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ABSTRACT

Absolutely Continuous Invariant Measures
For

Piecewise Linear Interval Maps Both Expanding And Contracting

Md. Shafiqul Islam

Let F be a family of piecewise linear maps f : [—1, 1] — [—1, 1] with a discontinuity at x = O
such that fis expanding in one of the intervals (—1,0), (0, 1) and contracting in the other. We
will study the dynamics of maps of sub-classes of F. It will be shown that a map in such a
sub-class of F either has a periodic attractor or is eventually expanding. In the latter case,
there exists an absolutely continuous invariant measure (acim) and in many examples we

will find the measure.
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Chapter I

Introduction

1.1 General introduction

Finding conditions on a transfirmation that will guarantee the existence of absolutely
continuous invariant measure (acim) is an important question in ergodic theory and
dynamical systems. Although of mathematical interest by itself, this problem has many
applications in other areas, namely in physical and biological sciences. Renyi [Re] was the
first to introduce a class of transformations of the unit interval and proved that it has an acim.
Later, in 1973, A. Lasota and J.A. Yorke [L-Y] generalized Renyi’s result and using this
generalized result, many mathematicians proved the existence of acim for some
transformations. Recently, M. A. Boudourides and N. F. Fotiades [B-F] considered the
piecewise linear interval maps both expanding and contracting and proved the existence of
acim for such maps. Even when it is known that there exists a unique acim, finding it may be
a tedious chore. This thesis provides a generalization of A. Boudourides’s and N. F.

Fotiades’s results.

Consider the family F of functions f : [-1,1] — [-1,1] defined by

Aix+a , xe[-1,0)
fx) = 0 , x=0
where a,b, A1, A, are constants such that {[—1,1]) < [-1,1].
Moreover, we assume that the absolute value of the slope of fis greater than 1 (expansion) in

one of the intervals (~1,0), (0, 1) and less than 1 (contraction) in the other.

A. Lasota and J.A. Yorke showed in [L-Y] that for a piecewise expanding map iiiere exists

an acim with respect Lebesgue measure. In our case, one branch of a map f € F is expanding



and the other branch is contracting. We will show that under certain conditions on 4; and
A2, f € F is eventually expanding and under certain conditions on A; and 4, , f has a
periodic attractor. In the former case, we will show that there exists an acim for f € F.
Finally, for many examples, we will find the acim. We will follow [B-F]. They considered f
with one increasing branch and one decreasing branch and discussed the dynamics of such
maps. We will also consider f with both increasing branches and will discuss the dynamics of
such maps. We will show the existence of acim and find the acim for Markov case using the

matrix representation of Frobenius-Perron operator and also using numerical computations.

1.2 Scope of the Thesis

In Chapter II, we review some basic concept from measure theory, dynamical system,

ergodic theory and functional analysis.

In Chapter III, we discuss the Frobenius-Perron operator, Markov transformations and the

matrix representation of the Frobenius Perron operator and acim for piecewise monotonic

transformations.

In Chapter IV, existence of acim for piecewise linear interval maps both contracting and

expanding with one increasing branch and one decreasing branch are given.

In chapter V, we will consider f with two increasing branches and will show the existence of

an acim for such f.

In Chapter VI, C++ code and corresponding numerical results for finding the density

function are given.



Chapter I
Preliminaries

In this chapter we review some basic concepts from measure theory, dynamical systems,

ergodic theory and functional analysis. We follow [B-G], [M-S], [R1] and [R2].

Definition 2.1.1
Let (X, 2B) be a space X and a o-algebra of its subsets. Two measures y and v on (X, &) are
said to be mutually singular if and only if there exist disjoint sets A, and B, such that

X=A,UB,and v(A,) = u(B,) = 0. In this case we write, 4 L v.

Definition 2.1.2
Let u and v be two measures on (X, B). We say that v is absolutely continuous (a.c.) with

respect to u if for any A € B, v(A) = 0 whenever u(A) = 0. In this case we write v << .

Definition 2.1.3
Let (X, 2,1) be a measure space. By (L',ll«ll;) we mean the family of all integrable
functions fon X , i.e.,

Chiel) = {f: X > Rl Ifl, = [If0)ldu(x) < o).
By (L®,ll«1l_), we mean (L®,ll«ll_,) = space of almost everywhere bounded measurable
functions on (X, B, u), i.e.,
(L2, ll,) = {f: X = Rs.t. lfilo =essuplix)l = inf{M : u{x : fx) > M} = 0} < +co0}

Theorem 2.1.1 (Radon-Nikodym Theorem):

Let (X, B, u) be a o-finite measure space (that is, there exists a sequence {X,} < X such

X=U2 X, and pu(X,) <) and let v be a measure on (X, ) which is absolutely
continuous with respect to u. Then there exists a unique non-negative measurable function f

such that for any set E € B , we have v(E) = I Efdy. The function f is called the

Radon-Nikodym derivative of v with respect to u and is denoted by f = [—“% .



Definition 2.1.4

A transformation 7: X = X is called a measurable transformation if for all measurable

subsets A of X, t71(A) = {x € X : 7(x) € A} is a measurable subset of X.

Definition 2.1.5

Let (X, 2, u) be a normalized Lebesgue measure space and 7: X - X be a transformation.
Then 7 is non-singular if and if u(z'(A)) = 0 whenever u(A) = 0 for all measurable
subsets A of X.

Definition 2.1.6

Let (X, 2B, i) be a measure space and 7: X — X be a measurable transformation. Then u is

invariant (7 preserves y) if for any measurable subset A , u(A) = u(r -l A).

Theorem 2.1.2
Let 7: X — X be a measurable transformation on (X, /B, u). Then t is invariant

(z preserves p) if and only if
JF@dp = | Aetedp

for any f e L*. If X is compact and above holds for any continuous function then 7 is
U —preserving.
Definition 2.1.7
Let (X, B, 1) be a normalized measure space and

D=DX B,y =L{feL'X,B,p) :f>0andlfll, = 1}
denotes the space of all probabiiity density functions. A function fe€ D is called a density
function or simply a density. If f € D, then ufA) = J'A fdu << u is a measure and f is called

the density of ys and is written as %“‘L.

Definition 2.1.8
C%X) = C(X) denotes the space of all continuous real functions f : X — R with the norm



Al .o = suplx)L

Let r = 1. C"(X) denotes the space of all r-times continuously differentiable real functions

f: X - R with the norm
r o= k)
Al %i‘é}?'f( €918
where f®(x) is the kth derivative of f{x) and f®(x) =f(x).

Definition 2.1.9

A transformation 7: X -~ R is called piecewise C?2, if there exists a partition
a=ap < ai < ..... < ap, = b of the closed interval [ = [a,b] such that for each integer i
(i = 1,2,...,p) the restriction 7; of 7 to the open interval (a;,a;) is a C? function which can
be extended to the closed interval [a;_1,a;] as a C? function. 7 need not be continuous at the

points a;.

Definition 2.1.10
Letf : I — Ibe amap and J < I The first return map of fon Jis a map R : J — J defined
by R(x) = f*(x) where k = min{i > 0 such that f(x) € J}.

Definition 2.1.11

Letf : I — Ibe amap and x € [-1,1]. The point x is called a fixed point of fif f{x) = x and
it is called a periodic point of period p if f/(x) = x and f7(x) # x for | < g < p. We denote
by O(x) the periodic orbit {x,f(x),f2(x),...../2" (x)}. The set B(x) = {y : f(y) — O(x),as
k — <o} is called the basin of O(x). If B(x) contains a nontrivial interval then the orbit O(x)

is called attracting.

Definition 2.1.12
A map f: [a,b] — [a,b] is called expanding if there exists a partition of [a,b],
a=ag <a; <az < ... <ar=>b such that [f(x) > 2> 1 for all x € (ai1,a:). The

function fis called eventually expanding if f* is expanding for some k& > 1.



Definition 2.1.13

Let I = [a,b]. The transformation z: I — [ is called piecewise monotonic if there exists a
partitionof I, a = ap < a1 < a2 < ...... < ag = b and any integer r > 1 such that

(?) Tlgyap is @ C” function, i = 1,2,3,.....,q which can be extended to a C” function on

[ai_l,a,-], [ = 1,2,3, ..... N and

If in addition to (ii), Iz/(x)| > a@ > 1 whenever the derivative exists, then 7 is called
piecewise monotonic and expanding. Note that (ii) implies that T is monotonic on each

(ai-1,ai).

Definition 2.1.14

Let I=[a,b] and 7:I+—1 . Let P be a partifon of I given by the point
a=agp<a<.... <ap=>b.Fori=1,2,...,nlet I; = (ai1,a;) and denote the restriction
of 7 to I; by z;. If 7; is a homeomorphism from /; onto some connected union of intervals
(ajiy» ax). then t is said to be Markov. The partition P = {[;}%, is referred to as Markov
partition with respect to 7. If, in addition , Iz/(x)l > O on each I;, we say that 7 is in class T4.

If each 7; is also linear on [;, we say that 7 is piecewise linear Markov transformation.

Example 2.1.1

Let 0 =ap < a; <az < .. <ap, =1 be any partition of I = [0, 1]. Let I; = (a;;,a;), and
define the piecewise linear, continuous transformation 7 : I — I by the conditions

Dtli) =Iis1, 1 <i<n-1and

(i) T(ln) = U} L.

Then t is a Markov transformation. In particular, the transformation f defined by

x+% , 0<«x
fx) = .

3
<%
+=-3) , =sx<1



34— — — —f -
t [
. ! ! [
[ l |
1 1
g - — - T — = - T

Figpraz 2.1 1

with the partition {(0, 1), (<4, %), (% %), (%, 1)} is a Markov transformation.



Chapter III

Frobenius-Perron operator and absolutely continuous invariant

measures for piecewise monotonic transformations.

In this chapter we introduce the notion of Frobenius-Perron operator, a very useful tool in the
study of acim. We shall also present the matrix representation of Frobenius-Perron operator
for Markov transformations that we shall use in the next chapters to find the acim. Finally we
shall show the existence of acim for piecewise monotone transformation using the method of

bounded variation and Frobenius-Perron operator. In this chapter we follow [B-G], [D-S],

[P] and [L-Y].

3.1 Frobenius-Perron Operator

Definition 3.1.1
Let 7 : [ — I be a measurable non-singular transformation and fe L'(l). For A c [
measurable , define the measure u by
HA) = [, fdh-
From the definition of non-singularity of T we see that
AA) =0= A(7t71(A)) =0 =u(A) =9.
Thus g << A. By the Radon Nikodym theorem, there exists ¢ € L'(J) such that for all

measurable set A < I, y(A) = _[A ¢dA and ¢ is unique almost everywhere (a.e.). Set Pf = ¢.

The probability density function f has been transformed to a new probability density function
P.f. P. obviously depends on the transformation t. Thus P, maps L' into L' and for all
measurable sets A < I,

L P fdA = L fdA.

-1(a)

P is referred to as the Frobenius-Perron operator associated with 7. Clearly f is invariant

under 7 if and oaly if P.f = f, i.e., fis a fixed point of the Frobenius-Perron operator. Letting

A = [a,x] and differentiating both sides of the above equation, we obtain:



Example 3.1.1

Ifx <O,

Forfe L'(D),

Therefore

t[0,x] = [0, 5=]U [+ +x),1].
Jerqoa @ = | oLz_ far+| ;fdl-

Pif =

Figurs 3.1 1

<4 = Lyfd=ey o ofqrlex
de r-'([o_r])ﬂt)dt 2{f( 5 ) T s )




3.2 Properties of the Frobenius-Perron operator:

Property 3.2.1
P. : L'(I) — L'(I) is a linear operator;
Property 3.2.2
iffe L'(I) andf > 0, then P.f > 0;
Property 3.2.3
P preserves integrals;
Property 3.2.4
P. : L'(I) — L'(D) is a contraction, i.e.,
P fil,1 < lifil,for any f € L!.
Moreover, P; : L'(I) — L!'(I) is continuous with respect to the norm topology;
Property 3.2.5
Lett : I+ Iand o : I — Ibe non-singular. Then
Progf = P, o Psf;
Property 3.2.6

Let z : I — I be a nonsingular transformation. Then P f* = f*a.e if and only if the measure
u =f*A, defined by u(A) = _[A frdA , is r-invariant, i.e, if and only if u(A) = u(z~'(A)) for
all measurable set A, where f* > 0, fe L! and lifll = 1.

Proof:
(i) Let A < Ibe measurable and a, S be constants. If f,g € L!, then

[ Pelaf+ Bg)dd = [ _,  (af+ Bg)dA
=af , JaA+B[ .

= afAPJ+ﬁIAP,gdl

gdA

= (@P:f+ BP:g)dA.
Since A is arbitrary we have

P.(af + Bg)dL = aPf+ BP.g almost everywhere.

10



(ii) Forany A c [,

IA Pf= J' ) f = 0.Hence P.f > 0.
(iii) Observe that
7 '{a,b] = [a,b].

Now [ Pofdd =], fdd =] fdi.

(iv) Letf e L' and

f* = max(£,0), f~ = ~min(0,f).
Then

f=f—f and|fi =+
By linearity we get,

Pof = P(f* —f) = Pof* —P. f~.

Now
IPAl <IPof*] +IPof
=IPf*1 +HPf | = P.(f* + ) = P:IA.
Thus
IPAflys = [ IPfidA < [ PelfidA
= [y YidA = [, \dA = Iifil,
Hence

IPAl: < Wl
It follows from this result that P, : L! — L! is continuous with respect to the norm
topology, since

WPef— Pegllpy < Nf—gllys.
(v) Let f € L! and define the measure u by

#(A) = J‘(too’)'l (A)fd}ﬂ

Now A(A) =0 = A(r71(A)) = O (non singularity).

11



= A(c~1(t7'(4)) = O (non singularity again).
Thus u(A) = 0 whenever
AA) =0=> u<<A.

Therefore
v(4) =| oy PfdA is well defined.
Now [y Peaf = | oy = Jorcran”
= [,y Pof = |, PePof
Hence

Proo'f= PtPo-fa.e.
Itis clear that P_.f= Plf.

ASSUmC that Pt"f= P’tlf: NOW P.L.Il-o-lf: Ptu-;’lf': PtPr"f: Pt(Pt"f).
Hence P.»f = PZf.

(vi) Assume that u(z~'(4)) = u(A). Then

[ . w4 = [ frdr
and therefore
[ Pordr = |, frda.
Since A is arbitrary, P.f* = fra.e.
Conversely, assume that P.f* = f*a.e. Then _[A P.f*dA = IA frda = u(A).

By definition,
[ Pefdd = [, frdh = p(z™(A)).

Hence u(tl(A)) = u(A).

12



3.3 Representation of the Frobenius-Perron Operator
In this section we proceed to find P for t piecewise monotonic. By the definition of P.,we
have

[,Pfdr=|_,  fd2

for any Borel set A in I . Since 7 is monotonic on each (ai-1,a:), { = 1,2,...,q, we can define

14

an inverse function for each 7l 4,)- Let ¢: = 771, where B; = t([ai—1,a:]). Then ¢; :
B,’ — [a,-..l,a,-] and
t™(A) = UL, ¢:(B:NA)

where the sets {@:(B:NA)}L, are mutually disjoint. Note also that, depending on A,
¢:(B: N A) may be empty.
Thus JoPofad = 3L, [ pon fd2

= q A t

= 2L [ g on SO )IPi(x)1dA

= 3L, f:x) i)z, (x)dA

[l ®)
~I Qi W eon X pap OV
Since A is arbitrary,
@)
PfC) =L, Lo L s @)
forany f e L!.

The operator P is not one to one. To see this let us consider 7 , the symmetric triangle

transformation on [0, 1]. Let f = 1 on [0, 4-] and —1 on [+, 1]. Then Pf = 0 a.e. Thus P; is

not a one to one operator.

3.4 Piecewise linear Markov transformation and the matrix representation of

Frobenius-Perron operator:
Now we shall study a special class of piecewise monotone transformation known as Markov
transformation. These transformation map each interval of partition onto a union of intervals

of the partition. Of particular importance are the piecewise linear Markov transformation

13



whose invariant densities can be computed easily since the Frobenius-Perron operator can be
represented by a finite dimensional matrix. Furthermore, the piecewise linear Markov
transformations can be used to approximate the long term behavior of more complicated
transformations. Therefore, the fixed points of the Frobenius-Perron operator associated with

general transformations can be approximated by the fixed points of appropriate matrices.

Definition 3.4.1
Let 7 : I — I be a monotonic transformation and let P = {I;}%, be a partition of I. We
define the incidence matrix A; induced by 7 and P as follows :

1 . IjCT(I,')

LetA; = (a,,) 1<ij<n where aij = .
0 , otherwise

Notation 4.3.1

Let us fix a partition P of [ and let S denote the class of all functions that are piecewise

constant on the partition P, that is, the step functions on P. Thus , f € § if and only if

f= 2:;1 mix 1, for some constants 7,72, ...... 7, . Such an f will also be represented by the
column vector nf = (1,72, .......... n,)T, where T denote the transpose.
Theorem 3.4.1

Let 7: I — I be a piecewise Linear Markov transformation on the partition P = {/;}%,. Then
there exists an n x n matrix M; such that P.f = M.z/ for f € S and =/ is the column vector
obtained from f. The matrix M- is of the form

M. = {myp, .,

where

a; AN -t (Ij
it | AL

D 1<ij<n

and
A: = (@)1=

is the incidence matrix induced by 7 and P.

14



Proof: Weknow ,forfe L'and 7 : I — I,

PS) =, Ty 0 -
Letf = xy, forsome 1 < k < n. Then
Poflx) = 2201 Xyt T 7 G X0
Since the range of 77! is I;, y1(z7'(x)) will be zero for all i # k. Thus
Pof(x) = i a0 (-
Since 77! (x) € I and 7’ is constant on I, we can write
Pof(x) = il o ()-
Now let f € S, thatis
f=2 mixr = (1,2, e 7o)t
Since P. is a linear operator, we have
P =2 e Pe(x1), thatis,
Poflx) = D00, Tk 1T oy (0)-
This proves that Pf € S. Let us write P.f as (d1,d2. ...y dn) ™.
Let x € I; and P f(x) = dj. Now the kth term on the right hand side of the above equation
equals 7l I~tif and only if x € 74(lt), that is, if and only if [; < 7,(Ix). Let A =1 if
I; = t4(Ix) and O otherwise [ that is (Aj) 1gix<n = AT)]. Define the n x n matrix
MT = (mp) = Apltil—t.
Then

(dl\ (m\

d;), V%)

dj=277:k’rﬁjk and P.f = ) =M,,7:

&) = )
Note that 7 determines M, uniquely, but converse is not true , that is, 7 is not the only

transformation that induces M. On any segment I;, the transformation 7; can be replaced by

15



a linear transformation with the same domain and range as t; but having slope —/. Thus

there exists 2" piecewise linear Markov transformations which induce the same matrix M-.

Example: 3.4.1

Letz : [0,1] — [O, 1] be defined by

([ 2x+d, xel =[0,1)
2 1 = ’
—x+i, xEIz=(-I—,L)
@=< o
—ZX'*'T, XEI3=(?,—)
L —x+1 xels={(31]

It is Markov on {[1,1,13,1s}. The matrix representation of Frobenius-Perron Operator is

0 0 + &
M, = 0 0 0 1
0 4+ + 0
1 0 0 O

Let & = ( X1, X2, X3, Xa ).Then solving tM, = © ,we get

r Lo
(xl, X2, X3, X4) 0 0 % =(x[, X2, X3, JC4)
2 0 0

=r=(212,2)

Thus the density function for fis given by

4 1 1
T xe (37

g(x)={ L, xe0 DU

35 Absolutely Continuous Invariant Measures For Piecewise

Monotonic Transformation.

Let I = [a,b] < R be a bounded interval and A denote Lebesgue measure on I. For any

sequence of points a = xp < x1 < ..... <Xp1 <Xp=b, n>=1, we define a partition

16



P ={Il; = [xix:) : [ = 1,2,....,n} of I. The points {xo,x1,...,xn} are called endpoints of P.
Sometimes we will write P = P{x0,X1,-.-»Xn}-

Definition 3.5.1

ILetf:I — Rand P = P{xp,x1,-...Xn} be a partition of I If there exists a positive number
M such that an=1 Ifxk) — fxr-1)l £ M for all partitions P, then f is said to be of bounded
variation on [a,b]. In this case Z'k':l IRxk) —flxk-1)! is called the variation of f with respect to
P and we write \/Z(f,P) = ZL[ Ifxr) —fxk-1)l. The number V[a S = sup VZ()",P) is
called the total variation or simply the variation of fon I.

Lemma 3.5.1
If f € C'[a,b] with If| > 0, then f is monotone on [a, b].

Proof: f € C![a,b] = f € Cla,b] . Now If| > 0 = either 0 < f < 0or0 < f < co. Since

f' is continuous, it is only possible to have f < 0 Vx € [a,b] or f > 0 Vx € [a,b]. In either

case f is monotone on [a, b] .

Lemma 3.5.2
Let fand g be of bounded variation on [a, 5]. Then

VinF+8) =Viuuf+Vien g

and
v[a.b] ELlf k = ZLI V[a.b]f k-

Proof: Let P = P{xq,x1, -*-,Xa} be a partition of [a, b]. Then

ViF+8).P) = X, I(f+8)(xe) = (F + &) Cre)l
< 2t IFOk) = flce) + 20 lgCxe) — glxem)l
= VirP)+ Vi, P).
So Vs F+ &) = sup(Vo((F+¢).P) <
< sup(V.(5P) + V2(s.P))
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<sup \/Z(f, P) +sup VZ (g,P)
= V [ab]f+ V[ab] g -
By induction, we get

V[ab] Z"k=lf k = ZRH V[a,b]f k-

Lemma 3.5.3
x € [a,b] = @)l +Ib)I < V[aﬁ]f+ 2IRx)1.
Proof: For x € [a,b]],{a,x,b} is a partition of [a, b] and call it P. Then

Visn/ = VEEP) = Ift) —fa)l +IRB) — fx)

= Ifla) —fx)l + Ifb) — fx)I

= Ita)l = Ol + IAB) = )l = If{a)l + b)) — 2If(x)!
Hence Ifadl+ IO < V. f+ 2L
Lemma 3.54
Let f; be defined on [a;, B:] < [a,b] and

(%) ___{ I, xela,pi] '

0 , otherwise
Then forf= 3.7 fixi
V[a,b]fs Z::[ V[a,.,p,-]fi + Z’;l (fi(adl + Ifi(BID.

Proof:

FEO2,V it £ Vg fi + i) + (B,
equality holds if a; = @ and B; + b.

From the previous lemma,

Vs S Vs f)
< 30V g fi + i@ + (B
= 20 Vipafi + 2 (i)l + (B)D.
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Lemma 3.5.5
Let f be differentiable and one to one and let g = f. IfIf| > a then Ig'l < +.

Proof: Agx) =x=f(g(x)g'x) =1
=) =l—zlza=g1< 7.

Lemma 3.5.6

Iff € C*[a,b] is monotone on [a,b], then -LIf | exists everywhere on [a, b].

Proof: fmonotone= f > 0 Vx € [a,b] or

f >0Vxe[ab] = Ifl=FfVx e [a,b]
or Ifl = —f Vx € [a,b].
Now f' € C'a,b] = —f € C'[a,b].
Hence If | is differentiable on [a,5].
Lemma 3.5.7
If /o, f < aand Ifl, < b, where Ifil, = [ I, then

X))l <a+b, Vx € [a,b].
Proof: l[fil, < b = 3Ja such that |{a)! < b. If not, then {{a)! > b, Vx € [0, 1] and therefore
1 1
fjA>f b=0b

and we have a contradiction.

Also

i) -fa) <V f<a
and thus )l <a+fla)l <a+b.
Lemma 3.5.8

For f € L'[0,1] and € > O, there exists r = r(€) such that
l t
[(Fr=n+[ F-nN*<e,
where ff = max(f,0), f~ = —min(0,f).

Proof: Let y be a simple bounded function such that v >0 and let M = maxy(x).
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Then v —r < M —rand

R L A
Given € > 0,we set r such that r > M —e€. Then M —r < €. Therefore (M —r)* < € and
[[M-r)r=M-n*<e
Since (M ~-r)* 2(y —r)*, we have
f ;(w -nN*<e
Thus the theorem is proved for y simple and bounded.

The set of bounded simple function is dense in L![0, 1]. Thus for f € L'[0,1] and € > 0, we

can choose ¢ and y simple and bounded such that llf* — ¢ll < % and

l!f-_V,"l S %7 (PsWZO'

For ¢ and y, we can choose r1, r; such that

I;((D —r))* < % and
[(w-nr<%.
Then , for r > max(ry,r2), I;(f" -t + f;(f' — Pt
1 1
=[F-o+o-N"+[ F-y+y-n*
| t 1 |
[ - +[ (@-n+[ F -y +[ (y-n*
SErgrgri=e
Theorem 3.5.1 (Helly’s Selection Principle)
Let B be a family of functions such that fe B = \/[a nS < @ and IRx) < B, for any

x € [a,b]. Then there exists a sequence {fn,} < B such that f, — f*Vx € [a,b] and
f* € BV]a,b].

Theorem 3.5.2 (Mazur’s theorem)

Let X be a Banach space with A < X relatively compact. Then ¢o(A) is compact where
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co(A) is the convex hull of A and ¢6(A) denotes its closure with respect to the metric
topology.

Theorem 3.5.3 (Kakutani-Yoshida)

Let T : X — X be a bounded linear operator from a Banach space X into itself. Assume that
there exists M > 0 such that IT*ll < M, n = 1,2, ---. Furthermore, if for any f € A c X, the
sequence {f,}, where f, = + > " T, contains a sub-sequence {f,,} which converges

weakly in X, then forany f € 4, + > " T% — f* € X (norm convergence) and 7(f*) = f*.

Recall that A set A < X of a Banach space X is called relatively compact if every infinite
subset of A contains a sequence that converges to a point of X.
Theorem 3.5.4 (Lasota and Yorke)
Let 7 : [0,1] — [0, 1] be a piecewise C? transformation such that inflz’l > 1. Then for any
fe L'[0,1] the sequence + > 7 P%f is convergent in norm to f* € L'[0,1] . The limit
function has the following properties:

@Ofz0=r2=0.

Gi) [ frda = [ fda.

(iif) Pf* = f* and consequently du* = f*dA is invariant under 7.

(iv) f* € BV[0, 1]. Moreover 3 ¢ independent of choice of initial fsuch that

\/[O'l]f‘ < clifll,.

Proof: Let s =inf | 7' | and choose N such that s¥ > 2. Then the function ¢ = z¥ is
piecewise C%. Let 0 = bg < b, < --- < b, =1 be the corresponding partition for ¢ and
@: = @y, ,,be the corresponding C? functions. By the chain rule | ¢; | > sV for all
x € [bi1,bi]. To compute the Frobenius-Perron operator for ¢, set y; = ¢;'and o:(x) = |
wi(x) I. Observe that o;(x) < ﬁ From the fact that | ¢; | > s¥ and Lemma 3.5.1, we see that

@: is monotone. Therefore using the representation of Frobenius Perron operator in section

3.3 we can write,

Pofix) = 327 Rwi(x))oi(x)x ;,(x), (1)
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1, xel;

where J; = @i([bi-1,b:]) and x, (x) = 3
: Q0 otherwise

Let f be a given function of bounded variation over [0, 1]. Then
Ayix))oi(x)x,,(x) =0 forx & [@i(bi1), @i(bi)].
Thus by lemma 3.5.4 we have
Vo Paf < 220,V (Fowioi +1 fbi)od(@:i(bit)) | + 1 Rboo(@i(b) 1)
<3 V,Fewdoi+ =5 220 (1 Rbi) 1+1fb:) ). 2)
In order to the first sum in (2) we write
V,Fevwioi= Li ld((feyi)oi) |
< fJ,_ |foy;: licidA + L‘_ oild(foy;)!
SKL'_l[fo wilodA + ﬁ_[]ild(fo wl,

U
maxl| o; |

where K = — .
min(s;)

Changing the variables we obtain
b;
V,(fowdo: < | o \f1dA+ jh ol dfl. 3)
In order to evaluate the second term in (2) we set d; = inf{ | f{x) | for x € [bi;,b;]. Using

lemma 3.5.3 we have
LAbi—) | +1Ab) 1 < V[b;_[.b,-]f+ 2d;.
Letting h = min;(b; — bi1) we see that dih < | Z" LfIdA.
i-1
Thus 37, (1Abi-0) 1+ /6D ) < 320, Vg, paf+ 207 2, [0 1fdA.

= Vo f+207FIL )

Now using (3) and (4) we get from (2)

V oy PafC) < KUFT+5VV o 1 f+ 5V g o f+ 25 VR (5)
Seta = K+2sVh!land B = sV.

Then from (5) we get
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Vo Paf®) < allfl+ BV o 1 f - ()
For the same f,let us write fi = PXf. Then
fwe = PYf = PYPY®Df = Pofygey.
Therefore
Vieg fve = Vo Pafaen < all fwgen 1+ BV gy fveen-
Sincellf, I <lifliforall n = 1,2,3,--- we have
Vioyy fue < all faugeny 1+ Blall fIl+ BV o pfvan) < -+ < 2aB™ll fll+ BFV (g 11.fo, where
fo=f

Consequently,

lim sup o, far < ‘;ﬂf; ) 7

Using lemma 3.5.7 we have for all , Ifwdl < 55 + I fI. (8)
From (7) , (8) and theorem 3.5.1, we have that every infinite subset of C = {fm} iy contains
a subsequence which converges in L;[0, 1]. So C is relatively compact in 7.{[0, 1]. Since P; is

continuous, P¥C is also relatively compact.

Now {fi} 2o < UNL PY¥C. So {fiyy is also relatively compact. By theorem 3.5.2,

co(C) = Z;(; afv - ar > O,Z",; a; = 1} is relatively compact. Finally, by theorem 3.5.3,
L g P%f converges to f* € L,[0, 1], where P.f* =f*.

Property (i), (ii) and (iii) of the thecrem follow from the properties 3.2.2,3.2.3,3.2.6

respectively. So it remains oaly to prove (iv), that is, we have to show that f* is of bounded

variation and there exists a constant ¢ independent of the choice of intial f such that
Vipf* < clifl,.

Seta; = 7!, B: = | a7!l. Then as before
Pflx) = 220 Rai(x))Bi(x)x 1, (%),

where 0 = a; < az < asz < --- < aqg =1 is the corresponding partition for 7 and z; be the
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restriction of 7 on (ai—1,a:), I; = t:([ai-1,ail)-
By lemma 3.5.4 and the same procedure as before, we get
Vi P < 2L (FoadB: + + 221 (Rae)l + fa:))
<c V[O,l]f+ Cz“f",
and Vg /v = Vo Pefi < €1 V p.yfwe + e2ll 1 for some ¢1, €2 > 0.
Moreover, V[O.l]ka"‘z < ci V[O.l]ka“ +Cz||f"
< ciler Vipyfwe + el fll) + c2ll £
= C% V[o,l]f:"”‘ + (6162 + Cz)“f".
Consequently, for n=1, 2, 3, ---, N -1,
1 N
V p.fveen < €tV g fon + Cz-l%"f",
- p— — 1-¥

and limg. V[O.l]ka+" < cf liMgo V[O.l]ka + Czﬁ"f”. ¢)]

With (9) and (7), we have

M Vo Pof < €llfll, ¢ > 0

for f € BV[0, 1], where c is independent of f. For such an fand for any »,

Vien(+ X P4

< L3 P < LI Clfll = clifi
Let T, = + 31~ P4 Then

Vo Tof < €lifl, f € BV[O, 1]. (10)
Now
I Tof Il < L0 NP < L300t = I

From (9), (10) and lemma 3.5.7, we get

[T < (c + DIIAL (an
From (10), (11) and theorem 3.5.2, there exists a subsequence {7, } which converges

everywhere on [0,1] to a function of bounded variation. But T,f converges strongly. Thus
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V. IF < il (12)
where T = limp-w I
For 9,y € Li[0,1],T( ¢ + ) = limpa(4 Ty (P:( @ +¥))
= liMpw(t X5y Pr@) + liMpe(L 30 Poy)
=T+ Ty

So T is linear.

Observe that L[0, 1] = BV[0, 1] and therefore for any f € L,[0, 1] there exists a sequence
{@.}y < BV]O, 1] such that ¢, — f. By (12) we get
Vo1 Ten < cligall.
Since Il Tp,ll < lip,ll it follows by lemma 3.5.7 that
T@,(x)! < (c+ Dlignll.
For £ > O, there exists N such that foralln > N, [ f—@,ll < e.

Therefore, foralln > N

I @all < &+l
Thus, for all n > N, V[O,l] T, < c(e+ £
and To.() < (c+ D(e+fI).

By using theorem 3.5.7 once more, we have the existence of a subsequence {@.,} < {@.}
with n; > N, such that T ¢,, — f* for some f* of bounded variation. But also T ¢, — Tf and
{T@n.y < {Ten.}, since T is continous, thus

If = f* € BV[0,1] forf € L[0,1].

This proves the theorem.
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Chapter IV
Piecewise Linear Interval Maps both Expanding and Contracting with

One Increasing and One Decreasing Branch.

Consider the family F of functions f : [—1,1] — [—1,1] defined by

Aix+a , xe[-1,0)
f(x) = O > X = O
Ax+ b, xe(0,1]

where 11 > 0 and 1> < 0 and a,b, A1, 1 are constants such that f{[~1, 1) < [-1,1].

Moreover, we assume that absolute value of the slope of fis greater than ! (expansion) in

one of the interval (—1,0), (0, 1) and less than 1 (contraction) in the other (Figure 4.1.1).

. e
e
s
>t 1
-1 / .o
2 . /, . ‘“h-____h
, .m ——
)
(a)
Figure 4.1 1

In this chapter we will consider a sub family B < F in such a way that f € B has one
increasing branch and one decreasing branch. A Lasota and J.A.Yorke showed in [L-Y] that
for a piecewise expanding map there exists an acim with respect Lebesgue measure. In our
case, one branch of a map f € B is expanding and the other branch is contracting. We will

show that under certain conditions on 1,and 12, f € B is eventually expanding and under
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certain conditions on Ajand A2, fhas a periodic attractor. In the former case, we will show
that there exists an acim for f € B. We will follow [B-F] . We will try to find the acim using

the matrix representation of Frobenius-Perron operator when the map is Markov.

4.1 Thecasel<i,<2and-1<4;<0.
In this section we will consider a subclass B of 7 by taking 1 < 4; <2 and -1 < 4, < 0.
We will state and prove four lemmas and using these lemmas we will prove the main

theorem.

Lemma4.1.1

The first return map R :[0,1) — [0,1) defined by R(x)=f(x) where
r=min{i >0 : f(x) € [0,1)} is well defined. Moreover, there exists a partition
0=bo <by <bz <--- <10f[0,1), not necessarily finite, and an integer N such that the

restriction Rlp, 5,.,) is linear with slope 1Y+1,.

Proof: If x € (~1,0) = f*(x) € (—1,0) for all n > 1, then we have

- - a . __a
fix)=Aixt+ta=Ai(x+ 11_1) 1

= a - 4 4 - 2
= f2(x) A'I(A'l(x-'-,l]—l) 11—1)-*-,11—1) Ar—1

— 72 a __a
ll(x+2.1—1) -1

By induction,

fl(x)= 'lx(x+ 2.1‘-1-1)_ l[a—l

Observe that {[0,1)) < (-1, 1).
Moreover, for each x € (—1,0) there exists ng > 1 such that f*9(x) e [0, 1), since otherwise

fix) = A0+ ﬁ) - h"_l — 0 as n — oo, which is a contradiction. This proves that R is
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well defined. Linearity is obvious.

To construct the required partition of [0, 1), we will first construct a partition {a,} which

is defined inductively as follows: a9 = 0, @n+1 = f'(a.) N[-1,0) forn > 0.

Observe that, o =0 = f(ag) = —f& = —24=D _ g,

1 _ _a@-n  _
= f(ar1) GaDaT = 92

. 1 — _a@i-h
Inductively, fHan-1) = DAy = A 1 >0.

Now, b = lim,.o+f{x) = b > —1. From the definition of {a,} it follows that b > a, for

some n. Let N be the smallest integer such that b > ay. Then

Y- a
b> -G8 = (- DAY > (Y - 1)

= 2 -DAY > -A¥-1)
=S [M+LA -DAY>1
= Nlni,+(n(l+ 2@ -1))) >0

In(i+8(1,-1))

= N>- e

In(1+£-(2,-1))

Yy , we have

Since N is the smallest integer such that N > —

In(1+&-(1,-1))

N=[1- Ini;

], where [¢] denotes the integer part of ¢.

Now, we define the sequence {b,} inductively by
bo = 0. b = { £ @) NO1] i FHama) N (O,1] % ¢
1 I fHawa) N (0,1] = ¢

This is an increasing sequence. Let x € [bg,bi1). Then from the construction of {a,},<{b.}
we have

fx) € [ansk, ansi-1),

F2(x) € [ansx—1,an+x-2) and so on. Thus

¥ (x) € [ar,a0) -
Finally f**!(x) = R(x) € (0,1)
Now R'(x) = (f™*!)'(x) = f (™ (x)) «f(F**1(0) - of (X)) «f ().
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= Ay oAy e--odedy = AN,

Hence the lemma is proved.

Lemma4.1.2

Let x € (0,1). Then f*(x) & (0,1) forall 1<n<N-1 . Moreover, if r of the points

x, f(x), ﬁ(x), ---,f"!(x) belong to (—1,0) and s of them belongs to (0, 1), then
r>N(is-1).

Proof: x € (0,1) = flx) € (-1,0).

" Lex € (bi,bi1). Then

Jx) € (amsi, aneic1).f*(x) € (ansio1, awsiza), -, f¥(x) € (ay,a0) and

() e (0,1).

Hencex € (0,1) = (x) ¢ (0,1)forall1 <n <M.

From above, observe that for one positive value we are getting N negative values. So
negative values are at least N(s — 1), because it is possible that not the whole negative

trajectory of the last positive point is included in the sequence. Hence r > N(s — 1). Hence

r>N(s-1).

Example 4.1.1 (Map and first return map)
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S bo

Figure 4.1.2 (b)

Consider the map f defined by
15x+.6 if -1<x<0
fx) = 0 if x=0

-25x-7 if O0<x<1

Here 2, = 1.5, =-25, a=6,b =-7;
n(1+=Z —

N=[1- 220y g 55907 = 3

ap = 0,a, =f_[(ao) = —{—3- = —.4

az = f'(a;) =_% = —.66667

a3 = fH(as) = =656 _ _ gaa45< 7=

as =f"(a3) = =2E6 - _ 96297

as = f(as) = =22T=6 _ _ | 042,

Now bo =0

bi = bowt = f(ax0) = f(asw) = f1(a3) = f1(—.84445)

= =887 - 5778,

ba = bunof"(ave) = f(as) = f1(-.96297) = =22=1 ~ | 0519
So b:)_ =1
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Rlipo5yy = £(x) = f1(x).
Rl[bl.bz) =f$+l+l(x) =f5(x)-

Ifx = .5 thenflx) = —25(.5) —.7 = —.825.
£(x) = 1.5(~.825) +.6 = —.6375
£x) = 1.5(-.6375) +.6 = —.35625

F(x) = 1.5(=.35625) + .6 = 6.5625x 102 > 0

We can easily verify above lemmas with this example.

Lemma4.1.3

If -1 is not a fixed point of f; then the first return map has a finite number of branches.

Proof: Observe that in Lemma 4.1.1, we constructed the sequence {a,} inductively by

ane =fYa.)N[-1,0) for n>0. In our case, there exists m >0 such that

ftam)N[-1,0) = ¢ and we define ams = ";l"" < —1. So the sequence {a,} has m+2

terms.

In the same lemma we constructed the sequence {b,} inductively by

Y amimnon i Fansmneag = @
bo =0,bp = S
1 if f(anmnea) = ¢
_ In(1+£(1,-1))
where N = [1 Ead T].

Since {a.} is finite so is {b,}. Hence R(x) has finite number of branches on [0, 1).

Lemma 4.1.4

Suppose that there exists bx # bo such that the slope of R on [bg, ber1 ], [Bre1,briz], --- is less
than —1. Then the set of points of [b., 1) whose orbit visits (b, i) is dense in [by, 1).
Proof:Assume that there exists an open set K < [b, 1) such that R*(K) N (bo,br) = ¢.

Obviously, b; & R*(K) for each j>k and each neN; since otherwise

R™(K) N (bo,br) # ¢. So for each n € N, there exists j, > k such that R*(K) < (b},,b;,..).

31



Let /; be the slope of RI(b;, by.1). Then IR™'(K)I = II;, IR*(K)I.
By induction, it follows that [R*!(K)| = Wil o Wy (Lol pl e --- olll.
Now Il < Wjl, so 1 e llj, 1o 1L;, 1 e -+ o I[jo} > 1" and since U] > | we havelR**!'(K)I >

[[e**!IKl — o0 as n — oo, which is a contradiction. This proves the lemma.
Theorem 4.1.1

Letfe Bwith1 <4 <2and—1 < 12 <0, ie., f: [-1,1] — [1,1] defined by

Aix+a , xe[-1,0)
f(x) = 0 N x=0
Ax+ b , xe€(0,1]
LetN =[1- %F)—)]. Then one of the following holds:

@) If AYA, < —1, then fis eventually expanding and there exists an absolutely continuous
p

invariant measure with respect to Lebesgue measure.

(ii) If Y22 = ~1, then there exists A > O such that every x € (0,A) is periodic. Moreover,
the set
Uner/ "0, 4) N [A, 1)

is dense in [A, 1).

(iiDIf A¥YA, > ~1, then there exists A > O such that every x € (0,A) except from a finite

number of points, is in the basin of attracting periodic point. Moreover, the set

U,/ (0,4) N [A, 1)
isdense in [A, 1).

Proof: We will prove that there exists an integer no such that the iteration f*is expanding

Let A > 1 and take

In(A12,1~1)
no > (4 + 1)@ 4
N ln(lﬂlzl-l{r)

Suppose that r of the points x, f{x), S2(x), -, (%) lie in (~1,0) and s of them lie in (0, 1).
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Then r+s = no and r > N(s — 1). This implies that
r=>Nno—-r—1)
= (3 +Dr+1=no.

Combining no > (4 + 1)—'"0"—12-—3— + 1 and the last inequality we get
In(A{IA2IW)

-1
(L +D)r+12> (4 +1) 230 g
N N (L1122l W)

-1
= r> ln(lllzl—L)
In(A{lA2IW)

= rin(111221%) > In(UA,™)

= In(1,1421%)" > In(AlA,I1)

= A2l F > Ald,l!

= ATIALI7 > 2> 1
Let J be an interval of (1, 1). The slope of f*¢ is A[I2;[*. But we have from r > N(s — 1),
s < 4 + 1 and since 112l < 1 we have 174,15 > AT %+ So AfIA2lS > A > 1. Hence f™ is
expanding which implies f is eventually expanding. The existence of acim follows from
[L-Y].
(ii) In this case the first return map in [bo,b;) is R(x) = —x+ b;. and R?*(x) = x for all
x € [bo,b1). and since Rlp, p,,,) = %1, we have f2MD(x) = x for all x € [bo,b:). Hence f
is periodic of period 2(N + 1). From lemma 4.1.4 we have that the set

U,/ (0,4) N [A, 1)
isdensein [A,1),where A = b,.
(iii) Let A = by where by is as in Lemma 4.1.3. From this lemma we have that
U/ "©0.4) N [A, 1)

is dense in [A,1).We have to prove that every x € (0,A) except from a finite number of
points is in the basin of a periodic attractor. Since R(b;) = by and the slope of Iy of
Ri(bo,b;) is such that llgl < 1 there exists a unique fixed point p € (bo,b1) of R. But
Ri(bo,by) = f**!, se, p is an attracting periodic point of f of period N + 1 and (bo,b;) is in
the basin of p.
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Since R(b2) = bo we have that R(b1,b2) < (be,b;). If R(b1,b2) < (bo,b,) then (b1,b2) is
the basin of p. Otherwise there exists y € (b1,b2) such that R(y) = b,. Then (3,b3) is the
basin of p and there exists g € (b1,y) such that R(g) = b,. But Rl, , =f"%,s0, pisan
attracting periodic point of f of period N+ 2 and (b, y) is in the basin of ¢g. We can use a

similar argument for (b2,b3), --+, (bi—1, be).

Example 4.1.2 -

Consider the one parameter family of maps f : [~1,1] — [-1, 1] defined by

2x+ 1 , x € [-1,0)
flx) = o ., x=0
—~(c+Dx+c , xe(0,1]

where the parameter c is a constant such that 0 < (¢ + 1) < land f([-1,1]) < [~1,1].

If ¢ =-5-,721 we can find a partition of [~1,1] such that f is Markov. In particular if
2x+1 , xe[-1,0)
Cc = —%’f‘(x) = 0 , x=0

-4x-+ , xe(0,1]

thenl, = [-1,—4), I, = (-+.,0),13 = (0, 1] is a Markov partition for f.

Figure 413
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Observe that () = [-1,0), Al2) = (0,1), Al3) = (-1,-%)

In(1+52(2-1))
In2

Here N = [1 — ]=2and A¥2; =2%(-1) = -2 <L

So by theorem 4.1.1 f has an absolutely continuous invariant measure with respect to
Lebesgue measure. We are interested in finding the acim. To do that we have to find the
matrix representation (My) of Frobenius-Perron operator P;. The matrix My is of the form
Ms = (my), 1<ij<n,where

aij l(’,‘ﬂfl(fj)) ’1 S i

= <
T AU J =

yro
M= 0 0 4 |-Let 71:=[ X1, X2, X3 ]Then solving tM; =  ,we get
2 00
$ 4o |
[xl, X2, xs] 0 0 % -=[x1. X2, x3]
2 0 OJ

=r=0421)

Thus the density function for fis given by

1 , xe [—1,—-%—)
glx) = + ., x€[-3,0)
71'- , x€[9,1)

where Iil glx) =1
Example 4.1.3

Consider the two parameters family of maps f : {~1,1] — [—1, 1] defined by
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2x—+1 . xe[-1,0)
flx) = O , x=0
—(c—d)x»—f-c ., xe(0,1]

where the parametters ¢ and d are such that 0 < (c-d) < landf{[-1,1]) < [-I, 1].

If ¢ = 5,n > 1 e can find a partition of [—1, 1] such that f is Markov. In particular if
c=-~5andd= —%Tthat is

2x+ 1 , x€[-1,0)
L) = 0 , x=0

—%x—- % , xe€(0,1]

Figure 41 4

If we divide (-1,0) into 16 intervals of equal length %, then

W = [F1 =2 -1+ £)}08 0.2),(3, 1))
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is a Markov partition for f.

In(1+=E-(2-1))

Observe that, here N = [1 — 3

] =[1.415]= 1 and
X.Ilvﬂ.z = 21(—%-) = —-15<-1.

Here the map fis Markov and by theorem 4.1.1, there exist an acim .
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Chapter V
Absolutely Continuous Invariant Measures
| ) | For
Piecewise Linear Interval Maps Both Expanding And CoﬁUacting

With Two Increasing Branches.

In Chapter IV, we considered f € F with one increasing branch and one decreasing branch
';and proved that fis either eventually expanding or fhas a periodic attaractor. In this chapter,
we will consider f with both branches increasing and will discuss the dynamics of such maps.
We will prove the existence of acim. We also find the acim using the matrix representation

of Frobenius-Perron operator. We are interested in considering the following two cases:

I'd ra
// /ll //
/ _'_F;-’P s
7 /- /'
7/ - /
e -~
Ud ~ /
-1 _Io 1 K 7 1
/// - -‘f// /-,/
/' // //
/, ,r,
s z
3]
(a) B (b)

Figqure 5.1.1

5.1 Thecase1<i, <2and0< i, <1.
In this case we will consider a subclass 5, of Fbvakingl <1, <2and0 < 4> < 1. We

will state and prove three lemmas and using these lemmas we will prove the main theorem.
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Lemma 5.1.1
The first return map R : [0,1) — [0, 1) defined by R(x) = f(x) , where

r=min{i > 0 : f(x) € [0,1)}
is well defined. Moreover, there exists a partition 0 < --- < b3 <bs <by <bp=10f[0,1),
not necessarily finite, and an integer N such that the restriction Rlpp,., 5, is linear with slope
AL,

Proof: Observe that {[0,1)) < (-1,1).Ifx € (-1,0) and f*(x) € (-1,0) foralin = 1, then

we have fix) = Aix+a=Alx+35) - o5

= 2(x) = Li(Ai(x+ ’;Ta_T) -5 )+ 1o )~ T

= A+ 75) ~ T

By induction, fix) = A0+ 257) — o

Moreover, for each x € (—1,0), there exists no = 1 such that fo(x) e [0, 1), since otherwise

filx) = A+ 'i.g—T) — 3y —wasn —®, which is a contradiction. This proves that R is
well defined. Linearity is obvious.
To construct the required partition of [0, 1), we will first construct the sequence {a,} which

is defined inductively as follows:

ao =0, a1 = f(as) N[—1,0) forn =2 0.

Observe that, a0 =0 = f'(a0) =—7%-= (";:‘_‘1')2 = a
A3-1
= a; =fa1) = —(L;.(l:lT)—;.)? and so on.
1
: 1 a(Ai-1)
Inductlvely, an =f_ (an-l) = —W’ n> 0.
1

Now let ¢ = limg.;-f(x).Then ¢ > —1. From the definition of {a.) it follows that ¢ > a. for

some n. Let N be the smallest integer such that ¢ > a. Then

a(Ay-1)
-DAY

= (4 — DAY > (A} - 1), sincea >0

c> -

=[1+<@A -DIAY > 1
= NlnA; +(n(1 + £(2;—-1))) >0
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In(l+5(21-1))

= N>- A

In(1+£(24-1))

rn , we have

Since N is the sinallest integer such that N > —

In(1+£(21—1)) ]

N=[1_ Ini;

Now, we define the sequence {b,} inductively by
Flavmnen i fH(avmnon * ¢
bO = ]-s er'l = . 1
0 if f(amsmnea = ¢
Let x € [bi1,bi). Then from the construction of {a.} and {b,} we have
Ax) € [an, anri-1),
f2(x) € [ansk-1,an+k-2), and so on.
Thus (%) € [a1,a0) and finally f***(x) = RI,, . (x) € [0,1)
Now (R, ,,)'(x) = () (x) = (X)) « 1)) o --- of (X)) «f (x).

Thus the slope of R on [brs1,bi) is Ay e Ay o --- o) ¢ X = AV*¥A,.

Hence the lemma is proved.

Lemma 5.1.2

Let x € (0,1). Then f'(x) € (0,1) for all 1 <n <N . Moreover, if r of the points
x,f1x),f2(x), ---,. 1 (x) belong to (—1,0) and s of them belongs to (0, 1), then

r=>=N(G—-1).

Proof: Le x € [bi+1,bi). Then Ax) € (ansk,anei—1) = f>(x) € (ansk—1,an+k-2) and so on.
Thus f***(x) € (a1,a0) and finally f***!(x) € [0,1). Hence x € (0,1) = f*(x) & (0,1) for
all<n<N.

From above, observe that for one positive value we are getting at least N negative values. So
negative values are at least N(s — 1), because it is possible that not the whole negative

trajectory of the last positive point is included in the sequence. Hence r > N(s — 1).

Example 5.1.1 (Map and first return map)

Consider the map
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I.5x+.6 if
Ax) = o i
25x—- .8 If

-1<x<0
x=0
O<x<1

o~
K3 e
Ve
Ve
e
>~
7
Sl
” 13
\ by
- b_L 1!
Ve :
Ve |
Ve
!
t
1
— — — r— — — ——
- —T
-0

- -

I
bI,A

Figure 5.1.27
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Here 2 = 15,4, = .25, a= .6,b=-38;

¢ =lim_ fx) =.25-.8= —.55
N= [1—3“—“‘—;-1?%"‘—‘&] —[2.5121] =2

ao = 0,a; = f(ap) = —— = —.4

a; =fYa1) = _T = —.66667 < —-.55=c
SoN=2

as = f(az) = =586 = _ 84445

as = f(a3) = =B = _ 96297.

as = f'(as) = =25 = —1.042.

Now bg =0
by = bos1 = f 1 amo) = (az0) = f(a2) =f1(—.66667) = ‘66667+8 = .53332
b2 = b = f(aza1) = f(a3) = f1(~84445) = =H5E = — 1778 <0
So b;=0
Now  Rlp,s = f2*(x) = £ (x).
Rig2py) =1(x) = f1(0).
If x=.5 then Alx) = .25(.5)~.8 = —.675, 2(x) = 1.5(~.675) + .6 = —.4125

S0) = 1.5(—.4125) + .6 = — .01875,f*(x) = 1.5(~.01875) +.6 = .57188

We can easily verify above lemmas with this example.

Lemma 5.1.3

If -1 is not a fixed point of f, then the first return map has a finite number of branches.

Proof: Observe that in Lemma 5.1.1, we constructed the sequence {a,} inductively by
ane1 = f (@) N[-1,0) for n>0. In our case, there exists m >0 such that
fam)N[-1,0) = ¢ and we define ams = “#=% < —1. So the sequence {a,} has m+2

terms. In the same lemma we constructed the sequence {b,} inductively by

Y anmnoyy f fHavmnea = ¢
bo = 1’ blt+l = .
0 if fanmnoa = ¢
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— In(1+£(A1-1))
where N = [1 - T]'

Since {a.) is finite so is {b.}. Hence R(x) has finite number of branches on [0, 1).

Theorem 5.1.1

Letfe Bwith1 < A; <2and0 < A2 < 1. Let us have

_ In(1+£(A1-1))
N=[-=75—1
Then if A¥A, > 1, then f is eventually expanding and there exists an absolutely continuous

invariant measure with respect to Lebesgue measure.

Proof: To show that f is eventually expanding we have to show that there exists an integer
no > 1 such that the iteration f™is expanding. Suppose that r of the points
X 00,200, oo ol (x) lie in (—1,0) and s of them lie in (0,1). Then r+s = no and
r > N(s — 1). This implies
r>Nno-r-1)
= {+4)r+12no
This also implies that s < & + 1, which we will use latter.

Let A > 1 and take ng > (1 + ) 232-) 1 | Note that np > 1.

n(AA3)

Combining the above two inequalities we get

-1
(L+)r+1 2 (1+4)=E20 4
In(1,44)
=r> In(u‘z‘-:-)
In(2148)

= rin(41A7) > In(A43")
= In(Af227%) = In(AA3")
= A{A,¥ > 243!
= A4, % > 4> 1
Let J be a sub-interval of [-1,1]. The slope of f®I, is A{A$. Since s < £ +1 and

0 < A2 < 1, we have A[A5 > A[A,#*! > 1 > 1 >. Hence f™ is expanding which implies that
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fis eventually expanding. The existence of acim, we can conclude from [L-Y].

O
From theorem 5.1.1 we know that if A¥1, > 1, then there exists an absolutely continuous
invariant measure of f with respect to Lebesgue measure. Our next step is to find the measure
for some examples. To do this we will consider f such that f is Markov. Recall that
Frobenius-Perron operator for a piecewise linear Markov transformation can be represented
by a matrix. Once we have the matrix representation, we can find the density function and

then finally the acim.

Example 5.1.2
Consider the map f : [-1,1] — [—1, 1] defined by

2x+1 , xe[-1,0)
fix) = 0 , x=0

+x-1, xe(0,1]

Here ¢ = lim__,-f{x) = -+
N=[1- %2(2_1))] = 2.0. Now the sequence (a,) for the map f:
ao = 0,a; = fYap) = —— = 0.5,
az =fYa1) =f1(-05)= 2L = - 75<05=c¢,
=f(az) = f1(-.75) = ==L = - .875,
as = fN(as) = f1(-.875) = ==L = ~ 9375,
as = f'(as) = £1(-.9375) = ==L = — 96875 and so on.
Let xo = +.Thenflxo) = (34 - 1) = — 2, fx0) =2(-2)+1= - 2.

Here A{A, = 22- = 2 > 1 and hence fhas an acim using theorem 5.1.1

Let 6 =[-1,-3)L=(-5,0),=(01] and AL)=[-1,0], AL)=I[0,1],
fA3) = [-1,-51]

Observe that the map is Markov and the matrix representation My of Frobenius-Perron

operator for fis My = (my), 1 <i,j<n,



i _ Ans 1, L <
where m; = 2L = 2LOLW) Si,anandazj={ et

Viri AU 0 , otherwise
7 7 0
Here M = 0 0 & |-Let x=[xi,x2,x3]. Then solving xM = x, we get, x =[4,2,1].
: 2 0O
1 , xe [—1,-—%)
So the density function is g(x) = - » xe[-L1,0)
7‘;- ,  xe€[0,1]
' “where Ii, glx) =1
- |o ’1
Ve
e
7

Figure 51 3
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52 Thecase0<i <1and1<2, <2

In this case we will consider a subclass C of F by taking0 < i; <l and 1 < A, <2. We

will state and prove three lemmas and using these lemmas we will prove the main theorem.

Lemma 5.2.1
The first return map R : (—1,0] — (—1,0] defined by R(x) = f(x) , where
r=min{i > 0 : f(x) € [0,1)}

is well defined. Moreover, there exists a partition —1 = bg < by < --- < 0 of (-1,0], not
necessarily finite, and an integer N such that the restriction Rl,s,,,) is linear with slope
A A5,
Proof: Observe that f{(—1,0]) < (-1,1).Ifx € (0,1) and f*(x) € (0, 1) foralln > 1,
then we have fx) = Aax+b = Aa(x+ 72”7!-) -T2

=>fz(x) = 2'Z(A'Z(x'*' lzb_[ ) - ;_lb_,[ ) + lzb_l ) - Azb_]

— 22 b _b_
= 12(x+ _lz—l )—' F

By induction, [0 =30+ 3250 - o4

Moreover, for each x € (0, 1) there exists ng = 1 such that f*°(x) € (-1,0], since otherwisc

fix) = A3(x+ 2”_1 )— 3 2”_1 — o0 as n — oo, which is a contradiction. This proves that R is
well defined. Linearity is obvious.

To construct the required partition of (—1,0] we will first construct the sequence{a,} which

is defined inductively as follows:

ao =0, ane =f1(a) N (0,1] forn > 0.

— I — b_ _ b(A—1)
Observe that, ap =0 = f(ap) = = T TGy = @l
— g, = f1 — b
az = f(a) DXl and so on.

b(AZ~1) >0

Inductively, an =f'(an1) = Gz B2

Now let ¢ = lim,.;+f{x).Then ¢ > —1. From the definition of {a,} it follows that ¢ < a, for
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some n. Let N be the smallest integer such that ¢ < ay. Then

b(AY-1)
(A~

= £(A2-1)AY > —(AY - 1), since b < 0

c < -—

= [1+ <A - DAY > 1

= Nlniz +(n(l+ (22—~ 1))) >0

In(1+£(A2—1))

= N>— i,

tn(1+5-(A2-1))

v , we fiave

Since N is the smallest integer such that N > —

In(i+£ (32-1)

N=[1- o I

Now, we define the sequence {b,} inductively by
bo = -1, by = {f’ Hanmney i [ (@rnn-10) # ¢
0 if fl(@amwmnr-10) = ¢

Let x € (bi,bis+1]- Then from the construction of {a.} and {b,} we have

fx) € [ans-1,an),

FfA(x) € [antk—2,an+i-1), and so on.
Thus ¥ (x) € [ao,a1) and finally f**+!(x) = Rl . ) € (-1,0]
Now (Rl ,,.)'(x) = () () = F(F™ () « 1)) -+ of () = f (x).
Thus the slope of R on [beer, be) is A2da---A241 = A1A5%.
Lemma 5.2.2
Let x € (-1,0). Then f*(x) ¢ (—1,0) for all 1 <n <N . Moreover, if r of the points
x,f(x),f2(x), ---,.f* 1 (x) belong to (—~1,0) and s of them belongs to (0, 1), then
s> N({r-1).
Proof: Le x € [br,br+1). Then fx) € [amne-1,ansk) = f2(x) € [ansk—2,ansk-1) and so on.
Thus f***(x) € [a¢,a1) and finally f***!(x) € (~1,0]. Hence x € (-1,0] = f*(x) & [-1,0)
forall1 <n < N.
From above, observe that for one negative value we are getting at least N positive values. So

positive values are at least N(r— 1), because it is possible that not the whole positive
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trajectory of the last negative point is included in the sequence. Hence s > N(r—1).

Example 5.2.1 (Map and first return map)
Consider the map
Sx+.75 if -1<x<0
Sflx) = 0 if x=0
3 2x~1 if 0<x<1

|
|
e —_
f/T //l ' :
1:'4/ ! e ' vl
[ // { ! l
, _iZ )4 !
-1 Lo = = 1
= et . q 2
//
P4
7
/I 4

Figure S2.1



Here Ay = 5,22 =2, a=.75,b = —1;
c=lim_ . ,f(x)=-5+.75=.25

In(1+-25(2-1))
n2

ao=0,a1 =f“(ao)=%>.25=c

N=[1- ]1=[1.415] =1

SoN=1

as =f"(as) = 2L = 9375

as = f(as) = ;%';i = .96875 and so on.

Now by = ~1

bi = bou =famo) = f(awo) =fa) =f(5) =F2 = -5
by = b =fHaw) =f(a2) =f'(.75) = 2= =0

Now Rl([,oj,l) =f“°”(x) =f2(x).

Rlp1p,] = f1*(x) = L x).
Ifx=.7 thenfix) =2(.7)-1= .4, 2(x) =2(4)-1= —.2,
£l = 5(=2)+.75 = .65

We can easily verify above lemmas with this example.

Lemma 5.2.3

If 1 is not a fixed point of f, then the first return map has a finite number of branches.

Proof: Observe that in Lemma 4.2.1, we constructed the sequence {a.} inductively by
ans1 =fYWax)N(0,1] for n>0. In our case, there exists m >0 such that

f(an) N (0,1] = ¢ and we define ams = “L’“ > 1. So the sequence {a,} has m +2 terms.

In the same lemma we constructed the sequence {b,} inductively by

_ Fl@mmnera I T (@nmne10 # ¢
bo - _1’ bn+l = .
0 if f(ansmne1o = ¢
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In(14+-£(A2-1))

where N = [1 — T 1.

Since {a.} is finite so is {b,}. Hence R(x) has finite number of branches on (-1,0].

Theorem 5.2.1
Letfe BwithO<A; <landl < A, < 2.Letus have

In(1+£(A2—1)) ]
InA, °

N=[1-
Then if ;4% > 1, then f is eventually expanding and there exists an absolutely continuous
invariant measure with respect to Lebesgue measure.
Proof: To show that f is eventually expanding we have to show that there exists an integer
ng > 1 such that the iteration f"°is expanding. Suppose that r of the points
X, f00),2(x), ---.f(x) lie in (~1,0) and s of them lie in (0,1). Then r+s = no and
s = N(r—1). This implies

s> N(ng—s—-1)
= 1+F)s+12no

This also implies that r < <+ + 1, which we will use latter.

Let 2 > 1 and take ng > (1 + -b)-l—"ﬁ}'—'—:—) + 1 Note that no > 1.Combining the above two
In(224 )

inequalities we get

-1
(L+ s+ 12 (1+ L) &0
In(A24/)

-_—>S>M

ln(;.z;.{'!")

= sIn(A:AF) = In(AATY)

= In(A54, %) = In(AATY)

= A5A ¥ > AT

=> BV >A>1
Let J be a sub-interval of [-1,1]. The slope of f™I, is A{A5. Since r < - +1 and
0 < Ay < 1, we have A3A7 > A5A4,;#*! > 1 > 1 >. Hence f™ is expanding which implies that

fis eventually expanding. The existence of acim, we can conclude from [L-Y].
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Example 5.2.2
Consider the family of maps f : [—1, 1] — [~1, 1] defined by
Ix+1 , xe[-1,0)

fx) = 0 ., x=0
' 2x-1 , xe(0,1]

-1 /’0 / 1

Figure 52,2

Here ¢ = lim_ [-f(x) +

N=[1- -ln(H[:*,(vm] = 2.0 Now the sequence (a,) for the map f:
ao—Oal = fl(ag) = ——05

az = f(a1) =f1(05) = &3 = 75> 05 =¢,

as = f!(a2) = f1(.75) = B = 875,

as = f'(as) = £1(.875) = 2L — 9375,

as = f'(as) = £1(.9375) = =B=L = 96875 and so on.
Let xo=—<. Then f(xo) = (%(-%) +1) =2, Plx) =2(£)-1= 2.

Here 2,A% = 122 = 2 > 1 and hence fhas an acim using theorem 5.2.1



LetI; = [-1,0},1, = [0, 71,15 = [, 1] and A1) = [, 1], Al2) = [-1,0], RI3) = [0,1]
Observe that the map is Markov and the matrix representation My of Frobenius-Perron

operator for fis My = (my), 1<1i,j<n,

i 1] 1, L c{:
Wheremij=i=w,15i,j$nanda;j={ j 5]

il AT 0 , otherwise
0 0 2

Here M = 2 0 0 .Let x = [x1,x2,x3). Then solving xM = x, we get, x = [1,2,4].
0 L %

[

, x€[-1,-7)
’ x e [“—5',0)

, x € [0,1)

-
—

So the density function is g(x) =

-
—
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Chapter VI
C++ Programs and Results

In Chapters IV and V we found the acim using the matrix representation of Frobenius-Perron
operator for Markov f. In this chapter we present some C++ programs for finding the density
function of absolutely continuous invariant measure in general. The programs are written in

Turbo C+—+ version 4.5.
Algorithm 6.1.1

I
// histo.cpp
/1

#include "w.h”

/l Class for the function with parameter al, a2, b1, b2
class gfun : public fun

{ private:

double al, a2, bl, b2; // the parameters

public:

gfun( double ali, double a2i, double bli, double b2i): al(ali), a2(a2i), bl(bli), b2(b2i){}
void setal(double ali) { al =ali; }

void seta2(double a2i) { a2 =a2i; }

void setb1(double bli) { bl =bli; }

void setb2(double b2i) { b2 = b2i; }

double getal(){return al;}

double geta2(){return a2;}

double getb1() {return bi;}

double getb20{retum b2;}

double f(double x) // Top level function
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{ double y, a=-1, b=1;// [a, b] is the interval on which we will work.
if (x >=a) & (x<=0))
{if (x =0) y=0;
elsey=al * x +a2;}
else

{if ((x >=0)&(x<b))

{if (x =0) y=0;
elsey =bl * x + b2;}

}

return(y);

}

b

// io for arrays

void pl(int vi[], int k)

{ for (intj =0; j <k; j++)
cout << vi[j] <<%

nlQ; }

void pl(double xi[], int k)
{ for (intj =0; j <k; j++)

12 9y,

cout << xi[j] <<

nlQ; }

void main()

{

double x; // x is the initial point

double a, b, ali, a2i, bli, b2i;

int n, N; // n= number of partitions, N= number of iteration
cout<<’enter the value of n, N, x,a, b, al, a2, bl , b2"<<™\n”;

cin >>n>> N >>x >>a>>b >>ali >> a2i >> bli >> b2i;
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double h = (b-a)/n;

double v1[100];

int v2[100];

for(int k =0; k <=n; k++)

v2[k] =0;

for (int j = 0; j <=n; j++)

{vi[jl=a+j*h;}

int count =0;

gfun *g = new gfun(ali, a2i, bli, b2i);

dof{

for (j=0;j <=n; j++)

{if((vi[]l <=x) & (x < VI[+1]D) {v2[j]++;}

}

x = g->f(x); coupt—H—;

}while (count <= N);

nl(0); niQ;

banner(” histo.cpp™);

nlQ; nl(0);

p(’The vector v1 for the values of n, N, x, al, a2, b1, b2 ); ni(; nl(); nl(;
pCv1="); pC’ [ pl(vl,n);p(”17);

p(C’The vector v2 for the values of n, N, x, al, a2, b1, b2”"); nl(); nlQ; nlQ);
pC’v2="); pC’["); PI( V2, n); pC’T");

p(’The vector v1 for the values of n, N, x, al, a2, bl, b2”); nl(); nl(); nl();
pC’v1="); p(” [ ); pl(VL, n); p(” 1 7);

delete g;

}

55



Algorithm 6.1.2
1/

// graphics: histogram and density function
1/

/* In C++ 4.5 version invournment,for the graphics of histogram and density function,we
need five files: gtiny.h, gtiny.cpp, gwtiny.h , gwtiny.cpp, gtiny.rc, gtiny.exe. The following is
a part of gtiny.cpp

*/

void plot(gwin &w, int p)

{ w.open(p);

int wb = 20; // screen window bottom

if (p == 1) wb =40; // higher for printer

w.locate(20,80,wb,80);

w.preframe();

int m=1;

int Max=1400;

w.scale(-1,m,0,Max,1);

double v1[]={-1, -0.96, -0.92, -0.88, -0.84 , -0.8, -0.76 . -0.72, -0.68 , -0.64 , -0.6 , -0.56,
-0.52 , -0.48, 044, -04 , -036 , -0.32, -0.28, -0.24, -0.2, -0.16, -0.12, -0.08, -0.04,
2.08167e-17, 0.04 , 0.08, 0.12, 0.16, 0.2, 0.24, 0.28, 0.32, 0.36, 0.4, 0.44, 0.48, 0.52, 0.56,
0.6, 0.64, 0.68,0.72, 0.76, 0.8, 0.84, 0.88, 0.92, 0.96,1};

int v2[]={229, 1152, 956, 1206, 1150, 1163, 1376, 1322, 1285, 879, 515, 664, 700, 560, 733,
717, 610, 850, 664, 791, 836, 677, 627, 330, 277, 325, 400, 429, 370, 306, 345, 419, 457,
397, 325, 371, 473, 501, 366, 371, 465, 523, 442, 383, 375, 388, 262, 176, 177, 150};

for (int 1=0;1<50;i++)

{

w.move(vi[i],0);

w.line(v1[i],v2[i]);
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w.line(v1[i+1],0);

}

w.p(-.5,-75, Figure 6.1.17);
w.p(1,0,71); w.p(-1.075,10,07");
w.p(-1.05,0,”-1);

double x =-1.025, y =0,d=100,e=.2;
for (i=1;i<=14;i++)

{ w.move(x,y+i*d); w.line(-.98,y-+i*d);
w.pf(x-e,y+i*d+5,” %.6g”,y+i*d);

}

w.unclip(;
w.p(-.5,1450,”Histogram”);
w.close();

}

Example 6.1.1

We consider the map f with two increasing branches defined by

1.75x+1 , xe[-1,0)
fx) = 0 , x=0
35x-.97 , xe(0,1]

We have N = [1 - 283050 1 _ 15 1177] = 2 and A4, = (1.75)%(35). = 1.0719 So
from theorem 5.1.1, there exists an absolutely continuous invariant measure. Let xo = —.82

and consider the first 30000 iterations of f with initial value xo. We divide [-1,1] in 50
intervals of length 0.04. Using algorithms 6.1.1 and 6.1.2 we have the following histogram (
the figure below) which displays the number of iterations that enter in each subinterval.

From this histogram, we can get the density function for f.
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Figure 6.1.1

Example 6.1.2

We consider the map f with one increasing and one decreasing branch defined by

fx) = 0 . x=0
~43x—L1 , xe(01]

We have N =2 and AY1, = —~1.72. So from theorem 4.1.1, there exists an absolutely
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NOTE TO USERS

Page(s) not included in the original manuscript and are
unavailable from the author or university. The manuscript
was microfilmed as received.
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