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ABSTRACT

Asymptotic Analysis of Vibrations of Thin Cylindrical Shells

Irina M. Landman

An algorithm for the asymptotic solution of boundary value problems involving
vibrations of thin cylindrical shells by means of symbolic computation is presented. The
algorithm is based on the method of asymptotic integration of the vibration equations of
thin shells, developed by Goldenveizer, Lidsky and Tovstik. A linear shell theory of the
Kirchhoff-Love type is employed. The equations describing the vibrations of thin shells
contain several parameters, the main of which is the small parameter of the shell
thickness. Formal asymptotic solutions in different domains of the space of the
parameters are obtained by using a computational geometry approach. Computer algebra
methods are employed to study the characteristic equation that involves the construction
of the convex hull of a set of points.

The study is limited to the cases for which the asymptotic representation of the
solution is the same in the entire domain of integration, and solutions are linearly
independent (no turning points, no multiple roots). Axisymmetric as well as non-
axisymmetric vibrations are considered. The constructed solutions are used for studying
the free vibration spectra of the shells.

The numerical results obtained by applying this algorithm to the particular
problem of low frequency vibrations of thin cylindrical shells are in good agreement with
the results obtained by finite element analysis, as well as with asymptotic results obtained

by authors using other solution techniques.
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Chapter 1

Introduction

Shell structures play an important role in a wide variety of applications, ranging
from very small structures visible only by microscope to large structural elements used in
building constructions. Thin shells are susceptible to vibrations and buckling.

Only few of the shell dynamics problems arising in practice have exact solutions.
Thus, one is usually forced to appeal to approximate solutions (Olver, 1974, Erdelyi,
1956, Evgrafov, 1961, Vainbeg, 1982, Verhulst, 1979, Vishik, 1992 and Wasow, 1965)
among which one can distinguish the analytical and the numerical solutions.

At the beginning of the XXth century, the analytical solutions were occupying the
main place, but later, especially during the last decades, due to the advent of powerful
computers and well-developed numerical methods, in particular, the finite element
method, the situation has changed completely. Nowadays, most problems can be solved
by means of numerical methods. Consequently, the approximate analytical solutions
(Murray, 1984) have been somehow underestimated.

The main advantage of the asymptotic methods is the final analytical formulae

that are obtained, for example, for natural frequencies and modal vectors. Usually the



order of the relative error of such formulae is known. The accuracy of the formulae
increases as a small parameter, in our case the parameter of the shell thickness, converges
to 0. The asymptotic formulae permit to study the effect of different shell parameters on
the spectrum and modal vectors and to understand the physics of shell vibrations (Koiter,
1960). Among the disadvantages of the asymptotic methods one may list that they may
be derived only for shells of relative simple geometry and that they are less accurate as
the shell thickness increases.

Numerical methods produce results for a given set of shell parameters with good
accuracy, but take computer time. Beside that, the stiffness matrix, which contains terms
proportional to a small parameter and to its inverse, becomes ill-conditioned as the
relative thickness of the thin shells decreases and, as a result, the accuracy of the
calculations decreases. At the same time, asymptotic methods will give more accurate
results when the main small parameter becomes smaller. Therefore, the analytical and
numerical solutions have to complement each other.

In our study of freely vibrating circular cylindrical shells we adopt the following
scheme. We start with the vibration equations of cylindrical shells in terms of
displacements (Markus, 1988). We use the exponential representation for the solutions. In
this work we limit our attention to the construction of the first approximation to the
solution. The form of the solution depends on the roots of the characteristic equations for
the powers of the exponents p;. The characteristic equation contains a number of
parameters. In different domains of the parameters, the main terms for the roots will be
different. To determine the main terms, the geometrical method based on the construction

of the convex hull for the point set was developed in this work. After constructing the



formal asymptotic solutions, we use them to solve the boundary value problem for the
given boundary conditions. This leads to the characteristic equation for the frequency
parameter. Under some assumptions on p;, this equation may be simplified. Then, the
analytical expressions for the frequency parameters are obtained.

A brief description of the following chapters of the thesis is given in the next
paragraphs.

In Chapter 2, the equations of two-dimentional shell theory are introduced. A
brief history of vibration analysis is first presented. Then, the general system of equations
of shell vibrations is introduced using curvilinear coordinates. This system of ODE’s
includes the relations for the neutral surface deformations, the equilibrium equations and
the elasticity relations. Different shell theories including Donnell’s and Timoshenko’s
theories are briefly discussed. The linear shell theory of Kirchhoff-Love type is selected
for further study. Finally, the shell vibration equations in general form are obtained.

In Chapter 3, the vibration equations of cylindrical shells are presented. The
general system of equations for arbitrary shells of revolution given in Chapter 2 is written
here for the case of cylindrical shells. The displacements are the unknowns of this
system. The specific form of the vibration equations of the axisymmetric case is
discussed.

In Chapter 4, we use a geometrical approach to solve the characteristic equation
describing the vibrations of thin circular cylindrical shells. This approach leads to the
construction of a convex hull in the space of powers of the small parameters involved in
the characteristic equation. The methods of construction of the convex hulls in 2D and

3D are presented. Special attention is devoted to the methods and algorithms used to



construct the convex hull and to study the characteristic determinants. These are: standard
algorithms of Mathematica 3.0 based on the Graham scan method for 2D cases,
algorithms we developed based on the "gift wrapping" methods for 2D and 3D, and the
Qhull algorithm based on the same principle for 4D. Methods for simplifying the
characteristic equations are also discussed.

Chapter 5 is concerned with the application of the construction methods of the
formal asymptotic solutions described in Chapter 4 to the vibration equations of thin
cylindrical shells given in Chapter 3. The axisymmetric and non-axisymmetric cases are
analyzed. The cases of superlow frequencies are of particular interest. These are
frequencies proportional to the positive power of the small parameter of the shell
thickness. These frequencies converge to zero simultaneously with the small parameter.
The boundary eigenvalue problems are solved for all of the cases mentioned above. For
non-axisymmeltric vibrations, the system of equations depends on three parameters: h, m
and A. For axisymmetric vibrations we have only two of them, since m is equal to 0. The
following boundary conditions are considered in our analysis: simply supported edges
and clamped-clamped edges.

In Chapter 6, we compare the results obtained by the asymptotic methods of
Chapter 5 with the FEM results we obtained by using ANSYS.

Conclusions and future work directions are presented in Chapter 7.

Selected Mathematica 3.0 codes for the construction of CH in 2 and 3D, for the
construction of separating lines and points as well as for the analysis of the characteristic

equation are given in the Appendices.



Chapter 2

Shell Theory

2.1 Introduction

In this chapter, the equations of two-dimentional shell theory are
introduced. A brief history of vibration analysis is first presented. Then, the general
system of equations of shell vibrations is derived in curvilinear coordinates (Koiter,
1960). This system of ODE’s includes the relations for the neutral surface deformations,
the equilibrium equations and the elasticity relations. Different shell theories including
those of Donnell and Timoshenko types are briefly discussed. The linear shell theory of
the Kirchhoff-Love type is selected for further study. Finally, the shell vibration

equations in general form are obtained.



2.2 Historical Aspects

In this section we present a brief history of shell theories (Soedel, 1981, Bauer er
al., 1993).

Vibration analysis has its beginnings with Galileo Galilei (1564-1642), who
solved by geometrical means the dependence of the natural frequency of a simple
pendulum on the pendulum length. He proceeded to make experimental observations on
the vibration behavior of strings and plates, but could not offer any analytical treatment.
He was partially anticipated in his observations of strings by his contemporary, Marin
Mersenne (1588-1648), a French priest. Mersenne recognized that the frequency of
vibration is inversely proportional to the length of the string and directly proportional to
the square root of the cross-sectional area. This approach was followed also by Joseph
Sauveur (1653-1716), who coined the terminology "nodes” for zero displacement points
on a string vibrating at its natural frequency, and also actually calculated an approximate
value for the fundamental frequency as a function of the measured static sag at its center,
similar to the way the natural frequency of a single degree of freedom spring-mass
system can be calculated from its static deflection.

The foundation for a more precise treatment of the vibration of continuous
systems was laid by Robert Hook (1635-1703), who established the basic law of
elasticity, by Newton (1642-1727), who established that force was equal to mass times
acceleration, and by Leibnitz (1646-1716), who established differential calculus. An
approach similar to differential calculus called fluxions was developed independently by

Newton, at the same time. In 1713 the English mathematician Brook Taylor (1685-1731)



actually used the fluxion approach, together with Newton’s second law applied to an
element of the continuous string, to calculate the true value of the first natural frequency
of a string. The approach was based on an assumed first mode shape. This is where work
in vibration analysis stagnated in England since the fluxion method and especially its
notation proved to be too clumsy to allow anything but the attack of simple problems.
Because of the controversy between followers of Newton and Leibnitz as to the origin of
differential calculus, patriotic Englishmen refused to use anything but fluxions and left
the fruitful use of the Leibnitz notation and approach to the investigators on the continent.
There, the mathematics of differential calculus prospered and paved the way for Jean Le
Rond d’Alembert (1717-1783), who derived in 1747 the partial differential equation
which today is referred to as the wave equation and who solved the traveling wave
problem. He was ably assisted in this by Daniel Bernoulli (1700-1782) and Leonard Euler
(1707-1783), both German speaking Swiss and friends, but did not give them due credit.
It is still a controversial subject to decide who did actually what, especially since the
participants were not too bashful to insult each other and claim credit right and left.
However, it seems fairly clear that the principle of superposition of modes was first noted
in 1747 by Daniel Bernoulli and proven in 1753 by Euler. These two must, therefore, be
credited as being the fathers of the modal expansion technique or of eigenvalue
expansion in general. The technique did not find immediate general acceptance. In 1822
Joseph Fourier (1768-1830) used it to solve certain problems in the theory of heat. The
resulting Fourier series can be viewed as a special case of the use of orthogonal functions
and might as well carry the name of Bernoulli. However, it is almost a rule in the history

of science that people who are credited with an achievement do not completely deserve it.



Progress moves in smail steps and it is often the individual who publishes at the right
developmental step and at the right time who gets the public acclaim.

The longitudinal vibration of rods was investigated experimentally by Chladni
and Biot. However, not until 1824 do we find the published analytical equation and
solutions, done by Navier. This is interesting since the analogous problem of the
longitudinal vibration of air columns was already done in 1727 by Euler.

The equation for the transverse vibration of flexible thin beams was derived in
1735 by Daniel Bernoulli and the first solutions for simply supported ends, clamped ends,
and free ends where found by Euler and published in 1744.

The first torsional vibration solution, but not in a continuous sense, was given in
1784 by Coulomb. But not until 1827 do we find an attempt to derive the continuous
torsional vibration equation. This was done by Cauchy in an approximate fashion.
Poisson (1781-1840) is generally credited for having derived the one-dimensional
torsional wave equation and the credit of giving some rigorous results belongs to Saint-
Venant (1797-1886), who published this in 1849.

In membrane vibrations, Euler in 1766 published equations for a rectangular
membrane that were incorrect for the general case but will reduce to the correct equation
for the uniform tension case. It is interesting to note that the first membrane vibration
case investigated analytically was not the circular membrane, even while the latter, in
form of the drumhead, would have been the more obvious shape. The reason is that Euler
was able to picture the rectangular membrane as a superposition of a number of crossing
strings. In 1828 Poisson read a paper to the French Academy of Science on the special

case of uniform tension and showed the circular membrane equation as well as its



solution for the special case of axisymmetric vibrations. One year later, Pagani furnished
the non-axisymmetric solution. In 1852 Lamé (1795-1870) published his lectures which
summarize the work on rectangular and circular membranes and contain an investigation
of triangular membranes.

Work on plate vibration analysis went on in parallel. Influenced by Euler's
success in deriving the membrane equation by considering the superposition of strings,
James Bernoulli, a nephew of Daniel Bernoulli, attempted to derive the plate equation by
considering the superposition of beams. The resulting equation was wrong. James, in his
1788 presentation to the St. Petersburg Academy, acknowledged that he was stimulated
in his attempt by the German experimentalist Chladni, who demonstrated the beautiful
node lines of vibrating plates at the courts of Europe. A presentation by Chladni before
Napoléon Bonaparte who was a trained military engineer and very interested in
technology and science caused the latter to transfer money to the French Academy of
Science for a prize to the person who would best explain the vibration behavior of plates.
The prize was won, after several attempts, by a woman, Sophie Germain (1776-1831), in
1815. She gave an almost correct form of the plate equation. The bending stiffness and
the density constants were not defined. Neither were the boundary conditions stated
correctly. These errors are the reason that her name is not associated today with the
equation, despite the brilliance of her approach. Contributing to this was Todhunter, who
compiled a fine history of the theory of elasticity which was published posthumously in
1886, in which he is unreasonably critical of her work, demanding a standard of
perfection that he does not apply to the works of the Bemoullis, Euler, Lagrange, and

others, where he is quite willing to accept partial results. Also, Lagrange (1736-1813)



entered into the act by correcting errors that Germaine made when first competing for the
prize in 1811. Thus, indeed we do find the equation first stated in its modemn form by
Lagrange in 1811 in response to Germaine’s submittal of her first competition paper.

What is even more interesting is that Sophie Germaine published in 1821 a very
simplified equation for the vibration of a cylindrical shell. Unfortunately again it
contained mistakes. This equation can be reduced to the current rectangular plate
equation, but when it is reduced to the ring equation a mistake in sign is passed on. But
for the sign difference in one of its terms, the ring equation is identical to one given by
Euler.

The correct bending stiffness was first identified in 1829 by Poisson. Consistent
boundary conditions were not developed until 1850 by Kirchoff (1824-1887), who also
gave the correct solution for a circular plate example.

The problem of shell vibrations was first approached by Sophie Germaine before
1821, as already pointed out. She assumed that the tangential deflection of the neutral
surface of a cylindrical shell was negligible. Her result contained errors. In 1874, Aron
derived a set of five equations, which he showed to reduce to the plate equation when
curvatures are set to zero. The equations are complicated because of his reluctance to
employ simplifications. They are in curvilinear coordinate form and apply in general. The
simplification that are logical extensions of the beam and plate equations both for
transverse and tangential motions were introduced by Love (1863-1940) in 1888. In
between Aron and Love, Lord Rayleigh (1842-1919) proposed in 1882 various
simplifications that viewed the shell neutral surface as either extensional or inextensional.

His simplified solutions are special cases of Love’s general theory. Love’s equations

10



brought the basic development of the theory of vibration of continuous structures that
have a thickness that is much less than any length or surface dimensions to a satisfying
end. Subsequent development was concerned with higher order or complicating effects

and will be discussed in this work when appropriate.

2.3 Two-dimensional Shell Theories

Since in this work, much of the attention is focused on the vibrations of thin
circular cylindrical shells, we will present here the main points of the simplest two-
dimensional variant of thin shell theory. The equations of shell theory may be found in

great detail in several monographs (Novozilov, 1970, Soedel, 1981).

2.3.1 Geometry of the Neutral Surface

and its Deformations

We introduce a system of orthogonal curvilinear coordinates ¢; and 0,’2,- which
coincide with the lines of curvature of the neutral surface S of the shell. Let a point M on
S be determined by the position vector r = r(o, ).

The shell fills the volume

(a, a6)eG, izl <t/2, 2.1)
where z is the coordinate of a point measured along the normal to the neutral surface and

t is the shell thickness (see Figure 2.1).

11



Figure 2.1. The geometry of the neutral surface G

Let "= JG be the boundary of the domain G. The shell is said to be thin if its relative

thickness #/R is small, where R is the characteristic shell length.

We introduce a local orthogonal system of coordinates by means of the unit

vectors ey, e> and n, where

1 or or
e =——— A = , 1¢>2),
' Adey T |3g (le2)
n=e, Xe,. (2.2)

In this section, the notation (1¢»2) indicates that the formula preceding it is valid with 1

and 2 interchanged.

The first and the second quadratic forms of the surface are

[=ds’ =Alda}l + Alda?,
: Al (2.3)

“da +R—-da§,

i 2

A
II=
R
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where ds is the arc length of a differential element on the surface, A; and A, are Lamé’s
coefficients, and R, and R; are the radii of curvature. We also use the notation k; for the
curvature k;= R/

To describe the deformation of the neutral surface, let u;, u> and w be the
projections of the displacements of a point M on the unit vectors e;, e> and n before

deformation. In the linear approximation, the tangential (membrane) surface

deformations &, & and @, are

1 dy, 1 04 w
£ = + iy ——

A da; AA, da, © R
1 du, 1 04,

@, = - u,,
' A da, AA, da,

’

(le2) 2.4

D=0 +0,.

The angles of rotation 3 and » of the normal n with respect to e, and e- are equal to

- Low (1e2) @2.5)

The bending surface deformations, ki, 3 and Tare given by

1 9y, 1 OdA
o, =—— 2N _ , 1¢>2 2.6
! A da, AA, oa, 72 ( ) (2.6)

L1on, 1 94
A, da, AA, 3, '’

a)l
T=- +—L
RZ
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2.3.2 Equilibrium Equations and Elasticity Relations

For the case of small deformations, the equations of equilibrium of an element of

the neutral surface are

2 2 A 2 2
NAT) 34y OAS,), Ok ¢ Ay 44 oo, (12)

aa'l aa{ aa’z 30.'2 R, )
a(Ale) + a(AlNl) +AA, £+£+ Fn =0,

aal aa’z Rl RZ

a(A,H,) a(AaM,) 3 =7
AAN+—2 U 172/, A?Hz=0»
- 80:, aa’z aal

5,-5,+H_Ha g

3 2

where T; and S; are the projections of the stress resultant of the internal forces acting in
the cross-section ¢ = constant, on the unit vectors ey, e- and n, N; are the transverse shear
forces, H; and M; are the projections of the stress couples of the internal forces, and Fy, F»
and F, are the projections of the distributed external load.

In this work, shells made of homogeneous and isotropic materials are considered.

Relations (2.1)-(2.7) are the same for all linear two-dimensional shell theories.
The differences are in the formulae connecting forces to deformations, knows as
elasticity relations (Zhilin, 1976). The Kirchhoff-Love hypotheses, which generally
assume that a linear element normal to the neutral surface before deformation, preserves
its length and remains straight and normal to the neutral surface after deformation, lead to

the elasticity relations introduced by Novozhilov (1970):
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T, =K(g, +ve,), S, = K(lz_ V)(a)+ g; ) (le2),

M, =D(x, +vx,), H =H=D(l-v)z, (2.8)

Et Er’

1-v*’ Dzlzh-vli'

where E is Young's modulus and vis Poisson’s ratio.

K=

The small parameter 4 is introduced into the system of equations through the

elasticity relations (2.8) as follows:

4 t?
R 29
y2 —17R2 2.9)

Indeed, K is proportional to the shell thickness ¢, and D is proportional to 7.
Assuming that the shell thickness ¢ is small compared to the characteristic shell length R,
after transition to non-dimensional variables, we get the small parameter 4 connected to

the ratio #R by formula (2.9).

Simpler elasticity relations were proposed by Love (1944), where
1
S, =Sz=S=§-K(l—v)a). (2.10)

But these relations have the disadvantage that the last of the equilibrium equations (2.7)
is not accurately satisfied.
Elasticity relations more complex than (2.8) are given in Goldenveizer (1961).
Since the system of equations (2.7) is of the eighth order, we need to supply four
boundary conditions at each edge of the shell. The simplest alternatives for the boundary
conditions at the edge on=a° are to impose the generalized displacements (ui, u2, w, %)

or the corresponding generalized forces, as follows:
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_,0 70
u, =u; or T,=T,

[
u, =uy or S, +—H—=Sl° +£I—,
o R R (2.11)
o 2.
w=w’ or N, - I oH =Nl°- 1 oH ,
A, da, A, Ja,

vi=y. o M,=M’.

2.3.3 Shallow Shell Equations

As one can see, the system of equations of the general shell theory is rather
complex. But, in some cases, these equations may be simplified. For example, if the
deformations are accompanied by small waves (the sizes of which, at least in one
direction, being small compared with the characteristic sizes of the shell), then the
shallow shell equations can be applied. In this case, the equilibrium equations and the
compatibility equations of the deformations reduce to the following pair of equations for

the deflection function w, and the force function @ (Donnell, 1976):

DAw—- A4 +F, =0,

1 5 (2.12)
—ADP+A4w=0,
Eh

where

A=t d (A, 9 . d (A 9
AA, | da, | A O, | da, | A, O, |
1 o (1 A4 o 0 (1 A 0
4. = + —_— .
AA, |0 (R, A da, | da, | R, A, 3,

The stress resultants are connected with the force function @ by the following relations:

(2.13)
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(1 2)

I, =— + ,
' A, 9a, | A, 3, | AA, Oc, Oc

s=_lfA 3 (130) A 3 (130
2| A da, | A} oo, | A, dar, | Al e, ||

The transverse shear forces Ny and N> may be determined from equations (2.7).

1 a[1a¢>J 1 04, 30

If we do not adopt the Kirchhoff-Love hypotheses, we can introduce the
transverse shift angles & and &. Then, there are five main unknowns, i.e. (i, s, w,

&1,05). In this case, we add two more equations to the elasticity relations of type (2.8),

namely
Eh Eh

=5, N,=——_§.. 2.14

L2(l+v) ! 2 2(1+v) 2 (214

Thus, the order of the system increases from 8 to 10. This theory is associated
with the name of Timoshenko (Timoshenko et al., 1959). Here, it is assumed that a linear
element normal to the neutral surface before deformation, remains straight, preserves its
length, and becomes inclined to the deformed neutral surface at angles & and &
(measured with respect to @ respectively ¢, the orthogonal curvilinear coordinates on
the neutral surface coinciding with the lines of curvature). However, there exist theories
described by systems of the 12th order, which allow element elongation. The two-
dimensional shell theories of higher order based on series expansions in powers of the
thickness are not widely used (Bauer er al., 1993).

Later in this work, the theory of Kirchhoff-Love type is used.
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2.3.4 Shell Dynamics Equations

If we take relations (2.4)-(2.8) into account, the system of equations of shell
theory may be reduced to a form in which only the displacements iy, u> and w are

unknown (Goldenveizer, 1961, Aslanyan et al., 1974). Thus we have

3
SN, +L,)u, +F, =0, =123, (2.15)

j=l
where u; (o, 0») and u3 = w are the displacement projections Nij (a1, co) and Lj(aq, o)
are linear differential operators (generally with variable coefficients in o and @), the
independent variables (¢4, 05) € S are orthogonal curvilinear coordinates on the neutral
surface coinciding with the lines of curvature, £ > O is a shell thickness parameter and F;

are the load projections.

We consider problems in which F; are proportional to the eigenvalue A. In the

case of vibrations,

F,=—Au,, w? ==, (2.16)

! t

where p is the density, R is the characteristic length and wis the natural frequency.
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Chapter 3

Vibration Equations

of Thin Cylindrical Shells

3.1 Introduction

In this chapter the vibration equations of cylindrical shells are presented. The
general system of equations for arbitrary shells of revolution given in Chapter 2 is written
here for the case of cylindrical shells. The displacements are the unknowns of this
system. The specific form of the vibration equations for the axisymmetric case is

discussed.
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3.2 General System of Vibration Equations
of Thin Cylindrical Shells

We consider the vibration of thin circular cylindrical shells.

——————
- -
- e

Figure 3.1. Circular cylindrical shell

A thin cylindrical shell of thickness ¢, length L and radius R is considered. We
introduce a system of orthogonal coordinates (&, o5) = (s, @) that defines the position of
a point on the neutral surface of the shell, where s is the length of the generatrix (0 < s <
L), and ¢ is the longitudinal angle (0 < @ < 2m). The shell is limited by two parallel planes
s=0ands=L.

A cylindrical shell is said to be thin if its relative thickness #/R is small. We
introduce a local orthogonal system of coordinates e;, e, n, where e; and e- are unit

vectors in the s and ¢ directions, respectively, and n is the normal unit vector (see (2.2)).

20



Let u, v, and w be the components of the displacement U in the directions e, e> and #,

respectively.

Here we use the thin shell equations given in Chapter 2. First, we introduce the

relations between non-dimensional and dimensional (marked by *) variables :

(u,v,w,Ri,B,s)=%(u',v',w',R;,B',s' ),

(€.0.7.)=(g, 0",y )

(K, T)=R(x",T"), G.D
1=vi) e e .
(TirSij'Ni)z(EhV- )(T. 'Sij'Ni )’

=v¥) .
(M,-.H)—W(M,.,H)

Simplify the formulae (2.4)-(2.8) for the case of cylindrical shells by using the
relations: I/Rj=0,R;=B=R,B’=0,A;=1,A-=B=1.

Formulae (2.5) for shear strains versus displacements become:

_ _Ow (3.2)

==Y
os

ov  du (3.3)
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d

0
=2

_ow, v
ds Os

The shell equilibrium equations (2.7) become:

ai+E’—T—N,-i-/1v=0,

ds Jd¢ -
T, +8i+aN2 +Aw=0,

© ds  do

o7, dS, _

—_ =+ Au=0, 34
% +a¢+ ¢ 3.4
oM, OH

T DN, =0,

3 9p

ai+aMZ-f~N,=O.

ds dp -

The elasticity relations (2.8) become:
T, =¢, +vg,,

T, =¢g, +vsg,,

(3.3
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The boundary conditions are:

w=u) or T,=T°,
=0 — QO 0
u,=u, or S +H=S +H",

0 3.6
w=w® or Nl—a£=N,°—aH -6)

n=v, or M =M’
Thus, we obtain a system of 20 equations in the following 20 variables: «, v, w,

T\, T3, Sy, S2, N1, N2, My, M, Hyo, &, @, &, Ki, T, K3, %, and »%.

3.3 System of Vibration Equations
of Thin Cylindrical Shells in Terms of Displacements

Expressing the resultants and strains as functions of the displacements we obtain
(Rimrott er al., 1994) the equations describing the vibrations of thin cylindrical shells
given by (3.2)-(3.5) in terms of displacements U = (u, v, w) as:

l+v d%v +V8w
2 Jdsde ds

_azu_l—v 03u _(1_ )

*VAu — =0,
N P

2 adp 2 3 0p I g

2 ow . ’w  Pw
1-v v +—+ 1 — 2— — =0,
( v ) op [ (2-v) ds°0p 3¢’ )

1+v °u 1-vo*v o*v +'u4(_2(1_v)8'v g v J_

3.7

—v%—i-hu4 (2-v) v +a3v +w
ds dg dsdp dg@°

=0.

otw o*w d*w
—({1=-v? ) Aw+ pu* 2
(1=v*)w #(85'4-*- asza¢2+a¢“J
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This system is of the form (2.15).
Separating the variables in s and @ in the expressions of the displacements
u (s, @) = U(s) sin me,
v (s, @) = V(s) cos me, (3.8)
w (s, @) = W(s) sin me,
and substituting them in (3.7) we obtain a system of ordinary differential equations

describing the vibrations of cylindrical shells:

U 1-v ) 1+v 3V oW
+——mU—-(1-v- AU +—m—+v—=0,
xr 2 " (-v:ha 2 "o os

v oU _1-v a'V+m2V+#4(_2(1_V)3 ‘2/+m2V)-

2 mas 2 os°

d (3.9)
(l—vz)lV +mW+,u4(—(2—V)maa-—py+m3WJ=O,
s

s

3 2
—(l—vz)lW +,u4(a d +2m? I W +m4W)=O.

ds? ds?

—v%(i+mv +,u‘(—(2-—v)maa;‘,/+m3vj+w
2

System (3.9) together with the boundary conditions (3.6) constitute the boundary

value problem, the solution of which we wish to construct.
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3.4 Asymptotic Solution of Vibration Equations
of Thin Shells

System (3.9) has the form:

HE, U, pm)+ LU, gm)+ AU =0, (3.10)

where L, and L are linear differential operators of the 8th and fourth order, respectively,
and 4 is a small parameter of the shell thickness. In this case, the boundary conditions
must be formulated in terms of &, v, w and their derivatives. For example,
W=w=w"=v=0 (3.11a)
are the conditions for a simple-supported edge, and
u=w=w=v=0 (3.11b)
are the conditions for a free edge.
To solve the boundary value problem (3.10)-(3.11) we apply the method of
asymptotic solution described in Goldenveizer et al. (1978). For this we need to construct
a formal asymptotic solution for equation (3.18) and then impose boundary conditions

3.11).

We seek the solution of equation (3.10) in the form

8 = R
Vs, u)=Y > CY u*er, (3.12)

=1 k=0
where, for each i, C; is an arbitrary constant, Y‘}c is the matrix of the amplitude vectors,

and x;depends on the order of p; with respect to . For example, if p; ~ &, then x;= 1.

Substituting solution (3.12) into equation (3.10) we obtain the characteristic

equation for p;
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|A(m, 12, 2)- pI|=0, (3.13)
where I is the identity matrix. In this work we consider only the cases where all p; are
simple roots of equation (3.13), i.e. when p; = p;for all i # j. Under such assumptions we
can use the formal asymptotic solution (3.12). Then, all solutions e are linearly
independent, and their linear combination provides the general solution of the initial
equation. In the next chapters, we shall limit attention to the construction of only the first
term of the asymptotic expansion (3.12).

For different relations between the parameters, the solutions (3.12) have different
forms. In this work we use symbolic computation to construct formal asymptotic
solutions for different values of the parameters g, l'and m.

The order of the function Ipl in 4 is called the index of variation of the solution.
The solution is exponentially increasing away from the edge s = 0, if Rp; > 0. Such
solutions is called the edge effect integral near the end s = L. The solution is
exponentially decreasing away from the edge s = 0, if Rp; < 0. Such solution is called the
edge effect integral near the end s = 0. The solution is oscillating, if Rp;= 0 and Sp; = 0.

If p; = O, the solution is called slowly varying. In solving the boundary value problem

- - d - .
with an error of order of e * | where ¢ and d are some positive constants, we may take
the value of the edge effect integrals near one edge to be equal to zero at the other end.

After constructing formal asymptotic solutions, boundary conditions should be
imposed to find the frequency parameter A. Substituting (3.12) into (3.10) we obtain a

system of linear equations in C; that has nonzero solutions if its determinant vanishes

A4, u)=0. (3.14)
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One can solve this eighth-degree equation numerically. In some cases this
equation may be simplified.

Simultaneously with the problem for u # O (perturbed problem (Nayfeh, 1973,
Nayfeh, 1981, Kevorkian er al, 1981) we consider the same problem with x4 = 0
(unperturbed problem).

If all p; are different from O and not pure imaginary, then

lin(}é‘(/lyﬂ)=4(/1.0) (3.15)
H—

and

A=A +ud +..., (3.16)

where A is the frequency for the unperturbed system, i.e. A(Ag, 0) = 0.

Of special interest are the cases of regular degeneracy (regular singular
perturbation) (Vishik ez al., 1957, Trenogin, 1970, O'Malley, 1974, Kevorkian, 1996).
Let the perturbed system have order n, the unperturbed system have order m. Let the
perturbed system have [ = n - m additional roots such that /; of them have negative real
parts and /> have positive real parts, where /; is the number of additional boundary
conditions at the left edge and I, is the number of additional boundary conditions at the
right edge. In this case the solution may be constructed using an iterative method.

The existence of pure imaginary roots makes the problem more difficult. As a rule

in this case, the function A(A,4) has a limit point at 2 =0 and lim,,0A(4, 1) # A(4, 0).
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3.5 Asymptotic Solution. First Approximation.

We seek a solution of system (3.9) in the form
U=Upe?, V=Vye? K W=Wye . G.17

Substituting (3.17) in (3.9) we find a system of equations with respect to Uy, Vj, and W

in the form:

—pU, + 1;Vm2U0 ~(1=v* Ay, + Izlmp%-f-vpﬂg =0,

1+v
2

w1 (=20-v)pV, + mV, )- (3.18)
(v v, + mw, +pt (- 2= v)mp W, +m’W,)=0,

mpU , —-I—Z—Vpro +m*V, +

— U, +mV+ 2 (- (2 ~v)mpV, + m*V, )+ W, —
(I—VZ)AWO -i-‘u‘(p2 —mz)zW0 =0.

System (3.18) has nontrivial solutions if its determinant is equal to zero. So, we

have the eighth-order equation

- p2 +1—;vm" —(I—Vz)l %/mp w
DlpihAm)= lf_j"mp elp.um~1-) flowm)  |=0 3.1
-y flopm 11+ (p—nif

from which all eight roots p; may be determined. Here

Flo.mm)=m+p* (-2 =v)mp* +m?)
and

2 o v )
g(puu,m)=ﬂ4(—2(l—l/)p’ +m”)—'2—p- +m2.

The method of analysis of equation (3.19) will be discussed in Chapter 5.
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3.6 Axisymmetric Vibrations

The axisymmetric vibrations of cylindrical shells, where m = 0 are a special case,
since the system of equations splits (Bauer et al. (1995), Bauer er al. (1997)). The set of
the first and third equations in (3.9) defines the transverse-axial vibrations, and the
second equation defines the torsional vibrations. We consider only the transverse-axial
vibrations.

For such vibrations:

—a;?+vﬂ—(l—v2)ﬂu=0, (3.20)
os* ds
—vZ s 4a4w—(1——vz)/1w=0.
os os*

System (3.18) becomes

~pUy -(1-v?)AU, +1pW, =0,

_I—TVpZV0 _,_#4(_2(1—1/);721/;,)—(1—1/2)/1‘{, =0, (.21

—wU, +W, —(1-v2 AW, +u%p*W, =0.

The characteristic equation is

2 _ (1,2
p*~{-vih po =0 (3.22)
—-p 1—(1—V')/l+,u P
or
P, b, A=A-2+ A V+p - Ap*+ 1* p* -0 AV + BpS = 0, (3.23)
4
where h* = =.
1-v~
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Chapter 4

Methods of Investigation

of the Characteristic Equation

4.1 Introduction

The geometrical approach is employed to solve the characteristic equation
describing the vibrations of thin circular cylindrical shells. This approach leads to the
construction of a convex hull in the space of powers of the small parameters involved in
the characteristic equation. The methods of construction of convex hulls in 2D and 3D
are presented. Special attention is devoted to the methods and algorithms (namely
standard algorithms of Mathematica 3.0 based on the Graham scan method for 2D cases,
algorithms developed by us based on the "gift wrapping” methods for 2D and 3D, and the
Qhull algorithm based on the same principle for 4D) used in this work to construct the
convex hull necessary to study the characteristic determinants. Methods for simplifying

the characteristic equations are also discussed.
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4.2 Introduction to Geometrical Approach

To find the roots p; of equation (4.11) for different values of the small parameter

h«l and A, we write (4.11) in the form

P(pih,A)=5a,p"h A% =0, (4.1)

where a; are coefficients not depending on p, k and A, and i is the number of terms in

(4.11). We call the points M;= {k;, &;, [5;} in the space {k, a;, 3} the representative points.

Each point is associated with the coefficients a;, that are later called the weights of the

point.

Firstly, we consider the geometrical interpretation of the 2D-problem of finding
the main terms of the polynomial

P(p.q:5)=Zco(s)p%q” (4.2)

which depends on two small parameters, p and g, with the weight Copl(5).

We consider & and f as arbitrary real numbers. In the case of thin shells of
revolution, the weight functions Cap( s )depend on the radii of curvature of the neutral
surface R(s), R»(s) and on the distance to the axis of rotation B(s), as well as on B’.

These weight functions may be constant or may depend on s, but they must be

O(4°%) and be non zero. They will be considered as equal to +1 in the construction of the

convex hulls in this chapter.
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For each term of the polynomial Copl's )p%q”? we do a mapping to the pair of
numbers ¢, § with the weight Cop( s )in the 2D space of (¢; [). Moreover, the terms

with the same pair (¢, ) map to one point associated with the total weight of those terms.

Next we represent this set of points in the plane {¢ B}. We choose the axes such
that all the points lie in the first quadrant and the extremal points, i.e. the points with
coordinates{mino(f}),maxc(f)} lie on the coordinate axes. Algebraically, this operation
is equivalent to taking out of the brackets the terms with the minimum powers of p and q.

Definition: A point is called invisible from the origin, if and only if, this point
and the origin lie in different domains, defined by the line which goes through the
points A (&, B, )and A,(a,,f3, ), and this point must lie in the interior of the sector,
defined by the lines OA, and OA, .

Theorem 1: For invisible points, the following inequalities are valid

pq” +p%q® > p=qf (*)for0 <p,q<1. (4.3)
ok
 (aa, Br) Al(x B
A~
Az (e, )
0 >

Fig.4.1 Graph for the proof of Theorem 1
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Proof:

1. p®>p“asa.<ax and O<p<land
q” >q” as f.<B and 0<g<l.Therefore, p*=q* > p°q”. (4.4)
2. To complete the proof, we have to show that the function

f(k): p“‘ .qﬁ- = pkal*‘“"')“: ,q"px‘*“'k)ﬂ: < palqpl +p‘1’:qﬁ: (4.5)

(for0<k<1,0<p,g<1).
Next we find the location of the maximum of function f{k):
k)=, -, )inp + (B, - B,)Ing]- p*™!*Ie . ghoi1=ki: (4.6)
As the expression in the brackets does not depend on k, and the other factors are
greater than zero, the function f(k) attains its maximum at one of the ends of the segment:
O or 1. Thus,
maxf(k)=f(0)=p™ -q* =p*= -q* <p®g? + p=g* or

maxf(k)=f(1)=p* -g# =p*® - gk < p™gh + p®q” . Therefore,

flk)<max{f(k)}=max{f(0), f(1)}=max{p® - g%, p= - g% }< p=gh + p=qP: .

Therefore, for small parameters p and g, the term defined by the point A may be
neglected compared to the sum of the terms defined by the points A; and A,. As this
criterion is applied for any three points, the main terms of the polynomial will be defined
by points of the convex hull of the point set. Moreover, the whole convex hull defines the
main terms of the polynomial for any values of the parameters, i.e. may be small, large or
O(1). If some parameters are small, then we have to consider only a part of the convex

hull. If one of the parameters is small, we should consider only the lower part of the
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convex hull, i.e. those points and facets, which are visible from the point (p, h) = (0, -e<).
For instance, in the case of a vibrating cylindrical shell, the relative thickness % is small.
If two parameters are small, we will consider only the part of the convex hull, which is
visible from the two points (-eo, 0) and (0, -e0), or, in other words, the part visible from
the origin.
The above considerations may be generalized to the cases of higher dimensions.
Next we consider the problem of constructing the convex hull for the set of

points.

4.3 Historical Aspects

The construction of the convex hull for a finite point set can be used for a variety
of problems in science. The convex hull is the most ubiquitous structure in computational
geometry and it also represents something of a success story in this science.

Chand and Kapur (1970) described the algorithm for the construction of a CH for
a space of arbitrary dimension. Their approach is based on the so-called "gift wrapping"
principle. The basic idea of this principle consists in projecting the space-points into a 2D
plane, constructing there the convex hull, and then, "wraping" the object. Our algorithm
in 3D is based on this idea. This algorithm is O(n?), where n is the number of points
considered.

The first algorithm for constructing the convex hull with an order less than n? was

developed by Graham (1972) for the 2D case. The Graham method is based on the
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representation of points in polar coordinates, sorting them by angles and using the "3-
coins” algorithm described below. This algorithm is O(n log n+Chn), where C is a constant
defined by the conversion of Cartesian coordinates of the point set to the polar coordinate
system.

Jarvis, using an idea similar to that in the Chand-Kapur method, introduced an
algorithm of O(nh) for the 2D case. This algorithm is described below (ORourke, 1998).
Here 4 is the number of points on the convex hull.

The studies on the construction of convex hulls have been continued by Preparata
and Shamos (1988), who developed several algorithms of O(n log n) for the 2D case
using ideas from Shamos (1978).

For higher dimensions the construction of algorithms with an order less than n>
was a problem for many years. Preparata and Hong (1977) proposed an algorithm of O(n
log n) for the worst case. This 2D algorithm is considered as a variation of the algorithm
for 3D and is based on the "divide and conquer” principle (ORourke, 1998). This
principle states that the set of given points is divided in subsets of 3-4 points and then
these subsets are merged together.

Since the statement that “the number of edges of a convex hull for n points is less
or equal to n” is valid only for 2D and not for higher dimensions, we can conclude that
for higher dimensions (three and more) the order of the algorithms based on the "edge"
principle cannot be less than n>.

On the other hand, for the special case of arranging the initial set of points, the

algorithm proposed by Brown (1979) and Aggarwal et al. (1989) for nD can be used.
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This so-called "spherical inversion" algorithm can be employed to construct the Voronoi
diagram.

To define the visible points (not edges), a simpler approach can be used. For
example, a point V;is visible, if:

FU: Vj:
UV, 2b
U'v,=b

4.7

Here b > 0, V; are the points, U is a normal vector to the line (hyperplane) which
goes through the V; and which separates the points from the origin. The system (4.7) can
be solved by methods of linear programming (simplex method, for instance). Algorithms
of these types are realized, for example, in Matherﬁatica (LinearProgramming function)

and Maple Software.

One can also use specialized geometrical software to construct a convex hull. The
best sources for software links are the Directory of Computational Geometry Software
and the Stonybrook Algorithms Repository. For the purpose of this work the following
software packages deserve special attention:

Qhull (Barber et al., 1996) which is a high-quality, robust, user-friendly code
for computing the convex hull in any dimension,

LEDA (Mehlhom et al., 1998) which is a full C4++ library of computational

geometry software, including an extensive class library and robust primitives.

We used Qhull to construct the convex hull in 4D for the case of non-

axisymmetric vibrations.
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4.4 Construction of the Convex Hull in 2D

Firstly, we describe the most popular technique - the "three-coins algorithm".
Most algorithms are based on this approach. This is one of the simplest algorithms used

to find the convex hull of a simple polygon.

4.4.1 The Three-Coins Algorithm

The three-coins algorithm was developed independently by Graham and Sklansky
(1972) to find convex hulls. Here is a short description of the Graham's algorithm known
as the Graham Scan method.
Graham’s algorithm
* Find an extremal point (for example, the point with the smallest y coordinate)
and label it po.
* Sort the remaining n-1 points radially, using pg as the origin.
3. Place three coins on vertices pq, p;, p> and label them "back”, "center”,
and "front" respectively. (They will form a right turn from "back" to "front").
* Do:
If the 3 coins form a right turn (or if the 3 coins lie on collinear vertices),
- Take "back", place it on the vertex ahead of "front".
- Relabel: "back" becomes "front", "front" becomes "center”, "center"
becomes "back".

Else (the 3 coins form a left hand turn)
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- Take "center”, place it on the vertex behind "back”.
- Remove (or ignore hereafter) the vertex that "center” was on.
- Relabel : "center” becomes "back", "back” becomes "center".
Until "front" is on vertex po (our start vertex) and the 3 coins form a right
turn.

* Connect the remaining points in the order they were sorted at Step 2. This

forms the convex hull of the original set of n points.

The three coins advance along. the ordered vertices as long as they keep forming
right-hand turns. If this were to continue till the end, the algorithm would have merely
verified that the ordered vertices form a convex polygon.

Complexity:

Since a vertex is deleted every time we backtrack one step, it is apparent that there
is a maximum of n backtracks. So, conceivably, we could get n loop iterations + n
backtracks = 2n coin placements. Each coin placement requires a constant amount of
work (locating next vertex, calculating angle, relabeling), so the running time of the
three-coins loop is O(n). It is well known that sorting is O(n logn) (and £Xn logn)), so the
overall run-time is dominated by sorting. The time complexity of the Graham Scan is the
worst case optimal: &z log n).

Symbols £2, O, and @ are called the Landau symbols.
g(n)= £Xf(n)) means that 3c and ng such that | g(n) |> ¢f(n) for V n 2 ng.
g(n)= O(f(n)) means that Jc and ng such that l g(n) l < c¢f(n) for V n 2 n,.

g(n)= &Xf(n)) means both O(f(n)) and SXA(n)) hold.
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4.4.2 Gift Wrapping Algorithm (Jarvis’ March)

This is perhaps one of the simplest algorithms for the construction of the convex
hull, and yet in some cases it can be very fast. The basic idea is as follows:
_® Start at some extremal point, which is guaranteed to be on the hull;
* At each step, test each of the points, and find one which corresponds to the largest
right hand turn. That point has to be the next one on the hull.

Because this process marches around the hull in counter-clockwise order, like a
ribbon wrapping itself around the points, this algorithm is also called the gift wrapping
algorithm. Jarvis’ march takes time proportional to nh, where n is the number of input
points, and A is the number of points on the hull. In other words, Jarvis’ march is output-
sensitive. As we can see, this algorithm is not very fast. In fact if n points are arranged in
a circle, Jarvis’ march will take time proportional to n>. Quick-hull, which we will

describe next would probably be faster.

4.4.3 Throw-away Principle (Quick-hull)

Here is an algorithm that deserves its name. It is a fast way to compute the convex

hull of a set of points on the plane. It is recursive and each recursive step partitions data

into several groups.
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The partitioning step does all the work. The basic idea is as follows:

I. We are given a point set, and a line segment AB which we know is a chord of the
convex hull (i.e., its endpoints are known to be on the convex hull). A good chord
to start the algorithm goes from the leftmost to the rightmost point in the set.

2. Among the given points, find the one which is farthest from AB. Let us call, this

point C.

3. The points inside the triangle ABC cannot be on the hull. Put them in set so.

4. Put the points, which lie outside edge AC in set sy, and points outside edge BC in
set sa.

Once the partitioning is done, we recursively invoke quick-hull on sets s; and s».
The algorithm works fast on random sets of points because step 3 of the partition

typically discards a large fraction of the points.

Figure 4.2 Graph for the quick-hull algorithm

It can be seen that if the set of points are arranged in a circle, then no points are
discarded (s; is always empty), so the algorithm runs more slowly. For this particular

example, Graham’s scan described above may be more efficient.
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4.4.4 Divide-and-Conquer Algorithm for 2D

The divide-and-conquer algorithm is an algorithm for computing the convex hull

of a set of points in two or more dimensions.

First sort the points by x coordinate.

Divide the points into two sets, L and R, L containing the left [ n/2] points, and R
the right [ n/2] points.
Compute the convex hulls of L=H(L) and R = H(R) recursively.

Merge L and R: Compute H(LUR).

tangent

Figure 4.3 Graph for the divide-and-conquer algorithm

To merge the left and right hulls it is necessary to find the upper and lower common

tangents. The upper common tangent can be found in linear time by scanning around the

left hull in a clockwise direction, and around the right hull in a counterclockwise
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direction. The two tangents divide each hull into two pieces. The edges belonging to one
of these pieces must be deleted.

Because the merge can be done in linear time, the total time is O(nlogn).

Now, we describe the algorithm that we used to construct the convex hull in
2D. As it was mentioned above, this algorithm is based on the "gift wrapping" principle.
So, suppose we are given the set of points plotted in Figure 4 4.

1. Plot these points in the Cartesian coordinate system.

15 . . .
12.5 . * . .
10
7.5 .

Figure 4.4 First step of the construction algorithm of CH in 2D

!\)

Delete the repeated points from the list.

3. Find the centroid of these points, W.

4. Sort the points by an increasing angle that is computed as an angle between the
line joining W and the point with max{x}, WA, and the line WA, where A is the

current point (see Figure 4.5).
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Figure 4.5 Fourth step of the construction algorithm of CH in 2D

Divide the list of points in four subsets, the boundaries of which are defined by
the points A, A», A3 and A4 with min{x}, min {y}, max{x}, max{y}. These points
must be included in the final convex set. Consider each subset separately, but in
the same manner. In each subset join all the sorted points consecutively. Choose
in each subset only those points which lie in different half spaces with W with

respect to the facets of the current convex hull (see Figure 4.6).

Figure 4.6 Fifth step of the construction al gorithm of CH in 2D
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6. Sometimes we need to construct only a part of the convex hull, for example, the
facets of the convex hull that are visible from some point. For instance, one may
wish to construct the facets visible from the origin. To achieve this, we draw the
line through A, and Aj (that is 1 and 6 on Figure 4.7), and select only the points of

the convex hull that lie under this line. It will be the convex hull visible from the

origin.

15 * . ) o’ * .
12-.5} ° * . .
108~
7.5 Tl .
S e
2.5 Tl ot
- .\‘a’,"
5 10 15 20

Figure 4.7 Sixth step of the construction algorithm of CH in 2D

4.5 Construction of the Convex Hull in 3D

4.5.1 Gift Wrapping Algorithm for 3D

As mentioned previously, the gift-wrapping algorithm was developed to work in
arbitrary dimensions (Chand and Kapur, 1970). The three-dimensional version is a direct

generalization of the two-dimensional algorithm. At any step, a connected portion of the
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hull is constructed. A face F on the boundary of this partial hull is selected, and an edge e
of this face whose second adjacent face remains to be found is also selected. The plane &
containing F is "bent” over e toward the set until the first point p is encountered. Then
{p, e} is a new triangular face of the hull, and the wrapping can continue. As in 2D, p can
be characterized by the minimum tumning angle from = A careful implementation can
achieve O(n?) time complexity: O(n) work per face, and the number of faces is O(n). And
as in 2D, this algorithm has the advantage of being output-size sensitive: O(nF) for a hull

of F faces.

4.5.2 Divide-and-Conquer algorithm for 3D

Although several of the 2D algorithms extend (with complications) to 3D, the
only one to achieve optimal O(n log n) time is the divide-and-conquer algorithm of
Preparata and Hong (1977). It is, however, rather difficult to implement, and it is not used
as frequently in practice as other asymptotically slower algorithms. The paradigm is the

same as in 2D:

. First sort the points by x coordinate.
. Divide the points into two sets, L and R, L containing the left [ n/2] points, and R
the right [n/2] points.

. Compute the convex hulls of L = H(L) and R = H(R) recursively.

. Merge L and R: Compute H(LUR).
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The merge must be accomplished in O(n) time to achieve the desired O(n log n)

bound. All the work is in the merge, and we concentrate solely on this:

Figure 4.8 Graph for divide-and-conquer algorithm

Let A and B be two hulls to be merged. This can be achieved in two different
ways:
. The hull ALB will add a single "band” of facets with the topology of a cylinder
without endcaps (see Figure 4.8). As the number of these faces will be linear in the size
of the two polytopes, it is feasible to perform the merge in linear time, as long as faces
can be added in constant time (on average). Let rbe a plane that supports A and B from
below, touching A at the vertex a and B at the vertex b. Then, 7 contains the line L
determined by ab. Now "crease” the plane along L and rotate half of it about L until it
bumps into point ¢ on polytope A (say), then ac must be an edge of A. In other words, the
first point ¢ hit by 7 must be a neighbour of either @ or b. This limits the vertices that
need to be examined to determine the next to be bumped. Once 7 hits ¢, one triangular
face of the merging band has been found: (a, b, c). Now the procedure is repeated, but

this time around the line through cb (if c€ A). The wrapping stops when it closes upon

itself.
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. Project A and B on the coordinate plane and find A’ and B’ - their convex hulls in
2D. Then, compute a bridge of A" and B’. This line corresponds to the line in 3D that
extends to the plane and rotates this plane as the "gift wrapping" algorithm does. To
complete the procedure, remove the "inside" facets.

We can generalize this algorithm to any number of dimensions. However, the
merge cannot be guaranteed to be completed in linear time, so the algorithm could take

more time than O(n log n).

Now, we describe the algorithm we used to construct the convex hull in 3D. As it
was mentioned above, this algorithm is based on the gift wrapping principle.
So, suppose we are given the following set of points (see Figure 4.9).

1. Represent these points in the Cartesian coordinate system.

Figure 4.9 First step of the construction algorithm of CH in 3D

2. Project all the points on the plane x + y + z = const.
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Figure 4.10 Second step of the construction algorithm of CH in 3D

3. Using the algorithm for 2D, find the space boundary of the 3D convex hull under

construction by plotting the convex hull of the points on the plare.

Figure 4.11 Third step of the construction algorithm of CH in 3D

4. Consecutively, for each edge construct the facet such that the rest of the points lie

above this facet.
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Figure 4.12 Fourth step of the construction algorithm of CH in 3D

To find the whole convex hull we can use any of the algorithms described

previously.

4.6 Construction of the Convex Hull in nD

It is best to approach higher dimensions by analogy with lower dimensions.
Unfortunately, there is a fundamental obstruction to obtaining efficient algorithms: the
structure of the hull is so complicated that just printing it out sets a stiff lower bound on

algorithms. Klee (1980) proved that the hull of n points in 4 dimensions could have
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Q (n ) facets. Hence in particular, the convex hull in 4D may have quadratic size, and

no O{n logn) algorithm is possible under the circumstances: worst case O(n log n+nl¥3y.

4.7 Methods for Simplifying the Characteristic
Equation

Assume that we are given a polynomial P (p; h, 1), where p is the variable and A
and A are parameters. As proven in Section 4.2, the terms in the polynomial defined by
the facets of the convex hull are the main ones. For each facets the main terms will be
different. Each facet defines the relation between the parameters A and h. We represent
these relations in the form A = Ay k™, as we assumed that 4 is the main parameter. The
sets of points &; will be called the separating points. We can construct the solution at each
point K.

To construct the solutions for an intermediate value of A, for which x# &, let the
points &; separate the entire range of the parameter A into domains. For any A inside a
domain the structure of the convex hull and, therefore, the formulae for the roots and
eigenvectors are similar. Thus, we can obtain the values of the roots and eigenvectors
considering only one value of A for each domain. Using this, we can construct solutions
at all separating points and for all domains between the separating points. As soon as we
know the order of parameter A, the number of parameters of the characteristic equation is

reduced by one.
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As we will see, in the case of axisymmetric vibrations, the characteristic equation
contains only one small parameter, 4. To obtain the roots of such an equation Newton’s
diagram method (i.e. 2D convex hull) may be used. In this case the representative points
lie in the (p, h) plane and have the form M; = {k;, oy + B;x}. The segments of the lower
part of the convex hull of the set of points M,, i. e. the segments that are visible from the

point (p, k) = (0, -o0), define the terms of the characteristic equation that should be kept to

determine the main terms of the roots, p; .
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Chapter 5

Asymptotic Solution of the Vibration
Equations of Thin Cylindrical Shells

5.1 Introduction

This chapter is concerned with the application of the construction methods of the
formal asymptotic solutions described in Chapter 4 to the vibration equations of thin
cylindrical shells given in Chapters 2 and 3. The axisymmetric (m = 0) and non-
axisymmetric (m # 0) cases for a shell of medium length are analyzed. The cases of
superlow frequencies, i .. when 1 = Aoh", k>0 are of particular interest. The boundary
eigenvalue problems are solved for all these cases. For non-axisymmetric vibrations, the
system of equations depends on three parameters: 4, m and A. For axisymmetric
vibrations we have only two of them, since m is equal to 0. The following boundary
conditions are considered in our analysis: simply supported edges and clamped-clamped

edges.
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5.2 Axisymmetric Vibrations (m = 0)

For equation (3.23) we have the following representative points M; = {{1, {0, 0,
LH ({-14v2 {0, 0, 21}, {{1, {2, 0, 0}}, {{-1, {2, 0, 1}}, {{1-V?, {4, 4, 1}}, {{1, (6, 4,
0}}.

If we plot the representative points in 3D-space (p, h, A), then, the 3D convex hull

facets determine the separating cases (Landman et al., 1999).

Figure 5.1 3D convex hull form =0

Since we consider only thin shells we assume that & is small. In this case, as
proved in Chapter 4, we should keep only the facets of the convex hull that are visible
from the point & = -eo. For equation (3.23) the facets of the lower part of the 3D convex
hull are plotted in Figure 5.1. This part of the 3D convex hull consists of 3 facets: 1: M,

My, M3, My);2: (M3, My, Ms); 3: Ma, My, Ms, Mg). Imposing that the orders of all
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terms corresponding to the points forming a facet be equal to each other, we find the
relations from which the orders of A for the separating cases may be determined:
A1~ ~ pz - ﬂpz,
Ap* ~ p* ~h*p®, (5.1)
A ~Ap* ~ At p* ~nipS.

So, for the first and the second relations k=0, and for the third x= -4. Therefore,
the entire range of A is divided into 3 domains where the 2D convex hulls are essentially
different. Each of these domains defined as Domain I: x> 0, Domain II: 0 > x> -4 and
Domain OI: k¥ < -4, as well as the separating casés A: k=0, and B: k¥ = -4 must be
considered separately. As shown in Section 4.7, for any A inside a domain the structure of
the convex hull and, therefore, the formulae for the roots and eigenvectors are similar.
Thus, we can obtain the values of the roots and eigenvectors by considering only one
value of A for each domain. Therefore, we know now the order of A. Since A is given, i.e.
A = Ao A", where Ay ~ 1 and x is known, equation (3.23) contains only one small
parameter, 4. To obtain the roots of such an equation Newton’s diagram method may be
used (Goldenveizer et al., 1978). In this case the representative points lie in the (p, h)
plane and have the form M; = {k;, &; + fx}. The segments of the lower part of the convex
hull of the set of the points M, i. e. the segments that are visible from the point (p, k) =
(0, -e0), define the terms of equation (3.23) that should be kept to determine the main

terms of the roots, p;.

54



5.2.1 Analysis for Different Domains x

Using this approach, we arbitrary choose for the domains I, Il and I &= I, k= -1
and x = -5, respectively, and we should also analyze the cases A: =0 and B: x= 4.
Therefore, we are considering five cases here, where x is equal to -5, -4, -1, 0 and 1,

respectively.

Figure 5.2 Domains of x

5.2.1.1 Convex Hull for Domain I: x=-§

We start with the case k= -5 for which Newton’s diagram is plotted in Figure 5.3.

o+ pK

Figure 5.3 Newton’s diagram form =0, x=-5
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In this case the representative points for equation (3.23) are M, = (0, -5), M>= @, -
10), M53=(2,0), M:=(2,-5), Ms= (4, -1), Ms= (6, 4). Newton’s diagram consists of 2
segments. The first segment is determined by points M; = (0, -5), and M5 = (2, 0), and the

second segment by points M3 = (2, 0) and Mg = (6, 4).

5.2.1.2 Convex Hull for Critical Point I: x= -4

In the second case, K = -4, the representative points for equation (3.23) are M| =
0,-4), M>=(0,-8), M3=(2,0), M:=(2,-4), Ms= (4, 0), Ms= (6, 4). In this case

Newton’s diagram consists again of 2 segments (Figure 5.4).

h
a+ K at M6

Figure 5.4 Newton’s diagram form =0, k= -4
According to the previous chapters, the initial equations are valid for 4 « ™ and,

therefore, cases III and B should be neglected in the following analysis. Case A is special
since, in this case, the second term in the expansion for p is important (Goldenveizer et
al., 1978). Therefore, we consider only the solutions in Domains I, II and A and the

previous cases were presented to show how the points are moving and how the structure

is changing.
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5.2.1.3 Roots and Amplitude Vectors for Domain IIT: k=1

We start our real mechanical analysis with the case x = 1 for which Newton’s

diagram is plotted in Figure 5.5.

a+ px

h
St -M5
at Ms
3F
M.
2e 2
My M,
1 o
\ 4 5
1 2 3 4 5 6

Figure 5.5 Newton’s diagram form =0, k=1

In this case, the representative points for equation (3.23) are M, = (0, 1), M>= (0,

2), Ms=(2,0), Ms=(2,1), Ms=(4, 5), Ms= (6, 4). Newton’s diagram consists of 2

segments. The first segment is determined by points M, = (0, 1), and M3 = (2, 0), and the

second segment by points M3 and Ms. Therefore, equation (3.23) has 2 groups of roots,

the first of which is defined by the equation

A+p>=0,

while the second one may be found from the equation

Hence, the roots are

pr+hpS=o0.

D2 = iﬁi ,
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and

-, §&;=*x—=i
h / 2

E. 2 2
p;= 4 J_ g j=3456. (5.5

The orders of the variables p may be determined as the inclination angles between the
segments and the p axis.

Having found the sets of roots p;, we also can determine the relative orders of the
eigenvectors Up', Wy'. To find them, we substitute the expressions for the roots p; in
equations (3.9). As we claimed in advance, we are limited to consider only the case when
the multiplicity of the roots is equal to 1. Thus, we get a system of linearly dependent
equations and, therefore, either the first or the third equation in (3.9) should be chosen.
The only limitation for this choice is that the coefficients of Uoi and Woi are nonzero.
Finally, we get an equation of the following type:

a(p;: R, A,m)U¢ +b(p; h,A,m)W; =0. (5.6)

It can be concluded from (5.6) that

Ul =b(p;h,A,m),
Wy =—a(p;h,A,m).

5.7

To simplify the coefficients a(p; h, A, m) and b(p; h, A, m), we should keep only
the main terms. For this purpose, the same "convex hull" algorithm can be applied, since
these coefficients have the form of polynomials as well.

The main terms for Uoi and Woi are given in Table 5.1.
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Table 5.1 Roots and eigenvectors form =0, k=1

1 2 3 4 5 6
PN A e e E |
h h h h

Uo Pt P2 v v v v
Wy -vA -vA P3 Ps Ps Ps

5.2.1.4 Roots and Amplitude Vectors for Critical Point IT: x= 0

In the second real case, K= 0, the representative points for equation (3.23) are
Mi=(0,1), M2=(0, 1), M3=(2,0), Ms=(2,0), Ms=(4,4), Ms= (6, 4). In this case,

Newton’s diagram consists of 2 segments (Figure 5.6).

Ms My

a+ pK

M), M,

INX N
&

Figure 5.6 Newton’s diagram form =0, k=0
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The first segment is determined by M|, M>, M5 and M, and the second one by M;,

M, and Ms. Therefore, equation (3.23) has 2 groups of roots, the first one being defined
by equation

A=+ 2vi+p?-Ap? =0, (5.8)

and the second one by equation

p*—Ap*+h'*p® =0. (5.9)
Hence
p.=%F(2) F (l)=1/i_ﬂ——{ljz ]’1 (5.10)
and
Piise =(/1_-—hl)'/_4. (5.11)

In this case, the roots and the eigenvectors are shown in Table 5.2.

Table 5.2 Roots and eigenvectors form =0, x=0

1 2 3 4 5 6
b4 FQ) F) | (-4 A | a-v | -4
h h h h

Uo )4 D2 v v v v
Wo Av Av p3 Ds Ds Ps
A-1 A-1

Note that the above results for k¥ = O are valid when A is not too close to 1,

otherwise the first negligible term for p has the same order as the main term.
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5.2.1.5 Roots and Amplitude Vectors for Domain II: x=-1

Finally, in the third real case, k= -1 and the representative points are M, = (0, -,

M>=(0,-2), M3=(2,0), My=(2,-1), Ms=(4, 3) and Ms= (6, 4) (Figure 5.7).

‘Wd

A"S
a+ pK

A

M
®

Figure 5.7 Newton’s diagram form =0, k= -1

In this case Newton’s diagram consists again of 2 segments. The first segment is
determined by M- and M4, and the second one by M, and M;. Therefore, equation (3.23)
has two groups of roots, the first one being defined by equation

- A+ -pr =0, (5.12)
and the second one defined by
—Jp*+h*pS =0. (5.13)

In this case, the roots and the eigenvectors are given in Table 5.3.
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Table 5.3 Roots and eigenvectors form =0, x = -1

1 2 3 4 5 6
Pol=le | v | 4 5 A %
R | |k
Uo P P2 v v v %
Wo v v p3 Ps Ps Ps

Note that for roots p; and p: the coefficient of Uy in the first equation in (3.23) is
equal to zero, and to determine Up and Wy we must use the third equation in (3.23).

As we can see above, the representative points move in the (p, h) plane as x
changes. We are interested in the cases (called separating) when the convex hull changes.
These occur when one of the interior points reaches the convex hull, or two or more

segments form a straight line.



5.2.2 Boundary Value Problem

5.2.2.1 Low Frequency (Domain III) for Simply Supported Edges

The geometry of the point set and its convex hull for Domain II is given in

Figure 5.5. In this case the solution may be written as

u=3U,e?, w=3SWer, (5.14)

=0 =0
where p;, U; and W; are determined from Table 5.1.

We consider two types of boundary conditions: simply supported edges and
clamped edges. For low frequency vibrations (4 « 1, &> 0) of a cylindrical shell with

simply supported edges, the boundary conditions have the form
w=w=w"=0ats=0ands=L. (5.15)
Substituting solution (3.38) into the boundary conditions (3.39) we get the characteristic

equation from which the first approximation for the frequency parameter A may be found

U, nU, P pU, psUs PsUs
wow W W W W,
ply  pU,  pU,  PU,  piU;  piU
pUe™"  pUer* pUe”t  pU.eP* pUe™"  pUer*

2rr oL 2rr el 2rr ,psL 2 pL 2 psL 2r7 ,Pel
pUe pU,e pUse pilqe p;Use psUge

D4)

(5.16)

The values of A may be obtained numerically from this equation. However, we

may also try to simplify this determinant. We neglect the values of the third and fourth
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terms on the left edge compared to those on the right edge, and the values of the fifth and
the sixth integral on the right edge compared to those on the left edge. Then, after
factorization, the determinant has the form
D(A) = ~4elFmAern (L y g2dT)g2((1 2 ) /p8 g (5.17)
or
D(A)=(-1+e*7)=0.

Therefore, we obtain one series for the natural frequency parameter

A= (ﬂJ (5.18)

This frequency coincides with that for the unperturbed (momentless) system. In
this case two additional roots have negative real parts, and two have positive parts. Since
there are four additional boundary conditions (two on each edge) this is a case of regular
degeneracy or regular singular perturbation (Vishik er al., 1957) and the next corrections

for A may be constructed with an iterative method. Note that relation (5.18) is valid for

A« 1.
5.2.2.2 High Frequency (Domain II) for Simply Supported Edges
Similarly, for high frequency vibrations of a cylindrical shell with simply

supported edges (4 »1, - 4 < k< 0), we use the same equation (5.18), but now p;, U; and

W; are determined from Table 5.3.
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As usual, we neglect the values of the edge effect solutions on the other edge. As

a result, after simplification we get the following expression for D(1):

. iu"‘((l+i)+h,1"‘¢1—v1 )
D(/‘{) = ——846 A
h
2iL4* (-19)
[— l+e * I— 1+ eZiL“’l(l—":) )}3 (V2 + ){(1 —v? ))2 =0,
ie.
LR
D(/l){— l+e 7 [ —1+220-) J=0.
So, we obtain two series for the natural frequency parameter:
A= L > = , (5.20)
I-v-{ L
and
ﬂk 4
A=|=h|. 5.21)

Here, there are four pure imaginary roots among the additional ones, and this is

not a case of regular degeneracy. Expressions (5.20) and (5.21) are valid for A » 1.

5.2.2.3 Low Frequency (Domain III) for Clamped Edges

For low frequency vibrations of a cylindrical shell with clamped edges (1 « 1,

x> 0) the boundary conditions have the form
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u=w=w=0 at s=0ands=0L. (5.22)

So, we must solve the equation

U U, U, U, U, U,

D(2)= 2 WIL szsz P3VV3L P4VV4L Ps"VsL PsWs
Ue™ U,e™ U,e” U,e™ Use™ Uge™" |,
pWe™" pWe™" pWert pWe™t pWe" pWers

(5.23)
where p;, U; and W; are determined from Table 5.1. After transformations we keep only

the main terms and obtain

D()= 2e(ﬁ'"‘ﬁ)"”’1(—1+ez”‘ﬁ )+ O(h))=0. (5.24)

This equation has only the series of roots

1= [E ) (5.25)

Again this is a case of regular degeneracy.

5.2.2.4 High Frequency (Domain IIT) for Clamped Edges

For higher frequency vibrations (4 » 1, - 4 < k< 0) the determinant (5.23) must
be used, but p;, U; and W; should be determined from Table 5.3.

After transformations, we keep only the main terms and obtain

D(1)= —his o G ) =

(5.26)
,u((— 1+ 2t/ Xl +e ) ok )): 0.
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This equation has two series of roots

1 (Y}
A7)
(rQk+1)RY

The second series has no analogue for the unperturbed (momentless) system. Again this

(5.27)

is a case of nonregular degeneracy (singular perturbation).

Note, again that the expression (5.27) are obtained assuming A »1.

5.3 Non-axisymmetric Vibrations

The same approach may be used to study the non-axisymmetric vibrations of
cylindrical shells. Equations (3.9) now should be analyzed for m =0 (Landman et al.,
2000) . In this case, the system does not split, and one has to find the roots of the
characteristic equation of the eighth order (3.19):

P(p;h,A) =§',a,.p"'h“' APmt . (5.28)

The representative points have four coordinates M; = {k;,;.;./;} in the 4D space
(p, h, A, m). Thus, now M; =
{{-1,{0,0, 1, 2}}, {-1, {0, O, 1, 4}},
{2(1 +v), {0,0,2,0}}, {-(-3 + v)(1 + V), {0, O, 2, 2}},

{2¢-1 +v)(1 + V)%, {0, 0, 3, 0}}, (1, {0, 4,0, 4}},
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{-2, {0,4,0,6}},
{-2(1 +v), {0,4, 1,2}},
{(-3+V)(1+V), {0,4,1,6}},
{-2¢-1 +V)(1 +V)?, {0, 4, 2, 4}},
{(-3+V)(1+V),{2,0,2,0}},
{-4,{2,4,0,6}},

(2(1 +V)(2+V?), {2,4,1,2}},
{41 +V)*(1 +Vv)?, (2,4,2,0}},
{1,{4,0,0,0}},

{-4¢-1 +Vv)(1+V), {4,4,0,0}},

{1, {0, 4, 0, 8}},

{(1 +V)3 +V), (0,4, 1,4}},

{2¢-1 + v)(1 + V)%, {0, 4,2, 2}},
{3+2v,{2,0,1,0}}, {2, {2,0,1,2}},
{4, {2,4,0,2}}, (8, {2,4,0,4}},
{-4(-1 + v)(1 + V), {2, 4, 1, 0}},
{-3-3+V)(1+V), (2,4, 1,4}},

{4¢-1 + V)1 + V)4 {2, 4, 2, 2}},
{-1, {4, 0, 1, 0}},

{22 +Vv)(2+vVv), {4,4,0,2}},

{6,{4,4,0,4}}, {4¢-1+Vv)(1+v),{4,4,1,0}}, {3(-3+Vv)(1+vV),{4,4,1,2}},

{-2¢-1 +V)(1 + V)%, {4, 4,2, 0}},

{¢-1 + V)21 +V)?, {4,8,0,4}},

{2¢-1 + V) (1 + V), {4,8,1,2}}, {4, (6.4, 0,2}}, {-(-3+V)(1+V),{6,4,1,0}},

{4¢-1+Vv)(1 +V), {6,8,0,2}},

{1, {8.4,0,0}},

{4(-1 + V)*(1 +V)?, {6, 8, 1,0}},

{4C-1+Vv)(1+V),{8,8,0,0}}}.

Similar to the previous (axisymmetric) case we must construct a convex hull in

4D, the facets of which determine the lines that divide the (A4, m)-plane into domains with

different structures of the roots of the characteristic equation.

The algorithm is the same as in the case of axisymmetric vibrations:

. construct all solutions at the separating points, separating segments and in the

domains between the separating segments;
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. find the relative orders of the eigenvectors and substitute the solutions into the
imposed boundary conditions;
o solve the characteristic equation numerically or analytically (if possible), to obtain

the natural frequency parameter.

As we consider the general case of non-axisymmetric vibrations of the shell, the
order of m is not given. In this case the coefficients in the characteristic equation (3.19)
depend on three parameters: small 4 (0 < 2 << 1), and positive 1 (1 > 0) and m (m > 0).
The analysis of the roots of the characteristic equation for non-axisymmetric vibrations

involves the construction of the 4D convex hull in the (p, k, A, m) space.

5.3.1 Separating Points for Non-Axisymmetric Vibrations (4D)

One assumes thatm = mg h"and A = Ay h*, where mo~ 1 and Ao~ 1.

The steps of the algorithm are the same as for the 3D case, but to construct the 4D
convex hull the code Qhull has been used. Since only the cases where 4 is small are of
interest, after constructing the 4D convex hull one should select only the facets on the
"lower" part of the convex hull, i.e. the facets that are visible from the point (p, k, 1, m) =
(0, -e=, 0, 0). Each facet is determined by 4 or more than 4 vertices. Assuming that the
orders of the terms corresponding to the vertices of each facet are equal to each other, one
finds the orders of A and m, i.e. the separating points in the (x; 7) plane.

Applying the Qhull code to the M;” for the non-axisymmetric case, we get the data

in the form of Table 5.4.
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Table 5.4 Facets for non-axisymmetrical case

Number of Facets | Number of points on Facet | Position-type-output of Points
1 7 31122517438
2 6 24225140
3 5 24251738
4 5 524170
5 9 11521281740
6 6 112228194
7 8 333931123773238
8 7 3311223112374
9 6 33112237819
10 7 33115128732
11 7 2652428190
12 11 26392422312253719438
13 8 26333953781932
14 7 263952473238

From the first row of Table 5.4 we get the first relation between parameters with regard

to the first facet of the convex hull in 4D:

PR ~n*BPmt ~ p*A~Am* ~h*m® ~ 2 ~ piht.
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This leads to the first critical point: (5, @) = (-4, 2). Using the same approach, we
can find the others critical points from the 3rd, 4th and 10th relations of Table 5.4: (0, 1),

(0, 0) and (4, 0) respectively.

3.3.2 Separating Lines for Non-Axisymmetric Vibrations (4D)

After finding the separating points &; and 7, one can construct the separating lines
in the (x; 7) plane by plotting the horizontal lines 7 = 7 through the separating points
(%, 7). The separating points are (x;, %) = {(0, 0), (0, 1), (4, 0), (-4, 2)}, so the horizontal
lines are 7; = 0, 1, 2. These lines divide the entire plane into three zones: O<7<1, 1<7<2,
2< For any fixed xinside one zone the structures of the corresponding 3D convex hulls
are similar. So, one may choose an arbitrary point inside each domain and obtain the

relations between xand 7, which determine the separating lines (Landman, 2000).

5.3.2.1 Separating Segments for Domain 0 < 7<1

In the case under consideration, the domain O < 7< 1 is analyzed. Setting 7= %
arbitrarily, one can find the facets of the 3D convex hull. The facets are: {{My,, M5, M5},
{My1, Mas, Maa, Mas}, {My1, Mis, Mis, Mag, Mas, M2}, {Mas, Msg, Mas}, {Ma, Mas, M,
Mis, Mss, Mg} } (see Figure 5.8). Note that for any 7in the domain (0, 1) the 3D convex

hull has such a form.
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Imposing that the orders of all terms corresponding to the points forming a facet
be equal to each other, we find the relations from which the orders of A for the separating
cases may be determined:

(1) Y e Iy, SRy
=a=1-p4;
Q) HA-p~p*oAi-1=28=0;
3) A2~ - P = a=-p2; (5.29)
@ P -np -t =p=0;
S) A~ ~rpt-n'ipt=p= 4
For the domain analyzed, these segments are plotted in Figure 5.8.

TA

-4 0 4 k

Figure 5.8 7versus xfor0<zr<1

For any point (x; 7) inside one domain the structures of the corresponding 2D

convex hulls are similar.

The other 2 domains are analyzed in the same manner. As the initial system was
constructed with the restriction that it be valid only for 0 <7 <2, we should consider the

second zone to complete this figure.
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5.3.2.2 Separating Segments for Domain 1 < 7<2

Next, the domain 1 < 7< 2 is analyzed. Setting 7 = 3/2 arbitrarily, one can find
the facets of the 3D convex hull. The facets are: {{M;, Mss, M>}, { M3, M3o, Mo, M},
{M>, Mss, M3g9, Mg} (see Figure 5.8). Note that for any 7 in the domain (1, 2) the 3D
convex hull has such a form.
This leads to the following relations:
(D) This facet coincides with the third one in thg case T=1/2 and "PA~ p* -~ 2 =
a=-f/2;
(2)  RMEeb !l4p8 ~Ap~hTOL 2 A~ o f= dod = = 1-f4; (5.30)
3) This facet coincides with the fifth one in the case T =1/2 and 2* ~ Ap* ~ %% ~
A = p=-4.

For the analyzed domain, these segments are plotted in Figure 5.9.

1

?SV

Figure 5.9 rversus xfor1 <z<2
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For any point (x5, 7) inside one domain the structures of the corresponding 2D

convex hulls are similar.

Figure 5.10 rversus kfor0 < <2

As one can see, using this procedure, we cannot find the "horizontal" segments,
o = const. To find them, we repeat the construction, but for the vertical zones formed by

vertical lines thought critical points. To illustrate this, we consider two domains:

(I):-4<kxk<0and 2): 0 < k< 4.

5.3.2.3 Separating Segments for Domains -4 < x< 0

We analyze here the range - 4 < K< 0:

Arbitrarily setting x = -2, one can find the facets of the 3D convex hull. The
facets are: {{Ms, Mg, M3}, { M5, Ms, M31, M3g}. This leads to the following relations:

() P ~rP-p'BP sm* ~ P - h** = 8= 20
@) Bm-Pmt - RP - o mt -t = =44 (5.31)
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For the analyzed domain, these segments are plotted in Figure 5.11.

TA

Y

Figure 5.11 rversus xfor-4 < k<0

5.3.2.4 Separating Segments for Domains 0 < x< 4

We analyze here the range 0 < x< 4:

Setting k= 2 arbitrarily, one can find the facets of the 3D convex hull. The facets

are: {{Ms, Ms, Mas}, {Ms, Mas, Mg}, {Mas, Ms, Mas}, {M., M>s, Ms}. This leads to the

following relations:

(1)
(2)
(3)
4)

h4m8~hﬁm4~p4=>m4~hﬂ'4~h4“=;>‘B=4-40:
RmP~p* ~n'p =mP ~ -~ = = 1; (5.32)
Wm? ~ 1P~ p* 2 m® ~ K~ 1% = = 2a;

Wom? ~ p*~ WPt = m* ~1° ~ h 2% = o= 0.
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For the analyzed domain, these segments are plotted in Figure 5.12.

T A

Figure 5.12 rversusxfor0 < x< 4

Now we can get the final graph:

Figure 5.13 zversus kfor4 < x<4and0<r<2
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The final graph (Figure 5.13) representing the domains and separating lines is
similar to that obtained in (Goldenveizer er al., 1973). Since the initial equations
describing the vibrations of shells are valid if the frequency is not too high and the wave

number in the circumferential direction is not too large, the analysis is limited to the cases

4 < xand -2< 7<0.

According to the analysis steps, next we have to find the roots of the short form of

the equations.

5.3.3 Short Forms of Equation in all Domains,

on Separating Lines and at Separating Points

5.3.3.1 Short Forms of Equation in all Domains

D: The main terms in the characteristic equation, which we must keep in their short
form for the first domain (1 < <2 and § < 4 - 4@, are defined by the points M;, where
i ={3, 18, 30, 37, 39}. The corresponding short equation is
m*h* —4m®p*h* + 6m*p*h* —4m*p®h* + p®h* =0.
After simplifications, the eight roots can be found from
(p? -m?) =0.

Therefore, we get two roots with multiplicity four:

Pry=m and ps g =—m. (5.33)
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(ID:  The main terms in the characteristic equation, which we must keep in their short
form for the first domain (0 < &< 1 and B> 4 - 4¢), are defined by the points M;, where
i={3,25} and {25, 39}. The corresponding short equations are
miht + p*=0 and piht +p*=0.
After simplifications, the eight roots can be found from:
miht +p* =0 and 1+h*p* =0.

Therefore, we get two series of roots:

p,=m*h , p, =-m*h, ps =im*h,p, =—im*h,
and

(5.34)

(ID): The main terms in the characteristic equation which we must keep in their short
form for the first domain (0 < @< 1 and f < 4 - 40, are defined by the points M;, where
i={11,25} and {25, 39}. The corresponding short equations are

p*—Am* =0 and pih* +p*=0.
After simplifications, the eight roots can be found from

pt=Am* =0 and 1+h*p* =0.

Therefore, we get two series of roots:

D) =mifA , p2=—mifz, p3=imvz,p4 =—im¥/1,
and
l 1 1

1
Ps =sl;’p6 =&, er7 =&, ‘};’Ps =83;-

(5.35)
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(IV): The main terms in the characteristic equation, which we must keep in their short
form for the first domain (0 > f = -2 and f < 4 - 40), are defined by the points M;,
where i = {11, 24, 26} and {26, 39}. The corresponding short equations are

—-Am* +2m*p*l-p*l=0 and pih* —p*A=0.
After simplifications, the eight roots can be found from

(P2 -m2)2=0 and —-A+h*p* =0.

Therefore, we get two roots with multiplicity two:

. s D =— P Ny - , Dy =—1i P (5.36)

P, =m and p,, =-m ;and p, =

(V):  The main terms in the characteristic equation, which we must keep in their short
form for the first domain (0 < § = -2c¢ and ar> 0), are defined by the points M;, where
i={2, 15,26} and {26, 39}. The corresponding short equations are

2-1+v)A+v)* 2 +(v =3)1+Vv)p* A2 = p*A=0 and p*h*-p*l=0.
After simplifications, the eight roots can be found from:

(p* +20+v)2)p? +(1-v2)1)=0 and —A+h*p*=0.

Therefore, we get two series of roots:

Py, =+2(1+v)A and P3a =i‘w/il—v2h;

and
Vi Y2 A2 A
Ps= n »Pg =— A » Pq -"'—ZT,pS:—Z P . (5.37)
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5.3.3.2 Short Forms of Equation on Separating Lines
To find the short form of the characteristic equation on a separating line we can

use one of the two approaches:

Firstly, we may consider a separating line as a set of the 3D separating points. The
equations for these points have been constructed in Section 5.3.2. The main terms of the
characteristic equation are the same for any point of the separating line.

On the other hand, the terms of the characteristic equation in a separating line

between two domains are the disjunction of the terms of the characteristic equations for

these domains.

In this section we list the positions of the main terms in the initial list of points

(5.28) for each separating line. Then we construct the short equations for each point of
the separating line.

. B=-4

The positions of the main terms in the initial list of points are {2, 15, 26, 29, 35, 39}. This
gives the equation

=28 2V + 287 428V =347 p? — 20+ 2 p? — Apt + 20 2t + 2R Apt —
—2R* AV pt2h* PV pt43h* Ap® + 2R Awp® —h*AvipS + ki p® =0,

or, after simplifications:

2R (- 1+v)1+v) =21 +v)B3-v+2n*p2(? —1)p* - Ap*
(5.38)

— At (v =3)v +1)p® +r*p® =0.

From this equation we can find the set of the roots.
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° [ ="2cx
The positions of the main terms in the initial list of points are {11, 13, 2, 24, 15, 26 }.
This gives the equation
=220 +382m* — Am* =22 + 2°m*v + 2%V — Pmv? + 233 =342 p? + 2Am?p? —
22w + A p? - Ap* =0
and {26, 39}gives
-Ap* +h*pt =0,

or, after simplifications:

/1(2/12(v ~1)(1+v) = A1 +v)v -3)(m? — p?)—(m? —p2)°)= 0| (5.39)

and

—-A+h*p*=0. (5.40)

From equations (5.39) and (5.40) two sets of the roots can be found.

° o= —ﬁ Thus we have two different segments:

1. First segment:

The positions of the main terms in the initial list of points are {3, 11, 18, 24, 26, 30, 37,
39}. This gives the equation
m®h* —4m®p*h* +6m* p*ht —4m>pSht + ptht — Am* +2m*p*A— p*A=0.

After simplifications we obtain:

(p? =m?)'n* = A(p? —=m*)’ =o0. (5.41)
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2. Second segment:

The positions of the main terms in the initial list of points are {3, 11, 25}. This gives the

equation

—2m*+h*m® +p* =0 (5.42)

and {25, 39} gives
piht + p* =0.

After simplifications, the other four roots can be found from

1+h*p*=0. (5.43)

. B=0
The positions of the main terms in the initial list of points are {11, 24, 25, 26}. This gives
the equation
~m* +22m?p* + p* -~ Ap* =0, (5.44)
and {25, 26, 39} gives
pt=Ap* +h*p®=0.

After simplifications we obtain:

p* = A(p? —m*) =0, (5.45)
and
1-A+h*p*=0. (5.46)
] a=0
—Am* = 2m*+ p* =0, (5-47)
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and

1+h*p*=0| (5.48)

22(1+v)=-Am* + p?A(3+2v)+ p* =0,
and

1+h*p* =0.

5.3.3.3 Short Forms of Equation at Separating Points

First of all the main terms of the short equations have been obtained considering
the 4D critical points (see Section 5.3.1). Besides that, the main terms at a critical point
are the disjunction of the main terms on the separating lines and at the same time they are
the disjunction of the main terms in the domains.

] Point (0, 1). The main terms in the characteristic equation, which we must keep in
their short form for the first separating point, are defined by the points M;, where i = {3,
11, 18, 24, 25, 26, 30, 37, 39}. Indeed, the main terms at the separating point are the
disjunction of the main terms of the domains I, II, III and IV (or the separating lines 3a

and 3b or 4 and 6). The corresponding short equation is

m*h* —4m® p*h* +6m’ p*h* —4m’ pSh* + p¥h* — Am* +2m*p*A—p* A+ p* =0

After simplifications we obtain:

(pz—m2)4h4—2.(p2—m2)2+p4=0. (5.49)
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o Point (0, 0). The main terms in the characteristic equation, which we must keep in
their short form for the first separating point, are defined by the points M;, where i are
listed below. Indeed, the main terms at the separating point are the disjunction of the
main terms of the domains III, IV and V (or the separating lines 2, 4 and 5). The positions

of the main terms in the initial list of points are {2, 15, 11, 24, 25, 26}. The

corresponding short equation is

—p*A+2(=1+Vv)1+v)* 2B +(v=3)1+v)p2 2 =0.

After the simplifications, the eight roots can be found from:

(p? +2(1+v)a)p? +(1-v?)2)=0 (5.50)

and {25, 26, 39} gives
p4 _;lp-t +h4p3 =O.

After simplifications, we obtain

1-A+h*p*=0. (5.51)
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5.4 Special Cases: m~1andm=1

Now we consider only the cases for which the order of m is known. This permits
to reduce the 4D problem to the 3D one discussed in the previous sections.
We consider the case, when m =mg k%, 7= 0, i.e. M;= {k:, o, B:}. Equation (3.52)

in this case may be written as

P(pih,A)=3 a,p" h" 3"

=t (5.52)
where the 24 representative points M, ={ai,{f(‘,.,a[,_ﬂi Mhi=1,...,24, (5.53)
with their weights a; are listed below:
{-m* (1 +m®), {0,0, 1}}, {-(L+Vv)(2-3m*+m?V), {0,0,2}},
{2(-1+Vv) (1 +Vv)*2, {0,0,3}}, { (-1 +m)*m* (1 +m)*,(0, 4,0}},

{m* (L +Vv)(-2+3m*-3m* +m*>v+m* V), {0, 4, 1}},
{2m* (A +m) (-1 +Vv) (1 +Vv)} {0, 4,2}}, {(3+2m*+2v, {2,0,1}},
{(3+Vv)(+V), {2,0,2}}, {4 (-1+mym*(1+m) (2,4,0}},

{(-(L+V)(4+4m-9m* +4v3miv-2m>v?), (2,4, 1}},

{41 +m*-v) (-1 +V) (1 +V)% {2,4,2}}, {1, {4, 0, 0}},
{-1,{4,0,1}}, {(2Q-4m*+3m* -2V +m*Vv?), {4, 4,0}},
{(A+V)(4-9m*> +4v+3m?V), (4,4, 1}}, {-2(-1+V)(1+V) {4,4,2}},
{m* (-1 +v)* (1 +V)?, {4,8,0}}, {2m? (-1 +Vv)* (1 +V), {4, 8,1}},

{-4m*(6,4,0}}, {-(-3+v)(l +v),{6,4,1}}, {4m*(-1+V)(1+V),{6,8,0}},

{4(-1+V)>(1+V)% {6,8,1}}, {1, {8,4,0}}, {4(-1+Vv)(l+V),{8,8,0}}.
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The convex hull for these points is plotted in Figure 5.14.

M;

M;s

Mz

o,

a 212 RO e ol

Figure 5.14 3D convex hull for m ~ 1

The facets of the convex hull determine the separating points x (4 ~ A"). In the
present case, the 3D convex hull consists of 4 facets: 1. (M, M>, Mz, M, Mg, M>, M3);
2. (M2, M3, M3 ); 3. (My, My, M3 ); 4. (M3, Mg, M3, M6, Mo, M>3 ). Imposing that the
orders of all terms forming a facet be equal to each other, we find the relations from
which the orders of A for the separating cases may be determined:

A=A oA o Ap? o AZp2 s pt o dpt
pt~Ap* ~n*p®
h? ~7\.~p4' (5.54)
A ~A2p2 ~Ap* ~ A2 p* — Akt pS ~h4p3‘

So, for the first and second relations k= 0, for the third K= 4, and for the fourth x

= - 4. For any A inside a domain the structure of the convex hull and, therefore, the roots

and the eigenvectors are similar, and thus we can obtain the values of the roots and
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eigenvectors considering only one value of A for each domain. We substitute for the case
A: k=-4,B: kx=0and C: k=4, and domains L, I, IIT and IV: k= -6, x=-2, x=2, and
k=5 respectively. Therefore, we consider seven cases here, where xis equal to -6, 4, -2,
0, 2,4 and 5, respectively.

. Case x=-6

Newton’s diagram is plotted in Figure 5.15.

17. 5?‘”’
o5 P47 oV
B oM @12
L2.39M: oMs
1CD[MS P oViis PRz N
7.5 7 i o121 o1z
M) \ \Y 4
a+ fx 46 i v
k

Figure 5.15 Newton’s diagram form ~ 1, K =-6

In this case the representative points for equation (3.23) are M; = {{0, 6}, {0, 12},
{0, 18}, {0, 4}, {0, 10}, {0, 16}, {2, 6}, {2, 12}, {2, 4}, {2, 10}, {2, 16}, {4, O}, {4, 6},
{4, 4}, {4, 10}, {4, 16}, {4, 8}, {4, 14}, {6, 4}, {6, 10}, {6, 8}, {6, 14}, {8, 4}, {8, 8}},
wherei =1, ..., 24.

Newton’s diagram consists of 2 segments. The first segment is determined by the
points M4 = (0, 4), and M o= (4, 0), and the second segment by the points M, = (4, 0) and

M>3 = (8, 4).
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o Case x=-4

Newton’s diagram is plotted in Figure 5.16.

@1 @ @
a+ pK

oV oY & 1M @15V 123

Figure 5.16 Newton’s diagram form ~ 1, k= -4
In this case the representative points for equation (3.23) are M;={{0, -4}, {0, -8},
{0, -12}, {0, 4}, {0, 0}, {0, 4}, {2, -4}, {2, -8}, {2, 4}, {2, 0}, {2, -4}, {4, 0}, {4, 4},

{4,4}, {4, 0}, {4, -4}, (4,8}, (4,4}, (6,4}, {6,0}, {6, 8}, {6,4}, (8,4}, {8,8}}, where

Newton’s diagram consists of 1 segment. This segment is determined by the

pOints M3 = (07 '12)a M8 = (2, _8)! Ml3 = MIG = (47 -4)7 M20 = (61 O) and MB = (8’ 4)'
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° Case xk=-2

Newton’s diagram is plotted in Figure 5.17.

h
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Figure 5.17 Newton’s diagram form ~ 1, x=-2

In this case the representative points for equation (3.23) are M;={{0, -2}, {0, 4},
{0,-6}. {0, 4}, {0, 2}, {0, 0}, {2, -2}, {2, 4}, {2, 4}, {2, 2}, {2, 0}, {4, 0}, {4, -2},
{4, 4}, {4, 2}, {4,0}, {4, 8}, {4,6}, {6, 4}, {6, 2}, {6, 8}, {6, 6}, {8, 4}, {8, 8}}, where
i=1,..24.

Newton’s diagram consists of 2 segments. The first segment is determined by the

points M3 = (0, -6), Mg= (2, -4), M3 = (4, -2), and the second segment by the points M3

=(4,-2) and M>; = (8, 4).
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° Case k=0

Newton’s diagram is plotted in Figure 5.18.
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Figure 5.18 Newton’s diagram form ~ 1, k =0

In this case the representative points for equation (3.23) are M; = {{0, 0}, {0, 0},
{0, 0}, {0, 4}, {0, 4}, {0, 4}, {2, 0}, {2, 0}, {2, 4}, (2,4}, {2, 4}, {4, 0}, {4, 0}, {4, 4},
{4, 4}, {4, 4}, {4, 8}, {4, 8}, {6, 4}, {6, 4}, {6, 8}, {6, 8}, {8, 4}, {8, 8}}, where i = 1,
ey 24

Newton’s diagram consists of 2 segments. The first segment is determined by the
points My = M> = M;3= (0, 0), M7 = Mg = (2, 0) and Mi» = Mi3= (4, 0), and the second

segment by the points M> = M3= (4, 0) and M»; = (8, 4).
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o Case k=2

Newton’s diagram is plotted in Figure 5.19.

10 His 22
geHs i1 HisMi7 21 J2+

geliMs HMio HMis M0

o+ PpK

Figure 5.19 Newton’s diagram form ~ 1, k=2

In this case the representative points for equation (3.23) are M; = {{0, 2}, {0, 4},
{0, 6}, {0, 4}, {0. 6}, {0, 8}, {2, 2}, {2, 4}, {2, 4}, (2, 6}, {2. 8}, {4,0}, {4, 2}, {44},
{4, 6}, {4, 8}, {4, 8}, {4, 10}, {6, 4}, {6, 6}, {6, 8}, {6, 10}, {8, 4}, {8,8}}, where i=1,
e 24,

Newton’s diagram consists of 2 segments. The first segment is determined by the
points M, = (0, 2), M72 = (4, 0), and the second segment by the points M|> = (4, 0) and

Mo = (8, 4).
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) Case x=4

Newton’s diagram is plotted in Figure 5.20.

12@MMs @l $rs M7 P
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Figure 5.20 Newton’s diagram form ~ 1, x =4

In this case the representative points for equation (3.23) are M; = {{0, 4}, {0, 8},
{0, 12}, {0, 4}, {0, 8}, {0, 12}, {2, 4}, {2, 8}, {2, 4}, {2, 8}, {2, 12}, {4, 0}, {4, 4}, {4,

4}, {4, 8}, {4, 12}, {4, 8}, {4, 12}, {6, 4}, {6, 8}, {6, 8}, {6, 12}, {8, 4}, {8, 8}}, where
Newton’s diagram consists of 2 segments. The first segment is determined by the

points M = M, = (0, 4) and M7, = (4, 0), and the second segment by the points M;> = (4,

0) and M>3 = (8, 4).
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° Case k=5

Newton’s diagram is plotted in Figure 5.21.
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Figure 5.21 Newton’s diagram form ~ 1, k=35

In this case the representative points for equation (3.23) are M; = {{0, 5}, {0, 10},
{0, 15}, {0, 4}, {0, 9}, {0, 14}, {2, 5}, {2, 10}, {2, 4}, {2, 9}, {2, 14}, {4, 0}, {4, 5}, {4,

4}, {4, 9}, {4, 14}, {4, 8}, {4, 13}, {6, 4}, {6.9}, {6, 8}, {6, 13}, {8, 4}, {8, 8}}, where

Newton’s diagram consists of 2 segments. The first segment is determined by the
points M= (0, 4) and M7, = (4, 0), and the second segment by the points M2 = (4, 0) and

M3 = (8, 4).

Note that for m = 1, the representative points M, and My are absent since their

weights a; = 0 (see Figure 5.22). For this specific case there is no facet 3 and, therefore no

separating point k = 4. This case is similar to the case m = 0.
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Figure 5.22 3D convex hull form =1

5.5 Example of Solutions

of the Boundary Value Problem

Since the low frequency vibrations are the most important in practice, as an
example, we consider the construction of the solutions on the boundary between domains

I and III, i.e. on the line 4 - 4 = f. The roots of the characteristic equation (5.28) in

this case are given by (5.42) and (5.43).
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For the first series of roots the system for the amplitude vector (3.18), after

simplification, has the form:

I-v , 1+v
-—m

mp L
Coy 2 ‘J=-(w } (5.55)
—— L mp m? v m

To determine the main term for each coefficient, we construct the 2D convex hull.

For example, on the line 4 - 4 =f the main part of the term — p* +—Lm? - (1 —Vz)ﬂ.

].—V 2

of determinant in (3.19) is m-.

Assuming w = 1, we find the amplitude vector for (5.55)

(2 )
u mi
v [=}—— (5.56)
m
w 1
()
For the roots of the second series (5.43), we obtain in the same manner
~p? 1+vnw
2 “U=d P L (5.57)
_1+vm _l—v > v m
N p B P
and
(v
7 P
v == | (5.58)
w P
1
\ /
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y
We consider two types of boundary conditions: simply supported edges and

clamped-clamped edges.

] Simply supported edges

The boundary conditions have the form

w=w=w" =v=0ats=0ands=L. (5.59)
Substituting a linear combination of the solutions (5.56) and (5.58) into the boundary
conditions (5.59) we get the characteristic equation of the eighth order, similar to (5.16),
from which the first approximation for the frequency 1 may be found. Again, we neglect
the values of the third and fourth solutions (with Ji(p;) > 0) on the left edge compared to
those on the right edge; and the values of the fifth and the sixth solutions (with R(p;) < 0)
on the right edge compared to those on the left edge. Then, after factorization, the

determinant has the form

/'{JL{ Y PR A )
16 2im jtim® Y 44 a4 )2
DiA)=——e h —l+e _A+hmt -1+ R m*v) (5.60)

32
h™m

The condition D(A) = 0 leads to equation:

4 el (5.61)

Hence, we obtain the natural frequency:

4
A:(S‘n—) +miht (5.62)
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o Clamped edges

The boundary conditions have the form
u=w=v=w'=0 at s=0ands=1L. (5.63)
In a similar manner we find

i(ﬁ*(x—i)hm (z-h‘m‘)}f]

D(A)= hl4[ —e k (l-i-ez"‘i'"(’z"""")% I\/l—lﬁm‘ ((l—h"m“v+hzmz(1+v)))2
m

(5.64)
The natural frequency is:
ol 4
A= M +mt*h? (5.65)
2Lm
Minimizing (5.65) with respect to m, we get
e =22 12, (5.66)
m = |Z_L
0 I -\/Z ’
2
where azw=3—”=4.73. The same formulae with & = 7 are valid for the

2

simply supported edges.

The frequency attains its minimum when the wave number in the axial direction is

x=1 and for such mq that g'?—'=O .
dm
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5.6 The Superlow Frequencies

In the previous section we found the frequencies 4 ~ k", x> 0. Such frequencies
are called superlow, since they become infinitely small as the relative thickness A goes to
0. For thin shells the lower part of the frequency spectrum consists of superlow
frequencies. The vibration quality of a construction is defined by the lower part of the

spectrum.

To state general conditions leading to vibrations with superlow frequencies we
consider the geometry of the shell, i.e. the shell neutral surface. The vibrations with
superlow frequencies may occur if and only if the main deformations of the neutral
surface of the shell are bending deformations or if the shell is not fixed strongly enough

at the edges.

For the case of a cylindrical shell, i.e. a shell with one of the curvatures equal to
zero, we find that, for any type of boundary conditions for the lower part of the frequency
spectrum, A4 ~ h. If the tangential boundary conditions do not permit bending, then, for
the lowest frequency, A ~h, m ~ b\ (Goldenveizer et al., 1973). We consider in detail
the case of the frequencies, i.e. when m =mgh", T=-1/2. In this case equation (3.52) may

be written as

P(p;h,A)=3 a,p"h® AP
&=l (5.67)

where the 24 representative points M, ={a,.,{lc,.,ai, B Bi=1,.. 24, (5.68)

with their weights a; are listed below:
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{{2(1 +v), {0, 0,2}}, (2¢-1 + v)(1 + V)%, {0, 0, 3}}, {m®, {0, 0, O}}, {-2m®, {0, 1, 0}},
{(m°3 +V)(L +V), {0, 1, 1}}, {m®*, {0, 2, 0}}, {m*(l + V)3 + V), (0, 2, 1}}, {-2m*¢-1 +
V(L + V)%, {0, 2, 2}}, {-2m*(1 +v), {0, 3, 1}}, {-2m*C-1 + v)(1 + V)2, {0, 3, 2}}, {-m*,
(0,2, 1}}, {-m®, {0, -1, 1}}, {-m*-3 + v)(1 + V), {0, -1, 2}}, {3 +2v, {2,0, 1}}, {(-3 +
V(L + ), {2, 0, 2}}, {4CL+V)(1 +V), {2, 4, 1}}, {-4¢1+ VXL + V)% (2, 4, 2}, {-
4m®, {2, 1, 0}}, (8m*, {2, 2, 0}}, {-3m*(-3 + V)(1 + V), (2, 2, 1}}, {-4m>, {2, 3, 0}},
(2m°(1 + V)2 +V?), {2, 3, 1}}, (4m’CG1+v)(1 + V), {2, 3, 2}}, (2m?, {2, -1, 1}}, {1,
{4,0,0}}, {-1, {4,0, 1}}, {4C1 + V)1 + V), {4, 4, 0}}, {4(-1 +V)(1 +v), (4,4, 1}}, {-
2(-1 +V)(1 +V)*, {4,4,2}}, {6m*, (4,2, 0}}, {m*(-1 + V)’ (1 + V)2 {4, 6, 0} }, {2m¥(2 +
V)2 +V), {4, 3,0}}, (3m(-3 +v)(1 + V), {4, 3, 1}}, (-2m*C-1 + v)*(1 +V)’, (4,7, 1}},
(-3 + V)L +V), {6, 4, 1}}, {4(-1 +V)*(1 +V)?, {6, 8, 1}}, {-4m?, {6, 3, 0}}, {4m*(-1 +
V(1 +V), {6,7,0}}, {1, {8,4,0}}, {-4(-1 + v)(1 + V), {8, 8,0}})

The 3D convex hull in this case is plotted in Figure 5.23.

SN

Figure 5.23 3D convex hull for m ~ k1 ©'/»
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The facets of the convex hull determine the separating points k(4 ~ A). In this
case, the 3D convex hull consists of 5 facets: 1. (M, M3, M>s); 2. (M1, M 24, M>g, M>s);
3. My, Mz, Mis, Mas Ma, Mag ); 4. (Mas, Mag, M3 ); 5. (Mis, Ma, Mag, Moo, M3s, Mo ).
Imposing that the orders of all terms forming a facet be equal to each other, we find the
relations from which the orders of A for the separating cases may be determined:

h2A~1~p*,
hZA~h™ 2 ~ 2 ~p*h™' A~ p*X* ~ p*A (5.69)
h72A~p*h~'A~p*A~p*,
pt~pii-~ pgh*’
X ~p*2 ~p*A~p'h* ~ pSH* A~ p*h*A*

So, for the second and the fourth relations x = 0, for the first x= 2, for the third
k= -1, and for the fifth x=- 4. For any A inside a domain the structure of the convex hull
and, therefore, the roots and the eigenvectors are similar, and thus, we can obtain the
values of the roots and eigenvectors considering only one value of A for each domain. We
substitute for the four separating points A: k= -4, B: x=-1,C: x=0and D: x=2 and
five domains I, I, OI, IV, and V: = -6, x= -35, x=-1/4, x=1 and x= 10,
respectively. Therefore, we should consider nine cases here, where xis equal to -6, -4,
-3.5, -1, -1/4, 0, 1, 2 and 10, respectively; but as we consider only superlow frequency,

we can consider the cases where x> 0, i.e. xis equal to 1, 2 and 10, respectively.
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] Case k=1

Newton’s diagram is plotted in Figure 5.24.
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Figure 5.24 Newton’s diagram form ~ h ' =1

The representative points for equation (3.19) are M; = { {0, 2}, {0, 3}, {0, 0}, {0,
1}, {0,2}, {0, 2}, {0, 3}, {0, 4}, {0, 4}, {0, 5}, {0, -1}, {0, 0}, {0, 1}, {2, 1}, {2, 2}, {2,
Sh{2,6}, {2, 1}, {2, 2}, {2, 3}, {2, 3}, {2. 4}, {2. 5}, {2,0}, {4, 0}, {4, 1}, {4, 4}, {4,
5t {4,6}, {4, 2}, {4, 6}, {4, 3}, {4, 4}, {4, 8}, {6, 5}, {6, 9}, {6, 3}, {6, 7}, {8. 4}, {8,
8}}, wherei=1, ..., 40.

Newton’s diagram consists of 2 segments. The first segment is determined by the
points My; = (0, -1), Mas = (4, 0), and the second segment is determined by Mas = (4, 0)

and Mg = (8, 4).
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° Case k=2

Newton’s diagram is plotted in Figure 5.25.
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Figure 5.25 Newton’s diagram for m ~ h ¥, x =2

The representative points for equation (3.19) are M; = {{0, 4}, {0, 6}, {0, 0}, {0,
1}, {0, 3}, {0, 2}, {0, 4}, {0, 6}, {0, 5}, {0, 7}, {0, 0}, {0, 1}, {0, 3}, {2, 2}, {2, 4}, {2,
6}, {2, 8}, {2, 1}, {2, 2}, {2, 4}, {2,3}, {2. 5}, {2. 7}, {2, 1}, {4, 0}, {4, 2}, {4, 4}, {4,
6}, {4, 8}, {4.2}, {4, 6}, {4, 3}, {4, 5}, {4, 9}, {6, 6}, {6, 10}, {6, 3}, {6, 7}, {8,4}, {8,
8}}, where i =1, ..., 40.

Newton’s diagram consists of 2 segments. The first segment is determined by the

points M5 = M;; = (0, 0) and M>s = (4, 0), and the second segment is determined by Mas

= (4, 0) and M3 = (8, 4).



° Case k=10

Newton’s diagram is plotted in Figure 5.26.
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Figure 5.26 Newton’s diagram for m ~ h ', x = 10

The representative points for equation (3.19) are M; = {{0, 20}, {0, 30}, {0, O},

{0, 1}, {0, 11}, {0, 2}, {0, 12}, {0, 22}, {0, 13}, {0, 23}, {0, 8}, {0, 9}, {0, 19}, {2, 10},

(2,20}, {2, 14}, {2,24}, {2, 1}, {2, 2}, {2, 12}, {2, 3}, {2, 13}, {2,23}, {2, 9}, {4, 0},

(4, 10}, {4, 4}, {4, 14}, {4, 24}, {4, 2}, {4, 6}, {4, 3}, {4, 13}, {4, 17}, {6, 14}, {6, 18},

{6,3}, (6,7}, {8,4}, {8,8}}, where i =1, ..., 40.

Newton'’s diagram consists of 2 segments. The first segment is determined by the

points M3 = (0, 0) and M>s = (4, 0), and the second segment is determined by My =

(4, O) and M39 = (8, 4).
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Chapter 6

Numerical Analysis

6.1 Introduction

In this chapter we compare the results obtained by using the asymptotic method
presented in the previous section with results obtained by performing a finite element

analysis with ANSYS, for some particular boundary value problem.

6.2 Numerical Solutions for Non-Axisymmetric

Vibrations

In the previous chapter we obtained the asymptotic expression for the first

approximation of the lower frequencies of a cylindrical shell with clamped-clamped and

simply supported edges.
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The formula given in Chapter 5 has the form:

4
/1=—a—4[£J +mth*.
m>\ L

Here ardepends on the type of boundary conditions (BC):

(7.1)

o If both edges are clamped, o= 372,
° If both edges are supported, o= .

This formula is valid for shells of medium length, for which the ratio R/L is of
order O(h%. The formulae for the lowest frequency and for the wave number

corresponding to the lowest frequency have also been found :

2050 h
Aanin ==y (7.2)
REVI—v?)
2 3.2
it = A=V R JRPe (7.3)

I*h
To obtain numerical results, we consider a cylindrical shell with the following

parameters R = lm, L = 5m, E = 2.07E+11N/m®, v=0.29, p = 7.85E+3kg/m’.

We solve the boundary value problem for clamped-clamped edges and for the

following thickness ratios: #/R = 0.01; 0.001 and 0.0005.
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. Thickness ratio /R = 0.01

The numerical results obtained for @ by asymptotic analysis and by finite

element analysis for the first three modes are presented in Table 6.1.

Table 6.1: Asymptotic versus FEM results for ZR = 0.01

Mode Wave A(asymptotic) | @ (asymptotic) @ (FEM) Error in [%]
number | Number m [1/sec] [rad/sec] [rad/sec]
1 4 5.47-107 379.9 3379 11.05
2 5 7.00-107 429.8 406.4 5.44
3 3 10.06-107 529.4 410.1 22.53

The lowest vibration mode obtained with ANSYS is shown in Figure 6.1.
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ANSYS 5.4

SEP 13 1899
22:27:47
NODAL SCLUTION
STEP=1

SUB =1
PREQ=53.683
usmM

DMX =.042564
SMX =.042564
0

.004723
.009459
.014188
.018917
.023646
.028376
.03310S
-037834
.042564

REENRENN

Figure 6.1 Vibration mode for the lowest frequencies (ANSYS)
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From the asymptotic analysis we obtained mg = 4.15, whereas the finite element
analysis gave mg =4, the asymptotic result for mg being in good agreement with the FEM
result. However, as can be seen from Table 6.1, the relative error for the frequencies is
significant. This is due in part to the thickness ratio of the shell being not too small, as
well as to the fact that this is a first approximation result. To obtain more accurate results

for this thickness ratio the next approximation should be used.

. Thickness ratio /R = 0.001

The results of the asymptotic and finite element analyses for the first three modes

are shown in Table 6.2.

Table 6.2 Asymptotic versus FEM results for #/R = 0.001

Mode Wave A(asymptotic) | @ (asymptotic) | @ (FEM) | Error in [%]
number | Numberm [1/sec] [rad/sec] [rad/sec]
1 7 5.52-107 120.6 115.9 3.95
2 8 5.68-10™ 122.4 118.8 2.92
3 6 7.36-107 139.3 130.9 6.05

From the asymptotic analysis mg = 7.38, whereas from FEM analysis mg = 7, the

asymptotic result being close to the FEM result.
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. Thickness ratio /R = 0.0005

The results for this case are shown in Table 6.3.

Table 6.3 Asymptotic versus FEM results for #R = 0.0005

Mode Wave A(asymptoti | @ (asymptotic) o (FEM) Error in [%]
number | Numberm | ¢)[1/sec] [rad/sec] [rad/sec]

1 9 2.71-107* 84.5822 82.4417 2.5

2 8 2.88-10™ 87.2509 84.534 3.1

3 10 3.07-10™ 90.0551 —_ —_—

In this case we obtained from the asymptotic analysis mo = 8.77, whereas FEM
gave mo =9, which again shows good agreement of asymptotic versus FEM results.

Comparing the results for these 3 cases, we see that the relative error of the
asymptotic results decreases with the decrease in the ratio #/R. However, the relative error

does not go to zero as #/R decreases further.

The residual error may be explained by the fact that the shell is not long enough to

neglect the influence of the edge effect solutions on the other edge.

Also, the standard FEM does not give any results for very thin shells, especially

for higher modes, as indicated in Table 6.3.
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Chapter 7
Summary, Conclusions and Future Work

7.1 Summary and Conclusions

In this work we present an algorithm for the asymptotic solution of boundary
value problems involving vibrations of thin cylindrical shells by means of symbolic
computation. The algorithm is based on the method of asymptotic integration of the
vibration equations of thin shells, developed by Goldenveizer, Lidsky and Tovstik. A
linear shell theory of the Kirchhoff-Love type is employed. The equations describing the
vibrations of thin shells contain several parameters, the main of which is the small
parameter of the shell thickness. Formal asymptotic solutions in different domains of the
space of the parameters are obtained by using a computational geometry approach.
Computer algebra methods are employed to study the characteristic equation that
involves the construction of the convex hull of a set of points.

The study is limited to the cases for which the asymptotic representation of the
solution is the same in the entire domain of integration, and solutions are linearly

independent (no turning points (Wasow, 1985), no multiple roots). Axisymmetric as well
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as non-axisymmetric vibrations are considered. The constructed solutions are used for
studying the free vibration spectra of the shells.

The numerical results obtained by applying this algorithm to the particular
problem of low frequency vibrations of thin cylindrical shells are in good agreement with
the results obtained by finite element analysis, as well as with asymptotic results obtained
by authors using other solution techniques.

The original contributions of this work consist of:

1. The application of the methods of computational geometry to the study of

characteristic equations;

® The characteristic polynomial for the power p arising in the exponential
form of solution of the vibration equation for thin shells;

®= The characteristic equation for the natural frequency parameter A arising
in the boundary value problem;

= For both characteristic equations the convex hulls were constructed to
determine the main terms in these equations for different domains of the
parameters A, 4 and 4, and to find the first approximation for the roots of
these equations;

2. The usage of computer algebra methods to construct formal asymptotic

solutions and to solve the boundary value problem.

The practical applicability of the results of this work consists in the following: the
analytical expressions derived for the natural frequencies may be used to validate results

obtained with numerical techniques, such as the finite element method.
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7.2. Future Work

Future work is intended in the following directions:

. The problems of cylindrical shells with a larger number of parameters will be
considered. The analysis of vibrations of rotating shells is an example of
particular interest for engineering applications (Tovstik, 1963 and Tovstik, 1966) .
In this case the characteristic equation for the determination of p; contains an
additional fourth parameter, which is the angular velocity of shell rotation. The
convex hull in 5D will be constructed to find the roots of the characteristic
equation. Another important example of large number of parameters is the
vibration of long shells, with R/L being a new small parameter.

. To obtain more accurate results in the asymptotic analysis, the next approximation
for the frequency parameters will be sought, as well as the next terms in the
formal asymptotic solutions. For that the next approximation for p; should be
constructed. The use of the second terms permits us to consider the most
complicated cases of vibrations of cylindrical shells, when the frequency
parameter is close to 1.

. Finally, the study of vibrations of shells of other geometries will be considered.
For other types of geometries, the construction of the formal asymptotic solution
is more difficult, since the coefficients of the system of equations vary and there
exist so-called turning points where p; = p;. The construction of the solutions near

the turning points requires special consideration.
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APPENDIX 1

Mathematica 3.0 Code

for Construction of Convex Hull in 2D



CH2D.nb

(+ Programm for Camputing the Convex Hull in 2D using the Algorithm
Described in Section 4.4 for the random pointss)

(= Randomize twenty five points in a range from 0 to 20 »)
x := Random([Integer, {0, 20}];

te = Table{(x, x}, {25}];
g2 = ListPlot[te, DisplayFunction - Identity];

t = Unionjte];

(= Find the centroid of this set «)
Pluseat

W= ——
Length(t]

XT = w[1];

YT =wf2];

n = Length[t];

(= Sort this set with respect to the angle (see step #3 in Algorithm described in Section) )
Z=F[1]+#1[2] (&) /@t;

20 =XT+YTI;
z1 =2z -20;
z11 = z1][n];

Irafz_] := H[N[Arg[z] — Arg[z11]] = O, Arg[z] — Arg[z11], 2 + Arg[z] — Arg[z11]];
Lan[x_, y_] := N[lra[x] < Ira[y]];

Z2 = Sort[z1, Lan];

Z3 =22 + 20;

t33 = ({Re[#1], Im[#1]}&)/@Z3;

t32 = Join[t33, (t33[1]}];

p = Length[t32];

k=t32; p1 =0; u=0;

(= llustration of the step #4 )
While[p # p1, p = Length[k]; A = Table[b, (i, 2, p}]; B = Table[c, (i, 2, p}I; | = 0;
For[i=2,i<p-, i++, ffkJi+ 1, 1] == ki - 1, 1],

A[i] = k{i, 1] — k[i — 1, 1]; BIil = XT — ki - 1, 1],

(ki, 1] — ki — 1, 1I) (ki + 1, 2] — ki — 1, 2])

ATl = —ki, i-1,2 ;
Y = —di, 20 + ki I+ KIi+1, 1] — ki — 1, 1]

(XT-k:Ii—1,1]])(kﬁi+1,2]]—-k[[i-1,2]])]
kli+1, 1] — ki -1, 1]

IS[ATi] BIif > 0, k = Drop(k, {i, i}]; I++]]; p1 = Length[k]; Clear[A]; Clear[B]; u++]

?

Bl = -YT+k[i—1, 2] +

s = Flatten[(Pasition[te, #1]&)/@ k]



CH2D.nb

(= Draw the final convex hull x)

g1 = ListPlot[k, PlotJoined - True, AxesOrigin - {0, 0}, DisplayFunction - Identity];

t9 = Point/ak;

t10 = Point/at;

g3 = Graphics[{PointSize[0.03], t10}];

h1 = Graphics[{RGBColor(1, 0, 0], PointSize[0.04], t9}];

Show[h1, g1, g3, AxesOrigin - (0, 0}, Axes - True, DisplayFunction - $DisplayFunction];

(= Choosing the part visible from the origin =)
tt = Transpose(t];

pp = Flatten[Position[tt[1], Min[tt]1]]]];

rr = t[Last[pp]];

pp2 = Flatten[Position[tt[2], Min[tt[2]]]];

m2 =tLast[pp2]];
kk1 = (#1[1] —rr[1]) (rr2]2] — rr[2]) = (#1]2] - rrl2]) (rr211] - rr[1)&) /@ k;

ss = Flatten[Position[kk1, True]];

kk = k[[ss] .
g4 = ListPlot[kk, PlotJoined - True, AxesOrigin - {0, 0}, DisplayFunction - Identity];

t11 = Point/@ kk;
g5 = Graphics[{PointSize[0.04], t11}];
Showig3, g4, g5, AxesOrigin - {0, 0}, Axes - True, DisplayFunction —» $DisplayFunction];

s1 = Flatten[(Position[te, #1]&)/@ kk]

{24, 12, 9, 7, 19, 1, 22, 4, 21, 24}

20L

15¢

10t

5 10 1S 20

{{0, 19}, (3, 8}, {6, 2}. {9, 1}, {16, 0}}



CH2D.nb

5

(7. 19, 1, 22, 4}

10

20



APPENDIX 2

Mathematica 3.0 Code

for Construction of Convex Hull in 3D



Limi110.nb

(*Programm for computing the CH in 3D using the Aggorithm
describing in Chapter 5%)

(* Randamize te=wenty five points in a range from 0 to 20 *)
xr:=Random[Integer, {0,20}];
et=Table[ {xx,xxr,xx}, {25}]

({6, 19, 11}, (4, 3, 7}, (11, 2, 4}, (7, 7. 7). (16, 19, 5},
(14, 13, 12}, (11, 6, 17}, (1, 4, 9}, (19, 14, 15}, (8, 11, 4},
(13, 5., 16}, (19, 3, 19}, (2, 4, 18}, (2, 3, 8), (5, 17, 12},
(0, 16, 15}, (11, 4, 7}, (16, 1, 2}, (16, 0, 9}, (0, 14, 19},
{12, 18, 0}, (18, 1., 1}, (20, 9, 11}, (6, 15, 1}, {11, 17, 4}}



Liml10.nb

(* Plot this set of points *)
yy=Table[Text[et[[i]],et[[i]],{-11-1}],(illrLength[et]}];
ff=Graphics3D[{RGBColor[0,0,1],Thickness[O.l],yy}];
gd=Show[ff,DisplayFunction->Identity];

tr= Point /@ et;

Ql=Show[Graphics3D[tr], g4, Axes->True,
DisplayFunction->$DisplayFunction];

(* Project this set to the plane x+y+z=20 *)
AL[er ]:=Block[{el,e2,e3,et0},et0={el,e2,e3}/.
(Solve[{el+e2+e3-20==0,

el* (#[[2]])==e2* (#[[1]]),e2* (#[[3]1])==e3*(#[[21]),
el*(#[[3]])==e3*(#[[1]1])},{el,e2,e3}])& /@er;
Flatten[et0,1] /. e3->0];

etl=al[let];

(* and plot it *)
tri=Map[Point,etl];



Liml110.nb 3

f=show([Graphics3D[Polygonl[({20,0,0},(0,20,0},{0,0,20}}11,DisplayFunction->Identity];
g=Show([Graphics3D[{PointsSiza[0.03],trl}],DisplayFunction->Identity];
Showlf,qg,DisplayFunction->$DisplayFunction];

(* Construct the CH in 2D in this plane, using the function LPLOT
AT[r_]:=Block[{wel},wel=AL[r];

Return[({#[[1]],#[[2]]1})& /@ wel]ll;

et7=AT[et];



LimII0.nb

Remova([s];
s=LPLOT [et7]

2.5 5 7.5 10 12.5 15 17.5
(22, 21, 24, 1, 16, 20, 13, 19, 22)



Limi10.nb

(* Plot 2D chosen points r)
at2=atl[[s]]

at9=et[[s]]
k=Table(],{},1,Length{et9]-1}];
adge={etS[[#]],et9[[#+1]])}&/Ck
atl0=Coamplemant[et, et9];
r=I;angthl[et9] ;

txr2=Map[Point,at2];
g1=show[Graphics3D[{RGBColor[l,o,0],Thickness[0.00S],Line[etl[[s]]],RGBColor[o,O,lj,

Pointsize[0.07],tr2}],DisplayFunction->Identity];
EE=Show([f,g,gl,ViewPoint->{2.170,1.656,2.000},DisplayFunction->$DisplayFunction] ;

(s, 1, 1), (8, 12, 0, (—, =2, 12, (0, 2B, By o, 229 399
1111 ' 11 373 31 31
0, 20 380, S 106 36 ey
33 7 33 373 5 >

({18, 1, 1}, (12, 18, 0), {6, 15, 1}, {0, 1%, 11}. (0, 16, 15},
{0, 14, 18}, {2, 4., 18}, {(1e, O, 9}, (18, 1, 1}}

{((x8, r, 1}, (12, 18, 0}}, ((12, 18, 0}, (6, 15, 1}},
({6, 15, 1}, (0, 19, 11}}, ((0, 19, 11}, (0, 16, 15}},
{{(o, 16, 15}, (0, 14, 19}), ({0, 14, 19}, (2, 4, 18}},
({2, 4, 18}, (16, 0, 9}}, ({16, O, 9}, (18, 1, 1}}}




Limi10.nb

(* Plot 3D chosen points *)
yg=Table [Text [et9[[11]],etS[[11]],(-1,-1}]1,(11,1,LengthletS9]}];

£fg=Graphics3D[{RGBColor[0,0,1],Thickness[0.1],yq}]l;

gl4=show[ffq, DisplayFunction->Identity];

tr3=Map[Point,et9];
g2=Show([Graphics3D[{RGBColor[1,0,0],Thickness[0.008],Lina[at9] +RGBColor{0,0,1],

Pointsize[0.07],tx3}],DisplayFunction~>Identity];
FFashow[g2,g14,Axes->True,ViewPoint->{2.170,1.656,2.000},

DisplayFunction->$DisplayFunction];

Sm[tll ,t22 ,cc_]:=Block((tl,t2,c,asl,ws,ed, po,dd},
t1=AT[{t11l}]//Flatten;t2=AT[(t22}]//Flatten;c=AT[cc] H
If{t2[[1]]==t1{[1]],as1=({1,0},I£[t1[[2]]==t2[[2]],a81=(0,1},
asl=(1/(t2([1]]-t1([1]1]),1/(E1((2]]1-t2((2]1)}11;

ws=asl* (#-tl)& /Gc;
Iffasil[[1]l]*as1l[[2]]>=0,ed=#[[1]1]1+#([2]]>=0& /C@ws,ed=#[[1]]+#[[2]]<=0& /@ws];

po=Position[ed, True] //Flatten;
dd=cc{ [pol]
)|



Limi10.nb

enl=Lengthlet9];
en2=Length[etl10] ;Clear[n];
An[x ,y ,r_ ,r2 ]:=Block[({ en=Length[r],en2=Length[r2]

},
Jl=Table[(r[[i,2]1-%x[[21]1) (¥ [[311-x[[31]1)-(y[[2]1]1-3[[2]])
(r[[i,31]1-x[[3]1),{i,en}];
J2=Table[(r[[i,3]]-x[[3]])(Y[[1]]~x[[1]])-(r[[illll-x[[lll)

(y[[311-x[[31]1),{i,en}};
J3=Table[(r[[i,1]]-x[[l]])(y[[Z]]-x[[2]])-(r[[i,2]]-x[[2]])
(y[[1]]1-x[[11]1),(i,en}];
J4=Tab1e[-r[[i,1]]J1[[i]]—r[[i,2]]J2[[i]]-r[[i,3]]J3[[i]],
i,en}];
tdl=Table[((-JL[[i]1#[[1]1]1-TJ2[[i]1]1&#([[2]1]1-J4[[i]])>=
#[[31]133[[1i]1])& /@r2,{i,en}];

k=Table [j 7 {j 7 11 en}] H

T=Table[True, {j,1l,en2}]; A
R1=If[T==t41[[#]],True,Falsel& /@k;

op=Position[R1,True] //Flatten;

sx=r[[op]]

1

(* Main function *)
wic=edge;

While[Length[edge]>2,

ui=Lengthl[et]-2;

yy=Lengthl[edge] +1;
tw=Table[An[edge[[i,1]],edge[[i,2]],Complement [Sm[edge[[i,1]],

edge[[i,2]],et],{edgel[i,1]],edge[[i,2]]1}],Complement [et,
{EdQEI [i, 1] ] }I {edg'e[ [i,2] ] }] ] 4 {il 1!”'1}] 7
to=Flatten[tw,1];

edge2=Tablela, {i,1,yy-1}1;
Pol2=Tablel[b, {i,1,yy-1}1;



LimlII0.nb

Forl[i=l,i<yy,i++,If[Length[tw[[i]]]==1,
edge2[[i]l]l=({{{edgel[i,1]],twl[i,1]]},
{tw[[i,1]1],edgel[i, ,2]1]1}}}:;
Pol2[[il]l={{{edgel[i,1]],twl[[i,1]],edge[[i,2]11}}} ,
edge2[[i]]=Table[{{edge[[i,1]],tw[[i,k]1]},
{twl[i,k]1],twl[i, k+1]]},

{(twl[i ,k+1]],edge[[i,2]1]1}},({k,1,Length[tw[[i]]]-1}];
Pol2[[i]]=Table[{{edge[[i,1]],tw[[i,k]],twl[i, k+1]1]},
{tw[[i,k+1]],edgel[i,1]],edgel[i,2]1]1})},
{k,1,Length[tw[[i]]]-1}]

11;

edge3=Flatten[edge2,2];
Pol3=Flatten[Pol2,2];

yt=Table[Polygon[{Pol3[[i,1]],Pol3[[i,2]],Pol3[[i,31]}]1,
{1i,1,Length[Pol3]}];

£1=Graphics3D[yt]: .
FF=Show[FF,ql,g2,£fl,ViewPoint->{2.170,1.656,2.000},
DisplayFunction->$DisplayFunction];
po=AL{to];
yt2=Table[Polygon[AL[{Pol3[[i,1]],Pol3[[i,2]],Pol3[[i,3]1]1}11,
{i,1,Length[Pol3]}]; .
£f2=Graphics3D[yt2];

=Show[EE, £,g,g1, £f2,ViewPoint->{2.170,1.656,2.000},
DisplayFunction->$DisplayFunction];
l1=edge3;
eeelx ,y ]:=If[x[[1]]l==y[[2]]&&x[[2]]==y[[1]],True, False];
m=Join[edge3, edge];
al=Table[eee[m[[i]],m[[]j]]],{i,1,Length[m]~-1}, {j,i+1l,Length[m]}]
bl=Position[al, True];
cl=Table[{bl1[[i,1]],b1[[i,2]]1+b1[[i,1]]1},(i,1,Length[bl]}]
//Flatten;
el=Union[cl];
ge=Ccmplement [m,m[ [el]]];

edge=Camplement [ge, edge];
wic=Union[wic, edge3];
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eal=sFlatten{wic,1];
ea=Union[Flatten{wic,1]];

tr4=Map([Point,ea];

aqggl=Table [Show{Graphics3D[ {RGBColor([1,0,0],
Thickness([0.008],Line[{eal[[1]],eal[[i+1]]}],RGBColor{0,0,1],Pointsiza(0.071,tr4}],
DisplayFunction->Identity], (1i,1,Lengthleall-1,2}]1;
Showleqql,FF,ViewPolnt->{1.300,-2.400,2.000},

DisplayFunction->$DisplayFunction];

Show[eqql,FF,ViewPoint->{2.170,1.656,2.000},

DisplayFunction->$DisplayFunction] ;
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13

wic
Union{Flatten([wic,1]]

(({o, 14, 19}, (1, 4, 2}}.

({0, 14, 19}, (2, 4, 18}},

({0, 16, 15}, (0, 14, 1S}}, ((0, 16, 15}, (1, 4., 9}}
((o, 13, 11}, (0, 16, 15})}, ({0, 19, 11}, (1, 4, 9}}

(1, 4, 9}, (0, 14, 19}},
((x, 4, 9}, (0, 19, 11}}.
({1, 4., 9}, (2, 4, 18}),
({2, 3, 8}, (2, 4, 18}},
({2, 3, 8}, (6, 15, 1)},
((2, 3, 8}, (16, 1, 2}},
({2. 4, 18}, (2, 3, 8}},
(4, 3,

(4, 3., 7}, (11, 2, 4}},

({(x, 4. 9}, (0, 18, 15}},
({1, 4. 9}, (2, 3, 8}},

({2, 3, 8}, (1, 4, 9}},
(2, 3, 8}, (4, 3, 7}},
({2, 3, 8}, (16, O, 9}},
(2. 4, 18}, (1, 4, 9}},
(2, 4, 18), (16, 0, 9}},

7y, (2, 3, 8}}, ({4, 3, 7}, (6, 15, 1}},

((4, 3, 7}, (18, 1, 1}},

{(6, 15, 1}, (0, 18, 11}}, ({6, 15, 1), (1, 4, 9}},

({6, 15, 1}, (2, 3, 8}}.

({6, 15, 1}, (4, 3, 7}}.

({6, 15, 1}, (12, 18, O}}, ({6, 15, 1}, (18, 1, 1}},

({11, 2, 4}, (4, 3, 7}},
({11, 2, 4}, (18, 1, 1}},
({12, 18, 0}, (18, 1, 1}}

{(1s, 0, 9}, (16, 1, 2}},
{(xe, 1, 2}, (2. 3, 8}},
((x6, 1, 2}, (16, 0O, 9}},
(18, 1, 1}, (4. 3., 7}}.
({18, 1, 1}, (11, 2, 4}},

({0, 14, 19}, (0, 186, 15},

({11, 2, 4}, (6, 15, 1)),
{(12, 18, 0}, (6. 15, 1}},
. {(16, 0, 9}, (2, 3, 8)}},
((16, 0, 9}, (18, 1, 1)},
((16, 1, 2}, (4. 3, 7}},

({16, 1, 2}, (18, 1, 1}},
((18, 1. 1}, (6, 15, 1)},

((18, 1, 1}, (12, 18, 0}})

‘

’

(0, 19, 11}, (1., 4, 92}, (2, 3,

{2, 4. 18}, (4, 3, 7}, (6, 15, 1}, (11, 2, 4}, (12,
{16, 0, 9}, (16, 1, 2}, (18, 1, 1})

18,

8)!
0},



APPENDIX 3

Mathematica 3.0 Code

for Construction of Lower Part of Convex Hull in 4D



normal<D.nb

t=(((0, 0, 1}, (O, 4, O}, {4, O, O}}, ({4, 0, O}, {8, 4, 0}, {4, 0, 1}},
(¢o, o, 1}, {0, O, 3}, {0, 4, 2}, (O, 4, O}}, ({0, O, 1}, {4, O, O}, {4, O, 1}, {O, O, 3}},
{(o, 0, 3}, {4, 0, 1}, (8, 4, 0}, {4, 4, 2}}, ({0, 4, O}, (O, 4, 2}, (4, 8, 1}, {4, 8, 0}},
{(4, 4, 2}, (8, 4, O}, {8, 8, 0}, (6, 8, 1}}, ({4, 8, 0}, {4, 8, 1}, (6, 8, 1}, {8, 8, 0}},
(o, 0, 3}, (4, 4, 2}, (6, 8, 1}, (4, 8, 1}, (0, 4, 2}},
{{o, 4, 0}, {4, 8, 0}, (8, 8, 0}, (8, 4, 0}, {4, 0, 0}}}

0}. {4, 0, 0}}, ({4, 0, O}, (8, 4, 0}, (4., 0, 1}}.
3}. (0, 4, 2}, {0, 4, 0}}, ({0, O, 1}, {4, 0, O}, {4, 0, 1}, {0, 0, 3}}.
1}, (8, 4, 0}, {4. 4, 2}}, ({0, 4, O}, {0, 4, 2}, {4, 8, 1}, (4, 8, 0}}.
0}, (8,8, 0}, (6,8, 1)}, ({4, 8, 0}, {4, 8, 1}, {6, 8, 1}, (8, 8, O}},
2}, (6,8, 1}, {4, 8, 1}, (0, 4, 2}},
0}. (8.8, 0}, (8, 4, 0}, {4, 0, 0}}}

({(o, 0, 1}, {0,
{({o, 0, 1}, (0,
{{o, 0, 3}, (4,
{{4. 4, 2}, (8,
{{o, 0, 3}, (4.
{0, 4, 0}, (4,

(L B - A e Il = I Y

tli1, 2, 111
(ef(1, 2, 1]] -€[[2, 1, 1]]) (E[[1, 3,2]] -t[[21, 1, 2]]) -
(ef[1, 3, 111 - €[, 1, 1]]) (E[[1, 2, 2]] -¢€[[1, 1, 2]])
J3 =Table[(t[[i, 2, 11] -t[[1, 1, 1]]) (E[[i, 3, 3]1] -¢t([[1, 1, 3]]) -
(el0i, 3, 1]] -1, 1, 11]) (e0[i, 2, 311 -t[(1, 1, 3]]), {1, 1, Length[t]}]
J31 = Table[Det[{{(t[[1, 2, 1]] -t[[4, 1, 1]]), (t[[i, 2, 3]]-¢t[[i, 1, 3]1])},
((e(l4, 3, 111 -t((1, 1, 11]), (t[[L, 3, 3]]1-¢t[[1, 1, 3]11)}}], {1, 1, Length[t]}]

J4 = J3 // Positive
p = Position{J4, True] // Flatten

til{pll
0

-16

(4. 4,0, 4, 4, -8, 0, -2, -2, 0}

(4, 4,0, 4, 4, -8, 0, -2, -2, 0}

{True, True, False, True, True, False, False, False, False, False)}
{1. 2, 4, 5}

{{{o0, 0, 1}, {0, 4, O}, (4. 0, O}}, ({4, 0, O}, (8, 4, O}, (4, 0, 1}},
{(0. 0, 1}, (4. 0, O}, {4, 0, 1}, {0, O, 3})}, ({0, O, 3}, {4, 0, 1}, (8, 4, O}, (4. 4. 2}}}



normwal+4D.nb

tt = ({0, 0, 1, 2}, {0, O, 1, 4}, {0, O, 2, O}, {O, O, 2, 2}, {0, O, 3, O},

(5. 24, 1,7, 0},

(o, 4, 0, 4}, (0, 4, 0, 6}, (O, 4,70, 8}, {0, 4, 1, 2}, {0, 4, 1, 4}, (O, 4,
(0, 4, 2, 2}, {0, 4, 2, 4}, {2, 0, 1, 0}, (2, 0, 1, 2}, {2, 0, 2, 0}, (2., 4,
{2' 4’ ol 4}' {21 4' ol 6}’ {2' 4' 1l O}I {21 4' 1' 2}[ {2' 4’ 1' 4}' {2' 4,
{2, 4,2, 2}, (4,0, 0, 0}, (4,0, 1,0}, {4, 4, O, O}, {4, 4, 0, 2}, {4, 4,
{4, 4,1, 0}, {4, 4,1, 2}, {4, 4, 2,0}, (4,8, 0, 4}, {4, 8, 1, 2}, (6, 4,
{6, 4, 1, 0}, (6, 8, O, 2}, {6, 8, 1, 0}, {8, 4, O, O}, (8,8, 0, O0}}

{{o, 0, 1, 2}, {0, 0, 1, 4}, (0, 0, 2, 0}, {0, 0, 2, 2}, {0, 0, 3, 0}, {0, 4, O
{o, 4, 0, 6}, (0, 4, 0, 8}, (O, 4, 1,2}, {0, 4, 1, 4}, {0, 4,1, 6}, {0, 4, 2
{0. 4,2, 4}, {2,0, 1,0}, (2,0, 1,2}, (2.0, 2,0}, {2.4,0,2}, (2,4, 0
(2, 4,0, 6}, {2,4,1,0}, {2,4,1,2), {2. 4,1, 4}, {2,4,2,0}, {2. 4, 2
{4, 0,0, 0}, (4,0, 1,0}, {4, 4, 0,0}, (4.4, 0, 2}, {4. 4,0, 4}, (4. 4, 1
{4. 4,1, 2}, (4.4, 2,0}, {4,8,0,4}, (4.8, 1, 2}, {6, 4.0, 2}, (6,4, 1
(6, 8,0, 2}, (6,8,1,0}, {8,4,0, 0}, (8,8, 0, 0}}

tr= ({7, 25, 1, 31, 12, 4, 38},

{24, 2, 25, 1, 4, 0},

(24, 25, 1, 7, 38},

{5, 24, 1, 7, 0},

{11, 5, 2, 12, 8, 1, 7, 4, 0},

(11, 22, 2, 8, 19, 4},

(33, 39, 31, 12, 37, 7, 32, 38},

(33, 11, 22, 31, 12, 37, 4},

{33, 11, 22, 37, 8, 19},

(33, 11, 5, 12, 8, 7, 32},

(26, 5, 24, 2, 8, 13, 0},

{26, 39, 24, 22, 31, 2, 25, 37, 19, 4, 38},

(26, 33, 33, 5, 37, 8, 19, 32},

(26, 39, 5, 24, 7, 32, 38}}

{{7. 25, 1, 31, 12, 4, 38}, {24, 2, 25,1, 4, 0}, (24, 25, 1, 7, 38},

(11, 5, 2, 12,8, 1, 7, 4, 0},
(32, 11, 22, 31, 12, 37, 4}, (33
(28,
(26, 33, 39, 5, 37, 8, 19, 32},

5, 24, 2, 8, 19, 0},

tra=tr+1

{(81

26, 2, 32, 13, 5, 39},
(12, 6, 3, 13, 9, 2, 8, 5, 1},
(34, 12, 23, 32, 13, 38, S},

{27,
(27, 34, 40, 6, 38, 9, 20, 33},

6, 25, 3, 9, 20, 1},

13

r ~—

(26, 39, 24,
(26, 3¢9

{25, 3, 26,2,5, 1}, {25, 26, 2, 8, 39}, {6, 25, 2, 8, 1},
2, 9,20, 5}, {34, 40, 32, 13, 38, 8, 33, 39},

{12, 23,

(11, 22, 2, 8, 19, 4},

, 5. 24, 7, 32, 38}}

-~

1, 6},
0, 23,
2, 0},
4},

0, 23,

. 4},
. 2},
. 4},
P 2},
. 0},
. 0},

{33, 39, 31, 12, 37, 7, 22, 38},
22, 37, 8, 19}, (33, 11, 5, 12, 8, 7, 32},
22, 31, 2, 25, 37, 19, 4, 38},

(34, 12, 22, 38, 9, 20}, {34, 12, 6, 13, 9, 8, 33},
{27, 40, 25, 23, 32, 3, 26, 38, 20, 5, 39},
(27, 40, 6, 25, 8, 33, 39}}



normal4D.nb

t=tt[[#]]&/@tre

{{(o, 4, 0, 8}, {4, O, 1, 0},
(0, 0,1,4}, (4., 4, 2, 0}, {0, 4,2, 4}, {0, O, 3, 0}, (8, 4, O, 0}},

{{4., 0, 0,0}, {0, 0, 2, 0O}, {4, 0,1, O}, {0, 0, 1, 4}, {0, O, 3, 0}, {0, 0, 1, 2}},

({4, 0,0,0}, {4, 0,1, 0}, {0, 0,1, 4}, {0, 4, 0, 8}, {8, 4, O, 0}},

{{(0, 4, 0, 4}, {4, 0, 0, O}, {0, 0, 1, 4}, (O, 4, O, 8}, {0, O, 1, 2}},

({(0. 4, 2,2}, {O, 4,0, 4}, {0, 0, 2, 0}, (0O, 4, 2, 4}, (O, 4, 1, 2}, (0,0, 1, 4},
(0. 4. 0,8}, {0, 0, 3, 0}, (0, 0,1, 2}}, ((O, 4, 2, 2}, (2. 4, 2, 0}, {0,0, 2, 0},
{0, 4.1,2}, {2, 4, 1, 0}, {0, 0, 3, 0}}, {{4, 8, 1,2}, {8, 8, 0, 0},

(4.4, 2,0}, {0, 4, 2, 4}, (5,8, 1, 0}, {0, 4, 0, 8}, {4, 8, O, 4}, (8, 4, 0, O}},

({4.8,1,2}, {0, 4, 2, 2}, {2, 4,2, 0}, (4, 4, 2, 0}, {0, 4, 2, 4},

{6, 8,1, 0}, {0, 0, 3, 0}}, {{4, 8.1, 2}, {0, 4, 2, 2}, {2, 4., 2, 0},

{6,8,1,0}, {0, 4, 1, 2}, {2, 4,1, 0})}, {(4., 8., 1,2}, {0, 4, 2, 2}, {0, 4, 0, 4},
{0, 4,2,4}, (0, 4. 1. 2}, (0, 4,0, 8}, {4, 8, 0, 4}}, {{4, 4, 0, 0}, {0, 4., 0, 4},
{4, 0, 0,0}, (0, 0,2, 0}, {0, 4,1, 2}, {2,4, 1,0}, {0,0,1,2}}, ({4,4. 0, 0},

(8, 8,0,0}, {4, 0, 0, O}, {2, 4,2, 0}, (4, 4, 2, 0}, {0, 0, 2, O}, {4.0,1, O},
{6.8,1,0}, {2, 4,1, 0}, (0,0,3,0), (8,4, 0, 0}}, {({(4. 4. 0, O}, (4,8, 1, 2},
(8.8,0,0}, (0, 4, 0, 4}, (6, 8,1, 0}, {0, 4, 1, 2}, {2, 4, 1, 0}, (4. 8, 0, 4}},

{{4. 4, 0,0}, {8, 8, 0, 0}, {0, 4,0, 4}, (4, 0, 0, O}, (0. 4, O, 8}, (4, 8,0, 4},
(8., 4, 0, 0}}}

JJ = Table[Det [{{(t[[i, 2, 111 -¢t[[4, 1, 1]1]),

(e, 2, 311 -t[[1, 1, 3]1]), (e[[i, 2, 4] -E[[L, 1, 4]1]1)},
(i, 3, 111 -4, 2, 1]11), (e[, 3, 311 -t[(L, 1, 31]),
(elld, 3, 411 -t[[L, 1, 4]11)}, ((ELTL, 4, 1}] -€([4, 2, 11]),
(erfi, 4, 311 -¢[[1, 1, 3]11), (E[[1, 4, 4]] -t[[i, 1, 4]11)}}1,
{1, 1, Length[t]}]

J4 = JJ // Positive

p = Position[J4, True] // Flatten

tp = t[[p]]

tp[[1]]
TT = Table[Flatten[Position[tt, #]&/etp[[1]]1], {1, 1, Length[tp]}]

{16, ~-16, 16, 16, 0, -4, 0, -4, 0, 16, 0, 0, -16, O}

{True, False, True, True, False, False, False, False, False, True, False,
False, False, False}

(1. 3, 4, 10}

{{{0. 4, 0, 8}, {4, 0, 1, 0},
{0, 0,1, 4), {4, 4. 2, 0}, {0, 4, 2, 4}, {0, O, 3, O}, (8, 4, 0, 0}},

{{4, 0,0, 0}, {4, O, 1, O}, (0, O, 1, 4}, (O, 4, O, 8}, {8, 4, O, 0}},

{{0, 4,0, 4}, {4, 0, 0, 0}, {0, 0,1, 4}, {0, 4, 0, 8}, (0, 0, 1, 2}}, {{4. 8, 1, 2},
{0, 4, 2,2}, (0, 4, 0,4}, {0, 4,2, 4}, {0, 4, 1, 2}, (0, 4, O, 8}, {4, 8, 0, 4}}}

{{(o, 4, 0,8}, {4, 0, 1,0}, {0,0,1, 4}, {4, 4, 2, 0O}, {0, 4, 2, 4}, {0, O, 3, 0},
(8. 4, 0, 0}}

{{8., 26, 2, 32, 13, 5, 39}, (25, 26, 2, 8, 39}, {6, 25, 2, 8, 1}, (34, 12, 6, 13, 9, 8, 33}}



normaliD.nb

Union{Flatten[tp, 1]}

({0, 0,1,2}, (0, 0,1, 4}, (0,0,2, 0}, (0, 0,3, 0}, {0, 2, 0, 4}, (0, 2, 0, 8},
(0.2.1,2}, {0, 2,2, 2}, (0,2, 2,4}, (2. 2,1, 0}, {2,2, 2,0}, (4, 0, 0, 0},
{4.0,1,0}, (4,2,0,0}, (4,2,0, 2}, (4, 2,0, 4}, (4,2, 1, 0}, (4, 2, 1, 2},
(4.2.,2,0}, {4, 4,0, 4}. {4.4, 1,2}, {6,2,0,2)}, (6,2, 1,0}, (6, 4, 0, 2},
{6. 4,1, 0}, {8, 2, 0,0}, (8,4, 0, 0})

Length[TT]

40



APPENDIX 4

Mathematica 3.0 Code

for Construction of Separating Lines



Analysislalfanb

<< DiscreteMath’CamputationalGaecmatry™

Clear[A, as, b, all, al2, al3, a21, a22, a23, a31, a32, a33, DDD, mu, m];
mu=hxSqrt[Sqrt(l-nu+2]];

asm_, p_, lam_ ] := -2+ (1-nu) p*2+m42- (1-nu*2) +lam+mu* (-4)

bm_,p ,lam_ ] :=-(2-nu) «+pA*2+m+mAr3

allim , p_, lam ] z=-p*2+ (1-nu) /2+mA22- (1-nu*2) «lam
a2lfm_, p_, lam ] :=-(1+nu) /2+«pam

al2fm ,p_, lam ] :=(1+nu) /2+«p+m
a3l(m_, p , lam_] := -nu=p

al3(m_, p_, lam_] :=nus+p
a22[m_, p_, lam_ ] :=~-(1-nu) /2«p22+m*2+as8[(m, p, lam] s+mu+4
a32fm_, p_, lam_] := (m+b[m, p, 1lam] +mu+4)

a2ifm_, p_, lam_] := (m+b[m, p, lam] +mu+4)
a33(m_,p_, lam_ ] :=1- (1-nu+2) s+lam+murd+ (Pr2-mA2) 42

Clear[alfa];

allfm, p, lam] al2[m, p, lam] al3[m, p, lam]
DDD[m_, p_, lam_] :=Det[{a21[m, P, lam] a22[m, p, lam] a23[m, p, lam] (]
a3l[m, p, lam] a32[m, p, lam] a33[m, p, lam]

DN = Expand [Factor[DDD[m+h* (-alfa), p, lam] +2/ (1 -nu42) 7 (1 -nu)] ]

2 la_mz -2 lam] -2 Ké-2 alfa lam ml - h-z alfa lammz +2 h4—2 alfa lamz mZ +3 h-Z alfa lamz mZ + h4—4 alfa m4 +
34l 1Mt ho43l8a Janmd o pi-dalfa 1an? n o pd-6alfa 6 3 pd6alfa g, 6, pd-falfa e
2lam’nu -2 lam’ nu-2h*?1% jamm® nu + 2 h* 2232 Jam?® m¥ nu + 2 K222 Jam® m? nu +
4n%2% Jamm? nu + 2 W28 Jam m® nu - 2 W22 Jamm® nu + 2 1am® nu? - 2 K221 Tam? n? nu? -
h 228 Jam? 1% nu? + B4R Jam m® nu? - 2 B%9329 1 am? mf nu? + K452 1 an mS nul + 2 lam® oo’ -
2h%?8 jam? m? nu? -2 W3R Jan? minud + 3 lamp? + 4 hf lamp? - 3 lam®p? - 4 ht lam? p? -

4 hé-2alfa 2 pz — 4 hi-%2lfaj5mmp? pz +2h-232a 1 amm? p2 - 4 hi-2alfa 32 ;2 pz + 8 hi-1alfa 4 pz +
g pe-4 alfa lamm“ pZ -4 h4-$ alfa ms pz +2 lamnu pz -2 laml nu p2 -4 h4-2al£a lam mz nu pl _
41?212 jam’ m® nup? + 6 h* 42 1am m® nup® - 4 h* lamnu® p? + lam® nu? p? + 8 h* lam? nu? p? + -
2h%?2% Janm? nu? p? + 4 K232 1an? 0% nu? p? - 3 K418 lamm® nu? p? + 2 K2 318 Lamm? nut p? «
4n%23 % jam* m? nu® p? -4 h' lam® nu® p? +p* + 4 h'p? - lamp? - ¢ h' lamp® + 2 h* 1am? p* -

8 h4-2 alfa m‘.' p4 -9 h4-2 alfa lam mz p4 -2 h8-2 alfa lam mz P4 +6 h4-4 alfa mé pd - ha-4 alfa mt p4 +
2h*lam’nup® - 6 h* 2% Jamm? nu p* - 2 1% 23 lamm® nu p® - 4 h* nu? p* + 4 h! lam nu? p* -

2 h* lam® nu? p* + 2 A%"23L83 2 2 o4 | 3 92318 Jan 2 nu2 pd g B2l o 2 y? pt -

2R%18 0t 2 ¢ _ 2 b lam? nud p* + 4 R%248 Tamm? nu’ pt - 2 h®2316 Tam m? nud pt +

4318 pd nyd pd - 2 R®22188 Tam 2 nyS p% 4 3 B lamp® + 4 h? lamp® — 4 KO-231% 2 ps _

4nd23 B¢ L 2 h® lamnup® - h® lamnu® p® - 8 h® lamnu? p® + 4 h®23183 2 N2 ps &
4h®lamnu®p® +h'p? +4 h® p® - 4 h® nu? p®



Analysislalfanb

DN=DN/. lam -> L;
1=DN/. {(Minus -> List}
1=Table[1[[1]], {1, 1, Length[1]}]

ce=1l/.{p->1,h->1,L->1};
A=Table[{cc[[1]], {Exponent[1[[i]], p], Exponent[1[[1i]], h], Exponent[1{[1]], L]}},
{1, 1, Length[cc] }];
11 = Union[Transpose[A] [[2]]]:
111 = Table[Select[A, #[[2]] == 11[[i]]&], (i, 1, Length({1l1]}];
r = Factor|
Table[{Sum[111[[41}]([J11[[1]], (I, 1, Length{I11[[4]]]}], T11{(4]1C[1]11[[2]])},
{1, 1, Length[111]}]]
2 LZ -2 LJ -2 hd-: alfa L ml _ h-Z alfa L mz +2 h4-2 alfa Lz mZ +3 h-2 alfa Ll ml + h4-4 alfa m® + 3 h4-4 alfa Lmd-
h--( alfa Lmé+2 h4-4 alfa LZ m4 -2 h4-6 alfa mG -3 h4-6 alfa L mé + h4-8 alfa ma +2 LZ nu-2 LJ nu -
2 h4-2 alfa L mz nu+ 2 h4-2 alfa LZ mz nu + 2 h-z alfa LZ m2 nu + 4 h4o4 alfa 1 m4 nu + 2 hi? alfa LZ m? nu -
2h%-€3B L S nu + 2 L3 nu? - 2 he2alfa 2 2 2 _p-2alfap2 2 2 pdedalfag pd 2
2httalfa 2 pd ny? L pe-Salfap 62 Lo p3ny? 2 pi-2alfa 2 2 03 o pd-dalfap2 a3
3Lp?+4h'Lp?-3L2p2-4ahiL2p?-gni?alfag? g2 _ 4 pi-2alfap 2 pl+2h-23fa 2 2
4 h-:-.’. alfa Lz mZ p‘.’ + 8 it alfa mé pZ + 9 pi-talfa Lmd pl -4 h4-6 alfa ms pz +2Lnou pZ -2 L2 nu pz -
4 h4-2 alfa L mZ nu pZ -4 h4-2 alfa L2 ml nu p2 +6 h4-4 alfa L m4 nu pz -4 h4 L nuz pz + LZ nuz pz +
8 h4 L2 nuz pz +2 h4-2 alfa L m2 nU.Z pl +4 h4—2 alfa LZ m2 nuZ pl -3 h-(—-( alfa L m4 nul p?. +
2h4-2altaLm2 nu! p2 +4 h4-ZalEa L2m2 nu! pZ -4 h4 L?. nu4 pZ +p4 +4 h4 p4 _ Lp‘ -4 h4 Lpd +2 h4 Ll p4 _
8 h4-2 alfa m2 p4 -9 h4—2 alfa L m2 p4 -2 hE-Z alfa L mZ p4 +6 h4--( alfa m4 p4 + hﬂ--( alfa m4 p4 +2 h4 LZ nu p4 -
6h' 2R L m?nup -2 2R L nupt -4 h'nu’pt + 4 h'Lnulpt - 2 h L2 nul pt +
2 pi-2alfa 2 gy, p4 + 3 pi-2alfagp o2 nu? p4 +4 h8-2alfay m2 0,2 p4 — 2 h8-4alfa 4 h.2 p4 -2h%L? nud p4 +
4 hs-z alfa L mz nuz p4 -2 hs-z alfa L m2 nu? p4 - h8-~( alfa m4 nu4 p" -2 h8-2 alfa L mZ nuS p4 +3 h4 L ps +
4hPLpS -4 hi2alfap2p6 _gpt2alfap2 6 opdp oy p’-h'Lnulp’-8h®Loup® +
4h% 218 nu? pf 1 4 n® Lnuf p® +h'p® + 4 h® p® - 4 h® nu? p®
(2 LZ, -2 Ll , -2 h4-2 alfa L m.’. , _h-l alfa L mzl 2 h4-2 alfa LZ m’.’, 3 h-Z alfa Lz mz , h4-4 alfa m4 ,
3 h4--( alfa Lmd , - alfa Lmt , 2 h4-4 alfa LZ md' -2 h4-6 alfa mG' -3 h4-6a1£a L ms’ h4-8 alfa ma , 2 LZ nu,
-2 L3 nu, -2 h4-2 alfa L m2 nu, 2 h4-2 alfa LZ mz nu, 2 h-2 alfa L2 m‘_’ nu, 4 h4-4 alfa L m4 nu,
2 h4-4 alfa LZ m? nu, -2 h4—6 alfa L mG nu, 2 LJ nuz, -2 h4-2 alfa L2 m2 nuz, _h-z alfa LZ m2 nuZ'
h4-4 alfa L m4 nuz , =2 h4-4 alfa LZ m4 null ha-s alta L mS nu! , 2 L3 nuz , -2 h4-2 alfa LZ m2 nuB ,
—2h%talfR 2 ndnyd 3Lp?, 4hinp?, -3 12 p?, -4 h*L2p?, ~ghi2alap2 2 _gpé-2alfap 2 P2,
2 h-?. alfa Lmz pll -4 h4-2 alfa LZ m2 pZ , 8 h4-4 alfa m4 p2 , 9 h4-4 alfa Lmt pZ' -4 h4-5 alfa mS p.'Z . 2Lnu p2’
-2L%nup?, -4h* 32 pm’nup?, -4 w29 2 M2 nup?, 6 AR Lt nup?, -4 h' Lnu’p?,
LZ nuZ p.'! , 8 h4 LZ nu?. pZ' 2 h4-2 alfa L mZ nuz pzl 4 h4-2 alfa Ll mZ nul p2 , =3 h4-4 alfa L m4 nuZ pZI
2 hi-22lfap 02 3 p?, g pé-2alfa 22 03 p?, -4h*L?nu'p?, p!, 4hp*, -Lp*, -4 h* Lpt,
2 h-( LZ p4 , -8 h4—2 alfa mz p4 , -9 h4-2 alfa Lmz p4 , =2 h5-2 alfa L ml p4, s h4-4 alfa m4 p4 , h8—4 alfa m4 p4 )
2h'L?nup®, -6n* 22 Ln? nupt, -2h*21%2 L M2 nupt, -4 h®nu?pt, 4 h* L ou? pt,
-2 h4 LZ nuz P‘ , 2 h(-?. alfa m2 nuZ pf( , 3 h4-2 alfa 1, mZ nuZ p4 , 4 h8-2 alfa L mZ ran pd , =2 h3-4 alfa m4 nu2 p4 ,
-2 h4 LZ nuB pf. , 4 h8-2 alfa L mZ nuz P‘ , =2 h8-2 alfa L m2 nu? p4 s h8-4 alfa m? nu4 p4 ,
—2h% 23 L 2 iy pd, 3RYLpS, 4hPLpS, —4ni2alfap2 o6 _gpt2alfap2 06 5 sy pS,
-h'Lnu?p®, -8h®Lnu?p®, 4 h* 282 n? nu?pf, 4h®Lnu'p®, h'p®, 4h®p?, -4 h® nu?pt)
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{{2 (L+nu), {0, 0, 2}}, {2 (-1 +nu) (L +nu)?, (0, 0, 3}}, {m®, {0, -4 (-1 +2alfa), O}},
{-2m%, {0, -2 (-2 +3alfa), 0}}, {m® (-3 +nu) (1+nu), (0, -2 (-2 +3 alfa), 1}},

{m*, {0, -4 (-1L+alfa), 0}}, {m* (L+nu) (3 +nu), {0, -4 (-1 +alfa), 1}},

{-2m* (-1 +nu) (L +nu)-, {0, -4 (-1 +alfa), 2}},

(-2m:i (L +nu), (0, -2 (-2+alfa), 1}}., (--2m2 (-1 +nu) (1+nu)?3, {0, -2 (-2 +alfa), 2}}.
{-m*, (0, -4alfa, 1}}, (-w", (0, -2alfa, 1}}, (-m’> (-3 +nu) (1 +nu), (0, -2alfa, 2}},
{3 +2nu, {2, 0, 1}}, ((-3 +nu) (L1 +nu), (2, 0, 2}}, {-4 (-1 +nu) (1 +nu), {2, 4, 1}},
{~4 (-1+nu)? (L +nu)?, (2, 4, 2}}, {-4m®, {2, -2 (-2 +3 alfa), 0}},

(8m*, {2, ~4 (-1 +alfa), 0}}, {-3m® (-3 +nu) (L +nu), (2, -4 (-1 +alfa), 1}},

(-4m?, {2, -2 (-2 +alfa), 0}}, {2m® (1 +nu) (-2 +nu?), {2, -2 (-2 +alfa), 1}},

{4m® (-1 +nu) (L+nu)?, {2, -2 (-2 +alfa), 2}}, (2m?, (2, -2alfa, 1}},

{1, {4, 0, 0}}., {-2, (4. 0, 1}}, (-4 (L +nu) (L+nu), (4, 4, 0}},

{4 (-1 +nu) (L +nu), (4, 4, 1}}, (-2 (-1 +nu) (L+nu)?, (4, 4, 2}},

{6m*, {4, -4 (-1 +alfa), 0}}, {m* (-1 +nu)® (L+nu)?, (4, -4 (-2 +alfa), 0}},

{(2m?® (-2 +nu) (2+nu), {4, -2 (-2 +alfa), 0}},

{3m® (-3 +nu) (L+nu), {4, -2 (-2 +alfa), 1}},

(-2m® (-1 +nu)> (1 +nu)’, {4, -2 (-4 +alfa), 1}},

{-(-3+nu) (L+nu), {6, 4, 1}}, {4 (-1 +nu)? (1 +nu)?, {6, 8, 1}},

{(-4m?, {6, -2 (-2 +alfa), 0}}, {4m? (-1 +nu) (1+nu), {6, -2 (-4 +alfa), 0}},

{1, (8,4, 0}}, {-4 (-1 +nu) (1 +nu), {8, 8, 0}}}

r{[{2, 15, 26}]]
{{2 (-1+nu) (L +nu)?, {0, 0, 3}}, ((-3 +nu) (L+nu), {2, 0, 2}}, {-1. {4, 0, 1}}}

rl = Transposea[r] [[1]]
r2 = Transpose[x] [[2]]

{2 (3 +nu), 2 (-1+nu) (L+nuw)2, m®, -2m®, m® (-3 +nu) (1 +nu), m%,

m® (1+nu) (3+nu), -2m* (-L+nu) (1 +nu)?, -2m? (L +nu), -2m? (-1 +nu) (1 +nu)?,
-m*, -m?, -m> (-3 +nu) (L+nu), 3+2nu, (-3 +nu) (1+nu), -4 (-1 +nu) (1+nu),

-4 (-1+nu)? (L+nu)?, -4m®, 8m*, -3m® (-2 +nu) (1 +nu), -4m?, 2m? (1 +nu) (-2 +nu?),
4m® (-1+nu) (L+nu)?, 2m?, 1, -1, -4 (-1 +nu) (L +nu), 4 (-1 +nu) (L +nu),

-2 (-1+nu) (L+nu)?, 6m*, m* (-1 +nu)?® (L +nu)?, 2m® (-2 +nu) (2 +nu),

3m? (-3+nu) (L+nu), -2m® (-1 +nu)? (L+nu)?, =(-3 +nu) (L +nu),

4 (-1 +nu)? (L +nu)?, -4m?, 4m® (-1 +nu) (L+nu), 1, -4 (-1 +nu) (1 +nu)}

({0, 0, 2}, {0, 0, 3},

{0, -4 (-1 +2alfa), 0}, (0, -2 (-2 +3 alfa), 0}, (0, -2 (-2 +3 alfa), 1},

{0, -4 (-1 +alfa), 0}, {0, -4 (-1 +alfa), 1}, {0, -4 (-1 +alfa), 2},

{0, -2 (-2 +alfa), 1}, {0, -2 (-2 +alfa), 2}, {0, -4 alfa, 1}, {0, -2alfa, 1},

{0, -2alfa, 2}, {2, 0, 1}, (2, 0. 2}, {2. 4, 1}, {2. 4, 2}, {2, -2 (-2 +2alfa), 0},
{2, -4 (-1 +alfa), 0}, {2, -4 (-1 +alfa), 1}, {2, -2 (-2 +alfa), 0},

{2, -2 (-2 +alfa), 1}, {2, -2 (-2 +alfa), 2}, (2, -2 alfa, 1}, (4, 0, O}, {4, 0, 1},
{4. 4,0}, {4, 4, 1}, (4. 4, 2}, (4., -4 (-1 +alfa), 0}, {4, -4 (-2 +alfa), O},

{4, -2 (-2 +alfa), 0}, {4, -2 (-2 +alfa), 1}, {4, -2 (-4 +alfa), 1}, {6. 4, 1},

{6. 8,1}, {6, -2 (-2 +alfa), 0}, {6, -2 (-4 +alfa), 0}, (8, 4, 0}, {8, 8, 0}}
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r2
alfa=1/2
2

{(o, a, 2}, (0, 0, 3},

{0, -4 (-1 +2alfa), O}, {0, -2 (-2 +3 alfa), 0}, {0, -2 (-2 +3 alfa), 1},
(0, -4 (-1+alfa), 1}, {0, -4 (-1 +alfa), 2},

{0, -4 (-1 +alfa), 0},
{06, -2 (-2 +alfa), 1},
{0, -2 alfa, 2}, (2, 0,
{2, -4 (-1 +alfa), 0},
(2, -2 (-2 +alfa), 1}.
{4, 4, 0}, {4, 4., 1}, {4, 4, 2}, {4, -4 (-1 +alfa), 0}, (4, -4 (-2 +alfa), 0},

{4, -2 (-2 +alfa), 0}, (4, -2 (-2+alfa), 1}, (4, -2 (-4 +alfa), 1}, (6, 4, 1},
{6, 8,1}, (6, -2 (-2 +alfa), 0}, (6, -2 (-4 +alfa), O}, (8, 4, 0}, {8, 8, 0}}

1
2

{{o, 0, 2}, {0, 0, 3},
{0, 3, 1}, (0, 3, 2},
{2, 4, 2}, (2,1, 0},
{4, 0,0}, (4,0, 1},
{4, 3,1}, (4.7, 1},

Length[z2]

40

{0,
(o,
2.
(4,
{s.

(0, -2 (-2 +alfa), 2}, {0, -4 alfa, 1}.

1}, {2, 0,2}, {2, 4, 1}, {2, 4, 2}, (2,

{0, -2ailfa, 1},
-2 (-2 +3 alfa), 0},

{2, -4 (-1 +alfa), 1}, {2, -2 (-2 +alfa), 0},

{2, -2 (-2 +alfa), 2}, {2, -2 alfa, 1},

4,0}, (4, 4, 1}, (4. 4. 2}, (4. 2, 0}
4,1}, (6, 8, 1}, (6,3, 0}, (6, 7, 0}

pt = {{xr2[[11]], x2([3]], T2[[25]]},
{r2[(11]]1, r2[[25]1}, x2([[26]]}, {x2[[11]], x2[[26]]), T2([[2]]},
{r2[[25]]1, x2[[39]], T2[[26]]}, {x2[([2]], xr2([[26]], x2[[39]], x2[[29]]}}

PPP = {r2{[11]], r2([3]1], x2[[25]], x2[[26]], x2[[2]], x2[[39]], x2[[29]]}

ptp = ({11, 3, 25}, (11, 25, 26}, (11, 26, 2}, (25, 39, 26}, {2, 26, 39, 29}}

{({0, -4 alfa, 1}, (0, -4 (-1 +2alfa), O}, {4, 0, O}},
{{0. -4 alfa, 1}, {4, 0, O}, {4. 0, 1}}, {{O0, -4alfa, 1}, {4, 0, 1}, {0, O, 3}},
({4, 0,0}, (8,4, 0}, (4, 0, 1}}, {{O, O, 3}, {4, 0, 1}, (8., 4, 0}, {4, 4, 2}}}

o, ¢}, (0, 1, 0}, {0, 1, 1}, {0, 2, 0},
-2, 1}, {0, -1, 1}, {0, -1, 2}, (2. 0,
2, 0}, {2, 2, 1}, {2, 3, 0}, {2. 3, 1},

{4, 0, 0}, {4, 0, 1},

(0.2, 1}, {0, 2, 2},
1}, {2, 0, 2}, {2, 4, 1},
{2, 3, 2}, {2, -1, 1}.
. {4, 6, 0}, {4, 3, 0},
. {8, 4,0}, (8,8, 0}}

({0, -4alfa, 1}, (0, -4 (-1 +2alfa), 0}, {4, O, O}, {4, 0, 1}, {0, 0, 3},

{8. 4.0}, {4. 4. 2}}

({11, 3, 25}, {11, 25, 26}, {11, 26, 2}, {25, 39, 26}, {2, 26, 39, 29}}
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PPP («the list of convax hull pointss)

pt(+the list of facets (in points) =)

ptp(»the list of facets (in points numbers) &)

r2 (»initial lexicographically sorted list of the pointss)

({0, -4 alfa, 1}, (0, -4 (-1+2alfa), O}, (4. 0, O}, {4, 0, 1}, (G, O, 3},
(8, 4, 0}, {4. 4., 2}}

{{{0, -4alfa, 1}, {0, -4 (-1 +2alfa), 0}, {4, 0, O}},
{(0, -4alfa, 1}, {4, 0, 0}, (4, 0, 1}}, {(0, -4alfa, 1}, {4, O, 1}, {0, O, 3}},
{{4. 0, 0}, {8, 4, O}, (4, 0, L}}, ({0, 0, 3}, {4, 0, 1}, {8, 4, 0}, {4, 4, 2}}}

{{11, 3, 25}, (11, 25, 26}, (11, 26, 2}, (25, 39, 26}, (2, 26, 39, 28}}

({0, o0, 2}, (0, 0, 3},

(0, -4 (-1 +2alfa), 0}, {0, -2 (-2 +3 alfa), 0}, (O, -2 (-2 +3 alfa), 1},

(0, -4 (-1 +alfa), 0}, {0, -4 (-1 +alfa), 1}, {0, -4 (-1 +alfa), 2},

{0, -2 (-2 +alfa), 1}, {0, -2 (-2 +alfa), 2}, (0, -4 alfa, 1}, {0, -2 alfa, 1},

(0, -2 alfa, 2}, {2, 0, 1}, {2, 0, 2}, (2. 4., 1}, (2. 4, 2}, {2, -2 (-2 +3 alfa), 0},
{2, -4 (-1 +alfa), 0}, {2, -4 (-1 +alfa), 1}, {2, -2 (-2 +alfa), 0},

(2, -2 (-2 +alfa), 1}, {2, -2 (-2 +alfa), 2}, {2, -2alfa, 1}, (4, 0, O}, {4, 0, 1},
{4, 4, 0}, {4, 4, 1}, {4, 4, 2}, {4, -4 (-1 +alfa), O}, (4, -4 (-2 +alfa), 0},

{4, -2 (-2 +alfa), 0}, {4, -2 (~2 +alfa), 1}, (4, -2 (-4 +alfa), 1}, {6, 4, 1},

{6, 8, 1}, {6, -2 (-2 +alfa), 0}, {6, -2 (-4 +alfa), O}, {8, 4, 0}, {8, 8, 0}}

sl = Table[Table[
pPAT2[[ptp (111 (031111 0[2]] +RAx2[[PtP[[1]1[[J1111[[2]1] «
LAr2[([ptp((£1100311110(3]1]1, (I, 1, Length(ptp[[1i]]]}],

{1, 1, Length{ptp] }]

{{h--talfa L, h-4 (-l»Zalia), 94}' {h—4alfaL' 94: Lpl(}' (h--(alfaLl Lp‘, L]}’ {p4' h4 pal Lp‘},
(LB, Lp4, hQPﬂ’ h‘szd}}

l1=(#/. {IList -> Equal})&/@sl

(h—4alfaL —= h-4 (-le2alfa) __ p4l h-ialfaL == p4 - Lp", h-4 al-aL == Lp4 — L3’
4 __ 1.4 .8 __ 4 3 __ 4 __1+4..8 _ _ 1.4
p'==h"p " ==Lp", L' ==Lp ==h'p ==h }



Analysis1betta2sl.nb

<< DiscreteMath ComputationalGecmetxry”

Clear(a, as, b, all, al2, al3, a21, a22, a23, a3l, a32, a33, DDD, mu, mj;
mu:h«Sqrt[Sqrt[l-nu*Z]];

as(m , p_, lam ] :=~2« (1-nu) pA2+m42- (1-nur2)+lams«mu* (-4)

bim ,p_,lam ] :=~(2-nu) +p*2+m+mA3

alifm ,p_, lam ] :=~-p*2+ (1-nu) /2+mA2- (1-nu*2) «+lam
a2ifm ,p_, lam ] :=~(1+nu) /2+p+m

al2[m ,p_, lam ] := (1+nu) /2+pam

a3dlfm , p_, lam_] := -nus+p

al3fm_, p_, lam_] :=nu=sp

a22[m_,p_, lam ] :=-(1-nu) /2+xp42+m42+asm, p, lam] smu+4
a32fm ,p_, lam ] := (m+b[m, p, lam] +mu+4)

a23[(m_, p_, lam_] := (m+b[m, p, lam] +mu+4)
a33[m ,p_, lam ] :=1- (1-nu*2) slam+musd+ (PA2-mAr2) A2

Clearf[alfa];

ali[m, p, lam] al2[m, p, lam] ail3[m, p, lam]
DDD[m_, p_, lam_] :=Det[| a2i[m, p, lam] a22[m, p, lam] a23[m, p, lam] ]
a3l[m, p, lam] a32fm, p, lam] a33[m, p, lam]

DN = Expand [Factor[DDD[m, p, lam] «+2/ (1 -nu+2) / (1-nu)]]

2lam’ -2lam’® - lamm®-2h'lamm?+3 lam’m? + 2 h' lam’ m® + h* m® - lamm® + 3 h® lamm® «
2h*lam’m? -2 h%m® -3 n' lamm® +h*m® +2 lam’nu - 2 lam® nu - 2 Kt lamm®nu + 2 lam’m® nu +
2h'lam’m’nu+4h'lammnu+2h' lan’mnu-2h' lamm® nu + 2 lam® nu? - lam?® m?® nu? -
2h'lam’m® nu? +h* lamm® nu? - 2 h* lam® m* nu? + b lamm® nu? + 2 lam® nu® - 2 b° lam m? oo -
2h®lam’m®nu® +3 lamp® + 4 h® lamp? - 3 lam? p? - 4 h? lam’p? -4 h'*m?®p’ +2lamm? p? -
4nlamm’p’-4h'lam’m’p?+8h'm'p + 9hflammp’ -4 himf p2 + 2 lamnup’® -2 lam®nup? -
4h*lamm’nup’®-4h'lan’m’nup’+ 6k lamm® nup? - 4 bt lamnu?® p? + lam® nu’ p? +
8h'lam’nu’p’ +2h*lamm’nu’®p? + 4 h* lam® m* nu? p? - 3 h* lam m® nu® p? + 2 h* lamm? nu’ D+
4h*lam’m’nuPp? - 4h'lam’ nu'p? +p* + 4 h*p* - lamp® -4 h' lamp* + 2 h* lam’p®-8hm p’ -
9h'lamm’p® -2h®lamm®p* +6 him*p* +h'm* p* + 2 h* lam’ nup® - 6 h* lamm® nu p* -
2h®lamm’nup? - 4h*nu’p® +4h® lamnu? p* - 2h* lam® nu?p? + 2 ' m? nu? p* + 3 h* lamm® nu®p® +
4h®lamm’nu’p® - 2h® m* nulp* - 2 ht lam® nu® p* + 4 h® lamm? nu® p* - 2 h® lamm? nut p*+
ham“nu"p“—Zhslammznusp‘+3h‘lamps+4h8lamp6—4h"m2p6—4hsmzps+2h‘lamnupg-
h'*lamnu?p® - 8 h® lamnu’p® + 4 h¥* m® nu? p® + 4 h® lamnu’p® + h*p® + 4 h® p® - 4 h® nu? pt®
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DN=DN/. lam -> L;
1=DN/. {Minus -> List}
1l=Table[l[[1]], {1, 1, Length[1]}]

cec=1l/.{p->1,h->1,m->1};
A =Table[{cc[[1]], (Exponent[1[[i]l], P],
Exponent [1[[1]], h] + (betta) «Exponent[1[[i]], L], Exponent [1[([1]], m]}},
{i, 1, Lengthfcc]}];
11 = Union[Transpose[A] [[2]]];
111 = Table[Select[A, #[[2]] == 11[{i]]&], (i, 1, Length[11]}];
r = Factor|
Table[{Sum[1X1[[L1]3[[311[[21]1], (I, 1, Length[I1X[{1]]1]1}], Z1ICELI1 002110211},
{i, 1, Length([111]}]]
2 -2 -nm?-2hn'Lm? + 3 m + 2R PP+ R mf cLm* + 3 R*Lm* + 2R L2 MY - 2 himf -
shfnmé+h*mP+2nu-2rnu-2h'tmlnu+ 2 mlnu+2h* P mPnu+dh*Lménu+
2h'Pminu-2n'oefnu+ 2 nu? -2 mPnu? -2 Pl ne +h'nm nul -2 R L2 mé nu® +
MimSnuw?+20n-2h'm?nu? - 2h* L’ m*nu? +3Lp?+ 4 hiLp?-312p2-
4R p-4dn'mPpP+2Lm?p?-4hi Ll p? -4 R L P+ 8himipl+ 9 Rt Lmip? -
4h'm®p*+2Lnup’-2L2nup?’-4h*Lm’nup’-4n'?m’nup®>+6h*Lménup? -
sh'Lnu’p?+Lin’p’+8h' P ni’ p?+2h'LmP nulp? + 4R mP nul p? -3 hiLmé nu?p? +
2h'om’n’p?+4hiimindp? -4 i nuipl+pt+4hipt -Lpt -4 htLpfe2ninipt-
shim?p*-9n'Lm?p'-2nLm?pl+6n'm'p* +h®m*p*+2h* L2 nup® -6 h* Lm?nup’ -
2hfomPnup®-4ninu’p  +4h*Lnu’p -2 P nlpf + 2 ' mP nu? p* + 3 L minu?pt +
dn'cm’nuip' -2 mnu’pt - 2hf L pf + 4R L nd’ pt -2 R L nuf pt +
hminu'p'-2h® e ne’®p! +3 0 Lp® +4 R L’ -4 nim?p’ -4 m®p®+2h* Lnup® -
h*rnw?p®-8n®Lnu’p®+4h®m’nu?p® + 4 K Lnu' p® + hép® + ¢ h® p® - 4 h® nu® p°?

(2% -21} -Lm? -2h'Lm? 3L?m? 2h*L’m?, h'm, -Lm*, 3h*'Lm? 2h‘L’m* -2h%nmS,
-3h*Lm®, h*m®, 2%y, -28%nu, ~2h'Lmnu, 22m?nu, 2h*L?m?®nu, 4 h'*Lm'nu,
2h*L®mnu, -2h*Lmnu, 213 nu?, -L2m®nu?, -2h% L2 m?nu?, h'Lm®nu?, -2h*12mtnu?,
h*Lm®nu®, 213 nu?, -2h*?m?nu’®, -2h*L2ménu?, 3Lp?, 4h*Lp?, -3L%p?, -4h*L3p?,
-4h*m®p?, 2Lm?p?, -4h'Lm?p?, -4h*L2>m?p?, 8hi*mi*p?, 9h'Lm'p?, -4 h*m®p?, 2L nup?,
-2L%nup?, -4h*Lm’nup?, -4h'L®m’nup?, 6h'Lm*nup?, -4h'Lnou?p?, L®nu’p?,
shit’nu’p?, 2h'Lm*nu’p?, 4L m®nu’p?, -3hiLmnu?p?, 2h'Lm®nudp?, 4hiLimd nud p?,
-4h* L2 nuip?, pf, 4n'pt, -Lpt, -4h'Lpt, 2h4L2D, -8k mPpt, -9h'Lm?pt, -2k Lm?pt,
6h'mip*, N®m'p*, 2h* L’ nup?, -6h*Lm’nup?, -2h®Lminup’, -4 h*nu’®p*, 4 h® Lnu’pt,
—2h*LPnu?p?, 2h*m’nu?p?, 3R Lm?nulp?, 4 Lm?nu?pt, -2 h®m nu®pd,

-2h*Lnu®p?, 4 h® Lm®nud pt, -2 h® Lm® nutp?, K m® nuip?, -2 h® Lm? nu® pt,

3h'Lp®, 4h*Lpf, -4h*m’pf, -4h®m?pf, 2h'Lnup®, -h*Lnu?p® -8h°Lnu’®pb,
4h®m?nu?p®, 4h¥Lnutpf, n'pf, 4n®p®, -4 h® nu?pf)
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{{1. (0, 4, 4}}., (-2, (0, 4, 6}}, (1, (0, 4, 8}},

{-L, (0, betta, 2}}, (-L, {0, betta, 4}}, {2L* (1L +nu), (0, 2betta, 0}},

{-L? (-3 +nu) (1 +nu), {0, 2betta, 2}}, (2L} (-1 +nu) (1 +nu)?, {0, 3 betta, 0}},
{-2L (L +nu), (0, 4 +betta, 2}}, (L (1 +nu) (3 +nu), {0, 4 +betta, 4}},

{L (-3 +nu) (L +nu), (0, 4 +betta, 6}}, {-2L? (-1 +nu) (1+nu)?, {0, 2 (2 +betta), 2}},
(-2L* (-1 +nu) (1 +nu)?, {0, 2 (2 +betta), 4}}, {-4. {2, 4, 2}}.

(8. {2, 4, 4}}, (-4, (2. 4, 6}}, {L (3 +2nu), (2, betta, 0}}, (2L, {2, betta, 2}},
(L? (-3 +nu) (1 +nu), {2, 2betta, 0}}, {-4L (-1 +nu) (1+nu), {2, 4 +betta, 0}},
{2 L (1 +nu) (—2+nu2), {2, 4 +betta, 2}}, {-3L (-3 +nu) (1 +nu), {2, 4 +betta, 4}},
{-4L%® (-1 +nu)? (L +nu)?, {2, 2 (2 +betta), 0}},

{4 L% (-1 +nu) (1+nu)?, (2, 2 (2 +betta), 2}},

{r, {4, 0, 0}}, (-4 (-L+nu) (L+nu), (4, 4, 0}},

{2 (-2 +nu) (2 +nu), {4, 4, 2}}, (6, (4., 4, 4}}., {(-1+nu)? (L+nu)?, (4. 8, 4}},

{-L, {4, betta, 0}}, (4L (-1 +nu) (1 +nu), {4, 4 +betta, 0}},

(3L (-3 +nu) (1+nu), {4, 4 +betta, 2}}, {-2L (-1 +nu)? (1 +nu)’, {4, 8 +betta, 2}},
(-2 L% (-1 +nu) (1+nu)?, {4, 2 (2 +betta), 0}},

(-4, (6, 4. 2}}, (4 (-1l +nu) (L+nu), {6, 8§, 2}}.

{-L (-3 +nu) (1+nu), {6, 4 +betta, 0}}, (4L (-1+nu)? (1+nu)?, (6, 8 +betta, 0}}.
{1, (8, 4. 0}}, {-4 (-1 +nu) (L+nu), (8, 8, 0}}}

{({o, 4, 8}, {0, 2, 4}, {4, O, O}}, ({0, 4, 8}, {4, o, 0}, {8, 4, 0}},
({0, 2, 2}, {0, 4, 0}, {4, 0, O}}, ({0, 2, 2}, {4, O, O}, {0, 2, 4}}}

pt = ({(x2([[3]], x2{[5]], x2[[25]]1}, {x2[[3]1, x2[[25]], x2([[39]]},

{x2[[41), x2[[6]11, x2[[25]]}, {x2[[4]], x2([[25]], x2[[5]]1}}
PPP = {r2([3}], x2[[5]]1, r2[([25]], x2([4]], x2[[39]], x2[[6]]}
ptp = {{3, 5, 25}, {3, 25, 39}, {4, 6, 25}, {4, 25, 5}}

{({o0. 4, 8}, {0, betta, 4}, {4, 0, 0}}, ((0, 4, 8}, {4, O, O}, (8, 4, 0}},
{(0, betta, 2}, (0, 2betta, 0}, {4, 0, 0}}, {(0, betta, 2}, (4, 0, 0}, (0, betta, 4}}}

{{o, 4, 8}, {0, betta, 4}, (4, 0, 0}, {0, betta, 2}, (8, 4, 0}, {0, 2betta, 0}}

{{3, 5, 25}, {3, 25, 39}, {4, 6, 25}, (4, 25, 5})
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PPP (+the list of convex hull pointsw)

pt (»the list of facats (in points) &)

ptp (»the list of facets (in polnts numbers) «)

r2 (xinitial lexicographically sorted list of the pointss)

({0, ¢4, 8}, {0, betta, 4}, (4. 0, 0}, (O, betta, 2}, (8, 4, 0}, {0, 2betta, 0}}

{{(0, 4. 8}, {0, betra, 4}, {4, 0, 0O}}, ((0. 4, 8}, (4, 0, 0}, {8, 4, 0}}.
({0, betta, 2}, (0, 2betta, 0}, (4, 0, 0}}, {{0, betta, 2}, {4, 0, 0}, {0, betta, 4}}}

({3. 5. 25}, (3, 25, 39}, {4. 6, 25}, {4, 25, 5}}

({0, 4, 4}, (0, 4, 6}, (0, 4, 8}, {0, betta, 2}, {0, betta, 4}, (0, 2betta, 0},

{0. 2betta, 2}, {0, 3betta, 0}, {0, 4 +betta, 2}, {0, 4 +betta, 4}, (0, 4 +betta, 6},
{0, 2 (2 +betta), 2}, {0, 2 (2 +betta), 4}, {2, 4. 2}, {2. 4, 4}, {2, 4, 6},

{2, betta, 0}, (2, betta, 2}, {2, 2betta, 0}, {2, 4 +betta, 0}, (2, 4 +betta, 2},

(2, 4 +betta, 4}, {2, 2 (2 +betta), 0}, {2, 2 (2 +betta), 2}, (4, 0, 0},

(4, 4. 0}, (4., 4. 2}, (4. 4. 4}, (4, 8, 4}, {4, betta, 0}, (4. 4 +betta, 0},

{4, 4 +betta, 2}, {4, 8 +betta, 2}, (4, 2 (2 +betta), 0}, (6, 4, 2}, {6, 8, 2},

{6, 4 +betta, 0}, {6, 8 +betta, 0}, (8, 4, 0}, (8, 8, 0}}

8l = Table[Table|
pAr2([ptpl[i11{(3111]1([2]] *h‘IZIIPtP[[i]][[j]]]][[2]]*
mAX2[ (Pt [[1110(31111((3]11, (I, 1, Lengthi{ptp([[i]]1]}],

{1, 1, Length([ptp]}]

((h-‘l hbec:a 4 ) } ( msl p4, h4 pﬂ} {h..ec:a h-bel:u' p‘(}' {hbev;ca ml' pd' hbecta m4}}
1= (%/. {(List -> Equal})&s/@sl
{h--': alfa L == h—-ﬂ (-1-2alfa) __ pd s h--‘l alfa L == p4 ==Lp h-4 alfa L ==L p 3 s

p4 ==}‘14p8 == Lpd, L3 ::Lp4 ::h4 p8 ==h4L2p4}



APPENDIX 5

Mathematica 3.0 Code for Construction

of Short Form of Equation on Separating Line
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<< DiscreteMath®CamputationalGecmetry”

Clear|[A, a, b, al1l1, al2, al3, a2l1, a22, a23, a31l, a32, a33, DDD, mu, m];
mu = h+Sgrt[Sgqrt[l-nu*2]];
aim_,p_,lam ] := -2+« (1-nu) pA*2+m*2~- (1 -nu*2) +lams+mu4 (-4)
bim ,p ,1lam ] :=-(2-nu) *pA*2+m+m+3

allim_, p_, lam_ ] :=-p*2+ (1-nu)/2+m*2 - (L-nu*2) «lam
a2lim_, p_, lam_ ] :=-(1+nu) /2+«ps+m

al2[m_,p , lam_ ] :=(1+nu) /2+pPsm
a3l(m_, p_, lam ] :=-nus=*p

al3[fm_,p , lam ] :=nu=s+p
a22[m_, p_, lam ] :=-(1-nu) /2+p*2+m+*2+afm, p, lam] s+mu+4
a32[m_, p_, lam_] := (m+b[m, p, lam] +mu+4)

a23fm_, p , lam_ ] := (m+b[m, p, lam] +mu+4)
a33fm_,p_,lam ] :=1- (1-nu*2)slam+murd+ (P*2-mAr2) A2

aii[m, p, lam] al2{m, p, lam] al3[m, p, lam]
DDD[m_, p_, lam_] := Det[| a21[m, p, lam] a22[m, p, lam] a23[m, p, lam] ]
-\a3l[m, p, lam] a32im, p, lam] a33[m, p, lam]

DN = Expand [Factor[DDD([m, P, lam] «2/ (1-nu+2) / (1 -nu)]]

2 lam®-2lam® - lamm® -2 h*lamm? +3lam’ m® + 2 h* lam’ m? +h*m* - lamm® + 3 h* lamm® +
2h*lam’m*-2h'm® -3 h'*lamm® +h'm® +2 lam’ nu -2 lam’ nu - 2h* lamm? nu + 2 lam®*m? nu +
2h'lam’m?’nu+4h*lamm*nu+2h'*lam’® m®nu - 2 h® lamm® nu + 2 lam® nu? - lam® m? Qu? -
2h%lam®m® nu® + h* lamm® nu® - 2 h® lam’ m* nu? + h® lamm
2h*lam®m®*nu® +3 lamp® +4h'lamp®-3lam’p®’ -4 hflam’ p? -4 him®p? + 2 lamm? p? -
4h'lamm’p?-4n'*lam’m’p?+8h'*m'p*+9h* lamm’p® -4 h*mép? + 2 lamnup? - 2 lam’ nu p? -
4h%lamm’nup?-4hilam’m’nup®+6hflamm®nup?-4h'lamnu?p? + lam® nu? p? +
8h'lam®nu’p® +2h'lamm’nu’p? +4hilam® m®nu’p? -3 h'*lamm®*nu?p? + 2 h* lamm® nu’ p? +
4h'lam’m’nu’p®-4h'lam’nup® +p*+4hp? -lamp® -4 h'lamp? +2h* lam’ p* -8 h*m? p* -
Shilamm’p*-2hflamm’p'+6h'm'p* +h®m*p*+2h'lam’nup? -6 h* lamm®* nup? -
2hflamm’nup®-4hinu’pi+4h'lamnu’p?-2h* lam® nulp? + 2 h*m? nu? p* +3 h? lamm
4nlamm’nu’p’ - 2R m*nulpt-2hflamd n’ pf + 4 W lamm® nul p? - 2 e lamm® nud pt +
R*minu'p'-2n®lamm’nup?+3h'lamp’+4 h® lamp® -4 h'm2p* -4 h® m® p® + 2 h* lamnup® -
hlamnu’p®-8h® lamnu’p® +4 K m®> nu?p® + 4 K lamnu® p® +h¥*p® + 4 h® p® - 4 h® nu? p°

nu? +2lam® nu® -2 h? lam® m? nud -

2 nuz p“ +
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DN=DN/. lam -> L

1=DN/. {Plus -> List}

cc=1l/.{p->1,h->1,L->1,m->1} .
orlo2pd-tmi-2htEmi+3imi+2htEm?+hf'm -Lmf +3h'Lm* + 20 L m -2 h ' mf -
ShiLmf+himf+202nu-2Lnu-2hitmnu+2kmnu+2h'L?m’nu+4 h*Lmnu+

s R Liminu-2hiLmfnu+2Lined-Limdinul-2h'L2m’nu? + h'Lmf nu? -2 h' L2 mé nu® +
RMomnu?+203nd-2h'Lim?n®-2he ménu’® +3Lp? +4h*Lp? -3 L2p? -
4h“szz-4h“m2p2+2Lmzpz-4h“Lmzp2—4h‘Lzm2p2+8h4m“p2+9h‘Lm“p2-
4h4m6p2+2Lnup2—2LGup2-4h‘Lmznup2—4h‘Lzmznup2+6h“1’..m“nup2—
4h‘Lnu2p2+LGu2p2+8h‘L2nuzpz+2h4Lmznu2p2+4h4L2m2nu2p2—3h‘Lm‘nu2p2+
2h4Lm2nu3p2+4h“Lzmznu3p2-4h4L2nu“p2+p“+4h"p‘-Lp“-4h‘Lp4+2h“L2p4-
8h4m2p4—9h4Lm2p4-2thmzp4+6h“m4p4+h8m4p4+2h4L2nup4-6h4Lm2nup‘-
ZhBLmznup“-4h4nu2p‘+4h4Lnuzp‘-2h“L2nu2p“+2h‘mznuzp“+3h‘Lm2nuzp“+
4hsLm2nuzp“-2ham“nu2p‘-2h4L2nu3p4+4h°Lm2nu3p4—ZhELmznu‘p‘+
hsm‘nu‘p“-2h8Lm2nusp‘+3h4Lp‘+4h°Lp6-4h‘mzps-4ham2p‘+2h‘Lnup6—
h“Lr:.uzps—ShBLnuzps4-4hgmznuzp5-(-4.1'1“1’..1').1.1.“96+h“p8+4h"pg—4h.°nuzp8

(212, -2L%, -Lm?, -2h'Lm?, 3L2m?, 2h'L?m?, h'm', -Lm*, 3h%Lm’, 2h'Lmt, -2h‘m®,
3n'Lm®, h'm®, 2L2nu, -2L%nu, -2h*Lm’nu, 2L%m?nu, 2h*L2m’nu, 4h*Lm'nu,
oh‘rL?minu, -2h4Lmfnu, 2% nu?, -L2minu?, -2 h*Lm®nu?, h'Lm®nu?, -2k L’ m® nu?,

R Lmfnu?, 203 nu’, -2k L2m?nd®, -2h*L?m*nu?, 3Lp?, 4h'Lp?, -3 L?p?, -4 h* 12 p?,
-4h*m?p?, 2Lm?p?, -4h*Lm?p?, -4 h*L?m? p?, ghim?p?, 9h'Lmip?, -4h‘mp?, 2L nup?,
-2L'nup?, -4h'Lminup?, -4 h*L’m’nup?, 6h*Lm®nup?, -4 h*Lnu?p?, L?nup?,
gh'Lnu?p?, 2h*Lm?nu’p?, 4h*L?m*nu’p?, -3h'Lm'nu’p?, 2 h*Lm? nu® p?, 4 h* L2 m? nu’ p?,
-4h'L?nu'p?, p*, 4n%p%, -Lp% -4h'‘rLp', 2niL’p', -8h'm’pt, -9h*Lm?pt, -2h®Lm?p*,
6hmipt, h®m®p?, 2h* L nupt, -6h*Lm’>nup®, -2h® L’ nupt, —4h*nu?pt, 4n'Lnu’ pt,
—2h'L2nu’pt, 2h'm?aulp?, 3h'Lm?nu’pt, 4 h®Lm’nu’pt, -2h'm¢ nu? p*,

—2h'L?nu’pt, 4nfLm?nu’pt, —-2h® Lm? nut p*, h®m'nutp, -2 h? .m? nu® p*¢,

3n°Lp%, 4h'Lpf, -4h'm?p®, -4h®m?p%, 2h*Lnup®, -h*Lnu’p’, -8 h® L nu? pé.
an*m?nu?p®, 4 R®Lnu'p®, h'p®, ¢n®p®, -41® nu?p?}

{2, -2, -1, -2,3,2,1,-1,3,2, -2, -3,1, 2nu, -2nu, -2nu, 2nu, 2nu,
4nu, 2nu, -2nu, 2nu®, -nu?, -2nu?, nu?, -2 nu?, nu?, 2nu?, -20u?, -2’ 3,
4, -3, -4, -4, 2, -4, -4, 8, 9, -4, 2nu, -2nu, -4nu, -4 nu, 6nu, -4 nu?, nu?,
8 nu?, 2nu?, 4 nu?, -3 nu?, 2nu’, 4nud, ~4nut, 1, 4, -1, -4, 2, -8, -9, -2, 6,
1, 2nu, -6nu, -2nu, -4nu?, 4nu?, -2nu?, 2nu?, 3nw?, 4nu?, -2nu?, -2nu?,

4nu?, -2 nut, nuf, -2nu’, 3, 4, -4, -4, 2nu, -nu®, -8nu?, 4nu?, 4nut, 1, 4, -4 nu’}
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A =Table[{cc[[1]], (Exponent[1[[i]], P],
Exponent (1[[1]], h], Exponent(1{[1]], L], Exponent[1([i]], m]}},

{1, 1, Length[cc] }]

({2, (0. 0,2, 0}}, {-2, {0, 0, 3, O}}, (-1, {0, 0,1, 2}}, {-2., (0., 4, 1, 2}},
(3, {0, 0,2, 2}}, {2, (0, 4,2, 2}}, (1, {0, 4, 0, 4}}, {-1., (0, O, 1, 4}},

(3, {0, 4,1, 4}}. (2. (0. 4, 2, 4}}, (-2, {0, 4, 0, 6}}, (-3, (0, 4, 1, 6}},

(1. (0, 4, 0, 8}}, {2nu, {0, 0, 2, 0}}, {-2nu, {0, 0, 3, 0}}, {-2nu, {0, 4, 1, 2}},
{(2nu, {0, 0, 2, 2}}, {2nu, (0, 4, 2, 2}}, {4 nu, (o 4, 1, 4}}., {2nu, {o 4,2, 413,
{2nu, {0, 4, 1, 6}},(2nu (o, 0, 3, 0}}, (-nu?, (0,0, 2, 2}},{2nu,{0 4, 2, 2}}.
(nu?, (0, 4, 1, 4}}, (-2nu?, (0, 4, 2, 4}}. {nu?®, {0, 4. 1, 6}}, {2 nu®, {0, 0, 3, 0}},
(-2nu®, (0, 4, 2, 2}}, (-2nv®, (0, 4, 2, 4}}, (3, {2, 0, 1, 0}}, {4, (2.4, 1, 0}}.

(-3, (2.0, 2, 0}}, {-4., {2, 4, 2, 0}}., (-4, (2, 4,0, 2}}. (2, {2, 0, 1, 2}},

(-4, {2, 4, 1. 2}}, (-4, (2. 4,2, 2}}, {8, {2, 4,0, 4}}, {9. {2. 4. 1, 4}},

(-4. {2, 4, 0, 6}}, (2nu, {2, 0, 1, 0}}, {-2nu, (2. 0, 2, 0}}, {-4nu, (2. 4, 1, 2}},
(-4nu, (2,4, 2, 2}}. (6nu, (2, 4,1, 4}),{4nu, (2, 4, 1, 0}}, {nu?, {2, 0, 2, 0}},

(8 nu*, (2, 4, 2, 0}}, (2nu,{2 4,1, 2}}, (4nu?, {2, 4,2, 2}), {-3nu?, (2,4, 1, 4}},
(2nu?, (2,4, 1, 2}}, {(4n®, {2, 4, 2, 2}}. (-4nu', (2, 4, 2, 0}}, {1, (4,0, 0, O}},

(4. {4, 4,0, 0}}, {-1, (4.0, 1, 0}}, {-4, {4, 4,1, 0}}, {2, {4, 4.2, 0}},

(-8, {4, 4, 0, 2}}, {-9. {4. 4,1, 2}}, {-2. (4. 8,1, 2}}, {6, {4, 4,0, 4}},

(1. (4.8, 0, 4}}. (2nu, {4, 4, 2, 0}}, (-6nu, {4, 4, 1, 2}}, {-2nu, {4, 8, 1, 2}}.
{-4nu2, (4, 4, 0, 0}}, {4nu?, {4, 4, 1, 0}}, (-2nu®, {4, 4, 2, O}}, (2nu2, (4., 4, 0. 2}},
(3nu (4, 4, 1, 2}}, {4nu?, (4, 8,1, 2}}, {-2nu®, (4, 8, 0, 4}}, (- -2nu’®, {4, 4, 2, 0}},
(4nu’, (4,8, 1, 2}}. (-2nu®, (4, 8,1, 2}}. {nu®, (4,8, 0, 4}}, (- 2nu®, {4, 8, 1, 2}}.
(3., (6, 4,1, 0}}, {4. {6, 8,1, 0}}, (-4, (6. 4,0, 2}}, {-4, (6, 8,0, 2}},

(2nu, {6, 4, 1, 0}}, {-nu?, {6, 4,1, 0}}, {-8nu?, (6,8,1, 0}}, {4 nu?, (6, 8, 0, 2}},
(4nu®, (6,8, 1, 0}}, (L. {8, 4,0, 0}}, {4, (8, 8, 0, 0}}, {-4nu, (8,8, 0, 0}}}

11 = Union[Transpose[A] [[2]]]

({0, 0,1, 2}, {0, 0, 1, 4}, {0, 0, 2, 0}, {0, O, 2, 2}, {0, 0, 3, 0}, {0, 4,0, 4},
{0, 4, 0, 6}, {0, 4, 0, 8}, {0, 4, 1,2}, {0, 4, 1,4}, (0,4, 1,6}, {0,4,2,2},
{0. 4,2, 4}, {2, 0, 1,0}, {2, 0, 1,2}, {2, 0., 2,0}, {2, 4,0, 2}, {2,4,0, 4},
{2, 4,0, 6}, {2, 4, 1,0}, (2,4, 1,2}, {2, 4,2, 4}, {2, 4, 2,0}, {2,4.2, 2},
{4, 0, 0, O}, {4, 0, 1, 0}, {4, 4, 0, 0}, {4, 4., 0,2}, (4, 4,0, 4}, (4,4, 1, 0},
(4. 4,1,2), {4. 4, 2,0}, {4,8,0,4}, {(4,8,1,2},(6,4,0,2}, {6,4,1, 0},
(6, 8,0, 2}, {6, 8,1, 0}, {8, 4,0, 0}, {8,8,0,0}}
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111 = Table[Select([A, #[[2]] ==11[[i]]&], (i, 1, Length([11l]}]

{({-1, (0. 0,1, 2}}}, {{-1, (0, 0, 1, 4}}}, ({2, (0, 0,2, 0}}, {(2nu, {0, O, 2, O}}},
({3. {0, 0, 2, 2}}, {2nu, {0, O, 2, 2}}, {-nu?, (0, O, 2, 2}}}., {{-2. {0, 0, 3, 0}},

{-2nu, (0, 0, 3, 0}}, {2nu?, {0, 0, 3, 0}}, {2nu’, {0, O, 3, 0}}}, ({1, {0, 4, O, 4}}},
{{-2. (0, 4, O, 6}}}, {(1, {O, 4, 0, 8}}}, ({-2, {0, 4, 1, 2}}, {-2nu, {0, 4, 1, 2}}},
({3, {0, 4, 1, 4}}, {4nu, {0, 4, 1, 4}}, {nu?, {0, 4, 1, 4}}}.

{{(-3, {0, 4, 1, 6}}, {(-2nu, (0, 4, 1, 6}}, {nu®, {0, 4, 1, 6}}},

({2, {0, 4, 2, 2}}. {2nu, {0, 4, 2, 2}}, {-2nu?, {0, 4, 2, 2}}, {-2nu®, (0, 4, 2, 2}}},
({2, {0, 4, 2, 4}}, {2nu, {0, 4, 2, 4}}, {-2nu?, {0, 4, 2, 4}}, (-2nu®, (0, 4, 2, 4}}}.
({3, (2.0, 1, 0}}, {2nu, {2, 0,1, O}}}, ({2, (2,0, 1, 2}}}.

({-3, {2. 0, 2, 0}}, (-2nu, {2,0, 2, 0}}, {nu?, {2, 0, 2, O}}}. {{-4. {2, 4, 0, 2}}},
{((8. (2., 4., 0, 4}}}, {{-4, (2. 4,0, 6}}}, {{4, {2, 4.1, 0}}, {-4nu?, (2, 4, 1, 0}}},
({-4, {2. 4. 1, 2}}, (-4nu, (2.4, 1, 2}}, {2nu®, {2, 4, 1, 2}}, {2nu?, (2, 4, 1, 2}}},
{({9. (2. 4, 1, 4}}, (6nu, (2, 4, 1, 4}}, {-3nu?, (2,4, 1, 4}}}.

{{-4, (2. 4, 2, 0}}, {8nu?, {2, 4, 2, 0}}, {(-4nu®, {2, 4, 2, 0}}},

{({-4, (2. 4. 2, 2}}, (-4nu, {2, 4, 2, 2}}, {4nu?, (2,4, 2, 2}}, {4nu?, {2, 4, 2, 2}}},
{{1, (4,0, 0, 0}}}, {{-1. (4,0, 1, 0}}},

({4, (4. 4, 0, O}}, {-4nu®, (4, 4, 0, 0}}}, {(-8, (4, 4,0, 2}}, {2nu?, {4, 4, 0, 2}}},
({6, {4. 4, 0, 4}}}. ((-4, {4, 4, 1, 0}}, {4nu?, (4,4, 1, 0}}},

{({-9. {4. 4, 1, 2}}, (-6nu, {4, 4, 1, 2}}, (3nu?, {4, 4, 1, 2}}},

({2, (4. 4. 2, 0}}, {2nu, {4, 4, 2, 0}}, (-2nu?, {4. 4, 2, 0}}, {-2nu’, (4, 4, 2, O}}},
({1, (4, 8, 0, 4}}, {-2nu?, (4, 8, 0, 4}}, {nu*, (4, 8, 0, 4}}},

({(-2, {4, 8,1, 2}}, {-2nu, {4, 8, 1, 2}}, {4nu?, (4,8, 1, 2}}.

{4nu’, (4, 8, 1, 2}}, {(-2nut, {4, 8,1, 2}}, (-2nu®, (4, 8, 1, 2}}},

{{-4, (6.4,0, 2}}}. {{3., {6. 4, 1, 0}}, (2nu, {6, 4, 1, 0}}, {-nu?, {6, 4, 1, 0}}}.
({-4, {6, 8,0, 2}}, {(4nu?, (6, 8, 0, 2}}}.

{(4., (6,8, 1, 0}}, {-8nu?, (6, 8,1, 0}}, {4nu*, {6, 8, 1, 0}}}, {{%, {8, 4,0, O}}},
{{4. (8,8, 0,0}}, {(-4nu?, {8, 8,0, 0}}}};

r = Factor|

Table[{Sum{111[[L]1]1([J11((1]], {J, 1, Length{111([4]1]}1}], 211 (L]10[21IC(2]]},
{1, 1, Length[1l1l1]}]]

{{-1, {0, 0,1, 2}}, (-1, {0, 0, 1, 4}},

{2 (L +nu), (0.0, 2, 0}}, {-(-3 +nu) (L +nu), {0, 0, 2, 2}}.

{2 (-1 +nu) (1 +nu)?, (0, 0, 3, 0}}, {1, (0, 4,0, 4}}, {-2, {0, 4, 0, 6}}.

(1, {0, 4, O, 8}}, (-2 (1 +nu), {0, 4, 1, 2}}, {(L+nu) (3 +nu), (0, 4, 1, 4}}.
{(-3+nu) (L+nu), {0, 4, 1, 6}}, (-2 (-1 +nu) (l+nu)2, {0, 4, 2, 2}},

{-2 (-1 +nu) (L+nu)?, {0, 4, 2, 4}}, {3 +2nu, (2, 0, 1, 0}},

{2, {2. 0,1, 2}}, {(-3+nu) (L+nu), {2, 0, 2, 0}}, {-4, {2, 4, 0, 2}}.

(8, (2,4, 0, 4}}, (-4, {2, 4, 0, 6}}, {-4 (-1 +nu) (L +nu), {2, 4, 1, 0}},

{2 (L+nu) (-2 +nu?), {2, 4, 1, 2}}, {-3 (-3 +nu) (L+nu), {2, 4, 1, 4}},

{-4 (-1+nu)? (L+nu)?, {2, 4, 2, 0}}, {4 (-1 +nu) (1+nu)?, {2, 4, 2, 2}},

(1, (4, 0, 0, 0}}, (-1, (4. 0, 1, 0}}, {-4 (-1 +nu) (L +nu), {4, 4. 0, 0}},

{2 (-2 +nu) (2 +nu), {4, 4, O, 2}}. (6., {4, 4, 0, 4}}, {4 (-1 +nu) (L+nu), {4, 4, 1, 0}},
{3 (-3 +nu) (L+nu), {4, 4, 1, 2}}, {-2 (-1 +nu) (L+nu)?, {4, 4. 2, 0}},
{((-1+nu)? {1 +nu)?, {4, 8, 0, 4}}, {-2 (-1 +nu)? (L +nu)’, {4, 8, 1, 2}},

{-4, {6, 4, 0, 2}}, (-(-3 +nu) (L+nu), (6, 4,1, 0}},

{4 (-1 +nu) (L +nu), (6, 8, 0, 2}}, {4 (-1 +nu)? (L+nu)?, {6, 8, 1, 0}},

{1, {8, 4, 0, 0}}, {-4 (-1 +nu) (L+nu), {8, 8,0, 0}}}
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rl = Transpose{r] [{1]]
r2 = Transpose[r] [[2]]

(-1, -1, 2 (L +nu), -(-3 +nu) (1 +nu), 2 (-1 +nu) (l+nu)2, 1,

-2,1, -2 (L +nu), (L+nu) (3 +nu), (-3 +nu) (1 +nu), -2 (-1 +nu) (l+nu)2,

-2 (-1+nu) (1 +nuw)3, 3+2nu, 2, (-3 +nu) (L+nu), -4, 8, -4, -4 (-1 +nu) (L +nu),

2 (L+nu) (-2 +nu?), -3 (-3 +nu) (L +nu), -4 (-L+nu)? (1 +nu)?, 4 (-1 +nu) (1 +nu)?,

1, -1, -4 (-1 +nu) (L+nu), 2 (-2+nu) (2+nu), 6, 4 (-1 +nu) (1 +nu),

3 (-3 +nu) (L+nu), -2 (-1+nu) (L+nu)?, (-1+nu)? (L+nu)?, -2 (-1 +nu)? (1 +nu)?,

-4, -(-3+nu) (L+nu), 4 (-1 +nu) (L+nu), 4 (-l+nu)2 (L+nu)?, 1, -4 (-1 +nu) (1 +nu))

(o, 0,1, 2}, (0.0,1, 4}, {(0,0,2,0}, (0,0, 2,2}, (O, 0, 3,0}, {0, 4., 0, 4},

(o, 4, 0, 6}, {0, 4, 0,8}, {0, 4,1, 2}, (O, 4,1, 4}, (0, 4,1, 6}, {0, 4, 2, 2},
{o, 4, 2, 4}, (2,0, 1,0}, {2,0,1,2}, {2,0,2,0}, {2,4,0, 2}, (2.4, 0, 4},
(2, 4,0,6}, {2,4. 1,0}, {2,4,1,2), (2,4, 1,4}, {2,4,2,0}), (2,4, 2,2},
(4. 0,0,0}, {4,0,1,0}, (4,4,0,0}, {4, 4,0.2}, {4, 4,0, 4}, {4, 4,1, 0},
(4, 4,1, 2}, (4. 4., 2,0}, {4. 8,0, 4}, {4.8, 1,2}, (6,4,0,2)}), (6,4, 1, 0},
(6, 8,0,2}, (6.8,1,0}, {8, 4,0, 0}, (8,8, 0, 0}}

BB=A[[ (35, 1, 14, 31, 42, 56}1]

(+{2,15,22,28,33,43,48,58,60,66,71,76,81,85,86,90}
(8,5,17,23,2,15,22,28,36,33,43,48,58)
(3,1,14,31,42,56}
(13,12,21,27,36,57,69,58,81,85,86,90}

*)

{{-4. (2. 4, 0, 2}}, {2, {0, 0, 2,0}}, {2nu, {0, O, 2, 0}}., {3. (2, 0, 1, O}}.
(2nu: {2: 0, 1, 0}}1 {l: {41 0, 0, 0}}}

coef = ri = Transpose[BB] [[1]]
PPP = r2 = Transposa[BB] [[2]]

{-4, 2, 2nu, 3, 2nu, 1}

{{2, 4, 0, 2}, {0, 0, 2,0}, {0,0,2, 0}, {2,0, 2,0}, {2,0,1, 0}, (4.0, 0, 0}}

81 = Table[
pAPPP[[1]]1 [[1]]1 «h~PPP[[1]][[2]] =
LAPPP[[1]][[3]] «m*PPP[[1]]([[4]], {i, 1, Length([PPP]}]

eq = 81 . coef

{h*m?p?, L2, L2, Lp?, Lp%, p%)

2L +2L%nu+3Lp?-4n'm’p?+2Lnup? +p?
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aaa = Expand [ (pA2 +m*2) ~4]
Expand[(pA2-2 (L+nu) I) « (p*2- (1 -nu*2) L)}

mé+4mfp?+6mip? +4m?p® +pt

202 +20%nu-20%nu? -2 nud -3 Lp?-2Lnup? +Lnu?p? +p?

Solval[eaa == 0, {pP}]
{({p>-Im}, {p>-Im}, {p>-Im}, {(P>-~Im}, {(p->Im}, {P>Im}, {(p->Im}, (P> Im}}



APPENDIX 6

Mathematica 3.0 Code

for Construction of Short Form of Equation
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Infl]:=
<< DiscraeteMath™ ComputatiocnalGaecmetry”

Clear[a, a, b, all, ail2, al3, a21, a22, a23, a3l, a32, a33, DDD, mu, m];
mu = Sgrt[h+ Sgqrt[1l-nu+2]];
afm_, p_, lam_ ] :=-2x(1-nu) p42+m*2 - (L-nu*2) xlamsmu* (-4)
bm_,p ,lam ] :=-(2-nu) *pA*2+m+mA*3

aliim ,p , lam ] :=-p*2+ {(1~nu) /2+m*2- (1-nurt2) »lam
a2ifm_, p_, lam_] :=-(1+nu) /2+p+m

al2[(m , p_, lam ] := (L+nu) /2+p=+m
a3l[m , p_, lam_] := -nus+p

al3(m , p_, lam_] :=nuxp
a22(m_, p_, lam_] :=-(1-nu) /2+p+*2+m*2+am, p, lam] »mu+4d
a32[(m_, p_, lam_] := (m+b[m, p, 1lam] smu+4)

a23ifm ,p_, lam_] := (m+b[m, p, 1lam] smu+4)
a33[(m_, p._, lam ] :=1- (1-nu+2) +rlam+mu‘t4d+ (P22-mr22) A2

In[2]:=

In(13]:=

ali(m, p, lam] al2[m, p, lam] al3[m, p, lam]

DDD[m_, p_, lam_] :=Det[| a21[m, p, lam] a22[m, p, lam] a23([m, p, lam] ]
a3l[m, p, lam] a32(m, p, lam] a33[m, p, lam]

DN = Expand [Factor[DDD[m, p, lam] «2/ (1 -nu*2) / (1 -nu)]l]

oucfi¢j= 2lam’ -2 lam’ -lamm®-2h?lamm?+3 lam’m®> +2h?lam’m? +h?®m® - lamm® + 3 h? lamm® +
2h’lam®m®-2h’mf -3k lamm® +h’m® +2 lam*nu -2 lam’ nu -2 h? lamm?®nu + 2 lam> m> nu +
2h*lam’m’nu+4 h’lamm®nu+2 h? lam’ m® nu - 2h® lamm® nu + 2 lam® nu? - lam®m? nu? -
2h?lam® m® nu? + h? lamm® nu? - 2 h? 1am® m? nu? + h? lamm® nu? + 2 lam® nu® - 2 h? lam® m? nu’® -

2h’lam®m*nu’® +3 lamp? +4h¥lamp? -3 lam® p?-4h?lam®p? -4 him?p? +

2lamm’p’-4n’lamm’p’-4hilam’m’p?+8h’mip’ +9n? lamm®p? -4 h®mfp? +

2 lamnup? -2 lam? nup’ - 4 h®> lamm® nup? - ¢ K? lamz):nznupz-x-Sh2 lamm®nup? -

4h?lamnu’p? + lam® nu? p? +8h®lam’® nu?p? + 2 h? lamm® nu® p? + 4 h? lam® m? nu? p? -

3hflamm®nu’p®+2h®lamm’nu’ p? + 4 b’ lam® m*nulp? - 4 h? lam® nu® p? + p* +

4h*p*-lamp®-4nh’lamp®+2h’lam’p-8h’m?p*-9h%lamm?p® -2 h* lamm? p* +

6n’m*p* +h*m*p*+2h°lam’nup® - 6 h? lamm’nup® -2h* lamm®’nup® -4 h?nu?p* +

4h?lamnu’p®-2h’lam’ nu’p+2h’m®nu’p? +3h? lamm? nu? p? +4 h' lamm? nu? p? -

2himinu’p?-2n’lam® nuip®+4 h' lamm?®nu’® p® - 2h® lamm? nu? p* + h*m* nu! p? -
2h'lamm’nu’p® +3h?lamp®+4h'lamp® - 4K’ m’p’ -4 h*m® p® + 2 h? lamnup® -
h?lamnu’pf®-8hflamnu’p®+4h*m* nu’p® + 4 h'* lamnu®p® + h?p® + 4 h* p® - 4 h* nu? p°®
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In[15]:=
DN=DN/.lam->L
1=DN/. {Plus -> List}
cc=1l/.{P->1,h->1, L-~>1,m->1}

oucfisj= 2L -2L -Lm?-2h?Lm? +3 L m* + 2R’ Lm? +h?m* -Lm* +3h%Lm* + 2 R° WP m* -2 h°mf -

ThlLmS+him+2Linu-2nu-2hLmnu+2Lm*nu+2h’’m®nu+4h’Lmfnu+
sr2minu-2hlLminu+2linu?-Biminu? -2k L2 mPnu? + KL nu? - 2h? L2 mf nu? +
Romfn?+20nu® —2h?Pmin’ -2h2minu® +3Lp2+4h?Lp? -3 L2 p* -4 h*Lip? -
4h2mlpz+2Lmzpz—4h"'Lm2p2-4h2L2mzpz+8h2m“p2+9h2Lm‘p2—4h2m6p2+21;nup2-
2L2nup2-4h:Lmznup"’—4h2L2m2nup2+6h2Lm4nup2-4h2Lnu2p2+L2nu2p2+
sh’Linu’p’+2h*Lminu’pl+4h’E2m’nu?p’-3h’Lm*nu’p? + 2h? Lm’ nu’p? +
aRnimin’pl-4hiLinuip?+pt+4h?pt -Lp'-4n?Lp‘+2n?Lipt-8himipt -9 Lm’pt -
2h"Lmzp4+6h2m“p“+h‘m“p“+2th2nup‘-6h2Lm2nup4—2h“Lm2nup‘—4h2nuzp‘+
4h2Lnuzp4-2h2L2nuzp‘+2h2m2nu:p“+3h2Lm2nu2p4+4h“Lm2nu2p‘-2h“m‘nuzp" -
2h L2 nud pt + 4 h L m? nu® p* - 2 b Lm? nu’ p* +h* m nut p*-2h'Lm?nu’pt+
3thp6+4h4Lps-4h2mzps—4h‘m2p6+2h2Lnup6-h"'Lnusz—8h“Lnusz+
shim®nulpf+4h*Lnup® +h?p® +4h'p? -4 h'nu’p®

oucri6]= (2L%, -2L}, -Lm?, -2h*Lm?, 3L’m?, 20’ L m?, K?m?, -Lm*, 30°Lmt, 2h*r*mt, -2h*mé,
_3n’nm®, him®, 2.%nu, -2L%nu, -2h®Lm?nu, 2L2m?nu, 2h?L®m? nu, 4 h* Lm' nu,
2n’Liminu, —2h’Lmfnu, 2L nu?, -L*m?nu?, -2h?L2m?nd?, h?Lm® nu?, -2 h? L2 m* nu?,
RLmfnu?, 2L nu®, -2k m nu?, -2h?Lim'nu®, 3Lp?, 4h¥Lp?, -3L?p?, -4h7L7p?,
—4h’m®p?, 2Lm?p?, -4h’Lm’p?, -4h*L2m?p?, 8him'p?, 9R’Lm p?, -4h*m®p?, 2Lnup?,
—2.'nup?, -4h’Lm*nup?, -4h?L’m’nup?, 6K’ Lm®nup?, -4 h? Lnu®p?, L? nu’ p?,
gr?Linulp?, 2h?Lminulp?, 4h?L2m’nu?p?, -3 h?Lm®nu’p?, 2h?Lm’ nu’ p?,
an?L?m?nu’p?, -4 K2 Linu®p?, pt. 4h¥p%, -Lp*, -4h%Lp*, 2h’1?p*, -8 K’ m’p*,
_oh’Lmip®, —2h*Lm?p*, 6h%mipt, himp®, 2h?L?nup®, -6h*Lm?nup®, -2h* L’ nup?,
—4h’nu’pt, 4K’Lnu’pt, -2h* L7 nu?pt, 2h?m? nu? p*, 3h?Lm® nu?p®, 4 h* Lm?nu? p¢,
2himinulpt, —2h?L2nudpt, 4h‘Lmdnu’pt, -2h*Lm?nufpt, hfmtnoutp?, ~2h*Lm’ nu’pf,
3n?Lp%, 4h'Lp%, -4n2m?p®, -4h*m’p%, 2h*Lnup®, -h’Lnu’p®, -8h*Lnu’p®,
4h'm®nu?p®, 4h'Lnu'p?, K¥p®, 4hp?, -4 nnu’p®}

ouef17}j= {2, -2, -1, -2, 3,2,1, -1, 3,2, -2, -3,1, 2nu, -2nu, -2nu, 2nu, 2nu, 4nu,
2nu, -2nu, 2nu?, -nu?, —2nu?, nu?, -2nu?, nu?, 2nu’, -2nu?, -2nu’, 3, 4,
_3, -4, -4, 2, -4, -4, 8, 9, -4, 2nu, -2nu, -4nu, -4nu, 6nu, -4 nu?, nu?,
8 nu?, 2nu?, 4 nu?, -3nu?, 2nu’, 4nu’, -4nut, 1, 4, -1, -4, 2, -8, -9, -2, 6,
1, 2nu, -6nu, -2nu, -4nu?, 4nu?, -2nu?, 2nu?, 3nu?, 4nu?, -2nu?, -2 nu?,
4nd®, -2nu, nut, -2nu’, 3, 4, -4, -4, 2nu, -nu?, -8 nu?, 4nu?, 4nut, 1, 4, -4nu’}
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In(18]:=

Ooutc[l8]=

In(19]:=

ouclls]=

A =Table[{cc[[1]], (Exponent[1[[i]], P].

Exponent[1[[i]], h], Exponent[l[[in. L], Exponent([1[[i]], m]}},
(i, 1, Length[cc]}]

{{2. (0, 0, 2, 0}}, (-2, {0, 0, 3, 0}}, {-1, (0, O, 1, 2}}, (-2, (0, 2, 1, 2}},

(3, {0, 0,2, 2}}, {2. (0, 2. 2, 2}}, (1, (0, 2, 0, 4}}, (-1, (0. 0, 1, 4}}.

{3, {0, 2,1, 4}}. {2. {0, 2. 2, 4}}. (-2, {0, 2, O, 6}}., (-3, (0, 2, 1, 6}},

(1, {0, 2, 0, 8}}, {2nu, {0, O, 2, 0}}, {-2nu, {0, O, 3, 0}}, {-2nu, {0, 2, 1, 2}},
(2nu, {0, 0, 2, 2}}, {2nu, (0, 2. 2, 2}}, {4nu, {0, 2, 1, 4}}, {2 nu, {o 2, 2, 41},
{(-2nu, {0, 2, 1, 6}}, {2nu?, (0, 0, 3, 0}}, (nu,(O 0, 2, 2}}, {-2nu?, {0, 2, 2, 2}},
{nu?, (0, 2, 1, 4}}, {-2nu?, (0, 2, 2, 4}}, {nu®, (0, 2, 1, 6}}, {(2nu?, {0, 0, 3, 0}},
(-2nu?, {0, 2, 2, 2}}, {-2nu’, (0, 2, 2, 4}}, (3, (2, 0, 1, 0}}, {4, (2. 2, 1, O}},

(-3, (2. 0, 2, 0}}, {-4, {2. 2,2, 0}}, {-4. {2, 2. 0, 2}}, {2, {2, 0, 1, 2}},

(-4, (2. 2.1, 2}}, {-4. (2. 2, 2, 2}}, {8. (2.2, 0, 4}}, {9, {2, 2, 1. 4}}.

(-4, {2. 2,0, 6}}, (2nu, (2,0, 1, 0}}, {-2nu, {2, 0, 2, 0}}. {~4nu, {2, 2,1, 2}},
{-4nu, {2. 2,2, 2}}, {6nu, {2, 2,1, 4}}, {-4nu?, (2, 2, 1, 0}}, {nu?, {2, 0, 2, 0}},
(8 nu, {2, 2.2, 0}}, {2mu?, (2, 2,1, 2}}, {4nu?, {2, 2,2, 2}}, (-3 nu®, {2, 2, 1. 4}},
(2nud, {2.2,1,2}}, (4n®, (2. 2,2, 2}}, {-4nu’, {2, 2,2, 0}}, {1, {4. 0,0, O}},
{4, (4. 2,0, 0}}, (-1, {4, 0,1, 0}}, (-4, {4, 2,1, 0}}, (2, (4, 2,2, 0}},

(-8, (4. 2, 0, 2}}, {-9, {4, 2, 1. 2}}, {-2. (4. 4. 1, 2}}. (6, {4, 2, 0, 4}},

(1, {4, 4.0, 4}}, {2nu, {4, 2, 2, 0}}, {-6nu, {4, 2, 1, 2}}, {-2nu, {4, 4, 1, 2}},

(-4 nu®, {4, 2, 0, 0}}, (4nu?, (4,2,1, 0}}, {-2n0’, (4,2, 2, 0}},

(2nu?, {4, 2, 0, 2}}, {3nu?, (4, 2,1, 2}}, {4nv?, {4, 4,1, 2}}, {-2nu?, {4, 4, 0, 4}},
(-2nou?, {4, 2,2, 0}}, {4nd®, (4. 4,1, 2}}., {(-2nu’, (4,4, 1, 2}}, {nu?, (4. 4, 0, 4}},
(-2nus, {4, 4, 1, 2}}, (3. (6., 2,1, 0}}, {4, {6. 4,1, 0}}, {-4, {6, 2, 0, 2}},

(-4, {6. 4,0, 2}}, {2nu, (6, 2, 1, 0}}, (-nu®, {6, 2, 1, O}}, {-8nu?, {6, 4, 1, 0}},
{4nu?, (6,4, 0, 2}}, (4nu, {6, 4,1, 0}}, (1, (8,2, 0, 0}}, {4, (8, 4, 0, O}},

(-4 nu?, {8, 4, 0, 0}}}

11 = Union[Transpese[A] [[2]]]

{(0, 0, 1, 2}, {0, 0,1, 4}, (0.0, 2, 0}, {0, 0, 2, 2}, {0, 0, 3, 0}, {0, 2,0, 4},
(0, 2, 6, 6}, {0, 2, 0, 8}, {0,2,1,2}, {0,2, 1,4}, (0,2, 1,6}, {0,2,2.2},
{0, 2, 2, 4}, (2,0, 1, 0}, {2, 0,1, 2}, {2, 0,2, 0}, {2, 2, 0,2}, {2, 2, 0, 4},
(2, 2,0, 6}, {2.2,1, 0}, (2,2.,1,2}, {2,2,1, 4}, (2,2, 2,0}, (2.2, 2, 2},
(4, 0, 0, 0}, {4, 0,1, 0}, {4,2,0,0}, {4,2, 0,2}, {4, 2,0, 4}, {4. 2,1, 0},
{4, 2, 1,2}, (4.2,2,0}, {4, 4,0, 4}, {4, 4,1, 2}, {6,2,0,2}, {6, 2,1, 0},
{6, 4, 0, 2}, (6, 4,1,0}, {8,2,0,0}, (8,4, 0, 0}}
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Inf20] := 111 = Table{Select[A, #[[2]] == 11{([L]]&], (i, 1, Length(1l1l]}]

oucr20j= {{{-1, (0, 0, 1, 2}}}. {{-1. {0, O, 1, 4}}}. ({2, {0, 0, 2, O}}, {2nu, (0,0, 2, O}}},
({3, (0, 0, 2, 2}}, {2nu, {0, O, 2, 2}}, {-nu®, {0, 0, 2, 2}}}, {{-2. (0. 0, 3, O}}.
(-2nu, {0, 0, 3, 0}}, (2nu®, {0, 0, 3, 0}}, {2nu’, {0, O, 3, O}}}, ({1, (0, 2. 0, 4}}},
({-2, {0, 2, 0, 6}}}. ({1, {0.2,0,8}}}, ({-2, (0, 2, 1, 2}}, {-2nu, {0, 2, 1, 2}}},
({3, (0, 2, 1, 4}}, {4nu, {0, 2, 1, 4}}. (nu?®, {0, 2, 1, 4}}}.
({(-3, {0, 2,1, 6}}, {-2nu, {0, 2,1, 6}}, {nu?, {0, 2, 1, 6}}}.
({2, (0, 2, 2, 2}}, {2nu, {0, 2, 2, 2}}., (- 2nu?, {0, 2, 2, 2}}. {-2nu?, (0, 2, 2, 2}}}.
({2, (0, 2. 2, 4}}, {2nu, {0, 2, 2, 4}}, {- -2nu?, {0, 2, 2, 4}}., {(-2nu?®, (0, 2, 2, 4}}},
({3, (2. 0, 1, 0}}, {2nu, {2. 0, 1, 0}}}, {{2. {2, 0, 1, 2}}},
{{-3, {2, 0, 2, 0}}, {-2nu, (2,0, 2, 0}}, {nu?, {2, 0, 2, O}}}, c{-4, {2. 2, 0, 2}}}.
({8, (2,2, 0, 4}}}, {{-4, {2.2,0, 6}}}, {(4.,(2,2,1,0}}, (- 4nu?, (2,2, 1, 0}}}.
{{-4, {2, 2.1, 2}}., {-4nu, {2, 2,1, 2}}, {Znu, (2. 2, 1. 2}}, {2nu?, {2, 2, 1, 2}}},
({9, {2, 2.1, 4}}. {6nu, {2. 2, 1, 4}}., {- 3nu®, {2, 2, 1, 4}}}.
({(-4., (2. 2, 2, 0}}. {Bnu , {2, 2,2,0}}, (- 4 nu? , {2, 2,2, 0}}),
{{~4., (2, 2.2, 2}}, {-4nu, (2,2, 2, 2}}, {4 nu3, (2, 2, 2, 2}}, {4 nu3, (2, 2, 2, 2}}},
{{1. (4, 0, 0, 0}}}. {{~-1, (4. 0.1, 0}}}.
({4, {4, 2, 0, 0}}, {-4nu®, {4, 2, 0, 0}}}, ({-8., {4, 2, 0, 2}}, {(2nu’, {4, 2, 0, 2}1}},
({6, (4. 2. 0, 4}}}., ({(-4. {4, 2, 1, 0}}, {4nu2, (4, 2, 1, 0}}}.
({-9., (4, 2. 1, 2}}. (-6nu, {4, 2,1, 2}}, {(3nu?, (4, 2, 1, 2}}},
({2, {4, 2, 2, 0}}, {2nu, {4, 2, 2, O}}. (-2nu?, (4, 2, 2, 0}}, {(-2nu®, {4, 2, 2, 0}}}.
{((1, {4, 4, 0, 4}}, (-2nu?, (4, 4, 0, 4}}, {nu?, (4, 4, 0, 4}}}.
((-2, (4 4,1, 2}}, (-2nu, {4, 4, 1, 2}}, (4nu?, {4, 4., 1, 2}},
(4nu3, (4, 4, 1, 2}}, {-2nu’, {4, 4,1, 2}}. {-2nu®, (4, 4, 1. 2}}}).
({-4, (6. 2, 0, 2}}}, ({3, (6. 2,1, 0}}, {2nu, {6, 2, 1, 0}}, {-nu?, {6, 2, 1, 0}}},
{{-4, (6, 4, 0, 2}}, {4nu?, (6. 4, 0, 2}}},
{{4., {6, 4, 1, 0}}, {-8nu?, {6, 4,1, 0}}, {4dnu’, (6, 4, 1, 0}}},
({1, {8, 2, 0, 0}}}. {{4. {8, 4, 0, 0}}, {-4nu?, (8, 4, O, 0}}}}

Inf[21}:= ¥ = Factor[
Table[(Sum([111{{i]1]([J11([21]]1, (I, 1, Length[111[(1]3]1}], L1410 0(1]1002]1},

{1, 1, Length{11l]}]]

oucr217= {{-1, {0, 0, 1, 2}}, {-1, {0, 0, 1, 4}},
(2 (L+nu), {0, 0,2, 0}}, {-(-3+nu) (L+nu), {0, 0, 2, 2}}.
{2 (-1 +nu) (L+nu)?, {0, 0, 3, 0}}, {1. {0, 2, 0, 4}}, {-2, {0, 2, 0, 6}},
(1, {0, 2, 0, 8}}, {-2 (L +nu), {0, 2, 1, 2}}, {(L+nu) (3 +nu), {0, 2, 1, 4}}.
((~3 +nu) (L+nu), {0, 2, 1, 6}}, {-2 (-L+nu) (L+nu)?, {0, 2, 2, 2}},
{-2 (-1 +nu) (L+nu)?, {0, 2, 2, 4}}, {3+2nu, {2, 0, 1, O}},
(2, (2,0, 1, 2}}, {(-3+nu) (L+nu), {2, 0,2, 0}}, (-4, (2. 2, 0, 2}}.
(8, {2, 2,0, 4}}. {-4., (2,2, 0, 6}}, {~4 (-1 +nu) (L+nu), {2, 2,1, 0}},
(2 (1 +nu) (-2+nu®), (2, 2, 1, 2}}, {-3 (-3 +nu) (L+nu), {2. 2, 1. 4}},
(-4 (-1 +nu)? (1 +nu)?, {2, 2, 2, 0}}, {4 (-1+nu) (L+nu)?, {2, 2,2, 2}},
{1, {4, 0, 0, 0}}, {-1, {4, 0, 1, O0}}, {-4 (-1+nu) (L+nu), {4, 2,0, 0}},
(2 (-2 +nu) (2+nu), {4, 2, 0, 2}}, {6, {4, 2, 0, 4}}, {4 (-1 +nu) (1+nu), {4. 2, 1. 0}},
(3 (-3 +nu) (L+nu), (4, 2, 1, 2}}, (-2 (-1 +nu) (L+nu)?, {4, 2, 2, 0}},
{(-1+nu)? (L+nuw)?, {4, 4, 0, 4}}, (-2 (- 1+nu)? (L+nu)3, (4, 4,1, 2}},
(-4, {6, 2, 0, 2}}, {-(-3 +nu) (L+nu), {6, 2,1, 0}},
(4 (-1 +nu) (L+nu), {6, 4, 0, 2}}, {4 (-1 +nu)? (L +nu)?, (6, 4. 1, 0}},
{1, {8, 2, 0, 0}}, (-4 (-1 +nu) (L+nu), {8, 4,0, 0}}}



Analysis4Dimnew.nb

Inf32]:=
rl = Transpossa[r] [[1]]
r2 = Transpose[r] [[2]1]

ouc[3z2]= (-1, -1, 2 (L +nu), —-(-3 +nu) (1 +nu), 2 (-1 +nu) (1+nu)2, 1, -2, 1, -2 (1 +nu),
(1 +nu) (3 +nu), (-3 +nu) (L+nu), -2 (-1+nu) (l+nu)2, -2 (-1 +nu) (l+nu)2, 3 +2 nu,
2, (-3 +nu) (L+nu), -4, 8, -4, -4 (-1 +nu) (L+nu), 2 (1+nu) (-2 +nu?),
-3 (-3 +nu) (L+nu), -4 (-L+nu)? (L+nu)?, 4 (-1 +nu) (L+nu)?, 1, -1,
-4 (-1 +nu) (L +nu), 2 (-2+nu) (2+nu), 6, 4 (-1 +nu) (L+nu), 3 (-3 +nu) (1 +nu),
-2 (-L+nu) (L+nu)?, (-L+nu)? (L+nu)?, -2 (-1 +nu)® (1 +nu)?, -4,
-(-3 +nu) (1+nu), 4 (-1 +nu) (L+nu), 4 (-1 +nu.)z (l+nu)2, 1, -4 (-1 +nu) (L +nu)}

ouc(33]= {{0, 0, i1, 2}, (0, 0, 1, 4}, {0, 0, 2, 0}, {0, O, 2. 2}, {0, 0, 3, O}, {0, 2, 0, 4},
(o, 2, 0, 6}, {0, 2, 0, 8}, {0,2,1,2}, {0,2,1, 4}, {0, 2, 1, 6}, {0, 2,2, 2},
(0, 2, 2, 4}, {2.0, 1, 0}, {2,0,1,2}, {2,0,2, 0}, (2,2, 0,2}, {2, 2,0, 4},
{2. 2, 0, 6}, {2, 2. 1,0}, {2.2,1,2}, {2,2,1, 4}, (2,2, 2,0}, {2. 2, 2, 2},
(4, 0, 0, 0}, {4, 0, 1, 0}, (4,2,0,0}, {4,2,0,2)}, (4,2,0, 4}, {4. 2,1, 0},
{4, 2,1, 2}, {4, 2, 2,0}, {4.4,0,4}, {4, 4.1,2}, (6, 2,0,2}, {(6,2,1, 0},
{6, 4, 0,2}, {6, 4,1, 0}, (8,2,0,0}, {8, 4, 0, 0}}

(*

hl=r2[[{11,24,25,26}]]//Simplify
h2=xri{[(11,24,25,26}]]
DE=Table[{h2((1]],h1[{[1]1},{i,1,Length[h1]}]
AA=Transpose[A] [ [2]]

Position[AA, #]&/@hl//Flatten

*)

PPP = Transpose[A[[{8, 36, 56, 58}]]1]1[[2]]

coef = Transpose[A[[{8, 36, 56, 58}]]1[[1]]
oucr44]= {{0, 0, 1, 4}, {2, 0, 1,2}, {4,0,0,0}, (4,0, 1, 0}}
ouc(45]= {-1, 2, 1, -1}
Inf46]:= sl =Table[

PAPPP[[1]]1[[1]] +hAPPP[[L1]][[2]]
LAPPP[[1]][[3]] +m*PPP[[1]]([[4]], {1, 1, Length[PPP]}]

eq = s1 . coaf

oucr467= {Lm*, Lm?>p?, p*, Lp*}

ouc(47]= -Lm*+2Lm’p* +p*-Lp*



APPENDIX 7

Mathematica 3.0 Code

for Analysis of Characteristic Equation for Different

Boundary Conditions and Frequency Domains



BCl.nb

Low frequency vibrations, bbb- simply supported, aaa-
clamped edges

bbb := ({pl+ul, p2+xu2, 0, 0, p5+«u5, p6+~u6}, {(wl, w2, 0, 0, w5, w6},
{(Wlaeplr2, w22p242, 0, 0, WS5+p542, W6 xp6+2}, {Plrul+Exppl«L],
P2+u2 +EXp[P2 « L], P3+«u3«Exp{p3+L], pé+ud +Exp[pé+L], 0, 0}, {(Wl+Exp[pl«+L],
W2 +Exp[p2+«L], w3 +Exp[p3+L], wd +Exp[p4+L], 0, 0}, (Wl+xpl42+Exp([pl«L],
W2+D2A2 +Exp[p2 «L], W3+p342+«Exp[p3+L], wa+p4*2+Exp[pd + L], O, 0}};

aaa :=
{{ul, w2, 0, 0, us5, u6}, (wi, w2, 0, 0, w5, w6}, {(Wlspl, w2+p2, 0, O, WS +p5, w6 +p6},

{(Ul+Exp[pl+L], u2+Exp[p2+L], ud «Exp[p3+L], ud +EXp[p4é L], O, 0},

{(Wwi+Exp[pl+L], W2 +Ep[p2+«L], w3+Exp[p3+L], wi «Exp[pd L], 0, 0},
{(W1+pl+Exp[pPl+L], W2 +P2+Exp[pP2 «# L], W3 +DP3 +EXp[p3+L], wa+p4d «Exp[p4+L], 0, 0}};

zZ = Sqrt([2] / 2;
Pl = Sqrt[lamda] «I; p2 = -Sgrt[lamda] +I; p3 = (2z2+ I+ 2Z) /h;
P4=(22-I«22) /h; P5=(-22+Ix22Z) /h; p6=(-22-I»2Z) /h;
ul=pl;u2=p2;ud3 =ué4=uS=ub=nu; Exp[ps+L] == 0;
wl=w2=-nu+lamda; w3 =p3;wd =p4; w5 =p5; wé = p6;

Simplify[Det [bbb] ]

S S vy 2,2
4 pLlEre Tamey ) (_1+Ezrr.~llamda) lamda® (-1 +nu?)
- hs

Simplify{Det[aaa]]
{'fs- f_, ] Arr 1 3 9
L (285" tanda (-1 + £ TR 2197 (14877 V5 ) nylanda nut+

e
2142 (l +E2n‘m) h?® lamda’/? nut + (-1 + ES L ViameEa ) k' lamda? nu® -

2 (-1 +EST4YT= ) n? lamdanu® (1 +nu?)) )



BCla.nb

Low frequency vibrations, bbb- simply supported, aaa-
clamped edges

bbb := {{plxul, p2+u2, 0, p4xu4, 0, 0, p7 xu7, p8+us}, (wi, w2, 0, w4, 0, 0, w7, w8},
(Wlxplr2, w2+D242, O, WaAxD442, 0, 0, W7 +D7~2, w8 +p842},
{(vi, v2,0,v4, 0,0, v, v8}, {0, P2+ U2 + EXxp[p2+ L], p3+u3+Exp[p3+L],
P4*ud +Exp[pé4+L], PS5+« uS+Exp[p5S+«L], p6+u6+Exp[p6+L], 0, 0}, {0, w2 +Exp[p2+«1L],
W3+Exp[(p3+L], wi«Exp[pé+L], WS +EXp[p5+«L], w6+ Exp[p6+L], 0, 0},
(0, W24+p2A2+EXp[p2+L], W3 «P3A2 +EXp[p3+L], WA +D4+2 « Exp(p4 + L],
W5 +p542 +EXp[P5«L], W6 +DP6+2+EXp[p6+L], 0, 0}, (0, V2 +EXp[p2+L],
V3+Exp[(p3+L], Vi« Exp[p4+ L], V5+Exp[p5+«L], V6 +Exp[p6+ L], 0, 0}};

zz = Sqgqrt[2] /2;
Pl=-m+»Sgrt(Sqrt{lamda-h44+m*4]];p2 =I+m+Sqrt[Sqrt[lamda-h+4+m+4]];

p3 =m«Sqrt[Sqrt[lamda-h*4+m*4]]; pd = -I+m«+Sqrt[Sqrt[lamda-h*rd+m*4]];
pP5=(2Z+XI+2z2) /h;p6=(ZZ-I+x2Z) /h; p7 = (-22+I+22) /h; p8 = (-22~I+x22) /h;
ul=pl/ (M*2); u2=p2/ (m*2);ul =p3/ (m*2);

ué =p4/ (m*2);uS=nu/p5;ub=nu/pé; u7 =nu/p7; us =nu/ps;
Wl=w2=w3=wd=WS5=wW6=W/=w8=1; '

Vvi=vR=Vv3=véd=-1/m;vS=m/ (p5*2); v6E=m/ (P6*2); vI=m/ (P7*2); vB=m/ (P8+2);

Simplify[Det [bbb] ]
[VT «1-0) hm {lazda-nt =8} 2/4) R : s
L a-n g (_1+E-Ium(laxda-h4m‘)"“) (—lamda+h4 m*) (_1+h4m4nu)2

hi m-

16 E

aaa := {({ul, w2, 0, u4, 0, 0, u7, us},
{vi, v2, 0, v4, 0, 0, v7, v8}, (wl, w2, 0, w4, 0, O, w7, w8},
{Wlis+rpl, W2+«p2, 0, Wwdxp4, 0, O, W7 xp7, w8 «+pP8}, {0, U2 +EXp[P2+L], ul3 +Exp[p3 « L},
u4 +Exp(péd+L], uS +Exp[pS5+L], u6 +Exp[p6+ L], 0, 0}, {0, V2+Exp[p2 « L],
V3+Ep(p3+L], Va+Exp[p4+ L], vS5+Exp[p5+L], V6 +Exp[p6+L], 0, 0},

{0,
W2 +Exp[p2+L], W3«EXp[p3+L], wi+ExXp[p4+«L], wS+Exp[pS5+«L], w6 +Exp[p6+L], 0, 0},

{0, W2 « P2+ EXp[P2 « L], W3 +DP3 +EXp[pP3 +L], Wi+DP4+Exp[péd+L], WSrxDS «EXP[P5+ L],
W6 »pP6 »Exp[p6+L], 0, 0}};

Simplify[Det[aaa]]

L {VZ -(1-1) hz (lazda-nt =%) 1/4) r : — -
4IE { = (1+Ez-~m‘1m'h‘m‘) “)\/lamda—h*m* (L-h*m*nu+him? (1+nu))’
h- m*




BC2.nb

High frequency vibrations (bbb - simply supported edges,
aaa -clamped edges).

bbb := {{plxul, p2+u2, 0, p4d +u4, p5+u5, p6+u6}, {(wi, w2, 0, w4, w5, w6},
{Wlispl42, w2+p24+2, 0, Wi+p44+2, WS54pP542, w6+D6~2}, (Plerul«Exp[pl+Lj},

P2+ U2 +EXp[P2+ L], p3 +u3 +ExXp[p3+ L], O, p5+uS«Exp[p5+xL], P6* U6 +EXp[p6+«L]},
{(Wl+Exp{pl+L], w2 «Exp[p2+ L], w3 «+EXp[p3+L], 0, W5+ EXp[P5+L], W6 « Exp[p6 +L] },
{(Wi+pl42 +Exp[pPl+L], W2+P242 +EXp[p2+L], w3+p342+Exp([p3+«L], O,

WS D542 +EXP[PS*L], w6+ p6+2 +Exp[p6+L]}};

aaa := ({ul, u2, 0, u4, usS, ue}, {wi, w2, 0, w4, w5, w6},
{Wilixpl, W2 +p2, 0, wd+p4, WS *P5, W6 +D6}, (ul+Exp[pl+L], u2 «Exp[p2+L],
u3 «Exp(p3+L], 0, US+Exp[P5+L], u6 + EXp[p6+L]}, (WL«ExXp[pleL], w2« Exp[p2 +L],
W3+ExXp[p3+L], 0, WS5+Exp[pPS5+L], W6 +Exp{p6+L]}, {(WiL+Dl+Exp[pls+L],
W2+p2 +EXD[P2+L], W3 +pP3+EXP[P3+L], 0, WS +PS+EXP[PS+L], W «D6 +Exp[p6+«L]}};

Pl =Sgrt{lamda] *I«Sqrt{l-nu+2};

p2 = -Sqrt[lamda] « I+ Sqrt[l-nu+2]; p3 = lamda+ (1/4) /h;
pP4=-lamda*(1/4) /h; pS5=I«lamda* (1/4) /h; p6=-I+xlamda+(1/4) /h;
ul =pl; u2 =p2; u3 =ud = us = u6 = nu;

wl=nu;w2 =nu;w3=p3;wld=p4; w5 =p5; w6 =p6;

bbb;

Simplify[Det [bbb] ]

ILlamcda®/? {(1e)oh lamdal/8 ViguT ) 2 1L lapdal/s - — s
’gla‘( T = (-1 BT (-1 4 B3/ VAR ) anaa?

(lamda + nu® - lamda nu?) 2)

Simplify[Det[aaa]]
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