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ABSTRACT

Solving Layout Compaction and Wire-balancing Problem using Linear

Programming on the Monsoon Multiprocessor

Samir Grover

The theme of this work is parallel computing for a CAD application. The
layout compaction and wire-balancing problem in VLSI physical design can be for-
mulated as a dual transshipment problem (DTP) which can be written as a linear
programming problem and solved using the network dual simplex (NDS) algorithm.

The goal of our work is to implement this algorithm using an implicitly par-
allel functional language called Id on a small shared memory Monsoon dataflow
multiprocessor and study the features of this decla.ra,tive language to determine

quantitatively the amount of parallelism exposed in each feature. In the process, we

also examine the parallelism in each phase of the application. We observed that Id’s

functional features (Higher-order functions, tuples, list and array comprehension;
etc.) played a major role to extract the parallelism from our codes. The atomic M-
structure allows processes to interact freely, hence, contributing. to the parallelism.
The resultant parallelism amounted to an average of 20 to 25 operations per cycle.

| In this thesis, we compare sequential pivoting with concurrent pivoting strat-
egy in the NDS algorithm. From the experiments, we show that the loss of basisity
after concurrent pivoting and then, retaining it makes the NDS slower due to the
poor performance of the 0-token spanning-tree building method. Moreover, both

pivoting strategies show almost the same amount of parallelism.
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Chapter 1
Introduction

The rapidly increasing complexity of VLSI circuits puts pressure on VLSI CAD tools
from two directions. First, the amount of data to be processed has risen dramat-
ically. Second, VLSI.designers have come to rely more heavily on CAD tools and
demand higher perf;rm;nce. To achieve this performance, developers of CAD tools
are beginning to explore parallel computing as a means of accelerating VLSI physi-
cal design automation applications. Almost all problems which arise in the physical
design cycle (e.g., floor-planning, placement, routing, compaction, etc.) can be for-
mulated in terms of graph (network) optimization problems [7]. Parallel algorithms

for these graph problems have been designed and implemented using imperative lan-

“ guages (such as C or Fortran) extended with imperative constructs and annotations

to exploit the parallelism® for the acceleration of CAD applications [15]. However,
parallel programming using eztended imperative languages to exploit parallelism is
difficult and error-prone due to the fact that the programmer has to be aware of
machine hardware (e.g., number of processors, distribution of the data among pro-

cessors, etc.) to use it efficiently. The general inability of automatically detecting

1Parallelism is a general term used to characterize a variety of simultaneities occurring in modern
computers. The main advantage offered by parallelism is improved speed.
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adequate parallelism forces the programmer to explicitly specify the parallelism us-
ing the language extensions. To simplify parallel programming, new languages are
being investigated which aliow the programmer to concentrate on the functionality
of the program by expressing parallelism implicitly. Moreover, the programmer does
not have to know about the machine hardware to program them. One such language
is Id? (Irvine Dataflow), an implicit parallel functional language. It is designed to
run on Monsoon®.

In this thesis, we study the features of this language to assess quantitatively

which of them are of importance when coding algorithms to solve VLSI design

automation problems.

1.1 Parallel Programming

To write a parallel algorithm for a parallel machine, there are two known program-
ming styles, namely, explicit and implicit. Explicit parallel programming (EPP)
requires a parallel algorithm to explicitly specify how the processors will cooperate
in order to solve a specific problem. The compiler generates code for the instructions
specified by the programmer. In implicit parallel programming (IPP), the compiler
inserts the constructs necessary to run the algorithm on a parallel computer, and
thus this style places a majority of the burden of parallelization, i.e., the problem
of partitioning the program into parallel parts {processes), and then synchroniziné
them if any dependency exists, on the compiler. Some may argue the effectiveness
of EPP versus IPP style as viewed by the programmer. We now briefly discuss
the EPP style using imperative languages on multiple instruction and multiple data

(MIMD) systems. This is followed by a discussion on the IPP style using Id on

Monsoon.

2This language is developed in M.I.T. Laboratory for Computer Science.

3Its architecture is designed at M.I.T. and built by Motorola. It is an experimental multipro-
Cessor. :

e
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1.1.1 Why MIMD?

In this model, multiple independent processing elements (PEs), linked together by
some interconnection network, work together to process a single problem. All PEs
operate asynchronously. The basic unit of computation, into which a program is
decomposed for parallel execution, is called a task or a process. Parallel algorithm
design for a MIMD system requires investigation of all those operations that can
be carried out simultaneously. Then, these operations are grouped into multiple
processes and each such process can be assigned to a node or a group of nodes in
the graph representing a problem. These processes may comﬁmnicate, i.e., send
signals to synchronize or send the required data value, over the network through
global shared memory in a shared-memory MIMD system* or passing messages
in a distributed memory MIMD system® . This simple assignment of nodes to the
processes makes the B/IIM/D model an appropriate choice for the VLSI physical design

problems.

1.1.2 The EPP Style

When programming shared-memory MIMD systems, the programmer uses synchro-
nizing constructs (e.g., semaphores, barriers,‘ etc.) for shared-memory access; an-
notations (e.g., fork, join)_for process scheduling; and complex constructs for dis-
tributing data across system memory. In these systems, tasks are distributed to
the processors regardless of where the associated data is. All memory references
appear same to the application which greatly simplies programming. Similarly, the
programmer uses some annotations for passing messages among the processors when
programming distributed-memory MIMD systems. The extension of the sequential

languages with ezplicit parallel constructs and annotations allows the programmer

4Tt consists of two or more processors sharing a common bus and memory.

5Tt consists of a network of processors and memory that is distributed as local memory to each
Processor.
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to indicate that certain things may be done in parallel. However, software develop-
ment using these extensions is complex in at least two aspects: program correctness
and efficiency. Correctness requires the execution results be independent of the
number and speed of processors running the program. This requirement can be
satisfied only if the parallel tasks are independent of each other or properly syn-
chronized, if a dependence exists. Because it is the programmer’s responsibility to
code in the correct synchronization tc coordinate parallel execution, errors on the
part of the programmer can result in race conditions such that the same program
produces different answers on different runs. To establish correctness, significant
complexities are added to the program. The focus on efficiencyf in parallel program
design increases the complexity of software development. It is a difficult task for
a programmer to identify and schedule parallel activities small enough to utilize
the machine effectively but large enough to keep resource-management overheads

associated with maraging parallelism reasonable.

1.1.3 The IPP Style

Functional programming (FP) provides a convenient basis for the development of
the parallel programming languages that balance the division of work between pro-
grammet and the compiler in designing parallel programs. Such languages are not
based on a sequential model of computation and can exhibit significant amounts
of parallelism implicit in the data-dependencies of the program. These languages
allow expressing what is to be done, without specifying too much of how it is to be
don;z because one does not have to over-specify the details of an algorithm using
any imperative constructs and annotations. This property makes these languages
declarative. In such languages, computational abstractions are expressed through

functions. Thus, a first-order function takes data objects as arguments and produces

SEfficient parallel program design requires perfect distribution of processes on processors in a
parallel computer. This problem is known as Load-Balancing.

TN
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new data objects as results. The method used to produce new objects from the ar-
guments is abstracted by the function. Higher-order functions take data objects as
well as other functions as their arguments and produce new data objects. The sup-
port of the immutable data structures (e.g., arrays) makes these languages implicitly
parallel. The reason is that updating an immutable structure requires some degree
of copying instead of rewriting it. Thus, processes cannot interfere because they
operate on immutable values and interleaving processes cannot cause indeterminate
behavior. These semantics allow the compiler to extract a significant amount of the
parallelism available in a program automatically.

The functions in FP describes a functional dependence of the output values
on input values and are represented as dataflow graphs which correspond to mathe-
matical functions. FP languages are compiled to produce dataflow graphs and these
graphs are used as a machine language to run on dataflow computers [1]. The Mon-
soon [12], a dataflow computer, is designed to run Id [9, 6] programs in a dataflow
style. In this style, the instruction execution is driven only by the availability of
its operands and the instructions are executed in parallel if they are independent.
Id abstracts the responsibilities of parallelization from the programmer by making
them the responsibilities of the compiler. If an algorithm is specified in Id, one does
not explicitly encode parallelism, it is implicit in its operational semantics. More-
over, the programmer does not have to be aware of the parallelism in his program
and also does not need to know the details of the machine hardware. .

For our study, we have chosen the layout compaction and wire-balancing (LCWB)
problem in VLSI physical design cycle. This problem is formulated as the dual
transshipment problem (DTP) and solved using the network dual simplez (NDS)
algorithm. Our interest in this thesis is to implement this algorithm in Id and in-

vestigate the inherent parallelism in it which is exploited by Monsoon to speedup

the LCWB problem.
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1.2 The LCWB Problem

Consider a set of geometric features L representing a layout (see fig. 1.1),

L={L,Ls,Ls,...,Ly}

L Direction of Compaction
1 !
I <5é 1
] 1
! 1
1 i
1 L 12 1
1 1
I 1
t [}
1 !
1 1
1 !
I 1
! 1
I 1
i L4 I
1 1
1 i
1 1
! 1
I 1
1 1
1 - !
1 1
1 4’ 5 1
I ;o= 1
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Figure 1.1: Symbolic Layout: a sketch with origins of the elements at their lower-left
corners.

where L, represents the left boundary, Ly represents the right boundary of the
layout and there is a minimum separation di;, between L; and L;, specified by
spacing design rules. The problem of moving all features as close as possible to
one boundary of the layout, such that the overall layout along one dimension is

minimized, is called the compaction problem. Compacting the layout area can be

affected by performing 1-D compaction along the x-axis, and then 1-D com‘pacti'on
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along the y-axis. For clarity, we restrict our discussion to compaction along the
x-axis; compaction along the y-axis is similarly performed.

The layout area is minimized by reducing the extra space between features,
while conforming to spacing design rules. As a result of this process, the constrain-
ing features—they directly affect the compactness of the layout—are placed at their
minimal location to find the minimum width of the layout. At the same time,
non-constraining features may be placed at one side of the layout creating unnec-
essarily long wires. Therefore, an optimization (wire-balancing) step is performed
to minimize the overall wire length by moving the features against the direction of
compaction after a compaction step. These two steps form the layout compaction
and wire-balancing (LCWB) problem.

The LCWB problem can be formulated as a DTP [18] and represented by a
weighted graph G = (V,E) as shown in fig. 1.2. Each node, v; € V, represents a
feature in the layout and each directed edge e;; € E, pointing from v; to v;, repre-
sents the minimum spacing requirement”, d;; between L; and L;. Moreover, each
feature has a weight, w;, which can be positively weighted, meaning that moving the
component to the right boundary will decrease the total wire length, or negatively
weighted, meaning that moving the component to the left boundary will decrease
the overall wire length. If it is zero-weighted, it implies that moving the feature left
or right would not affect the wire length. Lastly, a position of a feature is denoted
by a dual variable (firing number), z;.

The wire-balancing problem can be formulated as a dual linear program when
graph G is represented by its adjacency matrix A:

Minimize: WX

subject to:

AX<D
X>0

7This requirement is the sum of left element size and minimum separation df;. This is further
explained in chapter 2.
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where D denotes a minimum spacing weight vector. The inequality, AX < D,
corresponding to each edge e;; of the graph (see fig. 1.2a and 1.2¢ ) is in the form
z; — 25 + (—dij) > 0 where z;,2; € X and —d;; € D. Note that the distances are
negated to reverse the direction of edges as shown in the formulation at the end of
this section. The left-hand side value of the inequality is the residual token (it is
denoted by r;; in this thesis) of e;; which can be either zero to indicate that both
L; and L; are at required minimum spacing distance w.r.t. each other or more than
zero, say f, to indicate that either L; (L;) can be moved to satisfy the minimum
spacing requirement by adding (subtracting) f to (from) the firing number of L;
(L;). These inequalities are the dual constraints in terms of DTP and the minimum
spacing constraints in the LCWB problem. The objective function of this dual
linear program is to minimize WX. Since the weights are constants, we are left
to optimize z; € X. Since zy and z, denote the positions of the right and left
boundary respectiveli we also minimize another ob jective function, zx — z;, before
we minimize WX, and thus solve the compaction problem. In fact, the positions of
the features after a compaction étep are fed to the wire-balancing step to minimize
WX. To solve the compaction problem, the left boundary is assumed to be at zero;
thus the position of right boundary is minimized subject to the same constraints
expressed as the graph edges.

For example, the LCWB problem for the layout shown in fig. 1.1 is formulated

as a DTP as shown below. The generation of input parameters of the DTP from a

layout is described in chapter 2.
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where AX <D
X>0
And objective functions to be minimized are:
1) o5 — 3
2) WX
This formulation is represented as a (constraint) graph, G, as shown in fig. 1.2.

Note that the thick nodes and edges are artificial, i.e., they are added to solve the
problem.

1.3 The Algorithms

Given the LCWB problem as a weighted graph G, the NDS method can be applied
to solve it. The first phase in this method is to test the feasibility of the input
graph G. During this phase, it finds a feasible solution® by solving the constraints.
As a result, it determines the minimum width of the layout and the corresponding
placement of the most constraining elements in' one dimension by calculating the
critical (longest) path in the layout. For example, the graph in fig. 1.2 becomes
the graph in fig. 1.3 after this phase, and its corresponding compacted layout is
shown in fig. 1.4. The longest path from all constraining nodes, vz,v4 and vs, .to‘
the left boundary node v; is shown as dashed edges in the graph (see fig. 1.3) and
the corresponding elements in the layout are most constraining (critical) elements.
Note that the length of the horizontal wire is increased to 15 from 12 (cf. fig. 1.1).

During the second (optimization) phase, it finds an initial basic feasible solution®

8A feasible solution is a set of values z; which satisfies the constraints such that each edge
ei; € E has a non-negative residual token.

%A solution is called a basic feasible solution of the DTP if graph G has a spanning tree T, such
that residual tokens of all edges of T become zero when the features are moved to their locations
specified by z;.. Such a spanning tree, with zero residual tokens on all edges, is called a 0-token
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Figure 1.2: X-inequalities derived by scanning the layout and corresponding graph

G.

Residual Token

Figure 1.3: Graph G after feasibility testing.

10

wxrem

e Y TN




BT E IR

.J‘Julli

I IR

.
e e B e T

PR oy LA

i
5
e i - 1
L2 15
H
1
H
H
H
§ L4
H
H
H
H
| -
........................................... |
:< i > <z >l
l‘l&i-—x ——————————————————————— - —————— % LS
gi?) % =20 % =25
%=0

..................................................................................

Figure 1.4: Layout after Compaction.

o

(bfs) using shortest-path computations, and then an optimal bfs is searched by per-
forming pivoting operations!’. These operations move some of the elements against
the direction of compaction such that the overall wire length is reduced. For ex-
ample, the graph after the application of this phase is shown in fig. 1.5 and the
correspbnding compacted and wire balanced lé,yout is shown in fig. 1.6. Note that
the non-constraining element, L,, is moved against the direction of compaction and
thus, the horizontal wire length is decreased to 5. .
Based on the pivoting steps during an optimization phase, the NDS algorithm
can be characterized as a NDS with sequential pivoting (NDS-SP) or a NDS with
concurrent pivoting (NDS-CP). The NDS-SP algorithm constructs a bfs starting
from a feasible solution and moves from one bfs to another, performing one pivot

step at a time. After each step, this method maintains its basisity, i.e., the current

spanning tree (dual feasible tree).

10A pivot operation (see section 3.2 in chapter 3) is applied to the zero-edges of the O-token
spanning tree T with one of its adjacent nodes as a leaf node/cluster. This operation moves the
feature/features corresponding to that node/cluster of T.
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Figure 1.5: Graph G after optimization step.
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Figure 1.6: Compacted and wire balanced layout.
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spanning tree is modified after each firing such that it contains only edges with zero
residual token (such edges their r;; = z;—z;+(—d;;) = 0 are called zero-edges in this
thesis). The NDS-CP algorithm constructs a bfs starting from a feasible solution
and performs concurrent pivot steps without destroying feasibility. However, it loses
basisity of the solution after performing these steps because some edges in the tree
become non-zero and the algorithm has to find a bfs starting from the current non-bfs

such that another phase of concurrent pivoting performed.

1.4 The Implementation and Results

We implemented the NDS-CP algorithm in Id to determine its performance on the
Monsoon machine. The performance results show that the NDS-CP algorithm, for
the relatively small input graph sizes we examined, could not utilize the 1pelis
Monsoon machine_to its full capacity. For an input gré,ph of 50 nodes and 500
edges, the utilization was only 55%. We investigated the reason for it and found
that it had spent most of its time in building the tree than doing other operations.
A similar behavior was observed when NDS-CP solved a larger graph of 160 nodes
and 3500 edges. This motivated us to re-write the tree-building code in order to
improve the overall utilization. In the process; we developed two better approaches
to comstruct the tree, namely, the ZST-SM!! and ZST-HM*2.

Using the ZST-SM approach, the overall utilization increased to 60% and wus-
ing the ZST-HM approach, it increased to 68% for the 50-node graph. We run this
algorithm using ZST-HM approach on MINT, an instruction-level emulator, to in-
vestigate the inherent parallelism in each phase of this algorithm and found that the

1175 this approach, the original approach which is sequential in nature is divided into two phases.
The first phase builds the tree which may have cycles in it. The second phase which is sequential
in nature removes these cycles.

121y this approach, the second phase of ZST-SM method is parallelized using hierarchical merging
to remove cycles.

13
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the hierarchical merging phase of ZST-HM to remove cycles and concurrent pivot
steps to find an optimal bfs have very little parallelism (about 10 to 16 independent
operations) which reduces the average parallelism in the NDS-CP to about 20. This
parallelism keeps 1pelis configuration busy for 68% of the time, and idle for 25%
of the time. Among these 25% idles 11% are due to the Monsoon hardware hazard
and 14% are due to the lack of work in the algorithm. The remaining 7% are
second phase operations. These operations restrict Monsoon to exploit available
parallelism because the second phase of the split-phase transaction is executed local
to the processor. Normally, the second phase operations are executed on remote
processor/memory module containing the required data and a Monsoon processor
takes its advantage by exploiting parallelism—executes independent instructions—
in order to hide latency and improve performance (see section 4.2 in chapter 4).
Moreover, among 68% useful operations 22% are due to RTS which can artificially
reduce parallelism by téking a long time!® to satisfy a frame or heap object request.

From our comparative performance study for the 50 nodes graph, we found
that the NDS-SP is faster than the NDS-CP, however, the latter approach executes
fewer pivot steps than the former approach. The reason is that the NDS-CP which
loses the basisity of solution after performing concurrent pivot steps has to recon-
struct a dual feasible tree so that another round of concurrent pivot steps can be
performed. However, the NDS-SP maintains the basisity and does not have to build
the tree again. The lack of parallelism in the tree-building subalgorithm and concur-
rent pivot steps in the NDS-CP makes it slower than the NDS-SP for some graphs
(see section 5.4 in chapter 5).

The inherent parallelism in the NDS-SP code is measured as 25 on MINT
using 50 nodes graph. While coding the algorithm, the parallelism can be expressed
in language features such as: single-order and high-order functions; list and array

comprehension which are used to construct lists and arrays; conditional statements;

13A typical RTS request takes 31 or 32 instructions and it executes these instructions sequentially.
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recursive procedures; loops which may be of Doacross type where different iterations
sharing a m-structure (introduced later) synchronize using implicit locks, and Doall
type where different processes execute independently; parallel blocks where a block
consists of single-assignment (variable binding) statements which are executed in
parallel if there is no data-dependency between them; and Mutable data-structures
(M-structures) for atomic arrays, lists, etc., where each element of the structure
carries its own lock for its exclusive update. We found through our parallelism
study of the NDS-SP using 50 nodes graph that list comprehension contributed the
maximum parallelism (35%). The reason for this is that it is used to construct a
list of graph nodes (processes) before all loop structures in the code. In this way,
we could reduce the overhead of spawning the parallel loop-iterations to minimum.
The for-loops of Doacross type contributed the second highest parallelism (24%) in
our code. This is due to the use the m-structure. Parallel blocks contributed 17%
of total parallelism? A7ray-comprehension which are used to construct functional
as well as m-arrays and while-loops of Doacross type which form the outer loops in
our code contributed a similar amount of parallelism (13%). The parallelism due to

each construct is further explained in chapter 5.

1.5 Thesis background

Id is a general-purpose parallel programming language. It has three layers (see chap-
ter 4), namely, a pure functional layer, a deterministic layer with I-structures, and
a non-deterministic layer with M-structures. Its performance on Monsoon dataflow
machine is being studied in the Laboratory for Computer Science (M.I.T.) and else-
where. One of the major work in this study is presented in [5]. In this paper, they
emphasize on the speedup gained by their applications written in Id running on
Monsoon multiprocessor. They did not emphasize on the contribution of the Id fea-

tures to achieve the speedup. In [13], Bohm and Sur have implemented NAS parallel
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benchmark Fourier Transform (FT), which numerically solves a three dimensional
partial differential equation using forward and inverse fast FTs, in Id to assess wnich
layer of this language is of importance to write scientific codes. To do so, they have
implemented this benchmark in three layers of Id and evaluated each layer sepa-
rately. They found that the M-structure layer allows the largest problem sizes to be
run at the cost of about 20% increase in the instruction count, and 75% to 100%
increase in the critical-path length, compared to the I-structure layer. However,
they also did not emphasize on the contribution of the Id features to achieve the
performance of their programs.

We have restricted our implementation of NDS!® algorithm to the pure func-

tional layer and M-structure layer.

1.6 Contributions
The contributions of this thesis are:

o Implementation of the NDS-CP algorithm in Id.

e Design and implementation of the sequential pivot algorithm for the NDS
algorithm.

e A comparative performance study of the NDS algorithm using sequential piv-

oting (NDS-SP) and the NDS algorithm using concurrent pivoting (NDS-CP).

o Two designs of O-token spanning-tree algorithms and the study of their effects

on the overall parallelism.

1414 is the inherent sequential thread in the computations.

1511 [4], a detail bibliography is given for network dual simplex algorithm and other network
optimization algorithms. They have parallelized this algorithm and solved the LCWB problem
to show the effectiveness of their algorithm by implementing it on BBN Butterfly multiprocessor
using a parallel C language.
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e A quantitative study of the parallelism exposed in each 1d feature used in our

implementation.

1.7 Thesis Outline

The remaining contents of this thesis have been organized in six chapters.
Chapter 2 shows the formulation of a simple layout and the generation of
corresponding graph. Chapter 3 discusses the solution of LCWB problem formulated
in chapter 2 as a DTP using NDS-SP, and then NDS-CP algorithm. Chapter 4
briefly describes the Monsoon architecture. It also discusses the Id language features
which are used to implement our algorithms. Chapter 5 discusses the results of a
comparative experimental evaluation of these algorithms. This chapter starts with
an evaluation of NDS-CP, and then the effect of tree-building strategies on NDS-CP
is studied. This is*féilo’Wed by the parallelism study in the 0-token spanning-tree
building strategies on MINT. After selecting the best tree-building subalgorithm,
we discuss the parallelism in the first iteration of NDS-CP on MINT, and then we
evaluate the NDS-SP. It is followed by a comparison of both algorithms, NDS-CP
and NDS-SP, on 1pelis Monsoon and finally, an examination of the contribution to
the parallelism of each Id feature in the NDS-SP algorithm. Finally, in chapter 6, we

summarize our work in this thesis and point out certain problems for future study.
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Chapter 2

Generating the Constraint Graph
for the LCWB problem

Constraint graph compaction consists of two steps:

—

1. Build the constraint graph to indicate the relative positions and the minimum

distances required among elements.
9. Solve the constraint graph to minimize the chip area.

In this chapter, we describe the generatioﬁ of a constraint graph for an example
layout. The solution of the graph is described in the following chapter. The example
layout in this chapter will be used throughout the next chapter.

2.1 Constraints

In this layout (fig. 2.1), the component numbers are shown inside each component.
Each component L; has a ﬁxed size S; (shown by dotted double-headed arrows).
The minimum separation, d;;, between any two features is 5 units. A component’s
position is represented by its left x-coordinate and the actual minimum spacing,

d;;, between two components is calculated by adding the left component’s width

18
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Figure 2.1: Symbolic Layout: A Sketch, with origins of the elements at their lower-
left corners

— —

to 5. There is no minimum spacing requirements between a component and chip
boundary. Four elements (L2, L3, L4 and Ls) are shown as physically connected to
each other and this connectivity information is added to the constraint graph (see
section 2.2.2). |

The sizes of the features are assumed to be fixed, so the compaction problem
is just to move the features closer to reduce the layout area while conforming to
minimum spacing rules. Spacing rules can be represented as weighted, directed
edges in the constraint graph.

Consider two cells (B and A) as shown in fig. 2.2(a). If they are required to
be at least d units apart, then the following minimum spacing linear constraint is
represented in the graph as an edge ep4 (fig. 2.2(b)):

z4—zp < —dBs .

where z 4 and zp represent their x positions. That is, element A is to the left

of element B and there is a minimum spacing requirement of d units between them.
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Figure 2.2: Separation constraints and graph representation

2.2 Constraint graph generation

The constraint graph generation' step (see fig. 2.3) analyzes the layout to deter-

mine spacing rules that must be obeyed, and then adds wire-length minimization

information.

Spacing Constraint

S tioas Generation.

-—

Adding Connectivity

Information

- -2

Counstraint Graph
as a

DTP

Figure 2.3: Constraint graph generation

‘1In our parallelism study, we are not concerned about building a constraint graph. We assume
that the input constraint graph is already generated from the layouts. However, to be complete,
we show the generation of a small graph from the simple layout shown in fig. 2.1.
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2.2.1 Adding Spacing Information to the Constraint Graph

Scanning this layout shown in fig. 2.1 produces the set of inequalities of the form
z; — x; < —dj; (see fig. 2.4(a)) which is represented as a weighted, directed con-
straint graph G = (V,E) as shown in fig. 2.4(b). In G, there is a directed ;adge,
e;i € E, between two nodes v; and vj, if there is a design rule constraint between
the corresponding components. Each inequality corresponds to an edge e;; in the
graph with weight —d;;. Two special nodes, vg and v;, (corresponding to the right
boundary and the left boundary of the layout) are added to the graph. Circuit
elements which correspond to nodes with no outgoing edges could be placed at the
left boundary, and so »edges are added to G directed from each one of these nodes

to the left boundary node with weight zero. These artificial nodes and edges are
drawn as bold in the graph.

X-inequalities P o
g i
X -X
‘ -X
X=X
X, =X

X, - X

X, - X <= 10

<=0

w

Firing number
<=0 (position on x-axis)
<=-10

<=5

<=-25 Left

h o a s W
g

Right
Boundary

25 Minimum Spacing
Constraint

©

X=X 5"<= -5
@

Figure 2.4: X-inequalities derived by scanning the layout and corresponding graph
G. :
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2.2.2 Adding wire-length minimization information to the

constraint graph

The greater freedom of motion in constraint-graph compaction makes wire-length
minimization compulsory. The compaction in one direction alters only the length
of the wires parallel to the direction of compaction and therefore it is sufficient to
consider only these wires. The wire-length minimization problem is also transformed
to a graph problem in a way similar to the compaction problem by adding pieces of
information from the connectivity of the layout to the constraint graph during its
construction. This information (denoted by w;) is added as follows.

In the layout (fig. 2.1), L, and L4 are connected through wire# 1 and L,
and Ls are connected through wire# 2. Let us, consider wire# 1. L, is assigned
weight of 1 (shown in fig. 2.5) to indicate that moving it to the right (opposite to
the direction of con’l,paq@jon) will decrease the wire length and L, is assigned weight
of -1 (fig. 2.5 does not show it) to indicate that moving it to the left will decrease
the wire length. Similarly, consider wire# 2. L, is assigned weight of 1 (fig. 2.5 does
not show it) to indicate that moving it to the right will decrease the wire length and
Ls is assigned weight of -1 to indicate that inoving it to the left will decrease the
wire length. Thus, ws =1—1=0. All other elements (not connected to the wire),

L,, L3 and Lg, will have a weight of zero. Note that vertical wires have no relevance

in the x-compaction.

Figure 2.5: the graph G after adding wire-length minimization information

The graph can now be used to compute the new positions for the components
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by solving the LCWB problem.

2.3 Summary

This chapter explained the method of generating the constraint graph for the layout
shown in fig. 2.1. This LCWB problem can be written as a dual linear program

using matrix notation: 7x6 matrix A, positions/firing numbers vector X, minimum .

spacing vector D, and node weight vector W as shown below and solved using NDS-

SP or NDS-CP algorithms.

1 -1 0 O 0 O - y 0
T
10 -10 0 O 0
Z2
01 0 1 0 0 —10
I3
A=100 1 0 -10 [X= D=1 -25
T4
00 0 -1 -1 0 —-10
Ts
00 0 1 0 -1 -5
[ 6 |
00 0 1 -1 -1 | -5

W=[0100—1 0]

where AX <D
X>0
And objective functions to be minimized are:
1) 26 — x4

2) WX
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Chapter 3

LCWB and the NDS Method

The network dual simplex (NDS) method is based on a dual network flow optimiza-
tion problem involving a single dual variable per network node. At each iteration,
a single node is chosen, and its dual variable or its incident arcs’ weights (residual
tokens) are changeg inan attempt to improve the dual cost. This approach is well-
suited for massive parallelization [3] where each node can be assigned to a processor,
each adjusting its own dual variable on the basis of local information communicated
by adjacent processors.

For our comparative performance study in the next chapter, the LCWB prob-
lem is first solved using the NDS-SP (network dual simplex with sequential pivoting)
algorithm and then, using the NDS-CP (network dual simplex with concurrent piv-

oting) algorithm.

3.1 The NDS algorithms

The first step, in both algorithms, is to find a set of values z; such that each edge
e;; € E has a non-negative residual token. These values form the dual feasible
solution of the DTP and are obtained by solving the constraint graph by applying

algorithm Feasible and then, an optimization (wire-balancing) step is performed to
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Figure 3.1: Solving a constraint graph

find an optimal basic feasible solution (bfs) X. Because algorithm Feasible determines
z's which satisfy minimum spacing constraints, it finds the dual feasible solution for
both problems. Thus, this algorithm serves as a link between the layout compaction
and wire-balancing problems.

The optimization phase in the NDS-SP algorithm initializes the bfs, and then
performs the sequential pivot operations (discussed in section 3.3.4) to find an op-
timal bfs X”. This phase terminates when all nodes merge to form a single cluster.
The graph at this point is deemed an optimal graph. Whereas, in the NDS-CP
algorithm, it is an iterative process which involves the calculations of a bfs and con-
current pivot steps (discussed in section 3.4.1) repeatedly. The reason is that at the
end of a set of concurrent pivots, the resulting solution may not be basic; thus, it has
to retain the bfs after each concurrent pivoting phase. The graph becomes optimal
when all nodes merge to form a single cluster without any firing operations.

Five basic subalgorithms serve as building blocks for the NDS-SP and NDS-
CP algorithms, namely, Feasible (FT); Clustering, Contraction and Shortest-
Path Computations & Firing (C-C-SPC-F); and BuildTree (ZST_X). Details
and their proof of correctness may be found in [4].

We start with the description of a dual pivot step and then, we explain the

basic operations in these algorithms.
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3.2 Dual Pivot Step

Let X be the initial bfs and T the corresponding dual feasible tree. Consider an
edge e;; € T and let (S,S’) be the corresponding fundamental clusters—a cluster
consists of one or more nodes—with v; € S and v; € S’ and ws be the weight of

cluster S. The cluster S is represented by a leaf node and is connected to the rest

of the spanning tree (S’) by a single zero-edge e;;. Nodes in S may have non-zero.

adjacent edges—these edges are not in the current spanning tree T, because their
residual tokens are non-zero—connecting them to other nodes in the graph G. A
pivot operation (positive firing operation) is applied to e;; (an outgoing edge) if
ws > 0 where ws = Y w;, for all v; € S.

A dual pivot step performs two types of firing operations. One of them is called
a positive firing and its firing condition is mentioned above. For example, consider
a O-token spanning tree T depicted in fig. 3.2 (edges in T are solid lines with weight
zero). A zero-edge e34 connects a positive weighted! cluster S represented by leaf
node vz to the rest of the spanning tree. Thus, e;4 satisfies the firing condition.
To perform this firing operation, the firing number of the cluster, fs, is calculated
as follows. Each node, v; € S, will process its incoming non-zero edges ex; and the
minimum residual token of all such edges is aséigned to fs, e.g., fs = min(ro3,ras)
= 2.

The positive firing of a node v; fs tirhes, is the operation of adding fs to its
current firing number as well as adding it to the residual token of every outgoing
edge e;; € FE and subtracting fs from the token of every incoming edge ex; € E.
Such a situation is depicted in fig. 3.3. All nodes (vs, vs and v;) in cluster S are fired
by two. Their firing numbers are increased by two and residual tokens of incoming

and outgoing edges of S are modified such that no resulting residual token becomes

1After clustering (only during any pivoting strategy but not while finding an initial bfs) of v;,
vs and vz having node weights as 1, 0 and 1 respectively, each one is assigned its representative
(v3) weight which becomes 2 (wz =1+0+1=2).
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Figure 3.2: Dual pivot step: initial state (before positive firing)

[6+2=8] Rest of spanning tree (S’)

Cluster S [B+2=11]
Representative Node = 3

Figure 3.3: Positive firing: calculate fg and fire
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negative.

As a result of this firing, the residual token of zero-edge es 4 becomes two.
Thus, this tree T loses its basisity, because the residual token of each edge in the
tree must be zero.

In the case of sequential pivoting, the tree is modified by deleting the zero-edge
e;; (it has become non-zero as a result of firing and it is called a leaving edge, e.g.,
e34 in this example) and replacing it by the non-zero edge ez; (it has become zero
as a result of firing and is called an entering edge, e.g., ess in this example) after

any firing. It is done to maintain the basisity of the solution. Such a situation is

depicted in fig. 3.4.

Leaving Edge

Entering Edge

Figure 3.4: Sequential pivoting maintains the basisity

However, the concurrent pivoting method does not modify the tree and con-
tinues performing pivot steps on a non-basic tree. This will be explained further in
section 3.4.

The second type of firing operation during a pivot step is the negative firing
which is the inverse of the positive firing (see [4]). A negative firing operation is
applied to an edge e;; (an incoming edge) where v; € S and v; € §' if ws < 0.
In a negative firing, the firing number fs is the minimum residual token of all the

outgoing edges (from each v; € S to S’) not in the current spanning tree and before
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firing S, fs is negated.

The advantage of employing both forms of firing during a pivot step is that
after the computation of a fundamental cluster, it is not discarded even if it is neg-
ative weighted, which saves a lot of computations. However, as a result of negative
firing, firing number of nodes may become negative at the end of a concurrent pivot
phase because negative firing basically moves the left-boundary beyond zero. These
are corrected by adding the least negative firing number to all the firing numbers.
Both forms of firing operations during a pivot step can not be employed concur-
rently. So, we fire positively first then we fire negatively (see [4]); the ordering is
inconsequential.

Finally, firing a node/cluster, v;, zero times is the degenerate pivot [17, 4]
operation. These pivot operations degrade the performance of any pivoting strategy.
If a degenerate pivot is found, then the current 0-token spanning tree is modified by
replacing the correspondlng zero-edge, e;;, with another zero-edge, e;x, not in this
tree and pivoting process is restarted. Thus, this process changes one basic tree to

another without improving the solution and is called degeneracy.

3.3 The NDS-SP Algorithm

Given a DTP, the NDS-SP finds a dual feasible solution, X, using subalgorithm
Feasible. Then, it constructs a bfs, X’, such that WX’ > WX using three subalgo-
rithms, namely, Clustering, Contraction, and Shortest path computation & firing.
The process of constructing a bfs is an iterative process as shown in fig. 3.5. At
the end of this process, it results in a set of values z; € X’ such that each edge
e;; € E has a non-negative residual token and zero-edges span all the nodes in the
graph. At this point, a O-token spanning tree T is formed using a subalgorithm
7ZST-X. Given such a tree, the sequential pivoting (subalgorithm sPivots) essentially
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involves traversing this tree bottom up (starting from a leaf), identifying a funda-
mental cluster and firing it. During this pivoting strategy, the computations proceed
in iterations. Each iteration (dual pivot step) processes a zero-cdge of the tree to
improve the current bfs. This flow of the NDS-SP algorithm is visualized in fig. 3.5.
We will explain the process of each step on the graph shown in fig. 2.5.

3.3.1 Feasibility Testing: The Compaction Step

Algorithm Feasible solves the minimum spacing constraints and assigns values to all
the dual variables, z; € X. To do so, it performs two steps as follows.

During the first (initialization) step, each node v; sets z; to zero to place all
elements at the left boundary of the layout. Then, each node sets z; to the value
of the most negative edge weight, d;;, of its outgoing edges (each node traverses its
outgoing edges to calculate the most negative edge weight) to move each element
towards the right b;uhaary, and thus places each one at its minimum spacing dis-
tance from its nearest left element. The result of this step is visualized in fig. 3.6
where each node v; is assigned z; = Maz;{-d;;}, for each e;; € E.

During the second (testing) step, each node v; calculates most negative residual
token (say ) of all its outgoing edges and updates its firing number, z;, to place
itself at its longest path distance from the left boundary node v;. This step works
in phases where each phase executes N iterations. During each phase, each node'v,-
calculates r and moves itself by adding r to its firing number atomically because 1t
may interfere with its adjacent node if that is also updating its firing number. In any
phase, if a node updates its firing number, then it sets a flag to true to indicate that
another phase will be executed. This subalgorithm will terminate when no node
modifies its firing number in a phase. The result of this step is visualized in fig. 3.7.
In a phase, each node v; is assigned z; = Maz;{-ri;} where r;; = dij + z; — z;, for
each e;; € E.

Solving a system of dual constraints produces a complete placement in one
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. Stop:
Feasible? Problem
Infeasible

I @
! Clustering ':
E Contraction |
| G’ |
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Build | Shortest Path :
-0-token spanning tree } Computation \
¢ z l z
Sequential Pivots E Firing E

Optimum solution \Finding a basic

feasible solution.

Note that G’, G1’ and G” are intermediate graphs.

Figure 3.5: Flow diag‘ra,m of NDS-SP algorithm
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Figure 3.6: Algorithm Feasible: initialization step

- Residual Token ( Slack )
(30-10-5=15)

15}

Figure 3.7: Algorithm Feasible: testing step
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dimension for the elements in the layout [4]. The z;’s obtained at the end of
feasibility testing represents the positions of the different circuit elements. The
maximum z; (z¢ = 30), in fact, is the length of the most negative edge weight di-
rected path in graph G from the right boundary node to the left boundary node
(ve = vs = v3 — v1), which is also the minimum width of the layout. This path
is also called the longest path or critical path. As a result of this process, the com-
ponents representing nodes vg, vs,v; and v; are placed at their required minimum
spacing distance. This is indicated by zero-edges along this path. These components
are called the constraining (critical) elements (shown in bold in fig. 3.8), and they

directly affect the compactness of the layout.

< ennnen Direction of Gompaction. .. ... ... ...
' SN S |
S !
L, 4 1
= !
| L i
' 4 !
| [
1 1
| [
1
i 10
|
! Ls
1
L3
--------------------------------------------------------- B <Tooeeozo-o-- D
I 20 5 1
L1, 4 Ls
x=0 x =10 xX=25 X =30
x=0

Figure 3.8: Layout-II after Compaction

All elements (nodes) which are not on the longest path are the non-constraining
elements (L, and Ly in fig. 3.8) and their placement by this subalgorithm increases
the overall wire length by two (cf. fig. 2.1). Moreover, L, can be moved to the
right upto five units without increasing the width of the total layout. This can be
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calculated by finding the minimum of the residual tokens of the incoming edges at vy.
The objective function of wire-balancing problem is-25. As we can see from fig. 3.7,
it is not minimum (optimum) because Ly can be moved to reduce the overall wire

length, therefore the objective can optimized in the following optimization phase.

Significance of Residual Tokens

Residual tokens play an important role here. Consider two elements L4 and Lg
(referring to fig. 2.2 in chapter 2). Their positions are denoted by z4 and z5.
Minimum spacing between these two elements is given by dp4. If element L4 is at
€4 then, zp should be greater than or equal to d = z4 + dpa. f 25 =d then both
elements are at their required minimum spacing. If zg > d then element Lp may
be moved to the left by rg4 = zp — (x4 + dp4) units or L4 can be moved to the
right by rg4 to minimize the overall wire length.

—

3.3.2 Constructing an Initial Basic Feasible Solution

In fig. 3.8, some of the residual tokens on the edges are zero. This fact is exploited
while finding a bfs. The graph at the end of feasibility testing is G’. To find a bfs,
X’. node set V is partitioned into subsets (clusters) Sy, ..., Sk such that if a cluster,
S;, has a node with negative weight, then all other nodes? reachable from this node
by a directed path of zero-edges are also in ;. After this partitioning of V into
clusters, only nodes with a positive weight are fired by p which is the shortest path
distance from the negative weighted clusters to them.

The construction of a bfs, X’, from a given dual feasible solution, X, involves

repeated applications of the following steps.

1. Clustering

2. Contraction

2They may be negative, zero or positive weighted nodes.
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3. Shortest path computations and cluster firings.

These steps may be repeated until all nodes coalesce into a single cluster after

the Clustering step. Now, we will explain the working of each step on the graph
shown in fig. 3.7.

Clustering

Clustering involves finding for each non-positive node® v;, the set of all nodes reach-
able from v; by directed paths of zero-edges. The least-numbered non-positive
weighted node in a cluster is used as the representative of the cluster. In fig. 3.7, v;
is reachable from v, as well as from vg by a directed path of zero-edges. Thus, these
nodes will form a cluster, say S;, represented by v;.

Note that there is only one node v, with a positive weight. However, it has
adjacent zero-edges tc non-positive nodes v; and v4 which indicates that element L
is at its minimum spacing distance from L; and L4. Therefore, it is also represented
by v;.

To perform clustering on fig. 3.7, each node v; is associated with an attribute
called a representative (say sourceli]). It is initialized to oo if the weight of the node
is positive, otherwise it is initialized to 7. Next, ltwo steps are performed in sequence.

During the first step, each node, v;, with sourceli] # oo starts a process which
examines the representative information associated with each node, v;, of its outgo-
ing zero-edge and performs the following statement.

If sourcefj] = oo, then sourcefj] is set to sourceli]. Otherwise, find the root* of

v; (say 1j). If rj < ri where ri is the root of v;, then source[i] = 1j, otherwise source]j]

=1i.

31t is a node with zero or negative weight.

I source[i] = i then v; is the root of the cluster containing i. Otherwise, the root is found by
traversing the list of representative nodes starting from the current representative until a node is
found which is the representative of itself.
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This step is executed in phases. In each i)hase, all active nodes work in syn-
chrony. Each active node which updates its source information resets its flag to false
to indicate that it will be inactive in the next phase. This step is fepea,ted until all
nodes propagate their representative information to its adjacent nodes.

For fig. 3.7, this step is repeated two times. During the first phase, five pro-
cesses corresponding to the five nodes, vy, v3, v4, vs and vg, are active. The process
corresponding to v; does not perform any action because there is no outgoing edge.
However, the other four processes perform the above statement. The representative
of v, becomes 4 after the first phase, so it propagates its representative informa-
tion to its outgoing edge in the second phase. There is only one active process
corresponding to v, during the second phase. It modifies its representative, vs, in-

formation to 1 according to the statement mentioned above. The state of the graph,

after this step, is shown in fig 3.9.
R=4 R=1

Legend R : Representative.
Figure 3.9: Step-I: Clustering of G’
In the second step, all nodes work in synchrony where each node traverses the

chain of representatives to find its root (say rt), and then to write sourceli] = 1t as

shown in fig 3.10. Thus, all nodes are represented by v; and a cluster (say S1) is
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Figure 3.10: Step-1I: Clustering of G’

formed.

Contraction -

Let S1,..., Sk be the clusters formed by the clustering step and be represented by
their representatives. During this step, all the nodes in each cluster are contracted
and a graph G1’ having at most one edge directed from one cluster S; to another
S; is constructed. The residual token of this edge e;; will be the minimum of the
residual tokens of all edges in G’ directed from a node in S; to a node in S;. Thus,
the contracted graph G1’ will have only nodes representing a cluster in G’ at ’ghe
end of contraction step. The weight of a representative node in G1’ will be the sum
of \_Neights of all the nodes in the cluster. In this example, because all nodes have the
same source (representative), hence, the contracted graph G1’ has only one node v;
and its weight is zero as shown in fig. 3.11.

To construct G1°, N processes corresponding to each node in G’ become active.
Each node v; € G’ traverses a list (ActiveOutNodes) of the nodes on its outgoing
edges and performs the following statement:

If the root of any of these nodes (say rj) is same as that of v; (say ri), then it
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Figure 3.11: Contraction: G1’

removes v; (i.e., deletes e;;) from the ActiveOutNodes. If r§ # j and rj # ri then it
deletes e;; and adds a new edge, e;,;. The weight of this new edge will be the same
as that of the deleted edge e;;.

After updating its ActiveOutNodes, v; performs the following statement.

If ri # 2 then the weight of i is increased by the weight of v; and ActiveOutN-
odesri] is set to ActiveOutNodes[ri] U ActiveOutNodes[i].

All nodes woﬂ:in ;ynchrony with each other while accessing their root’s Ac-
tiveOutNodes structure. Each node locks its ActiveOutNodes so that it will wait
for its use in the later statement until it is updated by the former statement which
results in producer-consumer parallelism during each iteration.

For example in fig 3.10, the process of vs is processing its adjacent nodes v;
and v4. However, roots of both, v3 and vy, are 1 which is also the root of vs. Hence,
both edges, €53 and es 4, are deleted. Similarly, other edges are also deleted. In this

way, all nodes in the cluster are contracted to form a new graph having only one

root node, vy, representing the cluster .5;.

Shortest Path Computation and Firing

Shortest Path Computation (SPC) and Firing (F) operations find for each cluster
S,- with positive weight in G1’ a shortest path to it from a cluster with non-positive
weight. The weight of this path specifies the number of times each node in cluster S:
could be fired without resulting in any negative residual token. In G1’, if a cluster
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with a positive weight (say S) is not reachable from any cluster with a non-positive
weight, then this indicates unboundedness of the given DTP, because S can be fired
an unbounded number of times increasing the value of WX to an unbounded value.

To perform SPC, each node is assigned its two variables, namely, distance and
newDistance. There are two steps in this subalgorithm. In the first (initialization)
step, each node ¢ will initialize its distance variable to co and each start-node® will
initialize its newDistance variable to zero while all other nodes will initialize their
newDistance variables to oo.

- The second step is an iterative one which is repeated until all positive weighted
clusters reach their shortest path distances from non-positive clusters. This step is
also executed in phases. During each phase, only nodes with newDistance; <
distance; will be active. Each active node v; sets distance; to newDistance; and

updates the newDistance; variable atomically for each of its outgoing nodes as

— e

follows.

newDistance; = Min{newDistance;, ResidualT oken;; + newDistance;}

This iterative step terminates when distance; becomes newDistance; for each
node. Note that all active nodes in a phase work in synchrony. They may synchronize
at the newDistance variable of their outgoing nodes.

To perform cluster firing (F), the root (say ri) of each positive weighted cluster
Si becomes active and all nodes in that cluster are fired positively by distance[ri],
l.e., each one is moved towards the right boundary. In this process, all eligible
clusters are fired concurrently.

' In our example, SPC-F operations are not needed to move any element with
respect to left boundary because each one is at its longest-path length from it. This
indicates that the dual feasible solution obtained after feasibility testing is essentially
a bfs as shown in fig. 3.12. The resulting bfs, X’ = {0, 0, 0, 10, 25, 30}, remains

the same and the objective function calculated as WX’ = —25, is the same as WX.

SIf the weight of a cluster is non-positive, then the root of this cluster is chosen as a start-node.
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The graph at this point is denoted as G”. In this graph, zero-edges span all the

Figure 3.12: Graph G”: a bfs where thick edges will form the 0-token spanning tree

nodes. Now, we construct a O-token spanning tree using a tree-building (ZST-Org)

—

subalgorithm [4].

3.3.3 Building a 0-token spanning tree

Since this phase is entered only upon the successful completion of the Clustering,
Contraction and Shortest-path computation sﬁbalgorithms at the end of which all
nodes in the graph are collapsed into one single cluster, there will be a zero-weighted
path between every pair of nodes and a 0-token spanning tree can be built using only
zero-edges. Note that there could be more than the required number of zero-edges
to build the tree. However, the algorithm chooses only N — 1 zero-edges required to
build the tree.

Each node, v;, maintains a list of nodes (ZeroNodes[i]) adjacent to its outgoing
zero-edges. An atomic variable tree is initialized to nil. Each node in the graph is
associated with a flag which is initialized to false. The process to build the tree
works in phases. During each phase, all N nodes try to join tree by adding their

nodes (ZeroNodes), however, a node joins the tree only if it or one of its ZeroNodes is
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already in the #ree. If there are more than one node already in the tree, then any one
of them can be considered to avoid forming a cycle in the required 0-token spanning
tree. Each node which succeeds in joining tree sets its flag to true to indicate that
it will be inactive in the next phase.

This subalgorithm terminates when all the nodes in the graph succeed in join-
ing tree. The resultant 0-token spanning tree is shown using thick edges in fig. 3.12.

Note that a node which succeed in joining tree locks it before updating it,
thus making all processes during each phase execute sequentially. Depending on the
graph, most of the nddes (proceéses) during a phase may not find their adjacent
nodes in tree and end up with doing nothing which makes this approach execute
more phases® to build a 0-token spanning tree (its effect on the performance of NDS
algorithms is discussed in chapter 5).

Next, we proceed to find an optimal solution using the sequential pivoting
strategy which workg on the edges of the O-token spanning tree. Here, we seek to

improve the bfs by performing pivoting step on each eligible edge one by one.

3.3.4 Sequential Pivoting

Given a 0-token spanning tree T, sequential piQoting starts with any edge e;; € T
(either node v; or v; should be a leaf node). If this edge satisfies any firing condition,
then the firing is performed and the 0-token spanning tree is modified such that the
resulting tree has an objective value WX higher (or same, but not less) than before.
If no firing is applicable to this edge, then both nodes adjacent to this edge are
merged to form a cluster. After clustering, if this new cluster is not represented by
a leaf node, then another leaf node in the spanning tree is chosen to continue the
search for an optimal solution. If this new cluster is represented by a leaf node, then
the search process continues from this leaf node. This process continues until all

nodes of the tree are merged to form one cluster. At this point, the current basic

N processes per phase.
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feasible solution is an optimal solution and the corresponding graph G is optimal.
Note that only leaf nodes with positive or negative weight are active during the

pivoting step. This process is visualized in fig. 3.13.

Input, O-token
spanning tree | -

Toreem T

S s ¥y 0

Optimal
tree is found.
Figure 3.13: Flow of sequential pivoting

* To perform pivoting operations, this subalgorithm makes use of the following

data structures: L

o NumTreeEdges (an array of integers) where NumTreeEdges][i] is the number

of nodes that are adjacent to v; in T.

e Source (an array of integers) where Sourcefi] is the root of v;.

42




225 MOTT PUATEINEY

7T LS W SO RS T B

R e L T

o ClusterWeight (an array of integers) where ClusterWeight[i] is the sum of the
node weights of all the nodes in the cluster S;. It is initialized to the weight
of each node in the input DTP.

o Tnodes (an array of lists) where Tnodesi] is the list of nodes that are adjacent

to v; in T.

o FiringNoArray (an array of integers) where FiringNoArray(i] is the number by

which element v; has been fired.

e OriginalInComingNodes (an array of lists) where OriginalInComingNodes(i] is

the list of nodes, say k’s, for each ey; € E.

o ResidualToken (a 2d-array of integers) where ResidualToken(ij] is the residual

token of e;; € E.

—

Checking for the Firing Condition

Consider a leaf node v; (or a cluster S; represented by v;) of T. If ClusterWeight[i]
> 0 and it is connected to the rest of tree by an outgoing edge e;; then it is eligible
for positive firing. If ClusterWeight[i] < 0 and it is connected to the rest of tree by

an incoming edge e;; then it is eligible for negative firing.
Firing

If v; is eligible for positive (negative) firing then the firing number is calculated.
If it‘ is zero (degenerate pivot) then the tree is modified (see section 3.2) and this
operation does not change the solution. If it is not zero, then v; (node/cluster) is
fired appropriately which improves the solution. Note that all nodes in a cluster are
fired concurrently. This procedure is described in fig. 3.14. The process of firing a
node is visualized in section 3.2 and its procedure (Fire) may be found in [4]. The

process of negative firing is the inverse of positive firing. In negative firing, we look
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Input:

Vi

(Positive firable leaf node/cluster),

Tnodes (0-token spanning tree) and
FiringNoArray,

OriginallIncomingNodesl[i],

ResidualToken, ”

¢j or ¢ (basic edge).

Output:

FiringNoArray (Modified firing numbers) and
Tnodes (modified spanning tree).

Procedure Calculate_Positive_firing_number_and_fire.

Begin

{Find a non-basic edge er; €« Gsuch that it has the
minimum residual token. This minimum residual token is
used as the cluster firing number f; and the edge ey
is remembered as the EnteringEdge.}

For each ke OriginallncomingNodes[i] Do
fs = Min( fg, ResidualTokeny; )
Endfor

EnteringEdge = e,; with minimum residual token;

{Fire the cluster byf;and replace the LeavingEdge
¢;j « Tnodes by e to give modified tree)
Is = all the nodes with root as v;;
For each ieis Do
Fire (I, f5, ResidualToken, FiringNoArray)
Endfor
Tnodes = delete ¢; And add ey;

End.

Figure 3.14: Procedure for calculation of positive firing number and firing
44
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look at outgoing edges instead of incoming edges of v; in the original graph and

firing number fs is negated before we call procedure Fire.

Traversing

If v; is not eligible for any firing then it traverses the tree T along its only adjacent

edge e;; (or ej;) to form a new cluster. This is done as described in fig 3.15.

Input:

vi (a leaf node/cluster of T),
€j or e; (basic/zero edge),
Tnodes (0-token spanning tree),
ClusterWeight,

Source and

NumTreeEdges .

Tnodes (a contracted tree).

Procedure climbUpTree.

Begin
Source[i] =j;
NumTreeEdges[i] =0;
ClusterWeight [j] = ClusterWeight [j] + ClusterWeight[i]; -
NumTreeEdges|[j] = NumTreeEdges[j] - 1;
Tnodes[j] = delete v; from Tnodes(j];
Is= 1list of orphan nodes having v; as their
representative;
For each keis Do
ClusterWeight[k] = ClusterWeight[i] ;
EndFor
End.

Figure 3.15: Procedure for traversing the 0-token spanning tree
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The outline of the sequential pivoting subalgorithm is shown in fig. 3.16.
Consider the 0-token spanning tree shown in fig. 3.12, the sequential pivoting works
as follows. This process constructs a list of 2ll the leaf nodes? in the tree and by
principle, it can start from any node from this list. Let us start with the leaf node
vs. The weight of this node is zero, so this tree is traversed along its outgoing edge

es,2 to form a new cluster as shown in fig. 3.17. To form a new cluster, v4 performs

the following steps:

e source[4] = 2,

NumTreeEdges[4] = 0,

ClusterWeight[2] = ClusterWeight[2] + ClusterWeight[4] = 1,

NumTreeEdges[2] = NumTreeEdges[2] - 1 = 1,

Remove vg4 from the Tnodes[2],

ClusterWeight[4] = ClusterWeight[2].

As a result of this process, adjacent nodes of e4 2, v2 and vy, are merged into one clus-
ter, because the corresponding elements satisfy the minimum spacing requirement
relative to each other. |

The resulting cluster is represented by a positive weighted leaf node v, and it
is connected to the rest of spanning tree by an outgoing edge e;;. Thus, thié edge

satisfies the positive firing condition (see section 3.2). Next, the following steps are

performed:

e Both nodes v, and vy In this cluster look at their incoming non-zero'edges, €s.4
and eg4, to find the minimum residual token. The non-zero edge es 4 carries
the minimum value of five. This value is the firing number of the cluster and

this non-zero edge is remembered as the EnteringFEdge.

7If NumTreeEdges[i] = 1 then v; is a leaf node.

46




DR 253 LN YT LT LY SR S NI T I

Inputs:

Tnodes (0-token spanning tree),
FiringNoArray,

ClusterWeight,

OriginallncomingNodes,
OriginalOutcomingNodes ,

Source and

NumTreeEdges.

Output:
FiringNoArray (Modified firing numbers).

Algorithm: sPivots

Begin
Is=Collect all the leaf nodes of Tnodes;
while 522 do
{Select an edge e; or ¢ « Tnodes}
leaf node = vy icis;
{ outflag indicates that firing is done or not}
outflag = false.
while (outflag is false) and  (v; is a leaf node) do
~cw = ClusterWeight[i] ;
if (ew>0) and (the adjacent edge is ejj) then
begin
{Positive Firing} '
calculate_positive_firing_number_and_fire (v;, Tnodes,
FiringNoArray, OriginalincomingNodes[i], ResidualToken,

eij) H

outflag = true;
end
elseif (cw<o) and (the adjacent edge is ej;) then
begin

{Negative Firing}
calculate_negative_firing_number_and_fire ( v;, Tnodes,
FiringNoArray, OriginalOutcomingNodes[ij, ResidualToken,
e;) :

jil ot

outflag = true. 47
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end
else
climbUpTree (v;, e or e;, Tnodes, ClusterWeight,
Source, NumTreeEdges) ;
end if
{Choose the adjacent leaf node.}
vV = Vj;
end while
{True value of outflag indicates that,
firing is done and the tree is modified.}
if (outflag is true) then
{Re-initialize all the data-structures
according to modified 0-token spanning tree
Tnodes } _ :
end if
Is = Collect new leaf nodes of Tnodes;
end while -
End. -

Figure 3.16: Algorithm for sequential pivoting

Cluster S = {4, 2}
Representative = 2 >
Weight = 1 ;

Figure 3.17: First iteration of serial pivoting
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o Next, both nodes are fired by five concurrently and residual tokens are updated
as shown in fig. 3.18. Each node in that cluster updates its firing number by
five. The residual token of outgoing edge ez is added by five and the residual
token of incoming edge e, is subtracted by five. Similar operations are done

for node v4.

{15-5.2 10}

{5-55\0}

{0}

Figure 3.18: Positive firing during second iteration

As a result of this firing, corresponding elements are moved by 5 units against
the direction of compaction without affecting the width of compacted layout.. This
also minimizes the overall wire length by foﬁr units as shown in the compacted and
wire-balanced layout (fig. 3.22). Note that this firing does not cause the residual-
token of any edge to become negative. But the tree is no longer basic, because the
residual token of e;; became five as a result of this firing. The next step of this
iteration is to maintain the basisity by modifying the tree. To do so, e;; becomes
the LeavingEdge and es 4 becomes the EnteringEdge as ghown in fig. 3.19.

Sequential pivoting algorithm re-starts its operation on modified tree starting

from leaf node v;. Thick dashed arrows, in fig. 3.20, indicate the flow of sequéntial
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Leaving Edge

Entering Edge

Figure 3.19: Modified tree after positive firing

pivoting algorithm. This algorithm checks the positive firing condition starting from

Figure 3.20: Sequential Pivoting on modified 0-token spanning tree

edge ea1, €53 and then, jumps to ey 2 because the cluster of nodes vy, v3 and vs is not
represented by a leaf node (a thin solid line in fig. 3.20 shows an arbitrarily jump
from node 5 to node 2). Thus, following this path of thick arrows, serial pivoting
merges all nodes into one cluster without any firing and this algorithm terminates
with new firing numbers as an optimal solution. The resulting optimal solution X”

= {0, 5, 0, 15, 25, 30} with (WX’ = —20) > (WX = —25). Bach z; € X" is
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Figure 3.21: Optimal graph at the end of NDS-SP algorithm

the position of corresponding layout feature L; € L and it is relative to the left

boundary. A total of seven iterations (pivoting steps) are performed to obtain this

solution. Note that overall wire length is reduced to ten as shown in fig. 3.22.

-

Direction of Compaction

RN RN N N RN ]

1 |
: < ...... 5 ...... > < ...... 5 ....... > I
i L, 5 1
' I
1
1 Ls !
i <5t
1
| 5
1
|
i
1 Ls
i
L;
P D T g =
1 | L¢
= X,=5 % =15 Xs=25 X¢=30

Figure 3.22: Layout after Compaction and Wire-balancing
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3.4 The NDS-CP Algorithm

Given a DTP, this algorithm first finds a dual feasible solution, X, by testing the fea-
sibility of this problem as done by NDS-SP algorithm. After finding a dual feasible
solution of the DTP, this algorithm constructs a basic feasible tree, T, as described
in section 3.3.2. Given T, concurrent pivoting essentially involves traversing the tree
bottom up (starting from the leaves), identifying the clusters and firing them con-
currently if residual tokens permit. At the end of concurrent pivoting, the resulting
solution may not be basic, so this algorithm moves back to find a bfs as shown in
fig. 3.23. However, while doing so, the objective value WX never decreases [4].

To explain the workings of this algorithm, we use the same graph as shown in
fig. 2.4. Starting from a dual feasible solution, all the steps to construct an initial
0-token spanning tree T are the same as explained in section 3.3.2. The next section
explains the concurrent pivoting strategy in general and then, the behavior of this

strategy on T shown in fig. 3.12.

3.4.1 Concurrent Pivots

After finding T, concurrent pivoting performs simultaneous pivot steps on all the
basic edges which satisfy the firing condition. After this operation, all leaf nodes
traverse the tree along their adjacent zero-edges and merges with the nodes on the
other end to form clusters. This results in a smaller tree with new leaf clusters.
Therefore, the number of leaf nodes/clusters in each iteration of a concurrent pivots
phase decreases. This process goes on until all nodes merge into one cluster. At the

end of this phase, two cases arise.

e If any firing is done during an iteration of this phase, then the NDS-CP algo-
rithm moves back to retain the basisity as shown in fig. 3.23. The objective
value of the resulting solution will be either greater than or equal to previ-

ous one because each pivoting operation tries to find a better solution. This
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Non-Basic feasible tree go back to retain its basisity.

Algorithm Feasible
intialization

Clustering

!

" Contraction

Yes

Build
0-token spanning tree
(Basic Feasible Tree)

No

l

Concurrent Pivots

Is

the solution
optimum 2

Yes

Stop:
Optimum Solution

(Optimal Tree)

Stop:
Problem
Infeasible
l l
I
i Shortest Path
: Computation
i
: Firing
|

§<l“in ing an Initial

Basic Feasible Solution.

Figure 3.23: Flow diagram for NDS-CP algorithm
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process continues until all nodes merge into one cluster without any firing.

e If no firing is done, then the dual feasible tree is an optimal tree.

This flow of concurrent pivoting strategy is visualized in fig. 3.24.

[ Inpat, 0-token
spanning tree

Find the basic edges
such that one of its
adjacent node is a leaf

node/cluster.

Modify the original

Any firing
permissible?

Traverse the tree

bottom up along -

adjacent edges
and merge adjacent nodes.

spanning tree.

Are all nodes
merged to form one
cluster ?

Treeis not Optimal.
Move back to retain
basisity.
I

!
Y
Next step is to go to
dustering step as shown
in fig. 3.23.

Calculate
Firing Number of each
leaf node/cluster.
Non-basic feasible tree Fire each node/cluster
appropriately.

Optimal
tree is found.

'

Figure 3.24: Flow of concurrent pivoting

Note that after a firing operation, the concurrent pivoting strategy continues

its search for an optimal tree even though the tree has become non-basic. However,
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Representative node: 2

W2=W
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sequential pivoting strategy converts non-basic tree back to a basic tree after each

firing operation before it continues its search.

As shown in fig. 3.25, two leaf nodes, v, and vs, are active simultaneously.
Their node weights are zero, so the tree is traversed bottom up along their adjacent

basic edges to form new leaf clusters.

ew leaf Cluster

epresentative node: 5
Wisg=-1+0=-1
and

W=W = V&,ﬁ}

Figure 3.25: First iteration of concurrent pivot strategy

Consider e;;. Removing this zero-edge divides all the nodes into two sets,
namely, S = {2,4} and §’ = {1,3,5,6}. Note that S is the positively weighted leaf
clustef and it is represented by v,. For ey to satisfy the positive firing condition,
it should be leaving this leaf cluster. Hence, this edge satisfies the positive firing
condition. Consider e5 3. Removing this zero-edge divides the node set into two sets,
namely, S = {5,6} and S’ = {1,2,3,4}. Note that S is the negatively weighted leaf
cluster and it is represented by vs. However, for es3 to satisfy the negative firing
condition, it should be entering this leaf cluster. Hence, this edge does not satisfy
the negative firing condition.

After checking the firing condition during second iteration, all the eligible
positive weighted leaf clusters are fired positively and then, all the eligible negative

weighted leaf clusters are fired negatively. In this example, we have only one eligible

35

rra > TR XTF AYLN




piua’.u:x?ﬁﬂ'!lmmx!l‘.yxurxu AETIRISRITI

cluster, S = {2,4}, to fire. The cluster firing number is calculated as five, which is
the minimum of the residual tokens on the incoming non-zero edges of all the nodes
in this cluster. The firing operation is shown in fig. 3.26. The firing numbers of the

[10 + 5 = 15]

\\\ {1 5Z5=Jp}

A Y
N

{5-5 = 0}

3 {0}
(0,0)

Figure 3.26: Positive firing during second iteration

nodes in this cluster are increased by five and residual tokens are modified. Zero-edge
e2,1 becomes non-zero and non-zero edge es 4 becomes zero as a result of firing. Thus,
the tree loses its basisity. However, this tree is not modified after firing to retain
basisity. Note that this operation moves corresponding non-constraining elements,
L, and L4, to the right boundary by five uﬁits without effecting the compacted
width of the layout.

After firing, this non-basic spanning tree is traversed bottom up (starting from

leaf clusters) without any firing, and all nodes merge to form one cluster during third

 iteration as shown in fig. 3.27. This indicates that all elements are at their desired

minimum spacing with respect to each other.

As a result of positive firing done during second iteration, this tree loses its
basisity. So, the algorithm moves back to find a bfs and build a new spanning tree.
C-C-SPC-F computations on this solution do not improve the objective further.
So, the objective function remains the same and the corresponding new 0-token

spanning tree is shown with thick edges in fig. 3.28.
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All nodes are merged to form a cluster represented by node 1.

Figure 3.27: Clustering during third iteration

Figure 3.28: Modified spanning tree
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Concurrent pivoting strategy is applied again on this tree. During its first

iteration, three leaf nodes (v;,v2 and vg) are active simultaneously. However, none

{0}

e e

LEAF Cluster { 2, 4},

representedby noded4. = I 0 j<o-oe i
-10 !
Wl NS e
f
5 - NON-LEAF Cluster {6, 5}, |
LEAF Cluster {1, 3}, R
uster {1, 3} W represented by node 5.
represented by node 3. ; W )
W =0 657

{1,3}

_ Figure 3.29: Clustering during first iteration

of the adjacent zero-edges is eligible for firing. So, the tree is traversed bottom up
to form new leaf clusters as shown in fig. 3.29. This indicates that the elements,
with in their respective clusters, satisfy minimum spacing distance.

The second iteration is shown in fig. 3.30. Only new leaf clusters became active
and the adjacent zero-edges es3 and es 4 are checked for firing condition. However,
none of them is eligible for firing. Then, this tree is traversed along these edges
and a single cluster is formed. Thus, all nodes are merged into one cluster without
undergoing any firing operation during this phase of concurrent pivoting. This
indicates the optimality of the resulting solution. Here, five iterations (pivot steps)
are performed to obtain this solution and we obtain the same solution as obtained
with the NDS-SP algorithm. The corresponding optimal solution and graph is the

same as shown in fig. 3.21.
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Note that all nodes are merged to form a cluster represented by node 5 without any firing.

Figure 3.30: Clustering during second iteration
3.5 Integrated LCWB

During an optimization step in the solution of the LCWB problem, the constraining
elements may be moved and their movement may increase the compacted width of
the layout even though the overall wire length is minimized. Their movement can
be restricted after a compaction step to maintain the compacted width. This results
in a minimum layout width but the overall wire length may not be minimum [4].
Note that after the application of algorithm Feasible, the residual tokens of
the edges on the longest path will be zero (see fig. 1.3 and fig. 3.7). Let S; denote the
set of these critical nodes, z; is the position of the corresponding element L; after
the application of this subalgorithm and d; is the length of this path. To keep each
node v; € §; at z; and then, adjust the z; of the nodes v; ¢ Si, we add an artificial
edge, e,1, to the constraint graph G before we start the optimization step. This edge
is assigned a weight of dj,. In this way, the overall wire length is minimized without

effecting the width of the compacted layout.

59




LA PMGGT TP RIS IR FOIND) SINTIEEN I

TV

et

3.6 Zero-Token Spanning Tree

In the original approach [4], a zero-token spanning tree is built using depth-first
search of the subgraph of zero-edges and is discussed in section 3.3.3. This approach
is insufficient due to the fact that one node joins the tree at a time which makes it
sequential in nature. Thus, it becomes the critical step in the NDS-CP algorithm
because most of the time is spent in building the tree than doing other operations
(see chapter 5). In order to improve the performance of the NDS-CP algorithm and
NDS algorithms in general, we developed two new methods to generate the tree. In

this section, we present these subalgorithms.

3.6.1 Algorithm: ZST-SM

In this approach, called 0-token Spanning Tree using Sequential Merging (ZST-SM),

.
there are two passes.

e During pass one, each node builds a subtree of its outgoing zero-edges. By
doing so, it builds a complete 0-token spanning tree but this tree may have

cycles® in it.

e During pass two, we allow each subtree to delete all but one zero-edge by
which it is connected to the rest of the O-token spanning tree to remove such

cycles.

Pass two proceeds in phases. During any phase of pass two, a node may interact
with others while accessing a global tree or its neighbour’s Trnodes structure. The
global tree structure makes a subtree join it one at a time. However, this approach
performs better than the original approach due to the parallelism in pass one. The

outline of this subalgorithm is given in fig. 3.31.

81f a subtree is connected to another subtree of the O-token spanning tree with more than one
zero-edge, then they form a cycle.
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input:
ResidualToken (2-d matrix of residual tokens)
Output:

Tnodes (0-token spanning tree; Tnodes[i] is the list

of incoming and outgoing ncdes to and from a
Vi.)

Algorithm: ZST-SM

begin
{Initialize Tnodes[i], SubTrees[i] to nil v ien.}
{Initialize JobDone[i] to flase v ien.}

{Pass one: Build Subtrees.}
for each v; ¢ G do

{Following list is constructed using ResidualToken}
ZeroNodes = A list of nodes adjacent to v;s outgoing

zero-edges.
if ZeroNodesz2 then

JobDone[i] = false;
else

JobDone[i] = true;
endif

SubTrees[i] = ZeroNodesui;
TI]OdCS[i] = Tnodesli] uZeroNodes ;
for each Vj e ZeroNodes do
Tnodes[j] = Trnodestiivi;
endfor
endfor

{Pass two: Sequential Merging.}
NotFinished = true;
ROOT = v; « G;
while NotFinished do {start a phase.}
tree = @;
{Construct a list of subtrees.}
Is = list of nodes v; sygh that JobDoneli] #irue;
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if =2 then
NotFinished
else
NotFinished
endif
for each v; e Is do {It is a Doacross loop.}
if v;is ROOT then
tree = SubTrees[i};
JobDone[i] = true;
else if (SubTreeslij ntree) =@ then
tree = tree U SubTrees[i] ;

false;

true;

RS

{Collect all adjacent nodes by which subtree
v; ¥s connected to others already joined free.}
ListOfConnectingEdges = (SubTrees|i] ntree) ;

{Remove the first node from ListOfConnectingEdges. }
EdgesToBeDeleted = getTail ListOfConnectingEdges;

for each v; e EdgesToBeDeleted do
Delete v; from Tnodes[i];
Delete v; from Tnodes[j];
endfor
JobDone[i] = true;
endif
endfor
endwhile
end.

Figure 3.31: Zero-Token Spanning Tree using Seqﬁentia,l Merging
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3.6.2 Algorithm: ZST-HM

The first pass in this approach is to construct the subtrees as done in ZST-SM. The
second pass in this approach method merges the subtrees in a hierarchical fashion.

In the second pass, pairs of subtrees are formed, and we assign each pair to a
process. During each process, if both subtrees in a pair are merged to form a new
subtree, then the root of one of the subtree becomes the root of new sub-tree and
the other root becomes the child. As a result, the number of subtrees reduces after
each phase of the second pass. If a pair does not merge, then both subtrees in that
pair will be active during the next phase.

Next, we collect the new roots (subtrees) for the next phase. If the number
of subtrees is not less than the previous phase, then we permute the subtrees in
order to form new pairs. This goes on until all subtrees collected in the first pass
are merged to form a required 0-token spanning tree.

All phases are executed sequentially, however, all pairs during a phase try to
merge concurrently. However, the pairs which do not merge effect its performance.
The performance results (discussed in chapter 5) show that ZST-HM method be-
haves much better than the original approach to build the tree. The outline of this

subalgorithm is given in fig. 3.32.

3.7 Summary

In this chapter, we explained the working procedure of the NDS-SP and NDS-CP
algorithms on a small graph. For the 6-node DTP in our example, the NDS-SP
algorithm executes one iteration of the optimization phase and performs seven pivot
operations to find an optimal solution, however, the NDS-CP algorithm executes
two iteration of the optimization phase and performs three pivot operations during
its first and two pivot operations during its second iteration to find the same so-

lution. For the 50-node graph we used in our experiments, the NDS-SP executes
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Hierarchical Merging .
begin
NotFinished = true;

{Initially each node is the source of itself.}

SubLists[i] =nilv ie? ;
Source[i] =iv ieN;
{A list of the subtrees}
Is = list of v; such that JobDoneli] #true;
while NotFinished do {start a phase}
{ Construct pairs of subtrees from Is;

SubLists[i] will consist of a list of two subtrees;}

ListOflds = a list of i such that swblisslii=@ v
for each ieLiscostas do
SubLs = SubLists[i];
Tree = 2;
ROOT = v; ¢ SubLs;
for each v; SubLs do
if v = ROQOT then
Tree = SubTrees[j];
else if (subTrees[jl nTree) #@ then
Tree = SubTrees(j] uTree;
ListOfConnectingEdges = SubTrees[j] nTree;

EdgesToBeDeleted = getTail (ListOfConnectingEdges) ;
{Collect all the nodes represented by V;

iels;

tmpls = List of v, such that Sourcelk] = j v

for each v, « EdgesToBeDeleted do
for each vy < tmpls do
if v, ¢ Tnodes[y] then
Delete v, from Tnodes[y];
Delete v, from Tnodes[x];
endif
endfor
endfor

{The second subtree becomes the child.}

Sourcefj] = ROOT;
{A new subtree is formed.}
SubTrees[ROOT] = Tree;

endif

endfor

endfor 64
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{Each node in G corrects its source information.}
for 1 =1 to N do

if Sourcelil =i OF Sourceli]l =0 then

Source[i] = Source[Sourceli]];

endif

endfor
{Construct a new list of SubTrees.}

Is = 1list of nodes such that Source[j] = j v jels;
if Is is o then

NotFinished = False;

else

{ count the number of elements ofls, say cnt. If cnt
is not less then the previous phase of merging,

then permute this list. }
endif
endwhile

end.

Figure 3:32: Hierarchical Merging, the second step of ZST-HM

one iteration of the optimization phase and performs 476 pivot operations, however,
the NDS-CP algorithm executes three iterations of the optimization phase and per-
forms 22 pivot operations during its first, 8 pivot operations during its second and 1
pivot operation during its third iteration. We observe that the concurrent pivoting
strategy, an approach to parallelize the sequential pivoting strategy, is successful
in decreasing the number of pivot operations. However, the loss of basisity of the
solution after performing concurrent pivot operations, and then retaining it using
the repeated processes of constructing a dual feasible tree and concurrent pivot op-
erations makes it slower than the NDS-SP algorithm. This will be described in
detail in chapter 5. We also discussed the solution of ILCWB problem using these
algorithms. Lastly, we described two new methods to build the 0-token spanning

tree which are investigated to enhance the performance of these algorithms.
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Chapter 4

Overview of Id and Monsbon

Idis a high-level programming language founded on the principles of modern FP and
dataflow ezecution. In order to describe its features, which allows us to write parallel
programs without 'jvorgying about the details of parallelism, we need to understand
its execution mod;:el Wilich is based on dataflow execution.

In section 4.1, we describe the execution model for Id programs. In sec-
tion 4.1.1, we briefly describe the Monsoon hardware. Then, the language features

which help in expressing the parallelism in our Id programs are described in sec-

tion 4.3.

4.1 Parallel Execution Model

In sequential programming languages, textual code order defines execution order. A
line of code that textually precedes another will execute first. In implicitly parallel
languages, however, code order does not define execution order. Execution order is
constrained only by data dependencies which occur when the result of one instruction
is an argument to another instruction. When an instruction’s data is available, that
instruction is ready to execute. Consider the following example describing a data

dependency written in Id.
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def test n =

{b=a*x 2;

in

b};

In this example, the first line can’t execute until the second line has completed
execution. The multiply on the first line waits for the add on the second line to
complete since it needs the value a produced by the second line.

Consider an implementation of fibonacci in Id.

def fib n =
if n < 2 then 1
else

fib (n-1) + £ib (n-2) ;

Because there are no data dependencies between the recursive calls to fibonaccs,
it is possible for both recursive calls to be active simultaneously. Id’s non-strict
semantics allow many procedures to be active simultaneously. Any procedure may
have one or more active child procedures becaﬁse it permits the execution of a child
procedure to begin even before all of its arguments have been computed. Child
procedures do not have to terminate in the same order in which they were invoked.

The basic parallel execution model is shown in fig. 4.1. All of the activation
frames? (not just the leaves) in the call tree are potentially active. When a procedure
finishes, it is guaranteed to be a leaf in the activation tree because all of its children
must already have completed, and thus, its frame is removed from the activation

tree and reclaimed for reuse.

11t is a block of contiguous memory locations. Every invocation of a procedure is associated
with such a frame.
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Figure 4.1: Fully parallel execution model

4.1.1 Dataflew Execution

Consider an expression v = (a * z) — (b + y). Its dataflow graph, shown in fig 4.2,
consists of three operators (actors). Each operator represents an instruction and
each arc indicates the flow of a value. With the exception of external inputs and
the output arcs, an arc originates at the instruction that produces the value and
ends at another instruction that uses this value as input operand. The first token to
arrive at a binary instruction waits for the other input to arrive. When all the input
operands of a particular instruction have arrived, the corresponding instruction is
enabled for execution. This dataflow style of execution is also called data-driven
execution.

Monsoon employs the data-driven program execution model. Since the execu-
tion is driven only by the availability of operands at the inputs to the actors, there is

no need for a program counter in this architecture, and its parallelism is limited only
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by the data dependencies in the program. The machine works by continuously pro-
cessing tokens? which deliver data to the instructions. Monsoon uses frame memory
which is local to each processing element (PE), to support data-driven execution.
Each binary instruction to be executed is assigned a slot of frame memory.

As shown in fig. 4.2, each node has a field that contains its compiler ordained

frame slot offset®. A part of frame allocated to run this expression at some instance

.......

."‘/..
a X b ¥ . et
<fp, ip, value> '_,.\{ é\ 0 |« fp (frame pointer)
one®
* |0 + 1 - b P T— This presence bit Indlcates that
o that the left operand of '+
s 0 Instruction has arrived and it
frame slot offset Data Is walting for right operand, y.
e 0
0

L,

Py

Each slot of Frame Memory has two fields,
namely, data field and presence bit field.

Figure 4.2: Dataflow representation of an expression: v = (a*x) - (b+y)

during execution is also shown in fig. 4.2. Of the two operands of + instruction, b
has arrived and is waiting for y. It can be inferred by looking at frame slot (fP +
1), which is allocated to the + instruction. In frame memory slot, the presence bit
is set to indicate that the left operand has arrived, while the value of b is stored in
the data field of the slot. When y arrives, the slot is checked for the presence of b,

since it is there, the 4 instruction may execute.

2Tokens are computation descriptors. These are comprised of two parts: the continuation and
the data. The former consists of an instruction pointer, a processor number, left or right operand
specification, and a frame pointer (fp).

3The offset of a binary instruction’s matching frame slot relative to fp is determined at compile
time. ‘
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The frame pointer, fp, distinguishes between values destined for the same
instruction and operand port that come from different invocations of the same (pos-
sibly recursive) procedure; that is, each invocation of the procedure is allocated a

different frame.

This dataflow-style of execution allows Monsoon to exploit the parallelism

inherent in an Id program.

4.2 Monsoon: A Dataflow Processor

Monsoon [PC90] is a shared memory multiprocessor consisting of a mixture of pro-
cessors (PE) and I-structure (IS) units, interconnected by a packet-switched network.
Each PE is an experimental eight-stage pipelined parallel processing node. It runs

at 10 MHz, and is capable of processing up to ten million tokens per second.

-

Ijtruchleuemory
interleaves
¢ (Global Memony)
Host& :.'-'5\........-..‘:
N | D = B T :
 — '_B 5.
o) Nk “—“: : :
100 Moytesisechport

Figure 4.3: A shared memory Monsoon dataflow multiprocessor

Monsoon supports I-structure units, the memory for large arrays and other
data structures, to synchronize producer and consumer of a location in its hardware.
Global Memory is implemented with I-Structure units. Access to global memory
always occurs over the network, and every global read or write (remote request) is

structured as a split-phased transaction so that multiple requests may bein progress
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at one time, i.e., an instruction issues a request to the processor or global memory
module containing the desired data, and then executes other instructions which
do not depend upon the result of the request in progress. An I-structure has the
property that when a read-request arrives before the write to that location, it is
deferred until that element has been written. Once the value is present, it can
be sent to the requesters. This synchronization allows us to write deterministic
programs, and the split-phased nature of remote requests is used to hide the network
latency. The I-structure operations can be simulated in the Monsoon processor’s
frame memory because it also has presence bits. This allows the compiler and the
run-time system to allocate some heap objects locally. Reading and writing to I-
structures located in processor memory requires the second phase of the split-phased
transaction to be executed on the processor containing the structure. Normally the
second-phase operation executes on an I-structure unit.

Monsoon also a&épts M-structures as a memory model. M-structures are the
set of memory operations for updating shared data atomically. M-structures oper-
ation are not embedded in a data abstraction construct and allows a programmer
to construct abstractions appropriate to its application, with the ability to control

synchronization and scheduling.

Idles

A Monsoon processor has two local token queues (user and system buffers) t6 hold
the tokens. The execution of an instruction results in the production of zero, one
or tv‘}o tokens at the end of eight cycles. These newly created tokens are either
circulated to the head of the processor pipeline to be executed next, sent to the
network to be delivered to the destination processor’s queue or placed in the local

token queues. A single processor Monsoon may execute an idle cycle:

e If no recirculating token was produced at the end of the pipeline, it pops a

token from its own token queues to execute. If no token is availabie, then the
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processor idles until a token is available.

e If an instruction produces only a network token? , then there will be an idle
cycle because of a structural hazard [5]. In the worst case, the number of idles
due to the hardware hazard are estimated to be roughly 1.5 times the sum of

the number of fetches and the number of remote send operations.

A Monsoon processor’s token queues may be empty due to lack of work. A

lack of work occurs due to the following reasons.
o lack of parallelism due to RTS sequentialization,
e lack of parallelism during startup and termination of program, or
o lack of parallelism in the algorithm.

The run-time "sys"tern can artificially reduce parallelism by taking a long time
to satisfy a frame or heap object request. A typical RTS request takes 31 or 32
instructions which are executed sequentially. On Monsoon, the actual latency will
be eight times as long because of processor pipeline interleaving.

During the startup and termination phases, there is not enough parallelism
to keep a processor busy. The length of the startup and termination phases are
affected by the rate at which the program exposes parallelism and the latency of
RTS requests. This cost is non-zero on a single processor due to the 8-way interleaved
pipeline.

‘Finally, a lack of parallelism could be caused by the compiler, poorly cho-
sen loop bounds, the size of problem to run, or the algorithm itself (because the

subalgorithms used in a program may be inherently sequential in nature).

4Most reads destined for the I-structure units generated by the Id compiler create a network

token, but no local token, forcing the structural hazard to insert an idle cycle in the processor
pipeline.
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Bubbles

Monsoon accepts only one token at a time for processing. The first token of a binary
instruction always causes the execution unit of the processor to idle. This idling of

the execution stages is called a bubble in the pipeline.

4.3 Id Language Overview

1d is a layered language with a purely functional kernel, a deterministic layer with
I-structures, and a non-deterministic layer with M-structures which are updatable

data structures with fine-grain synchronization. Some of its attributes are as follows:

Functional

Core

Figure 4.4: Three layers of Id

‘o Id is a functional language with implicit parallelism, i.e., Id programs specify
a partial order on operations, constrained only by data dependencies. The

compiler exploits this property to automatically generate parallel programs.

e Id programs are declarative, meaning that éomputations are specified as ex-
pressions rather than sequence of instructions. Id programs can be written as

a set of definitions without any explicit control flow.
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e Id has non-strict semantics, meaning that a data structure may be used before
all its components are written, and a function may compute and return a
result even when some arguments have not been evaluated. Non-strictness is
used to increase parallelism through eager evaluation, in which functions begin
computing as soon as they are called, in parallel with the evaluation of their

arguments.

e Id is augmented with data structures (M-structures) that can be atomically

updated and their atomicity is implicit.

This section is concerned with the language’s functional/non-functional fea-
tures. We also discuss the parallelism contributable by each feature. These fea-
tures are, namely, single-order and high-order functions, list and array compre-
hension, conditional statements, recursive procedures, loops, blocks and Mutable

data-structures. A detailed description of Id may be found in [10].

4.4 TFunctional layer

The core of Id is a non-strict functional language with implicit parallelism. This
section deals with the features of the functional layer used in our implementation

and points out the ezpressive power and parallelism due to them.

4.4.1 Functional Abstractions

In Id, the computational abstractions are expressed using functions. A function
takes some data objects and produces new data objects from them. The method
used to produce the new objects from the arguments is abstracted by the function.
High-order functions generalize this further by taking data objects as well as other

functions as arguments and producing new data objects and new functions as results.
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This language directly supports array and matrix structures and provides efficient

parallel iterative constructs for their manipulation.

Single-order and High-order functions

In Id, we can define a single-order function as follows:

def foo? b =
(b < MAXINT) or false ;

We have defined a boolean function, foo?. If the integer value b is less than
MAXINT value, then this function returns true, otherwise false.

A function may have any number of arguments. It acts on these arguments
without modifying them and produces a result. Thus, there are no side-effects after
applying the function to its arguments.

A function is jnvoked in parallel with the evaluation of its arguments (evalua-
tion of arguments initiates whether they are needed or not). Thus, the computafions
in the function body can be overlapped with the computation of the arguments.
Moreover, a function may return a result before any of its arguments are evaluated.

In 1d, a function can also be passed as an argument to the other function.
Consider a high-order function getONodes. This function constructs a functional
array using array comprehension constructor. In this function, each node i finds
all its outgoing nodes by calling outNodes, and incoming nodes by calling inNodes
function. This function can be read as the array of lists where ¢ increments froﬁl 1
ton. i < I to nis called the generator and it is bounded to 10 to limit the degree
of unfolding to a fixed number of iterations. Each list is constructed by calling the
function which is received as an argument. After constructing an array, it can be

assigned to OrigOutNodes or OrigInNodes as shown below.

def getONodes n token func =

{array (1,n) of
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| [i] = func i n token || i <- 1 to n bound 10

OrigOutNodes = getONodes n token outNodes ;

OrigInNodes = getONodes n token inNodes ;

Non-strict semantics of array comprehension allows it to return the array as
soon as it has been allocated, with consumers (those expressions using OrigOutNodes
or OrigIinNodes in the program) automatically waiting for the individual elements
to be assigned. Thus, producer-consumer parallelism can be expressed with array

comprehension. Moreover, the functions (single and high-order) are major features

which give the expressive power to Id.

Blocks

-

Consider a block in Id,

yl={x1l=el; % Binding
xN =eN _
In % Keyword
eBody } ; % Body which is an expression

All bindings el...eN and eBody are evaluated in parallel and the value of
eBody is returned as soon as it is available (even though el,...,eN may not have
finished yet). There is no implicit ordering on the evaluation of bindings, except
as imposed by data dependencies. The block as a whole is an expression, i.e., it
represents a value of the body. The expression, eBody, can be considered as a query
expression, i.e., an expression that uses these bindings to produce the desired answer.

In a program where function fis defined as :

def f x1 x2x3 ... xN = eBody ;
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The Id compiler may reduce the application (y1 =fel e2 e3 e4 ... eN) to the
parallel block.

Conditional Expressions

Consider the following function.

def foo? b =
if (b < MAXINT) then true else false ;

The interesting feature of Id is to avoid evaluation of any arm of the if-then-else
expression until the predicate is evaluated. This evaluation is also known as an
implicitly parallel lenient evaluation order [14]. This is done to increase the efficiency

of Id programs.

Parallel Loops ™

Consider the following function.

Def union 11 12 =
{ set = 12
in
{For elt <- 11 bound 20 do
next set = If (iskey? set elt) Then set Else elt:set;

Finally set

}
};

Given two lists, this function finds the union of them. To do so, it traverses
the list 11 and checks the presence of each of its element in another list I2. If it finds
an element of 1 in [2 then that element is not added to [2, otherwise it is added to

[2.
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The body of this function is a block. This block binds /2 to set and computes
the union of two lists in a for-loop expressioﬁ. Note that the for-loop and binding
expressions are evaluated concurrently. The for-loop expression has one other state-
ment in its loop’body which is neztified using the next keyword, denoting the neﬁ
value of set to be used in the next iteration, and thus create a dependency among
iterations. This loop is bounded to 20.

Each iteration of a loop can be viewed as a separate instantiation of a function.
In this example the loop body is like a function with two inputs elf, set and one
output set. An iteration computes output set, and invokes the next iteration passing
elt and set as the corresponding inputs. When the loop terminates, the final value
of the loop is given by the expression following the keyword next, which uses the
last value computed. In this example, the last set is returned.

Non-strictness allows a for-loop expression to return the final result, set, before
all iterations of the for-loop finish. Similarly, Id supports while-loop expressions.
Based on the nature of loops, they can be Doacross loops, i.e., the loop iterations
may interact with each other, and are synchronized using locks implicitly; or Doall
loops, i.e., no loop iteration interact with each other, and they can proceed in

parallel.

4.4.2 Data Abstractions

Some of Id’s functional data types, we used in our implementation, are lists, tuples

and arrays. The functional arrays are already described in the previous section.

Lists

For lists, Id has two constructors: the dyadic ‘. operator to make non-empty lists,
and the niladic Nil for empty lists. For selection, it uses pattern-matching. Lists
can be constructed using the infix operator : and its components can be selected by

head (kd) and tail () primitive functions. Consider a function adj which takes an
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element and a list as its arguments, and produces a list.

Def adj e 1 =
If (iskey? 1 e) Then 1 Else e:l;

The presence of an element e in the list /is checked before any arm of the conditional
expression is evaluated. This expression returns the same ! if e is present, otherwise
it concatenates e at the head of / and returns the new list.

Consider the following single-order function outNodes. This function con-
structs a list of outgoing nodes from a node nd in a graph (denoted by a 2-d token
matrix) using List comprehension. The weight of an edge e;; is represented by to-
kenfi,j]. If there is no edge between node ¢ and j, then token[i,j] contains mazint,

otherwise the weight of that edge.

def outNodes nd b token =

{: j 11 j <= 1 to n bound 10 when (token[nd,j] <> maxint)} ;

This is read as the list of all indices where j increments from 1 ton. j« Iton
is called the generator and it is bounded to 10 to limit the degree of unfolding to
a fixed number of iterations. This generator is also associated with a filter. When
token[nd,j] is not equal to MAXINT, then jbecomes an element of the list, otherwise
it is not.

List comprehension does not add any computational power to the la,nguége.
However, they are elegant, concise and powerful notations to increase the ezpressive
power of the language. We have found that these constructs contribute a significant
amount of parallelism if they are used to construct a list of processes (iterations)
before we start any loop structure.

Consider a recursive function iskey?. It performs repetitive computations.

def iskey? Nil key = false

| iskey? (x:xs) key = (key == x) or (iskey? xs key);
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This function is defined in two clauses, separated by |. The first clause is used
when the list argument is empty, i.e., it matches the pattern Nil. The second clause
is used when the list argument is non-empty, i.e., it matches the pattern (z:zs). In
this case, z is bound to the head of the list and zs to the tail of the list.

In this way, it looks for the existence of an element, key, in a given list zs.
If it is present then it returns true else false. Any call to this function results in
a chain of calls that progressively searches the element, key, in list zs. Recursion

contributes to the expressive power of Id and exposes parallelism in the code due to

non-strictness of the function invocations.

Tuples

Tuples are heterogeneous sequence of values. -‘They are constructed by listing the

values separated by commas. Tuple components are selected by pattern matching.

Consider the follow.i/ng é;cample:

def edgeReplaced? val =

if (val < maxint) then
(true,true)
else

(false,false);

The function edgeReplaced? takes one argument that is expected to be an
integer® val. The conditional statement in the function body checks the condition

and returns the appropriate arm which is a single two-tuple containing boolean

components.

5In Id, we do not need to declare the types of all the identifiers used in the program; type
inferencing is performed automatically by the system before running the program.
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4.5 Non-Functional layer (M-Structures)

Id goes beyond functional languages via the inclusion of I-structures (incremental
immutable data structures) and M-structures (mutable data structures).

I-structures are single-assignment arrays, hence, they allow a programmer to
write deterministic programs. It associates synchronization state with every element
of an array. An element of this array is either empty or full. When an I-structure
array is allocated, all of its elements are empty. When an element is written, its
state changes to full and remains full thereafter. Any operation attempting to read
an element that has not been written is delayed until the element is written. This
synchronization enhances parallelism, since readers and writers can run in parallel,
with readers delaying only if they precede the write.

Id programs, restricted to the functional and I-structure layers, are determi-
nate, meaning that-consumers are not given a value until it has been produced and
producers and consumers interact with each other without affecting the determinacy
of a parallel program. There are no side-effects, i.e, memory state does not change
during a process’s life time. In such an Id program, data structures are updated by
re-copying the structure to a new structure instead of modifying the same structure.
This results in excessive memory usage and excessive copying. Such Id programs
can not work on problems with large program size due to memory limitations of the
machine. The write-once semantics of I-structures further creates an artificial serial-
ization through threading [2]. As a result, mutable data structures [2] are introduced
without compromising its implicitly parallel, declarative nature.

M-Structures, a set of memory operations, allow reads and writes on the
data-structures, and also allow side-effects because such data structures can be up-
dated. Programs can use M-structures to eliminate threading and copying, and

in the process improve efficiency and parallelism. The update to any element of
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the M-structure array uses an atomic read-modify-write protocol, i.e., once an up-
date begins, no other process sees the value until it is updated. The interaction
between concurrent processes that share data are serialized, beca;use atomic opera- |
tions cannot be interleaved. Thus, atomicity eliminates read-write race conditions
and ensures that updates are serialized®. M-structure operations are implicitly syn-
chronized for atomicity, i.e., the programmer does not use annotations such as locks
or semaphores to synchronize these operations. To avoid excessive copying overhead
and artificial serialization through threading, we restrict our implementation of NDS
algorithms to the functional layer and M-structure layer of Id.

Every M-Structure location is either in an empty or in a full state, in which
it contains a value. A take operation on an empty slot suspends, whereas a take on
full slot returns the value and resets the slot to the empty state. A put operation
is applied only to an empty slot. If there are no suspended take’s, it simply writes
the value there an( marks it full, otherwise the value is communicated to one of the
suspended take’s and the slot remains empty. A put operation on a full state is a

run-time error.

For example, the following function initArray creates a mutable array, with

every location containing a value val.

def initArray n val =
{M_array (1,n) of

| (il = val || 1 <- 1 to n bound 10};

A = initArray 5 0;

Consider the statement: Al![j] = Al[j] + 1. In this statement, the jth slot of

m_array is taken, incremented by one, and the result is put back. The addition
6

i.e., atomicity restricts processes to access the shared data serially.
7Its type may be integer, float, string, list, or any other datatype!
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operator is strict, thus ensuring that the take precedes the put. The semantics of
take and put guarantees that the cell update is atomic, so if k parallel computations
attempt to execute the statement above, their access to the location will be serialized

by the hardware and the final value of the cell will be its original value plus k.

Explicit Sequencing (Barrier Synchronization)

The following example uses a barrier synchronization:

{45 = A5 ;
A'[j1 =0 ;
In
Aj }

The first statement takes the old value out, and the second one puts the new
value (0) back. The ——— is a sequentializing barrier. It ensures that the take occurs
before put. Without it, all bindings in the block are evaluated in parallel, so nothing
prevents the put operation occurring before take. The sequentializing barrier allows
expressions in the block to be explicitly sequenced. The barrier delays evaluating
the expressbions below it until all the expressions above it have been completely
evaluated. _

The functional layer is non-strict by its nature, hence, we do not explicitly
encode parallelism and the fine-grain implicit synchronization of M-structures allow
us to write our program without worrying about interactions between concurrent

processes. However, their use forced us to use explicit barriers to retain determinacy

of results®.

8For example, to sequentialize two for-loop expressions which use the same M-array, we put a
barrier between them.
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4.6 Annotations for Parallelism Control and Re-

source Management

1d’s semantics allow loops to unfold dynamically, constrained only by data depen-
dencies. I-Structures and M-Structures in Id allow fine-grain producer-consumer
parallelism between parent and child procedures and between sibling procedures. In
this way, Id exposes too much parallelism and often exhausts machine resources such
as frame memory. The amount of resources required are limited by using bounded
loops, where a bound (a number k) is specified to indicate how many loop iterations
can occur in parallel. Moreover, loops can also be specified as sequential. The com-
piler generates specific code for each kind of loop. A sequential loop executes one
iteration at a time and uses only one frame. A bounded loop executes k iterations
in parallel, and uses k frames. The sequential loop incurs less overhead than the
bounded loop, which has to allocate and initialize more frames. However, it also
exploits less parallelism than a bounded loop. Sequential loops are

usually used for the inner-most loops where it is more important to achieve
smaller instruction counts than parallelism. Architects of Monsoon suggest that
loop parallelism be provided by outer loops. The number of iterations, , executing
in parallel must be large enough to keep the machine busy but small enough not
to exceed the storage available on the machine. Categorizing loops as sequential, or
bounded and determining how many bounded loop iterations to execute in paraliel
is the tedious part of achieving good performance on Monsoon due to the relatively
small size of its frame memory.

The second annota,tioﬁ, @release, causes heap storage to be reclaimed when it

is no longer needed. This allows valuable memory resources to be reused.
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4.7 Examples

In this section we discuss four examples to illustrate how some graph problems can
be expressed to easily reflect higher level abstractions. This also illustrates how little

attention is needed to expose parallelism and how much parallelism is automatically

exposed.

4.7.1 Example I: Deleting a node from a list

Consider the following tail-recursive function delNode. This function deletes node

¢ from a list of nodes.

def delNode i Nil = error "Element is not found."
| delNode i (x:nodes) = if (eq”int x i) then
A nodes
else

x: (delNode i nodes);

Suppose, we apply delnode to some node 7 and non-empty list Oldlist.
NewList = delnode ¢ OldList;

As soon as it is verified that the list is non-empty and head x is not equal to i, the
two sub-expressions, (z) and (delNode i nodes), may be evaluated in parallel. Let us
call the results z and m’. Non-strict semantics produces and returns the resultant
cons cell ( a:b) immediately, i.e., it does not wait for evaluating z and m’. It ensures
that z and m’ are ultimately stored in the head and tail of the cons cell that was
returned, and any other computation that attempts to read the head or fail must
block (i.e., wait) until the corresponding value appears there. In other words, the

producers and consumers of the head and tail of the cons cell may run in parallel;

they simply synchronize at the slots.
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4.7.2 Example II: Union of two lists

Consider the following expression.
listNew = union (s:nil) (delnode j 1list01ld) ;

This expression deletes an element j from an old list and then, adds to another
list. In Id, the call of union on (s:nil) can begin even though the list produced by
the call of delNode on its arguments is not available yet. Thus, both calls can pro-
ceed in parallel, producing parallelism in our Id program. Non-strictness allows the
computations of union and delnode to be overlapped. In fact, the union operation
is performed in a pipelined manner with the delnode function, i.e., as soon as the
first cons cell (say 1) is produced by delnode, union may begin its function on both,

s and [1. When I is produced by its expression, the union is performed at once.

4.7.3 Examp/le III: Contraction

Fig. 4.5 shows a fragment of our program using M-structures. Given different clusters

in the graph, this fragment contracts all the nodes in the clusters to generate a

contracted graph represented by only root nodes of the clusters. Its operation is
already explained in section 3.3.2. Here, weydescribe the use of barrier and M-
structures for the producer-consumer relations in this program.

ActiveNodes is a list of nodes. Each node i processes its nodes on the outgoing
edges stored in a CurrentOutNodes M_array. Each node v; takes its list of nodes
and locks its slot by performing take operation on its CurrentOutNodes (see the first
line in the for-loop body). The lookup operation on this slot (denoted by !/) in the
if-then statement is deferred until NewNodes are computed by the computNewNodes
procedure and a put is done subsequently. Thus, this process can contribute to
producer-consumer parallelism within each iteration. Each node synchronize with
others while accessing its root (s_i) data structure to contribute producer-consumer

parallelism across the loop iterations (Doacross loop).
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Each active node i will process its current outnodes and
change each outnode to the root of cluster in which
the outnode is present.

o0 oP o°
o0 00 of

{for 1 <- ActiveNodes bound Outer_Loop_Bnd do
C_Nodes = CurrentOutNodes![i] ;

)

% statements deleted.%

$% root of cluster.
s_1i = sourqg!g[i] :

NewNodes = computeNewNodes( C_Nodes ) ;
CurrentOutNodes! [1i] = newNodes;

_ = 1if (s_i <> 1) then

{ % statements deletéd.%
Nodes'= CurrentOutNodes! ! [i];
% statements deleted.%
CurrentOutNodes! [s_1i] =
union CurrentOutNodes! [s_i] Nodes
}

Figure 4.5: A process to contract the graph
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4.7.4 Example IV: Constructing a M-matrix

Given FiringNoArray and token (a 2-d functional matrix), the following function

ez ez

calculateRToken constructs a mutable 2-d matrix.

def calculateRToken FiringNoArray token =
{ (_,n) = bounds~1D_m_array FiringNoArray ; ;
def getVal w £0 f1 = ﬁ
{ temp = (plus”int v (minus”int £0 F1))
in : 2
if (temp < 0) then
error "Error: Negative Residual Token" ;
else

temp

In

{n_matrix ((1,n),(1,n)) of

| [i,j] = (getVal token[i,j] FiringNoArray!![i] FiringNoArray!![jl)
|| i <= 1 to n bound 10;
j <= 1 to n bound 10
when (token[i,j] <> maxint)
| [i,j] = token{i,jl Il i <- 1 to n bound 10;
j <= 1 to n bound 10
when (token[i,j] == maxint)
¥ |
}; ‘

The function body is a parallel block. This blocks binds n to the number
of nodes in the input graph by computing the bounds of FiringNo Array using
bounds 1D_m_array Id library function. This library function produces a tuple.
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Note that .’ denotes the don’ care value. Next, a function getVal is defined and
finally, a M-matrix is computed. _

We can specify different functions to evaluate the elements in different disjoint
regions of the range. The specification of the values in each region follows the special
symbol | and the compiler generates one or more loops for each region as needed.

All the element bindings can be done in parallel, subject to only data dependencies.

4.8 Summary

In this chapter, we briefly described the Monsoon, Id and Id’s parallel execution
model. We also discussed the way Id’s features help to extract parallelism in the

code by using some examples. In the next chapter, we will study the performance

ofv the NDS codes on Monsoon.

—
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Chapter 5

Performance of the NDS
Algorithms

In this chapter, we /exar}}ine the performance of the NDS algorithms on Monsoon,
an experimental dataflow machine. To evaluate our code, we have run them on
two execution vehicles, namely, a Monsoon Interpreter (MINT) and a real Monsoon
machine. We first describe the experimental environment adopted by us to evaluate

our Id programs, and then we discuss the experimental results in detail.

5.1 Experimental Environment

Id programs are developed under the Id-World [6] programming environment sup-
ported on Monsoon. We used the following Id-world features to collect performance

results for the NDS algorithms.

e It can count the number of instructions executed by the machine when it runs
the program. The instruction counts can be divided into categories to see
what percentage of instructions are remote fetch/store operations versus other

kinds of instructions.
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o It can classify cycles according to what subalgorithm of our program was
being executed, which allows us to see what parts of the program were active
at various times, and to see what parts ran in parallel [8]. Fig. 5.1 shows the
way we have used their technique for our study. The run time system calls
main function which, in turn, calls other subalgorithms. All functions called
by a subalgorithm inherits the color of that subalgorithm, e.g., if 2 function
(say initArray) is called by two different subalgorithms at different times, then
the cycles due to initArray will be counted in each subalgorithm’s cycles count

separately by default.

RTS (C-0)
Main (C-1)
Feasible (C-2) sPivots/cPivots (C-5)
C-C-SPC-F(C-3)
ZST-X (C-9)

Figure 5.1: Call Tree of NDS algorithm showing coloring and inheritance at work

o Id-World allows us to specify a time interval to customize the statistics reso-
lution. The sampling rate is set according to the length of total computatidn
as well as the resolution required, e.g., to obtain the utilization profile on
Monsoon for our code, we set it to 100,000 to keep run-time reasonable. This
tells Id-world to sample the instruction count every 100,000 machine cycles.
However, to obtain the parallelism profile on MINT for our code, we set 1t to

100 and it takes about fifteen minutes to obtain the results and profile.

o The run-times are calculated by dividing the total cycle count by 107 because

Monsoon issues instructions at 10 MHz.
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5.1.1 Run-Time-System (RTS)

The RTS [16] is a collection of software procedures linked into every Id program
which executes on Monsoon as part of the user’s program. The RTS provides four
basic services: frame management for procedure activations, heap management for
aggregate data, error and exception handling, and I/0.

The 1/O routines in the RTS pass requests to the Monsoon interface software
running on the host, whereupon the requests are handled and the data value is
returned to the RTS for further processing. The RTS overhead to perform 1/0,
degrades the performance of our Id programs on MINT as well as on Monsoon. So,
we have separated this overhead from the overall performance.

The RTS can artificially reduce parallelism by taking a long time to satisfy a
frame or heap object request. A processor may need the frame or heap memory in
order to continue co’glpqtation, and thus may idle if that object is not returned by
a specific time. A typical RTS request takes 31 or 32 instructions! and it executes
these instructions sequentially. On Monsoon, the actual latency will be eight times
as long because of processor pipeline interleaving. However, these operations take

one cycle on MINT.

5.1.2 Monsoon Dataflow Graph Interpreter (MINT)

The dataflow graph produced by the Id compiler can also be executed on MINT [16],
an instruction-level interpreter, to produce results and a parallelism profile. This
profile measures how many operators (instructions) are executed concurrently at
each time step (a parallel computation step) in the computation on an ideal ma-

chine which has unbounded number of processors and memories, and instantaneous

116 instructions to read a frame request, choose a processor, and forward a request to that
processor; 7 instructions to pop a frame; 8 or 9 instructions to form a context by combining the
frame pointer, instruction pointer and statistics color of the called code-block.
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communication [11, 6]. Moreover, all operators take unit time, and they are ex-
ecuted as soon as possible. Total number of time steps required to complete a
computation is called the critical path (an inherently sequential thread in the overall
computation).

The parallelism profile measures the inherent parallelism of the algorithm be-
cause the execution of any two operators is sequentialized if and only if there 1s a
data dependency between them. Hence, it is an ideal reference point against which
to measure how much parallelism is actually exploited by a particular machine. This

profile conveys the following information.

o The parallelism profile also helps us to detect the inherent sequential portion

of an algorithm.

e A single Monsoon processor machine will take at least as many instructions
to execute a program as area under the parallelism profile curve, i.e., the total

number of instructions executed.
We have evaluated our Id programs along two dimensions:

1. Instruction counts: measures the efficiency of the algorithm as the total amount

of work done to compute the solution.

2. Parallelism: average parallelism of the program is calculated by dividing the

total instruction count executed in the program by its critical path.

5.1.3 The NDS Algorithms

These algorithms read an N nodes graph in the form of a 1-d vector of node weights,
w;, 2-d vector of edge weights, d;;, from an input data file and solve it in polynomial
time. The nature of the input graph greatly affects their performance. To study the

performance on MINT, 1pelis (one processor element and one I-structure_unit) and
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2pe2is Monsoon systems, we use a graph containing 50 nodes and 500 edges®. The
structure of this graph is the same as a transportation problem, meaning that there
is no transshipment node. It has only producers which produce a commodity, and

consumers which consume that commodity.

5.2 Performance of the NDS-CP algorithm

The Id code implementing the NDS-CP algorithm is about 1346 lines long, including
comments. Table 5.1 shows the performance of this algorithm on Monsoon (1pelis).
The execution cycles taken by this algorithm are classified according to which subal-
gorithm of it was being executed. Fig. 5.2 shows a summed total of the instructions

executed on 1lpelis.

- NDS-CP using ZST-Org |

Problem Size, N = 50 M = 500
Subalgorithm | cycles ¥10° | fraction
RTS 13,247 18.90
Main 2,256 3.22
Feasible 27 0.04
C-C-SPC-F | 6,573 . 9.38
ZST-Org 9,588 13.68
cPivots 6,459 9.21
2nd-phase 4,205 6.00
Idles 27,750 39.58
Total 70,103 100.00
Utilization 38,149 54.42
Critical Path | 70,103
Exec. Time | 7.0s

Table 5.1: Breakdown of cycles in the NDS-CP on 1pelis solving 50 nodes graph

2We could not run a graph having more than 50 nodes on MINT. The reason is that MINT
is 100 times slower than Monsoon. Moreover, memory limitations further restricted the runs to
small input graphs.
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Figure 5.2: Graphical representation of table 5.1

5.2.1 The RTS Qverhead

The major contribution to the total cycles is due to RTS operations® (18.90%).
These operations require a significant amount of parallelism to hide the latency
caused by them. Fig. 5.2 shows that the 1pelis spends much more time in RTS
than in the compiled code for the NDS-CP.

5.2.2 Subalgorithm Feasible and C-C-SPC-F

The feasibility testing for this 50 nodes graph is not required, so, the contribution
of Feasible to the total cycles is very small?. Hence, the performance study of this
suba.lgoritlﬁm is deferred until section 5.6. The first (iterative) step of the optimiza-
tion phase which finds an initial bfs involves Clustering, Contraction, Shortest-path
computations and Firing (C-C-SPC-F) computations. If there are more than one

3These operations are for allocating/deallocating frame and heap memory; and for error and
exception handling.
4This subalgorithm executes two steps. It initializes the firing numbers during its first step,

and then performs testing during the second step. Table shows the contribution due to the first
step. . .
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cluster after Clustering, then the remaining computations are also executed, oth-
erwise the NDS-CP algorithm moves to build a 0-token spanning tree. The first
iteration of this step works on N nodes. The next iteration works on a contracted
graph in which some nodes represent clusters. This process continues until all nodes
merge into one cluster. Thus, the number of operations decreases after each itera-
tion, therefore, we see the tremendous variability of the potential parallelism during
its execution (fig. 5.6).

Clustering subalgorithm begins with while-loop having a nested for-loop as its
body. The while-loop is a sequential loop. Each iteration of this loop forms a phase
which is a Doacross for-loop. During its first phase (first while-loop iteration), each
non-positive node conveys its source information to the node on each of its outgoing
zero-edge and all such nodes work in synchrony, i.e., they synchronize with each other
while accessing its representative information which is stored in a M-structure array
Source. The while-lgop ‘iterates until all nodes (positive/non-positive) finish their
job. The while-loop is followed by two for-loop expressions. During these loops, each
node traverses the zero-edge path to correct its representative information. The first
one is 2 Doall loop. The second one is a Doacross loop. These three loop structures
are executed in program order. The Contraction step is a Doacross for-loop. All
its iterations corresponding to the active nodes work in synchrony. Each iteration
contributes to the producer-consumer parallelism while accessing its ActiveOutN odes
structure as explained in the section 4.7.3. The Shortest-path computation is a while-
loop expression with a doubly nested for-loop expression as its body. The while-loop
is a sequeﬁtial loop where each iteration forms a phase. During any phase, each
node updates its distance and the distance of its adjacent node. Each node works
in synchrony with other nodes while accessing its newDistance information which is
stored in a M.array (see section 3.3.2 in chapter 3). The while-loop is repeated until
each node reaches its shortest-path distance from its neighboring node. The Firing

operation is a doubly nested for-loop expression. Each positive-weighted cluster is
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fired concurrently during these operations.

5.2.3 The ZST-Org Subalgorithm

After this iterative step, a zero-token spanning tree is built using the ZST-Org
approach (see section 3.3.3). This subalgorithm works in phases. Each phase cor-
responds to an iteration of a sequential outer while-loop. Each phase executes a
Doacross for-loop. During a phase, all nodes try to join a shared tree structure—an
atomic M_list—simultaneously by adding all of the nodes on their adjacent zero-
edges. However, the nodes which are already in tree or the nodes whose one of the

node on their adjacent zero-edges are already in the tree succeed in jolning tree.

5.2.4 The cPivots Subalgorithm

The next step of this'optimization phase is the concurrent pivot operations to im-
prove the objective function, WX. This sequential iterative step involves checking
all the edges whose any adjacent node is a leaf node (or cluster) for both types of
firing, performing positive firing all the eligible clusters concurrently, negative firing
all the eligible clusters concurrently, and then traversing the tree to form new clus-
ters. All these complex procedures are executed in program order. The procedure
to check the firing condition for each leaf node/cluster is a Doacross for-loop. Each
such node examines the only node on its adjacent zero-edge and sets an appropriate
flag. The procedure to perform firing involves two iterative steps. The first step
calculates the cluster firing numbers and is a Doacross for-loop. Each node /cluster
interacts with others while updating its representative cluster firing number which
is stored in a Cluster_Firing_No M.array. The second step performs firing all the
clusters concurrently. Finally, the tree is traversed bottom up. It involves forming
new clusters which is a Doall for-loop (all the variable bindings in this loop-body

are executed independently which contributes instruction/variable level parallelism),
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and then finding correct representatives for orphan nodes which is a Doacross loop.

Both of these loops are executed in program order.

5.2.5 Discussion

The interesting issue here is why there are so many idle cycles in the 1pelis case to

start with. To look into this matter, we tried the following two steps and observed:

e When we increase the problem size, we find the same percentage of idles on

this configuration, however, absolute number of idles increases.

e We iterated over a fixed set of loop bounds and chose the one that performed
best. Still, the Monsoon processor continues to idle for a significant amount.

We set the loop bound, k, to 16 for all except inner-most loops, which are

sequentialized. -

p

Thus, we believe that either the Id compiler is not able to extract enough parallelism

from the subalgorithms to keep the system fully utilized or these subalgorithms lack

parallelism.

The parallelism needed to keep 1lpelis fuily utilized

Monsoon’s processor is an 8-stage pipeline. The processor interleaves eight separate
threads of computations, where a thread of computation is a sequence of instructions
related by control flow that execute successively in the pipeline. Each individual
thread of computation actually takes eight times as many cycles as instructions to
execute. Therefore, each processor needs at least eight-fold parallelism (8 threads to
be active) to achieve 100% utilization. It may require more than 8-fold parallelism
to hide the latency caused by multi-cycle RTS operations. Architects of Monsoon
experience that it is about 15/20-fold parallelism which is required to keep 1pelis
fully utilized.
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The utilization profile

The utilization profile shown in fig. 5.3 reveals how the 1pelis is utilized over the

course of the NDS-CP. The processor executes two iterations—both are separated

1.00
% i-iteration H1-iteration

<cPivots

se0
cycles x 1076

Figure 5.3: Utilization profile of NDS-CP with ZST-Org solving 50 nodes graph on
1pelis =

by a black vertical line in the profile—for it to solve 50 nodes graph. During the

first iteration, the observations are as follows:
1. The processor is utilized about 90% of its time while finding a bfs®.

9. The deep valleys corresponds to tree-building subalgorithm (ZST-Org). The
processor utilization is decreased to about 40% while constructing a dual fea-

sible tree.

3. The -utilization is further improved to about 65% while finding an optimal

solution using cPivots.

Similar behavior can be seen during the second iteration.

$To find a bfs, NDS-CP executes Clustering, Contraction and Shortest Path Computations &
Firing ( C-C-SPC-F) subalgorithms iteratively.
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Observation

Thus, it is due to poor performance of the tree-building subalgorithm (ZST-Org)
which reduces the overall average processor utilization of NDS-CP to only 54%.
Moreover, table 5.1 and the corresponding profile 5.3 reveals that this algorithm [4]
spends most of its time in constructing the 0-token spanning tree among all sub-
algorithms. The reason is that all N active processes (each one corresponding to a
node in the N nodes graph) try to access a shared structure (¢ree) simultaneously
and many of them, when they get access to it, end up with doing nothing because
they do not find their adjacent nodes in tree. The nature of this method to build the
tree was causing it to take a lot of time and contribute a lot of idles. This motivated
us to re-write this subalgorithm to improve the overall performance of the NDS-CP.
We designed two new subalgorithms to achieve our goal, namely, the zero-token
spanning tree using Eequ_ential merging (ZST-SM) and the zero-token spanning tree
using hierarchical n;ergiﬁg (ZST-HM). Note that the pivoting steps are directly de-
pendent on the structure of a spanning tree, which in turn, is dependent on the
tree-building subalgorithm. As a result, the number of cycles taken by the pivoting

steps were also effected.

The ZST-SM Approach

In this approach, we perform two passes. During the first pass, we start a process
for each node of the graph. During this process, each node v; performs the following

steps.

1. Collect all adjacent nodes connected to it with outgoing zero-edges to form a

subtree.

2. Store node v; as a root to be active in the second step if it forms a subtree of

at least one zero-edge.
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All N processes work in synchrony because each node informs all other nodes on
its adjacent zero-edges about its presence in a subtree (see section 3.6.1) during
first step and a O-token spanning tree is built which may have cycles. We remove
these cycles during the second stage. The second pass works in phases. During each
phase, we start a process for each root node v; found during the previous pass. Each
subtree rooted at node v; joins the main tree either if it is the first one to do so or
if it or one of its adjacent nodes is already in the tree. But if it has more than one
node already in the tree, then it deletes all but the lowest numbered node from the
tree. By doing so, cycles are removed and we obtain the required spanning tree.

This pass is inherently sequential.

| NDS-CP with ZST-SM |

Problem Size, N = 50 M = 500
{I Subalgorithm [ cycles *10° | fraction

~ 1| RTS 11,309 19.66
Main 2,268 3.94
Feasible 27 0.05
C-C-SPC-F | 6,777 11.78
ZST-SM 4,638 8.06
cPivots 9,521 16.55
2nd-phase 3,676 - 6.39
Idles 19,310 33.57
Total 57,526 100.00
Utilization 34,541 60.04
Critical Path | 57,526
Exec. Time | 5.7s

Table 5.2: Breakdown of cycles in the NDS-CP using ZST-SM on 1pelis

With ZST-SM method (see table 5.2), we could achieve our purpose of reducing
the number of idles and the number of cycles to construct the tree. However, the
number of cycles takes by cPivots increased significantly (cf. table 5.1). The number

of RTS operations using this approach is reduced which results in more parallelism
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because the processor spends less time in sequential RTS. The decrease in number
of idles increased the processor utilization. The NDS-CP algorithm executes two

iterations of the optimization phase to optimize this graph in 5.7 sec.

The ZST-HM Approach

To circumvent the sequentiality in the merging, we can allow the subgraphs to merge
with its neighbors in a hierarchical fashion. For example, suppose we have subgraphs
represented by v;, vs, v3 and vs, we can merge v; and v; at the same time that we
merge vs and vy. If they merge, then two resulting larger subgraphs represented by
v; and v can be finally merged to form the tree. However, if only one of them merge
(say first pair), then resulting larger subgraph represented by v can be merged with
vs, and then with v4. If none of them merge, we perturb the subgraphs, and then
v; and vz can be merged at the same time as v; and vy to form the tree and it goes
on until all four sub’g/ra,;;ils are merged into one.

In each merging phase of the ZST-HM subalgorithm, all subtrees form a pair
(it is, more or less, a sequential task), and then each pair tries to merge and removes
a cycle if it has one concurrently. After each phase, the number of subtrees decreases
by half if all pairs succeed in merging. If only some of the pairs succeed in merging,
then those pairs which do not succeed cause unavoidable overhead of spawning
useless processes. At this point, the new pairs are formed which will be less than the
previous phase and the hierarchical merging is re-started. Furthermore, if no péfrs
succeed in merging, then we need to permute the subtrees in the hopes of forming
pairs which may be merged. This permutation greatly affects the performance of
this approach because, in the worst case, if only a few pairs (say only one) succeed
in merging in each phase, then this proﬁess of merging becomes sequential.

With ZST-HM method (see table 5.3, fig. 5.5 in bargraph format and the
utilization profile 5.4 on lpelis), the number of idles are further reduced, hence,

the processor utilization is further increased. The number of RTS operations using
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NDS-CP with ZST-HM

l

Problem Size, N = 50 M = 500

Subalgorithm | cycles ¥10° | fraction
RTS 11,161 21.80
Main 3,320 6.48
Feasible 27 0.05
C-C-SPC-F | 6,943 13.56
ZST-HM 7,095 13.86
cPivots 6,170 12.05
2nd-phase 3,742 7.31
Idles 12,745 24.89
Total - 51,202 100.00
Utilization 34,715 67.80
Critical Path | 51,202

Exec. Time |3.1s

Table 5.3: Breakdown of cycles in the NDS-CP using ZST-HM on 1pelis

Phase Ops

t-iteration

ll-iteration

Il-iteration

42

48 54
cyeles x 1076

Figure 5.4: Utilization profile of the NDS-CP with ZST-HM solving 50 nodes graph

on lpelis
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Figure 5.5: Graphical representation of table 5.3

ZST-HM approach is further reduced. The number of cycles taken by this method
to construct the tree are less than ZST-Org approach. Moreover, the cycles taken
by cPivots are also minimum. Thus, the 0-token spanning tree constructed by ZST-
HM method allowed more pivot steps to be done concurrently. Furthermore, the
NDS-CP algorithm executes three iterations of the optimization phase to optimize
this graph in 5.1 sec. The reason is that the pair-formation step during this method
is the unavoidable sequential step which makes it take more time to build the tree.
Moreover, the permutaion of subtrees after any phase (if needed) may increase the
time to build the tree even though the permutation is done concurrently.

Though, both new methods to build the tree improved the overall performance
of the NDS-CP algorithm, the 1pelis is still idle for 25% of the time. Next, we study
the parallelism in each of these tree-building approaches to select an appropriate

approach for our further study.
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5.2.6 Parallelism in Tree-Building Subalgorithms

To study the effect of the three tree-building approaches on overall parallelism, we
allow MINT to calculate the initial basic feasible solution (bfs) of NDS algorithms,
and then allow it to build the tree using three approaches one by one. In this way,

we can study the effect of each on the parallelism in finding an initial bfs.

Parallelism in finding an initial bfs (C-C-SPC-F)

Table 5.4 and its graphical representation in profile 5.6 show the parallelism in
finding the initial bfs. The average parallelism of 52 shows that these computations
have enough independent operations to hide latency caused by the multi-cycle RTS

* operations at each step during their execution. Hence, the Monsoon processor will

be utilized efficiently during these computations. Even though most of the loops

rFiﬁding an initial bfs of NDS algorithm |

Problem Size, N = 50 M = 500
Subalgorithm | cycles z10° | fraction
RTS 3,094 31.21
Main 794 8.01
Feasible 26 . 0.26
C-C-SPC-F 5,148 51.92
Second Phase | 853 8.61
Total 9,916 100.00
Critical Path | 191
Parallelism 52

Table 5.4: Breakdown of cycles in finding an initial bfs

in this iterative step are Doacross in nature (see section 5.2.2), these computations
contribute the maximum amount of parallelism to the overall parallelism of this
algorithm. These loop iterations synchronize with each other using implicit locks
associated with each element of the M-structure. This shows that the fine-grain

(element-level) synchronization using such locks helps processes to interact more
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Figure 5.6: Parallelism in finding an initial bfs of 50 nodes graph

freely because they can operate on different elements of the same data structure
simultaneously. However, if any process need to use some element which is being
updated by some other process, then it waits until the latter process is done with

it.

Parallelism in ZST-Org

The ZST-Org approach is sequential in nature because a node joins tree—it is an
atomic variable—one at a time. This fact is visible in its profile 5.7. Using this
approach (table 5.5), the RTS operatiohs are increased by 3317 and parallelism Is
reduced by 30 (cf. table 5.6). Obviously, the hardware will be idle because the more
RTS involved, the more parallelism is needed to be exploited by the hardware for
its 100% ut-ilization.

Parallelism in ZST-SM

Using ZST-SM approach (see fig. 5.6), the RTS operations are increased by 1760
and the parallelism is reduced by 21 (cf. table 5.6). However, it performs better
than ZST-Org because the contribution of the RTS and the cycles to build the tree
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NDS and ZST-Org

Problem Size, N = 50 M = 500

Subalgorithm | cycles 210° | fraction
RTS 6,411 33.55
‘Main 1,154 6.04
Feasible 26 0.13
C-C-SPC-F 5,148 26.95
ZST-Org 4,709 24.65
Second Phase | 1,658 8.68
Total 19,106 100.00
Critical Path | 891

Parallelism 22

Table 5.5: Effect of ZST-Org on bfs

Figure 5.7: Parallelism in ZST-Org
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are less. It shows that the bardware will be idle, however, not as much as in the
case of ZST-Org. The merging portion of the ZST-SM subalgorithm is sequential in

nature. However, it performs better because of the parallelism in its subtree-building

portion.

B NDS and ZST-SM ]

Problem Size, N = 50 M = 500
Subalgorithm | cycles z10° | fraction
RTS 4,854 32.84
Main - 11,154 7.80
Feasible 26 0.17
C-CSPC-F | 5,148 34.83
ZST-SM 2,322 15.70
Second Phase | 1,280 8.66
Total 14,783 100.00
Critical Path | 480

|| Parallelism 31

—_

Table 5.6: Effect of ZST-SM on bfs

Parallelism in ZST-HM

Using ZST-HM approach (see table 5.7 and profile 5.8), the RTS operations are
increased by .only 1460 and parallelism is reduced by only 12 (cf. table 5.6).

The ZST-HM approach performed better than the earlier two methods because the
contribution of the RTS is minimum. As a result, the processor will spend more
time in the compiled (dataflow-style) code than in the sequential RTS code and
it will be utilized more efficiently. We observe (see profile 5.8) that the beginning
phases of the hierarchical merging find enough pairs to merge concurrently which
may result in a significant amount of the loop-parallelism in this critical part of the

NDS algorithms.
With this study, we choose the ZST-HM approach to build 0-token spanning
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Problem Size, N = 50 M = 500
Subalgorithm | cycles z10° | fraction.
RTS 4,554 31.47
Main 1,154 7.97
Feasible 26 0.18
C-C-SPC-F 5,148 35.58
ZST-HM 2,352 16.26
Second Phase | 1,238 8.55
Total 14,471 100.00
Critical Path | 365
Parallelism 40

Table 5.7: Effect of ZST-HM on bfs

Figure 5.8: Parallelism in ZST-HM
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tree for our further study of the NDS algorithms.

5.2.7 Parallelism Study of NDS-CP

The results presented in the previous section motivated us to investigate the amount
of parallelism in the concurrent pivoting used in the NDS-CP. To do so, we run this
algorithm on MINT to solve the same problem using the ZST-HM method to build
the tree. The parallelism profile of the first outer-loop iteration of the optimization
phase is shown in fig. 5.9. This profile identifies some important structural aspects

of the parallelism. The parallelism during the C-C-SPC-F computations varies from

o 160.00 T
£
S
‘% 140.00
= B 2rd Phase Ops
cPivots
120.00 ZST-HM
C-C-SPC-F
Main
100.00 RTS

10 12

cycles x 10°5

Figure 5.9: Parallelism profile of first iteration of the NDS-CP solving 50 nodes
graph

about 80 to 35 operations® as shown in profile 5.9. The continuous decrease in the

' potential parallelism (from about 35 to about 8 or 9 operations) due to hierarchical

merging is visible during its execution. Its profile 5.9 indicates that there is a little

but constant parallelism (12 to 15 operations) in the concurrent pivot steps.

6The average is about 52 independent operations as discussed in the previous section.
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After the concurrent pivoting, the NDS-CP algorithm moves to the first step
of optimization phase. In this way, the NDS-CP executes three iterations of this
phase to find an optimal solution. The first iteration of the opfimjzation phase
contributes an average parallelism of 25. However, it decreases during the second
and third iterations. The overall average parallelism of the NDS-CP is approximately
20.

This profile explains that the overall parallelism is diminished due to the lack
of parallelism primarily in the concurrent pivot operations. As a result, lpelis is
idle 25% of the total cycles. The average utilization is 68%. The reason is that
these pivoting operations interact with RTS heavily (see in any table) for allocat-
ing/deallocating heap storage, activation frames. These operations take one cycle on
MINT, however, they require multiple cycles on the real hardware. Moreover, there
must be enough amount of operations which are not dependent on them to keep the
processor pipeline buéy.'fHowever, the profile shows that there are not enough oper-
ations (or parallelism) to mask the latency caused by these multi-cycle operations

during cPivots. As a result, we find a huge amount of the idles (see table 5.3).

5.2.8 Performance on 2pe2is

For the same reasons discussed above, the utilization on a 2pe2is Monsoon decreases
to 45% even though the operations executed by both configurations for each subal-

gorithm are the same (cf. table 5.3). The reasons for more idles on 2pe2is are as

follows:

o A subset of Tag operations send a token to the network and cause a hardware
hazard. These operations can not cause idles on lpelis, however, they do

on a multiprocessor Monsoon because the callee procedure can be on another

processor (see section 5.3.3).
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| NDS.CP 7
[ Problem Size, N =50 M = 500 |

Subalgorithm | cyclesx10° | fraction
RTS 11,166 14.73
Main 3,341 4.41
Feasible 26 0.03
C-C-SPC-F | 6,956 9.18
ZST-HM 7,038 9.29
cPivots 6,077 8.02
2nd-Phase 3,625 4.78
Idles 137,570 49.57
Total 75,799 100.00
Utilization 34,604 45.65
Critical Path | 37,900

SpeedUp 1.35

Exec. Time | 3.7sec

Table 5.8: Breakdown of cycles in the N DS-CP on 2pe2is solving 50 nodes graph

—

o The execution of Id on Monsoon starts with the invocation of the top level
procedure on one processor and spreads out to other processors. The compu-
tation ends in a similar way, but in reverse order on the same processor that
the computation started on. Startup and end costs” are incurred whenever
the architecture and/or the RTS limits the expansion or contraction of work
to/from the processors. When the 1lpelis shows 1% idles due to startup and

end costs, an n-processor system will generally show at least n% accumulated

idles due to startup and end costs.

o Too little parallelism, which results in the lack of work, is much more likely on
a multiprocessor since more parallelism is required to keep it busy. Since the
Monsoon processor consists of an eight-stage interleaved pipeline, a 2-processor

Monsoon requires at least 16-fold parallelism to achieve 100% utilization. It

"These costs are visible as ramp up and ramp down in the utilization profile.
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may require more parallelism to hide the latency caused by the RTS’ multi-

cycle operations.

5.3 Performance of the NDS-SP Algorithm

The Id code implementing the NDS-SP algorithm is about 1202 lines long, including
comments. Table 5.9 shows its profile classified by each subalgorithm. This profile
shows a sequential flow (shown in fig. 3.5) on the same 50 nodes graph. In this

| NDS.6P |
Problem Size, N = 50 M = 500

Subalgorithm cyclesx10° | fraction
RTS 7,554 27.21
Main 1,154 4.16
Feasible 26 0.09

—t &G=C-SPC-F 5,148 18.54
ZST-HM 2,352 8.47
sPivot 9,401 33.86
Second Phase 2,128 7.66
Total 27,763 100.00
Utilization 25,635 92.34
Critical Path 1,141
Avg. Parallelism | 24.33

Table 5.9: Breakdown of cycles in the NDS-SP solving 50 nodes graph

case, the C-C-SPC-F computations took about 19% of the total cycles to find a
bfs of the given graph. The tremendous variability of the potential parallelism

during its execution is due to the continuous decrease in the number of operations

(see section 5.2.6). The improvement of the potential parallelism, and then further
decrease is visible during the ZST-HM'’s execution. Thus, the va.verage parallelism is

about 39 operations (see table 5.7 in section 5.2.6) before the execution of sPivots.
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Figure 5.10: Parallelism profile of NDS-SP solving 50 nodes graph

5.3.1 Parallelism in the Sequential Pivoting

The next step of the NDS-SP is to optimize the bfs using sequential pivoting. It
executes 476 iterations (pivot steps) to find the optimal solution. During each such
step, it checks a zero-edge for the firing condition. If it satisfies the condition, then
a node/cluster is fired. Firing a node/cluster involves two iterative steps. During
the first step, it calculates the firing number (see section 3.2) and all the nodes in
the cluster are fired concurrently. After this 6peration, if firing was done then it
modifies the tree and restarts the next phase of pivoting steps. Otherwise, the tree
is traversed from this edge to form the new cluster. All the statements before the
for-loop expression (see fig. 3.15 in chapter»3) in traversing the tree are executed
independent_ly which contributes instruction (variable) level parallelism. The next
phase of pivoting steps cannot start unless the tree is modified by the previous phase.

All sub-steps of a pivoting step are executed in program order.
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Observations

e The sPivots took about 34% of the total cycles to optimize the initial bfs

because it processes one zero-edge at a time.

¢ About 3,000,000 cycles are due to RTS during sPivots’ execution (cf. table5.7).
However, these pivoting operations do not have enough parallelism to hide the
latency caused by these RTS operations which take single cycle on the MINT

but multi—bycles on a real Monsoon.

o The overall average parallelism in the NDS-SP algorithm is further reduced

from 39 to 25 operations after sPivots’ execution.

e A total 28,616,000 operations were executed in overall execution of the NDS-
SP. However, the critical path requires only 1,163,000 clocks. This indicates
that a single Monsoon .processor would execute more than 28,616,000 oper-
ations (area of the parallelism profile) to optimize the solution due to the

multi-cycle RTS operations which are 30% of the total execution time.

5.3.2 Performance of the NDS-SP on 1lpelis and 2pe2is

Table 5.10 shows the dynamic distribution of operations executed by Monsoon ac-
cording to what procedure of the NDS-SP algorithm was being executed and fig. 5.11

refers to the utilization profile obtained on Ipelis during this execution.

Observations

e Almost the same number of operations were executed as predicted by MINT
during each subalgorithm (cf. table 5.9). However, there is a tremendous
amount of idles on both configurations. The ZST-HM causes 2,405,000 idles®

8]t is impossible to calculate exact number of idles caused by each part in any algorithm on
Monsoon. However, the nature of this algorithm helps us to determine approximately the number
of idles caused by each subalgorithm. We allowed Monsoon to generate the bfs, and then we looked

115




Lo DFaV DT BIE AR I 3 DK 2 T BT RN e

N T I T T MR IIIN  AT LTI

et e v S LA B T SO X T NI

Rl aPwia i T

| Performance of NDS-SP on Monsoon |

| Problem Size N = 50 ]
Configuration 1pelis 2pe2is
Subalgorithm | cycles*10° | fraction | cyclesx10° | fraction
RTS 7,533 19.21 7,535 11.60
Main 1,158 2.95 1,156 1.78
Feasible 26 0.07 26 0.04
C-C-SPC-F 5,119 13.06 5,120 7.88
ZST-HM 2,350 5.99 2,348 3.62
sPivots 9,393 23.95 9,393 14.46
Second Phase | 2,509 6.40 2,414 3.72
Idles 11,126 28.37 36,956 56.90
Total 39,214 100.00 | 64,947 100.00
Utilization 25,579 65.23 25,578 39.38
Critical Path | 39,214 32,474
SpeedUp 1 1.2
Exec. Time | 3.9 sec 3.2sec

Table 5.107 Breakdown of cycles in NDS-SP on Monsoon

2nd Phase Ops

Instructions

sPivots

35 40
cycles x 1076

Figure 5.11: Utilization profile of NDS-SP solving 50 nodes graph on 1pelis
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, the sequential pivot (sPivot) results in 7,824,000 idles and the remaining
691,000 are due to rest of the sub-algorithms on 1pelis.

e The 1pelis is utilized well during the execution of C-C-SPC-F and ZST-HM
subalgorithms. The deep valley in this utilization profile is due to the last few
phases of the hierarchical merging of ZST-HM. Then, the utilization improves
to 67% during sPivots. The overall average utilization is about 67% on lpelis
configuration.

e The available parallelism of 25 is enough only to keep 1pelis 67% utilized. The
utilization on the 2pe2is is further decreased to 40% and the 2pe2is is idle for
57% of the total time.

e The Ipelis took 3.9sec to solve this graph using NDS-SP. However, it took
5.1sec to solve the same graph using NDS-CP. The same behavior can be seen

on 2pe2is.

5.3.3 Quantifying Overheads on 1lpelis

Table 5.11 shows the profile classified by operation count. Move operations (21.06%
of total cycles) move data in and out of the frame memory on Monsoon processor,
i.e., they are basically frame fetches and stores.

Bubbles are caused by the arrival of the first token of a dyadic operation. The
instruction can’t execute until the second token arrives, so the first value is stored
into the frame and the rest of the pipeline does nothing for this token. Bubble in-
structions (1é.74 % of total cycles) in Monsoon is an overhead of the dataflow-style
of fine-grain parallel execution supported on Monsoon. Misc operations (8.60 %

of total cycles) operations consists of control-flow, data conversion, control register

at the profile to see the number of idles. Next, we allowed it to build the tree using ZST-HM and
observed the increase in the number of idles. This gave us the approximate value of the number
of idles due to this tree-building subalgorithm.
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Algo/Op | RTS | NDS-SP | Feasible | C-C-SPC-F | ZST-HM | sPivots | %
Bubbles | 66 314 6 1,356 608 2,646 |12.74
Move 1,552 | 417 9 1,908 868 3,363 | 20.70
Int 1,540 | 137 3 439 195 981 8.40
Fetch 1,224 | 54 2 172 75 333 4.75
Store 326 |24 0 106 49 249 1.93
Tag 1,821 | 81 1 462 236 580 8.11
Misc 1,004 | 131 4 676 316 1,242 | 8.60

Table 5.11: Opcode Mix of NDS-SP solving 50 nodes graph lpelis

operations. Tag operations (8.11 % of total cycles) are the operations that manipu-
late continuations, such as sending arguments to and receiving results from a called
procedure.

Fetch and Store operations on Monsoon are used for accesses to I-structure
units. Some of the fetches which occur in dataflow-style issue split-phase remote
memory requests and cause a hardware hazard. " About 4.75% of the total cycles
executed are fetch operations. Table 5.11 shows that the RTS which uses threaded-

style code® executes more fetches than our subalgorithms which uses dataflow-style

code.

Observations

o We estimate the number of idles on 1pelis to roughly equal to the number
of fetches that will go to I-structure unit times 1.25, i.e., (54 + 2 + 172 +
75 + 33;3 = 637) x 1000 x 1.5 = 796,250. Hence, out of 11,126,000 idles (see
table 5.10), 796,250 idles (8%) are due to the Monsoon hardware hazard and
rest of them (10,329,750) are caused by the lack of work in the algorithm itself.

9Dataflow-style code consists of tokens flowing along the arcs of a dataflow graph, whereas, the
threaded-style code treats a linear sequence of dataflow instructions as a sequential thread. The
Id compiler generates dataflow-style code for Monsoon. Nevertheless, it is also possible to write
threaded-style code using assembly language for Monsoon. '
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o Bubbles, Tags, Misc are all operations that are identified as the overheads
of asynchronous execution. The total number of cycles (about 30% of total
cycles) spent in these categories gives us a quantitative indiéation of the cost
of asynchronous execution. So, the overhead incurred by parallel execution is

reasonably high, increasing total run-time.

¢ The useful computations for this code on Monsoon (1pelis) are only 20,583,000
operations'® though the total number of operations executed are 39,214,000.

Thus, the style of dataflow execution on Monsoon introduce huge overheads.

5.4 NDS-SP versus NDS-CP

Our results show that NDS-SP algorithm spends most of its time in pivoting steps.
Thus, any parallel implementation of NDS-SP has to focus on the parallelization
of the pivot steps. “In NDS-CP [4], they parallelized this method by performing
concurrent pivot steps. However, after concurrent pivot steps, the solution loses its
basisity, while it is maintained by sequential pivot steps in the NDS-SP algorithm.
As a result, NDS-CP algorithm goes back to retain its basisity as shown in fig. 3.23.
Our detail analysis results show that by doing so, NDS-CP algorithm spends more
time in reconstructing the 0-token spanning tree than performing other operations.
Through our parallelism study, we found that the dataflow-style implementation for
¢Pivots did not have enough parallelism to be exploited by Monsoon processor; As
a result, the NDS-SP which has a little more parallelism performed better than the
NDS-CP for 50 nodes graph.

Fig. 5.12 plots the critical path length versus different problem sizes'! for both

1095 578,000 (utilization) - 4,996,000 (bubbles) = 20,583,000. Utilization includes all operations
except 2nd-phase and idles.

11The problem size is the number of nodes in the input graph because all the computations
involve modifying the attributes of graph nodes (e.g. source information of node, weight of a node,
firing number of a node or a cluster). Though the pivoting operations also involve operations on
edge’s residual tokens, these operations are again dependent on adjacent node’s attribute (firing
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algorithms. The results on this graph are obtained on 1pelis configuration. The

x10° NDS-CP versus NDS-SP
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Figure 5.12: Critical path versus Problem size

NDS-SP algorithm took-less time to solve the DTP of small problem sizes than the
NDS-CP algorithm. It can be concluded that the smaller DTP’s do not have enough
parallelism—because of less pivot steps which can be done concurrently—to exploit,
so the parallel approach (the NDS-CP algorithm) to solve them took longer than
the sequential approach (the NDS-SP algorithm). However, the NDS-CP solves
130 nodes and 2500 edges graph faster than the NDS-SP. The reason is that the
sPivots spend 42% of the total time to find an optimal solution and the cPivots
spend only 19% of the total time to find the same solution. Moreover, the NDS-CP
executes three iterations of the optimization phase for this graph in 76 seconds and
the NDS-SP finds the same solution in 108 seconds. Thus, this graph do have enough
parallelism—because more pivot steps can be done concurrently—to be exploited
and hence, the NDS-CP solves it faster than the NDS-SP algorithm on Monsoon.
For 160 nodes and 3500 edges graph, the NDS-SP again leads the NDS-CP.

As already discussed in the previous sections, these algorithms are input graph

number.).
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dependent. If a graph allows more pivot steps to be done concurrently, then NDS-CP
leads the NDS-SP.

5.5 Id’s features for parallelism in the NDS al-
gorithms

We tried to investigate the contribution of each Id feature, used in our implemen-
tation, to the overall parallelism. To do so, we first sequentialized the NDS-SP
parallel code. All loops, Doall_For and Doacross_For, are sequentialized by using
the annotation sequential and their loop-bodies are sequentialized using barriers.
All statements in a block are also forced to run sequentially using barriers. This
approach made all functions execute in a strict manner (i.e., all the arguments are
evaluated beforé any computation of the function body starts). However, we could
not achieve parallehim of one from our sequential code. This is due to instruction-
level parallelism and the parallelism in the RTS, which shows up when an Id program
is run under idealized mode. We consider a parallelism of 3.83 as our baseline and
allow one construct at a time to contribute its parallelism to overall parallelism.
Fig. 5.12 shows this contribution.

There are a few Doall_For loops, so their contribution to overall parallelism
is not much. However, our program uses mostly Doacross_For and Doacross_while
loops, so their contribution is quite high. Doacross_while loops form the outer looias
and Doacross_For loops form the inner lbops in most subalgorithms. These loop it-
erations synchronize using implicit m-locks associated with each element of a shared
data structure. These implicit atomic data structures allow the parallel processes
to interact more freely. After this, we removed the barriers with in the loop-bodies
and allowed them to run in a dataflow-style. These loop-bodies behave like a par-
allel block after removing barriers. Their contribution is very little because of the

extensive data-dependencies between instructions.
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| The NDS-SP Algorithm i
Problem Size, N = 50

Feature Name Parallelism
Doall_For 0.51
Doacross_For 4.25

List comprehension | 6.12
Array comprehension | 2.55

Doacross_While 2.17
Parallel block 2.03
Total 17.63

Table 5.12: Id’s features for parallelism

The maximum amount of contribution comes from the use of List comprehen-
sions. We used this structure to select a subset of items (processes to be forked in
a loop expression) geperated by it.

Total parallelism due to different features is 17.63. We started with the initial
parallelism of 3.83. Thus, overall parallelism is about 22. This overall parallelism
is further imi)roved after removing barriers from other portions of the code, which

allowed functions to evaluate their arguments in parallel with their function body.

Thus, overall parallelism in our NDS-SP code is 25.

5.6 Solving ILCWB Problem using NDS-SP and
NDS-CP |

In this section, we study the performance of the NDS algorithms solving a IL-
CWB problem formulated as 149 nodes DTP on Monsoon/MINT. To maintain the
compacted width of the layout after compaction, an artificial edge is added to the

constraint graph after the application of Feasible (see section 3.5).
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5.6.1 Performance of 149 nodes ILCWB problem on 1pelis

To set the loop bounds, we iterated over a fixed set of loop bounds, k (20, 30, 35
and 40) and chose the loop bound, k=30, that performed best. For loop bound,.
k=40, 1pelis showed the error out of frame memory and for loop bound, k=35,
it performed poor than for the case, k=30. This restricted us to choose the loop
bound, k = 30.

Table 5.13 shows the performance of the NDS-CP algorithm solving this prob-

lem.

| NDS-CP ]
Problem Size N = 149

Subalgorithm | cycles*10° | fraction
RTS 22,488 17.76
Main 6,392 5.44

|| Feasible 962 0.76
C-CSPCF |3,983 3.15
ZST-HM 31,841 25.15
cPivots 2,240 1.77
Second Phase | 7,541 5.96
Idles 50,660 40.01
Total 126,607 100.00
Utilization 68,406 54.03
Critical Path | 126,607
Exec. Time 12.6 sec

Table 5.13: Breakdown of cycles in. NDS-CP on 1lpelis solving 149 nodes graph.

The 1pelis configuration took 12.6 seconds and most of its time (26% of total
cycles) is spent in building the tree (ZST-HM). There are enormous amounts of
idles (40% of total cycles) and the overall processor utilization is only 55% of total
cycles. The reason is that most of the phases of the hierarchical merging merge only
a few pairs concurrently. Hence, the overhead of spawning useless processes is quite

high. Moreover, it interacts with RTS heavily which requires a significant amount
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of parallelism.

Table 5.14 shows the performance of NDS-SP algorithm on Monsoon solving

the same problem.

| NDS-SP |
Problem Size N = 149
Subalgorithm | cycles*10° | fraction
RTS 24,907 17.28
Main 7,011 4.86
Feasible 961 0.67
C-C-SPC-F | 3,997 2.77
ZST-HM 31,851 22.09
sPivots 14,452 10.02
Second Phase | 8,458 5.87
Idles 52,539 36.44
Total 144,176 100.00
Utilization 83,179 57.69
_1t Critical Path | 144,176
Exec. Time 14.4 sec

Table 5.14: Breakdown of cycles in NDS-SP on 1pelis solving 149 nodes graph

Monsoon(1pelis) took 14.4 seconds and most of its time (22% of total cycles)
is spent in building the tree. The 1pelis is idle for 37% and the average utilization
is only 58%. The major contribution to the idles is due to the ZST-HM and sPiovis
due to lack of the work.

Observations

e The NDS-CP performs better than the NDS-SP algorithm because it solves
the graph faster than the NDS-SP.

e For 149 nodes graph, the cPivots traverses the 0-token spanning tree and
merges all the nodes in a cluster without any firing in its first phase. Thus,

the NDS-CP executes only one iteration of the optimization phase.- In other
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words, the initial bfs is the optimal solution. Note that the cycles executed by
each subalgorithm are almost same except the pivoting subalgorithms. The
reason is that the cPuiots traverses the tree concurrently. HoWever, the sPivots
does so one zero-edge at a time. Hence, the NDS-CP is faster than the NDS-
SP.

o The ZST-HM executes more or less—the utilization is about 90% during some
phases of its hierarchical merging—sequentially for this graph. Moreover, it
interacts with RTS heavily which needs more parallelism. As a result, it

contributes a large amounts of idles.

5.6.2 Parallelism in Feasible

The ILCWB problem (e.g. 149 nodes DTP) makes use of both portions, initialization
and testing, of the Feasible subalgorithm to solve the compaction problem. In this
section, we study the parallelism in this step of NDS algorithms.

The testing portion of this subalgorithm waits until the problem is initialized.
During the initialization step, each node initializes itself to its most negative edge
weight by traversing the list of outgoing nodes independently. During each phase
of the testing step, all N nodes work in synchrbny, i.e., all nodes may interfere with
each other updating its position, however, they synchronize using implicit m-locks.

The initialization portion shows the average parallelism of 21 (see profile 5.13)
which reduces to 17 after the testing portion of this subalgorithm while solving this
graph. Each peak corresponds to a phase of the testing portion after about 15,000
cycles. The (ieep valleys between each phase show that each phase is executed

sequentially. However, there is significant amount of parallelism during each phase.
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Figure 5.13: Parallelism in Feasible compacting 149 nodes ILCWB problem

5.7 Summary

In this chapter, we_evaluated the NDS-SP and NDS-CP by studying their perfor-
mance on MINT and Monsoon hardware. Qur parallelism study reveals that these
algorithms interact with RTS heavily and the finding an initial bfs portion of then
consists a good amount of parallelism to hide latency. However, the hierarchical
merging stage of tree-building and both pivoting strategies do not have the paral-
lelism required to hide the latency, hence, to kéep the processor pipeline busy. This
study also finds that sequential pivoting strategy performs better than the concur-
rent pivoting strategy for the graphs of size less than 100 nodes due to the poor

performance of tree-building approach which is the most time-consuming step in

these algorithms.
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Chapter 6

Conclusions and Future Work

6.1 Summary

In this thesis, we studied the parallelism in the network dual simplex (NDS) al-
gorithms and also the contributions of Id language’s features in revealing the par-
allelism. To do so, we implemented the NDS algorithm with concurrent pivoting
(NDS-CP) using Id and then we used this algorithm to solve the layout compaction
& wire-balancing (LCWB) and the integrated LCWB problems formulated as a
DTP. The optimization step in the NDS-CP is a repetitive step and involves finding
a basic feasible solution (bfs), and then performing concurrent pivot steps. The
concurrent pivot steps during the concurrent pivoting destroy the basisity of the
solution. So, to maintain a bfs, NDS-CP repeats the shortest path computations
before it starts the next pivoting phase. For our comparative performance study,
we implemented this algorithm with a sequential pivotiﬁg strategy (NDS-SP). The
optimization step in this algorithm differs from the NDS-CP algorithm. In this case,
it does not need to perform shortest path computations after each pivoting phase

because this strategy maintains the basisity of the solution after each pivot step.
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6.2 Review of Results

MINT shows the parallelism of 25 in the NDS-SP; and 20 in the NDS-CP. Their
profiles also show that these algorithms interact with RTS heavily. Because RTS
operations require a significant amount of parallelism to hide the latency on real
hardware, a Monsoon multiprocessor shows a huge amount of idles on all of its
configurations. As a result, the processors are not utilized to their capacity.
Through our analysis of the results for a 50 nodes and 500 edges graph, we

observed the following facts:

e The overhead due to building the intermediate zero-token spanning tree is very
large even though we modified the original method [Cha94]. We believe that it
is because of the nature of the problem of building the tree which is inherently

sequential.

e There is not éﬁouéh parallelism in performing concurrent pivot operations.

As a result of these observations, the NDS-SP solves the graph in less amount
of time than the NDS-CP for the graphs of size less than 100 nodes. Moreover,
these algorithms do not utilize the Monsoon processors efficiently due to lack of the

parallelism primarily in the tree-building and pivoting steps.

6.3 Comments

In our development of the solution, we did not pay any explicit attention to par-
allelism at all, concentrating instead on correctness and clarity of expression. We
believed that the implicit way of expressing parallelism due to Id’s operational se-
mantics and 1d’s declarative nature would exploit a huge amount of parallelism
from our implementation on Monsoon. However, our dreams were shattered when
we looked at the behavior of the NDS algorithm solving the 50 nodes graph on
MINT. This blame goes to one or all of the following.
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e A naive Id programmer.

We used all the language features (Higher-order functions, non-strictness, list
and array comprehension, étc.) which would play a major role to gain the
parallelism in our codes. We used M-structures extensively to avoid threading
and extensive copying. However, their use forced us to use explicit barriers in

some parts of our code which ultimately serialized our code.

The algorithm itself.

Through our parallelism study, we found that tree-building and concurrent

pivoting do not offer much parallelism even when they are implemented with

a dataflow-style of execution in mind.

the Id compiler.

Id’s explicit annotations to control the parallelism in an Id program greatly
affects its performance because it is very difficult for a programmer to find an
optimum value for the loop bounds. A way to automate this process is being

studied by Id’s compiler researchers at M.LI.T.

The Monsoon architecture.

The data-structures are stored in the I-structure memory of Monsoon. How-
ever, the frame memory per processor can also be used as an I-structure mem-
ory. Through our performance study, we found that the number of frame
fetch/store (move) operations are very large as compared to the number of
I-structure fetch/store operations. The frame fetch/store operations do not
cause idles, however, each fetch from a I-structure unit causes an idle because
they are satisfied by going to an I-structure unit external to the PE. But the
number of idles due to I-structure fetch/store operations are not significant.
Thus, we strongly believe that the major contributiqn to the total amount of

idles are due to empty token queues which, in turn, are due to the lack of work
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caused by the sequentializing effect of multi-cycle RTS operations. The small
frame memory per processor and its hardware hazard are the architectural
problems which limit the performance of an Id program. The huge amount of
bubbles can not be avoided because they occur from the tagged-token datafiow-

style of execution adhered to Monsoon.

Finally, the implicit style of parallel programming using functional languages
makes it easy to program Monsoon. However, the debugging of an Id program is a
nightmare due to lack of I/O facilities (e.g., printing of integer/string data during
its execution). The implicit atomic data structure (M-structure) allows the parallel
processes to interact more freely, and because their use in a program avoids excess

copying, parallel programs can be more efficient.

6.4 Suggestions for further work
Our work in this thesis suggest a few directions for further study:

o Our implementation has not used M-structures of Id to its capacity. Their use
forced us to use explicit barriers to synchronize parallel tasks originating from
some consecutive for-loop expressions to produce determinate answers which
results in excessive serialization in our code. We think that they can be re-
written to eliminate these barriers such that these processes may interact prop-
erly. However, it may result in excessive congestion on m-locks if M-structures
are used. If I-structure are used to exploit producer-consumer parallelism then
it may result in excessive copying of data-structures and threading among pro-

cesses which may put a restriction on the problem size.

e The building of the 0-token spanning tree is an expensive operation due to

its sequential nature. It is more critical in the case of the NDS-CP algorithm
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