INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

in the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overiaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6 x 9" black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

Bell & Howell Information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI

i

COMPUTERISED SCHEDULING AND CONTROL OF

RESIDENTIAL HOUSING PROJECTS

Ramaneetharan Ramanathan

A Thesis
in

The Department of Building, Civil and Environmental Engineering

Presented in Partial Fulfiliment of the Requirements
for the Degree of Master of Applied Science at
Concordia University,

Montreal, Quebec, Canada

July, 2000

© Ramaneetharan Ramanathan, 2000

i+l

National Library

of Canada du Canada

Acquisitions and Acquisitions et

Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

Bibliothéque nationale

services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Your file Votre référence

Our file Notre rélérence

L’auteur a accordé une licence non
exclusive permettant a la
Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’auteur conserve la propriété du
droit d’auteur qui protége cette thése.
Ni la theése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

0-612-54312-9

iel

Canada

ABSTRACT

COMPUTERISED SCHEDULING AND CONTROL OF
RESIDENTIAL HOUSING PROJECTS

Ramaneetharan Ramanathan

This research study presents a practical object-oriented model for scheduling
and control of residential housing projects. The model is designed using an
Object-Oriented modeling approach and incorporates 18 classes that are
designed to facilitate the scheduling and control of residential housing projects.
The model also includes two newly developed algorithms for scheduling the
construction work of subcontractors in repetitive housing activities and for
tracking and control of housing construction. The model considers a number of
practical factors commonly encountered in scheduling and control process of

these type of projects.

The scheduling algorithm complies with three major constraints namely,
precedence relationships, availability period and crew work continuity and is
applied in order to determine the start and finish date of the subcontractor in
each housing unit. The tracking and control algorithm is designed to evaluate the
cost and work performance of an on-going project at three levels: 1) entire
project, 2) housing unit, and 3) subcontractor. The application of this algorithm
facilitates the early detection of construction probiems, if any, allowing timely

corrective actions to be considered.

iii

The developed model is implemented as a prototype software system named
‘Residential Planner’. In addition to considering various practical aspects,
Residential Planner can generate a number of specialized reports to address the
diverse needs of the residential development firms. Residential Planner is an
effective tool for scheduling and control of housing projects, and its application

can lead to savings in project time and cost.

iv

ACKNOWLEDGEMENTS

| take this opportunity to express my heartfelt appreciation and deepest gratitude
to my supervisors Dr. O. Moselhi and Dr. K. El-Rayes for their perceptive
guidance, helpful advice, critical insights, inspiration and encouragement
throughout all stages of this research. Their suggestions to improve the contents
of this thesis are greatly appreciated. | am indebted to the professional personnel
from residential development firms who provided their experience and time for

this research.

A special note of appreciation is extended to my parents, brothers and uncle for
their encouragement, patience and psychological support. My sincere thanks to
the faculty, staff, and colleagues at the Department of Building, Civil and
Environmental Engineering who helped in various ways to carry out this
research. A special thanks is extended to my colleagues: Dr. K. Suresh Kumar,
Mohamed Marzouk, Sanjeev Kumar Sivakoti, Deep Goradia, Nikhil and Archana

Vyas for their constructive criticism and helpful advice.

Last but not the least, the financial support for this research work provided by

Dr. O. Moselhi’'s research grant is gratefully acknowledged.

TABLE OF CONTENTS

NOMENCIALUTE.coeie et eeeeeeeeeeee e e eenn e eeee i aes viil
List OF FIQUIES ..ot eeee e e eeeeeeee e e e e e e ee xi
LISt Of TAbIES ...ttt e e eeeeeeeeree e e e re e eeeeessesn e ees XV
CHAPTER 1
INTRODUCTIONocciieiiiiiceeceoimecccnsemenscnnssnansensesennesansanssmscans 1
1.1 Residential Housing Constructionccoooiiiiiiiiiicriieeeieeeeeeeeees 1
1.2 Challenges in Scheduling Residential Housing Projects...................... 2
1.3 Research ODbJectiVES ... e 4
1.4 Thesis Organization...........cccooeeeeeeeiiieiieeeeeeeeeee e e e e e e eaenees 5
CHAPTER 2
LITERATURE REVIEWc ittt cencrraeneereesencnnnaes 7
2.1 INrOdUCHONcoenee et eee e e e e e ereeeesanne s 7
2.2 Traditional Scheduling Techniquescccccooeiiiiiiiiiiiiiiiiieiiecereees 7
221 BarChartMethod...............ccoomiriieeeeeeeeee e 7
2.2.2 Network Techniques...........coeoeeeeiiiieieeeeeeeeeeeeee e 8
2.3 Techniques for Scheduling Repetitive Activities............ccccoovvvveeeennnnnn... 9
2.3.1 Line of Balance (LOB)cooiiiiiiiiiiiiitreieeeeee e 10
2.3.2 Linear Scheduling Method (LSM)coovvneiiiiiiiiieeeeeeee. 12
2.4 Scheduling Models for Residential Housing Projects 13
2.5 Object-Oriented Modeling for Repetitive Construction 15
2.6 SUMMANY ..oooiiiiiiiieeeiieetieeeerteeeececreereeanee e e e e e nneee e sasaaaeeseseesssnsesnnsnnnnnnnnnn 19
CHAPTER 3
PROPOSED MODEL ... ittt ece e re e ene s e nes 20
K20 B (91 (g oTe [F T3 (T o H SRR 20
3.2 Object Oriented Modeling ..o e 20
3.3 ANalysis Stagecoiimiee e e 22
3.3.1 Findings of the Meetingscccoeiiiiiiiiiiiiiiicceee e, 22
3.3.2 0bject Model..........ccoooriiiiiiicee e 24
3.3.3 Dynamic Modelcoorieiiieieeicre e 29
3.4 DeSIgN StAgecnuiiiiiiii e e e eeennns 31
341 InputModule ... 32
3.4.2 Scheduling Moduleo 34
3.4.3 Database Modulecooniiimiiiieeeeeeee e 40
3.4.4 Control Moduleeunmnniiiiieiiiete e 43
3.4.5 Reports ModUulecooorimeeeeeeeeee e 50
3.5 SUMIMANY ..ottt e e e e et e e e s e s s 54

CHAPTER 4
PROPOSED SCHEDULING AND CONTROL ALGORITHMS . 55

T 3 I a1 (e To [FT e (T o RSO 55
4.2 Scheduling Algorithm for Subcontractorsccooovieeiieiiieiennnn... 55
L 3 IR = To 1= Rt LSRR 57
42.2StAQE 2 ... e e e e e e e e ee e e e e e eee e 62
4.3 Tracking and Control Algorithmooooiiiiimiieeeeeeeeeeeee e 63
4.3 1Project Control ... 66
4.3.2 Housing Unit Controloeeemieiiieeiieeeeeeeeeeeeee e 79
4.3.3 SUD CONLrOl ... e e 79
4.4 SUMMATY ...ooeeeneeeceieeieeeeertere e s e s sses s e seseemnsnessseeseasseseesennnnnns 80
CHAPTER 5
IMPLEMENTATION OF THE PROPOSED MODEL:
RESIDENTIAL PLANNER ... itrcieeieeecseeccreerncsea s ceencennene 81
20 B (g1 (o To [¥ox (o o TR 81
B.2MOdEI ... e e ean 81
5.3 Graphical User Interface (GUI)oovveeeieiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeaae 83
5.3.1 Menus, Toolbar and Status barcccooovvvemveeeeereieeeiennn.. 83
5.3.2 DIalog BOXESuuriiiiieeeeeeeeeeeeee e e 89
S4Inputand outpuLt ...t 97
5.5 SUMIMANY ...t eceeeeee e eee e e e e e s e s aeseeennsssnennnnnnnan g9
CHAPTER 6
APPLICATION EXAMPLES ... iercreiiirereenneencneeeeesennnnane 100
(70 I (3 ¢ oTe [7o (o o RSP 100
S 651 4 = = T1 1T o1 (= SR 100
6.3 Second EXAMIPIEuuuiiieeeeeee e e 109
6.4 SUMMANYoeniiieeeieceeeee ettt eeeeeeee s e e e eaeeaeoreeaaeeeeanas 118
CHAPTER 7
CONCLUSIONS ... ciiiiiiiicrrinimeccree e reeess e seessasesiremasssraneessnes 119
7.1 Summary and Concluding Remarksccccceeeeeeeeemmreeieeiiiieieeieeeeeenenn. 119
7.2 Research Contributionscoccoiiiiiiiiiieieeee e 121
7.3 Recommendations for Future Researchcccooeevviiiiiiiiiiiiiiiieeeenenns 122
REFERENCES 124
APPENDIX | 127

vil

Act_Dur{c] :

ACWP[r] :
ADWPYr]
AWPI] :
BCWPr]
Cc:

C:

Cum_Dur:

CVIr] :

d:
Durfj}:

Early_Start[k] :

ECIj] :

Eff_Dur:

Exp_Dur:

Finish[k] :
i:
l:

ldle[k] :

NOMENCLATURE

Actual duration of finished activity c.

Actual cost for work performed in $.

Actual duration for work performed up to report date r.
Actual work performed prior to report date r.

Budgeted cost for work performed up to report date r.
Completed activity number.

Total number of activities completed.

Cumulative duration of all activities.

Cost variance that represents the status of the project with
respect to cost on report date r.

Workday (from d=1 to PD)

Duration of housing unit j.

Early start date of housing unit k.

Equipment cost of housing unitj in $.

Time between the planned early start and day d for an
activity in progress.

Expected duration to finish an activity in one housing unit or
all housing units.

Finish date of housing unit k.

Non-repetitive activity number (i=1 to I).

Total number of non-repetitive activities in a project.

Idle time of the construction crew in housing unit k.

viii

Ind_Cost :

LC[i] :

lump_price[m] :

no_act:

Orderfj] :
p:

P:

PD:
PDWP[r] :

Per_Comp|p] :
Plan_Cost[d] :

Plan_Dur[m]:

Plan_Work[d] :

Project indirect cost per day in $.

Housing unit number (j=1 to J).

Total number of housing units in a project.

Unit number that satisfies the user-specified execution
order of housing units.

Labor cost of housing unit j in $.

Lump sum contract awarded to activity min $.
Repetitive activity number (m=1 to M).

Total number of repetitive activities in the project.
Material cost of housing unit j in $.

Subcontractor number (n=1 to N).

Total number of subcontractors involved in a project.
Total number of activities in the project (i.e. both repetitive
and non-repetitive).

User-specified execution order of housing units.
Progressing activity number (p=1 to P).

Total number of activities in progress.

Planned duration of the project in days.

Planned duration for work performed up to report date r.
Percentage of work completed in progressing activity p.
Planned cumulative cost for day d.

Planned duration of repetitive activity m in days.

Planned cumulative work for day d.

Prod[n] :
Qty[j] :
r:

Shift[j] :

sub_avail_start[n] :

SVI[r} :

Temp, Temp1:

Total_Cost :

Total_Qty[n] :

unit_price[m] :

Required productivity / day for the subcontractor n.
Quantity of work in housing unit j.

Report date.

Required shift to start and finish dates of housing unit j to
comply with crew work continuity constraint.
User-specified early available date of subcontractor n at
site.

Schedule variance that represents the status of the project
with respect to time.

Temporary variables used in tracking and control
calculations.

Total direct cost of an activity.

Total quantity of work to be performed by subcontractor n.

Unit price contract awarded to activity m in $.

LIST OF FIGURES

CHAPTER 1

Figure 1.1 Housing Starts in Canada, 1986-1995cccccmeriinccceceecnnnne 2
CHAPTER 2

Figure 2.1 Graphical Representation of LOB and LSMcccuveeeenn...... 12
Figure 2.2 Object Model Proposed by El-Rayes (1997)c.couuueeenn.... 17
CHAPTER 3

Figure 3.1 Activities and Relationships of Housing Construction 26
Figure 3.2 Proposed Object Modeluvvieeiieimiiiiiiiieeeeeeeeeeeeee 27
Figure 3.3 State Diagramccceiiiiieieeee e 30
Figure 3.4 Architecture of the Proposed Modelccccoormeiiiiriinenennnne. 31
Figure 3.5 State Diagram of Repetitive Classoouueeeeeeveecvceeeeeeeeennnn. 39
Figure 3.6 State Diagram for Data-Base Class to Perform Search 42
Figure 3.7 State Diagram for Data-Base Class to Accept New Data 42
Figure 3.8 State Diagram of Project-Control Classccccccceuveeeeunennee... 46
Figure 3.9 State Diagram for Sub-Control Classcccceeeeeeeeeeereeeeeennnnn. 50
Figure 3.10 State Diagram for View Classccccceeeeeviieeeciecenennenn. 53
CHAPTER 4

Figure 4.1 Scheduling Algorithm for Subcontractorscccceevveeeeennn... 59

Figure4.2Stages 1 and 2 ... 63

Figure 4.3 Tracking and Control Calculationsccccccvuennrereereneeennne... 65
Figure 4.4 Project Control Algorithm (Stage 1a)coceueeeveiririiiiieieenees 68
Figure 4.5 Project Control Algorithm (Stage 1b)cccceeeiiiiiiiiiiiii, 72
Figure 4.6 Project Control Algorithm (Stage2and 3)ccceeeeveeeeieneenennnen. 75
CHAPTER 5

Figure 5.1 Residential Planner ... 82
Figure 5.2 MenU Bar ... e 84
Figure 5.3 Project MenU ..o 84
Figure 5.4 Activity MEeNU ... e 85
Figure 5.5 RelatioNn MenuUcooooinnniiiiiieeeeceeeeeeeeeeeeeeeee e 85
Figure 5.6 ReCOrd MENUcccoiiiiiiiiiiiiieceeeeee e 85
Figure 5.7 Tracking & Control Menuc.oooniimimiiiiiiieeee e 86
Figure 5.8 Text Report MenU ... 87
Figure 5.9 Graphical Report Menucoooeiieemiiiiiiimieiieeccceeaes 88
Figure 5.10 Project Information Dialog BOXcceeviemeieieeinniiececeeeee. 89
Figure 5.11 Weather and Learning Curve Dialog BOXcc...uuvvernnnnnnenen. 89
Figure 5.12 Inserting New Information to Database Dialog Box 90
Figure 5.13 Non-repetitive Activity Input Dialog BoXc.cccoeevviieiiieeeaneen.n. 90
Figure 5.14 Repetitive Activity Input Dialog Box (Subcontractor) 91
Figure 5.15 Subcontractor Input Dialog BOXccceeuuiimmmieceeiiiiiiiiiieeeeenne.. 91
Figure 5.16 Repetitive Activity Dialog Box (Own work force) 92

Figure 5.17 Typical Repetitive Activity Input Dialog Box 92

Figure 5.18 Crew Information from Database Dialog box 93
Figure 5.19 Crew Information Dialog BoxXcceveeeeeiemeeiceeirceeeeeeeeeeen. 93
Figure 5.20 Relation Type Input Dialog Boxcccccmmeririciiinrinicceeeenns 94
Figure 5.21 Repetitive Relation Input Dialog Boxcccceeeveeieveeciiiiiennenn. 94
Figure 5.22 Project Control Dialog BoXoeuvmieeiimeiieeeicieeieiiecieens 95
Figure 5.23 Progress Input Dialog Box (Activities completed) 95
Figure 5.24 Progress Input Dialog Box (Activities in Progress) 96
Figure 5.25 Subcontractor Control Dialog Boxc.ceeiiimciiiiniiniiniinnnnn.. 96
Figure 5.26 Unit control dialog boXcoooevmmmeiiimiiiiiieeeeeeeeee e 97
Figure 5.27 Residential Planner Input and Outputcccccovivnrennnnnn... 98
CHAPTER 6

Figure 6.1 Project Schedule from Literature (Lumsden, 1968) 102
Figure 6.2 Project Schedule Developed by the Model 103
Figure 6.3 Cumulative Cash Flow Curve Generated by the Model 105
Figure 6.4 Actual Progress (Lumsden, 1968)cocooieeemmimriienciieiiene 106
Figure 6.5 Performance Results Generated by the Model 107
Figure 6.6 Non-repetitive Activity Scheduleccccceiiiiiii . 113
Figure 6.7 Repetitive Activity Scheduleocooiiiiiiiiiiiieee, 113
Figure 6.8 Schedule for Subcontractorcoeeiiiiiiiiiicceeee, 114
Figure 6.9 Schedule for Individual Housing Unitscccccceeeeiiiei i, 114
Figure 6.10 Project Cumulative Cost Curveccccoeeeeeiiiiiinniiniinininnen.n. 115

xiii

Figure 6.11 Project SUMMACYoooiinieeeeeeee e eee e ee e 115

Figure 6.12 Project Performance Curvesccccceeeueeeceeeeeeceeeenneennees 116
Figure 6.13 Project Tracking and Control Results..........cccccoveeieeennnnnn.... 117
Figure 6.14 Subcontractor Performance Curvesoevveeveveceeeeenenn... 117
Figure 6.15 Unit Performance CUINVESccoovvveeeeieeeeeeeeeeeeeeeeeeeee e 118

xiv

LIST OF TABLES

CHAPTER 3

Table 3.1 Data Member of Project Class..............couoememmmeeeceeeieeeeeceennn. 33
Table 3.2 Main Member Function of Project Classcccccoeeeuuerereennn... 34
Table 3.3 New Data Members of Repetitive Classcccccceveeeeeeeenenennnn.. 35
Table 3.4 New Member Functions of Repetitive Class 36
Table 3.5 Data Members of Own-Force Classcccceeeeeeeeeeeeecccverneeenen. 36
Table 3.6 Main Member Functions of Own-Force Classc............ 36
Table 3.7 Data Members of Sub-Contractor Classc.cccceeeevereecneennnnn. 37
Table 3.8 Main Member Functions of Sub-Contractor Class 37
Table 3.9 Data Members of Dafa-Base Classc.ccoeevveeeeeneeeeeeeeeennnnne. 41
Table 3.10 Main Member Functions of Data-Base Classc................. 41
Table 3.11 Data Members of Tracking-Control Classcceeeeeeenneneee. 44
Table 3.12 Main Member Functions of Tracking-Control Class 44
Table 3.13 Data Members of Project-Control Class..........ccccccceeeeeeennnn..... 45
Table 3.14 Main Member functions of Project-Control Class..................... 45
Table 3.15 Data Members of Unit-control Classc..cceveeeevecceennnnnnrennne.. 47
Table 3.16 Main Member Functions of Unit-Control Class 48
Table 3.17 Data Members of Sub-Control Classccccccceevvveereneeeeeenenn..n. 48
Table 3.18 Main Member Functions of Sub-Control class 49
Table 3.18 Data Members of View Classcccccccceeiiiiimmcciiiiicirieeeenne. 51
Table 3.20 Main Member Functions of View classccccccceeiviiiicnnnnn. 52

CHAPTER 5

Table 5.1 Project Menu FUNCHONScooeiiiimiiieeeeeeeeeeeeeeeeeeeeee 84
Table 5.2 Activity Menu FUNCHONScoonoiiiiieeeeeee e 85
Table 5.3 Relation Menu FURCHONS ... 85
Table 5.4 Record Menu FUNCHONSccociiiiiiiieiiieeeeceeeee e, 86
Table 5.5 Tracking & Control Menu Functionsccceeeevvevvenivnnveennennnnne.. 86
Table 5.6 Text Report Menu Functionscccccciiiiiiiiiiniinccn. 87
Table 5.7 Graphical Report Menu FUunctionsccooeevveievieiieeeeeinnneee. 88
CHAPTER 6

Table 6.1 Input Datat e 101
Table 6.2 Project Schedulecoeeoriiiriieeeeeeee e 104
Table 6.3 Project Cumulative Cash Flow (Lumsden, 1968) 105

Table 6.4 Planned Cumulative Work Percentage and Cost for Each

WOIKAAY ... e e et e e e e s e e e mae s ee e e mme e s e e eanaeas 108
Table 6.5 Non-repetitive Activity Schedule ..o, 111
Table 6.6 Repetitive Activity Schedule ..., 112

CHAPTER 1
INTRODUCTION

1.1 Residential Housing Construction

The residential housing sector represents a significant percentage of the
construction industry in North America. According to the latest available statistics
(Statistics Canada, 1998), the total capital expenditure in residential building
construction was $ 37.4 billions in the year 1997, which is almost 42% of the total
capital expenditure on construction in Canada. This sector is composed of large
number of small construction development firms primarily due to low capital

investment requirements.

Challenges facing the residential development firms today are more complex
than ever before. These challenges can be attributed to new constraints such as
different life styles (aging population, increasing number of single families etc.),
increased involvement of public and government agencies, environmental
regulations and conditions, rising cost of housing and effects of technology.
According to the latest publication by the Canadian Mortgage and Housing
Corporation (CMHC, 1996), housing starts fell to 111,000 units in 1995, lowest
since 1960 (see Figure 1.1). The same report indicates that there will be a
decline in the household growth for the period 1991-2016. The above challenges
combined with the decline in household growth would eventually lead to more

competition among the large number of small-scale development firms.

300

[—]
=
T 250
)
8 200
E
Z 150
£
£ 100
[]
»
= 50
‘@
F 0
X

Year

Figure 1.1 Housing Starts in Canada, 1986-1995
Hence, there is an imminent need to adopt new ideas and approaches for
survival and sustenance of any residential development firm. One of the key
areas that has a significant impact on the cost and duration of residential housing

construction is project scheduling and control.

1.2 Challenges in Scheduling and Controlling Residential Housing Projects

The development of an effective plan for scheduling and control of residential
construction involves a number of challenging tasks for residential development
firms. The first challenging task in scheduling residential housing projects is that
it involves both non-repetitive and repetitive activities. These two types of
activities have to be scheduled using different methods to be effective. Non-
repetitive activities can be scheduled using traditional network techniques. On
the other hand, repetitive activities have to be scheduled by a technique that can

provide resource-driven scheduling. This can be achieved by integrating

traditional network scheduling and resource-driven scheduling techniques in an

effective environment.

The second challenging task is to develop a resource-driven scheduling
algorithm that incorporates utilization of direct labor force and/or subcontractors.
Most of the construction work in a typical residential housing project are
performed by subcontractors (Russell, 1989). However, the developer often
performs some of these activities by employing direct labor force. Hence the
algorithm should consider this practical aspect in addition to a number of other

factors commonly encountered in these projects.

The third challenging task is to develop a control methodology for residential
projects. Tracking and control of these projects is challenging, primarily due to
the large number of housing units and subcontractors involved in this type of
construction. It will be easy to identify construction problems in a project, if the
methodology can determine the time and cost performance of an individual
subcontractor or a particular housing unit in addition to the whole project. This
will enable early and accurate identification of troubles, if any, thereby timely

actions can be initiated

The fourth challenging task is to generate a number of specialized reports to
address the diverse needs of the various parties involved in the construction of

these projects. These reports should include both graphical and text reports in

calendar and workdays. Due to the large number of subcontractors and housing
units involved in these projects, it becomes necessary to produce a separate
schedule for each subcontractor and housing unit, in addition to the project
master schedule. The project master schedule should provide the necessary
details with which the developer can organize, control and carry out the project.
The subcontractor schedule should give their specific activities and
corresponding dates to perform these activities in different houses. The housing
unit schedule should assist the developer in addressing the concerns and
questions from the buyer of a particular house. It will be advantageous for easy
and early detection of troubles, if the tracking and control results are presented in

a graphical format.

1.3 Research Objectives
The main objective of this research is to develop a model for scheduling and
control of residential housing projects that addresses the challenges outlined in

the earlier section. In order to develop this model, the objectives of this study are:

1) To build and extend on a recently developed model for scheduling of
repetitive construction projects (El-Rayes, 1997) in order to consider the
special characteristics and unique features of scheduling and control of
residential housing projects.

2) To develop a resource-driven scheduling algorithm for subcontractors

involved in residential housing projects.

3) To formulate an algorithm for effective tracking and control of an on-going
residential housing project with respect to cost and time.

4) To develop effective methods to generate flexible and specialized reports in
text and graphical format to address the needs of the developer and
subcontractors.

5) To implement the suggested algorithms and methodologies in a user-friendly
prototype software system.

6) To provide a database support for efficient use of the developed computer

software program and store valuable historical records.

1.4 Thesis Organization

Chapter 2 presents a literature review of available scheduling techniques for
repetitive activities and residential housing projects. A brief introduction to an
Object-Oriented model for scheduling of repetitive construction (El-Rayes, 1997)

is also presented.

Chapter 3 explains the analysis and design stages of the proposed Object-
Oriented model for scheduling and tracking and control of residential housing
projects. The analysis stage presents the findings of the meetings held with
representatives of residential development firms and the developed object model.
The design stage presents the architecture of the proposed model and describes

the developed classes.

Chapter 4 presents the proposed scheduling algorithm for subcontractors, and

tracking and control algorithm for residential housing projects.

Chapter 5 presents the implementation stage of the proposed model as a

prototype software system, its main components, and input and output.

Chapter 6 validates the results produced by the developed model and outlines its

practical application aspects using two application examples.

Chapter 7 summarizes the results of this research, its contributions and

recommendations for future research.

CHAPTER 2
LITERATURE REVIEW

2.1 Introduction

Project planning and scheduling is essential in the management of construction
projects in order to achieve the main objectives of completing the project within a
fixed time, at a previously estimated cost and to specified standards of quality.
This chapter presents a review of recent literature in traditional scheduling
techniques for construction projects in general, and special scheduling
techniques for repetitive construction projects in particular. In addition, the
chapter provides an overview of available models for scheduling residential
housing projects, and presents a review of an Object-Oriented model for

scheduling repetitive construction.

2.2 Traditional Scheduling Techniques

2.2.1 Bar Chart Method

Bar Chart method is a graphical representation of the project schedule that was
originated and developed by Henry L. Gantt during world war-I. The length of a
bar represents the duration of each activity in accordance with the time scale of
the chart. The major deficiency of this method is its inability to show the inter-
relationships between activities, thereby failing to identify the critical activities,
which actually control the project duration (Chzanowski and Johnston, 1986;

Stradal and Cacha, 1982). In spite of this drawback, these bar graph charts are

widely used in the construction industry primarily due to its graphic and easily

understandable format (Nunnally, 1998).

2.2.2 Network Techniques

Network diagram is a graphical representation of activities and their relationships.
By displaying the relationships between activities, these diagrams effectively
eliminate the drawbacks of bar charts. Network techniques enable the
identification of critical activities that control the project duration. There are two
common types of network techniques widely used to represent activities and their
inter-relationships. The first type is known as arrow diagram method (ADM) in
which activities are represented by arrows and nodes connecting these arrows
are considered events or milestones. The second type is activity on node
diagram and is commonly known as precedence diagram method (PDM). In
PDM, nodes represent activities and connecting arrows represent the inter-
relationship among these activites. ADM can consider only one type of
relationship namely finish to start where as PDM can consider four different types
of relationships namely, Finish to Start, Finish to Finish, Start to Start and Start to

Finish (Nunnally, 1998).

Traditional scheduling techniques focus on project duration and give little
consideration for effective use of resources. However, contractors and site
superintendents are more concerned about effective use of resources rather than

critical paths or early project completion (Birrell, 1980; Kavanagh, 1985). The

main concern is that these techniques do not consider effective resource
utilization and for this reason are widely criticized in literature (Kavanagh 1985;
Birrell, 1980; Davies 1974). Moreover, these techniques produce large and
complex schedules when applied to repetitive activities and the complexity
increases with the increase in repetitions (Carr and Meyer, 1974). Hence it
becomes practically inapplicable for projects that comprise a large number of
repetitive activities such as a housing development project with 100 houses.
Another important limitation of traditional techniques is its inability to maintain
crew work continuity. Crew work continuity is the process by which a crew
working on a particular repetitive activity moves from one unit to another, without
any delay. This smooth movement should be planned in order to maximize
resource utilization and minimize idle time (Ashley, 1980; Kavanagh, 1985; El-

Rayes and Moselhi, 1997).

2.3 Techniques for Scheduling Repetitive Activities

Due to the limitations of the network techniques mentioned in the earlier section,
a number of techniques were proposed in the literature for scheduling projects
with repetitive activities. These methods can be grouped into two main
categories. The first category comprises of methods, which were developed to
schedule typical repetitive activities only. These methods are often referred to as
‘Line Of Balance’ (LOB) (Lumsden, 1968; Al Sarraj, 1990; Carr and Meyer,
1974). The second category includes methods which were developed to

schedule both typical and non-typical repetitive activities, and are often referred

to as ‘Linear Scheduling Method’ (LSM) (Russell and Caselton, 1988;

Chrazanwski and Johnston, 1986).

There are other techniques proposed in the literature for scheduling repetitive
activities utilizing the principles of either LOB or LSM, with the main objective of
maintaining crew work continuity. These techniques include ‘Cohstruction
planning technique’ (Peer, 1974; Selinger 1980), ‘Vertical production method’ (O’
Brien, 1975; Barrie and Paulson, 1992), ‘Time-Location matrix model’ (Stradal
and Cacha, 1982), ‘Disturbance Scheduling’ (Whiteman and lrwing, 1988),
‘Horizontal and Vertical Logic Scheduling’, (Thabet and Beliveau, 1994), ‘Linear

Balance Charts’ (Barrie and Paulson, 1992), ‘Velocity Diagrams' (Dressler 1980).

2.3.1 Line of Balance (LOB)

Line of Balance (LOB) method was developed by the U.S Navy in 1942 for
planning and control of repetitive projects (Lumsden, 1968). The method was
primarily designed and used in the industrial manufacturing applications. It was
employed by the industrial engineers in manufacturing to optimize output by
determining the required resources and speed for each stage. In industrial
manufacturing, products move along a production line unlike in construction
where the products are stationary and operatives move along a line. Due to this
difference, LOB method was modified in 1966 from its original manufacturing
industry purpose to enable its application to housing projects and was published

in a report by the National Building Agency (Programming, 1966). The developed

10

method was simple and the schedule can be represented by plotting the number
of units in Y-axis against the duration in X-axis. Repetitive activities are
represented by a separate inclined bar. There are several methods proposed in
the literature having the same name ‘Line of Balance’ (LOB) and sharing the
same concept (Lumsden, 1968; Al Sarraj, 1990; Arditi and Albulak, 1986). Al
Sarraj (1990) developed a formal algorithm for LOB to facilitate scheduling,
resource management and project analysis and control in order to provide a
mathematical alternative for the graphical LOB method. Arditi and Albulak (1986)
used network technique and LOB to schedule a highway project in an attempt to
compare the two methods. They concluded that LOB schedule is easy to

understand and requires less time and effort.

Even though LOB method has been found to have apparent advantages such as
1) maintaining crew work continuity, 2) generating resource driven schedules, 3)
providing clear and easy to produce schedules (Arditi and Albulak, 1986; Hegazy
et al, 1993), it has been criticized in the literature for a number of reasons.
Kavanagh (1985) indicated that LOB method was designed to model simple
repetitive production process and does not readily transplant into complex
construction projects. Neale and Raju (1988) attempted to refine LOB method in
a spreadsheet format by introducing activities that run concurrently. They
confronted complex relationships and concluded that it was practically infeasible
to draw the schedule in the form of a diagram. Arditi and Albulak (1986)

commented about the visual problems associated with the graphical LOB

11

diagram and suggested that different colors can be used to distinguish
overlapping activities. Neale and Neale (1989) mentioned that while using LOB
technique to monitor progress, it could show only a limited amount of information
and a limited degree of complexity. Another major disadvantage of LOB method
is its inability to schedule non-typical repetitive activities (Moselhi and El-Rayes,

1993).

2.3.2 Linear Scheduling Method (LSM)

Linear Scheduling Method (LSM) was developed to overcome the limitations of
LOB method. LSM has all the apparent advantages of LOB method and is
capable of scheduling typical and non-typical repetitive activities (Russell and
Caselton, 1988; Chrzanowski and Johnston, 1986; Moselhi and El-Rayes, 1993).
An important difference between LOB method and LSM is the graphical
presentation of the schedule. In LOB method, an activity is represented by two

parallel lines, whereas in LSM it is represented by a single line as shown in

Figure 2.1.

% VN 2 A
> S|

5 5 |-

4 4

3 3

2 2 |

! 620 30 poys !

Line of Balance (LOB) Linear Scheduling Method (LSM)

Figure 2.1 Graphical Representation of LOB and LSM

12

Johnston (1981) described the basic presentation format of LSM as having two
axes. The horizontal axis represents the project duration and the vertical axis
represents the number of repetitive units while separate diagonal lines represent
repetitive activities. He suggested that LSM schedule is simple and can convey
detail work schedule. Chrzanowski and Johnston (1986) empioyed CPM
technique and LSM to schedule a highway project in an attempt to evaluate the
capabilities of LSM. They concluded that LSM has several advantages such as:
1) simple and easy to understand graphical schedule and 2) availability of fairly
detail information without being confronted with the numerical data found in

network techniques.

2.4 Scheduling Models for Residential Housing Projects

In 1968, Lumsden published a report explaining the various aspects of LOB
method and how it can be applied for scheduling and tracking and control of
residential projects. The method was based on the fact that all houses have a
natural rhythm at which they should be built and any deviation from this rhythm
results in crew idle time. Natural rhythm of an activity is the time taken for a crew
to finish the activity in one house and move to the next house. For example, if a
construction activity in a single house takes 4 hours and the workweek includes

40 hours, then the natural rhythm of this activity is 10 houses per week.

The report suggests that the application of LOB method leads to an increase in

construction productivity, and accordingly a reduction in duration and total cost.

13

The advantages of applying this method to residential projects were highlighted
using two projects that included 187 and 88 low-rise houses, respectively. The
application of LOB to these projects was found to reduce, in some instances, the
time taken to build a house by one half and the labor requirement by one-third.
LOB method, however, can be used to schedule typical repetitive activities only,
and cannot consider non-typical repetitive activities, which are commonly found
in residential housing projects. As such, the LOB method cannot be effectively

applied in developing practical schedules for real-life housing projects.

Masoud and Diekmann (1997) proposed a simulation model to determine the
optimum number of houses in which work can start simultaneously. The model
determines the optimum number of housing starts in order to minimize the project
cost and duration, considering the effect of learning curve. The model was
developed using SLAM-II and consists of three major components: 1) model
network, 2) model control statement and 3) user-inserted code. Model network
represents the construction network for one housing unit. Model control
statement identifies the resource availability constraints and user-inserted code
considers different user specified learning rates. Similar to the LOB method, the
basic assumption of this model is that all activities are typical repetitive activities.
As such, the application of this model is also limited due to its inability to consider

non-typical repetitive activities.

14

2.5 Object-Oriented Modeling for Repetitive Construction

The present scheduling and control model for residential housing projects
extends and builds on a recently developed Object-Oriented Model for
scheduling of repetitive construction projects named LSCHEDULER (El-Rayes,
1997). This section provides an overview of LSCHEDULER and highlights its
main features and components. LSCHEDULER is capable of combining
algorithms of network scheduling techniques and resource-driven scheduling
techniques to schedule non-repetitive and repetitive activities, respectively. The
developed algorithm for scheduling repetitive activities satisfies three main
constraints: 1) logical precedence relationships, 2) crew availability and 3) crew
work continuity, and considers the impact of a number of practical factors
namely, 1) typical and non-typical activities, 2) crew availability period on site, 3)
utilization of single and multiple crews, 4) activity interruption, 5) sequence of
construction operations, 6) impact of weather and 7) effect of learning curve (El-
Rayes and Moselhi, 1998). The scheduling is performed in two stages: the first
considers the precedence relationships and crew availability constraints, and the

second complies with crew work continuity constraint.

In order to enable the integration of repetitive and non-repetitive scheduling
techniques, LSCHEDULER incorporates two types of activity objects: repetitive
and non-repetitive. In order to consider precedence relationships among
repetitive and non-repetitive activities, three different types of relationships were

proposed in LSCHEDULER. The first type is Regular relation where the

15

predecessor activity as well as the successor activity is non-repetitive. The
second type is the relation between two repetitive activities and is called
Repetitive relation. The third type is Hetero relation, which represents either the
relationship between two different types of activities (i.e. repetitive and non-
repetitive), or the relationship between two specific units of two distinct repetitive
activities. The model was developed using Object-Oriented Modeling (OOM)
concepts which utilizes classes and relationships to solve complex problems
(Martin, 1993). The model consists of 10 classes namely, Project, Project-Data,
Date, Activity, Regular-Relation, Repetitive Activity, Non-Repetitive Activity,
Repetitive-Relation, Hetero-Relation and Crew-Formation. The object model

representing the model classes is shown in Figure 2.2 (EI-Rayes, 1997).

Project class was designed to reflect the special characteristics of repetitive
construction projects and to perform a number of needed functions such as 1)
adding new data to the project, 2) sorting of activities and relationships and 3)
initiating schedule calculations. Project-Data class was designed as the most
generic class and includes only one string data member called name, which is
used as an identifier. Date class was designed to 1) convert a workday schedule
to a calendar date schedule, 2) determine the weekday of a calendar date, 3)
add and subtract duration to and from a calendar date and 4) calculate the
impact of weather for a specific period of time. Activity class was designed to
represent the general features of construction activities (repetitive and non-

repetitive). Non-Repetitive Activity and Repetitive Activity classes were designed

16

to represent the special characteristics of non-repetitive and repetitive

construction activities, respectively.

project duration-. - |

project; cost:” -

.....

* start_scheduling ()
- Cinsert()

‘Repetitive -
~Relation " -

“ no_relations~ - -

B sgnd;mgSs_s@ICF 0]
“-'send:mess_pred () .

!

Figure 2.2 Object Model Proposed by El-Rayes (1997).

17

Regular-Relation class was designed to consider the general aspects of
precedence relationships and also to represent the relationship among two non-
repetitive activities. It is capable of considering four types of relationships
namely, Finish to Start (FS), Finish to Finish (FF), Start to Start (SS) and Start to
Finish (SF). Repetitive-Relation class was designed to represent the precedence
relationship between two repetitive activities. Hetero-Relation class was designed
to represent either the precedence relationship between two specific units of two
different repetitive activities or the precedence relationship between a non-
repetitive and a repetitive activity. Crew-formation class was designed to
consider crew utilization data such as number of available crews, daily output

and cost while performing scheduling calculations.

The above mentioned Object-Oriented model was developed as a generic model
that can be applied to schedule all types of repetitive construction projects such
as: housing projects, high-rise buildings, highway construction, pipeline networks
and segmental bridge construction. Due to its generic nature, the model does not
consider the special characteristics of residential housing projects, and its unique
requirements. Specifically, it does not consider: 1) the impact of utilizing
subcontractors on scheduling of residential projects, 2) tracking and control of
this class of projects, and 3) the specific requirements of residential development
firms and subcontractors in generating effective and practical representation of

the developed schedule.

18

2.6 Summary

A review of recent literature has been presented in this chapter which includes
traditional scheduling techniques, techniques for scheduling repetitive
construction projects and scheduling models for residential housing projects. An
overview of an Object-Oriented model for scheduling repetitive construction has
also been presented. The findings of this review have been effectively used in
the development of the proposed model for scheduling and tracking and control

of residential housing projects, which is described in the following Chapters.

19

CHAPTER 3

PROPOSED MODEL

3.1 Introduction

This chapter presents the development of the proposed Object-Oriented model
for scheduling and tracking and control of residential housing projects. The model
is designed to comply with a number of practical factors commonly encountered
in real-life residential housing projects. In order to identify these practical factors,
a series of meetings were conducted with representatives of residential
development firms. The findings of both these meetings and a comprehensive
literature review are carefully considered in the development of the present
model. The model is developed using Object-Oriented Modeling concept, which
consist of three main stages: analysis, design and implementation (Rumbaugh et
al, 1991). This chapter presents the analysis and design stages of the proposed

model.

3.2 Object-Oriented Modeling

Object-Oriented Modeling attempts to satisfy the needs of the end user via real-
world modeling capabilities (Khoshafian and Abnous, 1995). Through Object-
Oriented concepts, complex problems are modeled as a set of simple objects.
These objects should reflect the real-world parameters such as a concept,
abstraction or any related matter, with clear boundaries and meanings for the

problem at hand (Rumbaugh et al, 1991).

20

Object-Oriented Modeling utilizes several major concepts such as encapsulation,
abstract data typing, inheritance and object identity (Khoshafian and Abnous,
1995). Using encapsulation, an object combines data, operations and functions
together and hides them from other objects in order to ensure their integrity
(Martin.J, 1993). A group of objects with similar properties (attributes), common
behavior (operations) and relations are grouped to form a class (Rumbaugh et al,
1991). In abstract data typing, the essential characteristics of an object are
identified and implemented using classes and is hidden from other objects.
Inheritance allows new classes to expand and build on the basis of an existing
parent or super-class. Each super-class can have several children or sub-
classes. Inheritance behavior enables sub-classes with identical functions, to be
inherited from a super-class, thereby avoiding duplication of functions. It also
provides a natural mechanism for organizing information according to the real-
world problem at hand. Object identity is the property of an object, which

distinguishes each object and can contain or refer to other objects.

There are several notations available for graphical representation of the
components of an Object-Oriented model in order to facilitate its development
(Booch, 1994, Rambaugh et al, 1991 and Martin, 1993). A notation similar to the
one proposed by Rambaugh et al (1991) is used in this thesis. The development
of an Object-Oriented model, in general, consists of three main stages: analysis,

design and implementation (Rumbaugh et al, 1991).

21

3.3 Analysis Stage

Analysis is the first stage in developing an Object-Oriented model. In this stage a
real-world problem is analyzed, in order to capture and model the problem and
identify its objects, functions and relationships to other objects using abstraction,
inheritance and object identity (Khoshafian and Abnous, 1995). The analysis
stage produces an object model which represents the static nature of the model
and a dynamic model which outlines the sequence of operations performed at
different stages (Rumbaugh et al, 1991). The first step in the analysis stage is to
clearly understand the nature of the problem at hand. In order to understand the
nature and special characteristics of scheduling and tracking and control of
residential housing projects, a comprehensive literature review was performed. In
addition, a series of meetings were conducted with representatives of various
residential development firms to understand the nature of residential housing
projects and to develop means and methods by which their needs and

requirements can be addressed.

3.3.1 Findings of the Meetings

A number of meetings were conducted with representatives of residential

development firms in Montreal and Toronto (see Appendix I). In these meetings

the representatives have indicated that:

1) Most development firms use some form of network techniques to schedule
housing projects. However, such techniques are considered ineffective and
impractical due to their inability to account for the repetitive nature of these

projects.

22

2)

3)

4)

9)

Most of the construction work in housing projects is performed by
subcontractors, who are more concerned about work continuity for their crews
than critical paths.

The data available to scheduie subcontractors are limited primarily due to the
practical nature of awarding construction contracts. In most cases these
contracts are awarded with an expected duration to finish an activity in one
housing unit or the whole project along with a unit price or a lump sum
contract. Hence, the schedule for subcontractors has to be developed using
the minimum available information.

The current techniques used in tracking and control of housing projects, and
determining their status as a whole is considered insufficient for an early
identification of potential construction problems. This is mainly attributed to
the large number of subcontractors and/or housing units. In order to facilitate
the determination of such problems, if any, it was suggested that the status of
an individual subcontractor or a particular housing unit be determined at any
given time in addition to the project status.

The efficiency of scheduling, tracking and control of residential housing
projects can be improved by producing effective and useful reports. These
reports should include a number of graphical and text reports in both
workdays and calendar days. Due to the large number of subcontractors and
housing units involved in a typical residential project, the representatives have
indicated the need to produce a separate schedule for each subcontractor

and for each housing unit in addition to the project master schedule. They

23

also indicated the importance of presenting the tracking and control reports in

an efficient graphical format to facilitate the identification of problems, if any.

The above findings along with those of the literature review are carefully
considered in the development of an object model during the analysis stage, as

described in the following section.

3.3.2 Object Model

An object model represents the static structure of the model. it presents the
objects, their data, functions and relationships to other objects. The purpose of
an object model is to describe the objects and to capture and reflect a real-world
problem. For example, a model for scheduling and tracking and control of
residential housing projects should identify and incorporate objects that are
essential to the scheduling and control process such as number of housing units,
activities and precedence relationships. The object model is represented
graphically by object diagrams containing object classes, their hierarchies and

relations to other objects.

Through inheritance, classes in an object model can be arranged in a hierarchy
and can be inherited by other classes. Data and functions common to more than
one class are grouped together to form a super-class. These common data and
functions are then inherited by sub-classes. In addition to the inherited data and

functions, these sub-classes includes additional data and/or functions making

24

them more specialized. Each level of hierarchy represents certain level of
specialization. A higher level of the hierarchy represents more generic super
classes, while each lower level represents more specialized sub classes. For
example, both repetitive and non-repetitive activiies have some common
attributes such as name and relation. These common attributes can be grouped
together to form a super-class called Acfivity. This super-class can then be
inherited by two of its sub-classes namely, Repetitive and Non-Repetitive,
thereby avoiding redefinition of common attributes. The concept of inheritance is
effectively utilized in developing the present object model for scheduling and

tracking and control of residential housing projects.

In order to consider the different types of activities and relationships included in a
housing project and identify the needed classes in the present object model, a
similar approach to that proposed by El-Rayes (1997) is utilized as shown in
Figure 3.1. In this approach two types of activity classes are developed
(Repetitive and Non-repetitive), and three types of precedence relationships are
designed (Regular relation, Repetitive reiation and Hetero relation). Regular
relation (Relation-a) is used to define a relation between two non-repetitive
activities. Repetitive relation (Relation-b) is developed to describe a relation
between two repetitive activities. Hetero relation can be used to represent a
relation between two specific units of two different repetitive activities (Relation-c)
or a relation between a non-repetitive activity and a repetitive activity (Relation-

d).

25

Foundation Framing Finish

Non-Repetitive @ Regular relation

5 Repetitive f Repetitive relation

¥) Hetero-relation
(©)

H Hetero-relation
)
Figure 3.1 Activities and Relationships of Housing Construction

The above classes are incorporated in the present Object model for scheduling
and tracking and control of residential housing construction. The present object
model makes use of inheritance and object hiding in order to design a hierarchy
of classes that includes 18 classes as shown in Figure 3.2. In this model, 10
classes (Project-Data, Project, Date, Activity, Regular-Relation, Repetitive, Non-
Repetitive, Hetero-Relation, Repetitive-Relation and Crew-Formation) are similar
to those proposed by El-Rayes (1997) and have been modified to suit the
scheduling process for residential development projects. The eight other classes
(Data-Base, Tracking-Control, Project-Control, Unit-Control, Sub-Control, Own-
Force, Sub-Contractor and View) are newly developed and incorporated in the

model as shown in Figure 3.2.

26

LZ

19po 393(qQ pasodold z'¢ ainbi4

sse|o padojaaap AimaN “()X "8|e0s MoYS
: “ A7 e|eag' X ejed
(L664 ‘sohey-13) ssepo payipowy [A SIS X Bieos
: (1500 (NS00 MOIA
uopejoossy Auepy oyaup e—— —— “lej01"qns “umo™png
aouejIBaYU| “ungTdx3 _"'umo
15007pul e —
1030B1U0D . ()eInpayos~pemioy. -
ONEION -qng 82104-UMO - T o

()6ord™ o™ ()Boid 108 ()ssasboud

josuonqns TjonuooTun “pyosTloid
60147 pyYss™ Boid Y™ *1509~WNH
fouon~ans | [ienuogiun “pyasfoid
jouo)
jonuog-gng | f1onuog-un -8fosd
L l J
Y
i ()smeysTpuy [W———
- _;| “'snieyg'Aeq ionuo)
e jonuon-Bupjoesy

T BUIpao TR

“(Jaseqejep yoseas

“'oN"MeID T80

eseg-ejeq

The top most generic class, Project-Data contains general data such as name,
number of units, measurement system. These general data are inherited by all its
sub-classes in the hierarchy. The second level of the hierarchy consists of
Activity and Regular-Relation classes, which are inherited from the super-class
Project-Data. The third level of the hierarchy consists of Repetitive and Non-
Repetitive classes derived from super-class Activity, and Repetitive-Relation and
Hetero-Relation classes derived from super-class Regular-Relation. At the fourth
level of the hierarchy, Own-Force and Sub-Contractor are derived from the
super-class Repetitive. At the second level of hierarchy, there is an independent
super-class, Tracking-Control, from which sub-classes Project-Control, Unit-

Control and Sub-Control are derived.

In addition to the above-described hierarchy of classes, five other classes are
incorporated in the present object model namely, Project, Date, Data-Base,
Crew-Formation and View. Project class is designed to perform necessary
functions at the project level such as adding a new activity or relationship and
initiating scheduling calculations. Dafe class is designed to develop calendar
date schedules and to convert workdays into calendar dates. Data-Base class is
designed to support the present model with a database where historical data can
be stored and retrieved for future use. Crew-Formation class is designed to
consider various crew utilization options and View class is designed to generate

graphical and text reports.

28

The Project class is designed to represent the characteristics of construction
project as a whole. As such, it is designed to store and process various project
data such as project activities, relationships and subcontractors, and therefore, it
has a one to many associations with Project-Data class (see Figure 3.2).
Similarly, the Activity class has one to many associations with Date and Data-
Base classes from which it obtains the calendar dates and crew related
information, respectively. Tracking-Control class has a one to many associations
with Activity class, thereby, enabling it to obtain information such as activity name
and start and finish dates. Repetitive class have one to many associations with
Crew-Formation, Repetitive-Relation and Hetero-Relation classes, all of which
will assist in scheduling of repetitive activities. Non-Repetitive class has one to
many associations with Regular-Relation class in order to consider relationships.
View class has one to many associations with Activity and Tracking-Control
classes, which allows it to extract necessary information in generating effective

reports.

3.3.3 Dynamic Model

As mentioned earlier, an object model describes its objects and their
relationships to each other at a single moment of time. However, attributes of
these objects are bound to undergo changes over a period of time (Rumbaugh et
al, 1991). These changes that take place over a period of time and the sequence
of operations that are performed during this period are described through a

dynamic model. The two major concepts of a dynamic model are events and

29

states. An event is a message sent from one object to another and is something
that happens at a point in time. A state of an object represents the values of its
attributes at one point in time. An object can send an event to another object,
which might change the state of the receiving object, or send an event to the

original sender object and/or to a third object.

o Statet
~?|__Dofunction-1 -

Do function-2 ™=

Figure 3.3 State Diagram

These events and changes in an object can be abstracted and represented by a
state diagram. A state diagram is a network of events and states, which
represent the important dynamic behavior of each object. These diagrams
describe the various states of an object, events that trigger transition from one
state to the other, and the various actions that are taken due to the state
transitions. A state diagram can be graphically represented as nodes and arcs as
shown in Figure 3.3. Nodes represent the states and the directed arcs are events
or messages from one object to the other. A state is drawn as a rounded box and
an event is drawn as an arrow from the receiving state to the target state. The
dynamic model formulated for the proposed scheduling and tracking and control
model includes a number of state diagrams. These state diagrams are explained

in the following section outlining the design stage of the present model.

30

3.4 Design Stage

Design is the second stage in developing an Object-Oriented model and it builds
on the analysis stage. The architecture of the proposed scheduling and tracking
and control model for residential housing projects is designed as shown in Figure
3.4. The model comprises of five major components namely Input module,

Scheduling module, Database Module, Control Module and Reports Module.

REPETITIVE

ACTUAL
PROGRESS

GRAPHICAL

TEXT OUTPUT OUTPUT

Figure 3.4 Architecture of the Proposed Model

31

Each module is composed of one or more classes and these classes contains
data and member functions designed to perform a number of calculations such
as scheduling, tracking and control and generating reports. The following section
describes each module and its associated class or classes. It gives a brief
discussion of each class, its data members and main member functions, and

presents important state diagrams explaining various states and messages.

3.4.1 Input Module

Input Module is designed to handle the user interface aspect of the proposed
model. All the user inputs are accepted and stored by this module. These inputs
can vary from general project data (e.g. name of the project, location and number
of units) to specific activity information (e.g. activity name, quantity and cost).
This module consists of two classes namely Project-Data and Project. Project-
Data is the most generic class in the hierarchy and Project class has a one to
many relationships with Project-Data. The Project-Data class is similar to that
developed by El-Rayes (1997) and is described in the literature review (section

2.5).

Project class has been modified and new data and functions have been added to
facilitate scheduling calculations for residential construction projects, and to
consider their special features and characteristics. It is designed to facilitate
intake of user input data and to save these data for future use. This class reflects

the typical characteristics of a residential housing project such as repetitive and

32

non-repetitive activities, different types of relations, activity performed by
subcontractors or developers’ own work force. Since this class accepts and
stores all input data, it acts as a search tree for all the other classes while
retrieving these data. Project class is designed to perform a number of needed
functions such as 1) accepting new data to the project, 2) sorting and arranging
activities, 3) sorting and arranging relationships among activities, 4) saving and
retrieving project data and 5) initiating scheduling calculations. The main data
members and member functions of Project class are listed in Tables 3.1 and 3.2

respectively.

Table 3.1 Data Member of Project Class

Data Data Type Description
No_Units Integer Number of housing units in the project.
Measurement_Unit String The unit of measurement to be used in

the project (S| system, Imperial system
or user specified).

Average_Indirect_Cost Float Average indirect cost of the project per
day.

No_Non_Repetitives Integer Number of non-repetitive activities in
the project.

No_Repetitives Integer Number of repetitive activities in the
project.

No_Subs Integer Number of subcontractors involved in
the project.

Project_Total_Cost Float Total project cost in $.

Project_Start A pointer | A pointer to a date object specifying the
user specified project start date.

Execution_Order Integer User specified integer value

representing the execution order of
housing units.

33

Table 3.2 Main Member Function of Project Class

Function Description

get_no_units() Determines the number of housing units in the project.

get_ex_order() Obtains the order of execution for the housing units in
the project.

start_scheduling () Initiates scheduling calculations.

display_messages() Displays error and other messages.

get_sub_data() Accepts subcontractor data such as name, expected
duration and availability period.

3.4.2 Scheduling Module

After the completion of data input, the general project data as well as the specific
activity data are passed on to the scheduling module. This module is designed to
perform numerous scheduling calculations for non-repetitive and repetitive
activities. While performing scheduling, the module considers a number of
practical factors commonly encountered in residential housing projects such as
the type of work force utilized (i.e. developers’ own force or subcontractor),
precedence relationships, execution order, crew availability period at site,

weather effect and learning curve.

This module comprises of ten classes. The data members and member
functions of these classes are carefully designed to perform specialized functions
in the scheduling process. Eight of these classes (Activity, Regular-Relation,
Repetitive, Non-Repetitive, Repetitive-Relation, Hetero-Relation, Crew-Formation
and Date) are derived on the basis of the model developed by El-Rayes (1997)
and were described earlier in section 2.5. These classes, however, are modified

and expanded to suit the scheduling process of residential housing projects. In

34

addition to these expanded classes, two new classes (Own-Force and Sub-
Contractor) are added to consider the specialized aspects of these types of
projects. The following section outlines the major modifications made in

Repetitive class and presents a brief description of the two new classes.

Repetitive class is derived from Activity class and is at the third level of hiierarchy
(see Figure 3.2). This class is designed to consider the special characteristics of
repetitive activities and to carryout its scheduling calculations. Moreover, this
class is expanded to include additional data and functions to consider the specific
requirements of residential housing projects such as utilizing developers’' own
force and/or subcontractors. Table 3.3 and 3.4 lists the newly developed data
and member functions, respectively.

Table 3.3 New Data Members of Repetitive Class

Data Data Type Description

Act_Perform_By Integer A user specified value indicating whether a
repetitive activity is performed by using
own force or by subcontractor. (0 and 1
represents own force and subcontractor,
respectively)

Data_Base Integer An integer value indicating whether the
user has opted to use database support
for crew information.

Act_Exe_Order A pointer A pointer to an array where the user
specified execution order of a repetitive
activity is stored. This data member is
activated only when the user specifies that
the execution order of an activity is
different from that applied to other
activities at the project level. it should be
noted that this array is initially assigned
the execution order of houses at the
project level, by default.

35

Table 3.4 New Member Functions of Repetitive Class

Function Description

find_act_perform() Determines whether the activity is performed by own
force or by subcontractor.

find_act_exe_order() Search for and determine the execution order of a
repetitive activity.

Own-Force class is designed to represent the work done in a repetitive activity
using the developers’ own work force. This class is derived from Repetitive
super-class and inherits all its data members and member functions. In addition
to the inherited attributes, specialized data members and functions are added to
reflect the specific aspects associated with utilizing the developers’ own work
force. These data members and main member functions are listed in Table 3.5

and 3.6, respectively.

Table 3.5 Data Members of Own-Force Class

Data Data Type Description
Dir_Cost_Own Float Budgeted direct cost for each repetitive
activity performed by developers’ own
force.
Total_Cost_Own Float Total budgeted cost for all the activities
performed by developers’ own force.

Table 3.6 Main Member Functions of Own-Force Class

Function Description

bud_own_cost() Invokes calculations to determine the budgeted direct
cost for each repetitive activity performed by
developers’ own force.

total_own_cost() Invokes calculations to determine the total budgeted
cost for all the activities performed by developers’ own
work force.

36

Sub-Contractor class is designed to consider the repetitive activities performed

by subcontractors. As stated earlier, subcontractors perform most of the

construction work in a typical residential development project. Hence, extreme

care is exercised in designing this class, which provides added flexibility and

practicality to the proposed model. This class inherits general data from its super-

class Repetitive and includes additional specialized subcontractor data and

functions. These data members and main member functions are listed in Table

3.7 and 3.8, respectively.

Table 3.7 Data Members of Sub-Contractor Class

Data Data Type Description

Sub_Name String Name of the subcontractor.

Contract_Type Integer Type of contract awarded to the subcontractor.
(i.e. unit price or lump sum contract).

Exp_Dur Integer Expected duration for the subcontracted activity
in one house or all housing units.

Sub_Cost Float Budgeted direct cost for each subcontracted
repetitive activity.

Total_Sub_Cost Float Total budgeted direct cost for all the activities

performed by subcontractors.

Table 3.8 Main Member Functions of Sub-Contractor Class

Function

Description

budget_cost_sub_unit()

sub_total_cost()

Invokes the cost calculations for an individual
subcontractor with a unit price contract.

Invokes the calculations to determine the total direct
cost for all the subcontractors involved in a project.

37

The functions activated by this module while performing scheduling calculations
differ according to the type of the activity (non-repetitive or repetitive) and
whether developers’ own work force or subcontractors are employed. Non-
repetitive activities are scheduled using network technique method and repetitive
activities performed by developers’ own force are scheduled according to the
resource driven scheduling algorithm proposed by El-Rayes (1997). Activities
performed by subcontractor are scheduled using the proposed algorithm

explained later in Chapter 4.

Functions performed in scheduling repetitive activities can be represented
through a state diagram for Repetitive class as shown in Figure 3.5. The state
diagram shows the changes in the state of the class along with the messages it
receives and/or sends. The scheduling calculations for repetitive activities are
initiated in order to identify the start and finish date of each housing unit. This is
followed by identifying whether the repetitive activity is performed by developers’
own force or subcontractors. The activity, then, examines if it has received
information from all its predecessor activities. [f this condition is true, forward
pass calculations are initiated by sending a message to Crew-Formation or Sub-
Contractor class, which in response identifies the early start and finish date for

each housing unit.

38

modify_ES

check :

performed by own
force or subcontractor
. 7/

check :
message received
from all predecessor
activities

start forward pass <€
calculations
P
check :
Last activity

(Successor = 0)
.

/

start backward pass
calculations
.
7 Y *
send messages to all - ~
successor activities send messages to all
predecessor activities

Figure 3.5 State Diagram of Repetitive Class

After finishing the forward pass calculations, each activity object checks whether

it has any successor activity. If so, it sends messages to all of its successor

39

activities informing them the early start and finish dates in all housing units. If not,
backward pass calculations are initiated to determine the late start and finish
dates for each activity in each housing unit as shown in Figure 3.5. Backward
pass calculations are similar to those of forward pass, except they start from the

last activity and proceed to finish with the first activity.

3.4.3 Database Module

The proposed model includes a database support to store historical data that can
be retrieved for use in future projects. The data stored in the database includes
relevant crew data such as crew number, crew composition and crew cost. This
module is expandable and designed to enable the addition of new data, thereby
making it adaptable to growing demands. The module comprises of a number of
text files, representing the common activities of residential housing construction.
The data members and functions needed to perform storing, searching and

retrieving data are developed and grouped together in Data-Base class.

Data-Base is a stand-alone class which has a one to many relationship with
Activity class. An Activity object can retrieve data (e.g. crew daily output and
crew cost) from Data-Base class by sending a message or request. This class
performs a number of needed functions such as 1) adding new data to the
database, 2) searching the database to respond to a request from an Activity

object, 3) retrieving the requested data and 4) displaying all the available data.

40

The data members and main member functions of this class are listed in Table
3.9 and 3.10 respectively.

Table 3.9 Data Members of Data-Base Class

Data Data Type Description

DB_Crew_No String A specific crew number representing each
crew formation. This constant variable is
used as a key in the search process. (For
example, an excavation crew can have a
crew number such as B-12A (Means,
1999).

DB_Crew_Comp | String Gives a detail description of each crew
(For example, the above excavation crew
comprises of one equipment operator and
a hydraulic excavator of 1C.Y. capacity.

DB_Crew_Output | Float Crew daily output (Unit/ Day).

DB_Mat_Cost Float Material cost rate ($/Unit).

DB_Lab_Cost Float Crew labor cost rate ($/Day).

DB_Eqp_Cost Float Crew equipment cost rate ($/Day).

DB_Act_Name String Name of the activity that is used in the
search process.

DB_Select Integer An integer value representing the user

selection from the list of available crews in
the database for a particular activity.

Table 3.10 Main Member Functions of Data-Base Class

Function Description

add_to_database() | Allows new data to be added to the database.
search_database() | Invokes a search after receiving a message from an
Activity object.

display_database() | Displays all the successful search results so that the user
can select from them.

select() Exchanges the user-selected crew information data
(output, cost etc.) with the activity object. These
exchanged data are used in the scheduling calculations.

Data-Base class performs different set of functions in retrieving and storing data

as shown in Figures 3.6 and 3.7. While searching and retrieving data, this class

41

identifies the table corresponding to the activity requested by the Activity object

and displays it, so that the user can select among them.

P start search functions

r search the

Activity_ Name array
to identify the

_corresponding table ~/

- ~
Display table

v

save selection and
pass on the
information

N

P

-

Figure 3.6 State Diagram for Data-Base Class to Perform Search

(
start functions to add
new data to database
.

>

4 search the
Activity_Name array
to identify the
\corresponding table

P

open table

. + D,

(writes and saves nev?
data in the

corresponding table

v
e ~

close table
. v

Figure 3.7 State Diagram for Data-Base Class to Accept New Data

42

While storing new data, a set of functions are performed as shown in Figure 3.7.
The first function determines the database table corresponding to the activity
name to which new data are to be written. Once the table is identified, it is
opened and the new data are written and saved. It should be noted that the
function, which writes and saves new data, skips all the already stored data and
writes the data in the first available vacant line. This effectively eliminates the
possibility of loosing already stored data due to overwriting. Once the new data

are stored the table is closed, thereby making it available for future use.

3.4.4 Control Module

Control module is designed to consider the needed tracking and control features
for residential housing projects discussed earlier in the analysis stage. The
module receives the base-line schedule from the scheduling module and uses it
in the tracking and control calculations. At any given period of time, the user can
input the actual progress data and compare it with the planned progress. The
module performs tracking and control calculations at three different levels (i.e. at
the project, subcontractor and house). The cost and time performance of an on-
going project, an individual subcontractor or a particular housing unit is
determined using the developed algorithm explained later in Chapter 4. The
control module comprises of four classes namely, Tracking-Control, Project-

Control, Unit-Control and Sub-Control.

43

Tracking-Control class is at the highest level of the control module hierarchy (see
Figure 3.2). It has general data and member functions designed to perform
tracking and control calculations. Moreover, it has a one to many relationship
with Activity class. This relationship enables the Tracking-control class to obtain
the base-line schedule, activity and subcontractor details. The main purpose of
this class is to act as an interface class between the base-line schedule and its
subclasses. In addition, this class includes two data members and a member

function, which are listed in Table 3.11 and 3.12, respectively.

Table 3.11 Data Members of Tracking-Control Class

Data Data Type Description
Control_Day | Integer Date of reporting.
Status Integer An integer value representing the status of a project,

subcontractor or a housing unit (1, —1 and 0
represents the project is ahead, behind and on
schedule/budget, respectively).

Table 3.12 Main Member Functions of Tracking-Control Class

Function Description
find_status() Initiates the calculations needed to determine the
time and cost status of a project, subcontractor or a
housing unit.

Project-Control class is derived from Tracking-Control class, and accordingly it
inherits all the attributes of its super-class. This class is designed to determine
the time and cost performance status of an on-going project. It includes a number
of data members and functions that are listed in Tables 3.13, and 3.14,

respectively.

44

Table 3.13 Data Members of Project-Control Class

Data Data Type Description

Proj_No_Act_Comp Integer Number of activities completed till the day
of reporting.

Proj_No_Act_Prog Integer Number of activities started but not
completed on the day of reporting.

Proj_Act_Comp_Name | String Name of the activity that was completed.

Proj_Act_Prog_Name | String Name of the activity in progress.

Proj_Act_Comp_Start | Integer Start date of a completed activity.

Proj_Act_Comp_Finish | Integer Finish date of a completed activity.

Proj_Act_Prog_Per Float Percentage of work completed in an
activity in progress.

Proj_Schd_Cum_Prog |Apointer [A pointer to an array of size
[Project_Duration], which includes the
planned cumulative work of a project.

Proj_Act_Cum_Prog A pointer | A pointer to an array of size [Control_Day],
which includes the actual cumulative work
of the project.

Proj_Schd_Cum_Cost | Apointer {A pointer to an array of size
[Project_Duration], which includes the

planned cumulative cost of the project.

Table 3.14 Main Member functions of Project-Control Class

Function

Description

proj_schd_progress()

proj_act_progress()

Invokes the calculations to determine the planned
cumulative work. These calculations are carried out
using the developed algorithm explained later in
Chapter 4 (section 4.3.1).

Invokes the calculations to determine the actual
cumulative work.

The functions performed to determine the time and cost performance of an on-

going project can be represented through a state diagram for Project-Control

class as shown in Figure 3.8. This state diagram shows the sequence of the

functions that are activated and the messages received and/or sent.

45

1
start project control
calculations

v

- 2 Y

find cumulative duration

v

~
4 3

calculate | planned
cumulative work and cost
_ j
4

calculate actual
cumulative work

v

s
find planned duration of
an activity in progress

v

7 N

[}
Compare planned vs
(_ actual & find status J

~

N\

-

S/

Figure 3.8 State Diagram of Project-Control Class
The first step in project tracking and control calculations is invoked by a message
or request from Tracking-Control class, which in-turn initiates control calculations.
The second step determines the cumulative duration of all activities (repetitive
and non-repetitive), by sending and receiving messages from Activity class. The
third step calculates the planned cumulative work and cost according to the
base-line schedule and the fourth step determines the actual cumulative work
according to the actual progress data input. The calculations in the third and
fourth steps are performed using the proposed tracking and control algorithm
explained later in Chapter 4 (section 4.31). The fifth step obtains the planned

duration of an activity in progress by sending a message to the Activity class and

46

accordingly calculates the percentage of work completed. The final step
compares the actual and planned performance to determine the time and cost

status of the project, and sends a message to the Tracking-Control class.

Unit-Control class is derived form Tracking-Control super-class and is designed
to determine the progress status of a single house in a housing development
project. In addition to the generalized data inherited from its super-class, Unit-
Control class includes additional specialized data members and functions as
listed in Table 3.15 and 3.16, respectively. The sequence of functions performed
by Unit-Control class is similar to that of Project-Control class (see Figure 3.8),
except for that the data corresponding to a particular housing unit are considered
instead of the whole project.

Table 3.15 Data Members of Unit-control Class

Data Data Type Description
Unit_Control_No Integer House number for which the status is
to be determined. (e.g. house # 5).
Unit_Control_Comp Integer Number of activities completed in this
particular housing unit.
Unit_Control_Prog Integer Number of activities in progress in this
housing unit.
Unit_Control_Comp_Name | String Name of completed activities.
Unit_Control_Prog_Name | String Name of activities in progress.
Unit_Control_Comp_Start | Integer Start date of completed activities.
Unit_Control_Comp_Finish | Integer Finish date of completed activities.
Unit_Control_Prog_Per Float Percentage of work completed in

activities in progress.
Unit_Control_Schd_Prog Apointer |A pointer to an array of size
[Unit_Duaration], which includes the
planned cumulative work of a housing
unit.

Unit_Control_Act_Prog Apointer | A pointer to an array of size
[Control_Day], which includes the
actual cumulative work.

47

Table 3.16 Main Member Functions of Unit-Control Class

Function

Description

unit_control_schd_prog()

unit_control_act_prog()

Invokes the planned cumulative work calculations

for a unit.

Invokes the actual cumulative work calculation for a

unit.

Sub-Control class is inherited from Tracking-Control super-class and is designed

to determine the time and cost performance status of an individual subcontractor.

In addition to the inherited data, new data and member functions are included in

this class in order to consider the special aspects of tracking and control of

subcontractors. The data members and member functions of this class are listed

in Table 3.17 and 3.18, respectively.

Table 3.17 Data Members of Sub-Control Class

Data Data Type Description
Sub_Control_Name String Name of the subcontractor whose
performance is to be determined.
Sub_Control_Activity String Name of the activity performed by the
subcontractor.
Sub_Control_Units_Comp | Integer Number of houses completed by the
subcontractor.
Sub_Control_Units_Prog Integer Number of houses started by the
subcontractor but not finished.
Sub_Control_Comp_Start Integer Start date of completed houses.
Sub_Control_Comp_Finish | Integer Finish date of completed houses.
Sub_Control_Prog_Per Float Percentage of work completed.
Sub_Duaration Float Planned duration of the activity
performed by the subcontractor.
Sub_Control_Schd_Prog Apointer |A pointer to an array of size
[Sub_Duaration], which includes the
planned cumulative work of the
subcontracted activity.
Sub_Control_Act_Prog Apointer |A pointer to an array of size

includes the
of the

[Control_Day], which
actual cumulative work
subcontracted activity.

48

Table 3.18 Main Member Functions of Sub-Control class

Function Description
sub_control_schd_prog() | Invokes planned cumulative work calculations.
sub_Control_act_prog() Invokes actual cumulative work calculations.

The functions performed and the messages exchanged by Sub-Control class in
order to determine the status of a subcontractor can be represented by a state
diagram as shown in Figure 3.9. The first step in sub-control calculations is
invoked by a message from Tracking-Control class. This message performs two
tasks: 1) provides the Sub-Control class with the name of the subcontractor
whose performance is to be evaluated and 2) initiates tracking and control
calculations. The second and third steps determine the activity performed by this
particular subcontractor and the planned cumulative duration of this activity,
respectively. This is achieved by sending and receiving messages to and from
Activity class. The fourth step calculates the planned cumulative work and cost
performance according to the developed base-line schedule and the fifth step
determines the actual work progress according to the actual progress input data.
The sixth step, exchanges messages with Activity class, whenever needed, to
obtain the planned duration of the subcontracted activity in housing units in which
work has started but not finished, in order to calculate the percentage of work
completed. The final step determines the time and cost status by analyzing the

planned and actual performance and informs the Tracking-Control class.

49

é 1)
start sub control
calculations

v

2
find activity performed by
the subcontractor

v

3
find planned cumulative
duration for the activity)

/

\

3
-~
4 4
calculate planned
\ cumulative lvork & cost)
5 N\
calculate actual
cumulative work)
¢ ™
6

find planned_duration for
Khousing units in progress)(

r 7)
compare planned vs.
S actual and find status)

Figure 3.9 State Diagram for Sub-Control Class

3.4.5 Reports Module

The reports module is the last of the five modules comprising the proposed
scheduling and tracking and control model for residential housing projects. This
module is designed to provide two types of outputs (i.e. text and graphical output)

as shown in Figure 3.4. The needs and requirements of residential development

50

firms discussed earlier in the analysis stage are carefully considered in the
design of this module. The module is capable of producing both graphical and
text outputs, specifically designed for residential housing projects. Functions and
data members, which perform various calculations and display reports are
developed and grouped together in View class. View class is designed as a
stand-alone class, which has one to many relationships with Activity class and
Tracking-Control class (see Figure 3.2). These relationships enable the View
class to extract the entire schedule and control information needed to generate
and display various reports. Data members and main member functions of the

View class are listed in Table 3.19 and 3.20, respectively.

Table 3.19 Data Members of View Class

Data Data Type Description

Scale_X Float Value by which the X-axis is equally divided.
This value varies according to the item
represented by the X-axis and its quantity. (e.g.
if the project duration is 60 days, then the X-
axis will be equally divided into 60 sections
when displaying the graphical project schedule.)

Scale_Y Float Value by which Y-axis is equally divided.

Cstring String A string to represent characters used in
displaying reports.

Font Integer An integer value representing the size of font
used to produce the reports.

Developer String Name of the project development firm.

Scheduler String Name of the person preparing the schedule.

Location String Name of location of the project.

51

Table 3.20 Main Member Functions of View class

Function

Description

show_scale_x()
show_scale_y()

show_font()
graphical_output_nonrep()

graphical_output_rep()
project_schedule_workday()
project_schedule_calendar()
graphical_output_subcontract()
unit_schedule_workday()
graphical_output_progress__
curve()
graphical_output_sub_progress

_curve()

graphical_output_unit_progress
_curve()

graphical_output_cost_curve()

control_resuit()
project_summary()

Calculates and divides the X-axis to equal
sections.

Calculates and divides the Y-axis to equal
sections.

Displays character variables in reports.
Displays the schedule for all non-repetitive
activities in the project in a graphical format.
Displays the schedule for all repetitive activities
in the project in a graphical format.
Produces the project schedule
workdays.

Generates project schedule report in calendar
dates.

Produces the schedule for a particular
subcontractor in a graphical format.

Produces the schedule for each housing unit in
workdays.

Generates a graph displaying the planned and
actual work progress curves for the project.
Generates a graph displaying the planned and
actual work progress curves for a
subcontracted activity.

Generates a graph displaying the planned and
actual work progress curves for a particular
housing unit.

Generates the planned cumulative cost curve
for the project.

Displays the tracking and control resulits.
Displays the summary of the project.

report in

52

1)
start functions to produce
the requested report

v

2
do report calculations

Text Graphics
~ ™ - N
31 41
do_text_report() show_scale_X ()
* / N * J
) a ™
3.2 4.2
display_text_report() show_scale_Y()
N J \ * J
4.3
plot ()
- ¢ J
4.4
display_graphics_
report ()

Figure 3.10 State Diagram for View Class

A state diagram for View class can be used to represent the sequence of
functions performed in generating a report as shown in Figure 3.10. The first step
in this sequence is activated by a message from Project class, which informs the
View class of the type of report to be produced. The second step performs the

needed calculations to generate the report by exchanging messages with Activity

53

and/or Tracking-Control class. The third step in this sequence is activated in
order to produce and display the text format report. The fourth step is invoked
when the produced report is of the graphical format as shown in Figure 3.10. The
functions performed in the fourth step include 1) dividing the X-axis equally
according to the item it represents (e.g. project duration), 2) dividing the Y-axis
(e.g. number of housing units), 3) plotting the curves and/or lines needed for the

report, 4) displaying the generated report.

3.5 Summary

An Object model for scheduling and tracking and control of residential housing
projects has been presented in this chapter. The proposed model consists of five
modules namely, Input module, Scheduling module, Control module, Database
module and Reports module. The model is developed using Object-Oriented
modeling concepts. In order to identify the practical factors affecting the
scheduling and control of residential housing projects, a number of interviews
were conducted with the representatives of residential development firms. The
findings of these meetings are outlined in the analysis stage and were carefully
considered in the model development. An overview of the model classes, their
data members and member functions along with a number of important state
diagrams have also been presented. The following Chapter presents the design
of a scheduling algorithm for subcontractors and a tracking and control algorithm

that are incorporated and used in the present model.

54

CHAPTER 4
PROPOSED SCHEDULING AND CONTROL ALGORITHMS

4.1 Introduction

This chapter presents the development of algorithms for scheduling
subcontractors and for tracking and control of residential housing projects. The
development of these two algorithms builds on the analysis and design stages,
and considers a number of practical factors commonly encountered in residential
housing projects highlighted in previous Chapters. The scheduling calculations
for subcontractors are performed by the Crew-Formation and Sub-Contractor
classes. Tracking and control calculations are performed by Tracking-Control
class and its sub-classes. These calculations are performed by exchanging

messages among various classes.

4.2 Scheduling Algorithm for Subcontractors

As stated earlier, most of the construction tasks in a residential housing project
are performed by subcontractors. In many instances, the data available to
schedule repetitive activities performed by subcontractors are limited. More often,
construction contracts are awarded to subcontractors with an expected duration
to finish a housing unit or all housing units along with a unit price or lump sum
contract. Hence, in most cases the schedule for subcontractors have to be
developed only with the expected duration that will take to finish construction

work in a house or all houses.

55

The present scheduling algorithm for subcontractors expands on the recently
developed algorithm for resource-driven scheduling of repetitive activities (El-
Rayes and Moselhi, 1998) in order to consider the special features of scheduling
subcontractors. The present algorithm considers three major constraints namely,
1) precedence relationships, 2) subcontractor availability period and 3) crew work
continuity. Precedence relationship constraint represents the job logic among
activities. Subcontractor availability constraint depends on the availability period
of a subcontractor on site and its impact on the developed schedule. Crew work
continuity can be provided if the schedule allows a construction crew to finish an
activity in one house and be able to move to the next without delay. This smooth
movement of crews is of utmost importance to subcontractors since they are
more concerned about continuity of work for their crews than critical paths or
early completion. Application of crew work continuity provides an effective
resource utilization that leads to minimum idle time and/or reduction in hiring and

firing.

A number of practical factors commonly encountered in scheduling repetitive
activities performed by subcontractor are also considered in the present
algorithm. These factors include: 1) expected duration of a housing unit or all
housing units, 2) typical and non-typical repetitive activities, 3) sequence of
construction operations and 4) type of contract (i.e. unit price or lump sum). The
algorithm is applied in two stages (see Figures 4.1 and 4.2) to determine the start

and finish dates of each housing unit. Stage 1 considers the precedence

56

relationships and subcontractor availability constraints and stage 2 considers

crew work continuity constraint.

Input data required for the present algorithm are: 1) number of housing units, 2)
earliest available date of the subcontractor, 3) estimated construction duration
either in a single housing unit (e.g. 2 workdays to finish carpeting in a house) or
all housing units (e.g. 30 workdays to finish carpeting in 20 houses) and 4)
execution order of the housing units. It should be noted that the algorithm is
designed to provide practicality and flexibility in its requirement for data input. It
allows the user to input the estimated duration needed by the subcontractor to
complete the construction work in either: 1) a single housing unit or 2) all housing
units. For the first option, the algorithm utilizes the provided construction duration
for a single housing unit as such in the scheduling calculations. For the second
option, however, the algorithm calculates the duration for each housing unit
based on the provided duration for all housing units. This is achieved by
determining the required productivity (i.e. Total quantity of work in all housing
units / expected duration) of the subcontractor, and accordingly calculating the

duration.

4.2.1 Stage 1
For each repetitive activity performed by subcontractor n, the scheduling
calculations starts by initializing the possible start array (PS[n]), with the user-

specified early available date as follows:

57

PS[n]=sub_avail_start[n] (4.1)
Where,
PS[n] :— next possible start of subcontractor n,
sub_avail_start[n] :— user-specified early available date of subcontractor n at site.
The algorithm allows the user to specify the earliest available date of the sub-
contractor on site. However, it should be noted that the algorithm provides a
default value of zero, indicating that the sub-contractor can be at site whenever
needed, uniess otherwise specified. Having initialized the possible start array, the
algorithm proceeds with scheduling calculations as shown in Figure 4.1. For each

housing unit (j), the algorithm:

1) Determines whether the provided construction duration is for a housing
unit or for the entire housing project and accordingly proceeds with the
calculations. If the provided duration is for a housing unit, then this duration is
used as a direct input in the calculations and skips to step 5. Otherwise,
calculations to determine the duration of each housing unit is performed

(steps 2 to 4).

2) Calculates the total quantity of work to be performed by the subcontractor.
This is determined by adding the quantity of work in each housing unit (j=1 to
j=J) in loop 1, where, J is the total number of housing units, as follows:

Total_Qty[n]=Total_Qty[n]+Qty[j] 4.2)

58

Early_Startik] =PS[n]

" *i‘*"’

8) Finish[k]=Early_Start[k]+Dur{k],

PS[n]=Finish[k]

Figure 4.1 Scheduling Algorithm for Subcontctrs

59

i Shift{k] = delta

&L
Early_Start{j] =Early_Start{j]+Shiftj]
Finish[j] =Finish[j] + Shift[j]

Where,

Total_Qty[n] :- total quantity of work to be performed by subcontractor n,

Qty[j] :— quantity of work in each housing unit j.

3) Determines the productivity of the subcontractor per day, as follows:
Prod[n]= Total_Qty[n] / Exp_Dur (4.3)

Where,

Prod[n] :— daily output of the subcontractor n,

Exp_Dur :— user-specified expected duration to finish the activity in all

housing units.

4) Calculates the duration of each housing unit (j=1 to j=J) using the required
productivity determined in step 3 in loop 2 as follows:

Dur{j]=Qty/Prod[n] (4.4)
Where,

Dur{j] :— Duration of housing unit j.

5) ldentifies the housing unit in conformity with the user-specified execution
order, as follows:

k = orderfj] (4.5)
Where,
Order[j] :— user-specified execution order,

k :— unit number that satisfies the user-specified execution order.

60

The algorithm provides the user with three options to specify the execution
order of housing units. These are 1) ascending order (order{j]= 1,2,3,4...J), 2)
descending order (order[j] = J, J-1, J-2,...,3,2,1) and 3) user-specified order
(orderfj] = 3,1,4,6,J.... 5) where, J is the number of housing units. The
algorithm is designed to provide ascending order as default value, unless

otherwise specified.

6) Calculates the possible early start date that satisfies the logical precedence
relationships and assigns to ‘Early_Start’ variable as follows:

Early_Start[k] = possible_early_start (4.6)
Where,
Early_Start[k] :— early start date of housing unit k,
possible_early_start :— earliest possible start of housing unit k due to

precedence relationships.

7) Examines whether the assigned early start date complies with the
subcontractor availability period. This is determined by checking whether the
assigned early start of housing unit k is greater than or equal to possible early
start date (PS[n]) of subcontractor n. If this condition is false, the early start
date of unit k is assigned the user-specified available date for the

subcontractor (PS[n]). Otherwise skips to step 8.

61

8) Calculates the finish dates of each housing unit and assigns it to the

possible start array as follows:

Finish[k] = Early_Start[k] + Dur[k] 4.7)
PS[n] = Finish[k] (4.8)
Where,

Finish[k] :— finish date of housing unit k,

Dur{k] :— Duration of housing unit k.

9) Repeats steps 1 to 8 in order determine the start and finish dates of all
units (j=j+1 to J) in loop 3 as shown Figure 4.1. As such, the developed
schedule complies with precedence relationships and subcontractor

availability period.

4.2.2 Stage 2

As stated earlier, the subcontractor schedule developed in stage 1 does not
guarantee work continuity for the construction crews. This crew work continuity
criteria is considered in stage 2 of the proposed algorithm. As shown in Figure
4.2 there are idle time in several units (1,5,7,9 and 10). In order to eliminate crew
idle time and to maintain crew work continuity, the developed schedule is shifted.
The shift needed is calculated for all housing units assigned to each
subcontractor n in loop 4 and 5 as shown in Figure 4.1. This required shift is

determined by adding the idle times in all units.

62

o }
O
[
=3
Q
c
3
~~

-

-~ N W hAr OO DO ©
i
|
i
!
i
f
|
|

. | | "“Duration (Days)
4 8 12 16 20 24 28 32 >

Figure 4.2 Stages 1 and 2
The calculated required shift is used to shift the scheduled start and finish

dates of stage 1 in loop 5 as follows:

Early_Start[j]=Early_Start[j]+Shift[j] (4.9)
Finish[j]=Finish[j]+Shift[j] (4.10)
Where,

Shiftfj] :— Required shift to the start and finish dates of unit j to comply with

crew work continuity constraint

4.3 Tracking and Control Algorithm

The purpose of the developed tracking and control algorithm is to determine the
time and cost status of an on-going project at three different levels: 1) project, 2)
housing unit and 3) subcontractor. Tracking and control calculations are

performed by the control module, which comprises of Tracking-Control super

63

class and three of its sub-classes namely, Project-Control, Unit-Control and Sub-
Control (see Figure 3.2). Depending upon the user request of whether to
determine the status of the project, a particular housing unit, or an individual
subcontractor, Tracking-Control object sends a message to one of the

corresponding sub-classes invoking the necessary calculations.

The proposed algorithm is applied in three stages to determine the time and cost
performance of a project as a whole, a particular housing unit, or an individual
subcontractor. The calculations performed in these three stages are shown in
Figure 4.3. The first stage determines the planned cumulative work and cost for
each workday according to the developed base line schedule. The second stage
calculates the cumulative actual work performed (AWP) up to report date (r)
based on the user-specified actual progress data. The third stage first determines
the planned duration for work performed (PDWP) and the budgeted cost for work
performed (BCWP) as shown in Figure 4.3. This stage then compares the actual
and planned duration for work performed (i.e. ADWP and PDWP) in order to
calculate the schedule variance (SV). The SV value can be 0, <0 or >0,
representing on, behind or ahead of schedule, respectively. The cost status is
determined by comparing the budgeted cost for work performed (BCWP) to the
actual cost for work performed (ACWP) to calculate the cost variance (CV). The
value of CV can be 0, >0 or <0 representing on, under or over budget,

respectively.

64

g9

suonenodje) jos3uo) pue Bunjoel] ¢y aunbiy

uopeing
A
(¢ obeyg)
(dMav) pauiopad
IO 10} Uojjeinq [emjoy
=
o
-
x
g
(¢ obess)
(dMV) pawwopad Yo [enjoy
(1 eberg)
YOM pauueld
(Loberg)
(smog) ainpayps . e
3O Jo} 1509 pajabpng....."

v

H
* (¢ obeig) (¢ abe)g)
P () ! (dMad) pawopad
: aoueep ! HOMJoj uojjeing pauueld
» 3INPayYas |
m N ’\...x...
m “ \.s\\..
m [] g ...\...
.w.... et “ /. ...\..... Am mmmuwv
: f (dMD8g) pauriopad
: ' YIOM 10} 1509 pajabpng
: |
P (¢ obe)g)
........ (NO)
ouBlIeA 1S0)

(dMOV) patLiopiad 310M 10} 1509 fenjoy

p oep uodoy

($) 3s0D

4.3.1 Project Control

Project-Control class is designed to perform the above-described calculations in
order to determine the time and cost status of an on-going residential housing
project. The input data needed for these calculations include: 1) number of non-
repetitive activities in the project, 2) number of repetitive activities in the project,
3) planned start and finish dates of activities, 4) type of work force utilized (i.e.
developers’ own force or subcontractors, 5) type of contract awarded to
subcontractor, if any (i.e. unit price or lump-sum), 6) total indirect cost of the
project per day, 7) report date, 8) actual progress data such as number of
activities completed and their actual start and finish dates, number of activities in
progress and percentage completed in these activities, and actual construction

cost spent up to the report date.

The algorithm is applied in three stages as shown in Figures 4.4, 4.5 and 4.6.
The purpose of the first stage is to determine the planned cumulative work and
cost for each workday according to the developed base-line schedule. In order to
achieve this, the first stage of the algorithm performs the following 11 steps which

are designed to:

1.1) Initialize the planned progress and cost arrays with zero values which will
be replaced by the calculated planned cumulative work and cost in the
subsequent steps for each work day (d=1 to PD), as follows:

Plan_Work [PD]= 0.0 (4.11)

66

Plan_Cost [PD] = 0.0 (4.12)
Where,
PD :— planned project duration,
Plan_Work :— planned cumulative work percentage array,

Plan_Cost :— planned cumulative cost array

1.2) Determine the total cumulative duration of both repetitive and non-
repetitive activities in loop 1 as follows:

Cum_Dur = Cum_Dur + Plan_Dur{no_act] (4.13)
Where,
Cum_Dur :- total cumulative duration of all activities,

Plan_Dur[no_act] :— Duration of a particular activity.

1.3) Execute loop 2 to determine the planned cumulative work and cost for
each workday starting with d=1 to PD. In this step, the algorithm starts by
initializing the variables representing the planned cumulative work and cost
for workday d to zero at the beginning of loop 2 as follows:

Plan_Work[d] = 0.0

Plan_Cost{d] = 0.0

67

1.1) Plan_Work[PD] =

!

Number of activities n

no_act=no_act + 1

v

Eff_Dur=d - early_start[i]
Plan_Work[d] = Plan_Work[d}+ (Eff_Dur /
Cum_Dur) x 100
Plan_Cost[d] = Plan_Cost{d]+ Total_Cost[i]®

Plan_Work[d]= Plan_Work[d] + (Plan_Durfi] /
Cum_Dur) x 100 L
Plan_Cost[d]= Plan_Cost[d] + Total_Cost[i] .

Figure 4.4 Project Control Algorithm (Stage 1a)

68

1.4) Determine the progress status of non-repetitive activities first. In this
step, the algorithm starts by examining whether non-repetitive activity i has
started prior to day d. If this condition is false, the next non-repetitive activity
(i=i+1) is considered. If this condition is true, the algorithm determines
whether the activity i is planned to be finished prior to day d. If this condition
is true, planned cumulative work and cost for non-repetitive activity i is
calculated as follows:

Plan_Work[d] = Plan_Work[d] + (Plan_Dur[i]/ Cum_Dur) x 100 (4.14)

Plan_Cost[d] = Plan_Cost[d] + (Total_Cost[i]) (4.15)
Where,

Plan_Dur]i] :- planned duration of non-repetitive activity i,

Total_Costfi] :— total direct cost of non-repetitive activity i.

If activity i has started but not finished by day d, the planned cumulative work
and cost are calculated by determining the percentage of work planned to be
completed by day d as follows:
Eff_Dur = d — early_start[i] (4.16)
Plan_Work[d] = Plan_Work[d] + ((Eff_Dur / Cum_Dur) x 100) 4.17)
Plan_Cost[d] = Plan_Cost{d] + (Total_Cost]i] d) (4.18)
Where,
Eff_Dur - time between the planned early start of activity i and day d,

Total_Costfi] d ._ total direct cost of non-repetitive activity i till day d.

69

It should be noted that the total direct cost of a non-repetitive activity (i), which
has started but not finished prior to day d (Total _Cost[i]%) is calculated
according to the time interval between the planned early start of the activity i
and day d (Eff_Dur), and the planned quantity of work to be finished during
this time interval. Repeat Step 1.4 for all non-repetitive activities (i=i+1 to |,
where | is the number of non-repetitive activities in the project) in nested loop

3 to determine the planned cumulative work and cost for day d.

1.5) Consider repetitive activities after completing the analysis of all non-
repetitive activities in loop 4 as shown in Figure 4.5. For each repetitive
activity m, determine whether the activity is planned to be started by day d. If
this condition is false, next repetitive activity m=m+1 is considered.
Otherwise, determine whether it is planned to be finished in all housing units
(= 1 to J, where, J is the total number of housing units) prior to day d. If this
condition is true, the planned cumulative work is calculated as follows:
Plan_Work[d] = Plan_Work[d] + (Plan_Dur[m] / Cum_Dur) x 100 (4.19)

Where,

Plan_Dur[m] :- planned duration of repetitive activity m.

1.6) Calculate the planned cumulative cost, which varies depending upon
whether the activity is performed by own force or subcontractors as shown in
Figure 4.5. If activity m is performed by subcontractors move to step 1.7. If it

is planned to be performed by own force, the planned total cost is calculated

70

by summing up the material, labor and equipment costs in all housing units (j)
as shown in loop 5 as follows:

Total_Cost[m] = Total_Cost[m] + (MC[j]+LC[]+ECIi]) (4.20)
Where,
Total_Cost[m] :- total direct cost of repetitive activity m,
MCIj] :— material cost of housing unit j,
LCIj] :— labor cost of housing unit j,

ECI[j] :- equipment cost of housing unit j.

1.7) Determine the planned cost of activity m in the case of employing a
subcontractor by first examining the type of contract awarded. Most of the
contracts awarded to subcontractors in a residential housing project are either
lump sum or unit price. The proposed algorithm considers both of these
contract types, embracing flexibility and practicality. The algorithm examines
whether the contract type is unit price or lump sum. If it is lump sum move to
step 1.8. If the contract is unit price, the planned total cost of activity m is

calculated in loop 6 as follows:

Total_Qty = Total_Qty+ Qty[j] 4.21)
Total_Cost , = Total_Qty x unit_price[m] (4.22)
Where,

Total_Qty :— total quantity of work to be performed in activity m,
Qty[j] :— quantity of work in each repetitive unit j,

unit_price[m] :— user-specified unit price for repetitive activity m.

71

Oﬂﬁd;t;p 1.4 (see Figure 4.4)

repetitive activity m=0

"Plan_Work[dFPlan, WorkidF(Plan_Durfm]/
Cum_Dur)x 100

Total_Costim]
=Total_Cost[m]+
(MC[J+LC[I+EC[j])

+Qtyfl]

Total_Qty=Total_Qty]

Total_Cost[m] 1.8)

=Total_Qty x
Unit_Price[m]

Total_Cost[m]=
lump_Price[m]

‘| Eff_Dur = d -early_startfj]

Plan_Work[dFPlan_
Work[d] + (Eff_Dur{j] /

Cum_Dur) x 100

Plan_Cost[dF Plan_
Cost[d] + Total_Cost[j]}°

Plan_Work[d]=
| Plan_Work[d] +
(Plan_Dufj] /
‘| Cum_Dur) x 100

Plan_Cost[d]
| =Plan_Cost{d]+
Total_Cost[j]

v

N

1.9) Plan_Cost[d] = Plan_Cost[d]+ Total_{(

1.11) Plan_Cost { d] = Plan_Cost{d}+(d x Ind_Cost)

d>PD

L YeS T ostage two - -
- (!?_igure 4.6) e

./

72

Figure 4.5 Project Control Algorithm (Stage 1b)

1.8) Assign the user-specified lump sum contract amount awarded to the
repetitive activity m, in case of a lump sum contract as follows:

Total_Cost[m] = lump_price[m] (4.23)
Where,

lump_price[m] :— user-specified lump-sum price for activity m.

1.9) Calculate the planned cumulative cost of all repetitive activities up to day
d by adding the total cost for each repetitive activity (m=1 to M) as follows:

Plan_cost{d] = Plan_Cost[d] + Total_Cost[m] (4.24)

1.10) Determine the work progress and cost of repetitive activities that have
stated but not completed prior to day d. The algorithm identifies repetitive
housing units which are finished and in progress and accordingly calculate
the planned cumulative work and cost in loop 7. The sequence of operation is
similar to that of non-repetitive activity (step 1.4) except that each housing
unit (j) is considered in place of a non-repetitive (i) activity as shown in Figure
4.5. Repeat steps 1.5 to 1.10 in order to consider all repetitive activities
(m=m+1 to M, where M is the total number of repetitive activities in the

project) in loop 4.

1.11) Modify the planned cumulative cost (Plan_Cost[d]) for day d to consider

the project indirect cost, as follows:

Plan_Cost [d] = Plan_Cost[d] + (d x Ind_Cost) (4.25)

73

Where,

Ind_Cost :— User-specified average indirect cost per day.

Repeat Steps 1.3 to 1.11 for all workdays (d =d+1 to PD) in loop 2, and
calculate the corresponding planned cumulative work and cost and move to

the second stage.

The purpose of the second stage is to calculate the cumulative actual work
performed (ACWI(r]) at the project level up to report date (r) according to the user
input as shown in Figure 4.6. In order to achieve this, the second stage performs

the following 3 steps which are designed to:

2.1) Initialize the variable representing the actual work performed (AWP[r]) to

zero, where r is the report date.

2.2) Calculate the cumulative actual work performed for the activities, which
are completed prior to report date r, in loop 8 as follows:

AWP[r] = AWP[r] + (Act_Dur[c] / Cum_Dur) x 100 (4.26)
Where,
Act_Dur[c] :- actual duration of completed activity c.
Repeat step 2.2 for all completed activities (c= c+1 to C, where C is the total

number of activities completed by report date r).

74

Yes

—

’ Stage3 | , loop 10

:, Lji'[3-1)-‘Tefn'p = 1’000, d=0] »

3.2) Temp1 =AWPIr] - Plan_Work[d]

— 3.3) abs(Temp1) < = abs(Temp)
PDWP[r] = d
Temp = Temp1

—»<_d>PD ——
Coeo s Diyes

3.4) ADWPF[r]=r, SV[r] = PDWP[r] - ADWPI]
BCWP[r] = Plan_Cost{ [PDWP[r]}
CVr] = BCWP[r] - ACWP[r]

END

)

_/

Figure 4.6 Project Control Algorithm (Stage 2 and 3)

75

2.3) Calculate the cumulative actual work performed for the activities that are

in progress on report date r in loop 9 as shown in Figure 4.6, as follows:
AWP[r] = AWPI[r] + (Plan_Dur{p] / Cum_Dur) x Per_Comp|p] (4.27)

Where,

Plan_Dur[p] :— planned duration of progressing activity p,

Per_Comp[p] - user-specified percentage of work completed in activity p as

of report date r.

Repeat Step 2.3 for all the activities (p=p+1 to P, where P is the total number

of activities in progress as of report date r) which are in progress and move to

third stage.

The objective of the third stage is to determine the planned duration for work
performed (PDWP) and the budgeted cost for work performed (BCWP), in order
to calculate the schedule variance (SV) and cost variance (CV). The steps in this

stage are shown in Figure 4.6 and are designed to:

3.1) Initialize a temporary variable (Temp) to a large number (e.g. 1000). This
large number will be replaced by the least difference between the planned

and actual cumulative work in the subsequent calculations.

3.2) Identify the day d that has a planned cumulative work value

(Plan_Work[d]) equal or closest to the calculated cumulative actual work

performed value (AWP[r]). This is achieved by identifying the difference

76

between the actual and planned cumulative work values for day d=1 to PD,
and assigns the resultant value to another temporary variable (Temp1) as
follows:

Temp1= AWP[r] — Plan_Work[d] (4.28)

3.3) Determine whether the absolute value of the second temporary variable
(Temp1) calculated in step 3.2 is less than or equal to the first temporary
variable (Temp). If this condition is true, the corresponding value of day d is
assigned to a variable representing the planned duration for work performed
(PDWP[r]), and the value of the second temporary variable (Temp1) is
assigned to the first temporary variable (Temp), thereby replacing it with a

smaller value.

Repeat steps 3.2 and 3.3 for all workdays (d=d+1 to PD) in loop 10. This
process will identify the day d, which represents the planned duration for work

performed (PDWPIr]) .

3.4) Determine the schedule variance (SV) and cost variance (CV) for the
project on report date r. The schedule variance is calculated as the difference
between the planned duration for work performed (PDWPJr]), identified in
steps 3.1 to 3.3, and the actual duration for work performed (ADWP[r]) on
report date r, as follows:

ADWPIr]=r (4.29)

77

SV[r] = PDWPI[r] — ADWPIr] (4.30)
Where,
SV[r] = schedule variance that represents the status of the project with
respect to time on reporting date r.
A schedule variance value of zero represents that the project is as per
schedule. Negative and positive values represent the project is behind and
ahead of schedule, respectively.
The cost variance (CV) is calculated as the difference between the budgeted
cost for work performed (BCWPJr]) and the actual cost of work performed

(ACWRPIr)), as follows:

BCWHP[r]=Plan_Cost{PDWPIr]} (4.31)
CV[r] =BCWP[r] - ACWPI[r] (4.32)
Where,

CVI[r] :- cost variance that represents the status of the project with respect to
cost on report date r.
ACWRPIr] - actual cost for work performed based on the user-specified actual
cost till report date r.
A cost variance value (CV) of zero represents that the project cost is as per
budgeted. Negative and positive values represent the project is above and

below budgeted cost, respectively.

78

4.3.2 Housing Unit Control

The purpose of the unit control algorithm is to determine the time and cost status
of a particular housing unit. The algorithm performs the necessary calculations to
determine the status of the housing unit as requested by the user. The input
needed for these calculations include: 1) number of the housing unit (e.g. house
10) for which the performance is to be determined, 2) number of activities to be
performed in this particular housing unit, 3) planned start and finish dates of all
activities, 4) type of work force utilized (i.e. own force or subcontractors), 5) type
of contract awarded to the subcontractor (i.e. unit price or lump sum), 6) reporting

date and 7) actual progress data.

The algorithm is implemented in three stages. The first stage calculates the
planned cumulative work and cost. The second stage determines the actual
cumulative work and the third stage identifies the time and cost performance.
Unit control algorithm is similar to the one developed for project control explained
in the earlier section. However, the data corresponding to a housing unit such as
duration, number of activities, start and finish dates of varies activities in a

particular unit are used in the calculations instead of the overall project data.

4.3.3 Sub Control
The purpose of the sub control algorithm is to evaluate the time and cost
performance of an individual subcontractor. The input needed for this algorithm

include: 1) name of the subcontractor for whom the performance is to be

79

evaluated, 2) number of housing units assigned for the subcontractor, 3)
scheduled start and finish dates of the activity in each unit, 4) type of contract
awarded, 5) reporting date, 6) actual progress data. These input data are used in
the calculations to determine whether the subcontractor is ahead or behind
schedule and over or under paid. The algorithm is applied in three stages and is
similar to the project control algorithm explained in section 4.3.1. However, the
data corresponding to a subcontractor are used in the tracking and control

calculations, instead of the overall project data.

4.4 Summary

Two algorithms, one for scheduling subcontractors and the other for tracking and
control of residential housing projects have been presented in this chapter. A
number of practical factors commonly encountered in these types of projects are
considered in the development of both algorithms. The scheduling algorithm for
subcontractors is applied in two stages. The first stage complies with precedence
relationships and subcontractor availability constraints and the second complies
with the crew work continuity constraint. The proposed tracking and control
algorithm is implemented in three stages. The first and second stage calculates
the planned and actual cumulative work and cost, respectively. The third stage
analyzes the results of the previous two stages and evaluates the time and cost
performance. The algorithm can be applied at three levels (i.e. project, housing
unit or subcontractor) of an on-going project, enabling easy and early detection of

construction problems, if any.

80

CHAPTER S
IMPLEMENTATION OF THE PROPOSED MODEL.:
RESIDENTIAL PLANNER

5.1 Introduction

The implementation stage of the proposed scheduling and tracking and control
model for residential housing projects is presented in this chapter. This stage is
the third and final stage of the model development (Rambaugh et al, 1991). The
model is implemented as a Windows application using Visual C++ 6.0 and
Microsoft Foundation Class (MFC), and is named ‘Residential Planner'. It runs on
Windows 2000 and NT and supports user-friendly interface. Residential Planner
consists of two main components: 1) Model and 2) Graphical User Interface
(GUI) as shown in Figure 5.1. These two parts are grouped together to form a
workspace, where all the source files (.h, .cpp) are combined to produce target

files (.exe, .dll).

5.2 Model

The proposed scheduling and tracking and control model consists of 18 classes.
These classes are implemented using C++ programming language in two types
of files: header (.h) and code (.cpp). In C++, declaration and definition of a class
are often included in header and code files, respectively. The implementation of
the proposed model includes 6 header files (calendar.h, project.h, database.h,

control.h, view.h and data.h) and 11 Code files (calendar.cpp, projecti.cpp,

81

project2.cpp, project3.cpp, database.cpp,

control.cpp, view.cpp,

data2.cpp, data3.cpp and crew.cpp) as shown in Figure 5.1.

Code files

- # Header Files

calendar.h,
project.h,
database.h,
control.h,
view.h,
data.h

B8 calendar.cpp,

project1.cpp,
project2.cpp,
project3.cpp,

database.cpp, jE

control.cpp,
view.cpp,

ll Header File

Code files

ChildFrm.h,
MainFrm.h,
GUl.h,
GUISet.h,
GUIDoc.h,
GUlView.h,
Resource.h,

ChildFrm.cpp,
MainFrm.cpp,
GUl.cpp,
GUlISet.cpp,
GUIDoc.cpp,

B GuIView.cpp,

StdAfx.cpp

data1.cpp,

datat.cpp, [StdAfx.h
data2.cpp, [N

data3.cpp,

crew.cpp

Figure 5.1 Residential Planner
The declaration and definitions of Date class are included in calendar.h and
calendar.cpp, respectively. Declaration of Project class is included in project.h
and its definitions are included in project1.cpp, project2.cpp and project3.cpp.
Declaration and definition of Data-Base class is included in database.h and
database.cpp, respectively. Declarations of classes Tracking-Control, Project-
Control, Unit-Control and Sub-Control are included in control.h and their
corresponding definitions are included in control.cpp. Declaration and definitions

of View class are included in view.h and view.cpp, respectively. Declarations of

82

the remaining 10 classes are included in data.h and their definitions are included

in four separate code files (data1.cpp, data2.cpp, data3.cpp and crew.cpp).

5.3 Graphical User Interface (GUI)

Visual C++ uses a tool called AppWizard to create user-friendly interfaces.
AppWizard produces a platform with several classes, objects and functions to
facilitate building windows application (Gregory, 1999). Graphical User Interface
(GUI) is developed using AppWizard and has eight header files (ChildFrm.h,
MainFrm.h, GUI.h, GUISet.h, GUIDoc.h, GUIView.h, Resource.h and StdAfx.h)
and seven code files (ChildFrm.cpp, MainFrm.cpp, GUl.cpp, GUISet.cpp,
GUIDoc.cpp, GUIView.cpp and StdAfx.cpp) as shown in Figure 5.1. GUI is
developed as a multiple document interface (MDI) application, which enables the
user to have more than one document open at a time. It has menus, toolbar,

status bar and dialog boxes which forms an integral part of GUI.

5.3.1 Menus, Toolbar and Status bar

Residential Planner has a menu bar at the top of the screen from which a user
can select a specific function as shown in Figure 5.2. It also contains a toolbar
below the menu bar and a status bar at the bottom of the screen. The menu bar
consists of twelve menus: File, Project, Activity, Relation, Record, View, Tracking
& Control, Text Report, Graphical Report, Edit, Window and Help. AppWizard is
used to develop File, View, Edit, Window and Help menu items with the platform

and they perform similar functions to those commonly found in most Windows

83

applications. However, the rest of the menu items are designed to perform

specific functions as shown in Figures 5.3 to 5.9. Tables 5.1 to 5.7 summarize

these menu items, their functions and associated dialog boxes, if any.

Figure 5.3 Project Menu

Table 5.1 Project Menu Functions

Menu item Associated Function
dialog box

Project Info. Figure 5.10 | Accepts general project information.

Wihr_learn. Option Figure 6.11 | Specifies whether to consider the impact of
weather and/or learning curve in scheduling
calculations or not.

Do Schedule — Starts scheduling calculations.

Add to Database Figure 5.12 | Allows adding new information to database.

84

,-f. Residential Planner - {GUI1]

Figure 5.4 Activity Menu

Table 5.2 Activity Menu Functions

Menu item Associated Function
dialog box
Non Repetitive Figure 5.13 | Accepts data of a non-repetitive activity.
Repetitive Figure 5.14 | Allows repetitive activity data input.
Sub Contract Figure 5.15 | Allows data input for a subcontractor.

,.} Residential Planner [GUI1]

i Piaeet]

CcU; -:& e Feonen HRESERE

It s

Lo

Table 5.3 Relation Menu Functions

Menu item Associated Function
dialog box
Input Figure 5.20 | Allows new precedence relationship input

and 5.21 to the project. Also specifies the type, lag,
predecessor and successor activities.

Figure 5.6 Record Menu

85

Table 5.4 Record Menu Functions

Menu item

Associated
dialog box

Function

First Record

Previous Record
Next Record
Last record

Displays the first record in a corresponding
database table.

Displays the previous record.

Displays the next record in the database.
Displays the last available record in the
database table.

- Resndenlldl Ploannes [GUH1]

Figure 5.7 Tracking & Control Menu

Table 5.5 Tracking & Control Menu Functions

Menu item Associated Function
dialog box
Project Figure 5.22 | Accepts actual progress data at the project
level.
Sub Contract Figure 5.25 | Aliows input of actual progress data of a
subcontractor.
Unit Figure 5.26 | Accepts actual progress data of a specific

unit.

86

news [0

Figure 5.8 Text Report Menu

Table 5.6 Text Report Menu Functions

Menu item

Associated
dialog box

Function

Project Schedule

Unit Schedule

Sub Schedule
Control Result

Project Summary

Displays the project schedule in workday or
calendar date.

Displays the developed schedule for a
particular housing unit in workday or
calendar date.

Displays the schedule for a subcontractor in
workday or calendar date.

Displays the status of a project,
subcontractor or a housing unit.

Displays the summary of the project.

87

Figure 5.9 Graphical Report menu

Table 5.7 Graphical Report Menu Functions

Menu item

Associated
dialog box

Function

Non Repetitive
Repetitive

Sub Contractor
Progress Chart
Progress Curve
Sub Progress
Curve

Unit Progress

Curve
Cost Curve

Displays the schedule for all non-repetitive
activities in a graphical format.

Displays the schedule for all repetitive
activities in a graphical format.

Displays the graphical schedule for a sub
contractor.

Displays the planned and actual progress
charts.

Displays the planned and actual cumulative
work curves for the project.

Displays the planned and actual cumulative
work curves for a subcontractor.

Displays the planned and actual cumulative
work curves for a particular unit.

Displays the planned cumulative cost curve
for the project.

88

5.3.2 Dialog Boxes
Residential planner incorporates a number of dialog boxes to facilitate user-input.
Several important dialog boxes of residential planner are shown in Figures 5.10

to 5.26.

Project Informatio

o M
|k
Al

AT
AT

PR EAT L
ke,
%

ey
e P e
P

Figure 5.10 Project Information Dialog Box

ct Schedule Options

7

Figure 5.11 Weather and Learning Curve Dialog Box

89

Input Crew Information to Database

elpers, 1-Mixing machine

A A
I,

X

gure 5.13 Non-repetitive Activity Input Dialog Box

90

RHepetihive Activity Input

Figure 5.14 Repetitive Activity Input Dialog Box (Subcontractor)

Sub Contract Detatls B3

Iets211200.00

o) i
i

Figure 5.15 Subcontractor Input Dialog Box

91

TN

o T I e,
NI
(Rt

o)

I
19y

¥

LAY

Figure 5.17 Typical Repetitive Activity Input Dialog Box

92

Crew Information trom Datobase

SHINMRETIVIRUT

T et
ok RESE DS
2 L e

Figure 5.19 Crew Data Dialog Box

93

Relation Input

srudat

Fo

Figure 5.21 Repetitive Relation Input Dialog Box

94

T
na T PLY,
S

TG
A G = R

Sxiinsd

e

A
FOOR et
ATV

ol

bty

Figure 5.23 Progress Input Dialog Box (Activities completed)

95

in Progress

Figure 5.24 Progress Input Dialog Box (Activities in Progress)

Tracking and Control- Sub Contiactor

i

Figure 5.25 Subcontractor Control Dialog Box

96

Control Data for an Individual Housing Unit

Figure 5.26 Unit control dialog box

5.4 Input and output

Residential Planner is capable of scheduling and tracking and controlling of
residential housing projects and requires specific input data to perform these
calculations as shown in Figure 5.27. To perform project scheduling, five levels of
data are required: 1) project, 2) non-repetitive, 3) repetitive, 4) subcontractor, and
5) relation. Similarly, for tracking and control calculations, different set of input
data have to be provided depending on the user request to determine the status
of the project as a whole, a particular housing unit or an individual subcontractor.
Residential Planner can generate text reports at three distinct levels namely
project, housing unit and subcontractor. These reports are supported with a
variety of graphical reports in order to address the diverse needs of the
developer and to assist in managing subcontractors and administering all

contracts effectively.

97

| 3) Project control

| 8) learning curve

» 4) Summary

Non-Répetitivé

2) Quantity

Project
1) Workday schedule |- |
2) Calendar date B
schedule

results

1) Workday schedule |-
;| 2) Calendar date B

3) Crew information

Repetitive
1) Name
%| 2) Quantity of units
| 3) Execution order
M| 4) Crew information

| 3) Housing unit

Housing Unit

schedule

control resuits

‘1 Subcontractor
S| 1) Name
tl 2) Activity name

Subcontractor | i

1) Workday schedule | J8

2) Calendar date
schedule

3) Sub control

results

Ls) Expected duration

Relation
1) Predecessor
2) Successor

3) Type and lag time

T, Py

Project
1) Day of report
2) Activities completed
3) Activities in progress

2) Repetitive activity

Housing Unit
1) Day of report
2) House number
3) Activities completed
4) Activities in progress

Sub-Contractor
1) Day of report
2) Sub-contractor name
3) Houses completed

1) Non-repetitive
activity schedule

schedule

3) Subcontractor
schedule

4) Progress chart

§) Project progress

curve

6) Sub Progress
curve

7) Unit progress
curve

8) Project cost curve

Figure 5.27 Residential Planner Input and Output

5.5 Summary

The implementation stage of the proposed Object-Oriented model for scheduling
and tracking and control of residential housing projects has been presented in
this chapter. The model is implemented as a Windows application using Visual
C++ 6.0 and Microsoft Foundation Class (MFC), and is named ‘Residential
Planner'. Residential Planner has two major components namely, Model and
Graphical User Interface (GU!). The model includes the various classes
developed to perform the scheduling and control calculations. The GUI includes
the user-interface aspects of Residential Planner and incorporates menus,

toolbar, status bar and dialog boxes.

99

CHAPTER 6
APPLICATION EXAMPLES

6.1 Introduction

This chapter presents the application aspects of the present scheduling and
tracking and control model for residential housing projects. The model considers
a number of practical aspects often found in these projects. It can be applied to
schedule developers’' own work force and/or subcontractors, and can evaluate
the cost and time performance of an on-going project at the project, unit and
subcontractor levels. Two application examples are analyzed in order to
demonstrate the various practical aspects of the model. The first example
validates the results and the reports generated by the model and the second

example illustrates the capabilities of the present model.

6.2 First Example

An application example project from the literature (Lumsden, 1968) is analyzed in
order to validate the results generated by the developed model. The project
involves the construction of 10 typical houses. The construction works involves
four main typical repetitive activities: 1) substructure, 2) superstructure, 3)
finishes and 4) decoration. The precedence relationships among these activities
are assumed to be finish to start with no lag time. Multiple crews are employed to
perform work in the activities of substructure, superstructure and finishes (2, 3

and 5, respectively), whereas a single crew is used for decoration activity. The

100

original schedule from the literature is shown in Figure 6.1, and has a total
project duration of 47.5 days. It should be noted that in the original example both
crews working in the substructure activity had to wait a day before commencing
work in the next assigned housing unit. Similarly, the crews employed in
superstructure activity had a waiting time of 1.5 days before starting work in their
next assigned housing unit. To enable a comparison between the schedule
developed by the present model and that of Lumsdens’ (1968), identical number
of crews (2, 3, 5 and 1 for substructure, superstructure, finishes and decoration,
respectively) are used in the present example. Accordingly, quantity of work for
each activity and the productivity of crews used are obtained from Means
Residential Cost Data (1999). Table 6.1 lists the input data for the present model.

Table 6.1 Input Data

Substructure | Superstructure Finishes Decoration
Quantity of work 1840 m* 120 m® 1040 m* 100 m
Number of crews 2 3 5 1
Crew ID B-12A C-6 J-1 F-2
Crew output / day 460 m® 20 m® 80 m* 50 m
Cost / Unit ($) 1332 2664 2331 555

The schedule developed by the present model is as shown in Figure 6.2 and
listed in Table 6.2. In addition to complying with precedence relationships, the
developed schedule guarantees work continuity for all crews, including the crews
utilized in activities substructure and superstructure. For example, crew 1 of
substructure activity promptly moves to housing unit 3 after completing work in
housing unit 1, without any idle time. It should be noted that the developed
project schedule has a total duration of 46 days, a reduction of 1.5 days due to

the elimination of crew idle time and improved resource utilization.

101

c0l

(8961 ‘uapswin) ainjesay] wouy ajnpayag 398foid L'9 ainbi4

[4°) 514 44 oy o¢ [4% 8¢ Ve 0¢ 9l [4 8 14
\ (skégjuogeng | 1 - VAR . | 7
! ' po i ! ' | W |
: A o ! !

: m o o |
AR R
! b m

“ m |

a:.__u Buniep «—

ues

Q WD

2
ysmng

1
!
i
t
i
N
{
i
i
I
|
!
|
i

oL

un Buisnoy

€0l

1apoy Y} Aq padojanaqg anpayos jaafoid z'9 ainbi4

1
A}

IR
2

Yol

bl o [vw 2| s |w |ie e L (s |z |o| z |2 |4 | 0l

! v |2y 2| v |ev |6z |er| € |9z [oz |9 | 1+ |0z |9 |¥ 6

Lo e |ov |2 ¢ |ov |z |et] 2z |ve |8 o] z | u |e | 8

L | ov|se |z| ¢ |8 |sz|e] v |z |alol v |a |z |v¥ L

L | 8¢ |9 | 2| L |9s |¢ez|et| ¢ oz |v 9| 2z |¢e |6 | 9

b ee | ve | 2| s |ie |8 |e] z {8 |a o] v |2z |8 |¥ g

b | v |ze |z| v |6z |9 |er| L oo |orjo| z | 6 |5 |v¥ y

Lo ee loe|z| ¢ | v je] ¢ v |8 o] L |8 | ¥ |¥ ¢

b | oe |sc|z| z |sz|a|e] g |aw |9 o] ¢ |5 | |V Z

L | sz |oz |z| 1 ez lovet] v Joo [v ol v | v |0 |¥ !
#Ma10| usiuid | weishing | # maiolusiuid| ues linq | # marolusiui | pess ing | # maio|ysiug | weis | ing | #HUN
uonelo008(Q saysiui4 alnonysiadng alnjpnisqng butsnoH

ainpayas 399f0id Z'9 ajqeL

In order to validate the tracking and control results, the cost data relating to each
activity obtained from the original example is used (see Table 6.1). The
cumulative cash flow generated according to the original cost data (Lumsden,
1968) at different time intervals is listed in Table 6.3. The cumulative cash flow
curve generated by the present model is shown in Figure 6.3, which closely
resembles the cash flow profile of Table 6.3. The total project cost in the original
solution and the present model is found to be $ 68,820.00 and $ 68,460.00,
respectively. This difference is attributed due to the better resource utilization. It
should be noted that the project indirect cost is not considered in both solutions.

Table 6.3 Project Cumulative Cash Flow in $ (Lumsden, 1968)

Project Naae-No:
Schedule Prepared Dy:

Activi Project Time (Workday)
ctivity 10 20 30 40 475
Substructure 6600 12600 13320 13320 13320
Superstructure 5800 18648 26640 26640 26640
Finishes — 5828 16317 20979 23310
Decoration — — 1665 3885 5550
Total 12400 37076 57942 64824 68820
100000 ‘ ; g.
70000 /’____.— . g
- =
s <0000 // o , ‘-“.:
30000 / :_' . . E
20000 J/ R ;
10000 / ; j
. — :

PasenitkR

O

105

Housing Unit Report day 25 <&

3 7 — Py Iy Start
9 |-—== - ' ___ === Work Completed |
1 = — . _ i)
4 8 12 16 20 24 28 32 36 40 44 48
<

Duration (Days)
Figure 6.4 Actual Progress (Lumsden, 1968)
The performance status of the project with respect to time and cost is analyzed
on day 25. The percentage of work completed in substructure, superstructure,
finishes and decoration are 75%, 60%, 20% and 0%, respectively. The actual
cost of work performed (ACWP) up to the report day 25 is assumed to be $
34,200.00. The actual progress is shown in Figure 6.4, which indicates that the
work progress is behind schedule. The planned cumulative work progress and
cost for the entire project duration (day 1 to 46) is calculated according to the first
stage of the tracking and control algorithm explained in Chapter 4 and is listed in
Table 6.4. The second stage of the developed tracking and control algorithm is
applied to calculate the actual work performed (AWP = 36.46%). The planned
duration for work performed (PDWP) is identified to be 18 days by the third stage

of the algorithm (see highlighted column in Table 6.4). Hence, the project is

106

behind schedule by 7 days (SV = PDWP - ADWP = 18 — 25 = -7). The budgeted
cost of work performed (BCWP) is also calculated in the third stage of the
algorithm (BCWP = $ 31,239.00) indicating that project is over budget (i.e. CV =
BCWP — ACWP =31,239.00 - 34,200.00 = - 2961.00). The resulting planned and
actual work progress curves generated by the model is shown graphically in
Figure 6.5, which indicates that work progress was ahead at the beginning but

has fallen behind schedule on report day.

S Besadential Planner (GUI]
|| P PP |

PROJECT CUMULATIVE WORK CURVE

100

90

70

60

se

40

30

LR
N S W

dmperderdroctedmpmfodroorfradmepmfomfoefosfoorfe-
TG LICIC]

L]

P-4 3% P
0n
v 1

Developer:
Project HamesNo:
Schedule Prepared By:

- X% q 5 g
XREYVEIREBR EW I

B S e T T B T e o e T e g
S et e B e SN e e L T N R T S R B S e e R i e S A e R A RN R S Tty TR Ul

Figure 6.5 Performance Results Generated by the Model

107

80l

09¥89| 2Zvig9| $9089| 909/9| 8ves9] 01999 ($)is0D

00°00} 09'66 02'66 0v'86 09°'.6 0¥'96 | (%) dIop

op Gh a4 X4 A4 Ly | Aepyiopn

2L199| $6e69| oecb9| 8ese9| ovGe9| c2oci9| +¥8L09| 90065| 82826 o0g99s| (4)ison
02'G6 09'€6 0026 00'06 00'88 09'G8 02'€8 08°08 0¥'8L] 009L{ (%)NOM
oV 6€ 8¢ L€ o¢ GE e €¢ Z¢ Le | Aepxiopn
CLbSS| veevS| 9LLeS| vevlS| 2/86v| v808y| 9629v| poovy| zesivy| 0096g| ($)1s0D
09'€. 0zZ'L.L 08'89 10'99 0Z'€9 0v'09 09'/S ov'¥S 02'LS| 008y | (%) Nom
0€ 62 82 12 Y4 G2 74 €2 22 12| Aepyiopn
Ge0lS | lELvE| 6g2Le Lge82 | €08G2| 69z€Z| 12.02| 69¢€8l LLo9L | e€8€L | ($)1s0D
ov'vv ov'0b 0b'9¢ 08°Z€ 0262 0092 08'22 0002 0ZLL{ 08¥L | (%)>MOM
02 6l 8l Ll ol Gl vl el Zi LL | Aepxiopg
GSO'LL 1596 659/ G0L9 LGSY Lbe LEEZ G99l 666 eee | ($)1s0D
ov'el Ta ov's 08'9 02'S 00V 808'2 002 b0Z'L | 20¥°0 | (%) oM
ol 6 8)] 9 g b ¢ Z L | Aepxiop

Kepyiop yoe3 1oj 3s09 pue abejuasiad YIOA aAleINWNY pauueld t'9 djqeL

6.3 Second Example

This example application is designed to demonstrate the practical features and

the efficiency of the developed model. The example project involves the

construction of 10 typical houses of economy class with a living area of 1200 S.F.

Accordingly, quantity of work, duration and cost are calculated from Means

Residential Cost Data (1999). The construction work involves six main activities:

1) permit, 2) excavation, 3) foundation, 4) framing, 5) finishing and 6) cleaning.

The precedence relationships among these activities are assumed to be finish to

start with no lag time. The following assumptions are made to illustrate various

practical features in the developed model:

1) Planned start date of the project is January 04, 2000.

2) Activities permit and cleaning represent non-repetitive activities in this project.
The duration and direct cost of these activities are considered 3 days and $
1500.00, respectively.

3) The relation between activities permit and excavation, finishing and cleaning
illustrate relationships among repetitive and non-repetitive activities (i.e.
Hetero relation). Excavation can start only after activity permit is finished.
Cleaning work can start as soon as the finishing work in the tenth housing unit
is completed.

4) Activity excavation, foundation and framing are assumed to have identical
duration in all housing units and are classified as typical repetitive activities.
However, finishing has different duration in each house and represents a non-

typical repetitive activity in this project. It is assumed that the difference in

109

9)

6)

7)

duration is attributed due to two available options for the potential buyer.
These options are 1) having both living and master bedroom decorated or 2)
having only the living room decorated. The buyer's of units 1,5,7 and 9 have
chosen option one and the rest, option two.

Scheduling for developers’ own force is demonstrated by assuming that the
foundation activity is planned to be performed by utilizing own work force. In
order to accelerate this activity, two crews (crew 1 and 2) are being used. The
productivity and cost of these crews are obtained from the developed
database.

To illustrate subcontractor scheduling, activity excavation, framing and
finishing are assumed to be performed by subcontractors. A lump sum
contract for labor ($72,000.00) is awarded to perform excavation with an
expected duration of 30 days. A unit price contract for labor and equipment ($
19.00 S.F) is awarded to execute framing activity with an expected duration of
20 workdays. !t is assumed that material for both these activities are provided
by the developer ($ 99,000.00 and $ 192,000.00 respectively). However,
finishing activity is awarded a one payment lump-sum contract ($ 20,000.00),
which includes both material and installation costs with an expected duration
of 14 days.

Crew availability constraint is illustrated by assuming that crew 2 utilized in
foundation activity can move to the site on February 05, 2000 and can stay
only till February 20, 2000. Such a scenario can often occur due to prior

commitments of the crew in other concurrent projects.

110

8) To demonstrate the impact of construction execution order, it is assumed that
the finishing activity has to be performed in a user-specified order
(2,1,3,4,6,5,7,8,9,10). Such a situation can occur due to contractual
obligations regarding move-in date. Other three repetitive activities are
executed in ascending order (i.e. 1,2,3...9,10).

9) The project average indirect cost is assumed to be $ 1000.00 per workday.

The generated schedule for non-repetitive and repetitive activities is listed in
Tables 6.5 and 6.6 and shown in Figures 6.6 and 6.7, respectively. The schedule
strictly complies with precedence relationship, crew availability and crew work
continuity constraints. It should be noted that: 1) crew 2 of foundation activity is
assigned only to housing units 7 and 9, due to the imposed early and late
available dates, 2) finishing activity is scheduled according to user-specified
execution order and 3) cleaning activity is scheduled to start as soon as finishing
work is completed in the tenth housing unit. As mentioned earlier, the model can
generate separate schedules for subcontractors and units as shown in Figures
6.8 and 6.9, respectively. The calculated total project cost is equal to
$843,587.00 and is shown in Figure 6.10. The project summary report generated
by the model is shown in Figure 6.11, which summarizes the project general
details, start and finish dates and direct cost of each activity.

Table 6.5 Non-repetitive Activity Schedule

Name Duration Early Early Late Late Float
Start Finish Start Finish

Permit 3 0 3 0 3 0

Cleaning 3 41 44 41 44 0

111

cli

44 oy } oy 8¢ [4 I o€ 11 € €e 0¢ € ol
oy 8¢ [4 8¢ e [4 [4 151 0¢ € 0¢ L € 6
8¢ LE I o¢ ve 4 | 15 0¢ € X4 ve € 8
LE Ge 4 ve (A 4 4 0c | L2 € 144 X4 € L
e ce I ee 1}% A l 0€ x4 € (¥4 8l € 9
Ge 1% [4 0¢ 8¢ c l LC ve € 8l Gl € G
43 33 } 8¢ 9¢ 4 l ve X4 € Gl cl € v
33 0¢ | 9¢ ve 4 I (¥4 8l € 4 6 € €
8¢ L2 | ve e [/ l 8L | Gl € 6 9 € c
0¢ 8¢ [4 [44 0c [4 | Gl cl € 9 € £ }
Usiuld | Wels uoneing | ysiuld | pels (uonesng | # maid| Usiuld |Hels |uoneing | usiuid | Wels uoleind | 4 pun
Bulysiuiq Bujwes4 uoepuno uoljeAeoxy

a|npayas AjAioy aAnnaday 9'9 ajqel

3 e [T

NON REPETITIVE ACTIVITY SCHEDULE

Paxmit

Doveloper:
Project Neme- No:
Schedule Prepared By:

2 Y T 1) T

e Besntenlial Plannes [T

YRY RN

VSRET

O N L N R N R RN RN AN AN AR N NN Y

veloremdl

AN

/

a S 10

N

Whmdimeemdsemerbes

o
1

~ Excavation T Foundation ~ Frasing

*

Developer:
Project NamasNo:

Figure 6.7 Repetitive Activity Schedule

113

SUB CONTRACTOR SCHEDULE

10

semesfr e giemy

YT A R L Y

besem v

%
"n

20
DAYS

ACTIVITY: Excavation SUB CONTRACTOR HAME:

ANNAPCARPR I It syt

Developex:
Project NamesNo:

(o i v 725 P i b FE e | ES R

VORKDAY SCHEDULE FOR INDIVIDUAL UNITS

UNIT & 1

Hane

Excavation
Foundation
Franing
Finishing
URIT # 2

Hane

sessesssassesssscasnancnsmmane
Excavaticn

Foundation

Framing

Finishing

UNIT ¢ 3

Nane

Excavation
Foundation
Framing
Finishing
ONIT & 4

Kane

Excavation
Foundation
Framing

e S VAT T S

Figure 6.9 Schedule for Individual Housing Units

114

FROJECT CUMULATIVE COST CURVE

1

709000

600000

400000

100000

-
-]
-
"

Daveloper:
Project NamesNo:

o Plannes JL]

TR B

R e el

Daveloper:

Location:

Project NamesHo:

Humber of Units:

Project Manager:

Scheduler:

Project Start Date: 471/0Tu
Project Finish Date: 6737040
Total Project Duration (Vork Days):44.00
Total Project Cost ($): 843587.00
Input Data

Hon Reapatitive Activity

Late Finish

Budgeted Coat

Parnit
Cleaning

Repetitive Activity

3.00
44 .00

1500.00
1500.00

Hane Late Finish

Budgeted Cost

Perforaed By

Excavation 33.00
Foundation 36.00
Franing 40.00
Finishing 41.08

171000.00
185587.05
420000.00
20000.00

- amseanesssEscnausevasesnInmnn.
[= = o4

Qwn Force

DDD

EEE

Figure 6.11 Project Summary

115

1

]

g
AREERINASNELEN L AERY NN

In order to demonstrate the tracking and control features of the developed model,
it is assumed that the analysis is carried out on workday 35. The actual progress
till day 35 is assumed to 100%, 100%, 100% 85% and 60% in activities permit,
excavation, foundation, framing and finishing, respectively and the actual cost of
work performed is assumed to be $ 685,400.00. The result of the analysis is
shown in Figures 6.12 and 6.13, which indicates that the project is ahead of
schedule by 1 day and under budget by $ 14,600.00. The performance of an
individual subcontractor (framing activity) and a particular housing unit (unit # 8)
is also analyzed on the same report day and the results are shown in Figures

6.14 and 6.15, respectively.

N
NALL
N\

dalodod bbb b

N

\JQ\

At li Bt R £F S8 O o

\r\\\

N

N \N
N

LR

0 1 P h
SRR RE RSP REAY AT F e R A g e

e =t =t T

* X
(AR R R RN R

Figure 6.12 Project Performance Curves

116

TRACKING AND CONTROL RESULT

Day of Reporting 3s
Activities Completed

Perait
Excavation
Foundation

Activitios in Progress % Cospleted

Framing es
Finishing 80

Actust Duration for Work Performaed (ADWP)
Planned duration for Work Performed (POWP)
Actual Costfor Work Performed (ACWP)

(AR RN RAE]

Budgetsd Costfor work Performed (BCWP)

EroisctStatys

Project is ahead of schedule by : 1 Day(s)
Projact is under budget by : § 14800.00

SUB CONTRACTOR CUMULATIVE WORK CURVE

100

90

70

P EbY

60

40

30

20

SR A RN R RN NN Y]

10

SCHEDULED ACTUAL

ACTIVITY: Framing SUB CONTRACTOR NAME: DDD

Developer:
Project Name-No:

Figure 6.14 Subcontractor Performance Curves

117

INDIVIDUAL UNIT CUMULATIVE WORK CURVE

100

7k
ERTR0E

90

70

|
(AR EARER ALY MY ERNST

60

CUMULATIVE x SO 1

40

30 fmo-—em, LA
I
/—

10 --}/

24 29 3¢ 39

1 | AL
L R N I N RN R D R R N PR

Tt

Figure 6.15 Unit Performance Curves

6.4 Summary

The practical features of the developed model have been presented in this
chapter by analyzing two application examples. The first example is used to
validate the results produced by the model and to highlight the important
improvements in the schedule and control results generated by the m~del. The
second example is designed to demonstrate the practicality and flexibility of the
model. A number of challenges that are often faced in scheduling and tracking
and control of residential housing projects are addressed in this example. The
generated results and reports are briefly described and presented in a number of
tables and figures. As illustrated in the second example, the model considers
various practical aspects and can be effectively applied in scheduling and control

of projects, leading to potential savings in construction time and cost.

118

CHAPTER 7

CONCLUSIONS

7.1 Summary and Concluding Remarks

An Object-Oriented model for scheduling and tracking and control of residential
housing projects has been developed. A number of practical factors that affect
the scheduling and control of these types of projects are considered. As such,
the developed model can be effectively applied to real-life projects, and can lead
to savings in project time and cost. The model is developed using an Object-
Oriented modeling approach in three main stages: analysis, design and
implementation. The model includes 18 classes that are designed and
implemented to facilitate the scheduling and control of residential housing
projects. The model also incorporates a number of scheduling and control
algorithms including the newly developed algorithms for scheduling
subcontractors in repetitive activities and for tracking and control of residential

housing construction.

The scheduling algorithm for subcontractors in repetitive activities is designed to
comply with three main constraints namely, precedence relationships,
subcontractor availability period and crew work continuity. In addition to these
three constraints, the algorithm considers a number of practical factors
commonly encountered in scheduling subcontractors. The algorithm is applied in

two stages to determine the start and finish dates of the subcontractor work in

119

each housing unit. The first stage considers the precedence relationships and
subcontractor availability period on site and the second stage complies with crew

work continuity constraint.

The tracking and control algorithm is designed to determine the time and cost
performance of an on-going project and can be applied at three levels: 1) entire
project, 2) housing unit and 3) subcontractor. The algorithm performs tracking
and control calculations in three stages. The first stage determines the planned
cumulative work and cost for each workday according to the developed base line
schedule. The second stage calculates the cumulative actual work performed
(AWP) up to report date based on the user-specified actual progress data. The
third stage first determines the planned duration for work performed (PDWP) and
the budgeted cost for work performed (BCWP). This stage then compares the
actual and planned duration for work performed (i.e. ADWP and PDWP) in order
to calculate the schedule variance (SV). The SV value can be 0, <0 or >0,
representing on, behind or ahead of schedule, respectively. The cost status is
determined by comparing the budgeted cost for work performed (BCWP) to the
actual cost for work performed (ACWP) to calculate the cost variance (CV). The
value of CV can be 0, >0 or <0 representing on, under or over budget,

respectively.

The developed model can generate specialized reports to suit the diverse needs

of residential housing projects and is supported by a database to store historical

120

data that can be retrieved for use in future projects. The generated reports
include project schedule, unit schedule, subcontractor schedule and control
results in both text and graphical formats. The developed model is implemented
as a user-friendly prototype software system using Visual C++ 6.0 and Microsoft
Foundation Class (MFC). The implemented model is named as ‘Residential
Planner’ and runs in Windows 2000 and NT. It supports user-friendly interfaces

and includes menus, toolbar, status bar and dialog boxes.

7.2 Research Contributions
The primary contribution of this research is the development of a scheduling and
tracking and control model for residential housing projects: ‘Residential Planner’.

The development of this model incorporates the following contributions:
1) The development of a scheduling algorithm for subcontractors in residential

housing construction.

2) The formulation of an algorithm for effective tracking and control of housing

construction at three levels: project, housing unit, and subcontractor.

3) The development of effective methods to generate flexible and specialized

reports to address the needs of developer and subcontractors involved in

residential housing projects.

121

4) The implementation of the proposed algorithms and methodologies in a user-

friendly prototype software system.

5) The provision of a database support for efficient use of the developed

computer software and store valuable historical data.

7.3 Recommendations for Future Research

A practical scheduling and tracking and control model for residential housing

projects has been presented in this study. The model is flexible and can be

applied to schedule and control residential housing projects. However, in order to

expand the potential applications of this model, the following recommendations

for future research can be made:

1) The schedule developed by this model considers various practical aspects,
but does not guarantee optimized solution with respect to cost and/or time. An

optimization procedure can be adopted to provide optimized solutions.

2) The developed scheduling algorithm provides a deterministic schedule, but

can be expanded to produce probabilistic schedules.

3) The developed tracking and control algorithm determines the status of an on-
going project at any given time, but does not update the original schedule
according to the actual progress information. This can be achieved by

developing a schedule updating methodology.

122

4) The developed prototype software system, ‘Residential Planner can
accommodate only one project at a time, but can be extended to account for

multiple projects sharing the same resource pool.

123

REFERENCES

Al Sarraj, Z. M. (1990). “Formal Development of Line-of-Balance Technique,”
Journal of Construction Engineering and Management, ASCE, 116(4), 689-
704,

Arditi, D., and Albulak, M.Z. (1986). “Line-of-Balance Scheduling in Pavement
Construction,” Journal of Construction Engineering and Management, ASCE,
112(3), 411-424.

Ashley, D.B. (1980). “Simulation of Repetitive Unit Construction,” Journal of the
Construction Division, ASCE, 106(C02), 185-194.

Barrie, D. S., and Paulson, B.C. Jr. (1992). Professional Construction
Management, McGraw-Hill inc., New York.

Birrell, G. E. (1980). “Construction Planning-Beyond the Critical Path,” Journal
of Construction Division, ASCE, 106(C0O3), 389-407.

Booch, G. (1994). Object-Oriented Analysis and Design with Applications,
Redwood City, CA.

Carr, R. I., and Meyer, W. L. (1974). “Planning construction of Repetitive Building
Units,” Journal of the Construction Division, ASCE, 100(C03), 403-412.

Chzanowski, E. N., and Johnston D. W. (1986). “Application of Linear
Scheduling,” Journal of Construction Engineering and Management, ASCE,
112(4), 476-491.

CMHC, (1996), “Long-Term Housing Outlook: Household Growth, 1991-2016,”
Research and Development Highlights, Canada Mortgage and Housing
Corporation, Ottawa, Ontario K1A 0P7.

Davies, E. W. (1974). “ CPM Use in the Top 400 Construction Firms,” Journal of
Construction Division, ASCE, 100(CO1), 39-49.

Diekmann, E., and Masoud, A. A. (1997). “Repetitive Project Scheduling for
Large Scale Residential Housing,” Proceedings of Construction Congress v,
Minneapolis, Minnesota, 921-930.

Dressler, J. (1980). "Construction Management in West Germany,” Journal of
the Construction Division, ASCE, 106(C04), 447-487.

124

El-Rayes, K., and Moselhi, O. (1998) “Resource-driven Scheduling of Repetitive
Activities,” Journal of Construction Management and Economics, ASCE, 16,
433-446.

El-Rayes, K. (1997), “Optimized Scheduling for Repetitive Construction
Projects,” a Ph.D. thesis at the school for building, Faculty of Engineering and
Computer Science, Concordia University, Montreal.

Gregory, K. (1999). Using Visual C ++ 6, QUE, Indianapolis, Indiana.

Hegazy, T., Fazio. P., and Moselhi. O. (1993). “BAL: An Algorithm for Scheduling
and Control of Linear Projects,” 1993 AACE Transactions, AACE.

Johnston, D. W. (1981). “Linear Scheduling Method for Highway Construction,”
Journal of the Construction Division, ASCE, 107(C02), 247-261.

Kavanagh, D. P. (1985). “SIREN: A repetitive Construction Simulation Model,”
Journal of Construction Engineering and Management, ASCE, 111(3), 308-
323.

Khoshafian, S., and Abnous, R. (1995). Object Orientation: Concepts,
Analysis & Design, Languages, Database, Graphical User Interface,
Standards, Wiley, New York.

Lumsden, P. (1968). The Line of Balance Method, Pergamon, Telgamon Press
Ltd., London, England.

Martin, J. (1993). Principles of Object-Oriented Analysis and Design, P T R
Prentice-Hall, Inc., New Jersey.

Moselhi, O., and El-Rayes, K. (1993). “An OOP Model for Scheduling of
Repetitive Projects,” Proceedings of the Fifth International Conference on
Computing in Civil and Building Engineering, ASCE, California.

Neale, R. H., and Neale,D. E. (1989). Construction Planning. 1 st Edition,
Thomas Telford Ltd., London, England.

Neale, R. H., and Raju, B. (1988). “Line of Balance Planning by Spread Sheet,”
Building Technology and Management, (January), 22-27.
Nunnally, S. W. (1998). Construction Methods and Management, 4 th edition,

Prentice Hall, New Jersey.

O’Brien, J. J. (1975). “VPM Scheduling for High Rise Buildings,” Journal of the
Construction Division, ASCE, 101(C04), 895-905.

125

O'Brien, J.J. (1984). “Network Scheduling Variations for Repetitive Work,"
proceedings of the Spring Convention of ASCE, Atlanta, Ga.

Peer, S. (1974). “Network Analysis and Construction Planning,” Journal of the
Construction Division, ASCE, 100(3), 203-210.

Programming House Building by Line of Balance, (1966). The National
Building Agency, London, England.

Rumbaugh, J., Blaha, M. Premerlani, W., Eddy, F. and Lorensen, W. (1991).
Object-Oriented Modeling and Design, Englewood Cliffs, Prentice Hall, New
Jersey.

Russell, A. D. (1989). “Advanced Planning and Control Technologies for Housing
construction,” Canada Mortgage and Housing Corporation (CMHC) report.

Russell, A. D., and Caselton, W. F. (1988). “ Extensions of Linear Scheduling
Optimization,” Journal of Construction Engineering and Management, ASCE,
114(1), 36-52.

Russell, A. D., and Wong, W.C.M. (1993). “New Generation of Planning
Structures,” Journal of Construction Engineering and Management, ASCE,
119(2), 196-214.

Selinger, S. (1980). “Construction Planning for Linear Projects,” Journal of the
Construction Division, ASCE, 106(C02), 195-205.

Statistics Canada, (1998). “Capital Expenditure in Construction,”
http:\www.statcan.ca, Canada.

Stradal, O., and Cacha, J. (1982). “Time Space Scheduling Method,” Journal of
Construction Division, ASCE, 108(C0O3).

Thabet, W. Y., and Beliveau, Y. J. (1994). "HVLS: Horizontal and Vertical Logic
Scheduling for Multistory Projects,” Journal of Construction Engineering and
Management, ASCE, 120(4), 875-892.

Vorster, M. C., and Bafna, T. (1992). “Formal Development of Line-of-Balance
Technique, Al Sarraj, Z. M. (1990),” a discussion in Journal of Construction
Engineering and Management, ASCE, 118(1), 210-211.

Whiteman, W. E., and Irwing, H. G. (1988). “Disturbance Scheduling Techniques

for Managing Renovation Work,” Journal of Construction Engineering and
Management, ASCE, 114(2), 191-213.

126

APPENDIX |

1) Hossein Beheshti,
Northgrave Architect Inc.
66, Gloucester Street,
Toronto, Ontario,

M4Y 1L5.

2) Mr. Hazem Sharara,

Groupe Immobilier Grilli Inc.

Montreal, Quebec.

127

