object
by a factor of k. The students were asked the following question®:
Could you represent the changes of this force by a vector, a
variable vector in this figure here?
222 SessionlIl
Session II: Linear combination and spanning, was composed of four activities.
In the first activity (Linco.1), the students were presented with two vectors (v; and v3)
starting from the origin O, along with two number lines and scalars k; and k;. The
students were asked to construct a vector w =k;v; + kav,. This was done by multiplying
the vector v; by scalar k; and v; by scalar kj, and then summing the two new vectors (see
Figure 2.7). Then an arbitrary vector u was placed on the screen and the students were
asked to make the vector w equal to the vector u. As this was done, the vector u was
expressed as a linear combination of the vectors v; and v,. The next line of questioning7
was to get students to realize what effect the scalars k; and k; had on vector w in the
equation w = kv + kova.
Where is the vector w with relation to v; and v, if k; = 0?
Where is the vector w with relation to v; and v; ifk; = 0?

Where is the vector w with relation to v; and v, if k;=k,=1?
Where is the vector w given that vectors v; and v, are not collinear?

¢ The question is answered by performing the operation of scalar multiplication of the vector v by the scalar on the
number line.

7 The answers to the question: (1) Vector w lies along v2. (2) Vector w lies along v1. (3) Vector w lies in between vl
and v2. (4) The vector w coincides with v1 and v2.
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Figure 2.7. The vector w as a linear combination of k;, v, k»
and Vi

The main goal of Activity 2 was to stress the role that scalars play in the
composition and decomposition of vectors. The students perform the first part of the
activity in a paper-pencil environment. They were given two vectors u and v emanating
form the origin O and forming an obtuse angle, and asked to draw of the following
vectors: 2u +v, 1/2v —u, and «(v — 3u). The second part of this activity was also done in
a paper-pencil environment that required the students to express the vector w as a linear

combination of vectors u and v (see Figure 2.8).

Figure 2.8. Vector w to be expressed as a linear
combination of vectors v and u
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On completing the former activity the students were asked to repeat the same
activity in the Cabri environment. The purpose of this was to use the Cabri dynamic
environment to make the students realize that any vector can be decomposed even though
it does not lie between the vectors u and v. The last part of Activity 2 was also done in a
paper-pencil environment. Its goal was to probe the students’ understanding of the
decomposition of a vector into a linear combination of two given vectors which include

the use of negative scalar for the vector u (see Figure 2.9).

Figure 2.9. Configuration for the decomposition of vector w into its
components along v and u
The main focus of Activity 3 was to get the students to understand the notion of a
basis in two dimensions. The activity could be done with or without the computer and

the questions® were as follows:

You are given one vector. What other vectors can you obtain from it,
if you are allowed to do scalar multiplication, vector addition, and
the combination of the two operations?

Suppose you are given two non-collinear vectors. Same question.

¥ Answer to the questions: (1) You can obtain all vectors that lie along that line. (2) You can obtain all vectors in R%.
(3) Yes, since two non-collinear vectors form a basis for R>. (4) No, since the two vectors are dependent.
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Suppose you are given two non-collinear vectors. Is it true that every
vector can be obtained as a linear combination of these two?
Explain.

Suppose you are given two collinear vectors. Is it true that

every vector can be obtained as a linear combination of these

two? Explain.

In Activity 4 the students were given a physical situation in which they could
contextualize the notion of the zero sum of vectors. This was done by showing the
students a system (see Figure 2.10) that contained three weights, which is not necessarily
in equilibrium. In order to solve this problem, the students had to sum the vectors that

were laying along the cables. Then the system was moved at point C until the vector sum

and the vector pointing downwards had the same magnitude and opposite orientation.

Figure 2.10. Looking for an equilibrium point

2.2.3 Session Ill

Session III: Transformation and Linear Transformation, consisted of two parts,
the first part considered the general notion of transformations in four activities, while the
second part of session III introduced the definition of the linear transformation as one that

preserves linear combinations.



In Activity 1 (part I) Transformations and relations between forces in physics, the
students manipulated the scalar on the number line and observed how rectilinear motion
(represented by a horizontal blue vector that had a variable magnitude and a fixed
direction) was transformed into circular motion. This idea was modeled through the
mechanism of a steam engine. The horizontal blue vector represented the force of the
steam that pushed on the piston, thus causing the linkage to rotate the wheel
(see Figure 2.11). The students were asked the following questions’:

Focus on the thick blue vector and describe how it is changing.

If you imagine the segment from the center of the wheel as a
vector, can you describe how it is changing?

1,70

Figure 2.11. Transformation of forces in a steam
engine

The second transformation, the Paucellier linkage, dealt with transforming circular
motion into rectilinear motion. The last activity Symmetric forces, required the students
to establish a relation between two vectors F; and F5. The students were presented with a

set of weights that was in equilibrium (see Figure 2.12).

? Answer to questions: (1) The vector has a variable magnitude and a constant direction. (2) The link has a variable
magnitude and direction.
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The ball that was suspended from the center of the rope indicates the equilibrium
position. The square objects, that were suspended from both pulleys were identical and
had variable mass, which could be changed by simply moving the scalar on the number
line. When the mass of the square objects was increased the equilibrium position of the
ball moved upwards. The students were encouraged to play with the system and asked
the following question:

Can you describe how these two vectors are related to each other?

Figure 2.12. Symmetric forces

In the second activity, Symmetric vectors, the students were presented with two
vectors, one blue and the other red. The blue vector was drawn as an independent Cabri
object, while the red vector was constructed form the blue vector by means of a reflection
transformation. The line of reflection was made invisible by the Cabri command
Hide/Show. The students were encouraged to play with the blue vector and asked to
figure out what was the transformation that linked the red vector to the blue vector.

In Activity 3, Projection with dilation, the students were once again presented
with a blue and a red vector. The red vector was constructed from the blue vector by an
orthogonal projection on a horizontal line (which was invisible on the screen) combined

with a dilation by a factor of 2. The students were once again encouraged to play with
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the blue vector and asked if they could figure out how the red vector is related to the blue
vector.

In Activity 4 (which was separated into two parts) the students were given, in
each part, four vectors vi, wy, and v, wo. Here, w; and w, were the image vectors of v;
and V2 respectively, under some transformations. They were told that v; was transformed
by a transformation T to obtain wj, and similarly v, was transformed by a transformation
T, to get wo. The students were asked to figure out, if they could, whether the
transformation that linked the vectors vi and w; was the same as the transformation that
linked the vectors v, and w,. In the first part of the activity, the two transformations
turned out to be unequal, and equal in the second scenario.

The goal of Activity 5, Parameters of a transformation, was to let the students
realize that when the parameters of a transformation are changed, a new transformation is
obtained. The students were given two vectors v and w, where the vector w was
constructed from v by a rotation of 60 degrees combined with a dilation by a factor of 2.
They were instructed to change the angle of rotation and the dilation factor by means of
the Cabri command Numerical Edit that was found in the Display menu. Once this was
done the students were asked, “Has the relation between v and w changed™?

In Part II Linear transformation, of Session III Activity 6, the students were asked
to verify whether a transformation Shear-11 was linear or not, by using the linearity
equation T(k;v; + kav2)=k;T(v;) + ko T(v2). This was done with the aid of a macro
construction called linear combination. The macro construction was used as follows: in
order to obtain a linear combination of k;v; + kv, first select the macro linear

combination and then click in the following order ki, vy, kz, v2 (this action produces a
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single vector). In the initial screen the students were given a line L, a point Oon L,
vector v from O, and a rotation angle of -90°, and dilation factor of 1.5. The students
were told that:

Your task is to verify if the transformation Sheary ; s is linear,

which means that, for ary two vectors v; and v,, and any two
scalars k; and k;,

Skvi + kvy)=kiS(v) + k2S(v2)
where S stands for Sheary ; .
2.2.4 Session IV

Session IV, Linear transformations, consisted of three parts. In Part I, Examples
and non-examples of linear transformations, the students were given three
transformations and asked to verify if they were linear or not. The first transformation
was a rotation followed by dilation, which turned out to be linear. The second was a
semi-linear transformation, which preserved scalar multiplication and not vector addition.
The third transformation preserved neither scalar multiplication nor vector addition.

In the second part of Session IV, the students were given a square grid with 8
labeled vertices, which was transformed into a parallelogram grid. The goal of the
activity was to identify where the old labels got transformed on the new parallelogram
grid.

In Part III, of Session IV, the students were given a square figure that was

transformed into a rectangular figure and asked if they could construct the transformation

that represents this situation.
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2.2.5 SessionV
Session V, Linear transformations: definition on a basis, consisted of three parts. In the
first part of Session V the students worked together and try to define a linear
transformation knowing its values on a pair of non-collinear vectors. In the second part,
the students worked individually on the following question for approximately ten
minutes:

If T is a linear transformation of the vectorial plane, vl and v2 are two

non-collinear vectors, and T(vl) and T(v2) are given, then, for any

vector v, its image T(v) can be found. Justify your answer in writing.

In Part IIT of Session V, the students worked individually on a problem using

Cabri, which was similar to the last one in Session IV. Once again the students had to

find a transformation that linked two figures.

2.3 Sample, Data Collection and Method of Data Analysis

This section discusses the background of the students that participated in the
study, and describes the manner in which the data was collected and analyzed.
2.3.1 Sample

The sample under consideration consisted of 4 university students'® (2 female and
2 male), who had not previously taken a course in linear algebra. The participants were
selected from a group of volunteers and were then broken up into groups of two. The
first group (Group I) consisted of the two male students Sam and Ben who each
possessed a background in physics, having both completed an introduction college level

course in physics. The second group (Group II) consisted of two female students (Jenn

' The names given to the students in each group are fictitious to protect their anonymity.
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and Rachel), who had no formal background in physics. It was by chance, not design,
that the two groups happened to be separated into groups of students who had completed
a course in college physics or the equivalent and students without. It was also by chance
that the two groups were separated by gender. After analyzing the protocols several
times for both groups, it became interesting to look at the effect of these students’ physics
background on the understanding of Linear Algebra. Would both groups encounter the
same obstacles or drastically different ones as a result of modeling vectors in the
metaphor of forces? Would both groups achieve the same or drastically different levels
of understanding?

2.3.2 Data Collection

In order to understand the effect of students’ physics background on the
understanding of Linear Algebra, data were collected from several levels and from two
sources. The two data sources consisted of Group I and Group II. Neither group
communicated with the other for the duration of the experiment and the groups had
different instructors who will be referred to as “Tutor”. Data were collected over a five
day period from five consecutive sessions which ran for 2 to 3 hours, each of which was
divided into several activities, each encompassing its own objective as stated previously
in Section 2.2.

The sessions for both groups were recorded on audio and videotape and then
transcribed into text. Field notes were taken during each session and copies of the
students’ group written work and computer work were saved for future reference.

Copies of the students’ individual written work and computer work were also saved.
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2.3.3 Method of Data Analysis

The discourse of both groups was analyzed to find how the students understood
the activities of the sessions. Then the field notes and transcribed data were read several
times and reviewed with the videotape. Notes were made and analyzed for patterns of
consistent and inconsistent thought in concepts from each of the students’ responses to
the activities. The focus of the analysis was on the students’ difficulty. It was assumed
that a student experiences a difficulty if:

(a) the student develops a pattern of argumentation which can lead to statements

incompatible with the theory, or

(b) shows uneasiness with a statement or problem through tone and body

language, or

(c) claims that he or she “does not understand” or “is confused”, in spite of

repeated coaching by the tutor, or

(d) fails to produce an answer to a problem.

As this behavior intensified and/or recurred in relation with specific mathematical

themes, areas of difficulty were identified and an explanation of their appearance sought.

2.4 Results

This section reports the results of the analysis of the data in terms of the areas of

difficulty that have been identified.
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2.4.1  Area of difficulty 1: The concept of vector:
Students believe that vectors are fully characterized by their magnitude

A recurring problem observed within group I was that the students predominately
characterized a vector by its magnitude. For example, in Session I Activity 2, Planes, the
students were asked to move the blue vector and observed its effect on the blue plane.
Both students felt that moving the blue vector as a vector, i.e. translating it from one
point on the screen to another, had no effect on the blue plane. When asked why, Sam
replied:

Sam: The length didn’t change...
His response seemed to indicate that his focus was on the length of the vector and not on
its direction.

Another example of a vector predominately being characterized by its magnitude
comes from within the same activity, Planes, when the students were asked if it was
possible to make the blue plane overlap with the red plane. At this point Ben was
controlling the mouse and super-imposed the blue plane on the red plane. He did this by
dragging the end point of the blue vector, thus changing its magnitude and direction until
it was equal to that of the red vector. Ben goes on to make the following comment:

Ben: Now the length of the blue vector and red vector
will be same.

Ben’s response also appeared to focus on the vector’s length and not on its direction.

The last example of the students from group I characterizing vectors by their
magnitude arises in Session IIT Activity 1. The students were presented with a physical
situation of a Steam Engine. The instructor demonstrated how the linear motion of a blue

vector gets converted into circular motion. The students were then asked to describe how
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the blue vector is changing. The following is an excerpt of how the students described

the blue vector:

Sam: It’s increasing up to a limit then it start to decrease.

Ben: /t comes to the same position. The length of the
vector is changing and applying a force on the
piston.

Sam: The length of the vector.

They continued to make reference to the length of the vector and not its direction.
In response to the second question from the same activity:

Imagine the segment from the center of the wheel as a
vector, can you describe how it is changing?

The students viewed the segment from the center of the circle as moving with circular
motion. They observed that the segment would move clockwise or anti-clockwise
depending on how the scalar is moved in relation to the origin. They also suggested that
the segment was similar to the radius of a circle. Their excerpt reads as follows:

Ben: The motion is a circular motion. As you move to the
right side [referring to moving the scalar away from the
origin (right) motion is clockwise and towards the origin
(left) the motion is anti-clockwise] it's clockwise and anti-
clockwise. It depends on which side you move.

Tutor: Okay but | am saying if you were just describing the
vector itself [referring to the link]. Just this vector and
again | am not looking on the screen so | have to
understand. What can you tell me about this vector
[referring to the link] as the force here changes
[referring to the blue vector]? What is happening to this
vector here [referring to the link]?

Sam: /t’s like a part of the radius with the center that's
moving in circular motion [referring to the link].

Tutor: A vector moves in a circular motion [referring to the
link].

Sam: Ya! and its initial position is the center of this circle.

Tutor: /s that enough for me to ah: Is that enough
information for me to know what the changes are to
this vector? | am just trying to ah maybe to tell you
what | am looking for a little bit more. Maybe it ain’t, |
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know vector by direction and length. These are the
two things about the vectors. So if you are describing
a vector to me and want it to make sense, | have to
know something about those two aspects of the
vector. So what would you say about the changes to
this vector?

Ben: This one has circular motion [referring to the link]

Sam: Circular motion describes ah, the length that is always
the same.

Tutor: What changes?

Sam: Only the direction.

The students’ description of the motion of the link as a vector at the center of the
circle only made reference to its length unless explicitly asked for by the tutor.

In the hope of discovering why these students mainly characterized vectors by
their magnitude while omitting their direction the following hypothesis is proposed.
Upon further examination of the problem of translation of Planes (Session I Activity 2), it
appeared to center around the topic of dynamics (the study of forces that cause motion).
In a typical physics textbook this section deals with “Newton’s Three Laws”. Its focus is
to demonstrate the forces that act on an object by means of a free body diagram with the
direction of these force vectors implicitly understood. Hence the activity Planes is
reminiscent of the free body diagrams these students are accustomed to. Thus, recalling
their prior knowledge in this area possibly led the students to characterize vectors only by
their magnitude.

In reviewing the responses given by Group II, for Session I Activity 2, Planes,
Jenn and Rachel appeared to be comfortable with describing vectors by their direction
and magnitude. However, Rachel was uncertain about how vectors function in the

physical setting of the activity on Planes, when asked to move the blue vector (as a

vector) and observe its effect on the blue plane. She replied:
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Rachel: When you move the whole vector [referring to the blue
vector], why doesn’t it change [referring to the blue plane]?

Even though Rachel appeared not to understand how vectors can be represented
as forces to move objects she was still able to notice that the vectors’ magnitude and

direction did not change.

2.4.2  Areaof difficulty 2:
Equality of vectors as equality of their lengths

The focus of the students of group I, was on the magnitude of vectors and not
their direction, led them to confusion when deciding whether two vectors were
considered equal. For example, when Ben and Sam performed Activity 4 Vector addition
I from Session I, the group was asked to find a vector w so the vectors v and v + w are
equal (see Figure 2.13.). This can be done by letting vector w equal to zero. The excerpt
from the protocol reads as follows:

Ben: Equal means their length or their direction?
Tutor: That is a good question. What does equal
mean?
Ben: If the length in different places are equal,
butah ...
Tutor: But when are two vectors equal?
Sam: Excuse me!
Tutor: Pardon! Have you made now the vector v+ w
equal to the vector v?
Sam: / am not sure.
Tutor: Why?
Sam: Cause [ am not sure that it has the same length.
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Figure 2.13. The sum of vector v and w

The excerpt suggests that the students were strongly under the influence of their
prior knowledge from studying vectors from physics. This was in spite of the tutor
telling them that when checking whether two vectors are equal it is not enough for them
to have the same length.

The second group did not exhibit any noticeable problems when answering the
questions from the same activity as group I. One possible reason for this was that Rachel
and Jenn measured the length of each individual vector v, w, and v + w, and worked from
a numerical viewpoint and not a conceptual one.

243  Areaof difficulty 3:
The classification of vector quantities as being equal to scalar quantities

In Session II Activity 1, Linear combination 1 (see Figure 2.7) both groups of
students were observed as classifying vector quantities as scalar quantities when asked to
find values for scalars k; and k; such that the vector w = k;v; + kovs is equal to the zero
vector. The vectors v; and v, were given to be non-collinear. In considering group I, the
students were primarily characterizing vectors by their magnitude. This instinctively led
them to incorrectly classify vector quantities as scalar quantities. Sam replied:

Sam: Ok we should make kv and kov2 equal put them in
the opposite direction.
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Since Sam was representing vectors as forces the zero vector was perceived as having a
zero force. Therefore, the vector equation, O(vector) = kivi + kav2, was reduced to an
algebraic equation 0 = k;v; + kav, where, k;v; and kov, were seen as scalar quantities and
not as vector quantities.

In analyzing the second group’s response to the same question, Rachel mentioned
that k; and k, both have to equal zero which is subsequently the correct answer. But
when the tutor probed her understanding by asking her if this was the only possibility, her
response was as follows:

Rachel: So if they were reciprocals or... is that the right
word? If one’s five and one’s negative five then
theyd.

Tutor: Well maybe.

Jenn: Try it.

Rachel: That depends on what the vectors are.
Tutor: If the vector's were what?

Rachel: /f the vectors were equal that would work.
Tutor: Equal?

Rachel: /f the vectors were exactly the same.

Rachel: Well, the... if you had k; such that k;v; is the
reciprocal... they’re reciprocal... and k, such that
kova is the reciprocal... they're reciprocals of each
other, then they'd cancel each other out.

This excerpt suggested that Rachel might be interpreting the vector equation
0 (vecto) = k1v1 + kav2 as the following algebraic equation 0= k;v; + kv, (with vi=v,, k;=5
and k,=-5). Therefore that equation was reduced to 0= 5v; -5v,. This suggested that she

was thinking about a vector solely in terms of its magnitude.
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2.4.4 Area of difficulty 4:
The geometric representation of vectors as a source of visual obstacles

The students were able to perform operations on vectors geometrically with the
aid of the Cabri macro construction Vector addition and Scalar multiplication. Once
these operations were performed on the vectors, however, some of the resulting
geometric diagrams presented themselves as visual obstacles for the students in group I.
A first instance of this obstacle was noted in Session I Activity 4 Vector addition 1. The
students were to construct the sum of two non-collinear vectors v and w (the vector sum
is labeled v + w). They were, then asked a series of questions and instructed to draw line
segments from v to v + w and from v + w to w (see Figure 2.14). The tutor then asked

the following question to the group, “What kind of geometrical figure did you obtain?”

(o,

Figure 2.14. Classification of a parallelogram as a rectangle

The group was looking at a figure similar to the one shown in the figure above.
Shortly after the students constructed the sum of vectors v and w, Ben had strong
convictions that the vectors form a rectangle:

Ben: The sum of the vectors is acting like the two
corners of the rectangle.
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Ben continued to call the figure a rectangle several more times even though the tutor told
him that in a rectangle the measure of each interior angle was equal to 90 degrees.

A second instance of the visual obstacle was observed in Session I Activity 6,
Scalar multiplication I. The students were asked to multiply a vector v by a variable
scalar &, which was controlled by a point on a number line. Once the operation scalar

multiplication was performed, the new vector was labeled kv (see Figure 2.15).

k=1,93

ky

o)

Figure 2.15. Scalar multiplication of vector v and scalar &

The students were then asked to describe the relation between v and kv. Both Ben and
Sam appeared to have perceived the previous figure as vector addition of two forces,
which were acting in the same direction. This obstacle was most likely the result of their
physics background. The students gave evidence of this in the excerpts of their protocol:
Sam: kv is the length of v + this distance which is plus
the length of k.
Ben: /t should be v + k.

While Ben was responding to the question he was pointing at the vector v and the

distance between the tip of v and kv. He appeared to be looking at the vector from the

59



head of v to the head of kv as a vector which he identifies as vector k. He associated this
vector k as being the same distance as the point k£ on the number line from the origin.

The tutor tried to use arithmetic to help the students realize that the diagram was
representing scalar multiplication and not vector addition. It was his intention to use
arithmetic because it produced numerical results that the students could verify.
Therefore, the tutor instructed the students to measure the lengths of the vectors v and kv.
He also instructed Ben and Sam to move the scalar £ until its value is 3 in order to
simplify the arithmetic (addition and multiplication). However, this demonstration did
not seem to convince them. The excerpt reads as follows:

Tutor: What happens if k is 3, let’s say to make is easy on
arithmetic?

Sam: kis 3

Ben: move it fo the right side.

Sam: If k is 3 this is 5 [referring to the vector kv]

Ben: .08 it should be 3.69, it's larger

Sam: So kv is the sum.

Tutor: The sum of ?

Sam: Ofkand v.

Ben: of kv. is 5.08 the distance from o and kv is 5.08,
but it should be 3 + 1.69. It should be 4.69 but
it's larger.

Another visual problem that was noticed within group I occurred in Session I
Activity 7, Scalar multiplication 2 (see Figure 2.6). The vector v represents the sum of
the tension forces in the rope (not shown in the diagram) that acts on the object in
equilibrium. The students, however, did not recognize this right away and Sam states
that this was the source of confusion in the group.

Ben: The sum of the actual vector [He is referring to the vector
that will represent the change in mass of the object but he
does not associate it with the vector v which is already on

the screen.] will depend on the weight of the object and
the more the weight the greater the force will be.
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Tutor: The sum of which vectors?

Ben: These two acting in different directions [referring to the
tension forces in the rope made by the suspended object].
We want fo create the sum of the vectors or
something.

Sam: v is already the sumn of these two forces.

Tutor: v is the force which acts on this point of suspension

[referring to the point at which the mass it connected to the

Sam: xg :]re confused only because of these two, v is the
sum of these two.

In trying to understand the possible sources of these difficulties led me to the
examination of some elementary physics textbooks. The explanation for Ben assuming
that the addition of two vectors v and w would result in a rectangle could be as follows.
There are three ways of adding vectors in physics geometrically: by means of
parallelogram, triangle and polygon methods. In the parallelogram method of vector
addition only two vectors can be added at a time. These vectors, say u and v, are
connected by their tails from a common point and the resultant vector u + v is the
diagonal of a parallelogram formed with u and v as two of its four sides. In the triangular
method of vector addition only two vectors can be added at a time. The vectors say u and
v are placed from the tail of one to the tip of the other, and the resultant vector u + v is
drawn from the tail of the first to the tip the second. In the polygon method of vector
addition several vectors can be added at once. The vectors are placed from tail to tip with
the resultant vector drawn from the tail of the first to the tip of the last.

In high school physics, when adding two vectors (v and w) using the triangular
method, the vectors are separated by a 90-degree angle. The choice of the 90-degree
angle is most convenient since the equation [uf® = [v[> + [w}* —2|vilw| cos U (where U is the

angle between vectors v and w) simplifies to the Pythagorean Theorem (Ju> = [v]* + [w]).
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This minimizes any calculation that might be required to solve a particular problem.
Ben’s previous exposure to vector addition from physics might have given him the
impression that the figure is a possibly badly drawn rectangle.

Ben’s obstacle was consistent with what Presmeg (1986), described as “the one-
case concreteness of an image or diagram (which) may tie thought to irrelevant details,
or may even introduce false data (p.44)”. For example, some of their students assumed
that lines were parallel if they looked parallel. This was the case with Ben. He perceived
the angle that was formed by vectors v and w to be 90 degrees.

The inability to see a diagram in different ways can explain the difficulties
observed by the students from group I when performing the operation of scalar
multiplication.

When adding two vectors v and w for example which act in the same direction,
while having the same or opposite orientation, “their numerical sum is the same as their
algebraic sum ( Murphy and Smoot p.61)” see Figure 2.16. The convention (in physics)
is to join the vectors from tail to tip and add their lengths to obtain a new vector v + w.

The following vector diagram illustrates this situation.

v="1N[E] w=dN[E] v=5N[E]
i =)
v+w=5SN(E] v+¥r= 3N[E]
@ ®)

Figure 2.16. Diagram of vector addition resembling scalar multiplication

Here, the operations of scalar multiplication and vector addition share the same

diagram for two different concepts. Therefore, Ben and Sam associated Figure 2.16a as
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vector addition and not scalar multiplication. Examples of scalar multiplication appear in
many places in physics: force (F= ma), momentum (p= mv) and weight (w= mg) but are
not called as such. The vector quantities a, v and g stand for acceleration, velocity and
acceleration due to gravity respectively, while the scalar quantity m represents the mass
of an object. Most of the problems, however, that deal with scalar multiplication in
physics do not consider the case of a variable mass of an object.

The last visual obstacle encountered by group I was a result of a standard free
body diagram of a system in equilibrium. The free body diagram for this system was
presented in a non-standard way to the group and, as reported by Presmeg in 1986 “an
image of a standard figure (diagram) may induce inflexible thinking, which prevents the
recognition of a concept in a non standard diagram”. The variation in this problem was
that the sum of the tension forces t; and t; in the rope was equal to the vector v that was
not placed at the point of equilibrium, but to the left of the system. In the construction of
a free body diagram all the external forces are shown as emanating from the object.

A review of the same activities for Rachel and Jenn suggest, for the most part,
that they were able to perform the intended operations without incident. However, in
Session I Activity 6, Scalar multiplication 1, Jess had the same concerns as Ben and Sam
about the resulting diagram that was formed as a result of performing the operatioﬁ scalar
multiplication on a vector, but she does not have too much convictions about it since she
has no formal background in physics.

Jenn: So what does this mean from this point to this point is

1.4 [ from tip of the old vector to the tip of the new vector]
What is k, what is this?
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2.4.5 Areaof difficulty 5:
The notion of scalar multiplication: Seen as extending preexisting vectors and not

creating new ones

In Session II Activity 1 (see Figure 2.7), the construction of the linear
combination w= k;v; + kav,, revealed a misunderstanding that both groups had
concerning scalar multiplication. It appears that the groups were uncertain about the
function of scalars k; and k. One of the tasks in this activity required the groups to place
an arbitrary vector u on the screen (starting from the origin) and to represent u as a linear
combination of v; and v,. In considering group I, Ben appeared unsure of how the scalars
were to be manipulated to form new vectors form the operation of scalar multiplication,
even though his partner Sam was trying to explain it to him, and replied:

Ben: I’'m getting confused here, but you can fry.
Ben relinquished control of the mouse to Sam who quickly adjusted the scalars on the
number line, thus expressing vector u as a linear combination of v; and v,. However,
even though Sam was able to manipulate the scalars successfully, he was under the
impression that it was the vectors v; and v, that were moving. This was seen in the
following example.

The tutor immediately presented Ben and Sam with the following situation. He
drew three vectors v, vz, and v all starting from a common point on a sheet of paper, and
told them that the vectors were fixed (i.e. they are not allowed to move them) see Figure
2.17. The tutor asked the group the following question. Can you find scalars k; and k>

such that v will be a linear combination of v, and v,?
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Figure 2.17. Diagram drawn by tutor

Sam tried to write vector v as a linear combination of v; and v, by rearranging the vectors
(even though he was told that all the vectors are fixed) to the following configuration

with v; and v, longer than originally given (see Figure 2.18).

Figure 2.18. Diagram drawn by Sam

The tutor reminded Sam that the vectors were fixed and he was not allowed to
move them. At this point, Sam’s facial expression appeared to be one of uncertainty so
the tutor asked him the following question:

Tutor: You don’t think it could be done?

Sam: No.

Tutor: But, you could do it here [referring to the previous
problem that was done in Cabri.]. You did it here. You
did it from here and what’s the difference?
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Sam: Cause we moved the vectors.

The tutor proceeded to explain to Sam and Ben that when they moved the scalars
on the number line they were in fact changing the length and direction of the vector w
since it depends upon the length of kyv; and k,v>. However, Sam had some difficulty
accepting this explanation about the function of scalars in the paper-pencil environment
since he did not see their existence:

Sam: But, what we care about is to change the direction
[making reference to vI and v2 of in figure].

Tutor: Ah, so why can’t you do it here?

Sam: Because you don't have a scalar.

The difficulties that Ben and Sam encountered could be explained from their
physics background. Sam’s first instinct was to rearrange the vectors, which is permitted
in physics as long as the magnitude and direction remain unchanged. However, his
knowledge of vectors was still primarily focused on magnitude and not direction. Note
that in both situations the vector v has approximately the same length but different
direction and is viewed as equal to the original.

The way how Sam viewed the non-existence of scalars in the paper-pencil
environment was of convention. When we have the following equation u=k;v, + kpvs,
where ki=kz=1, it is usually written as v; + v, and not (1)v; + (1)v; since the number 1
is implicitly understood, thus giving the false impression of absence of scalars.

The analysis of the protocols for Group II also revealed that these students had
similar misconceptions about scalar multiplication. This operation was not viewed as
creating a new vector but only as a way of extending the old vector. For example, when a

vector v, was multiplied by scalar k3, the new vector k;v, was not seen as a new vector.

It was only seen as an extension of v,. Evidence of this line of reasoning was present in

66



Session 2 Activity 1 when the group was asked to draw any vector u starting from the

origin and to find scalars k; and k; such that k;v; + kv2 = u. Rachel replied:

Rachel: Move k; and v, around until u is the diagonal.
Her response seems to indicate that she was thinking that the scalar k; is controlling the
vector va.

In the second activity the students were asked to represent the vector w as a linear

combination of the vector u and v (see Figure 2.8). Their excerpt was:

Rachel: So if we bring down v ... can we change v?

Jenn: Can't we just sort of move it around? How do

you move a vector?

Rachel and Jenn’s responses seemed to indicate that they were uncertain about how the

operation of scalar multiplication is used to create new vectors.

2.4.6 Area of difficulty 6: Notion of a basis:
Students believe that all vectors can be constructed from a single vector

In Session II Activity 3 the students were introduced to the notion of a basis in
two dimensions. In the first question, the students were told that they were given one
vector and asked “What other vectors can you obtain from it if you are allowed to
perform the operation of vector addition and scalar multiplication, or a combination of
both these operations™. In the first group, Ben’s willingness to rearrange vectors led to
complications in understanding the question; he replied:

Ben: Suppose v is here and if you put here [making reference
to any arbitrary vector different to v], you know, the
vector, you can get the linear combination.

it's possible to get any direction, it’'s possible to get the
value.
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Ben’s response suggested that he was interpreting the question in the following manner.
If someone places a vector v on the screen, followed by another vector w that is different
from v, then he can always move the vector v so that it will coincide with the vector w.
Therefore, all vectors can be expressed as a linear combination of a single vector v.

Once again the idea of moving the vector v may have come from Ben’s physics
background which unfortunately created confusion in understanding the notion of the
span of a single vector v.

In the second part of the question Ben and Sam were given two non-collinear
vectors and asked the following question, “What vectors can you get as linear
combinations of these two and what vectors you can not get as linear combinations of
these two?”. The excerpts read as follows:

Sam: Ok you can get 3 of them

Tutor: Uh huh

Sam: Yah, and you get another 3 which will be 90 degrees
each time from the first. Did you get it?

Tutor: How do you mean that 90 degrees?

Sam: | mean the first will be like this, between them [pointing
between the vectors where their sum would be
approximately (see figure 2.19 vector a).]

Tutor: Yah

Sam: Ok, the second will be 90 degrees from this [making

reference to vector b in figure 2.19.]. And the third will be
180 degrees [making reference to vector c in figure2.19.].
The second will er, the last one will be 270 degrees
[making reference to vector d in figure2.19].

Tutor: So, which vectors are the vectors which are not linear

combinations of these two?

Sam: Everything else, except this one.

Sam: These you can get. You can get 4 [referring to

the 4 vectors a, b, c, and d that he described earlier].
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Figure 2.19. Notion of a basis for two non-collinear vectors

Sam understood from the previous activity that once the two non-collinear vectors were
selected they could not be moved. With this in mind and recalling from previous
activities that the sum of two non-collinear vectors lies in between the two vectors that
were added, he replied that only four vectors could be formed. This response confirmed
Sam’s uncertainty about the function of the scalars and how they could be used to make
new vectors. For example, the result of a linear combination of two non-collinear vectors
need not lie between them. An example of this would be when one of the scalars is equal
to zero.

The second group did not have that same difficulty when responding to the
questions of Session II activity 3. In answering the question on span of a single vector
Rachel replies that infinitely many vectors could be obtained, but they will all be
collinear. In answering the question on span of two non-collinear she also replied that

“you can get vectors anywhere”.
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2.4.7 Area of difficulty 7:
Physical embodiments of linear algebra concepts as a source of mental conflict
The students were introduced to several pre-made models of physical situation,

which embodied the idea of transformations of vectors. They were asked to manipulate
specific vectors within these models and to observe and describe its effect on another
vector within the same system. The descriptions of the transformation for group I was
expressed in physics terms because this has where the students were used to seeing them.
Unfortunately, these descriptions, while valid, seemed to fall short of the expected
result'! by the researcher. For example, in Session Il Activity 1 symmetric forces (see
Figure 2.12) the students were asked to describe how the vectors F; and F, were related
to each other. The students replied:

Ben: The angle is increasing.

Sam: The angle of ah F; and F-.

Sam: When you increase the weight these vectors

are increasing.

Ben: And the angle.

Sam: And the angle between them is increasing too.

Ben: v, will be the mirror image of.
Once the instructor realized that he was not getting the response that he desired, he tried
to move the students’ line of thought from the physical situation which led to an

interesting result.

Tutor: Suppose I don’t have a physical situation any more all
I have is the vector [referring to the vectors F1 and F2

Jorm figure 2.12]
Sam: You can’t separate it from the physical.
Here we see Sam’s strong attachment to the physical situation of pulleys and

weights. His previous exposure of physics led him to some inflexible thinking. He

"' The two vectors F1 and F2 have the same magnitude and different direction.
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experienced difficulty in trying to separate the vectors from the physical situation in
which they were presented. This difficulty could have been a result of his thinking of
vectors as forces. He might be under the impression that vectors only exist in some
physical situation.

The students in the second group were able to describe the motions of the vectors
in terms of their length and direction without incident. However, the extent to which they
understood the embodiments of the physical setting could not be determined.

2.4.8 Area of difficulty 8:
The axiomatic definition linear transformation

In comparing two unequal transformations (Session ITI Activity 4), there seemed
to be some disagreement between the students from group I on the equality of the
transformation. Ben said that the transformations did not coincide, whereas Sam thought
the two transformations were the same. Sam based his decision on analyzing the motion
of the vectors and, because they were moving in the same direction, he saw the
transformations as being equal. He was able to overcome this difficulty by readjusting
his definition of the word “same” and said, “when we always put v, the same length as
v, wi should be always the same on w»”.

In analyzing the second group’s response to the same activity Jenn was also
looking at the motion of the vectors. She did not see T as being a function where the
vectors v; and v, were like the domain and when acted upon by T got transformed into w;
and w; in the range.

An analysis of both groups’ work with the linearity equation
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Tkvitkava) = ki T(vi)+koT(v2), revealed several things. The students were given three
transformations and asked to verify whether they were linear or not. The first
transformation was a rotation followed by dilation, which is linear. The second was the
“semi linear” transformation, defined in an orthonormal system of coordinates as T((0,0))
= (0,0) and if v=(x,y) # (0,0) then T((x,y))= c(-y,x) where c= |x//||v], which preserves
scalar multiplication and not vector addition. The third transformation preserved neither
scalar multiplication nor vector addition.

In analyzing the results for the first group, I will focus on the first activity because
the last two were done well by this group. In verifying the first transformation, the
students did not realize that once a vector v is transformed by a transformation T its
image is dependent on the vector v. The students would create a free vector, rotate it,
then label the rotated vector as v,. The students also did not see rotation combined with
dilation of a vector as a transformation.

Sam: But, what is the relation? Ok so what is the relation
[referring to the transformation T].
Ben: Don’t know.
Sam: Ok so, what is the relation? Dilation or rotation, what's
it?
Ben: /'ve gotthe T. We find T.
Sam: Yah, what's the T?
It appeared that Ben and Sam were uncertain about the nature of the linear operator T.
They assumed that T stood for the Shear-11 which they verified in Session III Activity 6.
Sam: But, we don’t know what’s T, you know.
Tutor: Why don’t you know what T is?
Sam: Yesterday you told us it was Shear-11 but today you
didn't.
The second group also showed the same misunderstanding of the transformation

T. They assumed that T represented the Shear-11 transformation which they verified in
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Session III Activity 6, and not the newly defined transformation rotation by 55 degrees
and dilating by a factor of 1.6. The excerpt read as follows:

Rachel: So we will take that shear

Tutor: Why shear, you've already checked shear, what you
have to do is this

Rachel: Yes, but you have to go and do this shear, w and

see ifit's equal to...

Tutor: You've already done that. The transformation that
you're checking for linearity today is this one, you do
rotation and the...

Jenn: Why can’t we do this one, what’s the difference?

The students were uncertain about the nature of the linear operator T. After they had
applied the correct transformation Rachel mentioned:
Rachel: Ok, | am not very clear about what we just did.
“Angle” of rotation and dilation factor are these
functions?
In analyzing the results of how a square grid with 8 vertices gets transformed into
a parallelogram grid (Session IV Part II), was solved through spatial orientation by both
groups. They had to keep in mind that when looking at a transformation of the given
grid, the points on a line remained on the same line before and after transformation.
Parallel lines remain parallel before and after transformation and the ratio between the
lengths of segments’ change proportionally in the transformation. Even though they
claimed that it was not useful to know that the transformation was linear, the students still
used these properties of linearity in their reasoning to solve the problem.
Tutor: ...How did you use linearity at all, was it useful to
know that this figure was transformed because you
had a linear transformation? was that
Sam: it wasn’t useful for me.
Tutor: /t wasn’t? so, do you think if, if the transformation was
linear, er.

Sam: / don't know. | tried to put, to get something useful
from knowing this, that this one is linear
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A summary of the difficulties encountered by both groups can be found in table 1.

Table 1: Summary of the difficulties encountered by the groups

Areas of Observed Difficulties Ben Rachel

and and

Sam Jenn
Difficulty 1: Characterizing a vector by its magnitude Yes No
Difficulty 2: Equality of vectors as equality of their lengths Yes No
Difficulty 3: Distinction between vector/scalar quantities Yes Yes
Difficulty 4: Visual obstacles Yes No
Difficulty 5: The notion of scalar multiplication Yes Yes
Difficulty 6: Notion of a basis Yes No
Difficulty 7: Difficulty with embodiments Yes No
Difficuity 8: The axiomatic definition of linear Yes Yes

transformation

74



Chapter 111

Conclusion



3.1 Summary

Some general issues that interfere with learning linear algebra in a geometric setting were
discovered in this study. These are issues that gave difficulty to both the students with
physics experience and those without such experience. Thus, these issues appear to be

inherent to the process of learning linear algebra. These issues were:

1. Distinction between vector quantities and scalar quantities

Students in both groups had frequent difficulties understanding that vector quantities are
distinct from scalar quantities. It appears that this is a common problem for students
learning linear algebra. The conceptual distinctions between vector and scalar quantities
must be made clearer to students, possibly in a preemptive fashion. This would eliminate

much of the unnecessary errors and false starts students make when attempting to learn

linear algebra.
2. The notion of scalar multiplication

Students in both groups had much problems grasping the notion that scalar multiplication
is one way that new vectors are sometimes created. They tended to think that scalars
simply modified old vectors (stretching or shrinking), rather than creating new ones. The
way that new vectors are created by the operation of scalar multiplication, and the fact

that they are new vectors, must be emphasized with these students.

3. The axiomatic definition of linear transformation

The students exhibited a number of difficulties using linear transformations. When
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comparing two unequal transformations one student from each group analyzed the
motion of the vectors and used the fact that the vectors appear to coincide at special
points to conclude that the transformations were equal transformation. However, the
notion of equality of transformations has to be made explicitly distinct from the vague
idea of similar. These students also did not regard “T”’ as an arbitrary function that
transformed one vector into another vector. Both groups were under the impression that
the linear operator T stood for a specific transformation they verified in a previous
activity. It is essential to make it explicitly clear to students that the operator T represents

a variable transformation which could stand for many transformations.

As well, there were a number of difficulties that emerged only for students with
physics backgrounds. This might suggest that these issues are ones that are especially
problematic for students with previous exposure to physics knowledge. As well, these
are less likely to be inherent problems in the learning of algebra, and may indicate

competing processes at work. The problems specific to experience with physics include:

1. Characterizing a vector by its magnitude

This was a recurring problem that was noted by Ben and Sam, which might have been
influenced from their background in physics. These students were accustomed to
dealing with vectors quantitatively, with their direction implicitly understood. Therefore
it appears that they transferred this same reasoning when working with vectors
geometrically as arrows. This created problems when deciding when two vectors are

considered equal.
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2. Equality of vectors as equality of their len

The characterization of a vector by its magnitude only, and not its magnitude and
direction, created confusion for Sam and Ben when considering the equality of two
vectors. They were not sure if two vectors were considered equal if they had the same
magnitude or direction or both. It appears that direct emphasis is needed on two features

of a vector: its magnitude and direction.

3. Visual obstacles

The geometric representation of vectors in the context of the operations of vector addition
and scalar multiplication caused some confusion in Ben and Sam. Ben’s classification of
Figure 2.13 as a rectangle, and the group’s interpretation of the diagram for scalar
multiplication as synonymous with vector addition, gave the impression that these
students’ previous experience with physics was interfering with their acquisition of new
knowledge. Thus the meaning of the diagrams cannot be taken for granted in teaching
and it must be made explicit to the students so as not to create confusion with new

concepts.

4, Notion of a basis

Students’ experience from physics in rearranging vectors creates confusion in
understanding the notion of span of a single and two non-collinear vectors. The idea of

vectors being fixed is not easily accepted and must be made explicit.
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5. Difficulties with embodiments

The way in which vectors were presented in physical situation of pulleys and
weights led to the students having difficulty abstracting the mathematical notion of a
vector. This suggests that we must be careful with the representations that we use to

enhance students’ understanding of a concept.

This study highlights the importance of being aware of the previous relevant knowledge
of students when attempting to teach them a complex topic such as linear algebra. Being
aware of such knowledge should help teachers anticipate areas of weakness, where
“unlearning” may be necessary. At the very least, teachers will have a sense of the
specific problems that they are dealing with, and the ways to address these problems.

Ideally some of these solutions will be preemptive ones.
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